Django

Version 3.02

Comprehensive

DDEML functionality

for the

Borland DELPHI

development environment

Copyright of

ICFM Software

London,UK

Contents

81.
Introduction

2.
CopyRight
9
3.
Installing Django
11
3.1
Installing the files
11
3.2
Adding Django to the component toolbar
11
4.
Purchasing Django
13
5.
Technical Support
14
5.1
How to contact ICFM Software
14
5.2
How and what to report
14
6.
Demonstration Programs
15
7.
Using Django - basics
24
8.
Setting up a DDEML client
26
8.1
Design time issues
26
Properties
26
Events
26
8.2
Programming tasks
27
Information functions
27
Starting a conversation
28
The SYSTEM topic
29
Poking data
29
Requesting data
30
Sending an Exec command
31
Stopping a conversation
31
Restarting a conversation
31
Starting multiple conversations
31
9.
Setting up a DDEML server
33
9.1
Design time issues
33
Properties
33
Events
35
9.2
Programming activities
36
10.
Setting up a combined DDEML client/server
37
11.
Network DDE support
38
11.1
Client side Issues
38
11.2
Server Side Issues
38
12.
Advanced Features
43
12.1
Pre-defining Django’s internal item level data buffers.
43
12.2
Synchronous/asynchronous transactions
43
13.
Special DDEML debug facilities
45
14.
Reference - Data Types
47
14.1
TDDEMLTransType
47
14.2
TDDEMLClipFmtType
47
14.3
TDDEMLDebugState
47
14.4
TDDEMLCommType
48
14.5
TConvParamRec
48
14.6
TDDEMLScopeType
48
15.
Reference - TDDEMLManager Class
49
15.1
Introduction
49
15.2
Methods grouped by category
49
15.3
TDDEMLManager Method Definitions in Alphabetical order
53
AbandonTrans
53
AddCmd
53
AddService
53
AddMemShare
53
AddToSupportedFormatList
53
AddToSupportedItemList
54
AddToSupportedTopicList
54
AddWildConnectEntry
54
AddWildConnectSystemTopics
54
AppendServiceItemText
54
AvailableServerCount
54
ClearAvailableServerList
54
ClearServerFormatList
54
ClearServerHelpList
54
ClearServerSysItemList
55
ClearServerTopicList
55
ClearServiceItemData
55
ClearSupportedFormatList
55
ClearSupportedItemList
55
ClearSupportedTopicList
55
ClipboardHasPasteLink
55
ConvCount
55
ConvHandleToDDEId
55
ConvHandleToNames
56
ConvNamesToDDEId
56
ConvNamesToHandle
56
CopyLinkToClipboard
56
Create
56
DeleteAllSysShares
56
DeleteSysShare
56
Destroy
56
EnableCallBack
57
EnableCmd
57
EnableConvCallback
57
EnableService
57
EndAllConvs
57
EndConv
57
ExcludeCmdFromService
57
Execute
57
FindUserHandle
57
FirstAvailableServer
58
FirstServerFormat
58
FirstServerSysItem
58
FirstServerTopic
59
FirstServerTopicFormat
59
FirstServerTopicItem
59
GetClientBitmap
59
GetClientData
59
GetClientInt
60
GetClientMetaFile
60
GetClientNumber
60
GetClientText
60
GetCmdParamCount
60
GetCmdParamType
60
GetConvComm
61
GetConvTimeOut
61
GetConvUseBusy
61
GetServiceItemBitmap
61
GetServiceItemData
61
GetServiceItemDataFormat
62
GetServiceItemDataLen
62
GetServiceItemInt
62
GetServiceItemMetaFile
62
GetServiceItemNumber
62
GetServiceItemText
62
HasConv
62
HasConvItemUserHandle
62
HasConvUserHandle
63
HasService
63
InitDDEML
63
IsCallbackActive
63
IsConvCallbackActive
63
IsServerExeRunning
63
IsServiceBusy
63
IsSystemTopic
63
LoadAllSysSharesToMem
63
LoadSysShareToMem
63
MemShareCount
64
MemShareExists
64
NetServerName
64
NextAvailableServer
64
NextServerFormat
64
NextServerSysItem
64
NextServerTopic
64
NextServerTopicItem
65
NextServerTopicFormat
65
Poke
65
PokeBitmap
65
PokeData
65
PostAdvise
65
RegisterService
65
RemoveAllCmds
66
RemoveAllMemShares
66
RemoveAllServiceCmdExclusions
66
RemoveClientItem
66
RemoveCmds
66
RemoveMemShare
66
RemoveService
66
RemoveServiceCmdExclusion
66
RemoveServiceItem
66
Request
67
RestartConv
67
SaveAllMemSharesToSys
67
SaveMemShareToSys
67
ScopeIncludesClient
67
ScopeIncludesNetworkServer
67
ScopeIncludesServer
67
ServerBusy
67
ServerExists
67
ServerFormatCount
67
ServerHelpMsg
68
ServerReady
68
ServerSysItemCount
68
ServerTopicCount
68
ServerTopicItemCount
68
ServerTopicFormatCount
68
ServiceCount
68
ServiceConvCount
69
ServiceItemHasAdviseLink
69
ServiceItemHasBinaryData
69
ServiceItemHasData
69
ServiceItemHasTextData
69
ServiceTopicCount
69
SetConvComm
69
SetConvFormat
69
SetConvTimeOut
69
SetConvUseBusy
70
SetConvItemUserHandle
70
SetConvUserHandle
70
SetServiceHelpMsg
70
SetServiceItemBitmap
70
SetServiceItemData
71
SetServiceItemInt
71
SetServiceItemMetaFile
71
SetServiceItemNumber
71
SetServiceItemStrId
71
SetServiceItemText
71
SetServiceItemValue
72
SetServiceStatus
72
StartAdvise
72
StartClipboardPasteLinkConv
72
StartConv
72
StartConvWithAny
72
StopAdvise
73
SysShareCount
73
SysShareExists
73
TerminateDDEML
73
TopicConvCount
73
TransCount
73
TransHandle
73
15.4
TDDEMLManager Properties
74
About
74
AllowNullPokes
74
AllowNullService
74
AllowNullTopic
74
AutoInit
74
CmdFirstCh
74
CmdLastCh
74
CmdParamFirstCh
74
CmdParamLastCh
75
CmdParamSep
75
ConvServerNames
75
ConvTopicNames
75
DebugFileName
75
DebugState
75
DebugStayOnTop
75
DefaultClipFmt
76
DefaultComm
76
DefaultTimeOut
76
DefaultUseBusy
76
ExecCmds
76
ExeNameAsService
76
FailOptions
76
Inst
77
InstActive
77
NetworkDDE
77
NodeName
77
OneConvPerTopic
77
Scope
77
ServiceNames
78
Services
78
ShareNames
78
ShareProcess
78
Shares
78
SharesList
78
SkipOptions
78
WildConnectCount
79
WildConnectServiceNames
79
WildConnectTopicNames
79
15.5
TDDEMLManager Events
80
OnAdviseStartReceived
80
OnAdviseStopReceived
80
OnAsyncResponse
80
OnConnectReceived
80
OnDisconnecting
81
OnError
81
OnExecuteReceived
81
OnFormatReceived
82
OnHotLinkResponse
83
OnItemReceived
83
OnPokeReceived
84
OnRawExecuteReceived
84
OnRequestReceived
84
OnRequestResponse
85
OnServerDisconnecting
86
OnSysHelpReceived
86
OnSysItemReceived
87
OnTopicClosed
87
OnTopicFormatReceived
87
OnTopicOpened
88
OnTopicReceived
88
OnUnknownAdviseReponse
88
OnUnknownCompleteReponse
89
OnWarmLinkResponse
89
OnWildConnectReceived
89
16.
Network DDE related classes
90
16.1
TNetDDEShare Class Methods
90
TNetDDEShare methods
90
Create
90
Destroy
90
Assign
90
AddExtraItem
90
ClearExtraItemsList
90
DeleteDefinition
90
DeleteExtraItemByName
90
DeleteExtraItemByIdx
90
ExtraItemCount
90
HasPasswords
91
IsSame
91
LoadDefinition
91
MainPermissionsRO
91
SaveDefinition
91
SetDefaultROPermissions
91
SetDefaultFullPermissions
91
SetDefaultPasswordPermissions
91
16.2
TNetDDEShare properties
91
AppName
91
ExtraItems
91
ExtraItemsByName
91
ItemName
92
MainPermissions
92
Name
92
Passwords
92
Permissions
92
PermissionValues
92
TopicName
92
16.3
TNetDDEShareItem Methods
92
Assign
92
FromRec
92
IsSame
93
ToRec
93
ReadFromDFM
93
WriteToDFM
93
16.4
TNetDDEShareItem Properties
93
Allow
93
Name
93
PermissionValue
93
17.
Design Limitations
95
18.
Version History
97

1. Introduction

Django is a DELPHI software component from ICFM Software that offers fully configurable DDEML functionality.

As you have probably seen from the ‘System’ page of the Components toolbar, Borland does supply its own set of DDEML components. Unfortunately the scope and implementation of these components is very limited. It takes a disproportionate amount of work to set up and maintain multiple conversations and data transactions. Maintaining and evolving ongoing DDEML transactions is extremely difficult, and fraught with problems. When DELPHI 2 arrived we could not believe that Borland had carried forward the same poor DDEML components from DELPHI 1. That’s when we decided to offer you a better solution.

In contrast Django
 offers a ‘one stop’ solution for all your DDEML programming requirements.

Within this single ‘super’ component you get all of these features ….

· A single component can support multiple DDEML conversations.

· The component can be configured to act as a DDEML client, or server or both!

· Individual DDEML conversations can be configured for message type, time outs, and data formats

· It supports both synchronous and asynchronous DDEML transactions.

· It uses a fully event based design for managing data movements and responses.

· Includes support for multiple data formats.

· Adds easy to use events for supporting the DDEML system ‘info’ functions.

· Includes Network DDE support.

This document acts as both a tutorial and reference manual. It covers the following main topics:

· How to install Django

· How to access technical support

· An explanation of the demonstration programmes

· How to employ the Django component

· A tutorial on adding DDEML client functionality to your application.

· A tutorial on adding DDEML server functionality to your application.

· A detailed explanation of all public methods and properties

This document includes a wealth of information about how best to use Django.

It is not intended to be a beginners guide on how to use or programme DDEML. That’s just too big a task to tackle here. However, the tutorial section does cover most of the key actions that an application is likely to require from DDEML

2. CopyRight

The use of this product indicates your understanding and acceptance of the following terms and conditions. This license shall supersede any verbal, or prior verbal or written, statement or agreement to the contrary.

If you do not understand or accept these terms, or your local regulations prohibit "after sale" license agreements or limited disclaimers, you must cease and desist using this product immediately. No contract is assumed unless a signed copy of this document has been returned to, and acknowledged by, ICFM Software. Copyright laws supersede all local regulations.

Copyright

This product (in whole or in part, including all files, data, and documentation, from here on referred to as “Product”) is © Copyright 1996 ICFM Software, all rights reserved, and is protected by UK copyright laws, international treaties and all other applicable national or international laws.

This product may not, in whole or in part, be copied, photocopied, translated, or reduced to any electronic medium or machine readable form, without prior consent in writing, from ICFM Software and according to all applicable laws. The sole owner of this product is ICFM Software.

Liability disclaimer

This product and/or license is provided exclusively by ICFM Software, on an “as is” basis, without any representation or warranty of any kind, either express or implied, including without limitation any representations or endorsements regarding the use of, the results of, or performance of the product, its appropriateness, accuracy, reliability, or correctness.

The entire risk as to the use of this product is assumed by the user and/or licensee. ICFM Software do not assume liability for the use of this product beyond the original purchase price. In no event will ICFM Software be liable for additional direct or indirect damages including any lost profits, lost savings, or other incidental or consequential damages arising from any defects, or the use or inability to use this product, even if ICFM Software have been advised of the possibility of such damages.

Restrictions

You may not use, copy, modify, translate, or transfer the product or any copy except as expressly defined in this agreement. You may not attempt to unlock or bypass any copy-protection or authentication algorithm utilised by this product. You may not remove or modify any copyright notice, nor any “about” dialog or the method by which it may be invoked.

Operating license

You have the non-exclusive right to use the product only by a single person, on a single computer at a time. If the product permits, you may physically transfer the product from one computer to another, provided that the product is used only by a single person, on a single computer at a time.

In group projects where multiple persons will use the product, you must purchase an individual license for each member of the group.

Use over a local area network (within the same locale) is permitted provided that the product is used only by a single person, on a single computer at a time. Use over a wide area network (outside the same locale) is strictly prohibited under any and all circumstances.

Terms

This license is effective until terminated. You may terminate it by destroying the complete product and all copies thereof.

This license will also terminate if you fail to comply with any terms or conditions of this agreement. You agree upon such termination to destroy all copies of the software and of the documentation, or return them to ICFM Software for disposal.

Other rights and restrictions

All other rights and restrictions not specifically granted in this license are reserved by ICFM Software.

3. Installing Django

3.1 Installing the files

We would suggest keeping your Django installation in a separate directory.

The Django install process is a self instralling EXE that will prompt the user for the target directory. All files are expanded into that directory. There are no other files installed in any other locations.

3.2 Adding Django to the component toolbar

To add Django to your DELPHI component toolbar perform the normal component install process.

By default the install process will install the Django component in the ‘SYSTEM’ page. By moving the cursor over the Django toolbar icon (as shown above) it display the Django product component name of ‘DDEMLManager’.

DELPHI 1 Install

DELPHI 1 related compiled units (DCU files) are located in the ‘D1’ subdirectory.

To install Django within DELPHI complete the following steps …

· Select the ‘Options/Install Component’ menu item.

· From the ‘Install Components’ form select the ‘Add’ button.

· From the ‘Add Module’ form select the Browse button.

· From the ‘Find File’ form, select the DCU filter, and locate the directory where Django is installed. Select the ‘D1’ sub directory and then choose the ‘DJANGO.DCU’. Complete this process by selecting the ‘OK’ button.

· Select ‘OK’ on the ‘Add Module’ and ‘Install Components’ forms.

DELPHI 2 Install

DELPHI 2 related compiled units (DCU files) are located in the ‘D2’ subdirectory.

To install Django within DELPHI complete the following steps …

· Select the ‘Components/Install’ menu item.

· From the ‘Install Components’ form select the ‘Add’ button.

· From the ‘Add Module’ form select the Browse button.

· From the ‘Find File’ form, select the DCU filter, and locate the directory where Django is installed. Select the ‘D2’ sub directory and then choose the ‘DJANGO.DCU’. Complete this process by selecting the ‘OK’ button.

· Select ‘OK’ on the ‘Add Module’ and ‘Install Components’ forms.

DELPHI 3 Install

DELPHI 3 related compiled units are located in the ‘D3’ subdirectory.

From the DELPHI 3 IDE selectthe ‘Component/Install Pacakages’ menu item. When the ‘Project Options’ form opens click on the ‘Add’ button.

Under the ‘D3’ sub directory where Django has been installed find and select the ‘ICFMDJ.DPL’ file. Select OK to confirm the install.

4. Purchasing Django

Django is available in an evaluation version. This evaluation version does not include the source code and will only function if the DELPHI IDE is open and running. In addition certain features of the evaluation version are disabled or limited. Nonetheless the evaluation version will give you ample opportunity to judge the value of this product to your own projects.

A full working version of ‘Django’ may be purchased for US$199 (or Sterling Pounds £130) per developer user.

The US Dollar price applies to all USA based customers. The Sterling Pound price applies to all other locations. The purchased product includes all ‘Django’ related source code. There are no royalties to be paid for using Django inside your applications.

To purchase a full working copy of ‘Django’ visit ICFM Software’s web site at …

http://dspace.dial.pipex.com/town/estate/ns21/icfmdc.htm

From the main page select ‘Django’ and then follow the instructions for ‘Ordering’.

ICFM Software is able to accept orders with valid VISA and MASTERCARD credit cards. These details may be sent by either email or fax.

For details of multi-user/multi-site registration offers please contact ICFM Software at …

DAVOUT@DIAL.PIPEX.COM

Once ordered a product is normally delivered by email attachment. The product can be sent by airmail or courier but this will incur additional costs to the purchaser.

As Django is only supplied with source code, ICFM Software is unable to provide refunds once the product have been delivered.

5. Technical Support

5.1 How to contact ICFM Software

To raise questions, or report bugs and/or enhancement requests contact us by email at

DAVOUT@DIAL.PIPEX.COM

The ICFM Software web site can be found at ….

http://dspace.dial.pipex.com/town/estate/ns21/icfmdc.htm

Technical support is only available for registered users.

We check our INTERNET account at least twice a day, so in normal situations should receive a response on the same day. A solution to difficult problem may take longer, but at all times we will endeavour to keep you fully informed on progress.

5.2 How and what to report

Leaving aside any obvious programming logic bugs, the nature of the DDEML means that a problems are more likely arise due to the running order of any sequence of events, e.g. A,B,C,D works; A,D,B,C does’nt.

To that end we would be grateful if when reporting a non trivial bug your could break out the problem into a small sample test application.

6. Demonstration Programs

Django is supplied with six test programs that demonstrate various aspects of the products functionality. The test programs are located in the ‘DEMO’ sub directory. There are six further sub directories - one for each demo.

The demo programs are provided for both DELPHI 1 and DELPHI 2 (and 3). All DELPHI 1 projects have a suffix of ‘??????16.DPR’. All DELPHI 2 (and 3) projects have a suffix of ‘????32.DPR’.

DEMO\CBMP\CBMP16.DPR and DEMO\CBMP\CBMP32.DPR

CBMP is the DDEML client application that demonstrates how to receive and process bitmap type DDEML data.

It can work as the client end to any DDEML server that supports bitmap or DIB data transfers.

Select the ‘File/Start Conversation’ menu item to start a DDEML link with an available server.

CBMP is specifically designed to work with the SBMP demo. See the next section for further details.

DEMO\SBMP\SBMP16.DPR and DEMO\SBMP\SBMP32.DPR

SBMP16 is a DDEML server application that demonstrates the use of bitmap based server processing. The application runs as a very simple scribble pad. Move the mouse over the application window area, hold the left key down and drag the mouse around. Lines will appear just like on a scribble pad. This is a very simple pad, it uses a parallel bitmap to retain the drawn image between repainting. To clear an image use the ‘File/Clear’ menu item.

SBMP uses a DDEML server name equivalent to the application name (e.g. SBMP16’ for the 16 bit version. It supports two topics ‘SYSTEM’ and ‘PICTURE’. The ‘PICTURE’ topic has one item: ‘IMAGE’. It also supports one execute command ‘CLEAR’ for wiping the scribble pad clean.

The CBMP and SBMP test applications can be used together to demonstrate bitmap related DDEML conversations. This is demonstrated by following the sequence of events:

· Start the SBMP application

· Start the CBMP application (by default all the demos are positioned so that client test applications appear on the left side of the screen with all server test applications positioned on the right side).

· From CBMP select ‘File/Start Conversation’. Enter a server name of ‘SBMP16’ and a topic name of ‘PICTURE’. (Alternatively you may select the ‘Server’ button and the test app will fill the server combo box with a list of available DDEML servers. Similarly, once you have entered a server name you can select the ‘Topic’ button to retrieve a list of available topics for that server). Select OK to start the link.

· Within CBMP a new MDI window will open to represent the just started DDEML conversation.

· Now in SBMP scribble an image in its window

· From CBMP select ‘Transaction/Request. A dialog appears prompting you to select an item and a format. Enter ‘IMAGE’ into the item combo box and select a ‘bitmap’ format. On selecting OK, the SBMP image should now appear within the CBMP MDI child window.

· Return to SBMP and clear the image using ‘File/Clear’. Create some new scribbles.

· From CBMP select the ‘Transaction/Repeat last Transaction’ menu item and the new image will appear in the CBMP window.

· To finish close down both apps

A similar link between the two test applications can be auto-started by using SBMP’s ‘Edit/Copy’ menu item and then selecting CBMP’s ‘Edit/Paste’ menu item. This is an example of a ‘hot’ advise link. As you add new scribbles to SMP the same image automatically appears within CBMP.

DEMO\CLTTEST\CLTTST16.DPR and DEMO\CLTTEST\CLTTST32.DPR

The ‘CLTTST??.DPR’ project is a comprehensive example of DDEML client functionality. It can be linked to almost any DDEML server. It has functions that allow you to run practically all aspects of DDEML

To connect to a specific DDEML server move to the ‘Servers’ page and enter names into the ‘Server’ and ‘Topic’ combo boxes. Then select the ‘Connect’ button to start the conversation. If the conversation is successfully started it will appear as an entry in the ‘Conversation’ combo list. A warning message box will appear if it failed to start.

The ‘Server’ button can be used to return a list of the available DDEML servers. A message box will appear notifying you of how servers where detected. The server combo box will be populated with those entries. You can select a server by selecting a combo box item. By choosing the ‘Topic’ button the same type of retrieval will be run for the currently selected server.

CLTTEST also supports wild connects. This is a DDEML process that scatter guns connect requests to all available servers (not all DDEML servers support wild connects, so just because its out there you cannot automatically assume that wild connect will work!). The scope of the wild connect request can be set by selecting one of the four radio buttons on the servers page. Then select the ‘Wild Connect’ button. A message box will appear indicating the number of conversations started, with each conversation appearing an entry in the ‘Conversation’ combo box.

To select an active conversation, choose an item from the conversation combo box on any of the three tabbed pages.

The second tabbed page - System Info - has a number of buttons that equate to the range of options supported by the DDEML System topic.

Most of the functions on this page only work against a SYSTEM topic. So either initiate or select a SYSTEM topic based conversation.

Select an active (system topic based) conversation and then click on each of the buttons in turn. The results of the system info request will appear in the memo box. Not all servers support these system info functions -although they are supposed to! (Quite a few MS products offend here - funny that?!?). If the feature is not supported than a message box will appear to indicate this.

The third page - Transactions - allows individual pokes, requests, and executes to made against a running conversation.

Enter an item into the ‘Item’ combo box. Alternatively select the ‘Item’ button for the app to retrieve a list of available items (not all servers will support this!)

Now select any one of the item area tabbed pages and run Request, Poke, Execute and Advise transactions. The results of each transaction are displayed in the memo box on each page.

Select the ‘Close’ button at any time to terminate all conversations and exit.

Note: the evaluation version of Django is limited to running no more than two simultaneous DDE conversations.

DEMO\SERVGRID\SVGRID16.DPR and DEMO\SERVGRID\SVGRID32.DPR

The SVGrid??.DPR’ project is a very simple DDEML server designed to illustrate facilities within the ‘CLTTTEST’ demo application.

The test application provides a four page interface with a 2 column by 10 data row grid on each page.

It uses a service name of ‘SERVGRID’ and supports five topics: ‘SYSTEM’, ‘PAGE’, ‘PAGE2’, ‘PAGE3’ and ‘PAGE4’. Each of the ‘Page?’ topics supports ten data items from ‘ITEM1’ to ‘ITEM10’

It also supports three execute commands : ‘ClearGrid’, ‘SetGrid’ and ‘ResetAllGrids’, which are direct equivalents of the test applications own menu items.

Use the CLTTEST test application to connect to SERVGRID. ServGrid supports all of the system info functions.

For example the following sequence of events demonstrates a hot request link between CLTTEST and SERRVGRID:

· Start CLTTEST

· Start SERVGRID

· From CLTTEST connect to SERVGRID using a server name of ‘SERVGRID’ and topic of ‘PAGE1’.

· Move to the CLTTEST transactions page. Enter an item name of ‘ITEM1’.

· Select the ‘Advise’ sub page

· Make the link type ‘Hot’ and the ‘Advise action ‘Start’. Select the ‘Run’ button. The equivalent data will now appear in the CLTEST memo box.

· Move to the SERVGRID application. On the Page1 grid change the Item1 value. The new value should appear in the CLTTEST results memo box.

Select the ‘Close’ button on each application to end.

DEMO\MULTI\MCDEMO16.DPR and DEMO\MULTI\MCDEMO32.DPR

DEMO\MULTI\CDEMO16.DPR and DEMO\MULTI\CDEMO32.DPR

DEMO\MULTI\SDEMO16.DPR and DEMO\MULTI\SDEMO32.DPR

The last demo located in the ‘DEMO\MULTI’ sub directory is in fact three small test projects. It demonstrates Django’s ability to manage multiple conversations.

Separately load and compile the three projects: CDEMO16, SDEMO16 and MDDEMO16. Now run the test application ‘MCDEMO16.EXE’.

The MDDEMO16 project is a simple random number generator. The interval edit control determines the interval in seconds at which it generates a new random number from 1 to 5. It then updates the ‘Count’ grid column with the number of times each number has been found. The ‘%’ column shows the number of times each number has appeared in relation to all numbers.

Selecting the ‘Start’ button will initiate the random number generation. It will also launch five instances of two other applications: 5 instances of CDEMO16.EXE, and 5 instances of ‘SDEMO16.EXE’ (for this to work all three applications must be located in the same directory).

As each CDEMO16.EXE instance is launched it starts a DDEML conversation with MCDEMO16.EXE, with CDEMO16.EXE as the client. Each instance of CDEMO16.EXE has an instance number in its caption title. Once the conversation has started the client sets up a hot link to the equivalent grid cell number in MCDEMO16. For example, the third instance of CDEMO16 starts a hot link to the third item in the MCDEMO grid. Each time the 3rd row in the MCDEMO grid is updated by a random number of ‘3’ a DDEML hot link transaction informs the third instance of CDEMO16 of this. CDEMO16 then updates its display to show the number of ‘3’ numbers found.

A similar process occurs for the SDEMO16 application, except that these are servers to MCDEMO16’s client. As each SDEMO16 instance is launched, the MCDEMO16 app starts a new conversation with that instance of SDEMO16. As each random number is generated, MCDEMO16 informs the appropriate instance of SDEMO16 by poking the new value into the server. The server responds by updating its display with the new total.

The upshot of all this is a demonstration where the MCDEMO16 application has Django supporting ten simultaneous DDEML conversations!
You can start and stop the process by using the MCDEMO16 command buttons. Selecting the MCDEMO16 ‘Close’ button will close all applications

DEMO\NETDDE\CND16.DPR and DEMO\NETDDE\CND32.DPR

DEMO\NETDDE\SND16.DPR and DEMO\NETDDE\SND32.DPR

These two small applications provide a demonstration of basic Network DDE functionality.

Install the ‘CND??’ application on one PC and the SND?? Application on another.

Make sure that the server PC has allowed other PC’s to access it file structures. Check this using the Control Panel ‘Network’ configuration utility. If in doubt consult with your Network administrator. Secondly, make sure that both client and server PC’s have the ‘NetDDE.EXE’ and ‘NDDEAPI.DLL’ files present, (probably in the ‘Windows’ or ‘Windows\System’ directories).

The ‘SND’ application uses the Django component’s ‘SharesList’ and ‘ShareProcess’ properties to automatically add the required Network DDE share defintion to the server PC’s configuration.

The ‘SND’ application is a very simple DDE server that displays a shape within a window. It has one service (‘SND’), with one topic (‘IMAGE’) and one item (‘SHAPE’). Client applications are able to change the shape displayed within SND by poking an INTEGER equivalent of a ‘TShapeType’ value into the ‘SHAPE’ item.

The ‘CND’ application is equally straightforward. It can only start a conversation with the ‘SND’ server. It is allowed to start a conversation with a version of ‘SND’ on the same PC (using the ‘Local Connect’ button); or on a different PC using NetDDE (using the ‘Net Connect’ button). For a ‘Net Connect’ process the user must first enter the server PC machine name into the top edit box. This can be gleaned by running the SND application on the other PC and reading the main window caption. The caption with display the machine name within square brackets.

Once connected the client application can change the server application shape by selecting one of the other radio button group options. By selecting ‘Circle’ the client application will send a ‘Poke’ transaction to the server application with a value representing a cicrle. The ‘SND’ application will redraw itself to display a circle. If for any reason an attempt to start a conversation or to poke a value fails then a warning message will appear.

If you are unable to start this NetDDE demonstration you should first try running one of the standard Microsoft NetDDE examples like the MS Hearts card game (MSHEARTS.EXE). If this fails to start then the problem would appear to be with the network installation.

7. Using Django - basics

Django is a non-visual component but it can still be employed and configured within the design time operation of the DELPHI IDE.

Django would normally be placed as a component on your project’s main form.

From the component toolbar select the ‘SYSTEM’ page, click on the Django component, and then click on the main form window. The Django symbol will appear on the main form image.

By default this process will add the ‘Django’ unit reference to your main form’s USES list of units.

uses

 SysUtils, WinTypes, WinProcs,

 Messages, Classes, Graphics, Controls,

 Forms, Dialogs, StdCtrls, ExtCtrls,

 TabNotBk, DJango,
 strclass;

Django is a direct replacement for the four Borland supplied DDEML components. Do not attempt to use both the Borland DDEML components and Django in the same project. Mixing them in the same project could cause serious problems, possibly crashing Windows.

The Django component can be used and created dynamically (i.e. not pre-positioned as a component on a form). To create a dynamic instance of Django add the following line to your code.

TheDDEMLMngr := TDDEMLManager.Create(Self);

Creating a Django class in this fashion will require that each its properties to be set manually. You will also have to initiate Django’s use of DDEML by calling ‘InitDDEML’ method. Refer to the class reference section for further details of which properties have to be set.

The Django design time interface has a range of properties that can be set at design time. Some of these are supported by custom forms that allow complex selections to be entered.

Each of the design time selections is explained in the class reference section of this document.

For example in editing the ‘ExecCmds’ property the design time process will open up a custom form to allow the definition of supported server execute commands.

8. Setting up a DDEML client

This section outlines the main steps required for adding DDEML client functionality to your project. There are more issues to set for a client as the nature of the client-server relationship is that the client is running a series of procedural actions.

The first task is to define a number of key design time properties.

8.1 Design time issues

Properties

.1 Name

Set the Django component name to something meaningful.

.2 Scope

The scope property determines the range of DDEML functionality that the component will support. For this example select the ‘ddeClientOnly’ value.

.3 AutoInit

DDEML is a software layer which has to be initialised before any DDEML operations can be performed. This property determines whether this initialisation is performed automatically by the component. Setting ‘AutoInit’ to TRUE will force the component to initialise the DDEML layer shortly after its loaded as part of the main form. If this property is set to FALSE, then no Django functionality will work until the Django ‘InitDDEML’ method is called. For most situations this property should be set to TRUE.

.4 DefaultTimeOut

Most DDEML transactions are governed by a time-out process which will kick in after a pre-declared interval irrespective of whether the transaction has completed. ‘DefaultTimeOut’ is the value in seconds that will be used as the default time value for all Django initiated actions. By default this is set to 5 seconds. You should increase this to a larger value if the server link is known to be slow. (This value is only a default. Only methods exist for setting custom values for individual conversations).

Events

Adding DDEML client functionality to your project means adding a number of new core processes to your project. These are based around two main areas …

· Starting and stopping conversations

· Sending ‘transactions’ to the server, for retrieving or pushing data to the server.

Django has an event to cover practically all types DDEML activity. Django uses events to capture server initiated tasks and to capture the results of any data requests.

The range of events you will have to establish depends the type of transactions you are sending to the server. The results from each of these transactions is notified to the client application through a series of ‘Response’ events. The table below shows the different events used for each transaction type:

Transaction Type
Related events

Requesting data from server
OnRequestResponse

Sending (poking) data to the server
-

Starting a warm data link
OnWarmLinkResponse

OnAsyncResponse

Starting a hot data link
OnHotLinkResponse

OnAsyncResponse

Sending a command to the server
-

Further to the table if you are you using asynchronous transaction types then for both POKE and EXECUTE transactions the ‘OnAsyncResponse’ event will be required.

8.2 Programming tasks

Most of the work in implementing client side DDEML functionality involves a variety of steps to start conversations, send transactions, and then stop transactions. Django has encapsulated all of this work in a set of high level methods. Added to that you can run multiple conversations all from the same one component.

Information functions

Django includes a range of information functions that allow a client to find out the range available of DDEML servers and topics

The ‘AvailableServerCount’ method returns the number of DDEML servers out there to which it could possible connect. The two methods shown below can be used to retrieve a named list of those servers.

FUNCTION FirstAvailableServer(VAR AServerName : STRING) : BOOLEAN;

FUNCTION NextAvailableServer(VAR AServerName : STRING) : BOOLEAN;

The CLTTEST demo application includes the following main window procedure for retrieving the list of available servers …

procedure TMainForm.TheServersButtonClick(Sender: TObject);

VAR

 AServerName : STRING;

 Ct : INTEGER;

begin

 Ct := 0;

 WITH TheDdeMngr DO

 BEGIN

 IF FirstAvailableServer(AServerName) THEN

 BEGIN

 TheServerComboBox.ItemIndex := -1;

 TheServerComboBox.Items.Clear;

 REPEAT

 INC(Ct);

 TheServerComboBox.Items.Add(AServerName);

 UNTIL NOT NextAvailableServer(AServerName)
 END;

 IF Ct = 0 THEN

 ShowMessage('No servers found!')

 ELSE

 ShowMessage(IntToStr(Ct)+' servers found');

 END

Similar methods exist for retrieving the list of topics supported by a particular DDEML server

FUNCTION ServerTopicCount(CONST AnExeName,AServerName : STRING) : INTEGER;

FUNCTION FirstServerTopic(CONST AnExeName,AServerName : STRING;

 VAR ATopicName : STRING) : BOOLEAN;

FUNCTION NextServerTopic(CONST AServerName : STRING;

 VAR ATopicName : STRING) : BOOLEAN;
One of the standards laid down by DDEML is that all servers must support a ‘SYSTEM’. The system topic is used to allow client applications to query the server about its functionality. All of these system information facilities are supported by high level Django methods. For instance you can use the ‘ServerHelpMsg’ method to retrieve the help message which all DDEML servers are supposed to support (MS excluded of course!) , or the ‘ServerBusy’ function to tell whether the server is ready to process a transaction.

Starting a conversation

A Django based DDEML conversation can be started in one of three ways ..

· Starting a conversation with a specific named server/topic combination

· Firing off a Wild Connect connection request, which will start conversations with all and sundry servers that support wild connects.

· By using the Edit/Paste method to retrieve data posted into the clipboard by a DDEML server application.

To start a specific conversation use the ‘StartConv’ method. This requires at least one parameter a server name, though normally you would supply both a server and topic name (supplying just the server name is equivalent to sending a wild connect request).

FUNCTION StartConv(CONST AnExeName,

 AServerName,

 ATopicName : STRING;

 VAR AHandle : INTEGER) : BOOLEAN;
The ‘StartConv’ method returns TRUE if the conversation has commenced. It also returns an integer handle which can be used to identify a specific conversation. This handle is not the same as the hCONV handle used by low level DDEML functions. It is a handle used and maintained by Django.

As Django can support multiple simultaneous conversations something is required to identify a specific conversation. All conversation level methods use an open parameter type to allow you to choose the type of unique conversation parameter that you want to use. This can be either …

· The integer handle returned by the StartConv method, or

· The server and topic name conversation pair of strings.

Django includes a record structure for you to use to retain these values …

TYPE

 TConvParamRec = RECORD

 Server : STRING;

 Topic : STRING;

 Handle : INTEGER;

 END;
Wild connections allow a client app to start up multiple conversations with any number of servers. Django manages this through the ‘StartConvWithAny’ method

FUNCTION StartConvWithAny(ATopicName : STRING) : INTEGER;

The method function returns the number of conversations started. The ‘ATopicName’ parameter is optional - a ‘’ nil string value is valid. Not all DDEML servers react to wild connect calls in the same way. A DDEML server is not obliged to respond to a wild connect call.

Lastly Microsoft has introduced a custom clipboard format implemented in quite a few applications that allows an entry on the clipboard to act as the agent for a new DDEML conversation. This clipboard entry includes details about the source server and topic. When a DDEML capable client application pastes this data into its area it can read the clipboard data and use these as the parameters to start a new conversation. Django has implemented this in two high level methods. Firstly the ‘ClipboardHasPasteLink’ function returns TRUE if the clipboard contains a valid entry. Secondly the ‘StartClipboardPasteLinkConv’ method can be used to start a new DDEML conversation from the clipboard data.

The SYSTEM topic

Each DDEML server is supposed to support a special topic called the ‘SYSTEM’ topic. This system topic is used to find out information about the structure and scope of the DDEML server.

Django includes a set high level methods for querying all of the standard SYSTEM topic entries.

These include (the related Django methods are shown in parentheses) …

· Server help message (SeverHelpMsg)

· Topic supported by server (FirstServerTopic/NextServerTopic)

· Data formats supported by server (FirstServerFormat/NextServerFormat)

· Data formats supported by specific server/topic combination (FirstServerTopicFormat/NextServerTopicFormat)

· Items supported by the system topic (FirstServerSysItem/NextServerSysItem)

· Items supported by a specific server/topic (FirstServerTopicItem/NextServerTopicItem)

· Server is busy (ServerBusy/ServerReady)

Again, although DDEML servers are supposed to support all of the above, in practice some of more well known applications do not.

Poking data

When a DDEML conversation is established the client application can poke (or send) data to the server using the poke transaction type. Django supports a number of high level poke related methods : ‘Poke’ for sending data in a text format; ‘PokeBitmap’ for sending bitmap data; and ‘PokeData’ for sending a custom data type.

To send text or numbers to the server use the ‘Poke’ method …

FUNCTION Poke(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 CONST ADataArgs : ARRAY OF CONST) : BOOLEAN;

The first parameter defines the conversation identifier. This can either be the conversation integer handle returned by the ‘StartConv’ method, or the server/topic strings

IF TheMngr.Poke([AHandle],’R1C1’,[‘Sample test’]) THEN ….

IF TheMngr.Poke([‘EXCEL’,’SHEET1’],’R1C1’,[40.45]) THEN ….

Both the examples shown above are valid uses of the ‘AConvArgs’ parameter. In both cases the parameter must be enclosed by the ‘[‘ ‘]’square brackets.

The data pushed out using the ‘ADataArgs’ parameter can be one or more entries in an open array that takes almost all types of variable. In the example below ‘Age’ is presumed to be an integer variable.

IF TheMngr.Poke([‘EXCEL’,’SHEET1’],’R1C1’,[‘I am ’,Age,’ years old’]) THEN ….

Astring = ‘I am ’;

Age := 21;

Bstring = ‘ years old - really!’;

IF TheMngr.Poke([‘EXCEL’,’SHEET1’],’R1C1’,[AStr,Age,BStr]) THEN ….

To poke bitmap to a server use the ‘PokeBitmap’ method ….

FUNCTION PokeBitmap(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 AFormat : TDDEMLClipFmtType;

 ABitmap : Graphics.TBitmap) : BOOLEAN;

The ‘AFormat’ parameter can be set to either ‘cfBitmap’ or ‘cfDIB’ .

Any other form of data can be sent using the generic ‘PokeData’ method.

FUNCTION PokeData(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 AFormat : TDDEMLClipFmtType;

 AData : POINTER;

 ALen : LONGINT;

 OwnData : BOOLEAN) : BOOLEAN;
The ‘AData’ parameter is a generic pointer to some block of memory holding the data to be transferred to the server. The ‘OwnData’ flag is used to indicate whether Django should just take ownership of the data pointer (i.e. dispose of the data once the process is complete).

By default if the data being sent is NULL or has zero length then the Poke transaction is aborted. This can be overriden by use of the ‘AllowNullPokes’ property which if set to TRUE will allow null data values to be sent via a POKE transaction.

All Poke operations return TRUE if the server accepted the data. It will return false if the server refused the transaction or no result was returned within the declared time out period.

Requesting data

The opposite to a Poke is a Request. A request transaction retrieves data from a DDEML server.

Django uses a ‘Request’ method to retrieve data. The data itself is passed back using the ‘OnRequestResponse’ event above.

FUNCTION Request(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING) : BOOLEAN;

A Request method returns TRUE if it was accepted by the server. IF returns FALSE if it was not accepted by the server or it timed out.

A request method has the data sent via the ‘OnRequestResponse’ event. If you do not define this event you will never receive any data! This type of indirection is used because DDEML can move a wide variety of different data types.

The ‘CLTTEST’ demo application includes an ‘OnRequestResponse’ event, as shown below:

procedure TMainForm.TheDdeMngrRequestResponse(Sender: TObject;

 const AConvHandle: Integer; const AServerName, ATopicName,

 AnItemName: String; const ATransH: Longint;

 const AFormat: TDDEMLClipFmtType; const ADataLen: Longint);

begin

 IF ADataLen > 0 THEN

 TheReqResMemo.Lines.Add(TheDdeMngr.GetClientText([AConvHandle],AnItemName,ATransH))

 ELSE

 TheReqResMemo.Lines.Add('<NULL>')

end;

Django includes a set of ‘GetClientXXX’ functions for retrieving request related data. Inside the event handler the client application can call a specific ‘GetClientXXX’ function according to the type of data requested. The table below summarises the appropriate method to use:

Data type requested
Related ‘GetClientXXX’ function

Bitmap
GetClientBitmap

Large strings (> 255 chars)
GetClientData

Integer/Longint
GetClientInt

Meta file
GetClientMetaFile

Double
GetClientNumber

Pascal String
GetClientText

Other data type
GetClientData

Sending an Exec command

DDEML uses Poke and Request transaction types to move data. It uses a ‘exec command’ transaction type to initiate some DDEML server based function. In most cases a DDEML server will include a range of DDEML exec commands that mirror either its menu structure or general functionality. There is no formal standard for how exec commands are formatted. Each server application will have it own individual way of doing things.

Generally an exec command is passed as a formatted text string, with individual commands set within square brackets, like ‘[CLEAR]’. Parameters to a command are normally set in parentheses within the square brackets, like ‘[CLEAR(10,10)]’. Commands can be concatenated together in a sequence, like ‘[CLEAR(10,10)][SET(5,6,7)]’.

Django uses the ‘Execute’ method to forward commands.

FUNCTION Execute(CONST AConvArgs : ARRAY OF CONST;

 CONST AnExeCmd : ARRAY OF CONST) : BOOLEAN;
The ‘Execute’ method will return TRUE if all elements of the command string were accepted and processed by the server.

Stopping a conversation

An active conversation can be terminated using the ‘EndConv’ method. All active conversations can be end using the ‘EndAllConv’ method.

It is normally the client’s job to start and stop conversations. If a server for some reason stops a conversation then it often disrupts the processing flow. To that end Django has a special event that client applications can use to capture such situations. The ‘OnServerDisconnecting’ event is called whenever a server initiates a conversation termination.

Restarting a conversation

A client can attempt to restart a stopped conversation by using the ‘RestartConv’ method.

Starting multiple conversations

Django can support multiple simultaneous conversations.

IF TheMngr.StartConv(‘’,’EXCEL’,’SHEET1’,Handle1) THEN …..

IF TheMngr.StartConv(‘’,’EXCEL’,’SHEET2’,Handle2) THEN …..

IF TheMngr.StartConv(‘’,’EXCEL’,’SHEET3’,Handle3) THEN …..
The client application must use the server/topic string combination or the unique handle returned by ‘StartConv’ to select a particular conversation. Some servers support multiple conversations into the same server/topic combination. In this case you would have to use the handle as a means of identifying the required conversation.

There area set of methods for translating handles to server/topic names and vice-versa

FUNCTION ConvHandleToNames(AHandle : INTEGER;

 VAR AServerName,

 ATopicName : STRING) : BOOLEAN;

FUNCTION ConvHandleToDDEId(AHandle : INTEGER;

 VAR ADDEConvId : WORD) : BOOLEAN;

FUNCTION ConvNamesToHandle(CONST AServerName,

 ATopicName : STRING;

 VAR AHandle : INTEGER) : BOOLEAN;

FUNCTION ConvNamesToDDEId(CONST AServerName,

 ATopicName : STRING;

 VAR ADDEConvId : WORD) : BOOLEAN;
The ‘ADDEConvId’ parameter type shown above is the low level DDEML conversation handle used by DDEML API functions

9. Setting up a DDEML server

Using Django to define DDEML server functionality is a quick and rapid process. There is less procedural programming work here, as by and large the task is associated with defining a set of reactions to pre-defined access points.

9.1 Design time issues

Properties

.1 Name

Select a name appropriate to the Django component.

.2 Scope

Set the scope to ‘ddeServerOnly’.

.3 Services

Each server application identifies itself through its server name. This can be different to the application name. Most DDEML servers usually only offer one service, but you can support multiple service names if you so require. Different service names can be used to segregate different types of functionality or access to types of data.

By default if no entry is defined here then Django will create a service using the name of the application, e.g. ‘MYAPP’ service from ‘MYAPP.EXE’.

To define a specific service name select the ‘Services’ line on the Object Inspector. It will open a custom form that allows for definition of single or multiple service names.

To add a defined service name, enter an alphanumeric name in the ‘Name’ edit control and then select the ‘Add’ button. An entry will appear in the ‘Defined’ list box. The start up status of a service can be set using the ‘Enabled at start’ check box. To change a service name use the list box cursor to highlight the required item. The name will appear in the ‘Name’ edit control. Edit this text and then select the ‘Update’ button. To remove a service name highlight the required item in the ‘Defined’ list box and then select the ‘Delete’ button.

On the right side of the form there are two list boxes used to control the range of exec commands that a service can employ. Where a server application uses more one service, it might be important to restrict certain exec commands to particular services. By default this form lists for the currently defined service all of the available commands in the ‘Valid’ list box. To reduce this scope select items from the valid list box and using the arrow keys move them into the ‘Invalid’ list box. Any command names appearing in the ‘Invalid’ list box will not be available for the selected service.

Once all definitions are complete, select the ‘OK’ button. The Object Inspector form will display the number of services defined.

.4 AutoInit

Setting this to TRUE will have Django auto initiate the underlying DDEML functionality. If this is set to FALSE then no Django functionality can be used until an ‘InitDDEML’ method is called. This property is normally set to TRUE.

.5 DefaultTimeOut

This property defines the default time period in seconds for transactions to complete.

.6 ExecCmds

A service can support a range of commands that equate to functions within its own applications. These commands can be called by clients. This property is supported by a form that allows sets of commands to be defined. To activate the form highlight the ‘ExecCmds’ property in the Object Inspector. A double click on this line opens the command definition form ….

The command definition form provides a grid into which the command definitions and there parameters can be set.

The ‘Command Name’ column defines the name that the client will use to activate the command. The ‘Param Types’ column is used to define the range and type of parameters required for each command. This column can take any number of parameter entries. Each parameter is represented by a single character.

S
An upper case ‘S’ indicates a mandatory string type parameter

s
A lower case ‘s’ indicates an optional string type parameter

I
An upper case ‘I’ indicates a mandatory integer type parameter

i
A lower case ‘i’ indicates an optional integer type parameter

N
An upper case ‘N’ indicates a mandatory number (decimal) type parameter

n
A lower case ‘n’ indicates an optional number (decimal) type parameter

Lower case parameter types should not appear before uppercase type parameters.

Django uses this parameter list definition to automatically verify any incoming exec command transactions. It rejects any that do not have the required parameter format.

The third column ‘Active?’ is used to define whether a command is active (available) at the start of a session. A command can be used by a client if it is inactive.

The sample screen shown above illustrates the exec command settings for the SERVGRID demo application.

Having defined all the required commands, select the ‘OK’ button. The Object Inspector line will display an indication of the number of defined commands.

By default the server application will use the ‘OnExecuteReceived’ event to trap incoming execute transactions. Django will attempt to parse the execute command strings using the parameter types explained above. It will only call the ‘OnExecuteReceived’ event if the command string passes the parsing process with correct number and type of parameters. This type of pre-processing can be overriden by use of the ‘OnRawExecuteReceived’ event. The event is called before any Django parsing and allows the server application an opportunity to receive notification for situations where there is no clearly definable command syntax.

Events

Having established the structure (services and commands) the next stage is to set up a series of events to respond to incoming client requests.

Almost all of the server related events use a ‘OnxxxxxReceived’ naming convention.

The table below summaries the main server specific events and their use:

Purpose
Event name

Receiving a start new conversation ‘connect’ message from a client application
OnConnectReceived

Receiving a wild connect call from a client application
OnWildConnectReceived

Receiving a conversation about to terminate message from a client application
OnDisconnecting

Receiving a ‘Poke’ transaction from a client application
OnPokeReceived

Receiving a Request transaction from a client application
OnRequestReceived

Receiving an execute command transaction from a client application
OnExecuteReceived

OnRawExecuteReceived

Responding to a start new advise loop transaction sent bya client application
OnAdviseStartReceived

Responding to a stop existing advise loop transaction sent by a client application
OnAdviseStopReceived

Receiving a request from a client application for its system help message
OnSyshelpReceived

Receiving a request from a client application for the list of items supported by the system topic
OnSysItemReceived

Receiving a request from a client application for a list of supported topics
OnTopicReceived

Receiving a request from a client application for a list of supported data formats for all topics
OnFormatReceived

Receiving a request from a client application for a list of data formats supported by a specific topic
OnTopicFormatReceived

Receiving a request from a client application fro a list of items supported by a specific topic
OnItemReceived

Detailed explanations on how to employ each event are given in the reference section of this document.

9.2 Programming activities

Beyond the data property and event setting issues described above there is very little else for Django server applications to worry about.

10. Setting up a combined DDEML client/server

To establish a project that acts as both DDEML client and server simply change the ‘Scope’ property to use the ‘ddeClientAndServer’, and make sure all of the steps outlined the Separate client and server tutorial sections are implemented. It’s as simple as that!

11. Network DDE support

V3 of Django supports Network DDE functionality.

Network DDE (or ‘NetDDE’ as it is more commonly referenced) allows DDE conversations between different PC’s across a network. This network access is controlled through ‘shares’ defined and stored within the PC’s registry or system INI file.

Each share has a name (by convention share names end with a ‘$’ symbol), with a share name representing a link to a specific server name and topic name. The underlying O/S will include a utility (DDESHARE.EXE) that allows a user to define shares independant of DELPHI and Django.

Practically all of the work associated with allowing NetDDE is on the server side.

11.1 Client side Issues

For client applications the use of NetDDE changes the server/topic address pattern used to link to servers in normal DDE operations.

The ‘Server’ name is no longer the DDE service. This is replaced with a specially formatted version of the server PC machine name.

The machine name has to be represented within a special string format …

\\ <AMachineName> \ NDDE$

For example to link to a maxhine called ‘JIM’ the special server address would be …

\\JIM\NDDE$

Django includes a special client side function to remove the bother of remembering the back slash characters. Use the ‘NetServerName’ method with the machine name as its parameter to

return the required format string.

The ‘Topic’ name is no longer the DDE topic. This is replaced with the ‘share’ name as defined on the server PC.

Thus to connect to a NetDDE server with a machine name of ‘JIM’ and a share name of ‘SHAREPRICE$’ the ‘StartConv’ method would be coded as follows …

WITH DDEManager1 DO

 IF StartConv(NetServerName(‘JIM’),’SHAREPRICE$’,h) THEN ….

Due to a parcularity of the NetDDE design (nothing to do with Django!) a NetDDE connection may not succeed even when the O/S says that it does. To test for a valid connection, it is suggested that the client side application run a preliminary ‘REQUEST’, ‘POKE’ or ‘EXECUTE’ transaction just to make sure the link is working.

Once a NetDDE conversation is opened all other client side activities are run as per normal.

11.2 Server Side Issues

Django includes a number of design time properties that have to be set for a NetDDE process to succeed.

First, the ‘NetworkDDE’ property must be set to TRUE. This is mandatory. A network DDE connection request attempt will be ignored if this property is set to FALSE.

The Django design time IDE allows Network DDE shares to be established and stored within the Django component definition. Select the ‘ShareList’ Property and doubled click the property edit button to open the form shown below …

This form allows multiple shares to be setup and defined within Django. These shares are not the same as the shares configured on the underlying PC. They represent an internal memory based list maintained by Django. Other properties determine how they are applied to the PC.

The form has three tabbed pages:

The ‘Shares’ page is where the list of individual shares is managed. Functions on this page include …

· Use the ‘Load’ button to retrieve into the Django based list all of the shares configured for the underlying PC.

· Use the ‘Save’ button to saved the Django memory based list shares to the underlying PC - overwriting any existing shares using the same names.

· Use the ‘Delete’ button to delete an share from the Django based list.

· Use the ‘Name’ edit box to enter a share name and then select the ‘Add’ button to add this as a new share to the list, or the ‘Update’ button to change the name of the current share. The convention is to have share names that end with the ‘$’ dollar character.

· The ‘Access Type’ radio button group is used select the scope offered by the server to remote client applications. It will enable or disable related groups of controls on the second ‘Definition’ page. A share with ‘Read Only’ access will only accept ‘REQUEST’ and ‘ADVISE’ transaction types. A ‘Full Access’ type will accept all transaction types. The ‘Password’ option indicates that a set of two passwords will be used to control whether read only or full access is to be applied.

The ‘Share Definition’ Page provides scope for further definition of the currently selected share.

The available shares are listed in the drop down combo box at the top of the page. The share must provide an ‘App Name’ and ‘Topic Name’. All other parts of the definition are optional or based upon the ‘access type’ selection made on the first page. At least one of the ‘Permission’ check boxes must be selected.

The ‘Extra Items’ page allows the share definition to be extended into additional items.

Items are created by entering a name into the ‘Item Name’ edit box and then selecting the ‘Add’ button. Names can be changed by highlighting an item in the ‘Available Items’ list box, changing the entry in the edit box and then selecting the ‘Update’ button.

Each item must support at least one transaction. Select one or more of the transaction check boxes.

Once all share definitions are complete, select the ‘OK’ button to accept the full list of share definitions.

The shares defined using the ‘ShareList’ property can be used by the server application in a number of different ways.

The ‘ShareProcess’ property is one aspect of that control. By default the property is set to ‘spNone’ and thus has no affect. If the property is set to ‘sptAutoCreateShares’ then as the Django component is loading itself it will automatically create the shares on the underlying PC from the list held in the ‘SharesList’ property. This provides a degree of extra security to ensure that the application only ever works with NetDDE shares configured for a particular situation. If the property has a value of ‘sptSharesMustMatch’ then Django on loading itself will check the list of shares maintained on the underlying PC with its own list. If they are different in anyway Django will raise an exception error.

Django includes range of methods for managing the shares held within Django and those configured on the PC. The Django list is maintained separately to act as a type of buffer for data entry and validation. It is perfectly valid for the Django list and the PC’s own list of shares to be completely different.

The list of methods includes …

AddMemShare
Add a new share to the Django basec list

DeleteAllSysShares
Delete all PC configured shares from the registry or systerm INI file.

LoadAllSysSharesToMem
Load all PC configured shares into the Django based memory list.

LoadSysShareToMem
Load a specific PC share definition into the Django based memory list

MemShareCount
Return a count of the number of shares held on the Django based list.

MemShareExists
Return TRUE if the share name exists on the Django based list.

NetServerName
Return the fully formatted ‘server’ name for a specific machine name

RemoveAllMemShares
Remove all shares from the Django based list.

RemoveMemShare
Remove a specific share from the Django based list

SaveMemShareToSys
Save a specific share from the Django based list to a PC configuration, overriding any existing definition

SaveAllMemSharesToSys
Save all Django based list shares to the PC configuration, overriding any existing definitions

ScopeIncludesNetworkServer
Returns TRUE if Django is configured to be both a server and support NetDDE

SysShareCount
Returns a count of the number of shares defined against the PC.

SysShareExists
Returns TRUE if a specific share is defined against the PC.

All Django list related methods include a reference to ‘Mem’ . All PC configuration related method include a reference to ‘Sys’.

Individual share class instances from the Django list can be returned in run time by use of the ‘Shares’ array type property. Similarly, the names of shares held on that list can be accessed using the ‘ShareNames’ array type property.

A server can return its own machine name in run time using the ‘NodeName’ property (not in NT, use the API ‘GetMachineName’ function instead)

12. Advanced Features

12.1 Pre-defining Django’s internal item level data buffers.

Django uses a series of internal data buffers to hold data at a server/topic/item level. For server application’s that expect to receive a high volume of request transactions, it can save a lot of time and energy to have sets of static item data values pre-defined.

This is particularly true of the SYSTEM topic requests. For example rather than responding each time to a server help message request it would make sense to have the standard help response set up in advance and stored within Django’s internal buffers.

Use the application’s main form FormCreate event to set up these pre-defined data values.

Use any one of the ‘SetServerItemXXXX’ methods to move data into a specific service/topic/item address.

12.2 Synchronous/asynchronous transactions

Most DDEML transactions (poke’s, requests, and commands) are dispatched as ‘synchronous’ transactions. That is the client application code will wait until the server responds before processing the next line of code.

DDEML allows two forms of transaction process : synchronous (as explained above), or ‘asynchronous’. When dispatching an asynchronous transaction the client application does not wait for the response, it moves directly onto the next line of code, usually before the server has had time to process any response.

The advantage of asynchronous transactions it that the client can continue processing irrespective of what or how the server responds. The downside is that an asynchronous transaction result can be returned at any time, making the whole process difficult to control.

Fortunately Django supplies the control and uses a set of events to communicate the results back to the client.

Client applications wishing to use asynchronous transactions should use the ‘SetConvComm’ method to set the conversation level default communication type to asynchronous. Any transactions made thereafter will be treated as being asynchronous.

Asynchronous transactions use a unique handle to identify themselves. Django maintains a list of ‘open’ incomplete transactions. It has two client related methods for monitoring this list …

FUNCTION TransCount(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING) : INTEGER;

FUNCTION TransHandle(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING; Idx : INTEGER) : LONGINT;
The ‘TransCount’ method returns the number of transactions open for a particular server, topic item combination. The ‘TransHandle’ method returns the DDEML transaction handle for a particular list item.

Transactions remain open until such time that the server responds. Until that response is received the client cannot be sure that the transaction has completed successfully.

For ‘Request’ type asynchronous transactions Django will use of one of two events to notify the client of the servers response. If the request failed it calls the ‘OnASyncResponse’ event

TDDEMLAsyncResponseEvent = PROCEDURE(Sender : TObject;

 CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 ATransType : WORD;

 ATransHandle : LONGINT;

 Success : BOOLEAN) OF OBJECT;
The ‘Success’ boolean flag will be set to FALSE. If the ‘Request’ was processed successfully a normal ‘OnRequestResponse’ event is called.

For ‘Poke’ and ‘Execute’ type transactions Django uses the ‘OnASyncResponse’ event to communicate the status of the transaction.

If for any reason a transaction does not return from the server, the client application can use the ‘AbandonTrans’ method to remove it altogether.

13. Special DDEML debug facilities

Most of the problems encountered whilst adding DDEML functionality are not functional but procedural, i.e. determining the correct order to process events.

Such procedural issues are often difficult to debug even within DELPHI IDE debugger, as it can interfere with the general timing process. Added to this the DELPHI IDE debugger will not operate when certain DDEML functions are active - starting and stopping conversations.

To counter these problems Django includes a debug utility of its own to provide a measure of support.

Viewing the Django component with the Object Inspector will indicate three debug related properties:

DebugState

This offers three states : dbNone, dbFile, dbForm.

· If set to ‘dbNone’ no Django debugging output is created.

· If set to ‘dbFile’ Django sends all debug output to a ASCII text file using the name set in the ‘DebugFileName’ property.

· If set to ‘dbForm’ all debug output is sent to a special floating form which Django opens when the application is run.

DebugFileName

This property stores the name of the file used to hold the debug output if the DebugState is set to ‘dbFile’. When the application is run the process checks to see if the file already exists. If it does it renames the exist file as ‘XXXXX.001’. If a ‘XXX.001’ file already exists it renames it the next available number.

DebugStayOnTop

If the debug state is set to ‘dbForm’ then setting this property to TRUE will keep that form on top of all other forms.

Django provides debug output for every major processing action and around each call to an underlying DDEML API function. The debug output is specific to the Django design, and includes reference to the Django class and method name.

The debug display form shown above has a number of simple functions available for developer use.

· You can close the form by selecting all ‘Close’ button. This disables all subsequent debug output.

· You can clear all existing entries in the debug window by selecting the ‘Clear’ button.

· You print the debug from content by selecting the ‘Print’ button

· You can save the output to a file using the ‘Save’ button.

14. Reference - Data Types

14.1 TDDEMLTransType

An enumerated type used to indicate a type of DDEML transaction. It is used within events related to asynchronous transactions. The values are a direct match of the equivalent ‘XTYP_xxxx’ identifier used low level DDEML API functions. The range of values are shown below:

 xtypError,

 xtypAdvData,

 xtypAdvReq,

 xtypAdvStart,

 xtypAdvStop,

 xtypExecute,

 xtypConnect,

 xtypConnectConfirm,

 xtypXACTComplete,

 xtypPoke,

 xtypRegister,

 xtypRequest,

 xtypDisconnect,

 xtypUnregister,

 xtypWildConnect

14.2 TDDEMLClipFmtType

An enumerated type used to indicate the data format of data being used some DDEML process. The values area direct match to the equivalent ‘cf_xxx’ identifiers located in the ‘WINTYPES’ units. The range of values is as follows:

 cfNone,

 cfText,

 cfBitmap,

 cfMetaFilePict,

 cfSYLK,

 cfDIF,

 cfTIFF,

 cfOEMText,

 cfDIB,

 cfPalette,

 cfPenData,

 cfRIFF,

 cfWave

14.3 TDDEMLDebugState

An enumerated type used to define the Django debug output state. There are three values:

dbNone

No debug output is processed

dbFile

Any debug output is appended to the DebugFileName text file

dbForm

Any debug output is sent to the Django debug form.

14.4 TDDEMLCommType

An enumerated type used to indicate the type of communication return process applied to DDEML transactions. Three are two possible values:

dcSync

Synchronous communication

dcASync
Asynchronous communication

14.5 TConvParamRec

A record structure made available for applications to use when storing DDEML conversation identifiers:

TConvParamRec = RECORD

 Server : STRING;

 Topic : STRING;

 Handle : INTEGER;

END;

14.6 TDDEMLScopeType

An enumerated type used to control the functional scope of the Django component. There are four possible values:

ddeNone

Non DDEML functions supported

ddeClientOnly

Only DDEML client functionality available

ddeServerOnly

Only DDEML server functionality available

ddeClientAndServer
Both DDEML client and server available

15. Reference - TDDEMLManager Class

15.1 Introduction

This class is the cornerstone for all Django based DDEML operations.

15.2 Methods grouped by category

The public methods have been grouped by main category to provide a quick method for accessing the required functionality. In addition the tables below indicate whether a method can be used by a DDEML client or DDEML server application

CONSTRUCTORS / DESTRUCTORS

Client?
Server?

Create
Yes
Yes

Destroy
Yes
Yes

LINKING TO THE UNDERLYING DDEML API

Client?
Server?

InitDDEML
Yes
Yes

TerminateDDEML
Yes
Yes

EnableCallBack
Yes
Yes

IsCallbackActive
Yes
Yes

SERVICE DEFINITION

Client?
Server?

AddService
No
Yes

EnableService
No
Yes

HasService
No
Yes

IsServiceBusy
No
Yes

RegisterService
No
Yes

RemoveService
No
Yes

ServiceCount
No
Yes

ServiceConvCount
No
Yes

ServiceTopicCount
No
Yes

SetServiceStatus
No
Yes

COMMAND DEFINITION

Client?
Server?

AddCmd
No
Yes

EnableCmd
No
Yes

GetCmdParamCount
No
Yes

GetCmdParamType
No
Yes

RemoveAllCmds
No
Yes

RemoveCmd
No
Yes

ExcludeCmdFromService
No
Yes

RemoveServiceCmdExclusion
No
Yes

RemoveAllServiceCmdExclusions
No
Yes

SERVER INFORMATION

Client?
Server?

AvailableServerCount
Yes
No

ClearAvailableServerList;
Yes
No

ClearServerFormatList
Yes
No

ClearServerHelpList
Yes
No

ClearServerTopicList
Yes
No

ClearServerSysItemList
Yes
No

FirstAvailableServer
Yes
No

FirstServerFormat
Yes
No

FirstServerTopic
Yes
No

FirstServerTopicFormat
Yes
No

FirstServerTopicItem
Yes
No

FirstServerSysItem
Yes
No

IsServerExeRunning
Yes
No

NextAvailableServer
Yes
No

NextServerFormat
Yes
No

NextServerTopic
Yes
No

NextServerSysItem
Yes
No

NextServerTopicItem
Yes
No

NextServerTopicFormat
Yes
No

ServerBusy
Yes
No

ServerExists
Yes
No

ServerFormatCount
Yes
No

ServerHelpMsg
Yes
No

ServerReady
Yes
No

ServerSysItemCount
Yes
No

ServerTopicCount
Yes
No

ServerTopicItemCount
Yes
No

ServerTopicFormatCount
Yes
No

SERVICE SUPPORT

Client?
Server?

AddToSupportedFormatList
No
Yes

AddToSupportedTopicList
No
Yes

AddWildConnectEntry
No
Yes

AddWildConnectSystemTopics;
No
Yes

ClearSupportedFormatList
No
Yes

ClearSupportedTopicList
No
Yes

IsSystemTopic
Yes
Yes

SetServiceHelpMsg
No
Yes

SERVICE TOPIC SUPPORT

Client?
Server?

AddToSupportedItemList
No
Yes

ClearSupportedItemList
No
Yes

TopicConvCount
No
Yes

SERVICE ITEM DATA

Client?
Server?

AppendServiceItemText
No
Yes

ClearServiceItemData
No
Yes

GetServiceItemBitmap
No
Yes

GetServiceItemData
No
Yes

GetServiceItemDataFormat
No
Yes

GetServiceItemDataLen
No
Yes

GetServiceItemInt
No
Yes

GetServiceItemMetaFile
No
Yes

GetServiceItemNumber
No
Yes

GetServiceItemText
No
Yes

ServiceItemHasAdviseLink
No
Yes

ServiceItemHasBinaryData
No
Yes

ServiceItemHasData
No
Yes

ServiceItemHasTextData
No
Yes

RemoveServiceItem
No
Yes

SetServiceItemBitmap
No
Yes

SetServiceItemData
No
Yes

SetServiceItemInt
No
Yes

SetServiceItemMetaFile
No
Yes

SetServiceItemNumber
No
Yes

SetServiceItemStrId
No
Yes

SetServiceItemText
No
Yes

SetServiceItemValue
No
Yes

STARTING/STOPPING CONVERSATIONS

Client?
Server?

StartConv
Yes
No

StartConvWithAny
Yes
No

EndAllConvs;
Yes
Yes

EndConv
Yes
Yes

CONVERSATION LEVEL

Client?
Server?

ConvCount
Yes
Yes

ConvHandleToNames
Yes
No

ConvHandleToDDEId
Yes
No

ConvNamesToHandle
Yes
No

ConvNamesToDDEId
Yes
No

EnableConvCallback
Yes
Yes

HasConv
Yes
No

GetConvTimeOut
Yes
No

GetConvComm
Yes
No

GetConvUseBusy
Yes
No

HasConvUserHandle
Yes
No

IsConvCallbackActive
Yes
No

RemoveClientItem
Yes
No

RestartConv
Yes
No

SetConvFormat
Yes
No

SetConvTimeOut
Yes
No

SetConvComm
Yes
No

SetConvUseBusy
Yes
No

SetConvUserHandle
Yes
No

CONVERSATION USER HANDLE

Client?
Server?

FindUserHandle
Yes
Yes

HasConvItemUserHandle
Yes
Yes

SetConvItemUserHandle
Yes
Yes

CLIPBOARD

Client?
Server?

CopyLinkToClipboard
No
Yes

ClipboardHasPasteLink
Yes
No

StartClipboardPasteLinkConv
Yes
No

NETWORK DDE

Client?
Server?

AddMemShare
No
Yes

DeleteAllSysShares
No
Yes

LoadAllSysSharesToMem
No
Yes

LoadSysShareToMem
No
Yes

MemShareCount
No
Yes

MemShareExists
No
Yes

NetServerName
Yes
No

RemoveAllMemShares
No
Yes

RemoveMemShare
No
Yes

SaveMemShareToSys
No
Yes

SaveAllMemSharesToSys
No
Yes

ScopeIncludesNetworkServer
No
Yes

SysShareCount
No
Yes

SysShareExists
No
Yes

TRANSACTION LEVEL

Client?
Server?

AbandonTrans
Yes
No

Execute
Yes
No

Poke
Yes
No

PokeBitmap
Yes
No

PokeData
Yes
No

PostAdvise
No
Yes

Request
Yes
No

StartAdvise
Yes
No

StopAdvise
Yes
No

TransCount
Yes
No

TransHandle
Yes
No

REQUEST DATA RESULTS

Client?
Server?

GetClientBitmap
Yes
No

GetClientItemData
Yes
No

GetClientInt
Yes
No

GetClientMetaFile
Yes
No

GetClientNumber
Yes
No

GetClientText
Yes
No

TDDEMLManager Method Definitions in Alphabetical order

AbandonTrans

FUNCTION AbandonTrans(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 ATransHandle : LONGINT) : BOOLEAN;

Used by client applications, this method is used to abort an active asynchronous transaction. Both the item name and transaction handle have to be supplied for the process is start. The function returns TRUE if the transaction exists and it is successfully aborted.

AddCmd

PROCEDURE AddCmd(CONST ACmdTitle,ACmdParams : STRING; ACmdEnabled : BOOLEAN);

For server applications this adds a new execute command to the list of predefined commands. The ‘ACmdTitle’ should be a unique text string.

The ‘ACmdParams’ parameter is a text entry that indicators the range and type of parameters expected Each parameter is represented by a single character.

S
An upper case ‘S’ indicates a mandatory string type parameter

s
A lower case ‘s’ indicates an optional string type parameter

I
An upper case ‘I’ indicates a mandatory integer type parameter

i
A lower case ‘i’ indicates an optional integer type parameter

N
An upper case ‘N’ indicates a mandatory number (decimal) type parameter

n
A lower case ‘n’ indicates an optional number (decimal) type parameter

Lower case parameter types should not appear before uppercase type parameters.

For example an entry of ‘SSI’ would indicate the need for three parameters, the first two of which are text strings, with the third being an INTEGER type. Django uses this parameter list definition to automatically verify any incoming exec command transactions. It rejects any that do not have the required parameter format.

The ‘ACmdEnabled’ parameter indicates whether this command should start as being enabled. A disabled command is not available for client applications.

AddService

PROCEDURE AddService(CONST AService : STRING);

For server applications only. It adds a new service name to the list supported by the Django component. Note that the service is added but not enabled until such time that an ‘EnableService’ method is called.

If a Django component has no pre-defined service names it will use by default the name part of the owning application (e.g. from MYAPP.EXE it would use ‘MYAPP’).

AddMemShare

PROCEDURE AddMemShare(CONST AShareName : STRING);

For server applications only. It adds a new NetDDE share class instance to the memory based list of share clases maintained by Django. The just created share class instance can be located using the ‘Shares’ array property. Share definitions created using this method are not applied to the PC until a ‘SaveAllMemSharesToSys’ or ‘SaveMemShareToSys’ method is called.

AddToSupportedFormatList

PROCEDURE AddToSupportedFormatList(CONST AServiceName,ATopicName : STRING;

 AFormat : TDDEMLClipFmtType);

Used by server applications, this method is part of the processing expected from ‘OnFormatListRequest’ and ‘OnTopicFormatListRequest’ events. The server application should call this method for each data format supported by that server/topic combination.

AddToSupportedItemList

PROCEDURE AddToSupportedItemList(CONST AServiceName,ATopicName,AnItemName : STRING);

Used by server applications, this method is part of the processing expected from the ‘OnItemListRequest’ and ‘OnSysItemListRequest’ events. The server application should call this method for each item supported by that server/topic.

AddToSupportedTopicList

PROCEDURE AddToSupportedTopicList(CONST AServiceName,ATopicName : STRING);

Used by server applications, this method is part of the processing expected from the ‘OnTopicListRequest’ event. The server application should call this method for each topic supported by that server

AddWildConnectEntry

PROCEDURE AddWildConnectEntry(CONST AServiceName,ATopicName : STRING);

Used by server applications, this method is part of the processing expected from the ‘OnWildConnectRequest’ event. The server application should call this method for each server/topic combination that its wants respond with.

AddWildConnectSystemTopics

PROCEDURE AddWildConnectSystemTopics;

Used by server applications, this method is part of the processing expected from the ‘OnWildConnectRequest’ event. This will create a wild connect entry for each service using the SYSTEM topic.

AppendServiceItemText

PROCEDURE AppendServiceItemText(CONST AServiceName,ATopicName,AnItemName,AValue : STRING);

Used by server applications, this method appends text to an existing item entry in the Django internal data buffer.

AvailableServerCount

FUNCTION AvailableServerCount : INTEGER;

Used by client applications to return the number of servers available.

ClearAvailableServerList

PROCEDURE ClearAvailableServerList;

For client applications each time the AvailableServerCount or FirstAvailableServer methods are called Django maintains the results in an internal list. This method clears that list.

ClearServerFormatList

PROCEDURE ClearServerFormatList(CONST AServerName : STRING);

Used by client applications, this clears any previous record the client application might have had of a servers supported data format list.

ClearServerHelpList

PROCEDURE ClearServerHelpList(CONST AServerName : STRING);

Used by client applications, this clears any previous record the client application might have had of a servers SYSTEM topic help message

ClearServerSysItemList

PROCEDURE ClearServerSysItemList(CONST AServerName : STRING);

Used by client applications, this clears any previous record the client application might have had of a servers SYSTEM topic available items list.

ClearServerTopicList

PROCEDURE ClearServerTopicList(CONST AServerName : STRING);

Used by client applications, this clears any previous record the client application might have had of a servers available topic list

ClearServiceItemData

PROCEDURE ClearServiceItemData(CONST AServiceName,ATopicName,AnItemName : STRING);

Used by server applications, this method clears any data stored against an item from the Django internal data buffer.

ClearSupportedFormatList

PROCEDURE ClearSupportedFormatList(CONST AServiceName,ATopicName : STRING);

Used by server applications, this method is part of the processing expected from ‘OnFormatListRequest’ and ‘OnTopicFormatListRequest’ events. This method will clear down any existing list of format entries. It should be used prior to making the first call to the related ‘AddToSupportedFormatList’ method.

ClearSupportedItemList

PROCEDURE ClearSupportedItemList(CONST AServiceName,ATopicName : STRING);

Used by server applications, this method is part of the processing expected from the ‘OnItemListRequest’ and ‘OnSysItemListRequest’ events. It will clear down any existing list of items. It should be used prior to making the first call to the related ‘AddToSupportedItemList’ method.

ClearSupportedTopicList

PROCEDURE ClearSupportedTopicList(CONST AServiceName : STRING);

Used by server applications, this method is part of the processing expected from the ‘OnTopicListRequest’ event. It should be used prior to making the first call to the related ‘AddToSupportedTopicList’ method.

ClipboardHasPasteLink

FUNCTION ClipboardHasPasteLink(VAR AServerName,

 ATopicName,AnItemName : STRING) : BOOLEAN;

Used by client applications, this method returns TRUE if the clipboard contains a ‘link’ type clipboard entry. Link type entries are placed by DDEML servers. They contain information on the server and topic that created the clipboard entry. If TRUE the method sets the server name, topic name and item name into the output parameters.

ConvCount

FUNCTION ConvCount : INTEGER;

Returns the number of active conversations.

ConvHandleToDDEId

FUNCTION ConvHandleToDDEId(AHandle : INTEGER;

 VAR ADDEConvId : WORD) : BOOLEAN;

Used by client applications, this coverts a Django conversation handle into the equivalent DDEML API conversation handle. The function returns TRUE if the Django conversation handle is valid.

ConvHandleToNames

FUNCTION ConvHandleToNames(AHandle : INTEGER;

 VAR AServerName,

 ATopicName : STRING) : BOOLEAN;

Used by client applications, this coverts a Django conversation handle into the equivalent server/topic names. The function returns TRUE if the Django conversation handle is valid.

ConvNamesToDDEId

FUNCTION ConvNamesToDDEId(CONST AServerName,

 ATopicName : STRING;

 VAR ADDEConvId : WORD) : BOOLEAN;

Used by client applications, this takes the pair of server/topic names and returns the equivalent DDEML API conversation handle. The function returns TRUE if a conversation exists with the designated server/topic names. This method may be unreliable if multiple conversations exist to the same target server/topic combination.

ConvNamesToHandle

FUNCTION ConvNamesToHandle(CONST AServerName,

 ATopicName : STRING;

 VAR AHandle : INTEGER) : BOOLEAN;

Used by client applications, this takes the pair of server/topic names and returns the equivalent Django conversation handle. The function returns TRUE if a conversation exists with the designated server/topic names. This method may be unreliable if multiple conversations exist to the same target server/topic combination.

CopyLinkToClipboard

FUNCTION CopyLinkToClipboard(CONST AServiceName,

 ATopicName,AnItemName : STRING;

 PushData : BOOLEAN) : BOOLEAN;

Used by server applications, this creates a special custom ‘link’ clipboard data format entry on the clipboard. This link format allows other client applications to read the data and have sufficient information to start a DDEML conversation. If ‘PushData’ parameter is set to TRUE then the data related the server/topic/item is also pushed onto the clipboard.

Create

CONSTRUCTOR Create(AOwner : TComponent); OVERRIDE;

The standard constructor method. It calls the inherited Create method and then calls the protected method ‘InitDataMembers’.

DeleteAllSysShares

PROCEDURE DeleteAllSysShares

For server applications only, this method deletes any Network DDE definitions stored on the PC. It physically removes these defintions from the related registry or system INI file. There is no recovery from the use of this method. This method does NOT affect Django’s own memory based list of share definitions.

DeleteSysShare

PROCEDURE DeleteSysShare(CONST AShareName : STRING)

For server applications only, this method deletes a specified share name from the PC. It physically removes the defintion from the related registry or system INI file. There is no recovery from the use of this method. This method does NOT affect Django’s own memory based list of share definitions.

Destroy

DESTRUCTOR Destroy; OVERRIDE;

The standard destructor method. It first calls the protected method ‘DisposeDataMembers’ then the inherited Destroy method.

EnableCallBack

PROCEDURE EnableCallBack(OnOff : BOOLEAN);

All underlying DDEML operations use a call back procedure to capture DDEML messages. By default and with the ‘AutoInit’ property set to TRUE Django will automatically establish this callback. In certain situations this callback can be de-activated. This method allows the call back to be set on or off. If set to off the application will not receive any DDEML messages until such time that it re-enabled.

EnableCmd

PROCEDURE EnableCmd(CONST ACmdTitle : STRING; ACmdEnabled : BOOLEAN);

This updates the active status of a designated command. A disabled command cannot be called by client applications

EnableConvCallback

PROCEDURE EnableConvCallback(CONST AConvArgs : ARRAY OF CONST;

 OnOff : BOOLEAN);

Used by both client and server applications, this method will either enable or disable the call back for a designated conversation. If a conversation’s call back is disabled it will not receive or be able to send any messages to other applications. In certain extreme situations this method provides a mechanism for server application’s to ignore any client activity.

EnableService

PROCEDURE EnableService(CONST AService : STRING; OnOff : BOOLEAN);

This method allows a pre-defined service to be enabled or disabled. Django DDEML services can start as inactive. Inactive services are not registered and are thus not visible to client applications.

EndAllConvs

PROCEDURE EndAllConvs;

This will terminate all open conversations.

EndConv

FUNCTION EndConv(CONST AConvArgs : ARRAY OF CONST) : BOOLEAN;

This will terminate a conversation. It will return TRUE if the ‘AConvArgs’ parameter set is valid and that a conversation was terminated.

ExcludeCmdFromService

PROCEDURE ExcludeCmdFromService(CONST AServiceName,ACmdName : STRING);

Sets the command ‘ACmdName’ into the list of commands which the service ‘AServiceName’ does not support.

Execute

FUNCTION Execute(CONST AConvArgs : ARRAY OF CONST;

 CONST AnExeCmd : ARRAY OF CONST) : BOOLEAN;

Used by client applications, this method is used to send a one or more execute commands to the designated server. The methods returns TRUE if all commands were completed successfully.

FindUserHandle

FUNCTION FindUserHandle(AValue : LONGINT;

 VAR ALevel : INTEGER;

 VAR AServerName,

 ATopicName,AnItemName : STRING) : BOOLEAN;

Returns TRUE if it can find a Django data structure that holds the input parameter ‘AValue’ user handle. The function returns the location of the user handle in the ‘AServerName’, ‘ATopicName’ and ‘AnItemName’ output variables. It also sets the ‘ALevel’ result according to the location at which the user handle was found …

· If the handle was found at a conversation level the ‘ALevel’ parameter would return a ‘0’ result.

· If the handle was found at a topic level the ‘ALevel’ parameter would return a ‘1’ result.

· If the handle was found at an item level the ‘ALevel’ parameter would return a ‘2’ result.

The string output parameters are only set to the level to which they are relevant. So if ‘ALevel’ returns a result of ‘1’ then only the ‘AServerName’ and ‘ATopicName’ parameters are set.

FirstAvailableServer

FUNCTION FirstAvailableServer(VAR AServerName : STRING) : BOOLEAN;

Used by client applications, this method is part of a ‘First’/Next’ method process for retrieving a list of available servers. The function returns FALSE if no servers are available. It returns TRUE if at least one server is available. The server name is returned in the output parameter ‘AServerName’. To minimise repeat processing Django buffers these First/Next method calls internally. To ensure a fresh search for servers the client application should first call the related method ‘ClearServerAvailableList’.

FirstServerFormat

FUNCTION FirstServerFormat(CONST AnExeName,AServerName : STRING;

 VAR AFormatName : STRING) : BOOLEAN;

Used by client applications, this method is part of a ‘First’/Next’ method process for retrieving a list of data formats supported by a specific server. The function returns FALSE if no servers are available.

The ‘AnExeName’ parameter is used to hold the DOS path address of the related server application. The method will review the list of running tasks to see if the task is already running. If it is not found the process will attempt to start the application. This parameter can be set a ‘’ nil string.

The method returns the format name as a text variable. The text variable equates to the TDDEMLClipFmtType type with the ‘cf’ prefix removed. Thus, ‘cfText’ is returned as ‘TEXT’.

The general function ‘TextToClipFormat’ can be used to translate a text entry back to a TDDEMLClipFmtType variable.

To minimise repeat processing Django buffers these First/Next method calls internally. To ensure a fresh search the client application should first call the related method ‘ClearServerFormatList’.

FirstServerSysItem

FUNCTION FirstServerSysItem(CONST AnExeName,AServerName : STRING;

 VAR AnItemName : STRING) : BOOLEAN;

Used by client applications, this method returns the first item name of items supported by the server’s SYSTEM topic. The function will return TRUE if at least one item is supported. The function returns FALSE if :

· no servers are available, or

· the server was not found and the ‘AnExeName’ application could not be launched, or

· The server does not support this type of enquiry.

This method is used in association with the ‘NextServerSysItem’ method.

FirstServerTopic

FUNCTION FirstServerTopic(CONST AnExeName,AServerName : STRING;

 VAR ATopicName : STRING) : BOOLEAN;

Used by client applications, this method is part of a ‘First’/Next’ method process for retrieving a list of topics supported by a specific server. The function returns FALSE if

· no servers are available, or

· no topics are available, or

· the server was not found and the ‘AnExeName’ application could not be launched.

The ‘AnExeName’ parameter is used to hold the DOS path address of the related server application. The method will review the list of running tasks to see if the task is already running. If it is not found the process will attempt to start the application. This parameter can be set a ‘’ nil string.

If found the method returns the first topic name in the output parameter ‘ATopicName’

To minimise repeat processing Django buffers these First/Next method calls internally. To ensure a fresh search the client application should first call the related method ‘ClearServerTopicList’.

FirstServerTopicFormat

FUNCTION FirstServerTopicFormat(CONST AnExeName,

 AServerName,ATopicName : STRING;

 VAR AFormatName : STRING) : BOOLEAN;

Used by client applications, this method is similar to ‘FirstServerFormat’, except that it returns the first supported data format for a specified server/topic.

FirstServerTopicItem

FUNCTION FirstServerTopicItem(CONST AnExeName,

 AServerName,ATopicName : STRING;

 VAR AnItemName : STRING) : BOOLEAN;

Used by client applications, this method returns the first item name of items supported by the server/topic name combination. The function will return TRUE if at least one item is supported. The function returns FALSE if :

· no servers are available, or

· the server was not found and the ‘AnExeName’ application could not be launched, or

· The ‘ATopicName’ was invalid, or

· The server does not support this type of enquiry.

This method is used in association with the ‘NextServerTopicItem’ method.

GetClientBitmap

FUNCTION GetClientBitmap(CONST AConvArgs : ARRAY OF CONST;

 AnItemName : STRING;

 ATransH : LONGINT;

 ABitmap : Graphics.TBitmap) : BOOLEAN;

Retrieves into the the bitmap class ‘ABItmap’ the data requested from the conversation identified by the ‘AConvArgs’ parameter. This function is used within the ‘OnRequestResponse’ event handler to retrieve data expected from arequest transaction sent to a server.

GetClientData

FUNCTION GetClientData(CONST AConvArgs : ARRAY OF CONST;

 AnItemName : STRING;

 ATransH : LONGINT;

 ABuffer : POINTER; ALen : LONGINT) : LONGINT;

Retrieves into the the buffer ‘ABuffer’ the data requested from the conversation identified by the ‘AConvArgs’ parameter. This function is used within the ‘OnRequestResponse’ event handler to retrieve data expected from arequest transaction sent to a server. The target buffer used must be instantiated before this method is called.

GetClientInt

FUNCTION GetClientInt(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 ATransH : LONGINT) : INTEGER;

Returns the integer data requested from the conversation identified by the ‘AConvArgs’ parameter. This function is used within the ‘OnRequestResponse’ event handler to retrieve data expected from a request transaction sent to a server.

GetClientMetaFile

FUNCTION GetClientMetaFile(CONST AConvArgs : ARRAY OF CONST;

 AnItemName : STRING;

 ATransH : LONGINT;

 AMetaFile : Graphics.TMetaFile) : BOOLEAN;

Retrieves into the the metafile class ‘AMetafile’ the data requested from the conversation identified by the ‘AConvArgs’ parameter. This function is used within the ‘OnRequestResponse’ event handler to retrieve data expected from arequest transaction sent to a server.

GetClientNumber

FUNCTION GetClientNumber(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 ATransH : LONGINT) : DOUBLE;

Returns the double data requested from the conversation identified by the ‘AConvArgs’ parameter. This function is used within the ‘OnRequestResponse’ event handler to retrieve data expected from a request transaction sent to a server.

GetClientText

FUNCTION GetClientText(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 ATransH : LONGINT) : STRING;

Returns the text string data requested from the conversation identified by the ‘AConvArgs’ parameter. This function is used within the ‘OnRequestResponse’ event handler to retrieve data expected from a request transaction sent to a server. Care should be taken in using this method against long text strings. The ‘OnRequestReponse’ event includes a ‘ADataLen’ parameter that indicates the length of the data in bytes. If this exceeds 255 then use a PChar to store the data, retrieving it with the ‘GetClientData’ method.

GetCmdParamCount

FUNCTION GetCmdParamCount(CONST ACmdName : STRING) : INTEGER;

Returns the number of parameters (including optional) associated with the command.

GetCmdParamType

FUNCTION GetCmdParamType(CONST ACmdName : STRING; Idx : INTEGER) : INTEGER;

Returns the type of variable associated with the ‘Idx’ th parameter (base 0) of the nominated command. The value returned equates to one of the ‘vt_XXX’ tytpe parameters defined in the DELPHI ‘system’ unit

 vtInteger = 0;

 vtBoolean = 1;

 vtChar = 2;

 vtExtended = 3;

 vtString = 4;

 vtPointer = 5;

 vtPChar = 6;

 vtObject = 7;

 vtClass = 8;

The function returns a value of ‘-1’ if the Idx value is outside the range of valid parameters.

GetConvComm

FUNCTION GetConvComm(CONST AConvArgs : ARRAY OF CONST) : TDDEMLCommType;

Returns the default transaction communication type (either synchronous or asynchronous) for the designated conversation.

GetConvTimeOut

FUNCTION GetConvTimeOut(CONST AConvArgs : ARRAY OF CONST) : DOUBLE;

Returns the default transaction time out period (in seconds) for the designated conversation.

GetConvUseBusy

FUNCTION GetConvUseBusy(CONST AConvArgs : ARRAY OF CONST) : BOOLEAN;;

Returns a boolean indicating the conversation level use of a busy flag to control client xtyp_advdata re-entract transaction processing. See the ‘SetConvUseBusy’ method for further information.

GetServiceItemBitmap

FUNCTION GetServiceItemBitmap(CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 ABitmap : Graphics.TBitmap) : BOOLEAN;

Used by server applications this method is used to return the bitmap data associated with a particular service/topic/item into the parameter ‘ABitmap’. The latter must be a valid instance of Tbitmap created prior to calling this method. The function will return TRUE if the item has data and its is of a bitmap format.

For server applications a Poke transaction will have the data associated with that poke set into an internal buffer used by Django. This method can be used to access that buffer.

GetServiceItemData

FUNCTION GetServiceItemData(CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 ABuffer : POINTER; ALen : LONGINT) : LONGINT;

Used by server applications this method is used to return a designated data type into an open buffer declared in the variable ‘ABuffer’ . This buffer must be created prior to calling this method. The process will copy up to the number of bytes specified in the parameter ‘ALen’. The function returns the actual number of bytes copied - zero if the item does not exist.

For server applications a Poke transaction will have the data associated with that poke set into an internal buffer used by Django. This method can be used to access that buffer.

GetServiceItemDataFormat

FUNCTION GetServiceItemDataFormat(CONST AServiceName,

 ATopicName,

 AnItemName : STRING) : TDDEMLClipFmtType;

Used by server applications, this method returns the data format of the data stored for a designated item.

GetServiceItemDataLen

FUNCTION GetServiceItemDataLen(CONST AServiceName,

 ATopicName,AnItemName : STRING) : LONGINT;

Used by server applications, this method returns the length in bytes of any data stored against a designated item (or zero if the item does not exist or has no data).

GetServiceItemInt

FUNCTION GetServiceItemInt(CONST AServiceName,

 ATopicName,AnItemName : STRING) : INTEGER;

Used by both client and server applications, this method returns the designated item’s data as an integer result.

GetServiceItemMetaFile

FUNCTION GetServiceItemMetaFile(CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 AMetaFile : Graphics.TMetaFile) : BOOLEAN;

Used by both client and server applications, this method moves the designated item’s data into a Meta data class instance. The parameter ‘AMetaFile’ must be a valid instance of TMetaFile created prior to calling this method. The function will return TRUE if the item has data and its is of a meta file format.

GetServiceItemNumber

FUNCTION GetServiceItemNumber(CONST AServiceName,

 ATopicName,AnItemName : STRING) : DOUBLE;

Used by both client and server applications, this method returns the designated item’s data as an DOUBLE type result.

GetServiceItemText

FUNCTION GetServiceItemText(CONST AServiceName,

 ATopicName,AnItemName : STRING) : STRING;

Used by both client and server applications, this method returns the designated item’s data as an STRING type result. (or as an NIL ‘’ string if the item does not exist or the data is not of a text type).

HasConv

FUNCTION HasConv(CONST AConvArgs : ARRAY OF CONST) : BOOLEAN;

Returns TRUE if a conversation using the ‘AConvArgs’ identifiers exists.

HasConvItemUserHandle

FUNCTION HasConvItemUserHandle(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 VAR AValue : LONGINT) : BOOLEAN;

Used to retrieve a previously defined user handle from a nominated topic/item combination. The function returns TRUE if the topic/item combination exists, irrespective of the user handle value.

HasConvUserHandle

FUNCTION HasConvUserHandle(CONST AConvArgs : ARRAY OF CONST; VAR AValue : LONGINT) : BOOLEAN;

Returns TRUE if the designated conversation has a user defined data handle.

HasService

FUNCTION HasService(CONST AServiceName : STRING) : BOOLEAN;

Used by server applications, it returns TRUE if the Django component includes a service of that name.

InitDDEML

FUNCTION InitDDEML : BOOLEAN;

This initiates the application’s use of the underlying DDEML API. If the ‘AutoInit’ property is set to TRUE then Django will automatically run this method for the application. If ‘AutoInit’ is set to FALSE then this method must be called specially by the application.

If a Django component has no pre-defined service names it will use by default the name part of the owning application (e.g. from MYAPP.EXE it would use ‘MYAPP’).

IsCallbackActive

FUNCTION IsCallbackActive : BOOLEAN;

Returns TRUE of the underlying DDEML call back is currently active.

IsConvCallbackActive

FUNCTION IsConvCallbackActive(CONST AConvArgs : ARRAY OF CONST) : BOOLEAN;

Returns TRUE if the designated conversation call back is enabled.

IsServerExeRunning

FUNCTION IsServerExeRunning(CONST AnExeName : STRING) : BOOLEAN;

Returns TRUE if the application specified in the input parameter ‘AnExeName’ is already running. ‘AnExeName’ can be either the full application DOS path address (e.g. ‘C:\MSOFFICE\EXCEL\EXCEL.EXE’) or just the application EXE name (e.g. ‘EXCEL.EXE’).

IsServiceBusy

FUNCTION IsServiceBusy(CONST AServiceName : STRING) : BOOLEAN;

Used by client applications to test whether a server application service is busy. A busy server is one which is unlikely to be able to respond immediately to a new client initiated transaction.

IsSystemTopic

FUNCTION IsSystemTopic(CONST ATopicName : STRING) : BOOLEAN;

Returns TRUE of the ‘ATopicName’ name is the same as the ‘SYSTEM’ topic.

LoadAllSysSharesToMem

FUNCTION LoadAllSysSharesToMem : INTEGER;

Used by server applications, this method will replace the Django memory based share class list with a list of shares as currently configured on the PC. The function returns the number of share definitions loaded.

LoadSysShareToMem

FUNCTION LoadSysShareToMem(CONST AShareName : STRING) : BOOLEAN;

Used by server applications, this method will load the share definition from the PC’s own share definition list and add it to Django’s own internal memory based list. If a share of this name already exists on Django’s own internal list then that instance will have its data member values reset to match the PC settings.

MemShareCount

FUNCTION MemShareCount : INTEGER

Used by server applications, this method returns the number of share definitions stored on Django’s own internal memory list.

MemShareExists

FUNCTION MemShareExists(AShareName : STRING) : BOOLEAN;

Used by server applications, this method returns TRUE if the name already exists on Django’s own internal memory list.

NetServerName

FUNCTION NetServerName(CONST AMachineName : STRING) : STRING;

Used by client applications, this method can be used to create the full syntax server name required to connect to a remote NetDDE server.

Any client trying to start a NetDDE conversation must use a special server name that includes the target Pc machine name. The syntax is ….

\\<MachineName>'\NDDE$

For example, if the target server has a machine name of ‘SnowServer’ the required NetDDE server name would be …

\\SnowServer\NDDE$

To help build such a syntax this function will return the full string, based upon the ‘machine name’ passed into it.

NextAvailableServer

FUNCTION NextAvailableServer(VAR AServerName : STRING) : BOOLEAN;

Used by client applications, this method is used in association with ‘FirstAvailableServer’ to return a list of available servers. It will return FALSE if the list of available servers has been exhausted.

NextServerFormat

FUNCTION NextServerFormat(CONST AServerName : STRING;

 VAR AFormatName : STRING) : BOOLEAN;

Used by client applications, this method is used in association with ‘FirstServerFormat’ to return a list of data formats supported by a nominated server. It will return FALSE if the list of formats has been exhausted.

NextServerSysItem

FUNCTION NextServerSysItem(CONST AServerName : STRING;

VAR AnItemName : STRING) : BOOLEAN;

Used by client applications, this method is used in association with ‘FirstServerSysItem’ to return a list of SYSTEM topic items supported by a nominated server. It will return FALSE if the list of items has been exhausted.

NextServerTopic

FUNCTION NextServerTopic(CONST AServerName : STRING;

 VAR ATopicName : STRING) : BOOLEAN;

Used by client applications, this method is used in association with ‘FirstServerTopic’ to return a list of topics supported by a nominated server. It will return FALSE if the list of topics has been exhausted.

NextServerTopicItem

FUNCTION NextServerTopicItem(CONST AServerName,ATopicName : STRING;

 VAR AnItemName : STRING) : BOOLEAN;

Used by client applications, this method is used in association with ‘FirstServerTopicItem’ to return a list of items supported by a nominated server/topic. It will return FALSE if the list of items has been exhausted.

NextServerTopicFormat

FUNCTION NextServerTopicFormat(CONST AServerName,ATopicName : STRING;

 VAR AFormatName : STRING) : BOOLEAN;

Used by client applications, this method is used in association with ‘FirstServerTopicFormat’ to return a list of data formats supported by a nominated server/topic. It will return FALSE if the list has been exhausted.

Poke

FUNCTION Poke(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 CONST ADataArgs : ARRAY OF CONST) : BOOLEAN;

Used by client applications, this method is used to poke text and numeric data into the server party to the conversation. The methods returns TRUE if poke is accepted by the server.

PokeBitmap

FUNCTION PokeBitmap(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 AFormat : TDDEMLClipFmtType;

 ABitmap : Graphics.TBitmap) : BOOLEAN;

Used by client applications, this method is used to poke bitmap data into the server party to the conversation. The methods returns TRUE if poke is accepted by the server. The ‘AFormat’ parameter can be set to either ‘cfBitmap’, or’cfDIB’.

PokeData

FUNCTION PokeData(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 AFormat : TDDEMLClipFmtType;

 AData : POINTER;

 ALen : LONGINT;

 OwnData : BOOLEAN) : BOOLEAN;

Used by client applications, this method is used to poke data of a non-standard type into the server party to the conversation. The methods returns TRUE if poke is accepted by the server. The ‘OwnData’ flag is used to indicate who assumes ownership of the ‘AData’ buffer. If set to TRUE Django will assume ownership and dispose the data buffer within its own processes.

PostAdvise

FUNCTION PostAdvise(CONST AServiceName,

 ATopicName,AnItemName : STRING) : BOOLEAN;

Used by server applications, this method notifies a client application that an item against which an advise loop is in place has a new data

RegisterService

FUNCTION RegisterService(CONST AServiceName : STRING; OnOff : BOOLEAN) : BOOLEAN;

Used by server applications to register a service. This will advise the underlying DDEML layer of the service and its name, making it available to other clients. When a service is enabled most other DDEML aware applications will receive a DDEML message notifying them of the event. Until this registration is made a Django service cannot be seen by other client applications. If the ‘AutoInit’ property is set to TRUE then all pre-defined (enabled) services are automatically registered by Django.

RemoveAllCmds

PROCEDURE RemoveAllCmds;

Removes all command definitions.

RemoveAllMemShares

FUNCTION RemoveAllMemShares

Used by server applications, this method removes all entries from Django own internal list. It does not affect the PC’s own configuration.

RemoveAllServiceCmdExclusions

PROCEDURE RemoveAllServiceCmdExclusions(CONST AServiceName : STRING);

Removes all commands from the nominated services excluded list, thus making all defined commands available to that service.

RemoveClientItem

FUNCTION RemoveClientItem(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING) : BOOLEAN;

For client applications, this method can be used to remove an item from a conversation. The function will return TRUE if it succeeded. An item can only be deleted if there are no transactions remaining to be completed.

RemoveCmds

PROCEDURE RemoveCmd(CONST ACmdName : STRING);

Removes a command from the list of supported commands

RemoveMemShare

FUNCTION RemoveMemShare(CONST AShareName : STRING) : BOOLEAN;

Used by server applications, this method removes a share class from the Django internal list. It does not remove the share from the PC’s own configuration.

RemoveService

PROCEDURE RemoveService(CONST AServiceName : STRING);

Used by server applications, this removes a service from the list of services supported by that server.

RemoveServiceCmdExclusion

PROCEDURE RemoveServiceCmdExclusion(CONST AServiceName,ACmdName : STRING);

Removes the command ‘ACmdName’ from the list of commands not supported by the nominated service, making it available to that service.

RemoveServiceItem

FUNCTION RemoveServiceItem(CONST AServiceName,ATopicName,AnItemName : STRING) : BOOLEAN;

Used by both client and server applications, this method removes an item from the Django internal data buffers.

Request

FUNCTION Request(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING) : BOOLEAN;

Used by client applications, this method is used to request data from an item supported by the conversation’s target server/topic. The methods returns TRUE if request is accepted by the server. The ‘OnRequestResponse’ event is used by the client application to pass back the results of the request transaction.

RestartConv

FUNCTION RestartConv(CONST AServerName,ATopicName : STRING) : BOOLEAN;

Used by client applications, this method attempts to restart a terminated conversation. It returns TRUE if the conversation has been re-established. Note: both the Django and DDEML API handles will be different for the restarted conversation.

SaveAllMemSharesToSys

PROCEDURE SaveAllMemSharesToSys;

Used by server applications, this method will write the Django list of in memory share definitions to the PC’s own permanent list of share configurations.

SaveMemShareToSys

FUNCTION SaveMemShareToSys(CONST AShareName : STRING) : BOOLEAN;

Used by server applications, this method will write the a share maintained on Django’s own internal list to the PC’s own permanent list of share configurations. The function returns TRUE if the share both exists on the Django list and can was successfully written to the PC configuration.

ScopeIncludesClient

FUNCTION ScopeIncludesClient : BOOLEAN;

Returns TRUE if the Django component is defined to support DDE client functionality.

ScopeIncludesNetworkServer

FUNCTION ScopeIncludesNetworkServer : BOOLEAN;

Returns TRUE if the Django component is both a server and is defined to support Network DDE.

ScopeIncludesServer

FUNCTION ScopeIncludesServer : BOOLEAN;

Returns TRUE if the Django component is defined to support DDE server functionality.

ServerBusy

FUNCTION ServerBusy(CONST AnExeName,AServerName : STRING) : BOOLEAN;

Used by client applications, this method tests to see if a nominated server is currently busy.

ServerExists

FUNCTION ServerExists(CONST AnExeName,AServerName : STRING) : BOOLEAN;

Used by client applications, this method tests to see if a nominated server exists. If not found it will attempt to launch the application specified in the parameter ‘AnExeName’ (this parameter can be set to a ‘’ NIL string).

ServerFormatCount

FUNCTION ServerFormatCount(CONST AnExeName,AServerName : STRING) : INTEGER;

Used by client applications, this method returns a count on the data formats supported by a particular server. If the server is not found this method will attempt to launch the application specified in the parameter ‘AnExeName’ (this parameter can be set to a ‘’ NIL string).

ServerHelpMsg

FUNCTION ServerHelpMsg(CONST AnExeName,AServerName,ATopicName : STRING;

 ABuffer : PChar; ABufferLen : WORD) : WORD;

Used by client applications, this method returns the topic help message for a designated server/topic. If ther ‘ATopicName’ parameter is set to a ‘’ NIL string the method will assume it be a request for the SYSTEM topic. The resulting help message is output into the Pchar buffer parameter ‘ABuffer’. This buffer must be set up in advance of calling this method. The ‘ABufferLen’ parameter indicates buffers size. A help message larger than this will be truncated. If the server is not found this method will attempt to launch the application specified in the parameter ‘AnExeName’ (this parameter can be set to a ‘’ NIL string). The function returns as its result the length of any message returned by the server. Not all DDEML servers support this type of enquiry.

ServerReady

FUNCTION ServerReady(CONST AnExeName,AServerName : STRING) : BOOLEAN;

Used by client applications, this method tests to see if a nominated server is currently ready to accept new transactions. If the server is not found this method will attempt to launch the application specified in the parameter ‘AnExeName’ (this parameter can be set to a ‘’ NIL string).

ServerSysItemCount

FUNCTION ServerSysItemCount(CONST AnExeName,AServerName : STRING) : INTEGER;

Used by client applications, this method returns a count of the number of items supported by the nominated server’s SYSTEM topic. If the server is not found this method will attempt to launch the application specified in the parameter ‘AnExeName’ (this parameter can be set to a ‘’ NIL string).

ServerTopicCount

FUNCTION ServerTopicCount(CONST AnExeName,AServerName : STRING) : INTEGER;

Used by client applications, this method returns a count of the number of topics supported by the nominated server. If the server is not found this method will attempt to launch the application specified in the parameter ‘AnExeName’ (this parameter can be set to a ‘’ NIL string).

ServerTopicItemCount

FUNCTION ServerTopicItemCount(CONST AnExeName,

 AServerName,ATopicName : STRING) : INTEGER;

Used by client applications, this method returns a count of the number of items supported by the nominated server/topic. If the server is not found this method will attempt to launch the application specified in the parameter ‘AnExeName’ (this parameter can be set to a ‘’ NIL string).

ServerTopicFormatCount

FUNCTION ServerTopicFormatCount(CONST AnExeName,

 AServerName,ATopicName : STRING) : INTEGER;

Used by client applications, this method returns a count of the number of data formats supported by the nominated server/topic. If the server is not found this method will attempt to launch the application specified in the parameter ‘AnExeName’ (this parameter can be set to a ‘’ NIL string).

ServiceCount

FUNCTION ServiceCount : INTEGER;

Used by server applications, this returns the number of pre-defined services.

ServiceConvCount

FUNCTION ServiceConvCount(CONST AServiceName : STRING) : WORD;

For server applications, this returns the number of active conversations for a specified service.

ServiceItemHasAdviseLink

FUNCTION ServiceItemHasAdviseLink(CONST AServiceName,

 ATopicName,AnItemName : STRING) : BOOLEAN;

Used by server applications, this returns TRUE if the item exists and the advise link type is either ‘warm’ or ‘hot’.

ServiceItemHasBinaryData

FUNCTION ServiceItemHasBinaryData(CONST AServiceName,

 ATopicName,AnItemName : STRING;

 VAR AFormat : TDDEMLClipFmtType) : BOOLEAN;

Used by server applications, this method returns TRUE if the Django internal data buffers has data stored against the nominated item and that data is NOT text or numeric data. If TRUE the output parameter ‘AFormat’ is set with the actual data format of the item

ServiceItemHasData

FUNCTION ServiceItemHasData(CONST AServiceName,ATopicName,AnItemName : STRING;

 VAR AFormat : TDDEMLClipFmtType) : BOOLEAN;

Used by server applications, this method returns TRUE if the Django internal data buffers has data stored against the nominated item. If TRUE the output parameter ‘AFormat’ is set with the actual data format of the item

ServiceItemHasTextData

FUNCTION ServiceItemHasTextData(CONST AServiceName,ATopicName,AnItemName : STRING) : BOOLEAN;

Used by server applications, this method returns TRUE if the Django internal data buffers have data stored against the nominated item and that data is either in text or numeric data.

ServiceTopicCount

FUNCTION ServiceTopicCount(CONST AServiceName : STRING) : WORD;

For server applications, this returns the number of topics in use for a specified service.

SetConvComm

PROCEDURE SetConvComm(CONST AConvArgs : ARRAY OF CONST; AComm : TDDEMLCommType);

Used by client applications, sets the communication type (synchronous/asynchonous) for all transactions initiated by the designated conversation.

SetConvFormat

PROCEDURE SetConvFormat(CONST AConvArgs : ARRAY OF CONST;

 AFormat : TDDEMLClipFmtType);

Used by client applications, sets the default data format for all transactions initiated by the designated conversation.

SetConvTimeOut

PROCEDURE SetConvTimeOut(CONST AConvArgs : ARRAY OF CONST; ASec : DOUBLE);

Used by client applications, sets the default time out period in seconds for all transactions initiated by the designated conversation.

SetConvUseBusy

PROCEDURE SetConvUseBusy(CONST AConvArgs : ARRAY OF CONST;

 OnOff : BOOLEAN);

Used by client applications, this sets a conversation level default to control how Django controls re-entrant processing of warm/hot link advise notices (the ‘xtyp_advdata’ transaction).

When a client application starts an advise link (either warm or hot), the server will send it an ‘advise data’ transaction each time the server item’ s data value changes.

With the ‘OnOff’ parameter set to TRUE a client application will use an internal marker to denote the receipt of an advise data transaction. This marker remains in place until the advise data transaction processing is completed. If a subsequent advise transaction is received before the first advise advise transaction has completed then the client will not process the transaction and will return a ‘busy’ result back to the server . This process is useful in controling large volumes of advise notices sent by a server over a short elapsed time frame.

If the ‘OnOff’ parameter is set to FALSE then no such controls are made and the client application will attempt to procses all advise data transactions.

SetConvItemUserHandle

FUNCTION SetConvItemUserHandle(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 AValue : LONGINT) : BOOLEAN;

This method stores a user defined value against the nominated topic/item name combination. The function returns TRUE if the topic/item already combination exists. If the function returns FALSE then no handle is stored. The ‘AValue’ parameter is simply stored against an equivalent variable within Django.

It is perfectly valid for the user to typecast a pointer or object instance variable into a longint and store this against the topic/item. Note, however, Django will not perform any form of object freeing or memory disposal. As far as Django is concerned its just another LONGINT value.

SetConvUserHandle

PROCEDURE SetConvUserHandle(CONST AConvArgs : ARRAY OF CONST;

 AValue : LONGINT);

Used by client applications, sets a user defined data handle into the designated conversation.

SetServiceHelpMsg

PROCEDURE SetServiceHelpMsg(CONST AServiceName : STRING; CONST Args : ARRAY OF CONST);

Used by server applications, this method sets the server’s SYSTEM topic help message into the Django component internal data buffer. It is normally used as part of the processing expected of the ‘OnSysHelpRequest’ event. It can alos be used separately in advance of any data request. The ‘Args’ parameter can be any set of data types. If the ‘Args’ parameter list includes only one entry and that entry is an INTEGER type then the method assumes this to be a string resource Id, and will attempt to load the text from the application’s string table.

SetServiceItemBitmap

PROCEDURE SetServiceItemBitmap(CONST AServiceName,

 ATopicName,AnItemName : STRING;

 AFormat : TDDEMLClipFmtType;

 ABitMap : Graphics.TBitmap);

Used by server applications, this method allows bitmap data to be set into the Django internal data buffers against the nominated server/topic/item. The ‘AFormat’ parameter can be either ‘cfBitmap’, or ‘cfDIB’.

SetServiceItemData

PROCEDURE SetServiceItemData(CONST AServiceName,

 ATopicName,AnItemName : STRING;

 AFormat : TDDEMLClipFmtType;

 ABuffer : POINTER;

 ALen : LONGINT;

 OwnData : BOOLEAN);

Used by server applications, this method allows data of a non-standard type to be set into the Django internal data buffers against the nominated server/topic/item. The ‘OwnData’ parameter is used to deterjine which process takes ownership of the ‘ABuffer’ data pointer. If TRUE, Django will assume ownership of the data and dispose of it as part of its own internal data management process.

SetServiceItemInt

PROCEDURE SetServiceItemInt(CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 AValue : LONGINT);

Used by server applications, this method allows a INTEGER type value to be set into the Django internal data buffers against the nominated server/topic/item.

SetServiceItemMetaFile

PROCEDURE SetServiceItemMetaFile(CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 AMetaFile : Graphics.TMetaFile);

Used by server applications, this method allows metafile data to be set into the Django internal data buffers against the nominated server/topic/item.

SetServiceItemNumber

PROCEDURE SetServiceItemNumber(CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 AValue : DOUBLE);

Used by server applications, this method allows a DOUBLE type value to be set into the Django internal data buffers against the nominated server/topic/item.

SetServiceItemStrId

PROCEDURE SetServiceItemStrId(CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 AStrId : INTEGER);

Used by server applications, this method allows a string as specified by the identifier ‘AStrId’ to be read from the application’s string resource table and set into the Django internal data buffers against the nominated server/topic/item.

SetServiceItemText

PROCEDURE SetServiceItemText(CONST AServiceName,ATopicName,AnItemName,AValue : STRING);

Used by server applications, this method allows a STRING type value to be set into the Django internal data buffers against the nominated server/topic/item.

SetServiceItemValue

PROCEDURE SetServiceItemValue(CONST AServiceName,

 ATopicName,AnItemName : STRING;

 CONST Args : ARRAY OF CONST);

Used by server applications, this method allows an open ended array of data types to be set into the Django internal data buffers against the nominated server/topic/item. The array of data types is converted and stored as a string.

SetServiceStatus

PROCEDURE SetServiceStatus(CONST AServiceName : STRING; IsBusy : BOOLEAN);

For server applications, this allows a server to be a service as being busy. If a server application expects a particular operation to take a protracted time it should before starting that operation call ‘SetServiceStatus’ as busy and then at the end of the operation reset the service status to FALSE.

StartAdvise

FUNCTION StartAdvise(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING;

 AHotLink: BOOLEAN;

 AcknowledgeReq : BOOLEAN) : BOOLEAN;

Used by client applications, this method is used to start an advise loop against an item supported by conversation’s target server/topic. An advise loop sets up a call back process, where by if the server application’s data changes the client application receives a notification. If ‘AHotLink’ is set to TRUE a hot advise link to created, if set to FALSE a warm advise link is created. If ‘AcknowledgeReq’ is TRUE the server will wait until an ‘ack’ type transaction is received before sending the next data change. Use of the ‘ack’ process stops the server from flooding the client with too many irrelevant data change notifications.

StartClipboardPasteLinkConv

FUNCTION StartClipboardPasteLinkConv(VAR AServerName,

 ATopicName,

 AnItemName : STRING;

 VAR AHandle : INTEGER) : BOOLEAN;

Used by client applications, this method returns TRUE if the clipboard contains a ‘link’ type clipboard entry and that a conversation has been established to the source of the link entry.

Link type entries are placed by DDEML servers. They contain information on the server,topic and item that created the clipboard entry.

If TRUE the method sets the server name, topic name and item name into the output parameters and sets the newly created conversation handle into the output parameter ‘AHandle’

StartConv

FUNCTION StartConv(CONST AnExeName,

 AServerName, ATopicName : STRING;

 VAR AHandle : INTEGER) : BOOLEAN;

Used by client applications to start a DDEML conversation with the ‘AServerName’ and ‘ATopicName’ combination. If the nominated server is not running, the method will attempt tom launch the application specified in he parameter ‘AnExeName’ (this parameter can be a ‘’ NIL string). The function returns TRUE if the conversation was started. If TRUE it returns the Django conversation handle in the output parameter ‘AHandle’.

StartConvWithAny

FUNCTION StartConvWithAny(ATopicName : STRING) : INTEGER;

Used by client applications to start wild connect links to any available servers. The method will attempt to start conversations with all servers that support the declared ‘ATopicName’ topic name This last parameter can be a NIL ‘’ string, in which case the wild connect process will attempt to connect to all servers and all there topics. How this process is received depends entirely on how a DDEML server is programmed to react. A lot of servers do not respond to wild connect calls, or at least only return a ‘SYSTEM’ topic connection.

The function will return the number of conversations started by this process.

StopAdvise

FUNCTION StopAdvise(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING) : BOOLEAN;

Used by client applications, this method cancels an active advise loop.

SysShareCount

FUNCTION SysShareCount : INTEGER;

For server applications, returns the number of NetDDE shares configured for the PC. This may be different to the number held on Django’s own internal list.

SysShareExists

FUNCTION SysShareExists(AName : STRING) : BOOLEAN

For server applications, returns TRUE if a share definition with a name of ‘AName’ already exists on the PC.

TerminateDDEML

FUNCTION TerminateDDEML : BOOLEAN;

This terminates an application’s use of the underlying DDEML API. It is automatically called by Django whenever a Django component is about to be disposed.

TopicConvCount

FUNCTION TopicConvCount(CONST AServiceName,ATopicName : STRING) : WORD;

Used by server applications, this method returns a count of the number of active conversations associated with the nominated service/topic.

TransCount

FUNCTION TransCount(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING) : INTEGER;

Used by client applications, this method returns the number of open transactions associated with a particular item against the designated conversation

TransHandle

FUNCTION TransHandle(CONST AConvArgs : ARRAY OF CONST;

 CONST AnItemName : STRING; Idx : INTEGER) : LONGINT;

Used by client applications, this method returns the transaction handle of the ‘Idx’ open transactions associated with a particular item against the designated conversation

TDDEMLManager Properties

About

PROPERTY About : TAboutInfo

A design time only property that is used to display the version number of the Django component.

AllowNullPokes

PROPERTY AllowNullPokes : BOOLEAN

Used by client applications, this property is used to control whether a ‘Poke’ transaction will accept NULL data (ie. a ‘NIL’ pointer or a zero length string). If set to TRUE a POKE will proceed with NULL data. If set to FALSE the same POKE transaction will abort with a ‘nil data’ type error. By default the property is set to FALSE.

AllowNullService

PROPERTY AllowNullService : BOOLEAN

Used by server applications, this property helps shape how the server responds to Wild connect requests. If set to TRUE then the server application will process wild connect calls that include a null service name. If set to FALSE the server will automatically reject wild connect calls that include a null service name.

AllowNullTopic

PROPERTY AllowNullTopic : BOOLEAN

Used by server applications, this property helps shape how the server responds to Wild connect requests. If set to TRUE then the server application will process wild connect calls that include a null topic name. If set to FALSE the server will automatically reject wild connect calls that include a null topic name. If both AllowNullService’ and ‘AllowNullTopic’ are set to FALSE then the Django component will not respond to any wild connect calls.

AutoInit

PROPERTY AutoInit : BOOLEAN

If set to TRUE the Django component will automatically initialise itself with the underlying DDEML API layer. If this property is set to FALSE, then no DDEML functionality will work until an ‘InitDDEML’ method call is made.

CmdFirstCh

PROPERTY CmdFirstCh : CHAR

Used by server applications, this property defines the starting character of a command string. It is used in conjunction with the ‘CmdLastCh’ property to identify the text range of a command. Normally the start and end characters are set to ‘[‘ and ‘]’. Thus a command string sent by a client application in the form ‘[CLEAR]’ will extracted and processed as the ‘CLEAR’ command.

CmdLastCh

PROPERTY CmdLastCh : CHAR

Used by server applications, this property defines the last character of a command string. It is used in conjunction with the ‘CmdFirstCh’ property to identify the text range of a command. Normally the start and end characters are set to ‘[‘ and ‘]’. Thus a command string sent by a client application in the form ‘[CLEAR]’ will extracted and processed as the ‘CLEAR’ command.

CmdParamFirstCh

PROPERTY CmdParamFirstCh : CHAR

Used by server applications, this property defines the first character of a command parameter string. It is used in conjunction with the ‘CmdParamLastCh’ property to identify the text range of a command parameter set. Normally the start and end parameter characters are set to ‘(‘ and ‘)’. Thus a command and parameter string sent by a client application in the form ‘[CLEAR(10,8)]’ will extracted and processed with a parameter set of ‘10,8’.

CmdParamLastCh

PROPERTY CmdParamLastCh : CHAR

Used by server applications, this property defines the last character of a command parameter string. It is used in conjunction with the ‘CmdParamFirstCh’ property to identify the text range of a command parameter set. Normally the start and end parameter characters are set to ‘(‘ and ‘)’. Thus a command and parameter string sent by a client application in the form ‘[CLEAR(10,8)]’ will extracted and processed with a parameter set of ‘10,8’.

CmdParamSep

PROPERTY CmdParamSep : CHAR

Used by server applications, this property defines the delimiter character used to separate parameters in a command parameter string. It is used in conjunction with the ‘CmdParamFirstCh’ and ‘CmdParamLastCh’ properties to identify individual parameters. Normally the parameter delimiter is set a ‘,’ comma character. Thus a command and parameter string sent by a client application in the form ‘[CLEAR(10,8)]’ will extracted and processed as two parameters of ‘10’ and ‘8’.

ConvServerNames

PROPERTY ConvServerNames[Idx : INTEGER] : STRING

Used by client applications, this property is an array of the server names that relate to the current conversation list. The array address is zero based.

ConvTopicNames

PROPERTY ConvTopicNames[Idx : INTEGER] : STRING

Used by client applications, this property is an array of the topic names that relate to the current conversation list. The array address is zero based.

DebugFileName

PROPERTY DebugFileName : STRING

Where the ‘DebugState’ property is set to ‘dbFile’ all debug output to the file name stored in this property. At the start of each session the process checks to see if a file of the same name already exists. If it does then the existing file is renamed using an new extension of ‘001’. If a file of that extension already exists, then the next available extension number is used.

DebugState

PROPERTY DebugState : TDDEMLDebugType

Django provides a special debug facility to help trace procedural issues within DDEML. This property holds the state of that debug facility. There are three settings :

· dbNone. No Django procedural debug output is created.

· dbForm. All Django debug output is sent to a special on screen form used by Django to display the running debug information.

· dbFile All Django debug output is output to the file name specified in the ‘DebugFile’ property.

DebugStayOnTop

PROPERTY DebugStayOnTop : BOOLEAN

If the Debugstate property is set to ‘dbForm’ , and this property is set to TRUE then the debug form will be assigned on a ‘stay on top’ form behaviour.

DefaultClipFmt

PROPERTY DefaultClipFmt : TDDEMLClipFmtType

This property holds the default data format that is applied to all new conversations.

DefaultComm

PROPERTY DefaultComm : TDDEMLCommType

This property holds the default data communication type (synchronous or asynchronous) that is applied to all new conversations.

DefaultTimeOut

PROPERTY DefaultTimeOut : DOUBLE

This property holds the default time out period in seconds that is applied to all new conversations.

DefaultUseBusy

PROPERTY DefaultUseBusy : BOOLEAN

Used by client applications, this sets the default method by which Django controls re-entrant processing of warm/hot link advise notices (the ‘xtyp_advdata’ transaction).

When a client application starts an advise link (either warm or hot), the server will send it an ‘advise data’ transaction each time the server item’ s data value changes.

With ‘DefaultUseBusy’ set to TRUE a client application will use an internal marker to denote the receipt of an advise data transaction. This marker remains in place until the advise data transaction processing is completed. If a subsequent advise transaction is received before the first advise advise transaction has completed then the client will not process the transaction and will return a ‘busy’ result back to the server . This process is useful in controling large volumes of advise notices sent by a server over a short elapsed time frame.

If the ‘DefaultUseBusy’ set to FALSE then no such controls are made and the client application will attempt to procses all advise data transactions.

This value can be overriden at the conversation level using the ‘SetConvUseBusy’ method.

ExecCmds

PROPERTY ExecCmds : TDDEMLCmdsList

Used by server applications, this is a design time only property used to store a server’s exec command strings.

ExeNameAsService

PROPERTY ExeNameAsService : BOOLEAN;

This property determines whether a Django DDEML server uses the application’s EXE name as the default service. Where an application is defined a a DDEML server, and the Django component has no service names defined in the ‘ServiceNames’ property then normally Django would assign the EXE name as the default service. This default behaviour is only applied if this property is set to TRUE. If it is set to FALSE then no default service is used. (The property is TRUE by default).

FailOptions

PROPERTY FailOptions : TDDEMLFailTypeSet

This property represents a set of low level flags that determine the range of options that the underlying DDEML layer will inform the application about, or restrict the application from performing.

· cbf_Fail_SelfConnections. If set to TRUE this will prevent the application from starting a conversation with itself.

· cbf_Fail_Connections. If set to TRUE stops the application from receiving any connect or wild connect messages.

· cbf_Fail_Advises. If set to TRUE this stops the application from receiving any advise loop type transactions.

· cbf_Fail_Executes. If set to TRUE this stops the application from receiving any execute command type transactions.

· cbf_Fail_Pokes. If set to TRUE this stops the application from receiving any poke type transactions.

· cbf_Fail_Requests. If set to TRUE this stops the application from receiving any request type transactions.

· cbf_Fail_AllSvrXActions. If set to TRUE this stops the application from receiving any transactions sent by a server.

This property must be set at design time. Any run time changes will have no impact upon the application

Inst

PROPERTY Inst : LONGINT (read only)

The instance handle returned by the DDEML API that identifies the application’s own hook into the underlying DDEML API. This handle is set when the application and Django initialises its use of the underlying DDEML layer. This handle should only be used if an application requires direct access to a DDEML API function.

InstActive

PROPERTY InstActive : BOOLEAN

Returns TRUE if the application Inst handle has been initialised.

NetworkDDE

PROPERTY NetworkDDE : BOOLEAN

Used by server applications, this boolean property is used to turn on or off a server’s support for Network DDE functionality. If set to TRUE it will allow Network DDE conversations, if set to FALSE any such attempts at starting a conversation will be rejected. This property can only be set at design time.

NodeName

PROPERTY NodeName : STRING

Returns the ‘machine name’ of the PC, as used by client applications to connect to remote NetDDE servers. This is equivalent of the work station name defined in the ‘Control Panel/Network’ definition utility.

OneConvPerTopic

PROPERTY OneConvPerTopic : BOOLEAN

Used by server applications, this boolean property is used to test whether multiple conversations are allowed against the same server/topic pair. If set to TRUE only one conversation is permitted against a designated server/topic combination.

Scope

PROPERTY Scope : TDDEMLScopeType

Sets the type of DDEML functionality that the component will support. The options are ..

ddeNone

No DDEML functions will be active or work

ddeClientOnly

Provide DDEML client only functionality

DdeServerOnly

Provide DDEML server only functionality

ddeClientAndServer
Provide DDEML client and server functionality

This property must be set at design time. It cannot be changed once the application is running.

ServiceNames

PROPERTY ServiceNames[Idx : INTEGER] : STRING

Used by server applications, to return the names of defined services.

Services

PROPERTY Services : TDDEMLServicesList

This is a design time property used for defining the range and scope of services supported by a server application. It cannot be changed at run time.

ShareNames

PROPERTY ShareNames[Idx : INTEGER] : STRING

A public propety that can be used return the names of pre-defined NetDDE shares. The names will only exist if they have been defined in the IDE or loaded from the PC using the ‘LoadSharesFromSys’ method.

ShareProcess

PROPERTY ShareProcess : TShareProcessType

A design time property used for defining how the IDE defined list of NetDDE shares is to be used. There are three settings ..

sptNone
Do nothing

sptAutoCreateShares
Automatically create the shares as defined in the IDE

sptSharesMustMatch
Validate that the shares as defined in the IDE are the same as those found in the PC’s registry/INI file. If they are different the application will create an exception error.

This property allows the devloper to add a small measure of extra security to the very open nature of NetDDE share definitions. With ‘spAutoCreateShares’ the application will always implement its own pre-defined version of share definitions, overriding any local changes or settings on a particular PC. With ‘sptSharesMustMatch’ the application will check to see that the shares defined in the IDE match exactly the shares stored in the Pc. Tbis way the application can control and expose any unauthorised changes.

Shares

PROPERTY Shares[Idx : INTEGER] : TNetDDEShare

A public index property type that return an instance of a share class definition. The share class definitions will only exist if they have been defined in the IDE or loaded from the PC using the ‘LoadSysSharesToMem’ method.

SharesList

PROPERTY SharesList : TNetDDESharesList

A design time property used to access a form that allows the shares to be defined via the IDE.

SkipOptions

PROPERTY SkipOptions : TDDEMLSkipTypeSet

This property represents a set of low level flags that determine the range of options that the underlying DDEML layer will not inform the application about.

· cbf_Skip_Connect_Confirms. If TRUE server applications will not receive connect confirm messages for conversations that are about to commence.

· cbf_Skip_Registrations. If TRUE the application will not receive a notification when another application registers a new service to the DDEML environment.

· cbf_Skip_Unregistrations. If TRUE the application will not receive a notification when another application un-registers a service from the DDEML environment.

· cbf_Skip_Disconnects. If TRUE the application will not receive any disconnect type messages.

· cbf_Skip_AllNotifications. If set to TRUE this is equivalent to having all of the other flags noted above set to TRUE.

This property must be set at design time. Any run time changes will have no impact upon the application

WildConnectCount

PROPERTY WildConnectCount : INTEGER

Used by server applications, to return the number of entries on its wild connect response list.

WildConnectServiceNames

PROPERTY WildConnectServiceNames[Idx : INTEGER] : STRING

Used by server applications, to return the service name of the ‘Idx’ entry on its wild connect response list.

WildConnectTopicNames

PROPERTY WildConnectTopicNames[Idx : INTEGER] : STRING

Used by server applications, to return the topic name of the ‘Idx’ entry on its wild connect response list.

TDDEMLManager Events

OnAdviseStartReceived

PROPERTY OnAdviseStartReceived : TDDEMLAdvStartEvent

Used by server applications, this event is called whenever a server receives a request from a client application to set an advise loop against one of the server conversation’s items.

TDDEMLAdvStartEvent = PROCEDURE(Sender : TObject;

 CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 AFormat : TDDEMLClipFmtType;

 VAR Allow : BOOLEAN) OF OBJECT;
The ‘AServiceName’, ‘ATopicName’ and ‘AnItemName’ parameters identify the target of the advise loop transaction.

The ‘AFormat’ parameter indicates the format of the data the client would want the advise loop to use when dispatching data back to the client.

If the server wishes to support this advise loop it should set the output parameter ‘Allow’ to TRUE. If not it should set the value to FALSE.

OnAdviseStopReceived

PROPERTY OnAdviseStopReceived : TDDEMLSTIEvent

Used by server applications, this event is called whenever a server receives a request from a client application to cancel an advise loop. Use of the event is optional, the advise loop will be cancelled irrespective of whether the event is employed.

OnAsyncResponse

PROPERTY OnAsyncResponse : TDDEMLAsyncResponseEvent

Used by client applications, this event is used to monitor the results of asynchronous transactions.

TDDEMLAsyncResponseEvent = PROCEDURE(Sender : TObject;

 CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 ATransType : TDDEMLTransType;

 ATransHandle : LONGINT;

 Success : BOOLEAN) OF OBJECT;

The ‘AServiceName’, ‘ATopicName’, ‘AnItemName’ , ‘ATransType’ and ‘ATransHandle’ parameters identify the target of the asynchronous result. If the parameter ‘Success’ is TRUE then the transaction was completed succesffully.

OnConnectReceived

PROPERTY OnConnectReceived : TDDEMLConnectReceivedEvent;

Used by server applications, this event is called each time a client application seeks to start a conversation with one of the server’s topics.

TDDEMLConnectReceivedEvent = PROCEDURE(Sender : TObject;

 CONST AServiceName : STRING;

 CONST ATopicName : STRING;

 VAR Allow : BOOLEAN)
Inside the event handler the server application should set the output parameter ‘Allow’ to TRUE if the connect request is valid.

There are a number of useful methods available to help tests the validity of the incoming server/topic names …

· HasService returns TRUE if the Django component has a service defined of that name

· IsSystemTopic returns TRUE if the topic parameter is equivalent to ‘SYSTEM’.

· HasConv can be used to test whether a conversation is already active for the given server/topic combination.

The code example shown below is taken from the SBMP16 demo application :

procedure TMainForm.TheMngrConnectReceived(Sender: TObject;

 const AServiceName, ATopicName: String; var Allow: Boolean);

begin

 Allow := FALSE;

 { allow a connect if the topic is either SYSTEM or PICTURE }

 IF TheMngr.HasService(AServiceName) THEN

 Allow := TheMngr.IsSystemTopic(AtopicName) OR

 (CompareText(ATopicName,'PICTURE') = 0);

end;

This event has to be implemented by the server application. Without it there is almost no way of being able to start conversations (outside of wild connects).

OnDisconnecting

PROPERTY OnDisconnecting : TDDEMLStEvent

This event is called whenever an application receives a message that indicates that the other end of a conversation wishes to terminate the link.

TDDEMLSTEvent = PROCEDURE(Sender : TObject;

 CONST AServerName,

 ATopicName : STRING) OF OBJECT;
In most situations disconnections are initiated by client applications. Thus, the disconnect event would be triggered within the server application. To cater for situations where a server terminates a conversation there is a special ‘OnServerDisconnecting’ event available to client applications.

OnError

PROPERTY OnError : TDDEMLErrorEvent

Any errors that arise within the DDEML processing can be reported back to the form owning the Django component.

TDDEMLErrorEvent = PROCEDURE(Sender : TObject;

 AMngrError : INTEGER;

 CONST AMsg : STRING) OF OBJECT;
The ‘AMngrError’ number is available from a list of defined errors. The ‘AMsg’ string provides extra contextual information.

OnExecuteReceived

PROPERTY OnExecuteReceived : TDDEMLExecuteEvent

Used by server applications, this event is called each time a client application dispatches an execute command transaction to the server.

TDDEMLExecuteEvent = PROCEDURE(Sender : TObject;

 CONST AServerName,

 ATopicName : STRING;

 CONST ACmdName : STRING;

 CONST ACmdParams : ARRAY OF STRING;

 AParamCount : INTEGER;

 VAR Succeed : BOOLEAN) OF OBJECT;

The ‘AServerName’ and ‘ATopicName’ parameters identify the conversation.

The ‘ACmdName’ parameter holds the exec command text name.

If the command requires parameters theses are passed using the ‘ACmdParams’ parameter as an array of text strings. Irrepsective of the defined parameter type - string, number, integer - each parameter is passed as a string inside this array.

If the command associated with this event is valid and is processed without error then the application should set the ‘Succeed’ parameter to TRUE.

The code example shown below is taken from the SBMP16 demo application :

procedure TMainForm.TheMngrExecuteReceived(Sender: TObject;

 const AServerName, ATopicName, ACmdName: String;

 const ACmdParams: array of String; AParamCount: Integer;

 var Succeed: Boolean);

begin

 IF TheMngr.HasService(AServerName) THEN

 BEGIN

 IF CompareText(ATopicName,'PICTURE') = 0 THEN

 BEGIN

 IF CompareText(ACmdName,'CLEAR') = 0 THEN

 BEGIN

 Refresh;

 Succeed := TRUE;

 END

 END

 END

end;

This event will only be called if the incoming execute transaction command string passes the parameter parsing tests set up in the ‘ExecCmds’ IDE definition. This can be limiting if the incoming command string has no obvious pattern. For such situations use the ‘OnRawExecuteReceived’ method which is called before the parsing tests.

OnFormatReceived

PROPERTY OnFormatReceived : TDDEMLSEvent

Used by server applications, this event is called each time a client application asks a server’s SYSTEM topic for a list of data formats supported by the server.

TDDEMLSEvent = PROCEDURE(Sender : TObject;

 CONST AServerName : STRING) OF OBJECT;
Inside the event handler the server application should call the ‘AddToSupportedFormatList’ method for each data format that it supports.

The code example shown below is taken from the SBMP16 demo application :

procedure TMainForm.TheMngrFormatReceived(Sender: TObject;

 const AServerName: String);

begin

 IF TheMngr.HasService(AServerName) THEN

 BEGIN

 TheMngr.ClearSupportedFormatList(AServerName,'');

 TheMngr.AddToSupportedFormatList(AServerName,'',cfText);

 TheMngr.AddToSupportedFormatList(AServerName,'',cfBitmap);

 END

end;
As this is part of the SYSTEM topic, it is recommended that all server applications support this event.

OnHotLinkResponse

PROPERTY OnHotLinkResponse : TDDEMLHotLinkResponseEvent

Used by client applications, this event is called each time a server sends back changed data to support a ‘hot’ advise loop.

TDDEMLDataResponseEvent = PROCEDURE(Sender : TObject;

 CONST AConvHandle : INTEGER;

 CONST AServerName,

 ATopicName,

 AnItemName : STRING;

 CONST ATransH : LONGINT;

 CONST AFormat : TDDEMLClipFmtType;

 CONST ADataLen : LONGINT) OF OBJECT;

The ‘AServerName’, ‘ATopicName’, and ‘AnItemName’ parameters identify the hot link.

The code example shown below is taken from the CDEMO16 demo application :

procedure TClientForm1.TheDDEMLMngrHotLinkResponse(Sender: TObject;

 const AConvHandle: Integer; const AServerName, ATopicName,

 AnItemName: String; const ATransH: Longint;

 const AFormat: TDDEMLClipFmtType; const ADataLen: Longint);

begin

 WITH TheDDEMLManager DO

 TheCountLabel.Caption := GetClientText([AConvhandle],AnItemName,ATransH);

end;
OnItemReceived

PROPERTY OnItemReceived : TDDEMLStEvent

Used by server applications, this event is called each time a client application asks a server for a list of items supported by a particular topic.

TDDEMLSTEvent = PROCEDURE(Sender : TObject;

 CONST AServerName,

 ATopicName : STRING) OF OBJECT;
Inside the event handler the server application should call the ‘AddToSupportedItemList’ method for each data item that it supports. The related ‘ClearSupportedItemList’ method should be used to clear down any existing entries first.

The code example shown below is taken from the SERVGRID demo application :

procedure TSGridForm.TheDDEMLManagerItemReceived(Sender: TObject;

 const AServerName, ATopicName: String);

VAR

 P,R : INTEGER;

 S : STRING;

begin

 { double check that the service is supported }

 IF TheDDEMLManager.HasService(AServerName) THEN

 BEGIN

 P := 1;

 { validate topic }

 WHILE (P <= 4) AND (CompareText('Page'+IntToStr(P),ATopicName) <> 0) DO

 INC(P);

 IF P <= 4 THEN

 BEGIN

 { clear django's list }

 TheDDEMLManager.ClearSupportedItemList(AServerName,ATopicName);

 { add 'Item1','Item2','Item3' etc to the list }

 FOR R := 1 TO 10 DO

 BEGIN

 { get row title }

 S := FGridArray[P].Rows[R].Strings[item_column];

 { add as a supported item }

 WITH TheDDEMLManager DO

 AddToSupportedItemList(AServerName,ATopicName,S);

 END

 END

 END

end;
As part of the SYSTEM topic support, it is suggested that all server applications implement this event.

OnPokeReceived

PROPERTY OnPokeReceived : TDDEMLStiAEvent

Used by server applications, this event is called each time a client application dispatches a poke transaction to the server.

TDDEMLSTIAEvent = PROCEDURE(Sender : TObject;

 CONST AServerName,

 ATopicName,

 AnItemName : STRING;

 VAR Allow : BOOLEAN) OF OBJECT;
The ‘AServerName’, ‘ATopicName’, and ‘AnItemName’ parameters identify the poke target.

Inside the event handler the server application can use one of the ‘GetItemXXXX’ methods to retrieve the data sent by the client.

If the poke is invalid the application should set the output parameter ‘Allow’ to FALSE. (Allow is TRUE by default).

OnRawExecuteReceived

PROPERTY OnRawExecuteReceived : TDDEMLRawExecuteEvent

Used by server applications, this event is called each time a server application receives an ‘execute’ transaction.

TDDEMLRawExecuteEvent = PROCEDURE(Sender : TObject;

 CONST AServerName,

 ATopicName : STRING;

 ACmdBuffer : PChar;

 ACmdLen : WORD;

 VAR Succeed : BOOLEAN;

 VAR Proceed : BOOLEAN)

This event can be used to bypass the execute command string parsing which Django will automatically perform on incoming execute transactions. It is called before the ‘OnExecuteReceived’ event.

By setting the ‘Proceed’ parameter to FALSE the application can stop Django moving onto the command string parsing process. The ‘Succeed’ parameter should be set to FALSE if the command string is to be rejected. (Both ‘Proceed’ and ‘Succeed’ are set to TRUE by default).

OnRequestReceived

PROPERTY OnRequestReceived : TDDEMLReqReceivedEvent

Used by server applications, this event is called each time a client application dispatches a request transaction to the server.

TDDEMLReqReceivedEvent = PROCEDURE(Sender : TObject;

 CONST AServiceName,

 ATopicName,

 AnItemName : STRING;

 AFormat : TDDEMLClipFmtType;

 VAR ValidItem : BOOLEAN) OF OBJECT;
The ‘AServerName’, ‘ATopicName’, and ‘AnItemName’ parameters identify the request target.

Inside the event handler the server application should use one of the ‘SetItemXXXX’ methods to push application data into the Django component. This data is at a later stage dispatched to the client. If the request is valid the application should set the output parameter ‘ValidItem’ to TRUE.

The code example shown below is taken from the SERVGRID demo application :

procedure TSGridForm.TheDDEMLManagerRequestReceived(Sender: TObject;

 const AServiceName, ATopicName, AnItemName: String;

 AFormat: TDDEMLClipFmtType; var ValidItem: Boolean);

VAR

 S : STRING;

 AGrid : TStringGrid;

 R : INTEGER;

begin

 { find the grid from the topic name }

 AGrid := GridFromTopic(ATopicName);

 { valid topic name = assigned grid }

 IF ASSIGNED(AGrid) THEN

 BEGIN

 { convert the item name into a row number }

 R := RowFromItem(AGrid,AnItemName);

 IF R < 0 THEN

 BEGIN

 ValidItem := FALSE;

 TheDDEMLManager.RemoveServiceItem(AServiceName,ATopicName,AnItemName);

 END

 ELSE

 BEGIN

 { get the data value from the grid }

 S := AGrid.Rows[R].Strings[data_column];

 { push it into the Django buffer }

 TheDDEMLManager.SetServiceItemText(AServiceName,ATopicName,AnItemName,S);

 END

 END

end;
OnRequestResponse

PROPERTY OnRequestResponse : TDDEMLReqResponseEvent

Used by client applications, this event is called by Django to notify the application of the data returned by a request transaction.

TDDEMLDataResponseEvent = PROCEDURE(Sender : TObject;

 CONST AConvHandle : INTEGER;

 CONST AServerName,

 ATopicName,

 AnItemName : STRING;

 CONST ATransH : LONGINT;

 CONST AFormat : TDDEMLClipFmtType;

 CONST ADataLen : LONGINT) OF OBJECT;

The ‘AServerName’, ‘ATopicName’, and ‘AnItemName’ parameters identify the request target. For an synchronous transaction the parameter ‘ATransH’ holds the transaction handle.

Inside the event handler the client application can access the data passed back by the server by using one of the ‘GetClientXXX’ data retrieval methods.

The code example shown below is taken from the CLTTEST demo application :

procedure TMainForm.TheDdeMngrRequestResponse(Sender: TObject;

 const AConvHandle: Integer; const AServerName, ATopicName,

 AnItemName: String; const ATransH: Longint;

 const AFormat: TDDEMLClipFmtType; const ADataLen: Longint);

VAR

 S : STRING;

 P : PChar;

begin

 IF ADataLen > 0 THEN

 BEGIN

 { check data format }

 IF AFormat <> cfText THEN

 ShowMessage('This application can only retrieve text data!')

 ELSE

 BEGIN

 { text too long for DELPHI 1 strings? }

 IF ADatalen > 255 THEN

 BEGIN

 { allocate pchat to hold data }

 P := StrAlloc(ADataLen+1);

 { pull data from Django's internal buffers }

 TheDdeMngr.GetClientData([AConvHandle],

 AnItemName,

 ATransH,P,ADataLen);

 { set into memo for display }

 TheReqResMemo.SetTextBuf(P);

 StrDispose(P);

 END

 ELSE { no - retrieve as string type }

 BEGIN

 { pull data from Django's internal buffers }

 S := TheDdeMngr.GetClientText([AConvHandle],

 AnItemName,ATransH);

 { set into memo for display }

 TheReqResMemo.Lines.Add(S)

 END

 END

 END

 ELSE

 TheReqResMemo.Lines.Add('<NULL>')

end;
OnServerDisconnecting

PROPERTY OnServerDisconnecting : TDDEMLServerDisconnectingEvent

Used by client applications, this event is called in the unusual situation where a server application terminates a conversation.

TDDEMLServerDisconnectingEvent = PROCEDURE(Sender : TObject;

 CONST AServerName,

 ATopicName : STRING;

 VAR Restart : BOOLEAN) OF OBJECT;
The ‘AServerName’ and ‘ATopicName’ parameters identify the conversation.

If the client application does not wish the conversation to be terminated then it van attempt to restart the conversation by setting the output parameter ‘ReStart’ to TRUE.

OnSysHelpReceived

PROPERTY OnSysHelpRequest : TDDEMLSEvent

Used by server applications, this event is called each time a client application asks a server’s SYSTEM topic for its help message.

TDDEMLSEvent = PROCEDURE(Sender : TObject;

 CONST AServerName : STRING) OF OBJECT;
Inside the event handler the server application should call the ’SetServicehelpMsg’ method to place text data into the Django internal data buffers. Once the event has completed Django then moves that data back to the client application.

The code example shown below is taken from the SBMP16 demo application :

procedure TMainForm.TheMngrSysHelpReceived(Sender: TObject;

 const AServerName: String);

VAR

 S : STRING;

begin

 IF TheMngr.HasService(AServerName) THEN

 BEGIN

 S := 'Topics supported : SYSTEM and PICTURE'#13#10;

 S := S + 'Item supported : IMAGE'#13#10;

 S := S + 'Commands supported : CLEAR';

 TheMngr.SetServiceHelpMsg(AServerName,[S]);

 END

end;
As this is part of the SYSTEM topic, it is recommended that all server applications support this event.

OnSysItemReceived

PROPERTY OnSysItemReceived : TDDEMLSEvent

Used by server applications, this event is called each time a client application asks a server’s SYSTEM topic for a list of the items it supports.

TDDEMLSEvent = PROCEDURE(Sender : TObject;

 CONST AServerName : STRING) OF OBJECT;
By default Django detects all of the standard system items which the server application has supported through pre-defined event handlers. Unless the server application supports extra custom SYSTEM topic items there is no need for any response to this event to be defined.

As this is part of the SYSTEM topic, it is recommended that all server applications support this event.

OnTopicClosed

PROPERTY OnTopicClosed : TDDEMLStEvent

Used by server applications, whenever a conversation terminates, and the topic of the just closed conversation has no other open conversations - this event is called.

TDDEMLSTEvent = PROCEDURE(Sender : TObject;

 CONST AServerName,

 ATopicName : STRING) OF OBJECT;
Inside the event handler the server application can close any external data processes that were associated with the topic.

OnTopicFormatReceived

PROPERTY OnTopicFormatReceived : TDDEMLSTEvent

Used by server applications, this event is called each time a client application asks a server for a list of the data formats supported by a particular topic.

TDDEMLSTEvent = PROCEDURE(Sender : TObject;

 CONST AServerName,

 ATopicName : STRING) OF OBJECT;
Inside the event handler the server application should call the ‘AddToSupportedFormatList’ method for each data format supported by the server/topic.

It is recommended that all server applications support this event.

OnTopicOpened

PROPERTY OnTopicOpened : TDDEMLStEvent

Used by server applications, this event is called the first time a topic is used in a conversation, just after the conversation has been created.

TDDEMLSTEvent = PROCEDURE(Sender : TObject;

 CONST AServerName,

 ATopicName : STRING) OF OBJECT;
This allows the server application to open or process some related data file needed to support data access on that topic. For example with MDI applications the process would new MDI child windows to opened within this event handler.

OnTopicReceived

PROPERTY OnTopicReceived : TDDEMLSEvent

Used by server applications, this event is called each time a client application asks a server’s SYSTEM topic for a list of available topics.

TDDEMLSEvent = PROCEDURE(Sender : TObject;

 CONST AServerName : STRING) OF OBJECT;
Inside the event handler the server application should call the ‘AddToSupportedTopicList’ method for each topic supported by the server.

The code example shown below is taken from the SBMP16 demo application :

procedure TMainForm.TheMngrTopicReceived(Sender: TObject;

 const AServerName: String);

begin

 IF TheMngr.HasService(AServerName) THEN

 BEGIN

 TheMngr.ClearSupportedTopicList(AServerName);

 TheMngr.AddToSupportedTopicList(AServerName,'SYSTEM');

 TheMngr.AddToSupportedTopicList(AServerName,'PICTURE');

 END

end;
As this is part of the SYSTEM topic, it is recommended that all server applications support this event.

OnUnknownAdviseReponse

PROPERTY OnUnknownAdviseResponse : TDDEMLUnknownAdviseEvent

Used by client applications to capture data advise transactions sent by a server that include an erroneous item name. The DDEML design includes a flaw that allows a server to respond to a warm/hot data link with a completely erroneous item name. This event can report such situations.

This event will be called when a server responds using an item name for which the client has not previously defined a warm or hot link.

TDDEMLUnknownAdviseEvent = PROCEDURE(Sender : TObject;

 CONST AServerName : STRING;

 CONST ATopicName : STRING;

 CONST AnItemName : STRING;

 VAR Accept : BOOLEAN) OF OBJECT;

The event allows the client application to accept the erroneous item. Setting the ‘Accept’ output parameter to TRUE will force Django to return a ‘DDE_FACK’ acknowledge result. (‘Accept’ is set to FALSE by default).

This event is included to allow some control on badly behaved DDEML servers.

OnUnknownCompleteReponse

PROPERTY OnUnknownCompleteResponse :TDDEMLUnknownCompleteEvent

This event will be called when a client application receives a ‘asynch transaction complete’ message from the server using either an unknown item name or an unknown transaction Id.

TDDEMLUnknownCompleteEvent = PROCEDURE(Sender : TObject;

 CONST AServerName : STRING;

 CONST ATopicName : STRING;

 CONST AnItemName : STRING;

 ATransId : LONGINT) OF OBJECT;

This event is included to allow some control of badly behaved DDEML servers.

OnWarmLinkResponse

PROPERTY OnWarmLinkResponse : TDDEMLSTIEvent

Used by client applications, this event is called each time a ‘warm’ advise loop notification is received back from the server.

TDDEMLSTIEvent = PROCEDURE(Sender : TObject;

 CONST AServerName,

 ATopicName,

 AnItemName : STRING) OF OBJECT;
Inside the event handler the client application can use a ‘Request’ method to retrieve the changed data from the server.

OnWildConnectReceived

PROPERTY OnWildConnectReceived : TDDEMLStEvent

Used by server applications, this event is called each time a client application sends out a wild connect call.

Inside the event handler the server application should call the ‘AddWildConnectEntry’ method for each set of service/topics that it wishes to respond to the wild connect call with. Alternatively the server can use the ‘AddWildConnectSystemTopics’ method which will add an entry using just the SYSTEM topic for each services.

The code example shown below is taken from the SBMP16 demo application :

procedure TMainForm.TheMngrWildConnectReceived(Sender: TObject;

 const AServerName, ATopicName: String);

begin

 TheMngr.AddWildConnectSystemTopics;

end;
How and when this event is called depends upon the ‘AllowNullService’ and ‘AllowNullTopic’ propereties are set. If both are set to FALSE a server application will never activate this event.

16. Network DDE related classes

The NetDDE functions introduce two new subsidiary classes …

· TNetDDEShare. A representation of the network share definition.

· TNetDDEShareItem. A representation of the share definition extra item records.

The individual share class instances can accessed using the ‘Shares’ array type property.

The extra item definitions are part of the share class, and may be accessed via either the ‘ExtraItemsList‘ or ‘ExtraItemsByName’ array type properties.

16.1 TNetDDEShare Class Methods

TNetDDEShare methods

Create

CONSTRUCTOR Create;

It should not be necessary to create individual share class instances. To add new shares use the Django ‘AddMemShare’ method.

Destroy

DESTRUCTOR Destroy; OVERRIDE;

It should not be necessary to call this destructor or irs related Free method.

Assign

PROCEDURE Assign(Source: TPersistent); OVERRIDE;

Copies the properties of ‘Source’ into the class’s own data members.

AddExtraItem

PROCEDURE AddExtraItem(CONST AnItemName : STRING);

Adds a new extra item to the list maintained by the share definition.

ClearExtraItemsList

PROCEDURE ClearExtraItemsList;

Removes all items from the list maintained by the share class.

DeleteDefinition

FUNCTION DeleteDefinition : BOOLEAN;

Deletes the share of the same name from the PC’s own registry or system INI file.

DeleteExtraItemByName

PROCEDURE DeleteExtraItemByName(CONST AnItemName : STRING);

Deletes an extra item from the share class list, using the extra item name as the key.

DeleteExtraItemByIdx

PROCEDURE DeleteExtraItemByIdx(AnIdx : INTEGER);

Deletes an extra item from the share class list, using the array item number as the key.

ExtraItemCount

FUNCTION ExtraItemCount : INTEGER;

Returns a count of the number of extra items held by the share class.

HasPasswords

FUNCTION HasPasswords : BOOLEAN;

Returns TRUE if the share definition is using a password based access control.

IsSame

FUNCTION IsSame(Other : TNetDDEShare) : BOOLEAN;

Returns TRUE if the properties of the share class are the same as ‘Other’.

LoadDefinition

FUNCTION LoadDefinition : BOOLEAN;

Sets the memory based share class property values to be the same as those currently stored in the same named definition of the PC’s own registry or system INI file.

MainPermissionsRO

FUNCTION MainPermissionsRO : BOOLEAN;

Returns TRUE if the share is defined for read only access.

SaveDefinition

FUNCTION SaveDefinition : BOOLEAN;

Saves the memory based share class property values to the PC’s registry or system INI file, overriding any existing definition.

SetDefaultROPermissions

PROCEDURE SetDefaultROPermissions;

Sets the share’s properties to allow only read only transactions.

SetDefaultFullPermissions

PROCEDURE SetDefaultFullPermissions;

Sets the share’s properties to allow all transactions.

SetDefaultPasswordPermissions

PROCEDURE SetDefaultPasswordPermissions;

Sets the share properties to support password based access, with a read only password of ‘READONLY’ and a full access password of ‘FULL’.

16.2 TNetDDEShare properties

AppName

PROPERTY AppName : STRING

The EXE name associated with the server process. This should not include the DOS path or file extension. eg. for executable ‘D:\TEST\MYEXE.EXE’ include an AppName of ‘MYEXE’.

ExtraItems

PROPERTY ExtraItems[Idx : INTEGER] : TNetDDEShareItem

An array style property that allows access by index position number into the list of extra item classes.

ExtraItemsByName

PROPERTY ExtraItemsByName[AName : STRING]

An array style property that allows access by name into the list of extra item classes.

ItemName

PROPERTY ItemName : STRING

Returns the optional item name definition.

MainPermissions

PROPERTY MainPermissions[ndp : TNddePermissionType] : BOOLEAN

Used to read or set transaction type support for shares that are defined to use either ‘FULL’ or ‘READ-ONLY’ access. The ‘ndp’ parameter is one of five types …

TNddePermissionType = (ndpAdvise,ndpExecute,ndpPoke,ndpRequest,ndpStartApp);

The ‘TNddePermissionType’ type is defined in the ‘NDDETYPE.PAS’ unit. This unit should be included in the USES list if any permission access is to be made.

Name

PROPERTY Name : STRING

The share name. By convention this should end with a ‘$’ dollar character.

Passwords

PROPERTY Passwords[nda : TNddeAccessType] : STRING

Used to read or set the read-only or full access password as a normal un-encrypted string. The ‘TNddeAccessType’ is one of two values …

TNddeAccessType = (ndaReadOnly,ndaFull);

This type is defined in the ‘NDDETYPE’ unit. This unit should be included in the USES list if any password access is to be made.

Permissions

PROPERTY Permissions[nda : TNddeAccessType; ndp : TNddePermissionType] : BOOLEAN

Used to read or set the transaction type support for specific read only or full access.

PermissionValues

PROPERTY PermissionValues[nda : TNddeAccessType] : LONGINT

Returns the numeric values used to store transaction support in the underlying PC registry or system INI configuration.

TopicName

PROPERTY TopicName : STRING

The share’s topic name

16.3 TNetDDEShareItem Methods

There is no reason for any of the methods listed below to be used. They are included solely to fully document the class.

Assign

PROCEDURE Assign(Source: TPersistent); OVERRIDE;

Copies the property values of ‘Source’ into the class instance’s own properties.

FromRec

PROCEDURE FromRec(CONST AnItemInfo : TNDDEShareItemInfo);

Copies the data from a Windows extra item record structure into the class instance properties.

IsSame

FUNCTION IsSame(Other : TNetDDEShareItem) : BOOLEAN;

Returns TRUE if the property values of the class instance and ‘Other’ are the same.

ToRec

PROCEDURE ToRec(VAR AnItemInfo : TNDDEShareItemInfo);

Copies the class instance’s property values into the equivalent Windows API record structure.

ReadFromDFM

PROCEDURE ReadFromDFM(Reader : TReader);

Reads the extra item definition from a DELPHI DFM stream.

WriteToDFM

PROCEDURE WriteToDFM(Writer : TWriter);

Writes the extra item definition to a DELPHI DFM stream.

16.4 TNetDDEShareItem Properties

Allow

PROPERTY Allow[ndp : TNddePermissionType] : BOOLEAN

Used to set or read the transaction type access allowed for the extra item. The ‘ndp’ type has five transaction types …

TNddePermissionType = (ndpAdvise,ndpExecute,ndpPoke,ndpRequest,ndpStartApp);

The ‘TNddePermissionType’ type is defined in the ‘NDDETYPE.PAS’ unit. This unit should be included in the USES list if any permission access is to be made.

Name

PROPERTY Name : STRING

The extra item name.

PermissionValue

PROPERTY PermissionValue : LONGINT

The value used in the equivalent Windows record structure.

Design Limitations

General Design Issues

There are very few limitations to Django’s design …

· Text data passed into Django from the other end of a conversation using POKE or REQUEST cannot exceed 64K in length.

· Parsed commands cannot have more than 20 parameters.

· Each individual execute command name can be no longer than 255 characters in length, with each parameter also limited to a maximum of 255 characters.

WIN32 limitations or issues

If you retain the standard Borland DDE components in your DELPHI 2 component toolbar then we would suggest always nominating a specific service name (different to the EXE name) for your Django DDEML server. This because the Borland components automatically register a DDEML service using the DELPHI project name as soon as DELPHI is loaded. If you were not to specify a Django service name then Django would automatically use the EXE name as a default service. Thus, when running the application from the DELPHI IDE there could be two identical service names registered (the Borland default and your Django name). The WIN32 version of DDEML does’nt seem to like this. In such occasions GPF’s can occur inside the DDEML DLL when the server application is closed (it seems to be a bug inside the DDEML ‘DdeUnInitialise’ API function). This problem has been reported to Microsoft, but no response has been received to date.

In a similar vein we have experienced occasional problems with GPF’s inside the DDEML DLL when running the MCDEMO32 demo. These occur when the main MCDEMO32.EXE is closing its own use of DDEML, and appear to be caused by a bug inside the DDEML ‘DdeUnInitalise’ API function. If this GPF occurs reboot your PC.

DDEML bugs or limitations

We have noticed a number of bugs that arise occasionally within DDEML when shutting down the server end of a DDEML conversation. These tend to occur when there are a large number data values being sent over very short time intervals via hot links to a client. The problem only seems to manifest itself when the client initiates the hot links using the ‘acknowledge’ flag. In such situations if the server application is closed then on occasion this can cause a near terminal system crash. Serious as though this sounds, it is probably not good DDEML practice to have the server application terminate by itself. The client applications should be in control of when the conversations are to terminated.

A number of messages have passed across the Compuserve Delphi forum detailing problems linking a 32 bit application to a 16 bit application. Although unspecified this same problem has been noted by Microsoft, where they indicate the cause being an occasional loss of string handles between the two different applications.

DDEML Re-entrancy limitations

One major limitation with DDEML is its lack of support for re-entrant transaction calls. This means that you cannot start another DDEML transaction whilst still processing another. The DDEML software behaves erractically when such re-entrant calls are made. To avoid such situations the Django source code will test for the status of a transaction before allowing another to start. Any attempt to start a new transaction will generate a Django exception.

Situations may well arise where a process does require a new transaction to be started during the completion of a another transaction. This affect can be simulated at the form level by the use of custom ‘PostMessage’ function call to the same form.

For example lets assume that a client application wants to start an Execute transaction whenever it receives a hot link advise notice from the server. The form would require a custom window message to be defined, something like as follows …..

CONST

wm_StartExecute = (wm_User+100);

TYPE

TMainForm = CLASS(TForm)

….

….

PROCEDURE wmStartExecute(VAR Message : Tmessage);

MESSAGE wm_StartExecute;

….

….

END;

procedure TMainForm.TheDdeMngrHotLinkResponse(Sender: TObject;

 const AConvHandle: Integer; const AServerName, ATopicName,

 AnItemName: String; const ATransH: Longint;

 const AFormat: TDDEMLClipFmtType; const ADataLen: Longint);

begin

 PostMessage(Handle,wm_StartExecute,0,0);

end;

PROCEDURE TMainForm.wmStartExecute(VAR Message : Tmessage);

BEGIN

 TheDdeMngr.Execute(…….)

END;
Whenever the hot link response is invoked the client application will use the ‘PostMessage’ function to start the Execute transaction. The ‘PostMessage’ function is not a sub routine. It places the specified winow message on the Windows message queue. This means that the DDEML hot advise transaction will complete before the ‘wm_Startexecute’ message is processed, thus avoiding the re-entrancy problem.

NT Limitations on NetDDE share useage

The NT environment adds a new overt layer to security to the definition and use of NetDDE shares. The Django share definitions do not apply any security settings to the share definitions that it creates. NT includes its own version of the ‘DDE Share Manager’ utility and it is recommended that this tool be used in all situations.

17. Version History

Version 1.0

Supporting 16 bit DELPHI is launched in November 1996.

Version 2.0

Component now works for both DELPHI 1 and DELPHI 2.

New property ‘ExeNameAsService’. (The latter arose through an interesting difference in WIN31 and WIN32 DDEML. Win31 allows multiple EXE’s to register with the same service name - WIN32 allows the registration but causes a crash inside the DDEML DLL when the service is unregistered).

Version 2.01

For applications that want to add just DDE client functionality to reduce the overall footprint size of adding Django to an EXE a new conditional compiler directive has been added that removes all server based functionality from the component. The conditional define ‘$DdeClientOnly’ should be activated in the ‘Django.Pas’, ‘DDEConv.Pas’ and ‘DdeSvice.Pas’ units.

Version 2.02

The command parameter on the ‘Execute’ method has been changed from a ‘STRING’ type to an ‘ARRAY OF CONST’ to allow long string parameters.

Version 2.03

Two new client related event properties added …

OnUnknownAdviseResponse

OnUnknownCompleteResponse

Version 2.04

A number of bugs have been fixed …

· In certain situations a client application trying to retrieve text data longer than 255 characters was only receiving the first 244 characters.

· Client apps using a server name with different case to the server name used in the startConv method were unable to run transactions.

Version 2.04

A number of bugs have been fixed …

· In certain situations a client application trying to retrieve text data longer than 255 characters was only receiving the first 244 characters.

· Client apps using a server name with different case to the server name used in the startConv method were unable to run transactions.

· Hot advise links were not completing correctly. This lead to memory leaks which ultimately could crash the system.

A new method ‘RemoveClientItem’ has been added to allow for the deletion of client conversation related items once their use has ended.

Version 2.05

Django can now detect whether a WIN32 EXE is already running. This allows use of the ‘AnExeName’ input parameter within DELPHI 2 projects for the following methods : ‘FirstServerFormat’, ‘FirstServerTopic’, ‘FirstServerTopicFormat’, ‘FirstServerTopicItem’, ‘FirstServerSysItem’, ‘ServerBusy’, ‘ServerExists’, ‘ServerFormatCount’, ‘ServerHelpMsg’, ‘ServerReady’, ‘ServerSysItemCount’, ‘ServerTopicCount’, ‘ServerTopicItemCount’, ‘ServerTopicFormatCount’. And ‘StartConv’.

In addition Django includes a new method ‘IsServerExeRunning’ which will return TRUE if the designated application EXE name is already running as a task/process.

Version 2.06

Warm Link bug with null string item returned by server

A bug existed in the Django code whereby after establishing a warm link to a server, if the server returned an advise transaction with a null (‘’) item string then a fatal error would occur.

Note: Excel DDEML servers seem to return null item names on warm links to cells!

New functions to control re-entrant processing of client application warm/hot link advise data transactions. Refer to the ‘DefaultUseBusy’ property and the methods ‘SetConvUseBusy’ and ‘GetConvUseBusy’
Django debug window bug.

A GPF occured using the Debug window whenever a process tried to output more lines to the control then it could hold. This has been changed so that the debug form only holds the last 500 output lines.

Version 2.07

New functions for client applications to trace the number of items used by a conversation. ‘ConvItemCount’ returns the number of items. ‘ConvItemNames’ can be used to return individual item names.

‘OnWarmLinkResponse’ bug causing mass of background DDEML messaging

There was a serious flaw with the method used by the client side of Django that handled warm link responses. The process was retrieving the data within the wam link advise transaction. This seems to cause a re-entrancy problem which the DDEML software just cannot handle. This has changed so that an ‘OnWarmLinkResponse’ is posted only after the advise transaction is completed.

Re-entrancy trapping through exception handling

To avoid the many limitations apparent from DDEML’s lack of re-entrancy support the Django code now includes an exception error to prevent such problems occuring. That is if you try to start another DDEML transaction whilst processing the results of another Django will create an exception error.

Server advise link changes

The server side of the Django warm/hot advise link code has been changed so that an advise notice is only sent to the client if the text or value associated with a server item has changed.

Warm advise links to an MS Excel DDEML server

For some reason the Excel DDE server functions return a null item name for warm links. This makes trapping the advise notices at the client end a trifle difficult. Django will attempt to try and find the item name but this may not always be possible. This is because Excel will fire back advise notices for ALL warm links even if only one warm linked cell changes.

In such situations Django will on the client side use the ‘OnUnknownAdviseResponse’ event to notify the client that an advise notice with an unrecognised item name was received.

One way around this problem is to only use one active warm link per conversation. In this situation Django can infer the item name and post the appropriate ‘OnWarmLinkResponse’ event.

Version 2.08

A source code version control error meant that an old version of a subordinate string class library was included with Django. This error causes an exception error for any function returning a string exceeding 255 characters. This has been fixed, so that for all WIN32 projects using the long string compiler directive then all Django functions will now return a long string variable result.

Version 2.09

Unwanted Warm/Hot Link server initiated advise transactions caused by use of the ‘SetServiceItemValue’ and ‘SetServiceItemStrId’ methods. The two previously named server related methods were not checking for changed data values and were always posting an advise message. This lead to a recursive situation where the underlying DDEML layer was being flooded with unwarranted advise transactions.

Version 2.10

With reference to the correction made in V2.09, a bug inside the ‘SetServiceItemData’ method meant that advise messages were still being sent unnecessarily.

For Django DDE server applications, if multiple conversations were started and for all conversations no ‘xtyp_connect_confirm’ message was received, then for all subsequent transactions only the last created conversation would respond correctly. This bug materialised from VB client applications where separate conversations are used for each hot link.

Version 2.11

All Delphi 2 compiler ‘hint’ and ‘warning’ errors have been addressed and removed.

Version 3.00

New functionality

General

Network DDE support

Null Data Pokes supported

An event to circumvent automatic server ‘Execute’ transaction command parsing

Properties

AllowNullPokes

NetworkDDE

Nodename

ShareProcess

ShareNames

Shares

SharesList

Methods

AddMemShare

DeleteAllSysShares

DeleteSysShare

LoadAllSysSharesToMem

LoadSysShareToMem

MemShareCount

MemShareExists

NetServerName

RemoveAllMemShares

RemoveMemShare

SaveMemShareToSys

SaveAllMemSharesToSys

ScopeIncludesNetworkServer

SysShareCount

SysShareExists

Events

OnRawExecuteReceived

Conditional Defines

A new ‘NetDDE’ conditional define is included around all Network DDE related functionality.

Bug fixes

Incorrectly starting 2nd instances of Server Applications

Any client side function that used an ‘ExeName’ parameter without both a path and file extension (e.g. using ‘StartConv’ with a ‘ExeName’ parameter of ‘EXCEL’) would automatically start a 2nd instance of the application. This has been fixed.

32 bit ‘CopyLinkToClipboard’ error

Due to a difference in way the 32 bit ‘StrPCopy’ function works, any server app using this function was not pushing the full server/topic name into the clipboard entry. This has been fixed.

Version 3.01

New functionality …

New user defined handle functions at Item level …

Django now allows user data values to be stored at a conversation item level.

HasConvUserHandle

HasConvItemUserHandle

SetConvItemUserHandle

The functions allow a LONGINT value to be stored against a specific topic or topic/item combination.

Server forcing advise on all topics and/or items …

The PostAdvise method has been revised to allow for NULL Topic and Item names. The use of null names is equiavlent to informing the client that all linked items have changed. A null topic name will indicate changes for all items A NULL item name will indicate that all items associated with the nominated topic have changed.

Bugs …

SetServiceItemData not working correctly …

The code underlying this method had a boolean test bug that meant that advise links were only being actioned when the data was the same rather when it was different. This has been fixed.

Design Time Service Definition Form - ‘Update’ button not functioning correctly …

The ‘Update’ button on the design time service definition form was not updating the service name if and when the name was changed in the edit box. This has been fixed.

Version 3.02

Bug fixes …

Queries against the ‘System’ topic ‘Items’ item returning incorrect item list

Bugs in the server side code meant that applications that tried to add their own system topic items were not having those items reported back to a client. In addition the server side code was not processing requests for non-standard system topic item requests. Finally, the system topic code has been amended to report the same list of supported items for both the ‘SysItems’ and ‘TopicItemList’ items.

Detecting server EXE instances failing where a command line parameter is used

The code used to detect existing server EXE instances was failing if the string included a command line parameter. This has been fixed.

Detecting server EXE instances failing for NT4

Errors had been reported for any code that tried to detect previous server EXE instances on NT4. A different approach is now being employed for this type of test.

GPF in Django component ‘Services’ property design time edit form

A coding error in the ‘Add Service’ code caused a GPF in the design time setting of service definitions.

Design time form loading property errors

If you tried to open any of the design time property editor U/I forms in either DELPHI 1 or DELPHI 2 then the process might have displayed ‘unknown property’ type errors. This was caused by code changes to the forms being made in DELPHI 3. Forms saved in DELPHI 3 cannot be read in DELPHI 1 and 2 without throwing up these types of errors.

NetDDE Share definition functions and design time U/I working for NT

The code for adding NetDDE share definitions in NT has been debugged and now works across all functions, with the following qualifications….

· All share definitions are added as ‘static’ types.

· When a new share is added to underlying NT machine it uses a ‘NULL’ security definition (i.e. it is available to all users).

· The share is defined against the machine name of the PC/Server on which the process is run.

· The Share level Item definition facility is not supported under NT4.

· On the ‘SharesList’ design time property editor the ‘Extra Items’ page is disabled when used on NT4.

� Just in case you’re wondering about the name, the product is named after the great Belgian jazz guitarist Django Reinhart. Why? Well somebody had to break the ‘Delphi’ related word play on Ancient Greek personages and places!

PAGE
33

_908744612

_927908550

_927957512

_928068636

_927909365

_927909567

_927906293

_927906544

_908744613

_908744607

_908744609

_908744611

_908744608

_908744605

_908744606

_908744603

_908744604

_908744602

_908744601

