
Frankenstein Cross Assemblers Users Manual

Mark Zenier

1. Disclaimer

This software is in the public domain. Any prior
copyright claims are relinquished.

This software is distributed with no warranty whatever.
The author takes no responsibility for the consequences of
its use.

2. Introduction

2.1 This Manual

This manual covers the basic features for the Frankenstein
cross assemblers. The specific features for a given
target architecture will be covered in the appendix for
that cross-assembler.

2.2 Notation

Items enclosed in [] are optional. The "[]" are not
entered in the source statement or command line, and are
just a notation.

3. Invocation

name [-o binary] [-l listing] [-s symbols] [-d] input

The optional operands on the command line can be in any
order.

3.1 Input File

The input file must appear after the optional entries on
the command line. Only one input file is used with this
version. If the file name is a single minus sign, the
standard input is used.

3.2 Listing File

-l filename

An annotated listing will only be produced if an optional
list file is provided, otherwise the error messages and
summary will be output to the console. There is no
required suffix or default extension for the file name.

- 2 -

3.3 Hex Output File

-h filename or
-o filename

The binary output will only be produced if the optional
file is provided. See the section in the description of
the output files for the format of the data records. If
any errors occur, the hex output file is either not
created or is deleted depending on whether the error
occurred in the input or output phases of processing.
There is no required suffix or default extension for the
file name.

3.4 Symbol Listing File

-s filename

The symbol table is dumped with one entry per line for
whatever use is desired, normally with the sort utility to
produce symbol listings in a different order that the one
provided. See the section on the output files for a
description of the format. There is no required suffix or
default extension for the file name.

3.5 Debug

The -d debug option

- Saves the intermediate file in the /usr/tmp directory

- Calls the abort() system call to produce a "core"
file

3.6 Processor Selection

assembler name or
-p string

Some of these assemblers support related families of
processors, and can be limited to specific subsets of the
total instructions by sending the processor number or name
as an operand. The operand is scanned for unique
substrings which identify the target processor. The
operand can be either the name of the executable, or the
operand of the -p option, with the operand of the -p
having precedence. The name of the executable may not
available in some operating systems. The CPU pseudo-
operation has precedence over both the name scan and the
-p operand [see the appendix for the specific processor].

- 3 -

Example

a6800 for the mc6800 instruction set
a6801 for the 6801/6803 instruction set
a6811 for the mc68hc11 instruction set

4. Source Input File

The source input is a text file a with one statement per
line. Adjacent symbols must be separated by spaces or
tabs or special characters such as operators or
parenthesis.

4.1 Input Lines

Source lines consist of up to four parts

[Label] [Opcode [Operands]] [; comments]

Labels A symbol that starts in the first column of the
line is a label. A label is used as the defining
instance of a symbol, the place where it is
given a value, normally the address of the
location in memory where the data generated by
the rest of the statement is placed. Labels are
optional for target machine instructions
statements. Label are required on some pseudo-
operations, and are not allowed on others.

Opcode The first symbol in a line that doesn't start in
column 1 is treated as an opcode, all symbols
after that are treated as symbol references.
Opcodes are treated as a separate set of
symbols, so a label can have the same character
string as an opcode. Opcodes are converted to
uppercase for comparison, so case is not
significant.

Operands The rest of the line is the operands associated
with the opcode. These are expressions, symbol
references, or other syntactic elements
determined by the specific operation.

Comments Comments start with a ';', anything on a line
after a semicolon is ignored. Lines that
consist of only a comment are treated as empty
lines.

- 4 -

Example

; just a little example
org $700

label equ * ; set label to current location
adda #$21 ; a 6800 example
end

4.1.1 Limitations Input lines should be shorter than 256
characters. An error message is issued if lines are
longer.

4.1.2 Empty Empty lines are ignored as input, but are
copied to the listing file.

4.2 Syntactic Elements

4.2.1 Symbols Symbols are strings of characters. The
first of which is one of the following.

A-Z a-z ! & ^ _ Ü

The rest of the string consists of zero or more of the
following.

0-9 A-Z a-z ! & ^ _ Ü

There is no length limit to symbols, all characters are
significant. Case is significant.

4.2.2 Reserved_Variables_Names Machine specific names,
and operator names that can appear in symbolic expressions
share the same symbol table with labels, and cannot be
used as labels. The list will vary from machine to
machine. Case is significant for these symbols.

Examples

and defined eq ge gt high le low lt mod ne not or shl
shr xor AND DEFINED EQ GE GT HIGH LE LOW LT MOD NE
NOT OR SHL SHR XOR

4.2.3 Numeric_Constants numeric constants can be
specified in decimal, hexadecimal, octal, and binary.
Constants are maintained as long variables, but the
instruction generation will cause an error if the value is
too big to fit in its destination field.

4.2.3.1 Decimal_Constants

- 5 -

- one or more decimal characters (0-9) followed by an
optional "d" or "D" base designator.

4.2.3.2 Hexadecimal_Constants

Either

- one or more hexadecimal characters (0-9 a-f A-F)
preceded by a "$" base designator.

- a decimal character (0-9) followed by zero or more
hexadecimal characters (0-9 a-f A-F) followed by a
"h" or "H" base designator

4.2.3.3 Octal_Constants

Either

- one or more octal characters (0-7) preceded by a "@"
base designator

- one or more octal characters (0-7) followed by a "o"
or "O" or "q" or "Q" base designator. Note: this is
the letter "O" not the number "0".

4.2.3.4 Binary_Constants

Either

- one or more binary characters (0 or 1) preceded by a
"%" base designator.

- one or more binary characters (0 or 1) followed by a
"b" or "B" base designator.

4.2.3.5 Examples

123 decimal number
123d decimal number
$faf hexadecimal number
0fafh hexadecimal number, note leading zero used

to differentiate this from symbol "fafh"
@1234 octal number
1234Q octal number
%010101 binary number
010101b binary number

4.2.4 String_Constants String constants are specified
using either the quotation mark " or the apostrophe '. A
string starting with one of these character is terminated
by only that character and can contain the other string

- 6 -

delimiter as data. A string with no characters is valid.

The values generated in the binary output can be different
from the host computers character set (the default). See
the section on Defining Target Character Sets.

Within the character string, the backslash is an escape
character.

\c Character escapes
The only characters defined for the
default (no) translation are \\ \" \'.
Any other translation, (the control
characters '\n', '\r', etc.) require a
translation table be defined. Values
can be set up for any character
following the backslash escape except
x and 0 through 7.

\777 Octal character escapes
An one, two or three character octal
constant. The one byte value is the
binary representation of the number.
The value is masked off for a maximum
value of 255.

\xFF Hexadecimal character escapes
A one or two character hexadecimal
constant, preceded by a lower case x.
Upper and lower case characters A
through F are valid. The one byte
value is the binary representation of
the number.

Examples

"this isn't illegal"
'this is the other delimiter'
'"'
"\xfe\0\n"

4.3 Expressions

Expressions consist of

- Symbolic References
- Location Counter References
- Numeric Constants
- String Constants
- Operators

- 7 -

Expressions are used as operands in statements where any
numeric value or memory address is desired.

4.3.1 Symbols A symbol reference is the name of an item
in the symbol table, which has a numeric value associated
with it. This value is either the memory address of the
statement which has this symbol as a label, or the value
of the expression defined in a SET or EQU statement which
has this symbol as a label.

4.3.1.1 Forward_References During the input phase of
processing, a symbol value may not be known if the
definition of the symbol has not yet occurred. Some
pseudo-operations require that their operand expressions
have a value at the input phase, so no references to as
yet undefined symbols can occur in this case. In the
output phase of processing, it will result in an error if
any of the symbols used in expressions do not have values
defined.

4.3.1.2 Reserved_Symbols_for_Operators Using reserved
symbols as labels will result in a syntax error as they
are predefined as a different type of syntactic element
than the rest of the symbol table. Operators for which
there is no special character representation, and items
like machine register names and condition code types will
be represented by reserved symbols. The set of the
reserved symbols will vary for each target machine, and
will be documented in the appendix for each target.

4.3.2 Location_Counter The special name '*' used in an
expression represents the location of the first byte of
the binary output for the current statement. Some
assemblers use some other character for source code
compatiblity.

4.3.3 Constants The form of numeric constants is defined
in the previous section.

4.3.4 Strings String constants, as defined in the
previous section, are valid in expressions. However, at
most the first two characters are used. If the string is
the null string, i.e. "", the numeric value is zero. If
the string is one character long, the value is the value
of the current character set translation, or the host
computers character set if no translation is active. If
the string is two or more characters long, the value is
256*(the first character) + (the second character).

- 8 -

4.3.5 Operators

4.3.5.1 Description

'+' expression
Unary plus. No real effect.

'-' expression
Unary minus, the result is the
negative of the expression.

NOT expression
Logical negation. The result is 0 if
the expression is nonzero, 1 if the
expression is 0.

HIGH expression
Result is the High half of a two byte
number, equivalent to (expression SHR
8) AND $FF.

LOW expression
Result is the Low order byte of the
expression, equivalent to (expression
AND $FF)

expression '*' expression
expression '/' expression
expression '+' expression
expression '-' expression

Standard arithmetic operations.

expression MOD expression
Result is the remainder of the
division of the value of the left
expression by the right.

expression SHL expression
expression SHR expression

Shift the value of the left expression
left or right by the number of bit
positions given by the right
operation.

expression GT expression
expression GE expression
expression LT expression
expression LE expression
expression NE expression
expression EQ expression
expression '>' expression

- 9 -

expression '>=' expression
expression '<' expression
expression '<=' expression
expression '=' expression
expression '<>' expression

Relational expressions. If the
relation is true, the value is 1. If
false, the value is 0. The operators
are nonassociative, the expression "
1 < 3 < 5 " is not legal.

expression AND expression
expression OR expression
expression XOR expression

Bitwise logical operations.

DEFINED symbol
If the symbol (not an expression) is
defined, i.e. used as a label, before
this point in the input the value is
1. If not, the value is 0.

'(' expression ')'
Parenthesis are available to override
the operator precedence.

4.3.5.2 Precedence The precedence of the operators from
lowest to highest.

1. HIGH LOW
2. OR XOR
3. AND
4. NOT
5. GT GE LE LT NE EQ '>' '>=' '<' '<=' '=' '<>'
6. '+' '-'
7. '*' '/' MOD SHL SHR
8. unary '+' '-'
9. (expression)

5. Statements

The names for the operations and pseudo-operations for
each assembler are specified in the adaptation files, and
can be different from the examples given here.

- 10 -

5.1 Label Only Line

A line with only a label starting in column 1 will define
that symbol with the current value of the location
counter.

5.2 End

[Label] END

The End statement terminates the processing of the current
file. For an include file, the file is closed and input
resumes in the file that contained the include statement.
For the main file, processing shifts to the following
passes of the assembly. The end statement is optional, as
the end of file condition is treated in the same fashion.
If the optional label is present, The symbol specified is
used as the execution start address that is output in the
binary file. The symbol must be used as a label somewhere
else in the file. When more than one start address is
specified, the last one in the file is used.

5.3 File Inclusion

INCLUDE "filename"
INCL "filename"

The include statement shifts input from the current file
to the file specified. Input resumes from the file
containing the include statement when the end of file or
the End statement is reached in the included file.
Includes can be nested up to the limits of the include
file stack, currently a limit of 20 deep, or the limits of
the operating system, whichever comes first. Includes can
be recursive, i.e., a file can include itself. If a file
cannot be opened, either do to an bad filename or a lack
of system resources, an error is issued.

5.4 Conditional Assembly

5.4.1 If

IF expression

The IF statement allows selective assembly. If the
expression evaluates to a nonzero value, all statements
between the IF and the matching ELSE or ENDI are
assembled. If the expression evaluates to zero, or the
expression in noncomputable due to a forward reference,
all statements between the IF and the matching ELSE or
ENDI are ignored.

- 11 -

Note: it is safer to use the DEFINED operator when testing
for the existence of a symbol than to rely on the
noncomputability of an expression.

IF statements can be nested to a depth determined by a
configuration constant, currently 32. No label is allowed
on an IF statement.

5.4.2 Else

ELSE

The ELSE statement causes all statements between it and
its corresponding ENDI statement to be treated the
opposite of the statements between the matching IF and
this statement. When the expression on the matching IF is
nonzero, the statements between the ELSE and ENDI are
ignored. If the IF expression failed, the statements
between the ELSE and the ENDI are assembled. Labels are
not allowed on ELSE statements.

5.4.3 End_If

ENDI

The ENDI statement terminates processing of its matching
IF statement. Labels are not allowed on ENDI statements.

5.5 Symbolic Constants

Symbols can be assigned numeric values with the SET and
EQU statements. The expressions cannot have forward
references to as yet undefined symbols.

5.5.1 Equate

Label EQU expression

The EQU statement takes the value of the expression and
creates a symbol with that value. Symbols defined in EQU
statements cannot already exist, or be redefined.

5.5.2 Set

Label SET expr

The SET statement sets the symbol specified in the label
field with the numeric value of the expression. The SET
statement can change the value of a symbol, but only if
the symbol is originally defined in a previous SET
statement.

- 12 -

Example

counter set 1
counter set counter+1
counter set counter+1

5.6 Location Counter Value Setting

The address of the generated binary data can be changed
with the ORG and reserve statements.

5.6.1 Org

[Label] ORG expression

The location counter is set to the numeric value of
expression. It is an error if the expression contains
references to symbols not yet defined. The optional label
is set to the new value of the location counter.

5.6.2 Reserve_Memory

[Label] RMB expression
[Label] RESERVE expression

The reserve memory statement moves the location counter
forward by the number of bytes specified in the
expression. The label is set to the first location of
this area.

5.7 Data Definitions

5.7.1 Define_Byte_Data

[Label] BYTE expression [, expression] ...
[Label] FCB expression [, expression] ...
[Label] DB expression [, expression] ...

The define byte statement generates one character of data
for each expression in the expression list. There can be
up to 128 expressions on a line, more than the line length
will allow. The optional label is set to the first
location of this area.

5.7.2 Define_Word_Data

[Label] WORD expression [, expression] ...
[Label] FDB expression [, expression] ...
[Label] DW expression [, expression] ...

- 13 -

The define word statement generates a two byte integer for
each expression in the expression list. There can be up
to 128 expressions on a line, more than the line length
will allow. The byte order of the data is determined by
the adaptation files for the target processor. The
optional label is set to the first location of this area.

5.7.3 Define_String_Data

[Label] STRING string [, string] ...
[Label] FCC string [, string] ...

The define string statement generates data encoded in the
current character set translation, one byte per character,
excluding the delimiter characters. The optional label is
set to the first location of this area.

5.8 Defining Target Character Sets

The values generated for String Constants in both the
Define String Data and in expressions can be specified on
a character by character basis. This is to support cross
assembly where the target system has a different character
set from the host computer.

5.8.1 Define_Character_Set_Translation

Label CHARSET

The define character set translation statement defines a
name and creates an internal table for a character set.
The label symbol is treated like the label on an EQU
statement. The value is from an internal counter and has
little or no meaning outside of using it on a CHARUSE
statement to specify which translation to use. There can
be up to 5 [configurable] character translation sets. A
CHARSET statement must precede any CHARDEF statements.

5.8.2 Define_Character_Value

CHARDEF string, expression [, expression] ...
CHD string, expression [, expression] ...

The define character value statement set the translation
for one or more characters in the table defined by the
preceding CHARSET statement. There can be more than one
character in the string, but the number of expression in
the value list must match the number of characters. Octal
and Hexadecimal escape sequences cannot occur in the
string.

- 14 -

There are two sets in each translation table. The first is
for the characters, the second for characters escaped with
the backslash.

Note: the characters '"' and '\"' (and "'" and "\'") each
have an entry in different halves of the translation
tables.

5.8.3 Use_Character_Translation

CHARUSE
CHARUSE expression

The use character translation statement changes the
translation for the following statements. The statement
without an expression turns off the translation, so the
host character set is used. The statement with an
expression (the name given on the CHARSET statement) sets
the translation to the set defined in the respective
CHARSET.

Example

ascii charset
chardef " !\"#$%&\'",$20,$21,$22,$23,$24,$25,$26,$27
chardef "()*+,-./",$28,$29,$2a,$2b,$2c,$2d,$2e,$2f
chardef "01234567",$30,$31,$32,$33,$34,$35,$36,$37
chardef "89:;<=>?",$38,$39,$3a,$3b,$3c,$3d,$3e,$3f
chardef "@ABCDEFG",$40,$41,$42,$43,$44,$45,$46,$47
chardef "HIJKLMNO",$48,$49,$4a,$4b,$4c,$4d,$4e,$4f
chardef "PQRSTUVW",$50,$51,$52,$53,$54,$55,$56,$57
chardef "XYZ[\\]^_",$58,$59,$5a,$5b,$5c,$5d,$5e,$5f
chardef "`abcdefg",$60,$61,$62,$63,$64,$65,$66,$67
chardef "hijklmno",$68,$69,$6a,$6b,$6c,$6d,$6e,$6f
chardef "pqrstuvw",$70,$71,$72,$73,$74,$75,$76,$77
chardef "xyz{|}Ü",$78,$79,$7a,$7b,$7c,$7d,$7e
chardef '"', $22 ; not the same table entry as '\"'
chardef "'", $27 ;
chardef "\n\t\v\b\r\f\a", $0a,$09,$0b,$08,$0d,$0c,$07
charuse ascii

5.9 Machine Instructions

[Label] opcode operands?

Machine instructions generate the binary output by
evaluating the expressions for the operands, and matching
the opcode with the entry in the instruction generation
tables.

- 15 -

If the instruction has more than one format which is
selected by the value of the operands, the selection
criteria must able to be determined at the input phase of
processing. For example, in the mc6800 architecture
direct address mode, any memory variables that are have an
address between 0 and 255 must be defined before any
reference to these symbols.

The optional label is set to the first location of the
generated instruction.

6. Output

6.1 Program Generated Messages and Errors

6.1.1 Messages

`` ERROR SUMMARY - ERRORS DETECTED {count}''
`` - WARNINGS {count}''

output at the end of the listing and on the
console.

6.1.2 System_Errors

``cannot open hex output {filename}''
file cannot be opened for output. The assembly
continues as if the -[oh] option was not
specified.

``cannot open input file {filename}''
file cannot be opened for reading. Fatal error.

``cannot open list file {filename}''
file cannot be opened for output. The assembly
continues as if the -l option was not specified.

``cannot open symbol file {filename}''
file cannot be opened for output. The assembly
continues as if the -s option was not specified.

``cannot open temp file {filename}''
file cannot be opened for input or output. Fatal
error.

``no input file''
no input operand specified. Fatal error.

``no match on CPU type {string}, default used''
operand for a -p option can't be matched.

- 16 -

``cannot allocate string storage''
Request to operating system for more memory
failed. Fatal error. The string storage pool
is where the character representation of symbols
and names for include files are stored.

``cannot allocate symbol space''
Request to operating system for more memory
failed. Fatal error. The symbol table is full.
The symbol space is the set of arrays where the
symbol values and other numeric information is
stored.

``cannot redefine reserved symbol''
Error in defining reserved symbols. Two calls to
"reservedsym()" with the same character string
value exist in the setup. Fatal error. Should
not occur in a production executable.

``excessive number of subexpressions''
The first pass ran out of element storage for
the expression parse tree. The expression is
too complex. Internal error which should never
occur. Fatal error.

``unable to allocate symbol index''
Request to operating system for more memory
failed. Fatal error. The symbol table is full.
The symbol index is used in the output pass to
direct symbol references to the symbol table
entry.

6.1.3 Error

``ELSE with no matching if''
``ENDI with no matching if''

mismatched if/else/endi results in an else/endi
left over

``IF stack overflow''
more than IFSTKDEPTH (32) nested if statements

``Overlength/Unterminated Line''
line longer than input buffer, or not terminated
with newline character.

``active IF at end of file''
mismatched if/else/endi results in an unclosed
if

``cannot change symbol value with EQU''

- 17 -

symbol is already defined.

``cannot change symbol value with SET''
symbol is already defined, but not with a Set
statement.

``cannot create character translation table''
the internal table for a character translation
set cannot be allocated due to lack of space, or
more translation sets than the assembler is
configured for.

``cannot open include file''
The include file cannot be opened for reading,
or not enough system resources are available to
open the file.

``character already defined 'char' ''
the character is already present in a previous
CHARDEF statement for this translation set.

``expression exceeds available field width''
The value of an expression is too large to fit
into the field of the instruction. Relative
branch target is too far away.

``expression fails validity test''
An explicit test programmed in the generation
string for the instruction failed. These
conditions are documented in the appendix for
the specific instruction set.

``expression stack overflow''
Too many level of parenthesis or complex
expression with operator precedence that results
in the expression evaluation stack overflowing.

``include file nesting limit exceeded''
include files are nested to more than
FILESTKDPTH (20) levels deep. "cannot open
include file" usually occurs first.

``invalid char in instruction generation''
Internal error, instruction generation string is
not defined properly. Should not occur in a
production executable.

``invalid character constant 'char' ''
A character specification in a string constant
isn't properly formed.

- 18 -

``invalid character to define 'char' ''
a constant in the string in a CHARDEF statement
is of a form (octal, hex, or improperly formed)
that does not have a translation table entry.

``invalid opcode''
No such string occurs in the opcode symbol
table. Opcode strings are converted to
uppercase before comparison, and therefore are
case insensitive.

``invalid operands''
``invalid operands/illegal instruction for cpu''

statement has a valid opcode, with the correct
syntax, but no code generation can be found in
the table for these operands

``invalid syntax for instruction''
opcode is valid, but not for this syntax form

``more characters than expressions''
``more expressions than characters''

A mismatch between the string constant and the
number of expressions in a CHARDEF statement.

``multiple definition of label''
label symbol is already defined.

``no CHARSET statement active''
a CHARDEF statement occurs before any CHARSET
statement.

``noncomputable expression for EQU''
``noncomputable expression for ORG''
``noncomputable expression for SET''
``noncomputable result for RMB expression''

expression contains reference to symbols that
have not yet been defined, and thus has no
numeric value.

``nonexistent character translation table''
expression in a CHARUSE statement does not
correspond to any CHARSET statements label.

``overflow in instruction generation''
``overflow in polish expression conversion''

The intermediate file line being built exceeds
the length of the buffer. The expression is too
complex.

``syntax error at/before character ^{character}''

- 19 -

``syntax error at/before character {character}''
``syntax error at/before token {symbol/constant}''
``syntax error at invalid token {constant/string} ''
``syntax error at/before string {string} ''
``syntax error at/before End of Line''
``syntax error at/before {relational op}''
``syntax error at/before Undeterminable Symbol''
``syntax error - undetermined yyerror type''

statement is in a form that the first pass
parser cannot recognize. The next syntactic
element is inappropriate for whatever language
element the parser is working on.

``error or premature end of intermediate file''
``syntax error - cannot backup''
``unimplemented width''
``unknown intermediate file command''
``yacc stack overflow''

Internal errors, should not occur.

``undefined character value 'char' ''
A string constant contains a character not
defined in a CHARDEF statement for the current
character translation.

``undefined symbol {symbolname}''
symbol has no definition anywhere in file.

6.1.4 Warnings

``character translation value truncated''
An expression in a CHARDEF statment has a value
less than zero or greater then 255.

``forward reference to SET/EQU symbol''
A symbol in an expression is defined in a
set/equ statement that occurs after the line.
For set statements, the value of the symbol is
that defined in the set statement closest to the
end of the file.

``string constant in expression more than 2
characters long''
The first two characters are used as the numeric
value of the subexpression.

- 20 -

6.2 Listing

When the -l option is used, the detailed listing is output
to the given file. This consists of the symbol listing
followed by the annotated listing.

6.2.1 Symbol_Table The symbol listing is printed three
symbols across, with the value then name of the symbol.
Undefined symbols will have "????????" in their value
field. The symbols are listed in order of first
occurrence in the input. Only the first fifteen
characters of a symbol are printed.

6.2.2 Instruction_Lines The source statements are
printed in the same form as they were input with no
reformatting. Following the source line, will be any
error or warning messages associated with the line.
Statements which generate data will be preceded with the
address and data for them in hexadecimal format. If more
than six bytes of data are generated, the remainder will
be printed on the following lines, with up to sixteen
bytes per line. All data generated is printed in the
file. Statements that don't generate data but have some
value oriented operation, like EQU, SET, ORG, or RESERVE,
will print that value in the first 24 columns of the
source line.

6.3 Symbol File

When the -s option is used, the symbol table is printed to
the given file. The format is one symbol per line,
address then symbol name. If the symbol is undefined,
"????????" is printed for the address. The symbols are
printed in the order of first occurrence, either
definition or reference, in the source file. This feature
is provided so the system sort utility can be used to
produce symbol tables sorted by either address or name.
The entire symbol name is printed.

6.4 Binary Output

6.4.1 Intel_Hex_Record_Format The Intel hex record is a
printable text string with an ASCII character representing
4 bits of a byte. The characters used are "0" through "9"
and "a" through "f", representing binary data 0000 to
01001, and 1010 through 1111. There are always two ASCII
characters used to represent 1 byte, the high half, then
the low half. There is one record per line in a text
file. This format is accepted by most of prom programmers.

- 21 -

Record Layout

:ccaaaattddddddddddkk

':' indicator character

cc ascii-hex representation of an 8 bit count
of data characters

aaaa ascii-hex representation of 16 bit address

tt ascii-hex representation of an 8 bit type

00 the address is the first location
to store the data

01 the address is the location to
start execution, the count is 00,
no data is present.

dd... ascii-hex representation of the data, two
characters per byte. The number of 8 bit
bytes is given by the count field.

kk ascii-hex representation of an 8 bit
checksum. The sum of the binary
representation, modulo 256, of the count,
the high half of the address, the low half
of the address, the type, all the data
bytes, and the checksum must be zero.

7. Program Limits

Line Length 256 characters including end
of line control characters

Number of Symbols

- The maximum allocatable
block size divided by the
size of a pointer. For a
iAPX286, about 16000
entries.

- The amount of allocatable
memory divided by the
amount of space per
symbol. For an iAPX286,
22 + 1 + the length of the
string bytes.

- 22 -

Symbol Length See line length

Output A 16 bit address in the
output record format limits
output to 65536 binary
bytes.

Expressions per Line 128 (in BYTE and WORD
statements)

Strings per Line 128 (in STRING statements)

Nested If Statements 32 levels

Nested Include Files 20 or whatever the operating
system allows

Subexpressions per Line 258 symbols, constants,
operators (total)

Character Translation Sets 5 sets, plus the default
(host) character set

CONTENTS

1. Disclaimer.. 1

2. Introduction...................................... 1
2.1 This Manual.................................. 1
2.2 Notation..................................... 1

3. Invocation.. 1
3.1 Input File................................... 1
3.2 Listing File................................. 1
3.3 Hex Output File.............................. 2
3.4 Symbol Listing File.......................... 2
3.5 Debug.. 2
3.6 Processor Selection.......................... 2

4. Source Input File................................. 3
4.1 Input Lines.................................. 3
4.2 Syntactic Elements........................... 4
4.3 Expressions.................................. 6

5. Statements.. 9
5.1 Label Only Line.............................. 10
5.2 End.. 10
5.3 File Inclusion............................... 10
5.4 Conditional Assembly......................... 10
5.5 Symbolic Constants........................... 11
5.6 Location Counter Value Setting............... 12
5.7 Data Definitions............................. 12
5.8 Defining Target Character Sets............... 13
5.9 Machine Instructions......................... 14

6. Output.. 15
6.1 Program Generated Messages and Errors........ 15
6.2 Listing...................................... 20
6.3 Symbol File.................................. 20
6.4 Binary Output................................ 20

7. Program Limits.................................... 21

