Help Topics

New Features in Version 1.1

- Configuration is now automatically saved to a file
- Ultra Logic ensures that the user did not leave any blank pieces
- An installation program has been added
- The help window is automatically closed when Ultra Logic is closed
- The user interface has been redesigned, making it easier to use
- The background music has been changed
- A new game statistics section added to the About box
- Dynamic board implemented. Now you can re-size the board to any size!
- Three different game levels added: Beginner, Intermediate and Expert
- The time indicator has been changed and now looks like a real timer

New Features in Version 1.2

- Added graphical, easy to use tutorial
- A selection of four background songs has been added
- Added a Win 95 style tips dialog with helpful game tips
- A minor uninstallation problem has been fixed
- Fixed some problems related to the printing of the registration form
- Fixed a few minor menu related bugs in the registered version
- Ultra Logic now makes full use of the Win 95/NT Registry
- Fixed 2-pixel board resizing bug
- The game now loads more than three times faster
- Many other minor improvements

New Features in Version 1.3

- This is a bug-fix release, please see New Features in v1.2 for new features
- Fixed dialog resizing bug that caused some dialogs to be displayed incorrectly
- Several minor improvements to the registration form
- You can now click the addresses in the help file to connect to the Internet

New Features in Version 1.4

- Added various sound effects
- Our e-mail and web contact addresses have changed
- Numerous improvements to the tutorial and user interface

Contact Information

You can contact the author at the following addresses:

- Internet e-mail:
ultralogic@poboxes.com
- Physical mail:

Vitaly Livshits
605 Finch Ave. West, Apt 517
Willowdale, Ontario
M2R 1P1
Canada
Suggestions and bug reports as well as general comments are always welcome.

Getting the Newest Version

- The following FTP sites always carry the latest version of Ultra Logic:
ftp.cdrom.com/pub/win95/games/ulogicxx.zip - Walnut Creek CD-ROM Archive ftp.winsite.com/pub/pc/win95/games/ulogicxx.zip - WinSite Archive $x x$ is the version number, for example 14 for version 1.4
- If you wish to be notified when a new version comes out, please send e-mail to ultralogic@poboxes.com.
- Our Web page contains updated pointers to new versions of Ultra Logic as well as other game related info. The address is: http://www.toptown.com/hp/vitaly/ulogic

Registering Ultra Logic

Ultra logic is being distributed by the shareware concept. If you have been using Ultra Logic for more than 21 days you must register. Registration is very easy and fully automated. There are two ways to register: with a credit card or with a check/cash. You will find all the information required to register under the Help|Registration menu.

After the author receives your registration you will be sent a special registration number which you can enter into the Registration Number dialog (Help|Registration Number menu). Ultra Logic will verify the code, register itself and all the features will be fully enabled. The same registration number can also be used in all future versions which can be downloaded from the Internet. If you do not have Internet access and wish to receive a new version, please contact the author.

Disclaimer

Users of Ultra Logic ("program") must accept this disclaimer of warranty: The program is supplied as is. The author disclaims all warranties, expressed or implied, including, without limitation, the warranties of fitness for any purpose. The author assumes no liability for damages, direct or consequential, which may result from the use of the program.

License Agreement

Ultra Logic ("program") is a shareware program and is provided at no charge to the user for evaluation. Feel free to share it with your friends, but please do not give it away altered or as part of another system. The essence of "user-supported" software is to provide personal computer users with quality software without high prices, and yet to provide incentive for the programmers to continue to develop new products. If you find this program useful and find that you are using the program and continue to use the program after the trial period (21 days), you must make a registration payment of $\$ 10$ US to the author. The $\$ 10$ US registration fee will license one copy for use on any one computer at any one time.

Definitions

Shareware distribution gives users a chance to try software before buying it. If you try a shareware program and continue using it, you are expected to register.

A special number you receive after the registration. This number is unique to each user and is calculated based on the user's name.

General

Closes this dialog and saves any changes you've made.

Closes this dialog without saving any changes you've made.

Properties Dialog

Enables or disables the background music (MIDI) during the game.

The background song to be played during the game.

Enables/disables sound effects during the game.

Smart Hint is a special type of online help that is displayed when the player leaves the mouse over an icon in the toolbar for a few seconds.

If selected then the checking of the current row is performed automatically after filling in all the spaces. If not selected then the check will be done after pressing the check button.

Registration Form

The name of the person registering Ultra Logic. This name will be used by the author to calculate the registration number.

Your e-mail address or your postal address will be used for sending you the registration key.

Your postal address or your e-mail address will be used for sending you the registration key.

The registration number can be delivered to you by e-mail or physical mail. Please select the preferred method.

Number of copies of Ultra Logic you wish to order.

Prints the registration form. You will be able to change printer properties later.

Main Form

The computer displays the results of your move on this board. It places a black peg for each peg you guessed correctly and a white peg for each peg that is on the board, but isn't not in the correct position.

This timer displays the number of seconds since the beginning of the game.

These are the possible colors that are used in the combination that the computer chose. To place them on the board simply drag and drop them.

Custom Form

Use this track bar to set the number of columns on the board.

Use this track bar to set the number of rows on the board.

These dimensions of the board will be set after you click OK.

This grid is the preview of the board that will be set with the current dimensions.

Tutorial

Introduction

Welcome to Ultra Logic tutorial!
This tutorial consists of three lessons. In the first lesson you will learn about the goal and the rules of the game. The second and the third lessons will guide you step by step through two sample games. Each lesson in the tutorial only takes about 10 minutes to complete.

Use the links below to go to the preferred lesson:
Lesson 1 - Understanding the game
Lesson 2 - Sample Game 1, beginner level
Lesson 3 - Sample Game 2, intermediate level

Lesson 1 - Understanding the game

The Role of the Computer

In the beginning of the game, the computer picks a set of several colored pegs. The number of pegs in this combination is always equal to the number of columns on the board. The color of these pegs is selected randomly and several pegs can have the same color. The maximum number of colors from which the computer can choose is 8.
-
\{button \&Next Page,JI(`','T_L1_P2')\}

The Goal

Your goal is to guess the combination of pegs the computer has chosen. The number of turns to do it is limited and is indicated by the number of rows on the board (1 to 15). If you guess the combination in the specified number of turns you win, otherwise you loose.
\{button \&Next Page,JI(` ','T_L1_P3')\} \{button \&Previous Page,JI(` ','T_L1_P1')\}

Making the Move

You make a move by dragging a colored peg from the top of the of the screen and dropping it on the left board:

You repeat the same procedure until all the holes in one row are filled.
\{button \&Next Page,JI(` ','T_L1_P4')\} \{button \&Previous Page,JI(` ','T_L1_P2')\}

Computer's Response

The computer responds by placing pegs on the right board. A black peg, a white peg or no peg at all are displayed for each peg you put on the left board.
A black peg is displayed when you correctly guessed both the color and the location. A white peg is displayed when you guessed only the color of the peg correctly (the position is different).
For example, consider the following situation:

From this example we can see that:

- There are no black pegs.
- There is one lime peg and it's located in one of the three rightmost holes.

Another example:

From this illustration we can see that:

- There are no red pegs.
- There are no yellow pegs.
- One (and only) blue peg is located in the 2nd or 3rd position.

Suggested Tactics

There is no definite set of rules you can follow to win every single game. However, like in most games, there are some things which you should do and some which you should not.

- Don't introduce many new colors in a single turn. For example, the following situation wouldn't give you any useful information:

-

Once you've found the correct location of a peg, don't move it to another location in the middle of the game.

This concludes the first lesson. Don't forget to check the other two for real game examples. Good luck! \{button \&Previous Page,JI(` ','T_L1_P4')\}

Lesson 2 - Sample Game \#1

Sample Game 1 , Turn 1/7

Welcome to the second lesson of the tutorial! This lesson will present you with a detailed explanation of one game played on the beginner level. The explanation of every move is given under the picture of the board.

It's always best to use a combination of two or three different colors during the first turn. In this case one red peg and two yellow pegs were chosen. The response indicates that there are no red or yellow pegs.
\{button \&Next Page,JI(`, 'T_L2_P2')\}

Sample Game 1, Turn 2/7

Since no red or yellow pegs are present, we use an approach similar to that used on the first turn. This time we use two lime pegs and one black peg. One white peg is displayed on the right board. This means that there is either one lime peg or one black peg present. Since the computer displayed a white peg, we did not guess the location correctly.
\{button \&Next Page,Jl(` ','T_L2_P3')\} \{button \&Previous Page,Jl(`,'`_L2_P1')\}

Sample Game 1, Turn 3/7

Our goal now is to find out whether the white peg on the right board in the 2 nd row was displayed because of a lime peg or a black peg. To achieve this, the third row is filled with black pegs only. From computer's response it can be concluded that no lime pegs are present. Thus, one black peg must be present in the 1 st or 2 nd position.
\{button \&Next Page,JI(`','T_L2_P4')\} \{button \&Previous Page,JI(` ','T_L2_P2')\}

Sample Game 1, Turn 4/7

The purpose of this turn is to determine where the single black peg is located. In order to do this one black peg is put at the leftmost position and two blue pegs are introduced. Computer's response indicates the absence of any blue pegs and that the single black peg is present in the leftmost hole. At this point the location of one peg is known for sure. One third of the game is now complete!
\{button \&Next Page,JI(`','T_L2_P5')\} \{button \&Previous Page,Jl(` ','T_L2_P3')\}

Sample Game 1, Turn 5/7

Since we already know the location of one peg for sure, it's time to introduce one new color (green). From the response we can see that there is one green peg and it's either in the 2nd or 3rd position.
\{button \&Next Page,Jl(` ','T_L2_P6')\} \{button \&Previous Page,Jl(` ','T_L2_P4')\}

Sample Game 1, Turn 6/7

Now we need to find out where the green peg is located. To do this we leave one green peg on the board and introduce a new color - pink. The computer's response means that there are no pink pegs and that the green peg is positioned in the 3rd hole. Two thirds of the game are now complete!
\{button \&Next Page,JI(`','T_L2_P7')\} \{button \&Previous Page,JI(` ','T_L2_P5')\}

Sample Game 1, Turn 7/7

Since the location of two pegs is known and 7 out of 8 possible colors were checked, there is only one combination left to try. The gray peg is put in the center position and, obviously, we get three black pegs in response. The game is now won!

This concludes the second lesson of the tutorial. Good luck in your own games!
\{button \&Previous Page,JI(${ }^{\prime},{ }^{\prime} T_{-}$L2_P6')\}

Lesson 3 - Sample Game \#2

Sample Game 2, Turn 1/8

As was noted in the first sample game, in the beginning it's always best to use two or three different colors. In this case blue and green are chosen. From computer's response we can conclude that there are:

- Two blue pegs, or
- Two green pegs, or
- One blue peg and one green peg

Also, one peg is in the correct position, while the other one is not.
\{button \&Next Page,J(`','T_L3_P2')\}

Sample Game 2, Turn 2/8

Now we need to check whether or not there are any green/blue pegs on the board. In order to accomplish this, a row is filled with green pegs only. Nothing is displayed in response, therefore there are no green pegs. At this time we know that there are two blue pegs on the board. We also know that one of these blue pegs is in either the leftmost position or in the 2 nd position.
\{button \&Next Page,Jl(`','T_L3_P3')\} \{button \&Previous Page,Jl(` ','T_L3_P1')\}

Sample Game 2, Turn 3/8

The purpose of this move is to find out the position of one blue peg. From the response we can see that the blue peg is in the leftmost position. We can also see that there are no yellow pegs at all.
\{button \&Next Page,JI(` ','T_L3_P4')\} \{button \&Previous Page,JI(` ','T_L3_P2')\}

Sample Game 2, Turn 4/8

At this point the position of one blue peg is known for sure (it's in the leftmost hole). Now the position of the other blue peg must be found. In order to do this we introduce a new color, lime. From the response it can be seen that there is one lime peg on the board. Also, we can see that the blue peg is not in the correct position.
\{button \&Next Page,J(` ', 'T_L3_P5')\} \{button \&Previous Page,JI(` ','T_L3_P3')\}

Sample Game 2, Turn 5/8

Since we know that there are two possible positions remaining for the 2 nd blue peg (the rightmost and the 2nd from the right) we try one of them. One new color, black, is introduced. Computer responds by placing two white pegs and one black peg, which means that there are no black pegs on the board. It also means that the blue peg is at not at the 2 nd position from the right. Therefore, it's at the rightmost position.
\{button \&Next Page,JI(` ','T_L3_P6')\} \{button \&Previous Page,JI(` ','T_L3_P4')\}

Sample Game 2, Turn 6/8

From this point on, everything is easy. We place the 2nd blue peg at the rightmost position, the only position left. Based on the computer's response from rows 4 and 5 we can conclude that the lime peg is in the 2nd position from the right. At this point we already know the position of three pegs for sure. We introduce a new color, pink. The response indicates that there is only one pink peg.
\{button \&Next Page,JI(` ','T_L3_P7')\} \{button \&Previous Page,JI(` ','T_L3_P5')\}

Sample Game 2, Turn 7/8

We put the pink peg at one of the possible positions and introduce a new color, red. Computer's response means that we already have all the correct pegs on board and that only two of them are in the wrong position. Since we know that two blue pegs and one lime peg are placed correctly, there is only one combination left to try.
\{button \&Next Page,JI(` ', 'T_L3_P8')\} \{button \&Previous Page,JI(` ','T_L3_P6')\}

Sample Game 2, Turn 8/8

Now we try the only remaining combination and, of course, it's correct.
This concludes the third lesson of the tutorial. Good luck!
\{button \&Previous Page,Jl(` ','T_L3_P7')\}

