Sedation of the Emergency Patient

Vicki L. Campbell, DVM, DACVA, DACVECC Assist. Professor of Emergency/Critical Care Colorado State University "There are no safe anesthetic agents; There are no safe anesthetic procedures; There are only safe anesthetists."

- Robert Smith

Key points

- Initial stabilization
- Pain management
- Sedation
- Chemical Restraint

Initial Stabilization

An Important Task!

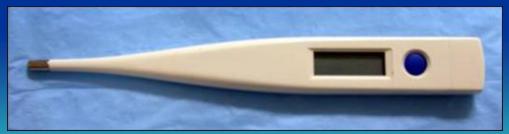
- Emergency patients that aren't in obvious shock are frequently in compensatory shock
- Prevention and treatment of shock is foremost
- Sedatives, anesthetics, and pain medications block the sympathetic nervous system

Diagnostics and Treatment – Hypovolemic and Distributive Shock

- Oxygen
- IV or IO catheter
- Fluid therapy
- PE
- ECG
- BP
- Pulse oximetry
- Temperature

The Decision for Sedation or Anesthesia

Approaching Physiologic Normalcy


- Response to treatment!
- Heart rate normalizing
- Tachypnea resolving
- Pink mucous membranes
- Normal CRT
- Improved mentation

Approaching Physiologic Normalcy

- Mean arterial BP > 80 mmHg and stable when fluids decreased
- Strong, easily palpable pulses
- Body temperature approaching normal

Minimum Laboratory Data

- PCV/TP
- Glucose
- Azostix (BUN or creatinine)

VETERINARY INFORMATION NETWORK

Additional Lab Data

- Acid-base status
- Electrolytes
- Oxygenationventilation status
- Urine specific gravity (pre-fluids)
- Coagulation
- Platelet count
- WBC count

Important Lab Values for the Anesthetist

- Hemoglobin levels
- Acid-base status
- Electrolytes
- Oxygenation-ventilation

When Normalcy Can't Be Reached...

- Dedicated anesthetist
- Frequent data collection
- Careful monitoring
- Practitioner judgment

A Bit of Good News...

- Sedatives and anesthetics slow metabolic rate
- Sedated and anesthetized patients are usually provided supplemental oxygen
- Slight blood pressure buffer zone (MAP > 60 mmHg)

Cases In Which To Avoid Sedation/Anesthesia If Possible

- Head trauma
- Pulmonary contusions
- Severe arrhythmias
- Pneumothorax
- Severe electrolyte disturbances

The Final Decision

- Patient condition pros and cons
- Sedative/anesthetic effects on the patient
- Nature of the problem
- Consequences of waiting or proceeding
- Alternative options

 Example: urine diversion

Taking the Sedation or Anesthetic Plunge

The Protocol

- Tailored to each patient
- Veterinarian drug familiarity
- Cardiopulmonary sparing drugs
- Titration to effect

The Importance of Titration

- Sedative and anesthetic drugs need to reach effective brain concentrations to work
- Despite a good resuscitation, it is likely physiologic normalcy has not been reached

The Importance of Titration

- Low cardiac output states delay anesthetic delivery to the brain
- Patience and titration is necessary to avoid early deep anesthetic planes

Balanced Sedation and Anesthesia

- Uses drugs from different drug categories in order to reduce the amount of drug given from one drug group = multimodal approach
- Frequently leads to less hypotension and a smoother induction

Balanced Sedation/Anesthesia Drugs

- Cardiopulmonary sparing
- MAC reduction
- Titratable
- Reversible

Pain Control

Pre-emptive Analgesia

- Prevented pain is easier to control than pain after-the-fact
- Pain leads to excessive sympathetic stimulation, which may be detrimental
- Included in new AAHA regulations

Acute Pain

 Acute pain tends to be easier to control than chronic pain because the pain pathways aren't chronically stimulated (wind-up)

Acute Pain Drugs

- Opioids
- Ketamine
- Local anesthetics
- Alpha-2 agonists
- NSAIDS

Multimodal approach is key to successful pain management of difficult pain cases!

Sedation

Sedation

- A calm state in which the animal can be aroused
- Does not equal anesthesia
- Commonly interchanged with tranquilization
- Used for minor procedures

PHENOTHIAZINES

BENZODIAZEPINES

OPIOIDS

THE SEDATIVES

ALPHA-2 AGONISTS

BENZODIAZEPINES

OPIOIDS

Diazepam Midazolam Zolazepam THE SEDATIVES

ALPHA-2 AGONISTS

PHENOTHIAZINES

Midazolam vs. Diazepam

- Midazolam
 - Water soluble
 - Expensive

- Diazepam
 - Propylene glycol base
 - Painful IM
 - Unreliable IM or SQ absorption

Benzodiazepines

- Overall a nice adjunct to sedation
- Great for critical patients or emergency patients
- 0.2 to 0.5 mg/kg

BENZODIAZEPINES

OPIOIDS

PHENOTHIAZINES

Acepromazine Chlorpromazine

THE SEDATIVES

ALPHA-2 AGONISTS

Acepromazine

- Great for anxious dogs
- Can be given orally
- Cats can be fairly resistant to effects
- Okay by itself, but better sedation with an opioid
- Need 15-30 minutes to see full effects
- Excellent to treat dysphoria

BENZODIAZEPINES

OPIOIDS

THE SEDATIVES

ALPHA-2 AGONISTS

PHENOTHIAZINES

Xylazine Medetomidine Romifidine

Alpha-2 Agonists

- Useful in aggressive animals
- Useful in cats
- Great if more significant restraint is needed
- Use in young, healthy animals

BENZODIAZEPINES

OPIOIDS

THE SEDATIVES

ALPHA-2 AGONISTS

PHENOTHIAZINES

Opioids

- Morphine
- Fentanyl
- Hydromorphone
- Oxymorphone
- Methadone
- Butorphanol
- Buprenorphine

Buprenorphine Hydrochloride

0.3 mg base/mL

Injection

Neuroleptanalgesia

- Term used when combining an opioid with a sedative
- Good for minor procedures
 - Ultrasound guided aspirates
 - Mild wound debridement
 - Orthopedic radiographs
 - IV catheter placement

PHENOTHIAZINES

BENZODIAZEPINES

OPIOIDS

NEUROLEPTANALGESIA

ALPHA-2 AGONISTS

Good Combinations

- Opioid and benzodiazepine
- Opioid/acepromazine
 BAG (butor, ace, glyco)
- Opioid/medetomidine
- Opioid + benzodiazepine + medetomidine

<u>CV </u>		<u>Sed</u>	
epress			
	_east		
	Most		

D

Neuroleptanalgesia

Neuroleptanalgesia

 An opioid and benzodiazepine neuroleptanalgesia is one of the safest and commonly used sedations used in emergency veterinary medicine

Opioid/Benzodiazepine Neuroleptanalgesia

- "Takes the edge off"
- Does not cause excessive immobilization
- Cardiopulmonary sparing, so is excellent in critically ill animals
- More respiratory depressant than each drug individually

Opioid/Benzodiazepine Neuroleptanalgesia

- Short acting (15 to 30 min)
- Reversible
- Use caution in cats (may cause excitement and aggression)

Minor Procedure Restraint: Neuroleptanalgesia

- U/S, IV catheter, thoracocentesis
- Opioid (choose one):
 - -0.2 mg/kg butorphanol
 - 0.025-0.05 mg/kg hydromorphone
- Sedative (choose one):
 - -0.2 mg/kg midazolam (IM or IV)
 - -0.2 mg/kg diazepam (IV)

Chemical Restraint

Chemical Restraint Definition

 A drug used to control acute, episodic behavior that restricts the movement or function of an animal

Chemical Restraint

 Frequently used for short-term immobility that allows minor diagnostics or procedures to be performed Chemical Restraint Administration

- Subcutaneous
- Intramuscular
- Intravenous
- Frequently combines 2-4 drugs to provide a balanced chemical restraint

Minor Procedure Restraint: Neuroleptanalgesia + Dissociative

- Wound flushing, urinary catheter placement, U/S guided FNA
- Opioid: Butorphanol, hydromorphone, or oxymorphone
- Sedative: Midazolam or diazepam
- Dissociative: Ketamine

Neuroleptanalgesia/Ketamine Combo Considerations

- Cardiopulmonary sparing
- Short acting
- More immobilization than neuroleptanalgesia alone

Neuroleptanalgesia/Ketamine Combo Considerations

- Ketamine stings IM
- Precautions:
 - Cardiovascular disease
 - Urinary obstruction

Telazol

- Tiletamine and zolazepam
- Good for fractious cats
- Small volumes can be given IM
- 20 40 minutes of restraint
- Use in combo with analgesics
- May have prolonged recoveries

"DKT"

- Domitor (medetomidine)
 0.025 mg/kg
- Ketamine
 - -5 mg/kg
- Torbugesic (butorphanol)
 0.2 mg/kg

DKT Considerations

- Excellent chemical restraint for short surgical procedures
- IM injection fractious cats
- 30 45 minutes of deep chemical restraint
- Dose of medetomidine is high
- Medetomidine is reversible

General Anesthetics as Chemical Restraint?

- Dissociatives
- Propofol
- Thiopental
- Etomidate
- Inhalation agents

Anticholinergics

- Decrease salivation
- Consider use during procedures involving high vagal tone or opioid use
 – Gl/urogenital procedures
 - E-tube placement
 - Ocular manipulation
 - Joint procedures

Monitoring and Treatment During Sedation and Chemical Restraint

- IV Catheter
- Oxygen (including preoxygenation)
- Fluid therapy
- EKG
- BP

- Audible pulse (Doppler)
- Respiratory monitoring
- Pulse oximeter
- Temperature
- Eye lubrication

Summary: Keys to Safe Sedation and Anesthesia of the ER Patient

- Use cardiopulmonary sparing, reversible drugs and titrate to effect
- Have a thorough knowledge of the drugs being used and be aware of patient analgesic needs
- Provide appropriate resuscitation prior to sedation or anesthesia
- Provide diligent monitoring
- Anticipate common complications associated with sedation and anesthesia