
Internal Objects -- Python library reference

Prev: File Objects Up: Other Built-in Types Top: Top
2.1.7.9. Internal Objects
(See the Python Reference Manual for these.)

gdbm -- Python library reference

Next: termios Prev: dbm Up: UNIX Specific Services Top: Top
8.6. Built-in Module gdbm
This module is nearly identical to the dbm module, but uses GDBM instead. Its interface is identical, and
not repeated here.

Warning: the file formats created by gdbm and dbm are incompatible.

posixfile -- Python library reference

Next: syslog Prev: fcntl Up: UNIX Specific Services Top: Top
8.10. Standard Module posixfile
This module implements some additional functionality over the built-in file objects. In particular, it
implements file locking, control over the file flags, and an easy interface to duplicate the file object. The
module defines a new file object, the posixfile object. It has all the standard file object methods and adds
the methods described below. This module only works for certain flavors of UNIX, since it uses fcntl()
for file locking.

To instantiate a posixfile object, use the open() function in the posixfile module. The resulting object
looks and feels roughly the same as a standard file object.

The posixfile module defines the following constants:

SEEK_SET -- data of module posixfile

offset is calculated from the start of the file

SEEK_CUR -- data of module posixfile

offset is calculated from the current position in the file

SEEK_END -- data of module posixfile

offset is calculated from the end of the file

The posixfile module defines the following functions:

open (filename[, mode[, bufsize]]) -- function of module posixfile

Create a new posixfile object with the given filename and mode. The filename, mode and bufsize
arguments are interpreted the same way as by the built-in open() function.

fileopen (fileobject) -- function of module posixfile

Create a new posixfile object with the given standard file object. The resulting object has the same
filename and mode as the original file object.

The posixfile object defines the following additional methods:

lock (fmt, [len[, start [, whence]]]) -- Method on posixfile

Lock the specified section of the file that the file object is referring to. The format is explained below
in a table. The len argument specifies the length of the section that should be locked. The default is
0. start specifies the starting offset of the section, where the default is 0. The whence argument
specifies where the offset is relative to. It accepts one of the constants SEEK_SET, SEEK_CUR or
SEEK_END. The default is SEEK_SET. For more information about the arguments refer to the fcntl
manual page on your system.

flags ([flags]) -- Method on posixfile

Set the specified flags for the file that the file object is referring to. The new flags are ORed with the
old flags, unless specified otherwise. The format is explained below in a table. Without the flags
argument a string indicating the current flags is returned (this is the same as the '?' modifier). For
more information about the flags refer to the fcntl manual page on your system.

dup () -- Method on posixfile

Duplicate the file object and the underlying file pointer and file descriptor. The resulting object
behaves as if it were newly opened.

dup2 (fd) -- Method on posixfile

Duplicate the file object and the underlying file pointer and file descriptor. The new object will have
the given file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file () -- Method on posixfile

Return the standard file object that the posixfile object is based on. This is sometimes necessary
for functions that insist on a standard file object.

All methods return IOError when the request fails.

Format characters for the lock() method have the following meaning:

Format

Meaning ---

`u'

unlock the specified region

`r'

request a read lock for the specified section

`w'

request a write lock for the specified section

In addition the following modifiers can be added to the format:

Modifier

Meaning --- Notes

`|'

wait until the lock has been granted

`?'

return the first lock conflicting with the requested lock, or None if there is no conflict. --- (1)

Note:

(1) The lock returned is in the format (mode, len, start, whence, pid) where mode is a
character representing the type of lock ('r' or 'w'). This modifier prevents a request from being granted; it is
for query purposes only.

Format character for the flags() method have the following meaning:

Format

Meaning ---

`a'

append only flag

`c'

close on exec flag

`n'

no delay flag (also called non-blocking flag)

`s'

synchronization flag

In addition the following modifiers can be added to the format:

Modifier

Meaning --- Notes

`!'

turn the specified flags 'off', instead of the default 'on' --- (1)

`='

replace the flags, instead of the default 'OR' operation --- (1)

`?'

return a string in which the characters represent the flags that are set. --- (2)

Note:

(1) The ! and = modifiers are mutually exclusive.

(2) This string represents the flags after they may have been altered by the same call.

Examples:
from posixfile import *

file = open('/tmp/test', 'w')

file.lock('w|')

...

file.lock('u')

file.close()

Next: syslog Prev: fcntl Up: UNIX Specific Services Top: Top

Classes and Instances -- Python library reference

Next: Functions Prev: Modules Up: Other Built-in Types Top: Top
2.1.7.2. Classes and Class Instances
(See Chapters 3 and 7 of the Python Reference Manual for these.)

socket -- Python library reference

Next: select Prev: signal Up: Optional Operating System Services Top: Top
7.2. Built-in Module socket
This module provides access to the BSD socket interface. It is available on UNIX systems that support
this interface.

For an introduction to socket programming (in C), see the following papers: An Introductory 4.3BSD
Interprocess Communication Tutorial, by Stuart Sechrest and An Advanced 4.3BSD Interprocess
Communication Tutorial, by Samuel J. Leffler et al, both in the UNIX Programmer's Manual,
Supplementary Documents 1 (sections PS1:7 and PS1:8). The UNIX manual pages for the various
socket-related system calls are also a valuable source of information on the details of socket semantics.

The Python interface is a straightforward transliteration of the UNIX system call and library interface for
sockets to Python's object-oriented style: the socket() function returns a socket object whose methods
implement the various socket system calls. Parameter types are somewhat higer-level than in the C
interface: as with read() and write() operations on Python files, buffer allocation on receive
operations is automatic, and buffer length is implicit on send operations.

Socket addresses are represented as a single string for the AF_UNIX address family and as a pair
(host, port) for the AF_INET address family, where host is a string representing either a hostname
in Internet domain notation like 'daring.cwi.nl' or an IP address like '100.50.200.5', and port
is an integral port number. Other address families are currently not supported. The address format
required by a particular socket object is automatically selected based on the address family specified
when the socket object was created.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory
conditions can be raised; errors related to socket or address semantics raise the error socket.error.

Non-blocking mode is supported through the setblocking() method.

The module socket exports the following constants and functions:

error -- exception of module socket

This exception is raised for socket- or address-related errors. The accompanying value is either a
string telling what went wrong or a pair (errno, string) representing an error returned by a
system call, similar to the value accompanying posix.error.

AF_UNIX -- data of module socket

AF_INET -- data of module socket

These constants represent the address (and protocol) families, used for the first argument to
socket(). If the AF_UNIX constant is not defined then this protocol is unsupported.

SOCK_STREAM -- data of module socket

SOCK_DGRAM -- data of module socket

SOCK_RAW -- data of module socket

SOCK_RDM -- data of module socket

SOCK_SEQPACKET -- data of module socket

These constants represent the socket types, used for the second argument to socket(). (Only
SOCK_STREAM and SOCK_DGRAM appear to be generally useful.)

SO_* -- data of module socket

SOMAXCONN -- data of module socket

MSG_* -- data of module socket

SOL_* -- data of module socket

IPPROTO_* -- data of module socket

IPPORT_* -- data of module socket

INADDR_* -- data of module socket

IP_* -- data of module socket

Many constants of these forms, documented in the UNIX documentation on sockets and/or the IP
protocol, are also defined in the socket module. They are generally used in arguments to the
setsockopt and getsockopt methods of socket objects. In most cases, only those symbols
that are defined in the UNIX header files are defined; for a few symbols, default values are
provided.

gethostbyname (hostname) -- function of module socket

Translate a host name to IP address format. The IP address is returned as a string, e.g.,
'100.50.200.5'. If the host name is an IP address itself it is returned unchanged.

gethostname () -- function of module socket

Return a string containing the hostname of the machine where the Python interpreter is currently
executing. If you want to know the current machine's IP address, use
socket.gethostbyname(socket.gethostname()).

gethostbyaddr (ip_address) -- function of module socket

Return a triple (hostname, aliaslist, ipaddrlist) where hostname is the primary host
name responding to the given ip_address, aliaslist is a (possibly empty) list of alternative host
names for the same address, and ipaddrlist is a list of IP addresses for the same interface on
the same host (most likely containing only a single address).

getservbyname (servicename, protocolname) -- function of module socket

Translate an Internet service name and protocol name to a port number for that service. The
protocol name should be 'tcp' or 'udp'.

socket (family, type[, proto]) -- function of module socket

Create a new socket using the given address family, socket type and protocol number. The address
family should be AF_INET or AF_UNIX. The socket type should be SOCK_STREAM,
SOCK_DGRAM or perhaps one of the other `SOCK_' constants. The protocol number is usually zero
and may be omitted in that case.

fromfd (fd, family, type[, proto]) -- function of module socket

Build a socket object from an existing file descriptor (an integer as returned by a file object's
fileno method). Address family, socket type and protocol number are as for the socket function
above. The file descriptor should refer to a socket, but this is not checked --- subsequent
operations on the object may fail if the file descriptor is invalid. This function is rarely needed, but
can be used to get or set socket options on a socket passed to a program as standard input or
output (e.g. a server started by the UNIX inet daemon).

Menu
Socket Objects

Socket Example

Next: select Prev: signal Up: Optional Operating System Services Top: Top

speech channel objects -- Python library reference

Prev: voice objects Up: macspeech Top: Top
14.10.2. speech channel objects
A speech channel object allows you to speak strings with slightly more control than SpeakString(),
and allows you to use multiple speakers at the same time. Please note that channel pitch and rate are
interrelated in some way, so that to make your Macintosh sing you will have to adjust both.

SpeakText (str) -- Method on speech channel object

Start uttering the given string.

Stop () -- Method on speech channel object

Stop babbling.

GetPitch () -- Method on speech channel object

Return the current pitch of the channel, as a floating-point number.

SetPitch (pitch) -- Method on speech channel object

Set the pitch of the channel.

GetRate () -- Method on speech channel object

Get the speech rate (utterances per minute) of the channel as a floating point number.

SetRate (rate) -- Method on speech channel object

Set the speech rate of the channel.

Prev: voice objects Up: macspeech Top: Top

macconsole options object -- Python library reference

Next: console window object Prev: macconsole Up: macconsole Top: Top
14.4.1. macconsole options object
These options are examined when a window is created:

top -- option of macconsole

left -- option of macconsole

The origin of the window.

nrows -- option of macconsole

ncols -- option of macconsole

The size of the window.

txFont -- option of macconsole

txSize -- option of macconsole

txStyle -- option of macconsole

The font, fontsize and fontstyle to be used in the window.

title -- option of macconsole

The title of the window.

pause_atexit -- option of macconsole

If set non-zero, the window will wait for user action before closing.

Next: console window object Prev: macconsole Up: macconsole Top: Top

httplib -- Python library reference

Next: ftplib Prev: urllib Up: Internet and WWW Top: Top
11.3. Standard Module httplib
This module defines a class which implements the client side of the HTTP protocol. It is normally not used
directly --- the module urllib uses it to handle URLs that use HTTP. The module defines one class,
HTTP. An HTTP instance represents one transaction with an HTTP server. It should be instantiated
passing it a host and optional port number. If no port number is passed, the port is extracted from the host
string if it has the form host:port, else the default HTTP port (80) is used. If no host is passed, no
connection is made, and the connect method should be used to connect to a server. For example, the
following calls all create instances that connect to the server at the same host and port:
>>> h1 = httplib.HTTP('www.cwi.nl')

>>> h2 = httplib.HTTP('www.cwi.nl:80')

>>> h3 = httplib.HTTP('www.cwi.nl', 80)

Once an HTTP instance has been connected to an HTTP server, it should be used as follows:

 1. 1. Make exactly one call to the putrequest() method.

 2. 2. Make zero or more calls to the putheader() method.

 3. 3. Call the endheaders() method (this can be omitted if step 4 makes no calls).

 4. 4. Optional calls to the send() method.

 5. 5. Call the getreply() method.

 6. 6. Call the getfile() method and read the data off the file object that it returns.

Menu
HTTP Objects

HTTP Example

Next: ftplib Prev: urllib Up: Internet and WWW Top: Top

HotProfile Class -- Python library reference

Prev: OldProfile Class Up: Profiler Extensions Top: Top
10.8.2. HotProfile Class
This profiler is the fastest derived profile example. It does not calculate caller-callee relationships, and
does not calculate cumulative time under a function. It only calculates time spent in a function, so it runs
very quickly (re: very low overhead). In truth, the basic profiler is so fast, that is probably not worth the
savings to give up the data, but this class still provides a nice example.
class HotProfile(Profile):

        def trace_dispatch_exception(self, frame, t):

                rt, rtt, rfn, rframe, rcur = self.cur

                if rcur and not rframe is frame:

                        return self.trace_dispatch_return(rframe, t)

                return 0

        def trace_dispatch_call(self, frame, t):

                self.cur = (t, 0, frame, self.cur)

                return 1

        def trace_dispatch_return(self, frame, t):

                rt, rtt, frame, rcur = self.cur

                rfn = `frame.f_code`

                pt, ptt, pframe, pcur = rcur

                self.cur = pt, ptt+rt, pframe, pcur

                if self.timings.has_key(rfn):

                        nc, tt = self.timings[rfn]

                        self.timings[rfn] = nc + 1, rt + rtt + tt

                else:

                        self.timings[rfn] =            1, rt + rtt

                return 1

        def snapshot_stats(self):

                self.stats = {}

                for func in self.timings.keys():

                        nc, tt = self.timings[func]

                        nor_func = self.func_normalize(func)

                        self.stats[nor_func] = nc, nc, tt, 0, {}

Prev: OldProfile Class Up: Profiler Extensions Top: Top

ctb -- Python library reference

Next: macconsole Prev: macpath Up: Macintosh Specific Services Top: Top
14.3. Built-in Module ctb
This module provides a partial interface to the Macintosh Communications Toolbox. Currently, only
Connection Manager tools are supported. It may not be available in all Mac Python versions.

error -- data of module ctb

The exception raised on errors.

cmData -- data of module ctb

cmCntl -- data of module ctb

cmAttn -- data of module ctb

Flags for the channel argument of the Read and Write methods.

cmFlagsEOM -- data of module ctb

End-of-message flag for Read and Write.

choose* -- data of module ctb

Values returned by Choose.

cmStatus* -- data of module ctb

Bits in the status as returned by Status.

available () -- function of module ctb

Return 1 if the communication toolbox is available, zero otherwise.

CMNew (name, sizes) -- function of module ctb

Create a connection object using the connection tool named name. sizes is a 6-tuple given buffer
sizes for data in, data out, control in, control out, attention in and attention out. Alternatively,
passing None will result in default buffer sizes.

Menu
connection object

Next: macconsole Prev: macpath Up: Macintosh Specific Services Top: Top

stdwin -- Python library reference

Next: stdwinevents Prev: Standard Windowing Interface Up: Standard Windowing Interface Top: Top
15.1. Built-in Module stdwin
This module defines several new object types and functions that provide access to the functionality of
STDWIN.

On Unix running X11, it can only be used if the DISPLAY environment variable is set or an explicit `-
display displayname' argument is passed to the Python interpreter.

Functions have names that usually resemble their C STDWIN counterparts with the initial `w' dropped.
Points are represented by pairs of integers; rectangles by pairs of points. For a complete description of
STDWIN please refer to the documentation of STDWIN for C programmers (aforementioned CWI report).

Menu
STDWIN Functions

Window Objects

Drawing Objects

Menu Objects

Bitmap Objects

Text-edit Objects

STDWIN Example

Next: stdwinevents Prev: Standard Windowing Interface Up: Standard Windowing Interface Top: Top

Module Index -- Python library reference

Next: Concept Index Prev: Variable Index Up: Top Top: Top
Module Index
__builtin__ (built-in)

__builtin__
__main__ (built-in)

__main__
aifc (standard)

aifc
al (built-in)

al
AL (standard)

AL (uppercase)
array (built-in)

array
array (built-in)

struct
audioop (built-in)

audioop
binascii (built-in)

binascii
binhex (standard)

binhex
cd (built-in)

cd
cgi (standard)

cgi
copy (standard)

copy
ctb (built-in)

ctb
dbm (built-in)

dbm
dbm (built-in)

gdbm
dbm (built-in)

shelve
DEVICE (standard)

GL and DEVICE
EasyDialogs (standard)

EasyDialogs
fcntl (built-in)

fcntl
FCNTL (standard)

fcntl
fl (built-in)

fl
FL (standard)

FL (uppercase)
flp (standard)

flp
fm (built-in)

fm
fm (built-in)

htmllib
FrameWork (standard)

FrameWork
ftplib (standard)

ftplib
gdbm (built-in)

dbm
gdbm (built-in)

gdbm
gdbm (built-in)

shelve
getopt (standard)

getopt
gl (built-in)

gl
gl (built-in)

htmllib
GL (standard)

GL and DEVICE
gopherlib (standard)

gopherlib
grp (built-in)

grp
htmllib (standard)

htmllib
htmllib (standard)

sgmllib
htmllib (standard)

urllib
httplib (standard)

httplib
imageop (built-in)

imageop
imgfile (built-in)

imgfile
imp (built-in)

imp
IOCTL (standard)

fcntl
jpeg (built-in)

jpeg
mac (built-in)

mac
macconsole (built-in)

macconsole
macdnr (built-in)

macdnr
macfs (built-in)

macfs
MacOS (built-in)

MacOS
macostools (standard)

macostools
macpath (standard)

macpath
macspeech (built-in)

macspeech
mactcp (built-in)

mactcp
marshal (built-in)

marshal
marshal (standard)

pickle
marshal (standard)

pickle
math (built-in)

math
math (standard)

Numeric Types
md5 (built-in)

md5
mimetools (standard)

mimetools
mpz (built-in)

mpz
nntplib (standard)

nntplib
os (standard)

os
os (standard)

posix
os (standard)

posixpath
os (standard)

sys
parser (built-in)

parser
pdb (standard)

The Python Debugger
pickle (standard)

copy
pickle (standard)

marshal
pickle (standard)

pickle
pickle (standard)

shelve
posix (built-in)

posix
posixfile (built-in)

posixfile
posixpath (standard)

posixpath
profile (standard)

The Python Profiler
pstats (standard)

The Python Profiler
pwd (built-in)

pwd
rand (standard)

rand
rect (standard)

rect
regex (built-in)

regex
regsub (standard)

regsub
rfc822 (standard)

HTTP Objects
rfc822 (standard)

rfc822
rgbimg (built-in)

rgbimg
rotor (built-in)

rotor
select (built-in)

select
sgmllib (standard)

htmllib
sgmllib (standard)

sgmllib
shelve (standard)

marshal
shelve (standard)

pickle
shelve (standard)

shelve
signal (built-in)

signal
socket (built-in)

socket
stdwin (built-in)

htmllib
stdwin (built-in)

stdwin
stdwinevents (standard)

stdwinevents
string (standard)

string
strop (built-in)

string
struct (built-in)

array
struct (built-in)

struct
sunaudiodev (built-in)

sunaudiodev
sys (built-in)

sys
syslog (built-in)

syslog
tempfile (standard)

tempfile
termios (built-in)

termios
TERMIOS (standard)

TERMIOS
thread (built-in)

thread
time (built-in)

time
traceback (standard)

traceback
types (standard)

Built-in Functions
types (standard)

Type Objects
types (standard)

types
urllib (standard)

httplib
urllib (standard)

urllib
urlparse (standard)

urllib
urlparse (standard)

urlparse
uu (standard)

uu
whrandom (standard)

whrandom

Next: Concept Index Prev: Variable Index Up: Top Top: Top

mac -- Python library reference

Next: macpath Prev: Macintosh Specific Services Up: Macintosh Specific Services Top: Top
14.1. Built-in Module mac
This module provides a subset of the operating system dependent functionality provided by the optional
built-in module posix. It is best accessed through the more portable standard module os.

The following functions are available in this module: chdir, getcwd, listdir, mkdir, rename,
rmdir, stat, sync, unlink, as well as the exception error.

Next: macpath Prev: Macintosh Specific Services Up: Macintosh Specific Services Top: Top

Special Attributes -- Python library reference

Prev: Other Built-in Types Up: Types Top: Top
2.1.8. Special Attributes
The implementation adds a few special read-only attributes to several object types, where they are
relevant:

 x.__dict__ is a dictionary of some sort used to store an object's (writable) attributes;

 x.__methods__ lists the methods of many built-in object types, e.g., [].__methods__ yields
['append', 'count', 'index', 'insert', 'remove', 'reverse', 'sort'];

 x.__members__ lists data attributes;

 x.__class__ is the class to which a class instance belongs;

 x.__bases__ is the tuple of base classes of a class object.

Prev: Other Built-in Types Up: Types Top: Top

macconsole -- Python library reference

Next: macdnr Prev: ctb Up: Macintosh Specific Services Top: Top
14.4. Built-in Module macconsole
This module is available on the Macintosh, provided Python has been built using the Think C compiler. It
provides an interface to the Think console package, with which basic text windows can be created.

options -- data of module macconsole

An object allowing you to set various options when creating windows, see below.

C_ECHO -- data of module macconsole

C_NOECHO -- data of module macconsole

C_CBREAK -- data of module macconsole

C_RAW -- data of module macconsole

Options for the setmode method. C_ECHO and C_CBREAK enable character echo, the other two
disable it, C_ECHO and C_NOECHO enable line-oriented input (erase/kill processing, etc).

copen () -- function of module macconsole

Open a new console window. Return a console window object.

fopen (fp) -- function of module macconsole

Return the console window object corresponding with the given file object. fp should be one of
sys.stdin, sys.stdout or sys.stderr.

Menu
macconsole options object

console window object

Next: macdnr Prev: ctb Up: Macintosh Specific Services Top: Top

rand -- Python library reference

Next: whrandom Prev: math Up: Miscellaneous Services Top: Top
5.2. Standard Module rand
This module implements a pseudo-random number generator with an interface similar to rand() in C.
the following functions:

rand () -- function of module rand

Returns an integer random number in the range [0 ... 32768).

choice (s) -- function of module rand

Returns a random element from the sequence (string, tuple or list) s.

srand (seed) -- function of module rand

Initializes the random number generator with the given integral seed. When the module is first
imported, the random number is initialized with the current time.

Next: whrandom Prev: math Up: Miscellaneous Services Top: Top

types -- Python library reference

Next: traceback Prev: sys Up: Python Services Top: Top
3.2. Standard Module types
This module defines names for all object types that are used by the standard Python interpreter (but not
for the types defined by various extension modules). It is safe to use ``from types import *'' --- the
module does not export any other names besides the ones listed here. New names exported by future
versions of this module will all end in Type.

Typical use is for functions that do different things depending on their argument types, like the following:
from types import *

def delete(list, item):

        if type(item) is IntType:

              del list[item]

        else:

              list.remove(item)

The module defines the following names:

NoneType -- data of module types

The type of None.

TypeType -- data of module types

The type of type objects (such as returned by type()).

IntType -- data of module types

The type of integers (e.g. 1).

LongType -- data of module types

The type of long integers (e.g. 1L).

FloatType -- data of module types

The type of floating point numbers (e.g. 1.0).

StringType -- data of module types

The type of character strings (e.g. 'Spam').

TupleType -- data of module types

The type of tuples (e.g. (1, 2, 3, 'Spam')).

ListType -- data of module types

The type of lists (e.g. [0, 1, 2, 3]).

DictType -- data of module types

The type of dictionaries (e.g. {'Bacon': 1, 'Ham': 0}).

DictionaryType -- data of module types

An alternative name for DictType.

FunctionType -- data of module types

The type of user-defined functions and lambdas.

LambdaType -- data of module types

An alternative name for FunctionType.

CodeType -- data of module types

The type for code objects such as returned by compile().

ClassType -- data of module types

The type of user-defined classes.

InstanceType -- data of module types

The type of instances of user-defined classes.

MethodType -- data of module types

The type of methods of user-defined class instances.

UnboundMethodType -- data of module types

An alternative name for MethodType.

BuiltinFunctionType -- data of module types

The type of built-in functions like len or sys.exit.

BuiltinMethodType -- data of module types

An alternative name for BuiltinFunction.

ModuleType -- data of module types

The type of modules.

FileType -- data of module types

The type of open file objects such as sys.stdout.

XRangeType -- data of module types

The type of range objects returned by xrange().

TracebackType -- data of module types

The type of traceback objects such as found in sys.exc_traceback.

FrameType -- data of module types

The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

Next: traceback Prev: sys Up: Python Services Top: Top

Optional Operating System Services -- Python library
reference

Next: UNIX Specific Services Prev: Generic Operating System Services Up: Top Top: Top
7. Optional Operating System Services
The modules described in this chapter provide interfaces to operating system features that are available
on selected operating systems only. The interfaces are generally modelled after the UNIX or C interfaces
but they are available on some other systems as well (e.g. Windows or NT). Here's an overview:

signal
--- Set handlers for asynchronous events.

socket
--- Low-level networking interface.

select
--- Wait for I/O completion on multiple streams.

thread
--- Create multiple threads of control within one namespace.

Menu
signal

socket

select

thread

Next: UNIX Specific Services Prev: Generic Operating System Services Up: Top Top: Top

binhex -- Python library reference

Next: uu Prev: mimetools Up: Internet and WWW Top: Top
11.12. Standard module binhex
This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh
files in ASCII. On the macintosh, both forks of a file and the finder information are encoded (or decoded),
on other platforms only the data fork is handled.

The binhex module defines the following functions:

binhex (input, output) -- function of module binhex

Convert a binary file with filename input to binhex file output. The output parameter can either be a
filename or a file-like object (any object supporting a write and close method).

hexbin (input[, output]) -- function of module binhex

Decode a binhex file input. Input may be a filename or a file-like object supporting read and close
methods. The resulting file is written to a file named output, unless the argument is empty in which
case the output filename is read from the binhex file.

Menu
notes

Next: uu Prev: mimetools Up: Internet and WWW Top: Top

SGI IRIX Specific Services -- Python library reference

Next: SunOS Specific Services Prev: Standard Windowing Interface Up: Top Top: Top
16. SGI IRIX Specific Services
The modules described in this chapter provide interfaces to features that are unique to SGI's IRIX
operating system (versions 4 and 5).

Menu
al

AL (uppercase)

cd

fl

FL (uppercase)

flp

fm

gl

GL and DEVICE

imgfile

dnr result object -- Python library reference

Prev: macdnr Up: macdnr Top: Top
14.5.1. dnr result object
Since the DNR calls all execute asynchronously you do not get the results back immediately. Instead, you
get a dnr result object. You can check this object to see whether the query is complete, and access its
attributes to obtain the information when it is.

Alternatively, you can also reference the result attributes directly, this will result in an implicit wait for the
query to complete.

The rtnCode and cname attributes are always available, the others depend on the type of query (address,
hinfo or mx).

wait () -- Method on dnr result object

Wait for the query to complete.

isdone () -- Method on dnr result object

Return 1 if the query is complete.

rtnCode -- attribute of dnr result object

The error code returned by the query.

cname -- attribute of dnr result object

The canonical name of the host that was queried.

ip0 -- attribute of dnr result object

ip1 -- attribute of dnr result object

ip2 -- attribute of dnr result object

ip3 -- attribute of dnr result object

At most four integer IP addresses for this host. Unused entries are zero. Valid only for address
queries.

cpuType -- attribute of dnr result object

osType -- attribute of dnr result object

Textual strings giving the machine type an OS name. Valid for hinfo queries.

exchange -- attribute of dnr result object

The name of a mail-exchanger host. Valid for mx queries.

preference -- attribute of dnr result object

The preference of this mx record. Not too useful, since the Macintosh will only return a single mx
record. Mx queries only.

The simplest way to use the module to convert names to dotted-decimal strings, without worrying about
idle time, etc:
>>> def gethostname(name):

...          import macdnr

...          dnrr = macdnr.StrToAddr(name)

...          return macdnr.AddrToStr(dnrr.ip0)

Prev: macdnr Up: macdnr Top: Top

Instant Users Manual -- Python library reference

Next: Deterministic Profiling Prev: Profiler Changes Up: The Python Profiler Top: Top
10.3. Instant Users Manual
This section is provided for users that ``don't want to read the manual.'' It provides a very brief overview,
and allows a user to rapidly perform profiling on an existing application.

To profile an application with a main entry point of `foo()', you would add the following to your module:

 import profile

        profile.run("foo()")

The above action would cause `foo()' to be run, and a series of informative lines (the profile) to be
printed. The above approach is most useful when working with the interpreter. If you would like to save
the results of a profile into a file for later examination, you can supply a file name as the second argument
to the run() function:

 import profile

        profile.run("foo()", 'fooprof')

When you wish to review the profile, you should use the methods in the pstats module. Typically you
would load the statistics data as follows:
 import pstats

        p = pstats.Stats('fooprof')

The class Stats (the above code just created an instance of this class) has a variety of methods for
manipulating and printing the data that was just read into `p'. When you ran profile.run() above,
what was printed was the result of three method calls:
 p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted all
the entries according to the standard module/line/name string that is printed (this is to comply with the
semantics of the old profiler). The third method printed out all the statistics. You might try the following
sort calls:
 p.sort_stats('name')

        p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics. The
following are some interesting calls to experiment with:
 p.sort_stats('cumulative').print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If
you want to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:
 p.sort_stats('time').print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:
 p.sort_stats('file').print_stats('__init__')

This will sort all the statistics by file name, and then print out statistics for only the class init methods
('cause they are spelled with __init__ in them). As one final example, you could try:

 p.sort_stats('time', 'cum').print_stats(.5, 'init')

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then
prints out some of the statistics. To be specific, the list is first culled down to 50% (re: `.5') of its original
size, then only lines containing init are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (`p' is still sorted according to
the last criteria) do:
 p.print_callers(.5, 'init')

and you would get a list of callers for each of the listed functions.

If you want more functionality, you're going to have to read the manual, or guess what the following
functions do:
 p.print_callees()

        p.add('fooprof')

Next: Deterministic Profiling Prev: Profiler Changes Up: The Python Profiler Top: Top

aifc -- Python library reference

Next: jpeg Prev: imageop Up: Multimedia Services Top: Top
12.3. Standard Module aifc
This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange
File Format, a format for storing digital audio samples in a file. AIFF-C is a newer version of the format
that includes the ability to compress the audio data.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is
the number of times per second the sound is sampled. The number of channels indicate if the audio is
mono, stereo, or quadro. Each frame consists of one sample per channel. The sample size is the size in
bytes of each sample. Thus a frame consists of nchannels*samplesize bytes, and a second's worth of
audio consists of nchannels*samplesize*framerate bytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and
has a frame rate of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second's worth
occupies 2*2*44100 bytes, i.e. 176,400 bytes.

Module aifc defines the following function:

open (file, mode) -- function of module aifc

Open an AIFF or AIFF-C file and return an object instance with methods that are described below.
The argument file is either a string naming a file or a file object. The mode is either the string 'r'
when the file must be opened for reading, or 'w' when the file must be opened for writing. When
used for writing, the file object should be seekable, unless you know ahead of time how many
samples you are going to write in total and use writeframesraw() and setnframes().

Objects returned by aifc.open() when a file is opened for reading have the following methods:

getnchannels () -- Method on aifc object

Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth () -- Method on aifc object

Return the size in bytes of individual samples.

getframerate () -- Method on aifc object

Return the sampling rate (number of audio frames per second).

getnframes () -- Method on aifc object

Return the number of audio frames in the file.

getcomptype () -- Method on aifc object

Return a four-character string describing the type of compression used in the audio file. For AIFF
files, the returned value is 'NONE'.

getcompname () -- Method on aifc object

Return a human-readable description of the type of compression used in the audio file. For AIFF
files, the returned value is 'not compressed'.

getparams () -- Method on aifc object

Return a tuple consisting of all of the above values in the above order.

getmarkers () -- Method on aifc object

Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first is

the mark ID (an integer), the second is the mark position in frames from the beginning of the data
(an integer), the third is the name of the mark (a string).

getmark (id) -- Method on aifc object

Return the tuple as described in getmarkers for the mark with the given id.

readframes (nframes) -- Method on aifc object

Read and return the next nframes frames from the audio file. The returned data is a string
containing for each frame the uncompressed samples of all channels.

rewind () -- Method on aifc object

Rewind the read pointer. The next readframes will start from the beginning.

setpos (pos) -- Method on aifc object

Seek to the specified frame number.

tell () -- Method on aifc object

Return the current frame number.

close () -- Method on aifc object

Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned by aifc.open() when a file is opened for writing have all the above methods, except
for readframes and setpos. In addition the following methods exist. The get methods can only be
called after the corresponding set methods have been called. Before the first writeframes or
writeframesraw, all parameters except for the number of frames must be filled in.

aiff () -- Method on aifc object

Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file ends in
'.aiff' in which case the default is an AIFF file.

aifc () -- Method on aifc object

Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file ends
in '.aiff' in which case the default is an AIFF file.

setnchannels (nchannels) -- Method on aifc object

Specify the number of channels in the audio file.

setsampwidth (width) -- Method on aifc object

Specify the size in bytes of audio samples.

setframerate (rate) -- Method on aifc object

Specify the sampling frequency in frames per second.

setnframes (nframes) -- Method on aifc object

Specify the number of frames that are to be written to the audio file. If this parameter is not set, or
not set correctly, the file needs to support seeking.

setcomptype (type, name) -- Method on aifc object

Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files,
compression is not possible. The name parameter should be a human-readable description of the
compression type, the type parameter should be a four-character string. Currently the following
compression types are supported: NONE, ULAW, ALAW, G722.

setparams (nchannels, sampwidth, framerate, comptype, compname) -- Method on aifc object

Set all the above parameters at once. The argument is a tuple consisting of the various

parameters. This means that it is possible to use the result of a getparams call as argument to
setparams.

setmark (id, pos, name) -- Method on aifc object

Add a mark with the given id (larger than 0), and the given name at the given position. This method
can be called at any time before close.

tell () -- Method on aifc object

Return the current write position in the output file. Useful in combination with setmark.

writeframes (data) -- Method on aifc object

Write data to the output file. This method can only be called after the audio file parameters have
been set.

writeframesraw (data) -- Method on aifc object

Like writeframes, except that the header of the audio file is not updated.

close () -- Method on aifc object

Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data.
After calling this method, the object can no longer be used.

Next: jpeg Prev: imageop Up: Multimedia Services Top: Top

HTTP Objects -- Python library reference

Next: HTTP Example Prev: httplib Up: httplib Top: Top
11.3.1. HTTP Objects
HTTP instances have the following methods:

set_debuglevel (level) -- Method on HTTP

Set the debugging level (the amount of debugging output printed). The default debug level is 0,
meaning no debugging output is printed.

connect (host[, port]) -- Method on HTTP

Connect to the server given by host and port. See the intro for the default port. This should be
called directly only if the instance was instantiated without passing a host.

send (data) -- Method on HTTP

Send data to the server. This should be used directly only after the endheaders() method has
been called and before getreply() has been called.

putrequest (request, selector) -- Method on HTTP

This should be the first call after the connection to the server has been made. It sends a line to the
server consisting of the request string, the selector string, and the HTTP version (HTTP/1.0).

putheader (header, argument[, ...]) -- Method on HTTP

Send an RFC-822 style header to the server. It sends a line to the server consisting of the header,
a colon and a space, and the first argument. If more arguments are given, continuation lines are
sent, each consisting of a tab and an argument.

endheaders () -- Method on HTTP

Send a blank line to the server, signalling the end of the headers.

getreply () -- Method on HTTP

Complete the request by shutting down the sending end of the socket, read the reply from the
server, and return a triple (replycode, message, headers). Here replycode is the integer reply code
from the request (e.g. 200 if the request was handled properly); message is the message string
corresponding to the reply code; and header is an instance of the class rfc822.Message
containing the headers received from the server. See the description of the rfc822 module.

getfile () -- Method on HTTP

Return a file object from which the data returned by the server can be read, using the read(),
readline() or readlines() methods.

Next: HTTP Example Prev: httplib Up: httplib Top: Top

array -- Python library reference

Prev: whrandom Up: Miscellaneous Services Top: Top
5.4. Built-in Module array
This module defines a new object type which can efficiently represent an array of basic values:
characters, integers, floating point numbers. Arrays are sequence types and behave very much like lists,
except that the type of objects stored in them is constrained. The type is specified at object creation time
by using a type code, which is a single character. The following type codes are defined:

Typecode

Type --- Minimal size in bytes
'c'

character --- 1
'b'

signed integer --- 1
'h'

signed integer --- 2
'i'

signed integer --- 2
'l'

signed integer --- 4
'f'

floating point --- 4
'd'

floating point --- 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C
implementation). The actual size can be accessed through the itemsize attribute.

See also built-in module struct. The module defines the following function:

array (typecode[, initializer]) -- function of module array

Return a new array whose items are restricted by typecode, and initialized from the optional
initializer value, which must be a list or a string. The list or string is passed to the new array's
fromlist() or fromstring() method (see below) to add initial items to the array.

Array objects support the following data items and methods:

typecode -- data of module array

The typecode character used to create the array.

itemsize -- data of module array

The length in bytes of one array item in the internal representation.

append (x) -- function of module array

Append a new item with value x to the end of the array.

byteswap (x) -- function of module array

``Byteswap'' all items of the array. This is only supported for integer values. It is useful when
reading data from a file written on a machine with a different byte order.

fromfile (f, n) -- function of module array

Read n items (as machine values) from the file object f and append them to the end of the array. If
less than n items are available, EOFError is raised, but the items that were available are still
inserted into the array. f must be a real built-in file object; something else with a read() method
won't do.

fromlist (list) -- function of module array

Append items from the list. This is equivalent to for x in list: a.append(x) except that if
there is a type error, the array is unchanged.

fromstring (s) -- function of module array

Appends items from the string, interpreting the string as an array of machine values (i.e. as if it had
been read from a file using the fromfile() method).

insert (i, x) -- function of module array

Insert a new item with value x in the array before position i.

tofile (f) -- function of module array

Write all items (as machine values) to the file object f.

tolist () -- function of module array

Convert the array to an ordinary list with the same items.

tostring () -- function of module array

Convert the array to an array of machine values and return the string representation (the same
sequence of bytes that would be written to a file by the tofile() method.)

When an array object is printed or converted to a string, it is represented as array(typecode,
initializer). The initializer is omitted if the array is empty, otherwise it is a string if the typecode is
'c', otherwise it is a list of numbers. The string is guaranteed to be able to be converted back to an array
with the same type and value using reverse quotes (``). Examples:

array('l')

array('c', 'hello world')

array('l', [1, 2, 3, 4, 5])

array('d', [1.0, 2.0, 3.14])

Prev: whrandom Up: Miscellaneous Services Top: Top

fm -- Python library reference

Next: gl Prev: flp Up: SGI IRIX Specific Services Top: Top
16.7. Built-in Module fm
This module provides access to the IRIS Font Manager library. It is available only on Silicon Graphics
machines. See also: 4Sight User's Guide, Section 1, Chapter 5: Using the IRIS Font Manager.

This is not yet a full interface to the IRIS Font Manager. Among the unsupported features are: matrix
operations; cache operations; character operations (use string operations instead); some details of font
info; individual glyph metrics; and printer matching.

It supports the following operations:

init () -- function of module fm

Initialization function. Calls fminit(). It is normally not necessary to call this function, since it is
called automatically the first time the fm module is imported.

findfont (fontname) -- function of module fm

Return a font handle object. Calls fmfindfont(fontname).

enumerate () -- function of module fm

Returns a list of available font names. This is an interface to fmenumerate().

prstr (string) -- function of module fm

Render a string using the current font (see the setfont() font handle method below). Calls
fmprstr(string).

setpath (string) -- function of module fm

Sets the font search path. Calls fmsetpath(string). (XXX Does not work!?!)

fontpath () -- function of module fm

Returns the current font search path.

Font handle objects support the following operations:

scalefont (factor) -- Method on font handle

Returns a handle for a scaled version of this font. Calls fmscalefont(fh, factor).

setfont () -- Method on font handle

Makes this font the current font. Note: the effect is undone silently when the font handle object is
deleted. Calls fmsetfont(fh).

getfontname () -- Method on font handle

Returns this font's name. Calls fmgetfontname(fh).

getcomment () -- Method on font handle

Returns the comment string associated with this font. Raises an exception if there is none. Calls
fmgetcomment(fh).

getfontinfo () -- Method on font handle

Returns a tuple giving some pertinent data about this font. This is an interface to
fmgetfontinfo(). The returned tuple contains the following numbers: (printermatched,
fixed_width, xorig, yorig, xsize, ysize, height, nglyphs).

getstrwidth (string) -- Method on font handle

Returns the width, in pixels, of the string when drawn in this font. Calls fmgetstrwidth(fh,
string).

Next: gl Prev: flp Up: SGI IRIX Specific Services Top: Top

gopherlib -- Python library reference

Next: nntplib Prev: ftplib Up: Internet and WWW Top: Top
11.5. Standard Module gopherlib
This module provides a minimal implementation of client side of the the Gopher protocol. It is used by the
module urllib to handle URLs that use the Gopher protocol.

The module defines the following functions:

send_selector (selector, host[, port]) -- function of module gopherlib

Send a selector string to the gopher server at host and port (default 70). Return an open file object
from which the returned document can be read.

send_query (selector, query, host[, port]) -- function of module gopherlib

Send a selector string and a query string to a gopher server at host and port (default 70). Return an
open file object from which the returned document can be read.

Note that the data returned by the Gopher server can be of any type, depending on the first character of
the selector string. If the data is text (first character of the selector is `0'), lines are terminated by CRLF,
and the data is terminated by a line consisting of a single `.', and a leading `.' should be stripped from
lines that begin with `..'. Directory listings (first charactger of the selector is `1') are transferred using the
same protocol.
Next: nntplib Prev: ftplib Up: Internet and WWW Top: Top

Concept Index -- Python library reference

Prev: Module Index Up: Top Top: Top
Concept Index
ABC language

Comparisons

arithmetic

Numeric Types

arrays

array

assignment, slice

Mutable Sequence Types

assignment, subscript

Mutable Sequence Types

bdb (in module pdb)

The Python Debugger

bit-string operations

Bit-string Operations

Boolean operations

Boolean Operations

Boolean operations

Truth Value Testing

Boolean type

Types

built-in exceptions

Built-in Objects

built-in functions

Built-in Objects

built-in types

Built-in Objects

built-in types

Types

C language

Comparisons

C language

Numeric Types

C language

Numeric Types

C structures

struct

CGI protocol

cgi

chaining comparisons

Comparisons

cipher, DES

Cryptographic Services

cipher, Enigma

rotor

cipher, IDEA

Cryptographic Services

cmd (in module pdb)

The Python Debugger

comparing, objects

Comparisons

comparison, operator

Comparisons

comparisons, chaining

Comparisons

concatenation operation

Sequence Types

conversions, numeric

Numeric Types

crypt(1)

rotor

cryptography

Cryptographic Services

debugger

sys

debugging

The Python Debugger

del statement

Mapping Types

del statement

Mutable Sequence Types

DES cipher

Cryptographic Services

dictionary type

Mapping Types

dictionary type, operations on

Mapping Types

division, integer

Numeric Types

division, long integer

Numeric Types

Ellinghouse, Lance

rotor

Enigma cipher

rotor

exceptions, built-in

Built-in Objects

exec statement

Code Objects

false

Truth Value Testing

file control, UNIX

fcntl

file name, temporary

tempfile

file object, posix

posixfile

file, temporary

tempfile

flattening objects

pickle

floating point literals

Numeric Types

floating point type

Numeric Types

fmt (in module htmllib)

htmllib

formatter

htmllib

formatter

htmllib

formatter

htmllib

FTP

urllib

functions, built-in

Built-in Objects

Gopher

urllib

Gopher

urllib

headers, MIME

cgi

hexadecimal literals

Numeric Types

HTML

htmllib

HTML

urllib

HTTP

httplib

HTTP

urllib

HTTP

urllib

HTTP protocol

cgi

hypertext

htmllib

I/O control, Posix

TERMIOS

I/O control, Posix

termios

I/O control, tty

TERMIOS

I/O control, tty

termios

I/O control, UNIX

fcntl

IDEA cipher

Cryptographic Services

if statement

Truth Value Testing

import

imp

integer division

Numeric Types

integer division, long

Numeric Types

integer literals

Numeric Types

integer literals, long

Numeric Types

integer type

Numeric Types

integer type, long

Numeric Types

integer types

Numeric Types

integer types, operations on

Bit-string Operations

Internet

Internet and WWW

language, ABC

Comparisons

language, C

Comparisons

language, C

Numeric Types

language, C

Numeric Types

list type

Mutable Sequence Types

list type

Sequence Types

list type, operations on

Mutable Sequence Types

literals, floating point

Numeric Types

literals, hexadecimal

Numeric Types

literals, integer

Numeric Types

literals, long integer

Numeric Types

literals, numeric

Numeric Types

literals, octal

Numeric Types

long integer division

Numeric Types

long integer literals

Numeric Types

long integer type

Numeric Types

mapping types

Mapping Types

mapping types, operations on

Mapping Types

marshalling objects

pickle

masking operations

Bit-string Operations

MIME headers

cgi

mutable sequence types

Mutable Sequence Types

mutable sequence types, operations on

Mutable Sequence Types

National Security Agency

rotor

numeric conversions

Numeric Types

numeric literals

Numeric Types

numeric types

Numeric Types

numeric types, operations on

Numeric Types

numeric, types

Comparisons

objects comparing

Comparisons

objects, flattening

pickle

objects, marshalling

pickle

objects, persistent

pickle

objects, pickling

pickle

objects, serializing

pickle

octal literals

Numeric Types

operation, concatenation

Sequence Types

operation, repetition

Sequence Types

operation, slice

Sequence Types

operation, subscript

Sequence Types

operations on dictionary type

Mapping Types

operations on integer types

Bit-string Operations

operations on list type

Mutable Sequence Types

operations on mapping types

Mapping Types

operations on mutable sequence types

Mutable Sequence Types

operations on numeric types

Numeric Types

operations on sequence types

Mutable Sequence Types

operations on sequence types

Sequence Types

operations, bit-string

Bit-string Operations

operations, Boolean

Boolean Operations

operations, Boolean

Truth Value Testing

operations, masking

Bit-string Operations

operations, shifting

Bit-string Operations

operator comparison

Comparisons

Para (in module htmllib)

htmllib

parsing, URL

urlparse

Pdb (in module pdb)

The Python Debugger

persistency

pickle

persistent objects

pickle

PGP

Cryptographic Services

Pickler (in module pickle)

pickle

pickling objects

pickle

posix file object

posixfile

Posix I/O control

TERMIOS

Posix I/O control

termios

print statement

Types

profile function

sys

profiler

sys

protocol, CGI

cgi

protocol, HTTP

cgi

Python Cryptography Kit

Cryptographic Services

regex

More String Operations

relative URL

urlparse

repetition operation

Sequence Types

select (in module stdwin)

STDWIN Functions

sequence types

Sequence Types

sequence types, mutable

Mutable Sequence Types

sequence types, operations on

Mutable Sequence Types

sequence types, operations on

Sequence Types

sequence types, operations on mutable

Mutable Sequence Types

serializing objects

pickle

server, WWW

cgi

SGML

htmllib

SGML

sgmllib

SGMLParser (in module htmllib)

htmllib

shifting operations

Bit-string Operations

slice assignment

Mutable Sequence Types

slice operation

Sequence Types

socket (in module select)

select

statement, del
Mapping Types

statement, del
Mutable Sequence Types

statement, exec
Code Objects

statement, if
Truth Value Testing

statement, print
Types

statement, while
Truth Value Testing

stdwin

The Python Debugger

stdwin (in module select)

select

string

More String Operations

string type

Sequence Types

structures, C

struct

style sheet

htmllib

style sheet

htmllib

subscript assignment

Mutable Sequence Types

subscript operation

Sequence Types

symbol table

Built-in Objects

temporary file

tempfile

temporary file name

tempfile

TMPDIR (in module tempfile)

tempfile

trace function

sys

true

Truth Value Testing

truth value

Truth Value Testing

tty I/O control

TERMIOS

tty I/O control

termios

tuple type

Sequence Types

type, Boolean

Types

type, dictionary

Mapping Types

type, floating point

Numeric Types

type, integer

Numeric Types

type, list

Mutable Sequence Types

type, list

Sequence Types

type, long integer

Numeric Types

type, operations on dictionary

Mapping Types

type, operations on list

Mutable Sequence Types

type, string

Sequence Types

type, tuple

Sequence Types

types numeric

Comparisons

types, built-in

Built-in Objects

types, built-in

Types

types, integer

Numeric Types

types, mapping

Mapping Types

types, mutable sequence

Mutable Sequence Types

types, numeric

Numeric Types

types, operations on integer

Bit-string Operations

types, operations on mapping

Mapping Types

types, operations on mutable sequence

Mutable Sequence Types

types, operations on numeric

Numeric Types

types, operations on sequence

Mutable Sequence Types

types, operations on sequence

Sequence Types

types, sequence

Sequence Types

UNIX file control

fcntl

UNIX I/O control

fcntl

Unpickler (in module pickle)

pickle

URL

cgi

URL

urllib

URL

urlparse

URL parsing

urlparse

URL, relative

urlparse

value, truth

Truth Value Testing

wdb (in module pdb)

The Python Debugger

while statement

Truth Value Testing

World-Wide Web

Internet and WWW

World-Wide Web

urllib

World-Wide Web

urlparse

WWW

Internet and WWW

WWW

urllib

WWW

urlparse

WWW server

cgi

Table of Contents
 1. Introduction Introduction

 2. Built-in Types, Exceptions and Functions Built-in Objects

 . 2.1. Built-in Types Types

 . . 2.1.1. Truth Value Testing Truth Value Testing

 . . 2.1.2. Boolean Operations Boolean Operations

 . . 2.1.3. Comparisons Comparisons

 . . 2.1.4. Numeric Types Numeric Types

 . . . 2.1.4.1. Bit-string Operations on Integer Types Bit-string Operations

 . . 2.1.5. Sequence Types Sequence Types

 . . . 2.1.5.1. More String Operations More String Operations

 . . . 2.1.5.2. Mutable Sequence Types Mutable Sequence Types

 . . 2.1.6. Mapping Types Mapping Types

 . . 2.1.7. Other Built-in Types Other Built-in Types

 . . . 2.1.7.1. Modules Modules

 . . . 2.1.7.2. Classes and Class Instances Classes and Instances

 . . . 2.1.7.3. Functions Functions

 . . . 2.1.7.4. Methods Methods

 . . . 2.1.7.5. Code Objects Code Objects

 . . . 2.1.7.6. Type Objects Type Objects

 . . . 2.1.7.7. The Null Object The Null Object

 . . . 2.1.7.8. File Objects File Objects

 . . . 2.1.7.9. Internal Objects Internal Objects

 . . 2.1.8. Special Attributes Special Attributes

 . 2.2. Built-in Exceptions Exceptions

 . 2.3. Built-in Functions Built-in Functions

 3. Python Services Python Services

 . 3.1. Built-in Module sys sys

 . 3.2. Standard Module types types

 . 3.3. Standard Module traceback traceback

 . 3.4. Standard Module pickle pickle

 . 3.5. Standard Module shelve shelve

 . 3.6. Standard Module copy copy

 . 3.7. Built-in Module marshal marshal

 . 3.8. Built-in Module imp imp

 . . 3.8.1. Examples Examples

 . 3.9. Built-in Module parser parser

 . . 3.9.1. Exceptions and Error Handling Exceptions and Error Handling

 . . 3.9.2. Example Example

 . . 3.9.3. AST Objects AST Objects

 . 3.10. Built-in Module __builtin__ __builtin__

 . 3.11. Built-in Module __main__ __main__

 4. String Services String Services

 . 4.1. Standard Module string string

 . 4.2. Built-in Module regex regex

 . 4.3. Standard Module regsub regsub

 . 4.4. Built-in Module struct struct

 5. Miscellaneous Services Miscellaneous Services

 . 5.1. Built-in Module math math

 . 5.2. Standard Module rand rand

 . 5.3. Standard Module whrandom whrandom

 . 5.4. Built-in Module array array

 6. Generic Operating System Services Generic Operating System Services

 . 6.1. Standard Module os os

 . 6.2. Built-in Module time time

 . 6.3. Standard Module getopt getopt

 . 6.4. Standard Module tempfile tempfile

 7. Optional Operating System Services Optional Operating System Services

 . 7.1. Built-in Module signal signal

 . 7.2. Built-in Module socket socket

 . . 7.2.1. Socket Objects Socket Objects

 . . 7.2.2. Example Socket Example

 . 7.3. Built-in Module select select

 . 7.4. Built-in Module thread thread

 8. UNIX Specific Services UNIX Specific Services

 . 8.1. Built-in Module posix posix

 . 8.2. Standard Module posixpath posixpath

 . 8.3. Built-in Module pwd pwd

 . 8.4. Built-in Module grp grp

 . 8.5. Built-in Module dbm dbm

 . 8.6. Built-in Module gdbm gdbm

 . 8.7. Built-in Module termios termios

 . . 8.7.1. Example termios Example

 . 8.8. Standard Module TERMIOS TERMIOS

 . 8.9. Built-in Module fcntl fcntl

 . 8.10. Standard Module posixfile posixfile

 . 8.11. Built-in Module syslog syslog

 9. The Python Debugger The Python Debugger

 . 9.1. Debugger Commands Debugger Commands

 . 9.2. How It Works How It Works

 10. The Python Profiler The Python Profiler

 . 10.1. Introduction to the profiler Profiler Introduction

 . 10.2. How Is This Profiler Different From The Old Profiler? Profiler Changes

 . 10.3. Instant Users Manual Instant Users Manual

 . 10.4. What Is Deterministic Profiling? Deterministic Profiling

 . 10.5. Reference Manual Reference Manual

 . . 10.5.1. The Stats Class The Stats Class

 . 10.6. Limitations Limitations

 . 10.7. Calibration Calibration

 . 10.8. Extensions --- Deriving Better Profilers Profiler Extensions

 . . 10.8.1. OldProfile Class OldProfile Class

 . . 10.8.2. HotProfile Class HotProfile Class

 11. Internet and WWW Services Internet and WWW

 . 11.1. Standard Module cgi cgi

 . . 11.1.1. Example CGI Example

 . 11.2. Standard Module urllib urllib

 . 11.3. Standard Module httplib httplib

 . . 11.3.1. HTTP Objects HTTP Objects

 . . 11.3.2. Example HTTP Example

 . 11.4. Standard Module ftplib ftplib

 . . 11.4.1. FTP Objects FTP Objects

 . 11.5. Standard Module gopherlib gopherlib

 . 11.6. Standard Module nntplib nntplib

 . . 11.6.1. NNTP Objects NNTP Objects

 . 11.7. Standard Module urlparse urlparse

 . 11.8. Standard Module htmllib htmllib

 . 11.9. Standard Module sgmllib sgmllib

 . 11.10. Standard Module rfc822 rfc822

 . . 11.10.1. Message Objects Message Objects

 . 11.11. Standard Module mimetools mimetools

 . . 11.11.1. Additional Methods of Message objects mimetools.Message Methods

 . 11.12. Standard module binhex binhex

 . . 11.12.1. notes notes

 . 11.13. Standard module uu uu

 . 11.14. Built-in Module binascii binascii

 12. Multimedia Services Multimedia Services

 . 12.1. Built-in Module audioop audioop

 . 12.2. Built-in Module imageop imageop

 . 12.3. Standard Module aifc aifc

 . 12.4. Built-in Module jpeg jpeg

 . 12.5. Built-in Module rgbimg rgbimg

 13. Cryptographic Services Cryptographic Services

 . 13.1. Built-in Module md5 md5

 . 13.2. Built-in Module mpz mpz

 . 13.3. Built-in Module rotor rotor

 14. Macintosh Specific Services Macintosh Specific Services

 . 14.1. Built-in Module mac mac

 . 14.2. Standard Module macpath macpath

 . 14.3. Built-in Module ctb ctb

 . . 14.3.1. connection object connection object

 . 14.4. Built-in Module macconsole macconsole

 . . 14.4.1. macconsole options object macconsole options object

 . . 14.4.2. console window object console window object

 . 14.5. Built-in Module macdnr macdnr

 . . 14.5.1. dnr result object dnr result object

 . 14.6. Built-in Module macfs macfs

 . . 14.6.1. FSSpec objects FSSpec objects

 . . 14.6.2. alias objects alias objects

 . . 14.6.3. FInfo objects FInfo objects

 . 14.7. Built-in Module MacOS MacOS

 . 14.8. Standard module macostools macostools

 . 14.9. Built-in Module mactcp mactcp

 . . 14.9.1. TCP Stream Objects TCP Stream Objects

 . . 14.9.2. TCP Status Objects TCP Status Objects

 . . 14.9.3. UDP Stream Objects UDP Stream Objects

 . 14.10. Built-in Module macspeech macspeech

 . . 14.10.1. voice objects voice objects

 . . 14.10.2. speech channel objects speech channel objects

 . 14.11. Standard module EasyDialogs EasyDialogs

 . 14.12. Standard module FrameWork FrameWork

 . . 14.12.1. Application objects Application objects

 . . 14.12.2. Window Objects Window Objects

 . . 14.12.3. DialogWindow Objects DialogWindow Objects

 15. Standard Windowing Interface Standard Windowing Interface

 . 15.1. Built-in Module stdwin stdwin

 . . 15.1.1. Functions Defined in Module stdwin STDWIN Functions

 . . 15.1.2. Window Objects Window Objects

 . . 15.1.3. Drawing Objects Drawing Objects

 . . 15.1.4. Menu Objects Menu Objects

 . . 15.1.5. Bitmap Objects Bitmap Objects

 . . 15.1.6. Text-edit Objects Text-edit Objects

 . . 15.1.7. Example STDWIN Example

 . 15.2. Standard Module stdwinevents stdwinevents

 . 15.3. Standard Module rect rect

 16. SGI IRIX Specific Services SGI IRIX Specific Services

 . 16.1. Built-in Module al al

 . . 16.1.1. Configuration Objects Configuration Objects

 . . 16.1.2. Port Objects Port Objects

 . 16.2. Standard Module AL AL (uppercase)

 . 16.3. Built-in Module cd cd

 . 16.4. Built-in Module fl fl

 . . 16.4.1. Functions Defined in Module fl FL Functions

 . . 16.4.2. Form Objects Form Objects

 . . 16.4.3. FORMS Objects FORMS Objects

 . 16.5. Standard Module FL FL (uppercase)

 . 16.6. Standard Module flp flp

 . 16.7. Built-in Module fm fm

 . 16.8. Built-in Module gl gl

 . 16.9. Standard Modules GL and DEVICE GL and DEVICE

 . 16.10. Built-in Module imgfile imgfile

 17. SunOS Specific Services SunOS Specific Services

 . 17.1. Built-in Module sunaudiodev sunaudiodev

 . . 17.1.1. Audio Device Objects Audio Device Objects

Prev: Module Index Up: Top Top: Top

Truth Value Testing -- Python library reference

Next: Boolean Operations Prev: Types Up: Types Top: Top
2.1.1. Truth Value Testing
Any object can be tested for truth value, for use in an if or while condition or as operand of the
Boolean operations below. The following values are considered false:

 None
 zero of any numeric type, e.g., 0, 0L, 0.0.

 any empty sequence, e.g., '', (), [].

 any empty mapping, e.g., {}.

 instances of user-defined classes, if the class defines a __nonzero__() or __len__() method, when
that method returns zero.

All other values are considered true --- so objects of many types are always true. Operations and built-in
functions that have a Boolean result always return 0 for false and 1 for true, unless otherwise stated.
(Important exception: the Boolean operations `or' and `and' always return one of their operands.)

Next: Boolean Operations Prev: Types Up: Types Top: Top

DialogWindow Objects -- Python library reference

Prev: Window Objects Up: FrameWork Top: Top
14.12.3. DialogWindow Objects
DialogWindow objects have the following methods besides those of Window objects:

open (resid) -- Method on DialogWindow

Create the dialog window, from the DLOG resource with id resid. The dialog object is stored in
self.wid.

do_itemhit (item, event) -- Method on DialogWindow

Item number item was hit. You are responsible for redrawing toggle buttons, etc.

Prev: Window Objects Up: FrameWork Top: Top

FTP Objects -- Python library reference

Prev: ftplib Up: ftplib Top: Top
11.4.1. FTP Objects
FTP instances have the following methods:

set_debuglevel (level) -- Method on FTP object

Set the instance's debugging level. This controls the amount of debugging output printed. The
default, 0, produces no debugging output. A value of 1 produces a moderate amount of debugging
output, generally a single line per request. A value of 2 or higher produces the maximum amount of
debugging output, logging each line sent and received on the control connection.

connect (host[, port]) -- Method on FTP object

Connect to the given host and port. The default port number is 21, as specified by the FTP protocol
specification. It is rarely needed to specify a different port number. This function should be called
only once for each instance; it should not be called at all if a host was given when the instance was
created. All other methods can only be used after a connection has been made.

getwelcome () -- Method on FTP object

Return the welcome message sent by the server in reply to the initial connection. (This message
sometimes contains disclaimers or help information that may be relevant to the user.)

login ([user[, passwd[, acct]]]) -- Method on FTP object

Log in as the given user. The passwd and acct parameters are optional and default to the empty
string. If no user is specified, it defaults to `anonymous'. If user is anonymous, the default passwd
is `realuser@host' where realuser is the real user name (glanced from the `LOGNAME' or `USER'
environment variable) and host is the hostname as returned by socket.gethostname(). This
function should be called only once for each instance, after a connection has been established; it
should not be called at all if a host and user were given when the instance was created. Most FTP
commands are only allowed after the client has logged in.

abort () -- Method on FTP object

Abort a file transfer that is in progress. Using this does not always work, but it's worth a try.

sendcmd (command) -- Method on FTP object

Send a simple command string to the server and return the response string.

voidcmd (command) -- Method on FTP object

Send a simple command string to the server and handle the response. Return nothing if a response
code in the range 200--299 is received. Raise an exception otherwise.

retrbinary (command, callback, maxblocksize) -- Method on FTP object

Retrieve a file in binary transfer mode. command should be an appropriate `RETR' command, i.e.
"RETR filename". The callback function is called for each block of data received, with a single
string argument giving the data block. The maxblocksize argument specifies the maximum block
size (which may not be the actual size of the data blocks passed to callback).

retrlines (command[, callback]) -- Method on FTP object

Retrieve a file or directory listing in ASCII transfer mode. varcommand should be an appropriate
`RETR' command (see retrbinary() or a `LIST' command (usually just the string "LIST").
The callback function is called for each line, with the trailing CRLF stripped. The default callback
prints the line to sys.stdout.

storbinary (command, file, blocksize) -- Method on FTP object

Store a file in binary transfer mode. command should be an appropriate `STOR' command, i.e.
"STOR filename". file is an open file object which is read until EOF using its read() method in
blocks of size blocksize to provide the data to be stored.

storlines (command, file) -- Method on FTP object

Store a file in ASCII transfer mode. command should be an appropriate `STOR' command (see
storbinary()). Lines are read until EOF from the open file object file using its readline()
method to privide the data to be stored.

nlst (argument[, ...]) -- Method on FTP object

Return a list of files as returned by the `NLST' command. The optional varargument is a directory to
list (default is the current server directory). Multiple arguments can be used to pass non-standard
options to the `NLST' command.

dir (argument[, ...]) -- Method on FTP object

Return a directory listing as returned by the `LIST' command, as a list of lines. The optional
varargument is a directory to list (default is the current server directory). Multiple arguments can be
used to pass non-standard options to the `LIST' command. If the last argument is a function, it is
used as a callback function as for retrlines().

rename (fromname, toname) -- Method on FTP object

Rename file fromname on the server to toname.

cwd (pathname) -- Method on FTP object

Set the current directory on the server.

mkd (pathname) -- Method on FTP object

Create a new directory on the server.

pwd () -- Method on FTP object

Return the pathname of the current directory on the server.

quit () -- Method on FTP object

Send a `QUIT' command to the server and close the connection. This is the ``polite'' way to close a
connection, but it may raise an exception of the server reponds with an error to the QUIT
command.

close () -- Method on FTP object

Close the connection unilaterally. This should not be applied to an already closed connection (e.g.
after a successful call to quit().

Prev: ftplib Up: ftplib Top: Top

FL Functions -- Python library reference

Next: Form Objects Prev: fl Up: fl Top: Top
16.4.1. Functions Defined in Module fl
Module fl defines the following functions. For more information about what they do, see the description
of the equivalent C function in the FORMS documentation:

make_form (type, width, height) -- function of module fl

Create a form with given type, width and height. This returns a form object, whose methods are
described below.

do_forms () -- function of module fl

The standard FORMS main loop. Returns a Python object representing the FORMS object needing
interaction, or the special value FL.EVENT.

check_forms () -- function of module fl

Check for FORMS events. Returns what do_forms above returns, or None if there is no event
that immediately needs interaction.

set_event_call_back (function) -- function of module fl

Set the event callback function.

set_graphics_mode (rgbmode, doublebuffering) -- function of module fl

Set the graphics modes.

get_rgbmode () -- function of module fl

Return the current rgb mode. This is the value of the C global variable fl_rgbmode.

show_message (str1, str2, str3) -- function of module fl

Show a dialog box with a three-line message and an OK button.

show_question (str1, str2, str3) -- function of module fl

Show a dialog box with a three-line message and YES and NO buttons. It returns 1 if the user
pressed YES, 0 if NO.

show_choice (str1, str2, str3, but1[, but2, but3]) -- function of module fl

Show a dialog box with a three-line message and up to three buttons. It returns the number of the
button clicked by the user (1, 2 or 3).

show_input (prompt, default) -- function of module fl

Show a dialog box with a one-line prompt message and text field in which the user can enter a
string. The second argument is the default input string. It returns the string value as edited by the
user.

show_file_selector (message, directory, pattern, default) -- function of module fl

Show a dialog box in which the user can select a file. It returns the absolute filename selected by
the user, or None if the user presses Cancel.

get_directory () -- function of module fl

get_pattern () -- function of module fl

get_filename () -- function of module fl

These functions return the directory, pattern and filename (the tail part only) selected by the user in
the last show_file_selector call.

qdevice (dev) -- function of module fl

unqdevice (dev) -- function of module fl

isqueued (dev) -- function of module fl

qtest () -- function of module fl

qread () -- function of module fl

qreset () -- function of module fl

qenter (dev, val) -- function of module fl

get_mouse () -- function of module fl

tie (button, valuator1, valuator2) -- function of module fl

These functions are the FORMS interfaces to the corresponding GL functions. Use these if you
want to handle some GL events yourself when using fl.do_events. When a GL event is
detected that FORMS cannot handle, fl.do_forms() returns the special value FL.EVENT and
you should call fl.qread() to read the event from the queue. Don't use the equivalent GL
functions!

color () -- function of module fl

mapcolor () -- function of module fl

getmcolor () -- function of module fl

See the description in the FORMS documentation of fl_color, fl_mapcolor and
fl_getmcolor.

Next: Form Objects Prev: fl Up: fl Top: Top

EasyDialogs -- Python library reference

Next: FrameWork Prev: macspeech Up: Macintosh Specific Services Top: Top
14.11. Standard module EasyDialogs
The EasyDialogs module contains some simple dialogs for the Macintosh, modelled after the stdwin
dialogs with similar names.

The EasyDialogs module defines the following functions:

Message (str) -- function of module EasyDialogs

A modal dialog with the message text str, which should be at most 255 characters long, is
displayed. Control is returned when the user clicks ``OK''.

AskString (prompt[, default]) -- function of module EasyDialogs

Ask the user to input a string value, in a modal dialog. Prompt is the promt message, the optional
default arg is the initial value for the string. All strings can be at most 255 bytes long. AskString
returns the string entered or None in case the user cancelled.

AskYesNoCancel (question[, default]) -- function of module EasyDialogs

Present a dialog with text question and three buttons labelled ``yes'', ``no'' and ``cancel''. Return 1
for yes, 0 for no and -1 for cancel. The default return value chosen by hitting return is 0. This can
be changed with the optional default argument.

Note that EasyDialogs does not currently use the notification manager. This means that displaying
dialogs while the program is in the background will need to unexpected results and possibly crashes.

Next: FrameWork Prev: macspeech Up: Macintosh Specific Services Top: Top

thread -- Python library reference

Prev: select Up: Optional Operating System Services Top: Top
7.4. Built-in Module thread
This module provides low-level primitives for working with multiple threads (a.k.a. light-weight processes
or tasks) --- multiple threads of control sharing their global data space. For synchronization, simple locks
(a.k.a. mutexes or binary semaphores) are provided.

The module is optional and supported on SGI IRIX 4.x and 5.x and Sun Solaris 2.x systems, as well as on
systems that have a PTHREAD implementation (e.g. KSR).

It defines the following constant and functions:

error -- exception of module thread

Raised on thread-specific errors.

start_new_thread (func, arg) -- function of module thread

Start a new thread. The thread executes the function func with the argument list arg (which must be
a tuple). When the function returns, the thread silently exits. When the function terminates with an
unhandled exception, a stack trace is printed and then the thread exits (but other threads continue
to run).

exit () -- function of module thread

This is a shorthand for thread.exit_thread().

exit_thread () -- function of module thread

Raise the SystemExit exception. When not caught, this will cause the thread to exit silently.

allocate_lock () -- function of module thread

Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get_ident () -- function of module thread

Return the `thread identifier' of the current thread. This is a nonzero integer. Its value has no direct
meaning; it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific
data. Thread identifiers may be recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire ([waitflag]) -- Method on lock

Without the optional argument, this method acquires the lock unconditionally, if necessary waiting
until it is released by another thread (only one thread at a time can acquire a lock --- that's their
reason for existence), and returns None. If the integer waitflag argument is present, the action
depends on its value: if it is zero, the lock is only acquired if it can be acquired immediately without
waiting, while if it is nonzero, the lock is acquired unconditionally as before. If an argument is
present, the return value is 1 if the lock is acquired successfully, 0 if not.

release () -- Method on lock

Releases the lock. The lock must have been acquired earlier, but not necessarily by the same
thread.

locked () -- Method on lock

Return the status of the lock: 1 if it has been acquired by some thread, 0 if not.

Caveats:

 Threads interact strangely with interrupts: the KeyboardInterrupt exception will be received
by an arbitrary thread. (When the signal module is available, interrupts always go to the main
thread.)

 Calling sys.exit() or raising the SystemExit is equivalent to calling thread.exit_thread().

 Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(sleep, read, select) work as expected.)

Prev: select Up: Optional Operating System Services Top: Top

rect -- Python library reference

Prev: stdwinevents Up: Standard Windowing Interface Top: Top
15.3. Standard Module rect
This module contains useful operations on rectangles. A rectangle is defined as in module stdwin: a
pair of points, where a point is a pair of integers. For example, the rectangle
(10, 20), (90, 80)

is a rectangle whose left, top, right and bottom edges are 10, 20, 90 and 80, respectively. Note that the
positive vertical axis points down (as in stdwin).

The module defines the following objects:

error -- exception of module rect

The exception raised by functions in this module when they detect an error. The exception
argument is a string describing the problem in more detail.

empty -- data of module rect

The rectangle returned when some operations return an empty result. This makes it possible to
quickly check whether a result is empty:

>>> import rect

>>> r1 = (10, 20), (90, 80)

>>> r2 = (0, 0), (10, 20)

>>> r3 = rect.intersect([r1, r2])

>>> if r3 is rect.empty: print 'Empty intersection'

Empty intersection

>>>

is_empty (r) -- function of module rect

Returns true if the given rectangle is empty. A rectangle (left, top), (right, bottom) is
empty if left >= right or top => bottom.

intersect (list) -- function of module rect

Returns the intersection of all rectangles in the list argument. It may also be called with a tuple

argument. Raises rect.error if the list is empty. Returns rect.empty if the intersection of the
rectangles is empty.

union (list) -- function of module rect

Returns the smallest rectangle that contains all non-empty rectangles in the list argument. It may
also be called with a tuple argument or with two or more rectangles as arguments. Returns
rect.empty if the list is empty or all its rectangles are empty.

pointinrect (point, rect) -- function of module rect

Returns true if the point is inside the rectangle. By definition, a point (h, v) is inside a rectangle
(left, top), (right, bottom) if left <= h < right and top <= v < bottom.

inset (rect, (dh, dv)) -- function of module rect

Returns a rectangle that lies inside the rect argument by dh pixels horizontally and dv pixels
vertically. If dh or dv is negative, the result lies outside rect.

rect2geom (rect) -- function of module rect

Converts a rectangle to geometry representation: (left, top), (width, height).

geom2rect (geom) -- function of module rect

Converts a rectangle given in geometry representation back to the standard rectangle
representation (left, top), (right, bottom).

Prev: stdwinevents Up: Standard Windowing Interface Top: Top

TCP Status Objects -- Python library reference

Next: UDP Stream Objects Prev: TCP Stream Objects Up: mactcp Top: Top
14.9.2. TCP Status Objects
This object has no methods, only some members holding information on the connection. A complete
description of all fields in this objects can be found in the Apple documentation. The most interesting ones
are:

localHost -- attribute of TCP status

localPort -- attribute of TCP status

remoteHost -- attribute of TCP status

remotePort -- attribute of TCP status

The integer IP-addresses and port numbers of both endpoints of the connection.

sendWindow -- attribute of TCP status

The current window size.

amtUnackedData -- attribute of TCP status

The number of bytes sent but not yet acknowledged. sendWindow - amtUnackedData is what
you can pass to Send without blocking.

amtUnreadData -- attribute of TCP status

The number of bytes received but not yet read (what you can Recv without blocking).

Next: UDP Stream Objects Prev: TCP Stream Objects Up: mactcp Top: Top

Profiler Extensions -- Python library reference

Prev: Calibration Up: The Python Profiler Top: Top
10.8. Extensions --- Deriving Better Profilers
The Profile class of module profile was written so that derived classes could be developed to
extend the profiler. Rather than describing all the details of such an effort, I'll just present the following two
examples of derived classes that can be used to do profiling. If the reader is an avid Python programmer,
then it should be possible to use these as a model and create similar (and perchance better) profile
classes.

If all you want to do is change how the timer is called, or which timer function is used, then the basic class
has an option for that in the constructor for the class. Consider passing the name of a function to call into
the constructor:
 pr = profile.Profile(your_time_func)

The resulting profiler will call your_time_func() instead of os.times(). The function should return
either a single number or a list of numbers (like what os.times() returns). If the function returns a
single time number, or the list of returned numbers has length 2, then you will get an especially fast
version of the dispatch routine.

Be warned that you should calibrate the profiler class for the timer function that you choose. For most
machines, a timer that returns a lone integer value will provide the best results in terms of low overhead
during profiling. (os.times is pretty bad, 'cause it returns a tuple of floating point values, so all arithmetic is
floating point in the profiler!). If you want to substitute a better timer in the cleanest fashion, you should
derive a class, and simply put in the replacement dispatch method that better handles your timer call,
along with the appropriate calibration constant :-).

Menu
OldProfile Class

HotProfile Class

Prev: Calibration Up: The Python Profiler Top: Top

Port Objects -- Python library reference

Prev: Configuration Objects Up: al Top: Top
16.1.2. Port Objects
Port objects (returned by al.openport() have the following methods:

closeport () -- Method on audio port object

Close the port.

getfd () -- Method on audio port object

Return the file descriptor as an int.

getfilled () -- Method on audio port object

Return the number of filled samples.

getfillable () -- Method on audio port object

Return the number of fillable samples.

readsamps (nsamples) -- Method on audio port object

Read a number of samples from the queue, blocking if necessary. Return the data as a string
containing the raw data, (e.g., 2 bytes per sample in big-endian byte order (high byte, low byte) if
you have set the sample width to 2 bytes).

writesamps (samples) -- Method on audio port object

Write samples into the queue, blocking if necessary. The samples are encoded as described for the
readsamps return value.

getfillpoint () -- Method on audio port object

Return the `fill point'.

setfillpoint (fillpoint) -- Method on audio port object

Set the `fill point'.

getconfig () -- Method on audio port object

Return a configuration object containing the current configuration of the port.

setconfig (config) -- Method on audio port object

Set the configuration from the argument, a configuration object.

getstatus (list) -- Method on audio port object

Get status information on last error.

Prev: Configuration Objects Up: al Top: Top

macspeech -- Python library reference

Next: EasyDialogs Prev: mactcp Up: Macintosh Specific Services Top: Top
14.10. Built-in Module macspeech
This module provides an interface to the Macintosh Speech Manager, allowing you to let the Macintosh
utter phrases. You need a version of the speech manager extension (version 1 and 2 have been tested) in
your Extensions folder for this to work. The module does not provide full access to all features of the
Speech Manager yet. It may not be available in all Mac Python versions.

Available () -- function of module macspeech

Test availability of the Speech Manager extension (and, on the PowerPC, the Speech Manager
shared library). Return 0 or 1.

Version () -- function of module macspeech

Return the (integer) version number of the Speech Manager.

SpeakString (str) -- function of module macspeech

Utter the string str using the default voice, asynchronously. This aborts any speech that may still be
active from prior SpeakString invocations.

Busy () -- function of module macspeech

Return the number of speech channels busy, system-wide.

CountVoices () -- function of module macspeech

Return the number of different voices available.

GetIndVoice (num) -- function of module macspeech

Return a voice object for voice number num.

Menu
voice objects

speech channel objects

Next: EasyDialogs Prev: mactcp Up: Macintosh Specific Services Top: Top

uu -- Python library reference

Next: binascii Prev: binhex Up: Internet and WWW Top: Top
11.13. Standard module uu
This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be
transferred over ascii-only connections. Whereever a file argument is expected, the methods accept
either a pathname ('-' for stdin/stdout) or a file-like object.

Normally you would pass filenames, but there is one case where you have to open the file yourself: if you
are on a non-unix platform and your binary file is actually a textfile that you want encoded unix-compatible
you will have to open the file yourself as a textfile, so newline conversion is performed.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

The uu module defines the following functions:

encode (in_file, out_file[, name, mode]) -- function of module uu

Uuencode file in_file into file out_file. The uuencoded file will have the header specifying name and
mode as the defaults for the results of decoding the file. The default defaults are taken from in_file,
or '-' and 0666 respectively.

decode (in_file[, out_file, mode]) -- function of module uu

This call decodes uuencoded file in_file placing the result on file out_file. If out_file is a pathname
the mode is also set. Defaults for out_file and mode are taken from the uuencode header.

Next: binascii Prev: binhex Up: Internet and WWW Top: Top

Generic Operating System Services -- Python library
reference

Next: Optional Operating System Services Prev: Miscellaneous Services Up: Top Top: Top
6. Generic Operating System Services
The modules described in this chapter provide interfaces to operating system features that are available
on (almost) all operating systems, such as files and a clock. The interfaces are generally modelled after
the UNIX or C interfaces but they are available on most other systems as well. Here's an overview:

os
--- Miscellaneous OS interfaces.

time
--- Time access and conversions.

getopt
--- Parser for command line options.

tempfile
--- Generate temporary file names.

Menu
os

time

getopt

tempfile

Next: Optional Operating System Services Prev: Miscellaneous Services Up: Top Top: Top

Mutable Sequence Types -- Python library reference

Prev: More String Operations Up: Sequence Types Top: Top
2.1.5.2. Mutable Sequence Types
List objects support additional operations that allow in-place modification of the object. These operations
would be supported by other mutable sequence types (when added to the language) as well. Strings and
tuples are immutable sequence types and such objects cannot be modified once created. The following
operations are defined on mutable sequence types (where x is an arbitrary object):

Operation

Result --- Notes
s[i] = x

item i of s is replaced by x
s[i:j] = t

slice of s from i to j is replaced by t
del s[i:j]

same as s[i:j] = []

s.append(x)

same as s[len(s):len(s)] = [x]

s.count(x)

return number of i's for which s[i] == x

s.index(x)

return smallest i such that s[i] == x --- (1)

s.insert(i, x)

same as s[i:i] = [x] if i >= 0

s.remove(x)

same as del s[s.index(x)] --- (1)

s.reverse()

reverses the items of s in place
s.sort()

permutes the items of s to satisfy s[i] <= s[j], for i < j --- (2)

Notes:

(1)
Raises an exception when x is not found in s.

(2)
The sort() method takes an optional argument specifying a comparison function of two
arguments (list items) which should return -1, 0 or 1 depending on whether the first argument is
considered smaller than, equal to, or larger than the second argument. Note that this slows the
sorting process down considerably; e.g. to sort a list in reverse order it is much faster to use calls to
sort() and reverse() than to use sort() with a comparison function that reverses the

ordering of the elements.

Prev: More String Operations Up: Sequence Types Top: Top

Deterministic Profiling -- Python library reference

Next: Reference Manual Prev: Instant Users Manual Up: The Python Profiler Top: Top
10.4. What Is Deterministic Profiling?
Deterministic profiling is meant to reflect the fact that all function call, function return, and exception
events are monitored, and precise timings are made for the intervals between these events (during which
time the user's code is executing). In contrast, statistical profiling (which is not done by this module)
randomly samples the effective instruction pointer, and deduces where time is being spent. The latter
technique traditionally involves less overhead (as the code does not need to be instrumented), but
provides only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not
required to do deterministic profiling. Python automatically provides a hook (optional callback) for each
event. In addition, the interpreted nature of Python tends to add so much overhead to execution, that
deterministic profiling tends to only add small processing overhead in typical applications. The result is
that deterministic profiling is not that expensive, yet provides extensive run time statistics about the
execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible
inline-expansion points (high call counts). Internal time statistics can be used to identify ``hot loops'' that
should be carefully optimized. Cumulative time statistics should be used to identify high level errors in the
selection of algorithms. Note that the unusual handling of cumulative times in this profiler allows statistics
for recursive implementations of algorithms to be directly compared to iterative implementations.

Next: Reference Manual Prev: Instant Users Manual Up: The Python Profiler Top: Top

Functions -- Python library reference

Next: Methods Prev: Classes and Instances Up: Other Built-in Types Top: Top
2.1.7.3. Functions
Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support
the same operation (to call the function), but the implementation is different, hence the different object
types.

The implementation adds two special read-only attributes: f.func_code is a function's code object (see
below) and f.func_globals is the dictionary used as the function's global name space (this is the
same as m.__dict__ where m is the module in which the function f was defined).

Next: Methods Prev: Classes and Instances Up: Other Built-in Types Top: Top

macdnr -- Python library reference

Next: macfs Prev: macconsole Up: Macintosh Specific Services Top: Top
14.5. Built-in Module macdnr
This module provides an interface to the Macintosh Domain Name Resolver. It is usually used in
conjunction with the mactcp module, to map hostnames to IP-addresses. It may not be available in all
Mac Python versions.

The macdnr module defines the following functions:

Open ([filename]) -- function of module macdnr

Open the domain name resolver extension. If filename is given it should be the pathname of the
extension, otherwise a default is used. Normally, this call is not needed since the other calls will
open the extension automatically.

Close () -- function of module macdnr

Close the resolver extension. Again, not needed for normal use.

StrToAddr (hostname) -- function of module macdnr

Look up the IP address for hostname. This call returns a dnr result object of the ``address''
variation.

AddrToName (addr) -- function of module macdnr

Do a reverse lookup on the 32-bit integer IP-address addr. Returns a dnr result object of the
``address'' variation.

AddrToStr (addr) -- function of module macdnr

Convert the 32-bit integer IP-address addr to a dotted-decimal string. Returns the string.

HInfo (hostname) -- function of module macdnr

Query the nameservers for a HInfo record for host hostname. These records contain hardware
and software information about the machine in question (if they are available in the first place).
Returns a dnr result object of the ``hinfo'' variety.

MXInfo (domain) -- function of module macdnr

Query the nameservers for a mail exchanger for domain. This is the hostname of a host willing to
accept SMTP mail for the given domain. Returns a dnr result object of the ``mx'' variety.

Menu
dnr result object

Next: macfs Prev: macconsole Up: Macintosh Specific Services Top: Top

Profiler Changes -- Python library reference

Next: Instant Users Manual Prev: Profiler Introduction Up: The Python Profiler Top: Top
10.2. How Is This Profiler Different From The Old Profiler?
The big changes from old profiling module are that you get more information, and you pay less CPU time.
It's not a trade-off, it's a trade-up.

To be specific:

Bugs removed:
Local stack frame is no longer molested, execution time is now charged to correct functions.

Accuracy increased:
Profiler execution time is no longer charged to user's code, calibration for platform is supported, file
reads are not done by profiler during profiling (and charged to user's code!).

Speed increased:
Overhead CPU cost was reduced by more than a factor of two (perhaps a factor of five), lightweight
profiler module is all that must be loaded, and the report generating module (pstats) is not
needed during profiling.

Recursive functions support:
Cumulative times in recursive functions are correctly calculated; recursive entries are counted.

Large growth in report generating UI:
Distinct profiles runs can be added together forming a comprehensive report; functions that import
statistics take arbitrary lists of files; sorting criteria is now based on keywords (instead of 4 integer
options); reports shows what functions were profiled as well as what profile file was referenced;
output format has been improved.

Next: Instant Users Manual Prev: Profiler Introduction Up: The Python Profiler Top: Top

FrameWork -- Python library reference

Prev: EasyDialogs Up: Macintosh Specific Services Top: Top
14.12. Standard module FrameWork
The FrameWork module contains classes that together provide a framework for an interactive Macintosh
application. The programmer builds an application by creating subclasses that override various methods
of the bases classes, thereby implementing the functionality wanted. Overriding functionality can often be
done on various different levels, i.e. to handle clicks in a single dialog window in a non-standard way it is
not necessary to override the complete event handling.

The FrameWork is still very much work-in-progress, and the documentation describes only the most
important functionality, and not in the most logical manner at that. Examine the source for more esoteric
needs.

The EasyDialogs module defines the following functions:

Application () -- function of module FrameWork

An object representing the complete application. See below for a description of the methods. The
default __init__ routine creates an empty window dictionary and a menu bar with an apple
menu.

MenuBar () -- function of module FrameWork

An object representing the menubar. This object is usually not created by the user.

Menu (bar, title[, after]) -- function of module FrameWork

An object representing a menu. Upon creation you pass the MenuBar the menu appears in, the
title string and a position (1-based) after where the menu should appear (default: at the end).

MenuItem (menu, title[, shortcut, callback]) -- function of module FrameWork

Create a menu item object. The arguments are the menu to crate the item it, the item title string
and optionally the keyboard shortcut and a callback routine. The callback is called with the
arguments menu-id, item number within menu (1-based), current front window and the event
record.

Separator (menu) -- function of module FrameWork

Add a separator to the end of a menu.

SubMenu (menu, label) -- function of module FrameWork

Create a submenu named label under menu menu. The menu object is returned.

Window (parent) -- function of module FrameWork

Creates a (modeless) window. Parent is the application object to which the window belongs. The
window is not displayed until later.

DialogWindow (parent) -- function of module FrameWork

Creates a modeless dialog window.

Menu
Application objects

Window Objects

DialogWindow Objects

Prev: EasyDialogs Up: Macintosh Specific Services Top: Top

Calibration -- Python library reference

Next: Profiler Extensions Prev: Limitations Up: The Python Profiler Top: Top
10.7. Calibration
The profiler class has a hard coded constant that is added to each event handling time to compensate for
the overhead of calling the time function, and socking away the results. The following procedure can be
used to obtain this constant for a given platform (see discussion in section Limitations above).
 import profile

        pr = profile.Profile()

        pr.calibrate(100)

        pr.calibrate(100)

        pr.calibrate(100)

The argument to calibrate() is the number of times to try to do the sample calls to get the CPU times. If
your computer is very fast, you might have to do:
 pr.calibrate(1000)

or even:
 pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a consistent answer, you are
ready to use that number in the source code. For a Sun Sparcstation 1000 running Solaris 2.3, the
magical number is about .00053. If you have a choice, you are better off with a smaller constant, and your
results will ``less often'' show up as negative in profile statistics.

The following shows how the trace_dispatch() method in the Profile class should be modified to install the
calibration constant on a Sun Sparcstation 1000:
 def trace_dispatch(self, frame, event, arg):

                t = self.timer()

                t = t[0] + t[1] - self.t - .00053 # Calibration constant

                if self.dispatch[event](frame,t):

                        t = self.timer()

                        self.t = t[0] + t[1]

                else:

                        r = self.timer()

                        self.t = r[0] + r[1] - t # put back unrecorded delta

                return

Note that if there is no calibration constant, then the line containing the callibration constant should simply
say:
 t = t[0] + t[1] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will actually run equally
fast!!), but the above method is the simplest to use. I could have made the profiler ``self calibrating'', but it
would have made the initialization of the profiler class slower, and would have required some very fancy
coding, or else the use of a variable where the constant `.00053' was placed in the code shown. This is a
VERY critical performance section, and there is no reason to use a variable lookup at this point, when a
constant can be used.

Next: Profiler Extensions Prev: Limitations Up: The Python Profiler Top: Top

Socket Example -- Python library reference

Prev: Socket Objects Up: socket Top: Top
7.2.2. Example
Here are two minimal example programs using the TCP/IP protocol: a server that echoes all data that it
receives back (servicing only one client), and a client using it. Note that a server must perform the
sequence socket, bind, listen, accept (possibly repeating the accept to service more than one
client), while a client only needs the sequence socket, connect. Also note that the server does not
send/receive on the socket it is listening on but on the new socket returned by accept.

Echo server program

from socket import *

HOST = ''                                  # Symbolic name meaning the local host

PORT = 50007                            # Arbitrary non-privileged server

s = socket(AF_INET, SOCK_STREAM)

s.bind(HOST, PORT)

s.listen(1)

conn, addr = s.accept()

print 'Connected by', addr

while 1:

        data = conn.recv(1024)

        if not data: break

        conn.send(data)

conn.close()

Echo client program

from socket import *

HOST = 'daring.cwi.nl'        # The remote host

PORT = 50007                            # The same port as used by the server

s = socket(AF_INET, SOCK_STREAM)

s.connect(HOST, PORT)

s.send('Hello, world')

data = s.recv(1024)

s.close()

print 'Received', `data`

Prev: Socket Objects Up: socket Top: Top

sgmllib -- Python library reference

Next: rfc822 Prev: htmllib Up: Internet and WWW Top: Top
11.9. Standard Module sgmllib
This module defines a class SGMLParser which serves as the basis for parsing text files formatted in
SGML (Standard Generalized Mark-up Language). In fact, it does not provide a full SGML parser --- it
only parses SGML insofar as it is used by HTML, and the module only exists as a basis for the htmllib
module. In particular, the parser is hardcoded to recognize the following elements:

 Opening and closing tags of the form ``<tag attr="value" ...>'' and ``</tag>'',
respectively.

 Character references of the form ``&#name;''.

 Entity references of the form ``&name;''.

 SGML comments of the form ``<!--text>''.

The SGMLParser class must be instantiated without arguments. It has the following interface methods:

reset () -- function of module sgmllib

Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

setnomoretags () -- function of module sgmllib

Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so the
HTML tag <PLAINTEXT> can be implemented.)

setliteral () -- function of module sgmllib

Enter literal mode (CDATA mode).

feed (data) -- function of module sgmllib

Feed some text to the parser. It is processed insofar as it consists of complete elements;
incomplete data is buffered until more data is fed or close() is called.

close () -- function of module sgmllib

Force processing of all buffered data as if it were followed by an end-of-file mark. This method may
be redefined by a derived class to define additional processing at the end of the input, but the
redefined version should always call SGMLParser.close().

handle_charref (ref) -- function of module sgmllib

This method is called to process a character reference of the form ``&#ref;'' where ref is a
decimal number in the range 0-255. It translates the character to ASCII and calls the method
handle_data() with the character as argument. If ref is invalid or out of range, the method
unknown_charref(ref) is called instead.

handle_entityref (ref) -- function of module sgmllib

This method is called to process an entity reference of the form ``&ref;'' where ref is an alphabetic
entity reference. It looks for ref in the instance (or class) variable entitydefs which should give
the entity's translation. If a translation is found, it calls the method handle_data() with the
translation; otherwise, it calls the method unknown_entityref(ref).

handle_data (data) -- function of module sgmllib

This method is called to process arbitrary data. It is intended to be overridden by a derived class;
the base class implementation does nothing.

unknown_starttag (tag, attributes) -- function of module sgmllib

This method is called to process an unknown start tag. It is intended to be overridden by a derived
class; the base class implementation does nothing. The attributes argument is a list of (name,
value) pairs containing the attributes found inside the tag's <> brackets. The name has been
translated to lower case and double quotes and backslashes in the value have been interpreted.
For instance, for the tag , this method would be called as
unknown_starttag('a', [('href', 'http://www.cwi.nl/')]).

unknown_endtag (tag) -- function of module sgmllib

This method is called to process an unknown end tag. It is intended to be overridden by a derived
class; the base class implementation does nothing.

unknown_charref (ref) -- function of module sgmllib

This method is called to process an unknown character reference. It is intended to be overridden by
a derived class; the base class implementation does nothing.

unknown_entityref (ref) -- function of module sgmllib

This method is called to process an unknown entity reference. It is intended to be overridden by a
derived class; the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods of
the following form to define processing of specific tags. Tag names in the input stream are case
independent; the tag occurring in method names must be in lower case:

start_tag (attributes) -- function of module sgmllib

This method is called to process an opening tag tag. It has preference over do_tag(). The
attributes argument has the same meaning as described for unknown_tag() above.

do_tag (attributes) -- function of module sgmllib

This method is called to process an opening tag tag that does not come with a matching closing
tag. The attributes argument has the same meaning as described for unknown_tag() above.

end_tag () -- function of module sgmllib

This method is called to process a closing tag tag.

Note that the parser maintains a stack of opening tags for which no matching closing tag has been found
yet. Only tags processed by start_tag() are pushed on this stack. Definition of a end_tag()
method is optional for these tags. For tags processed by do_tag() or by unknown_tag(), no
end_tag() method must be defined.
Next: rfc822 Prev: htmllib Up: Internet and WWW Top: Top

jpeg -- Python library reference

Next: rgbimg Prev: aifc Up: Multimedia Services Top: Top
12.4. Built-in Module jpeg
The module jpeg provides access to the jpeg compressor and decompressor written by the Independent
JPEG Group. JPEG is a (draft?) standard for compressing pictures. For details on jpeg or the
Independent JPEG Group software refer to the JPEG standard or the documentation provided with the
software.

The jpeg module defines these functions:

compress (data, w, h, b) -- function of module jpeg

Treat data as a pixmap of width w and height h, with b bytes per pixel. The data is in SGI GL order,
so the first pixel is in the lower-left corner. This means that lrectread return data can
immediately be passed to compress. Currently only 1 byte and 4 byte pixels are allowed, the former
being treated as greyscale and the latter as RGB color. Compress returns a string that contains the
compressed picture, in JFIF format.

decompress (data) -- function of module jpeg

Data is a string containing a picture in JFIF format. It returns a tuple (data, width, height,
bytesperpixel). Again, the data is suitable to pass to lrectwrite.

setoption (name, value) -- function of module jpeg

Set various options. Subsequent compress and decompress calls will use these options. The
following options are available:

'forcegray'
Force output to be grayscale, even if input is RGB.

'quality'
Set the quality of the compressed image to a value between 0 and 100 (default is 75).
Compress only.

'optimize'
Perform Huffman table optimization. Takes longer, but results in smaller compressed image.
Compress only.

'smooth'
Perform inter-block smoothing on uncompressed image. Only useful for low-quality images.
Decompress only.

Compress and uncompress raise the error jpeg.error in case of errors.
Next: rgbimg Prev: aifc Up: Multimedia Services Top: Top

The Null Object -- Python library reference

Next: File Objects Prev: Type Objects Up: Other Built-in Types Top: Top
2.1.7.7. The Null Object
This object is returned by functions that don't explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name).

It is written as None.

Next: File Objects Prev: Type Objects Up: Other Built-in Types Top: Top

Variable Index -- Python library reference

Next: Module Index Prev: Function Index Up: Top Top: Top
Variable Index
AF_INET of module socket

socket
AF_UNIX of module socket

socket
all_errors of module ftplib

ftplib
altzone of module time

time
amtUnackedData of TCP status

TCP Status Objects
amtUnreadData of TCP status

TCP Status Objects
anchornames of module htmllib

htmllib
anchors of module htmllib

htmllib
anchortypes of module htmllib

htmllib
argv of module sys

sys
asr of TCP stream

TCP Stream Objects
asr of UDP stream

UDP Stream Objects
atime of module cd

cd
AttributeError

Exceptions
audio of module cd

cd
BLOCKSIZE of module cd

cd
BUFSIZ of module macostools

macostools
builtin_module_names of module sys

sys
BuiltinFunctionType of module types

types
BuiltinMethodType of module types

types
C_CBREAK of module macconsole

macconsole
C_ECHO of module macconsole

macconsole
C_EXTENSION of module imp

imp
C_NOECHO of module macconsole

macconsole
C_RAW of module macconsole

macconsole
callback of connection object

connection object
casefold of module regex

regex
catalog of module cd

cd
CDROM of module cd

cd
choose* of module ctb

ctb
ClassType of module types

types
cmAttn of module ctb

ctb
cmCntl of module ctb

ctb
cmData of module ctb

ctb
cmFlagsEOM of module ctb

ctb
cmStatus* of module ctb

ctb
cname of dnr result object

dnr result object
CodeType of module types

types
control of module cd

cd
cpuType of dnr result object

dnr result object
Creator of FInfo object

FInfo objects
curdir of module os

os
DATASIZE of module cd

cd
data of alias object

alias objects
data of FSSpec object

FSSpec objects
daylight of module time

time
ddindent of module htmllib

htmllib
defpath of module os

os
DictionaryType of module types

types
DictType of module types

types
digits of module string

string
empty of module rect

rect
environ of module cgi

cgi
environ of module posix

posix
EOFError

Exceptions
error_perm of module ftplib

ftplib
error_perm of module nntplib

nntplib
error_proto of module ftplib

ftplib
error_proto of module nntplib

nntplib
error_reply of module ftplib

ftplib
error_reply of module nntplib

nntplib
error_temp of module ftplib

ftplib
error_temp of module nntplib

nntplib
error of module audioop

audioop
Error of module binascii

binascii
ERROR of module cd

cd
error of module cd

cd
error of module ctb

ctb
error of module dbm

dbm
error of module imageop

imageop
error of module imgfile

imgfile
Error of module MacOS

MacOS
error of module posix

posix
error of module rect

rect
error of module regex

regex
error of module rgbimg

rgbimg
error of module select

select
error of module socket

socket
error of module struct

struct
error of module sunaudiodev

sunaudiodev
error of module thread

thread
exc_traceback of module sys

sys
exc_type of module sys

sys
exc_value of module sys

sys
exchange of dnr result object

dnr result object
exitfunc of module sys

sys
e of module math

math
FileType of module types

types
file of console window

console window object
Flags of FInfo object

FInfo objects
Fldr of FInfo object

FInfo objects
FloatType of module types

types
fp of module rfc822

Message Objects
FrameType of module types

types
FunctionType of module types

types
givenpat of regex

regex
GLStylesheet of module htmllib

htmllib
groupindex of regex

regex
h1fontset of module htmllib

htmllib
h1indent of module htmllib

htmllib
h2fontset of module htmllib

htmllib
h2indent of module htmllib

htmllib
h3fontset of module htmllib

htmllib
headers of module rfc822

Message Objects
hexdigits of module string

string
ident of module cd

cd
ImportError

Exceptions
INADDR_* of module socket

socket
inanchor of module htmllib

htmllib
Incomplete of module binascii

binascii
IndexError

Exceptions
index of module cd

cd
InstanceType of module types

types
IntType of module types

types
IOError

Exceptions
ip0 of dnr result object

dnr result object
ip1 of dnr result object

dnr result object
ip2 of dnr result object

dnr result object
ip3 of dnr result object

dnr result object
IP_* of module socket

socket
IPPORT_* of module socket

socket
IPPROTO_* of module socket

socket
isindex of module htmllib

htmllib
itemsize of module array

array
KeyboardInterrupt

Exceptions
KeyError

Exceptions
LambdaType of module types

types
last_traceback of module sys

sys
last_type of module sys

sys
last_value of module sys

sys
last of regex

regex
left of macconsole

macconsole options object
letters of module string

string
ListType of module types

types
literalindent of module htmllib

htmllib
localHost of TCP status

TCP Status Objects
localPort of TCP status

TCP Status Objects
Location of FInfo object

FInfo objects
LongType of module types

types
lowercase of module string

string
MacStylesheet of module htmllib

htmllib
MemoryError

Exceptions
MethodType of module types

types
modules of module sys

sys
ModuleType of module types

types
MSG_* of module socket

socket
NameError

Exceptions
name of module os

os
ncols of macconsole

macconsole options object
nextid of module htmllib

htmllib
NODISC of module cd

cd
None (Built-in object)

Truth Value Testing
NoneType of module types

types
nospace of module htmllib

htmllib
nrows of macconsole

macconsole options object
NSIG of module signal

signal
NullStylesheet of module htmllib

htmllib
octdigits of module string

string
options of module macconsole

macconsole
osType of dnr result object

dnr result object
OverflowError

Exceptions
pardir of module os

os
ParserError of module parser

Exceptions and Error Handling
pathsep of module os

os
path of module os

os
path of module sys

sys
pause_atexit of macconsole

macconsole options object
PAUSED of module cd

cd
PicklingError of module pickle

pickle
pi of module math

math
platform of module sys

sys
PLAYING of module cd

cd
pnum of module cd

cd
port of UDP stream

UDP Stream Objects
preference of dnr result object

dnr result object
ps1 of module sys

sys
ps2 of module sys

sys
ptime of module cd

cd
PY_COMPILED of module imp

imp
PY_SOURCE of module imp

imp
READY of module cd

cd
realpat of regex

regex
regs of regex

regex
remoteHost of TCP status

TCP Status Objects
remotePort of TCP status

TCP Status Objects
rtnCode of dnr result object

dnr result object
RuntimeError

Exceptions
SEARCH_ERROR of module imp

imp
SEEK_CUR of module posixfile

posixfile
SEEK_END of module posixfile

posixfile
SEEK_SET of module posixfile

posixfile
sendWindow of TCP status

TCP Status Objects
sep of module os

os
SIG* of module signal

signal
SIG_DFL of module signal

signal
SIG_IGN of module signal

signal
SO_* of module socket

socket
SOCK_DGRAM of module socket

socket
SOCK_RAW of module socket

socket
SOCK_RDM of module socket

socket
SOCK_SEQPACKET of module socket

socket
SOCK_STREAM of module socket

socket
SOL_* of module socket

socket
SOMAXCONN of module socket

socket
stderr of module sys

sys
stdfontset of module htmllib

htmllib
stdindent of module htmllib

htmllib
stdin of module sys

sys
stdout of module sys

sys
StdwinStylesheet of module htmllib

htmllib
STILL of module cd

cd
StringType of module types

types
SyntaxError

Exceptions
SystemError

Exceptions
SystemExit

Exceptions
tempdir of module tempfile

tempfile
template of module tempfile

tempfile
timezone of module time

time
title of macconsole

macconsole options object
title of module htmllib

htmllib
top of macconsole

macconsole options object
tracebacklimit of module sys

sys
TracebackType of module types

types
translate of regex

regex
TupleType of module types

types
txFont of macconsole

macconsole options object
txSize of macconsole

macconsole options object
txStyle of macconsole

macconsole options object
typecode of module array

array
TypeError

Exceptions
TypeType of module types

types
Type of FInfo object

FInfo objects
tzname of module time

time
ulindent of module htmllib

htmllib
UnboundMethodType of module types

types
uppercase of module string

string
ValueError

Exceptions
whitespace of module string

string
WNOHANG of module posix

posix
X11Stylesheet of module htmllib

htmllib
XRangeType of module types

types
ZeroDivisionError

Exceptions

Next: Module Index Prev: Function Index Up: Top Top: Top

grp -- Python library reference

Next: dbm Prev: pwd Up: UNIX Specific Services Top: Top
8.4. Built-in Module grp
This module provides access to the UNIX group database. It is available on all UNIX versions.

Group database entries are reported as 4-tuples containing the following items from the group database
(see <grp.h>), in order: gr_name, gr_passwd, gr_gid, gr_mem. The gid is an integer, name and
password are strings, and the member list is a list of strings. (Note that most users are not explicitly listed
as members of the group they are in according to the password database.) An exception is raised if the
entry asked for cannot be found.

It defines the following items:

getgrgid (gid) -- function of module grp

Return the group database entry for the given numeric group ID.

getgrnam (name) -- function of module grp

Return the group database entry for the given group name.

getgrall () -- function of module grp

Return a list of all available group entries, in arbitrary order.

Next: dbm Prev: pwd Up: UNIX Specific Services Top: Top

whrandom -- Python library reference

Next: array Prev: rand Up: Miscellaneous Services Top: Top
5.3. Standard Module whrandom
This module implements a Wichmann-Hill pseudo-random number generator. It defines the following
functions:

random () -- function of module whrandom

Returns the next random floating point number in the range [0.0 ... 1.0).

seed (x, y, z) -- function of module whrandom

Initializes the random number generator from the integers x, y and z. When the module is first
imported, the random number is initialized using values derived from the current time.

Next: array Prev: rand Up: Miscellaneous Services Top: Top

pickle -- Python library reference

Next: shelve Prev: traceback Up: Python Services Top: Top
3.4. Standard Module pickle
The pickle module implements a basic but powerful algorithm for ``pickling'' (a.k.a. serializing,
marshalling or flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream
of bytes (and back: ``unpickling''). This is a more primitive notion than persistency --- although pickle
reads and writes file objects, it does not handle the issue of naming persistent objects, nor the (even more
complicated) area of concurrent access to persistent objects. The pickle module can transform a
complex object into a byte stream and it can transform the byte stream into an object with the same
internal structure. The most obvious thing to do with these byte streams is to write them onto a file, but it
is also conceivable to send them across a network or store them in a database. The module shelve
provides a simple interface to pickle and unpickle objects on ``dbm''-style database files. Unlike the built-
in module marshal, pickle handles the following correctly:

 recursive objects (objects containing references to themselves)

 object sharing (references to the same object in different places)

 user-defined classes and their instances

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions
imposed by external standards such as CORBA (which probably can't represent pointer sharing or
recursive objects); however it means that non-Python programs may not be able to reconstruct pickled
Python objects.

The pickle data format uses a printable ASCII representation. This is slightly more voluminous than a
binary representation. However, small integers actually take less space when represented as minimal-
size decimal strings than when represented as 32-bit binary numbers, and strings are only much longer if
they contain many control characters or 8-bit characters. The big advantage of using printable ASCII (and
of some other characteristics of pickle's representation) is that for debugging or recovery purposes it is
possible for a human to read the pickled file with a standard text editor. (I could have gone a step further
and used a notation like S-expressions, but the parser (currently written in Python) would have been
considerably more complicated and slower, and the files would probably have become much larger.)

The pickle module doesn't handle code objects, which the marshal module does. I suppose pickle
could, and maybe it should, but there's probably no great need for it right now (as long as marshal
continues to be used for reading and writing code objects), and at least this avoids the possibility of
smuggling Trojan horses into a program. For the benefit of persistency modules written using pickle, it
supports the notion of a reference to an object outside the pickled data stream. Such objects are
referenced by a name, which is an arbitrary string of printable ASCII characters. The resolution of such
names is not defined by the pickle module --- the persistent object module will have to implement a
method persistent_load. To write references to persistent objects, the persistent module must define
a method persistent_id which returns either None or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module.

Next, it must normally be possible to create class instances by calling the class without arguments. If this
is undesirable, the class can define a method __getinitargs__(), which should return a tuple
containing the arguments to be passed to the class constructor (__init__()). Classes can further
influence how their instances are pickled --- if the class defines the method __getstate__(), it is
called and the return state is pickled as the contents for the instance, and if the class defines the method
__setstate__(), it is called with the unpickled state. (Note that these methods can also be used to

implement copying class instances.) If there is no __getstate__() method, the instance's __dict__
is pickled. If there is no __setstate__() method, the pickled object must be a dictionary and its items
are assigned to the new instance's dictionary. (If a class defines both __getstate__() and
__setstate__(), the state object needn't be a dictionary --- these methods can do what they want.)
This protocol is also used by the shallow and deep copying operations defined in the copy module. Note
that when class instances are pickled, their class's code and data are not pickled along with them. Only
the instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and
still load objects that were created with an earlier version of the class. If you plan to have long-lived
objects that will see many versions of a class, it may be worthwhile to put a version number in the objects
so that suitable conversions can be made by the class's __setstate__() method.

When a class itself is pickled, only its name is pickled --- the class definition is not pickled, but re-imported
by the unpickling process. Therefore, the restriction that the class must be defined at the top level in a
module applies to pickled classes as well.

The interface can be summarized as follows.

To pickle an object x onto a file f, open for writing:

p = pickle.Pickler(f)

p.dump(x)

A shorthand for this is:
pickle.dump(x, f)

To unpickle an object x from a file f, open for reading:

u = pickle.Unpickler(f)

x = u.load()

A shorthand is:
x = pickle.load(f)

The Pickler class only calls the method f.write with a string argument. The Unpickler calls the
methods f.read (with an integer argument) and f.readline (without argument), both returning a
string. It is explicitly allowed to pass non-file objects here, as long as they have the right methods. The
following types can be pickled:

 None
 integers, long integers, floating point numbers

 strings

 tuples, lists and dictionaries containing only picklable objects

 classes that are defined at the top level in a module

 instances of such classes whose __dict__ or __setstate__() is picklable

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an
unspecified number of bytes may have been written to the file.

It is possible to make multiple calls to the dump() method of the same Pickler instance. These must
then be matched to the same number of calls to the load() instance of the corresponding Unpickler
instance. If the same object is pickled by multiple dump() calls, the load() will all yield references to
the same object. Warning: this is intended for pickling multiple objects without intervening modifications to
the objects or their parts. If you modify an object and then pickle it again using the same Pickler
instance, the object is not pickled again --- a reference to it is pickled and the Unpickler will return the
old value, not the modified one. (There are two problems here: (a) detecting changes, and (b) marshalling
a minimal set of changes. I have no answers. Garbage Collection may also become a problem here.)

Apart from the Pickler and Unpickler classes, the module defines the following functions, and an
exception:

dump (object, file) -- function of module pickle

Write a pickled representation of obect to the open file object file. This is equivalent to
Pickler(file).dump(object).

load (file) -- function of module pickle

Read a pickled object from the open file object file. This is equivalent to
Unpickler(file).load().

dumps (object) -- function of module pickle

Return the pickled representation of the object as a string, instead of writing it to a file.

loads (string) -- function of module pickle

Read a pickled object from a string instead of a file. Characters in the string past the pickled
object's representation are ignored.

PicklingError -- exception of module pickle

This exception is raised when an unpicklable object is passed to Pickler.dump().

Next: shelve Prev: traceback Up: Python Services Top: Top

mimetools.Message Methods -- Python library reference

Prev: mimetools Up: mimetools Top: Top
11.11.1. Additional Methods of Message objects
The mimetools.Message class defines the following methods in addition to the rfc822.Message
class:

getplist () -- Method on mimetool.Message

Return the parameter list of the Content-type header. This is a list if strings. For parameters of
the form `key=value', key is converted to lower case but value is not. For example, if the
message contains the header `Content-type: text/html; spam=1; Spam=2; Spam' then
getplist() will return the Python list ['spam=1', 'spam=2', 'Spam'].

getparam (name) -- Method on mimetool.Message

Return the value of the first parameter (as returned by getplist() of the form `name=value' for
the given name. If value is surrounded by quotes of the form <...> or "...", these are removed.

getencoding () -- Method on mimetool.Message

Return the encoding specified in the `Content-transfer-encoding' message header. If no
such header exists, return "7bit". The encoding is converted to lower case.

gettype () -- Method on mimetool.Message

Return the message type (of the form `type/varsubtype') as specified in the `Content-type'
header. If no such header exists, return "text/plain". The type is converted to lower case.

getmaintype () -- Method on mimetool.Message

Return the main type as specified in the `Content-type' header. If no such header exists, return
"text". The main type is converted to lower case.

getsubtype () -- Method on mimetool.Message

Return the subtype as specified in the `Content-type' header. If no such header exists, return
"plain". The subtype is converted to lower case.

Prev: mimetools Up: mimetools Top: Top

flp -- Python library reference

Next: fm Prev: FL (uppercase) Up: SGI IRIX Specific Services Top: Top
16.6. Standard Module flp
This module defines functions that can read form definitions created by the `form designer' (fdesign)
program that comes with the FORMS library (see module fl above).

For now, see the file flp.doc in the Python library source directory for a description.

XXX A complete description should be inserted here!
Next: fm Prev: FL (uppercase) Up: SGI IRIX Specific Services Top: Top

alias objects -- Python library reference

Next: FInfo objects Prev: FSSpec objects Up: macfs Top: Top
14.6.2. alias objects
data -- attribute of alias object

The raw data for the Alias record, suitable for storing in a resource or transmitting to other
programs.

Resolve ([file]) -- Method on alias object

Resolve the alias. If the alias was created as a relative alias you should pass the file relative to
which it is. Return the FSSpec for the file pointed to and a flag indicating whether the alias object
itself was modified during the search process.

GetInfo (num) -- Method on alias object

An interface to the C routine GetAliasInfo().

Update (file, [file2]) -- Method on alias object

Update the alias to point to the file given. If file2 is present a relative alias will be created.

Note that it is currently not possible to directly manipulate a resource as an alias object. Hence, after
calling Update or after Resolve indicates that the alias has changed the Python program is responsible for
getting the data from the alias object and modifying the resource.

Next: FInfo objects Prev: FSSpec objects Up: macfs Top: Top

Cryptographic Services -- Python library reference

Next: Macintosh Specific Services Prev: Multimedia Services Up: Top Top: Top
13. Cryptographic Services
The modules described in this chapter implement various algorithms of a cryptographic nature. They are
available at the discretion of the installation. Here's an overview:

md5
--- RSA's MD5 message digest algorithm.

mpz
--- Interface to the GNU MP library for arbitrary precision arithmetic.

rotor
--- Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the Python Cryptography Kit of further interest; the package adds
built-in modules for DES and IDEA encryption, and provides a Python module for reading and decrypting
PGP files. The Python Cryptography Kit is not distributed with Python but available separately. See the
URL http://www.cs.mcgill.ca/%7Efnord/crypt.html for more information.

Menu
md5

mpz

rotor

Next: Macintosh Specific Services Prev: Multimedia Services Up: Top Top: Top

UNIX Specific Services -- Python library reference

Next: The Python Debugger Prev: Optional Operating System Services Up: Top Top: Top
8. UNIX Specific Services
The modules described in this chapter provide interfaces to features that are unique to the UNIX
operating system, or in some cases to some or many variants of it. Here's an overview:

posix
--- The most common Posix system calls (normally used via module os).

posixpath
--- Common Posix pathname manipulations (normally used via os.path).

pwd
--- The password database (getpwnam() and friends).

grp
--- The group database (getgrnam() and friends).

dbm
--- The standard ``database'' interface, based on ndbm.

gdbm
--- GNU's reinterpretation of dbm.

termios
--- Posix style tty control.

fcntl
--- The fcntl() and ioctl() system calls.

posixfile
--- A file-like object with support for locking.

Menu
posix

posixpath

pwd

grp

dbm

gdbm

termios

TERMIOS

fcntl

posixfile

syslog

Next: The Python Debugger Prev: Optional Operating System Services Up: Top Top: Top

posix -- Python library reference

Next: posixpath Prev: UNIX Specific Services Up: UNIX Specific Services Top: Top
8.1. Built-in Module posix
This module provides access to operating system functionality that is standardized by the C Standard and
the POSIX standard (a thinly disguised UNIX interface).

Do not import this module directly. Instead, import the module os, which provides a portable version
of this interface. On UNIX, the os module provides a superset of the posix interface. On non-UNIX
operating systems the posix module is not available, but a subset is always available through the os
interface. Once os is imported, there is no performance penalty in using it instead of posix. The
descriptions below are very terse; refer to the corresponding UNIX manual entry for more information.
Arguments called path refer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by
the system calls raise posix.error, described below.

Module posix defines the following data items:

environ -- data of module posix

A dictionary representing the string environment at the time the interpreter was started. For
example, posix.environ['HOME'] is the pathname of your home directory, equivalent to
getenv("HOME") in C. Modifying this dictionary does not affect the string environment passed on
by execv(), popen() or system(); if you need to change the environment, pass environ to
execve() or add variable assignments and export statements to the command string for
system() or popen().(1)

error -- exception of module posix

This exception is raised when a POSIX function returns a POSIX-related error (e.g., not for illegal
argument types). Its string value is 'posix.error'. The accompanying value is a pair containing
the numeric error code from errno and the corresponding string, as would be printed by the C
function perror().

It defines the following functions and constants:

chdir (path) -- function of module posix

Change the current working directory to path.

chmod (path, mode) -- function of module posix

Change the mode of path to the numeric mode.

chown (path, uid, gid) -- function of module posix

Change the owner and group id of path to the numeric uid and gid. (Not on MS-DOS.)

close (fd) -- function of module posix

Close file descriptor fd.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned by
posix.open() or posix.pipe(). To close a ``file object'' returned by the built-in function open or by
posix.popen or posix.fdopen, use its close() method.

dup (fd) -- function of module posix

Return a duplicate of file descriptor fd.

dup2 (fd, fd2) -- function of module posix

Duplicate file descriptor fd to fd2, closing the latter first if necessary. Return None.

execv (path, args) -- function of module posix

Execute the executable path with argument list args, replacing the current process (i.e., the Python
interpreter). The argument list may be a tuple or list of strings. (Not on MS-DOS.)

execve (path, args, env) -- function of module posix

Execute the executable path with argument list args, and environment env, replacing the current
process (i.e., the Python interpreter). The argument list may be a tuple or list of strings. The
environment must be a dictionary mapping strings to strings. (Not on MS-DOS.)

_exit (n) -- function of module posix

Exit to the system with status n, without calling cleanup handlers, flushing stdio buffers, etc. (Not on
MS-DOS.)

Note: the standard way to exit is sys.exit(n). posix._exit() should normally only be used in the
child process after a fork().

fdopen (fd[, mode[, bufsize]]) -- function of module posix

Return an open file object connected to the file descriptor fd. The mode and bufsize arguments
have the same meaning as the corresponding arguments to the built-in open() function.

fork () -- function of module posix

Fork a child process. Return 0 in the child, the child's process id in the parent. (Not on MS-DOS.)

fstat (fd) -- function of module posix

Return status for file descriptor fd, like stat().

getcwd () -- function of module posix

Return a string representing the current working directory.

getegid () -- function of module posix

Return the current process's effective group id. (Not on MS-DOS.)

geteuid () -- function of module posix

Return the current process's effective user id. (Not on MS-DOS.)

getgid () -- function of module posix

Return the current process's group id. (Not on MS-DOS.)

getpid () -- function of module posix

Return the current process id. (Not on MS-DOS.)

getppid () -- function of module posix

Return the parent's process id. (Not on MS-DOS.)

getuid () -- function of module posix

Return the current process's user id. (Not on MS-DOS.)

kill (pid, sig) -- function of module posix

Kill the process pid with signal sig. (Not on MS-DOS.)

link (src, dst) -- function of module posix

Create a hard link pointing to src named dst. (Not on MS-DOS.)

listdir (path) -- function of module posix

Return a list containing the names of the entries in the directory. The list is in arbitrary order. It
includes the special entries '.' and '..' if they are present in the directory.

lseek (fd, pos, how) -- function of module posix

Set the current position of file descriptor fd to position pos, modified by how: 0 to set the position
relative to the beginning of the file; 1 to set it relative to the current position; 2 to set it relative to the
end of the file.

lstat (path) -- function of module posix

Like stat(), but do not follow symbolic links. (On systems without symbolic links, this is identical
to posix.stat.)

mkdir (path, mode) -- function of module posix

Create a directory named path with numeric mode mode.

nice (increment) -- function of module posix

Add incr to the process' ``niceness''. Return the new niceness. (Not on MS-DOS.)

open (file, flags, mode) -- function of module posix

Open the file file and set various flags according to flags and possibly its mode according to mode.
Return the file descriptor for the newly opened file.

Note: this function is intended for low-level I/O. For normal usage, use the built-in function open, which
returns a ``file object'' with read() and write() methods (and many more).

pipe () -- function of module posix

Create a pipe. Return a pair of file descriptors (r, w) usable for reading and writing, respectively.
(Not on MS-DOS.)

popen (command[, mode[, bufsize]]) -- function of module posix

Open a pipe to or from command. The return value is an open file object connected to the pipe,
which can be read or written depending on whether mode is 'r' (default) or 'w'. The bufsize
argument has the same meaning as the corresponding argument to the built-in open() function.
(Not on MS-DOS.)

read (fd, n) -- function of module posix

Read at most n bytes from file descriptor fd. Return a string containing the bytes read.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned by
posix.open() or posix.pipe(). To read a ``file object'' returned by the built-in function open or by
posix.popen or posix.fdopen, or sys.stdin, use its read() or readline() methods.

readlink (path) -- function of module posix

Return a string representing the path to which the symbolic link points. (On systems without
symbolic links, this always raises posix.error.)

rename (src, dst) -- function of module posix

Rename the file or directory src to dst.

rmdir (path) -- function of module posix

Remove the directory path.

setgid (gid) -- function of module posix

Set the current process's group id. (Not on MS-DOS.)

setuid (uid) -- function of module posix

Set the current process's user id. (Not on MS-DOS.)

stat (path) -- function of module posix

Perform a stat system call on the given path. The return value is a tuple of at least 10 integers
giving the most important (and portable) members of the stat structure, in the order st_mode,
st_ino, st_dev, st_nlink, st_uid, st_gid, st_size, st_atime, st_mtime,
st_ctime. More items may be added at the end by some implementations. (On MS-DOS, some
items are filled with dummy values.)

Note: The standard module stat defines functions and constants that are useful for extracting
information from a stat structure.

symlink (src, dst) -- function of module posix

Create a symbolic link pointing to src named dst. (On systems without symbolic links, this always
raises posix.error.)

system (command) -- function of module posix

Execute the command (a string) in a subshell. This is implemented by calling the Standard C
function system(), and has the same limitations. Changes to posix.environ, sys.stdin
etc. are not reflected in the environment of the executed command. The return value is the exit
status of the process as returned by Standard C system().

times () -- function of module posix

Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds.
The items are: user time, system time, children's user time, children's system time, and elapsed
real time since a fixed point in the past, in that order. See the UNIX manual page times(2). (Not on
MS-DOS.)

umask (mask) -- function of module posix

Set the current numeric umask and returns the previous umask. (Not on MS-DOS.)

uname () -- function of module posix

Return a 5-tuple containing information identifying the current operating system. The tuple contains
5 strings: (sysname, nodename, release, version, machine). Some systems truncate
the nodename to 8 characters or to the leading component; a better way to get the hostname is
socket.gethostname(). (Not on MS-DOS, nor on older UNIX systems.)

unlink (path) -- function of module posix

Unlink path.

utime (path, (atime, mtime)) -- function of module posix

Set the access and modified time of the file to the given values. (The second argument is a tuple of
two items.)

wait () -- function of module posix

Wait for completion of a child process, and return a tuple containing its pid and exit status indication
(encoded as by UNIX). (Not on MS-DOS.)

waitpid (pid, options) -- function of module posix

Wait for completion of a child process given by proces id, and return a tuple containing its pid and
exit status indication (encoded as by UNIX). The semantics of the call are affected by the value of
the integer options, which should be 0 for normal operation. (If the system does not support
waitpid(), this always raises posix.error. Not on MS-DOS.)

write (fd, str) -- function of module posix

Write the string str to file descriptor fd. Return the number of bytes actually written.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned by
posix.open() or posix.pipe(). To write a ``file object'' returned by the built-in function open or by
posix.popen or posix.fdopen, or sys.stdout or sys.stderr, use its write() method.

WNOHANG -- data of module posix

The option for waitpid() to avoid hanging if no child process status is available immediately.

---------- Footnotes ----------
(1) The problem with automatically passing on environ is that there is no portable way of changing the
environment.

Next: posixpath Prev: UNIX Specific Services Up: UNIX Specific Services Top: Top

termios -- Python library reference

Next: TERMIOS Prev: gdbm Up: UNIX Specific Services Top: Top
8.7. Built-in Module termios
This module provides an interface to the Posix calls for tty I/O control. For a complete description of these
calls, see the Posix or UNIX manual pages. It is only available for those UNIX versions that support Posix
termios style tty I/O control (and then only if configured at installation time).

All functions in this module take a file descriptor fd as their first argument. This must be an integer file
descriptor, such as returned by sys.stdin.fileno().

This module should be used in conjunction with the TERMIOS module, which defines the relevant
symbolic constants (see the next section).

The module defines the following functions:

tcgetattr (fd) -- function of module termios

Return a list containing the tty attributes for file descriptor fd, as follows: [iflag, oflag,
cflag, lflag, ispeed, ospeed, cc] where cc is a list of the tty special characters (each a
string of length 1, except the items with indices VMIN and VTIME, which are integers when these
fields are defined). The interpretation of the flags and the speeds as well as the indexing in the cc
array must be done using the symbolic constants defined in the TERMIOS module.

tcsetattr (fd, when, attributes) -- function of module termios

Set the tty attributes for file descriptor fd from the attributes, which is a list like the one returned by
tcgetattr(). The when argument determines when the attributes are changed:
TERMIOS.TCSANOW to change immediately, TERMIOS.TCSADRAIN to change after transmitting all
queued output, or TERMIOS.TCSAFLUSH to change after transmitting all queued output and
discarding all queued input.

tcsendbreak (fd, duration) -- function of module termios

Send a break on file descriptor fd. A zero duration sends a break for 0.25--0.5 seconds; a nonzero
duration has a system dependent meaning.

tcdrain (fd) -- function of module termios

Wait until all output written to file descriptor fd has been transmitted.

tcflush (fd, queue) -- function of module termios

Discard queued data on file descriptor fd. The queue selector specifies which queue:
TERMIOS.TCIFLUSH for the input queue, TERMIOS.TCOFLUSH for the output queue, or
TERMIOS.TCIOFLUSH for both queues.

tcflow (fd, action) -- function of module termios

Suspend or resume input or output on file descriptor fd. The action argument can be
TERMIOS.TCOOFF to suspend output, TERMIOS.TCOON to restart output, TERMIOS.TCIOFF to
suspend input, or TERMIOS.TCION to restart input.

Menu
termios Example

Next: TERMIOS Prev: gdbm Up: UNIX Specific Services Top: Top

SunOS Specific Services -- Python library reference

Next: Function Index Prev: SGI IRIX Specific Services Up: Top Top: Top
17. SunOS Specific Services
The modules described in this chapter provide interfaces to features that are unique to the SunOS
operating system (versions 4 and 5; the latter is also known as Solaris version 2).

Menu
sunaudiodev

STDWIN Functions -- Python library reference

Next: Window Objects Prev: stdwin Up: stdwin Top: Top
15.1.1. Functions Defined in Module stdwin
The following functions are defined in the stdwin module:

open (title) -- function of module stdwin

Open a new window whose initial title is given by the string argument. Return a window object;
window object methods are described below.(1)

getevent () -- function of module stdwin

Wait for and return the next event. An event is returned as a triple: the first element is the event
type, a small integer; the second element is the window object to which the event applies, or None
if it applies to no window in particular; the third element is type-dependent. Names for event types
and command codes are defined in the standard module stdwinevent.

pollevent () -- function of module stdwin

Return the next event, if one is immediately available. If no event is available, return ().

getactive () -- function of module stdwin

Return the window that is currently active, or None if no window is currently active. (This can be
emulated by monitoring WE_ACTIVATE and WE_DEACTIVATE events.)

listfontnames (pattern) -- function of module stdwin

Return the list of font names in the system that match the pattern (a string). The pattern should
normally be '*'; returns all available fonts. If the underlying window system is X11, other patterns
follow the standard X11 font selection syntax (as used e.g. in resource definitions), i.e. the wildcard
character '*' matches any sequence of characters (including none) and '?' matches any single
character. On the Macintosh this function currently returns an empty list.

setdefscrollbars (hflag, vflag) -- function of module stdwin

Set the flags controlling whether subsequently opened windows will have horizontal and/or vertical
scroll bars.

setdefwinpos (h, v) -- function of module stdwin

Set the default window position for windows opened subsequently.

setdefwinsize (width, height) -- function of module stdwin

Set the default window size for windows opened subsequently.

getdefscrollbars () -- function of module stdwin

Return the flags controlling whether subsequently opened windows will have horizontal and/or
vertical scroll bars.

getdefwinpos () -- function of module stdwin

Return the default window position for windows opened subsequently.

getdefwinsize () -- function of module stdwin

Return the default window size for windows opened subsequently.

getscrsize () -- function of module stdwin

Return the screen size in pixels.

getscrmm () -- function of module stdwin

Return the screen size in millimeters.

fetchcolor (colorname) -- function of module stdwin

Return the pixel value corresponding to the given color name. Return the default foreground color
for unknown color names. Hint: the following code tests whether you are on a machine that
supports more than two colors:

if stdwin.fetchcolor('black') <> \

                    stdwin.fetchcolor('red') <> \

                    stdwin.fetchcolor('white'):

        print 'color machine'

else:

        print 'monochrome machine'

setfgcolor (pixel) -- function of module stdwin

Set the default foreground color. This will become the default foreground color of windows opened
subsequently, including dialogs.

setbgcolor (pixel) -- function of module stdwin

Set the default background color. This will become the default background color of windows
opened subsequently, including dialogs.

getfgcolor () -- function of module stdwin

Return the pixel value of the current default foreground color.

getbgcolor () -- function of module stdwin

Return the pixel value of the current default background color.

setfont (fontname) -- function of module stdwin

Set the current default font. This will become the default font for windows opened subsequently,
and is also used by the text measuring functions textwidth, textbreak, lineheight and
baseline below. This accepts two more optional parameters, size and style: Size is the font size
(in `points'). Style is a single character specifying the style, as follows: 'b' = bold, 'i' = italic,
'o' = bold + italic, 'u' = underline; default style is roman. Size and style are ignored under X11
but used on the Macintosh. (Sorry for all this complexity --- a more uniform interface is being
designed.)

menucreate (title) -- function of module stdwin

Create a menu object referring to a global menu (a menu that appears in all windows). Methods of
menu objects are described below. Note: normally, menus are created locally; see the window
method menucreate below. Warning: the menu only appears in a window as long as the object

returned by this call exists.

newbitmap (width, height) -- function of module stdwin

Create a new bitmap object of the given dimensions. Methods of bitmap objects are described
below. Not available on the Macintosh.

fleep () -- function of module stdwin

Cause a beep or bell (or perhaps a `visual bell' or flash, hence the name).

message (string) -- function of module stdwin

Display a dialog box containing the string. The user must click OK before the function returns.

askync (prompt, default) -- function of module stdwin

Display a dialog that prompts the user to answer a question with yes or no. Return 0 for no, 1 for
yes. If the user hits the Return key, the default (which must be 0 or 1) is returned. If the user
cancels the dialog, the KeyboardInterrupt exception is raised.

askstr (prompt, default) -- function of module stdwin

Display a dialog that prompts the user for a string. If the user hits the Return key, the default string
is returned. If the user cancels the dialog, the KeyboardInterrupt exception is raised.

askfile (prompt, default, new) -- function of module stdwin

Ask the user to specify a filename. If new is zero it must be an existing file; otherwise, it must be a
new file. If the user cancels the dialog, the KeyboardInterrupt exception is raised.

setcutbuffer (i, string) -- function of module stdwin

Store the string in the system's cut buffer number i, where it can be found (for pasting) by other
applications. On X11, there are 8 cut buffers (numbered 0..7). Cut buffer number 0 is the `clipboard'
on the Macintosh.

getcutbuffer (i) -- function of module stdwin

Return the contents of the system's cut buffer number i.

rotatecutbuffers (n) -- function of module stdwin

On X11, rotate the 8 cut buffers by n. Ignored on the Macintosh.

getselection (i) -- function of module stdwin

Return X11 selection number i. Selections are not cut buffers. Selection numbers are defined in
module stdwinevents. Selection WS_PRIMARY is the primary selection (used by xterm, for
instance); selection WS_SECONDARY is the secondary selection; selection WS_CLIPBOARD is the
clipboard selection (used by xclipboard). On the Macintosh, this always returns an empty string.

resetselection (i) -- function of module stdwin

Reset selection number i, if this process owns it. (See window method setselection()).

baseline () -- function of module stdwin

Return the baseline of the current font (defined by STDWIN as the vertical distance between the
baseline and the top of the characters).

lineheight () -- function of module stdwin

Return the total line height of the current font.

textbreak (str, width) -- function of module stdwin

Return the number of characters of the string that fit into a space of width bits wide when drawn in
the curent font.

textwidth (str) -- function of module stdwin

Return the width in bits of the string when drawn in the current font.

connectionnumber () -- function of module stdwin

fileno () -- function of module stdwin

(X11 under UNIX only) Return the ``connection number'' used by the underlying X11
implementation. (This is normally the file number of the socket.) Both functions return the same
value; connectionnumber() is named after the corresponding function in X11 and STDWIN,
while fileno() makes it possible to use the stdwin module as a ``file'' object parameter to
select.select(). Note that if select() implies that input is possible on stdwin, this does
not guarantee that an event is ready --- it may be some internal communication going on between
the X server and the client library. Thus, you should call stdwin.pollevent() until it returns
None to check for events if you don't want your program to block. Because of internal buffering in
X11, it is also possible that stdwin.pollevent() returns an event while select() does not
find stdwin to be ready, so you should read any pending events with stdwin.pollevent()
until it returns None before entering a blocking select() call.

---------- Footnotes ----------
(1) The Python version of STDWIN does not support draw procedures; all drawing requests are reported
as draw events.

Next: Window Objects Prev: stdwin Up: stdwin Top: Top

Code Objects -- Python library reference

Next: Type Objects Prev: Methods Up: Other Built-in Types Top: Top
2.1.7.5. Code Objects
Code objects are used by the implementation to represent ``pseudo-compiled'' executable Python code
such as a function body. They differ from function objects because they don't contain a reference to their
global execution environment. Code objects are returned by the built-in compile() function and can be
extracted from function objects through their func_code attribute. A code object can be executed or
evaluated by passing it (instead of a source string) to the exec statement or the built-in eval()
function. (See the Python Reference Manual for more info.)

Next: Type Objects Prev: Methods Up: Other Built-in Types Top: Top

Type Objects -- Python library reference

Next: The Null Object Prev: Code Objects Up: Other Built-in Types Top: Top
2.1.7.6. Type Objects
Type objects represent the various object types. An object's type is accessed by the built-in function
type(). There are no special operations on types. The standard module types defines names for all
standard built-in types. Types are written like this: <type 'int'>.

Next: The Null Object Prev: Code Objects Up: Other Built-in Types Top: Top

Numeric Types -- Python library reference

Next: Sequence Types Prev: Comparisons Up: Types Top: Top
2.1.4. Numeric Types
There are three numeric types: plain integers, long integers, and floating point numbers. Plain integers
(also just called integers) are implemented using long in C, which gives them at least 32 bits of
precision. Long integers have unlimited precision. Floating point numbers are implemented using
double in C. All bets on their precision are off unless you happen to know the machine you are working
with. Numbers are created by numeric literals or as the result of built-in functions and operators.
Unadorned integer literals (including hex and octal numbers) yield plain integers. Integer literals with an
`L' or `l' suffix yield long integers (`L' is preferred because 1l looks too much like eleven!). Numeric
literals containing a decimal point or an exponent sign yield floating point numbers. Python fully supports
mixed arithmetic: when a binary arithmetic operator has operands of different numeric types, the operand
with the ``smaller'' type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point. Comparisons between numbers of mixed type use the same rule.(1) The
functions int(), long() and float() can be used to coerce numbers to a specific type. All numeric
types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation

Result --- Notes
x + y

sum of x and y
x - y

difference of x and yx * y

product of x and y
x / y

quotient of x and y --- (1)
x % y

remainder of x / y-x
x negated

+x
x unchangedabs(x)

absolute value of x
int(x)

x converted to integer --- (2)
long(x)

x converted to long integer --- (2)
float(x)

x converted to floating point
divmod(x, y)

the pair (x / y, x % y) --- (3)

pow(x, y)
x to the power y

Notes:

(1)
For (plain or long) integer division, the result is an integer. The result is always rounded towards
minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0.

(2)
Conversion from floating point to (long or plain) integer may round or truncate as in C; see
functions floor() and ceil() in module math for well-defined conversions.

(3)
See the section on built-in functions for an exact definition.

Menu
Bit-string Operations

---------- Footnotes ----------
(1) As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similar for tuples.

Next: Sequence Types Prev: Comparisons Up: Types Top: Top

traceback -- Python library reference

Next: pickle Prev: types Up: Python Services Top: Top
3.3. Standard Module traceback
This module provides a standard interface to format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to
print stack traces under program control, e.g. in a ``wrapper'' around the interpreter.

The module uses traceback objects --- this is the object type that is stored in the variables
sys.exc_traceback and sys.last_traceback.

The module defines the following functions:

print_tb (traceback[, limit]) -- function of module traceback

Print up to limit stack trace entries from traceback. If limit is omitted or None, all entries are printed.

extract_tb (traceback[, limit]) -- function of module traceback

Return a list of up to limit ``pre-processed'' stack trace entries extracted from traceback. It is useful
for alternate formatting of stack traces. If limit is omitted or None, all entries are extracted. A ``pre-
processed'' stack trace entry is a quadruple (filename, line number, function name, line text)
representing the information that is usually printed for a stack trace. The line text is a string with
leading and trailing whitespace stripped; if the source is not available it is None.

print_exception (type, value, traceback[, limit]) -- function of module traceback

Print exception information and up to limit stack trace entries from traceback. This differs from
print_tb in the following ways: (1) if traceback is not None, it prints a header ``Traceback
(innermost last):''; (2) it prints the exception type and value after the stack trace; (3) if type is
SyntaxError and value has the appropriate format, it prints the line where the syntax error
occurred with a caret indication the approximate position of the error.

print_exc ([limit]) -- function of module traceback

This is a shorthand for print_exception(sys.exc_type, sys.exc_value,
sys.exc_traceback, limit).

print_last ([limit]) -- function of module traceback

This is a shorthand for print_exception(sys.last_type, sys.last_value,
sys.last_traceback, limit).

Next: pickle Prev: types Up: Python Services Top: Top

Socket Objects -- Python library reference

Next: Socket Example Prev: socket Up: socket Top: Top
7.2.1. Socket Objects
Socket objects have the following methods. Except for makefile() these correspond to UNIX system
calls applicable to sockets.

accept () -- Method on socket

Accept a connection. The socket must be bound to an address and listening for connections. The
return value is a pair (conn, address) where conn is a new socket object usable to send and
receive data on the connection, and address is the address bound to the socket on the other end of
the connection.

bind (address) -- Method on socket

Bind the socket to address. The socket must not already be bound. (The format of address
depends on the address family --- see above.)

close () -- Method on socket

Close the socket. All future operations on the socket object will fail. The remote end will receive no
more data (after queued data is flushed). Sockets are automatically closed when they are garbage-
collected.

connect (address) -- Method on socket

Connect to a remote socket at address. (The format of address depends on the address family ---
see above.)

fileno () -- Method on socket

Return the socket's file descriptor (a small integer). This is useful with select.

getpeername () -- Method on socket

Return the remote address to which the socket is connected. This is useful to find out the port
number of a remote IP socket, for instance. (The format of the address returned depends on the
address family --- see above.) On some systems this function is not supported.

getsockname () -- Method on socket

Return the socket's own address. This is useful to find out the port number of an IP socket, for
instance. (The format of the address returned depends on the address family --- see above.)

getsockopt (level, optname[, buflen]) -- Method on socket

Return the value of the given socket option (see the UNIX man page getsockopt(2)). The needed
symbolic constants (SO_* etc.) are defined in this module. If buflen is absent, an integer option is
assumed and its integer value is returned by the function. If buflen is present, it specifies the
maximum length of the buffer used to receive the option in, and this buffer is returned as a string. It
is up to the caller to decode the contents of the buffer (see the optional built-in module struct for
a way to decode C structures encoded as strings).

listen (backlog) -- Method on socket

Listen for connections made to the socket. The backlog argument specifies the maximum number
of queued connections and should be at least 1; the maximum value is system-dependent (usually
5).

makefile ([mode[, bufsize]]) -- Method on socket

Return a file object associated with the socket. (File objects were described earlier under Built-in
Types.) The file object references a dup()ped version of the socket file descriptor, so the file
object and socket object may be closed or garbage-collected independently. The optional mode
and bufsize arguments are interpreted the same way as by the built-in open() function.

recv (bufsize[, flags]) -- Method on socket

Receive data from the socket. The return value is a string representing the data received. The
maximum amount of data to be received at once is specified by bufsize. See the UNIX manual
page for the meaning of the optional argument flags; it defaults to zero.

recvfrom (bufsize[, flags]) -- Method on socket

Receive data from the socket. The return value is a pair (string, address) where string is a
string representing the data received and address is the address of the socket sending the data.
The optional flags argument has the same meaning as for recv() above. (The format of address
depends on the address family --- see above.)

send (string[, flags]) -- Method on socket

Send data to the socket. The socket must be connected to a remote socket. The optional flags
argument has the same meaning as for recv() above. Return the number of bytes sent.

sendto (string[, flags], address) -- Method on socket

Send data to the socket. The socket should not be connected to a remote socket, since the
destination socket is specified by address. The optional flags argument has the same meaning
as for recv() above. Return the number of bytes sent. (The format of address depends on the
address family --- see above.)

setblocking (flag) -- Method on socket

Set blocking or non-blocking mode of the socket: if flag is 0, the socket is set to non-blocking, else
to blocking mode. Initially all sockets are in blocking mode. In non-blocking mode, if a recv call
doesn't find any data, or if a send call can't immediately dispose of the data, a socket.error
exception is raised; in blocking mode, the calls block until they can proceed.

setsockopt (level, optname, value) -- Method on socket

Set the value of the given socket option (see the UNIX man page setsockopt(2)). The needed
symbolic constants are defined in the socket module (SO_* etc.). The value can be an integer or
a string representing a buffer. In the latter case it is up to the caller to ensure that the string
contains the proper bits (see the optional built-in module struct for a way to encode C structures
as strings).

shutdown (how) -- Method on socket

Shut down one or both halves of the connection. If how is 0, further receives are disallowed. If how
is 1, further sends are disallowed. If how is 2, further sends and receives are disallowed.

Note that there are no methods read() or write(); use recv() and send() without flags
argument instead.

Next: Socket Example Prev: socket Up: socket Top: Top

ftplib -- Python library reference

Next: gopherlib Prev: httplib Up: Internet and WWW Top: Top
11.4. Standard Module ftplib
This module defines the class FTP and a few related items. The FTP class implements the client side of
the FTP protocol. You can use this to write Python programs that perform a variety of automated FTP
jobs, such as mirroring other ftp servers. It is also used by the module urllib to handle URLs that use
FTP. For more information on FTP (File Transfer Protocol), see Internet RFC 959.

Here's a sample session using the ftplib module:

>>> from ftplib import FTP

>>> ftp = FTP('ftp.cwi.nl')      # connect to host, default port

>>> ftp.login()                              # user anonymous, passwd user@hostname

>>> ftp.retrlines('LIST')          # list directory contents

total 24418

drwxrwsr-x      5 ftp-usr    pdmaint          1536 Mar 20 09:48 .

dr-xr-srwt 105 ftp-usr    pdmaint          1536 Mar 21 14:32 ..

-rw-r--r--      1 ftp-usr    pdmaint          5305 Mar 20 09:48 INDEX

 .

 .

 .

>>> ftp.quit()

The module defines the following items:

FTP ([host[, user, passwd, acct]]) -- function of module ftplib

Return a new instance of the FTP class. When host is given, the method call connect(host) is
made. When user is given, additionally the method call login(user, passwd, acct) is made

(where passwd and acct default to the empty string when not given).

all_errors -- data of module ftplib

The set of all exceptions (as a tuple) that methods of FTP instances may raise as a result of
problems with the FTP connection (as opposed to programming errors made by the caller). This set
includes the four exceptions listed below as well as socket.error and IOError.

error_reply -- exception of module ftplib

Exception raised when an unexpected reply is received from the server.

error_temp -- exception of module ftplib

Exception raised when an error code in the range 400--499 is received.

error_perm -- exception of module ftplib

Exception raised when an error code in the range 500--599 is received.

error_proto -- exception of module ftplib

Exception raised when a reply is received from the server that does not begin with a digit in the
range 1--5.

Menu
FTP Objects

Next: gopherlib Prev: httplib Up: Internet and WWW Top: Top

Top -- Python library reference

Next: Introduction Prev: (dir) Up: (dir)
The Python library
This file describes the built-in types, exceptions and functions and the standard modules that come with
the Python system. It assumes basic knowledge about the Python language. For an informal introduction
to the language, see the Python Tutorial. The Python Reference Manual gives a more formal definition of
the language. (These manuals are not yet available in INFO or Texinfo format.)

This version corresponds to Python version 1.3 (13 Oct 1995).

Menu
Introduction

Built-in Objects

Python Services

String Services

Miscellaneous Services

Generic Operating System Services

Optional Operating System Services

UNIX Specific Services

The Python Debugger

The Python Profiler

Internet and WWW

Multimedia Services

Cryptographic Services

Macintosh Specific Services

Standard Windowing Interface

SGI IRIX Specific Services

SunOS Specific Services

Function Index

Variable Index

Module Index

Concept Index

Next: Introduction Prev: (dir) Up: (dir)

os -- Python library reference

Next: time Prev: Generic Operating System Services Up: Generic Operating System Services Top: Top
6.1. Standard Module os
This module provides a more portable way of using operating system (OS) dependent functionality than
importing an OS dependent built-in module like posix.

When the optional built-in module posix is available, this module exports the same functions and data
as posix; otherwise, it searches for an OS dependent built-in module like mac and exports the same
functions and data as found there. The design of all Python's built-in OS dependent modules is such that
as long as the same functionality is available, it uses the same interface; e.g., the function
os.stat(file) returns stat info about a file in a format compatible with the POSIX interface.

Extensions peculiar to a particular OS are also available through the os module, but using them is of
course a threat to portability!

Note that after the first time os is imported, there is no performance penalty in using functions from os
instead of directly from the OS dependent built-in module, so there should be no reason not to use os!

In addition to whatever the correct OS dependent module exports, the following variables and functions
are always exported by os:

name -- data of module os

The name of the OS dependent module imported. The following names have currently been
registered: 'posix', 'nt', 'dos', 'mac'.

path -- data of module os

The corresponding OS dependent standard module for pathname operations, e.g., posixpath or
macpath. Thus, (given the proper imports), os.path.split(file) is equivalent to but more
portable than posixpath.split(file).

curdir -- data of module os

The constant string used by the OS to refer to the current directory, e.g. '.' for POSIX or ':' for
the Mac.

pardir -- data of module os

The constant string used by the OS to refer to the parent directory, e.g. '..' for POSIX or '::'
for the Mac.

sep -- data of module os

The character used by the OS to separate pathname components, e.g. '/' for POSIX or ':' for
the Mac. Note that knowing this is not sufficient to be able to parse or concatenate pathnames---
better use os.path.split() and os.path.join()---but it is occasionally useful.

pathsep -- data of module os

The character conventionally used by the OS to separate search patch components (as in $PATH),
e.g. ':' for POSIX or ';' for MS-DOS.

defpath -- data of module os

The default search path used by os.exec*p*() if the environment doesn't have a 'PATH' key.

execl (path, arg0, arg1, ...) -- function of module os

This is equivalent to os.execv(path, (arg0, arg1, ...)).

execle (path, arg0, arg1, ..., env) -- function of module os

This is equivalent to os.execve(path, (arg0, arg1, ...), env).

execlp (path, arg0, arg1, ...) -- function of module os

This is equivalent to os.execvp(path, (arg0, arg1, ...)).

execvp (path, args) -- function of module os

This is like os.execv(path, args) but duplicates the shell's actions in searching for an
executable file in a list of directories. The directory list is obtained from os.environ['PATH'].

execvpe (path, args, env) -- function of module os

This is a cross between os.execve() and os.execvp(). The directory list is obtained from
env['PATH'].

(The functions os.execv() and execve() are not documented here, since they are implemented by
the OS dependent module. If the OS dependent module doesn't define either of these, the functions that
rely on it will raise an exception. They are documented in the section on module posix, together with all
other functions that os imports from the OS dependent module.)
Next: time Prev: Generic Operating System Services Up: Generic Operating System Services Top: Top

console window object -- Python library reference

Prev: macconsole options object Up: macconsole Top: Top
14.4.2. console window object
file -- attribute of console window

The file object corresponding to this console window. If the file is buffered, you should call
file.flush() between write() and read() calls.

setmode (mode) -- Method on console window

Set the input mode of the console to C_ECHO, etc.

settabs (n) -- Method on console window

Set the tabsize to n spaces.

cleos () -- Method on console window

Clear to end-of-screen.

cleol () -- Method on console window

Clear to end-of-line.

inverse (onoff) -- Method on console window

Enable inverse-video mode: characters with the high bit set are displayed in inverse video (this
disables the upper half of a non-ASCII character set).

gotoxy (x, y) -- Method on console window

Set the cursor to position (x, y).

hide () -- Method on console window

Hide the window, remembering the contents.

show () -- Method on console window

Show the window again.

echo2printer () -- Method on console window

Copy everything written to the window to the printer as well.

Prev: macconsole options object Up: macconsole Top: Top

sys -- Python library reference

Next: types Prev: Python Services Up: Python Services Top: Top
3.1. Built-in Module sys
This module provides access to some variables used or maintained by the interpreter and to functions
that interact strongly with the interpreter. It is always available.

argv -- data of module sys

The list of command line arguments passed to a Python script. sys.argv[0] is the script name
(it is operating system dependent whether this is a full pathname or not). If the command was
executed using the `-c' command line option to the interpreter, sys.argv[0] is set to the string
"-c". If no script name was passed to the Python interpreter, sys.argv has zero length.

builtin_module_names -- data of module sys

A list of strings giving the names of all modules that are compiled into this Python interpreter. (This
information is not available in any other way --- sys.modules.keys() only lists the imported
modules.)

exc_type -- data of module sys

exc_value -- data of module sys

exc_traceback -- data of module sys

These three variables are not always defined; they are set when an exception handler (an except
clause of a try statement) is invoked. Their meaning is: exc_type gets the exception type of the
exception being handled; exc_value gets the exception parameter (its associated value or the
second argument to raise); exc_traceback gets a traceback object (see the Reference
Manual) which encapsulates the call stack at the point where the exception originally occurred.

exit (n) -- function of module sys

Exit from Python with numeric exit status n. This is implemented by raising the SystemExit
exception, so cleanup actions specified by finally clauses of try statements are honored, and
it is possible to catch the exit attempt at an outer level.

exitfunc -- data of module sys

This value is not actually defined by the module, but can be set by the user (or by a program) to
specify a clean-up action at program exit. When set, it should be a parameterless function. This
function will be called when the interpreter exits in any way (except when a fatal error occurs: in
that case the interpreter's internal state cannot be trusted).

last_type -- data of module sys

last_value -- data of module sys

last_traceback -- data of module sys

These three variables are not always defined; they are set when an exception is not handled and
the interpreter prints an error message and a stack traceback. Their intended use is to allow an
interactive user to import a debugger module and engage in post-mortem debugging without having
to re-execute the command that caused the error (which may be hard to reproduce). The meaning
of the variables is the same as that of exc_type, exc_value and exc_tracaback,
respectively.

modules -- data of module sys

Gives the list of modules that have already been loaded. This can be manipulated to force

reloading of modules and other tricks.

path -- data of module sys

A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, or an installation-dependent default.

platform -- data of module sys

This string contains a platform identifier. This can be used to append platform-specific components
to sys.path, for instance.

ps1 -- data of module sys

ps2 -- data of module sys

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if
the interpreter is in interactive mode. Their initial values in this case are '>>> ' and '... '.

setcheckinterval (interval) -- function of module sys

Set the interpreter's ``check interval''. This integer value determines how often the interpreter
checks for periodic things such as thread switches and signal handlers. The default is 10, meaning
the check is performed every 10 Python virtual instructions. Setting it to a larger value may
increase performance for programs using threads. Setting it to a value checks every virtual
instruction, maximizing responsiveness as well as overhead.

settrace (tracefunc) -- function of module sys

Set the system's trace function, which allows you to implement a Python source code debugger in
Python. See section ``How It Works'' in the chapter on the Python Debugger.

setprofile (profilefunc) -- function of module sys

Set the system's profile function, which allows you to implement a Python source code profiler in
Python. See the chapter on the Python Profiler. The system's profile function is called similarly to
the system's trace function (see sys.settrace), but it isn't called for each executed line of code
(only on call and return and when an exception occurs). Also, its return value is not used, so it can
just return None.

stdin -- data of module sys

stdout -- data of module sys

stderr -- data of module sys

File objects corresponding to the interpreter's standard input, output and error streams.
sys.stdin is used for all interpreter input except for scripts but including calls to input() and
raw_input(). sys.stdout is used for the output of print and expression statements and for
the prompts of input() and raw_input(). The interpreter's own prompts and (almost all of) its
error messages go to sys.stderr. sys.stdout and sys.stderr needn't be built-in file
objects: any object is acceptable as long as it has a write method that takes a string argument.
(Changing these objects doesn't affect the standard I/O streams of processes executed by
popen(), system() or the exec*() family of functions in the os module.)

tracebacklimit -- data of module sys

When this variable is set to an integer value, it determines the maximum number of levels of
traceback information printed when an unhandled exception occurs. The default is 1000. When set
to 0 or less, all traceback information is suppressed and only the exception type and value are
printed.

Next: types Prev: Python Services Up: Python Services Top: Top

Miscellaneous Services -- Python library reference

Next: Generic Operating System Services Prev: String Services Up: Top Top: Top
5. Miscellaneous Services
The modules described in this chapter provide miscellaneous services that are available in all Python
versions. Here's an overview:

math
--- Mathematical functions (sin() etc.).

rand
--- Integer random number generator.

whrandom
--- Floating point random number generator.

array
--- Efficient arrays of uniformly typed numeric values.

Menu
math

rand

whrandom

array

Next: Generic Operating System Services Prev: String Services Up: Top Top: Top

stdwinevents -- Python library reference

Next: rect Prev: stdwin Up: Standard Windowing Interface Top: Top
15.2. Standard Module stdwinevents
This module defines constants used by STDWIN for event types (WE_ACTIVATE etc.), command codes
(WC_LEFT etc.) and selection types (WS_PRIMARY etc.). Read the file for details. Suggested usage is

>>> from stdwinevents import *

>>>

Next: rect Prev: stdwin Up: Standard Windowing Interface Top: Top

binascii -- Python library reference

Prev: uu Up: Internet and WWW Top: Top
11.14. Built-in Module binascii
The binascii module contains a number of methods to convert between binary and various ascii-encoded
binary representations. Normally, you will not use these modules directly but use wrapper modules like uu
or hexbin in stead, this module solely exists because bit-manipuation of large amounts of data is slow in
python.

The binascii module defines the following functions:

a2b_uu (string) -- function of module binascii

Convert a single line of uuencoded data back to binary and return the binary data. Lines normally
contain 45 (binary) bytes, except for the last line. Line data may be followed by whitespace.

b2a_uu (data) -- function of module binascii

Convert binary data to a line of ascii characters, the return value is the converted line, including a
newline char. The length of data should be at most 45.

a2b_base64 (string) -- function of module binascii

Convert a block of base64 data back to binary and return the binary data. More than one line may
be passed at a time.

b2a_base64 (data) -- function of module binascii

Convert binary data to a line of ascii characters in base64 coding. The return value is the converted
line, including a newline char. The length of data should be at most 57 to adhere to the base64
standard.

a2b_hqx (string) -- function of module binascii

Convert binhex4 formatted ascii data to binary, without doing rle-decompression. The string should
contain a complete number of binary bytes, or (in case of the last portion of the binhex4 data) have
the remaining bits zero.

rledecode_hqx (data) -- function of module binascii

Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses 0x90
after a byte as a repeat indicator, followed by a count. A count of 0 specifies a byte value of 0x90.
The routine returns the decompressed data, unless data input data ends in an orphaned repeat
indicator, in which case the Incomplete exception is raised.

rlecode_hqx (data) -- function of module binascii

Perform binhex4 style RLE-compression on data and return the result.

b2a_hqx (data) -- function of module binascii

Perform hexbin4 binary-to-ascii translation and return the resulting string. The argument should
already be rle-coded, and have a length divisible by 3 (except possibly the last fragment).

crc_hqx (data, crc) -- function of module binascii

Compute the binhex4 crc value of data, starting with an initial crc and returning the result.

Error -- exception of module binascii

Exception raised on errors. These are usually programming errors.

Incomplete -- exception of module binascii

Exception raised on incomplete data. These are usually not programming errors, but handled by
reading a little more data and trying again.

Prev: uu Up: Internet and WWW Top: Top

termios Example -- Python library reference

Prev: termios Up: termios Top: Top
8.7.1. Example
Here's a function that prompts for a password with echoing turned off. Note the technique using a
separate termios.tcgetattr() call and a try ... finally statement to ensure that the old tty
attributes are restored exactly no matter what happens:
def getpass(prompt = "Password: "):

        import termios, TERMIOS, sys

        fd = sys.stdin.fileno()

        old = termios.tcgetattr(fd)

        new = termios.tcgetattr(fd)

        new[3] = new[3] & ~TERMIOS.ECHO                    # lflags

        try:

                termios.tcsetattr(fd, TERMIOS.TCSADRAIN, new)

                passwd = raw_input(prompt)

        finally:

                termios.tcsetattr(fd, TERMIOS.TCSADRAIN, old)

        return passwd

Prev: termios Up: termios Top: Top

voice objects -- Python library reference

Next: speech channel objects Prev: macspeech Up: macspeech Top: Top
14.10.1. voice objects
Voice objects contain the description of a voice. It is currently not yet possible to access the parameters of
a voice.

GetGender () -- Method on voice object

Return the gender of the voice: 0 for male, 1 for female and for neuter.

NewChannel () -- Method on voice object

Return a new speech channel object using this voice.

Next: speech channel objects Prev: macspeech Up: macspeech Top: Top

Bitmap Objects -- Python library reference

Next: Text-edit Objects Prev: Menu Objects Up: stdwin Top: Top
15.1.5. Bitmap Objects
A bitmap represents a rectangular array of bits. The top left bit has coordinate (0, 0). A bitmap can be
drawn with the bitmap method of a drawing object. Bitmaps are currently not available on the
Macintosh.

The following methods are defined:

getsize () -- Method on bitmap

Return a tuple representing the width and height of the bitmap. (This returns the values that have
been passed to the newbitmap function.)

setbit (point, bit) -- Method on bitmap

Set the value of the bit indicated by point to bit.

getbit (point) -- Method on bitmap

Return the value of the bit indicated by point.

close () -- Method on bitmap

Discard the bitmap object. It should not be used again.

Next: Text-edit Objects Prev: Menu Objects Up: stdwin Top: Top

rfc822 -- Python library reference

Next: mimetools Prev: sgmllib Up: Internet and WWW Top: Top
11.10. Standard Module rfc822
This module defines a class, Message, which represents a collection of ``email headers'' as defined by
the Internet standard RFC 822. It is used in various contexts, usually to read such headers from a file.

A Message instance is instantiated with an open file object as parameter. Instantiation reads headers
from the file up to a blank line and stores them in the instance; after instantiation, the file is positioned
directly after the blank line that terminates the headers.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; a terminating
CR-LF is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; e.g. m['From'], m['from'] and
m['FROM'] all yield the same result.

Menu
Message Objects

Next: mimetools Prev: sgmllib Up: Internet and WWW Top: Top

Exceptions and Error Handling -- Python library reference

Next: Example Prev: parser Up: parser Top: Top
3.9.1. Exceptions and Error Handling
The parser module defines a single exception, but may also pass other built-in exceptions from other
portions of the Python runtime environment. See each function for information about the exceptions it can
raise.

ParserError -- exception of module parser

Exception raised when a failure occurs within the parser module. This is generally produced for
validation failures rather than the built in SyntaxError thrown during normal parsing. The
exception argument is either a string describing the reason of the failure or a tuple containing a
tuple causing the failure from a parse tree passed to tuple2ast() and an explanatory string.
Calls to tuple2ast() need to be able to handle either type of exception, while calls to other
functions in the module will only need to be aware of the simple string values.

Note that the functions compileast(), expr(), and suite() may throw exceptions which are
normally thrown by the parsing and compilation process. These include the built in exceptions
MemoryError, OverflowError, SyntaxError, and SystemError. In these cases, these
exceptions carry all the meaning normally associated with them. Refer to the descriptions of each function
for detailed information.

Next: Example Prev: parser Up: parser Top: Top

cd -- Python library reference

Next: fl Prev: AL (uppercase) Up: SGI IRIX Specific Services Top: Top
16.3. Built-in Module cd
This module provides an interface to the Silicon Graphics CD library. It is available only on Silicon
Graphics systems.

The way the library works is as follows. A program opens the CD-ROM device with cd.open() and
creates a parser to parse the data from the CD with cd.createparser(). The object returned by
cd.open() can be used to read data from the CD, but also to get status information for the CD-ROM
device, and to get information about the CD, such as the table of contents. Data from the CD is passed to
the parser, which parses the frames, and calls any callback functions that have previously been added.

An audio CD is divided into tracks or programs (the terms are used interchangeably). Tracks can be
subdivided into indices. An audio CD contains a table of contents which gives the starts of the tracks on
the CD. Index 0 is usually the pause before the start of a track. The start of the track as given by the table
of contents is normally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or a tuple of three values,
minutes, seconds and frames. Most functions use the latter representation. Positions can be both relative
to the beginning of the CD, and to the beginning of the track.

Module cd defines the following functions and constants:

createparser () -- function of module cd

Create and return an opaque parser object. The methods of the parser object are described below.

msftoframe (min, sec, frame) -- function of module cd

Converts a (minutes, seconds, frames) triple representing time in absolute time code into
the corresponding CD frame number.

open ([device[, mode]]) -- function of module cd

Open the CD-ROM device. The return value is an opaque player object; methods of the player
object are described below. The device is the name of the SCSI device file, e.g. /dev/scsi/sc0d4l0,
or None. If omited or None, the hardware inventory is consulted to locate a CD-ROM drive. The
mode, if not omited, should be the string 'r'.

The module defines the following variables:

error -- data of module cd

Exception raised on various errors.

DATASIZE -- data of module cd

The size of one frame's worth of audio data. This is the size of the audio data as passed to the
callback of type audio.

BLOCKSIZE -- data of module cd

The size of one uninterpreted frame of audio data.

The following variables are states as returned by getstatus:

READY -- data of module cd

The drive is ready for operation loaded with an audio CD.

NODISC -- data of module cd

The drive does not have a CD loaded.

CDROM -- data of module cd

The drive is loaded with a CD-ROM. Subsequent play or read operations will return I/O errors.

ERROR -- data of module cd

An error aoocurred while trying to read the disc or its table of contents.

PLAYING -- data of module cd

The drive is in CD player mode playing an audio CD through its audio jacks.

PAUSED -- data of module cd

The drive is in CD layer mode with play paused.

STILL -- data of module cd

The equivalent of PAUSED on older (non 3301) model Toshiba CD-ROM drives. Such drives have
never been shipped by SGI.

audio -- data of module cd

pnum -- data of module cd

index -- data of module cd

ptime -- data of module cd

atime -- data of module cd

catalog -- data of module cd

ident -- data of module cd

control -- data of module cd

Integer constants describing the various types of parser callbacks that can be set by the
addcallback() method of CD parser objects (see below).

Player objects (returned by cd.open()) have the following methods:

allowremoval () -- Method on CD player object

Unlocks the eject button on the CD-ROM drive permitting the user to eject the caddy if desired.

bestreadsize () -- Method on CD player object

Returns the best value to use for the num_frames parameter of the readda method. Best is
defined as the value that permits a continuous flow of data from the CD-ROM drive.

close () -- Method on CD player object

Frees the resources associated with the player object. After calling close, the methods of the
object should no longer be used.

eject () -- Method on CD player object

Ejects the caddy from the CD-ROM drive.

getstatus () -- Method on CD player object

Returns information pertaining to the current state of the CD-ROM drive. The returned information
is a tuple with the following values: state, track, rtime, atime, ttime, first, last,
scsi_audio, cur_block. rtime is the time relative to the start of the current track; atime is
the time relative to the beginning of the disc; ttime is the total time on the disc. For more
information on the meaning of the values, see the manual for CDgetstatus. The value of state is
one of the following: cd.ERROR, cd.NODISC, cd.READY, cd.PLAYING, cd.PAUSED,

cd.STILL, or cd.CDROM.

gettrackinfo (track) -- Method on CD player object

Returns information about the specified track. The returned information is a tuple consisting of two
elements, the start time of the track and the duration of the track.

msftoblock (min, sec, frame) -- Method on CD player object

Converts a minutes, seconds, frames triple representing a time in absolute time code into the
corresponding logical block number for the given CD-ROM drive. You should use
cd.msftoframe() rather than msftoblock() for comparing times. The logical block number
differs from the frame number by an offset required by certain CD-ROM drives.

play (start, play) -- Method on CD player object

Starts playback of an audio CD in the CD-ROM drive at the specified track. The audio output
appears on the CD-ROM drive's headphone and audio jacks (if fitted). Play stops at the end of the
disc. start is the number of the track at which to start playing the CD; if play is 0, the CD will be
set to an initial paused state. The method togglepause() can then be used to commence play.

playabs (min, sec, frame, play) -- Method on CD player object

Like play(), except that the start is given in minutes, seconds, frames instead of a track number.

playtrack (start, play) -- Method on CD player object

Like play(), except that playing stops at the end of the track.

playtrackabs (track, min, sec, frame, play) -- Method on CD player object

Like play(), except that playing begins at the spcified absolute time and ends at the end of the
specified track.

preventremoval () -- Method on CD player object

Locks the eject button on the CD-ROM drive thus preventing the user from arbitrarily ejecting the
caddy.

readda (num_frames) -- Method on CD player object

Reads the specified number of frames from an audio CD mounted in the CD-ROM drive. The return
value is a string representing the audio frames. This string can be passed unaltered to the
parseframe method of the parser object.

seek (min, sec, frame) -- Method on CD player object

Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-
ROM. The pointer is set to an absolute time code location specified in minutes, seconds, and
frames. The return value is the logical block number to which the pointer has been set.

seekblock (block) -- Method on CD player object

Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-
ROM. The pointer is set to the specified logical block number. The return value is the logical block
number to which the pointer has been set.

seektrack (track) -- Method on CD player object

Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-
ROM. The pointer is set to the specified track. The return value is the logical block number to which
the pointer has been set.

stop () -- Method on CD player object

Stops the current playing operation.

togglepause () -- Method on CD player object

Pauses the CD if it is playing, and makes it play if it is paused.

Parser objects (returned by cd.createparser()) have the following methods:

addcallback (type, func, arg) -- Method on CD parser object

Adds a callback for the parser. The parser has callbacks for eight different types of data in the
digital audio data stream. Constants for these types are defined at the cd module level (see
above). The callback is called as follows: func(arg, type, data), where arg is the user
supplied argument, type is the particular type of callback, and data is the data returned for this
type of callback. The type of the data depends on the type of callback as follows:

cd.audio:
The argument is a string which can be passed unmodified to al.writesamps().

cd.pnum:
The argument is an integer giving the program (track) number.

cd.index:
The argument is an integer giving the index number.

cd.ptime:
The argument is a tuple consisting of the program time in minutes, seconds, and frames.

cd.atime:
The argument is a tuple consisting of the absolute time in minutes, seconds, and frames.

cd.catalog:
The argument is a string of 13 characters, giving the catalog number of the CD.

cd.ident:
The argument is a string of 12 characters, giving the ISRC identification number of the
recording. The string consists of two characters country code, three characters owner code,
two characters giving the year, and five characters giving a serial number.

cd.control:
The argument is an integer giving the control bits from the CD subcode data.

deleteparser () -- Method on CD parser object

Deletes the parser and frees the memory it was using. The object should not be used after this call.
This call is done automatically when the last reference to the object is removed.

parseframe (frame) -- Method on CD parser object

Parses one or more frames of digital audio data from a CD such as returned by readda. It
determines which subcodes are present in the data. If these subcodes have changed since the last
frame, then parseframe executes a callback of the appropriate type passing to it the subcode
data found in the frame. Unlike the C function, more than one frame of digital audio data can be
passed to this method.

removecallback (type) -- Method on CD parser object

Removes the callback for the given type.

resetparser () -- Method on CD parser object

Resets the fields of the parser used for tracking subcodes to an initial state. resetparser should
be called after the disc has been changed.

Next: fl Prev: AL (uppercase) Up: SGI IRIX Specific Services Top: Top

Modules -- Python library reference

Next: Classes and Instances Prev: Other Built-in Types Up: Other Built-in Types Top: Top
2.1.7.1. Modules
The only special operation on a module is attribute access: m.name, where m is a module and name
accesses a name defined in m's symbol table. Module attributes can be assigned to. (Note that the
import statement is not, strictly spoken, an operation on a module object; import foo does not
require a module object named foo to exist, rather it requires an (external) definition for a module named
foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module's symbol
table. Modifying this dictionary will actually change the module's symbol table, but direct assignment to
the __dict__ attribute is not possible (i.e., you can write m.__dict__['a'] = 1, which defines m.a
to be 1, but you can't write m.__dict__ = {}.

Modules are written like this: <module 'sys'>.

Next: Classes and Instances Prev: Other Built-in Types Up: Other Built-in Types Top: Top

Top -- Python library reference

Next: Introduction Prev: (dir) Up: (dir)
The Python library
This file describes the built-in types, exceptions and functions and the standard modules that come with
the Python system. It assumes basic knowledge about the Python language. For an informal introduction
to the language, see the Python Tutorial. The Python Reference Manual gives a more formal definition of
the language. (These manuals are not yet available in INFO or Texinfo format.)

This version corresponds to Python version 1.3 (13 Oct 1995).

Menu
Introduction

Built-in Objects

Python Services

String Services

Miscellaneous Services

Generic Operating System Services

Optional Operating System Services

UNIX Specific Services

The Python Debugger

The Python Profiler

Internet and WWW

Multimedia Services

Cryptographic Services

Macintosh Specific Services

Standard Windowing Interface

SGI IRIX Specific Services

SunOS Specific Services

Function Index

Variable Index

Module Index

Concept Index

Next: Introduction Prev: (dir) Up: (dir)

sunaudiodev -- Python library reference

Prev: SunOS Specific Services Up: SunOS Specific Services Top: Top
17.1. Built-in Module sunaudiodev
This module allows you to access the sun audio interface. The sun audio hardware is capable of
recording and playing back audio data in U-LAW format with a sample rate of 8K per second. A full
description can be gotten with `man audio'.

The module defines the following variables and functions:

error -- exception of module sunaudiodev

This exception is raised on all errors. The argument is a string describing what went wrong.

open (mode) -- function of module sunaudiodev

This function opens the audio device and returns a sun audio device object. This object can then
be used to do I/O on. The mode parameter is one of 'r' for record-only access, 'w' for play-only
access, 'rw' for both and 'control' for access to the control device. Since only one process is
allowed to have the recorder or player open at the same time it is a good idea to open the device
only for the activity needed. See the audio manpage for details.

Menu
Audio Device Objects

Prev: SunOS Specific Services Up: SunOS Specific Services Top: Top

__builtin__ -- Python library reference

Next: __main__ Prev: parser Up: Python Services Top: Top
3.10. Built-in Module __builtin__
This module provides direct access to all `built-in' identifiers of Python; e.g. __builtin__.open is the
full name for the built-in function open. See the section on Built-in Functions in the previous chapter.
Next: __main__ Prev: parser Up: Python Services Top: Top

mactcp -- Python library reference

Next: macspeech Prev: macostools Up: Macintosh Specific Services Top: Top
14.9. Built-in Module mactcp
This module provides an interface to the Macintosh TCP/IP driver MacTCP.macdnr which provides an
interface to the name-server (allowing you to translate hostnames to ip-addresses), a module MACTCP
which has symbolic names for constants constants used by MacTCP and a wrapper module socket
which mimics the UNIX socket interface (as far as possible). It may not be available in all Mac Python
versions.

A complete description of the MacTCP interface can be found in the Apple MacTCP API documentation.

MTU () -- function of module mactcp

Return the Maximum Transmit Unit (the packet size) of the network interface.

IPAddr () -- function of module mactcp

Return the 32-bit integer IP address of the network interface.

NetMask () -- function of module mactcp

Return the 32-bit integer network mask of the interface.

TCPCreate (size) -- function of module mactcp

Create a TCP Stream object. size is the size of the receive buffer, 4096 is suggested by various
sources.

UDPCreate (size, port) -- function of module mactcp

Create a UDP stream object. size is the size of the receive buffer (and, hence, the size of the
biggest datagram you can receive on this port). port is the UDP port number you want to receive
datagrams on, a value of zero will make MacTCP select a free port.

Menu
TCP Stream Objects

TCP Status Objects

UDP Stream Objects

Next: macspeech Prev: macostools Up: Macintosh Specific Services Top: Top

time -- Python library reference

Next: getopt Prev: os Up: Generic Operating System Services Top: Top
6.2. Built-in Module time
This module provides various time-related functions. It is always available.

An explanation of some terminology and conventions is in order.

 The ``epoch'' is the point where the time starts. On January 1st of that year, at 0 hours, the ``time
since the epoch'' is zero. For UNIX, the epoch is 1970. To find out what the epoch is, look at
gmtime(0).

 UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time). The acronym UTC is not
a mistake but a compromise between English and French.

 DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year.
DST rules are magic (determined by local law) and can change from year to year. The C library has a
table containing the local rules (often it is read from a system file for flexibility) and is the only source of
True Wisdom in this respect.

 The precision of the various real-time functions may be less than suggested by the units in which their
value or argument is expressed. E.g. on most UNIX systems, the clock ``ticks'' only 50 or 100 times a
second, and on the Mac, times are only accurate to whole seconds.

The module defines the following functions and data items:

altzone -- data of module time

The offset of the local DST timezone, in seconds west of the 0th meridian, if one is defined.
Negative if the local DST timezone is east of the 0th meridian (as in Western Europe, including the
UK). Only use this if daylight is nonzero.

asctime (tuple) -- function of module time

Convert a tuple representing a time as returned by gmtime() or localtime() to a 24-character
string of the following form: 'Sun Jun 20 23:21:05 1993'. Note: unlike the C function of the
same name, there is no trailing newline.

clock () -- function of module time

Return the current CPU time as a floating point number expressed in seconds. The precision, and
in fact the very definiton of the meaning of ``CPU time'', depends on that of the C function of the
same name.

ctime (secs) -- function of module time

Convert a time expressed in seconds since the epoch to a string representing local time.
ctime(t) is equivalent to asctime(localtime(t)).

daylight -- data of module time

Nonzero if a DST timezone is defined.

gmtime (secs) -- function of module time

Convert a time expressed in seconds since the epoch to a tuple of 9 integers, in UTC: year (e.g.
1993), month (1--12), day (1--31), hour (0--23), minute (0--59), second (0--59), weekday (0--6,
monday is 0), Julian day (1--366), dst flag (always zero). Fractions of a second are ignored. Note
subtle differences with the C function of this name.

localtime (secs) -- function of module time

Like gmtime but converts to local time. The dst flag is set to 1 when DST applies to the given time.

mktime (tuple) -- function of module time

This is the inverse function of localtime. Its argument is the full 9-tuple (since the dst flag is
needed). It returns an integer.

sleep (secs) -- function of module time

Suspend execution for the given number of seconds. The argument may be a floating point number
to indicate a more precise sleep time.

strftime (format, tuple) -- function of module time

Convert a tuple representing a time as returned by gmtime() or localtime() to a string as
specified by the format argument. See the strftime(3) man page for details of the syntax of
format strings.

time () -- function of module time

Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note
that even though the time is always returned as a floating point number, not all systems provide
time with a better precision than 1 second.

timezone -- data of module time

The offset of the local (non-DST) timezone, in seconds west of the 0th meridian (i.e. negative in
most of Western Europe, positive in the US, zero in the UK).

tzname -- data of module time

A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name
of the local DST timezone. If no DST timezone is defined, the second string should not be used.

Next: getopt Prev: os Up: Generic Operating System Services Top: Top

dbm -- Python library reference

Next: gdbm Prev: grp Up: UNIX Specific Services Top: Top
8.5. Built-in Module dbm
The dbm module provides an interface to the UNIX (n)dbm library. Dbm objects behave like mappings
(dictionaries), except that keys and values are always strings. Printing a dbm object doesn't print the keys
and values, and the items() and values() methods are not supported.

See also the gdbm module, which provides a similar interface using the GNU GDBM library. The module
defines the following constant and functions:

error -- exception of module dbm

Raised on dbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

open (filename, [flag, [mode]]) -- function of module dbm

Open a dbm database and return a dbm object. The filename argument is the name of the
database file (without the .dir or .pag extensions).

The optional flag argument can be 'r' (to open an existing database for reading only --- default), 'w'
(to open an existing database for reading and writing), 'c' (which creates the database if it doesn't
exist), or 'n' (which always creates a new empty database).

The optional mode argument is the UNIX mode of the file, used only when the database has to be
created. It defaults to octal 0666.

Next: gdbm Prev: grp Up: UNIX Specific Services Top: Top

getopt -- Python library reference

Next: tempfile Prev: time Up: Generic Operating System Services Top: Top
6.3. Standard Module getopt
This module helps scripts to parse the command line arguments in sys.argv. It uses the same
conventions as the UNIX getopt() function (including the special meanings of arguments of the form
`-' and `--'). It defines the function getopt.getopt(args, options) and the exception
getopt.error.

The first argument to getopt() is the argument list passed to the script with its first element chopped off
(i.e., sys.argv[1:]). The second argument is the string of option letters that the script wants to
recognize, with options that require an argument followed by a colon (i.e., the same format that UNIX
getopt() uses). The return value consists of two elements: the first is a list of option-and-value pairs;
the second is the list of program arguments left after the option list was stripped (this is a trailing slice of
the first argument). Each option-and-value pair returned has the option as its first element, prefixed with a
hyphen (e.g., '-x'), and the option argument as its second element, or an empty string if the option has
no argument. The options occur in the list in the same order in which they were found, thus allowing
multiple occurrences. Example:
>>> import getopt, string

>>> args = string.split('-a -b -cfoo -d bar a1 a2')

>>> args

['-a', '-b', '-cfoo', '-d', 'bar', 'a1', 'a2']

>>> optlist, args = getopt.getopt(args, 'abc:d:')

>>> optlist

[('-a', ''), ('-b', ''), ('-c', 'foo'), ('-d', 'bar')]

>>> args

['a1', 'a2']

>>>

The exception getopt.error = 'getopt error' is raised when an unrecognized option is found in
the argument list or when an option requiring an argument is given none. The argument to the exception

is a string indicating the cause of the error.
Next: tempfile Prev: time Up: Generic Operating System Services Top: Top

MacOS -- Python library reference

Next: macostools Prev: macfs Up: Macintosh Specific Services Top: Top
14.7. Built-in Module MacOS
This module provides access to MacOS specific functionality in the python interpreter, such as how the
interpreter eventloop functions and the like. Use with care.

Note the capitalisation of the module name, this is a historical artefact.

Error -- exception of module MacOS

This exception is raised on MacOS generated errors, either from functions in this module or from
other mac-specific modules like the toolbox interfaces. The arguments are the integer error code
(the OSErr value) and a textual description of the error code.

SetHighLevelEventHandler (handler) -- function of module MacOS

Pass a python function that will be called upon reception of a high-level event. The previous
handler is returned. The handler function is called with the event as argument.

Note that your event handler is currently only called dependably if your main event loop is in stdwin.

AcceptHighLevelEvent () -- function of module MacOS

Read a high-level event. The return value is a tuple (sender, refcon, data).

SetScheduleTimes (fgi, fgy [, bgi, bgy]) -- function of module MacOS

Controls how often the interpreter checks the event queue and how long it will yield the processor
to other processes. fgi specifies after how many clicks (one click is one 60th of a second) the
interpreter should check the event queue, and fgy specifies for how many clicks the CPU should be
yielded when in the foreground. The optional bgi and bgy allow you to specify different values to
use when python runs in the background, otherwise the background values will be set the the same
as the foreground values. The function returns nothing.

The default values, which are based on nothing at all, are 12, 6, 1 and 12 respectively.

EnableAppswitch (onoff) -- function of module MacOS

Enable or disable the python event loop, based on the value of onoff. The old value is returned. If
the event loop is disabled no time is granted to other applications, checking for command-period is
not performed and it is impossible to switch applications. This should only be used by programs
providing their own complete event loop.

Note that based on the compiler used to build python it is still possible to loose events even with the
python event loop disabled. If you have a sys.stdout window its handler will often also look in the
event queue. Making sure nothing is ever printed works around this.

HandleEvent (ev) -- function of module MacOS

Pass the event record ev back to the python event loop, or possibly to the handler for the
sys.stdout window (based on the compiler used to build python). This allows python programs
that do their own event handling to still have some command-period and window-switching
capability.

GetErrorString (errno) -- function of module MacOS

Return the textual description of MacOS error code errno.

Next: macostools Prev: macfs Up: Macintosh Specific Services Top: Top

Function Index -- Python library reference

Next: Variable Index Prev: SunOS Specific Services Up: Top Top: Top
Function Index
== (operator)

Comparisons
__dict__ (pickle protocol)

pickle
__getinitargs__ (copy protocol)

copy
__getinitargs__ (pickle protocol)

pickle
__getstate__ (copy protocol)

copy
__getstate__ (pickle protocol)

pickle
__init__ (pickle protocol)

pickle
__setstate__ (copy protocol)

copy
__setstate__ (pickle protocol)

pickle
_exit

posix
a2b_base64

binascii
a2b_hqx

binascii
a2b_uu

binascii
Abort on connection object

connection object
abort on FTP object

FTP Objects
Abort on TCP stream

TCP Stream Objects
abs

Built-in Functions
AcceptHighLevelEvent

MacOS
accept on connection object

connection object
accept on socket

Socket Objects
acos

math
acquire on lock

thread
activate_form on form object

Form Objects
ActiveOpen on TCP stream

TCP Stream Objects
add_box on form object

Form Objects
add_browser on form object

Form Objects
add_button on form object

Form Objects
add_choice on form object

Form Objects
add_clock on form object

Form Objects
add_counter on form object

Form Objects
add_dial on form object

Form Objects
add_input on form object

Form Objects
add_lightbutton on form object

Form Objects
add_menu on form object

Form Objects
add_positioner on form object

Form Objects
add_roundbutton on form object

Form Objects
add_slider on form object

Form Objects
add_text on form object

Form Objects
add_timer on form object

Form Objects
add_valslider on form object

Form Objects
addcallback on CD parser object

cd
additem on menu

Menu Objects
AddrToName

macdnr
AddrToStr

macdnr
addword

htmllib
add

audioop
add on Stats

The Stats Class
adpcm2lin

audioop
adpcm32lin

audioop
aifc on aifc object

aifc
aiff on aifc object

aifc
alarm

signal
allocate_lock

thread
allowremoval on CD player object

cd
AnchoringParser

htmllib
and (operator)

Boolean Operations
append (list method)

Mutable Sequence Types
append

array
Application

FrameWork
apply

Built-in Functions
array

array
arrow on text-edit

Text-edit Objects
article on NNTP object

NNTP Objects
as_pathname on FSSpec object

FSSpec objects
as_tuple on FSSpec object

FSSpec objects
asctime

time
asin

math
askfile

STDWIN Functions
AskString

EasyDialogs
askstr

STDWIN Functions
AskYesNoCancel

EasyDialogs
askync

STDWIN Functions
ast2tuple

parser
atan2

math
atan

math
atof

string
atoi

string
atol

string
Available

macspeech
available

ctb
avgpp

audioop
avg

audioop
b2a_base64

binascii
b2a_hqx

binascii
b2a_uu

binascii
baseline

STDWIN Functions
baseline on drawing

Drawing Objects
basename

posixpath
begindrawing on window

Window Objects
bestreadsize on CD player object

cd
bgn_anchor

htmllib
bgn_group on form object

Form Objects
bias

audioop
binary on mpz

mpz
bind on socket

Socket Objects
binhex

binhex
bitmap on drawing

Drawing Objects
body on NNTP object

NNTP Objects
box on drawing

Drawing Objects
Break on connection object

connection object
Busy

macspeech
byteswap

array
calcsize

struct
ceil (built-in function)

Numeric Types
ceil

math
center

string
change on window

Window Objects
chdir

posix
check_forms

FL Functions
check on menu

Menu Objects
chmod

posix
choice

rand
choose_boundary

mimetools
Choose on connection object

connection object
chown

posix
chr

Built-in Functions
circle on drawing

Drawing Objects
cleol on console window

console window object
cleos on console window

console window object
cliprect on drawing

Drawing Objects
clock

time
closelog on posixfile

syslog
closeport on audio port object

Port Objects
Close

macdnr
close

posix
close

sgmllib
close on aifc object

aifc
close on aifc object

aifc
close on audio device

Audio Device Objects
close on bitmap

Bitmap Objects
close on CD player object

cd
Close on connection object

connection object
close on drawing

Drawing Objects
close on file

File Objects
close on FTP object

FTP Objects
close on menu

Menu Objects
close on socket

Socket Objects
Close on TCP stream

TCP Stream Objects
close on text-edit

Text-edit Objects
close on Window

Window Objects
close on window

Window Objects
CMNew

ctb
cmp

Built-in Functions
code (object)

Code Objects
code (object)

marshal
coerce

Built-in Functions
CollectingParser

htmllib
color

FL Functions
commonprefix

posixpath
compile (built-in function)

Code Objects
compileast

parser
compile

Built-in Functions
compile

regex
compress

jpeg
connectionnumber

STDWIN Functions
connect on FTP object

FTP Objects
connect on HTTP

HTTP Objects
connect on socket

Socket Objects
copen

macconsole
copy (copy function)

copy
copybinary

mimetools
copyliteral

mimetools
copytree

macostools
copy

macostools
copy on md5

md5
cosh

math
cos

math
count (list method)

Mutable Sequence Types
CountVoices

macspeech
count

string
crc_hqx

binascii
createparser

cd
crop

imageop
cross

audioop
ctime

time
cwd on FTP object

FTP Objects
deactivate_form on form object

Form Objects
decode

mimetools
decode

uu
decompress

jpeg
decryptmore on rotor

rotor
decrypt on rotor

rotor
deepcopy (copy function)

copy
delattr

Built-in Functions
delete_object on FORMS object

FORMS Objects
deleteparser on CD parser object

cd
DialogWindow

FrameWork
digest on md5

md5
dir

Built-in Functions
dir on FTP object

FTP Objects
dither2grey2

imageop
dither2mono

imageop
divmod

Built-in Functions
divm

mpz
do_tag

sgmllib
do_activate on Window

Window Objects
do_char on Application

Application objects
do_contentclick on Window

Window Objects
do_dialogevent on Application

Application objects
do_forms

FL Functions
do_itemhit on DialogWindow

DialogWindow Objects
do_postresize on Window

Window Objects
do_update on Window

Window Objects
drain on audio device

Audio Device Objects
draw on text-edit

Text-edit Objects
dumps

marshal
dumps

pickle
dump

marshal
dump

pickle
dup2

posix
dup2 on posixfile

posixfile
dup

posix
dup on posixfile

posixfile
echo2printer on console window

console window object
eject on CD player object

cd
elarc on drawing

Drawing Objects
EnableAppswitch

MacOS
enable on menu

Menu Objects
encode

mimetools
encode

uu
encryptmore on rotor

rotor
encrypt on rotor

rotor
end_tag

sgmllib
end_anchor

htmllib
end_group on form object

Form Objects
enddrawing on drawing

Drawing Objects
endheaders on HTTP

HTTP Objects
endpick

gl
endselect

gl
enumerate

fm
erase on drawing

Drawing Objects
escape

cgi
eval (built-in function)

Code Objects
eval (built-in function)

string
eval

Built-in Functions
event on text-edit

Text-edit Objects
execfile

Built-in Functions
execle

os
execlp

os
execl

os
execve

posix
execvpe

os
execvp

os
execv

posix
exists

posixpath
exit_thread

thread
exit

sys
exit

thread
expandtabs

string
expanduser

posixpath
expandvars

posixpath
expr

parser
exp

math
extract_tb

traceback
fabs

math
fcntl

fcntl
fdopen (built-in function)

File Objects
fdopen

posix
feed

sgmllib
fetchcolor

STDWIN Functions
fileno

STDWIN Functions
fileno on socket

Socket Objects
fileopen

posixfile
file on posixfile

posixfile
fillcircle on drawing

Drawing Objects
fillelarc on drawing

Drawing Objects
fillpoly on drawing

Drawing Objects
filter

Built-in Functions
find_first on form object

Form Objects
find_last on form object

Form Objects
find_module

imp
findfactor

audioop
findfit

audioop
FindFolder

macfs
findfont

fm
findmax

audioop
find

string
FInfo

macfs
flags on posixfile

posixfile
fleep

STDWIN Functions
float (built-in function)

Numeric Types
float

Built-in Functions
floor (built-in function)

Numeric Types
floor

math
flush

htmllib
flush on audio device

Audio Device Objects
flush on file

File Objects
fmod

math
fontpath

fm
fopen

macconsole
fork

posix
FormattingParser

htmllib
FormContentDict

cgi
frame (object)

signal
freeze_form on form object

Form Objects
freeze_object on FORMS object

FORMS Objects
frexp

math
fromfd

socket
fromfile

array
fromlist

array
fromstring

array
FSSpec

macfs
fstat

posix
FTP

ftplib
func_code (dictionary method)

Code Objects
gcdext

mpz
gcd

mpz
geom2rect

rect
get_directory

FL Functions
get_filename

FL Functions
get_ident

thread
get_magic

imp
get_mouse

FL Functions
get_pattern

FL Functions
get_rgbmode

FL Functions
get_suffixes

imp
getabouttext on Application

Application objects
getactive

STDWIN Functions
getaddrlist

Message Objects
getaddr

Message Objects
getallmatchingheaders

Message Objects
getattr

Built-in Functions
getbgcolor

STDWIN Functions
getbgcolor on drawing

Drawing Objects
getbit on bitmap

Bitmap Objects
getchannels on audio configuration object

Configuration Objects
getcomment on font handle

fm
getcompname on aifc object

aifc
getcomptype on aifc object

aifc
getconfig on audio port object

Port Objects
GetConfig on connection object

connection object
GetCreatorType on FSSpec object

FSSpec objects
getcutbuffer

STDWIN Functions
getcwd

posix
getdate

Message Objects
getdefscrollbars

STDWIN Functions
getdefwinpos

STDWIN Functions
getdefwinsize

STDWIN Functions
GetDirectory

macfs
getdocsize on window

Window Objects
getegid

posix
getencoding on mimetool.Message

mimetools.Message Methods
GetErrorString

MacOS
geteuid

posix
getevent

STDWIN Functions
getfd on audio port object

Port Objects
getfgcolor

STDWIN Functions
getfgcolor on drawing

Drawing Objects
getfile on HTTP

HTTP Objects
getfillable on audio port object

Port Objects
getfilled on audio port object

Port Objects
getfillpoint on audio port object

Port Objects
GetFInfo on FSSpec object

FSSpec objects
getfirstmatchingheader

Message Objects
getfloatmax on audio configuration object

Configuration Objects
getfocustext on text-edit

Text-edit Objects
getfocus on text-edit

Text-edit Objects
getfontinfo on font handle

fm
getfontname on font handle

fm
getframerate on aifc object

aifc
GetGender on voice object

voice objects
getgid

posix
getgrall

grp
getgrgid

grp
getgrnam

grp
getheader

Message Objects
gethostbyaddr

socket
gethostbyname

socket
gethostname

socket
GetIndVoice

macspeech
GetInfo on alias object

alias objects
getinfo on audio device

Audio Device Objects
getmaintype on mimetool.Message

mimetools.Message Methods
getmarkers on aifc object

aifc
getmark on aifc object

aifc
getmcolor

FL Functions
getnchannels on aifc object

aifc
getnframes on aifc object

aifc
getorigin on window

Window Objects
getparams

al
getparams on aifc object

aifc
getparam on mimetool.Message

mimetools.Message Methods
getpeername on socket

Socket Objects
getpid

posix
GetPitch on speech channel object

speech channel objects
getplist on mimetool.Message

mimetools.Message Methods
getppid

posix
getpwall

pwd
getpwnam

pwd
getpwuid

pwd
getqueuesize on audio configuration object

Configuration Objects
GetRate on speech channel object

speech channel objects
getrawheader

Message Objects
getrect on text-edit

Text-edit Objects
getreply on HTTP

HTTP Objects
getsampfmt on audio configuration object

Configuration Objects
getsample

audioop
getsampwidth on aifc object

aifc
getscrmm

STDWIN Functions
getscrsize

STDWIN Functions
getselection

STDWIN Functions
getservbyname

socket
getsignal

signal
getsizes

imgfile
getsize on bitmap

Bitmap Objects
getsockname on socket

Socket Objects
GetSockName on TCP stream

TCP Stream Objects
getsockopt on socket

Socket Objects
getstatus on audio port object

Port Objects
getstatus on CD player object

cd
getstrwidth on font handle

fm
getsubtype on mimetool.Message

mimetools.Message Methods
gettext on text-edit

Text-edit Objects
gettitle on window

Window Objects
gettitle on window

Window Objects
gettrackinfo on CD player object

cd
gettype on mimetool.Message

mimetools.Message Methods
getuid

posix
getwelcome on FTP object

FTP Objects
getwelcome on NNTP object

NNTP Objects
getwidth on audio configuration object

Configuration Objects
getwinpos on window

Window Objects
getwinsize on window

Window Objects
globals

Built-in Functions
gmtime

time
gotoxy on console window

console window object
grey22grey

imageop
grey2grey2

imageop
grey2grey4

imageop
grey2mono

imageop
grey42grey

imageop
group on NNTP object

NNTP Objects
group on regex

regex
gsub

regsub
handle_charref

sgmllib
handle_data

sgmllib
handle_entityref

sgmllib
HandleEvent

MacOS
has_key (dictionary method)

Mapping Types
hasattr

Built-in Functions
hash

Built-in Functions
head on NNTP object

NNTP Objects
help on NNTP object

NNTP Objects
hexbin

binhex
hex

Built-in Functions
hide_form on form object

Form Objects
hide_object on FORMS object

FORMS Objects
hide on console window

console window object
HInfo

macdnr
HTMLParser

htmllib
hypot

math
ibufcount on audio device

Audio Device Objects
Idle on connection object

connection object
id

Built-in Functions
ignore on Stats

The Stats Class
ihave on NNTP object

NNTP Objects
in (operator)

Comparisons
in (operator)

Sequence Types
index (list method)

Mutable Sequence Types
index

string
init_builtin

imp
init_frozen

imp
init

fm
input

Built-in Functions
insert (list method)

Mutable Sequence Types
insert

array
inset

rect
int (built-in function)

Numeric Types
intersect

rect
int

Built-in Functions
inverse on console window

console window object
invert on drawing

Drawing Objects
ioctl

fcntl
IPAddr

mactcp
is (operator)

Comparisons
is not (operator)

Comparisons
is_builtin

imp
is_empty

rect
is_frozen

imp
isabs

posixpath
isatty on file

File Objects
isdir

posixpath
isdone on dnr result object

dnr result object
isdone on TCP stream

TCP Stream Objects
isexpr

parser
isfile

posixpath
islink

posixpath
ismount

posixpath
isqueued

FL Functions
issuite

parser
joinfields

string
join

posixpath
join

string
keys (dictionary method)

Mapping Types
kill

posix
last on NNTP object

NNTP Objects
ldexp

math
len (built-in function)

Mapping Types
len (built-in function)

Sequence Types
len

Built-in Functions
lin2adpcm3

audioop
lin2adpcm

audioop
lin2lin

audioop
lin2ulaw

audioop
lineheight

STDWIN Functions
lineheight on drawing

Drawing Objects
line on drawing

Drawing Objects
link

posix
listdir

posix
Listen on connection object

connection object
listen on socket

Socket Objects
listfontnames

STDWIN Functions
list on NNTP object

NNTP Objects
ljust

string
load_compiled

imp
load_dynamic

imp
load_source

imp
loads

marshal
loads

pickle
load

marshal
load

pickle
locals

Built-in Functions
localtime

time
locked on lock

thread
lock on posixfile

posixfile
log10

math
login on FTP object

FTP Objects
log

math
long (built-in function)

Numeric Types
longimagedata

rgbimg
longstoimage

rgbimg
long

Built-in Functions
lower

string
lseek

posix
lstat

posix
mainloop on Application

Application objects
make_form

FL Functions
makefile (built-in function)

File Objects
makefile on socket

Socket Objects
makeusermenus on Application

Application objects
mapcolor

FL Functions
map

Built-in Functions
match

regex
match on regex

regex
max (built-in function)

Sequence Types
maxpp

audioop
max

Built-in Functions
max

audioop
md5

md5
MenuBar

FrameWork
menucreate

STDWIN Functions
menucreate on window

Window Objects
MenuItem

FrameWork
Menu

FrameWork
Message

EasyDialogs
Message

mimetools
message

STDWIN Functions
method (object)

Methods
min (built-in function)

Sequence Types
minmax

audioop
min

Built-in Functions
mkalias

macostools
mkdir

posix
mkd on FTP object

FTP Objects
mktemp

tempfile
mktime

time
modf

math
mono2grey

imageop
move on text-edit

Text-edit Objects
mpz

mpz
msftoblock on CD player object

cd
msftoframe

cd
MTU

mactcp
mul

audioop
MXInfo

macdnr
needvspace

htmllib
NetMask

mactcp
new_module

imp
NewAliasMinimal on FSSpec object

FSSpec objects
NewAlias on FSSpec object

FSSpec objects
newbitmap

STDWIN Functions
NewChannel on voice object

voice objects
newconfig

al
newgroups on NNTP object

NNTP Objects
newnews on NNTP object

NNTP Objects
newrotor

rotor
new

md5
next on NNTP object

NNTP Objects
nice

posix
nlst on FTP object

FTP Objects
NNTP

nntplib
noclip on drawing

Drawing Objects
normcase

posixpath
not (operator)

Boolean Operations
not in (operator)

Comparisons
not in (operator)

Sequence Types
nurbscurve

gl
nurbssurface

gl
nvarray

gl
obufcount on audio device

Audio Device Objects
oct

Built-in Functions
open (built-in function)

File Objects
openlog on posixfile

syslog
openport

al
Open

macdnr
open

Built-in Functions
open

STDWIN Functions
open

aifc
open

cd
open

dbm
open

posix
open

posixfile
open

sunaudiodev
Open on connection object

connection object
open on DialogWindow

DialogWindow Objects
open on Window

Window Objects
or (operator)

Boolean Operations
ord

Built-in Functions
pack

struct
paint on drawing

Drawing Objects
parseframe on CD parser object

cd
parse

cgi
PassiveOpen on TCP stream

TCP Stream Objects
pause

signal
pick

gl
pipe

posix
playabs on CD player object

cd
playtrackabs on CD player object

cd
playtrack on CD player object

cd
play on CD player object

cd
pm

The Python Debugger
pointinrect

rect
pollevent

STDWIN Functions
poly on drawing

Drawing Objects
popen (built-in function)

File Objects
popen

posix
post_mortem

The Python Debugger
post on NNTP object

NNTP Objects
powm

mpz
pow

Built-in Functions
pow

math
preventremoval on CD player object

cd
print_callees on Stats

The Stats Class
print_callers on Stats

The Stats Class
print_environ_usage

cgi
print_environ

cgi
print_exception

traceback
print_exc

traceback
print_form

cgi
print_last

traceback
print_stats on Stats

The Stats Class
print_tb

traceback
profile.run

Reference Manual
PromptGetFile

macfs
prstr

fm
pstats.Stats

Reference Manual
putheader on HTTP

HTTP Objects
putrequest on HTTP

HTTP Objects
pwd on FTP object

FTP Objects
pwlcurve

gl
qdevice

FL Functions
qenter

FL Functions
qread

FL Functions
qreset

FL Functions
qtest

FL Functions
queryparams

al
quit on FTP object

FTP Objects
quit on NNTP object

NNTP Objects
quote

urllib
random

whrandom
rand

rand
range

Built-in Functions
raw_input

Built-in Functions
RawAlias

macfs
RawFSSpec

macfs
Rcv on TCP stream

TCP Stream Objects
readda on CD player object

cd
readframes on aifc object

aifc
readlines on file

File Objects
readline on file

File Objects
readlink

posix
readsamps on audio port object

Port Objects
readscaled

imgfile
read

imgfile
read

posix
read on audio device

Audio Device Objects
Read on connection object

connection object
read on file

File Objects
Read on UDP stream

UDP Stream Objects
rect2geom

rect
recvfrom on socket

Socket Objects
recv on socket

Socket Objects
redraw_form on form object

Form Objects
redraw_object on FORMS object

FORMS Objects
reduce

Built-in Functions
release on lock

thread
reload

Built-in Functions
remove (list method)

Mutable Sequence Types
removecallback on CD parser object

cd
rename

posix
rename on FTP object

FTP Objects
replace on text-edit

Text-edit Objects
repr

Built-in Functions
resetparser on CD parser object

cd
resetselection

STDWIN Functions
reset

sgmllib
Reset on connection object

connection object
ResolveAliasFile

macfs
Resolve on alias object

alias objects
retrbinary on FTP object

FTP Objects
retrlines on FTP object

FTP Objects
reverse (list method)

Mutable Sequence Types
reverse_order on Stats

The Stats Class
reverse

audioop
rewindbody

Message Objects
rewind on aifc object

aifc
rfind

string
rindex

string
rjust

string
rlecode_hqx

binascii
rledecode_hqx

binascii
rmdir

posix
rms

audioop
rotatecutbuffers

STDWIN Functions
round

Built-in Functions
runcall

The Python Debugger
runeval

The Python Debugger
run

The Python Debugger
samefile

posixpath
scalefont on font handle

fm
scale

imageop
scroll on window

Window Objects
search

regex
search on regex

regex
seed

whrandom
seekblock on CD player object

cd
seektrack on CD player object

cd
seek on CD player object

cd
seek on file

File Objects
select

gl
select

select
send_query

gopherlib
send_selector

gopherlib
sendcmd on FTP object

FTP Objects
sendto on socket

Socket Objects
send on HTTP

HTTP Objects
send on socket

Socket Objects
Send on TCP stream

TCP Stream Objects
Separator

FrameWork
set_call_back on FORMS object

FORMS Objects
set_debuglevel on FTP object

FTP Objects
set_debuglevel on HTTP

HTTP Objects
set_debuglevel on NNTP object

NNTP Objects
set_event_call_back

FL Functions
set_form_position on form object

Form Objects
set_graphics_mode

FL Functions
set_syntax

regex
set_trace

The Python Debugger
setactive on window

Window Objects
setattr

Built-in Functions
setbgcolor

STDWIN Functions
setbgcolor on drawing

Drawing Objects
setbit on bitmap

Bitmap Objects
setblocking on socket

Socket Objects
setchannels on audio configuration object

Configuration Objects
setcheckinterval

sys
setcomptype on aifc object

aifc
setconfig on audio port object

Port Objects
SetConfig on connection object

connection object
SetCreatorType on FSSpec object

FSSpec objects
setcutbuffer

STDWIN Functions
setdefscrollbars

STDWIN Functions
setdefwinpos

STDWIN Functions
setdefwinsize

STDWIN Functions
setdocsize on window

Window Objects
setfgcolor

STDWIN Functions
setfgcolor on drawing

Drawing Objects
setfillpoint on audio port object

Port Objects
SetFInfo on FSSpec object

FSSpec objects
setfloatmax on audio configuration object

Configuration Objects
setfocus on text-edit

Text-edit Objects
setfont

STDWIN Functions
setfont

htmllib
setfont on drawing

Drawing Objects
setfont on font handle

fm
setframerate on aifc object

aifc
setgid

posix
SetHighLevelEventHandler

MacOS
setinfo on audio device

Audio Device Objects
setitem on menu

Menu Objects
setjust

htmllib
setkey on rotor

rotor
setleftindent

htmllib
setliteral

sgmllib
setlogmask on posixfile

syslog
setmark on aifc object

aifc
setmode on console window

console window object
setnchannels on aifc object

aifc
setnframes on aifc object

aifc
setnomoretags

sgmllib
setoption

jpeg
setorigin on window

Window Objects
setparams

al
setparams on aifc object

aifc
setpath

fm
SetPitch on speech channel object

speech channel objects
setpos on aifc object

aifc
setprofile

sys
setqueuesize on audio configuration object

Configuration Objects
SetRate on speech channel object

speech channel objects
setsampfmt on audio configuration object

Configuration Objects
setsampwidth on aifc object

aifc
SetScheduleTimes

MacOS
setselection on window

Window Objects
setsockopt on socket

Socket Objects
settabs on console window

console window object
settext on text-edit

Text-edit Objects
settimer on window

Window Objects
settitle on window

Window Objects
settrace

sys
setuid

posix
setview on text-edit

Text-edit Objects
setwidth on audio configuration object

Configuration Objects
setwincursor on window

Window Objects
setwinpos on window

Window Objects
setwinsize on window

Window Objects
shade on drawing

Drawing Objects
show_choice

FL Functions
show_file_selector

FL Functions
show_form on form object

Form Objects
show_input

FL Functions
show_message

FL Functions
show_object on FORMS object

FORMS Objects
show_question

FL Functions
show on console window

console window object
show on window

Window Objects
shutdown on socket

Socket Objects
signal

signal
sinh

math
sin

math
sizeofimage

rgbimg
slave on NNTP object

NNTP Objects
sleep

time
socket

socket
sort (list method)

Mutable Sequence Types
sort_stats on Stats

The Stats Class
SpeakString

macspeech
SpeakText on speech channel object

speech channel objects
splitext

posixpath
splitfields

string
split

posixpath
split

regsub
split

string
sqrtrem

mpz
sqrt

math
sqrt

mpz
srand

rand
StandardGetFile

macfs
StandardPutFile

macfs
start_tag

sgmllib
start_new_thread

thread
Status on connection object

connection object
Status on TCP stream

TCP Stream Objects
stat

posix
stat on NNTP object

NNTP Objects
stop on CD player object

cd
Stop on speech channel object

speech channel objects
storbinary on FTP object

FTP Objects
storlines on FTP object

FTP Objects
strftime

time
strip_dirs on Stats

The Stats Class
strip

string
StrToAddr

macdnr
str

Built-in Functions
SubMenu

FrameWork
sub

regsub
suite

parser
SvFormContentDict

cgi
swapcase

string
symcomp

regex
symlink

posix
syslog on posixfile

syslog
system

posix
tanh

math
tan

math
tcdrain

termios
tcflow

termios
tcflush

termios
tcgetattr

termios
TCPCreate

mactcp
tcsendbreak

termios
tcsetattr

termios
tell on aifc object

aifc
tell on aifc object

aifc
tell on file

File Objects
textbreak

STDWIN Functions
textbreak on drawing

Drawing Objects
textcreate on window

Window Objects
textwidth

STDWIN Functions
textwidth on drawing

Drawing Objects
text on drawing

Drawing Objects
tie

FL Functions
times

posix
time

time
tofile

array
togglepause on CD player object

cd
tolist

array
tomono

audioop
tostereo

audioop
tostring

array
tovideo

imageop
traceback (object)

sys
translate

string
ttob

imgfile
ttob

rgbimg
tuple2ast

parser
tuple

Built-in Functions
type (built-in function)

Built-in Objects
type (built-in function)

Type Objects
type (object)

Built-in Functions
type

Built-in Functions
UDPCreate

mactcp
ulaw2lin

audioop
umask

posix
uname

posix
unfreeze_form on form object

Form Objects
unfreeze_object on FORMS object

FORMS Objects
union

rect
unknown_charref

sgmllib
unknown_endtag

sgmllib
unknown_entityref

sgmllib
unknown_starttag

sgmllib
unlink

posix
unpack

struct
unqdevice

FL Functions
unquote

urllib
Update on alias object

alias objects
update on md5

md5
upper

string
urlcleanup

urllib
urljoin

urlparse
urlopen

urllib
urlparse

urlparse
urlretrieve

urllib
urlunparse

urlparse
utime

posix
varray

gl
vars

Built-in Functions
Version

macspeech
vnarray

gl
voidcmd on FTP object

FTP Objects
waitpid

posix
wait

posix
wait on dnr result object

dnr result object
wait on TCP stream

TCP Stream Objects
walk

posixpath
Window

FrameWork
writeframesraw on aifc object

aifc
writeframes on aifc object

aifc
writelines on file

File Objects
writesamps on audio port object

Port Objects
write

imgfile
write

posix
write on audio device

Audio Device Objects
Write on connection object

connection object
write on file

File Objects
Write on UDP stream

UDP Stream Objects
xhdr on NNTP object

NNTP Objects
xorcircle on drawing

Drawing Objects
xorelarc on drawing

Drawing Objects
xorline on drawing

Drawing Objects
xorpoly on drawing

Drawing Objects
xrange

Built-in Functions
zfill

string

Next: Variable Index Prev: SunOS Specific Services Up: Top Top: Top

Python Services -- Python library reference

Next: String Services Prev: Built-in Objects Up: Top Top: Top
3. Python Services
The modules described in this chapter provide a wide range of services related to the Python interpreter
and its interaction with its environment. Here's an overview:

sys
--- Access system specific parameters and functions.

types
--- Names for all built-in types.

traceback
--- Print or retrieve a stack traceback.

pickle
--- Convert Python objects to streams of bytes and back.

shelve
--- Python object persistency.

copy
--- Shallow and deep copy operations.

marshal
--- Convert Python objects to streams of bytes and back (with different constraints).

imp
--- Access the implementation of the import statement.

__builtin__
--- The set of built-in functions.

__main__
--- The environment where the top-level script is run.

Menu
sys

types

traceback

pickle

shelve

copy

marshal

imp

parser

__builtin__

__main__

Next: String Services Prev: Built-in Objects Up: Top Top: Top

fl -- Python library reference

Next: FL (uppercase) Prev: cd Up: SGI IRIX Specific Services Top: Top
16.4. Built-in Module fl
This module provides an interface to the FORMS Library by Mark Overmars. The source for the library
can be retrieved by anonymous ftp from host `ftp.cs.ruu.nl', directory SGI/FORMS. It was last tested
with version 2.0b.

Most functions are literal translations of their C equivalents, dropping the initial `fl_' from their name.
Constants used by the library are defined in module FL described below.

The creation of objects is a little different in Python than in C: instead of the `current form' maintained by
the library to which new FORMS objects are added, all functions that add a FORMS object to a form are
methods of the Python object representing the form. Consequently, there are no Python equivalents for
the C functions fl_addto_form and fl_end_form, and the equivalent of fl_bgn_form is called
fl.make_form.

Watch out for the somewhat confusing terminology: FORMS uses the word object for the buttons, sliders
etc. that you can place in a form. In Python, `object' means any value. The Python interface to FORMS
introduces two new Python object types: form objects (representing an entire form) and FORMS objects
(representing one button, slider etc.). Hopefully this isn't too confusing...

There are no `free objects' in the Python interface to FORMS, nor is there an easy way to add object
classes written in Python. The FORMS interface to GL event handling is available, though, so you can mix
FORMS with pure GL windows.

Please note: importing fl implies a call to the GL function foreground() and to the FORMS routine
fl_init().

Menu
FL Functions

Form Objects

FORMS Objects

Next: FL (uppercase) Prev: cd Up: SGI IRIX Specific Services Top: Top

Comparisons -- Python library reference

Next: Numeric Types Prev: Boolean Operations Up: Types Top: Top
2.1.3. Comparisons
Comparison operations are supported by all objects. They all have the same priority (which is higher than
that of the Boolean operations). Comparisons can be chained arbitrarily, e.g. x < y <= z is equivalent
to x < y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at
all when x < y is found to be false). This table summarizes the comparison operations:

Operation

Meaning --- Notes
<

strictly less than
<=

less than or equal
>

strictly greater than
>=

greater than or equal
==

equal
<>

not equal --- (1)
!=

not equal --- (1)
is

object identity
is not

negated object identity

Notes:

(1)
<> and != are alternate spellings for the same operator. (I couldn't choose between ABC and C! :-)

Objects of different types, except different numeric types, never compare equal; such objects are ordered
consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (e.g., windows) support only a degenerate notion of comparison where any two objects of that
type are unequal. Again, such objects are ordered arbitrarily but consistently. (Implementation note:
objects of different types except numbers are ordered by their type names; objects of the same types that
don't support proper comparison are ordered by their address.)

Two more operations with the same syntactic priority, in and not in, are supported only by sequence
types (below).
Next: Numeric Types Prev: Boolean Operations Up: Types Top: Top

STDWIN Example -- Python library reference

Prev: Text-edit Objects Up: stdwin Top: Top
15.1.7. Example
Here is a minimal example of using STDWIN in Python. It creates a window and draws the string ``Hello
world'' in the top left corner of the window. The window will be correctly redrawn when covered and re-
exposed. The program quits when the close icon or menu item is requested.
import stdwin

from stdwinevents import *

def main():

        mywin = stdwin.open('Hello')

        #

        while 1:

                (type, win, detail) = stdwin.getevent()

                if type == WE_DRAW:

                        draw = win.begindrawing()

                        draw.text((0, 0), 'Hello, world')

                        del draw

                elif type == WE_CLOSE:

                        break

main()

Prev: Text-edit Objects Up: stdwin Top: Top

FORMS Objects -- Python library reference

Prev: Form Objects Up: fl Top: Top
16.4.3. FORMS Objects
Besides methods specific to particular kinds of FORMS objects, all FORMS objects also have the
following methods:

set_call_back (function, argument) -- Method on FORMS object

Set the object's callback function and argument. When the object needs interaction, the callback
function will be called with two arguments: the object, and the callback argument. (FORMS objects
without a callback function are returned by fl.do_forms() or fl.check_forms() when they
need interaction.) Call this method without arguments to remove the callback function.

delete_object () -- Method on FORMS object

Delete the object.

show_object () -- Method on FORMS object

Show the object.

hide_object () -- Method on FORMS object

Hide the object.

redraw_object () -- Method on FORMS object

Redraw the object.

freeze_object () -- Method on FORMS object

Freeze the object.

unfreeze_object () -- Method on FORMS object

Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

Name

Type --- Meaning
objclass

int (read-only) --- object class
type

int (read-only) --- object type
boxtype

int --- box type
x

float --- x origin
y

float --- y origin
w

float --- width

h
float --- height

col1
int --- primary color

col2
int --- secondary color

align
int --- alignment

lcol
int --- label color

lsize
float --- label font size

label
string --- label string

lstyle
int --- label style

pushed
int (read-only) --- (see FORMS docs)

focus
int (read-only) --- (see FORMS docs)

belowmouse
int (read-only) --- (see FORMS docs)

frozen
int (read-only) --- (see FORMS docs)

active
int (read-only) --- (see FORMS docs)

input
int (read-only) --- (see FORMS docs)

visible
int (read-only) --- (see FORMS docs)

radio
int (read-only) --- (see FORMS docs)

automatic
int (read-only) --- (see FORMS docs)

Prev: Form Objects Up: fl Top: Top

__main__ -- Python library reference

Prev: __builtin__ Up: Python Services Top: Top
3.11. Built-in Module __main__
This module represents the (otherwise anonymous) scope in which the interpreter's main program
executes --- commands read either from standard input or from a script file.

The Python Profiler -- Python library reference

Next: Internet and WWW Prev: The Python Debugger Up: Top Top: Top
10. The Python Profiler
Copyright (C) 1994, by InfoSeek Corporation, all rights reserved.

Written by James Roskind(1)

Permission to use, copy, modify, and distribute this Python software and its associated documentation for
any purpose (subject to the restriction in the following sentence) without fee is hereby granted, provided
that the above copyright notice appears in all copies, and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software without specific, written prior permission.
This permission is explicitly restricted to the copying and modification of the software to remain in Python,
compiled Python, or other languages (such as C) wherein the modified or derived code is exclusively
imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks. As a result, it is probably clumsy
code, but I don't know for sure yet 'cause I'm a beginner :-). I did work hard to make the code run fast, so
that profiling would be a reasonable thing to do. I tried not to repeat code fragments, but I'm sure I did
some stuff in really awkward ways at times. Please send suggestions for improvements to:
jar@infoseek.com. I won't promise any support. ...but I'd appreciate the feedback.

Menu
Profiler Introduction

Profiler Changes

Instant Users Manual

Deterministic Profiling

Reference Manual

Limitations

Calibration

Profiler Extensions

---------- Footnotes ----------
(1) Updated and converted to LaTeX by Guido van Rossum. The references to the old profiler are left in
the text, although it no longer exists.

Next: Internet and WWW Prev: The Python Debugger Up: Top Top: Top

md5 -- Python library reference

Next: mpz Prev: Cryptographic Services Up: Cryptographic Services Top: Top
13.1. Built-in Module md5
This module implements the interface to RSA's MD5 message digest algorithm (see also Internet RFC
1321). Its use is quite straightforward: use the md5.new() to create an md5 object. You can now feed
this object with arbitrary strings using the update() method, and at any point you can ask it for the
digest (a strong kind of 128-bit checksum, a.k.a. ``fingerprint'') of the contatenation of the strings fed to it
so far using the digest() method.

For example, to obtain the digest of the string "Nobody inspects the spammish repetition":

>>> import md5

>>> m = md5.new()

>>> m.update("Nobody inspects")

>>> m.update(" the spammish repetition")

>>> m.digest()

'\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351'

More condensed:
>>> md5.new("Nobody inspects the spammish repetition").digest()

'\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351'

new ([arg]) -- function of module md5

Return a new md5 object. If arg is present, the method call update(arg) is made.

md5 ([arg]) -- function of module md5

For backward compatibility reasons, this is an alternative name for the new() function.

An md5 object has the following methods:

update (arg) -- Method on md5

Update the md5 object with the string arg. Repeated calls are equivalent to a single call with the
concatenation of all the arguments, i.e. m.update(a); m.update(b) is equivalent to
m.update(a+b).

digest () -- Method on md5

Return the digest of the strings passed to the update() method so far. This is an 8-byte string
which may contain non-ASCII characters, including null bytes.

copy () -- Method on md5

Return a copy (``clone'') of the md5 object. This can be used to efficiently compute the digests of
strings that share a common initial substring.

Next: mpz Prev: Cryptographic Services Up: Cryptographic Services Top: Top

AST Objects -- Python library reference

Prev: Example Up: parser Top: Top
3.9.3. AST Objects
AST objects (returned by expr(), suite(), and tuple2ast(), described above) have no methods
of their own. Some of the functions defined which accept an AST object as their first argument may
change to object methods in the future.

Ordered and equality comparisons are supported between AST objects.

Prev: Example Up: parser Top: Top

Internet and WWW -- Python library reference

Next: Multimedia Services Prev: The Python Profiler Up: Top Top: Top
11. Internet and WWW Services
The modules described in this chapter provide various services to World-Wide Web (WWW) clients
and/or services, and a few modules related to news and email. They are all implemented in Python. Some
of these modules require the presence of the system-dependent module sockets, which is currently
only fully supported on Unix and Windows NT. Here is an overview:

cgi
--- Common Gateway Interface, used to interpret forms in server-side scripts.

urllib
--- Open an arbitrary object given by URL (requires sockets).

httplib
--- HTTP protocol client (requires sockets).

ftplib
--- FTP protocol client (requires sockets).

gopherlib
--- Gopher protocol client (requires sockets).

nntplib
--- NNTP protocol client (requires sockets).

urlparse
--- Parse a URL string into a tuple (addressing scheme identifier, network location, path,
parameters, query string, fragment identifier).

htmllib
--- A (slow) parser for HTML files.

sgmllib
--- Only as much of an SGML parser as needed to parse HTML.

rfc822
--- Parse RFC-822 style mail headers.

mimetools
--- Tools for parsing MIME style message bodies.

Menu
cgi

urllib

httplib

ftplib

gopherlib

nntplib

urlparse

htmllib

sgmllib

rfc822

mimetools

binhex

uu

binascii

Next: Multimedia Services Prev: The Python Profiler Up: Top Top: Top

UDP Stream Objects -- Python library reference

Prev: TCP Status Objects Up: mactcp Top: Top
14.9.3. UDP Stream Objects
Note that, unlike the name suggests, there is nothing stream-like about UDP.

asr -- attribute of UDP stream

The asynchronous service routine to be called on events such as datagram arrival without
outstanding Read call. The asr has a single argument, the event code.

port -- attribute of UDP stream

A read-only member giving the port number of this UDP stream.

Read (timeout) -- Method on UDP stream

Read a datagram, waiting at most timeout seconds (is infinite). Return the data.

Write (host, port, buf) -- Method on UDP stream

Send buf as a datagram to IP-address host, port port.

Prev: TCP Status Objects Up: mactcp Top: Top

Introduction -- Python library reference

Next: Built-in Objects Prev: Top Up: Top Top: Top
1. Introduction
The ``Python library'' contains several different kinds of components.

It contains data types that would normally be considered part of the ``core'' of a language, such as
numbers and lists. For these types, the Python language core defines the form of literals and places some
constraints on their semantics, but does not fully define the semantics. (On the other hand, the language
core does define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions --- objects that can be used by all Python code
without the need of an import statement. Some of these are defined by the core language, but many
are not essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this
collection. Some modules are written in C and built in to the Python interpreter; others are written in
Python and imported in source form. Some modules provide interfaces that are highly specific to Python,
like printing a stack trace; some provide interfaces that are specific to particular operating systems, like
socket I/O; others provide interfaces that are specific to a particular application domain, like the World-
Wide Web. Some modules are avaiable in all versions and ports of Python; others are only available
when the underlying system supports or requires them; yet others are available only when a particular
configuration option was chosen at the time when Python was compiled and installed.

This manual is organized ``from the inside out'': it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering
of the chapters as well as the ordering of the modules within each chapter is roughly from most relevant
to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get
bored, you will get a reasonable overview of the available modules and application areas that are
supported by the Python library. Of course, you don't have to read it like a novel --- you can also browse
the table of contents (in front of the manual), or look for a specific function, module or term in the index (in
the back). And finally, if you enjoy learning about random subjects, you choose a random page number
(see module rand) and read a section or two.

Let the show begin!
Next: Built-in Objects Prev: Top Up: Top Top: Top

Menu Objects -- Python library reference

Next: Bitmap Objects Prev: Drawing Objects Up: stdwin Top: Top
15.1.4. Menu Objects
A menu object represents a menu. The menu is destroyed when the menu object is deleted. The following
methods are defined:

additem (text, shortcut) -- Method on menu

Add a menu item with given text. The shortcut must be a string of length 1, or omitted (to specify no
shortcut).

setitem (i, text) -- Method on menu

Set the text of item number i.

enable (i, flag) -- Method on menu

Enable or disables item i.

check (i, flag) -- Method on menu

Set or clear the check mark for item i.

close () -- Method on menu

Discard the menu object. It should not be used again.

Next: Bitmap Objects Prev: Drawing Objects Up: stdwin Top: Top

Reference Manual -- Python library reference

Next: Limitations Prev: Deterministic Profiling Up: The Python Profiler Top: Top
10.5. Reference Manual
The primary entry point for the profiler is the global function profile.run(). It is typically used to
create any profile information. The reports are formatted and printed using methods of the class
pstats.Stats. The following is a description of all of these standard entry points and functions. For a
more in-depth view of some of the code, consider reading the later section on Profiler Extensions, which
includes discussion of how to derive ``better'' profilers from the classes presented, or reading the source
code for these modules.

profile.run (string[, filename[, ...]]) -- profiler function

This function takes a single argument that has can be passed to the exec statement, and an
optional file name. In all cases this routine attempts to exec its first argument, and gather profiling
statistics from the execution. If no file name is present, then this function automatically prints a
simple profiling report, sorted by the standard name string (file/line/function-name) that is presented
in each line. The following is a typical output from such a call:

 main()

            2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls    tottime    percall    cumtime    percall filename:lineno(function)

          2        0.006        0.003        0.953        0.477 pobject.py:75(save_objects)

    43/3        0.533        0.012        0.749        0.250 pobject.py:99(evaluate)

 ...

}

The first line indicates that this profile was generated by the call:* profile.run('main()'), and
hence the exec'ed string is 'main()'. The second line indicates that 2706 calls were monitored. Of
those calls, 2004 were primitive. We define primitive to mean that the call was not induced via recursion.
The next line: Ordered by: standard name, indicates that the text string in the far right column was

used to sort the output. The column headings include:

ncalls
for the number of calls,

tottime
for the total time spent in the given function (and excluding time made in calls to sub-
functions),

percall
is the quotient of tottime divided by ncalls

cumtime
is the total time spent in this and all subfunctions (i.e., from invocation till exit). This figure is
accurate even for recursive functions.

percall
is the quotient of cumtime divided by primitive calls

filename:lineno(function)
provides the respective data of each function

When there are two numbers in the first column (e.g.: `43/3'), then the latter is the number of
primitive calls, and the former is the actual number of calls. Note that when the function does not
recurse, these two values are the same, and only the single figure is printed.

pstats.Stats (filename[, ...]) -- profiler function

This class constructor creates an instance of a ``statistics object'' from a filename (or set of
filenames). Stats objects are manipulated by methods, in order to print useful reports.

The file selected by the above constructor must have been created by the corresponding version of
profile. To be specific, there is NO file compatibility guaranteed with future versions of this profiler, and
there is no compatibility with files produced by other profilers (e.g., the old system profiler).

If several files are provided, all the statistics for identical functions will be coalesced, so that an overall
view of several processes can be considered in a single report. If additional files need to be combined
with data in an existing Stats object, the add() method can be used.

Menu
The Stats Class

Next: Limitations Prev: Deterministic Profiling Up: The Python Profiler Top: Top

imp -- Python library reference

Next: parser Prev: marshal Up: Python Services Top: Top
3.8. Built-in Module imp
This module provides an interface to the mechanisms used to implement the import statement. It
defines the following constants and functions:

get_magic () -- function of module imp

Return the magic string value used to recognize byte-compiled code files (``.pyc files'').

get_suffixes () -- function of module imp

Return a list of triples, each describing a particular type of file. Each triple has the form (suffix,
mode, type), where suffix is a string to be appended to the module name to form the filename to
search for, mode is the mode string to pass to the built-in open function to open the file (this can
be 'r' for text files or 'rb' for binary files), and type is the file type, which has one of the values
PY_SOURCE, PY_COMPILED or C_EXTENSION, defined below. (System-dependent values may
also be returned.)

find_module (name, [path]) -- function of module imp

Try to find the module name on the search path path. The default path is sys.path. The return
value is a triple (file, pathname, description) where file is an open file object positioned
at the beginning, pathname is the pathname of the file found, and description is a triple as
contained in the list returned by get_suffixes describing the kind of file found.

init_builtin (name) -- function of module imp

Initialize the built-in module called name and return its module object. If the module was already
initialized, it will be initialized again. A few modules cannot be initialized twice --- attempting to
initialize these again will raise an ImportError exception. If there is no built-in module called
name, None is returned.

init_frozen (name) -- function of module imp

Initialize the frozen module called name and return its module object. If the module was already
initialized, it will be initialized again. If there is no frozen module called name, None is returned.
(Frozen modules are modules written in Python whose compiled byte-code object is incorporated
into a custom-built Python interpreter by Python's freeze utility. See Tools/freeze for now.)

is_builtin (name) -- function of module imp

Return 1 if there is a built-in module called name which can be initialized again. Return -1 if there
is a built-in module called name which cannot be initialized again (see init_builtin). Return 0
if there is no built-in module called name.

is_frozen (name) -- function of module imp

Return 1 if there is a frozen module (see init_frozen) called name, 0 if there is no such
module.

load_compiled (name, pathname, [file]) -- function of module imp

Load and initialize a module implemented as a byte-compiled code file and return its module object.
If the module was already initialized, it will be initialized again. The name argument is used to
create or access a module object. The pathname argument points to the byte-compiled code file.
The optional file argument is the byte-compiled code file, open for reading in binary mode, from the
beginning --- if not given, the function opens pathname. It must currently be a real file object, not a

user-defined class emulating a file.

load_dynamic (name, pathname, [file]) -- function of module imp

Load and initialize a module implemented as a dynamically loadable shared library and return its
module object. If the module was already initialized, it will be initialized again. Some modules don't
like that and may raise an exception. The pathname argument must point to the shared library. The
name argument is used to construct the name of the initialization function: an external C function
called initname() in the shared library is called. The optional file argment is ignored. (Note:
using shared libraries is highly system dependent, and not all systems support it.)

load_source (name, pathname, [file]) -- function of module imp

Load and initialize a module implemented as a Python source file and return its module object. If
the module was already initialized, it will be initialized again. The name argument is used to create
or access a module object. The pathname argument points to the source file. The optional file
argument is the source file, open for reading as text, from the beginning --- if not given, the function
opens pathname. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffix .pyc) exists, it will be used instead
of parsing the given source file.

new_module (name) -- function of module imp

Return a new empty module object called name. This object is not inserted in sys.modules.

The following constants with integer values, defined in the module, are used to indicate the search result
of imp.find_module.

SEARCH_ERROR -- data of module imp

The module was not found.

PY_SOURCE -- data of module imp

The module was found as a source file.

PY_COMPILED -- data of module imp

The module was found as a compiled code object file.

C_EXTENSION -- data of module imp

The module was found as dynamically loadable shared library.

Menu
Examples

Next: parser Prev: marshal Up: Python Services Top: Top

urllib -- Python library reference

Next: httplib Prev: cgi Up: Internet and WWW Top: Top
11.2. Standard Module urllib
This module provides a high-level interface for fetching data across the World-Wide Web. In particular,
the urlopen function is similar to the built-in function open, but accepts URLs (Universal Resource
Locators) instead of filenames. Some restrictions apply --- it can only open URLs for reading, and no seek
operations are available.

it defines the following public functions:

urlopen (url) -- function of module urllib

Open a network object denoted by a URL for reading. If the URL does not have a scheme identifier,
or if it has `file:' as its scheme identifier, this opens a local file; otherwise it opens a socket to a
server somewhere on the network. If the connection cannot be made, or if the server returns an
error code, the IOError exception is raised. If all went well, a file-like object is returned. This
supports the following methods: read(), readline(), readlines(), fileno(), close()
and info(). Except for the last one, these methods have the same interface as for file objects ---
see the section on File Objects earlier in this manual. (It's not a built-in file object, however, so it
can't be used at those few places where a true built-in file object is required.)

The info() method returns an instance of the class rfc822.Message containing the headers
received from the server, if the protocol uses such headers (currently the only supported protocol that
uses this is HTTP). See the description of the rfc822 module.

urlretrieve (url) -- function of module urllib

Copy a network object denoted by a URL to a local file, if necessary. If the URL points to a local file,
or a valid cached copy of the object exists, the object is not copied. Return a tuple (filename,
headers) where filename is the local file name under which the object can be found, and headers is
either None (for a local object) or whatever the info() method of the object returned by
urlopen() returned (for a remote object, possibly cached). Exceptions are the same as for
urlopen().

urlcleanup () -- function of module urllib

Clear the cache that may have been built up by previous calls to urlretrieve().

quote (string[, addsafe]) -- function of module urllib

Replace special characters in string using the %xx escape. Letters, digits, and the characters
``_,.-'' are never quoted. The optional addsafe parameter specifies additional characters that
should not be quoted --- its default value is '/'.

Example: quote('/~conolly/') yields '/%7econnolly/'.

unquote (string) -- function of module urllib

Replace `%xx' escapes by their single-character equivalent.

Example: unquote('/%7Econnolly/') yields '/~connolly/'.

Restrictions:

 Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), Gopher (but
not Gopher-+), FTP, and local files.

 The caching feature of urlretrieve() has been disabled until I find the time to hack proper
processing of Expiration time headers.

 There should be a function to query whether a particular URL is in the cache.

 For backward compatibility, if a URL appears to point to a local file but the file can't be opened, the URL
is re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

 The urlopen() and urlretrieve() functions can cause arbitrarily long delays while waiting for a
network connection to be set up. This means that it is difficult to build an interactive web client using these
functions without using threads.

 The data returned by urlopen() or urlretrieve() is the raw data returned by the server. This may
be binary data (e.g. an image), plain text or (for example) HTML. The HTTP protocol provides type
information in the reply header, which can be inspected by looking at the Content-type header. For
the Gopher protocol, type information is encoded in the URL; there is currently no easy way to extract it. If
the returned data is HTML, you can use the module htmllib to parse it.

 Although the urllib module contains (undocumented) routines to parse and unparse URL strings, the
recommended interface for URL manipulation is in module urlparse.

Next: httplib Prev: cgi Up: Internet and WWW Top: Top

FSSpec objects -- Python library reference

Next: alias objects Prev: macfs Up: macfs Top: Top
14.6.1. FSSpec objects
data -- attribute of FSSpec object

The raw data from the FSSpec object, suitable for passing to other applications, for instance.

as_pathname () -- Method on FSSpec object

Return the full pathname of the file described by the FSSpec object.

as_tuple () -- Method on FSSpec object

Return the (wdRefNum, parID, name) tuple of the file described by the FSSpec object.

NewAlias ([file]) -- Method on FSSpec object

Create an Alias object pointing to the file described by this FSSpec. If the optional file parameter is
present the alias will be relative to that file, otherwise it will be absolute.

NewAliasMinimal () -- Method on FSSpec object

Create a minimal alias pointing to this file.

GetCreatorType () -- Method on FSSpec object

Return the 4-char creator and type of the file.

SetCreatorType (creator, type) -- Method on FSSpec object

Set the 4-char creator and type of the file.

GetFInfo () -- Method on FSSpec object

Return a FInfo object describing the finder info for the file.

SetFInfo (finfo) -- Method on FSSpec object

Set the finder info for the file to the values specified in the finfo object.

Next: alias objects Prev: macfs Up: macfs Top: Top

HTTP Example -- Python library reference

Prev: HTTP Objects Up: httplib Top: Top
11.3.2. Example
Here is an example session:
>>> import httplib

>>> h = httplib.HTTP('www.cwi.nl')

>>> h.putrequest('GET', '/index.html')

>>> h.putheader('Accept', 'text/html')

>>> h.putheader('Accept', 'text/plain')

>>> h.endheaders()

>>> errcode, errmsg, headers = h.getreply()

>>> print errcode # Should be 200

>>> f = h.getfile()

>>> data f.read() # Get the raw HTML

>>> f.close()

>>>

Prev: HTTP Objects Up: httplib Top: Top

mpz -- Python library reference

Next: rotor Prev: md5 Up: Cryptographic Services Top: Top
13.2. Built-in Module mpz
This is an optional module. It is only available when Python is configured to include it, which requires that
the GNU MP software is installed.

This module implements the interface to part of the GNU MP library, which defines arbitrary precision
integer and rational number arithmetic routines. Only the interfaces to the integer (`mpz_...') routines
are provided. If not stated otherwise, the description in the GNU MP documentation can be applied.

In general, mpz-numbers can be used just like other standard Python numbers, e.g. you can use the built-
in operators like +, *, etc., as well as the standard built-in functions like abs, int, ..., divmod, pow.
Please note: the bitwise-xor operation has been implemented as a bunch of ands, inverts and ors,
because the library lacks an mpz_xor function, and I didn't need one.

You create an mpz-number by calling the function called mpz (see below for an exact description). An
mpz-number is printed like this: mpz(value).

mpz (value) -- function of module mpz

Create a new mpz-number. value can be an integer, a long, another mpz-number, or even a string.
If it is a string, it is interpreted as an array of radix-256 digits, least significant digit first, resulting in
a positive number. See also the binary method, described below.

A number of extra functions are defined in this module. Non mpz-arguments are converted to mpz-values
first, and the functions return mpz-numbers.

powm (base, exponent, modulus) -- function of module mpz

Return pow(base, exponent) % modulus. If exponent == 0, return mpz(1). In contrast
to the C-library function, this version can handle negative exponents.

gcd (op1, op2) -- function of module mpz

Return the greatest common divisor of op1 and op2.

gcdext (a, b) -- function of module mpz

Return a tuple (g, s, t), such that a*s + b*t == g == gcd(a, b).

sqrt (op) -- function of module mpz

Return the square root of op. The result is rounded towards zero.

sqrtrem (op) -- function of module mpz

Return a tuple (root, remainder), such that root*root + remainder == op.

divm (numerator, denominator, modulus) -- function of module mpz

Returns a number q. such that q * denominator % modulus == numerator. One could
also implement this function in Python, using gcdext.

An mpz-number has one method:

binary () -- Method on mpz

Convert this mpz-number to a binary string, where the number has been stored as an array of
radix-256 digits, least significant digit first.

The mpz-number must have a value greater than or equal to zero, otherwise a ValueError-exception
will be raised.

Next: rotor Prev: md5 Up: Cryptographic Services Top: Top

Built-in Objects -- Python library reference

Next: Python Services Prev: Introduction Up: Top Top: Top
2. Built-in Types, Exceptions and Functions
Names for built-in exceptions and functions are found in a separate symbol table. This table is searched
last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.(1) The tables in this
chapter document the priorities of operators by listing them in order of ascending priority (within a table)
and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See
Chapter 5 of the Python Reference Manual for the complete picture on operator priorities.

Menu
Types

Exceptions

Built-in Functions

---------- Footnotes ----------
(1) Most descriptions sorely lack explanations of the exceptions that may be raised --- this will be fixed in
a future version of this manual.

Next: Python Services Prev: Introduction Up: Top Top: Top

imgfile -- Python library reference

Prev: GL and DEVICE Up: SGI IRIX Specific Services Top: Top
16.10. Built-in Module imgfile
The imgfile module allows python programs to access SGI imglib image files (also known as .rgb files).
The module is far from complete, but is provided anyway since the functionality that there is is enough in
some cases. Currently, colormap files are not supported.

The module defines the following variables and functions:

error -- exception of module imgfile

This exception is raised on all errors, such as unsupported file type, etc.

getsizes (file) -- function of module imgfile

This function returns a tuple (x, y, z) where x and y are the size of the image in pixels and z is
the number of bytes per pixel. Only 3 byte RGB pixels and 1 byte greyscale pixels are currently
supported.

read (file) -- function of module imgfile

This function reads and decodes the image on the specified file, and returns it as a python string.
The string has either 1 byte greyscale pixels or 4 byte RGBA pixels. The bottom left pixel is the first
in the string. This format is suitable to pass to gl.lrectwrite, for instance.

readscaled (file, x, y, filter[, blur]) -- function of module imgfile

This function is identical to read but it returns an image that is scaled to the given x and y sizes. If
the filter and blur parameters are omitted scaling is done by simply dropping or duplicating pixels,
so the result will be less than perfect, especially for computer-generated images.

Alternatively, you can specify a filter to use to smoothen the image after scaling. The filter forms
supported are 'impulse', 'box', 'triangle', 'quadratic' and 'gaussian'. If a filter is
specified blur is an optional parameter specifying the blurriness of the filter. It defaults to 1.0.

readscaled makes no attempt to keep the aspect ratio correct, so that is the users' responsibility.

ttob (flag) -- function of module imgfile

This function sets a global flag which defines whether the scan lines of the image are read or
written from bottom to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one,
compatible with X). The default is zero.

write (file, data, x, y, z) -- function of module imgfile

This function writes the RGB or greyscale data in data to image file file. x and y give the size of the
image, z is 1 for 1 byte greyscale images or 3 for RGB images (which are stored as 4 byte values
of which only the lower three bytes are used). These are the formats returned by gl.lrectread.

Prev: GL and DEVICE Up: SGI IRIX Specific Services Top: Top

syslog -- Python library reference

Prev: posixfile Up: UNIX Specific Services Top: Top
8.11. Built-in Module syslog
This module provides an interface to the Unix syslog library routines. Refer to the UNIX manual pages
for a detailed description of the syslog facility.

The module defines the following functions:

syslog ([priority,] message) -- Method on posixfile

Send the string message to the system logger. A trailing newline is added if necessary. Each
message is tagged with a priority composed of a facility and a level. The optional priority argument,
which defaults to (LOG_USER | LOG_INFO), determines the message priority.

openlog (ident, [logopt, [facility]]) -- Method on posixfile

Logging options other than the defaults can be set by explicitly opening the log file with
openlog() prior to calling syslog(). The defaults are (usually) ident = `syslog', logopt = 0,
facility = LOG_USER. The ident argument is a string which is prepended to every message. The
optional logopt argument is a bit field - see below for possible values to combine. The optional
facility argument sets the default facility for messages which do not have a facility explicitly
encoded.

closelog () -- Method on posixfile

Close the log file.

setlogmask (maskpri) -- Method on posixfile

This function set the priority mask to maskpri and returns the previous mask value. Calls to
syslog with a priority level not set in maskpri are ignored. The default is to log all priorities. The
function LOG_MASK(pri) calculates the mask for the individual priority pri. The function
LOG_UPTO(pri) calculates the mask for all priorities up to and including pri.

The module defines the following constants:

Priority levels (high to low):
LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING, LOG_NOTICE, LOG_INFO,
LOG_DEBUG.

Facilities:
LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH, LOG_LPR, LOG_NEWS,
LOG_UUCP, LOG_CRON and LOG_LOCAL0 to LOG_LOCAL7.

Log options:
LOG_PID, LOG_CONS, LOG_NDELAY, LOG_NOWAIT and LOG_PERROR if defined in syslog.h.

Prev: posixfile Up: UNIX Specific Services Top: Top

Limitations -- Python library reference

Next: Calibration Prev: Reference Manual Up: The Python Profiler Top: Top
10.6. Limitations
There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter to
dispatch call, return, and exception events. Compiled C code does not get interpreted, and hence is
``invisible'' to the profiler. All time spent in C code (including builtin functions) will be charged to the
Python function that invoked the C code. If the C code calls out to some native Python code, then those
calls will be profiled properly.

The second limitation has to do with accuracy of timing information. There is a fundamental problem with
deterministic profilers involving accuracy. The most obvious restriction is that the underlying ``clock'' is
only ticking at a rate (typically) of about .001 seconds. Hence no measurements will be more accurate
that that underlying clock. If enough measurements are taken, then the ``error'' will tend to average out.
Unfortunately, removing this first error induces a second source of error...

The second problem is that it ``takes a while'' from when an event is dispatched until the profiler's call to
get the time actually gets the state of the clock. Similarly, there is a certain lag when exiting the profiler
event handler from the time that the clock's value was obtained (and then squirreled away), until the
user's code is once again executing. As a result, functions that are called many times, or call many
functions, will typically accumulate this error. The error that accumulates in this fashion is typically less
than the accuracy of the clock (i.e., less than one clock tick), but it can accumulate and become very
significant. This profiler provides a means of calibrating itself for a given platform so that this error can be
probabilistically (i.e., on the average) removed. After the profiler is calibrated, it will be more accurate (in a
least square sense), but it will sometimes produce negative numbers (when call counts are exceptionally
low, and the gods of probability work against you :-).) Do NOT be alarmed by negative numbers in the
profile. They should only appear if you have calibrated your profiler, and the results are actually better
than without calibration.

Next: Calibration Prev: Reference Manual Up: The Python Profiler Top: Top

select -- Python library reference

Next: thread Prev: socket Up: Optional Operating System Services Top: Top
7.3. Built-in Module select
This module provides access to the function select available in most UNIX versions. It defines the
following:

error -- exception of module select

The exception raised when an error occurs. The accompanying value is a pair containing the
numeric error code from errno and the corresponding string, as would be printed by the C
function perror().

select (iwtd, owtd, ewtd[, timeout]) -- function of module select

This is a straightforward interface to the UNIX select() system call. The first three arguments
are lists of `waitable objects': either integers representing UNIX file descriptors or objects with a
parameterless method named fileno() returning such an integer. The three lists of waitable
objects are for input, output and `exceptional conditions', respectively. Empty lists are allowed. The
optional timeout argument specifies a time-out as a floating point number in seconds. When the
timeout argument is omitted the function blocks until at least one file descriptor is ready. A time-out
value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Amongst the acceptable object types in the lists are Python file objects (e.g. sys.stdin, or objects
returned by open() or posix.popen()), socket objects returned by socket.socket(), and the
module stdwin which happens to define a function fileno() for just this purpose. You may also
define a wrapper class yourself, as long as it has an appropriate fileno() method (that really returns a
UNIX file descriptor, not just a random integer).

Next: thread Prev: socket Up: Optional Operating System Services Top: Top

rotor -- Python library reference

Prev: mpz Up: Cryptographic Services Top: Top
13.3. Built-in Module rotor
This module implements a rotor-based encryption algorithm, contributed by Lance Ellinghouse. The
design is derived from the Enigma device, a machine used during World War II to encipher messages. A
rotor is simply a permutation. For example, if the character `A' is the origin of the rotor, then a given rotor
might map `A' to `L', `B' to `Z', `C' to `G', and so on. To encrypt, we choose several different rotors, and
set the origins of the rotors to known positions; their initial position is the ciphering key. To encipher a
character, we permute the original character by the first rotor, and then apply the second rotor's
permutation to the result. We continue until we've applied all the rotors; the resulting character is our
ciphertext. We then change the origin of the final rotor by one position, from `A' to `B'; if the final rotor has
made a complete revolution, then we rotate the next-to-last rotor by one position, and apply the same
procedure recursively. In other words, after enciphering one character, we advance the rotors in the same
fashion as a car's odometer. Decoding works in the same way, except we reverse the permutations and
apply them in the opposite order. The available functions in this module are:

newrotor (key[, numrotors]) -- function of module rotor

Return a rotor object. key is a string containing the encryption key for the object; it can contain
arbitrary binary data. The key will be used to randomly generate the rotor permutations and their
initial positions. numrotors is the number of rotor permutations in the returned object; if it is omitted,
a default value of 6 will be used.

Rotor objects have the following methods:

setkey () -- Method on rotor

Reset the rotor to its initial state.

encrypt (plaintext) -- Method on rotor

Reset the rotor object to its initial state and encrypt plaintext, returning a string containing the
ciphertext. The ciphertext is always the same length as the original plaintext.

encryptmore (plaintext) -- Method on rotor

Encrypt plaintext without resetting the rotor object, and return a string containing the ciphertext.

decrypt (ciphertext) -- Method on rotor

Reset the rotor object to its initial state and decrypt ciphertext, returning a string containing the
ciphertext. The plaintext string will always be the same length as the ciphertext.

decryptmore (ciphertext) -- Method on rotor

Decrypt ciphertext without resetting the rotor object, and return a string containing the ciphertext.

An example usage:
>>> import rotor

>>> rt = rotor.newrotor('key', 12)

>>> rt.encrypt('bar')

'\2534\363'

>>> rt.encryptmore('bar')

'\357\375$'

>>> rt.encrypt('bar')

'\2534\363'

>>> rt.decrypt('\2534\363')

'bar'

>>> rt.decryptmore('\357\375$')

'bar'

>>> rt.decrypt('\357\375$')

'l(\315'

>>> del rt

The module's code is not an exact simulation of the original Enigma device; it implements the rotor
encryption scheme differently from the original. The most important difference is that in the original
Enigma, there were only 5 or 6 different rotors in existence, and they were applied twice to each
character; the cipher key was the order in which they were placed in the machine. The Python rotor
module uses the supplied key to initialize a random number generator; the rotor permutations and their
initial positions are then randomly generated. The original device only enciphered the letters of the
alphabet, while this module can handle any 8-bit binary data; it also produces binary output. This module
can also operate with an arbitrary number of rotors.

The original Enigma cipher was broken in 1944. The version implemented here is probably a good deal
more difficult to crack (especially if you use many rotors), but it won't be impossible for a truly skilful and
determined attacker to break the cipher. So if you want to keep the NSA out of your files, this rotor cipher
may well be unsafe, but for discouraging casual snooping through your files, it will probably be just fine,
and may be somewhat safer than using the Unix crypt command.
Prev: mpz Up: Cryptographic Services Top: Top

Message Objects -- Python library reference

Prev: rfc822 Up: rfc822 Top: Top
11.10.1. Message Objects
A Message instance has the following methods:

rewindbody () -- function of module rfc822

Seek to the start of the message body. This only works if the file object is seekable.

getallmatchingheaders (name) -- function of module rfc822

Return a list of lines consisting of all headers matching name, if any. Each physical line, whether it
is a continuation line or not, is a separate list item. Return the empty list if no header matches
name.

getfirstmatchingheader (name) -- function of module rfc822

Return a list of lines comprising the first header matching name, and its continuation line(s), if any.
Return None if there is no header matching name.

getrawheader (name) -- function of module rfc822

Return a single string consisting of the text after the colon in the first header matching name. This
includes leading whitespace, the trailing linefeed, and internal linefeeds and whitespace if there any
continuation line(s) were present. Return None if there is no header matching name.

getheader (name) -- function of module rfc822

Like getrawheader(name), but strip leading and trailing whitespace (but not internal
whitespace).

getaddr (name) -- function of module rfc822

Return a pair (full name, email address) parsed from the string returned by getheader(name). If
no header matching name exists, return None, None; otherwise both the full name and the
address are (possibly empty)strings.

Example: If m's first From header contains the string* 'jack@cwi.nl (Jack Jansen)', then
m.getaddr('From') will yield the pair ('Jack Jansen', 'jack@cwi.nl'). If the header
contained 'Jack Jansen <jack@cwi.nl>' instead, it would yield the exact same result.

getaddrlist (name) -- function of module rfc822

This is similar to getaddr(list), but parses a header containing a list of email addresses (e.g. a
To header) and returns a list of (full name, email address) pairs (even if there was only one
address in the header). If there is no header matching name, return an empty list.

XXX The current version of this function is not really correct. It yields bogus results if a full name contains
a comma.

getdate (name) -- function of module rfc822

Retrieve a header using getheader and parse it into a 9-tuple compatible with
time.mktime(). If there is no header matching name, or it is unparsable, return None.

Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has been
tested and found correct on a large collection of email from many sources, it is still possible that this
function may occasionally yield an incorrect result.

Message instances also support a read-only mapping interface. In particular: m[name] is the same as
m.getheader(name); and len(m), m.has_key(name), m.keys(), m.values() and

m.items() act as expected (and consistently).

Finally, Message instances have two public instance variables:

headers -- data of module rfc822

A list containing the entire set of header lines, in the order in which they were read. Each line
contains a trailing newline. The blank line terminating the headers is not contained in the list.

fp -- data of module rfc822

The file object passed at instantiation time.

Prev: rfc822 Up: rfc822 Top: Top

FL (uppercase) -- Python library reference

Next: flp Prev: fl Up: SGI IRIX Specific Services Top: Top
16.5. Standard Module FL
This module defines symbolic constants needed to use the built-in module fl (see above); they are
equivalent to those defined in the C header file <forms.h> except that the name prefix `FL_' is omitted.
Read the module source for a complete list of the defined names. Suggested use:
import fl

from FL import *

Next: flp Prev: fl Up: SGI IRIX Specific Services Top: Top

signal -- Python library reference

Next: socket Prev: Optional Operating System Services Up: Optional Operating System Services Top: Top
7.1. Built-in Module signal
This module provides mechanisms to use signal handlers in Python. Some general rules for working with
signals handlers:

 A handler for a particular signal, once set, remains installed until it is explicitly reset (i.e. Python
uses the BSD style interface).

 There is no way to ``block'' signals temporarily from critical sections (since this is not supported by all
UNIX flavors).

 Although Python signal handlers are called asynchronously as far as the Python user is concerned, they
can only occur between the ``atomic'' instructions of the Python interpreter. This means that signals
arriving during long calculations implemented purely in C (e.g. regular expression matches on large
bodies of text) may be delayed for an arbitrary amount of time.

 When a signal arrives during an I/O operation, it is possible that the I/O operation raises an exception
after the signal handler returns. This is dependent on the underlying UNIX system's semantics regarding
interrupted system calls.

 Because the C signal handler always returns, it makes little sense to catch synchronous errors like
SIGFPE or SIGSEGV.

 Python installs a small number of signal handlers by default: SIGPIPE is ignored (so write errors on
pipes and sockets can be reported as ordinary Python exceptions), SIGINT is translated into a
KeyboardInterrupt exception, and SIGTERM is caught so that necessary cleanup (especially
sys.exitfunc) can be performed before actually terminating. All of these can be overridden.

 Some care must be taken if both signals and threads are used in the same program. The fundamental
thing to remember in using signals and threads simultaneously is: always perform signal() operations
in the main thread of execution. Any thread can perform an alarm(), getsignal(), or pause();
only the main thread can set a new signal handler, and the main thread will be the only one to receive
signals (this is enforced by the Python signal module, even if the underlying thread implementation
supports sending signals to individual threads). This means that signals can't be used as a means of
interthread communication. Use locks instead.

The variables defined in the signal module are:

SIG_DFL -- data of module signal

This is one of two standard signal handling options; it will simply perform the default function for the
signal. For example, on most systems the default action for SIGQUIT is to dump core and exit,
while the default action for SIGCLD is to simply ignore it.

SIG_IGN -- data of module signal

This is another standard signal handler, which will simply ignore the given signal.

SIG* -- data of module signal

All the signal numbers are defined symbolically. For example, the hangup signal is defined as
signal.SIGHUP; the variable names are identical to the names used in C programs, as found in
signal.h. The UNIX man page for signal lists the existing signals (on some systems this is signal(2),
on others the list is in signal(7)). Note that not all systems define the same set of signal names;
only those names defined by the system are defined by this module.

NSIG -- data of module signal

One more than the number of the highest signal number.

The signal module defines the following functions:

alarm (time) -- function of module signal

If time is non-zero, this function requests that a SIGALRM signal be sent to the process in time
seconds. Any previously scheduled alarm is canceled (i.e. only one alarm can be scheduled at any
time). The returned value is then the number of seconds before any previously set alarm was to
have been delivered. If time is zero, no alarm id scheduled, and any scheduled alarm is canceled.
The return value is the number of seconds remaining before a previously scheduled alarm. If the
return value is zero, no alarm is currently scheduled. (See the UNIX man page alarm(2).)

getsignal (signalnum) -- function of module signal

Return the current signal handler for the signal signalnum. The returned value may be a callable
Python object, or one of the special values signal.SIG_IGN, signal.SIG_DFL or None.
Here, signal.SIG_IGN means that the signal was previously ignored, signal.SIG_DFL
means that the default way of handling the signal was previously in use, and None means that the
previous signal handler was not installed from Python.

pause () -- function of module signal

Cause the process to sleep until a signal is received; the appropriate handler will then be called.
Returns nothing. (See the UNIX man page signal(2).)

signal (signalnum, handler) -- function of module signal

Set the handler for signal signalnum to the function handler. handler can be any callable Python
object, or one of the special values signal.SIG_IGN or signal.SIG_DFL. The previous signal
handler will be returned (see the description of getsignal() above). (See the UNIX man page
signal(2).)

When threads are enabled, this function can only be called from the main thread; attempting to call it from
other threads will cause a ValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None or a
frame object; see the reference manual for a description of frame objects).

Next: socket Prev: Optional Operating System Services Up: Optional Operating System Services Top: Top

GL and DEVICE -- Python library reference

Next: imgfile Prev: gl Up: SGI IRIX Specific Services Top: Top
16.9. Standard Modules GL and DEVICE
These modules define the constants used by the Silicon Graphics Graphics Library that C programmers
find in the header files <gl/gl.h> and <gl/device.h>. Read the module source files for details.
Next: imgfile Prev: gl Up: SGI IRIX Specific Services Top: Top

htmllib -- Python library reference

Next: sgmllib Prev: urlparse Up: Internet and WWW Top: Top
11.8. Standard Module htmllib
This module defines a number of classes which can serve as a basis for parsing text files formatted in
HTML (HyperText Mark-up Language). The classes are not directly concerned with I/O --- the have to be
fed their input in string form, and will make calls to methods of a ``formatter'' object in order to produce
output. The classes are designed to be used as base classes for other classes in order to add
functionality, and allow most of their methods to be extended or overridden. In turn, the classes are
derived from and extend the class SGMLParser defined in module sgmllib. The following is a
summary of the interface defined by sgmllib.SGMLParser:

 The interface to feed data to an instance is through the feed() method, which takes a string
argument. This can be called with as little or as much text at a time as desired; p.feed(a);
p.feed(b) has the same effect as p.feed(a+b). When the data contains complete HTML
elements, these are processed immediately; incomplete elements are saved in a buffer. To force
processing of all unprocessed data, call the close() method.

Example: to parse the entire contents of a file, do* parser.feed(open(file).read());
parser.close().

 The interface to define semantics for HTML tags is very simple: derive a class and define methods called
start_tag(), end_tag(), or do_tag(). The parser will call these at appropriate moments:
start_tag or do_tag is called when an opening tag of the form <tag ...> is encountered;
end_tag is called when a closing tag of the form <tag> is encountered. If an opening tag requires a
corresponding closing tag, like <H1> ... </H1>, the class should define the start_tag method; if a tag
requires no closing tag, like <P>, the class should define the do_tag method.

The module defines the following classes:

HTMLParser () -- function of module htmllib

This is the most basic HTML parser class. It defines one additional entity name over the names
defined by the SGMLParser base class, •. It also defines handlers for the following
tags: <LISTING>...</LISTING>, <XMP>...</XMP>, and <PLAINTEXT> (the latter is
terminated only by end of file).

CollectingParser () -- function of module htmllib

This class, derived from HTMLParser, collects various useful bits of information from the HTML
text. To this end it defines additional handlers for the following tags: <A>...,
<HEAD>...</HEAD>, <BODY>...</BODY>, <TITLE>...</TITLE>, <NEXTID>, and
<ISINDEX>.

FormattingParser (formatter, stylesheet) -- function of module htmllib

This class, derived from CollectingParser, interprets a wide selection of HTML tags so it can
produce formatted output from the parsed data. It is initialized with two objects, a formatter which
should define a number of methods to format text into paragraphs, and a stylesheet which defines
a number of static parameters for the formatting process. Formatters and style sheets are
documented later in this section.

AnchoringParser (formatter, stylesheet) -- function of module htmllib

This class, derived from FormattingParser, extends the handling of the <A>... tag pair
to call the formatter's bgn_anchor() and end_anchor() methods. This allows the formatter to
display the anchor in a different font or color, etc.

Instances of CollectingParser (and thus also instances of FormattingParser and
AnchoringParser) have the following instance variables:

anchornames -- data of module htmllib

A list of the values of the NAME attributes of the <A> tags encountered.

anchors -- data of module htmllib

A list of the values of HREF attributes of the <A> tags encountered.

anchortypes -- data of module htmllib

A list of the values of the TYPE attributes of the <A> tags encountered.

inanchor -- data of module htmllib

Outside an <A>... tag pair, this is zero. Inside such a pair, it is a unique integer, which is
positive if the anchor has a HREF attribute, negative if it hasn't. Its absolute value is one more than
the index of the anchor in the anchors, anchornames and anchortypes lists.

isindex -- data of module htmllib

True if the <ISINDEX> tag has been encountered.

nextid -- data of module htmllib

The attribute list of the last <NEXTID> tag encountered, or an empty list if none.

title -- data of module htmllib

The text inside the last <TITLE>...</TITLE> tag pair, or '' if no title has been encountered
yet.

The anchors, anchornames and anchortypes lists are ``parallel arrays'': items in these lists with
the same index pertain to the same anchor. Missing attributes default to the empty string. Anchors with
neither a HREF nor a NAME attribute are not entered in these lists at all.

The module also defines a number of style sheet classes. These should never be instantiated --- their
class variables are the only behavior required. Note that style sheets are specifically designed for a
particular formatter implementation. The currently defined style sheets are:

NullStylesheet -- data of module htmllib

A style sheet for use on a dumb output device such as an ASCII terminal.

X11Stylesheet -- data of module htmllib

A style sheet for use with an X11 server.

MacStylesheet -- data of module htmllib

A style sheet for use on Apple Macintosh computers.

StdwinStylesheet -- data of module htmllib

A style sheet for use with the stdwin module; it is an alias for either X11Stylesheet or
MacStylesheet.

GLStylesheet -- data of module htmllib

A style sheet for use with the SGI Graphics Library and its font manager (the SGI-specific built-in
modules gl and fm).

Style sheets have the following class variables:

stdfontset -- data of module htmllib

A list of up to four font definititions, respectively for the roman, italic, bold and constant-width variant

of a font for normal text. If the list contains less than four font definitions, the last item is used as the
default for missing items. The type of a font definition depends on the formatter in use; its only use
is as a parameter to the formatter's setfont() method.

h1fontset -- data of module htmllib

h2fontset -- data of module htmllib

h3fontset -- data of module htmllib

The font set used for various headers (text inside <H1>...</H1> tag pairs etc.).

stdindent -- data of module htmllib

The indentation of normal text. This is measured in the ``native'' units of the formatter in use; for
some formatters these are characters, for others (especially those that actually support variable-
spacing fonts) in pixels or printer points.

ddindent -- data of module htmllib

The indentation used for the first level of <DD> tags.

ulindent -- data of module htmllib

The indentation used for the first level of tags.

h1indent -- data of module htmllib

The indentation used for level 1 headers.

h2indent -- data of module htmllib

The indentation used for level 2 headers.

literalindent -- data of module htmllib

The indentation used for literal text (text inside <PRE>...</PRE> and similar tag pairs).

Although no documented implementation of a formatter exists, the FormattingParser class assumes
that formatters have a certain interface. This interface requires the following methods:

setfont (fontspec) -- function of module htmllib

Set the font to be used subsequently. The fontspec argument is an item in a style sheet's font set.

flush () -- function of module htmllib

Finish the current line, if not empty, and begin a new one.

setleftindent (n) -- function of module htmllib

Set the left indentation of the following lines to n units.

needvspace (n) -- function of module htmllib

Require at least n blank lines before the next line. Implies flush().

addword (word, space) -- function of module htmllib

Add a word to the current paragraph, followed by space spaces.

nospace -- data of module htmllib

If this instance variable is true, empty words should be ignored by addword. It should be set to
false after a non-empty word has been added.

setjust (justification) -- function of module htmllib

Set the justification of the current paragraph. The justification can be 'c' (center), 'l' (left
justified), 'r' (right justified) or 'lr' (left and right justified).

bgn_anchor (id) -- function of module htmllib

Begin an anchor. The id parameter is the value of the parser's inanchor attribute.

end_anchor (id) -- function of module htmllib

End an anchor. The id parameter is the value of the parser's inanchor attribute.

A sample formatter implementation can be found in the module fmt, which in turn uses the module
Para. These modules are not intended as standard library modules; they are available as an example of
how to write a formatter.
Next: sgmllib Prev: urlparse Up: Internet and WWW Top: Top

Built-in Functions -- Python library reference

Prev: Exceptions Up: Built-in Objects Top: Top
2.3. Built-in Functions
The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

abs (x) -- built-in function

Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number.

apply (function, args[, keywords]) -- built-in function

The function argument must be a callable object (a user-defined or built-in function or method, or a
class object) and the args argument must be a tuple. The function is called with args as argument
list; the number of arguments is the the length of the tuple. (This is different from just calling
func(args), since in that case there is always exactly one argument.) If the optional keywords
argument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments
to be added to the end of the the argument list.

chr (i) -- built-in function

Return a string of one character whose ASCII code is the integer i, e.g., chr(97) returns the
string 'a'. This is the inverse of ord(). The argument must be in the range [0..255], inclusive.

cmp (x, y) -- built-in function

Compare the two objects x and y and return an integer according to the outcome. The return value
is negative if x < y, zero if x == y and strictly positive if x > y.

coerce (x, y) -- built-in function

Return a tuple consisting of the two numeric arguments converted to a common type, using the
same rules as used by arithmetic operations.

compile (string, filename, kind) -- built-in function

Compile the string into a code object. Code objects can be executed by an exec statement or
evaluated by a call to eval(). The filename argument should give the file from which the code
was read; pass e.g. '<string>' if it wasn't read from a file. The kind argument specifies what
kind of code must be compiled; it can be 'exec' if string consists of a sequence of statements,
'eval' if it consists of a single expression, or 'single' if it consists of a single interactive
statement (in the latter case, expression statements that evaluate to something else than None will
printed).

delattr (object, name) -- built-in function

This is a relative of setattr. The arguments are an object and a string. The string must be the
name of one of the object's attributes. The function deletes the named attribute, provided the object
allows it. For example, delattr(x, 'foobar') is equivalent to del x.foobar.

dir () -- built-in function

Without arguments, return the list of names in the current local symbol table. With a module, class
or class instance object as argument (or anything else that has a __dict__ attribute), returns the
list of names in that object's attribute dictionary. The resulting list is sorted. For example:

>>> import sys

>>> dir()

['sys']

>>> dir(sys)

['argv', 'exit', 'modules', 'path', 'stderr', 'stdin', 'stdout']

>>>

divmod (a, b) -- built-in function

Take two numbers as arguments and return a pair of integers consisting of their integer quotient
and remainder. With mixed operand types, the rules for binary arithmetic operators apply. For plain
and long integers, the result is the same as (a / b, a % b). For floating point numbers the
result is the same as (math.floor(a / b), a % b).

eval (expression[, globals[, locals]]) -- built-in function

The arguments are a string and two optional dictionaries. The expression argument is parsed and
evaluated as a Python expression (technically speaking, a condition list) using the globals and
locals dictionaries as global and local name space. If the locals dictionary is omitted it defaults to
the globals dictionary. If both dictionaries are omitted, the expression is executed in the
environment where eval is called. The return value is the result of the evaluated expression.
Syntax errors are reported as exceptions. Example:

>>> x = 1

>>> print eval('x+1')

2

>>>

This function can also be used to execute arbitrary code objects (e.g. created by compile()). In this
case pass a code object instead of a string. The code object must have been compiled passing 'eval'
to the kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements
from a file is supported by the execfile() function. The globals() and locals() functions returns
the current global and local dictionary, respectively, which may be useful to pass around for use by
eval() or execfile().

execfile (file[, globals[, locals]]) -- built-in function

This function is similar to the exec statement, but parses a file instead of a string. It is different
from the import statement in that it does not use the module administration --- it reads the file
unconditionally and does not create a new module.(1)

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as global
and local name space. If the locals dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment where execfile() is called.
The return value is None.

filter (function, list) -- built-in function

Construct a list from those elements of list for which function returns true. If list is a string or a tuple,
the result also has that type; otherwise it is always a list. If function is None, the identity function is
assumed, i.e. all elements of list that are false (zero or empty) are removed.

float (x) -- built-in function

Convert a number to floating point. The argument may be a plain or long integer or a floating point
number.

getattr (object, name) -- built-in function

The arguments are an object and a string. The string must be the name of one of the object's
attributes. The result is the value of that attribute. For example, getattr(x, 'foobar') is
equivalent to x.foobar.

globals () -- built-in function

Return a dictionary representing the current global symbol table. This is always the dictionary of the
current module (inside a function or method, this is the module where it is defined, not the module
from which it is called).

hasattr (object, name) -- built-in function

The arguments are an object and a string. The result is 1 if the string is the name of one of the
object's attributes, 0 if not. (This is implemented by calling getattr(object, name) and seeing
whether it raises an exception or not.)

hash (object) -- built-in function

Return the hash value of the object (if it has one). Hash values are 32-bit integers. They are used
to quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal
have the same hash value (even if they are of different types, e.g. 1 and 1.0).

hex (x) -- built-in function

Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression.

id (object) -- built-in function

Return the `identity' of an object. This is an integer which is guaranteed to be unique and constant
for this object during its lifetime. (Two objects whose lifetimes are disjunct may have the same id()
value.) (Implementation note: this is the address of the object.)

input ([prompt]) -- built-in function

Almost equivalent to eval(raw_input(prompt)). Like raw_input(), the prompt argument is
optional. The difference is that a long input expression may be broken over multiple lines using the
backslash convention.

int (x) -- built-in function

Convert a number to a plain integer. The argument may be a plain or long integer or a floating point
number. Conversion of floating point numbers to integers is defined by the C semantics; normally

the conversion truncates towards zero.(2)

len (s) -- built-in function

Return the length (the number of items) of an object. The argument may be a sequence (string,
tuple or list) or a mapping (dictionary).

locals () -- built-in function

Return a dictionary representing the current local symbol table. Inside a function, modifying this
dictionary does not always have the desired effect.

long (x) -- built-in function

Convert a number to a long integer. The argument may be a plain or long integer or a floating point
number.

map (function, list, ...) -- built-in function

Apply function to every item of list and return a list of the results. If additional list arguments are
passed, function must take that many arguments and is applied to the items of all lists in parallel; if
a list is shorter than another it is assumed to be extended with None items. If function is None, the
identity function is assumed; if there are multiple list arguments, map returns a list consisting of
tuples containing the corresponding items from all lists (i.e. a kind of transpose operation). The list
arguments may be any kind of sequence; the result is always a list.

max (s) -- built-in function

Return the largest item of a non-empty sequence (string, tuple or list).

min (s) -- built-in function

Return the smallest item of a non-empty sequence (string, tuple or list).

oct (x) -- built-in function

Convert an integer number (of any size) to an octal string. The result is a valid Python expression.

open (filename[, mode[, bufsize]]) -- built-in function

Return a new file object (described earlier under Built-in Types). The first two arguments are the
same as for stdio's fopen(): filename is the file name to be opened, mode indicates how the
file is to be opened: 'r' for reading, 'w' for writing (truncating an existing file), and 'a' opens it
for appending. Modes 'r+', 'w+' and 'a+' open the file for updating, provided the underlying
stdio library understands this. On systems that differentiate between binary and text files, 'b'
appended to the mode opens the file in binary mode. If the file cannot be opened, IOError is
raised. If mode is omitted, it defaults to 'r'. The optional bufsize argument specifies the file's
desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means use
a buffer of (approximately) that size. A negative bufsize means to use the system default, which is
usually line buffered for for tty devices and fully buffered for other files.(3)

ord (c) -- built-in function

Return the ASCII value of a string of one character. E.g., ord('a') returns the integer 97. This is
the inverse of chr().

pow (x, y[, z]) -- built-in function

Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow(x, y) % z). The arguments must have numeric types. With mixed operand types, the
rules for binary arithmetic operators apply. The effective operand type is also the type of the result;
if the result is not expressible in this type, the function raises an exception; e.g., pow(2, -1) or
pow(2, 35000) is not allowed.

range ([start,] end[, step]) -- built-in function

This is a versatile function to create lists containing arithmetic progressions. It is most often used in
for loops. The arguments must be plain integers. If the step argument is omitted, it defaults to 1.
If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers
[start, start + step, start + 2 * step, ...]. If step is positive, the last element is
the largest start + i * step less than end; if step is negative, the last element is the largest
start + i * step greater than end. step must not be zero (or else an exception is raised).
Example:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

>>> range(0)

[]

>>> range(1, 0)

[]

>>>

raw_input ([prompt]) -- built-in function

If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and returns
that. When EOF is read, EOFError is raised. Example:

>>> s = raw_input('--> ')

--> Monty Python's Flying Circus

>>> s

"Monty Python's Flying Circus"

>>>

reduce (function, list[, initializer]) -- built-in function

Apply the binary function to the items of list so as to reduce the list to a single value. E.g.,
reduce(lambda x, y: x*y, list, 1) returns the product of the elements of list. The
optional initializer can be thought of as being prepended to list so as to allow reduction of an empty
list. The list arguments may be any kind of sequence.

reload (module) -- built-in function

Re-parse and re-initialize an already imported module. The argument must be a module object, so
it must have been successfully imported before. This is useful if you have edited the module source
file using an external editor and want to try out the new version without leaving the Python
interpreter. The return value is the module object (i.e. the same as the module argument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does not bind
its name locally, but does store a (partially initialized) module object in sys.modules. To reload the
module you must first import it again (this will bind the name to the partially initialized module object)
before you can reload() it.

When a module is reloaded, its dictionary (containing the module's global variables) is retained.
Redefinitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module's advantage if it maintains a global table or cache of
objects --- with a try statement it can test for the table's presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for
sys, __main__ and __builtin__. In certain cases, however, extension modules are not designed to
be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload() for the
other module does not redefine the objects imported from it --- one way around this is to re-execute the
from statement, another is to use import and qualified names (module.name) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect
the method definitions of the instances --- they continue to use the old class definition. The same is true
for derived classes.

repr (object) -- built-in function

Return a string containing a printable representation of an object. This is the same value yielded by
conversions (reverse quotes). It is sometimes useful to be able to access this operation as an
ordinary function. For many types, this function makes an attempt to return a string that would yield
an object with the same value when passed to eval().

round (x, n) -- built-in function

Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it
defaults to zero. The result is a floating point number. Values are rounded to the closest multiple of
10 to the power minus n; if two multiples are equally close, rounding is done away from 0 (so e.g.
round(0.5) is 1.0 and round(-0.5) is -1.0).

setattr (object, name, value) -- built-in function

This is the counterpart of getattr. The arguments are an object, a string and an arbitrary value.
The string must be the name of one of the object's attributes. The function assigns the value to the
attribute, provided the object allows it. For example, setattr(x, 'foobar', 123) is
equivalent to x.foobar = 123.

str (object) -- built-in function

Return a string containing a nicely printable representation of an object. For strings, this returns the
string itself. The difference with repr(object) is that str(object) does not always attempt to
return a string that is acceptable to eval(); its goal is to return a printable string.

tuple (sequence) -- built-in function

Return a tuple whose items are the same and in the same order as sequence's items. If sequence
is alread a tuple, it is returned unchanged. For instance, tuple('abc') returns returns ('a',
'b', 'c') and tuple([1, 2, 3]) returns (1, 2, 3).

type (object) -- built-in function

Return the type of an object. The return value is a type object. The standard module types
defines names for all built-in types. For instance:

>>> import types

>>> if type(x) == types.StringType: print "It's a string"

vars ([object]) -- built-in function

Without arguments, return a dictionary corresponding to the current local symbol table. With a
module, class or class instance object as argument (or anything else that has a __dict__
attribute), returns a dictionary corresponding to the object's symbol table. The returned dictionary
should not be modified: the effects on the corresponding symbol table are undefined.(4)

xrange ([start,] end[, step]) -- built-in function

This function is very similar to range(), but returns an ``xrange object'' instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually
storing them all simultaneously. The advantage of xrange() over range() is minimal (since
xrange() still has to create the values when asked for them) except when a very large range is
used on a memory-starved machine (e.g. MS-DOS) or when all of the range's elements are never
used (e.g. when the loop is usually terminated with break).

---------- Footnotes ----------
(1) It is used relatively rarely so does not warrant being made into a statement.

(2) This is ugly --- the language definition should require truncation towards zero.

(3) Specifying a buffer size currently has no effect on systems that don't have setvbuf(). The interface
to specify the buffer size is not done using a method that calls setvbuf(), because that may dump core
when called after any I/O has been performed, and there's no reliable way to determine whether this is
the case.

(4) In the current implementation, local variable bindings cannot normally be affected this way, but
variables retrieved from other scopes (e.g. modules) can be. This may change.

Prev: Exceptions Up: Built-in Objects Top: Top

marshal -- Python library reference

Next: imp Prev: copy Up: Python Services Top: Top
3.7. Built-in Module marshal
This module contains functions that can read and write Python values in a binary format. The format is
specific to Python, but independent of machine architecture issues (e.g., you can write a Python value to
a file on a PC, transport the file to a Sun, and read it back there). Details of the format are undocumented
on purpose; it may change between Python versions (although it rarely does).(1)

This is not a general ``persistency'' module. For general persistency and transfer of Python objects
through RPC calls, see the modules pickle and shelve. The marshal module exists mainly to
support reading and writing the ``pseudo-compiled'' code for Python modules of `.pyc' files. Not all
Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supported: None,
integers, long integers, floating point numbers, strings, tuples, lists, dictionaries, and code objects, where
it should be understood that tuples, lists and dictionaries are only supported as long as the values
contained therein are themselves supported; and recursive lists and dictionaries should not be written
(they will cause infinite loops).

Caveat: On machines where C's long int type has more than 32 bits (such as the DEC Alpha), it is
possible to create plain Python integers that are longer than 32 bits. Since the current marshal module
uses 32 bits to transfer plain Python integers, such values are silently truncated. This particularly affects
the use of very long integer literals in Python modules --- these will be accepted by the parser on such
machines, but will be silently be truncated when the module is read from the .pyc instead.(2)

There are functions that read/write files as well as functions operating on strings.

The module defines these functions:

dump (value, file) -- function of module marshal

Write the value on the open file. The value must be a supported type. The file must be an open file
object such as sys.stdout or returned by open() or posix.popen().

If the value has an unsupported type, garbage is written which cannot be read back by load().

load (file) -- function of module marshal

Read one value from the open file and return it. If no valid value is read, raise EOFError,
ValueError or TypeError. The file must be an open file object.

dumps (value) -- function of module marshal

Return the string that would be written to a file by dump(value, file). The value must be a
supported type.

loads (string) -- function of module marshal

Convert the string to a value. If no valid value is found, raise EOFError, ValueError or
TypeError. Extra characters in the string are ignored.

---------- Footnotes ----------
(1) The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst
others), who use the term ``marshalling'' for shipping of data around in a self-contained form. Strictly
speaking, ``to marshal'' means to convert some data from internal to external form (in an RPC buffer for
instance) and ``unmarshalling'' for the reverse process.

(2) A solution would be to refuse such literals in the parser, since they are inherently non-portable.

Another solution would be to let the marshal module raise an exception when an integer value would be
truncated. At least one of these solutions will be implemented in a future version.

Next: imp Prev: copy Up: Python Services Top: Top

Debugger Commands -- Python library reference

Next: How It Works Prev: The Python Debugger Up: The Python Debugger Top: Top
9.1. Debugger Commands
The debugger recognizes the following commands. Most commands can be abbreviated to one or two
letters; e.g. ``h(elp)'' means that either ``h'' or ``help'' can be used to enter the help command (but not
``he'' or ``hel'', nor ``H'' or ``Help or ``HELP''). Arguments to commands must be separated by
whitespace (spaces or tabs). Optional arguments are enclosed in square brackets (``[]'') in the command
syntax; the square brackets must not be typed. Alternatives in the command syntax are separated by a
vertical bar (``|'').

Entering a blank line repeats the last command entered. Exception: if the last command was a ``list''
command, the next 11 lines are listed.

Commands that the debugger doesn't recognize are assumed to be Python statements and are executed
in the context of the program being debugged. Python statements can also be prefixed with an
exclamation point (``!''). This is a powerful way to inspect the program being debugged; it is even
possible to change a variable or call a function. When an exception occurs in such a statement, the
exception name is printed but the debugger's state is not changed.

h(elp) [command

]

Without argument, print the list of available commands. With a command as argument, print help about
that command. ``help pdb'' displays the full documentation file; if the environment variable PAGER is
defined, the file is piped through that command instead. Since the command argument must be an
identifier, ``help exec'' must be entered to get help on the ``!'' command.

w(here)
Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame,
which determines the context of most commands.

d(own)
Move the current frame one level down in the stack trace (to an older frame).

u(p)
Move the current frame one level up in the stack trace (to a newer frame).

b(reak) [lineno|function

]

With a lineno argument, set a break there in the current file. With a function argument, set a break at the
entry of that function. Without argument, list all breaks.

cl(ear) [lineno

]

With a lineno argument, clear that break in the current file. Without argument, clear all breaks (but first
ask confirmation).

s(tep)
Execute the current line, stop at the first possible occasion (either in a function that is called or on
the next line in the current function).

n(ext)

Continue execution until the next line in the current function is reached or it returns. (The difference
between next and step is that step stops inside a called function, while next executes called
functions at (nearly) full speed, only stopping at the next line in the current function.)

r(eturn)
Continue execution until the current function returns.

c(ont(inue))
Continue execution, only stop when a breakpoint is encountered.

l(ist) [first [, last

]]

List source code for the current file. Without arguments, list 11 lines around the current line or continue
the previous listing. With one argument, list 11 lines around at that line. With two arguments, list the given
range; if the second argument is less than the first, it is interpreted as a count.

a(rgs)
Print the argument list of the current function.

p expression

Evaluate the expression in the current context and print its value. (Note: print can also be used,
but is not a debugger command --- this executes the Python print statement.)

[!
statement]

Execute the (one-line) statement in the context of the current stack frame. The exclamation point can be
omitted unless the first word of the statement resembles a debugger command. To set a global variable,
you can prefix the assignment command with a ``global'' command on the same line, e.g.:

(Pdb) global list_options; list_options = ['-l']

(Pdb)

q(uit)
Quit from the debugger. The program being executed is aborted.

Next: How It Works Prev: The Python Debugger Up: The Python Debugger Top: Top

tempfile -- Python library reference

Prev: getopt Up: Generic Operating System Services Top: Top
6.4. Standard Module tempfile
This module generates temporary file names. It is not UNIX specific, but it may require some help on non-
UNIX systems.

Note: the modules does not create temporary files, nor does it automatically remove them when the
current process exits or dies.

The module defines a single user-callable function:

mktemp () -- function of module tempfile

Return a unique temporary filename. This is an absolute pathname of a file that does not exist at
the time the call is made. No two calls will return the same filename.

The module uses two global variables that tell it how to construct a temporary name. The caller may
assign values to them; by default they are initialized at the first call to mktemp().

tempdir -- data of module tempfile

When set to a value other than None, this variable defines the directory in which filenames
returned by mktemp() reside. The default is taken from the environment variable TMPDIR; if this
is not set, either /usr/tmp is used (on UNIX), or the current working directory (all other systems).
No check is made to see whether its value is valid.

template -- data of module tempfile

When set to a value other than None, this variable defines the prefix of the final component of the
filenames returned by mktemp(). A string of decimal digits is added to generate unique filenames.
The default is either ``@pid.'' where pid is the current process ID (on UNIX), or ``tmp'' (all other
systems).

Warning: if a UNIX process uses mktemp(), then calls fork() and both parent and child continue to
use mktemp(), the processes will generate conflicting temporary names. To resolve this, the child
process should assign None to template, to force recomputing the default on the next call to
mktemp().
Prev: getopt Up: Generic Operating System Services Top: Top

Application objects -- Python library reference

Next: Window Objects Prev: FrameWork Up: FrameWork Top: Top
14.12.1. Application objects
Application objects have the following methods, among others:

makeusermenus () -- Method on Application

Override this method if you need menus in your application. Append the menus to
self.menubar.

getabouttext () -- Method on Application

Override this method to return a text string describing your application. Alternatively, override the
do_about method for more elaborate about messages.

mainloop ([mask, wait]) -- Method on Application

This routine is the main event loop, call it to set your application rolling. Mask is the mask of events
you want to handle, wait is the number of ticks you want to leave to other concurrent application
(default 0, which is probably not a good idea). This method does not return until self is raised.

The event loop is split into many small parts, each of which can be overridden. The default methods take
care of dispatching events to windows and dialogs, handling drags and resizes, Apple Events, events for
non-FrameWork windows, etc.

do_char (c, event) -- Method on Application

The user typed character c. The complete details of the event can be found in the event structure.
This method can also be provided in a Window object, which overrides the application-wide
handler if the window is frontmost.

do_dialogevent (event) -- Method on Application

Called early in the event loop to handle modeless dialog events. The default method simply
dispatches the event to the relevant dialog (not through the the DialogWindow object involved).
Override if you need special handling of dialog events (keyboard shortcuts, etc).

Next: Window Objects Prev: FrameWork Up: FrameWork Top: Top

connection object -- Python library reference

Prev: ctb Up: ctb Top: Top
14.3.1. connection object
For all connection methods that take a timeout argument, a value of -1 is indefinite, meaning that the
command runs to completion.

callback -- attribute of connection object

If this member is set to a value other than None it should point to a function accepting a single
argument (the connection object). This will make all connection object methods work
asynchronously, with the callback routine being called upon completion.

Note: for reasons beyond my understanding the callback routine is currently never called. You are advised
against using asynchronous calls for the time being.

Open (timeout) -- Method on connection object

Open an outgoing connection, waiting at most timeout seconds for the connection to be
established.

Listen (timeout) -- Method on connection object

Wait for an incoming connection. Stop waiting after timeout seconds. This call is only meaningful to
some tools.

accept (yesno) -- Method on connection object

Accept (when yesno is non-zero) or reject an incoming call after Listen returned.

Close (timeout, now) -- Method on connection object

Close a connection. When now is zero, the close is orderly (i.e. outstanding output is flushed, etc.)
with a timeout of timeout seconds. When now is non-zero the close is immediate, discarding output.

Read (len, chan, timeout) -- Method on connection object

Read len bytes, or until timeout seconds have passed, from the channel chan (which is one of
cmData, cmCntl or cmAttn). Return a 2-tuple: the data read and the end-of-message flag.

Write (buf, chan, timeout, eom) -- Method on connection object

Write buf to channel chan, aborting after timeout seconds. When eom has the value cmFlagsEOM
an end-of-message indicator will be written after the data (if this concept has a meaning for this
communication tool). The method returns the number of bytes written.

Status () -- Method on connection object

Return connection status as the 2-tuple (sizes, flags). sizes is a 6-tuple giving the actual
buffer sizes used (see CMNew), flags is a set of bits describing the state of the connection.

GetConfig () -- Method on connection object

Return the configuration string of the communication tool. These configuration strings are tool-
dependent, but usually easily parsed and modified.

SetConfig (str) -- Method on connection object

Set the configuration string for the tool. The strings are parsed left-to-right, with later values taking
precedence. This means individual configuration parameters can be modified by simply appending
something like 'baud 4800' to the end of the string returned by GetConfig and passing that to
this method. The method returns the number of characters actually parsed by the tool before it
encountered an error (or completed successfully).

Choose () -- Method on connection object

Present the user with a dialog to choose a communication tool and configure it. If there is an
outstanding connection some choices (like selecting a different tool) may cause the connection to
be aborted. The return value (one of the choose* constants) will indicate this.

Idle () -- Method on connection object

Give the tool a chance to use the processor. You should call this method regularly.

Abort () -- Method on connection object

Abort an outstanding asynchronous Open or Listen.

Reset () -- Method on connection object

Reset a connection. Exact meaning depends on the tool.

Break (length) -- Method on connection object

Send a break. Whether this means anything, what it means and interpretation of the length
parameter depend on the tool in use.

Prev: ctb Up: ctb Top: Top

Boolean Operations -- Python library reference

Next: Comparisons Prev: Truth Value Testing Up: Types Top: Top
2.1.2. Boolean Operations
These are the Boolean operations, ordered by ascending priority:

Operation

Result --- Notes
x or y

if x is false, then y, else x --- (1)x and y

if x is false, then x, else y --- (1)not x
if x is false, then 1, else 0 --- (2)

Notes:

(1)
These only evaluate their second argument if needed for their outcome.

(2)
`not' has a lower priority than non-Boolean operators, so e.g. not a == b is interpreted as
not(a == b), and a == not b is a syntax error.

Next: Comparisons Prev: Truth Value Testing Up: Types Top: Top

Configuration Objects -- Python library reference

Next: Port Objects Prev: al Up: al Top: Top
16.1.1. Configuration Objects
Configuration objects (returned by al.newconfig() have the following methods:

getqueuesize () -- Method on audio configuration object

Return the queue size.

setqueuesize (size) -- Method on audio configuration object

Set the queue size.

getwidth () -- Method on audio configuration object

Get the sample width.

setwidth (width) -- Method on audio configuration object

Set the sample width.

getchannels () -- Method on audio configuration object

Get the channel count.

setchannels (nchannels) -- Method on audio configuration object

Set the channel count.

getsampfmt () -- Method on audio configuration object

Get the sample format.

setsampfmt (sampfmt) -- Method on audio configuration object

Set the sample format.

getfloatmax () -- Method on audio configuration object

Get the maximum value for floating sample formats.

setfloatmax (floatmax) -- Method on audio configuration object

Set the maximum value for floating sample formats.

Next: Port Objects Prev: al Up: al Top: Top

Window Objects -- Python library reference

Next: Drawing Objects Prev: STDWIN Functions Up: stdwin Top: Top
15.1.2. Window Objects
Window objects are created by stdwin.open(). They are closed by their close() method or when
they are garbage-collected. Window objects have the following methods:

begindrawing () -- Method on window

Return a drawing object, whose methods (described below) allow drawing in the window.

change (rect) -- Method on window

Invalidate the given rectangle; this may cause a draw event.

gettitle () -- Method on window

Returns the window's title string.

getdocsize () -- Method on window

Return a pair of integers giving the size of the document as set by setdocsize().

getorigin () -- Method on window

Return a pair of integers giving the origin of the window with respect to the document.

gettitle () -- Method on window

Return the window's title string.

getwinsize () -- Method on window

Return a pair of integers giving the size of the window.

getwinpos () -- Method on window

Return a pair of integers giving the position of the window's upper left corner (relative to the upper
left corner of the screen).

menucreate (title) -- Method on window

Create a menu object referring to a local menu (a menu that appears only in this window). Methods
of menu objects are described below. Warning: the menu only appears as long as the object
returned by this call exists.

scroll (rect, point) -- Method on window

Scroll the given rectangle by the vector given by the point.

setdocsize (point) -- Method on window

Set the size of the drawing document.

setorigin (point) -- Method on window

Move the origin of the window (its upper left corner) to the given point in the document.

setselection (i, str) -- Method on window

Attempt to set X11 selection number i to the string str. (See stdwin method getselection() for
the meaning of i.) Return true if it succeeds. If succeeds, the window ``owns'' the selection until (a)
another application takes ownership of the selection; or (b) the window is deleted; or (c) the
application clears ownership by calling stdwin.resetselection(i). When another application
takes ownership of the selection, a WE_LOST_SEL event is received for no particular window and

with the selection number as detail. Ignored on the Macintosh.

settimer (dsecs) -- Method on window

Schedule a timer event for the window in dsecs/10 seconds.

settitle (title) -- Method on window

Set the window's title string.

setwincursor (name) -- Method on window

Set the window cursor to a cursor of the given name. It raises the RuntimeError exception if no
cursor of the given name exists. Suitable names include 'ibeam', 'arrow', 'cross',
'watch' and 'plus'. On X11, there are many more (see <X11/cursorfont.h>).

setwinpos (h, v) -- Method on window

Set the the position of the window's upper left corner (relative to the upper left corner of the
screen).

setwinsize (width, height) -- Method on window

Set the window's size.

show (rect) -- Method on window

Try to ensure that the given rectangle of the document is visible in the window.

textcreate (rect) -- Method on window

Create a text-edit object in the document at the given rectangle. Methods of text-edit objects are
described below.

setactive () -- Method on window

Attempt to make this window the active window. If successful, this will generate a WE_ACTIVATE
event (and a WE_DEACTIVATE event in case another window in this application became inactive).

close () -- Method on window

Discard the window object. It should not be used again.

Next: Drawing Objects Prev: STDWIN Functions Up: stdwin Top: Top

FInfo objects -- Python library reference

Prev: alias objects Up: macfs Top: Top
14.6.3. FInfo objects
See Inside Mac for a complete description of what the various fields mean.

Creator -- attribute of FInfo object

The 4-char creator code of the file.

Type -- attribute of FInfo object

The 4-char type code of the file.

Flags -- attribute of FInfo object

The finder flags for the file as 16-bit integer. The bit values in Flags are defined in standard module
MACFS.

Location -- attribute of FInfo object

A Point giving the position of the file's icon in its folder.

Fldr -- attribute of FInfo object

The folder the file is in (as an integer).

Prev: alias objects Up: macfs Top: Top

The Python Debugger -- Python library reference

Next: The Python Profiler Prev: UNIX Specific Services Up: Top Top: Top
9. The Python Debugger
The module pdb defines an interactive source code debugger for Python programs. It supports setting
breakpoints and single stepping at the source line level, inspection of stack frames, source code listing,
and evaluation of arbitrary Python code in the context of any stack frame. It also supports post-mortem
debugging and can be called under program control.

The debugger is extensible --- it is actually defined as a class Pdb. This is currently undocumented but
easily understood by reading the source. The extension interface uses the (also undocumented) modules
bdb and cmd. A primitive windowing version of the debugger also exists --- this is module wdb, which
requires STDWIN (see the chapter on STDWIN specific modules). The debugger's prompt is ``(Pdb) ''.
Typical usage to run a program under control of the debugger is:
>>> import pdb

>>> import mymodule

>>> pdb.run('mymodule.test()')

> <string>(0)?()

(Pdb) continue

> <string>(1)?()

(Pdb) continue

NameError: 'spam'

> <string>(1)?()

(Pdb)

Typical usage to inspect a crashed program is:
>>> import pdb

>>> import mymodule

>>> mymodule.test()

Traceback (innermost last):

    File "<stdin>", line 1, in ?

    File "./mymodule.py", line 4, in test

        test2()

    File "./mymodule.py", line 3, in test2

        print spam

NameError: spam

>>> pdb.pm()

> ./mymodule.py(3)test2()

-> print spam

(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

run (statement[, globals[, locals]]) -- function of module pdb

Execute the statement (given as a string) under debugger control. The debugger prompt appears
before any code is executed; you can set breakpoints and type continue, or you can step
through the statement using step or next (all these commands are explained below). The
optional globals and locals arguments specify the environment in which the code is executed; by
default the dictionary of the module __main__ is used. (See the explanation of the exec
statement or the eval() built-in function.)

runeval (expression[, globals[, locals]]) -- function of module pdb

Evaluate the expression (given as a a string) under debugger control. When runeval() returns, it
returns the value of the expression. Otherwise this function is similar to run().

runcall (function[, argument, ...]) -- function of module pdb

Call the function (a function or method object, not a string) with the given arguments. When
runcall() returns, it returns whatever the function call returned. The debugger prompt appears
as soon as the function is entered.

set_trace () -- function of module pdb

Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given
point in a program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post_mortem (traceback) -- function of module pdb

Enter post-mortem debugging of the given traceback object.

pm () -- function of module pdb

Enter post-mortem debugging of the traceback found in sys.last_traceback.

Menu
Debugger Commands

How It Works

Next: The Python Profiler Prev: UNIX Specific Services Up: Top Top: Top

notes -- Python library reference

Prev: binhex Up: binhex Top: Top
11.12.1. notes
There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the macintosh newline
convention (carriage-return as end of line).

As of this writing, hexbin appears to not work in all cases.

Prev: binhex Up: binhex Top: Top

al -- Python library reference

Next: AL (uppercase) Prev: SGI IRIX Specific Services Up: SGI IRIX Specific Services Top: Top
16.1. Built-in Module al
This module provides access to the audio facilities of the SGI Indy and Indigo workstations. See section
3A of the IRIX man pages for details. You'll need to read those man pages to understand what these
functions do! Some of the functions are not available in IRIX releases before 4.0.5. Again, see the manual
to check whether a specific function is available on your platform.

All functions and methods defined in this module are equivalent to the C functions with `AL' prefixed to
their name.

Symbolic constants from the C header file <audio.h> are defined in the standard module AL, see below.

Warning: the current version of the audio library may dump core when bad argument values are passed
rather than returning an error status. Unfortunately, since the precise circumstances under which this may
happen are undocumented and hard to check, the Python interface can provide no protection against this
kind of problems. (One example is specifying an excessive queue size --- there is no documented upper
limit.)

The module defines the following functions:

openport (name, direction[, config]) -- function of module al

The name and direction arguments are strings. The optional config argument is a configuration
object as returned by al.newconfig(). The return value is an port object; methods of port
objects are described below.

newconfig () -- function of module al

The return value is a new configuration object; methods of configuration objects are described
below.

queryparams (device) -- function of module al

The device argument is an integer. The return value is a list of integers containing the data returned
by ALqueryparams().

getparams (device, list) -- function of module al

The device argument is an integer. The list argument is a list such as returned by queryparams; it
is modified in place (!).

setparams (device, list) -- function of module al

The device argument is an integer. The list argument is a list such as returned by
al.queryparams.

Menu
Configuration Objects

Port Objects

Next: AL (uppercase) Prev: SGI IRIX Specific Services Up: SGI IRIX Specific Services Top: Top

NNTP Objects -- Python library reference

Prev: nntplib Up: nntplib Top: Top
11.6.1. NNTP Objects
NNTP instances have the following methods. The response that is returned as the first item in the return
tuple of almost all methods is the server's response: a string beginning with a three-digit code. If the
server's response indicates an error, the method raises one of the above exceptions.

getwelcome () -- Method on NNTP object

Return the welcome message sent by the server in reply to the initial connection. (This message
sometimes contains disclaimers or help information that may be relevant to the user.)

set_debuglevel (level) -- Method on NNTP object

Set the instance's debugging level. This controls the amount of debugging output printed. The
default, 0, produces no debugging output. A value of 1 produces a moderate amount of debugging
output, generally a single line per request or response. A value of 2 or higher produces the
maximum amount of debugging output, logging each line sent and received on the connection
(including message text).

newgroups (date, time) -- Method on NNTP object

Send a `NEWGROUPS' command. The date argument should be a string of the form "yymmdd"
indicating the date, and time should be a string of the form "hhmmss" indicating the time. Return a
pair (response, groups) where groups is a list of group names that are new since the given
date and time.

newnews (group, date, time) -- Method on NNTP object

Send a `NEWNEWS' command. Here, group is a group name or "*", and date and time have the
same meaning as for newgroups(). Return a pair (response, articles) where articles is a
list of article ids.

list () -- Method on NNTP object

Send a `LIST' command. Return a pair (response, list) where list is a list of tuples. Each
tuple has the form (group, last, first, flag), where group is a group name, last and first
are the last and first article numbers (as strings), and flag is 'y' if posting is allowed, 'n' if not,
and 'm' if the newsgroup is moderated. (Note the ordering: last, first.)

group (name) -- Method on NNTP object

Send a `GROUP' command, where name is the group name. Return a tuple (response, count,
first, last, name) where count is the (estimated) number of articles in the group, first is the
first article number in the group, last is the last article number in the group, and name is the group
name. The numbers are returned as strings.

help () -- Method on NNTP object

Send a `HELP' command. Return a pair (response, list) where list is a list of help strings.

stat (id) -- Method on NNTP object

Send a `STAT' command, where id is the message id (enclosed in `<' and `>') or an article number
(as a string). Return a triple (varresponse, number, id) where number is the article number
(as a string) and id is the article id (enclosed in `<' and `>').

next () -- Method on NNTP object

Send a `NEXT' command. Return as for stat().

last () -- Method on NNTP object

Send a `LAST' command. Return as for stat().

head (id) -- Method on NNTP object

Send a `HEAD' command, where id has the same meaning as for stat(). Return a pair
(response, list) where list is a list of the article's headers (an uninterpreted list of lines,
without trailing newlines).

body (id) -- Method on NNTP object

Send a `BODY' command, where id has the same meaning as for stat(). Return a pair
(response, list) where list is a list of the article's body text (an uninterpreted list of lines,
without trailing newlines).

article (id) -- Method on NNTP object

Send a `ARTICLE' command, where id has the same meaning as for stat(). Return a pair
(response, list) where list is a list of the article's header and body text (an uninterpreted list
of lines, without trailing newlines).

slave () -- Method on NNTP object

Send a `SLAVE' command. Return the server's response.

xhdr (header, string) -- Method on NNTP object

Send an `XHDR' command. This command is not defined in the RFC but is a common extension.
The header argument is a header keyword, e.g. "subject". The string argument should have the
form "first-last" where first and last are the first and last article numbers to search. Return a
pair (response, list), where list is a list of pairs (id, text), where id is an article id (as a
string) and text is the text of the requested header for that article.

post (file) -- Method on NNTP object

Post an article using the `POST' command. The file argument is an open file object which is read
until EOF using its readline() method. It should be a well-formed news article, including the
required headers. The post() method automatically escapes lines beginning with `.'.

ihave (id, file) -- Method on NNTP object

Send an `IHAVE' command. If the response is not an error, treat file exactly as for the post()
method.

quit () -- Method on NNTP object

Send a `QUIT' command and close the connection. Once this method has been called, no other
methods of the NNTP object should be called.

Prev: nntplib Up: nntplib Top: Top

CGI Example -- Python library reference

Prev: cgi Up: cgi Top: Top
11.1.1. Example
This example assumes that you have a WWW server up and running, e.g. NCSA's httpd.

Place the following file in a convenient spot in the WWW server's directory tree. E.g., if you place it in the
subdirectory test of the root directory and call it test.html, its URL will be
http://yourservername/test/test.html.
<TITLE>Test Form Input</TITLE>

<H1>Test Form Input</H1>

<FORM METHOD="POST" ACTION="/cgi-bin/test.py">

<INPUT NAME=Name> (Name)

<INPUT NAME=Address> (Address)

<INPUT TYPE=SUBMIT>

</FORM>

Selecting this file's URL from a forms-capable browser such as Mosaic or Netscape will bring up a simple
form with two text input fields and a ``submit'' button.

But wait. Before pressing ``submit'', a script that responds to the form must also be installed. The test file
as shown assumes that the script is called test.py and lives in the server's cgi-bin directory. Here's the
test script:
#!/usr/local/bin/python

import cgi

print "Content-type: text/html"

print  # End of headers!

print "<TITLE>Test Form Output</TITLE>"

print "<H1>Test Form Output</H1>"

form = cgi.SvFormContentDict()                    # Load the form

name = addr = None  # Default: no name and address

Extract name and address from the form, if given

if form.has_key('Name'):

                name = form['Name']

if form.has_key('Address'):

                addr = form['Address']

               

Print an unnumbered list of the name and address, if present

print ""

if name is not None:

                print "Name:", cgi.escape(name)

if addr is not None:

                print "Address:", cgi.escape(addr)

print ""

The script should be made executable (`chmod +x script'). If the Python interpreter is not located at
/usr/local/bin/python but somewhere else, the first line of the script should be modified accordingly.

Now that everything is installed correctly, we can try out the form. Bring up the test form in your WWW
browser, fill in a name and address in the form, and press the ``submit'' button. The script should now run
and its output is sent back to your browser. This should roughly look as follows:

Test Form Output
 Name: the name you entered

 Address: the address you entered

If you didn't enter a name or address, the corresponding line will be missing (since the browser doesn't
send empty form fields to the server).
Prev: cgi Up: cgi Top: Top

Other Built-in Types -- Python library reference

Next: Special Attributes Prev: Mapping Types Up: Types Top: Top
2.1.7. Other Built-in Types
The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Menu
Modules

Classes and Instances

Functions

Methods

Code Objects

Type Objects

The Null Object

File Objects

Internal Objects

shelve -- Python library reference

Next: copy Prev: pickle Up: Python Services Top: Top
3.5. Standard Module shelve
A ``shelf'' is a persistent, dictionary-like object. The difference with ``dbm'' databases is that the values
(not the keys!) in a shelf can be essentially arbitrary Python objects --- anything that the pickle module
can handle. This includes most class instances, recursive data types, and objects containing lots of
shared sub-objects. The keys are ordinary strings.

To summarize the interface (key is a string, data is an arbitrary object):

import shelve

d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

d[key] = data      # store data at key (overwrites old data if

                                # using an existing key)

data = d[key]      # retrieve data at key (raise KeyError if no

                                # such key)

del d[key]            # delete data stored at key (raises KeyError

                                # if no such key)

flag = d.has_key(key)      # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close()              # close it

Restrictions:

 The choice of which database package will be used (e.g. dbm or gdbm) depends on which
interface is available. Therefore it isn't safe to open the database directly using dbm. The database
is also (unfortunately) subject to the limitations of dbm, if it is used --- this means that (the pickled
representation of) the objects stored in the database should be fairly small, and in rare cases key
collisions may cause the database to refuse updates.

 Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush
changes to disk.

 The shelve module does not support concurrent read/write access to shelved objects. (Multiple
simultaneous read accesses are safe.) When a program has a shelf open for writing, no other program
should have it open for reading or writing. UNIX file locking can be used to solve this, but this differs
across UNIX versions and requires knowledge about the database implementation used.

Next: copy Prev: pickle Up: Python Services Top: Top

Bit-string Operations -- Python library reference

Prev: Numeric Types Up: Numeric Types Top: Top
2.1.4.1. Bit-string Operations on Integer Types
Plain and long integer types support additional operations that make sense only for bit-strings. Negative
numbers are treated as their 2's complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than
the comparisons; the unary operation `~' has the same priority as the other unary numeric operations (`+'
and `-').

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the
same priority):

Operation

Result --- Notes
x | y

bitwise or of x and yx ^ y

bitwise exclusive or of x and yx & y

bitwise and of x and yx << n

x shifted left by n bits --- (1), (2)
x >> n

x shifted right by n bits --- (1), (3) @hline@hline
~x

the bits of x inverted

Notes:

(1)
Negative shift counts are illegal.

(2)
A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.

(3)
A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

Prev: Numeric Types Up: Numeric Types Top: Top

Example -- Python library reference

Next: AST Objects Prev: Exceptions and Error Handling Up: parser Top: Top
3.9.2. Example
A simple example:
>>> import parser

>>> ast = parser.expr('a + 5')

>>> code = parser.compileast(ast)

>>> a = 5

>>> eval(code)

10

Next: AST Objects Prev: Exceptions and Error Handling Up: parser Top: Top

urlparse -- Python library reference

Next: htmllib Prev: nntplib Up: Internet and WWW Top: Top
11.7. Standard Module urlparse
This module defines a standard interface to break URL strings up in components (addessing scheme,
network location, path etc.), to combine the components back into a URL string, and to convert a ``relative
URL'' to an absolute URL given a ``base URL''.

The module has been designed to match the current Internet draft on Relative Uniform Resource
Locators (and discovered a bug in an earlier draft!).

It defines the following functions:

urlparse (urlstring[, default_scheme[, allow_fragments]]) -- function of module urlparse

Parse a URL into 6 components, returning a 6-tuple: (addressing scheme, network location, path,
parameters, query, fragment identifier). This corresponds to the general structure of a URL:
scheme://netloc/path;parameters?query#fragment. Each tuple item is a string, possibly
empty. The components are not broken up in smaller parts (e.g. the network location is a single
string), and % escapes are not expanded. The delimiters as shown above are not part of the tuple
items, except for a leading slash in the path component, which is retained if present.

Example:
urlparse('http://www.cwi.nl:80/%7Eguido/Python.html')

yields the tuple
('http', 'www.cwi.nl:80', '/%7Eguido/Python.html', '', '', '')

If the default_scheme argument is specified, it gives the default addressing scheme, to be used only if the
URL string does not specify one. The default value for this argument is the empty string.

If the allow_fragments argument is zero, fragment identifiers are not allowed, even if the URL's
addressing scheme normally does support them. The default value for this argument is 1.

urlunparse (tuple) -- function of module urlparse

Construct a URL string from a tuple as returned by urlparse. This may result in a slightly
different, but equivalent URL, if the URL that was parsed originally had redundant delimiters, e.g.
a ? with an empty query (the draft states that these are equivalent).

urljoin (base, url[, allow_fragments]) -- function of module urlparse

Construct a full (``absolute'') URL by combining a ``base URL'' (base) with a ``relative URL'' (url).
Informally, this uses components of the base URL, in particular the addressing scheme, the
network location and (part of) the path, to provide missing components in the relative URL.

Example:
urljoin('http://www.cwi.nl/%7Eguido/Python.html', 'FAQ.html')

yields the string
'http://www.cwi.nl/%7Eguido/FAQ.html'

The allow_fragments argument has the same meaning as for urlparse.

Next: htmllib Prev: nntplib Up: Internet and WWW Top: Top

Mapping Types -- Python library reference

Next: Other Built-in Types Prev: Sequence Types Up: Types Top: Top
2.1.6. Mapping Types
A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are mutable
objects. There is currently only one standard mapping type, the dictionary. A dictionary's keys are almost
arbitrary values. The only types of values not acceptable as keys are values containing lists or
dictionaries or other mutable types that are compared by value rather than by object identity. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g. 1
and 1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key:,varvalue pairs within braces, for
example: {'jack':,4098, 'sjoerd':,4127} or {4098:,'jack', 4127:,'sjoerd'}.

The following operations are defined on mappings (where a is a mapping, k is a key and x is an arbitrary
object):

Operation

Result --- Notes
len(a)

the number of items in a
a[k]

the item of a with key k --- (1)
a[k] = x

set a[k] to x

del a[k]
remove a[k] from a --- (1)

a.items()

a copy of a's list of (key, item) pairs --- (2)
a.keys()

a copy of a's list of keys --- (2)
a.values()

a copy of a's list of values --- (2)
a.has_key(k)

1 if a has a key k, else 0
Notes:

(1)
Raises an exception if k is not in the map.

(2)
Keys and values are listed in random order.

Next: Other Built-in Types Prev: Sequence Types Up: Types Top: Top

Sequence Types -- Python library reference

Next: Mapping Types Prev: Numeric Types Up: Types Top: Top
2.1.5. Sequence Types
There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quotes: 'xyzzy', "frobozz". See Chapter 2 of the
Python Reference Manual for more about string literals. Lists are constructed with square brackets,
separating items with commas: [a, b, c]. Tuples are constructed by the comma operator (not within
square brackets), with or without enclosing parentheses, but an empty tuple must have the enclosing
parentheses, e.g., a, b, c or (). A single item tuple must have a trailing comma, e.g., (d,).
Sequence types support the following operations. The `in' and `not,in' operations have the same
priorities as the comparison operations. The `+' and `*' operations have the same priority as the
corresponding numeric operations.(1)

This table lists the sequence operations sorted in ascending priority (operations in the same box have the
same priority). In the table, s and t are sequences of the same type; n, i and j are integers:

Operation

Result --- Notes
x in s

1 if an item of s is equal to x, else 0
x not in s

0 if an item of s is equal to x, else 1s + t
the concatenation of s and ts * n, n * s

n copies of s concatenateds[i]

i'th item of s, origin 0 --- (1)
s[i:j]

slice of s from i to j --- (1), (2)len(s)
length of s

min(s)
smallest item of s

max(s)
largest item of s

Notes:

(1)
If i or j is negative, the index is relative to the end of the string, i.e., len(s) + i or len(s) + j
is substituted. But note that -0 is still 0.

(2)
The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. If
i or j is greater than len(s), use len(s). If i is omitted, use 0. If j is omitted, use len(s). If i is
greater than or equal to j, the slice is empty.

Menu
More String Operations

Mutable Sequence Types

---------- Footnotes ----------
(1) They must have since the parser can't tell the type of the operands.

Next: Mapping Types Prev: Numeric Types Up: Types Top: Top

Exceptions -- Python library reference

Next: Built-in Functions Prev: Types Up: Built-in Objects Top: Top
2.2. Built-in Exceptions
Exceptions are string objects. Two distinct string objects with the same value are different exceptions.
This is done to force programmers to use exception names rather than their string value when specifying
exception handlers. The string value of all built-in exceptions is their name, but this is not a requirement
for user-defined exceptions or exceptions defined by library modules.

The following exceptions can be generated by the interpreter or built-in functions. Except where
mentioned, they have an `associated value' indicating the detailed cause of the error. This may be a string
or a tuple containing several items of information (e.g., an error code and a string explaining the code).

User code can raise built-in exceptions. This can be used to test an exception handler or to report an
error condition `just like' the situation in which the interpreter raises the same exception; but beware that
there is nothing to prevent user code from raising an inappropriate error.

AttributeError -- built-in exception

Raised when an attribute reference or assignment fails. (When an object does not support attribute
references or attribute assignments at all, TypeError is raised.)

EOFError -- built-in exception

Raised when one of the built-in functions (input() or raw_input()) hits an end-of-file condition
(EOF) without reading any data. (N.B.: the read() and readline() methods of file objects
return an empty string when they hit EOF.) No associated value.

IOError -- built-in exception

Raised when an I/O operation (such as a print statement, the built-in open() function or a
method of a file object) fails for an I/O-related reason, e.g., `file not found', `disk full'.

ImportError -- built-in exception

Raised when an import statement fails to find the module definition or when a from ...
import fails to find a name that is to be imported.

IndexError -- built-in exception

Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not a plain integer, TypeError is raised.)

KeyError -- built-in exception

Raised when a mapping (dictionary) key is not found in the set of existing keys.

KeyboardInterrupt -- built-in exception

Raised when the user hits the interrupt key (normally Control-C or DEL). During execution, a
check for interrupts is made regularly. Interrupts typed when a built-in function input() or
raw_input()) is waiting for input also raise this exception. No associated value.

MemoryError -- built-in exception

Raised when an operation runs out of memory but the situation may still be rescued (by deleting
some objects). The associated value is a string indicating what kind of (internal) operation ran out
of memory. Note that because of the underlying memory management architecture (C's malloc()
function), the interpreter may not always be able to completely recover from this situation; it
nevertheless raises an exception so that a stack traceback can be printed, in case a run-away

program was the cause.

NameError -- built-in exception

Raised when a local or global name is not found. This applies only to unqualified names. The
associated value is the name that could not be found.

OverflowError -- built-in exception

Raised when the result of an arithmetic operation is too large to be represented. This cannot occur
for long integers (which would rather raise MemoryError than give up). Because of the lack of
standardization of floating point exception handling in C, most floating point operations also aren't
checked. For plain integers, all operations that can overflow are checked except left shift, where
typical applications prefer to drop bits than raise an exception.

RuntimeError -- built-in exception

Raised when an error is detected that doesn't fall in any of the other categories. The associated
value is a string indicating what precisely went wrong. (This exception is a relic from a previous
version of the interpreter; it is not used any more except by some extension modules that haven't
been converted to define their own exceptions yet.)

SyntaxError -- built-in exception

Raised when the parser encounters a syntax error. This may occur in an import statement, in an
exec statement, in a call to the built-in function eval() or input(), or when reading the initial
script or standard input (also interactively).

SystemError -- built-in exception

Raised when the interpreter finds an internal error, but the situation does not look so serious to
cause it to abandon all hope. The associated value is a string indicating what went wrong (in low-
level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
string of the Python interpreter (sys.version; it is also printed at the start of an interactive Python
session), the exact error message (the exception's associated value) and if possible the source of the
program that triggered the error.

SystemExit -- built-in exception

This exception is raised by the sys.exit() function. When it is not handled, the Python
interpreter exits; no stack traceback is printed. If the associated value is a plain integer, it specifies
the system exit status (passed to C's exit() function); if it is None, the exit status is zero; if it
has another type (such as a string), the object's value is printed and the exit status is one.

A call to sys.exit is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of
losing control. The posix._exit() function can be used if it is absolutely positively necessary to exit
immediately (e.g., after a fork() in the child process).

TypeError -- built-in exception

Raised when a built-in operation or function is applied to an object of inappropriate type. The
associated value is a string giving details about the type mismatch.

ValueError -- built-in exception

Raised when a built-in operation or function receives an argument that has the right type but an
inappropriate value, and the situation is not described by a more precise exception such as
IndexError.

ZeroDivisionError -- built-in exception

Raised when the second argument of a division or modulo operation is zero. The associated value
is a string indicating the type of the operands and the operation.

Next: Built-in Functions Prev: Types Up: Built-in Objects Top: Top

macpath -- Python library reference

Next: ctb Prev: mac Up: Macintosh Specific Services Top: Top
14.2. Standard Module macpath
This module provides a subset of the pathname manipulation functions available from the optional
standard module posixpath. It is best accessed through the more portable standard module os, as
os.path.

The following functions are available in this module: normcase, isabs, join, split, isdir,
isfile, exists.
Next: ctb Prev: mac Up: Macintosh Specific Services Top: Top

Standard Windowing Interface -- Python library reference

Next: SGI IRIX Specific Services Prev: Macintosh Specific Services Up: Top Top: Top
15. Standard Windowing Interface
The modules in this chapter are available only on those systems where the STDWIN library is available.
STDWIN runs on UNIX under X11 and on the Macintosh. See CWI report CS-R8817.

Warning: Using STDWIN is not recommended for new applications. It has never been ported to Microsoft
Windows or Windows NT, and for X11 or the Macintosh it lacks important functionality --- in particular, it
has no tools for the construction of dialogs. For most platforms, alternative, native solutions exist (though
none are currently documented in this manual): Tkinter for UNIX under X11, native Xt with Motif or Athena
widgets for UNIX under X11, Win32 for Windows and Windows NT, and a collection of native toolkit
interfaces for the Macintosh.

Menu
stdwin

stdwinevents

rect

Next: SGI IRIX Specific Services Prev: Macintosh Specific Services Up: Top Top: Top

posixpath -- Python library reference

Next: pwd Prev: posix Up: UNIX Specific Services Top: Top
8.2. Standard Module posixpath
This module implements some useful functions on POSIX pathnames.

Do not import this module directly. Instead, import the module os and use os.path.

basename (p) -- function of module posixpath

Return the base name of pathname p. This is the second half of the pair returned by
posixpath.split(p).

commonprefix (list) -- function of module posixpath

Return the longest string that is a prefix of all strings in list. If list is empty, return the empty string
('').

exists (p) -- function of module posixpath

Return true if p refers to an existing path.

expanduser (p) -- function of module posixpath

Return the argument with an initial component of `~' or `~user' replaced by that user's home
directory. An initial `~' is replaced by the environment variable $HOME; an initial `~user' is looked
up in the password directory through the built-in module pwd. If the expansion fails, or if the path
does not begin with a tilde, the path is returned unchanged.

expandvars (p) -- function of module posixpath

Return the argument with environment variables expanded. Substrings of the form `$name' or `$
{name}' are replaced by the value of environment variable name. Malformed variable names and
references to non-existing variables are left unchanged.

isabs (p) -- function of module posixpath

Return true if p is an absolute pathname (begins with a slash).

isfile (p) -- function of module posixpath

Return true if p is an existing regular file. This follows symbolic links, so both islink() and
isfile() can be true for the same path.

isdir (p) -- function of module posixpath

Return true if p is an existing directory. This follows symbolic links, so both islink() and
isdir() can be true for the same path.

islink (p) -- function of module posixpath

Return true if p refers to a directory entry that is a symbolic link. Always false if symbolic links are
not supported.

ismount (p) -- function of module posixpath

Return true if pathname p is a mount point: a point in a file system where a different file system has
been mounted. The function checks whether p's parent, p/.., is on a different device than p, or
whether p/.. and p point to the same i-node on the same device --- this should detect mount points
for all UNIX and POSIX variants.

join (p, q) -- function of module posixpath

Join the paths p and q intelligently: If q is an absolute path, the return value is q. Otherwise, the
concatenation of p and q is returned, with a slash ('/') inserted unless p is empty or ends in a
slash.

normcase (p) -- function of module posixpath

Normalize the case of a pathname. This returns the path unchanged; however, a similar function in
macpath converts upper case to lower case.

samefile (p, q) -- function of module posixpath

Return true if both pathname arguments refer to the same file or directory (as indicated by device
number and i-node number). Raise an exception if a stat call on either pathname fails.

split (p) -- function of module posixpath

Split the pathname p in a pair (head, tail), where tail is the last pathname component and
head is everything leading up to that. If p ends in a slash (except if it is the root), the trailing slash is
removed and the operation applied to the result; otherwise, join(head, tail) equals p. The
tail part never contains a slash. Some boundary cases: if p is the root, head equals p and tail is
empty; if p is empty, both head and tail are empty; if p contains no slash, head is empty and tail
equals p.

splitext (p) -- function of module posixpath

Split the pathname p in a pair (root, ext) such that root + ext == p, the last component
of root contains no periods, and ext is empty or begins with a period.

walk (p, visit, arg) -- function of module posixpath

Calls the function visit with arguments (arg, dirname, names) for each directory in the
directory tree rooted at p (including p itself, if it is a directory). The argument dirname specifies the
visited directory, the argument names lists the files in the directory (gotten from
posix.listdir(dirname), so including `.' and `..'). The visit function may modify names to
influence the set of directories visited below dirname, e.g., to avoid visiting certain parts of the tree.
(The object referred to by names must be modified in place, using del or slice assignment.)

Next: pwd Prev: posix Up: UNIX Specific Services Top: Top

string -- Python library reference

Next: regex Prev: String Services Up: String Services Top: Top
4.1. Standard Module string
This module defines some constants useful for checking character classes and some useful string
functions. See the modules regex and regsub for string functions based on regular expressions.

The constants defined in this module are are:

digits -- data of module string

The string '0123456789'.

hexdigits -- data of module string

The string '0123456789abcdefABCDEF'.

letters -- data of module string

The concatenation of the strings lowercase and uppercase described below.

lowercase -- data of module string

A string containing all the characters that are considered lowercase letters. On most systems this is
the string 'abcdefghijklmnopqrstuvwxyz'. Do not change its definition --- the effect on the
routines upper and swapcase is undefined.

octdigits -- data of module string

The string '01234567'.

uppercase -- data of module string

A string containing all the characters that are considered uppercase letters. On most systems this is
the string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. Do not change its definition --- the effect on the
routines lower and swapcase is undefined.

whitespace -- data of module string

A string containing all characters that are considered whitespace. On most systems this includes
the characters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition
--- the effect on the routines strip and split is undefined.

The functions defined in this module are:

atof (s) -- function of module string

Convert a string to a floating point number. The string must have the standard syntax for a floating
point literal in Python, optionally preceded by a sign (`+' or `-').

atoi (s[, base]) -- function of module string

Convert string s to an integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (`+' or `-'). The base defaults to 10. If it is 0, a default base is chosen
depending on the leading characters of the string (after stripping the sign): `0x' or `0X' means 16,
`0' means 8, anything else means 10. If base is 16, a leading `0x' or `0X' is always accepted.
(Note: for a more flexible interpretation of numeric literals, use the built-in function eval().)

atol (s[, base]) -- function of module string

Convert string s to a long integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (`+' or `-'). The base argument has the same meaning as for

atoi(). A trailing `l' or `L' is not allowed.

expandtabs (s, tabsize) -- function of module string

Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column
and the given tab size. The column number is reset to zero after each newline occurring in the
string. This doesn't understand other non-printing characters or escape sequences.

find (s, sub[, start]) -- function of module string

Return the lowest index in s not smaller than start where the substring sub is found. Return -1
when sub does not occur as a substring of s with index at least start. If start is omitted, it defaults to
0. If start is negative, len(s) is added.

rfind (s, sub[, start]) -- function of module string

Like find but find the highest index.

index (s, sub[, start]) -- function of module string

Like find but raise ValueError when the substring is not found.

rindex (s, sub[, start]) -- function of module string

Like rfind but raise ValueError when the substring is not found.

count (s, sub[, start]) -- function of module string

Return the number of (non-overlapping) occurrences of substring sub in string s with index at least
start. If start is omitted, it defaults to 0. If start is negative, len(s) is added.

lower (s) -- function of module string

Convert letters to lower case.

split (s) -- function of module string

Return a list of the whitespace-delimited words of the string s.

splitfields (s, sep) -- function of module string

Return a list containing the fields of the string s, using the string sep as a separator. The list will
have one more items than the number of non-overlapping occurrences of the separator in the
string. Thus, string.splitfields(s, ' ') is not the same as string.split(s), as the
latter only returns non-empty words. As a special case, splitfields(s, '') returns [s], for
any string s. (See also regsub.split().)

join (words) -- function of module string

Concatenate a list or tuple of words with intervening spaces.

joinfields (words, sep) -- function of module string

Concatenate a list or tuple of words with intervening separators. It is always true that
string.joinfields(string.splitfields(t, sep), sep) equals t.

strip (s) -- function of module string

Remove leading and trailing whitespace from the string s.

swapcase (s) -- function of module string

Convert lower case letters to upper case and vice versa.

translate (s, table) -- function of module string

Translate the characters from s using table, which must be a 256-character string giving the
translation for each character value, indexed by its ordinal.

upper (s) -- function of module string

Convert letters to upper case.

ljust (s, width) -- function of module string

rjust (s, width) -- function of module string

center (s, width) -- function of module string

These functions respectively left-justify, right-justify and center a string in a field of given width.
They return a string that is at least width characters wide, created by padding the string s with
spaces until the given width on the right, left or both sides. The string is never truncated.

zfill (s, width) -- function of module string

Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with
a sign are handled correctly.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in
module strop. However, you should never import the latter module directly. When string discovers
that strop exists, it transparently replaces parts of itself with the implementation from strop. After
initialization, there is no overhead in using string instead of strop.
Next: regex Prev: String Services Up: String Services Top: Top

pwd -- Python library reference

Next: grp Prev: posixpath Up: UNIX Specific Services Top: Top
8.3. Built-in Module pwd
This module provides access to the UNIX password database. It is available on all UNIX versions.

Password database entries are reported as 7-tuples containing the following items from the password
database (see <pwd.h>), in order: pw_name, pw_passwd, pw_uid, pw_gid, pw_gecos, pw_dir,
pw_shell. The uid and gid items are integers, all others are strings. An exception is raised if the entry
asked for cannot be found.

It defines the following items:

getpwuid (uid) -- function of module pwd

Return the password database entry for the given numeric user ID.

getpwnam (name) -- function of module pwd

Return the password database entry for the given user name.

getpwall () -- function of module pwd

Return a list of all available password database entries, in arbitrary order.

Next: grp Prev: posixpath Up: UNIX Specific Services Top: Top

imageop -- Python library reference

Next: aifc Prev: audioop Up: Multimedia Services Top: Top
12.2. Built-in Module imageop
The imageop module contains some useful operations on images. It operates on images consisting of 8
or 32 bit pixels stored in Python strings. This is the same format as used by gl.lrectwrite and the
imgfile module.

The module defines the following variables and functions:

error -- exception of module imageop

This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop (image, psize, width, height, x0, y0, x1, y1) -- function of module imageop

Return the selected part of image, which should by width by height in size and consist of pixels of
psize bytes. x0, y0, x1 and y1 are like the lrectread parameters, i.e. the boundary is included in
the new image. The new boundaries need not be inside the picture. Pixels that fall outside the old
image will have their value set to zero. If x0 is bigger than x1 the new image is mirrored. The same
holds for the y coordinates.

scale (image, psize, width, height, newwidth, newheight) -- function of module imageop

Return image scaled to size newwidth by newheight. No interpolation is done, scaling is done by
simple-minded pixel duplication or removal. Therefore, computer-generated images or dithered
images will not look nice after scaling.

tovideo (image, psize, width, height) -- function of module imageop

Run a vertical low-pass filter over an image. It does so by computing each destination pixel as the
average of two vertically-aligned source pixels. The main use of this routine is to forestall excessive
flicker if the image is displayed on a video device that uses interlacing, hence the name.

grey2mono (image, width, height, threshold) -- function of module imageop

Convert a 8-bit deep greyscale image to a 1-bit deep image by tresholding all the pixels. The
resulting image is tightly packed and is probably only useful as an argument to mono2grey.

dither2mono (image, width, height) -- function of module imageop

Convert an 8-bit greyscale image to a 1-bit monochrome image using a (simple-minded) dithering
algorithm.

mono2grey (image, width, height, p0, p1) -- function of module imageop

Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels that are zero-
valued on input get value p0 on output and all one-value input pixels get value p1 on output. To
convert a monochrome black-and-white image to greyscale pass the values 0 and 255
respectively.

grey2grey4 (image, width, height) -- function of module imageop

Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

grey2grey2 (image, width, height) -- function of module imageop

Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

dither2grey2 (image, width, height) -- function of module imageop

Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As for dither2mono,

the dithering algorithm is currently very simple.

grey42grey (image, width, height) -- function of module imageop

Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey (image, width, height) -- function of module imageop

Convert a 2-bit greyscale image to an 8-bit greyscale image.

Next: aifc Prev: audioop Up: Multimedia Services Top: Top

regex -- Python library reference

Next: regsub Prev: string Up: String Services Top: Top
4.2. Built-in Module regex
This module provides regular expression matching operations similar to those found in Emacs. It is
always available.

By default the patterns are Emacs-style regular expressions, with one exception. There is a way to
change the syntax to match that of several well-known UNIX utilities. The exception is that Emacs' `\s'
pattern is not supported, since the original implementation references the Emacs syntax tables.

This module is 8-bit clean: both patterns and strings may contain null bytes and characters whose high bit
is set.

Please note: There is a little-known fact about Python string literals which means that you don't usually
have to worry about doubling backslashes, even though they are used to escape special characters in
string literals as well as in regular expressions. This is because Python doesn't remove backslashes from
string literals if they are followed by an unrecognized escape character. However, if you want to include a
literal backslash in a regular expression represented as a string literal, you have to quadruple it. E.g. to
extract LaTeX `\section{...}' headers from a document, you can use this pattern: '\\\\
section{\(.*\)}'.

The module defines these functions, and an exception:

match (pattern, string) -- function of module regex

Return how many characters at the beginning of string match the regular expression pattern.
Return -1 if the string does not match the pattern (this is different from a zero-length match!).

search (pattern, string) -- function of module regex

Return the first position in string that matches the regular expression pattern. Return -1 if no
position in the string matches the pattern (this is different from a zero-length match anywhere!).

compile (pattern[, translate]) -- function of module regex

Compile a regular expression pattern into a regular expression object, which can be used for
matching using its match and search methods, described below. The optional argument
translate, if present, must be a 256-character string indicating how characters (both of the pattern
and of the strings to be matched) are translated before comparing them; the i-th element of the
string gives the translation for the character with ASCII code i. This can be used to implement
case-insensitive matching; see the casefold data item below.

The sequence
prog = regex.compile(pat)

result = prog.match(str)

is equivalent to
result = regex.match(pat, str)

but the version using compile() is more efficient when multiple regular expressions are used
concurrently in a single program. (The compiled version of the last pattern passed to regex.match() or
regex.search() is cached, so programs that use only a single regular expression at a time needn't
worry about compiling regular expressions.)

set_syntax (flags) -- function of module regex

Set the syntax to be used by future calls to compile, match and search. (Already compiled
expression objects are not affected.) The argument is an integer which is the OR of several flag
bits. The return value is the previous value of the syntax flags. Names for the flags are defined in
the standard module regex_syntax; read the file regex_syntax.py for more information.

symcomp (pattern[, translate]) -- function of module regex

This is like compile, but supports symbolic group names: if a parenthesis-enclosed group begins
with a group name in angular brackets, e.g. '\(<id>[a-z][a-z0-9]*\)', the group can be
referenced by its name in arguments to the group method of the resulting compiled regular
expression object, like this: p.group('id'). Group names may contain alphanumeric characters
and '_' only.

error -- exception of module regex

Exception raised when a string passed to one of the functions here is not a valid regular expression
(e.g., unmatched parentheses) or when some other error occurs during compilation or matching. (It
is never an error if a string contains no match for a pattern.)

casefold -- data of module regex

A string suitable to pass as translate argument to compile to map all upper case characters to
their lowercase equivalents.

Compiled regular expression objects support these methods:

match (string[, pos]) -- Method on regex

Return how many characters at the beginning of string match the compiled regular expression.
Return -1 if the string does not match the pattern (this is different from a zero-length match!).

The optional second parameter pos gives an index in the string where the search is to start; it defaults to
0. This is not completely equivalent to slicing the string; the '^' pattern character matches at the real
begin of the string and at positions just after a newline, not necessarily at the index where the search is to
start.

search (string[, pos]) -- Method on regex

Return the first position in string that matches the regular expression pattern. Return -1 if no
position in the string matches the pattern (this is different from a zero-length match anywhere!).

The optional second parameter has the same meaning as for the match method.

group (index, index, ...) -- Method on regex

This method is only valid when the last call to the match or search method found a match. It
returns one or more groups of the match. If there is a single index argument, the result is a single
string; if there are multiple arguments, the result is a tuple with one item per argument. If the index
is zero, the corresponding return value is the entire matching string; if it is in the inclusive range
[1..99], it is the string matching the the corresponding parenthesized group (using the default
syntax, groups are parenthesized using *(and *)). If no such group exists, the corresponding
result is None.

If the regular expression was compiled by symcomp instead of compile, the index arguments may also
be strings identifying groups by their group name.

Compiled regular expressions support these data attributes:

regs -- attribute of regex

When the last call to the match or search method found a match, this is a tuple of pairs of
indices corresponding to the beginning and end of all parenthesized groups in the pattern. Indices
are relative to the string argument passed to match or search. The 0-th tuple gives the
beginning and end or the whole pattern. When the last match or search failed, this is None.

last -- attribute of regex

When the last call to the match or search method found a match, this is the string argument
passed to that method. When the last match or search failed, this is None.

translate -- attribute of regex

This is the value of the translate argument to regex.compile that created this regular
expression object. If the translate argument was omitted in the regex.compile call, this is
None.

givenpat -- attribute of regex

The regular expression pattern as passed to compile or symcomp.

realpat -- attribute of regex

The regular expression after stripping the group names for regular expressions compiled with
symcomp. Same as givenpat otherwise.

groupindex -- attribute of regex

A dictionary giving the mapping from symbolic group names to numerical group indices for regular
expressions compiled with symcomp. None otherwise.

Next: regsub Prev: string Up: String Services Top: Top

copy -- Python library reference

Next: marshal Prev: shelve Up: Python Services Top: Top
3.6. Standard Module copy
This module provides generic (shallow and deep) copying operations.

Interface summary:
import copy

x = copy.copy(y)                # make a shallow copy of y

x = copy.deepcopy(y)        # make a deep copy of y

For module specific errors, copy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that
contain other objects, like lists or class instances):

 A shallow copy constructs a new compound object and then (to the extent possible) inserts
references into it to the objects found in the original.

 A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects
found in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

 Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves)
may cause a recursive loop.

 Because deep copy copies everything it may copy too much, e.g. administrative data structures that
should be shared even between copies.

Python's deepcopy() operation avoids these problems by:

 keeping a table of objects already copied during the current copying pass; and

 letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, nor stack trace, stack frame, nor
file, socket, window, nor array, nor any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define
methods called __getinitargs__(), __getstate__() and __setstate__(). See the
description of module pickle for information on these methods.
Next: marshal Prev: shelve Up: Python Services Top: Top

How It Works -- Python library reference

Prev: Debugger Commands Up: The Python Debugger Top: Top
9.2. How It Works
Some changes were made to the interpreter:

 sys.settrace(func) sets the global trace function

 there can also a local trace function (see later)

Trace functions have three arguments: (frame, event, arg)

frame

is the current stack frame

event
is a string: 'call', 'line', 'return' or 'exception'

arg
is dependent on the event type

A trace function should return a new trace function or None. Class methods are accepted (and most
useful!) as trace methods.

The events have the following meaning:
'call'

A function is called (or some other code block entered). The global trace function is called; arg is
the argument list to the function; the return value specifies the local trace function.

'line'
The interpreter is about to execute a new line of code (sometimes multiple line events on one line
exist). The local trace function is called; arg in None; the return value specifies the new local trace
function.

'return'
A function (or other code block) is about to return. The local trace function is called; arg is the value
that will be returned. The trace function's return value is ignored.

'exception'
An exception has occurred. The local trace function is called; arg is a triple (exception, value,
traceback); the return value specifies the new local trace function

Note that as an exception is propagated down the chain of callers, an 'exception' event is generated
at each level.

Stack frame objects have the following read-only attributes:

f_code
the code object being executed

f_lineno
the current line number (-1 for 'call' events)

f_back
the stack frame of the caller, or None

f_locals
dictionary containing local name bindings

f_globals
dictionary containing global name bindings

Code objects have the following read-only attributes:

co_code
the code string

co_names
the list of names used by the code

co_consts
the list of (literal) constants used by the code

co_filename
the filename from which the code was compiled

Prev: Debugger Commands Up: The Python Debugger Top: Top

types -- Python library reference

Next: traceback Prev: sys Up: Python Services Top: Top
3.2. Standard Module types
This module defines names for all object types that are used by the standard Python interpreter (but not
for the types defined by various extension modules). It is safe to use ``from types import *'' --- the
module does not export any other names besides the ones listed here. New names exported by future
versions of this module will all end in Type.

Typical use is for functions that do different things depending on their argument types, like the following:
from types import *

def delete(list, item):

        if type(item) is IntType:

              del list[item]

        else:

              list.remove(item)

The module defines the following names:

NoneType -- data of module types

The type of None.

TypeType -- data of module types

The type of type objects (such as returned by type()).

IntType -- data of module types

The type of integers (e.g. 1).

LongType -- data of module types

The type of long integers (e.g. 1L).

FloatType -- data of module types

The type of floating point numbers (e.g. 1.0).

StringType -- data of module types

The type of character strings (e.g. 'Spam').

TupleType -- data of module types

The type of tuples (e.g. (1, 2, 3, 'Spam')).

ListType -- data of module types

The type of lists (e.g. [0, 1, 2, 3]).

DictType -- data of module types

The type of dictionaries (e.g. {'Bacon': 1, 'Ham': 0}).

DictionaryType -- data of module types

An alternative name for DictType.

FunctionType -- data of module types

The type of user-defined functions and lambdas.

LambdaType -- data of module types

An alternative name for FunctionType.

CodeType -- data of module types

The type for code objects such as returned by compile().

ClassType -- data of module types

The type of user-defined classes.

InstanceType -- data of module types

The type of instances of user-defined classes.

MethodType -- data of module types

The type of methods of user-defined class instances.

UnboundMethodType -- data of module types

An alternative name for MethodType.

BuiltinFunctionType -- data of module types

The type of built-in functions like len or sys.exit.

BuiltinMethodType -- data of module types

An alternative name for BuiltinFunction.

ModuleType -- data of module types

The type of modules.

FileType -- data of module types

The type of open file objects such as sys.stdout.

XRangeType -- data of module types

The type of range objects returned by xrange().

TracebackType -- data of module types

The type of traceback objects such as found in sys.exc_traceback.

FrameType -- data of module types

The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

Next: traceback Prev: sys Up: Python Services Top: Top

TCP Stream Objects -- Python library reference

Next: TCP Status Objects Prev: mactcp Up: mactcp Top: Top
14.9.1. TCP Stream Objects
asr -- attribute of TCP stream

When set to a value different than None this should point to a function with two integer
parameters: an event code and a detail. This function will be called upon network-generated events
such as urgent data arrival. In addition, it is called with eventcode MACTCP.PassiveOpenDone
when a PassiveOpen completes. This is a Python addition to the MacTCP semantics. It is safe to
do further calls from the asr.

PassiveOpen (port) -- Method on TCP stream

Wait for an incoming connection on TCP port port (zero makes the system pick a free port). The call
returns immediately, and you should use wait to wait for completion. You should not issue any
method calls other than wait, isdone or GetSockName before the call completes.

wait () -- Method on TCP stream

Wait for PassiveOpen to complete.

isdone () -- Method on TCP stream

Return 1 if a PassiveOpen has completed.

GetSockName () -- Method on TCP stream

Return the TCP address of this side of a connection as a 2-tuple (host, port), both integers.

ActiveOpen (lport, host, rport) -- Method on TCP stream

Open an outgoing connection to TCP address (host, rport). Use local port lport (zero makes
the system pick a free port). This call blocks until the connection has been established.

Send (buf, push, urgent) -- Method on TCP stream

Send data buf over the connection. Push and urgent are flags as specified by the TCP standard.

Rcv (timeout) -- Method on TCP stream

Receive data. The call returns when timeout seconds have passed or when (according to the
MacTCP documentation) ``a reasonable amount of data has been received''. The return value is a
3-tuple (data, urgent, mark). If urgent data is outstanding Rcv will always return that before
looking at any normal data. The first call returning urgent data will have the urgent flag set, the last
will have the mark flag set.

Close () -- Method on TCP stream

Tell MacTCP that no more data will be transmitted on this connection. The call returns when all data
has been acknowledged by the receiving side.

Abort () -- Method on TCP stream

Forcibly close both sides of a connection, ignoring outstanding data.

Status () -- Method on TCP stream

Return a TCP status object for this stream giving the current status (see below).

Next: TCP Status Objects Prev: mactcp Up: mactcp Top: Top

String Services -- Python library reference

Next: Miscellaneous Services Prev: Python Services Up: Top Top: Top
4. String Services
The modules described in this chapter provide a wide range of string manipulation operations. Here's an
overview:

string
--- Common string operations.

regex
--- Regular expression search and match operations.

regsub
--- Substitution and splitting operations that use regular expressions.

struct
--- Interpret strings as packed binary data.

Menu
string

regex

regsub

struct

Next: Miscellaneous Services Prev: Python Services Up: Top Top: Top

audioop -- Python library reference

Next: imageop Prev: Multimedia Services Up: Multimedia Services Top: Top
12.1. Built-in Module audioop
The audioop module contains some useful operations on sound fragments. It operates on sound
fragments consisting of signed integer samples 8, 16 or 32 bits wide, stored in Python strings. This is the
same format as used by the al and sunaudiodev modules. All scalar items are integers, unless
specified otherwise.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes)
is always a parameter of the operation.

The module defines the following variables and functions:

error -- exception of module audioop

This exception is raised on all errors, such as unknown number of bytes per sample, etc.

add (fragment1, fragment2, width) -- function of module audioop

Return a fragment which is the addition of the two samples passed as parameters. width is the
sample width in bytes, either 1, 2 or 4. Both fragments should have the same length.

adpcm2lin (adpcmfragment, width, state) -- function of module audioop

Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description of
lin2adpcm for details on ADPCM coding. Return a tuple (sample, newstate) where the
sample has the width specified in width.

adpcm32lin (adpcmfragment, width, state) -- function of module audioop

Decode an alternative 3-bit ADPCM code. See lin2adpcm3 for details.

avg (fragment, width) -- function of module audioop

Return the average over all samples in the fragment.

avgpp (fragment, width) -- function of module audioop

Return the average peak-peak value over all samples in the fragment. No filtering is done, so the
usefulness of this routine is questionable.

bias (fragment, width, bias) -- function of module audioop

Return a fragment that is the original fragment with a bias added to each sample.

cross (fragment, width) -- function of module audioop

Return the number of zero crossings in the fragment passed as an argument.

findfactor (fragment, reference) -- function of module audioop

Return a factor F such that rms(add(fragment, mul(reference, -F))) is minimal, i.e.,
return the factor with which you should multiply reference to make it match as well as possible to
fragment. The fragments should both contain 2-byte samples.

The time taken by this routine is proportional to len(fragment).

findfit (fragment, reference) -- function of module audioop

This routine (which only accepts 2-byte sample fragments)

Try to match reference as well as possible to a portion of fragment (which should be the longer fragment).
This is (conceptually) done by taking slices out of fragment, using findfactor to compute the best

match, and minimizing the result. The fragments should both contain 2-byte samples. Return a tuple
(offset, factor) where offset is the (integer) offset into fragment where the optimal match started
and factor is the (floating-point) factor as per findfactor.

findmax (fragment, length) -- function of module audioop

Search fragment for a slice of length length samples (not bytes!) with maximum energy, i.e., return i
for which rms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both
contain 2-byte samples.

The routine takes time proportional to len(fragment).

getsample (fragment, width, index) -- function of module audioop

Return the value of sample index from the fragment.

lin2lin (fragment, width, newwidth) -- function of module audioop

Convert samples between 1-, 2- and 4-byte formats.

lin2adpcm (fragment, width, state) -- function of module audioop

Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding
scheme, whereby each 4 bit number is the difference between one sample and the next, divided by
a (varying) step. The Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it may
well become a standard.

State is a tuple containing the state of the coder. The coder returns a tuple (adpcmfrag,
newstate), and the newstate should be passed to the next call of lin2adpcm. In the initial call None can
be passed as the state. adpcmfrag is the ADPCM coded fragment packed 2 4-bit values per byte.

lin2adpcm3 (fragment, width, state) -- function of module audioop

This is an alternative ADPCM coder that uses only 3 bits per sample. It is not compatible with the
Intel/DVI ADPCM coder and its output is not packed (due to laziness on the side of the author). Its
use is discouraged.

lin2ulaw (fragment, width) -- function of module audioop

Convert samples in the audio fragment to U-LAW encoding and return this as a Python string. U-
LAW is an audio encoding format whereby you get a dynamic range of about 14 bits using only 8
bit samples. It is used by the Sun audio hardware, among others.

minmax (fragment, width) -- function of module audioop

Return a tuple consisting of the minimum and maximum values of all samples in the sound
fragment.

max (fragment, width) -- function of module audioop

Return the maximum of the absolute value of all samples in a fragment.

maxpp (fragment, width) -- function of module audioop

Return the maximum peak-peak value in the sound fragment.

mul (fragment, width, factor) -- function of module audioop

Return a fragment that has all samples in the original framgent multiplied by the floating-point value
factor. Overflow is silently ignored.

reverse (fragment, width) -- function of module audioop

Reverse the samples in a fragment and returns the modified fragment.

rms (fragment, width) -- function of module audioop

Return the root-mean-square of the fragment, i.e. the square root of the quotient of the sum of all

squared sample value, divided by the sumber of samples. This is a measure of the power in an
audio signal.

tomono (fragment, width, lfactor, rfactor) -- function of module audioop

Convert a stereo fragment to a mono fragment. The left channel is multiplied by lfactor and the right
channel by rfactor before adding the two channels to give a mono signal.

tostereo (fragment, width, lfactor, rfactor) -- function of module audioop

Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment
are computed from the mono sample, whereby left channel samples are multiplied by lfactor and
right channel samples by rfactor.

ulaw2lin (fragment, width) -- function of module audioop

Convert sound fragments in ULAW encoding to linearly encoded sound fragments. ULAW encoding
always uses 8 bits samples, so width refers only to the sample width of the output fragment here.

Note that operations such as mul or max make no distinction between mono and stereo fragments, i.e.
all samples are treated equal. If this is a problem the stereo fragment should be split into two mono
fragments first and recombined later. Here is an example of how to do that:
def mul_stereo(sample, width, lfactor, rfactor):

        lsample = audioop.tomono(sample, width, 1, 0)

        rsample = audioop.tomono(sample, width, 0, 1)

        lsample = audioop.mul(sample, width, lfactor)

        rsample = audioop.mul(sample, width, rfactor)

        lsample = audioop.tostereo(lsample, width, 1, 0)

        rsample = audioop.tostereo(rsample, width, 0, 1)

        return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e. to
be able to tolerate packet loss) you should not only transmit the data but also the state. Note that you
should send the initial state (the one you passed to lin2adpcm) along to the decoder, not the final state
(as returned by the coder). If you want to use struct to store the state in binary you can code the first
element (the predicted value) in 16 bits and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It
could well be that I misinterpreted the standards in which case they will not be interoperable with the
respective standards.

The find... routines might look a bit funny at first sight. They are primarily meant to do echo
cancellation. A reasonably fast way to do this is to pick the most energetic piece of the output sample,

locate that in the input sample and subtract the whole output sample from the input sample:
def echocancel(outputdata, inputdata):

        pos = audioop.findmax(outputdata, 800)        # one tenth second

        out_test = outputdata[pos*2:]

        in_test = inputdata[pos*2:]

        ipos, factor = audioop.findfit(in_test, out_test)

        # Optional (for better cancellation):

        # factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],

        #                            out_test)

        prefill = '\0'*(pos+ipos)*2

        postfill = '\0'*(len(inputdata)-len(prefill)-len(outputdata))

        outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill

        return audioop.add(inputdata, outputdata, 2)

Next: imageop Prev: Multimedia Services Up: Multimedia Services Top: Top

Examples -- Python library reference

Prev: imp Up: imp Top: Top
3.8.1. Examples
The following function emulates the default import statement:
import imp

import sys

def __import__(name, globals=None, locals=None, fromlist=None):

        # Fast path: see if the module has already been imported.

        if sys.modules.has_key(name):

                return sys.modules[name]

        # If any of the following calls raises an exception,

        # there's a problem we can't handle -- let the caller handle it.

        # See if it's a built-in module.

        m = imp.init_builtin(name)

        if m:

                return m

        # See if it's a frozen module.

        m = imp.init_frozen(name)

        if m:

                return m

        # Search the default path (i.e. sys.path).

        fp, pathname, (suffix, mode, type) = imp.find_module(name)

        # See what we got.

        try:

                if type == imp.C_EXTENSION:

                        return imp.load_dynamic(name, pathname)

                if type == imp.PY_SOURCE:

                        return imp.load_source(name, pathname, fp)

                if type == imp.PY_COMPILED:

                        return imp.load_compiled(name, pathname, fp)

                # Shouldn't get here at all.

                raise ImportError, '%s: unknown module type (%d)' % (name, type)

        finally:

                # Since we may exit via an exception, close fp explicitly.

                fp.close()

Prev: imp Up: imp Top: Top

The Stats Class -- Python library reference

Prev: Reference Manual Up: Reference Manual Top: Top
10.5.1. The Stats Class
strip_dirs () -- Method on Stats

This method for the Stats class removes all leading path information from file names. It is very
useful in reducing the size of the printout to fit within (close to) 80 columns. This method modifies
the object, and the stripped information is lost. After performing a strip operation, the object is
considered to have its entries in a ``random'' order, as it was just after object initialization and
loading. If strip_dirs() causes two function names to be indistinguishable (i.e., they are on the
same line of the same filename, and have the same function name), then the statistics for these
two entries are accumulated into a single entry.

add (filename[, ...]) -- Method on Stats

This method of the Stats class accumulates additional profiling information into the current
profiling object. Its arguments should refer to filenames created by the corresponding version of
profile.run(). Statistics for identically named (re: file, line, name) functions are automatically
accumulated into single function statistics.

sort_stats (key[, ...]) -- Method on Stats

This method modifies the Stats object by sorting it according to the supplied criteria. The
argument is typically a string identifying the basis of a sort (example: "time" or "name").

When more than one key is provided, then additional keys are used as secondary criteria when the there
is equality in all keys selected before them. For example, sort_stats('name', 'file') will sort all the entries
according to their function name, and resolve all ties (identical function names) by sorting by file name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following
are the keys currently defined:

Valid Arg

--- Meaning
"calls"

call count
"cumulative"

cumulative time
"file"

file name
"module"

file name
"pcalls"

primitive call count
"line"

line number
"name"

function name

"nfl"
name/file/line

"stdname"
standard name

"time"
internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first),
where as name, file, and line number searches are in ascending order (i.e., alphabetical). The
subtle distinction between "nfl" and "stdname" is that the standard name is a sort of the name
as printed, which means that the embedded line numbers get compared in an odd way. For
example, lines 3, 20, and 40 would (if the file names were the same) appear in the string order 20,
3 and 40. In contrast, "nfl" does a numeric compare of the line numbers. In fact,
sort_stats("nfl") is the same as sort_stats("name", "file", "line").

For compatibility with the old profiler, the numeric arguments `-1', `0', `1', and `2' are permitted. They are
interpreted as "stdname", "calls", "time", and "cumulative" respectively. If this old style
format (numeric) is used, only one sort key (the numeric key) will be used, and additional arguments will
be silently ignored.

reverse_order () -- Method on Stats

This method for the Stats class reverses the ordering of the basic list within the object. This
method is provided primarily for compatibility with the old profiler. Its utility is questionable now that
ascending vs descending order is properly selected based on the sort key of choice.

print_stats (restriction[, ...]) -- Method on Stats

This method for the Stats class prints out a report as described in the profile.run()
definition.

The order of the printing is based on the last sort_stats() operation done on the object (subject to
caveats in add() and strip_dirs()).

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list
is taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count
of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular
expression (to pattern match the standard name that is printed). If several restrictions are provided, then
they are applied sequentially. For example:
 print_stats(.1, "foo:")

would first limit the printing to first 10% of list, and then only print functions that were part of filename
`.*foo:'. In contrast, the command:

 print_stats("foo:", .1)

would limit the list to all functions having file names `.*foo:', and then proceed to only print the first 10%
of them.

print_callers (restrictions[, ...]) -- Method on Stats

This method for the Stats class prints a list of all functions that called each function in the profiled

database. The ordering is identical to that provided by print_stats(), and the definition of the
restricting argument is also identical. For convenience, a number is shown in parentheses after
each caller to show how many times this specific call was made. A second non-parenthesized
number is the cumulative time spent in the function at the right.

print_callees (restrictions[, ...]) -- Method on Stats

This method for the Stats class prints a list of all function that were called by the indicated
function. Aside from this reversal of direction of calls (re: called vs was called by), the arguments
and ordering are identical to the print_callers() method.

ignore () -- Method on Stats

This method of the Stats class is used to dispose of the value returned by earlier methods. All
standard methods in this class return the instance that is being processed, so that the commands
can be strung together. For example:

pstats.Stats('foofile').strip_dirs().sort_stats('cum') \

  .print_stats().ignore()

would perform all the indicated functions, but it would not return the final reference to the Stats
instance.(1)

---------- Footnotes ----------
(1) This was once necessary, when Python would print any unused expression result that was not None.
The method is still defined for backward compatibility.

Prev: Reference Manual Up: Reference Manual Top: Top

math -- Python library reference

Next: rand Prev: Miscellaneous Services Up: Miscellaneous Services Top: Top
5.1. Built-in Module math
This module is always available. It provides access to the mathematical functions defined by the C
standard. They are:

acos (x) -- function of module math

asin (x) -- function of module math

atan (x) -- function of module math

atan2 (x, y) -- function of module math

ceil (x) -- function of module math

cos (x) -- function of module math

cosh (x) -- function of module math

exp (x) -- function of module math

fabs (x) -- function of module math

floor (x) -- function of module math

fmod (x, y) -- function of module math

frexp (x) -- function of module math

hypot (x, y) -- function of module math

ldexp (x, y) -- function of module math

log (x) -- function of module math

log10 (x) -- function of module math

modf (x) -- function of module math

pow (x, y) -- function of module math

sin (x) -- function of module math

sinh (x) -- function of module math

sqrt (x) -- function of module math

tan (x) -- function of module math

tanh (x) -- function of module math

Note that frexp and modf have a different call/return pattern than their C equivalents: they take a
single argument and return a pair of values, rather than returning their second return value through an
`output parameter' (there is no such thing in Python).

The hypot function, which is not standard C, is not available on all platforms.

The module also defines two mathematical constants:

pi -- data of module math

e -- data of module math

Next: rand Prev: Miscellaneous Services Up: Miscellaneous Services Top: Top

Multimedia Services -- Python library reference

Next: Cryptographic Services Prev: Internet and WWW Up: Top Top: Top
12. Multimedia Services
The modules described in this chapter implement various algorithms or interfaces that are mainly useful
for multimedia applications. They are available at the discretion of the installation. Here's an overview:

audioop
--- Manipulate raw audio data.

imageop
--- Manipulate raw image data.

aifc
--- Read and write audio files in AIFF or AIFC format.

jpeg
--- Read and write image files in compressed JPEG format.

rgbimg
--- Read and write image files in ``SGI RGB'' format (the module is not SGI specific though)!

Menu
audioop

imageop

aifc

jpeg

rgbimg

Next: Cryptographic Services Prev: Internet and WWW Up: Top Top: Top

nntplib -- Python library reference

Next: urlparse Prev: gopherlib Up: Internet and WWW Top: Top
11.6. Standard Module nntplib
This module defines the class NNTP which implements the client side of the NNTP protocol. It can be
used to implement a news reader or poster, or automated news processors. For more information on
NNTP (Network News Transfer Protocol), see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print
the subjects of the last 10 articles:
>>> s = NNTP('news.cwi.nl')

>>> resp, count, first, last, name = s.group('comp.lang.python')

>>> print 'Group', name, 'has', count, 'articles, range', first, 'to', last

Group comp.lang.python has 59 articles, range 3742 to 3803

>>> resp, subs = s.xhdr('subject', first + '-' + last)

>>> for id, sub in subs[-10:]: print id, sub

...

3792 Re: Removing elements from a list while iterating...

3793 Re: Who likes Info files?

3794 Emacs and doc strings

3795 a few questions about the Mac implementation

3796 Re: executable python scripts

3797 Re: executable python scripts

3798 Re: a few questions about the Mac implementation

3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules

3802 Re: executable python scripts

3803 Re: POSIX wait and SIGCHLD

>>> s.quit()

'205 news.cwi.nl closing connection.    Goodbye.'

>>>

}

To post an article from a file (this assumes that the article has valid headers):
>>> s = NNTP('news.cwi.nl')

>>> f = open('/tmp/article')

>>> s.post(f)

'240 Article posted successfully.'

>>> s.quit()

'205 news.cwi.nl closing connection.    Goodbye.'

>>>

The module itself defines the following items:

NNTP (host[, port]) -- function of module nntplib

Return a new instance of the NNTP class, representing a connection to the NNTP server running
on host host, listening at port port. The default port is 119.

error_reply -- exception of module nntplib

Exception raised when an unexpected reply is received from the server.

error_temp -- exception of module nntplib

Exception raised when an error code in the range 400--499 is received.

error_perm -- exception of module nntplib

Exception raised when an error code in the range 500--599 is received.

error_proto -- exception of module nntplib

Exception raised when a reply is received from the server that does not begin with a digit in the
range 1--5.

Menu
NNTP Objects

Next: urlparse Prev: gopherlib Up: Internet and WWW Top: Top

gl -- Python library reference

Next: GL and DEVICE Prev: fm Up: SGI IRIX Specific Services Top: Top
16.8. Built-in Module gl
This module provides access to the Silicon Graphics Graphics Library. It is available only on Silicon
Graphics machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core. In particular, the
use of most GL calls is unsafe before the first window is opened.

The module is too large to document here in its entirety, but the following should help you to get started.
The parameter conventions for the C functions are translated to Python as follows:

 All (short, long, unsigned) int values are represented by Python integers.

 All float and double values are represented by Python floating point numbers. In most cases, Python
integers are also allowed.

 All arrays are represented by one-dimensional Python lists. In most cases, tuples are also allowed.

 All string and character arguments are represented by Python strings, for instance, winopen('Hi
There!') and rotate(900, 'z').

 All (short, long, unsigned) integer arguments or return values that are only used to specify the length of
an array argument are omitted. For example, the C call
lmdef(deftype, index, np, props)

is translated to Python as
lmdef(deftype, index, props)

 Output arguments are omitted from the argument list; they are transmitted as function return values
instead. If more than one value must be returned, the return value is a tuple. If the C function has both a
regular return value (that is not omitted because of the previous rule) and an output argument, the return
value comes first in the tuple. Examples: the C call
getmcolor(i, &red, &green, &blue)

is translated to Python as
red, green, blue = getmcolor(i)

The following functions are non-standard or have special argument conventions:

varray (argument) -- function of module gl

Equivalent to but faster than a number of v3d() calls. The argument is a list (or tuple) of points.
Each point must be a tuple of coordinates (x, y, z) or (x, y). The points may be 2- or 3-

dimensional but must all have the same dimension. Float and int values may be mixed however.
The points are always converted to 3D double precision points by assuming z = 0.0 if necessary
(as indicated in the man page), and for each point v3d() is called.

nvarray () -- function of module gl

Equivalent to but faster than a number of n3f and v3f calls. The argument is an array (list or
tuple) of pairs of normals and points. Each pair is a tuple of a point and a normal for that point.
Each point or normal must be a tuple of coordinates (x, y, z). Three coordinates must be
given. Float and int values may be mixed. For each pair, n3f() is called for the normal, and then
v3f() is called for the point.

vnarray () -- function of module gl

Similar to nvarray() but the pairs have the point first and the normal second.

nurbssurface (s_k, t_k, ctl, s_ord, t_ord, type) -- function of module gl

Defines a nurbs surface. The dimensions of ctl[][] are computed as follows: [len(s_k) -
s_ord], [len(t_k) - t_ord].

nurbscurve (knots, ctlpoints, order, type) -- function of module gl

Defines a nurbs curve. The length of ctlpoints is len(knots) - order.

pwlcurve (points, type) -- function of module gl

Defines a piecewise-linear curve. points is a list of points. type must be N_ST.

pick (n) -- function of module gl

select (n) -- function of module gl

The only argument to these functions specifies the desired size of the pick or select buffer.

endpick () -- function of module gl

endselect () -- function of module gl

These functions have no arguments. They return a list of integers representing the used part of the
pick/select buffer. No method is provided to detect buffer overrun.

Here is a tiny but complete example GL program in Python:
import gl, GL, time

def main():

        gl.foreground()

        gl.prefposition(500, 900, 500, 900)

        w = gl.winopen('CrissCross')

        gl.ortho2(0.0, 400.0, 0.0, 400.0)

        gl.color(GL.WHITE)

        gl.clear()

        gl.color(GL.RED)

        gl.bgnline()

        gl.v2f(0.0, 0.0)

        gl.v2f(400.0, 400.0)

        gl.endline()

        gl.bgnline()

        gl.v2f(400.0, 0.0)

        gl.v2f(0.0, 400.0)

        gl.endline()

        time.sleep(5)

main()

Next: GL and DEVICE Prev: fm Up: SGI IRIX Specific Services Top: Top

parser -- Python library reference

Next: __builtin__ Prev: imp Up: Python Services Top: Top
3.9. Built-in Module parser
The parser module provides an interface to Python's internal parser and byte-code compiler. The
primary purpose for this interface is to allow Python code to edit the parse tree of a Python expression
and create executable code from this. This can be better than trying to parse and modify an arbitrary
Python code fragment as a string, and ensures that parsing is performed in a manner identical to the code
forming the application. It's also faster.

There are a few things to note about this module which are important to making use of the data structures
created. This is not a tutorial on editing the parse trees for Python code.

Most importantly, a good understanding of the Python grammar processed by the internal parser is
required. For full information on the language syntax, refer to the Language Reference. The parser itself
is created from a grammar specification defined in the file Grammar/Grammar in the standard Python
distribution. The parse trees stored in the ``AST objects'' created by this module are the actual output
from the internal parser when created by the expr() or suite() functions, described below. The AST
objects created by tuple2ast() faithfully simulate those structures.

Each element of the tuples returned by ast2tuple() has a simple form. Tuples representing non-
terminal elements in the grammar always have a length greater than one. The first element is an integer
which identifies a production in the grammar. These integers are given symbolic names in the C header
file Include/graminit.h and the Python module Lib/symbol.py. Each additional element of the
tuple represents a component of the production as recognized in the input string: these are always tuples
which have the same form as the parent. An important aspect of this structure which should be noted is
that keywords used to identify the parent node type, such as the keyword if in an if_stmt, are included
in the node tree without any special treatment. For example, the if keyword is represented by the tuple
(1, 'if'), where 1 is the numeric value associated with all NAME elements, including variable and
function names defined by the user.

Terminal elements are represented in much the same way, but without any child elements and the
addition of the source text which was identified. The example of the if keyword above is representative.
The various types of terminal symbols are defined in the C header file Include/token.h and the
Python module Lib/token.py.

The AST objects are not actually required to support the functionality of this module, but are provided for
three purposes: to allow an application to amortize the cost of processing complex parse trees, to provide
a parse tree representation which conserves memory space when compared to the Python tuple
representation, and to ease the creation of additional modules in C which manipulate parse trees. A
simple ``wrapper'' module may be created in Python if desired to hide the use of AST objects.

The parser module defines the following functions:

ast2tuple (ast) -- function of module parser

This function accepts an AST object from the caller in ast and returns a Python tuple representing
the equivelent parse tree. The resulting tuple representation can be used for inspection or the
creation of a new parse tree in tuple form. This function does not fail so long as memory is
available to build the tuple representation.

compileast (ast[, filename = '<ast>']) -- function of module parser

The Python byte compiler can be invoked on an AST object to produce code objects which can be
used as part of an exec statement or a call to the built-in eval() function. This function provides
the interface to the compiler, passing the internal parse tree from ast to the parser, using the

source file name specified by the filename parameter. The default value supplied for filename
indicates that the source was an AST object.

expr (string) -- function of module parser

The expr() function parses the parameter string as if it were an input to compile(string,
'eval'). If the parse succeeds, an AST object is created to hold the internal parse tree
representation, otherwise an appropriate exception is thrown.

isexpr (ast) -- function of module parser

When ast represents an 'eval' form, this function returns a true value (1), otherwise it returns
false (0). This is useful, since code objects normally cannot be queried for this information using
existing built-in functions. Note that the code objects created by compileast() cannot be
queried like this either, and are identical to those created by the built-in compile() function.

issuite (ast) -- function of module parser

This function mirrors isexpr() in that it reports whether an AST object represents a suite of
statements. It is not safe to assume that this function is equivelent to not isexpr(ast), as
additional syntactic fragments may be supported in the future.

suite (string) -- function of module parser

The suite() function parses the parameter string as if it were an input to
compile(string, 'exec'). If the parse succeeds, an AST object is created to hold the internal
parse tree representation, otherwise an appropriate exception is thrown.

tuple2ast (tuple) -- function of module parser

This function accepts a parse tree represented as a tuple and builds an internal representation if
possible. If it can validate that the tree conforms to the Python syntax and all nodes are valid node
types in the host version of Python, an AST object is created from the internal representation and
returned to the called. If there is a problem creating the internal representation, or if the tree cannot
be validated, a ParserError exception is thrown. An AST object created this way should not be
assumed to compile correctly; normal exceptions thrown by compilation may still be initiated when
the AST object is passed to compileast(). This will normally indicate problems not related to
syntax (such as a MemoryError exception).

Menu
Exceptions and Error Handling

Example

AST Objects

Next: __builtin__ Prev: imp Up: Python Services Top: Top

More String Operations -- Python library reference

Next: Mutable Sequence Types Prev: Sequence Types Up: Sequence Types Top: Top
2.1.5.1. More String Operations
String objects have one unique built-in operation: the % operator (modulo) with a string left argument
interprets this string as a C sprintf format string to be applied to the right argument, and returns the string
resulting from this formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the
string requires a single argument, the right argument may also be a single non-tuple object.(1) The
following format characters are understood: %, c, s, i, d, u, o, x, X, e, E, f, g, G. Width and precision may
be a * to specify that an integer argument specifies the actual width or precision. The flag characters -, +,
blank, # and 0 are understood. The size specifiers h, l or L may be present but are ignored. The %s
conversion takes any Python object and converts it to a string using str() before formatting it. The
ANSI features %p and %n are not supported. Since Python strings have an explicit length, %s
conversions don't assume that '\0' is the end of the string.

For safety reasons, floating point precisions are clipped to 50; %f conversions for numbers whose
absolute value is over 1e25 are replaced by %g conversions.(2) All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a
parenthesized key into that dictionary inserted immediately after the % character, and each format
formats the corresponding entry from the mapping. E.g.
 >>> count = 2

        >>> language = 'Python'

        >>> print '%(language)s has %(count)03d quote types.' % vars()

        Python has 002 quote types.

        >>>

In this case no * specifiers may occur in a format (since they a require sequential parameter list).

Additional string operations are defined in standard module string and in built-in module regex.

---------- Footnotes ----------
(1) A tuple object in this case should be a singleton.

(2) These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless
digits without hampering correct use and without having to know the exact precision of floating point
values on a particular machine.

Next: Mutable Sequence Types Prev: Sequence Types Up: Sequence Types Top: Top

rgbimg -- Python library reference

Prev: jpeg Up: Multimedia Services Top: Top
12.5. Built-in Module rgbimg
The rgbimg module allows python programs to access SGI imglib image files (also known as .rgb files).
The module is far from complete, but is provided anyway since the functionality that there is is enough in
some cases. Currently, colormap files are not supported.

The module defines the following variables and functions:

error -- exception of module rgbimg

This exception is raised on all errors, such as unsupported file type, etc.

sizeofimage (file) -- function of module rgbimg

This function returns a tuple (x, y) where x and y are the size of the image in pixels. Only 4 byte
RGBA pixels, 3 byte RGB pixels, and 1 byte greyscale pixels are currently supported.

longimagedata (file) -- function of module rgbimg

This function reads and decodes the image on the specified file, and returns it as a Python string.
The string has 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format is
suitable to pass to gl.lrectwrite, for instance.

longstoimage (data, x, y, z, file) -- function of module rgbimg

This function writes the RGBA data in data to image file file. x and y give the size of the image. z is
1 if the saved image should be 1 byte greyscale, 3 if the saved image should be 3 byte RGB data,
or 4 if the saved images should be 4 byte RGBA data. The input data always contains 4 bytes per
pixel. These are the formats returned by gl.lrectread.

ttob (flag) -- function of module rgbimg

This function sets a global flag which defines whether the scan lines of the image are read or
written from bottom to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one,
compatible with X).

Prev: jpeg Up: Multimedia Services Top: Top

Form Objects -- Python library reference

Next: FORMS Objects Prev: FL Functions Up: fl Top: Top
16.4.2. Form Objects
Form objects (returned by fl.make_form() above) have the following methods. Each method
corresponds to a C function whose name is prefixed with `fl_'; and whose first argument is a form
pointer; please refer to the official FORMS documentation for descriptions.

All the `add_...' functions return a Python object representing the FORMS object. Methods of FORMS
objects are described below. Most kinds of FORMS object also have some methods specific to that kind;
these methods are listed here.

show_form (placement, bordertype, name) -- Method on form object

Show the form.

hide_form () -- Method on form object

Hide the form.

redraw_form () -- Method on form object

Redraw the form.

set_form_position (x, y) -- Method on form object

Set the form's position.

freeze_form () -- Method on form object

Freeze the form.

unfreeze_form () -- Method on form object

Unfreeze the form.

activate_form () -- Method on form object

Activate the form.

deactivate_form () -- Method on form object

Deactivate the form.

bgn_group () -- Method on form object

Begin a new group of objects; return a group object.

end_group () -- Method on form object

End the current group of objects.

find_first () -- Method on form object

Find the first object in the form.

find_last () -- Method on form object

Find the last object in the form.

add_box (type, x, y, w, h, name) -- Method on form object

Add a box object to the form. No extra methods.

add_text (type, x, y, w, h, name) -- Method on form object

Add a text object to the form. No extra methods.

add_clock (type, x, y, w, h, name) -- Method on form object

Add a clock object to the form. * Method: get_clock.

add_button (type, x, y, w, h, name) -- Method on form object

Add a button object to the form. * Methods: get_button, set_button.

add_lightbutton (type, x, y, w, h, name) -- Method on form object

Add a lightbutton object to the form. * Methods: get_button, set_button.

add_roundbutton (type, x, y, w, h, name) -- Method on form object

Add a roundbutton object to the form. * Methods: get_button, set_button.

add_slider (type, x, y, w, h, name) -- Method on form object

Add a slider object to the form. * Methods: set_slider_value, get_slider_value,
set_slider_bounds, get_slider_bounds, set_slider_return, set_slider_size,
set_slider_precision, set_slider_step.

add_valslider (type, x, y, w, h, name) -- Method on form object

Add a valslider object to the form. * Methods: set_slider_value, get_slider_value,
set_slider_bounds, get_slider_bounds, set_slider_return, set_slider_size,
set_slider_precision, set_slider_step.

add_dial (type, x, y, w, h, name) -- Method on form object

Add a dial object to the form. * Methods: set_dial_value, get_dial_value,
set_dial_bounds, get_dial_bounds.

add_positioner (type, x, y, w, h, name) -- Method on form object

Add a positioner object to the form. * Methods: set_positioner_xvalue,
set_positioner_yvalue, set_positioner_xbounds, set_positioner_ybounds,
get_positioner_xvalue, get_positioner_yvalue, get_positioner_xbounds,
get_positioner_ybounds.

add_counter (type, x, y, w, h, name) -- Method on form object

Add a counter object to the form. * Methods: set_counter_value, get_counter_value,
set_counter_bounds, set_counter_step, set_counter_precision,
set_counter_return.

add_input (type, x, y, w, h, name) -- Method on form object

Add a input object to the form. * Methods: set_input, get_input, set_input_color,
set_input_return.

add_menu (type, x, y, w, h, name) -- Method on form object

Add a menu object to the form. * Methods: set_menu, get_menu, addto_menu.

add_choice (type, x, y, w, h, name) -- Method on form object

Add a choice object to the form. * Methods: set_choice, get_choice, clear_choice,
addto_choice, replace_choice, delete_choice, get_choice_text,
set_choice_fontsize, set_choice_fontstyle.

add_browser (type, x, y, w, h, name) -- Method on form object

Add a browser object to the form. * Methods: set_browser_topline, clear_browser,
add_browser_line, addto_browser, insert_browser_line, delete_browser_line,
replace_browser_line, get_browser_line, load_browser, get_browser_maxline,

select_browser_line, deselect_browser_line, deselect_browser,
isselected_browser_line, get_browser, set_browser_fontsize,
set_browser_fontstyle, set_browser_specialkey.

add_timer (type, x, y, w, h, name) -- Method on form object

Add a timer object to the form. * Methods: set_timer, get_timer.

Form objects have the following data attributes; see the FORMS documentation:

Name

Type --- Meaning
window

int (read-only) --- GL window id
w

float --- form width
h

float --- form height
x

float --- form x origin
y

float --- form y origin
deactivated

int --- nonzero if form is deactivated
visible

int --- nonzero if form is visible
frozen

int --- nonzero if form is frozen
doublebuf

int --- nonzero if double buffering on

Next: FORMS Objects Prev: FL Functions Up: fl Top: Top

Audio Device Objects -- Python library reference

Prev: sunaudiodev Up: sunaudiodev Top: Top
17.1.1. Audio Device Objects
The audio device objects are returned by open define the following methods (except control objects
which only provide getinfo, setinfo and drain):

close () -- Method on audio device

This method explicitly closes the device. It is useful in situations where deleting the object does not
immediately close it since there are other references to it. A closed device should not be used
again.

drain () -- Method on audio device

This method waits until all pending output is processed and then returns. Calling this method is
often not necessary: destroying the object will automatically close the audio device and this will do
an implicit drain.

flush () -- Method on audio device

This method discards all pending output. It can be used avoid the slow response to a user's stop
request (due to buffering of up to one second of sound).

getinfo () -- Method on audio device

This method retrieves status information like input and output volume, etc. and returns it in the form
of an audio status object. This object has no methods but it contains a number of attributes
describing the current device status. The names and meanings of the attributes are described in
/usr/include/sun/audioio.h and in the audio man page. Member names are slightly different from
their C counterparts: a status object is only a single structure. Members of the play substructure
have `o_' prepended to their name and members of the record structure have `i_'. So, the C
member play.sample_rate is accessed as o_sample_rate, record.gain as i_gain
and monitor_gain plainly as monitor_gain.

ibufcount () -- Method on audio device

This method returns the number of samples that are buffered on the recording side, i.e. the
program will not block on a read call of so many samples.

obufcount () -- Method on audio device

This method returns the number of samples buffered on the playback side. Unfortunately, this
number cannot be used to determine a number of samples that can be written without blocking
since the kernel output queue length seems to be variable.

read (size) -- Method on audio device

This method reads size samples from the audio input and returns them as a python string. The
function blocks until enough data is available.

setinfo (status) -- Method on audio device

This method sets the audio device status parameters. The status parameter is an device status
object as returned by getinfo and possibly modified by the program.

write (samples) -- Method on audio device

Write is passed a python string containing audio samples to be played. If there is enough buffer
space free it will immediately return, otherwise it will block.

There is a companion module, SUNAUDIODEV, which defines useful symbolic constants like MIN_GAIN,

MAX_GAIN, SPEAKER, etc. The names of the constants are the same names as used in the C include file
<sun/audioio.h>, with the leading string `AUDIO_' stripped.

Useability of the control device is limited at the moment, since there is no way to use the ``wait for
something to happen'' feature the device provides.
Prev: sunaudiodev Up: sunaudiodev Top: Top

Macintosh Specific Services -- Python library reference

Next: Standard Windowing Interface Prev: Cryptographic Services Up: Top Top: Top
14. Macintosh Specific Services
The modules in this chapter are available on the Apple Macintosh only.

Menu
mac

macpath

ctb

macconsole

macdnr

macfs

MacOS

macostools

mactcp

macspeech

EasyDialogs

FrameWork

Drawing Objects -- Python library reference

Next: Menu Objects Prev: Window Objects Up: stdwin Top: Top
15.1.3. Drawing Objects
Drawing objects are created exclusively by the window method begindrawing(). Only one drawing
object can exist at any given time; the drawing object must be deleted to finish drawing. No drawing
object may exist when stdwin.getevent() is called. Drawing objects have the following methods:

box (rect) -- Method on drawing

Draw a box just inside a rectangle.

circle (center, radius) -- Method on drawing

Draw a circle with given center point and radius.

elarc (center, (rh, rv), (a1, a2)) -- Method on drawing

Draw an elliptical arc with given center point. (rh, rv) gives the half sizes of the horizontal and
vertical radii. (a1, a2) gives the angles (in degrees) of the begin and end points. 0 degrees is at
3 o'clock, 90 degrees is at 12 o'clock.

erase (rect) -- Method on drawing

Erase a rectangle.

fillcircle (center, radius) -- Method on drawing

Draw a filled circle with given center point and radius.

fillelarc (center, (rh, rv), (a1, a2)) -- Method on drawing

Draw a filled elliptical arc; arguments as for elarc.

fillpoly (points) -- Method on drawing

Draw a filled polygon given by a list (or tuple) of points.

invert (rect) -- Method on drawing

Invert a rectangle.

line (p1, p2) -- Method on drawing

Draw a line from point p1 to p2.

paint (rect) -- Method on drawing

Fill a rectangle.

poly (points) -- Method on drawing

Draw the lines connecting the given list (or tuple) of points.

shade (rect, percent) -- Method on drawing

Fill a rectangle with a shading pattern that is about percent percent filled.

text (p, str) -- Method on drawing

Draw a string starting at point p (the point specifies the top left coordinate of the string).

xorcircle (center, radius) -- Method on drawing

xorelarc (center, (rh, rv), (a1, a2)) -- Method on drawing

xorline (p1, p2) -- Method on drawing

xorpoly (points) -- Method on drawing

Draw a circle, an elliptical arc, a line or a polygon, respectively, in XOR mode.

setfgcolor () -- Method on drawing

setbgcolor () -- Method on drawing

getfgcolor () -- Method on drawing

getbgcolor () -- Method on drawing

These functions are similar to the corresponding functions described above for the stdwin
module, but affect or return the colors currently used for drawing instead of the global default
colors. When a drawing object is created, its colors are set to the window's default colors, which are
in turn initialized from the global default colors when the window is created.

setfont () -- Method on drawing

baseline () -- Method on drawing

lineheight () -- Method on drawing

textbreak () -- Method on drawing

textwidth () -- Method on drawing

These functions are similar to the corresponding functions described above for the stdwin
module, but affect or use the current drawing font instead of the global default font. When a
drawing object is created, its font is set to the window's default font, which is in turn initialized from
the global default font when the window is created.

bitmap (point, bitmap, mask) -- Method on drawing

Draw the bitmap with its top left corner at point. If the optional mask argument is present, it should
be either the same object as bitmap, to draw only those bits that are set in the bitmap, in the
foreground color, or None, to draw all bits (ones are drawn in the foreground color, zeros in the
background color). Not available on the Macintosh.

cliprect (rect) -- Method on drawing

Set the ``clipping region'' to a rectangle. The clipping region limits the effect of all drawing
operations, until it is changed again or until the drawing object is closed. When a drawing object is
created the clipping region is set to the entire window. When an object to be drawn falls partly
outside the clipping region, the set of pixels drawn is the intersection of the clipping region and the
set of pixels that would be drawn by the same operation in the absence of a clipping region.

noclip () -- Method on drawing

Reset the clipping region to the entire window.

close () -- Method on drawing

enddrawing () -- Method on drawing

Discard the drawing object. It should not be used again.

Next: Menu Objects Prev: Window Objects Up: stdwin Top: Top

cgi -- Python library reference

Next: urllib Prev: Internet and WWW Up: Internet and WWW Top: Top
11.1. Standard Module cgi
This module makes it easy to write Python scripts that run in a WWW server using the Common Gateway
Interface. It was written by Michael McLay and subsequently modified by Steve Majewski and Guido van
Rossum.

When a WWW server finds that a URL contains a reference to a file in a particular subdirectory
(usually /cgibin), it runs the file as a subprocess. Information about the request such as the full URL,
the originating host etc., is passed to the subprocess in the shell environment; additional input from the
client may be read from standard input. Standard output from the subprocess is sent back across the
network to the client as the response from the request. The CGI protocol describes what the environment
variables passed to the subprocess mean and how the output should be formatted. The official reference
documentation for the CGI protocol can be found on the World-Wide Web at
<URL:http://hoohoo.ncsa.uiuc.edu/cgi/overview.html>. The cgi module was based on
version 1.1 of the protocol and should also work with version 1.0.

The cgi module defines several classes that make it easy to access the information passed to the
subprocess from a Python script; in particular, it knows how to parse the input sent by an HTML ``form''
using either a POST or a GET request (these are alternatives for submitting forms in the HTTP protocol).

The formatting of the output is so trivial that no additional support is needed. All you need to do is print a
minimal set of MIME headers describing the output format, followed by a blank line and your actual
output. E.g. if you want to generate HTML, your script could start as follows:
Header -- one or more lines:

print "Content-type: text/html"

Blank line separating header from body:

print

Body, in HTML format:

print "<TITLE>The Amazing SPAM Homepage!</TITLE>"

etc...

The server will add some header lines of its own, but it won't touch the output following the header.

The cgi module defines the following functions:

parse () -- function of module cgi

Read and parse the form submitted to the script and return a dictionary containing the form's fields.

This should be called at most once per script invocation, as it may consume standard input (if the
form was submitted through a POST request). The keys in the resulting dictionary are the field
names used in the submission; the values are lists of the field values (since field name may be
used multiple times in a single form). `%' escapes in the values are translated to their single-
character equivalent using urllib.unquote(). As a side effect, this function sets
environ['QUERY_STRING'] to the raw query string, if it isn't already set.

print_environ_usage () -- function of module cgi

Print a piece of HTML listing the environment variables that may be set by the CGI protocol. This is
mainly useful when learning about writing CGI scripts.

print_environ () -- function of module cgi

Print a piece of HTML text showing the entire contents of the shell environment. This is mainly
useful when debugging a CGI script.

print_form (form) -- function of module cgi

Print a piece of HTML text showing the contents of the form (a dictionary, an instance of the
FormContentDict class defined below, or a subclass thereof). This is mainly useful when
debugging a CGI script.

escape (string) -- function of module cgi

Convert special characters in string to HTML escapes. In particular, ``&'' is replaced with ``&'',
``<'' is replaced with ``<'', and ``>'' is replaced with ``>''. This is useful when printing
(almost) arbitrary text in an HTML context. Note that for inclusion in quoted tag attributes (e.g.), some additional characters would have to be converted --- in particular the string
quote. There is currently no function that does this.

The module defines the following classes. Since the base class initializes itself by calling parse(), at
most one instance of at most one of these classes should be created per script invocation:

FormContentDict () -- function of module cgi

This class behaves like a (read-only) dictionary and has the same keys and values as the
dictionary returned by parse() (i.e. each field name maps to a list of values). Additionally, it
initializes its data member query_string to the raw query sent from the server.

SvFormContentDict () -- function of module cgi

This class, derived from FormContentDict, is a little more user-friendly when you are expecting
that each field name is only used once in the form. When you access for a particular field (using
form[fieldname]), it will return the string value of that item if it is unique, or raise IndexError
if the field was specified more than once in the form. (If the field wasn't specified at all, KeyError
is raised.) To access fields that are specified multiple times, use form.getlist(fieldname).
The values() and items() methods return mixed lists --- containing strings for singly-defined
fields, and lists of strings for multiply-defined fields.

(It currently defines some more classes, but these are experimental and/or obsolescent, and are thus not
documented --- see the source for more informations.)

The module defines the following variable:

environ -- data of module cgi

The shell environment, exactly as received from the http server. See the CGI documentation for a
description of the various fields.

Menu
CGI Example

Next: urllib Prev: Internet and WWW Up: Internet and WWW Top: Top

Text-edit Objects -- Python library reference

Next: STDWIN Example Prev: Bitmap Objects Up: stdwin Top: Top
15.1.6. Text-edit Objects
A text-edit object represents a text-edit block. For semantics, see the STDWIN documentation for C
programmers. The following methods exist:

arrow (code) -- Method on text-edit

Pass an arrow event to the text-edit block. The code must be one of WC_LEFT, WC_RIGHT,
WC_UP or WC_DOWN (see module stdwinevents).

draw (rect) -- Method on text-edit

Pass a draw event to the text-edit block. The rectangle specifies the redraw area.

event (type, window, detail) -- Method on text-edit

Pass an event gotten from stdwin.getevent() to the text-edit block. Return true if the event
was handled.

getfocus () -- Method on text-edit

Return 2 integers representing the start and end positions of the focus, usable as slice indices on
the string returned by gettext().

getfocustext () -- Method on text-edit

Return the text in the focus.

getrect () -- Method on text-edit

Return a rectangle giving the actual position of the text-edit block. (The bottom coordinate may
differ from the initial position because the block automatically shrinks or grows to fit.)

gettext () -- Method on text-edit

Return the entire text buffer.

move (rect) -- Method on text-edit

Specify a new position for the text-edit block in the document.

replace (str) -- Method on text-edit

Replace the text in the focus by the given string. The new focus is an insert point at the end of the
string.

setfocus (i, j) -- Method on text-edit

Specify the new focus. Out-of-bounds values are silently clipped.

settext (str) -- Method on text-edit

Replace the entire text buffer by the given string and set the focus to (0, 0).

setview (rect) -- Method on text-edit

Set the view rectangle to rect. If rect is None, viewing mode is reset. In viewing mode, all output
from the text-edit object is clipped to the viewing rectangle. This may be useful to implement your
own scrolling text subwindow.

close () -- Method on text-edit

Discard the text-edit object. It should not be used again.

Next: STDWIN Example Prev: Bitmap Objects Up: stdwin Top: Top

Methods -- Python library reference

Next: Code Objects Prev: Functions Up: Other Built-in Types Top: Top
2.1.7.4. Methods
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods
(such as append() on lists) and class instance methods. Built-in methods are described with the types
that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the
object whose method this is, and m.im_func is the function implementing the method. Calling m(arg-
1, arg-2, ..., arg-n) is completely equivalent to calling m.im_func(m.im_self, arg-1,
arg-2, ..., arg-n).

(See the Python Reference Manual for more info.)

Next: Code Objects Prev: Functions Up: Other Built-in Types Top: Top

macostools -- Python library reference

Next: mactcp Prev: MacOS Up: Macintosh Specific Services Top: Top
14.8. Standard module macostools
This module contains some convenience routines for file-manipulation on the Macintosh.

The macostools module defines the following functions:

copy (src, dst[, createpath]) -- function of module macostools

Copy file src to dst. The files can be specified as pathnames or FSSpec objects. If createpath is
non-zero dst must be a pathname and the folders leading to the destination are created if
necessary. The method copies data and resource fork and some finder information (creator, type
and flags). Custom icons, comments and icon position are not copied.

copytree (src, dst) -- function of module macostools

Recursively copy a file tree from src to dst, creating folders as needed. Src and dst should be
specified as pathnames.

mkalias (src, dst) -- function of module macostools

Create a finder alias dst pointing to src. Both may be specified as pathnames or FSSpec objects.

BUFSIZ -- data of module macostools

The buffer size for copy, default 1 megabyte.

Note that the process of creating finder aliases is not specified in the Apple documentation. Hence,
aliases created with mkalias could conceivably have incompatible behaviour in some cases.
Next: mactcp Prev: MacOS Up: Macintosh Specific Services Top: Top

Profiler Introduction -- Python library reference

Next: Profiler Changes Prev: The Python Profiler Up: The Python Profiler Top: Top
10.1. Introduction to the profiler
A profiler is a program that describes the run time performance of a program, providing a variety of
statistics. This documentation describes the profiler functionality provided in the modules profile and
pstats. This profiler provides deterministic profiling of any Python programs. It also provides a series of
report generation tools to allow users to rapidly examine the results of a profile operation.

Next: Profiler Changes Prev: The Python Profiler Up: The Python Profiler Top: Top

AL (uppercase) -- Python library reference

Next: cd Prev: al Up: SGI IRIX Specific Services Top: Top
16.2. Standard Module AL
This module defines symbolic constants needed to use the built-in module al (see above); they are
equivalent to those defined in the C header file <audio.h> except that the name prefix `AL_' is omitted.
Read the module source for a complete list of the defined names. Suggested use:
import al

from AL import *

Next: cd Prev: al Up: SGI IRIX Specific Services Top: Top

mimetools -- Python library reference

Next: binhex Prev: rfc822 Up: Internet and WWW Top: Top
11.11. Standard Module mimetools
This module defines a subclass of the class rfc822.Message and a number of utility functions that are
useful for the manipulation for MIME style multipart or encoded message.

It defines the following items:

Message (fp) -- function of module mimetools

Return a new instance of the mimetools.Message class. This is a subclass of the
rfc822.Message class, with some additional methods (see below).

choose_boundary () -- function of module mimetools

Return a unique string that has a high likelihood of being usable as a part boundary. The string has
the form "hostipaddr.uid.pid.timestamp.random".

decode (input, output, encoding) -- function of module mimetools

Read data encoded using the allowed MIME encoding from open file object input and write the
decoded data to open file object output. Valid values for encoding include "base64", "quoted-
printable" and "uuencode".

encode (input, output, encoding) -- function of module mimetools

Read data from open file object input and write it encoded using the allowed MIME encoding to
open file object output. Valid values for encoding are the same as for decode().

copyliteral (input, output) -- function of module mimetools

Read lines until EOF from open file input and write them to open file output.

copybinary (input, output) -- function of module mimetools

Read blocks until EOF from open file input and write them to open file output. The block size is
currently fixed at 8192.

Menu
mimetools.Message Methods

Next: binhex Prev: rfc822 Up: Internet and WWW Top: Top

regsub -- Python library reference

Next: struct Prev: regex Up: String Services Top: Top
4.3. Standard Module regsub
This module defines a number of functions useful for working with regular expressions (see built-in
module regex).

sub (pat, repl, str) -- function of module regsub

Replace the first occurrence of pattern pat in string str by replacement repl. If the pattern isn't
found, the string is returned unchanged. The pattern may be a string or an already compiled
pattern. The replacement may contain references `\digit' to subpatterns and escaped
backslashes.

gsub (pat, repl, str) -- function of module regsub

Replace all (non-overlapping) occurrences of pattern pat in string str by replacement repl. The
same rules as for sub() apply. Empty matches for the pattern are replaced only when not
adjacent to a previous match, so e.g. gsub('', '-', 'abc') returns '-a-b-c-'.

split (str, pat) -- function of module regsub

Split the string str in fields separated by delimiters matching the pattern pat, and return a list
containing the fields. Only non-empty matches for the pattern are considered, so e.g.
split('a:b', ':*') returns ['a', 'b'] and split('abc', '') returns ['abc'].

Next: struct Prev: regex Up: String Services Top: Top

termios -- Python library reference

Next: TERMIOS Prev: gdbm Up: UNIX Specific Services Top: Top
8.7. Built-in Module termios
This module provides an interface to the Posix calls for tty I/O control. For a complete description of these
calls, see the Posix or UNIX manual pages. It is only available for those UNIX versions that support Posix
termios style tty I/O control (and then only if configured at installation time).

All functions in this module take a file descriptor fd as their first argument. This must be an integer file
descriptor, such as returned by sys.stdin.fileno().

This module should be used in conjunction with the TERMIOS module, which defines the relevant
symbolic constants (see the next section).

The module defines the following functions:

tcgetattr (fd) -- function of module termios

Return a list containing the tty attributes for file descriptor fd, as follows: [iflag, oflag,
cflag, lflag, ispeed, ospeed, cc] where cc is a list of the tty special characters (each a
string of length 1, except the items with indices VMIN and VTIME, which are integers when these
fields are defined). The interpretation of the flags and the speeds as well as the indexing in the cc
array must be done using the symbolic constants defined in the TERMIOS module.

tcsetattr (fd, when, attributes) -- function of module termios

Set the tty attributes for file descriptor fd from the attributes, which is a list like the one returned by
tcgetattr(). The when argument determines when the attributes are changed:
TERMIOS.TCSANOW to change immediately, TERMIOS.TCSADRAIN to change after transmitting all
queued output, or TERMIOS.TCSAFLUSH to change after transmitting all queued output and
discarding all queued input.

tcsendbreak (fd, duration) -- function of module termios

Send a break on file descriptor fd. A zero duration sends a break for 0.25--0.5 seconds; a nonzero
duration has a system dependent meaning.

tcdrain (fd) -- function of module termios

Wait until all output written to file descriptor fd has been transmitted.

tcflush (fd, queue) -- function of module termios

Discard queued data on file descriptor fd. The queue selector specifies which queue:
TERMIOS.TCIFLUSH for the input queue, TERMIOS.TCOFLUSH for the output queue, or
TERMIOS.TCIOFLUSH for both queues.

tcflow (fd, action) -- function of module termios

Suspend or resume input or output on file descriptor fd. The action argument can be
TERMIOS.TCOOFF to suspend output, TERMIOS.TCOON to restart output, TERMIOS.TCIOFF to
suspend input, or TERMIOS.TCION to restart input.

Menu
termios Example

Next: TERMIOS Prev: gdbm Up: UNIX Specific Services Top: Top

fcntl -- Python library reference

Next: posixfile Prev: TERMIOS Up: UNIX Specific Services Top: Top
8.9. Built-in Module fcntl
This module performs file control and I/O control on file descriptors. It is an interface to the fcntl() and
ioctl() UNIX routines. File descriptors can be obtained with the fileno() method of a file or socket object.

The module defines the following functions:

fcntl (fd, op[, arg]) -- function of module struct

Perform the requested operation on file descriptor fd. The operation is defined by op and is
operating system dependent. Typically these codes can be retrieved from the library module
FCNTL. The argument arg is optional, and defaults to the integer value 0. When it is present, it
can either be an integer value, or a string. With the argument missing or an integer value, the return
value of this function is the integer return value of the real fcntl() call. When the argument is a
string it represents a binary structure, e.g. created by struct.pack(). The binary data is copied
to a buffer whose address is passed to the real fcntl() call. The return value after a successful
call is the contents of the buffer, converted to a string object. In case the fcntl() fails, an
IOError will be raised.

ioctl (fd, op, arg) -- function of module struct

This function is identical to the fcntl() function, except that the operations are typically defined
in the library module IOCTL.

If the library modules FCNTL or IOCTL are missing, you can find the opcodes in the C include files
sys/fcntl and sys/ioctl. You can create the modules yourself with the h2py script, found in the
Tools/scripts directory. Examples (all on a SVR4 compliant system):

import struct, FCNTL

file = open(...)

rv = fcntl(file.fileno(), FCNTL.O_NDELAY, 1)

lockdata = struct.pack('hhllhh', FCNTL.F_WRLCK, 0, 0, 0, 0, 0)

rv = fcntl(file.fileno(), FCNTL.F_SETLKW, lockdata)

Note that in the first example the return value variable rv will hold an integer value; in the second
example it will hold a string value.

Next: posixfile Prev: TERMIOS Up: UNIX Specific Services Top: Top

OldProfile Class -- Python library reference

Next: HotProfile Class Prev: Profiler Extensions Up: Profiler Extensions Top: Top
10.8.1. OldProfile Class
The following derived profiler simulates the old style profiler, providing errant results on recursive
functions. The reason for the usefulness of this profiler is that it runs faster (i.e., less overhead) than the
old profiler. It still creates all the caller stats, and is quite useful when there is no recursion in the user's
code. It is also a lot more accurate than the old profiler, as it does not charge all its overhead time to the
user's code.
class OldProfile(Profile):

        def trace_dispatch_exception(self, frame, t):

                rt, rtt, rct, rfn, rframe, rcur = self.cur

                if rcur and not rframe is frame:

                        return self.trace_dispatch_return(rframe, t)

                return 0

        def trace_dispatch_call(self, frame, t):

                fn = `frame.f_code`

               

                self.cur = (t, 0, 0, fn, frame, self.cur)

                if self.timings.has_key(fn):

                        tt, ct, callers = self.timings[fn]

                        self.timings[fn] = tt, ct, callers

                else:

                        self.timings[fn] = 0, 0, {}

                return 1

        def trace_dispatch_return(self, frame, t):

                rt, rtt, rct, rfn, frame, rcur = self.cur

                rtt = rtt + t

                sft = rtt + rct

                pt, ptt, pct, pfn, pframe, pcur = rcur

                self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur

                tt, ct, callers = self.timings[rfn]

                if callers.has_key(pfn):

                        callers[pfn] = callers[pfn] + 1

                else:

                        callers[pfn] = 1

                self.timings[rfn] = tt+rtt, ct + sft, callers

                return 1

        def snapshot_stats(self):

                self.stats = {}

                for func in self.timings.keys():

                        tt, ct, callers = self.timings[func]

                        nor_func = self.func_normalize(func)

                        nor_callers = {}

                        nc = 0

                        for func_caller in callers.keys():

                                nor_callers[self.func_normalize(func_caller)]=\

  callers[func_caller]

                                nc = nc + callers[func_caller]

                        self.stats[nor_func] = nc, nc, tt, ct, nor_callers

Next: HotProfile Class Prev: Profiler Extensions Up: Profiler Extensions Top: Top

macfs -- Python library reference

Next: MacOS Prev: macdnr Up: Macintosh Specific Services Top: Top
14.6. Built-in Module macfs
This module provides access to macintosh FSSpec handling, the Alias Manager, finder aliases and the
Standard File package.

Whenever a function or method expects a file argument, this argument can be one of three things: (1) a
full or partial Macintosh pathname, (2) an FSSpec object or (3) a 3-tuple (wdRefNum, parID, name)
as described in Inside Mac VI. and the standard file package can also be found there.

FSSpec (file) -- function of module macfs

Create an FSSpec object for the specified file.

RawFSSpec (data) -- function of module macfs

Create an FSSpec object given the raw data for the C structure for the FSSpec as a string. This is
mainly useful if you have obtained an FSSpec structure over a network.

RawAlias (data) -- function of module macfs

Create an Alias object given the raw data for the C structure for the alias as a string. This is mainly
useful if you have obtained an FSSpec structure over a network.

FInfo () -- function of module macfs

Create a zero-filled FInfo object.

ResolveAliasFile (file) -- function of module macfs

Resolve an alias file. Returns a 3-tuple (fsspec, isfolder, aliased) where fsspec is the
resulting FSSpec object, isfolder is true if fsspec points to a folder and aliased is true if the file was
an alias in the first place (otherwise the FSSpec object for the file itself is returned).

StandardGetFile ([type, ...]) -- function of module macfs

Present the user with a standard ``open input file'' dialog. Optionally, you can pass up to four 4-char
file types to limit the files the user can choose from. The function returns an FSSpec object and a
flag indicating that the user completed the dialog without cancelling.

PromptGetFile (prompt[, type, ...]) -- function of module macfs

Similar to StandardGetFile but allows you to specify a prompt.

StandardPutFile (prompt, [default]) -- function of module macfs

Present the user with a standard ``open output file'' dialog. prompt is the prompt string, and the
optional default argument initializes the output file name. The function returns an FSSpec object
and a flag indicating that the user completed the dialog without cancelling.

GetDirectory ([prompt]) -- function of module macfs

Present the user with a non-standard ``select a directory'' dialog. prompt is the prompt string, and
the optional. Return an FSSpec object and a success-indicator.

FindFolder (where, which, create) -- function of module macfs

Locates one of the ``special'' folders that MacOS knows about, such as the trash or the
Preferences folder. Where is the disk to search, which is the 4-char string specifying which folder to
locate. Setting create causes the folder to be created if it does not exist. Returns a (vrefnum,
dirid) tuple.

The constants for where and which can be obtained from the standard module MACFS.

Menu
FSSpec objects

alias objects

FInfo objects

Next: MacOS Prev: macdnr Up: Macintosh Specific Services Top: Top

struct -- Python library reference

Prev: regsub Up: String Services Top: Top
4.4. Built-in Module struct
This module performs conversions between Python values and C structs represented as Python strings. It
uses format strings (explained below) as compact descriptions of the lay-out of the C structs and the
intended conversion to/from Python values.

See also built-in module array. The module defines the following exception and functions:

error -- exception of module struct

Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2, ...) -- function of module struct

Return a string containing the values v1, v2, ... packed according to the given format. The
arguments must match the values required by the format exactly.

unpack (fmt, string) -- function of module struct

Unpack the string (presumably packed by pack(fmt, ...)) according to the given format. The
result is a tuple even if it contains exactly one item. The string must contain exactly the amount of
data required by the format (i.e. len(string) must equal calcsize(fmt)).

calcsize (fmt) -- function of module struct

Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be
obvious given their types:

Format

C --- Python

`x'

pad byte --- no value

`c'

char --- string of length 1

`b'

signed char --- integer

`h'

short --- integer

`i'

int --- integer

`l'

long --- integer

`f'

float --- float

`d'

double --- float

A format character may be preceded by an integral repeat count; e.g. the format string '4h' means
exactly the same as 'hhhh'.

C numbers are represented in the machine's native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Examples (all on a big-endian machine):
pack('hhl', 1, 2, 3) == '\000\001\000\002\000\000\000\003'

unpack('hhl', '\000\001\000\002\000\000\000\003') == (1, 2, 3)

calcsize('hhl') == 8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with
the code for that type with a repeat count of zero, e.g. the format 'llh0l' specifies two pad bytes at the
end, assuming longs are aligned on 4-byte boundaries.

(More format characters are planned, e.g. 's' for character arrays, upper case for unsigned variants,
and a way to specify the byte order, which is useful for [de]constructing network packets and
reading/writing portable binary file formats like TIFF and AIFF.)
Prev: regsub Up: String Services Top: Top

File Objects -- Python library reference

Next: Internal Objects Prev: The Null Object Up: Other Built-in Types Top: Top
2.1.7.8. File Objects
File objects are implemented using C's stdio package and can be created with the built-in function
open() described under Built-in Functions below. They are also returned by some other built-in functions
and methods, e.g. posix.popen() and posix.fdopen() and the makefile() method of socket
objects. When a file operation fails for an I/O-related reason, the exception IOError is raised. This
includes situations where the operation is not defined for some reason, like seek() on a tty device or
writing a file opened for reading.

Files have the following methods:

close () -- Method on file

Close the file. A closed file cannot be read or written anymore.

flush () -- Method on file

Flush the internal buffer, like stdio's fflush().

isatty () -- Method on file

Return 1 if the file is connected to a tty(-like) device, else 0.

read ([size]) -- Method on file

Read at most size bytes from the file (less if the read hits EOF or no more data is immediately
available on a pipe, tty or similar device). If the size argument is negative or omitted, read all data
until EOF is reached. The bytes are returned as a string object. An empty string is returned when
EOF is encountered immediately. (For certain files, like ttys, it makes sense to continue reading
after an EOF is hit.)

readline ([size]) -- Method on file

Read one entire line from the file. A trailing newline character is kept in the string(1) (but may be
absent when a file ends with an incomplete line). If thevarsize argument is present and non-
negative, it is a maximum byte count (including the trailing newline) and an incomplete line may be
returned. An empty string is returned when EOF is hit immediately. Note: unlike stdio's
fgets(), the returned string contains null characters ('\0') if they occurred in the input.

readlines () -- Method on file

Read until EOF using readline() and return a list containing the lines thus read.

seek (offset, whence) -- Method on file

Set the file's current position, like stdio's fseek(). The whence argument is optional and
defaults to 0 (absolute file positioning); other values are 1 (seek relative to the current position)
and 2 (seek relative to the file's end). There is no return value.

tell () -- Method on file

Return the file's current position, like stdio's ftell().

write (str) -- Method on file

Write a string to the file. There is no return value.

writelines (list) -- Method on file

Write a list of strings to the file. There is no return value. (The name is intended to match

readlines; writelines does not add line separators.)

---------- Footnotes ----------
(1) The advantage of leaving the newline on is that an empty string can be returned to mean EOF without
being ambiguous. Another advantage is that (in cases where it might matter, e.g. if you want to make an
exact copy of a file while scanning its lines) you can tell whether the last line of a file ended in a newline
or not (yes this happens!).

Next: Internal Objects Prev: The Null Object Up: Other Built-in Types Top: Top

Unresolved Jumps
The following references where not loaded when creating this help file
../dir.html

Unavailable reference...
The reference ../dir.html was not included in this help file
Details: (2, 'No such file or directory')

