
1

2

We're Back
Well, I'm back! I've been on a short sabbatical that
turned into a year long project. During that time I've
had no free time to devote to PovZine (and other
assorted duties that my spouse keeps reminding me
about).

At any rate a lot has happened since the last PovZine
issue. I've become a published author (my book "3D
File Formats: A Programmers Reference" will be in
book stores in September), POV-Ray V3.0 betas
have had a public release, and most importantly the
O.J. trial is over.

A Public Apology

I'd like to publicly apologize to several folks that
have submitted articles. This issue has taken far
longer to produce than I would have ever imagined.
In this issue I've simply tried to get some of my
backlog published. There are several articles that
didn't make to this issue (because I wanted to get
something out quickly). I expect to publish another
issue, soon, that will contain the remainder of my
article backlog. Plus some new material.

Distribution Format

At this point it looks like Adobe has won the
portable documentation wars. From now on I will be
publishing PovZine as an Adobe Acrobat document
(and an HTML version as long a Gita continues to
convert my source documents – Thanks Gita). I am
discontinuing distributing a Common Ground
version starting with this issue. I'm somewhat
reluctant about this decision, but am forced into it
because the current free reader for Common Ground
doesn't appear to work reliably on Windows NT
systems.

Cool Software

One great things that has happened in the last year is
the appearance of Trispective from 3DEye.
Trispective is the first mainstream commercial
software package (that I'm aware of) that directly
supports POV-Ray. Egghead Software, in their
summer catalog, has Trispective priced at $149.00.
Trispective can export models as POV-Ray V2.2
files. Granted, the conversion process isn't totally
painless, but considering the other commercial
options this is a "Good Thing."

Final Ramblings

I've heard that Waite Group Press has been bought
out by Macmillian and that they've pulled Ray
Tracing Creations out-of-print. This doesn’t bode
well for POV-Ray users who have had the
advantage of being able to buy Chris Young's great
book. I was hoping for a POV-Ray V3.0 upgrade to
RTC, but that doesn't look likely very now.

Keith Rule
http://www.europa.com/~keithr
keithr@europa.com

(GLWRULDO

http://www.europa.com/~keithr

3

Features

4 #Declare Beginner
The second of a series of articles targeted for beginners.

7 A Review Of Trispective
Interested in commercial 3D modeler for POV-Ray?

10 Modeling with MORAY 2.0's Bezier
Editor

14 Tips & Tricks
How to create tiles in POV-Ray V2.2

17 POV Animation Using Perl
Using an "Off-the-shelf" scripting language to help with
POV-Ray animation.

22 Creating Animated GIF Files
Using POV-Ray V3.0 beta to create animated web page
graphics.

Mission Statement

3RY=LQH exists to serve the
POVRay users community by
providing useful POVRay related
information in a way that is
friendly and [hopefully]
entertaining.

This magazine is intended to be
freely available to all POVRay
users.

Information

3RY=LQH is published when
enough time and material
avaliable to create an issue. It is
available at the URL
http://www.povray.org/povzine

and at
http://www.europa.com/~keithr .

The contents of 3RY=LQH are ©
Copyright 1996 by Keith Rule, all
rights are reserved. The Adobe
Acrobat electronic version of this
Magazine may be freely distributed
on the Internet. Inclusion on CD-
ROM, or as printed material
requires prior written permission
from Keith Rule.

Submissions

3RY=LQH is looking for unsolicited
articles, art, questions, etc. Please
email information about your
article, art, or your questions, to
keithr@europa.com. ■

3RY=LQH
6XPPHU�����

The Next Issue - I expect the next issue to be out in the mid-fall
(probably around Nov. 1, 1996). If you have suggests, art work, or
articles to contribute please send me email at keithr@europa.com.

http://www.europa.com/~keithr

4

#Declare Beginner
by Andy Moorer and Shannon Moon
Email: flyingshan@aol.com or
smoore@garnet.acns.fsu.edu.

Q: How do I run it?
Errr, don't expect to execute POV and suddenly
have a program with handy menus and a graphical
interface. It doesn't work that way. How people use
it to make graphics usually goes something like this.

They use a plain text editor or word processor to
write a text-file. This file usually has the extension
.pov (instead of name.txt or whatever) in order to
set it apart as a POV file to the author. The file
contains a list of commands which describe the
scene the author (or artist) wishes to create. The
artist then runs that file through POV which
interprets the file and creates a 24-bit Targa (tga)
file at whatever resolution the author specifies. They
do it using commands like this:

povray +Iinput.pov +Ooutput.tga +W640
+H480 +Linclude

...or some variant of this. The +I +O +W etc. are
'switches' which tell POV specifics such as the name
of the input file, the output file, the width and height
of the image and where to find other files
which are referenced in the artists .pov file (these are
usually things called include files and they have the
.inc extension - this comes up later and is
important.)

This sounds like a lot of work (and it is) but it is also
the power of POV. Artists have a degree of control
over their image which isn't otherwise possible.
Also, it makes it possible to write an incredible
number of utilities to generate objects, animations,
special effects and so on. There are many "modeler"
programs out there which let you create your images
using wireframe graphics which are then
automatically translated into the special .pov text
files. Think of POV as a 3-d graphics language and
povray.exe as its interpreter.

Q: I made a POV text file and
ran it through povray.exe.
Why is it complaining that it
can't find a file?

This is the single most common question of new
users. Did the text file make any references to other
files life GIFs or .inc files? Look for these statements
at the top of your file:

#include "colors.inc"
#include "textures.inc"
#include "shapes.inc"

These statements instruct pov to find the file in
quotes and read them as well. These files (called
include files) are text files which usually define a
bunch of terms to be used later. For example,
the colors.inc file defines colors by a name that you
can reference (such as White) rather than a lengthy
definition of a white color (which would be color
red 1.00 blue 1.00 green 1.00). These three
above are the most common, and they are in almost
every POV file because they are so useful. It's a
good idea to print out and read these so you know
what's in them.

Anyway, if the .pov file you're trying to render has
any references to outside files, povray will look in
the same directory it's in, and then every directory
you define using the +L switch. The includes are
usually kept in a directory names "include," so
almost every render uses the switch "+Linclude."
Get it? You can have a bunch of directories defined
by using +L several times if you wish:

povray +imyfile.pov +omyfile.tga +W640

+H480 +linclude +lproject +lstuff ...and so
on.

If the file still isn't found, or you never used the +L
switch, you get the error.

5

Q: Ok, I made a file and
rendered it, but it's all
distorted. What's going on?

First, blocky looking files. If you used the +D switch
when rendering POV will draw on the screen a poor
rendition of what your file looks like. This is only
that, a poor rendition. POV targa files contain much
more information than you see on the screen this
way, and are full, beautiful 24-bit color files. That's
why they're so big. When you convert them to gifs,
jpegs etc. you lose a lot of information. You will
also lose information when displaying them on a
cruddy monitor, or using a cruddy display program,
or printing them out at low resolutions (such as with
a 300dpi printer.) But the information is there in the
file, and will come out if you do something like
display it on a high end system or send it off for
printing on an imagesetter or whatever.

Also remember that the image has only as many
pixels as you define using the +W and +H switches.
If you take a 120 by 80 image and make it fit to the
edges of your 21 inch monitor you're going see a
nice, blocky image. If you want higher quality
images you've got to render at higher resolutions.
Also, make sure that POV has its quality switch
set at +q9 for top quality (see the manual for more
info on switches to adjust specific aspects of image
quality.)

It's up to you to make sure your file has something
in it to render, and lights to see it by. If you want to
render the inky blackness of empty space you're not
going to see much.

Let's see, distortion... if your image is coming out
stretched, make sure that your "aspect ratio" is the
same in the rendered file and your screen resolution.
For instance a 200x200 pixel image has a 1 to 1
aspect ration, but a 640x480 screen does not. If you
display this pic on a 640x480 screen it's going to
look stretched. It's not, but it will display that way.
Try re-rendering the image using +W and +H
to match your screens aspect ratio. There is a LOT
more to resolution and aspect ratios, and already
we're getting beyond the scope of this text. POV
itself allows you to define attributes of it's camera

just as if you were taking a picture in real life, and
these also effect the image and can cause distortions
etc. If this info above doesn't help, then ask people
in the POV community. They're usually eager to
assist, particularly after you've made a real effort to
figure it out yourself! :)

Q: Can I make animations using
POV?

Yes, but I suggest getting familiar with POV before
attempting animation with it. Most animations in
POV use batch files to create and render each frame
of the animation. You end up with a bunch of .tga
files, each being a frame of the animation, which are
usually then spliced together using a program called
DTA (Dave's Targa Animator) to create animations
in the .fli and .flic formats.

POV includes a special variable called "clock." The
value of clock is defined by the +K switch when
rendering. You can make a batch file which changes
the value after the +K switch (+k1 +k10 +k20 etc.)
each time a frame is rendered, and objects can then
be translated, rotated, scaled etc. by that clock
amount... a lot is possible but it takes some clever
thinking and usually some good utilities to do
anything of complexity.

Happily there are ample utilities out there for
animation. POV 3.0 is said to include a great deal of
animation support, opening up the possibility of
creating animations with greater ease than ever .
Other upcoming possibilities are realworld physics
animation, collision detection, keyframe animation,
particle systems and more. This is possible but NOT
simple using version 2.x. Most POV users are very
eagerly awaiting the possibilities version 3.0 will
open up. It will add a tremendous amount of power
to an already powerful program, and is a major
upgrade.

Q: This is too much like work.
Why should I use this when I
can pay for a package which
makes raytracing easier?

There are a lot of answers to this.

6

First, those packages are expensive (think $200 for
the most cheesy to $2500 or more) and unless you're
going to get the higher end packages their output
often isn't as good. POV is free and require more
effort, but delivers images comparable to the output
of packages that cost big-time.

Second, the commercial packages aren't exactly easy
to use themselves. There's no simple way into
quality 3-d. If you're looking for quick-and-simple
3d, there are indeed packages (such as simply 3d
etc.) which are cheap and easy. If you really want to
get into it, POV isn't much harder than any of the
other professional level packages.

Third, POV gives you complete control of your
scene and an understanding of your image that
usually results in your learning many more subtle
tricks of the trade. By getting into the guts of the
image you develop a way of thinking which is more
powerful: it's the same sort of difference that exists
between a c programmer and a user of a multimedia
development package. The results may be similar at
first, but the c-programmer can go places the other
can't.

Fourth, once you master POV you have an
understanding of the concepts and methods used in
all 3d packages, and you'll find it's much easier
to get started. You'll also find yourself doing more
with the software than you would have without the
knowledge you gained using POV. You'll also have
the respect of the artists who know POV. Look in
an issue of the magazines "3d Artist" or "Computer
Graphics World" and you'll often see references to
POV and it's cousins (Rayce, polyray etc..)

Finally, who says you can't use both? The
commercial packages have a lot to offer if you have
the money for them. Many professional artists out
there use several packages, including pov, in
conjunction with each other. �

7

A Review of Trispective
Keith Rule

Trispective is a commercial 3D program by 3D/Eye
Inc. It is a 3D design program for Win95 and
Windows NT. For a POVRay user this is more that
just yet another 3D application. This 3D program
writes POVRay V2.2 files!

A Simple Animation Example

When you start up Trispective you are presented
with a tool palette on the top of the window and a
catalog of drag-and-drop items along the right side.
Each of the tabs of the catalog displays a palette of
items that can be dropped on to a scene or an object
in a scene. The tabs include Shapes, Showcase,
Collage, Colors, Surfaces, Decals, Animation,
Dimension, and Text.

To design a simple scene we could drop a washer
and dryer onto our worksheet.

To add a background to the scene we can simply
drag a new background onto the document from the
backdrops catalog.

To animate the scene all you have to do is drop an
animation object onto each of the objects in the
scene. For this scene I dropped the Height Spin and
Length Move objects from the animate catalog on
both the washer and the dryer. All I need to do play
the animation, which shows a washer and dryer
spinning in space from the center to the bottom left
of the screen, is press the animate and then the play
buttons on the toolbar.

In just a few seconds I was able to build a debatably
interesting animation scene. To save the animation
as a Windows AVI file is choose File|Export
Animation and fill out the dialogs. �

8

Exporting to POVRay
Let's use a model of a lamp that I created with
Trispective.

I created this lamp model by using the "Spin Shape"
tool to create that base of the lamp and the lamp
shade. I then added surface colors to the
components and then grouped them together.

To export this as a POVRay model you select
File|Export Model… and choose POVRay as the file
type. By default, Trispective wants to emit the
model with a suffix of .pov. In reality, Trispective
emits an object rather than a scene (meaning there
are no lights or cameras). Since I prefer POVRay
objects to be placed in .inc files, I named the
POVRay output file as 'lamp.inc' and then choose
Save.

The resulting file looks like the following:

// world bounding box:
// low <182.3,-176.785,140.731>
// high <451.731,93.1506,428.706>

#declare __Mtl1 = texture
{
 pigment {
 color red 1 green 0.501961 blue 0
 }
 finish {
 diffuse 0.9
 phong 0.6 phong_size 65.25 }
}

#declare __Mtl11 = texture
{
 pigment {
 color red 1 green 0.647059 blue
0.309804

 }
 finish {
 diffuse 1
 phong 0.5 phong_size 0 }
}

// object bounding box:
// low <228.953,-136.4,145.886>
// high <408.927,43.4063,222.95>

#declare _lamp01 = union
{
 smooth_triangle{

<329.381,-82.9699,152.845>,
<0.177929,-0.636824,-0.750198>,
<330.687,-87.9868,157.474>,
<0.180445,-0.646485,-0.74128>,
<321.662,-89.3899,157.38>,
<0.039427,-0.66841,-0.742747>
}

.

.

.

#declare lamp = union
{
 object { _lamp01 texture { __Mtl1 } }
 object { _lamp02 texture { __Mtl1 } }
 object { _lamp03 texture { __Mtl1 } }
 object { _lamp04 texture { __Mtl1 } }
 object { _lamp05 texture { __Mtl1 } }
 object { _lamp06 texture { __Mtl1 } }
 object { _lamp07 texture { __Mtl1 } }
 object { _lamp08 texture { __Mtl1 } }
 object { _lamp09 texture { __Mtl1 } }
 object { _lamp10 texture { __Mtl1 } }
 object { _lamp11 texture { __Mtl11 } }
 object { _lamp12 texture { __Mtl11 } }
 object { _lamp13 texture { __Mtl11 } }
}

// realize instance of defined object:
_lamp

All this POVRay code looks pretty good except for
the last couple of lines. The last line is a syntax error
and should be removed. I checked with the folks at
Trispective and they agree this is erroneous code.
They will fix this problem in a future release.
However, this is a very minor problem and doesn't
really affect the usefulness of the POVRay code that
been emitted.

Notice that the beginning comment is the bounding
box for the world. This information is very useful
when creating a POVRay scene that includes this
lamp object.

To create a scene that will render this object

9

#include "colors.inc"
#include "lamp.inc"

camera {
location <0, 0, -2>
direction <0, 0, 1>
up <0, 1, 0>
right <4/3, 0, 0>
look_at <0, 0, 0>

}

light_source {
<0, 0, -2>
color red 0.75 green 0.75
blue 0.75

}
light_source {<0, 5, 0> color White}

// lamp bounding box:
// low <182.3,-176.785,140.731>
// high <451.731,93.1506,428.706>
// The bounding box info is from lamp.inc
object {
 lamp

 // Center the lamp at <0, 0, 0>
 // by performing this generic
 // translation: translate <
 // (low.x - high.x)/2 - low.x,
 // (low.y - high.y)/2 - low.y,
 // (low.z - high.z)/2 - low.z>
 translate <-317.0155, 41.8172,
 -284.7185>

 // Scale the lamp so that it's
 // height is 1.
 // This is done by performing
 // the following generic
 // scale operation:
 // scale <1/abs(low.z-high.z), ...>
 scale <1.0/287.975,

1.0/287.975, 1.0/287.975>

 // Z is up in Trispective, this
 // rotation makes Y up.
 rotate <-90, 0, 0>
}

// Put down a speckled floor
plane {
 y, -0.5
 texture {
 pigment {
 granite
 color_map {
 [0.0 1.01 color
 White color Gold]
 }
 scale <0.1, 1.0, 0.1>
 }
 finish {
 ambient 0.075
 diffuse 0.5
 reflection 0.05

 }
 }
}

This POVRay code defines a camera, some light
sources and instantiates a lamp object. The object is
centered at <0, 0,0> and scaled so that the height of
the lamp is 1.

The resulting image is not bad considering the
original model took about 2 minutes to create with
Trispective. The conversion to a POVRay model
only takes a few seconds.

Incorporating the model into the scene is very
straightforward. Hopefully, the next version of
Trispective will export complete POVRay scenes.

For a die-hard POVRay user like myself, having a
reasonably low-cost commercial modeler that can
write POVRay models is very attractive. Trispective
can be found in many discount mail order software
catalogs and at many software stores such as
Egghead Software.

If you'd like to try a free (well it's really about
$10.00) 30 day trial version of Trispective, you can
order that directly for 3D-Eye. The street price of
Trispective is between $150 and $200 in the US.
The Pro version is a bit more. To contact 3D-Eye
either check out there webpage
(http://www.eye.com/) or call them using their toll-
free number 1-800-469-6514. �

10

Tutorial #2 - Modeling
with MORAY 2.0's
Bezier Editor
By Robert A. Mickelsen

Many people have commented on the objects I have
created using the bezier editor in MORAY, and it
has always been a bit of a mystery to me why. To
me, the bezier editor is highly intuitive and relatively
easy to use. The use of control points to model is
much easier than trying to drag around triangle
vertices. It just takes a bit of practice.

At the request of several friends I have written the
following tutorial to demonstrate the basic method
of modeling with the bezier editor. This tutorial
assumes a basic knowledge of POV-Ray 2.2 and
MORAY 2.0. Both programs are required to follow
along.

We are going to model a fish complete with detailed
fins. It will be composed mostly of bezier patches
although there will be some parts made of
primitives. To begin, start MORAY and go with the
default camera and light source.

1. Click on CREATE, BEZIER PATCH, and name
it 'Body1'. Select 'Cylinder (4 - patch) and click
on 'OK, Create'. Click on 'Extended Edit'.

This is the bezier editor. It appears much the
same as the main screen editor but will only
contain the bezier object and a camera. No other
objects or light sources will be present. The STD
CAM view is the same as in the main edit screen.
The TOP, FRONT, and SIDE views also work
the same but independently of the main edit
screen. You can pan around the scene in any
window by dragging the mouse with the CTRL
key depressed and zoom in and out in any
window by dragging the mouse with the ALT
key depressed, just as in the main edit screen.
Below the four views are groups of buttons. On
the right side is the Divisions slide bar. This will
effect the complexity of the display but will have
no effect on the final bezier object. Accept the
default value of eight for now. Directly beneath
that are three buttons. The first one toggles
'Show Mesh'. The patch mesh is green and
represents the actual bezier object you are
editing. The second button toggles 'Show Ctrl
Mesh'. The control mesh is light blue and
represents the control mesh for the patch object.
There will be times when you may want to see
just the patch mesh or just the control mesh, so
you turn the other one off.

On the left side are the mirror buttons. These
simply flip the object around whatever axis is
indicated. Next to them, under the word
'Marked', are three buttons. 'Mark All' selects all
control points in the bezier object. 'Unmark All'
deselects all selected points in the bezier object.
'Toggle Mark' turns off and on the last group of
selected control points. Control points can also
be marked (selected) by clicking on them with
the shift key depressed or by dragging a box
around them with the shift key depressed. The
real power of this modeler comes from the
ability to select specific points and perform
transformations on them.

The final group of buttons is the transformation
mode box. These transform selected points in a
manner consistent with the main editor. By
clicking on 'local' in either rotate or scale, you
transform the marked points around a local
origin rather than around the world origin. (This
is a feature that I wish POV had).

11

2. Begin by going to each of the view windows and
Alt-dragging to zoom in so that the patch object
is larger and easier to see. Click on the 'Mark
All' button and then on 'Local Rotate'. Use the
mouse in the Front view window to rotate the
cylinder x*90.

3. Click on SCL (scale) and drag the mouse in the
front view so that the cylinder is about 3 units
long (x) and 2 units high (z). Then drag the
mouse in the side window so that the cylinder is
about 1 unit wide (y). Note that there is no way
to enter numerical values for these
transformations as in the main edit screen, nor is
there any undo button. The transformation and
undo buttons to the right of the screen have no
effect in the bezier editor. (Write to Lutz if you
don't like this).

4. Now, in the front window hold down the shift
key and drag a box around all the control points
except the ones at the extreme left. This will
unmark them. In the side window, with the
LOCAL SCL button still depressed, drag the
remaining marked points until they make a small
ring. Alt-drag to zoom closer and scale them
smaller still. Be careful not to allow the points
to cross.

Then Alt-drag to zoom *out* until the entire
patch can be seen in that window again. (Hint: If
the grag-scaling seems too sensitive and the
points seem tojump from one extreme to
another, try zooming in a little closer. That
willsometimes clear up the problem.)

5. Click on 'Mark All' and drag in the Front view
until the object is about 3 units high and 4 units
long. Shift-drag a box around the points on the
extreme right and extreme left to unmark them,
and then drag-scale the remaining points in the
Front window to give your fish body a tapered
bullet-like shape. Turn off the control mesh to
examine your shape more closely. Note that you
can still perform the scaling with the control
mesh turned off as long as points are still
selected. Finally, 'Mark All' and translate the
entire object so that the broad end rests precisely

on x=0 and is perfectly centered on the y and x
axis. Click on 'Done' and again on 'Done' to
return to the main edit screen.

6. In the main edit screen, copy the bezier object
(Body1) without any transformations. Click on
'OK', then 'Extended edit'. Back in the bezier
editor, click on 'x-mirror', then on 'Unmark All'.
Zoom into the side window until you can once
again see the tiny ring of points you made in step
four.

Shift-drag a box around them to mark them.
Now scale them back up until you can see them
clearly and separately in the Front window (you
are working in the side window). This might be
tricky. The drag-scaling can be quite sensitive
and it might take you a few tries to achieve this.
Just be sure you don't get the control points
crossed. You are about to model the fish's mouth
so approximate how large an opening you need.

7. In the front window, shift-drag a box around the
highest and lowest of the marked points. Note
that in the side view, this unmarks both highest
and lowest points. With the SCL button still
depressed scale the remaining four points in the
side view so that their value in the z axis is very
close but their value in the y axis remains the
same like this:

Click on translate and, in the Front view,drag the
marked points back (-x) so that there is a deep
'V' shape for the fish's mouth. Click on 'Done'.
Return to the main edit screen and admire your
work. Save the file (F2). Name it FISH1.MDL.

8. Looking at the fish it appears that the tail end
needs to be more extended to accomodate the
caudal fin. You want to be careful not to change
the control points at the wide end of the patch
because that is where it joins the front end of the
fish. Right now, the points are identical so the
two halves will unite seamlessly. You only want
to edit the points at the far left end of the patch
object. Select the rear half of the fish (Body1)
and return to the extended edit screen. Click on
'Unmark All'.

12

In the front view, shift-drag a box around the
four points that are scaled to a point (step 4).
Zoom into the side view until you can clearly see
the individual points and click on 'local' scale.
Drag the mouse in the side view to scale the
points apart until you can see it in the front view.
Scale it so that the z value increases but leave
the y value small. You want the tail to be fairly
flat to accomodate the flat caudal fin. Click on
translate and move the marked points to x*-5.
Click on 'Done' and return to the main edit
screen. At this point you may have to adjust
your camera and look_at to see all of the fish
centered in the STD CAM screen. Save your
work (F2).

9. Click on 'Create'', 'Bezier Patch', and Name it
'Caudal_Fin'. Select 'Sheet', and 'OK, Create'. Go
to 'Extended Edit' and click on 'Mark All'. Rotate
the patch in the side view so that it appears on
its side in the Std Cam view. Then, local scale it
to about 3x3 units. Shift-drag a box in the front
view to unmark all points except those on the
extreme right side. Scale them down to about 1
unit wide. 'Unmark All'.

Shift-drag a box in the front view around all of
the points on the extreme left end of the patch
and scale them up to about 5 units wide. Unmark
all. In the side view, shift-drag a box around the
center of the patch. All the center points should
be selected. Now, in the front view, shift-drag a
box around any marked points on the far right of
the patch to unmark them. Now, only the
remaining six center points should be marked.
Drag-scale them until they are very close to each
other, but not crossed or touching. Click on
translate and move them +x right up to but not
beyond the right end of the patch. The patch
should look like a fish fin now. Turn off the
control mesh for a clearer look.

Click on 'Done' and return to the main edit
screen. You will have to scale and translate the
fin to get it to fit, but this should not be difficult
to do. Once in place, save your work. Your fish
is starting to take shape.

10. In a similar manner, create sheet beziers for all of

the other fins and place them around the fish.
Fish fins come in pairs so make one, copy it, and
them mirror it to make the other. Fins to create:
dorsal and anal, right and left pectoral, right and
left gill fins.

Scale and rotate them to place them properly.
You might want to refer to a picture of a fish for
proper placement of the fins. When you are
done, your fish should now look something like
this:

11. The trickiest fin is the spiny dorsal fin. Since you
already have 9 patch objects, two of which are
composed of 4 patches each for a total of 15
patches, I do not recommend attempting to build
the spiny dorsal fin out of beziers. Instead we
will make it out of spheres. First, create a sphere
and call it 'DorsalSphere1'. Click on 'Done'.
Scale it x*.2, y*.01, and z*.4. Zoom into the
front view so you can see it clearly. Copy this
sphere and rotate it y*-15. Click on 'OK' and
zoom into the front view so you can see what
you are doing. Change the scaling on this second
sphere to y*.02. Translate it so that it obscures
the upper left portion of the first sphere like this:

13

12. Now click on 'Create', 'CSG Object', and name it
'Spine1'. Click on 'Add in Place', and from the
select screen click first on 'DorsalSphere1' and
then on 'DorsalSphere2'. Right mouse click to
return to the main edit screen. Click on the
'OPER' down arrow and select 'DFFRNC'
(difference). Click on 'Done'.

Zoom back out of the front view until you can
see the fish's back. Translate the Spine1 into
place just in front of the dorsal fin. Remember
that only the lower sphere will show up because
this is a CSG difference. Now comes the tricky
part. Save your work!

13. The spiny dorsal fin consists of a series of spines
like the one we just created, so you must copy
this one to make the rest. But the spines
gradually increase in size as you go so you must
introduce a scale value into the copy window to
insure that the increase is consistent.
Furthermore, the spines are about the same
distance apart so a translate value must be added
also.

Finally, they rotate slightly to follow the
curvature in the fish's back so a rotate value
must be added as well. With the Spine1 selected,
click on 'Copy', and enter these values in the
copy window: SCL FCT <1.1, 1.1, 1.1>; ROT
OFF y*-1; XLAT OFF x*.4; copies 6; reference
'yes'. Click on 'OK'. Six additional spines are
created, gradually increasing in size, translating
up the fish's back consistently, and rotating
slightly to conform to the curvature in the fish's
back.

The final step is to union the spines. Click on
'Create', 'CSG Object', and name it 'Spines'. Click
on 'Add in Place' and, from the select screen,
click on each spine followed by a right click and
it will be added to the Union. When you are
done, right click to return to the main edit screen
and save your work. (F2)

14. Our fish needs eyes. This is a comparatively easy
thing to model. Make a sphere, name it
'Eyeball1', and translate it into position on the
fish's head. Fish's eyes are not round, they are
sort of like a flattened oblong shape, so first
scale the eyeball USCL y*.2, then SCL the y
value to .125. Rotate it so that it rests against
the fish's head. Copy it and reverse the x and z
rotation values and translate it in the top view to
the other side of the fish's head.

14

15. Almost done. Click on 'Create', 'Group', and
name it 'Fish1'. Click on 'Add in Place'. From the
select screen, click first on 'Body1', then right
click, then 'Body2' (right click), and in
succession all the fins, spines and eyes. All of the
parts should have been added to the object
'Fish1'. Right click to return to the main edit
screen.

16. Let's view this guy to see how we did. But first,
he needs a texture. We will give him a dummy
texture for now, just so we can check out our
modeling. Click on 'Textures', 'Create', and name
it 'DummyTex1'. Pigment Type: Solid Color.
Drag the red, green, and blue sliders to the right
all the way to turn the sample box white. Accept
all of the other default values. Click on 'Done'. In
the main screen with the Fish1 object still
selected, click on DummyTex1 in the texture
box at the lower left of the edit screen. F2 to
save. Click on 'Done', then 'Options'. Select
320x240 resolution. Click on 'Done'. Are you
ready? Press F9.

17. Hey, that's not half bad! It will probably need
some tweaking. It should be fairly easy to
reposition any slightly errant elements. Look
closely at the bezier patches. If they appear to be
faceted or show gaps, simply select that patch
object and change u steps and v steps from 3 to
5 and flatness from .01 to 0. (Keep in mind that
this will greatly increase memory requirements,
parsing and tracing time.) If by any chance you
need to make any changes to the spines,
changing Spine1 will change them all since they
are linked. When you have your fish just the way
you want it you are ready to begin texturing it.
We are not going to go into texturing in this
article. That is something I think I will save for
the next issue. But until then feel free to use
MORAY's powerful new texture editor to create
textures for the various parts of your fish. I will
show you some cool image-mapping tricks in my
next article. Save your fish! You will need it for
the next tutorial! <G> �

15

Q: Does anyone know how I can create bathroom
tiles in POV-ray?! What I mean is a small ,slightly
reflective square surrounded by a thin white line.
Then repeated over a plane or box to give the effect
of a tiled wall. I'm sure I've seen it in a scene, but
can't work it out! Any ideas appreciated.

A: In POV-Ray V2.2 one of the easiest ways to
make a convincing tile surface it to create a
heightfield using POV-Ray of a tiles surface. The
heightfield is then used in a POV-Ray scene.

The first step is to create a tga file that contains a
depth representation of a tile surface. This is done by
overlaying a vertical and horizontal line gradients
over a white surface. The following POV-Ray
source code creates a tile heightfield depth image.

#include "colors.inc"

#declare TileTex =
texture {
 pigment {color White}
 finish {
 phong 0.2
 phong_size 50
 ambient .8
 crand .05
 }
}
texture {
 pigment {
 gradient x
 color_map {
 [0.025 color White]
 [0.05, 0.5 color Gray30 filter 1
 color Gray30 filter 1]
 [0.525, 0.975 color Gray90 filter 1
 color Gray90 filter 1]
 [0.975 1.0 color White color White]
 }
 }
 finish {
 phong 0.0
 phong_size 50
 ambient .4
 crand .05
 }
}
texture {
 pigment {

 gradient z
 color_map {
 [0.025 color White]
 [0.05, 0.5 color Gray30 filter 1
 color Gray30 filter 1]
 [0.525, 0.975 color Gray90 filter 1
 color Gray90 filter 1]
 [0.975 1.0 color White color White]
 }
 }
 finish {
 phong 0.0
 phong_size 50
 ambient .4
 crand .05
 }
}

camera {
 location <0, 15, 0.000001>
 right <1.333, 0, 0>
 look_at <0, 0, 0>
}

plane {
 y, 0
 texture {TileTex}
}

When this POV-Ray scene is rendered, the following
images is produced.

This image is used in a scene as a heightfield. The
heightfield command in POV-Ray converts the color
indexes in an image into a 3D object. This following
POV-Ray scene uses the tile heightfield as part of
the scene.

#include "colors.inc"
#include "textures.inc"

7LSV�	�7ULFNV

16

#include "teapot.inc"

camera {
location <1, 2.5, -2.5>
right <640/480, 0, 0>
look_at <0, 0.5, 0>

}

light_source {
<1, 2.5, -2.5>
color rgb <0.75, 0.75, 0.75>

}
light_source {

<0, 5, 0>
color rgb <0.5, 0.5, 0.5>

}
height_field {

tga "tile.tga"
water_level 0.01
texture {pigment{White}

 finish{Shiny}}
scale <15, .01, 15>
translate <-7.5, 0, -7.5>
//rotate <-10, 0, 0>

}

object{Teapot translate <0, 0.6, 0>}

The resulting image shows a teapot on a tiles
surface. This may seem like a lot of steps, but it is
simpler than modeling the individual tile element and
then repeating that element across a plane.

�

17

POV Animation Using
Perl
by Gavin Smyth

Introduction
The “standard” way of generating animations using
POV is to produce a number of POV source files,
one for each frame; render those, and then combine
them into a large AVI or FLI file. The generation of
the POV source files is done by hand, which is very
tedious, or by writing a program to do it, for
example in Basic or C. Somewhere in between these
two extremes are useful tools such as ANIMDAT
(which can be found on ftp.povray.org).
These have the notion of a template file containing
references to variables which are automatically
updated per frame: however, I found that the
calculations ANIMDAT is capable of performing
were too limited.

In an animation I was working on recently, one of
the parameters was derived from a messy equation
which had no analytic solution. I had to use
numerical approximation (Newton-Raphson root
finding if you really want to know) and it was not
possible to do this within ANIMDAT. Being rather
lazy, I did not fancy the idea of writing a Basic or C
program and coincidentally, round about the same
time, I came across something called perl on a
UNIX machine. I’ll explain a bit about perl in the
next section, and then show how I used it for
generating POV scripts.

The good news is that perl is also available to run
under DOS (and in fact, I’ve done more of my
perl/POV stuff under DOS than UNIX). I’ll list a
few locations later.

OK: what is perl?
Perl is yet another one of those very useful
languages that UNIX hackers (in the nicest possible
sense of the word) periodically come up with. It
combines the best features of awk, sed and shell
scripts and, although it initially looks cryptic, it is

actually very easy to use. There are two versions
commonly in use: version 4 is very stable and has
been around for a while, mainly because the author
(Larry Wall) was working on a slicker and more
sophisticated version 5. There are some
incompatibilities between the two versions, but the
very small subset of the language I’ve used here
causes no problems.

If you’ve used UNIX and its common utilities, perl
will look very familiar. The only significant and not
immediately obvious features are:

• all “simple” variables always have their names
prefixed with $, (other variable types, such as
arrays use different prefix characters);

• variables in strings inside double quotes are
evaluated whereas those in single quoted strings
are not;

• in “if” statements, etc., curly braces even when
there is only a single statement in the “then” or
“else” part;

• to put dollar signs, quotation marks or
backslashes inside strings, one has to “escape”
them by putting a backslash first; and

• comments begin with a #.

The animation script

The idea behind my perl script is a loop which
calculates values for some variables, then printing
out a string containing references to those variables
to a POV file per frame. As well at this, it writes
lines to a DOS batch file to call POV on those files.
(I could have made perl call POV directly, but doing
it this way leaves more DOS memory for POV, and
gives me a chance to examine the files before
running POV.) Anyway, here’s the script—the
numbers are not part of the script but reference the
notes following the code:

18

As you can see, very little code is needed to produce
an animation generator framework. All the hard
work has been done by the perl authors!

Notes:
1 The script is used by filling in the calculation

and template and then: perl script
numFrames. This first line simply traps the
wrong number of arguments passed in and
prints out an error message.

2 The POV files are called name_XXX.pov ,
where XXX is a three digit number, and name is
taken from the name of the script itself. Perl
scripts are conventionally named
something.pl , so this line strips off the
suffix. Note that, because of the DOS file name
limitations, the prefix should be four or fewer
characters.

POV animation generator script.
#
created 27.07.95 SGS
#
Usage: rename to <template file stem>.pl, fill in the (POV) template
string and calculation, and then call as -
#
perl <template file stem>.pl <number of scenes>
#
Note that the template file stem must be short enough to form output
files with that and an underscore and scene number appended, along
with the suffix ".pov". The program also produces a .bat file which
can be used to run POV on all the files.

1 $#ARGV == 0 || die("Usage: perl $0 <num scenes>, stopped");

2 $namePrefix = substr($0, $[, index($0, "."));
print("Building with stem $namePrefix\n");

3 open(BAT, ">$namePrefix.bat");

4 # Some useful constants
$pi = 3.1415926;
$deg2rad = $pi / 180;
$numScenes = $ARGV[0];

for($scene = 0; $scene < $numScenes; $scene++)
{
 print("Producing scene $scene\n");

5 $fraction = $scene / $numScenes;

6 HERE'S WHERE THE CALCULATION GOES...

7 $fileRoot = sprintf("%.4s_%03d", $namePrefix, $scene);
 open(SCRIPT, ">$fileRoot.pov");
 print(SCRIPT "

8 HERE'S WHERE THE TEMPLATE GOES...
");
 close(SCRIPT);

9 print(BAT "c:\\pov2\\povray +Lc:\\pov2\\include");
 print(BAT " -w160 -h100 +ft -d -i$fileRoot.pov -o$fileRoot.tga\n");
};

10 print(BAT "c:\\makefli\\makefli $namePrefix\n");
print(BAT "del *.tga\n");
print(BAT "del *.pov\n");
close(BAT);

19

3 The batch file containing the POV commands is
called name.bat .

4 I place a few useful constants here. You can put
in anything you need, of course.

5 $fraction ranges from 0 for the first frame
to (almost) 1 for the last.

6 This bit should be filled in with the details of
the calculation.

7 Here the POV filename is created as described
above. The %.4s limits the names step to the
first four characters, and the %03d ensures that
the number is always printed as three digits.

8 The double quoted string contains the POV
template, with $ variables corresponding to
those set up in the calculation. Note that
quotation marks, etc. in this string must be
escaped. The string can span multiple lines, and
perl will retain the ends of lines.

9 These two lines print out the command to run
POV. Note that the print command does not
introduce an extra new line by itself, so I was
able to split a long line into two shorter ones.
The file locations are specific to my system:
you’ll have to change them for wherever you
keep the POV files.

10 These are a few cleanup lines: the first combines
the TGA files into a FLI animation (you could
use DTA, TGAFLI or whatever for this) and the
others delete the working files.

When the script is run, you’ll have a bundle of POV
files and a batch file to run POV on them.
Incidentally, I decided not to make the perl script
read separate template and calculation files. There’s
so little “animation independent” perl required that I
just copy it around with the animation specific
details.

A simple example
This is a very simple example to give you an idea of
how the thing works. A more complex and
interesting script would take up too much space!
OK, the script ball.pl contains the script above
with the following as the calculation section:

 $t = $fraction;
 $x = $t * 2;
 if($t < 0.5)
 {
 $y = 1 - 4 * $t * $t;
 }
 else
 {
 $y = 0.75*(1-4*(1-$t)*(1-$t));
 }

This is calculating the equation of a ball dropping
under “gravitational” influence, hitting a surface (at
time 0.5) and bouncing back up.

ball.pl also contains the following template
definition:

 print(SCRIPT "
#include \"colors.inc\"

sphere { <$x, $y, 0>, 0.2
 texture {
 pigment { color Blue } } }

camera { location <0.5, 0, -3>
 look_at <0.5, 0, 0> }

light_source { <0, 0, -60>
 color White }
");

Things to note are the escaping of the quotes for the
include line, the use of the x and y variables, and the
final newline in the string to ensure the batch file
ends with a newline.

I could run this with, for example:
perl ball.pl 10

to generate 10 POV files—here are the first three,
ball_000.pov, ball_001.pov and
ball_002.pov:

#include "colors.inc"

sphere { <0, 0, 0>, 0.2
 texture {
 pigment { color Blue } } }

camera { location <0.5, 0, -3>
 look_at <0.5, 0, 0> }

light_source { <0, 0, -60>
 color White }

#include "colors.inc"

sphere { <0.2, 0.96, 0>, 0.2
 texture {
 pigment { color Blue } } }

camera { location <0.5, 0, -3>

20

 look_at <0.5, 0, 0> }

light_source { <0, 0, -60>
 color White }

#include "colors.inc"

sphere { <0.4, 0.84, 0>, 0.2
 texture {
 pigment { color Blue } } }

camera { location <0.5, 0, -3>
 look_at <0.5, 0, 0> }

light_source { <0, 0, -60>
 color White }

You can see how the variables are replaced
appropriately.

As well as these, I also have a ball.bat file
which contains the lines to run POV on my system. I
won’t bother showing it here since it should be
obvious!

A couple of tips
In a more realistic example, I would have most of
the POV work done in a separate include file and
have a small template which sets up some
#declare lines and then includes the other file—
for example, something like:

 print(SCRIPT "
#declare ankleAngle = $angle
#declare footPos = < $x, $y, $z >
#include \"leg.inc\"
");

This keeps down the size of the perl script!
When I started on the project which led to this
work, I made a lot of use of the POV
transformations to move objects around. One of the
things I had to calculate was the location of a point
on the surface of one of the objects. Unfortunately, I
could not get the information directly from POV, so
I had to repeat the same transformations within the
perl script. Since I was repeating the same
calculations in two places, I was a bit worried that
the accuracy of the values would differ and I’d be
left with gaps or overlaps, but none were noticeable.
However, I think in future, I’ll use POV’s
transformations for object distortion and placing
static objects, and move the rest around in perl.

Where to find perl
As promised, here are some pointers to FTP sites for
perl.

The (unix) sources can be found with GNU stuff,
such as at prep.ai.mit.edu in /pub/gnu , but
we’re more interested in MS-DOS variants:

Within Simtel (oak.oakland.edu or one of its
many mirrors), in msdos/perl , you’ll find
bperl4x.zip —this is a fairly stable version
(4.036), and the one I have used most often. There
are beta versions of perl 5 in a few locations, such
as: ftp.einet.net in /pub/perl5 or
ftp.ee.umanitoba.ca in
/pub/msdos/perl/perl5 . I have tried neither
of these, but have confirmed that they exist (I think
they are the same).

There are variants for lots of other platforms too,
and the best place to look is the perl “frequently
asked questions:” see the usenet archives or the file
pub /perl/doc/FAQ on ftp.cis.ufl.edu .

You’ll find some perl reference documentation in the
same places, or have a look at the usenet group
comp.lang.perl . There are also a few perl
books, though the current crop deals mainly with
perl 4. A couple of examples are: Programming Perl,
by Larry Wall and Randal Schwartz; or Learning
Perl, by Randal Schwartz. �

21

Creating Animated GIF
Images - Part 1
by Keith Rule

Getting Started

I'm sure you've run across those nifty animated GIF
images on web pages on the Internet. Now days, it's
difficult to find a web page that doesn't have at least
one of these images on it.

It turns out that with the help of POVRay and a
shareware tool called the "GIF Construction Set"
you can turn out these images with only a modest
amount of effort.

The first step is to figure out something cool to
animate. For this article I will rotate a 57Chevy
model. This is one of my favorite models from the
Avalon web site (you can find Avalon at
http://www.viewpoint.com). To create the initial
POVRay scene I simply read the 57chevy.3ds file I
downloaded from Avalon into wcvt2pov. I then add
the colors I want for each part of the car.

Wireframe view of Chevy.3ds

After the coloring is added I save the scene as a
POVRay file. The resulting file is very large (3.84
Megs). To rotate the car round the Y-Axis (the up
direction) I need to add the rotate instructions to the
end of the car model. The last few lines of the car
model something look like this:

 .
 .
 .

 triangle {
 <-5.395, -1.284, -2.849>,
 <-5.39, -1.283, -2.838>,
 <-5.39, -1.286, -2.838>
 }
 texture{_rfrim}
 }
 }
}

Add the bolded line to the model.

 .
 .
 .
 triangle {
 <-5.395, -1.284, -2.849>,
 <-5.39, -1.283, -2.838>,
 <-5.39, -1.286, -2.838>
 }
 texture{_rfrim}
 }
 }
 rotate <0, 360*clock, 0>
}

This line will cause the car to rotate around the Y-
Axis (which is the up direction for Wcvt2pov
emitted scenes).

This image, when rendered by POV-Ray, looks like
this:

Chevy.pov rendered in POV-Ray V3.0 for
Windows

Creating The Animation Frames
Now that we have a viable scene, it's time to insert
the action.

In the past we need to construct a program, or batch
file to create the POV-Ray command line for each
frame of the animation. This was a tedious operation

22

(though much less tedious than invoking POVRay
by hand for each frame). However, in the Windows
version of the POV-Ray V3.0 beta there is a much
easier way to generate each image in an animated
scene. This can be done by using the +KFIn and
+KFFn command line flags. These flags set the
initial frame number and the last frame number in an
animation sequence. The +KFIn flag sets the initial
frame. If the initial frame was frame zero the value
of this flag would be +KFI0. The +KFFn flag sets
the frame number of the final frame in the sequence.
If the final frame was forty, the flag would be
+KFI40.

To specify this animation sequence to POV-Ray you
select the menu selection "Render|Edit
Settings/Render…" option. This brings up the Edit
Settings dialog. Set the command line options to:
"+KFI0 +KFF40"

When you start rendering the scene, it will start with
frame 0 and finish at frame 40. The clock variable
will be set to (current frame number)/40 or the
values 0, 1/40, 2/40, …, 40/40. Each of the frames
will be rendered and placed in a separate file. Since
the file read in and rendered was name "chevy.pov"
in this example, each of the rendered files will be
named "chevyn.pov" where n is the frame number.
The files available when rendering has completed
will be "chevy00.tga", "chevy01.tga", …,
"chevy40.tga".

At this point we have all the frames necessary to
create our animation. The only step left is to create
the GIF animation.

Creating The GIF Animation File

Creating a GIF animation file is straightforward
using the "GIF Construction Set". The "GIF
Construction Set" (which will be referred to as
GIFCS from here on) is a shareware program by
Alchemy Mindworks. It is absolutely indispensable
for creating GIF animation files.

Step 1: Starting The Project

Execute GIFCS and select "File|New". By default,
GIFCS will create a 640x480 image header. Select
that entry, and double click. This will bring up an
edit dialog. Change the screen height and width to
the size of your animation files. In this case the
height and width is 160 x 120.

The GIF header edit dialog

Step 2: Adding The Animation Files

Select the Insert button from the toolbar. This will
bring up a selection palette. The first item in this
palette is image. Select that item. This will bring up
a file dialog box. Select all the files you wish to
insert into your animation.

Step 3: Creating the Global Palette

After you've selected OK on the file dialog box, a
dialog will appear that will give you several options
for dealing with the palette for the first frame in the
animation. Select "use this image as the global
palette" and OK.

23

The dialog used to create the global color palette
from the first animation frame.

Step 4: Converting the rest of the frames

After the palette has been converted for the first
frame and that frame is loaded into the animation
file, it is time to load the rest of the images.

The dialog used to create the color palette from
the rest of the animation frames.

Since all of the subsequent files have already been
selected, all that is necessary to remap these images
to the global palette and insert these files into the
animation is to select the "Remap this image to the
global palette" item in the conversion dialog.
After this selection has been made, an OK has been
selected, all the remaining selected files will be
converted. Please note that this conversion may take
along time. Be patient.

Step 5: Adding Looping and Timing

All that's left in creating the GIF animation is adding
a loop at the top of the image and the time interval
between each frame.

To add a loop, select the header (the first item in the
list), then select the Insert item in the toolbar.
Choose Loop from the object palette.

A loop control added to the GIF file.

Next, select each image and insert a control. To edit
the control either double click the control or select
edit from the toolbar.

I usually select a time delay of 5 for animations with
20 or more images. Experiment with the timing to
see what works for your animation.

24

The Edit Control Dialog

Step 6: Viewing the Result.

To view the result, select the View item form the
toolbar. This will play the animation (use the ESC
key to return to the GIFCS program). When the
animation looks good to you, save the GIF file and
you have created a animated GIF file suitable for
your web page.

GIF Animation Tips

• Keep the images small. The smaller the images
the smaller the finished animation file. Even this
example at 160 x 120 is probably a little large for
a GIF animation.

• Fewer frames are better. At forty frames the
example in this article is probably on the upper
limit of what you should consider reasonable for
a GIF animation.

• Take advantage of symmetry. One way to
reduce the number of frames is to take
advantage of the symmetry of rotating objects.
For example if you are rotating a cube, you
probably only need to generate the frames for 90
degrees of the rotation. Just repeating that will
give the appearance of the cube rotating the full
360 degrees.

Conclusion

Though I'd never say this process is trivial, it is
straightforward and the results speak for themselves.

In the next issue I will show how to animate a
slightly more complicated image to produce a GIF
animation that is immediately useful on your web
page. �

