
fd2inline

fd2inline ii

COLLABORATORS

TITLE :

fd2inline

ACTION NAME DATE SIGNATURE

WRITTEN BY August 5, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

fd2inline iii

Contents

1 fd2inline 1

1.1 fd2inline.guide . 1

1.2 fd2inline.guide/Introduction . 2

1.3 fd2inline.guide/Installation . 2

1.4 fd2inline.guide/Usage . 3

1.5 fd2inline.guide/Using inlines . 3

1.6 fd2inline.guide/Using fd2inline . 4

1.7 fd2inline.guide/Rebuilding . 7

1.8 fd2inline.guide/Internals . 8

1.9 fd2inline.guide/Background . 8

1.10 fd2inline.guide/Old format . 9

1.11 fd2inline.guide/New format . 11

1.12 fd2inline.guide/Stubs format . 13

1.13 fd2inline.guide/History . 13

1.14 fd2inline.guide/Authors . 14

1.15 fd2inline.guide/Index . 15

fd2inline 1 / 17

Chapter 1

fd2inline

1.1 fd2inline.guide

This is a user’s guide to FD2Inline 1.11, a parser that ←↩
converts the

AmigaOS shared library FD files to format accepted by the GNU CC.

See file COPYING for the GNU General Public License.

Last updated January 31st, 1997.

Introduction
What is this program for?

Installation
How to install it?

Usage
How to use inlines and FD2InLine?

Rebuilding
How to recompile it?

Internals
How do inlines work?

History
What has changed?

Authors
Who wrote it?

Index
Concept index.

fd2inline 2 / 17

1.2 fd2inline.guide/Introduction

Introduction

FD2InLine is useful if you want to use GCC for AmigaOS-specific
development and would like to call the functions in the AmigaOS shared
libraries efficiently.

The format of calls to the AmigaOS shared library functions differs
substantially from the default function call format of C compilers (see

Background
). Therefore, some tricks are necessary if you want to use

these functions.

FD2InLine is a parser that converts fd files and clib files to GCC
inlines.

fd and clib files contain information about functions in shared
libraries (see

Background
).

FD2InLine reads these two files and merges the information contained
therein, producing an output file suitable for use with the GCC
compiler.

This output file contains so-called inlines -- one for each function
entry. Using them, GCC can produce very efficient code for making
function calls to the AmigaOS shared libraries.

Note: the term inlines is misleading -- FD2InLine no longer uses
the __inline feature of GCC (see

New format
).

1.3 fd2inline.guide/Installation

Installation

The following assumes you have the fd2inline-1.11-bin.lha archive.

If you use a recent release of GCC, you might not need to install
anything. Starting with GCC 2.7.2, the new format (see

New format
) of

inlines should be available with the compiler. However, the separate
fd2inline-1.11-bin.lha archive will always contain the latest
version of FD2InLine and the inlines, which might not be the true for
the ADE or Aminet distributions. ADE distribution might not contain

fd2inline 3 / 17

some of the supported 3rd party libraries’ inlines.

The installation is very easy, so there is no Installer script :-).

If you have an older version of the inlines installed, please remove
it now, or you might encounter problems later. Typically, you will have
to remove the following subdirectories of the os-include directory:
inline, pragmas and proto.

Next, please change your current directory to ADE: (or GNU:, if you
use old Aminet release) and simply unpack the fd2inline-1.11-bin.lha
archive. This should install everything in the right place. More
precisely, the headers will go to the include directory, the libraries
to lib, fd2inline executable to bin directory and the AmigaGuide
documentation to the guide directory.

1.4 fd2inline.guide/Usage

Usage

This chapter describes two aspects of using FD2InLine:

Using inlines
Making efficient function calls.

Using fd2inline
Creating inlines.

1.5 fd2inline.guide/Using inlines

Using inlines
=============

Using inlines is very simple. If you want to use a library called
foo.library (or a device called bar.device), simply include file
<proto/foo.h> (<proto/bar.h>) and that’s it. For example:

#include <proto/dos.h>

int main(void)
{

Delay(100); /* Wait for 2 seconds */
}

Please always include proto files, not inline files - proto files

fd2inline 4 / 17

often fix some incompatibilities between system headers and GCC.
Besides, this technique makes your code more portable across various
AmigaOS C compilers.

There are a few preprocessor symbols which alter the behaviour of the
proto and inline files:

__NOLIBBASE__
By default, the proto files make external declarations of the
library base pointers. You can disable this behaviour by defining
__NOLIBBASE__ before including a proto file.

__CONSTLIBBASEDECL__
The external declarations described above declare plain pointer
variables. The disadvantage of this is that the library base
variable has to be reloaded every time some function is called. If
you define __CONSTLIBBASEDECL__ to const, less reloading will be
necessary, and better code will be produced. However, declaring a
variable as const makes altering it impossible, so some dirty
hacks are necessary (like defining the variable as plain in one
file and altering it only there. However, this will not work with
base relative code).

<library>_BASE_NAME
Function definitions in the inline files refer to the library base
variable through the <library>_BASE_NAME symbol (e.g.,
AMIGAGUIDE_BASE_NAME for amigaguide.library). At the top of
the inline file, this symbol is redefined to the appropriate
library base variable name (e.g., AmigaGuideBase), unless it has
been already defined. This way, you can make the inlines use a
field of a structure as a library base, for example.

NO_INLINE_STDARG
This symbol prevents the definition of inline macros for varargs
functions (see

Old format
).

USEOLDEXEC
This symbol is used only in proto/exec.h. Unlike SAS/C,
proto/exec.h uses the SysBase variable as the Exec library
base by default. This is usually faster than direct dereferencing
of 0x00000004 (see

Background
), since it does not require reading

from CHIP memory (things might be even worse if you use Enforcer
or CyberGuard, which protect the low memory region). However, in
some low-level cases (like startup code) you might prefer
dereferencing 0x00000004. To do this, define _USEOLDEXEC_ before
including proto/exec.h.

1.6 fd2inline.guide/Using fd2inline

fd2inline 5 / 17

Using fd2inline
===============

You invoke FD2InLine by writing:

fd2inline [options] FD-FILE CLIB-FILE [[-o] OUTPUT-FILE]

The command line arguments have the following meaning:

FD-FILE
The name of the input fd file.

CLIB-FILE
The name of the input clib file.

OUTPUT-FILE
The name of the output inline file. If it is not specified (or if
- is specified), standard output will be used instead. The
file name can be preceded by a -o, for compatibility with most
UN*X software.

The following options can be specified (anywhere on the command
line):

--new
Produce new format inlines.

--old
Produce old format inlines.

--stubs
Produce library stubs.

--proto
Produce proto file. If this option is specified, providing clib
file is not necessary. fd2inline will only read fd file and will
generate a proto file, to be put in include/proto directory.

--version
Print version information and exit.

See
Internals
, for more information.

Example:

fd2inline ADE:os-lib/fd/exec_lib.fd ADE:os-include/clib/exec_protos.h -o ADE: ←↩
include/inline/exec.h

This will build file exec.h containing new format inlines of
exec.library in directory ADE:include/inline.

If you want to add support for GCC to a library, there are a few
things you should remember about.

fd2inline 6 / 17

Sometimes, FD2InLine might not know how to handle a function found
in a clib file, if this function doesn’t have a corresponding entry in
the fd file. This is most often a case of varargs functions (see

Background
), if they use nonstandard naming convention. FD2InLine will

warn you if it finds such a function. There is an array of such
exceptions in FD2InLine source code. You should add the name of this
function there and send a patch to FD2InLine maintainer (see

Authors
),

for inclussion in the next release of FD2InLine.

FD2InLine assumes that the type of the base variable is struct
Library *. If it is something different in your case, you should extend
an array of exceptions in FD2InLine source code (see above).

FD2InLine handles void functions in a special way. It recognizes
them by the return value -- it has to be void (the case is not
significant). If a clib file uses a different convention, it has to be
modified before running FD2InLine.

In addition to creating inlines you must also create a proto file.

The easiest way to do it is to call FD2InLine with --proto option.
Most often, the generated file will be ready to use. Unfortunately,
some libraries (like, for example, dos.library) have broken header
files and GCC generates warning messages if you try to use them. To
avoid these warnings, you have to include various headers in the proto
file before including the clib file.

You might also want to create a pragmas file, which might be
necessary for badly written SAS/C sources. pragmas are generated
automatically during the building of FD2InLine by an AWK script, so you
might either have a look at the fd2inline-1.11-src.lha archive, or
simply create pragmas file by hand.

Creating a linker library with stubs might also be useful, in case
somebody doesn’t want to, or can’t, use inline headers.

fd2inline-1.11-src.lha contains necessary support for this. For
example, to generate a library libexec.a with exec.library stubs, you
should type:

make alllib INCBASE=exec LIBBASE=exec

This will create three libexec.a libraries in lib subdirectory:
plain, base relative and 32-bit base relative one. Of course, this
particular example doesn’t make much sense since libamiga.a already
contains these stubs.

INCBASE and LIBBASE specify the base names of the (input) proto and
fd files and the (output) library. This will often be the same,
but not always. For example, in the case of MUI, INCBASE has to be set
to muimaster, but LIBBASE should be set to mui.

fd2inline 7 / 17

1.7 fd2inline.guide/Rebuilding

Rebuilding

First, you have to get the fd2inline-1.11-src.lha archive.

Unarchive it. You might either build FD2InLine in source directory
or in a separate, build directory. The latter is recommended. Type:

lha -mraxe x fd2inline-1.11-src.lha
mkdir fd2inline-bin
cd fd2inline-bin
sh ../fd2inline-1.11/configure --prefix=/ade
make

This should build the FD2InLine executable, headers, libraries and
so on.

Please note that the fd files should be available in the directory
ADE:os-lib/fd. If you store them in some other place, you will have
to edit the Makefile and modify variable FD_DIR before invoking make.

You can then type:

make install

This will install fd2inline, the inlines and the documentation in
the appropriate subdirectories of ADE:.

The fd2inline-1.11-src.lha archive contains four patches in unified
diff format, in directory patches. They fix bugs in OS 3.1 headers and
fd files. Without applying amigaguide_lib.fd.diff to
amigaguide.library fd file, the produced inlines will be broken.
Applying timer.h.diff to devices/timer.h will prevent collision with
IXEmul’s sys/time.h. Two other patches rename an argument name from
true to tf, since true is a reserved word in C++. Use patch to
apply these patches, for example:

cd ADE:os-lib/fd
patch -p0 <amigaguide_lib.fd.diff

ADE and Aminet distributions contain more complete sets of patches.

A few words about the source code:

I know, it’s not state-of-the-art C programming example. However,
believe me, it was in much worse condition when I took it over. In its
current state it is at least readable (if you use tab size 3, as I do
:-). I think that rewriting it in C++ would clean it up considerably
(it’s already written in OO fashion, so this should be quite easy).
Using flex and bison to create the parser would also be a nice thing, I
guess. However, I don’t think it’s worth the effort. But, if somebody

fd2inline 8 / 17

wants to do it: feel free, this is GNU software, so everybody can
modify it.

1.8 fd2inline.guide/Internals

Internals

This chapter describes the implementation details of inlines.

Background
Function calls in shared libraries.

Old format
Inlines that use __inline.

New format
Inlines that use the preprocessor.

Stubs format
Not really inlines, but...

1.9 fd2inline.guide/Background

Background
==========

This section describes the calling conventions used in the AmigaOS
shared libraries.

User-callable functions in the AmigaOS are organized in libraries.

From our point of view, the most important part of a library is the
library base. It always resides in RAM and contains library
variables and a jump table. The location of the library base varies.
You can obtain the library base location of the main system library --
exec.library -- by dereferencing 0x00000004. Locations of other
library bases can be obtained using the OpenLibrary function of
exec.library.

Without providing unnecessary details, every function in a library
has a fixed location in the library’s jump table. To call a function,
one has to jump to this location.

Most functions require some arguments. In C, these are usually
passed on the CPU stack. However, for some obscure reason, AmigaOS
system designers decided that arguments to shared libraries should be

fd2inline 9 / 17

passed in CPU registers.

All the information required to make library function calls is
provided in fd files. Every shared library should have such a file. It
provides the name a library base variable should have, the offset in
the jump table where each library function resides, and information
about which arguments should be passed in which registers.

In order to check if arguments passed to a function have the correct
type, the C compiler requires function prototypes. These are provided
in clib files -- every library should have such a file.

Starting with the AmigaOS release 2.0, certain functions have been
provided which accept a variable number of arguments (so-called varargs
functions). Actually, these are only C language stubs. Internally, all
optional arguments have to be put into an array of long ints and the
address of this array must be passed to a fixed args library function.

To implement calls to shared library functions, compiler vendors have
to either use some compiler-dependent tricks to make these calls
directly (so-called in line), or provide linker libraries with function
stubs, usually written in assembler. In the latter case, a function
call from the user’s code is compiled as usual -- arguments are passed
on the stack. Then, in the linking stage, a library stub gets linked
in. When this stub is called during program execution, it moves the
arguments from the stack to the appropriate registers and jumps to the
library jump table. Needless to say, this is slower than making a call
in line.

1.10 fd2inline.guide/Old format

Old format
==========

extern __inline APTR
OpenAmigaGuideA(BASE_PAR_DECL struct NewAmigaGuide *nag, struct TagItem * ←↩

attrs)
{

BASE_EXT_DECL
register APTR res __asm("d0");
register struct Library *a6 __asm("a6") = BASE_NAME;
register struct NewAmigaGuide *a0 __asm("a0") = nag;
register struct TagItem *a1 __asm("a1") = attrs;
__asm volatile ("jsr a6@(-0x36:W)"
: "=r" (res)
: "r" (a6), "r" (a0), "r" (a1)
: "d0", "d1", "a0", "a1", "cc", "memory");
return res;

}

In this implementation, the AmigaOS shared library function stubs are
external functions. They are defined as __inline, making GCC insert
them at every place of call. The mysterious BASE_PAR_DECL and
BASE_EXT_DECL defines are hacks necessary for local library base

fd2inline 10 / 17

support (which is quite hard to achieve, so it will not be described
here). The biggest disadvantage of these inlines is that compilation
becomes very slow, requiring huge amounts of memory. Besides, inlining
only works with optimization enabled.

#ifndef NO_INLINE_STDARG
#define OpenAmigaGuide(a0, tags...) \

({ULONG _tags[] = { tags }; OpenAmigaGuideA((a0), (struct TagItem *)_tags) ←↩
;})

#endif /* !NO_INLINE_STDARG */

The source above shows how varargs functions are implemented.
Handling them cannot be made using __inline functions, since __inline
functions require a fixed number of arguments. Therefore, the unique
features of the GCC preprocessor (such as varargs macros) have to be
used, instead. This has some drawbacks, unfortunately. Since these are
actually preprocessor macros and not function calls, you cannot make
tricky things involving the preprocessor inside them. For example:

#include <proto/amigaguide.h>

#define OPENAG_BEG OpenAmigaGuide(
#define OPENAG_END , TAG_DONE)

void f(void)
{

OPENAG_BEG "a_file.guide" OPENAG_END;
OpenAmigaGuide(

#ifdef ABC
"abc.guide",

#else
"def.guide",

#endif
TAG_DONE);

}

Neither of the above OpenAmigaGuide() calls is handled correctly.

In the case of the first call, you get an error:

unterminated macro call

By the time the preprocessor attempts to expand the OpenAmigaGuide
macro, OPENAG_END is not yet expanded, so the preprocessor cannot find
the closing bracket. This code might look contrived, but MUI, for
example, defines such macros to make code look more pretty.

In the case of the second call, you’ll see:

warning: preprocessing directive not recognized within macro arg

A workaround would be to either surround entire function calls with
conditions, or to conditionally define a preprocessor symbol GUIDE
somewhere above and simply put GUIDE as a function argument:

#ifdef ABC
#define GUIDE "abc.guide"

fd2inline 11 / 17

#else
#define GUIDE "def.guide"
#endif

void f(void)
{
#ifdef ABC

OpenAmigaGuide("abc.guide", TAG_DONE);
#else

OpenAmigaGuide("def.guide", TAG_DONE);
#endif

OpenAmigaGuide(GUIDE, TAG_DONE);
}

Another problem is that when you pass a pointer as an argument, you
get a warning:

warning: initialization makes integer from pointer without a cast

This is because all optional arguments are put as initializers to an
array of ULONG. And, if you attempt to initialize an ULONG with a
pointer without a cast, you get a warning. You can avoid it by explicit
casting of all pointer arguments to ULONG.

Because of these drawbacks, varargs inlines can be disabled by
defining NO_INLINE_STDARG before including a proto file. In such a
case, you will need a library with function stubs.

1.11 fd2inline.guide/New format

New format
==========

#define OpenAmigaGuideA(nag, attrs) \
LP2(0x36, APTR, OpenAmigaGuideA, struct NewAmigaGuide *, nag, a0, struct ←↩

TagItem *, attrs, a1, \
, AMIGAGUIDE_BASE_NAME)

As you can see, this implementation is much more compact. The LP2
macro (and others) are defined in inline/macros.h, which is included at
the beginning of every inline file.

#define LP2(offs, rt, name, t1, v1, r1, t2, v2, r2, bt, bn) \
({ \

t1 _##name##_v1 = (v1); \
t2 _##name##_v2 = (v2); \
{ \

register rt _##name##_re __asm("d0"); \
register struct Library *const _##name##_bn __asm("a6") = (struct ←↩

Library*)(bn);\
register t1 _n1 __asm(#r1) = _##name##_v1; \
register t2 _n2 __asm(#r2) = _##name##_v2; \
__asm volatile ("jsr a6@(-"#offs":W)" \
: "=r" (_##name##_re) \

fd2inline 12 / 17

: "r" (_##name##_bn), "r"(_n1), "r"(_n2) \
: "d0", "d1", "a0", "a1", "cc", "memory"); \
_##name##_re; \

} \
})

If you compare this with the old inlines (see
Old format
) you will

notice many similarities. Indeed, both implementations use the same
tricks. This means that there should be small, if any, difference in
code quality between old and new inlines.

With the new inlines, however, inlining is performed very early, at
the preprocessing stage. This makes compilation much faster, less
memory hungry, and independent of the optimization options used. This
also makes it very easy to use local library bases -- all that is
needed is to define a local variable with the same name as library base.

Unfortunately, using the preprocessor instead of the compiler for
making function calls has its drawbacks, as described earlier (see

Old format
). There is not much you can do about it apart from modifying

your code.

Depending on the type of a function, FD2InLine generates calls to
different LP macros.

Macros are distinguished by one or more of the qualifiers described
below:

digit
As you may have already guessed, digit indicates the number of
arguments a function accepts. Therefore, it is mandatory.

NR
This indicates a "no return" (void) function.

A4, A5
These two are used when one of the arguments has to be in either
the a4 or a5 register. In certain situations, these registers have
special meaning and have to be handled more carefully.

UB
This indicates "user base" -- the library base pointer has to be
specified explicitly by the user. Currently, this is used for
cia.resource only. Since there are two CIA chips, the
programmer has to specify which one [s]he wants to use.

FP
This means that one of the arguments is of type "pointer to a
function". To overcome strange C syntax rules in this case, inside
FP macros a typedef to __fpt is performed. The inline file
passes __fpt as the argument type to the LP macro. The actual type
of the argument, in a form suitable for a typedef, is passed as an
additional, last argument.

fd2inline 13 / 17

As you can see, there could be more than a hundred different
variations of the LP macros. inline/macros.h contains only 34, which
are used in the current OS version and supported 3rd party libraries.
More macros will be added in the future, if needed.

If you look carefully at the definition of OpenAmigaGuideA at the
beginning of this section, you might notice that the next to last
argument to the LP macro is not used. New inlines were not implemented
in one evening, and they went through many modifications. This unused
argument (which was once a type of library base pointer) is provided
for backwards compatibility. Actually, there are more unnecessary
arguments, like function and argument names, but it was decided to
leave them in peace.

1.12 fd2inline.guide/Stubs format

Stubs format
============

Stubs format is very similar to old format (see
Old format
). The

functions are not defined as extern, however.

The main difference is the format of the varargs functions -- they
are plain functions, not preprocessor macros.

APTR OpenAmigaGuide(struct NewAmigaGuide *nag, int tag, ...)
{

return OpenAmigaGuideA(nag, (struct TagItem *)&tag);
}

This format is not suitable for inlining, and it is not provided for
this purpose. It is provided for the building of linker libraries with
stubs (see

Using fd2inline
).

1.13 fd2inline.guide/History

History

Version 1.0, July 14th, 1996, Kamil Iskra

* First officially available version.

Version 1.1, October 24th, 1996, Kamil Iskra

fd2inline 14 / 17

* Removed a lot of language mistakes from the documentation (Kriton
Kyrimis).

* Inlines of dospath.library, screennotify.library, ums.library and
wbstart.library integrated (Martin Steigerwald).

* Inlines of muimaster.library integrated (Kamil Iskra).

* Floating point registers fp0 and fp1 are now marked as clobbered
(Kamil Iskra, reported by Kriton Kyrimis).

* Improved handling of clib files, particularly recognition of
function prototypes and varargs functions (Kamil Iskra).

* Added support for --proto and --version options. Minor changes in
output file generators, most notably making proto files work with
other compilers than GCC, too. Finalized support for building
linker libraries (Kamil Iskra, change in proto files suggested by
Joop van de Wege).

Version 1.11, January 31st, 1997, Kamil Iskra

* Minor fixes in Makefile.in for ADE tree (Fred Fish).

* Fixed handling of prototypes in which the argument name was the
same as the type name (Kamil Iskra, reported by Martin
Recktenwald).

* Added support for building 32-bit base relative linker libraries
(Kamil Iskra).

* Added a paragraph about void functions (Kamil Iskra, suggested by
Martin Recktenwald).

1.14 fd2inline.guide/Authors

Authors

The first parser for GCC inlines was written in Perl by Markus Wild.

It had several limitations, which were apparently hard to fix in
Perl. This is why Wolfgang Baron decided to write a new parser
in C.

For some reason, however, he never finished it. In early 1995. Rainer
F. Trunz took over its development and "improved, updated, simply made
it workable" (quotation from the change log). It still contained quite
a few bugs, though.

In more-or-less the same time, I started a discussion on the
amiga-gcc-port mailing list about improving the quality of inlines.
The most important idea came from Matthias Fleischer, who introduced
the new format of inlines (see

New format

fd2inline 15 / 17

). Since I started the
discussion, I volunteered to make improvements to the inlines parser.
Having no idea about programming in Perl, I decided to modify the
parser written in C. I fixed all the bugs known to me, added some new
features, and wrote this terribly long documentation :-).

Not all of the files distributed in the FD2InLine archives were
created by me or FD2InLine. Most of the files in include/proto-src and
include/inline-src (alib.h, strsub.h and stubs.h) were written by
Gunther Nikl (with some modifications by Joerg Hoehle and me).

If you have any comments concerning this work, please write to:

ade-gcc@ninemoons.com

This is a list to which most of the ADE GCC developers and activists
subscribe, so you are practically guaranteed to get a reply.

However, if, for some reason, you want to contact me personally, you
can do so in one of the following ways:

* E-mail (preferred :-):

iskra@student.uci.agh.edu.pl

Should be valid until October 1999 (at least I hope so :-).

* Snail-mail (expect to wait long for a reply :-):

Kamil Iskra
Luzycka 51/258
30-658 Krakow
Poland

Latest version of this package should always be available on my WWW
page:

http://student.uci.agh.edu.pl/~iskra

1.15 fd2inline.guide/Index

Index

<library>_BASE_NAME
Using inlines

__CONSTLIBBASEDECL__
Using inlines

__NOLIBBASE__
Using inlines

fd2inline 16 / 17

USEOLDEXEC
Using inlines

Address
Authors

Authors
Authors

Background
Background

CLIB files
Background

Creating inlines
Using fd2inline

FD files
Background

Function arguments
Background

Function calls format in shared libraries
Background

History
History

Installation
Installation

Internals
Internals

Introduction
Introduction

Jump table
Background

Latest version
Authors

Libraries
Background

Library base
Background

Linker libraries
Background

Making efficient calls
Using inlines

fd2inline 17 / 17

New inlines format
New format

Old inlines format
Old format

Other parsers
Authors

Preprocessor symbols
Using inlines

Rebuilding
Rebuilding

Reporting bugs
Authors

Source code
Rebuilding

Stubs inlines format
Stubs format

Usage
Usage

Using FD2Inline
Using fd2inline

Using inlines
Using inlines

Varargs functions
Background

Varargs problems
Old format

What FD2InLine is
Introduction

What has changed
History

Where to put it
Installation

	fd2inline
	fd2inline.guide
	fd2inline.guide/Introduction
	fd2inline.guide/Installation
	fd2inline.guide/Usage
	fd2inline.guide/Using inlines
	fd2inline.guide/Using fd2inline
	fd2inline.guide/Rebuilding
	fd2inline.guide/Internals
	fd2inline.guide/Background
	fd2inline.guide/Old format
	fd2inline.guide/New format
	fd2inline.guide/Stubs format
	fd2inline.guide/History
	fd2inline.guide/Authors
	fd2inline.guide/Index

