Balanced Binary Tree Templates


TBPlusTree template

Syntax
template <class T> class TBPlusTree;

Header File
btreeimp.h

Description
Implements a balanced tree of objects of type T.
TStandardAllocator is used to manage memory.

Type Definitions
typedef int (*CompFunc) (const T&, void*)
typedef int (*CondFunc) (const T&, void*)
typedef void (*IterFunc) (T&, void*)

Public Constructor
TBPlusTree (void)

Public Member Functions
int Add (const T& t)
int Destroy (const T& t)
int DestroyFirst (void)
int DestroyLast (void)
int Detach (const T& t)
int DetachFirst (void)
int DetachLast (void)
T* Find (const T& t) const
T* First (void) const
T* FirstThat (CondFunc cond, void* args) const
void Flush (void)
void ForEach (IterFunc iter, void* args)
unsigned GetItemsInContainer (void) const
int HasMember (const T& t) const
int IsEmpty (void) const
T* Last (void) const
T* LastThat (CondFunc, void* t) const
T* Search (CompFunc, void* t) const

Syntax
TBPlusTree (void)

Description
Creates a tree which is initially empty.

Syntax
int Add (const T& t)

Description
Adds a T object to the balanced tree. If the object already exists in the tree, Add fails. Add returns 0 if it couldn’t add the object.

Syntax
int Destroy (const T& t)

Description
Removes the object from the tree.

Syntax
int DestroyFirst (void)

Description
Removes the first (lowest valued) object from the tree.

Syntax
int DestroyLast (void)

Description
Removes the last (highest valued) object from the tree.

Syntax
int Detach (const T& t)

Description
Removes the object from the tree.

Syntax
int DetachFirst (void)

Description
Removes the first (lowest valued) object from the tree.

Syntax
int DetachLast (void)

Description
Removes the last (highest valued) object from the tree.

Syntax
T* Find (const T& t) const

Description
Finds the specified object and returns a pointer to it. Returns 0 is the object is not found in the tree.

Syntax
T* First (void) const

Description
Returns a pointer to the first (lowest valued) object in the tree. Returns 0 is the tree is empty.

Syntax
T* FirstThat (CondFunc cond, void* args) const

Description
Returns a pointer to the first object in the tree that satisfies a given condition. You supply a test function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no object in the tree meets the condition.

Syntax
void Flush (void)

Description
Removes all the elements in the tree without destroying the tree.

Syntax
void ForEach (IterFunc iter, void* args)

Description
ForEach creates an internal iterator to execute the given function for each element in the array. The args argument lets you pass arbitrary data to this function.

Syntax
unsigned GetItemsInContainer (void) const

Description
Returns the number of items in the tree.

Syntax
int HasMember (const T& t) const

Description
Returns 1 is the given object is found in the tree, otherwise returns 0.

Syntax
int IsEmpty (void) const

Description
Returns 1 is the tree contains no elements, otherwise returns 0.

Syntax
T* Last (void) const

Description
Returns a pointer to the last (highest valued) object in the tree. Returns 0 if the tree is empty.

Syntax
T* LastThat (CondFunc cond, void* args) const

Description
Returns a pointer to the last object in the array that satisfies a given condition. You supply a test function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no object in the tree meets the condition.

Syntax
T* Search (CompFunc comp, void* args) const

Description
Returns a pointer an object in the tree that satisfies a given condition. You supply a compare function pointer, comp, who’s return value directs the search. You can pass arbitrary arguments via args. Returns 0 if no object in the tree satisfies the search.

If comp returns 0, the search ends, and a pointer to the current object is returned.
If comp returns < 0, the search continues with lower valued objects.
If comp returns >0, the search continues with greater valued object.


TBPlusTreeIterator template

Syntax
template <class T> class TBPlusTreeIterator;

Header File
btreeimp.h

Description
Implements an iterator object to traverse TBPlusTree objects.

Public Constructors
TBPlusTreeIterator (const TBPlusTree<T> &t)
TBPlusTreeIterator (const TBPlusTree<T> &t, const T& start, const T& end)

Public Member Functions
const T& Current (void) const
void Restart (void)
void Restart (const T& start, const T& end)

Operators
const T& operator ++ (int)
const T& operator ++ (void)
const T& operator -- (int)
const T& operator -- (void)
operator int (void) const

Syntax
TBPlusTreeIterator (const TBPlusTree<T> &t)

Description
Creates an iterator to traverse the object t.

Syntax
TBPlusTreeIterator (const TBPlusTree<T> &t, const T& start, const T& end)

Description
Creates an iterator to traverse the object t. Limits the range of the iterator to all elements who’s values lie between start and end inclusive. If start is greater than end, the decrement operators should be used.

Note. The tree does not need to contain elements equal to start and end.

Syntax
const T& Current (void) const

Description
Returns the current object.

Syntax
void Restart (void)

Description
Restarts the iteration over the previous range.

Syntax
void Restart (const T& start, const T& end)

Description
Restarts the iteration over the given range. The range is inclusive of start and end if values equal to start or end are found in the tree. If start is greater than end, the decrement operators should be used.

Syntax
const T& operator ++ (int)

Description
Move to the next object, and return the object that was current before the move (post-increment).

Syntax
const T& operator ++ (void)

Description
Move to the next object, and return the object that was current before the move (pre-increment).

Syntax
const T& operator -- (int)

Description
Move to the previous object, and return the object that was current before the move (post-decrement).

Syntax
const T& operator -- (void)

Description
Move to the previous object, and return the object that was current before the move (pre-decrement).

Syntax
operator int (void) const

Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator converts to 0 if nothing remains in the iterator.


TIBPlusTree template

Syntax
template <class T> class TIBPlusTree;

Header File
btreeimp.h

Description
Implements a indirect balanced tree of objects of type T.
TStandardAllocator is used to manage memory.

Type Definitions
typedef int (*CompFunc) (const T&, void*)
typedef int (*CondFunc) (const T&, void*)
typedef void (*IterFunc) (T&, void*)

Public Constructor
TIBPlusTree (void)

Public Member Functions
int Add (const T* t)
int Destroy (const T* t)
int DestroyFirst (void)
int DestroyLast (void)
int Detach (const T* t, DeleteType dt = NoDelete)
int DetachFirst (DeleteType dt = NoDelete)
int DetachLast (DeleteType dt = NoDelete)
T* Find (const T* t) const
T* First (void) const
T* FirstThat (CondFunc cond, void* args) const
void Flush (DeleteType dt = DefDelete)
void ForEach (IterFunc iter, void* args)
unsigned GetItemsInContainer (void) const
int HasMember (const T* t) const
int IsEmpty (void) const
T* Last (void) const
T* LastThat (CondFunc, void* t) const
T* Search (CompFunc, void* t) const

Syntax
TIBPlusTree (void)

Description
Creates a tree which is initially empty.

Syntax
int Add (const T* t)

Description
Adds a pointer to the object T to the balanced tree. If the object already exists in the tree, Add fails. Add returns 0 if it couldn’t add the object.

Syntax
int Destroy (const T* t)

Description
Removes the object from the tree and deletes it.

Syntax
int DestroyFirst (void)

Description
Removes the first (lowest valued) object from the tree and deletes it.

Syntax
int DestroyLast (void)

Description
Removes the last (highest valued) object from the tree and deletes it.

Syntax
int Detach (const T& t, DeleteType dt = NoDelete)

Description
Removes the object from the tree. The value of dt and the current ownership setting determine whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of ownership. If dt is set to DefDelete, the object will be deleted only if the tree owns its elements.

Syntax
int DetachFirst (DeleteType dt = NoDelete)

Description
Removes the first (lowest valued) object from the tree. The value of dt and the current ownership setting determine whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of ownership. If dt is set to DefDelete, the object will be deleted only if the tree owns its elements.

Syntax
int DetachLast (DeleteType dt = NoDelete)

Description
Removes the last (highest valued) object from the tree. The value of dt and the current ownership setting determine whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of ownership. If dt is set to DefDelete, the object will be deleted only if the tree owns its elements.

Syntax
T* Find (const T* t) const

Description
Finds the specified object and returns a pointer to it. Returns 0 is the object is not found in the tree.

Syntax
T* First (void) const

Description
Returns a pointer to the first (lowest valued) object in the tree. Returns 0 is the tree is empty.

Syntax
T* FirstThat (CondFunc cond, void* args) const

Description
Returns a pointer to the first object in the tree that satisfies a given condition. You supply a test function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no object in the tree meets the condition.

Syntax
void Flush (DeleteType dt = DefDelete)

Description
Removes all the elements in the tree without destroying the tree. The value of dt determines whether the elements themselves are destroyed. By default, the ownership status of the array determines their fate, as explained in the Detach member function. You can also set dt to Delete and NoDelete.

Syntax
void ForEach (IterFunc iter, void* args)

Description
ForEach creates an internal iterator to execute the given function for each element in the array. The args argument lets you pass arbitrary data to this function.

Syntax
unsigned GetItemsInContainer (void) const

Description
Returns the number of items in the tree.

Syntax
int HasMember (const T* t) const

Description
Returns 1 is the given object is found in the tree, otherwise returns 0.

Syntax
int IsEmpty (void) const

Description
Returns 1 is the tree contains no elements, otherwise returns 0.

Syntax
T* Last (void) const

Description
Returns a pointer to the last (highest valued) object in the tree. Returns 0 if the tree is empty.

Syntax
T* LastThat (CondFunc cond, void* args) const

Description
Returns a pointer to the last object in the array that satisfies a given condition. You supply a test function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no object in the tree meets the condition.

Syntax
T* Search (CompFunc comp, void* args) const

Description
Returns a pointer an object in the tree that satisfies a given condition. You supply a compare function pointer, comp, who’s return value directs the search. You can pass arbitrary arguments via args. Returns 0 if no object in the tree satisfies the search.

If comp returns 0, the search ends, and a pointer to the current object is returned.
If comp returns < 0, the search continues with lower valued objects.
If comp returns >0, the search continues with greater valued object.


TIBPlusTreeIterator template

Syntax
template <class T> class TIBPlusTreeIterator;

Header File
btreeimp.h

Description
Implements an iterator object to traverse TIBPlusTree objects.

Public Constructors
TIBPlusTreeIterator (const TIBPlusTree<T> &t)
TIBPlusTreeIterator (const TIBPlusTree<T> &t, const T* start, const T* end)

Public Member Functions
const T* Current (void) const
void Restart (void)
void Restart (const T* start, const T* end)

Operators
const T* operator ++ (int)
const T* operator ++ (void)
const T* operator -- (int)
const T* operator -- (void)
operator int (void) const

Syntax
TIBPlusTreeIterator (const TIBPlusTree<T> &t)

Description
Creates an iterator to traverse the object t.

Syntax
TIBPlusTreeIterator (const TIBPlusTree<T> &t, const T* start, const T* end)

Description
Creates an iterator to traverse the object t. Limits the range of the iterator to all elements who’s values lie between start and end inclusive. If start is greater than end, the decrement operators should be used.

Note. The tree does not need to contain elements equal to start and end.

Syntax
const T* Current (void) const

Description
Returns the current object.

Syntax
void Restart (void)

Description
Restarts the iteration over the previous range.

Syntax
void Restart (const T* start, const T* end)

Description
Restarts the iteration over the given range. The range is inclusive of start and end if values equal to start or end are found in the tree. If start is greater than end, the decrement operators should be used.

Syntax
const T* operator ++ (int)

Description
Move to the next object, and return the object that was current before the move (post-increment).

Syntax
const T* operator ++ (void)

Description
Move to the next object, and return the object that was current before the move (pre-increment).

Syntax
const T* operator -- (int)

Description
Move to the previous object, and return the object that was current before the move (post-decrement).

Syntax
const T* operator -- (void)

Description
Move to the previous object, and return the object that was current before the move (pre-decrement).

Syntax
operator int (void) const

Description
Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator converts to 0 if nothing remains in the iterator.

