Limitations of Point-of-Care Testing

Vicki L. Campbell, DVM, DACVA, DACVECC Assistant Professor of Emergency & Critical Care CSU Veterinary Medical Center

Objectives: Monitoring

- Understand the purpose and limitations of point-of-care testing
 Understand which monitors are useful for quick information gathering and what the information means
- Understand the limitations of the monitoring equipment

Point-of-Care Testing

- Purpose: To obtain immediate (within 5-10 minutes), cage-side patient information that will compliment findings from the initial triage examination
- When: Initial presentation and dynamic patients
- Focus: Life-threatening problems
- Limitations: Know your machines!

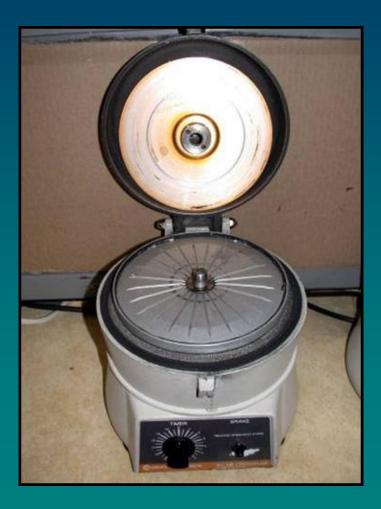
Recognizing Life-Threatening Problems: Triage and Point-of-Care Testing

- Shock
 - Hypovolemic
 - Distributive
 - Cardiogenic
- Sepsis/SIRS/MODS
- Respiratory distress
- Cardiac disease
- Diabetic Ketoacidosis
- Addison's Disease
- Hypoglycemia
- Hypo/hypertension

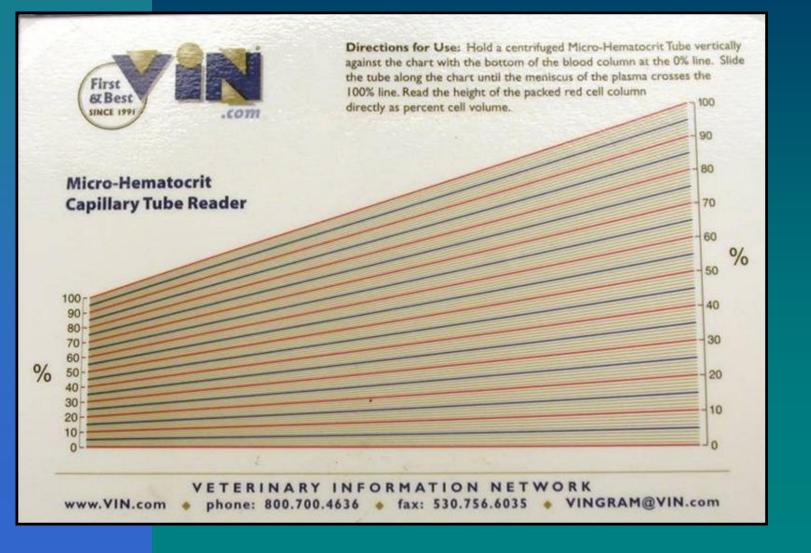
- Acute abdomen
- Seizuring
- Head trauma
- Blood disorders
- Electrolyte abnormalities
- Renal failure
- Post-renal obstruction
- Toxins
- Acid-base disorders
- Saddle Thrombus

The Extended Data Base

PCV/TP


- Glucose
- BUN or Creatinine
- Electrolytes
- Lactate
- VBG or ABG

- Urine s.g. & dipstick
- Blood smear
- Coagulation status
- ECG
- Blood pressure
- Pulse oximeter


Packed Cell Volume

 Percentage of whole blood that contains RBC's compared to plasma
 Centrifuged in

- hematocrit tubes
- Measured on chart

Packed Cell Volume

Packed Cell Volume - Anemia

- Loss, destruction, decreased production, sequestration
- During hemorrhage, TP will drop before PCV due to splenic contraction
- Plasma color and TP can help differentiate causes of anemia
- Look at how the patient is handling the anemia

Packed Cell Volume - Polycythemia

Hemoconcentration
 Chronic hypoxia
 Primary polycythemic disorder

Packed Cell Volume Limitations

- Diluted samples are common, especially if sample was from a catheter
- Centrifuge speed and length of time can alter results
- Minor subjective errors in reading
- May be excessively hemodilute if recently received lots of fluids
- Blood clots can alter results

Total Protein

Measured on refractometer
 Can be artificially elevated with lipemia

Total Protein

Hypoproteinemia

Loss (GI, hemorrhage, or renal)
Decreased production (liver)

Hyperproteinemia

Dehydration
Hyperglobulinemic

Total Protein Limitations

- Can't differentiate between panhypoproteinemia vs. hypoalbuminemia
- Can't differentiate panhyperproteinemia and hyperglobulinemia
- Lipemia, icterus, and hemolysis can artificially raise TP

PCV/TP Case Examples

PCV = 45%; TP = 7.5 g/dL - Normal PCV = 55%; TP = 8.5 g/dL - Dehydration PCV = 40%; TP = 4.0 g/dL - Early hemorrhage - Hypoproteinemia PCV = 25%; TP = 4.0 g/dL Late hemorrhage

PCV/TP Case Examples

PCV = 68%; TP = 5.2 g/dL - Hemorrhagic gastroenteritis PCV = 20%; TP = 7.5 g/dL - RBC destruction or lack of production – Look at plasma color! PCV = 70%; TP = 7.0 g/dL - Polycythemia PCV = 45%; TP = 11 g/dL- Hyperglobulinemia Lipemia

Glucose

- Measured on glucometer or blood gas machine
- Glucometers are designed for human diabetics
 - Read approximately 20 mg/dL low during hypoglycemia

Glucose

Look at your patient! - Clinical signs? - Pediatric vs. adult? - Patient size/species? Seizuring doesn't typically occur unless below 40 mg/dL Detrimental effects of glucose supplementation?

Glucose

Hypoglycemia

- Lab error
- Sepsis/SIRS
- Insulinoma
- Starvation
- Pediatric
- Hyperglycemia
 - Stress (cats)
 - Diabetes mellitus
 - Massive epinephrine release
 - Head trauma

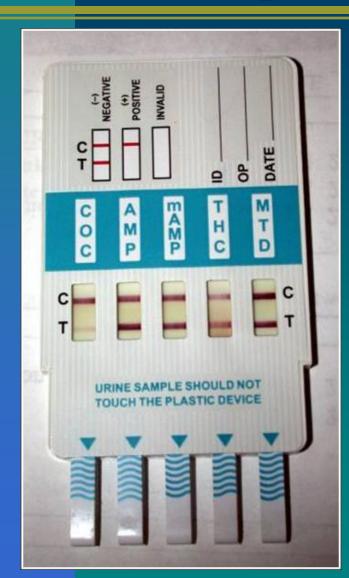
Renal Values

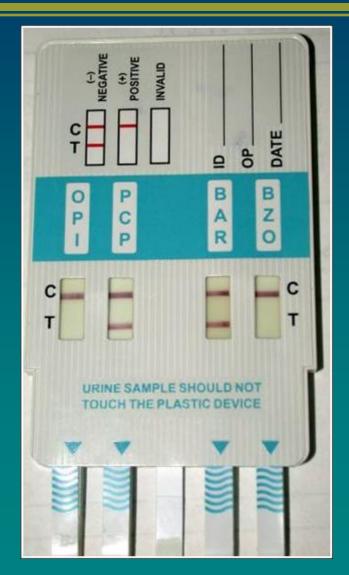
BUN
May be elevated with Gl hemorrhage
Creatinine
More renal specific than BUN
Pre-renal vs. renal vs. post-renal

Measuring BUN - Azostix

Urine Specific Gravity and Dipstick

- Pre-fluids s.g. is most useful
- Be comfortable with no coag abnormalities prior to cystocentesis
- Don't withhold fluids just to get s.g.
- Plasma can be used in lieu of urine to look for ketones
- Leukocyte/nitrite not accurate on dipstick in animals




BUN/Specific Gravity Examples

BUN = 100 mg/dL, Creatinine = 4.0 mg/dL, Urine sg = 1.040Prerenal azotemia **BUN** = 100 mg/dL, Creatinine = 4.0 mg/dL, **Urine sg = 1.010** – Renal azotemia – Prerenal azotemia? BUN = 100 mg/dL, Creatinine = 1.5 mg/dL, Urine sg = 1.025- GI hemorrhage

Urine Drug Testing

Electrolytes

Sodium Potassium Chloride Ionized calcium - Reads artificially low if sample over-heparinized - Acidosis increases ionized calcium

Glu	60	mg/dL
Na	135	mmol/
К	>9.0	mmol/
TC02	8	mmol/
iCa		mmol/
Hct	37	%PCV
нь*	13	9/dL
*via	Hct	

Electrolytes

Make sure samples from catheters are not contaminated with fluids or additives Hct/Hb on blood gas machines usually not accurate

		20.0
Glu	60	mg/dL
Na	135	mmol/
К	>9.0	mmol/
TC02	8	mmol/
iCa		mmol/
Hct	37	%PCV
нь*	13	9/dL
*via	Hct	

Lactate

- A measure of perfusion
- Predictor of gastric necrosis in GDV if > 6 mmol/L
- How quickly lactate drops may be more important than absolute numbers
- Great tool to assess response to resuscitation

Venous or Arterial Blood Gas

At 37C	
PH6.927	
PC0235.4	mm
P0268	i mmi
HC037	mm
BEecf25	i mm
s02*78	%
*calculated	1

Venous vs. Arterial Blood Gases

- Venous blood gases are reliable for acidbase status and ventilatory status
- VBG gives a more accurate picture of global acid-base status during CPR
- pH < 7.2 leads to cellular dysfunction</p>
- Only arterial blood gases can tell you how well a patient is oxygenating
- Venous oxygen tensions are only useful for calculating oxygen extraction
- Venous oxygen < 20 mmHg has been associated with poor prognosis in people

Blood Smear

WBC estimate -Normal estimate 5-15 WBC/10x RBC morphology Platelet estimate -Normal estimate 8-12 plts/100x Poor feathered edge and not looking for platelet clumps can alter results

Coagulation: Primary hemostasis

Platelet count Platelet function -Von Willebrands disease Buccal mucosal bleeding time, as long as platelet count is normal Typically causes mucosal bleeding, epistaxis, and petechiae, not cavity bleeding

Coagulation: Secondary Hemostasis

Activated clotting time – intrinsic pathway (n < 120s)
 Can affected by low platelets and can

be user dependent

Coagulation: Secondary Hemostasis

Prothrombin time (PT) – extrinsic Activated partial thromboplastin time (APTT) - intrinsic

	S	CA	200		1	2	3)	1
	VET	RINARY CO	AGULATION	ANALYZER	4	5	6	
STAI	17 E	NAL ST		ALC: NO.	7	8	9	
	ID	QC	Data Base	Print	CANCEL	0	ENTER	
<u> </u>								

Bilateral epistaxis, melena, hyphema, and petechia on mucous membranes

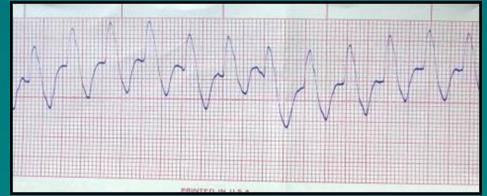
PT/aPTT WNL Thrombocytopenia on blood smear (only 3-5 platelets/hpf) Destruction (ITP) Use (hemorrhage, DIC) Non-production (bone marrow) disease)

Dyspnea, dull lung sound ventrally, pale mucous membranes, hemothorax on thoracocentesis, PCV = 20%, TP = 3.9 g/dL
 Elevated PT only
 Rodenticide toxicity

Vomiting, icterus, bruising ventrally

Pictures courtesy of Dr. Robin VanMetre

Coagulation Case Examples


Elevated PT/aPTT
 DIC
 Increased PT/aPTT
 Low platelets
 Increased FDPs/D-dimers
 Liver failure

Electrocardiogram

Electrocardiogram

- Tachycardia
 - Shock
 - Pain
 - Primary cardiac arrhythmia
- Bradycardia
 - Electrolyte abnormalities (K⁺⁾
 - Primary cardiac arrhythmia (AV block)

Electrocardiogram

Arrhythmias (VPC's, A-fib)
Primary vs. secondary
Electrical alternans
Pericardial effusion

Electrocardiogram Limitations

- Poor contact, shivering, and patient movement can lead to background noise, making ECG difficult to interpret
- Electrical activity can continue long after the heart has stopped (PEA/EMD)!
- ECG is NO substitute for an audible pulse or heartbeat
- Alcohol as contact agent can cause fire if patient needs to be defibrillated

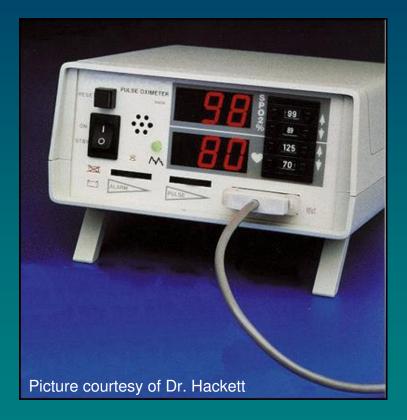
Indirect Blood Pressure

BP = CO x SVR

- One of the best objective measurement of perfusion we have
- May be difficult to measure during hypotension/poor perfusion
- Target MAP > 80 mmHg in awake patients
- Indirect methods
 - **Doppler**
 - Oscillometric

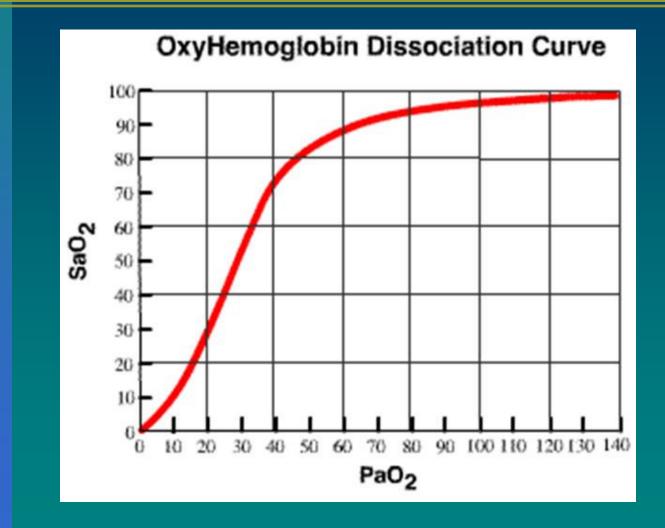
Blood Pressure: Doppler

- Only gives systolic blood pressure
- May give mean pressure in cats under anesthesia
- Allows for audible pulse throughout procedure
- May not work well during severe vasoconstriction


Blood Pressure: Oscillometric

- Gives systolic, diastolic, and mean
- Must match heart rate to be considered accurate
- Cuff size important
- Cardell® only oscillo. BP accurate in cats
- Won't read well with poor perfusion and hypotension

Pulse Oximetry


- Indirect method of measuring hemoglobin saturation
- Two wavelengths of light emitted to determine oxyhemoglobin and deoxyhemoglobin levels
- Accounts for tissue absorption by assuming only arterial blood pulsates

Pulse Oximetry - Artifacts

- Ambient light
- Low perfusion
- Motion
- Look for matching heart rate and good plethysmograph waveform
- Reading frequently defaults to 85% when artifacts are present
- Carboxyhemoglobin/methemoglobin

Oxyhemoglobin Dissociation Curve

Graph

Beyond the EDB: Additional Monitoring

Respiratory -Capnography -Respirometry – Apnea monitors -Tidal flow-volume loops -Transcutaneous oxygen monitoring

Capnography

In the normal healthy dog or cat, the ETCO₂ is a good representation of the PaCO₂
 The ETCO₂ is usually 4-6 mmHg lower than the PaCO₂

The ETCO₂-PaCO₂ gradient is due to mixing of gas from alveoli that are being perfused with alveoli that are not being perfused <u>– Dead space ventilation</u>

Cardiac Arrest

- During cardiac arrest the ETCO₂ frequently is less than 10 mmHg due to little to no pulmonary capillary perfusion
- The ETCO₂ is therefore a great tool for determining:
 - Cardiac arrest
 - Adequacy of chest compressions during CPR
 - Return to spontaneous circulation

Beyond the EDB: Additional Monitoring

Cardiovascular
 Direct arterial blood pressure
 Central venous pressure

Direct Arterial Blood Pressure

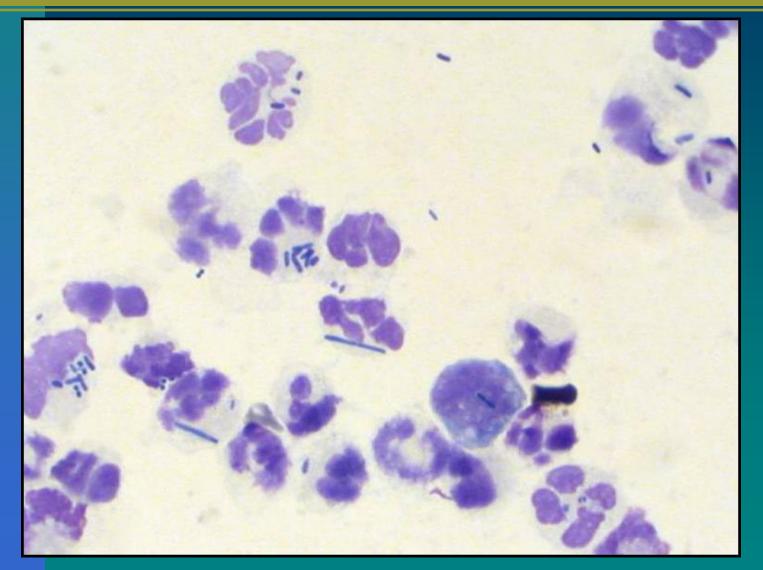
Arterial blood gas sampling **Continuous real-time monitoring** Intentional pharmacological or mechanical cardiovascular manipulation Failure of indirect BP monitoring Supplementary diagnostic clues

Central Venous Pressure Monitoring

- Need central line in right atrium
- Normal $< 5 \text{ cmH}_2\text{O}$, but look for trends
- Determines preload to the heart
 - High CVP = Volume overload or low cardiac output
 - Low CVP = Hypovolemia
- Uses
- Evaluate response to and capacity for fluid loading
- Aids in determining success of pericardiocentesis for cardiac tamponade

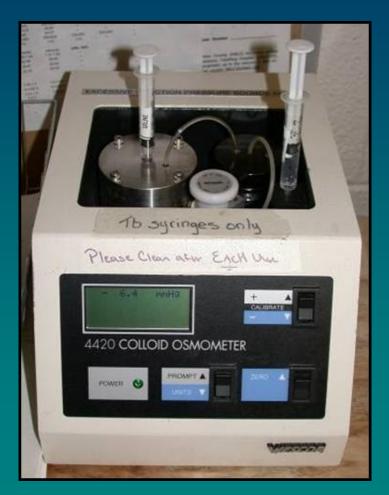
CVP Monitoring

- Can be artificially high if patient in dorsal recumbency or receiving PPV
- Water manometers read in cmH₂O and pressure transducers read in mmHg (1 mmHg = 1.36 cmH₂O)
- Animal should be in lateral recumbency and transducer at level of the heart
- Kinked catheters can lead to artificially high CVP's


Beyond the EDB: Additional Monitoring

Abdominal monitoring
Cytology
Colloid osmotic pressure

Abdominal Monitoring


Intra-abdominal pressure Abdominal girth measurements Abdominocentesis -Generally need 20-30 ml/kg of fluid in the abdomen to have a positive blind abdominal tap Paired lactate and glucose levels Diagnostic peritoneal lavage

Colloid osmotic pressure

- Measures the colloid osmotic pressure in whole blood
- Normal COP = 18-22 mmHg
- Useful to monitor response to artificial colloid use

Conclusions

- Point-of-care testing is essential to aid in quick diagnosis of lifethreatening diseases
- The limitations of point of care testing should be recognized and questionable results should be verified

Conclusions

Continued monitoring and assessment of dynamic patients (repeating blood tests, urine output, continuous ECG, BP, CVP) is necessary in order to remain proactive in treatment of critical patients