Balanced Binary Tree Templates





TBPlusTree template



Syntax

template <class T> class TBPlusTree;



Header File

btreeimp.h



Description

Implements a balanced tree of objects of type T.

TStandardAllocator is used to manage memory.



Type Definitions

typedef int (*CompFunc) (const T&, void*)

typedef int (*CondFunc) (const T&, void*)

typedef void (*IterFunc) (T&, void*)



Public Constructor

TBPlusTree (void)



Public Member Functions

int Add (const T& t)

int Destroy (const T& t)

int DestroyFirst (void)

int DestroyLast (void)

int Detach (const T& t)

int DetachFirst (void)

int DetachLast (void)

T* Find (const T& t) const

T* First (void) const

T* FirstThat (CondFunc cond, void* args) const

void Flush (void)

void ForEach (IterFunc iter, void* args)

unsigned GetItemsInContainer (void) const

int HasMember (const T& t) const

int IsEmpty (void) const

T* Last (void) const

T* LastThat (CondFunc, void* t) const

T* Search (CompFunc, void* t) const



Syntax

TBPlusTree (void)



Description

Creates a tree which is initially empty.



Syntax

int Add (const T& t)



Description

Adds a T object to the balanced tree. If the object already exists in the tree, Add fails. Add returns 0 if it couldn’t add the object.



Syntax

int Destroy (const T& t)



Description

Removes the object from the tree.



Syntax

int DestroyFirst (void)



Description

Removes the first (lowest valued) object from the tree.



Syntax

int DestroyLast (void)



Description

Removes the last (highest valued) object from the tree.



Syntax

int Detach (const T& t)



Description

Removes the object from the tree.



Syntax

int DetachFirst (void)



Description

Removes the first (lowest valued) object from the tree.



Syntax

int DetachLast (void)



Description

Removes the last (highest valued) object from the tree.



Syntax

T* Find (const T& t) const



Description

Finds the specified object and returns a pointer to it. Returns 0 is the object is not found in the tree.



Syntax

T* First (void) const



Description

Returns a pointer to the first (lowest valued) object in the tree. Returns 0 is the tree is empty.



Syntax

T* FirstThat (CondFunc cond, void* args) const



Description

Returns a pointer to the first object in the tree that satisfies a given condition. You supply a test function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no object in the tree meets the condition.



Syntax

void Flush (void)



Description

Removes all the elements in the tree without destroying the tree.



Syntax

void ForEach (IterFunc iter, void* args)



Description

ForEach creates an internal iterator to execute the given function for each element in the array. The args argument lets you pass arbitrary data to this function.



Syntax

unsigned GetItemsInContainer (void) const



Description

Returns the number of items in the tree.



Syntax

int HasMember (const T& t) const



Description

Returns 1 is the given object is found in the tree, otherwise returns 0.



Syntax

int IsEmpty (void) const



Description

Returns 1 is the tree contains no elements, otherwise returns 0.



Syntax

T* Last (void) const



Description

Returns a pointer to the last (highest valued) object in the tree. Returns 0 if the tree is empty.



Syntax

T* LastThat (CondFunc cond, void* args) const



Description

Returns a pointer to the last object in the array that satisfies a given condition. You supply a test function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no object in the tree meets the condition.



Syntax

T* Search (CompFunc comp, void* args) const



Description

Returns a pointer an object in the tree that satisfies a given condition. You supply a compare function pointer, comp, who’s return value directs the search. You can pass arbitrary arguments via args. Returns 0 if no object in the tree satisfies the search.



If comp returns 0, the search ends, and a pointer to the current object is returned.

If comp returns < 0, the search continues with lower valued objects.

If comp returns >0, the search continues with greater valued object.





TBPlusTreeIterator template



Syntax

template <class T> class TBPlusTreeIterator;



Header File

btreeimp.h



Description

Implements an iterator object to traverse TBPlusTree objects.



Public Constructors

TBPlusTreeIterator (const TBPlusTree<T> &t)

TBPlusTreeIterator (const TBPlusTree<T> &t, const T& start, const T& end)



Public Member Functions

const T& Current (void) const

void Restart (void)

void Restart (const T& start, const T& end)



Operators

const T& operator ++ (int)

const T& operator ++ (void)

const T& operator -- (int)

const T& operator -- (void)

operator int (void) const



Syntax

TBPlusTreeIterator (const TBPlusTree<T> &t)



Description

Creates an iterator to traverse the object t.



Syntax

TBPlusTreeIterator (const TBPlusTree<T> &t, const T& start, const T& end)



Description

Creates an iterator to traverse the object t. Limits the range of the iterator to all elements who’s values lie between start and end inclusive. If start is greater than end, the decrement operators should be used.



Note. The tree does not need to contain elements equal to start and end.



Syntax

const T& Current (void) const



Description

Returns the current object.



Syntax

void Restart (void)



Description

Restarts the iteration over the previous range.



Syntax

void Restart (const T& start, const T& end)



Description

Restarts the iteration over the given range. The range is inclusive of start and end if values equal to start or end are found in the tree. If start is greater than end, the decrement operators should be used.



Syntax

const T& operator ++ (int)



Description

Move to the next object, and return the object that was current before the move (post-increment).



Syntax

const T& operator ++ (void)



Description

Move to the next object, and return the object that was current before the move (pre-increment).



Syntax

const T& operator -- (int)



Description

Move to the previous object, and return the object that was current before the move (post-decrement).



Syntax

const T& operator -- (void)



Description

Move to the previous object, and return the object that was current before the move (pre-decrement).



Syntax

operator int (void) const



Description

Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator converts to 0 if nothing remains in the iterator.





TIBPlusTree template



Syntax

template <class T> class TIBPlusTree;



Header File

btreeimp.h



Description

Implements a indirect balanced tree of objects of type T.

TStandardAllocator is used to manage memory.



Type Definitions

typedef int (*CompFunc) (const T&, void*)

typedef int (*CondFunc) (const T&, void*)

typedef void (*IterFunc) (T&, void*)



Public Constructor

TIBPlusTree (void)



Public Member Functions

int Add (const T* t)

int Destroy (const T* t)

int DestroyFirst (void)

int DestroyLast (void)

int Detach (const T* t, DeleteType dt = NoDelete)

int DetachFirst (DeleteType dt = NoDelete)

int DetachLast (DeleteType dt = NoDelete)

T* Find (const T* t) const

T* First (void) const

T* FirstThat (CondFunc cond, void* args) const

void Flush (DeleteType dt = DefDelete)

void ForEach (IterFunc iter, void* args)

unsigned GetItemsInContainer (void) const

int HasMember (const T* t) const

int IsEmpty (void) const

T* Last (void) const

T* LastThat (CondFunc, void* t) const

T* Search (CompFunc, void* t) const



Syntax

TIBPlusTree (void)



Description

Creates a tree which is initially empty.



Syntax

int Add (const T* t)



Description

Adds a pointer to the object T to the balanced tree. If the object already exists in the tree, Add fails. Add returns 0 if it couldn’t add the object.



Syntax

int Destroy (const T* t)



Description

Removes the object from the tree and deletes it.



Syntax

int DestroyFirst (void)



Description

Removes the first (lowest valued) object from the tree and deletes it.



Syntax

int DestroyLast (void)



Description

Removes the last (highest valued) object from the tree and deletes it.



Syntax

int Detach (const T& t, DeleteType dt = NoDelete)



Description

Removes the object from the tree. The value of dt and the current ownership setting determine whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of ownership. If dt is set to DefDelete, the object will be deleted only if the tree owns its elements.



Syntax

int DetachFirst (DeleteType dt = NoDelete)



Description

Removes the first (lowest valued) object from the tree. The value of dt and the current ownership setting determine whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of ownership. If dt is set to DefDelete, the object will be deleted only if the tree owns its elements.



Syntax

int DetachLast (DeleteType dt = NoDelete)



Description

Removes the last (highest valued) object from the tree. The value of dt and the current ownership setting determine whether the object itself will be deleted. DeleteType is defined in the base class TShouldDelete as enum { NoDelete, DefDelete, Delete }. The default value of dt, NoDelete, means that the object will not be deleted regardless of ownership. With dt set to Delete, the object will be deleted regardless of ownership. If dt is set to DefDelete, the object will be deleted only if the tree owns its elements.



Syntax

T* Find (const T* t) const



Description

Finds the specified object and returns a pointer to it. Returns 0 is the object is not found in the tree.



Syntax

T* First (void) const



Description

Returns a pointer to the first (lowest valued) object in the tree. Returns 0 is the tree is empty.



Syntax

T* FirstThat (CondFunc cond, void* args) const



Description

Returns a pointer to the first object in the tree that satisfies a given condition. You supply a test function pointer cond that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no object in the tree meets the condition.



Syntax

void Flush (DeleteType dt = DefDelete)



Description

Removes all the elements in the tree without destroying the tree. The value of dt determines whether the elements themselves are destroyed. By default, the ownership status of the array determines their fate, as explained in the Detach member function. You can also set dt to Delete and NoDelete.



Syntax

void ForEach (IterFunc iter, void* args)



Description

ForEach creates an internal iterator to execute the given function for each element in the array. The args argument lets you pass arbitrary data to this function.



Syntax

unsigned GetItemsInContainer (void) const



Description

Returns the number of items in the tree.



Syntax

int HasMember (const T* t) const



Description

Returns 1 is the given object is found in the tree, otherwise returns 0.



Syntax

int IsEmpty (void) const



Description

Returns 1 is the tree contains no elements, otherwise returns 0.



Syntax

T* Last (void) const



Description

Returns a pointer to the last (highest valued) object in the tree. Returns 0 if the tree is empty.



Syntax

T* LastThat (CondFunc cond, void* args) const



Description

Returns a pointer to the last object in the array that satisfies a given condition. You supply a test function pointer, cond, that returns true for a certain condition. You can pass arbitrary arguments via args. Returns 0 if no object in the tree meets the condition.



Syntax

T* Search (CompFunc comp, void* args) const



Description

Returns a pointer an object in the tree that satisfies a given condition. You supply a compare function pointer, comp, who’s return value directs the search. You can pass arbitrary arguments via args. Returns 0 if no object in the tree satisfies the search.



If comp returns 0, the search ends, and a pointer to the current object is returned.

If comp returns < 0, the search continues with lower valued objects.

If comp returns >0, the search continues with greater valued object.





TIBPlusTreeIterator template



Syntax

template <class T> class TIBPlusTreeIterator;



Header File

btreeimp.h



Description

Implements an iterator object to traverse TIBPlusTree objects.



Public Constructors

TIBPlusTreeIterator (const TIBPlusTree<T> &t)

TIBPlusTreeIterator (const TIBPlusTree<T> &t, const T* start, const T* end)



Public Member Functions

const T* Current (void) const

void Restart (void)

void Restart (const T* start, const T* end)



Operators

const T* operator ++ (int)

const T* operator ++ (void)

const T* operator -- (int)

const T* operator -- (void)

operator int (void) const



Syntax

TIBPlusTreeIterator (const TIBPlusTree<T> &t)



Description

Creates an iterator to traverse the object t.



Syntax

TIBPlusTreeIterator (const TIBPlusTree<T> &t, const T* start, const T* end)



Description

Creates an iterator to traverse the object t. Limits the range of the iterator to all elements who’s values lie between start and end inclusive. If start is greater than end, the decrement operators should be used.



Note. The tree does not need to contain elements equal to start and end.



Syntax

const T* Current (void) const



Description

Returns the current object.



Syntax

void Restart (void)



Description

Restarts the iteration over the previous range.



Syntax

void Restart (const T* start, const T* end)



Description

Restarts the iteration over the given range. The range is inclusive of start and end if values equal to start or end are found in the tree. If start is greater than end, the decrement operators should be used.



Syntax

const T* operator ++ (int)



Description

Move to the next object, and return the object that was current before the move (post-increment).



Syntax

const T* operator ++ (void)



Description

Move to the next object, and return the object that was current before the move (pre-increment).



Syntax

const T* operator -- (int)



Description

Move to the previous object, and return the object that was current before the move (post-decrement).



Syntax

const T* operator -- (void)



Description

Move to the previous object, and return the object that was current before the move (pre-decrement).



Syntax

operator int (void) const



Description

Converts the iterator to an integer value for testing if objects remain in the iterator. The iterator converts to 0 if nothing remains in the iterator.


