Readme for DIBUnit24.pas,	requires Delphi 2.0

Author	Ian Hodger,	ianhodger@compuserve.com

21st June 1997.

Legal Stuff

This is freeware, do anything you wish with this code, except claim it to be your own.

Please note I do not accept any responsibility or liability for any system crashes,

data loss, financial loss, or any other claim of any kind resulting from the use of this

code. Also, use of this code does not entitle you to any support nor is any claim

being made as to the accuracy of the information provided herewithin.

Okay nasty stuff over, lets start with a rough guide of how and why.

Using the Pixel array in Delphi is painfully slow,

and having a need to plot a few hundred thousand pixels a second, a better way had to

be found.

Windows 95 provides Device Independant Bitmaps as its way of allowing the direct memory

addressing of pixel data, and several routines to service their use. CreateDIBSection not only creates the appropiate structures and handles, but also provides the address of the

DIB's pixel array.

Using DIB's,

In order to create a DIB, Win 95 needs to be told in its own language how to format the

resulting bitmap. A quick look at the WinApi help soon gives you a definition of the

BitmapInfo structure as defined in C. Its implementation in pascal had me stumped

for a while until I realised this had already been done in Delphi's Graphics unit. If you

were to view this unit using Delphi's IDE for example, you would find a class definition

of TBitmapInfo, and its associated pointer class PBitmapinfo, the latter of which we

shall use. As a definition of the windows handle HBitmap is also implemented, we

have all that we need to keep windows happy.

Fast plotting, a plan of action.

So the general idea is to create a DIB in memory, use assember routines to generate

the image required, and then use StretchDIBits to whack it on a canvas somewhere.

This latter function being pretty damn quick.

Which brings us to Assembler.

Its quite likely you only downloaded this file because of the reference to assembler.

So let's clear up a few points, I am only going to give you a rough guide to using the

asm and assembler commands in Delphi 2.0. If you have never used assembler in

any form before, may I suggest you buy a book or two on the subject, and perhaps

consider getting Borlands Turbo Assembler, just for the books!

Assembler functions and procedures in Delphi 2.0

Just as you have used begin..end blocks in the past, an asm..end block can also

be used. However, within the asm..end block, only assembler mnemonics are

recognised by the compiler, plus a few labels. So here we go with the odd example.

procedure Fred;

var X:integer;

begin

	X := 25;

	asm

	{at this point eax equals the result of the last line ie. 25}

	mov ecx,X

	{all local variables maybe directly referenced, so now ecx = 25.

	Its a small point but worth mentioning, ebx holds the address of the

	local variables, so if you change ebx, be careful save its value on the

	stack}

	add ecx,25

	mov X,ecx

	{this actually does as it says, and X now equals 50}

	end;

	Label.Caption := '25 + 25 = '+IntToStr(X);

end;

function Sum(X,Y,Z:integer):integer;assembler;

asm

	{If one uses the assembler directive the whole procedure must be

	defined within an asm..end block.

	At entry to this block the four general registers are assigned the

	following values

		eax = base address of the instance of the object to which the

		 procedure or function belongs.

		ebx = base address of the local variables of the instance of the

		 procedure or function.

		ecx = value of , or address of structure of the second parameter

		 if such exists.

		edx = value or address of first parameter.}

	push ebx

	{always start your routines by saving ebx}

	add ecx,edx

	mov edx,Z

	add ecx,edx

	mov @Result,ecx

	{@Result is the address of the result of a function, much like one would

	write Result := X+Y+Z; in pascal. In this case the result is the same}

	pop ebx

	{Restore value of ebx before exiting. In this example ebx was not changed

	and as such, need not have saved, however when in doubt! }

end;

with Objects....

TFred =		class

		FX : integer;

		function GetX:integer;

		end;

implementation

function TFred.GetX:integer;assembler;

asm

	push ebx

	mov ecx,[eax].FX

	{eax is base address of this instance of the object and .FX is the offset

	of the field FX, consequently ecx becomes the contents of the base

	address with the offset to FX, ie now holds the value of FX. This is

	probably the most important bit to grasp as it allows you direct access

	to any of the fields of an object}

	mov @Result,ecx

	pop ebx

end;

and finally,

It may not seem much, but if you have used assembler before and have a listing of the

assembler mnemonics I hope you'll have enough to get started. The accompanying

DIBUnit24.pas contains brief annotation to give you the gist of what's going on, and if

I get the time I may had to its functionality ie. routines for triangles, rectangles, circles,

etc. I may even add some 3D routines. Should you have any comments or suggestions

please E-mail me, and I'll try to reply.

Cheer's

	Ian.

