
ARB07

ARB07 ii

COLLABORATORS

TITLE :

ARB07

ACTION NAME DATE SIGNATURE

WRITTEN BY August 27, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARB07 iii

Contents

1 ARB07 1

1.1 ARexx For Beginners - Article 7 - Symbols Introduction . 1

1.2 Article 7 - Symbols Introduction - What Are Symbols? . 2

1.3 Article 7 - Symbols Introduction - Symbol Names . 2

1.4 Article 7 - Symbols Introduction - The Symbol() Function . 4

1.5 Article 7 - Symbols Introduction - Simple Symbols . 5

1.6 Article 7 - Symbols Introduction - Fixed symbols . 5

1.7 Article 7 - Symbols Introduction - Stem Symbols . 6

1.8 Article 7 - Symbols Introduction - Compound Symbols . 7

1.9 Article 7 - Symbols Introduction - Unitialised Symbols . 7

1.10 Article 7 - Symbols Introduction - Assigning Values . 8

1.11 Article 7 - Symbols Introduction - Limitations To Assigning With = . 11

1.12 Article 7 - Symbols Introduction - Initialising Program Symbols . 11

1.13 Article 7 - Symbols Introduction - Removing Symbol Values . 13

1.14 Article 7 - Symbols Introduction - The DROP Instruction . 14

ARB07 1 / 14

Chapter 1

ARB07

1.1 ARexx For Beginners - Article 7 - Symbols Introduction

AREXX FOR BEGINNERS

ARTICLE 7 - SYMBOLS INTRODUCTION

BY FRANK BUNTON

COPYRIGHT © FRANK P. BUNTON 1995-1998

What are Symbols?

Names For Simple and Compound Symbols

The SYMBOL() Function

Simple Symbols

Fixed Symbols

Stem Symbols

Compound Symbols

Unitialised Symbols

Assigning Values to Variable Symbols

Limitations of Assigning With =

Initialising Program Symbols

Removing Symbol Values

The DROP Instruction
=== End of Text ===

ARB07 2 / 14

1.2 Article 7 - Symbols Introduction - What Are Symbols?

WHAT ARE SYMBOLS?

Those who have experience in some other programming languages will be
familiar with the terms:-

Constant - an item which does NOT change in value during the course of
program execution.

Variable - an item whose value CAN change during program execution.

ARexx uses the term "Symbol" for the same things.

"Fixed Symbols" are the same as "Constants" .

"Simple", "Stem" and "Compound" symbols are similar to "simple variables"
and "array variables". (If you are not familiar with these two terms in
relation to variables then forget about them. I mention them only for
the benefit of those who know them from other languages in order for them
to be able to relate to some known entity.)

At this stage, it may be best for beginners to concentrate only on fixed
and simple symbols and leave stem and compound symbols until I deal with
them in a later article. However, I will include a brief description of
stem and compound symbols here for the sake of completeness and for those
with experience in other languages who may wish to jump ahead of
me.

=== End of Text ===

1.3 Article 7 - Symbols Introduction - Symbol Names

SYMBOL NAMES FOR SIMPLE AND COMPOUND SYMBOLS

Fixed symbol names are numbers as explained under the heading
Fixed Symbols
.

The following notes relate to the general rules for naming variable
symbols.

These general rules are all you need to name simple symbols.

These general rules also apply to stem and compound variable symbols but
some special rules also apply to them which are discussed under the
headings:-

Stem Symbols

Compound Symbols

ARB07 3 / 14

The names that you give to simple, stem and compound symbols can ←↩
be made

up from any of these groups of characters:-

a-z A-Z 0-9 . ! ? $ _

However, the FIRST character of a symbol name must NOT be:-

- one of the numeric characters 0-9

- The full stop character "."

For example:-

Score1 is legitimate
Score. is legitimate

1Score is illegal
.Score is illegal

Any other characters must not be used. This especially applies to the
Arithmetic Operators which we will discuss in Article 9.

For example, if you tried to use this as a symbol name:-

My-Score

then ARexx would think that you are trying to subtract the value of one
symbol (Score) from that of another (My)!!

You can test to see if the characters that you use in a symbol name make
up a legitimate symbol name by using the

SYMBOL()
function.

As far as the alphabetic characters are concerned, the interpreter will
convert all alphabetics to upper case. Thus these names:-

grade
Grade
GRadE
GRADE

are all converted to "GRADE" and are the same symbol.

Although you can give symbols any name that you like within the rules,
such as "QDFRG", it is best to use something that is meaningful. For example,
you will find it a lot easier to read a program that, for instance, records
peoples names, addresses, etc., if you use the symbol names in the left
column rather than those in the right column:-

NAME QWER
ADDRESS_1 ZXCVBNBN
ADDRESS_2 OPIPOUIP
PHONE GFHGFH

The program would work just as well using the symbol names in the right

ARB07 4 / 14

column (the computer is cleverer than us in this regard!) but can you
imagine trying to understand the program when you, the human, tries to
read it?!?!

There is a limit to the number of characters that you can use in the name
of a symbol. Don’t worry though. This limit is 63995 characters. Above
that you get an error message. I don’t think you or I will ever write
a program with symbol names this long!!

However, I think you will find it easier to handle programs that contain
symbol names that are as short as possible while still maintaining meaning
without ambiguity.

=== End of Text ===

1.4 Article 7 - Symbols Introduction - The Symbol() Function

THE SYMBOL() FUNCTION

We have not covered functions yet but, as this one is useful in handling
symbols, and is very easy to use, I will tell you about it now.

If you enter this at a Shell/CLI prompt (substitute your own symbol name
where it says "SymbolName" and enclose it in quotes):-

> RX "SAY SYMBOL(’SymbolName’)"

you will be given one of these outputs:-

LIT if "SymbolName" is legitimate but does not yet hold a value
VAR if "SymbolName" is legitimate and it does hold a value
BAD if "SymbolName" is not legitimate

If you do not get "BAD" then you will know that the name that you have
picked for your symbol is a legitimate name EXCEPT that it does NOT show
BAD if you start with a number or a dot. This is because a number (including
a decimal place) is considered to be a

fixed symbol
.

In these examples, the output follows the "-->" indicator:-

SAY SYMBOL(’Score’) --> LIT
Score = 100 ; SAY SYMBOL(’Score’) --> VAR
SAY SYMBOL(’My-Score’) --> BAD

The "BAD" output in the last example is because the character "-" is not
allowed in symbol names.

=== End of Text ===

ARB07 5 / 14

1.5 Article 7 - Symbols Introduction - Simple Symbols

SIMPLE SYMBOLS

A simple symbol is a group of characters (i.e. its
name
) to which varying

values can be
assigned
.

The name of a simple symbol should begin with one of the alpha characters:-

a-z or A-Z

It can begin with one of these non alpha characters:-

! ? $ _

but I think you will find it better to use alphabetics as it will make
it easier for you to read the program at a later time.

After the first character you can use any of:-

the alphabetics a-z A-Z
the numerics 0-9
the characters ! ? $ _

but NOT the period(.). The period is reserved for
Stem
and

Compound
symbols,

or for decimal places in
fixed symbols
.

Examples of simple symbols have already been given
above
when I was talking

about using names that had some meaning such as the names, addresses,
phones, etc. of people.

=== End of Text ===

1.6 Article 7 - Symbols Introduction - Fixed symbols

FIXED SYMBOLS

A fixed symbol is one that carries the same value throughout the course
of the program. There are two types of fixed symbols which we will be
studying. They are:-

ARB07 6 / 14

- Numbers

- Labels

If a fixed symbol is a label, then the same rules that applied to

simple symbol names
also apply to labels.

If a fixed symbol is a number then it must contain only numeric characters.
In this respect, numeric characters include:-

0-9
. (the decimal point)
E (but only where SCIENTIFIC Notation is being used.)

(Beginners can forget about the "E" and "Scientific Notation" for the time
being.)

The value of a fixed symbol is that of its name.

For example, in the line:-

Grade = 45.3

the "45.3" is a fixed symbol which has the numeric value 45.3 and "Grade"
is a simple symbol which, after the above line, will carry the value 45.3
until changed by another line. Thus in these lines:-

Grade = 45.3
... more programming
Grade = 66.2
... more programming
Grade = 99.8

The simple symbol, or variable symbol, "Grade" has had its value changed
three times by reference to three different fixed symbols, or
numbers.

If there are any non numeric characters in the name of a fixed symbol
then arithmetic calculations on the fixed symbol value WILL NOT BE
POSSIBLE!!

=== End of Text ===

1.7 Article 7 - Symbols Introduction - Stem Symbols

STEM SYMBOLS

A Stem Symbol is one which follows the same naming rules as a simple symbol
but ends with a period (.). For example:-

ARB07 7 / 14

Name.
Grade.

Stem symbols are used as a basis for
compound symbols
.

=== End of Text ===

1.8 Article 7 - Symbols Introduction - Compound Symbols

COMPOUND SYMBOLS

A compound symbol is one that contains more than one part to its name.
Each part is separated by a period (.). For example:-

name.number

name.1.2

The first has two parts (name and number) and the second has three parts
(name, 1 and 2).

Note that the stem of the compound symbol follows the same naming rules
as those mentioned for stem symbols above but that ANY of the characters
a-z, A_Z, 0-9 and !?$_ can be used for the subsequent parts of the compound
name. However, the period (.) must ONLY be used to separate the various
parts of the compound symbol.

Stem and compound symbols will be discussed in Article 29 but, as I
mentioned above, beginners would do best to forget them until they reach
that article.

=== End of Text ===

1.9 Article 7 - Symbols Introduction - Unitialised Symbols

UNITIALISED SYMBOLS

Before a symbol has been assigned a value it is said to be unitialised.

An unitialised symbol has a value equal to its own name converted to upper
case. For example:-

SAY Score
--> SCORE

This is demonstrated in
Example7-1

ARB07 8 / 14

=== End of Text ===

1.10 Article 7 - Symbols Introduction - Assigning Values

ASSIGNING VALUES TO VARIABLE SYMBOLS

The simplest way of assigning a value is with the EQUALS (=) sign. For
example:-

Name = ’Fred Bloggs’

This can done with the variable symbols which are the simple, stem and
compound symbols.

By their very nature, fixed symbols cannot be assigned values. This is
because they are numbers which stay fixed in value throughout the course
of the program. However, it is not an error to use something like:-

1 = 2

With this type of usage, the = sign becomes a comparison operator which
we will look at soon.

When used like this, the expression:-

Number1 = Number2

will take on a Boolean value of 1 if the two numbers are equal or 0 if
they are unequal.

But to get back to assignments to variable symbols using =, there are
a few points to watch out for. These are best illustrated in this example
program:-

/* Example7-1.rexx */

/* Section 1 */

SAY
SAY ’Name1 is ’ Name1
SAY ’Name2 is ’ Name2
SAY ’Value1 is ’ Value1
SAY ’Value2 is ’ Value2

/* Section 2 */

Name1 = Fred Bloggs
Name2 = ’Fred Bloggs’
Value1 = 2.35
Value2 = Value1 + 2.2

SAY
SAY ’Name1 is ’ Name1
SAY ’Name2 is ’ Name2

ARB07 9 / 14

SAY ’Value1 is ’ Value1
SAY ’Value2 is ’ Value2

/* Section 3 */

Name1 = 2.35
Name2 = Name1 + 2.2
Value1 = Fred Bloggs
Value2 = ’Fred Bloggs’

SAY
SAY ’Name1 is ’ Name1
SAY ’Name2 is ’ Name2
SAY ’Value1 is ’ Value1
SAY ’Value2 is ’ Value2

(When we come to look at FUNCTIONS we will find that there is a much neater
way of doing this program. If you want to see it now, have a look at
Example7-1a which gives exactly the same result.)

If you run this program the display in your window would be:-

Name1 is NAME1
Name2 is NAME2
Value1 is VALUE1
Value2 is VALUE2

Name1 is FRED BLOGGS
Name2 is Fred Bloggs
Value1 is 2.35
Value2 is 4.55

Name1 is 2.35
Name2 is 4.55
Value1 is FRED BLOGGS
Value2 is Fred Bloggs

There are a few things to note here.

Firstly, in Section 1 the four symbols have not yet been given any value
by the programmer. Their values, as displayed by the SAY instructions,
are their own names converted to upper case as is always done by ARexx
- see Article 5.

Secondly, you do not need to declare the type of variable (symbol). Some
other programming languages require you to indicate whether the variable
will contain numeric or string values and, after that, they must stay
as that type of variable (string or numeric) for the rest of the
program.

With ARexx, this is not necessary. A symbol can be either type of variable
(numeric or string) and its type can be altered at any time during the
program operation simply by assigning a different type of value to it.
This has been illustrated in the above example program by Sections 2 and 3.

Thirdly, you can use arithmetic operators (See Article 9) in setting the
value of numeric variables as in the lines in Sections 2 and 3:-

ARB07 10 / 14

Value2 = Value1 + 2.2
Name2 = Name1 + 2.2

Fourthly, if a value is assigned to a symbol and that value is NOT enclosed
in quotes the ARexx considers it to be a symbol or a group of symbols
and not a string.

This can have a number of effects:-

* The value will be converted to upper case. For example:-

Name = Fred Bloggs
SAY name

--> FRED BLOGGS

(provided that the symbols FRED and BLOGGS have not previously been
assigned values.)

* If the value contains arithmetic operators then ARexx will try to carry
out calculations on it. For example, if you use:-

Name = Smith-Jones

then ARexx will try to subtract "Jones" from "Smith" and, if "Jones" and
"Smith" have not previously been given numeric values, then the program
will abort with an error message.

You should use:-

Name = ’Smith-Jones’

* If the value you assign contains symbols that have been used elsewhere
in the program, then the value of those symbols will be used. For
example:-

Smith = 20
Jones = 8

... More programming

Name = Smith-Jones
SAY name

--> 12

The moral is that, if you are assigning a string value to a symbol, you
should always enclose the string in quotes. In Article 5 we discussed
rules for using single and double quotes with the SAY command. The same
rules apply to enclosing strings when assigning them as symbols
values.

=== End of Text ===

ARB07 11 / 14

1.11 Article 7 - Symbols Introduction - Limitations To Assigning With =

LIMITATIONS OF ASSIGNING WITH =

This method of assigning values to symbols has the very real limitation
of not allowing for any input from the program user. All values must be
set by the programmer when the program is first written.

In the next article will see how to allow the user to input symbol values
as would be necessary in some situations.

=== End of Text ===

1.12 Article 7 - Symbols Introduction - Initialising Program Symbols

INITIALISING PROGRAM SYMBOLS

It is often advisable to "Initialise" symbols at the start of a program,
especially if it is a long program. Following is an example of initialising
symbols taken from Example16-11 which simulates the toss of a coin, allows
the user to pick heads or tails.

/* Example16-11 */

/* Initialise the Program Symbols */

Win = ’You picked a WINNER’ /* String to say if win */
Lose = ’Your choice was a FIZZER’ /* String to say if lose */
Heads = 0 /* Keep track of number of heads */
Tails = 0 /* Keep track of number of tails */
Wins = 0 /* Keep track of number of wins */
Losses = 0 /* Keep track of number of losses */
HeadTail = RANDOM(,,time(’s’)) /* record result of toss */
YesNo = /* record yes or no response */
Choice = /* record choice of H or T or Q */

/* Main Program Loop */
.... Rest of Program

This example is somewhat over simplified but it demonstrates the points
I am about to make.

There are a number of reasons for doing this sort of thing.

In some cases you might need the symbol to have an initial value as soon
as the program is started. This is the case with the symbols "Win" and
"Lose" above. These symbols are used with the SAY command, as in:-

SAY Win

which will not put "Win" into the display window but will put there the
value held by the symbol "Win", i.e.:-

ARB07 12 / 14

You picked a WINNER

or, if he loses, the symbol "Lose" is SAYed and the display is:-

Your choice was a FIZZER

In the above example it is hardly worth setting up symbols for these small
strings. However, I have done so to illustrate that it can be done. If
a large string is to be used over and over it is helpful to have its value
stored in a symbol name to save a lot of typing. Once the symbol has been
set up with a value you can just enter the appropriate SAY instruction
whenever you need it.

For example:-

SymbolName = ’This is an extremely long symbol value that I must use a
lot of times and would take up a lot of typing each time’

SAY SymbolName

This is a lot better than typing this a lot of times:-

SAY ’This is an extremely long symbol value that I must use a lot of
times and would take up a lot of typing each time’

Another case for setting up initial values would be in a situation such
as a game where you wish the player to start with a score of more than
zero, say 100:-

SCORE = 100

Another reason is that you may wish to do some arithmetic on a symbol’s
value. In our coin toss program we will keep track of the number of times
things happen with lines such as:-

Heads = Heads + 1

This line is really saying "increase the value of Heads by 1". However,
if the symbol "Heads" has not previously been given a numeric value, then
its value will be itself which is not numeric. ARexx will then attempt
to add a number to a non number which is not possible. The program will
stop with an error message when it reaches this line. Therefore, give
the symbol an initial numeric value at the start of the program:-

Heads = 0

And another reason is that us poor feeble minded humans often have trouble
remembering what the symbols we used when we wrote a program a few months
or years ago are really for! Not knowing the purpose of a symbol makes
it very hard to understand the program.

Another thing us poor humans do, particularly in large programs written
over a long period of time, or maybe added to after the initial writing,
is to use a name for a symbol that was used earlier in the program for
a different purpose. Having a table of symbols at the start means that
we can refer to it before picking a name. Just make sure that every new

ARB07 13 / 14

symbol has its name added to the table!!

Thus it is wise to include, at the start of the program, a brief description
within a comment as I have done in the above list. This is the only reason
for the inclusion of the symbols "YesNo" and "Choice" in the above
list.

Note that I have put an = sign after these symbol names. Without this,
ARexx will interpret the symbols as commands to be sent to an external
program.

=== End of Text ===

1.13 Article 7 - Symbols Introduction - Removing Symbol Values

REMOVING SYMBOL VALUES

Having assigned values to symbols, there may be times when we want to
remove those values.

Let’s say a program can be sent back to the start after it has finished
running (as can a game that can be replayed) without loading it up from
disk again. If the program’s symbols have values that are irrelevant when
it starts again, then those values must be removed.

If you want a numeric symbol to start off with a numeric value of zero,
then you simply use this (as we did when initialising symbols - see
above):-

Symbol = 0

If you want a string symbol to have its value removed but retain the character
of a string you can use:-

Symbol = ’’

This is two quote marks with nothing in between.

In both these cases, the symbol is retained in ARexx’s internal list of
symbols. They are still initialised.

Note that using something like:-

YesNo =
Choice =

with nothing after the = sign (as I did in the symbol table above) then
the symbols loose their previous values and become unitialised. The result
is the same as using:-

DROP YesNo
DROP Choice

The

ARB07 14 / 14

DROP
instruction is another way of removing symbol values but it also

removes the symbols from the list of symbols in use.

=== End of Text ===

1.14 Article 7 - Symbols Introduction - The DROP Instruction

THE DROP INSTRUCTION

The DROP command is used to remove a symbol entirely from ARexx’s internal
list of symbols and return it to its unitialised state.

Its syntax is:-

DROP Symbol [Symbol] [Symbol] [.......]

This means that you must have at least one symbol name after DROP but
that you can also have multiple names it, each separated by a space. For
example:-

DROP Score

DROP Name Address

Score = 10
SAY Score --> 10
DROP Score
SAY Score --> SCORE

When we come to look at stem and compound symbols, we will see that using
DROP on a stem symbol will drop the values of all compound symbols associated
with that stem.

=== End of Text ===

	ARB07
	ARexx For Beginners - Article 7 - Symbols Introduction
	Article 7 - Symbols Introduction - What Are Symbols?
	Article 7 - Symbols Introduction - Symbol Names
	Article 7 - Symbols Introduction - The Symbol() Function
	Article 7 - Symbols Introduction - Simple Symbols
	Article 7 - Symbols Introduction - Fixed symbols
	Article 7 - Symbols Introduction - Stem Symbols
	Article 7 - Symbols Introduction - Compound Symbols
	Article 7 - Symbols Introduction - Unitialised Symbols
	Article 7 - Symbols Introduction - Assigning Values
	Article 7 - Symbols Introduction - Limitations To Assigning With =
	Article 7 - Symbols Introduction - Initialising Program Symbols
	Article 7 - Symbols Introduction - Removing Symbol Values
	Article 7 - Symbols Introduction - The DROP Instruction

