
Porting Your 16-Bit Office-Based Solutions to 32-Bit Office

The introduction of 32-bit Microsoft® Windows® 95 (and Windows NT™) will
bring 32-bit Office applications into common use and will result in users
switching their Microsoft Office files, macros, and solutions to the 32-bit
versions. This section will assist you in porting solution code — that is, code
written in the Microsoft Excel macro language (XLM), WordBasic, Visual Basic
for Applications, or Access Basic — to 32-bit versions of Office running on 32-
bit operating systems.

Changes to your existing code will be required if — and only if — your 16-bit
Office solution (including Microsoft Access or Microsoft Project) calls a 16-bit
Windows application programming interface (API) or 16-bit Windows dynamic-
link library (DLL), and you are porting that code to a 32-bit Office application
(again, including Microsoft Access 95 or Microsoft Project 95).

Porting your solution code is necessary because 16-bit API calls and 16-bit DLL
calls (referred to in this section simply as API calls) will not execute correctly
when the solution code containing those calls is run in a 32-bit Office application.
This section applies to solution code that uses APIs in the following products:
Microsoft Excel, Microsoft Project, Microsoft Access, and Word for Windows.

Abstract
Solution providers and corporate developers face an important task in ensuring
that their Microsoft® Office-based solutions run successfully under Windows®
95 and Windows NT™.

The rule they must follow is this: neither a 32-bit compiled application nor
solution code called from a 32-bit Office application can make direct 16-bit API
or DLL calls. In addition, neither a 16-bit compiled application nor solution code
called from a 16-bit application can make direct 32-bit API or DLL calls. This
inability to make calls back and forth between 16-bit and 32-bit layers occurs in
both the Windows 95 and Windows NT environments because of their advanced

flat-memory-model management systems, as well as the way in which they load
DLLs.

To prepare for Office 95, you must change your solution code to make Win32
API calls when the solution code is executed from 32-bit Office applications

Note

It is worth repeating that 16-bit solutions ported to 32-bit Windows are not
effected. For example, existing 16-bit Office solutions, 16-bit Visual Basic, and
16-bit FoxPro applications, even if they call 16-bit APIs, will run just fine on
Windows 95 or Windows NT. It is only when users want to run solutions code
that includes 16-bit API calls on a 32-bit application that porting is required.

in.doc 9/13/2022 1

(including Microsoft Access 95 and Microsoft Project 95). If this is not possible
(for example, you don't have access to the source code of the DLL), you must
change the solution code to thunk through an intermediate DLL to make the 16-
bit API call. The good news is that updating solution code to support Win32 API
calls is a relatively simple mechanical process. A more significant task is to write
code that is operating-system-independent (that is, so the solution code will run
on both 16-bit and 32-bit Office applications). This document will discuss both of
these tasks, as well as other 16-to-32-bit API issues you may need to handle.

Although you must update API calls when porting solution code to 32-bit
operating systems, you do not need to change code that uses OLE Automation or
dynamic data exchange (DDE). All OLE and DDE code will continue to work
regardless of whether the applications are 16-bit or 32-bit. OLE and DDE insulate
automation calls, so all combinations of containers (clients) and servers (16/16,
16/32, 32/16, and 32/32) will work under Windows 95 and Windows NT.

How This Document Is Organized
What you need to know depends on your situation; therefore, this section is
organized in terms of complexity, from the easier issues to the more complex
ones.

1. “Which API Should Your Solution Code Call?” is a quick overview of which
API you should be using, according to your application needs.

2. “Calling the Win32 API” describes what an API is and discusses the issues
involved in converting existing 16-bit API calls to Win32 API calls, finding
Declaration statements, and error codes.

3. “ Writing a Single Code Base for 16-Bit and 32-Bit Office Applications”
supplies code samples for writing solution code that will run on both a 16-bit
and 32-bit Office application.

4. “Determining Whether a 32-Bit Application Is Running” describes how to
determine whether your Office application is 16-bit or 32-bit and how to
select the appropriate 16-bit or 32-bit API call.

5. “Recompiling DLLs” tells you what you will need to do to make the DLL and
solution code work on Windows 95 and Windows NT if your solution code
calls a custom DLL.

6. “Thunking” tells you how, if you cannot recompile your DLLs, you can add
an intermediate DLL.

7. Advanced Programming Topics: Translating C API Declarations to Visual
Basic or Visual Basic for Applications

Note

Which API Should Your Solution
Code Call?
When you write solution code for yourself, you write it for the version of the
Office application you have and for your operating system. Distributing this
solution to others means that you have to make it also work on their computers,
which may use different versions of Windows and Office applications than you
used when you wrote it. It happens that the operating system is a moot issue.
What is important is whether the Office application is 16-bit or 32-bit. The
following table shows that the application, not the operating system, determines
which API you use in porting your solution code.

Microsoft Product Windows
versions 3.0,
3.1, 3.11

Win32s Windows
NT

Windows 95

16-bit applications 16-bit API 16-bit API 16-bit API 16-bit API
32-bit applications N/A 32-bit API 32-bit API 32-bit API

Microsoft Office (including 32-bit Access and 32-bit Project) products do not run
on Win32s®, but since Microsoft FoxPro does, the Win32s column was added to
show that FoxPro programmers should use the same rules for choosing the API.
Also, Win32s, Windows NT, and Windows 95 do not have identical sets of API
calls. For more information on this, you should consult the Win32 SDK
documentation in the Development Library (in particular, see the Compatibility
Tables in the Win32 Programmer's Reference, Vol. 5).

Calling the Win32 API
The path to 32-bit Windows API enlightenment consists of four steps.

1. Understanding what Windows API calls are.
2. Understanding the differences between 16-bit and 32-bit Windows APIs.
3. Using WIN32API.TXT to find the correct Declare statement.
4. Testing an API Declare statement.

What Is an API Call?
An API call in C, Visual Basic, or other languages places a series of values

(parameters) at a location in memory (the stack) and then requests the operating
system or DLL to execute a function (the procedure call) using the values
provided. The function reads the values (call stack) and executes its function
code using those values or the data that the values point to. If a result is returned,
it is placed at another location (return register) for the calling application to use.

Note

in.doc 9/13/2022 3

This is shown in the following illustration. To ensure accuracy, the number of
bytes of data on the stack is verified before and after the procedure is called. The
message “Bad DLL calling convention” appears when the wrong number of bytes
are on the stack.

Procedure

Return
Register

Call Stack

In practical terms, Windows API calls are how applications request services
(screen control, printers, memory) from the operating system. There are
approximately 300 API calls in Windows 3.0, over 700 API calls in Windows
3.1, and over 1,000 API calls in Windows 95. These API calls are packaged in
executables and DLLs found in the Windows directory — USER.EXE,
GDI.EXE, and one of the following KERNEL files: KRNL286.EXE,
KRNL386.EXE, or KERNEL32.DLL.

To call an API from your solution code, use these four steps:

1. Identify the file containing the API.
2. Determine the parameters required by the API.
3. Create a Declare statement for the API.
4. Call the function with valid parameters.

The following is a simple example for the GetVersion API call that obtains the
version of Windows that is running. The GetVersion API call is located in
KERNEL under 16-bit Windows and does not use any parameters (so the
Declare statement has empty parentheses). The following Declare statement is
written for 16-bit Windows for use by Visual Basic for Applications:

Declare Function GetVersion Lib "KERNEL" () As Long

By comparison, here is the same function as it would be used by an Office 95
application running on 32-bit Windows:

Declare Function GetVersion Lib "KERNEL32" () As Long

Although the Windows API name stays the same, note that the location of the
API has changed to KERNEL32. After all, you are calling from a 32-bit
application, so you must make a 32-bit API call. The parameter data type, on the
other hand, did not change (it remained a Long). In general, the function
parameters will change more and require more attention than the parameters of

the return value. Understanding the differences between 16-bit API calls and 32-
bit API calls is essential to porting your solution code to Windows 95.

What Are the Differences Between a 16-
Bit API and a 32-Bit Windows API?
As shown above, most 32-bit Windows API calls have the same name or a very
similar name to the 16-bit API calls. In fact, the documentation may show the
same arguments, with the only apparent difference being the library name change
from KERNEL to KERNEL32 as shown above. However, the code must handle
changes in addition to the name change:

• Case-sensitivity
• Unicode or ANSI options
• Change of parameter data type (shown above)
These bulleted items can require subtle changes in the Declare statements that
are not always easy to identify.

Case sensitivity
The first issue in moving to 32-bit Windows API calls is case sensitivity in the
name of the function. API calls under 16-bit Windows would work if you entered
the function name as GetVERSION, GeTvErSiOn, or getversion. In other words,
in 16-bit Windows the following statements are equivalent:

Declare Function GetVersion Lib "KERNEL" () As Long
Declare Function GeTvErSiOn Lib "KERNEL" () As Long

API calls under 32-bit Windows are case-sensitive for the function call and must
be correctly entered in the Declare statement. In other words, the following
statements are not equivalent in 32-bit Windows.

Declare Function GetVersion Lib "KERNEL32" () As Long
Declare Function GeTvErSiOn Lib "KERNEL32" () As Long

The easiest way to handle this change is always use the Alias control word. The
contents of an Alias string map to the actual API call name (which is case
sensitive), but the function name used in code, which appears between
“Function” and “Lib,” is not case sensitive and will not change if you type it
different ways in your code or use the same name for variables or procedures.
Using the Alias control word, the GetVersion function (32-bit Windows) would

be entered as:

Declare Function GetVersion Lib "KERNEL32" Alias "GetVersion" () As Long

in.doc 9/13/2022 5

Now you can forget about the case sensitivity of API names when writing code:
as long as you spelled and typed the function name correctly in the Alias string
and you spell the function name in code the same way as in the Declare
statement, the function will be mapped by Visual Basic or Visual Basic for
Applications back to the correct Declare function automatically.

The Alias control word is the single most important thing you can use in
preparing to switch to 32-bit operating systems because it means you will only
have to change the contents of the Declare statement and not every instance of
the function being called in your code.

Unicode or ANSI options
Both Windows NT and Windows 95 have two API interfaces. One interface is
based on the American National Standards Institute (ANSI) character set, where
a single byte represents each character. The other interface was created for the
Unicode character set, where two bytes represent each character. All 16-bit
Windows operating systems and applications use the ANSI character set. All 32-
bit versions of Windows added Unicode to allow foreign language characters to
be represented because some languages have many more characters than the 26
letters of English. C programmers handle this by setting a flag in their include file
(*.H). The flag causes hundreds of macros throughout the C include files to
select the correct Unicode or ANSI functions.

All western language versions of Office products use ANSI for Visual Basic for
Applications code. Therefore, programmers using current versions of Visual
Basic for Applications or macro languages will always use the ANSI version of
the API call (when using the WIN32API.TXT file, documented later in this
paper, this choice is made for you).

In case you are curious or need to know how to tell the ANSI version from the
Unicode version, the ANSI version adds an A to the end of the API name, and the
Unicode version adds a W. (W is for wide, as in the width of the bytes provided
for characters). Note that the name of an API call adds the characters A and W at
the end of the API name if — and only if — the API requires parameters with
string (character) data types.

The Win32 SDK documentation in the Development Library does not record the
permutations of the name of the API call. The documentation gives only the name
of the root function and its library name. The actual name of the API in the
library may be one of three possibilities:

• MyAPICall, which uses no character strings in the call.
• MyAPICallA, which uses ANSI character strings in the call.
• MyAPICallW, which uses Unicode character strings in the call.

Note

A visual picture of the amount of data the API expects to find on the stack may
help illustrate the differences. Possible call stacks for an example function are
shown in the following illustration (the 16-bit version is padded because 16-bit
Windows always pads the stack to16 bits).

16-bit API Call

32-bit ANSI
API Call

32-bit Unicode
API Call

HWND TCH
ARLPSTR Integer

TCHARHWND LPSTR IntegerPADDING

HWND TCH
ARLPSTR IntegerPADDING

The three possible declarations for MyAPICall are shown below (formatted to
make comparison easier). Note that all of the statements use the Alias control
word so that the function name used in code (MyAPICall) does not have to
change even if the name of the function called is appended with an “A” or “W”:

'16 bits
Declare function MyAPICall Lib "MYDLL.DLL" Alias "MyAPICall" (
 ByVal hwndForm As Integer,
 ByVal lpstrCaption$,
 ByVal hAccKey As String,
 ByVal iMagicNumber As Integer
) As Integer
'32-bit ANSI
Declare function MyAPICall Lib "MYDLL32.DLL" Alias "MyAPICallA" (
 ByVal hwndForm As Long,
 ByVal lpstrCaption$,
 ByVal hAccKey As String,
 ByVal iMagicNumber As Long
) As Long
'32-bit UNICODE * For illustration only.
Declare function MyAPICall Lib "MYDLL32.DLL" Alias "MyAPICallW" (
 ByVal hwndForm As Long,
 ByVal lpstrCaption$,
 ByVal hAccKey As String,
 ByVal iMagicNumber As Long
) As Long

Any one of these declarations would add the function MyAPICall to your
application; you can only have one MyAPICall function.

in.doc 9/13/2022 7

This code sample introduces the ByVal keyword, which enables you to pass
Visual Basic parameters to a API function "by value". “By Value” is the default
for functions written in C and is therefore the default for Windows API calls. The
reason you must use ByVal is Visual Basic and Visual Basic for applications
default to ByRef (“By Reference” which passes a pointer to the value rather than
the value itself) which is not what API calls expect. ByVal can also be used to
convert a Visual Basic string to a C string (null terminated). ByVal is included in
the Declare statements in WIN32API.TXT so you will know when to use it, but
for more information on ByVal, consult the MSDN article Q110219 "How to call
Windows API from VB," or published references such as “The Visual Basic
Programmer’s Guide to the Windows API” by Dan Appleman.

Change of parameter data type
The easiest way to learn what the new required parameter data types are for 32-
bit API functions is to have somebody else give them to you. Therefore Microsoft
is providing a Visual Basic declaration file, WIN32API.TXT, for your use with
this document that will also ship in MSDN (July CD), Visual Basic 4.0, and in the
Access Developer’s Toolkit for Access 95. All you will need to do is copy the
desired API Declare statement from WIN95API.TXT into your source code.

Another source of information is the Win32 Programmer's Reference (found on
the MSDN Development Library CD), which is discussed in the Advanced
Programming Topics section in this document. This reference may occasionally
be required to resolve questions about the inclusion or exclusion of ByVal in the
declaration or the need to put parentheses around the actual value passed.

If you use the Win32 Programmer's Reference, however, you must be careful to
properly convert C to Visual Basic data types, for example don’t mistake a C int
for a Visual Basic for Applications Integer. Many Windows data types and
Visual Basic Integer data types have ceased being the same size, as shown in the
following table. It is critical to remember that the sizes of many API parameters
have changed, and you must not assume they are the same.

Visual Basic
Data Types

Size of Variable 16-Bit Windows
Data Types

32-Bit Windows
Data Types

Integer 2 bytes int, short, WORD,
HWND, HANDLE,
WCHAR

short, WCHAR

Long 4 bytes long, LPSTR int, long, HANDLE,
HWND, LPSTR

Finally, whichever resource you choose, judicious use of the Alias control word
may assist you with changing parameter data types by allowing existing 16-bit

Note

code (italicized to point out that “code” does not include the Declare statement,
which must change to point to a 32-bit API) that calls the API to be left
unchanged. This seems surprising but the ByVal control word and automatic type
conversion in Visual Basic, Access Basic, WordBasic, and Visual Basic for
Applications will change the size of parameters for you in many cases (Integer to
Long, for example). Alternatively, type conversion will extend integers with a
sign (+/-) which may lead to incorrect long parameters and cause overflows on
conversion from Long to Integer. Again - the best solution is to check the
references to get the correct functions.

What Types of Errors Can Occur with an
API Declare Statement?
After you create a Declare statement, you may find that it fails to work. There
are many possible mistakes one can make in a Declare statement. I will cover the
common errors below.

Error 453: Function is not defined in specified DLL
Either you misspelled the function name or you have a problem with case in the
function name. Remember that the functions are case-sensitive in Win32; they
were not case-sensitive in 16-bit Windows.

Error 48: Error in loading DLL
Usually, this error is caused by having the wrong size or arguments, but may also
occur for some of the reasons described under Error 53 below.

Error 53: File Not Found
This may occur for many reasons. Windows checks the loaded libraries for
matches, and if the DLL is not loaded, it will attempt to load the DLL from disk.
Many functions available in the 16-bit Windows on Windows (WOW) layer on a
Windows NT system are not available directly from Windows NT. Calling the
16-bit Windows and Win32 GetProfileString function from a 16-bit and a 32-bit
solution will give a confusing set of error messages. The 16-bit application call
will find KERNEL and fail to find KERNEL32, while the 32-bit application will
find KERNEL32 and fail to find KERNEL. The general cause of this error is a
mismatch of calls and environment. The solution is to write code that works in
both 16-bit and 32-bit environments.

Assuming you can now code the API call and call it successfully from solution

code, you’re ready to attack the next problem.
in.doc 9/13/2022 9

Writing a Single Code Base for 16-
Bit and 32-Bit Office Applications
If your users are running both 16-bit and 32-bit versions of Microsoft Excel,
should you put the 16-bit API call or the 32-bit API call in your solution?
Microsoft Excel is not like Visual Basic version 4.0, which allows conditional
compilation of code into executables, but instead runs solution code in workbook
files which may be opened in either the 16- or the 32-bit version. This is actually
a trick question — the right answer is that you put both the 16-bit API call and
the 32-bit API call in your solution inside an If ...Then...Else control structure.

With 32-bit applications using the same solution code as 16-bit applications, you
do not know which API to call in the solution code. Your code must determine
whether the application is a 16-bit one or a 32-bit one. How does the code answer
the following questions?

• Microsoft Excel: Is the host application 16-bit Microsoft Excel version 5.0
(make 16-bit API calls) or 32-bit Microsoft Excel version 5.0 for Windows
NT or 32-bit Microsoft Excel for Windows 95 (make 32-bit API calls)?

• Microsoft Access: Is the host application 16-bit Microsoft Access version 2.0
(make 16-bit API calls), or 32-bit Microsoft Access for Windows 95 (make
32-bit API calls)?

• Microsoft Project: Is the host application 16-bit Microsoft Project version 3.0
(make 16-bit API calls) or 32-bit Microsoft Project 95 (make 32-bit API
calls)?

• Word for Windows: Is the host application Microsoft Word version 2.0 or 16-
bit Word version 6.0 (make 16-bit API calls) or 32-bit Word version 6.0 for
Windows NT or Word 95 (make 32-bit API calls)?

Remember, if you make the wrong API call (i.e., cross the 16 to 32 bit barrier),
an error will occur. The solution code must determine whether the application is a
16-bit application or a 32-bit application, so it can make the appropriate call.

32-bit application?

16-bit API call 32-bit API call

YesNo

The solution is to put every API call into a wrapper — a Visual Basic procedure
or a Microsoft Excel version 4.0 macro. This wrapper routine checks the
“bitness” of the application and selects the appropriate API call. Place these
wrappers in separate modules so that your code may be easily reused. Some API
calls (for example, GetPrinterDriveDirectory and GetWinMetaFileBits) are
not available in all 32-bit operating environments, which means that the structure
of an API wrapper can become as complex as this:

Function MyAPICall$(ByVal Args)
 If Engine32() Then
 'Select is rarely needed
 Select Case OS32() 'Based on GetVersionEx API
 Case 0 'Win32s

 Case 1 'NT 3.1

 Case 2 'NT 3.5

 Case 3 'Windows 95

 End Select
 Else '16-bit

 End If
End Function

This complexity is the exception and not the rule.

32-bit Executables Are Easy
Compiled languages, such as FoxPro and Visual Basic, build 16-bit or 32-bit
application executables. The executable targets either 16-bit API calls or 32-bit
API calls. You can determine the appropriate API calls while building the
application. You can select the calls either by having all the 16-bit declarations in
one file and all the 32-bit declarations in another file and manually switch them in
a project. The other option is using the #IF... #ELSE... directives and conditional
compilation supported by Visual Basic version 4.0. If you must support Visual
Basic 3.0 and Visual Basic 4.0 applications concurrently, separate files may
reduce code maintenance. If you support FoxPro, you will have no problem using
16-bit API calls from compiled 32-bit FoxPro solutions because the RegFN
functions will automatically thunk from the 32-bit layer to the 16-bit layer if
needed.

Compiled 32-bit languages may require some minor differences in API calls
depending on the 32-bit operating system. For example, developers must program
context menus differently for Windows 95 than for Windows NT.

in.doc 9/13/2022 11

Determining Whether a 32-bit
Application Is Running
In the previous section the ability to write application independent code was
covered by adding code for both 16 and 32-bit scenarios. However, you still need
to determine in source code whether the application is a 32-bit application or a
16-bit application without doing any API calls (you cannot do an API call
because you do not know if a 16-bit API call or a 32-bit API call will work). The
following code will determine if the application is a 32-bit application.

The Application.OperatingSystem property in Microsoft Excel and Project does
not return the version of Windows you have installed, but the layer of Windows
that the application is running on, for example, the 16-bit subsystem in Windows
NT.

Microsoft Excel 5.0, Microsoft Excel 95,
Microsoft Project 4.0, Microsoft Project
95
Function Engine32%()
 If instr(Application.OperatingSystem,"32") then Engine32%=True
End Function

Word 6.0, Word 95
Function Engine32
 If Val(GetSystemInfo$(23)) > 6.3 Or Len(GetSystemInfo$(23)) = 0 Then Engine32 = -
1 Else Engine32 = 0
End Function

Microsoft Access 1.1 or higher
Function Engine32% ()
If SysCmd(7) > 2 Then Engine32% = True
End Function

Here is a simple example to help you understand some issues.

Declare Function GetTickCount32 Lib "KERNEL32" Alias "GetTickCount" () As Long
Declare Function GetTickCount16 Lib "USER" Alias "GetTickCount" () As Long

Function GetTickCount() As Long
If Engine32%() Then
 GetTickCount = GetTickCount32()
Else
 GetTickCount = GetTickCount16()

Note

End If
End Function

The GetTickCount API has the same name for both 16-bit Windows and 32-bit
Windows, so you must use an Alias control word to change the function name in
at least one of the Declare statements (in the example above, the names in both
Declare statements were changed - to GetTickCount32 and GetTickCount16).
Next, depending on the application’s “bitness”, GetTickCount is mapped to the
correct API function name (GetTickCount32 or GetTickCount16) and its
associated API call. In this example, GetTickCount in your code will get mapped
to GetTickCount32 (in the GetTickCount function), which is mapped to
GetTickCount in KERNEL32, when Engine32% is True.

Recompiling DLLs
This section has so far focused on the issue of updating Windows API calls —
but the situation for solution code that calls 16-bit DLLs that you have bought,
developed, or simply used is exactly the same. The developer must change all 16-
bit DLL Declare calls in solution code to 32-bit calls. This requires creating a 32-
bit version of the DLL (at least) and possibly changing the Declare statement (in
Microsoft Excel version 4.0 macros, the Register function). This also means a
separate DLL must exist for both the 16-bit application and the 32-bit application.
For file management, the name of the 32-bit DLL should include “32” at the end.
The developer must recompile the DLL as a 32-bit ANSI DLL. The parameters
passed to the DLL must use the stdcall-passing protocol to talk to 32-bit Visual
Basic for Applications (instead of the PASCAL-passing protocol used with 16-
bit Windows). Remember to place the calls for the 16-bit and 32-bit versions of
the DLL in a wrapper similar to the API wrapper above. For additional
information on recompiling applications, consult Chapter 1, “Porting 16-Bit Code
to 32-Bit Windows,” in Programming Techniques from the Visual C++ 2.1
documentation in the Development Library, or consult your C compiler vendor's
documentation.

Thunking
In some cases, you may not have the source code of a DLL. In this case, your
solution is to use thunking to port your solution to Windows 95. Thunking enables
direct 16-bit and 32-bit calls but requires much more work than simply changing
the Windows API call. If you cannot change or recompile the 16-bit DLL, you
must write a new 32-bit DLL wrapper to access the 16-bit DLL. The 32-bit

application calls to this 32-bit wrapper DLL, which then talks to the original 16-
bit DLL.

Thunking allows parameters to be pushed correctly on the stack, enables a DLL
of a different bitness to load in your process, and converts memory addresses

in.doc 9/13/2022 13

from offset (32-bit) to segment::offset (16-bit). This means, however, there are
some challenges even if you do the thunking work. For example, pointers to
pointers to memory locations require additional work in 16-bit and 32-bit
scenarios.

Note that there are different ways to thunk depending on your operating system.
Window 95 and Windows NT thunk differently. For more information, see
“Diving into the Requirements for the Windows 95 Logo” in the Development
Library. This section gives an overview of thunking across the Windows
platforms and contains pointers to more detailed information on thunking.

Advanced Programming Topics
Most developers writing solution code know the C language, and the following
information is provided to assist them in using their knowledge of C to create
Declare statements for Visual Basic and Visual Basic for Applications using the
tools they already have.

Working from C declarations
Apart from the API location changing (from KERNEL to KERNEL32), the main
issue in moving from 16-bit API calls to 32-bit API calls is the change in the size
of parameter data types. Some background information may help you understand
what has changed and why. Windows 3.0 was designed for the Intel 80286 CPU,
where the hardware handles data 2 bytes at a time or in 16-bit words. Windows
95 was designed for later CPUs, where the hardware can handle data 4 bytes at a
time or in 32-bit words. A look at how Visual Basic represents an Integer versus
how Windows represents an int reveal these differences:

• Integer and int are each 2 bytes in the 16-bit Windows operating system and
in 16-bit Microsoft Excel, Visual Basic, Microsoft Access, Word for
Windows, and Microsoft Project.

• Integer is 2 bytes in 32-bit Microsoft Excel, Visual Basic, Microsoft Access,
Word for Windows, and Microsoft Project, the same as in the 16-bit versions
of these products.

• int is 4 bytes in the 32-bit Windows operating systems, Windows 95, and
Windows NT.

To illustrate how this change of size can change a call, recall the fictional
MyAPICall API used earlier. The MyAPICall call needs the handle to the
application's window (HWND), a string, a character, and an integer to be placed
on the stack. In C, the function would be:

int MyAPICall (HWND hwndForm, LPSTR lpstrCaption, TCHAR tchAccKey,int
iMagicNumber)
Each parameter has two parts: the data type (HWND, LPSTR, TCHAR, int) and
the field name (hwndForm, lpstrCaption, tchAccKey, iMagicNumber). Each

data type requires a specific number of bytes to represent it. Each field name has
some funny characters as a prefix — these characters (known as Hungarian
notation) indicate the data type, such as int or lpstr.

Windows has many data types that API calls use as parameters. The following
table shows some of the more significant data types used by Windows 95 API
calls. Many Windows data types use the C data type of int. When int changed
from 16-bits to 32-bits, the related Windows data types also changed.

C Data Type Windows 3.0, 3.1, & 3.11
and Windows for
Workgroups 3.1 & 3.11
(16-Bit)

Win32s, Windows NT,
and Windows 95 (32-Bit)

unsigned int, UINT, int 2 bytes 4 bytes
short 2 bytes 2 bytes
long 4 bytes 4 bytes
char, CHAR 1 byte 1 byte
WORD 2 bytes 2 bytes
Handle (hWnd, hDC,
hMenu)

2 bytes 4 bytes

LPSTR 4 bytes 4 bytes
WCHAR 2 bytes 2 bytes
TCHAR (ANSI or Unicode) 1 byte 1 or 2 bytes
POINT 4 bytes 8 bytes

Thus, converting our MyAPICall API call from C, the declarations for
MyAPICall using Visual Basic for Applications, Access Basic, or WordBasic
would be as follows (formatted to make comparison easier):

'16 bits
Declare Function MyAPICall Lib "MYDLL.DLL" Alias "MyAPICall" (
 ByVal hwndForm As Integer,
 ByVal lpstrCaption As String,
 ByVal hAccKey As String,
 ByVal iMagicNumber As Integer
) As Integer
'32 bits
Declare Function MyAPICall Lib "MYDLL32.DLL" Alias "MyAPICall" (
 ByVal hwndForm As Long,

 ByVal lpstrCaption As String,
 ByVal hAccKey As String,
 ByVal iMagicNumber As Long
) As Long

in.doc 9/13/2022 15

A final tool you may find useful is the following table which maps C languages
declaration data types to their Visual Basic equivalents.

C language declaration Visual Basic equivalent Call with

Boolean ByVal B As Boolean Any Integer or Variant
variable

Pointer to a string (LPSTR) By Val S As String Any String or Variant
variable

Pointer to an integer (LPINT) I As Integer Any Integer or Variant
variable

Pointer to a long integer
(LPDWORD)

L As Long Any Long or Variant
variable

Pointer to a structure (for
example, LPRECT)

S As Rect Any variable of that user-
defined type

Integer (INT, UINT, WORD,
BOOL)

ByVal I As Integer Any Integer or Variant
variable

Handle (32 bit, HWND) ByVal H As Long Any Long or Variant
variable

Long (DWORD, LONG) ByVal L As Long Any Long or Variant
variable

Pointer to an array of integers I as Integer The first element of the
array, such as I(0)

Pointer to a void (void*) V As Any Any variable (use ByVal
when passing a string)

Void (function return value) Sub Procedure n/a
NULL As Any ByVal 0&
Char (TCHAR) ByVal Ch As String Any String or Variant

variable

Using the Win32 Programmer’s
Reference
As stated above, the two primary sources for Win32 API information are the
Win32 Programmer's Reference and a list of Microsoft-supplied Win32 Declare
statements for Visual Basic, such as WIN95API.TXT. The Development Library
CD contains a listing with explanations of the entire Win32 API set in the Win32
Programmer's Reference, which is used in the example that follows.

As an example of using the Win32 Programmer's Reference, GetProfileString,:

By contrast, the declaration from the Windows 3.1 SDK Programmer's
Reference, Volume 2, is:

int GetProfileString(
LPCSTR lpszSection, // address of section
LPCSTR lpszEntry, // address of entry
LPCSTR lpszDefault, // address of default string
LPSTR lpszReturnBuffer, // address of destination buffer
int cbReturnBuffer // size of destination buffer
);

Note that the Win32 SDK authors selected DWORD instead of the 32-bit int for
the parameter data type for chReturnBuffer.

At the top of almost every function entry in the Win32 Programmer's Reference
in the Development Library, there is a hot spot, Quick Info, which provides
essential information for developers. The following illustration shows the Quick

Info hot spot for GetProfileString.
in.doc 9/13/2022 17

First, QuickInfo identifies the Win32 operating systems where the function is
available. Second, it identifies the library containing the function. Third, it
indicates whether this function has separate ANSI and Unicode versions.

The declaration in Visual Basic for Applications is:

Declare Function GetProfileString Lib "KERNEL32" _
Alias "GetProfileStringA"(ByVal lpAppName As String, _
ByVal lpKeyName As String, ByVal lpDefault As String, _
ByVal lpReturnedString As String, ByVal nSize As Long) As Long

As noted above, the use of the Alias control word allows any existing 16-bit code
calling the API to be left unchanged. The following 16-bit Windows API code
pasted into Microsoft Excel, Microsoft Project, Microsoft Access, or Visual Basic
4.0 will work correctly with the 32-bit Declare statement above.

rc% = GetProfileString(App$,Key$,Def$,RString$,RLen%)

This is because although both rc% and Rlen% (the % denotes an integer data
type) are the wrong size (2 bytes instead of 4 bytes), the ByVal control word and
automatic type conversion in Visual Basic, Access Basic, WordBasic, and Visual
Basic for Applications will change the size for you. (When any of these
languages passes the value to the DLL and gets the results, it will typecast them
from Integer to Long or from Long to Integer automatically.) This feature
removes many porting issues between 16-bit Windows calls and Win32 API calls
but also, as mentioned earlier, may cause an overflow on conversion.

	Porting Your 16-Bit Office-Based Solutions to 32-Bit Office
	Abstract
	How This Document Is Organized
	Which API Should Your Solution Code Call?
	Calling the Win32 API
	What Is an API Call?
	What Are the Differences Between a 16-Bit API and a 32-Bit Windows API?
	Case sensitivity
	Unicode or ANSI options
	Change of parameter data type

	What Types of Errors Can Occur with an API Declare Statement?
	Error 453: Function is not defined in specified DLL
	Error 48: Error in loading DLL
	Error 53: File Not Found

	Writing a Single Code Base for 16-Bit and 32-Bit Office Applications
	32-bit Executables Are Easy

	Determining Whether a 32-bit Application Is Running
	Microsoft Excel 5.0, Microsoft Excel 95, Microsoft Project 4.0, Microsoft Project 95
	Word 6.0, Word 95
	Microsoft Access 1.1 or higher

	Recompiling DLLs
	Thunking
	Advanced Programming Topics
	Working from C declarations
	Using the Win32 Programmer’s Reference

