
#1 $2 +3 GNU Chess Move Generator
This file contains a description of GNU's new move generation algoritm.

      Copyright (C) 1989 Free Software Foundation, Inc.

This file is part of CHESS.

CHESS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY.    No
author or distributor accepts responsibility to anyone for the consequences of using it or for
whether it serves any particular purpose or works at all, unless he says so in writing.    Refer
to the CHESS General Public License for full details.

Everyone is granted permission to copy, modify and redistribute CHESS, but only under the
conditions described in the CHESS General Public License.      A copy of this license is
supposed to have been given to you along with CHESS so you can know your rights and
responsibilities.    It should be in a file named COPYING.    Among other things, the copyright
notice and this notice must be preserved on all copies.

New move Generation algoritm:

Revision: 1989-09-06

Author: Hans Eric Sandstroem.

This algortim is the result of an attempt to make an hardware move generator, but since I
newer had the time and resources to build the hardware I wrote a software version and
incorporated that one into gnuchess. This was the best way I could think of sharing this
algorithm with the computer chess community.

If there is anybody out there with the time and rescources to build a hardware move
generator I will be glad to assist.

The general idea behind this algoritm is to pre calculate a lot of data. The data that is pre
calculated is every possible move for every piece from every square disregarding any other
pieces on the board. This pre calculated data is stored in an array that looks like this:

struct sqdata {
    short nextpos;
    short nextdir;
};
struct sqdata posdata[8][64][64];
/* posdata[piecetype][fromsquare][destinationsquare] */
example:

the first move for a queen at e8 is stored at;
posdata[queen][e8][e8].nextpos
suppose this is e7 and e7 is occupied then the next move
will be found in;
posdata[queen][e8][e7].nextdir

To handle the differeces between white and black pawns (they move in opposite directions)
an array ptype has been introduced:   

1# move_gen
2$ GNU Chess Move Generator
3+ index:0030

static const short ptype[2][8] = {
    no_piece,pawn,knight,bishop,rook,queen,king,no_piece,
    no_piece,bpawn,knight,bishop,rook,queen,king,no_piece};
                      ^^^^^
And it is used like this:
      piecetype = ptype[side][piece]
When generating moves for pieces that are not black pawns, piece can be used directly in
posdata. As in the example above.

Thus the only thing one has to do when generating the moves is to check for collisions with
other pieces.    the move generation to do this looks like this: (for non pawns)
        p = posdata[piece][sq];
        u = p[sq].nextpos;
        do {
            if (color[u] == neutral) {

LinkMove(ply,sq,u,xside);
u = p[u].nextpos;

            }
            else {

if (color[u] == xside) LinkMove(ply,sq,u,xside);
u = p[u].nextdir;

            }
        } while (u != sq);

 - I`nt this just beautiful!

The array posdata is initialized in the routine Initialize_moves. This routine is called just once
and it works so no time has been spent on the structure of this code. GenMoves and
CaptureList generates the moves but the routines ataks, BRscan, Sqatakd, KingScan and
trapped also relies on the move generation algoritm so they have also been rewritten.

