

Powerful Techniques Using Local and Regional Anesthetics

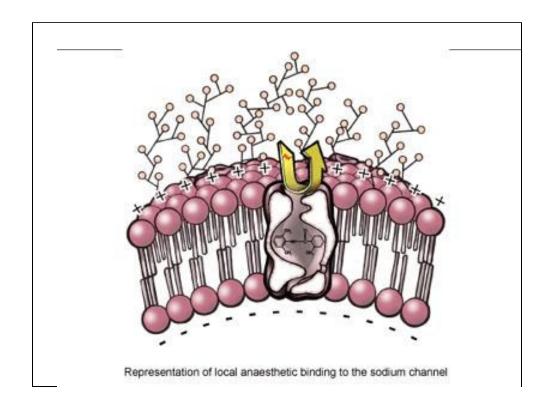
Dr. Ralph C. Harvey
University of Tennessee
College of Veterinary Medicine

Powerful Techniques Using Local and Regional Anesthetics

Dr. Ralph C. Harvey
University of Tennessee
College of Veterinary Medicine

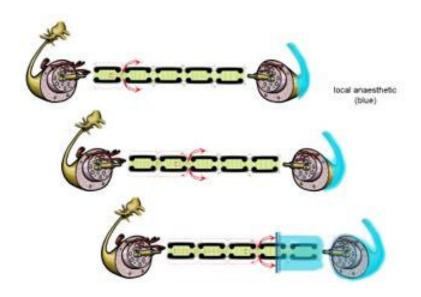
Historical Perspective

- Cocaine, 1884
 topical anesthetic-abuse potential
- Peripheral nerve block Halsted
- Spinal anesthesia Halsted
- Procaine, 1905
- Lidocaine,1943standard of comparison



Mechanism of Action

- Conduction blockade prevents increases in permeability of nerve membranes to sodium ions
- Slows rate of depolarization threshold potential is not reached, action potential is not propagated.
- No alteration of resting membrane potential or threshold potential



Conduction blockade - prevents increases in permeability of nerve membranes to sodium ions...

Slows rate of depolarization - threshold potential is not reached, action potential is not propagated.

Representation of local anaesthetic blocking the propagation of the action potential

Locally active reversible blockade of conduction of nerve impulses

- Autonomic autonomic NS blockade
- Somatic sensory anesthesia
- Somatic motor paralysis

Structure-Activity Relationships

Example of an amide: Lidocaine HCI Example of an ester: Procaine HCI

Lipophilic Portion (unsaturated aromatic ring)

Hydrocarbon connecting chain (ester-CO or amide-NHC)

Hydrophilic portion (tertiary amine)

Order of sensory function block

- 1. pain
- 2. cold
- 3. warmth
- 4. touch
- 5. deep pressure
- 6. motor

Recovery in reverse order

Toxicity associated with local anesthetics

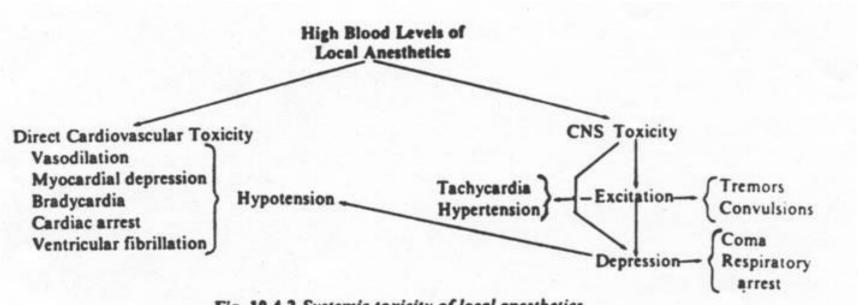


Fig. 10.4-2 Systemic toxicity of local anesthetics.

Pharmacology in Medicine: Principles and Practice, Eds. S.N. Pradhan, R.P. Maickel, and S.N. Dutta, 1986

Adverse effects of overdosing local anesthetics:

- Nausea, CNS stimulation, Cardiac depression
- Maximum dose guideline:
 - Total volume 0.2 ml / kg
 - Lidocaine 2%
 - Bupivacaine 0.5%

Toxicity

Table 10.4-5

Adverse Reactions Encountered with the Use of Local Anesthetics

Adverse Effects	Mechanism	Significance (Management)
Tissue sloughing at site of injection	Due to extravasation of concentrated vasoconstrictor	(a-Adrenergic blocker)
Gangrene of digits	Vasospasm of terminal vessels	(a-Adrenergic blocker)
Anxiety, excitation	Dopaminergic stimulation?	Sign of possible systemic toxicity
Tremors, convulsions	Removal of tonic inhibition	Usually not life-threatening (diazepam)
Coma, respiratory depression	Depression of respiratory center	(Artificial respiration; O2)
Hypertension	Central sympathetic stimulation	(Diazepam, a-Adrenergic blocker)
Hypotension	Sympathetic inhibition; myocardial depression	Systemic absorption
	Direct vasodilator action	(Dopamine)
AV block, cardiac arrest		(Cardiac massage, electrical pacing)
Ventricular fibrillation		(Cardiac massage, electrical defibrilla- tion; do not use antiarrhythmic agents)

Preemptive analgesia

2. Balanced analgesia

Dose to effect

1. Preemptive Analgesia

- Dose early
- Dose before "the knife hits the flesh"
- Dose <u>before</u> the patient hurts.
- Dose <u>before</u> the last dose wears off.

2. Balanced Analgesia

- Similar to "balanced anesthesia"
- Combination of complimentary methods or drug classes
- Maximize effectiveness and minimize side effects
- Local anesthetics are the key

3. Dose to Effect

- "Give until it helps!"
- Medicate smartly. Make the most of your analgesic strategy.
- Inadequate analgesia is wasteful and counter productive.

Specific Local Anesthetics

Lidocaine – reference, and most widely used local anesthetic

Procaine - Novocaine

Mepivacaine - Carbocaine

Bupivacaine – delayed onset, long duration

Benzocaine – caution! methemoglobin

Proparacaine – ophthalmic topical

Articaine – Septocaine – dental, etc.

Adding Bicarbonate to Lidocaine

Discomfort during injection is associated with pH, needle size & rate of administration

Neutralizing the pH of the local anesthetic solution somewhat reduces discomfort during injection

Bicarbonate (1 mEq/L) can be added to 2% lidocaine in 1:10 or 2:10 dilution w/o precipitation

But not with bupivacaine...

The addition of bicarb in this proportion to 0.5% bupivacaine yields an impressive white precipitate

Application

Local Injection (Infiltration)

"Splash Block"

Topical (e.g. Laryngeal, Ophthalmic, Intranasal)

Spinal/Epidural Anesthesia/Analgesia

Regional blockade or specific nerve blocks

IVRA – IntraVenousRegionalAnesthesia, "BIER Block"

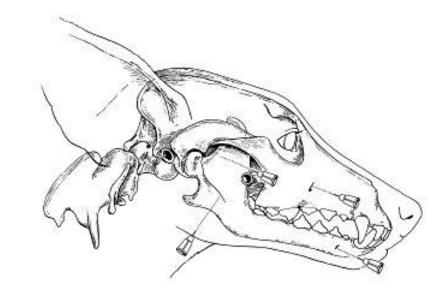
Antiarrhythmic c.r.i.

Analgesic/Anesthetic adjunct c.r.i.

Local Anesthetics:

Many excellent uses of bupivacaine:

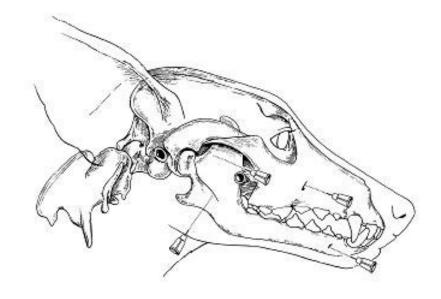
- Regional
- Specific Nerve Blocks (e.g. maxillary n.)



Infiltration

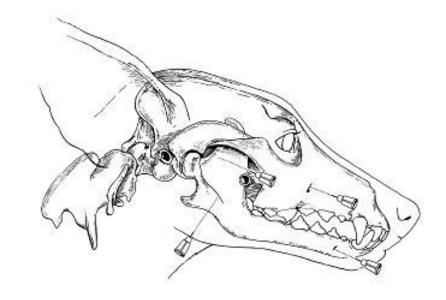
Maxillary Nerve Block:

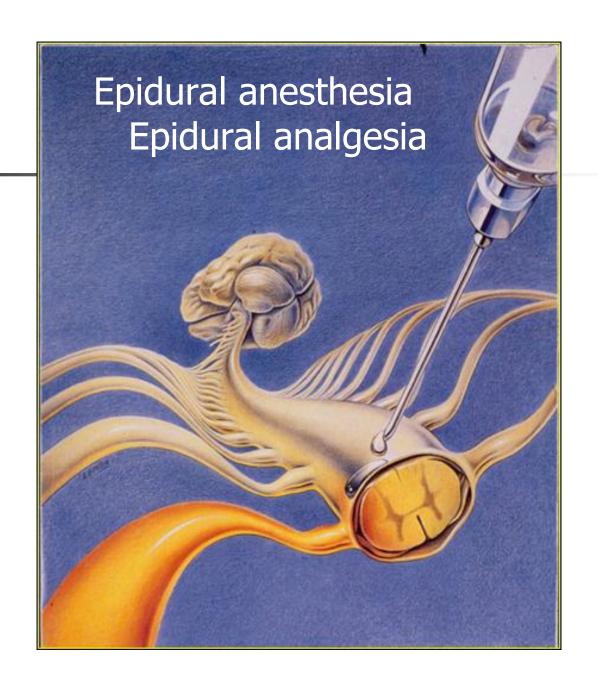
- Maxilla, upper teeth, lip, nose
- Insert needle toward the
 pterygopalatine fossa from
 ventral margin of zygomatic
 arch, 0.5 cm lateral to lateral
 canthus of the eye
 Aspirate, deposit drug at surface of
 bone


 Dose: 0.1-1.0 ml bupivacaine or Septocaine (preferred)

Maxillary Nerve Block:

- Maxilla, upper teeth, lip, nose
- Insert needle into infra-orbital foramen
- Apply digital pressure over foramen
- Aspirate, deposit drug into foramen with digital pressure
- Drug courses through foramen to bifurcation
- Dose: 0.1-1.0 ml bupivacaine or Septocaine (preferred)

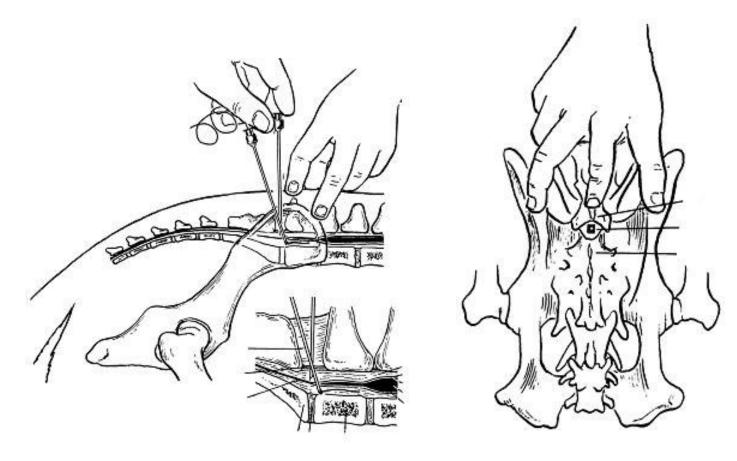

Alternative techniques



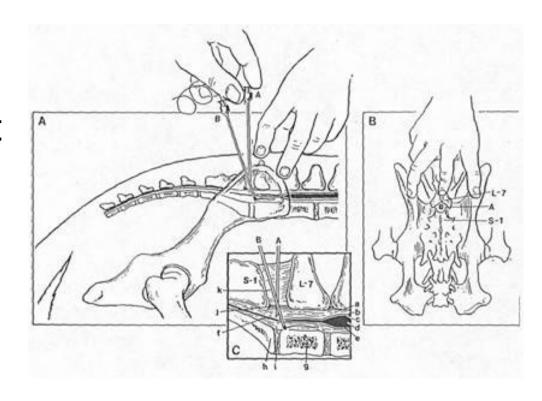
Mandibular Nerve Block:

- (Inferior Alveolar Branch of Mandibular Nerve)
- Mandible, lower teeth, lip
 +/- lingual branch (?)
- Insert needle at lower angle of jaw, rostral to angular process, advance dorsally to mid-portion on medial aspect

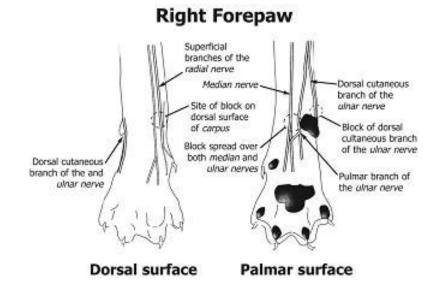
 Dose: 0.1-1.0 ml bupivacaine or Septocaine (preferred)

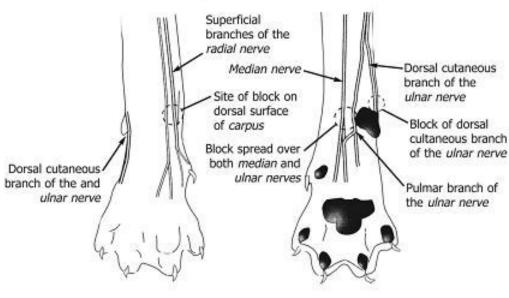

Neuroaxial Analgesia:

- 12-24 hours of substantial analgesia
- Decreased "Stress response"
- Epidural Morphine
 Duramorph (preservative free)
 (or Morphine USP)
- Bupivacaine or Lidocaine
 (give extra IV fluids to compensate for decreased vascular tone)


Landmarks: Iliac crests, dorsal midline, and dorsal lumbar vertebral spinous processes

Epidural analgesia / anesthesia

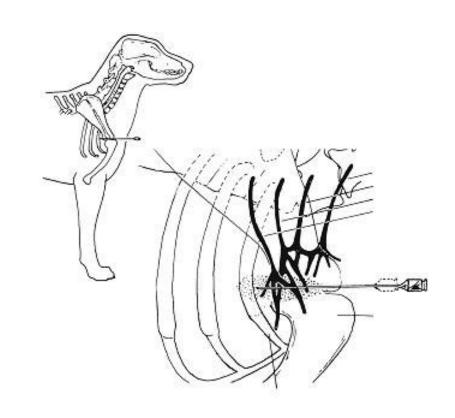

- Powerful and sustained analgesia
- Effective throughout the body
- Technically easy
- Cost effective
- Numerous benefits


Distal Limb Blocks (declaw analgesia)

- Superficial Radial Nerve dorsomedial carpus
- Ulnar N. (branches)lateral carpus
- Median N. Ulnar N.
 (branch)
 palmar carpus adjacent to
 the accessory carpal pad

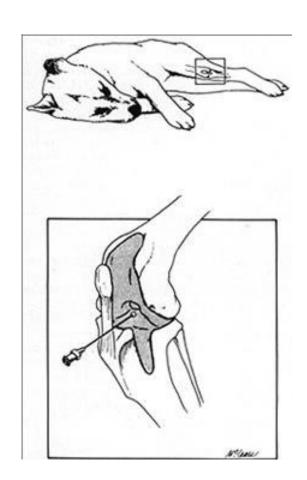
0.1-0.3 ml Bupivacaine (0.5%) at each site

Right Forepaw

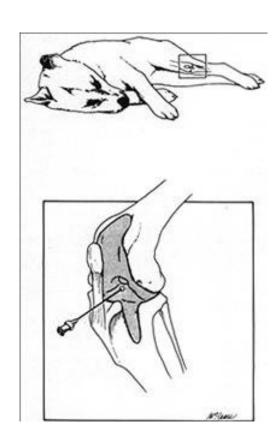

Dorsal surface

Palmar surface

Brachial Plexus Nerve Block:


- Keys to success:
 distribute drug, aspirate
 to avoid IV injection and
 toxicity, minimize
 volume at each
 injection site to avoid
 nerve damage
- 0.2 ml/kg max. dose0.5% Bupivacaine

Intra-Articular Stifle Block:


- Distention of the joint with long-lasting local anesthetic
- Bupivacaine 0.5%
 3-6+ hours duration
 dose 0.2 ml/kg (0.1 ml/lb)
- Injection pre-op <u>and</u> post-op for best effect

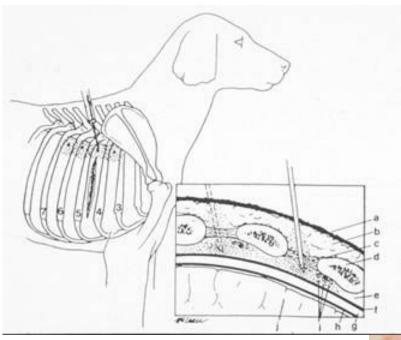
Intra-Articular Stifle Block:

- 1" 22g needle
- flex the stifle and apply digital pressure to the medial side of the straight patellar ligament
- Insert the needle on opposite side of straight patellar ligament midway between the patella and the tibial tuberosity, direct it obliquely and distally toward the intercondylar space

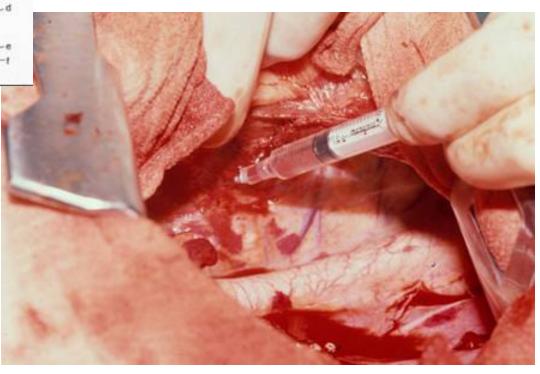
Intra-Articular Stifle Block:

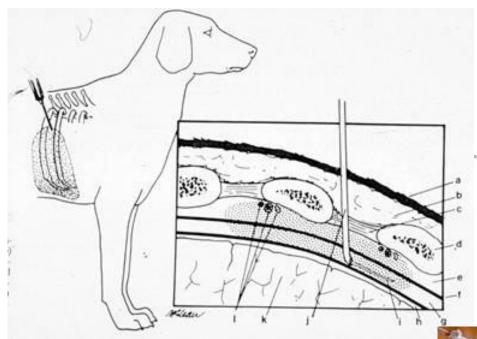
Pre-op & Post-op

Bupivacaine 0.5%0.2 ml/kg


CuckFirms and a TIPF (LZW) theorypisses are needed to one the picture.

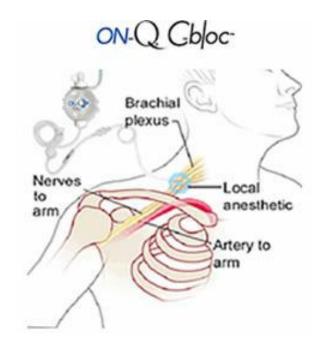
Bupivacaine + Morphine

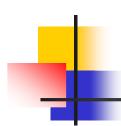



- Great value of local anesthetics in surgical oncology
- Injection of nerve sheath prior to transection
- lidocaine + bupivacaineRapid onset + long duration

Intercostal Nerve Blocks

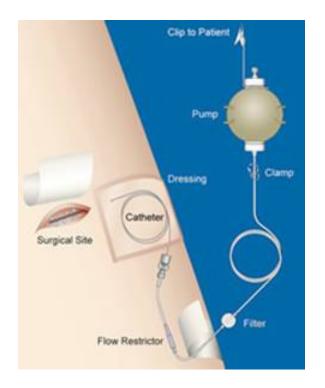
Intrapleural Blocks





Continuous ambulatory infusion of local anesthetics

"Pain Buster"
pumpwww.iflo.com



"Pain Buster" pumpwww.iflo.∞m

Provides continuous infusion of a local anesthetic directly into the surgical site. Effective, non-narcotic post-operative pain relief for up to five days.

Available in 2.5 inch and 5 inch (6.5 cm and 12.5 cm) infusion lengths, the Soaker Catheter is ideal for post-operative pain relief in large incisions

EMLA Cream

QuickTime *** and a TIFF (LZA) decompressor are needed to see this picture.

> QuickTime ^m and a TIFF (LZA) decompressor are needed to see this pickre.

IV Lidocaine CRI (constant rate infusion)

- Prokinetic action
- Analgesic contribution and reduction in anesthetic requirements
- Reduced inhalant anesthetic requirement improves blood pressures
- Possible anti-inflammatory contribution
- Very cost-effective analgesic contribution to opioid analgesics

- Loading dose 1-2 mg/kg by slow IV injection over three minutes.
- Constant Rate Infusion at 50-100 micrograms/kg/minute (0.05-0.1 mg/kg/min) syringe pump or controlled drip
- Easy set-up method: 68 cc of 2% lidocaine added to liter bag of IV fluid, administered at 1cc/pound/hour will provide 50 micrograms/kg/min.
- Reduce or discontinue if clinical signs of intolerance or overdose occur: nausea, CNS stimulation (twitching or seizures)

Other CRI options for analgesia:

- Low-dose ketamine
- Fentanyl
- Morphine
- Combinations of analgesics

Case Studies

Fan-belt Trauma

Total Ear Canal Ablation

Case Studies

Thoracotomy

Clinical Use of Local and Regional Anesthetics

