Advanced Windows®

by Jeffrey Richter

976 pages, one CD-ROM, $44.95
ISBN: 1-55615-677-4

Pub. Date: March 3, 1995

FOR IMMEDIATE RELEASE
Contact: Cheri Chapman
206-936-5302

206-936-7329 fax

Email: cherico@microsoft.com

Jeffrey Richter’s

Advanced Windows®

The Developer’s Guide to the Win32+ API

for Windows NT™ 3.5 and Windows 95
February 7, 1995 — REDMOND, WA — Microsoft Press announced today the
publication of ADVANCED WINDOWS®, by seasoned developer, consultant, and
critically acclaimed author Jeffrey Richter.

ADVANCED WINDOWS is the first full discussion of the Win32® API for Windows
NT™ version 3.5 and Windows 95. It offers expert advice, sample code, and tested
techniques for ISVs and corporate developers building new 32-bit applications from

scratch or porting existing applications to a Win32 operating system.

Richter examines the core areas of the Windows NT 3.5 and Windows 95 operating
systems in detail and explains what the move to Win32 really means in terms of:
* Managing processes and threads, including thread-local storage and thread
synchronization
¢ Exploring virtual memory and using virtual memory in applications
e Writing DLLs—and techniques for using them most effectively
¢ Sharing code and data among applications using memory-mapped files and
sophisticated DLL-injection techniques
¢ Developing software for international markets using Unicode

* Writing robust, error-free applications using structured exception handling

Along the way, Richter points out how to both unleash the power and avoid the pitfalls of
the complex Win32 API. He carefully details Win32 functions and programming
methods specific to either Windows 95 or Windows NT.

An appendix explains how to use “message crackers” to help read, write, and maintain
source code. A comprehensive table of contents and a thorough, cross-referenced index
help readers quickly locate information about any topic in the book.

Source code and executable binaries for all of the more than 25 sample programs
presented in ADVANCED WINDOWS are included on one companion CD-ROM.
Written for the Intel®, MIPS®, and Digital Alpha AXP™ microprocessors, these
programs show true 32-bit programming techniques in action. Visual C++™
development system version 2.0 and either Microsoft® Windows NT (for any CPU
platform) or Windows 95 are required.

Jeffrey Richter is the author of Advanced Windows NT and Windows 3.1: A Developer’s
Guide and is a contributing editor of Microsoft Systems Journal. A full-time software
design engineer, Richter is also a consultant, a trainer, and a frequent speaker at
developer conferences around the world.

Microsoft Press is the independent book division of Microsoft Corporation and the
leading publisher of quality computer books about Microsoft products. More than 10
million users at all skill levels rely on a complete line of Microsoft Press® books to make
learning and using software easier. Titles ranging from streamlined tutorials for first-time
computer users to technical references for professional programmers are distributed to
book and software retailers worldwide. Consumers in the United States can also order
directly from the publisher at 1-800-MSPRESS and through the CompuServe® Electronic
Mall (GO MSP).

Founded in 1975, Microsoft (NASDAQ “MSFT”) is the worldwide leader in software for
personal computers. The company offers a wide range of products and services for
business and personal use, each designed with the mission of making it easier and more
enjoyable for people to take advantage of the full power of personal computing every
day.
Microsoft, Microsoft Press, Windows, and Win32 are registered trademarks and
Visual C++ and Windows NT are trademarks of Microsoft Corporation.
Intel is a registered trademark of Intel Corporation.
MIPS is a registered trademark of MIPS Computer Systems, Inc.

Alpha AXP is a trademark of Digital Equipment Corporation.
CompusServe is a registered trademark of CompuServe, Inc.

CHAPTER FIVE

EXPLORING VIRTUAL
MEMORY

In the last chapter, we discussed how the system manages

virtual memory, how each process receives its very own private
address space, and what a process’s address space looks like. In
this chapter, we move away from the abstract and examine
some of the Win32 functions that give us information about the
system’s memory management and about the virtual address
space in a process.

System Information

To understand how Win32 uses virtual memory, you need to
know how the current Win32 implementation works. The
GetSysteminfo function retrieves information (including virtual
memory information) about the current Win32 implementation:

VOID GetSysteminfo (LPSYSTEM_INFO IpSystemInfo);

You must pass the address of a SYSTEM_INFO structure to
this function. The function will initialize the structure’s members
and return. Here is what the SYSTEM_INFO data structure looks
like:

typedef struct _SYSTEM_INFO {

DWORD dwOemld;

DWORD dwPageSize;

LPVOID IpMinimumApplicationAddress;
LPVOID IpMaximumApplicationAddress;
DWORD dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;

DWORD dwAllocationGranularity;
DWORD dwReserved;

} SYSTEM_INFO;

When the system boots, it determines what the values of
these members should be; for a given system the values will
always be the same. GetSysteminfo exists so that an application
can query these values at run time. Of all the members in the
structure, only four of them have anything to do with memory.
These four members are explained in the table below:

Member Name Description

dwPageSize Shows the size of a memory page. On
x86, MIPS, and PowerPC CPUs, this value
is 4 KB. On Alpha CPUs, this value is 8 KB.

IpMinimumApplicationAddress Gives the minimum memory
address of every process’s usable
address space. On Windows 95, this value
is 4,194,304, or 0x00400000, because the
bottom 4 MB of every process’s address
space is inaccessible. On Windows NT,
this value is 65,536, or 0x00010000,
because the first 64 KB of every process’s
address space is reserved.

IpMaximumApplicationAddress Gives the maximum memory
address of every process’s usable private
address
space. On Windows 95, this address is
2,147,483,647, or Ox7FFFFFFF, because
the shared memory-mapped file region
and the shared operating system code
are contained in the top 2-GB partition.
On Windows NT, this address is
2,147,418,111, or Ox7FFEFFFF, because
unusable address space begins just 64 KB
below the 2-GB line and extends to the
end of the process’s address space.

dwAllocationGranularity Shows the granularity of a reserved
region of address space. As of this
writing, this value is 65,536 because all
implementations of Win32 reserve
address space on even

64-KB boundaries.
]

The System Information Sample Application

The Sysinfo application (SYSINFO.EXE), listed in Figure 5-1
beginning on page 130, is a very simple program that calls
GetSysteminfo and displays the information returned in the
SYSTEM_INFO structure. The source code files, resource files, and
make file for the application are in the SYSINFO.05 directory on
the companion disc. The dialog boxes below show the results of
running the Sysinfo application on several different platforms.

Windows 95 on Intel x86.

Windows NT on Intel x86.

Windows NT on MIPS R4000.

Windows NT on DEC Alpha.

SYSINFO.C

JreickickiosioRickiokoRickiolbioRioiolooRickiokoioRickiokoioR ookl Rk

Module name: Sysinfo.C
Notices: Copyright (c) 1995 Jeffrey Richter

#include ".\AdvWin32.H" /* See Appendix B for details. */
#include <windows.h>
#include <windowsx.h>

#pragma warning(disable: 4001) /* Single-line comment */

#include <tchar.h>
#include <stdio.h>
#include "Resource.H"

W T T T T T

typedef struct {
const DWORD dwValue;
LPCTSTR szText;

} LONGDATA,;

LONGDATA CPUFlagsl] = {
{ PROCESSOR_INTEL 386, _ TEXT("Intel 386") }
{ PROCESSOR_INTEL 486, _ TEXT("Intel 486") }
{ PROCESSOR_INTEL_PENTIUM, _TEXT("Intel Pentium
{ PROCESSOR_INTEL 860, _ TEXT("Intel 860") }
{ PROCESSOR_MIPS_R2000, _ TEXT("MIPS R2000") }
{ PROCESSOR_MIPS_R3000, _ TEXT("MIPS R3000") }
{ PROCESSOR_MIPS_R4000, _ TEXT("MIPS R4000") }

’

’

{ PROCESSOR_ALPHA_ 21064, _ TEXT("DEC Alpha 21064") },

#ifdef PROCESSOR_PPC_601

{ PROCESSOR_PPC_601, _ TEXT("PowerPC 601") },
{ PROCESSOR_PPC_603, __TEXT("PowerPC 603") '},
{ PROCESSOR_PPC 604, _ TEXT("PowerPC 604") 1},
{ PROCESSOR_PPC_620, __TEXT("PowerPC 620") 1},

#endif
{0, NULL }

Y

Figure 5-1.

The Sysinfo application.
Figure 5-1. continued

o

LPCTSTR GetFlagStr (DWORD dwFlag, LONGDATA FlaglList[],
LPTSTR pszBuf) {

int x;

DAY

’
’

’

(continued)

for (x = 0; FlagList[x].dwValue != 0; x++) {
if (FlagList[x].dwValue == dwFlag)
return(FlagList[x].szText);

}

_stprintf(pszBuf, _ TEXT("Unknown (%d)"), dwFlag);
return(pszBuf);

}

o

/] This function accepts a number and converts it to a

// string, inserting commas where appropriate.

LPTSTR BigNumToString (LONG INum, LPTSTR szBuf) {
WORD wNumDigits = 0, wNumChars = 0;

do {
// Put the last digit of the string
// in the character buffer.
szBuffwNumChars++] = (TCHAR) (INum % 10 + _ TEXT('0"));

// Increment the number of digits
// that we put in the string.
wNumDigits++;

/] For every three digits put in

// the string, add a comma (,).

if (WNumDigits % 3 == 0)
szBuffwNumChars++] = _ TEXT(",');

// Divide the number by 10, and repeat the process.
INum /= 10;

(continued)
Figure 5-1. continued

// Continue adding digits to the
// string until the number is zero.
} while (INum != 0);

// If the last character added to

// the string was a comma, truncate it.

if (szBuffwNumChars - 1] == _ TEXT(","))
szBuffwNumChars - 1] = 0;

/] Ensure that the string is zero-terminated.
szBuffwNumChars] = 0;

// We added all the characters to the string in
/] reverse order. We must reverse the contents
// of the string.

_tcsrev(szBuf);

// Returns the address of the string. This is the same
// value that was passed to us initially. Returning it
/] here makes it easier for the calling function to

/] use the string.
return(szBuf);

}

o

BOOL DIg_OnlnitDialog (HWND hwnd, HWND hwndFocus,
LPARAM IParam) {

TCHAR szBuf[50];
SYSTEM_INFO si;

/] Associate an icon with the dialog box.
SetClassLong(hwnd, GCL_HICON, (LONG)

Loadlcon((HINSTANCE) GetWindowLong(hwnd, GWL_HINSTANCE),

__TEXT("SysInfo")));
GetSysteminfo(&si);

// Fill the static controls in the
// list box with the appropriate number.

Figure 5-1. continued

SetDlgltemText(hwnd, IDC_OEMID,
BigNumToString(si.dwOemld, szBuf));

SetDlgltemText(hwnd, IDC_PAGESIZE,
BigNumToString(si.dwPageSize, szBuf));

SetDlgltemText(hwnd, IDC_MINAPPADDR,
BigNumToString((LONG) si.lpMinimumApplicationAddress,
szBuf));

SetDlgltemText(hwnd, IDC_MAXAPPADDR,
BigNumToString((LONG) si.lpMaximumApplicationAddress,
szBuf));

_stprintf(szBuf, _ TEXT("0x%08X"),
si.dwActiveProcessorMask);
SetDlgltemText(hwnd, IDC_ACTIVEPROCMASK, szBuf);

SetDlgltemText(hwnd, IDC_NUMOFPROCS,
BigNumToString(si.dwNumberOfProcessors, szBuf));

SetDlgltemText(hwnd, IDC_PROCTYPE,
GetFlagStr(si.dwProcessorType, CPUFlags, szBuf));

SetDlgltemText(hwnd, IDC_ALLOCGRAN,
BigNumToString(si.dwAllocationGranularity, szBuf));

return(TRUE);
}

(continued)

T T T

void DIg_OnCommand (HWND hwnd, int id, HWND hwndCtl,
UINT codeNotify) {

switch (id) {
case IDCANCEL:
EndDialog(hwnd, id);
break;

Figure 5-1. continued

T | T

BOOL CALLBACK DIlg_Proc (HWND hDlg, UINT uMsg,
WPARAM wParam, LPARAM IParam) {
BOOL fProcessed = TRUE;
switch (uMsg) {

HANDLE_MSG(hDIg, WM_INITDIALOG, DIg_OniInitDialog);
HANDLE_MSG(hDIlg, WM_COMMAND, DIg_OnCommand);

default:
fProcessed = FALSE;
break;
}
return(fProcessed);
}

o

int WINAPI WinMain (HINSTANCE hinstExe,
HINSTANCE hinstPrev, LPSTR IpszCmdLine, int nCmdShow) {

DialogBox(hinstExe, MAKEINTRESOURCE(IDD_SYSINFO),
NULL, DIg_Proc);

return(0);

}

i end of Eile i

SYSINFO.RC

//Microsoft Visual C++ generated resource script.

1/
#include "Resource.h"

(continued)

#define APSTUDIO_READONLY_SYMBOLS

(continued)
Figure 5-1. continued

i
/
// Generated from the TEXTINCLUDE 2 resource.
1
#include "afxres.h"
i
#undef APSTUDIO_READONLY_SYMBOLS
#ifdef APSTUDIO_INVOKED
i
1
/] TEXTINCLUDE
/
1 TEXTINCLUDE DISCARDABLE
BEGIN

"Resource.h\0"
END
2 TEXTINCLUDE DISCARDABLE
BEGIN

"#include ""afxres.h""\r\n"

II\OII
END
3 TEXTINCLUDE DISCARDABLE
BEGIN

"An®

II\OII
END
s
#endif // APSTUDIO_INVOKED
M o
/
// Dialog
1/
IDD_SYSINFO DIALOG DISCARDABLE 18, 18,170, 103

(continued)

Figure 5-1. continued

STYLE WS_MINIMIZEBOX oe WS_POPUP ce WS_VISIBLE ce WS_CAPTION
ce WS_SYSMENU

CAPTION "System Information"

FONT 8, "System"

BEGIN

RTEXT "OEM ID:",IDC_STATIC,4,4,88,8,SS_NOPREFIX
RTEXT "ID_OEMID",IDC_OEMID,96,4,68,8,
SS_NOPREFIX
RTEXT "Page size:",IDC_STATIC,4,16,88,8,
SS_NOPREFIX
RTEXT "ID_PAGESIZE",IDC_PAGESIZE,96,16,68,8,
SS_NOPREFIX
RTEXT "Minimum app. address:",IDC_STATIC,4,28,
88,8,5S_NOPREFIX
RTEXT "ID_MINAPPADDR",IDC_MINAPPADDR,96,28,68,
8,SS_NOPREFIX
RTEXT "Maximum app. address:",IDC_STATIC,4,40,88,
8,SS_NOPREFIX
RTEXT "ID_MAXAPPADDR",IDC_MAXAPPADDR,96,40,68,8,
SS_NOPREFIX
RTEXT "Active processor mask:",IDC_STATIC,4,52,88,
8,SS_NOPREFIX
RTEXT "ID_ACTIVEPROCMASK",IDC_ACTIVEPROCMASK,
96,52,68,8,SS_NOPREFIX
RTEXT "Number of processors:",IDC_STATIC,4,64,88,
8,5S_NOPREFIX
RTEXT "ID_NUMOFPROCS",IDC_NUMOFPROCS,96,64,68,8,
SS_NOPREFIX
RTEXT "Processor type:",IDC_STATIC,4,76,88,8,
SS_NOPREFIX
RTEXT "ID_PROCTYPE",IDC_PROCTYPE,96,76,68,8,
SS_NOPREFIX
RTEXT "Allocation granularity:",IDC_STATIC,4,88,
88,8,5S_NOPREFIX
RTEXT "ID_ALLOCGRAN",IDC_ALLOCGRAN,96,88,68,8,
SS_NOPREFIX
END
MU g
1
// lcon

1

(continued)
Figure 5-1. continued

SYSINFO ICON DISCARDABLE "SysInfo.lco"

#ifndef APSTUDIO_INVOKED
o

/

// Generated from the TEXTINCLUDE 3 resource.
/!

W T
#endif // not APSTUDIO_INVOKED

Virtual Memory Status

There is a Win32 function called GlobalMemoryStatus that
retrieves dynamic information about the current state of
memory:

VOID GlobalMemoryStatus (LPMEMORYSTATUS IpmstMemStat);

| think that this function is very poorly named—
GlobalMemoryStatus implies that the function is somehow
related to the global heaps in 16-bit Windows. Win32 does not
have a global heap but does offer the old global heap functions
such as GlobalAlloc purely to ease the burden of porting a 16-bit
Windows application to Win32. | think that GlobalMemoryStatus
should have been called something like VirtualMemoryStatus
instead.

When you call GlobalMemoryStatus, you must pass the
address of a MEMORYSTATUS structure. Here is what the
MEMORYSTATUS data structure looks like:

typedef struct MEMORYSTATUS {
DWORD dwLength;
DWORD dwMemorylLoad;
DWORD dwTotalPhys;
DWORD dwAvailPhys;
DWORD dwTotalPagefFile;
DWORD dwAvailPageFile;
DWORD dwTotalVirtual;
DWORD dwAvailVirtual;
} MEMORYSTATUS, *LPMEMORYSTATUS;

Before calling GlobalMemoryStatus, you must initialize the
dwlLength member to the size of the structure in bytes—that is,
sizeof(MEMORYSTATUS). This allows Microsoft to add members to
this structure in future versions of the Win32 APl without
breaking existing applications. When you call
GlobalMemoryStatus, it will initialize the remainder of the
structure’s members and return. The VMStat sample application
in the next section describes the various members and their
meanings.

The Virtual Memory Status Sample Application

The VMStat application (VMSTAT.EXE), listed in Figure 5-2,
displays a simple dialog box that lists the results of a call to
GlobalMemoryStatus. The source code files, resource files, and
make file for the application are in the VMSTAT.05 directory on
the companion disc. Below is the result of running this program
on Windows 95 using an 8-MB Intel 486 machine:

The dwMemoryLoad member (shown as Memory Load) gives
a rough estimate of how busy the memory management system

is. This number can be anywhere from 0 to 100. The exact
algorithm used to calculate this value varies between Windows
95 and Windows NT. In addition, the algorithm is subject to
change in future versions of the operating system. In practice,
the value reported by this member variable is all but useless.

The dwTotalPhys member (shown as TotalPhys) indicates
the total number of bytes of physical memory (RAM) that exist.
On this 8-MB 486 machine, this value is 6,983,680, which is just
over 6.6 MB. This value is the exact amount of memory,
including any holes in the address space between the low 640 KB
and 1 MB of physical memory. The dwAvailPhys member (shown
as AvailPhys) indicates the total number of bytes of physical
memory available for allocation.

The dwTotalPageFile member (shown as TotalPageFile)
indicates the maximum number of bytes that can be contained in
the paging file(s) on your hard disk(s). Although VMStat reported
that the paging file is currently 58,777,600 bytes, the system can
expand and shrink the paging file as it sees fit. The
dwAvailPageFile member (shown as AvailPageFile) indicates that
57,204,736 bytes in the paging file(s) are not committed to any
process and are currently available should a process decide to
commit any private storage.

The dwTotalVirtual member (shown as TotalVirtual) indicates
the total number of bytes that are private in each process’s
address space. The value 2,143,289,344 is 4 MB short of being
exactly 2 GB. The bottom 4 MB of inaccessible address space
accounts for the 4-MB difference. If you run VMStat under
Windows NT, you'll see that dwTotalVirtual comes back with a
value of 2,147,352,576, which is just 128 KB short of being
exactly 2 GB. The 128-KB difference exists because the system
never lets an application gain access to the 64 KB at the
beginning or the 64 KB at the end of a 2-GB mark of address
space.

The last member, dwAvailVirtual (shown as AvailVirtual), is
the only member of the structure specific to the process calling
GlobalMemoryStatus—all the other members apply to the system
and would be the same regardless of which process was calling
GlobalMemoryStatus. To calculate this value,
GlobalMemoryStatus adds up all of the free regions in the calling
process’s address space. The dwAvailVirtual value 2,139,422,720
indicates the amount of free address space that is available for
VMStat to do with what it wants. If you subtract the
dwAvailVirtual member from the dwTotalVirtual member, you’'ll
see that VMStat has 3,866,624 bytes reserved in its virtual
address space.

There is no member that indicates the amount of physical
storage currently in use by the process.

VMSTAT.C

L
Module name: VMStat.C

Notices: Copyright (c) 1995 Jeffrey Richter

#include ".\AdvWin32.H" /* See Appendix B for details. */
#include <windows.h>
#include <windowsx.h>

#pragma warning(disable: 4001) /* Single-line comment */

#include <tchar.h>
#include "Resource.H"

Figure 5-2. (continued)
The VMStat application.

Figure 5-2. continued

T T T T T

/] This function accepts a number and converts it to a string,

// inserting commas where appropriate.

LPTSTR WINAPI BigNumToString (LONG INum, LPTSTR szBuf) {
WORD wNumDigits = 0, wNumChars = 0;

do {
// Put the last digit of the string
// in the character buffer.
szBuffwNumChars++] = (TCHAR) (INum % 10 + _ TEXT('0"));

// Increment the number of digits
// that we put in the string.
wNumDigits++;

/] For every three digits put in

// the string, add a comma (,).

if (WNumDigits % 3 == 0)
szBuffwNumChars++] = _ TEXT(",');

// Divide the number by 10, and repeat the process.
INum /= 10;
/I Continue adding digits to
// the string until the number is zero.
} while (INum != 0);

// If the last character added to

// the string was a comma, truncate it.

if (szBuffwNumChars - 1] == _ TEXT(',"))
szBuffwNumcChars - 1] = 0O;

/] Ensure that the string is zero-terminated.
szBuffwNumcChars] = 0;

// We added all the characters to the string in reverse
/] order. We must reverse the contents of the string.

_tcsrev(szBuf);

/] Returns the address of the string. This is the same
// value that was passed to us initially. Returning it
// here makes it easier for the calling function

// to use the string.

return(szBuf);

(continued)
Figure 5-2. continued

T T T T

BOOL DIg_OnlnitDialog (HWND hwnd, HWND hwndFocus,
LPARAM IParam) {

TCHAR szBuf[50];
MEMORYSTATUS ms;

/] Associate an icon with the dialog box.

SetClassLong(hwnd, GCL_HICON, (LONG)
Loadlcon((HINSTANCE) GetWindowLong(hwnd, GWL_HINSTANCE),
(LPCTSTR) __ TEXT("VMStat")));

// Initialize the structure length before
// calling GlobalMemoryStatus.
ms.dwlLength = sizeof(ms);
GlobalMemoryStatus(&ms);

/I Fill the static controls in the

// list box with the appropriate number.

SetDlgltemText(hwnd, IDC_MEMLOAD,
BigNumToString(ms.dwMemoryLoad, szBuf));

SetDlgltemText(hwnd, IDC_TOTALPHYS,
BigNumToString(ms.dwTotalPhys, szBuf));

SetDlgltemText(hwnd, IDC_AVAILPHYS,
BigNumToString(ms.dwAvailPhys, szBuf));

SetDlIgltemText(hwnd, IDC_TOTALPAGEFILE,
BigNumToString(ms.dwTotalPageFile, szBuf));

SetDlgltemText(hwnd, IDC_AVAILPAGEFILE,
BigNumToString(ms.dwAvailPageFile, szBuf));

SetDlgltemText(hwnd, IDC_TOTALVIRTUAL,
BigNumToString(ms.dwTotalVirtual, szBuf));

SetDlgltemText(hwnd, IDC_AVAILVIRTUAL,
BigNumToString(ms.dwAvailVirtual, szBuf));

return(TRUE);
}

(continued)

Figure 5-2. continued

T T T T

void DIg_OnCommand (HWND hwnd, int id, HWND hwndCtl,
UINT codeNotify) {

switch (id) {
case IDCANCEL:
EndDialog(hwnd, id);
break;

T T T T

BOOL CALLBACK DIg_Proc (HWND hDlIg, UINT uMsg,
WPARAM wParam, LPARAM IParam) {

BOOL fProcessed = TRUE;
switch (uMsg) {

HANDLE_MSG(hDIg, WM_INITDIALOG, Dlg_OnlInitDialog);
HANDLE_MSG(hDIlg, WM_COMMAND, DIlg_OnCommand);

default:
fProcessed = FALSE;
break;
}
return(fProcessed);

}

T T T T T

int WINAPI WinMain (HINSTANCE hinstExe,
HINSTANCE hinstPrev, LPSTR IpszCmdLine, int nCmdShow) {

DialogBox(hinstExe, MAKEINTRESOURCE(IDD_VMSTAT),
NULL, DIg_Proc);

return(0);

}

W €nd Of File /11T

(continued)
Figure 5-2. continued

VMSTAT.RC

//Microsoft Visual C++ generated resource script.
/
#include "Resource.h"

#define APSTUDIO_READONLY_SYMBOLS

M o

/

// Generated from the TEXTINCLUDE 2 resource.
1/

#include "afxres.h"

T T T
#undef APSTUDIO_READONLY_SYMBOLS

#ifdef APSTUDIO_INVOKED
T T T T
1

/l TEXTINCLUDE

1

1 TEXTINCLUDE DISCARDABLE
BEGIN

"Resource.h\0"
END

2 TEXTINCLUDE DISCARDABLE
BEGIN
"#include ""afxres.h""\r\n"
"o
END

3 TEXTINCLUDE DISCARDABLE
BEGIN

"r\n"

II\OII
END

M T T
#endif // APSTUDIO_INVOKED

(continued)
Figure 5-2. continued

T T
I

// Dialog

I

IDD_VMSTAT DIALOG DISCARDABLE 60, 27, 129, 101

STYLE WS_MINIMIZEBOX oe WS_POPUP ce WS_VISIBLE ce WS_CAPTION
ce WS_SYSMENU

CAPTION "Virtual Memory Status"

FONT 8, "System"

BEGIN
RTEXT "Memory load:",IDC_STATIC,4,4,52,8
RTEXT "Text",IDC_MEMLOAD,60,4,60,8
RTEXT "TotalPhys:",IDC_STATIC,4,20,52,8
RTEXT "Text",IDC_TOTALPHYS,60,20,60,8
RTEXT "AvailPhys:",IDC_STATIC,4,32,52,8
RTEXT "Text",IDC_AVAILPHYS,60,32,60,8
RTEXT "TotalPageFile:",IDC_STATIC,4,48,52,8

RTEXT "Text",IDC_TOTALPAGEFILE,60,48,60,8

RTEXT "AvailPageFile:",IDC_STATIC,4,60,52,8

RTEXT "Text",IDC_AVAILPAGEFILE,60,60,60,8
RTEXT "TotalVirtual:",IDC_STATIC,4,76,52,8

RTEXT "Text",IDC_TOTALVIRTUAL,60,76,60,8
RTEXT "AvailVirtual:",IDC_STATIC,4,88,52,8

RTEXT "Text",IDC_AVAILVIRTUAL,60,88,60,8

END

o

/

// lcon

/!

VMStat ICON DISCARDABLE "VMStat.lco"

#ifndef APSTUDIO_INVOKED
i

1

// Generated from the TEXTINCLUDE 3 resource.
1

T T T TTT]
#endif // not APSTUDIO_INVOKED

Determining the State of an Address Space

Win32 offers a function that lets you query certain information
(for example, size, storage type, and protection attributes) about
a memory address in your address space. In fact, the VMMap
sample application shown later in this chapter uses this function
to produce the virtual memory map dumps that appeared in
Chapter 4. This Win32 function is called VirtualQuery:

DWORD VirtualQuery(LPVOID IpAddress,
PMEMORY_BASIC_INFORMATION IpBuffer,
DWORD dwLength);

When you call VirtualQuery, the first parameter, IpAddress,
must contain the virtual memory address that you want
information about. The IpBuffer parameter is the address to a
MEMORY_BASIC_INFORMATION structure that you must allocate.
This structure is defined in WINNT.H as follows:

typedef struct _ MEMORY_BASIC_INFORMATION {
PVOID BaseAddress;
PVOID AllocationBase;
DWORD AllocationProtect;
DWORD RegionSize;
DWORD State;
DWORD Protect;
DWORD Type;
} MEMORY_BASIC_INFORMATION, *PMEMORY_BASIC_INFORMATION;

The last parameter, dwLength, specifies the size of a
MEMORY_BASIC_INFORMATION structure. VirtualQuery returns
the number of bytes copied into the buffer.

Based on the address that you pass in the IpAddress
parameter, VirtualQuery fills the MEMORY_BASIC INFORMATION
structure with information about the range of adjoining pages
that share the same state, protection attributes, and type. See
the table on the following page for a description of the
structure’s members.

Member Name Description

BaseAddress This is the same value as the IpAddress parameter
rounded down to an even page boundary.
AllocationBase Identifies the base address of the region containing

the address specified in the IpAddress parameter.

AllocationProtect Identifies the protection attribute assigned to the
region when it was initially reserved.

RegionSize Identifies the size, in bytes, for all pages starting at
BaseAddress that have the same protection
attributes, state, and type as the page containing
the address
specified in the IpAddress parameter.

State Identifies the state (MEM_FREE, MEM_RESERVE,
or MEM_COMMIT) for all adjoining pages that have
the same protection attributes, state, and type as
the page containing the address specified in the
IpAddress parameter.

If the state is free, the AllocationBase,
AllocationProtect,
Protect, and Type members are undefined.

If the state is reserve, the Protect member is
undefined.

Protect Identifies the protection attribute (PAGE_*) for all
adjoining pages that have the same protection
attributes, state, and type as the page containing
the address
specified in the IpAddress parameter.

Type Identifies the type of physical storage (MEM_IMAGE,
MEM_MAPPED, or MEM_PRIVATE) that is backing
all adjoining pages that have the same protection
attributes, state, and type as the page containing
the address specified in the IpAddress parameter.
For Windows 95, this member will always indicate
MEM PRIVATE.

The VMQuery Function

When | was first learning how the Win32 memory architecture is
designed, | used VirtualQuery as my guide. In fact, if you
examine the first edition of this book, you'll see that the
VMMAP.EXE program was much simpler than the new version |

present in the next section. In the old version, | had a very
simple loop that called VirtualQuery repeatedly, and for each
call, I simply constructed a single line containing the members of
the MEMORY_BASIC_INFORMATION structure. | studied this dump
and tried to piece the Win32 memory management architecture
together while referring to the Windows NT 3.1 SDK
documentation (which was rather poor at the time). Well, I've
come a long way, baby—I now know that the VirtualQuery
function and the MEMORY_BASIC_INFORMATION structure are not
good for creating a process’s virtual address space memory map.

The problem is that the MEMORY_BASIC_INFORMATION
structure does not return all of the information that the system
has stored internally. If you have a memory address and want to
obtain some sim-ple information about it, VirtualQuery is great. If
you just want to know whether there is committed physical
storage to an address or whether a memory address can be read
from or written to, VirtualQuery works fine. But if you want to
know the total size of a reserved region or the number of blocks
in a region, or whether a region contains a thread’s stack, a
single call to VirtualQuery is just not going to give you the
information you’'re looking for.

In order to obtain much more complete memory information,
| have created my own function, named VMQuery:

BOOL VMQuery (PVOID pvAddress, PVMQUERY pVMQ);

This function is similar to VirtualQuery in that it takes a
memory address specified by the pvAddress parameter and a
pointer to a structure that is to be filled, specified by the pVMQ
parameter. This structure is a VMQUERY structure that | have
also defined:

typedef struct {
// Region information
PVOID pvRgnBaseAddress;
DWORD dwRgnProtection; // PAGE_*
DWORD dwRgnSize;
DWORD dwRgnStorage; // MEM_*: Free, Image,
/! Mapped, Private
DWORD dwRgnBlocks;
DWORD dwRgnGuardBIks; //If > 0, region contains thread stack
BOOL fRgnlIsAStack; // TRUE if region contains thread stack

// Block information
PVOID pvBIkBaseAddress;
DWORD dwBlkProtection; // PAGE_*
DWORD dwBIkSize;
DWORD dwBIkStorage; // MEM_*: Free, Reserve, Image,
/! Mapped, Private
} VMQUERY, *PVMQUERY;

As you can see from just a quick glance, my VMQUERY
structure contains much more information than VirtualQuery’'s

MEMORY_BASIC_INFORMATION structure. My structure is divided
into two distinct parts: region information and block information.

The region portion describes information about the region, and
the block portion contains information about the block containing
the address specified by the pvAddress parameter. The table
below describes all the members:

Member Name

Description

pvRgnBaseAddress ldentifies the base address of the virtual address

dwRgnProtection

dwRgnSize

dwRgnStorage

dwRgnBlocks

dwRgnGuardBlks

fRgnisAStack

pvBlkBaseAddress

dwBlkProtection

dwBlIkSize

continued

space region containing the address specified in the
pVvAddress parameter.

Identifies the protection attribute that was assigned

to the region of address space when it was initially -
reserved.

Identifies the size, in bytes, of the region that was -
reserved.

Identifies the type of physical storage that is used
for the bulk of the blocks in the region. The value is
one

of the following: MEM_FREE, MEM_IMAGE,
MEM_MAPPED, or MEM_PRIVATE. Windows 95
doesn’t distinguish between different storage
types, so this member will always be MEM_FREE or
MEM_PRIVATE under Windows 95.

Identifies the number of blocks contained within
the region.

Identifies the number of blocks that have the
PAGE_GUARD protection attribute flag turned on.
This value will usually be either 0 or 1. If it's 1,
that's a good indicator that the region was reserved
to contain a thread’s stack. Under Windows 95, this
member will always be 0.

Identifies whether the region contains a thread’s

stack. This value is determined by taking a “best

guess” because it is impossible to be 100 percent
sure whether a region contains a stack.

Identifies the base address of the block that
contains the address specified in the pvAddress
parameter.

Identifies the protection attribute for the block that
contains the address specified in the pvAddress
parameter.

Identifies the size, in bytes, of the block that
contains the address specified in the pvAddress
parameter.

(continued)

Member Name

dwBlkStorage

Description

Identifies the content of the block that contains the
address specified in the pvAddress parameter. The

value is one of the following: MEM_FREE,
MEM_RESERVE, MEM_IMAGE, MEM_MAPPED, or
MEM_PRIVATE. Under Windows 95, this member will
never be MEM IMAGE or MEM MAPPED.

There is no doubt that VMQuery must do a significant
amount of processing, including many calls to VirtualQuery, in
order to obtain all this information—which means it executes
much more slowly than VirtualQuery. For this reason, you should
think carefully when deciding which of these two functions to
call. If you do not need the extra information obtained by
VMQuery, call VirtualQuery.

The VMQUERY.C file, listed in Figure 5-3, shows how | obtain
and massage all the information needed to set the members of
the VMQUERY structure. The VMQUERY.C and VMQUERY.H files
are in the VMMAP.05 directory on the companion disc. Rather
than go into detail in the text about how | process this data, I'll
let my comments (sprinkled liberally throughout the code) speak
for themselves.

VMQUERY.C
/
Module name: VMQuery.C

Notices: Copyright (c) 1995 Jeffrey Richter

#include ".\AdvWin32.H" /* See Appendix B for details.*/
#include <windows.h>
#include <windowsx.h>

#pragma warning(disable: 4001) /* Single-line comment */

#include "VMQuery.H"

T T T

Figure 5-3. (continued)
The VMQuery listings.

Figure 5-3. continued

typedef struct {
DWORD dwRgnSize;
DWORD dwRgnStorage; // MEM_*: Free, Image,
/! Mapped, Private
DWORD dwRgnBlocks;
DWORD dwRgnGuardBlks; //If > 0, region contains
// thread stack
BOOL fRgnlsAStack; // TRUE if region contains
// thread stack
} VMQUERY_HELP;

// Global-static variable that holds the

// allocation granularity value for this CPU platform. This
// variable is initialized the first time VMQuery is called.
static DIWORD gs_dwAllocGran = 0;

T T T T

/l When NTBUG_VIRTUALQUERY is defined, the code below
// compensates for a bug in Windows NT's implementation of
// the VirtualQuery function.

#define NTBUG_VIRTUALQUERY

#ifdef NTBUG_VIRTUALQUERY
DWORD NTBug_VirtualQuery (LPVOID IpvAddress,
PMEMORY_BASIC_INFORMATION pmbiBuffer, DIWORD cbLength) {

DWORD dwRetVal = VirtualQuery(lpvAddress,
pmbiBuffer, cbLength);

if (dwRetVal == cbLength) {
// If successful, correct the MBI structure's values.

if ((DWORD) pmbiBuffer->AllocationBase % 0x1000)
== OxFFF) {
// If the AllocationBase member ends with OxFFF,
// the address is 1 byte off.
pmbiBuffer->AllocationBase = (PVOID)
((PBYTE) pmbiBuffer->AllocationBase + 1);

(continued)
Figure 5-3. continued

if ((pmbiBuffer->RegionSize % 0x1000) == OxFFF) {
// If the RegionSize member ends with OxFFF,
/] the size is 1 byte off.
pmbiBuffer->RegionSize++;

}

if ((pmbiBuffer->State != MEM_FREE) &&
(pmbiBuffer->AllocationProtect == 0)) {
/] If the the region is not free and the
// AllocationProtect member is 0, AllocationProtect
// should be PAGE_READONLY.
pmbiBuffer->AllocationProtect = PAGE_READONLY;
}
}
return(dwRetVal);
}

#define VirtualQuery NTBug_VirtualQuery
#endif

T T T

// This function iterates through all the blocks in a

// region and initializes a structure with its findings.

static BOOL VMQueryHelp (PVOID pvAddress,
VMQUERY_HELP *pVMQHelp) {

MEMORY_BASIC_INFORMATION MBI;
PVOID pvRgnBaseAddress, pvAddressBIk;
BOOL fOk;
DWORD dwProtectBlock[4] = { 0 };
// 0 = reserved, PAGE_NOACCESS, PAGE_READWRITE

/] Zero the contents of the structure.
memset(pVMQHelp, 0, sizeof(*pVMQHelp));

// From the passed memory address, obtain the
// base address of the region that contains it.
fOk = (VirtualQuery(pvAddress,

&MBI, sizeof(MBI)) == sizeof(MBI));

(continued)
Figure 5-3. continued

if (1fOk) {
// If we can't get any information about the passed
// address, return FALSE, indicating an error.
/] GetLastError() will report the actual problem.
return(fOk);

}

// pvRgnBaseAddress identifies the region's
// base address and will never change.
pvRgnBaseAddress = MBI.AllocationBase;

// pvAddress identifies the address of the first block
// and will change as we iterate through the blocks.
pvAddressBlk = pvRgnBaseAddress;

/] Save the memory type of the physical storage block.
pVMQHelp->dwRgnStorage = MBI.Type;

for (;;) {
// Get info about the current block.
fOk = VirtualQuery(pvAddressBlk, &MBI, sizeof(MBI));
if (1fOk) {
// Couldn't get the information, end loop.
break;

}

// Check to see whether the block we got info for is
// contained in the requested region.
if (MBI.AllocationBase != pvRgnBaseAddress) {
// Found a block in the next region; end loop.
break;

}

// We have found a block contained
// in the requested region.

/l The following if statement is for detecting stacks in
// Windows 95. Windows 95 stacks are in a region wherein
// the last 4 blocks have the following attributes:
// reserved block, PAGE_NOACCESS, PAGE_READWRITE,
// and another reserved block.
if (p)VMQHelp->dwRgnBlocks < 4) {

/1 If this is the Oth through 3rd block, make

/I a note of the block's protection in our array.

(continued)
Figure 5-3. continued

dwProtectBlock[pVMQHelp->dwRgnBlocks] =
(MBI.State == MEM_RESERVE) ? 0 : MBI.Protect;
} else {
// We have already seen 4 blocks in this region.
// Shift the protection values down in the array.
MoveMemory(&dwProtectBlock[0], &dwProtectBlock[1],
sizeof(dwProtectBlock) - sizeof(DWORD));

// Add the new protection value to the end
// of the array.
dwProtectBlock[3] =
(MBI.State == MEM_RESERVE) ? 0 : MBI.Protect;
}

// Add 1 to the number of blocks in the region.
pVMQHelp->dwRgnBlocks++;

// Add the block's size to the reserved region size.
pVMQHelp->dwRgnSize += MBI.RegionSize;

/Il If the block has the PAGE_GUARD protection attribute

// flag, add 1 to the number of blocks with this flag.

if (MBI.Protect & PAGE_GUARD) {
pVMQHelp->dwRgnGuardBlks++;

}

/] Take a best guess as to the type of physical storage

// committed to the block. This is a guess because some

// blocks can convert from MEM_IMAGE to MEM_PRIVATE or

// from MEM_MAPPED to MEM_PRIVATE; MEM_PRIVATE can

/l always be overridden by MEM_IMAGE or MEM_MAPPED.

if ()VMQHelp->dwRgnStorage == MEM_PRIVATE) {
pVMQHelp->dwRgnStorage = MBI.Type;

}

/| Get the address of the next block.
pvAddressBlk = (PVOID)
((PBYTE) pvAddressBlk + MBI.RegionSize);
}

/] After examining the region, check to see whether it is
// a thread stack.

// Windows NT: Assume a thread stack if the region contains
1 at least 1 block with the PAGE_GUARD flag.

(continued)
Figure 5-3. continued

// Windows 95: Assume a thread stack if the region contains

/! at least 4 blocks wherein the last 4 blocks

/! have the following attributes:

/! 3rd block from end: reserved

1 2nd block from end: PAGE_NOACCESS

1 1st block from end: PAGE_READWRITE

/! block at end: another reserved block.

pVMQHelp->fRgnlsAStack =
(pVMQHelp->dwRgnGuardBlks > 0) cece
((pVMQHelp->dwRgnBlocks >= 4) &&
(dwProtectBlock[0] == 0) &&
(dwProtectBlock[1] == PAGE_NOACCESS) &&
(dwProtectBlock[2] == PAGE_READWRITE) &&
(dwProtectBlock[3] == 0));

// Return that the function completed successfully.
return(TRUE);
}

T T T T

BOOL VMQuery (PVOID pvAddress, PVMQUERY pVMQ) {

MEMORY_BASIC_INFORMATION MBI;
VMQUERY_HELP VMQHelp;
BOOL fOk;

if (gs_dwAllocGran == 0) {
/1 If this is the very first time a thread in this
// application is calling us, we must obtain the size
// of a page used on this system and save this value
// in a global-static variable.
SYSTEM_INFO SlI;
GetSysteminfo(&Sl);
gs_dwAllocGran = Sl.dwAllocationGranularity;

/| Zero the contents of the structure.
memset(pVMQ, 0, sizeof(*pVMQ));

// Get the MEMORY_BASIC_INFORMATION for the passed address.
fOk = VirtualQuery(pvAddress,
&MBI, sizeof(MBI)) == sizeof(MBI);

(continued)
Figure 5-3. continued

if (IfOk) {
// If we can't get any information about the passed
// address, return FALSE, indicating an error.

/] GetLastError() will report the actual problem.
return(fOk);

}

// The MEMORY_BASIC_INFORMATION structure contains valid
// information. Time to start setting the members
/1 of our own VMQUERY structure.

/I First, fill in the block members. We'll get the

// data for the region containing the block later.

switch (MBI.State) {

case MEM_FREE:

// We have a block of free address space that
/I has not been reserved.
pVMQ->pvBlkBaseAddress = NULL;
pVMQ->dwBIkSize = 0;
pVMQ->dwBIkProtection = 0;
pVMQ->dwBIkStorage = MEM_FREE;
break;

case MEM_RESERVE:
// We have a block of reserved address space that
// does NOT have physical storage committed to it.
pVMQ->pvBlkBaseAddress = MBI.BaseAddress;
pVMQ->dwBIkSize = MBI.RegionSize;

// For an uncommitted block, MBI.Protect is invalid.
// So we will show that the reserved block inherits
// the protection attribute of the region in which it
// is contained.

pVMQ->dwBIkProtection = MBI.AllocationProtect;
pVMQ->dwBIkStorage = MEM_RESERVE;

break;

case MEM_COMMIT:
// We have a block of reserved address space that
// DOES have physical storage committed to it.
pVMQ->pvBlkBaseAddress = MBI.BaseAddress;
pVMQ->dwBIkSize = MBI.RegionSize;
pVMQ->dwBIkProtection = MBI.Protect;
pVMQ->dwBIkStorage = MBI.Type;
break;

(continued)
Figure 5-3. continued

// Second, fill in the region members now that we have

/] used the MBI data obtained from the first call to

/] VirtualQuery. We might have to call VirtualQuery again

// to obtain complete region information.

switch (MBI.State) {

case MEM_FREE:

// We have a block of address space
// that has not been reserved.
pVMQ->pvRgnBaseAddress = MBl.BaseAddress;
pVMQ->dwRgnProtection = MBI.AllocationProtect;
pVMQ->dwRgnSize = MBI.RegionSize;
pVMQ->dwRgnStorage = MEM_FREE;

pVMQ->dwRgnBlocks = 0;
pVMQ->dwRgnGuardBlks = 0;
pVMQ->fRgnlsAStack = FALSE;
break;

case MEM_RESERVE:

// We have a reserved region that does NOT have
/] physical storage committed to it.

pVMQ->pvRgnBaseAddress = MBI.AllocationBase;
pVMQ->dwRgnProtection = MBI.AllocationProtect;

// To get complete information about the region, we
// must iterate through all the region's blocks.
VMQueryHelp(pvAddress, &VMQHelp);

pVMQ->dwRgnSize = VMQHelp.dwRgnSize;
pVMQ->dwRgnStorage = VMQHelp.dwRgnStorage;
pVMQ->dwRgnBlocks = VMQHelp.dwRgnBlocks;
pVMQ->dwRgnGuardBlks = VMQHelp.dwRgnGuardBIks;
pVMQ->fRgnIsAStack = VMQHelp.fRgnlsAStack;

break;

case MEM_COMMIT:

// We have a reserved region that DOES have

/! physical storage committed to it.
pVMQ->pvRgnBaseAddress = MBI.AllocationBase;
pVMQ->dwRgnProtection = MBI.AllocationProtect;

// To get complete information about the region, we

/l must iterate through all the region's blocks.
VMQueryHelp(pvAddress, &VMQHelp);

(continued)

Figure 5-3. continued

}

pVMQ->dwRgnSize = VMQHelp.dwRgnSize;
pVMQ->dwRgnStorage = VMQHelp.dwRgnStorage;
pVMQ->dwRgnBlocks = VMQHelp.dwRgnBlocks;
pVMQ->dwRgnGuardBlks = VMQHelp.dwRgnGuardBlks;
pVMQ->fRgnIsAStack = VMQHelp.fRgnlsAStack;

break;

// Return that the function completed successfully.
return(fOk);

}

i end of File /I

VMQUERY.H

/

Module name: VMQuery.H
Notices: Copyright (c) 1995 Jeffrey Richter

typedef struct {

// Region information

PVOID pvRgnBaseAddress;

DWORD dwRgnProtection; // PAGE_*

DWORD dwRgnSize;

DWORD dwRgnStorage; // MEM_*: Free, Image,
/ Mapped, Private

DWORD dwRgnBlocks;

DWORD dwRgnGuardBIks; //If > 0, region contains
// thread stack

BOOL fRgnlIsAStack; // TRUE if region contains
// thread stack

// Block information
PVOID pvBIkBaseAddress;
DWORD dwBlkProtection; // PAGE_*
DWORD dwBlIkSize;
DWORD dwBIlkStorage; // MEM_*: Free, Reserve, Image,
/ Mapped, Private
} VMQUERY, *PVMQUERY;

(continued)
Figure 5-3. continued

M T
BOOL VMQuery (PVOID pvAddress, PVMQUERY pVMQ);

i end of File g

The Virtual Memory Map Sample Application

The VMMap application (VMMAP.EXE), listed in Figure 5-4
beginning on page 160, walks its own address space and shows
the regions and the blocks within regions. The source code files,
resource files, and make file for the application are in the
VMMAP.O5 directory on the companion disc. When you start the
program, the following window appears:

The contents of this application’s list box were used to
produce the virtual memory map dumps presented in Figure 4-5
on page 112, Figure 4-6 on page 115, and Figure 4-7 on page
120 in Chapter 4.

Each entry in the list box shows the result of information
obtained by calling my VMQuery function. The main loop looks
like this:

PVOID pvAddress = 0x00000000;
BOOL fOk = TRUE;
VMQUERY VMQ;

while (fOk) {
fOk = VMQuery(pvAddress, &VMQ);

if (fOk) {
// Construct the line to be displayed, and
// add it to the list box.
ConstructRgninfoLine(&VMQ, szLine, sizeof(szLine));
ListBox_AddString(hWndLB, szLine);

#if 1
// Change the 1 above to a 0 if you do not want
// to see the blocks contained within the region.

for (dwBlock = 0; fOk && (dwBlock < VMQ.dwRgnBlocks);
dwBlock++) {

ConstructBIlkInfoLine(&VMQ, szLine, sizeof(szLine));
ListBox_AddString(hWndLB, szLine);

/] Get the address of the next region to test.
pvAddress = ((BYTE *) pvAddress + VMQ.dwBIkSize);
if (dwBlock < VMQ.dwRgnBlocks - 1) {

// Don't query the memory info after

/I the last block.

fOk = VMQuery(pvAddress, &VMQ);
}

}
#endif

// Get the address of the next region to test.
pvAddress = ((BYTE *) VMQ.pvRgnBaseAddress +
VMQ.dwRgnSize);

This loop starts walking from virtual address 0x00000000
and ends when VMQuery returns FALSE, indicating that it can no
longer walk the process’s address space. With each iteration of
the loop, there is a call to ConstructRgninfoLine; this function fills
a character buffer with information about the region. Then this
information is appended to the list.

Within this main loop, there is a nested loop that iterates
through each of the blocks in the region. Each iteration of this
loop calls ConstructBlkinfoLine to fill a character buffer with
information about the region’s blocks. Then the information is
appended to the list box. It's very easy to walk the process’s
address space using the VMQuery function.

VMMAP.C

L
Module name: VMMap.C

Notices: Copyright (c) 1995 Jeffrey Richter

#include ".\AdvWin32.H" /* See Appendix B for details. */
#include <windows.h>
#include <windowsx.h>

#pragma warning(disable: 4001) /* Single-line comment */
#include <tchar.h>

#include <stdio.h> // For sprintf

#include <string.h> // For strchr

#include "Resource.H"

#include "VMQuery.H"

T T

/| Set COPYTOCLIPBOARD to TRUE if you want the
// memory map to be copied to the clipboard.
#define COPYTOCLIPBOARD FALSE

#if COPYTOCLIPBOARD

// Function to copy the contents of a list box to the clipboard.
// 1 used this function to obtain the memory map dumps

// for the figures in this book.

void CopyControlToClipboard (HWND hwnd) {
int nCount, nNum;
TCHAR szClipData[20000] = { 0 };
HGLOBAL hClipData;
LPTSTR IpClipData;
BOOL fOk;

nCount = ListBox_GetCount(hwnd);

for (nNum = 0; nNum < nCount; nNum++) {
TCHAR szLine[1000];
ListBox_GetText(hwnd, nNum, szLine);

Figure 5-4. (continued)
The VMMap application.

Figure 5-4. continued
_tcscat(szClipData, szLine);
_tcscat(szClipData, __ TEXT("\r\n"));

}

OpenClipboard(NULL);
EmptyClipboard();

// Clipboard accepts only data that is in a block allocated

/I with GlobalAlloc using the GMEM_MOVEABLE and

// GMEM_DDESHARE flags.

hClipData = GlobalAlloc(GMEM_MOVEABLE ce GMEM_DDESHARE,
sizeof(TCHAR) * (_tcslen(szClipData) + 1));

IpClipData = (LPTSTR) GlobalLock(hClipData);

_tesepy(IpClipData, szClipData);

#ifdef UNICODE
fOk = (SetClipboardData(CF_UNICODETEXT, hClipData)
== hClipData);
#else
fOk = (SetClipboardData(CF_TEXT, hClipData) == hClipData);
#endif
CloseClipboard();

if (IfOk) {
GlobalFree(hClipData);
MessageBox(GetFocus(),
__TEXT("Error putting text on the clipboard"),
NULL, MB_OK ce MB_ICONINFORMATION);
}
}

#endif

T T i

LPCTSTR GetMemStorageText (DWORD dwStorage) {
LPCTSTR p = __ TEXT("Unknown");
switch (dwStorage) {
case MEM FREE: p = __ TEXT("Free "); break;
case MEM_RESERVE: p = _ TEXT("Reserve"); break;
case MEM_IMAGE: p = _ TEXT("Image "); break;

(continued)
Figure 5-4. continued

case MEM_MAPPED: p = _ TEXT("Mapped "); break;
case MEM_PRIVATE: p = _ TEXT("Private"); break;

}

return(p);

}

T T T T

LPTSTR GetProtectText (DWORD dwProtect, LPTSTR szBuf,
BOOL fShowFlags) {
LPCTSTR p = __ TEXT("Unknown");
switch (dwProtect & ~(PAGE_GUARD ce PAGE_NOCACHE)) {

case PAGE_READONLY: p = _ TEXT("-R--"); break;
case PAGE_READWRITE: p = _ TEXT("-RW-"); break;
case PAGE_WRITECOPY: p = _ TEXT("-RWC"); break;
case PAGE_EXECUTE: p = _ TEXT("E---"); break;

case PAGE_EXECUTE_READ: p = _ TEXT("ER--"); break;

case PAGE_EXECUTE_READWRITE: p = _ TEXT("ERW-"); break;
case PAGE_EXECUTE_WRITECOPY: p = _ TEXT("ERWC"); break;
case PAGE_NOACCESS: p = _ TEXT("----"); break;
}
_tcscepy(szBuf, p);
if (fShowFlags) {
_tcscat(szBuf, _ TEXT(""));
_tcscat(szBuf, (dwProtect & PAGE_GUARD) ?
__TEXT("G") : __TEXT("-"));
_tescat(szBuf, (dwProtect & PAGE_NOCACHE) ?
_ TEXT("N") : __TEXT("-"));
}
return(szBuf);

}

T T T T

void ConstructRgninfoLine (PVMQUERY pVMQ,
LPTSTR szLine, int nMaxLen) {

int nLen;

_stprintf(szLine, _ TEXT("%08X %s %10u "),
pVMQ->pvRgnBaseAddress,
GetMemStorageText(pVMQ->dwRgnStorage),
pVMQ->dwRgnSize);

(continued)
Figure 5-4. continued

if (PVMQ->dwRgnStorage != MEM_FREE) {
_stprintf(_tcschr(szLine, 0), _ TEXT("%5u "),
pVMQ->dwRgnBlocks);
GetProtectText(pVMQ->dwRgnProtection,
_teschr(szLine, 0), FALSE);

}
_tcscat(szLine, _ TEXT(" "));

// Try to obtain the module pathname for this region.
nLen = _tcslen(szLine);
if (0VMQ->pvRgnBaseAddress != NULL)
GetModuleFileName((HINSTANCE) pVMQ->pvRgnBaseAddress,
szLine + nLen, nMaxLen - nLen);

if (0VMQ->pvRgnBaseAddress == GetProcessHeap()) {
_tcscat(szLine, _ TEXT("Default Process Heap"));

}

if (0VMQ->fRgnlsAStack) {
_tcscat(szline, _ TEXT("Thread Stack"));

}
}

T T T T

void ConstructBlkinfoLine (PVMQUERY pVMQ,

LPTSTR szLine, int nMaxLen) {

_stprintf(szLine, _ TEXT(" %08X %s %10u "),
pVMQ->pvBlkBaseAddress,
GetMemStorageText(pVMQ->dwBIkStorage),
pVMQ->dwBIkSize);

if (0 VMQ->dwBIkStorage != MEM_FREE) {
GetProtectText(pVMQ->dwBIkProtection,
_teschr(szLine, 0), TRUE);

(continued)
Figure 5-4. continued

W T T

void DIg_OnSize (HWND hwnd, UINT state, int cx, int cy) {
SetWindowPos(GetDIgltem(hwnd, IDC_LISTBOX), NULL, 0, O,
cx, cy, SWP_NOZORDER);

T T

BOOL DIg_OnlnitDialog (HWND hwnd, HWND hwndFocus,
LPARAM IParam) {

HWND hWndLB = GetDlIgltem(hwnd, IDC_LISTBOX);
PVOID pvAddress = 0x00000000;

TCHAR szLine[200];

RECT rc;

DWORD dwBlock;

VMQUERY VMQ;

BOOL fOk = TRUE;

// Associate an icon with the dialog box.

SetClassLong(hwnd, GCL_HICON, (LONG)
Loadlcon((HINSTANCE) GetWindowLong(hwnd, GWL_HINSTANCE),
_ TEXT("VMMap")));

// Make a horizontal scroll bar appear in the list box.
ListBox_SetHorizontalExtent(hWndLB,
150 * LOWORD(GetDialogBaseUnits()));

/] The list box must be sized first because the system

// doesn't send a WM_SIZE message to the dialog box when

[l it's first created.

GetClientRect(hwnd, &rc);

SetWindowPos(hWndLB, NULL, 0, O, rc.right, rc.bottom,
SWP_NOZORDER);

// Walk the virtual address space, adding
// entries to the list box.

while (fOk) {
fOk = VMQuery(pvAddress, &VMQ);

(continued)
Figure 5-4. continued
if (fOk) {
/I Construct the line to be displayed, and
// add it to the list box.
ConstructRgninfoLine(&VMQ, szLine, sizeof(szLine));
ListBox_AddString(hWndLB, szLine);
#if 1
// Change the 1 above to a 0 if you do not want
// to see the blocks contained within the region.
for (dwBlock = 0; fOk && (dwBlock < VMQ.dwRgnBlocks);
dwBlock++) {
ConstructBlkinfoLine(&VMQ, szLine, sizeof(szLine));
ListBox_AddString(hWndLB, szLine);
// Get the address of the next region to test.
pvAddress = ((BYTE *) pvAddress + VMQ.dwBIkSize);
if (dwBlock < VMQ.dwRgnBlocks - 1) {
// Don't query the memory info after
// the last block.
fOk = VMQuery(pvAddress, &VMQ);
}
}
#endif
// Get the address of the next region to test.
pvAddress = ((BYTE *) VMQ.pvRgnBaseAddress +
VMQ.dwRgnSize);
}
}
#if COPYTOCLIPBOARD
CopyControlToClipboard(hWndLB);
#endif
return(TRUE);
}
Hi TN
void DIg_OnCommand (HWND hwnd, int id, HWND hwndCtl,
UINT codeNotify) {
(continued)

Figure 5-4. continued

switch (id) {
case IDCANCEL:
EndDialog(hwnd, id);

break;

T T T T T

BOOL CALLBACK DIg_Proc (HWND hDlg, UINT uMsg,
WPARAM wParam, LPARAM IParam) {

BOOL fProcessed = TRUE;

switch (uMsg) {
HANDLE_MSG(hDIg, WM_INITDIALOG, DIg_OnlInitDialog);
HANDLE_MSG(hDIlg, WM_COMMAND, DIlg_OnCommand);
HANDLE_MSG(hDIg, WM_SIZE, DIg_OnSize);

default:
fProcessed = FALSE;
break;
}
return(fProcessed);

}

T T

int WINAPI WinMain (HINSTANCE hinstExe,
HINSTANCE hinstPrev, LPSTR IpszCmdLine, int nCmdShow) {

DialogBox(hinstExe, MAKEINTRESOURCE(IDD_VMMAP),
NULL, DIg_Proc);
return(0);

}

M end of File /NN

Figure 5-4. continued

VMMAP.RC

//Microsoft Visual C++ generated resource script.
1

#include "Resource.h"

#define APSTUDIO_READONLY_SYMBOLS

i

/

// Generated from the TEXTINCLUDE 2 resource.
1/

#include "afxres.h"

T T T
#undef APSTUDIO_READONLY_SYMBOLS

(continued)

#ifdef APSTUDIO_INVOKED
T T T T]
1

/l TEXTINCLUDE

1

1 TEXTINCLUDE DISCARDABLE
BEGIN

"Resource.h\0"
END

2 TEXTINCLUDE DISCARDABLE

BEGIN
"#include
"o

END

afxres.h""\r\n"

3 TEXTINCLUDE DISCARDABLE
BEGIN

"An"

mo"
END

T T T
#endif // APSTUDIO_INVOKED

(continued)
Figure 5-4. continued

T T
I

// Dialog

1

IDD_VMMAP DIALOG DISCARDABLE 10, 18, 250, 250

STYLE WS_MINIMIZEBOX ce WS_MAXIMIZEBOX ce WS_POPUP ce WS_VISIBLE
o2 WS_CAPTION ce WS_SYSMENU ce WS_THICKFRAME

CAPTION "Virtual Memory Map"

FONT 8, "Courier"

BEGIN
LISTBOX IDC_LISTBOX,0,0,0,0,NOT LBS_NOTIFY
ce LBS_NOINTEGRALHEIGHT ce NOT WS_BORDER
ce WS_VSCROLL ce WS_HSCROLL ce WS_GROUP
ce WS_TABSTOP
END

i
1

// Icon

1

VMMap ICON DISCARDABLE "VMMap.lco"
#ifndef APSTUDIO_INVOKED

T T T]
1

// Generated from the TEXTINCLUDE 3 resource.
/

T T
#endif // not APSTUDIO_INVOKED

