
SuperOffice 4.0

Database Manual

Purpose of the manual
This manual describes the internal SuperOffice database. In particular, it explains the naming-
conventions which are in use and how the individual database tables are related to each
other.

Please note that some of the database tables and records are essential to the correct
operation of SuperOffice. You should, therefore, avoid changing these tables and records in
any way. These critical tables and records are discussed in sections for Special Tables and
Special Records.

The manual is written for the programming user. This manual is not for the typical business
user of SuperOffice. That is to say, it has been assumed that you have a basic, working
knowledge of using databases. By reading the manual it should be possible to gain a good
understanding of the product's database structure.

In particular, it is assumed that the reader is familiar with terms such as table (or file), column
(or field), row (or record), relation, checksum and database dictionary. It is also important to
have some knowledge of SQL - the Standard Query Language. By using the information in
this manual the reader will be able to access, to edit and to insert new records into the
SuperOffice database.

Towards the end of the manual a set of examples is(are?) also provided. The examples show
how to insert, how to update and how to manipulate data in a SuperOffice database. These
include examples of SQL-code for Watcom and Oracle database systems.

The manual is divided into several sections :-
Database conventions and table descriptions
Relationships diagram
Special tables
Other Special tables
Special records
Values needed to access some of the tables
Selection lists in a SuperOffice database
Date format in a SuperOffice database
Note about using Travel function or Corporate version
Set of examples using the SuperOffice database

1

Database conventions and table descriptions
This section describes all of the available tables and standard conventions used in the
SuperOffice database.

The explanations of the naming-convention, the data-types and the key-codes in use
throughout the database are covered first.

Then the available tables are listed. For each table, a short description is then provided
beside the table's name. Then each field (or column) in that table is explained in turn.
Conventions used throughout the SuperOffice Database
Naming conventions

All tables starts with the first column, called "tablename"+"_id". This uniquely identifies every
record entered into the table. This value will stay unchanged for the life of the database. There
is one exception to this rule, and that is new records created in a Travel database. Their id's
will change when updating the parent database.

All fields referring to other records therefore have names ending with the extension "_id".

All fields selecting an entry from any one of the special lists for business, company interest
and so on have names ending with the extension "_idx".
Standard data-types in use
The following datatypes are in use :-

Name Size Description
ushort 2 bytes unsigned integer
ulong 4 bytes unsigned integer
long 4 bytes signed integer
date_d 4 byte signed integer, number of seconds since January 1.,1970
date_t 4 byte signed integer, number of seconds since January 1.,1970
longid 4 bytes field, addressed as ulong
shortid 2 bytes field, addressed as ushort
string 1 array of bytes terminated by zero-byte, length includes

zero-byte
vstring 1 as string, length specifies maximum length.
lvstring 0 as string, length specifies maximum length.

Standard definitions of field- and key-codes used
Key definitions Description
Null N means no nul values allowed

N* user forced to enter a value
Key P Primary key

U Unique
S Secondary key
C Combined (described below table)
F Foreign key, Relation describes to what table

2

Descriptions of the SuperOffice database tables

Sequence next_id to be used for each table

Type Field/Index Null Key Relation
longid id N PU
longid next_id

Company Information on license and owner of this SuperOffice database

Type Field/Index Null Key Relation
longid company_id N PU
long version N
ushort revision
_compres reserved

Associate All possible users of SuperOffice

Type Field/Index Null Key Relation
longid associate_id N PU
string[16] loginname N SU
shortid group_idx N F ListText
_assocres reserved
date_t lastlogin N
date_t lastlogout N
longid person_id N F Person
date_t checklistlimit N
ushort type

3

Contact Companies and Organizations

Type Field/Index Null Key Relation
longid contact_id N PU
string[50] name N S
string[40] department S
string[12] number1 S
string[12] number2 S
longid associate_id F Associate
longid country_id N F Country
shortid business_idx N* FS ListText
shortid category_idx N* FS ListText
ushort xstop
ushort nomailing
string[22] custom1
string[22] custom2
string[22] custom3
date_t registered N
longid registered_associate_id N F Associate
date_t updated N
longid updated_associate_id N F Associate
longid text_id F Text
longid mother_id FS Contact
longid userdef_id F UDContactX
longid url_id F Text

4

Person Persons in a company or an organization

Type Field/Index Null Key Relation
longid person_id N PU
longid contact_id N FC Contact
ushort rank N C
string[32] lastname S
string[22] firstname S
string[12] mrmrs
string[40] title
string[32] custom1
string[22] custom2
string[22] custom3
longid text_id F Text
shortid position_idx F ListText
string[20] mailstop
ushort year_of_birth
ushort month_of_birth
ushort day_of_birth
ushort phone_present
longid email_id F Text
longid userdef_id F UDPerson
date_t registered N
longid registered_associate_id N F Associate
date_t updated N
longid updated_associate_id N F Associate
string[12] person_number S

cont_id+rank S

Address Contact and Person addresses

Type Field/Index Null Key Relation
longid address_id N PU
longid owner_id N FC Cont/Pers
shortid atype_idx N FC ListText
string[12] zipcode N* S
string[32] city
string[4]state S
string[30] county
string[42] address1
string[42] address2
string[42] address3

owner_id+type_idx SU

5

Phone Contact and Person phone numbers (+fax)

Type Field/Index Null Key Relation
longid phone_id N PU
longid owner_id N FC Cont/Pers
shortid ptype_idx N FC ListText
long search_phone key N S
string[18] phone phone

owner_id+type_idx SU

Appointment Appointments ,documents or sale

Type Field/Index Null Key Relation
longid appointment_id N PU
longid contact_id FC Contact
longid person_id F Person
longid associate_id N FC Associate
shortid group_idx N FS ListText
date_t registered N
longid registered_associate_id F Associate
date_t done N SC
date_t do_by
ushort duration
ushort leadtime
shortid task_idx N F ListText
shortid priority_idx F ListText
ushort type C
ushort status C
ushort private
ushort alarm
longid text_id F Text
longid project_id FC Project
longid mother_id FS Appointment
longid userdef_id F UDAppointment
longid document_id F Document

cont_id+done S
assoc_id+done+type S
assoc_id+status S
proj_id+done S

6

Document Has an appointment record as owner

Type Field/Index Null Key Relation
longid document_id N PU
longid application_id N F Application
string[30] name N
string[60] header
string[20] our_ref
string[20] your_ref
string[20] searchname S
string[30] attention
longid about_id F Text

Project

Type Field/Index Null Key Relation
longid project_id N PU
string[50] name S
string[12] project_number S
shortid type_idx F ListText
shortid status_idx F ListText
longid associate_id F Associate
string[22] custom1
string[22] custom2
string[22] custom3
longid text_id F Text
date_t registered N
longid registered_associate_id N F Associate
date_t updated N
longid updated_associate_id N F Associate
longid userdef_id F UserDef(project)

ProjectMember

Type Field/Index Null Key Relation
longid projectmember_id N PU
longid project_id FC Project
ushort ownertype
longid owner_id F Contact/Person
ushort rank C
shortid mtype_idx F ListText

proj_id+rank S

7

Sale

Type Field/Index Null Key Relation
longid sale_id N PU
longid associate_id N FC Associate
shortid group_idx N FC ListText
longid contact_id N FC Contact
longid person_id FC Person
date_t registered
date_t saledate N C
long amount
ushort probability_idx N F ListText
longid appointment_id N FC Appointment
longid text_id F Text
longid project_id N FC Project
long earning
ushort earning_percent
longid userdef_id F UserDef

cont_id+saledate S
assoc_id+saledate S
proj_id+saledate S
grp_idx+cont_id+saledate S

ContactInterest

Type Field/Index Null Key Relation
ulong contactinterest_id N PU
longid contact_id N FS Contact
shortid cinterest_idx N FS ListText
date_t interest_date N

PersonInterest

Type Field/Index Null Key Relation
ulong personinterest_id N PU
longid person_id N FS Person
shortid pinterest_idx N FS ListText
date_t interest_date N

8

ZipToCity

Type Field/Index Null Key Relation
longid ziptocity_id N PU
longid country_id FC Country
string[12] zipcode N PC
string[32] city N S

country_id+zipcode S

Template Describes templates available for writing new documents

Type Field/Index Null Key Relation
longid template_id N PU
ushort machinetype
ushort dynamic
ushort type S
string[32] templatename
string[32] filename
longid application_id F Application
ulong refcount
shortid template_idx N F ListText
longid autoevent_id F AutoEvent
ushort generate_sale

9

Application

Type Field/Index Null Key Relation
longid application_id N PU
string[70] name N
string[130] path
string[62] filename N
string[62] parameters
string[62] working_directory
string[40] dde_topic
string[100] dde_open
string[40] dde_minimize
string[40] dde_maximize
string[40] dde_restore
ushort dde_show
string[100] dde_merge
string[6] mac_creator
string[6] mac_type
string[4] win_type
longid win_charactermap_id F CharacterMap
longid mac_charactermap_id F CharacterMap

ListText See also "Selection lists in a SuperOffice database"

Type Field/Index Null Key Relation
longid listtext_id N PU
ushort list_id N C
ushort list_idx N C
ushort show_idx N C
ushort parent
string[30] text

list_id+list_idx SU
list_id+show_idx S

10

RedLetterDay

Type Field/Index Null Key Relation
longid redletterday_id N PU
date_t reddate N C
longid country_id N FC Country
ulong reds
ulong colored
ushort color
string[80] text

cntry_id+reddate S

Text

Type Field/Index Null Key Relation
longid text_id N PU
ushort type C
longid owner_id FC Owner
lvstring[2048] text

owner_id+type S

Country

Type Field/Index Null Key Relation
longid country_id N PU
string[40] name S
string[40] english_name S
string[10] phone_prefix
ulong layout_id
ushort time_offset
string[10] time_name
string[20] summer_time
string[20] winter_time
string[6]zip_prefix
ulong flagres_id

11

Preference

Type Field/Index Null Key Relation
longid preference_id N PUC
shortid type N C
vstring[1024] pdata

type+id SU

Selection

Type Field/Index Null Key Relation
longid selection_id N PU
longid associate_id N FS Associate
string[50] name N S

SelectionMember

Type Field/Index Null Key Relation
longid selectionmember_id N PU
longid selection_id N FC Selection
longid contact_id N FC Contact

sel_id+cont_id SU

UserDefTable

Type Field/Index Null Key Relation
longid userdeftable_id N PU
string[40] name
ushort table_number
ushort width
ushort length

12

UserDefControl

Type Field/Index Null Key Relation
longid userdefcontrol_id N PU
longid userdeftable_id N FC UserDefTable
ushort type
shortid list_id
ushort csize
string[20] prefix
ulong prefix_pos
ushort prefix_width
ulong control_pos
ushort control_width
ushort control_height
ushort rank C
ushort field_number

udtab_id+rank S

UDContact1

Type Field/Index Null Key Relation
longid udcontact1_id N PU

UDContact2

Type Field/Index Null Key Relation
longid udcontact2_id N PU

RecordLink

Type Field/Index Null Key Relation
longid recordlink_id N PU
ushort tablenumber C
longid record_id C
longid associate_id FC Associate
longid external_id
date_t generatedtime
ushort flag

tabno+rec_id+assoc_id S
assoc_id+tabno+rec_id S

13

Special tables
Some of the tables in a SuperOffice database are very special.

Firstly, in a SuperOffice database there are "dictionary information tables" which contain a
description of the database itself. These tables are not to be changed. They should never be
updated or inserted into. The tables make active use of checksum fields, and SuperOffice will
not start if these checksums are incorrect.

The dictionary may, however, be changed to adapt to a different table definition than standard
SuperOffice. This change can only be done with help and advice from SuperOffice's support.

The following tables are "dictionary information tables" :-

ConceptualDatabase
ConceptualTable
ConceptualField
PhysicalSchema
PhysicalDatabase
PhysicalTable
PhysicalField
Relationship
DicIndex
IndexField

Then there are other important tables to be handled with great care :-

Company This table contains the owner of the database.
Tampering with this table may result in SuperOffice
not starting any more.

Associate Contains all users or employees in the owner Company.
Any change to this table may result in locking users
out of the database

Sequence This table contains rows for generating unique id's for
each SuperOffice table. This table should never be
inserted into or deleted from.
Later we will explain how to use this table.

ActiveUser Any changes made to this table may result in users
being logged out automatically.

Further, listed below are a number of tables which may result in strange results if insert,
delete or update are used on any of them :-

Mail
MailAppointment
AutoEvent

SuperOffice has special Travel tables containing information on users with the Travel option in
SuperOffice. You must never change any of these :-

All tables that contains the names: travel, satellite or area

14

Other Special tables
Use same format as previous Special tables explanations. ------

One table is used for connecting PDA computers.

RecordLink Contains information on duplicates (i.e. records currently
in SuperOffice and the PDA) to correctly update when
syncronizing again.

Information on different country specific information is also stored

CountryDefines address layout, phone prefixes and other
country specific information

The extra dialog you may define for all Customers, store its data in tables which will change
whenever you change the definition of this dialog.

UDContact1 and
UDContact2

These tables are used to store rows in the user defined Contact
table. To not loose old data, Every time you change the definition of
the user defined table, we switch to using the other table. To check
which table is the active one, you have to read one row from Preference.

SELECT pdata FROM PREFERENCE WHERE preference_id = 503

pdata will contain '1' if UDContact1 is active, and if it contains '2' UDContact2
is active.

Calendar information regarding which days are to be red are stored in one table

RedLetterDay

This table is used to mark specific days in the calendar as red. The format of some
columns in this table are very special. First for every month there whould be a row
with reddate = month 1st midnight. This should contain a bitmap of all red days for
this month column reds. This 32 bit bitmap is computed using least significant bit as
1st of month and 1 as red 0 as not red.

Example September 1995. Sundays are 3rd, 10th, 17th and 24th. Lets just say
that the 15 and 23 are to be marked red in addition to Sundays. This results in the
following

Sundays
1st 32nd
 00100000 01000000 10000001 00000000

Then extra reds
 00000000 00000010 00000010 00000000

If we OR these together we get the correct bitmap
 00100000 01000010 10000011 00000000

Now LSB is to the left, and we split this in 8 bit portions to make it easier. First
15

binary LSB to the right as we are used to
 00000100 01000010 11000001 00000000

Then type this number in Windows calculator scientific mode using
binary numbers. When typed click on decimal mode and you get the
value
 12665348

So to set RedLetterDay for september 1995 you do as follows:

Get unique id for RedLetterDay table (id = 30 in Sequence), and
increment.

INSERT INTO RedLetterDay (redletterday_id, reddate, country_id, reds)
VALUES (next_id, 809913600, mycountry, 12665348)

This will make September 3, 10, 15, 17, 23, 24 red in the calendar.

16

Special records
Inside the Contact table there is one row describing your own organisation. This row should
only by updated using SuperOffice and never be deleted. If you delete or update this row from
outside SuperOffice you may not be able to run SuperOffice anymore.

This row usually has an id value of 2, but this may change. You should always check which
Contact row is owner company.

The easiest way to test this is to find your row in the Associate table, find releated Person row,
and from that one read contact_id.

SELECT person_id FROM Associate WHERE loginname = '<MyId>'
SELECT contact_id FROM Person WHERE person_id = person.person_id

The Contact row with contact_id = person.contact_id should not be updated or deleted.

17

Values needed to access some of the tables
Some of the tables must have special values which are not easy to guess correctly. They are
listed below with a description of how to use them.

Use of the Sequence table

Table = Entry number
Company = 11
Associate = 12
Contact = 13
Person = 14
Address = 15
Phone = 16
Appointment = 17
Document = 18
Mail = 19
Project = 20
ProjectMember = 21
Sale = 22
Budget = 23
ContactInterest = 24
PersonInterest = 25
ZipToCity = 26
Template = 27
Application = 28
ListText = 29
RedLetterDay = 30
Text = 31
Country = 32
Preference = 33
CharacterMap = 34
Selection = 35
SelectionMember = 36
AutoEvent = 37
MailAppointment = 38
AccessRights = 39
ActiveUser = 40
TravelTransactionLog = 41
TravelGeneratedTransaction = 42
Traveller = 43
TravelCurrent = 44
TravelGeneratedDatabase = 45
UserDefTable = 46
UserDefControl = 47
UDContact1 = 48
UDContact2 = 49
RecordLink = 50
??? = 51
??? = 52
??? = 53
??? = 54
??? = 55
These constants are used when you want to insert records in the database from outside
SuperOffice, or using SQL calls into SuperOffice.

When inserting a new row in a table you will need to read the id-value to use for this record.
The values above are used to select which table you want the next id-value for.
18

Reading and updating the next id-value should always be performed as one operation,
because if someone else reads and updates this information simultaneously, a database error
will occur when inserting the new row.

Example find next id for Contact table (value = 13)

BEGIN TRANSACTION
UPDATE Sequence SET next_id = next_id + 1 WHERE id = 13;
SELECT next_id - 1 FROM Sequence WHERE id = 13;
COMMIT TRANSACTION

19

Selection lists in a SuperOffice database
Examples of lists include business-types, categories, appointment-types.
These are implemented in one common table containing all the lists. This table was defined
above as ListText. Each entry is selected using two values each consisting of 2 bytes. the first
list_id has one value for each list, and the second selects the correct item within the list. Only
the scond value is stored inside a row of SuperOffice data.

These lists have the following list_id values.

Business type = 1
Category = 2
Appointment type = 3
Document in = 4
Document out = 5
Group = 6
ContactInterest = 8
PersonInterest = 9
PersonPosition = 10
Address type = 11
Phone type = 12
Priority = 13
Probability = 14
Project type = 15
Project status = 16
Project Member title = 17

SELECT list_idx FROM ListText WHERE list_id = 1 AND text = 'Industry'

Date format in a SuperOffice database
The date format in SuperOffice is a 4 byte value containing seconds from 1st of January 1970
00:00 (midnight). This will limit a date to stay within 1st Janary 1970 to 1st January 2038 (This
is not precise).
This date value is easily produced using a C function called mktime.
Find Access function name for this and SQL statement for this.
Any field containing only a date (not time) is set to midnight that day.

1st September 1995 midnight = 809913600

One day is 60 * 60 * 24 = 86400

6th September 1995 = 809913600 + (86400 * 5) = 810345600

Add date + time!!!!

20

Note about using Travel function or Corporate version
SuperOffice makes it posible to update databases in different locations using transaction logs.
These are updated when a SuperOffice user changes data. They will not be updated when
inserting, updating or deleting from outside SuperOffice.

Maybe we should explain how to enter into transactionlog also

Set of examples using the SuperOffice database
Example of creating a new customer

To create a new customer (Contact table) the following must be done

1. Get the sequence number of for the next id in Contact table

BEGIN TRANSACTION
UPDATE Sequence SET next_id = next_id + 1 WHERE id = 13;
SELECT next_id - 1 FROM Sequence WHERE id = 13;
COMMIT TRANSACTION

2. Insert a new row into Company (Contact) table.

INSERT INTO Contact (contact_id, name, country_id,)
VALUES (next_id, "Newname", 81, ...

You will have to insert a value in the following fields.
id
name
country_id

The following columns should have a default value
userdef_id = 0
text_id = 0

To follow SuperOffice normal rules you should also insert values into the following filelds
registered = todays date & time

The correct value for country_id is normally the country code for this country when dialing.
Whenever two or more countries use the same. You may find this using a select statement on
the Country table.
SELECT country_id FROM Country WHERE name = "<country needed>"

21

Example of inserting a new Customer with Phone, Fax, Address and one
Person with direct Phone and Home address.

Find correct country_id
ucountry_id = SELECT country_id FROM Country WHERE name = "USA"

Get next_id for Contact table
BEGIN TRANSACTION
UPDATE Sequence SET next_id = next_id + 1 WHERE id = 13;
SELECT next_id - 1 FROM Sequence WHERE id = 13;
COMMIT TRANSACTION

Find Associate_id
SELECT assosiate_id FROM Associate WHERE loginname = '<myloginname>'

Find correct business_idx
SELECT list_idx FROM ListText WHERE list_id = 1 AND text = 'Industry'

Find correct category_idx
SELECT list_idx FROM ListText WHERE list_id = 1 AND text = 'Industry'

Check if Customer number is to be generated and Unique
SELECT pdata FROM Preference WHERE preference_id = 202
If pdate == 1 Generate number
SELECT pdata FROM Preference WHERE preference_id = 201
If pdate == 1 Unique numbers

Find Customer number value
BEGIN TRANSACTION
UPDATE Preference SET pdate = pdata + 1 WHERE preference_id = 100
SELECT pdata - 1 FROM Preference WHERE preference_id = 100
COMMIT TRANSACTION

Find date value for today
TBDefined

INSERT INTO Contact (contact_id, name, number2, associate_id, country_id,
business_idx, category_idx, stop, registered,
registered_associate_id, updated, updated_associate_id,
text_id, mother_id, userdef_id)

VALUES (next_id, "MyName", assoc_id,)

22

Add one address for this customer

Get next_id for the Address table
BEGIN TRANSACTION
UPDATE Sequence SET next_id = next_id + 1 WHERE id = 15;
SELECT next_id - 1 FROM Sequence WHERE id = 15;
COMMIT TRANSACTION

Find Address type
Contact = 0
Person = 16384

Postal = 1
Street = 2
Private = 3

Contact Postal address atype_idx = Contact + Postal = 0 + 1 = 1

INSERT INTO Address (address_id, owner_id, atype_idx, zipcode, city, state,
address1, address2)

VALUES (next_id, contact_id, 1, "12345", "Bedford", "MA",
"The building", "Great Road 123")

Add one phone number and one Fax

Get next_id for the Phone table
BEGIN TRANSACTION
UPDATE Sequence SET next_id = next_id + 1 WHERE id = 16;
SELECT next_id - 1 FROM Sequence WHERE id = 16;
COMMIT TRANSACTION

Find Phone Type

Contact = 0
Person = 16384
Phone = 1
Phone2 = 2
Fax = 3
Private = 4
Cellular = 5
Pager = 6

Contact Phone = Contact + Phone = 0 + 1

Compute search phone
Use numeric value of phone number.
NB! Keep in mind that phone numbers never include abroad prefix and country code.

INSERT INTO Phone (phone_id, owner_id, ptype_idx, search_phone, phone)
VALUES (next_id, owner, 1, 6172752140, (617)275-2140)

Then a fax number

Get next_id for the Phone table
23

BEGIN TRANSACTION
UPDATE Sequence SET next_id = next_id + 1 WHERE id = 16;
SELECT next_id - 1 FROM Sequence WHERE id = 16;
COMMIT TRANSACTION

INSERT INTO Phone (phone_id, owner_id, ptype_idx, search_phone, phone)
VALUES (next_id, owner, 3, 6172752141, '(617)275-2141')

Example of adding Persons

Get next_id for the Person table

BEGIN TRANSACTION
UPDATE Sequence SET next_id = next_id + 1 WHERE id = 14;
SELECT next_id - 1 FROM Sequence WHERE id = 14;
COMMIT TRANSACTION

The Column rank defines the default order for these persons inside the company. It starts on
0.

INSERT INTO Person (person_id, contact_id, rank, firstname, lastname, mrmrs,
title, registered, registered_associate_id,
updated, updated_associate_id, person_number)

VALUES (next_id, cont_id, 0, "Steve", "Warson", "Mr.", "Car driver" ,
809697989, asoc_id, 809697989, asoc_id, "<pnumber>")

Example of adding info text for a Contact

Get next_id for the Text table
BEGIN TRANSACTION
UPDATE Sequence SET next_id = next_id + 1 WHERE id = 31;
SELECT next_id - 1 FROM Sequence WHERE id = 31;
COMMIT TRANSACTION

Find Text type

Contact info = 1
Person Info = 2
Person eMail = 3
Appointment text = 4
Document about = 5
Project text = 6
Sale text = 7
Notepad = 8
MailAppointment = 9
URL text (www) = 10

INSERT INTO Text (text_id, type, owner_id, text)
VALUES (next_id, 1, cont_id, "Info text")

Then attach this Info text to correct Customer.
UPDATE Contact SET text_id = next_id WHERE contact_id = cont_id

24

Example of inserting a Contact Interest

Get unique contactinterest_id for ContactInterest table.
find cinterest_idx

INSERT INTO ContactInterest (contactinterest_id, contact_id, cinterest_idx,
interest_date)

VALUES (next_id, cont_id, interest_idx, today)

Example of inserting a new appointment

This will consist of one row in Appointment and one row in Text.

Get unique id (next_id)

Find group_idx

Find done and do_by

Not completed task done == do_by

Completed task and not on diary (no start time) done == checked date
do_by == intended done date.

Find duration
Number of minutes.
MinutesToday(done) + duration < 1440 (24 hrs)

Leadtime is not in use at present

Find task_idx

Find priority_idx

Find Appointment type

Appointment in diary = 1
Appointment in check list = 2
Note shown on bottom of daiary(day) screen = 3
Incoming Document = 4
Outgoing Document = 5

25

Find status type

Not done = 1
Completed = 3

Private not in use at present

Find Alarm
Alarm on = 0x4000 = 16383
Alarm = 16383 + Number of minutes before appnt.
10 minutes before appnt alarm on = 16393.

INSERT INTO Appointment
VALUES

Get unique next_id for Text table
INSERT INTO Text (text_id, type, owner_id, text)
VALUES (next_id, 4, appnt_id, "Appointment text")
UPDATE Appointment SET text_id = next_id, WHERE id = appnt_id

Example of inserting a new Document

This will result in one Appointment, one Document and zero or more Text rows.

Column attention in Document table is a text containing eighter some text typed by user, or
firstname lastname of selected person, if a person was selected.

Get unique id for Document table

Create document name. Remember that .EXT is going to be used for opening the document
later.
INSERT INTO Document (document_id, name, header, attetion)
VALUES (next_id, "SUPER008.DOC", "Proposal for 50 user SuperOffice",

"Steve Warson")

If about text is needed you have to create a row in table Text, and then update field about_id
in Document row.

Appointment record created as previously with the following chanes:

task_idx dependent on incoming or outgoing document.
type = 5 for outgoing document, 4 for incoming document.
status = 3. Always completed
No alarm.
Document_id will containt the id of the Document row we just created

INSERT INTO Appointment (appointment_id, , document_id)
VALUES (next_id, , doc_id,)

26

Relationships diagram

27

