

PageMaker Class Library

Revised: 20 November 1995

Adobe PageMaker 6.0 Software Development Kit
PageMaker Class Library

Copyright © 1995 Adobe Systems Incorporated. All rights reserved.

The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commit-
ment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes
no responsibility or liability for any errors or inaccuracies that may appear in
this document. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such
license.

Adobe and Adobe PageMaker are trademarks of Adobe Systems Incorpo-
rated that may be registered in certain jurisdictions. Macintosh and Apple
are registered trademarks, and Mac OS is a trademark of Apple Computer,
Inc. Microsoft, Windows are registered trademarks of Microsoft Corporation.
All other products or name brands are trademarks of their respective
holders.

Version History

7 October 1995 Paul D. Ferguson First draft

Table of Contents

PageMaker Class Library

i

Chapter 1 Introduction

Requirements 1
Dependencies 1

Design Goals 2

Theory of Operation 3

Overloaded Operators 3
Memory Management 4

The PCL Class Hierarchy 5

“Use once, throw away…” 5
The PluginCall Class 6
Utility Classes 6

Chapter 2 Using PCL

Class Names 8

Getting Started 9

High Level Command and Query Classes 10

Creating Command and Query Objects 10

The High Level Command Classes 11

Variable Length Commands 11

The High Level Query Classes 12

Working with Query Results 12

Error Handling 14

Potential Exception Handling Problems 15

Performance Issues 16

Speed Issues 16
Size Issues 16

1

Introduction

The PageMaker Class Library, or PCL, is an exciting new way to create plug–
in modules (formerly known as Additions) for Adobe PageMaker 6.0. This
framework of C++ classes defines a powerful, elegant way to retrieve infor-
mation from and issue commands to PageMaker.

Commands and queries can be expressed simply, in a syntax and style similar
to the scripting language built into PageMaker. The PCL objects handle all
aspects of communication with PageMaker. In addition, several low level
classes permit customization for special situations.

Requirements
You should be familiar with C++ programming and have a basic under-
standing of how to create PageMaker plug–in modules. For more informa-
tion about creating plug–ins, refer to the Adobe PageMaker Programmer’s
Reference Guide included with this SDK. Some familiarity with PageMaker is
also helpful.

You should have the appropriate C++ compiler to build PageMaker plug–ins.
On the Macintosh, the PageMaker Class Library is designed to work with
Metrowerks CodeWarrior CW7 or later.

This release of PCL has not been used on Windows95; the next release of the
SDK will support cross platform development using PCL.

Complete C++ source code for PCL is included. You may wish to browse the
source code to better understand the concepts presented in this chapter.

Dependencies
The PageMaker SDK is designed with minimal dependencies on other soft-
ware. The SDK source code does use standard ANSI C types like size_t, and
library calls like strlen() and strcpy(). The examples may use other library
routines (e.g. sprintf()) as well.

The PageMaker Class Library requires C++ compiler support for templates
and exceptions. It does not require any run–time type identification (RTTI)
support.

PCL does not require any other classes or other compiler or vender specific
features, although PCL should be compatible with popular application
frameworks like PowerPlant and MFC. Refer to your compiler’s documenta-
tion for more details.
PageMaker Class Library 1

Introduction

Design Goals

The PageMaker Class Library has four primary design goals:

• Define a simple, natural syntax to express PageMaker commands
and queries in C++.

• Insulate programmers from the mechanics of issuing commands
and queries, and manage the memory associated with them.

• Balance performance and memory considerations.

• Provide robust type checking and error handling.

The first two goals will be discussed in the next section, “Theory of Opera-
tion” on page 3. Performance and memory issues are discussed in “Perfor-
mance Issues” on page 16.

Achieving the last design goal of robust type checking and error handling is
a direct result of applying C++ features properly in the class library and in
your plug–in code. PCL error handling is discussed further in “Error
Handling” on page 14.

One of the plug–in examples (Colorer.add), which uses a variety of
commands and queries, has been converted to use PCL. You can compare the
original C code to that of the C++ version to see how much simpler and
easier it is using the PageMaker Class Library.
PageMaker Class Library 2

Introduction

Theory of Operation

The concept behind PCL is very simple. For each PageMaker command or
query (there are over 200 of them), there is a corresponding PCL class. When
you create an instance of one of these classes, the constructor for the class
issues a command or query to PageMaker.

Here’s an example:

PGetPageNumber curPage; // Get the current page number
if ((short) curPage == 27) { // Check the page number value
 PPage newPage(33); // Change to page 33
 ...
}
PPage oldPage(curPage); // Change back to current page

In this example, we have created a query object (curPage), and two
command objects (newPage and oldPage). These objects are created by
declaring them with any appropriate parameters.

This simple syntax closely mirrors the PageMaker scripting language:

pagenumbers 1, -2, true, arabic, "I-" // PageMaker scripting
PPageNumbers pn(1, -2, true, kNumArabic, "I-"); // C++ & PCL

The C++ code is more efficient than the scripting code, however, because no
interpreter step is needed; all PCL commands are directly processed by Page-
Maker.

Overloaded Operators
Notice that the PGetPageNumber class overloads operator short(), permit-
ting the natural syntax in the “if (curPage == 27)” expression above.
Many PCL classes use operator overloading in this fashion to achieve the first
design goal.

Here’s a slightly more complicated example:

PDeselect deselect; // deselect anything that is selected

// loop through each chosen page
for (short i = firstPage; i <= lastPage; i++)
{
 PPage thePage(i); // change to page i
 PGetObjectList objectList; // get list of objects on page i
 short n = objectList.Count(); // n is number of objects
 for (short j = 0; j < n; j++) // examine each object
 {
 if (objectList.cTypeOfObject == 4 // if circle or rect
 || objectList.cTypeOfObject == 5)
 {
 PSelect select(objectList.nDrawingNumber); // select obj
 PColor color("mauve"); //set color of selected object
 PDeselect deselect;
 }
 objectList++; // increment list
 }
}

In this example, we have created a number of PCL objects. The objectList
object contains a variable amount of information about the objects on the
PageMaker Class Library 3

Introduction

current page (in this case, we’re referring to PageMaker objects like text
blocks, placed graphics, etc. rather than C++ objects). We can iterate over
this list using postfix increment notation (operator++) to examine each
object in the list.

Memory Management
All the PCL objects created in this code example will be automatically
destroyed when they go out of scope; this is guaranteed by the C++
language.

The (C++) object, objectList, may contain information about one, a few, or
many dozens of (PageMaker) objects. The PGetObjectList destructor frees the
memory block, which was allocated by PageMaker, associated with this infor-
mation.

This illustrates the second primary design goal: insulate the programmer
from the mechanics of issuing commands and queries, and manage the
memory associated with them.
PageMaker Class Library 4

Introduction

The PCL Class Hierarchy

Communication with PageMaker occurs through PCallback using its two
subclasses PCommand and PQuery. (The diagram above shows this relation-
ship using the Booch notation.) These base classes handle the mechanics of
setting up and executing PageMaker commands and queries.

The high level classes create PCommand and PQuery objects in their
constructors, as well as PRequestBuf, PReplyBuf, and (for list oriented
queries) PListMom objects. The high level command and query objects prop-
erly format any parameters that must sent; query objects also save and
manage the returned query results.

The PPluginCall class is discussed in “The PPluginCall Class” on page 6.

“Use once, throw away…”
Command and query objects are the software equivalent of paper towels.
They are designed to do one thing: issue a single callback to PageMaker.
They are lightweight, simple objects intended to perform one task and then
be thrown away.

The command classes are simpler than query classes. The only public inter-
face to command objects are their constructors; the only thing you can do to

PPluginCall

PRequestBuf PReplyBuf

Plug–in
specific
subclass

Various
command

classes

Various
query
classes

PQuery

PCallback

PCommand PListMom

Low Level Classes

High Level Classes

PageMaker

PCL Plugin.add

Inheritance

“Uses” relationship
PageMaker Class Library 5

Introduction

a command object is create it. Once its been successfully created, a command
object’s job is done.

Query objects also execute a single callback into PageMaker. Once it is
created, you can extract the results from the query in your code using either
specific functions (PGetObjectList::Count()), instance variables
(objectList.nDrawingNumber) or overloaded operators (PGetPageNumber
pgNum; short j = pgNum;). Once you no longer need a query object’s infor-
mation, its job is done.

Because there are many commands and queries that have a similar structure,
some of the high level classes are implemented as template classes. For
example, a number of queries, like PGetPage, return a single 16-bit short
value and don’t pass any parameters to PageMaker. Thus all these classes can
be implemented through a template class. Refer to the file PShortQuery.h to
see how PGetPage and similar classes are implemented.

The PPluginCall Class
This class represents the call from PageMaker that was initiated when the
user chose your plug–in or your plug–in was executed by another plug–in. It
is responsible for dispatching the incoming call based on the opcode in the
sPMParamBlock structure.

This class also provides member functions to implement common actions that
you may want to perform on the original parameter block, such as storing
your plug–in’s private data, or setting custom error messages. Refer to “Error
Handling” on page 14 for more details.

Utility Classes
The utility classes PRequestBuf and PReplyBuf manage buffers for passing
data between your plug–in and PageMaker. These classes have overloaded
operator<<() and operator>>() functions to simplify packing and
unpacking strings, shorts, longs, etc.

The PListMom class is used by PListQuery and its subclasses to manage
queries that return lists.

If you use the high level classes you shouldn’t need to create PRequestBuf,
PReplyBuf or PListMom objects directly, but you will see them throughout
the PCL source code.

Here’s a snippet from the constructor from PGetColorInfo that uses both
utility classes:

PGetColorInfo::PGetColorInfo(short cModel,
 const char * sColorName)
: PCountQuery()
{
 PRequestBuf request(strlen(sColorName) + 4);

 request << cModel // build request buffer
 << sColorName;

 PQuery query(pm_getcolorinfo, request); // do query

 PReplyBuf reply(replyPtr);

 reply >> nPercent1 // extract reply information
 >> nPercent2
 >> nPercent3
 >> nPercent4
PageMaker Class Library 6

Introduction
 >> cType
 >> nEPS
 >> bOverprint
 >> &sBaseColor
 >> cDefinedModel
 >> nInks;
}

PageMaker Class Library 7

2Using PCL
This chapter describes how to create a PageMaker plug–in module using the
PageMaker Class Library.

The sample plug–in Colorer.add illustrates typical programming with the
PCL. You should take some time to familiarize yourself with the Colorer
source code.

If you’re developing on the Macintosh you may also want to examine the
code that implements the overall interface to PageMaker; it is responsible
for loading and executing your 680x0 or PowerPC code. This can be found in
the “RAG1 Main” folder.

Class Names
As shown in the code snippets in chapter 1, PCL classes are distinguished by
the letter “P” at the front of their class names. For the high level command
and query classes, the rest of their names correspond to the specific
command or query as documented in the PageMaker SDK Guide. Thus, the
classes named “PSet...” represent PageMaker queries, while similar classes
without “Set” in the class name represent PageMaker commands.

Although the PageMaker SDK Guide was not written specifically for PCL, the
parameters and results from command and query objects correspond closely
to what is shown in the Guide. You should use it as your primary reference
to PCL classes, as it contains important information about each specific
command and query.
PageMaker Class Library 8

Using PCL
Getting Started

In the PageMaker Class Library folder, you should copy the files “PCL Plug-in
Main.cp” and “PCL Plug-in Main.rsrc” to begin your PCL plug–in project.
These are in the “(Project Stationaries)” folder. You will need to add or
modify two lines to the main.cp source code to create an instance of your
subclass of PPluginCall. The project stationaries folder also contains Mac
template files for the 68K and PPC projects.

The main.cp source code declares and manages a global pointer gPB to point
to the current sPMParamBlock that is passed from PageMaker. For maximum
efficiency, this parameter block is used by all command and query classes to
communicate with PageMaker. The global variable gPB is used to avoid
having to explicitly pass a reference to this parameter block through every
command and query constructor. Each command and query object maintains
a local reference to the parameter block in the PCallback root class.

The main() function stores the old value of gPB on the stack, and restores it
upon exit. This addresses any potential reentrancy issues that might arise
through the use of this global.

To build a plug–in, you should create a
subclass of PPluginCall. Upon entry to
main(), an instance of your subclass of is
created, and its function PPlugin-
Call::Dispatch() dispatches the call to
one of five other functions: DoLoad(),
DoInvoke(), DoUnload(), DoCleanup(), and
DoShutdown().

The default behavior of each of these func-
tions is to do nothing. To add behavior to
your plug–in, override one or more of these
functions; you must override DoInvoke(),
the other four functions are optional. You
can then add additional classes and func-
tions to complete your plug–in code. Refer
to the Colorer (C++) source code for an
example of how to create a PPluginCall
subclass.

PPluginCall

Dispatch()
DoLoad()

DoInvoke()
DoUnload()
DoCleanup()

DoShutdown()

ColorerPluginCall

DoLoad()
DoInvoke()
PageMaker Class Library 9

Using PCL
High Level Command and Query Classes

The high level command and query classes provide wrappers around the
PageMaker callback functions, which are documented in chapters 9 and 10
of the SDK Guide. Wrapping these callbacks provide an easy and efficient
way for you to interact with PageMaker in your plug–in code. Refer to
“Theory of Operation” on page 3 for basic information about the high level
C++ syntax defined by these classes.

The main functions of the high level classes are to:

• provide a natural syntax for making PageMaker commands and
queries, and

• perform proper parameter packing and unpacking using
PRequestBuf and PReplyBuf objects.

Creating Command and Query Objects
The simplest way to use PCL classes is to create them directly on the stack as
shown in chapter 1:

 PSetPage pg(33);

While you can use the C++ new operator to create these objects:

 PSetPage * pg = new PSetPage(33);

there is little reason to do so. By creating direct objects, you avoid the
potential problem of forgetting to delete objects created with the new oper-
ator, a common source of memory leaks in C++.

The high level objects are lightweight; they impose minimal speed or space
overhead on the process of issuing commands and queries, so it is practical
to embed many of them within a single code module. Refer to “Performance
Issues” on page 16 for more information about getting maximum perfor-
mance with PCL.
PageMaker Class Library 10

Using PCL
The High Level Command Classes

Plug–ins make changes to PageMaker and its open publications through
commands. Whatever the user can change through menus and dialogs can be
performed efficiently and automatically with command objects.

PageMaker callbacks vary widely in the parameters required. The command
classes enforce proper callback parameters by their constructor(s) parame-
ters. Constructor parameter lists also contain default values as indicated in
the command descriptions (chapter 9 of the SDK Guide).

Some command classes have a constructor with reference to the equivalent
query object as as its parameter. This simplifies changing one or more of the
object’s parameters. The following code snippet illustrates its usage:

PGetWordSpace curWordSpace; // get current settings
curWordSpace.dWordMin += 5; // change word min
PWordSpace newWordSpace(curWordSpace); // update publication

Variable Length Commands
Several commands require a variable number of parameters:

• the Book command,

• the Tabs command,

• the Import command.

You must build a proper PRequestBuf object containing the complete list of
items for these commands, and use it as a constructor parameter:

PRequestBuf request(numItems * sizeof(long) + 2);
request << numItems; // size of list
for (short i = 0; i++ < numItems;)
 request << tabstop[i];
PTabs tab(request); // set tab stops in current story
PageMaker Class Library 11

Using PCL
The High Level Query Classes

Plug–ins obtain information from PageMaker and its open publications
through queries.

Like the high level commmand classes, the high level query classes wrap the
process of making queries into PageMaker. These classes are responsible for
enforcing proper callback parameters where needed, and manage the infor-
mation returned by PageMaker. This section discusses how to use query
objects.

Working with Query Results
Query obects are more complex than command objects. A command object’s
only public interface is its constructor; query objects also have various func-
tions to access the information returned by PageMaker.

The public interface to get information from a query object depends on the
type of query. If you examine chapter 10 of the SDK Programmer’s Guide,
you will see that the information returned from queries can be:

• a single value, which may be fixed (e.g., a 16-bit short) or vari-
able length (a string),

• a block, or structure of values, which may be fixed (no strings) or
variable length (one or more strings),

• a list of values, which may be single values or blocks, or

• an initial block of values followed by a list.

In two queries, the blocks in a list themselves each contain another list.
These are handled as special cases by those high level classes.

Because of this complexity, the interface to query objects has some unique
features. To show how the interface works, let’s begin with two simple
examples and work our way up.

PGetLeading lead; // Get current leading value (a short)
if (lead == 12) ... // compare value to another short

PGetPubName pubName; // Get current publication name
strcat(x, pubName); // copy name to x

In these two cases, the query is a single value, and thus we treat the object
itself as if it were the return value. Operator overloading is used in these
classes.

The next example shows how to access a query object that contains a block
of information.

PGetSpaceOptions spaceOptions;
if (spaceOptions.bAutoKerning == true &&
 spaceOptions.cLeading > lead) ...

The PGetSpaceOptions class contains public variables with names corre-
sponding to the names used in the PageMaker SDK Guide. For single value
queries, or string values, the query object acts as a read–only structure. You
cannot assign a new value to a query object field:

strcpy(spaceOptions.sInkName, "wacky green"); // ERROR!
PGetLeading lead; // Get current leading value (a short)
PageMaker Class Library 12

Using PCL
lead = 12; // ERROR!
PLeading setLead(12); // Use command object instead.

The next example illustrates a query that contains a list of information.

The GetColorInfo query returns a complex data structore with an initial
block of information, followed by a list. Both the initial block and the list
items are variable length because they each contain strings.

PGetColorInfo colorInfo(-2, “mauve”);
short theType = colorInfo.cType; // check type
strcpy(x, colorInfo.sInkName); // first ink name in list
short ink = colorInfo.dInkLevel; // first ink level

Use the Count() member function to find out how many items are on the
list. You can then iterate over the list using the postfix operator++ on the
object. Operator++ wraps around when it gets to the end of the list, or you
can use the Reset() function to reset the list to its first item.

short i, j, numColors = colorInfo.Count();
for (i = 0 ; i < numColors; i++)
{
 strcpy(x, colorInfo.sInkName); // get i-th ink name
 if (colorInfo.dInkLevel > threshold) // and ink level
 break;
 colorInfo++; // iterate the object
}
colorInfo.Reset(); // so next iteration starts at beginning

You should always check Count() before referencing object variables that
are part of the list, such as colorInfo.sInkName. If Count() == 0, the values
of these variables are undefined, but the object cannot detect the error.
Operator++() will throw an exception (CQ_FAILURE), however, if there are
no list members.
PageMaker Class Library 13

Using PCL
Error Handling

In a perfect world, a PageMaker plug–in would never cause PageMaker to
crash. The PCL exception mechanism is designed to prevent this from
happening. However, you must still exercise some care in your code to avoid
an unpleasant surprise to your plug-in user.

You should always program with the assumption that any command or query
object may throw an exception when it is created. If you don’t want control
to immediately return to PageMaker, you must handle the error in your
code.

PCL uses the C++ exception mechanism to report errors. The function PCall-
back::CallPageMaker(), which issues the actual callback to PageMaker, will
throw an exception if the return value from PageMaker is non–zero. Other
functions—primarily constructors—may throw exceptions for problems that
occur within them, for example if an invalid (null) pointer is passed in. All
errors thrown by PCL are error code numbers, of type PMErr.

The PCL main.cp source file contains a custom unexpected() error handler,
which helps prevent incorrect exception situations from terminating Page-
Maker.

In general, PageMaker will return an error code—and thus PCL will throw an
exception—for invalid parameter data (for example, verifying that the
parameter you pass to PPage to set the current page is within the range of
actual pages). PCL classes do not validate parameters sent to or received
back from PageMaker. If you wish to handle such errors gracefully, you
should either perform explicit data validation in your code and/or implement
try/catch handlers in the appropriate points in your code.

You can use the PPluginCall::BuildErrorMessages() function to create
custom error messages. For errors that are returned from PageMaker, the
standard error messages will often be adequate, but you may want to
provide more information to the user so they can take corrective action, or
assist you in troubleshooting their problem.

try
{
 PGetPrivateData privData(...);
}
catch (PMErr err)
{
 if (err == CQ_NOPDATA)
 this->BuildErrorMessages("You don’t have any private data",
 "Doh!");
 // now rethrow error, or continue elsewhere
}

A plug–in should never cause PageMaker to quit unexpectedly, which is the
default behavior of an uncaught exception. Therefore, your plug–in code
must catch all exceptions thrown, and report an error back to PageMaker if
appropriate.

The main() function defined in main.cp contains catch{ } clauses that trap
all exceptions and returns an appropriate PMErr to PageMaker, so you
shouldn’t have to do anything special to avoid this problem.
PageMaker Class Library 14

Using PCL
Potential Exception Handling Problems
One common situation that requires careful programming is creating
command or query objects within a destructor. The C++ language explicitly
defines the case of nested exceptions as a fatal error, which can occur when
an exception is thrown within a destructor.

Here’s an example:

class StSavePage // a stack class to save/restore current page #
{
public:
 StSave() { }
 ~StSavePage() { PgPage restore(curPage); }

private:
 PgGetPage ourPage; // on creation, saves current page #
};

...

void MyPluginCall::SomeFunc()
{
 StSavePage save; // save current page # on stack
 PgPage gotoPg(-999); // oops! an exception will be thrown!
}

When the PgPage gotoPg(-999); statement executes, an exception will be
thrown. If the StSavePage destructor were to also cause an exception—which
could happen if MyPluginCall::SomeFunc() had deleted a bunch of pages
including the saved page—PageMaker would terminate due to nested excep-
tions.

To prevent this, you should explicitly catch all exceptions that might occur
within the destructor:

StSavePage::~StSavePage() // this is better...
{
 try { PgPage restore(curPage); }
 catch (...) { }
}

PageMaker Class Library 15

Using PCL
Performance Issues

There are performance tradeoffs with any class library, and PCL is no excep-
tion. While great care has been taken to maximize performance, there are
several situations where performance considerations—both size and speed—
should be noted.

As with any performance tuning, you should perform careful testing and
profiling to ensure that changes will provide measureable, meaningful
improvements in your software.

Speed Issues
The “use once, throw away” philosophy of the command and query classes
introduces a slight performance overhead for the construction and destruc-
tion of objects. Because of the lightweight design of the classes, it is unlikely
this will be a significant cause of a performance bottleneck, especially when
you consider the processing that PageMaker does as the result of a command
or query callback.

The overhead for these objects is mostly in some additional copying of
parameters into a PRequestBuf object, or query results out of a PReplyBuf
object. String values returned by queries are normally not copied by the high
level objects.

Size Issues
The high level wrapper classes can lead to an explosion of classes; there is
one class for every command and query. Great care has been taken to opti-
mize each class with respect to its code and data size, but if you are very
tight for space, you may want to look at ways to economize (of course, the
first choice for economizing may be to write the program in C, since just
using C++ introduces an increase in code size due to the complexity of the
language and its libraries).

The high level classes are fine grained; only classes that you use in your code
will contribute to the size of your plug–in executable. The high level
wrapper classes do contribute to code size, so in some situations you may
want to consider using low level classes instead of high level ones. In most
cases, however, the savings will only be a few bytes per high level class
replaced.

The template classes are defined in header files, and will only be instanti-
ated when used in a source code file. If the same classes are used across
multiple modules, you may want to compile a single instance of those classes
in one place to avoid the potential for redundant code increasing your code
size. Again, given the lightweight design of the template classes, this is
unlikely to be a concern in most situations. Refer to your compiler documen-
tation on how to explicitly instantiate template classes.

You can use the low level classes to build custom high level classes that
replace high level PCL classes (although with some loss of simplicity and
increase in potential programming errors). Simple commands are the most
likely candidates for this:

PgSetPage pg(33); // high level object to set the page
PgCommand(pm_setpage, 33); // equivalent low level object

Query classes, and more complex command classes, are not as easy to
replace. You may have to create your own PRequestBuf, PReplyBuf, and
PListMom objects to accomplish the same results as the high level class.
PageMaker Class Library 16

Using PCL
The wrapper classes do provide some benefits for the small increase in size.
Most importantly, they make sure that proper parameters for a command or
query are provided. At a minimum, they provide a consistent interface for all
commands and queries regardless of how complex or simple they are.
PageMaker Class Library 17

	Requirements
	Dependencies
	Design Goals
	Theory of Operation
	Overloaded Operators
	Memory Management

	The PCL Class Hierarchy
	“Use once, throw away…”
	The PPluginCall Class
	Utility Classes
	Class Names

	Getting Started
	High Level Command and Query Classes
	Creating Command and Query Objects

	The High Level Command Classes
	Variable Length Commands

	The High Level Query Classes
	Working with Query Results

	Error Handling
	Potential Exception Handling Problems

	Performance Issues
	Speed Issues
	Size Issues

