
About ObjectPAL
ObjectPAL is the object-based, event-driven, visual programming language for Corel Paradox. It is different from 
traditional procedural languages in many ways. You can use ObjectPAL to place objects (such as buttons and 
fields) in a form and to attach code modules (called methods) that execute whenever the object detects an 
event.
Object PAL, the programming language for Corel Paradox for DOS, is interpreted and its code is saved in script 
files. ObjectPAL is fully compiled, and its compiled code is stored in Windows DLLs along with its source code.
ObjectPAL has two components:
· The language itself (its object types, data types, methods, procedures, and constructs)
· The Integrated Development Environment (IDE), which includes

The Editor
The Debugger
A mechanism for creating and playing ObjectPAL scripts
The facilities for application delivery

There are six ObjectPAL language categories: data model objects, system data objects, data types, design 
objects, display managers, and events. Each category is in turn divided into several types.
In addition to these six categories, there are Basic Language Elements that are common to all methods and 
procedures.
The number of methods displayed in the Object Explorer for each type depends on which level of ObjectPAL 
you're working in: Beginner or Advanced. (All methods are available in both levels, but more complicated 
methods are only displayed in Advanced level.) To change the ObjectPAL level in the Developer Preferences 
dialog box, click Tools, Settings, Developer Preferences.
You can copy and paste the examples into your own code through the Clipboard.
· To copy the entire example to the Clipboard, right-click in the ObjectPAL Example window, and choose Copy.
· To copy a selected part of the example to the Clipboard, highlight the block of code you want in the Example 

window, right-click and choose Copy.
· Place the cursor in your code where you want to insert the example, then click Edit, Paste.

{button ,AL(`INTRO;',0,"Defaultoverview",)} Related Topics



About programming tasks
Here is a road map to the ObjectPAL language. Before you jump to any of these topics, make sure you read about
Objects, Methods, and Events.
Messages and dialog boxes Messages and built-in dialog boxes give you a way to interact with a user.
Handling keyboard events You can trap for any keystroke in ObjectPAL, which means you can easily 

develop hotkeys for your application.
Working with menus Using ObjectPAL, you can define menus and pop-up menus to display choices 

to users.
Working with lists You can use list boxes and edit boxes to let a user choose from a group of 

items.
Multiform applications To design applications that use more than one form, you'll need to know how 

to open a form and control it from another form. Forms can also be opened as 
dialog boxes.

Working with text files You can use ObjectPAL to work with text files. Text files are called TextStreams 
in ObjectPAL.

Using DLLs With the Uses clause, you can declare and subsequently use functions called 
from DLLs (dynamic link libraries).

Working with the file system Using methods in the FileSystem type, you can access and get information 
about disk files, drives, and directories. ObjectPAL's fileBrowser procedure lets 
you display the Corel Paradox File Browser.

{button ,AL(`INTRO_PROGRAMMING;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Messages and dialog boxes
Dialog boxes allow you to interact with Corel Paradox. System type procedures display dialog boxes (e.g., 
dlgAdd and dlgCopy) that begin with the prefix dlg. Procedures that display messaging dialog boxes, such as 
msgInfo and msgQuestion, begin with the prefix msg. The former do not return values; the latter return values
such as Yes or No, in mixed upper and lowercase. You can also design your own dialog boxes.
A dialog box in Corel Paradox is really a form whose properties are set to make it act like a dialog box. To see the 
Window Style dialog box, create a new form and click Format, Window Style. Here you can add scroll bars and a 
standard menu, specify whether the dialog box is modal, and more. You can even open a normal form as a dialog
box with the openAsDialog method. If you open a form from another form, you use the wait method to 
suspend execution in the first form until a formReturn method closes the second form.
Dialog boxes can be informational (e.g., displaying a simple message) or complex (e.g., prompting the user to 
enter search criteria for a query). There are many examples of how dialog boxes function in the dlg and msg 
topics. Also, the message procedure makes it easy to display up to six strings in the Status Bar.

{button ,AL(`OPAL_METH_SYDLGCREATE;OPAL_METH_SYDLGDELETE;OPAL_METH_SYDLGEMPTY;OPAL_
METH_SYDLGEXPORT;OPAL_METH_SYDLGEXPORT;OPAL_METH_SYDLGIMPORTASCIIVAR;OPAL_METH_S
YDLGIMPORTSPREADSH;OPAL_METH_SYDLGNETDRIVERS;OPAL_METH_SYDLGNETLOCKS;OPAL_METH_
SYDLGNETREFRESH;OPAL_METH_SYDLGNETRETRY;OPAL_METH_SYDLGNETSETLOCKS;OPAL_METH_SYD
LGNETSYSTEM;OPAL_METH_SYDLGNETUSERNAME;OPAL_METH_SYDLGNETWHO;OPAL_METH_SYDLGRE
NAME;OPAL_METH_SYDLGRESTRUCTURE;OPAL_METH_SYDLGSORT;OPAL_METH_SYDLGSUBTRACT;OPA
L_METH_SYDLGTABLEINFO;OPAL_METH_SYMARI;OPAL_METH_SYMRCAOPAL_METH_SYMARI;OPAL_MET
H_SYMSTP;OPAL_METH_SYMYNC;INTRO_PROGRAMMING;',0,"Defaultoverview",)} Related Topics



Handling keyboard events
Keyboard events occur whenever you enter data at the keyboard or a keystroke autorepeats. Corel Paradox 
provides two built-in event methods for capturing KeyEvents: keyChar and keyPhysical.
Whenever you press a key, the event first goes to the form, which processes it if possible (e.g., when F1 is 
pressed) or dispatches it to the active object. The active object's built-in code then calls the keyPhysical 
method. If the keystroke represents an action to be performed, keyPhysical calls the action method. 
Otherwise, keyPhysical calls keyChar, which displays the character in a field on the active object. (In edit 
mode, keyChar first locks a field before it inserts a character.) If keyChar receives a SPACEBAR press when the 
active object is a button, it triggers the object's pushButton method.
You can use keyPhysical to create hot keys, which are keystroke equivalents of pressing buttons on a form.

{button ,AL(`OPAL_METH_SYSENDKEYS;OPAL_BMETH_LIST;OPAL_TYPE_KEYEVENT;INTRO_PROGRAMM
ING;',0,"Defaultoverview",)} Related Topics



Working with menus
Corel Paradox provides three types of menus.
Built-in menus and toolbars are complete and require no ObjectPAL coding. There may be times, however, when 
you want to disable menu options or add functionality to the default menus. Custom menus let you create menu 
designs for your applications.
If you decide to create a custom menu for your application, first decide where to put your ObjectPAL code. For 
example, if the menu will be available from the entire form, you might put the code in the form's open method. 
In a multi-page form, where you want different menus for different parts of the form, you might want to put your 
code in the page's arrive     method. Next, decide where you want standard menus, which display across the top of
the screen, and popup menus. You can then design the layout for your menus. The ObjectPAL Menu Type 
provides methods for creating and displaying menus, and for receiving user input.

{button ,AL(`OPAL_BMETH_MENUACTION;OPAL_TYPE_MENU;OPAL_TYPE_MENUEVENT;OPAL_TYPE_POP
UPMENU;INTRO_PROGRAMMING;',0,"Defaultoverview",)} Related Topics



Working with lists
Lists and list boxes present a group of options or values from which the user selects. Lists are compound objects 
with two parts: the field object that you place on the form and the list object that contains the data shown in the 
list. You place a field object on the form and set its DisplayType property either to List or Drop-down Edit.
In a form, place a field object whose DisplayType property is set to Drop-down Edit or List. Click OK in the Define 
List dialog box. Choose Tools, Object Tree to view the relationship between the field object and the list object. You
attach code, using the Object Explorer, to the field object that affects values displayed in the field and to the list 
object that affects values displayed in the list. Use the DataSource property to specify the source table and field 
whose data appears in the list.
You use a TCursor and its various methods to search the table field for a particular value, to add the value to the 
table if it does not exist, to edit the value, and more.
The following List properties that are particularly useful:
· list.count shows the number of items in a list. Setting this value to zero clears the list.
· list.selection sets the current index pointer in the list.
· list.value sets the value of the item currently pointed to by list.selection.

{button ,AL(`INTRO_PROGRAMMING;',0,"Defaultoverview",)} Related Topics



Multi-form applications
You may want to create applications that use more than one form or dialog box (which is a special kind of form). 
Use multiple forms sequentially when one task must be completed before another begins. Use multiple forms 
simultaneously to divide a complex application into functional modules.
Before you create a complex multi-form application, decide how you want its forms and dialog boxes to interact. 
Dialog boxes are either modal or non-modal. Typically, you use modal dialog boxes in sequential applications; 
that is, whenever user input is required before the application continues. Modality prevents the focus from 
changing to other windows, forms, system menus, and Windows applications. You use non-modal dialog boxes 
and standard forms in simultaneous applications; that is, whenever you want the user to have simultaneous 
access to other windows and resources.
How can you tell the difference between the behavior of modal and a non-modal dialog boxes? A modal dialog 
box cannot be resized. You must respond to the dialog box, either by typing in data, clicking a button, or closing 
the dialog box, before you can change focus to another object. A password dialog box is usually modal; you 
either enter a valid password or exit.
A non-modal dialog box can be resized, and it allows you to change focus to another window. A text search 
dialog box that lets you change focus to the underlying document is typical. Both modal and non-modal dialog 
boxes always rest on top of open forms, and both types of dialog boxes can be moved on top of the Toolbar.
ObjectPAL provides predefined dialog boxes; the System Type procedures that you use to display them begin 
with the prefixes msg or dlg. You can also design your own dialog boxes. You can even open a standard form as a
dialog box with the openAsDialog method by specifying display attributes with WindowStyles constants.
The FormType methods, especially wait, close, and formReturn give you power and flexibility in handling the 
interaction of multiple forms and dialog boxes in applications.

{button ,AL(`OPAL_METH_SYDLGADD;OPAL_METH_SYDLGCOPY;OPAL_METH_SYDLGCREATE;OPAL_MET
H_SYDLGDELETE;OPAL_METH_SYDLGEMPTY;OPAL_METH_SYDLGEXPORT;OPAL_METH_SYDLGEXPORT;O
PAL_METH_SYDLGIMPORTASCIIVAR;OPAL_METH_SYDLGIMPORTSPREADSH;OPAL_METH_SYDLGNETDRI
VERS;OPAL_METH_SYDLGNETLOCKS;OPAL_METH_SYDLGNETREFRESH;OPAL_METH_SYDLGNETRETRY;O
PAL_METH_SYDLGNETSETLOCKS;OPAL_METH_SYDLGNETSYSTEM;OPAL_METH_SYDLGNETUSERNAME;O
PAL_METH_SYDLGNETWHO;OPAL_METH_SYDLGRENAME;OPAL_METH_SYDLGRESTRUCTURE;OPAL_MET
H_SYDLGSORT;OPAL_METH_SYDLGSUBTRACT;OPAL_METH_SYDLGTABLEINFO;OPAL_METH_SYMESSAGE
;OPAL_METH_SYMARI;OPAL_METH_SYMRCAOPAL_METH_SYMARI;OPAL_METH_SYMSTP;OPAL_METH_SY
MYNC;INTRO_PROGRAMMING;',0,"Defaultoverview",)} Related Topics



Working with text files
To work with ANSI text files, you use the TextStream data type. The TextStream type includes all ANSI characters,
including such non-printing characters as the carriage return and line feed. To work with formatted text files, 
which include such attributes as font, alignment, and margins, use the Memo type.
There are TextStream methods for such tasks as opening and closing files, reading one line or one character of 
text at a time, reading from and writing to disk, and setting the position of the pointer within a file. A TextStream 
pointer shows the current position in the file counted from the beginning: 1 is the first character, 2 the second, 
and so on. The TextStream advMatch method searches a file for a pattern, similar to the String advMatch 
method.
TextStreams and Strings are related objects that both contain text; however, only TextStreams, can read from 
and write to files on disk.

{button ,AL(`INTRO_PROGRAMMING;',0,"Defaultoverview",)} Related Topics



Using DLLs
Dynamic Link Libraries (DLLs), store functions in a library that is external to Corel Paradox and ObjectPAL. Before 
you call a custom, external routine from ObjectPAL, you first declare it in a uses clause at the beginning of your 
method or procedure, or in the Uses window available from the Corel Paradox Object Explorer.
It is best to use Corel Paradox and ObjectPAL methods and procedures when you build applications because they 
are efficient and powerful. You create a DLL only when you want to add to or enhance Corel Paradox capabilities. 
For example, you may want to call routines in COMMDLG32.DLL to use a Windows common dialog box, or in 
USER32.EXE to use other Windows functions. If you have an existing application that uses 16-bit DLLs or 16-bit 
Windows calls, you need to replace the DLLs and Win Application Programming Interface (API) calls with 32-bit 
versions.
 Example

{button ,AL(`INTRO_PROGRAMMING;',0,"Defaultoverview",)} Related Topics



Using DLLs example
The following example calls the 32-bit Windows DLL, WINMM.DLL, and its function, PlaySound, to play the 
Microsoft Sound Wav file when the button is pressed.
The first set of code goes into the button's Uses method. The Function Names in the Uses block are case-
sensitive.

Uses WINMM
PlaySound(WavFileName CPTR,How CWORD, Flag CWORD)
endUses

The following code is inserted into the button's pushButton event, and invokes the PlaySound function with the 
necessary parameters:

Method pushButton(var eventInfo Event)
playsound("C:\\Windows\\media\\The Microsoft Sound.wav",0,0)
endMethod



Working with the file system
You use the FileSystem data type to work with disk files, drives, and directories. FileSystem variables provide a 
handle for access to files. The first step is often to call the findFirst method for a FileSystem variable, which 
checks whether a file or directory exists; if so, findFirst initializes the variable with a handle to the file or 
directory. You then use the FileSystem methods to work with drives, directories, and files.
Corel Paradox provides a File Browser for performing interactive file system tasks. The ObjectPAL System Type 
provides the fileBrowser procedure, which displays the Corel Paradox FileBrowser.

{button ,AL(`INTRO_PROGRAMMING;',0,"Defaultoverview",)} Related Topics



ObjectPAL language categories
Corel Paradox and ObjectPAL let you create compiled applications from these major components:

Category Description Object types
Data model Let you work with data in tables Database,    Query, 

Table, TCursor, SQL
System data Let you store data, but not in 

ta
bl
es

DataTransfer, DDE, 
FileSystem, Library, 
Mail, Session, System, 
TextStream

Data types The basic ObjectPAL data types AnyType, Array, Binary,
Currency, Date, 
DateTime, DynArray, 
Graphic, Logical, 
LongInt, Memo, 
Number, OLE, Point, 
Record, SmallInt, 
String, Time

Design objects Let you create the user interface 
to your application

Menu, Native Windows 
Controls, PopUpMenu, 
UIObject, Toolbar

Display managers Let you control how data is 
presented to the user

Application, Form, 
Report, Script, 
TableView

Event Types Contain information about 
actions in Corel Paradox

ActionEvent, 
ErrorEvent, Event, 
KeyEvent, MenuEvent, 
MouseEvent, 
MoveEvent, 
StatusEvent, 
TimerEvent, 
ValueEvent

Corel Paradox and ObjectPAL build applications incrementally. First, you build tables, forms, and objects in Corel 
Paradox, and add custom ObjectPAL methods to alter their default methods. Once the objects have been tested 
and debugged, you can refine the application by adding more objects.
Recent versions of Corel Paradox allow you to control objects that are native to the Windows operating system. 
Native Windows controls (NWCs) allow Corel Paradox forms to deliver information to the user in the same format 
as Windows.

{button ,AL(`INTRO_CONCEPTS;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Objects 
In Corel Paradox, most of the things you work with are objects the buttons and fields you create using the 
Toolbar, the tables and text files stored on disk, and the menus created in code, to name a few. Corel Paradox 
recognizes two kinds of objects: design objects and data objects. You place design objects, such as buttons, list 
boxes, and other UIObjects, in forms. Data objects are files, data types, and programming structures.

All Corel Paradox objects have properties (attributes such as color, font, and line width) and methods (code that 
defines how they respond to an event),

Most objects (except for ActiveX controls) that you can create or modify interactively using Corel Paradox, can 
also be creates or modified using ObjectPAL.

Objects and methods
Custom Corel Paradox applications are created by placing objects in forms and then writing ObjectPAL methodsto
define how those objects respond to events. Such applications are sometimes called "Hey you, do this" 
applications. The "Hey you" part (called an event) happens when the user does something to an object (e.g., 
clicks a button on a form). The "do this" part is defined by methods or code that executes when an event occurs. 
Some objects can display other objects (such as a lookup list) or chain to another stage in the application (e.g., 
another form, query, or report).

Object types
ObjectPAL objects are grouped by type. ObjectPAL Language Categories contain groups of types and give you 
access to help on the methods in each type.
Syntax, description, and sample code is provided for each method. You can copy and paste sample code into 
your own code through the Clipboard.

Properties
Each type of object has properties or attributes such as focus, value, name and visible. For example, buttons 
have the ButtonType, CenterLabel, and Name properties; box objects have the Color, Frame.Color, and Size 
properties; and forms have DialogForm, HorizontalScrollBar, and SnapToGrid properties.

Events
Corel Paradox recognizes certain actions or conditions within forms as events. When Corel Paradox detects that 
an event has occurred, it triggers execution of the method associated with that event. There are different types 
of events that are appropriate for different types of objects. For instance, the pushButton event is recognized by 
a pushButton object, but not by a graphic object. There are, however, events that are recognized by most or all 
objects, such as the timer event, events related to focus, and opening and closing.
To understand how Corel Paradox processes events, you must understand bubbling, the process by which events 
pass from the target object up through the containership hierarchy. When an event occurs, the target object 
does not immediately process the event. Instead, the event passes up to the form level, where the form 
determines whether to process the event, to send the event back to the target object, or to another object for 
processing. The object that finally processes the event triggers the method (code) associated with the event.

{button ,AL(`INTRO_CONCEPTS;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Events 
Examples of events are:
· pressing the mouse button
· releasing the mouse button
· moving the pointer over an object
· pressing a key
· moving the cursor into a field
· moving the cursor out of a field
· selecting an item from a menu
Events can also happen for other reasons; for example, the timer event happens after a certain amount of time 
passes. You can also generate events from within your own methods.
Using ObjectPAL, you can create methods that define how objects respond to events. All objects have default 
methods for ObjectPAL events. You don't have to write methods for all the events an object can handle, and an 
event never goes unrecognized.

{button ,AL(`INTRO_CONCEPTS;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Properties 
Objects have properties such as color, pattern, font, and line width.
You can use Corel Paradox to set and change these properties or you can use ObjectPAL. Almost everything you 
can do in Corel Paradox, you can do in ObjectPAL.
For example, the following statements set the color of rectangle box1 to red, set the font of field field1 to Times, 
and make myCircle invisible.
box1.color = "Red"    ; sets color of box1 to red
field1.font = "Times" ; sets font of field1 to times
myCircle.visible = No

{button ,AL(`INTRO_CONCEPTS;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



List of data types
The ObjectPAL language contains the following data types:
AnyType LongInt
Array Memo
Binary Number
Currency OLE
Date Point
DateTime Record
DynArray SmallInt
Graphic String
Logical Time

{button ,AL(`INTRO_CONCEPTS;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Containership
Corel Paradox objects coexist in a hierarchy of containership; for example, when you place a table object on a 
page of a form, that page contains the table. Forms contain tables, tables contain records, records contain 
fields, fields can contain buttons, and so on.
An object is contained only if it is completely within the boundaries of the container.
Position in this hierarchy is important because it defines whether an object can see another object's properties 
and variables.
An object cannot see variables in the objects it contains, but it can see its own variables, and the variables in the
objects that contain it. To put it another way, if you think of objects as boxes that contain smaller boxes, the 
smallest box has the best view.

{button ,AL(`INTRO_CONCEPTS;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



About procedures
There are two kinds of procedures in ObjectPAL: procedures in the ObjectPAL run-time library (RTL) and custom 
procedures you create. Procedures in the RTL are just like methods except they never explicitly specify an object.
A custom procedure resembles procedures in many other programming languages; it is a routine you write 
yourself and use like a subroutine.

{button ,AL(`INTRO_COMPONENTS;INTRO_COMPONENTS_PROC;',0,"Defaultoverview",)} Related 
Topics



RTL procedures
The procedures in the ObjectPAL run-time library are just like ObjectPAL methods, with one exception. Procedures
never specify an object. Any method in any object can call any ObjectPAL procedure, and the procedure will 
know what to do. For example, the statement
close()

calls the Form type procedure quit, which closes the current form. The System type includes a number of 
procedures to interact with users (e.g., message, msgInfo, and msgStop).
msgStop("Alert!", "This file already exists.")

The System type also includes the procedures beep and sleep and several enumeration procedures for getting 
and setting the mouse position and shape:
method pushButton(var eventInfo Event)
beep()             ; plays the system beep sound
sleep(2000)        ; waits for 2 seconds
beep() 
message("Did you hear two beeps?")
                   ; displays a message in the status line
sleep(2000)
enumAllObjectSource("mySource.db") 
                   ; creates a table of all methods in this form
endMethod

Like ObjectPAL methods, ObjectPAL procedures are associated with object types and execute in response to 
events. It may be helpful to think of ObjectPAL procedures as methods in which the object is implied.

{button ,AL(`INTRO_COMPONENTS_PROC;',0,"Defaultoverview",)} Related Topics



Custom procedures
Custom procedures in ObjectPAL resemble procedures in many other programming languages. A custom 
procedure is a routine you write and use like a subroutine.
Custom procedures can be attached to the object itself, to any object in the containership hierarchy, or to the 
form itself.
Custom procedures can be included in libraries, but they can only be invoked from within the library.
ObjectPAL can call a custom procedure faster than it can call a custom method. The code executes at the same 
speed, but ObjectPAL can find a procedure faster than it can find a method.
Use a proc block to declare a custom procedure. The structure is
PROC name (parameterDescription) [return type]
   [CONST section]
   [TYPE section]
   [VAR section] 
   [ObjectPAL statements]
ENDPROC

You can declare procedures in two places:
· within a method
· in an object's Proc window

{button ,AL(`INTRO_COMPONENTS_PROC;',0,"Defaultoverview",)} Related Topics



Procedures declared in methods
A procedure declared in a method is private. Its scope is limited to the method in which it is defined.
Here's an example of a custom procedure:
proc inc(x SmallInt) SmallInt
   return x+1 ; increments a number
endProc

The following example shows how to call that procedure (and another one) from within a method. In this 
example, it's the pushButton method, but it could be any method:
proc inc(x SmallInt) SmallInt
   return x+1
endProc

proc showMe(x SmallInt)
   msgInfo("myNum = ", x)
endProc

method pushButton(var eventInfo Event)
var 
   myNum SmallInt 
endVar
   myNum = 3
   showMe(myNum)
   myNum = inc(myNum)
   showMe(myNum)
endMethod

{button ,AL(`INTRO_COMPONENTS_PROC;',0,"Defaultoverview",)} Related Topics



Procedures declared in an object's Proc window
A procedure declared in an object's Proc window has the same syntax as a procedure declared in a method, but 
it has a different scope.
A procedure declared in an object's Proc window is visible both to all methods attached to that object and to all 
methods in objects contained by that object. Therefore, to make a procedure available to every object in a form, 
declare the procedure in the form's Proc window.

{button ,AL(`INTRO_COMPONENTS_PROC;',0,"Defaultoverview",)} Related Topics



About methods
A method is code that defines the behavior of an object in response to events. ObjectPAL methods fall into one of
three categories:
· built-in event methods that are included with every Corel Paradox object
· methods in the ObjectPAL run-time library
· custom methods that you create

{button ,AL(`INTRO_COMPONENTS;INTRO_COMPONENTS_METH;INTRO_COMPONENTS_METH_EV;',0,"
Defaultoverview",)} Related Topics



Editing a method
You can edit a method for an object in a form, or for the form itself. 
To edit a method for an object

1. Open the Object Explorer.
2. Click the Methods Tab.
3. Double-click the method you want to edit.
An Editor window opens.
To edit the method for a form 

1. Open the Object Explorer.
2. Select the Form icon at the top of the object tree
3. Click the Methods Tab.
4. Double-click the method you want to edit.
An Editor window opens.
You can type the text for a method directly in the Editor, or use the Clipboard to copy, cut, and paste methods 
and parts of methods from other objects. However, there is no linkage or relationship between the original 
method and the copied method. Changes made to one method are not reflected in the other.
You can also copy a method by copying an object from a design document. When you copy an object, all 
methods attached to the object are copied as well. However, there is still no linkage between the methods after 
the copy.

{button ,AL(`INTRO_COMPONENTS_METH;INTRO_COMPONENTS_METH_EV;',0,"Defaultoverview",)} 
Related Topics



Methods in the run-time library
The ObjectPAL run-time library (RTL) is a collection of predefined routines. The library includes methods you can 
use to perform a wide range of tasks, from reading and editing data in tables to creating and displaying menus. 
Each of these methods is associated with an object type; all the methods for working on forms are in the Form 
type, all the methods for working with text files are in the TextStream type, and so on.
ObjectPAL methods are symmetrical and consistent. Within a type, methods often come in pairs. For example, if 
a type has an open method, you can expect it to have a close method. If you can read information from an 
object, you can write to it; if you can get a value, you can set a value.
ObjectPAL methods are consistent across types because methods with similar names do similar things. For 
example, open makes an object available for manipulation, whether the object is a table or a text file, and close
puts it away. The underlying code may differ, but conceptually, the results are the same.
Methods in the run-time library require you to use dot notation to specify an object on which to operate.

{button ,AL(`INTRO_COMPONENTS_METH;INTRO_COMPONENTS_METH_EV;',0,"Defaultoverview",)} 
Related Topics



Custom methods
Custom methods are auxiliary methods you create. They are convenient for making frequently used routines 
available to several objects.
Custom methods attached to a form are available to all objects in the form. That way, you only have to maintain 
the code in one place.
After you save a custom method, its name is listed in the Object Explorer. To make changes, choose the name 
and open an ObjectPAL Editor window, just as you would to edit a built-in event method.

{button ,AL(`INTRO_COMPONENTS_METH;INTRO_COMPONENTS_METH_EV;',0,"Defaultoverview",)} 
Related Topics



Creating a custom method
To create a custom method
1. Open the Object Explorer.
2. Click the Methods tab.
3. Double-click New Method.
4. Type the name of the new custom method.
5. Click OK to open an Editor window for the new method.
You can type or paste text into custom methods just as you can for built-in event methods.
After you save a custom method, its name is listed in the Object Explorer. To make changes, choose the name 
and open an ObjectPAL Editor window, just as you would to edit a built-in event method.
You can copy, cut, and paste an entire object. When you do, all methods attached to the object are copied as 
well. However, there is no link or relationship between the original method and the copied method. Changes 
made to one are not reflected in the other.



Methods in other objects
Methods are public. Methods attached to an object can be called by other objects. For example, suppose a form 
contains two boxes: box1 and box2. If box1 has a method fred, box2 could use dot notation to call it:
box1.fred()

If you attach a custom method to a form the top level of the containership hierarchy
all objects contained in the form have direct access to that method. For example, if you attach the custom 

goNextPage method to a form, a button on that form could call goNextPage like this:
method pushButton (var eventInfo Event)
goNextPage() ; this is a custom method attached to the form
endMethod

In this example, we didn't have to use dot notation because the pushButton method is attached to the button 
and the button is contained by the form; therefore, the button has direct access to the form's methods.
When you compile this method, ObjectPAL searches other objects for goNextPage, so it executes without delay 
at run time.

{button ,AL(`INTRO_COMPONENTS_METH;INTRO_COMPONENTS_METH_EV;',0,"Defaultoverview",)} 
Related Topics



Method language structure and syntax
In terms of structure and syntax, ObjectPAL methods resemble traditional programs. Some aspects of this 
structure are:
· Methods can have parameters (also called arguments).
· Methods are delineated by the method...endMethod keywords. You can define an ordered structure of 

execution because ObjectPAL supports control structures and loops like while...endWhile, 
if...then...else...endIf, and switch...case...endSwitch.

· As in Pascal and C, you can define procedures to perform one or more tasks. Procedures can receive 
arguments from, and return results to, the method that calls them.

· Also as in C, you can freely use white space (tabs, spaces, and blank lines). You can choose to indent 
subordinate method lines, put one or more statements on a line, and append a comment to any method line
white space has no effect on how statements are executed.

{button ,AL(`INTRO_COMPONENTS_METH;INTRO_COMPONENTS_METH_EV;',0,"Defaultoverview",)} 
Related Topics



Variables
A variable is like a slot where you can temporarily store one item of information.
The value of a variable can be any ObjectPAL type (also called a data type). It is not necessary to explicitly 
indicate a data type for variables.
When you specify a variable's data type before you use it is called declaring a variable.
The simplest way to give a variable a value is to use the assignment operator (=).

{button ,AL(`INTRO_VARIABLES;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



The scope of a variable
The term scope means accessibility. The scope of a variable, that is, the range of objects that have access to it, 
is defined by the objects in which it is declared and by the containership hierarchy. Objects can only access their 
own variables and variables defined in the objects that contain them. The scope of a variable also depends on 
where it is declared.

Within a method
Variables declared within a method are visible only to that method, and they are accessible only while that 
method executes. They are initialized (reset) each time the method executes.

Outside a method
Variables declared in a Method window before the keyword method are visible only to that method, but they are
not initialized each time the method executes.

In the Var window
Variables declared in an object's Var window are visible to all methods attached to that object and to any objects 
that the object contains. A variable declared in an object's Var window is attached to the object, and the variable 
is accessible as long as the object exists in the form and the form is open.

Within the containership hierarchy (compile-time binding)
In programming terms, binding a variable is connecting a variable to a data type. The ObjectPAL compiler binds 
variables when it compiles the source code; there is no run-time binding in ObjectPAL. When the compiler 
encounters a variable in a statement, it searches the rest of the source code to find out where the variable is 
declared so it can bind the variable to the declared data type.

{button ,AL(`INTRO_VARIABLES;',0,"Defaultoverview",)} Related Topics



Constants
The ObjectPAL language includes many predefined constants. Constants are like variables except they are 
protected from change when the program runs. This enables the compiler to generate more efficient code.
You can define constants for a single method, or open a Const window to define constants for all the object's 
methods.
Constants are automatically put into resources, where they can be modified without affecting the source code.

{button ,AL(`INTRO_VARIABLES;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Introduction to scripts
A script consists of code in its own file. It is not attached to a form. A script is an object that displays on the 
desktop as an icon. Use a script when you want to execute code without opening and displaying a form window. 
You can
· attach code to one or more built-in event methods
· declare variables, constants, data types, custom methods, and procedures
· call custom DLLs
A script does not display in a window and does not contain any design objects. A script has the built-in event 
methods run, error, and status. (You must set your ObjectPAL Level to Advanced in the General page of the 
Developer Preferences dialog box to display the status method in the list of built-in event methods.) You can 
execute these methods interactively using Corel Paradox, or call them from within an ObjectPAL method or 
procedure. Like any other object, a script also has windows for declaring variables, constants, procedures, data 
types, and external routines. You can also declare custom methods.
From a script, you have complete access to the ObjectPAL run-time library; therefore, you can control other 
objects. For example, you can call other scripts, open and work with tables, forms, and reports, and run queries. 
You can call methods attached to other objects and get and set their properties.
A Script type includes methods for creating and manipulating scripts and the code they contain
from within an ObjectPAL method or procedure.

{button ,AL(`INTRO_SCRIPTS;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Creating a script
To create a script

1. Click File, New to open the New dialog Box.
2. Double-click the New Script icon on the Create New page. An ObjectPAL Editor window opens for the Script's 

built-in run method. 
3. Type your code in the window. This is a standard ObjectPAL Editor window. You can edit, check syntax, and 

debug the run method as you would any other object. Keep in mind that whatever you declare is visible only 
to the script's run method.

4. Close the window and type a name for the script. 
Like a form, a script can be saved or delivered. Saved scripts can be changed; delivered scripts cannot.
You can also create a script using ObjectPAL. For more information, see Script Type.

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



Adding new code to a script
To add code to a script

1. Open the script in an Editor window.
2. Type your code in the window.
3. To save the script    (both source code and executable code) to disk, click File, Save. To save only the 

executable code, click Program, Deliver.
Using the Object Explorer and ObjectPAL Editor windows, you can add code to a script by
· attaching code to the built-in event methods
· adding custom methods
· adding custom procedures
· declaring variables, constants, data types, and external routines
You can also add code to a script using ObjectPAL. For more information, see Script Type.

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



About attaching code to built-in event methods (in scripts)
Every script has the following built-in event methods: run, error, and status. (You must set your ObjectPAL 
Level to Advanced to display status in the list of built-in event methods.) You can attach code to these built-in 
event methods as you would with any other object. You do this in the Editor window.
You can also attach code to a script's built-in event methods using ObjectPAL. For more information, see Script 
Type.

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



Adding custom methods to scripts
You can add custom methods to a script using the Object Explorer.
To add a custom method

1. Open the script in an Editor window.
2. Click Tools, Object Explorer.
3. Click the Methods tab.
4. Double-click New Method.
5. Type the name of the new custom method.
6. Click OK to open an Editor window for the new method.
You can also add custom methods to a script by using ObjectPAL. For more information, see Script Type.

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



Adding custom procedures
From a script's Object Explorer, you can choose Proc to open an Editor window in which you can declare custom 
procedures for the script.
You can also add custom procedure to a script using ObjectPAL. For more information, see Script Type.

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



Declaring variables, constants, data types, and external routines
From a script's Object Explorer, you can declare variables, constants, data types, and external routines by 
choosing Var, Const, Type, or Uses, respectively, to open the appropriate Editor window. Items declared in these 
windows are global to the script but cannot be accessed by other forms or objects.

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



Editing a script
You can edit a script in an ObjectPAL Editor window.

To edit a script
1. Click File, Open, Script.
2. Enable the Edit The Script button at the bottom of the Open Script dialog box
3. Double-click the script you want to open.
The script opens in an Editor window with the built-in event method run displayed.
4. Use the ObjectPAL Editor to edit your script as you would a method.

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



Debugging a script
You can debug a script by using the ObjectPAL Debugger.

To debug a script
1. Open the script in an Editor window.
2. Set breakpoints and watch points as desired.
3. Run the script.
When ObjectPAL encounters the breakpoint, execution stops and the script opens in a Debugger window. Use the
ObjectPAL debugger to debug the script as you would a method.

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



About playing a script
You can play a script interactively using Corel Paradox or from within a method. In either case, the result is that 
you execute the script's built-in run method.

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



Playing a script interactively
To play a script interactively
1. Click File, Open, Script. 
2. Enable the Run The Script button at the bottom of the Open Script dialog box.
3. Double-click the name of the script you want to open.
The script's built-in run method executes.

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



Playing a script programmatically
Use the System type method play to play a script from within a method or procedure. For example:
switch
   case theValue = "this" : play("doThis")   ; play script "doThis"
   case theValue = "that" : play("doThat")   ; play script "doThat"
   otherwise              : play("theOther") ; play script "theOther"
endSwitch

{button ,AL(`INTRO_SCRIPTS;',0,"Defaultoverview",)} Related Topics



Delivering a script
When you deliver a script, Corel Paradox removes all the source code. Your code is not lost; it is protected.
If you save the script using File, Save, anyone who uses the script can modify the ObjectPAL code, and change 
your application. Delivery gives you a way to let others use your code, but not change it.
To deliver a script you have created

· With the script open in an Editor window, click Program, Deliver.
When you click Program, Deliver, Corel Paradox saves a copy of the script with an .SDL extension. You can still 
change your ObjectPAL code by using the saved script (with the .SSL extension), but if you want others to use it 
safely, give them the delivered script.

{button ,AL(`iide_about_delivering_application;INTRO_SCRIPTS;',0,"Defaultoverview",)} Related 
Topics



Introduction to libraries
A library is a collection of custom methods and procedures. Libraries are used to store and maintain frequently 
used routines and to share custom methods and variables among several forms. 
In many ways, working with a library is like working with a form. For example, a library has built-in event 
methods. You add code to a library just as you do to a form, by using the Object Explorer and the ObjectPAL 
Editor. As with a form, you can open Editor windows to declare custom methods, procedures, variables, 
constants, data types, and external routines.
However, there are some important differences:
· At run time, a library does not display in a window.
· A library cannot contain design objects; it can contain only code.
· In a Library, statements that use Self do not refer to the Library instead, they refer to the object that called 

the method.
· The scoping rules are different for libraries.

{button ,AL(`INTRO_LIBRARIES;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Library methods
You can use the Library methods in your own code attached to any object, or even another library
to manipulate a library. See Library Type for a list of the run-time methods.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Calling library methods
To call a method in a library, you must first declare the library in the Uses window of the object that is doing the 
calling. For example, suppose you want a button's pushButton method to call a custom method from a library. 
Declare the library in the button's Uses window (or in the Uses window of an object that contains the button). 
This tells Corel Paradox where to look for the method and what arguments it will take.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Creating a library
To create a new library

1. Click File, New to open the New dialog Box.
2. Double-click the New Library icon on the Create New page.
A Library window opens.
3. Click Tools, Object Explorer.
4. Use the Object Explorer and ObjectPAL Editor windows to add code to a library by
· attaching code to the built-in event methods
· adding custom methods
· adding custom procedures
· declaring variables, constants, data types, and external routines
When you are finished adding code, you can save both the source code and the executable code (to an .LSL file) 
by clicking File, Save, or you can save only the executable code (to an .LDL file) by clicking Program, Deliver.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Adding code to a library
You can add code to an existing library. 
To add code to a library

1. Open the Object Explorer.
2. Use the Object Explorer and its ObjectPAL Editor windows to add code to a library by
· attaching code to the built-in event methods
· adding custom methods
· adding custom procedures
· declaring variables, constants, data types, and external routines
When you are finished adding code, you can save both the source code and the executable code (to an .LSL file) 
by clicking File, Save, or you can save only the executable code (to an .LDL file) by clicking Program, Deliver.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Attaching code to built-in event methods (in libraries)
Every library has the following built-in event methods: open, close, and error. You can attach code to these 
built-in event methods, as you would with any other object, in the Editor window.
A library's built-in open method is called when the library is first opened; close is called when the library is 
being closed; error is called when code in the library generates an error. Typically, you will use open to initialize 
global library variables, and use close to tidy up after using the library. By default, a library's error method calls 
the error method of the form that called the library routine.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Adding custom methods
The custom methods in a library can be called by other methods in the same library, by methods in other forms, 
and by methods in objects in other forms. This accessibility makes libraries very useful.
You can add custom methods from the Object Explorer window.
To add a custom method

1. Open the Object Explorer.
2. Click the Methods tab.
3. Double-click New Method. 
4. Type in a name for the new custom method, and click OK. 
An Editor window opens.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Adding custom procedures
You can add custom procedures from the Object Explorer window.
To add a custom procedure

1. Open the Object Explorer.
2. Click the Methods Tab.
3. Double-click Proc.
An Editor window opens in which you can declare custom procedures for the library.

 Note
· Unlike custom methods, which can be called from other forms and other objects, custom procedures can only 

be called from within the library in which they are declared.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Declaring variables, constants, data types, and external routines
From a library's Object Explorer, you can declare variables, constants, data types, and external routines by 
choosing Var, Const, Type, or Uses, respectively, to open the appropriate Editor window. Items declared in these 
windows are global to the library, but are not available to other forms or objects. However, other forms and 
objects can call library routines that access these variables.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Debugging called libraries
To debug ObjectPAL code on a form or library that is called from another form or library, you must set a 
breakpoint both in the ObjectPAL code that calls the second form or library, and in the code on the second form 
or library. While single-stepping through the code that calls the second form or library, step into the method or 
procedure on the second form or library.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Editing a library
You can edit a library in an ObjectPAL Editor window. 
To edit a library
1. Open the Object Explorer.
2. Click the Methods Tab.
3. Double-click the method you want to edit.
An Editor window opens for the method you selected. Use the ObjectPAL Editor to edit this method as you would 

any method.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Delivering a library
When you deliver a library along with an application, Corel Paradox removes all the source code. Your code is not
lost; it is protected.
If you save the library using File, Save, anyone who uses the library can modify the ObjectPAL code and change 
your application. Delivery gives you a way to let others use your code, but not change it.

To deliver a library
· With the Library window open, click Program, Deliver.
Corel Paradox saves a copy of the library with an .LDL extension. You can still change your ObjectPAL code by 

using the saved library (with the .LSL extension), but if you want others to use it safely, give them the 
delivered library.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Controlling the scope of a library
The scope of a library refers to its accessibility (i.e., which objects have access to the library's code). A Library 
variable follows the same scoping rules as other ObjectPAL variables. Two things determine a library's scope: 
where the Library variable is declared, and how the library is opened.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Declaring a Library variable
A Library variable follows the same scoping rules as other ObjectPAL variables. A variable declared in a method 
is available as long as that method is executing. A variable declared in an object's Var window is available both 
to the methods attached to that object, and to all objects that object contains.
To make a library available to all objects in a form for as long as that form is running, declare the Library variable
in the form's Var window and declare the library routines in the form's Uses window.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Using library variables as arguments
You can use a Library variable as an argument in a custom method or custom procedure.
By passing a library as an argument, you can change the behavior of a routine (method or procedure) and still 
maintain the routine's independence. A routine may use a library and routines from the library, but the caller can
determine the function of the routines by just changing the library.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



Opening a library
The Library method open takes arguments that specify the scope. A library can be opened in either of the 
following ways:
· private to the form, so that only the form that opened the library has access to its code
· global to the desktop, so that every form on the desktop can access the library. This lets several forms access 

the same custom methods and share the same global variables. By default, a library opens global to the 
desktop.

For two or more forms to share the same library, each form must open the library global to the desktop, and 
each form must have a Uses window that declares which library routines to use.

{button ,AL(`INTRO_LIBRARIES;',0,"Defaultoverview",)} Related Topics



About the Object Explorer
The Object Explorer is your entryway to the ObjectPAL Editor. It lets you view an object tree for the current form 
and gives you a developer's interface to properties, which you can change in the Explorer.
The Object Explorer has two panes: an object tree pane and a tabbed pane that shows the object's appearance, 
methods, properties, and events. You can display the panes side-by-side or you can display each pane 
individually. These choices are available on the Object Explorer View menu. You can also adjust the size of the 
panes by dragging the border between the two panes.
The object tree displays information for the current document; the tabbed pane displays information for the 
selected object. If you select another object or document, the contents of the Object Explorer change to reflect 
the new object or document.
The two panes share four menus:
· the File menu, which is used to close the Object Explorer
· the Edit menu, which contains editing commands
· the View menu, which is used to specify what part of the Object Explorer to view, whether to hide the main 

menu, and whether to temporarily pin the Object Explorer to the desktop
· the Help menu, which is used to get help on the Object Explorer

The object tree
The object tree shows the hierarchical relationships among objects in the current form. It works like the Windows 
Explorer: click a plus (+) icon to expand that node; click a minus (-) icon to collapse it. When fully expanded, the 
object tree shows all objects on the current form. You can move and copy objects in the object tree using the 
right-click menu. You can also right-click the objects in the object tree to change their properties.
For information on using the object tree, see About the object tree.

The tabbed pane
The tabbed pane contains separate pages that show what appearance traits, properties, methods, and events 
are attached to an object. It lets you change the properties and appearance of an object and open individual 
Editor windows to edit methods and events.
For information on using the tabbed pane, see About the tabbed pane.

{button ,AL(`INTRO_EXPLORER;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Opening the Object Explorer
You can open the Object Explorer from a Design, Script, or Library window. From the Object Explorer, you can use
the object tree or the tabbed panes to find and edit the different elements of your document.

To open the Object Explorer from a form
1. With the form open, click View, Design Form.
A Form Design window opens.
2. Click the object you want to edit to select it.
3. Click Tools, Object Explorer.

 Note
· To edit methods or procedures for the form itself, open the Object Explorer, and click the Form icon at the top 

of the object tree. The tabbed pages will then display the appearance, events, methods, and properties for the
form.

To open the Object Explorer from a report
1. With the report open, click View, Design Report.
A Report Design window opens.
2. Click the object you want to edit.
3. Click Tools, Object Explorer.

To open the Object Explorer from a script
1. Click File, Open, Script.
2. Enable the Edit The Script button at the bottom of the Open Script dialog box.
3. Double-click the script you want to open.
The script opens in an Editor window and the built-in run method is displayed.
4. Click Tools, Object Explorer.

To open the Object Explorer from a library
1. Click File, Open, Library.
An empty Library Design window opens.
2. Click Tools, Object Explorer.

{button ,AL(`INTRO_EXPLORER;',0,"Defaultoverview",)} Related Topics



Pinning the Object Explorer to the desktop
When the Object Explorer is pinned it remains open when you move between the Form Design window and the 
Editor window. The Object Explorer automatically opens with the design window, and stays open until you leave 
the Form Design window.

To pin the Object Explorer temporarily during work on a given form
1. Open the Object Explorer.
2. Click View, Pin Explorer from the Object Explorer menu.
When you leave the Form Design window and the Editor windows associated with the form, the temporary 
preference is discarded.

To open the Object Explorer and keep it pinned to the desktop
1. Open the Object Explorer.
2. Click Edit, Developer Preferences.
3. Click the Explorer tab.
4. Enable the Keep Pinned check box.

{button ,AL(`INTRO_EXPLORER;',0,"Defaultoverview",)} Related Topics



About the object tree
The object tree is one of the two panes displayed within the Object Explorer. It lists the objects in your document.
Use the mouse or Arrow keys to move within the object tree. You can use the object tree to switch to a different 
object, without returning to the actual document. When you select a new object on the tree, the tabbed pane 
changes to display the appearance, methods, events, and properties for that object. 

Forms
A form's object tree shows the hierarchy of objects in your document. The active object appears at the far left, 
and the tree that shows the container hierarchy extends to the right.
When you place an object in a form, Corel Paradox gives it a default name that begins with a pound sign (#). The
object tree shows both the objects you have placed and named and the objects you have placed but not named.
Names of objects that have ObjectPAL methods attached to them are underlined and marked with an asterisk. 

Reports
A report's object tree shows a diagram of the bands, fields, and design objects in your report and their 
relationships to one another.

{button ,AL(`INTRO_EXPLORER_TREE;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Opening the object tree
When you open the Object Explorer from a Form Design or Report Design window, it displays two panes. One 
pane contains the object tree, and the other contains tabbed pages that list the object's methods, events, 
appearance, and properties. 

To view only the object tree
· Click View, Object Tree on the Object Explorer menu.

To view both panes
· Click View, Both on the Object Explorer menu.

 Note
· When you open the Object Explorer from a Library or Script window, it displays only a tabbed pane.

{button ,AL(`INTRO_EXPLORER_TREE;',0,"Defaultoverview",)} Related Topics



Viewing the document's structure
The object tree in the Object Explorer window displays your document's structure.

To expand and collapse the tree
· Click the plus (+) icon to expand that node of the tree.
· Click the minus (-) icon to collapse that node of the tree.
When fully expanded, the object tree shows all objects on the active form.

{button ,AL(`INTRO_EXPLORER_TREE;',0,"Defaultoverview",)} Related Topics



Copying objects
The Object Explorer allows you to copy an object from its object tree to another object.

To copy an object to another object
1. Open the Object Explorer.
2. Choose the object you want to copy from the object tree.
3. Click Edit, Copy from the Object Explorer menu. 
4. Choose the container object from the object tree.
5. Click Edit, Paste.
If the container cannot accept the object, either because of containership rules or because the object is too 
large, you'll hear a beep and the move will not be made.

{button ,AL(`INTRO_EXPLORER_TREE;',0,"Defaultoverview",)} Related Topics



Moving objects
The Object Explorer allows you to move one object easily into another from its object tree.

To move an object into another object
1. Open the Object Explorer.
2. Choose the object you want to move from the object tree.
3. Click Edit, Cut from the Object Explorer menu. 
4. Choose the container object from the object tree.
5. Click Edit, Paste.
If the container cannot accept the object, either because of containership rules or because the object is too 
large, you'll hear a beep and the move will not be made.

{button ,AL(`INTRO_EXPLORER_TREE;',0,"Defaultoverview",)} Related Topics



Deleting objects
The Object Explorer allows you to delete an object easily from its object tree.

To delete an object from the object tree
1. Open the Object Explorer.
2. Choose the object you want to delete from the object tree.
3. Click Edit, Delete from the Object Explorer menu.

 Note
· Be sure to close the object before you try to delete it. The Object Explorer won't let you delete an open object.

{button ,AL(`INTRO_EXPLORER_TREE;',0,"Defaultoverview",)} Related Topics



About the tabbed pane
The tabbed pane contains separate pages that list the current object's built-in or custom methods, events, and 
properties. This pane lets you define new custom methods and change an object's properties. The tabbed pane 
allows you to distinguish between methods, events, and properties of ActiveX controls and native Windows 
controls and form-level features.
Each item on the Methods and Events pages can be edited in its own Editor window. Double-click an item on one 
of these pages, or SHIFT-click several items and press ENTER to open several Editor windows at once. When you 
add code to an event or method, its name moves to the top of the list, and a little blue ball appears beside it to 
let you know you have attached custom code.
When you declare a variable, constant, or procedure in one of these windows, it is visible to all methods attached
to that object.

F1 Help
Press F1 in the Object Explorer to get help on the selected item in the tabbed pane. If there is only one Help topic
for the selected item, pressing F1 takes you directly to that topic. If Help contains multiple topics for the selected
word, a Search dialog box lists the topics available for that language element. Select a topic and click Go To. You 
can also use the Alphabetical List of Methods.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



About the Appearance page
The Appearance page contains the characteristics that determine the appearance of an object. From this page, 
you can determine an object's color, background pattern, fonts, or frame thickness.
These characteristics can be viewed alphabetically, or by category. You can choose which way the list is 
organized by clicking View, Categories.
On the Appearance page, the characteristic's name is listed in the left column, and its current setting is 
displayed in the right column. You can change the characteristic by clicking on either its name or its setting. 
Some fields can be edited, so you can type in your own text; others will display a list box where you can choose 
other possible settings.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



About the Methods page
The Methods page list box displays all of the possible methods for the selected object, and a New Method option.
Methods that have been coded appear in bold text.
Double-clicking a method in the list opens the method in an Editor window.
The Methods list contains the following items:
Use To declare
Uses Procedures used by the object's methods
Var Variables
Const Constants
Type Types
Proc Procedures
New method Create a new method by double-clicking New method, entering its name in the New 

Method Name text box, and clicking OK. An Editor window opens for the new method.
Built-in event methods
Custom methods

Objects that contain custom code are marked with a small blue ball.
 Notes

· The Methods page might include prototypes for methods that cannot be ovewritten in an Editor.
· You can select more than one method at a time to open multiple Editor windows. After selecting the methods, 

press ENTER.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



About the Events page
The Events page lists the events associated with the selected object, including ObjectPAL built-in event methods.
Events that have been coded appear in bold text.
Double-clicking an event in the list opens the event in an Editor window.
ActiveX controls have methods, events, and properties. Their control methods are called directly, just like 
functions; in addition, in the case of controls, events and methods are distinct and separate. Therefore, an 
Events category is required. You'll find a control event on the Events page; whereas, the methods associated 
with it appear on the Methods page. ActiveX controls are marked with a small red ball.
In ObjectPAL, many methods can be considered to be events, or event-like, although they can be driven as if 
they were methods. Because the ObjectPAL built-in event methods are event-related (that is, they respond to 
events), they are on the Events page and are referred to in the documentation as built-in event methods.
When you add code to an event or method, its name moves to the top of the list, by default, and a little blue ball
appears beside it to let you know you have attached custom code. You can change the way custom methods, 
ActiveX controls, and built-in event methods sort in the Developer Preferences dialog box.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



About the Properties page
The Properties page lists all of the properties of the selected object.
The Properties list can be viewed alphabetically or by category. You can choose which way the list is organized by
clicking View, Categories.
On the Properties page, the property name is listed in the left column, and its current setting is displayed in the 
right column. You can edit the property by clicking either its name or its setting. Some fields can be edited, so 
you can type in your own text; others display a list box where you can choose other possible settings.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



About methods and events for ActiveX controls
ActiveX controls are embedded in Corel Paradox as form objects. Certain events, methods, and properties 
associated with ActiveX controls are common to all visual objects on the form. To distinguish between ActiveX-
specific methods and events and those methods and events associated with visual form objects, ActiveX-specific 
methods and events are marked with a red ball.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



Viewing the tabbed pane
When you open the Object Explorer from a design window, it displays two panes. One pane contains the object 
tree and the other contains tabbed pages that list the object's methods, events, properties, and appearance. 

To view only the tabbed tree
· Click View, Tabbed Pane on the Object Explorer menu.

To view both panes
· Click View, Both on the Object Explorer menu.

 Note
· When you open the Object Explorer from a Library or Script window, it displays only the tabbed pane.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



Creating a new method
You can create a new method from the Object Explorer. 

To create a new method 
1. Open the Object Explorer.
2. Click the Methods tab.
3. Double-click New Method.
4. Type a name for the new method, and click OK.
An Editor window opens for your new method.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



Editing a method or event
You can edit an existing method or event from the Object Explorer.

To edit a method or event 
1. Open the Object Explorer.
2. Click the Methods tab or the Events tab.
3. Double-click the method or event you want to edit.
An Editor window opens.
4. Type your code and save it.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



Deleting a method or event
You can delete a method or event from the Object Explorer.

To delete a method or event 
1. Open the Object Explorer.
2. Click the Methods tab or the Events tab.
3. Right-click the method or event from the list provided, and choose Delete Method or Delete Event.
This selection is dimmed if this task is unavailable for the selected event or method.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



Attaching methods to a form
You can attach frequently used custom methods to a form. This is more efficient than copying the method to 
each object that calls the method.
You can attach methods from the Object Explorer's object tree pane.

To attach methods to a form
1. Open the Object Explorer.
2. Click on the Form icon at the top of the object tree to select the form by itself.
3. On the Methods tab do one of the following:

· choose and edit a method
· create a custom method as you would for any other object

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



Changing appearance
To change an object's appearance
1. Open the Object Explorer.
2. Click the Appearance tab to display a list of the object's traits.
3. Click once on a trait to edit the field, or to see a list box with possible settings. For color or graphical settings, 

the arrow will display a palette or graphic list.
4. Select the new setting.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



Changing properties 
To change an object's properties
1. Open the Object Explorer.
2. Click the Properties tab to display a list of the object's properties    (in ObjectPAL syntax).
3. Click once on a property to edit the field, or to see a list box of choices.
4. Select the new properties.

 Note
· Not all properties can be edited. A small lock icon appears to the left of read-only properties.

{button ,AL(`INTRO_EXPLORER_PANEL;',0,"Defaultoverview",)} Related Topics



About the IDE
When you work in the ObjectPAL integrated development environment (IDE), you are in either the Editor, the 
Debugger, the Object Explorer, or a design window.
The Editor is connected to the ObjectPAL compiler; the compiler translates the ObjectPAL code you write into 
machine code a computer can execute. When you use the Editor, the compiler can check your code and report 
any syntax errors to allow you to correct them before you try to run the application.
The Editor also works with the Debugger. These two, along with the design window and the Object Explorer, 
provide you with an integrated development environment.
Using the Editor you can edit
· methods (built-in or custom)
· procedures
· uses
· types
· constants
· variables
With the Debugger you can debug methods or procedures.
The code you edit or debug can be attached to a Script, a Library, to a form, or to an object in a form.

{button ,AL(`INTRO_IDE;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Setting developer preferences
You can control many elements of the IDE by setting your preferences in the Developer Preferences dialog box.

To set developer preferences
1. Click Edit, Developer Preferences.
2. Make your changes on any of the five pages, and click OK.

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



About the Editor
The ObjectPAL Editor is a full-featured editor that includes incremental search, smart tab indent, multiple and 
group undo, and many other features. It also supports BRIEF- and Epsilon-style editing. In an ObjectPAL Editor 
window you can write, edit, compile, and debug the ObjectPAL code that is attached to methods on a form, 
library, or script. The ObjectPAL Editor works the same whether you are working with an object, a form, a library, 
a script, or an SQL query.
There are two list boxes at the top of the Editor windows. The list box on the left allows you to move between the
objects in your document. The list box on the right shows all possible methods or events for the selected object. 
In addition, the Editor window is your gateway to the ObjectPAL language reference:
· You can click View, ObjectPAL Quick Lookup to display the ObjectPAL language reference for each object type, 

the syntax for each method, the properties and property values for each object, and the constants for things 
like window attributes and error codes.

· Press F1 while the cursor is in an ObjectPAL language element in the Editor, or while a language element is 
highlighted in the ObjectPAL Quick Lookup or the Object Explorer, to open a Help topic specific to that 
language element.

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



About the Editor menus
You can press F1 when you are on a menu command to see what it does.

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



Working in the Editor
When an Editor window opens for the first time, some default text appears. For example, if you're editing the 
open method, the first line reads    method open (var eventInfo Event), the second line is blank, and the third
line reads endMethod. If you accidentally change the default text, you can edit it as you would any other text.
The cursor is positioned on line two to allow you to start typing right away, but you don't have to start typing on 
that line. You can use the mouse or Arrow keys to move the cursor and you can insert blank lines by pressing 
ENTER.
By default, keywords appear in bold and comments in italics. Comments in code for the ObjectPAL built-in event 
methods are preceded by a semicolon. You can change text attributes in the Developer Preferences dialog box.
The Editor does not automatically wrap lines of text. A line extends to the right until you press ENTER to begin a 
new line.
There are two list boxes at the top of the Editor window. The list box on the left allows you to move between the 
objects in your document. The list box on the right shows all possible methods or events for the object.

 Notes
· Variables, constants, and procedures declared in a method's Editor window are visible only to that method. To 

make a variable, constant, or procedure visible to all of an object's methods, select Uses, Type, Const, Var, and
Proc (as many of these as you want) in the Object Explorer. Corel Paradox opens a separate window for each 
item you choose. This is called scoping.

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



Starting the Editor
To start the Editor from a form or an object in a form
1. With a design window open, click Tools, Object Explorer.
The Object Explorer opens and lists the methods, events, appearance, and properties associated with the object. 

The Methods page also includes the item's Uses, which declare external routines; and Var, Type, Const, and 
Proc, which declare variables, types, constants, and procedures.

A little blue ball appears before an item to indicate that it has custom code attached to it. A larger red ball 
indicates that the item is an ActiveX control. A lock icon indicates that the item is read-only.

2. On the Methods or Events pages, double-click the item you want to edit.
An Editor window opens.

 Note
· You can select several methods at once, and simply press ENTER.
A separate Editor window opens for each item you selected. You can open as many windows as your system 

allows, in any order.
You must edit each method in its own window; however, you can edit more than one method at a time by 

opening multiple windows.

To start the Editor from a Library
1. Open the Object Explorer.
2. On the tabbed pages, double-click the item you want to edit.
An Editor window opens.

To start the Editor from a Script
1. Click File, Open, Script.
2. Enable the Edit The Script button at the bottom of the Open Script dialog box.
3. Double-click the script you want to open.
When you open a Script, it is automatically placed in an Editor window.
The first line names the method and the last line ends the method. 

 Note
· After you open an Editor window, you can choose other objects, methods, and events without returning to the 

design window. There are two list boxes at the top of the Editor window. The one on the left allows you to 
choose a new object within the document; the one on the right lists all of the methods and events possible for 
the selected object.

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



Moving around the Editor with the keyboard
Use the following keys to move around the Editor:

CTRL + Left Arrow key Moves the cursor one word to the left
CTRL + Right Arrow key Moves the cursor one word to the right
HOME Moves the cursor to the beginning of a line
END Moves the cursor to the end of a line
CTRL + HOME Moves the cursor to the beginning of the text
CTRL + END Moves the cursor to the end of the text
PAGE UP Moves one screen back
PAGE DOWN Moves one screen forward
BACKSPACE Deletes the character to the left of the cursor
DELETE Deletes the character to the right of the cursor
INSERT Has no effect because the Editor is always in insert mode. As you type, characters are 

pushed to the right. You cannot overwrite characters.
CTRL + C Copies selected text to the Clipboard
CTRL + X Copies selected text to the Clipboard and deletes it from the window
CTRL + V Pastes text from the Clipboard into your method
TAB Inserts a Tab character and pushes text to the right

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



Selecting text
You can select a block of text by either dragging with the mouse, using the Arrow keys with SHIFT held down, or 
clicking with SHIFT held down to extend the selection.

To select a word
· Double-click it.

To select an entire line
· Click to the left of the line and drag the cursor. (The mouse is in position when the I-beam changes to an 

arrow.)

To select a block of text
Do one of the following:
· click and drag the mouse
· press SHIFT and use the Arrow keys
· click to indicate the starting position, and press SHIFT to extend the selection

 Notes
· The keymapping you choose in the Developer Preferences dialog box also affects selection. Press SHIFT+F1 

while on a blank space in an Editor window to see the keystrokes for the keymap you chose.
· When text is selected, what happens when you type a character (or paste from the Clipboard) depends on 

whether you checked Overwrite Blocks in the Developer Preferences dialog box.
· Double-clicking to the left of a line toggles a breakpoint and selects the line. 

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



Searching for text
You can search for words or character strings within an Editor window.
Incremental Search will find text from the cursor forward in either an Editor or a Debugger window. Find, and Find
and Replace will find search for text in either direction.

To use Incremental Search
1. Open the Editor window and place the cursor.
2. Click Search, Incremental Search.
3. Type the characters you want to find.
The Editor highlights the first occurrence of the first character you type. Type another character, and the Editor 
highlights the first appearance of the pair of characters, and so on. The characters you type appear on the status
bar.
If, as you type, you create a string that has no match in the remainder of the current Editor or Debugger window,
you'll hear a beep, and the last character you typed will not appear on the status bar.
You can use the following keys with Incremental Search:
· BACKSPACE removes the last letter of the search combination and moves back to a prior match.
· CTRL + S searches for the next combination of the current search string.
· ESC stops incremental search and returns the Editor to its normal state.

Using Find, and Find and Replace
You can use these two commands from the Search menu to search for text from the cursor forward (or backward 
if you enable the Backwards option). The Find And Replace dialog box lets you replace the specified text with a 
specified value.

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



Leaving the Editor
How you exit the Editor depends on what you want to do next.

To continue designing your form or to edit other methods
· Click Close on the Control menu of the Editor window.

To run your code immediately and see your form in action
· Click Program, Run.

 Notes
· Any Editor windows that are open when you run a form will open again when you return to the design window.
· If the Prompt To Save option in the Developer Preferences dialog box is not enabled, you are not prompted to 

save your changes when you close an Editor window or run a form with an Editor window open. All your 
changes are automatically saved. Click Edit, Undo All Changes to discard changes before you close the Editor 
window. Changes you make in Editor windows are saved to disk when you save your form.

· If the Prompt To Save option in the ObjectPAL Preferences dialog box (Display page) is checked, a confirmation 
dialog box lets you save or cancel your changes when you close an Editor window or run a form with an Editor 
window open.

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



About the ObjectPAL Quick Lookup
The ObjectPAL Quick Lookup is a tabbed dialog box that displays
· Types and Methods
· Objects and Properties
· Constants
From the three pages of the dialog box, you can insert type and method names, object names and properties, 
and constants into your code at the cursor (in the Editor). To do this, select the language element you want, and 
click the appropriate button in the dialog box.
All lists are in alphabetical order. When a panel has focus, you can type one letter to take you to the first item 
starting with that letter. If you enable the Show All check box (at the bottom of each page), that page will show 
you the full spectrum of the ObjectPAL language. If you disable the Show All check box, you'll see a beginner's 
subset of the language. This temporarily overrides the preference you set in the Developer Preferences dialog 
box (General page).

Types and Methods
The left side of this page displays a list of types. When you select a type, the right side lists the methods and 
procedures for that type. (Methods are marked by an M and procedures are marked by a P.)
A panel at the bottom displays a prototype.

Objects and Properties
The left side of this page displays a list of objects. When you select an object, the right side displays the 
properties for that object.
A panel at the bottom displays possible values for a selected property. If a property has only one possible value, 
nothing is displayed.

Constants
The Constants page displays a list of constant types on the left. When you select a type, the right side displays a 
list of constants relevant to that category.
Constants let you specify things like colors, mouse shape, menu attributes, and window styles.

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



Using the ObjectPAL Quick Lookup
You can get to the ObjectPAL Quick Lookup dialog box from an Editor window.

To open the ObjectPAL Quick Lookup dialog box
1. Open an Editor window.
2. Click View, ObjectPAL Quick Lookup
3. Click one of the following tabs:
· Types and Methods
· Objects and Properties
· Constants

{button ,AL(`INTRO_IDE;W_EDITOR;',0,"Defaultoverview",)} Related Topics



About keywords
Keywords are basic language elements. They are reserved words in Corel Paradox and can be selected from the 
Program menu.

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



Using keywords
With an Editor window open, you can quickly insert keywords into your code.

To use keywords 
1. Click Program, Keywords to display the menu of keywords.
2. Choose an item from the Keywords list to insert the keyword into your code at the cursor.

{button ,AL(`INTRO_IDE;',0,"Defaultoverview",)} Related Topics



About delivering applications
When Corel Paradox delivers a form, report, script, or library, it removes the ObjectPAL source code but leaves 
the compiled code intact with the file. This lets others use the application but prevents them from seeing or 
changing your code.
The file-name extensions of delivered applications change as follows:
Application Undelivered extension Delivered extension
form .FSL .FDL
report .RSL .RDL
script .SSL .SDL
library .LSL .LDL

 Note
· A delivered file is also protected from design modifications and cannot be opened in a design window. When 

you deliver a form or report, you do not need to deliver copies of the tables in its data model.

{button ,AL(`INTRO_DELIVER;INTRO_INTRO;iscripts_deliv_scrpt_proced;',0,"Defaultoverview",)} 
Related Topics



Delivering an application
To deliver an application
· With the form or report open in a design window, click Format, Deliver.
· With a library or script open, click Program, Deliver.
This removes the ObjectPAL source code, but leaves the compiled code intact with the file. This allows others to 
use the application but prevents them from seeing or changing your file. This protects the ObjectPAL source code
and the layout of any UIObjects on your form or report.

{button ,AL(`INTRO_DELIVER;',0,"Defaultoverview",)} Related Topics



About Database Expert code examples
The Corel Paradox Database Expert produces small applications that were built using ObjectPAL. You can study 
the code for these applications to help you write your own code for the same or similar application tasks. To 
access the applications, run the Database Expert. The expert places the forms, tables, reports, and other files 
that make up the applications into the directory you specify.
The forms in these applications are not delivered; therefore, the ObjectPAL code is available for you to cut and 
paste it into your own code.
Code in the applications built by the Database Expert can show you how to do these programming tasks:
· confirm the deletion of records
· place memo fields in Memo View
· open forms and reports 
· base reports on queries
· use aliases
· allow for access to application help (both through the Toolbar and the keyboard)
· highlight records
· generate drop-down edit field values
· program an alphabet bar (Address Book and Contact Management applications)
For more information, see the common library and ObjectPAL's coding Standards.

{button ,AL(`INTRO_EXAMPLES;INTRO_INTRO;',0,"Defaultoverview",)} Related Topics



Coding standards
ObjectPAL code in the Database Expert applications always follows the same syntax.

Comments
All comments are formatted with a leading semicolon (;) For example,
;Comment here
To make comments stand out, some developers also add two forward slashes (//) after the semi-colon, but they 
are not necessary.

Constants
User-defined constants contain a lowercase portion and an all-caps portion. The lowercase text indicates the 
constant's data type, while the all-caps text indicates the name of the constant. ObjectPAL's predefined 
constants are formatted with camel caps (capital letters mixed with lowercase letters). For example,
strDBNAME ;Database name as a string
DataBeginEdit ;An ObjectPAL constant

Variables
All variables contain a lowercase portion and a camel caps portion. The lowercase text indicates the constant's 
data type, while the camel caps indicate the name of the variable. Examples:
strTableName ;TableName as a string
fCustomer ;Customer form
rInvoice ;Invoice report
libMain ;Main library

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



Common library
All applications built by the Database Expert share a common library. The library contains five custom methods. 
The custom methods and how to call them are described below.

LoadToolBar( )
Loads a common toolbar to all applications built by the Database Expert. The toolbar is a modification of the 
standard Toolbar and contains standard navigational buttons, plus insert record, delete record, undo, close form, 
and help buttons. LoadToolBar is called in the setFocus method at the form level of all non launcher forms. 
Example:
libMain.loadToolBar()

DateNotes(strFieldName String)
Enters the current date and time at the top of the indicated memo on the current form and positions the cursor 
on the line below it. Example:
libMain.DateNotes(fldNotes)

CascadeDeletes( )
Removes the active record and any child records that depend on it. This method does not attempt to remove 
records from tables that are marked as read-only in the data model. The method is especially useful when you 
have referential integrity, which forces you to delete detail records before you can delete master records. 
Example:
libMain.CascadeDeletes()

SetKeyValue(strFieldName String, anyValue AnyType)
Creates an entry in a dynamic array to place the value of the active object. This method must be called before 
calling GetKeyValue.
Generally, SetKeyValue is called in the removeFocus method of the form. Example:
libMain.SetKeyValue("Customer", Customer_Rec_ID.Value)

GetKeyValue(strFieldName String ) AnyType
Returns the value that was set into a dynamic array via SetKeyValue. This is used to help keep forms 
synchronized when you move between them.
Generally, GetKeyValue is called in the setFocus method of the form. Example:
Customer.locate("Customer", GetKeyValue("Customer Rec ID"))
SetKeyValue and GetKeyValue work together to synchronize forms. SetKeyValue places a key value in the 
library, which GetKeyValue can then access to locate the record referred to by GetKeyValue.

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



Use of aliases
All forms create a common alias for the application in the init method that points to the directory where the form
was loaded. Example:
var
   dynFile DynArray[] string
endVar

splitFullFileName(getFileName(), dynFile)
if (NOT addAlias(strDBNAME, "Standard", dynFile["DRIVE"] + dynFile["PATH"])) then

errorClear()
endIf
Whenever a form, report, library, table, or help file is referred to, it uses this alias. This allows the application to 
work with any working directory. Example:
if (NOT libMain.open(strDBNAME + strLIBNAME)) then
    msgStop("Warning:", "Can't open " + strLIBNAME)
    close()
endIf 

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



Deleting records
Whenever you attempt to delete a record, a prompt is generated to ask whether you want to delete the record or
not. This is generally done on the table frame or the multi-record object associated with the table. Example:
if  (eventInfo.id() = DataDeleteRecord) then
      if (msgQuestion("Warning", "Are you sure you want to delete the active record?") = "No") 
then
         eventinfo.setErrorCode(peCannotDelete)
      endIf
endIf

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



Accessing help
All forms can access help by pressing F1, and all non launcher forms can also access help by using the Toolbar.
F1 can be tested for in one of two methods.

action method
You can test for F1 in the action method on the form. Example:
if (eventinfo.id() = EditHelp then
   disableDefault

if (NOT helpShowContext(strDBNAME + strHELP, 10)) then
      msgStop("Warning", "Cannot load help file")
  endIf
endIf

keyPhysical method
You can test for F1 in the keyPhysical method on the form. Example:
if (eventInfo.vChar() = "VK_F1")  then

disableDefault
if (NOT helpShowContext(strDBNAME + strHELP, 10)) then

     msgStop("Warning", "Cannot load help file")
endIf
disableDefault

endIf
To test for the help that is selected from the Toolbar, code is placed in the menuAction method for the form. 
Example:
if (eventInfo.id() = MenuHelpContents) then

disableDefault
if (NOT helpShowContext(strDBNAME + strHELP, 10)) then
   msgStop("Warning", "Unable to load Help file")  
endIf

endIf
strDBNAME is an alias for the directory where the application, including the Help file, resides. strHELP is the 
name of the Help file, and 10 is the context ID in the Help file.

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



How forms are opened
Most forms in the Database Expert applications are designed to be opened only once. If the form is not open, it is
opened. If it is already opened, it is brought to the top. Example:
if (NOT fOrder.attach("Customer Order Form")) then

if (NOT fOrder.open(strDBNAME + strORDERFORM)) then
msgStop("Warning", "Cannot open " + strORDERFORM)

endIf
else

fOrder.bringToTop()
endIf
Sometimes the code allows a form to be opened more than once. Example:
if (NOT fOrder.open(strDBNAME + strORDERFORM)) then

msgStop("Warning", "Cannot open " + strORDERFORM)
endIf

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



How reports are opened
Reports in the Database Expert applications are opened in a similar fashion to forms. Most are designed to be 
opened only once. What is different about them is that they open with Fit Width on (the equivalent of clicking 
View, Zoom, Fit Width). To accomplish this, reports are initially opened hidden, Fit Width is turned on, then the 
report is brought to top, which also displays it. Example:
if (NOT rCustomer.attach("Customer Report")) then

if (rCustomer.open(strDBNAME + strCUSTRPT, WinstyleDefault + WinStyleHidden)) then
rCustomer.menuAction(MenuPropertiesZoomFitWidth)
rCustomer.bringToTop()

else
msgStop("Warning", "Cannot open " + strCUSTRPT)

endIf
else

rCustomer.bringToTop()
endIf
Sometimes the code allows a report to be opened more than once. Example:
if (rCustomer.open(strDBNAME + strCUSTRPT, WinsStyleDefault + WinStyleHidden)) then

rCustomer.menuAction(MenuPropertiesZoomFitWidth)
rCustomer.bringToTop()

else
msgStop("Warning", "Cannot open " + strCUSTRPT)

endIf

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



Reports based on queries
Some reports are based on queries when they are launched. To have as few fields as possible protected by the 
Database Expert, a check is placed under the table name. This causes all fields from the table to be included in 
the query.
The applications use two techniques to open reports based on queries. The first technique runs a query to a 
table and then opens the report based on the query. To use this technique, a report based on the query cannot 
already be open. If the report is already open, it is closed before the query is executed. Example:
if (rCustomer.attach("Customer Report")) then

rCustomer.close()
endif
qCustomer = 

Query
~(strDBNAME)Customer | Customer Rec ID          |
Check         | ~(Customer_Rec_ID.value) |

endQuery
_recRepInfo.masterTable = ":priv:ANSWER"
_recRepInfo.name = strDBNAME + strCUSTRPT
if (rCustomer.open(_recRepInfo, WinStyleDefault + WinStyleHidden)) then

rCustomer.menuAction(MenuPropertiesZoomFitWidth)
rCustomer.bringToTop()

else
msgStop("Warning", "Cannot open " + strCUSTRPT)

endIf

Second technique
A second technique is to open the report based on a query string. The advantage of this technique is that an 
open report does not have to be closed because the query-string guarantees a unique Answer table. Example:
strQuery = 

"Query
" + strDBNAME + "Customer | Customer Rec ID       |

                                   Check            | " + string(Customer_Rec_ID.value) + " 
|

endQuery"
_recRepInfo.queryString = strQuery
_recRepInfo.name = strDBNAME + strCUSTRPT
if (rCustomer.open(_recRepInfo, WinstyleDefault + WinStyleHidden)) then

rCustomer.menuAction(MenuPropertiesZoomFitWidth)
rCustomer.bringToTop()

else
msgStop("Warning", "Cannot open " + strCUSTRPT)

endIf

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



Memo fields
All memo fields are placed in Memo View when they are selected. This is done by putting code in the arrive 
method of the memo field. Example:
doDefault
self.action(EditEnterMemoView)

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



Record highlighting
Numerous forms, such as the Checkbook form, use record highlighting to help indicate the active record in a 
TableFrame.
To do record highlighting, code that sets the selected or unselected color must be placed in numerous methods. 
The following example shows how record highlighting is implemented in the Checkbook application. To indicate 
that the active record is selected, place the following code in the canDepart method for the table frame, and in 
the arrive method of any standalone fields:
recCheckbk.color = Yellow
Similarly, place the following code in the arrive method of the record object:
self.color = Yellow
To indicate that the active record is not selected, place the following code in the canArrive method of the table 
frame and in the depart method of any standalone fields:
recCheckbk color = Transparent
Similarly, place the following code in the canDepart, depart, and open methods of the record object:
self.color = Transparent.

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



Drop-down edit fields that are built on-the-fly
Several forms, such as the Checkbook application form, contain drop-down edit fields that allow you to select 
from values that are contained in a specific field of a table. To do this, a query is run in the arrive method of the 
list object of the field, and the drop-down edit field is populated from the query. Example:
var

tcChecksQuery tcursor
qbeUniqueCategory query

endVar

qbeUniqueCategory = 
Query

~(strDBNAME + strCHECKBKTABLE) | Category     | 
         | Check NOT Blank   | 

EndQuery

;// place the results of the query into a tcursor --> very fast!
if (NOT qbeUniqueCategory.executeQBE(tcChecksQuery)) then

msgInfo("Listing error" , "Failed to create Category List")
return

endIf
;// empty the list
CategoryList.list.count = 0

;// set the list items pointer to the first one
CategoryList.list.selection = 0

;// fill the list
scan tcChecksQuery:

CategoryList.list.selection = CategoryList.list.count + 1
CategoryList.list.value = tcChecksQuery.(strCategory)

endScan

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



Alphabet bar
The Address Book application form and the Contact Management application form each have an alphabet bar 
that allows you to press a letter on the button bar to go to the first record that has a last name beginning with 
the letter pressed. If no such name is found, a prompt asks if you want to insert a new record.
The alphabet bar is a field that contains 26 buttons. The code to find last names is on the New Value method of 
the field.
var

dynAddressFilter DynArray[] String
  lCaseFlag Logical
endVar

;// if the reason for the refresh is a value being edited on
;// the field (which in this case would be pressing on a button)
;//

    if (eventinfo.reason()= editValue) then
         doDefault
       lCaseFlag = isIgnoreCaseInLocate()
       ignoreCaseInLocate(Yes)
         if (NOT locatePattern("Last Name" , self.value + "..")) then

       if (msgQuestion("No last names starting with " + self.value, "Do you want to 
add a new address?")) = "Yes" then

     mroAddressInfo.postaction(DataInsertRecord)
           endIf
       endIf

    ignoreCaseInLocate(lCaseFlag)
    ;// un-pop the button

      ;//
    self.value = ""

      First_Name.moveTo()
     endIf

{button ,AL(`INTRO_EXAMPLES;',0,"Defaultoverview",)} Related Topics



Version 5.0 ObjectPAL properties
AttachedHeader
AvgCharSize
BottomBorder (read-only)
Breakable
ByRows
CalculatedField
CheckedValue
ColumnPosition
ColumnWidth
CurrentColumn
CurrentRow
DeleteColumn
DeleteWhenEmpty
FirstRow
FrameObjects
GridLines.QueryLook
GridValue
GroupObjects
GroupRecords
Header
HeadingHeight
InsertColumn
InsertField
LeftBorder (read-only)
List.Value
Margins.Bottom
Margins.Left
Margins.Right
Margins.Top
NextTabStop
OtherBandName
PageSize
PageTiling
Picture
PositionalOrder
PrinterDocument
RefreshOption
RemoveGroupRepeats
RepeatHeader
RightBorder (read-only)
RowHeight
SeeMouseMove
Series.Marker.Size
Series.Marker.Style
SeriesName
ShowGrid
SnapToGrid
SpecialField
StandardToolbar
StartPageNumbers
SummaryModifier
TitleBoxName
TopBorder (read-only)



UncheckedValue
WideScrollBar
Width
XAxisName
XAxis.Ticks.TimeFormat
XAxis.Ticks.TimeStampFormat
Xseparation
YAxisName
YAxis.Graph_Title.Text
YAxis.Ticks.TimeFormat
YAxis.Ticks.TimeStampFormat
Yseparation
ZAxisName
ZAxis.Graph_Title.Text
ZAxis.Ticks.NumberFormat
ZAxis.Ticks.TimeFormat
ZAxis.Ticks.TimeStampFormat

{button ,AL(`REF_50;',0,"Defaultoverview",)} Related Topics



Version 5.0 ObjectPAL constants
ActionEditCommand
EditInsertObject
EditPasteLink
EditSaveCrosstab

AggModifier
CumulativeAgg
RegularAgg
UniqueAgg

DateRangeType
ByDay
ByMonth
ByQuarter
ByWeek
ByYear

FileBrowserFileType
fbDM
fbPrintStyle
fbScreenStyle
fbSQL

FrameStyle
Windows3dFrame
Windows3dGroup

MenuCommand
MenuChangedPriv
MenuChangedWork
MenuChangingPriv
MenuChangingWork
MenuFormViewData
MenuHelpToolbar
MenuHelpCoach
MenuOpenProjectView

PageTilingOption
StackPages
TileHorizontal
TileVertical

PrintColor
prnPrintColor
prnPrintMonochrome

PrintDuplex
prnHorizontal
prnSimplex
prnVertical

PrinterOrientation
prnLandscape
prnPortrait

PrinterSize
prn10x14 prnEnvC6
prn11x17 prnEnvC65



prnA3 prnEnvDL
prnA4 prnEnvItaly
prnA4Small prnEnvMonarch
prnA5 prnEnvPersonal
prnB4 prnESheet
prnB5 prnExecutive
prnCSheet prnFanfoldLegalGerman
prnDSheet prnFanfoldStandardGerman
prnEnv9 prnFanfoldUS
prnEnv10 prnFolio
prnEnv11 prnLedger
prnEnv12 prnLegal
prnEnv14 prnLetter
prnEnvB4 prnLetterSmall
prnEnvB5 prnNote
prnEnvB6 prnQuarto
prnEnvC3 prnStatement
prnEnvC4 prnTabloid
prnEnvC5

PrintQuality
prnDraft
prnHigh
prnLow
prnMedium

PrintSource
prnauto
prnCassette
prnEnvelope
prnEnvManual
prnLargeCapacity
prnLargeFmt
prnLower
prnManual
prnMiddle
prnOnlyOne
prnSmallFmt
prnTractor
prnUpper

SpecialFieldType
DateField
NofFieldsField
NofPagesField
NofRecsField
PageNumField
RecordNoField
TableNameField
TimeField

UIObjectType
BandTool
PageBrkTool

{button ,AL(`REF_50;',0,"Defaultoverview",)} Related Topics





Version 7 ObjectPAL properties
New properties in version 7
CurrentPage
Enabled
InactiveColor
IncludeAllData
NumberPages
PinHorizontal
PinVertical
ProgID
ShowAllColumns
SquareTabs
TabHeight
TabsAcross
TabsOnTop

{button ,AL(`REF_7;',0,"Defaultoverview",)} Related Topics



Version 7 ObjectPAL constants
New constants in version 7
BrowserOptions used with the fileBrowser (System type) procedure. 
DataTransferCharset Constants
DataTransferDelimitCode Constants
DataTransferFileType Constants
DesktopPreferenceTypes Constants
MailAddressTypes Constants used with the addAddress (Mail type) method. 
RegistryKeyType Constants
RestructureOperations Constants
ToolbarBitmap Constants used with the addButton (Toolbar type) method
ToolbarButtonType Constants used with the addButton (Toolbar type) method
ToolbarClusterID Constants used with the addButton (Toolbar type) method
ToolbarState Constants used with the setState (Toolbar type) method
TrackBarStyles Constants used with native Windows TrackBar control

New MenuCommand Constants were also added to version 7.

{button ,AL(`REF_7;',0,"Defaultoverview",)} Related Topics



Version 8 ObjectPAL properties
New properties in version 8
DrillDown
Font.Script
FlatLook
HTMLAction
HTMLFormParams
HTMLMethod
Label.Font.Script
LegendBox.Font.Script
Series.Graph_Title.Font.Script
TitleBox.Graph_Title.Font.Script
TitleBox.Subtitle.Font.Script
XAxis.Graph_Title.Font.Script
XAxis.Ticks.Font.Script
YAxis.Graph_Title.Font.Script
YAxis.Ticks.Font.Script
ZAxis.Graph_Title.Font.Script
ZAxis.Ticks.Font.Script

{button ,AL(`REF_75;',0,"Defaultoverview",)} Related Topics



Version 8 ObjectPAL constants
New constants in version 8
There are two new types of constants in version 8:
· RestructureOperations used with restructure (Table type).
· MailReadOptions used with readMessage (Mail type).

New constants were also added to the following types of constants:
· MenuCommandconstants
· FileBrowserFileTypes constants

{button ,AL(`REF_75;',0,"Defaultoverview",)} Related Topics



Syntax notation
The following table displays the ObjectPAL syntax notation:

Convention Sample Meaning
Bold font beep( ) Required element (method 

name or parentheses). Type 
the bold font convention 
exactly as shown. Parentheses 
are required, even if the 
method takes no arguments.

Bold italic font tableName Required element (argument). 
Replace with a variable, 
expression, or literal value.

[ ] 
(Square brackets)

[ , fieldName ] Informational element 
indicating an optional 
argument. 

* 
(Asterisk)

[ , fieldName ] * Informational element 
indicating a repeatable 
argument. You choose whether
to repeat this argument.

{|} 
(Braces and bar)

{ Yes|No } You must choose one of the 
values separated by the 
vertical bar.

{button ,AL(`CONVENTIONS;',0,"Defaultoverview",)} Related Topics



Required elements
In ObjectPAL syntax, required elements are displayed in bold or bold italic type. In the following prototype the 
required elements are: the method name (load), the parentheses, and the argument (formName). The rest of 
the prototype consists of informational elements.
load ( const formName String ) Logical
Required element Description
Name The name of the method or procedure
Parentheses Parentheses are required, even if the method or procedure takes no arguments
Argument Unless an argument is enclosed in square bracket (which makes it optional) it must be 

included. An argument can be a variable, an expression, or a literal (hard-coded) value. 
Arguments are separated by commas.

{button ,AL(`CONVENTIONS;',0,"Defaultoverview",)} Related Topics



Informational elements
Informational elements are not essential to the ObjectPAL syntax that you type for a method or procedure. 
Instead, arguments describe how the method or procedure works. The following table describes ObjectPAL 
informational elements:
Element Description
Square brackets Square brackets indicate an optional argument. For example, the square brackets in the 

following prototype indicate that you don't have to include formTitle in the syntax:
attach ( [ const formTitle String ] ) Logical

There is one exception to this rule: when an argument is an array (or DynArray), the 
syntax for the argument shows square brackets following the Array (or DynArray) 
keyword. For instance, the following syntax indicates that enumPrinters takes a 
resizeable array as an argument:
enumPrinters ( var printers Array[ ] String ) Logical

Keywords Keywords displayed in normal type provide information about the arguments for a 
method or procedure. An argument preceded by the keyword var is passed by reference.
An argument preceded by the keyword const is passed as a constant. An argument 
itself, without either keyword, is passed by value.
The keyword that follows each argument specifies its data type (e.g., String, Number, 
Table, or Logical).

If a method or procedure returns a value, the keyword at the end of the syntax line 
specifies its data type. Most ObjectPAL methods and procedures return values.

Asterisks An asterisk ( * ) indicates that an argument can be repeated. For example, the following 
syntax indicates that message takes one required argument, reqTxt, and one or more 
optional arguments, represented by optTxt.
message ( const reqTxt String [ , const optTxt String ] * )

{button ,AL(`CONVENTIONS;',0,"Defaultoverview",)} Related Topics



ObjectPAL prototypes
Prototypes are syntax statement that are presented for each ObjectPAL method and procedure. An ObjectPAL 
prototype consists of required elements (displayed in bold or bold italic type) and informational elements 
(displayed in normal type). 
In the following prototype, the method name (sample), the argument (argOne), and the parentheses are 
required. The argument argTwo is optional, and remaining code is made up of informational elements. 
sample ( var argOne Type [ , const argTwo Type ] ) Type
In ObjectPAL code, the following statements are valid:
; One argument, variable x stores the return value.
x = sample(custName)

; Two arguments, the return value is not used.
sample(custName, custAddress)

{button ,AL(`CONVENTIONS;',0,"Defaultoverview",)} Related Topics



Alternate syntax
ObjectPAL supports an alternate syntax. The standard syntax uses dot notation to specify an object, a method 
name, and one or more arguments. In the following prototype, object is an object name or UIObject variable, 
methodName represents the name of the method, and argument represents one or more arguments:
object.methodName ( argument [ , argument ] )
ObjectPAL's alternate syntax does not use dot notation. Instead, it specifies the object as the first argument to 
the method. For example,
methodName ( object , argument [ , argument ] )
The following statement uses the standard ObjectPAL syntax to return a lowercase version of a string:
theString.lower()

The following statement uses the alternate syntax:
lower(theString)

For clarity and consistency, use standard syntax; however, the alternate syntax is convenient when defining the 
calculation for a calculated field.

{button ,AL(`CONVENTIONS;',0,"Defaultoverview",)} Related Topics



Using ObjectPAL in calculated fields
A calculated field can use any of the following elements:
· literal values
· variables declared within the scope of the calculated field, and have an assigned value.
· object properties
· basic language elements
· custom methods attached to other objects or to the field itself (you must declare a UIObject variable within the

scope of the calculated field and use an attach statement to associate the variable with a UIObject).
· any method or procedure in the ObjectPAL run-time library (RTL) that returns a value (including a Logical 

value)
· special functions (e.g., Sum and Avg) provided specifically for use in calculated fields

 Note
· ObjectPAL supports an alternate syntax that can be useful when defining a calculated field.

The following table describes these elements.
Element Comments
5 literal value
a literal value
x variable (must be declared within the scope of the calculated field, and have 

an assigned value)
x + 5 simple expression (rules for working with variables apply)
self.Name property (displays the field's name as a String)
theBox.Color property (displays an integer value representing the object's color)
iif(State.Value = "CA", 0.075, 0) basic language element iif (the value of the calculated field depends on the 

value of the State field object)
uio.objCustomMethod() custom method attached to another object (must return a value)
tc.open("orders.db") RTL method (displays True if the open succeeds; otherwise, it displays False. 

TCursor must be declared within the scope of the field)
Avg([DIVEITEM.Sale Price]) special function (operates on the Sale price field of the Diveitem table). The 

table must be in the form's data model. Quotes are not used, but spaces are 
allowed.

tc.cAverage("Sale Price") RTL method (TCursor must be declared and opened previously) If a field name 
contains spaces, quotes are required.

{button ,AL(`CONVENTIONS;',0,"Defaultoverview",)} Related Topics



Derived methods
Many object types include methods derived from similar methods defined for another type. For example, the 
Script type includes methods derived from the Form type. The diagram below displays the methods for the Script
type when scripts were introduced in Corel Paradox 5.0. In version 5.0, the Script type included eleven methods: 
seven methods derived from the Form type, and four methods defined specifically for the Script type. The 
derived methods are listed as Form methods, but the information applies equally to the Script type.
When methods are derived from other types, the ObjectPAL online Help displays information about the original 
method only. For example, when you request help on the save method, Help displays information about the 
save method defined for the Form type. The information that applies to forms also applies to scripts.
The online Help topic for each type includes information on its methods that are derived from other types.
Methods for the Script Type in version 5.0

Form Script
deliver attach
enumSource create
enumSourceToFile load
methodDelete run
methodGet
methodSet
save

{button ,AL(`CONVENTIONS;',0,"Defaultoverview",)} Related Topics



Alphabetical list of ObjectPAL types
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Click on a type to view a list of its methods and procedures. Each method and procedure includes syntax, a 
description, and sample code.

A
AddinForm
ActionEvent
AnyType
Application
Array

B
Binary

C
Currency

D
Database
DataTransfer
Date
DateTime
DDE
DynArray

E
ErrorEvent



Event

F
FileSystem
Form

G
Graphic

H-K
KeyEvent

L
Library
Logical
LongInt

M
Mail
Memo
Menu
MenuEvent
MouseEvent
MoveEvent

N
Number

O
OLE
OleAuto

P
Point
PopUpMenu

Q
Query

R
Record
Report

S
Script
Session
SmallInt
SQL
StatusEvent
String
System

T
Table
TableView
TCursor
TextStream
Time
TimerEvent
Toolbar

U
UIObject



V-Z
ValueEvent

{button ,AL(`LISTS;CATEGORIES;',0,"Defaultoverview",)}      Related Topics



Object type categories
Data model object types
Data types
Design object types
Display managers
Event types
System data objects



List of data model objects
Click on a type to view a list of its methods and procedures. Each method and procedure includes syntax, a 
description, and sample code.
Database
Query
Table
TCursor
SQL



List of system data objects
Click on a type to view a list of its methods and procedures. Each method and procedure includes syntax, a 
description, and sample code.
DDE
DataTransfer
FileSystem
Library
Mail
Session
Script
System
TextStream



List of data types
Click on a type to view a list of its methods and procedures. Each method and procedure includes syntax, a 
description, and sample code.
AnyType DynArray OLE
Array Graphic Point
Binary Logical Record
Currency LongInt SmallInt
Date Memo String
DateTime Number Time



List of design object types
Click on a type to view a list of its methods and procedures. Each method and procedure includes syntax, a 
description, and sample code.
Menu
Native Windows Controls
PopUpMenu
Toolbar
UIObject
Recent versions of Corel Paradox allow you to control objects that are native to the Windows operating system. 
Native Windows controls (NWCs) allow Corel Paradox forms to deliver information to the user in the same format 
as Windows.



List of display managers
Click on a type to view a list of its methods and procedures. Each method and procedure includes syntax, a 
description, and sample code.
AddinForm
Application
Form
Report
Script
TableView



List of event types
Click on a type to view a list of its methods and procedures. Each method and procedure includes syntax, a 
description, and sample code.
ActionEvent MouseEvent
ErrorEvent MoveEvent
Event StatusEvent
KeyEvent TimerEvent
MenuEvent ValueEvent



TimerEvent type
The TimerEvent type includes methods that process information used by the timer method. Timer methods are 
built into each design object. Use setTimer (defined for the UIObject type) to specify when to send timer events 
to an object and then modify the object's built-in timer method to control the object's response when a timer 
goes off. Use killTimer (defined for the UIObject type) to turn off an object's timer. 
The following example assumes that a form contains a multi-record object bound to the Customer table. The 
record container in the multi-record object is named custRecordMRO.
For the following example, suppose you want to give the user 60 seconds to edit a record in a data entry 
program. After 60 seconds, you want to alert the user. To accomplish this, the built-in action method for 
custRecordMRO tests every action. If the action is DataArriveRecord, the method uses killTimer to stops old 
timers and uses setTimer to set a new timer. When the timer goes off, a message pops up alerting the user. The
following code defines a constant in the Const window for custRecordMRO. This code makes it easy for you to 
change the time:
; custRecordMRO::Const
const
  alertTime = 60000     ; data-entry alert at 60 seconds
endConst

The following code is attached to the action method for custRecordMRO;
; custRecordMRO::action
method action(var eventInfo ActionEvent)
if eventInfo.id() = DataArriveRecord then ; when opening to a new record
  self.killTimer()         ; just in case it hasn't expired
                           ; yet, kill the old timer
  self.setTimer(alertTime) ; start timer for this record
endif
endMethod

This code is attached to the timer method for custRecordMRO:
; custRecordMRO::timer
method timer(var eventInfo TimerEvent)
self.killTimer()
beep()
msgInfo("Alert", "You have been processing this record for " +
                 "one minute now.")
endMethod

The Timer type contains only derived methods from the Event type.
Methods for the TimerEvent Type

Event TimerEvent
errorCode (All TimerEvent methods are 

derived methods from Event 
type.)

getTarget
isFirstTime
isPreFilter
isTargetSelf
reason
setErrorCod

setReason

Alphabetical list of 4.5 methods
beginTransaction (Database Type)



commitTransaction (Database Type)
dlgExport (System type) Moved to DataTransfer type in version 7
dlgImportASCIIFix (System type) Moved to DataTransfer type in version 7
dlgImportASCIIVar (System type) Moved to DataTransfer type in version 7
dlgImportSpreadsheet (System type) Moved to DataTransfer type in version 7
dmGetProperty (Form type)
dmLinkToFields (Form type)
dmLinkToIndex (Form type)
dmSetProperty (Form type)
dmUnlink (Form type)
enumAliasLoginInfo (Session type)
errorHasErrorCode (System type)
errorHasNativeErrorCode (System type)
errorNativeCode (System type)
executeSQL (SQL type)
executeString (System type)
exportASCIIFix (System type) Moved to DataTransfer type in version 7
exportASCIIVar (System type) Moved to DataTransfer type in version 7
exportSpreadsheet (System type) Moved to DataTransfer type in version 7
forceRefresh (TCursor type)
forceRefresh (UIObject type)
getAliasProperty (Session type)
importASCIIFix (System type) Moved to DataTransfer type in version 7
importASCIIVar (System type) Moved to DataTransfer type in version 7
importSpreadsheet (System type) Moved to DataTransfer type in version 7
isOnSQLServer (TCursor type)
isOpenOnUniqueIndex (TCursor type)
rollBackTransaction (Database type)
sendKeys (System type)
sendKeysActionID (System type)
setAliasPassword (Session type)
setAliasProperty (Session type)
setBatchOff (TCursor type)
setBatchOn (TCursor type)
TransactionActive (Database type)
update (TCursor type)
writeSQL (SQL type)

{button ,AL(`REF_45;',0,"Defaultoverview",)}      Related Topics



Version 4.5 methods by type
The following list contains methods that were added or changed for version 4.5. Some of these are derived 
methods from other types.

Database type
beginTransaction
commitTransaction
rollBackTransaction
transactionActive

Form type
dmGetProperty
dmLinkToFields
dmLinkToIndex
dmSetProperty
dmUnlink

Session type
enumAliasLoginInfo
getAliasProperty
setAliasPassword
setAliasProperty

SQL type
executeSQL
writeSQL

System type
dlgExport (moved to DataTransfer Type in version 7)
dlgImportASCIIFix (moved to DataTransfer type in version 7)
dlgImportASCIIVar (moved to DataTransfer type in version 7)
dlgImportSpreadsheet (moved to DataTransfer type in version 7)
errorHasErrorCode
errorHasNativeErrorCode
errorNativeCode
executeString
exportASCIIFix (moved to DataTransfer type in version 7)
exportASCIIVar (moved to DataTransfer type in version 7)
exportSpreadsheet (moved to DataTransfer type in version 7)
importASCIIFix (moved to DataTransfer type in version 7)
importASCIIVar (moved to DataTransfer type in version 7)
importSpreadsheet (moved to DataTransfer type in version 7)
sendKeysActionID
sendKeys

TCursor type
forceRefresh
isOnSQLServer
isOpenOnUniqueIndex
setBatchOff
setBatchOn
update

UIObject type
forceRefresh



{button ,AL(`REF_45;',0,"Defaultoverview",)}      Related Topics



Alphabetical list of version 5.0 methods
The following are lists of methods that were added or changed for version 5.0. Some of these are derived 
methods from other types.
New to version 5
addProjectAlias (Session type)
bringToFront (UIObject type)
canLinkFromClipboard (OLE type)
clipboardErase (Binary type)
clipboardHasFormat (Binary type)
compileInformation (System type)
copyToToolbar (UIObject type)
create (Library type)
create (Script type) Derived from Form type
createIndex (Table type)
createIndex (TCursor type)
deliver (Library type) Derived from Form type
deliver (Report type) Derived from Form type
deliver (Script type) Derived from Form type
desktopMenu (System type)
disablePreviousError (Form type)
dmAddTable (Report type) Derived from Form type
dmAttach (Form type)
dmAttach (TCursor type)
dmBuildQueryString (Form type)
dmBuildQueryString (Report type) Derived from Form type
dmEnumLinkFields (Form type) 
dmEnumLinkFields (Report type) Derived from Form type
dmGetProperty (Report type) Derived from Form type
dmHasTable (Report type) Derived from Form type
dmLinkToFields (Report type) Derived from Form type
dmLinkToIndex (Report type) Derived from Form type
dmRemoveTable (Report type) Derived from Form type
dmResync (Form type)
dmSetProperty (Report type) Derived from Form type
dmUnlink (Report type) Derived from Form type
dropGenFilter (Table type)
dropGenFilter (TCursor type)
dropGenFilter (UIObject type)
enableExtendedCharacters (System type)
enumClipboardFormats (Binary type)
enumDataModel (Form type) 
enumDataModel (Report type) Derived from Form type
enumFamily (Database type)
enumPrinters (System type)
enumRTLErrors (System type)
enumServerClassNames (OLE type)
enumSource (Report type) Derived from Form type
enumSource (Script type) Derived from Form type



enumSourceToFile (Report type) Derived from Form type
enumSourceToFile (Script type) Derived from Form type
enumTableLinks (Report type) Derived from Form type
exportParadoxDOS(System type) Moved to DataTransfer type
formatGetSpec (System type)
formatStringToDate (System type)
formatStringToNumber (System type)
formReturn (Script type) Derived from Form type
fromHex (AnyType type)
getDefaultPrinterStyleSheet (System type)
getDefaultScreenStyleSheet (System type)
getFileName (Report type) Derived from Form type
getGenFilter (Table type)
getGenFilter (TCursor type)
getGenFilter (UIObject type)
getIndexName (TCursor type)
getLanguageDriver (System type)
getProtoProperty (Form type) 
getProtoProperty (Report type) Derived from Form type
getQueryRestartOptions (SQL type)
getRange (TCursor type)
getRange (Table type)
getRange (UIObject type) 
getSelectedObjects (Form type)
getStyleSheet (Form type) 
getStyleSheet (Report type) Derived from Form type
getUserLevel (System type)
hideToolbar (Form type) 
insertObject (OLE type)
instantiateView (TCursor type)
isAssigned (SQL type)
isDesign (Form type)
isDesign (Report type) Derived from Form type
isLinked (OLE type)
isSQLServer (Database type)
isToolbarShowing (Form type) 
isView (TCursor type)
linkFromClipboard (OLE type)
load (Library type) Derived from Form type
load (Report type) Derived from Form type
load (Script type) Derived from Form type
loadProjectAliases(Session type)
menuAction (Report type) Derived from Form type
methodDelete (Library type) Derived from Form type
methodDelete (Script type) Derived from Form type
methodGet (Library type) Derived from Form type
methodGet (Script type) Derived from Form type
methodSet (Library type) Derived from Form type
methodSet (Script type) Derived from Form type



moveTo (Report type) Derived from Form type
printerGetInfo (System type)
printerGetOptions (System type)
printerSetCurrent (System type)
printerSetOptions (System type)
projectViewerClose (System type)
projectViewerIsOpen (System type)
projectViewerOpen (System type)
readFromClipboard (Binary type)
readFromFile (Query type) Replaces Database type executeQBEFile
readFromString (Query type) Replaces Database type executeQBEString 
removeProjectAlias (Session type)
run (Script type) Derived from Form type
save (Library type) Derived from Form type
save (Script type) Derived from Form type
saveProjectAliases (Session type)
saveStyleSheet (Form type)
saveStyleSheet (Report type) Derived from Form type
selectCurrentTool (Form type)
selectCurrentTool (Report type) Derived from Form type
sendToBack (UIObject type)
setDefaultPrinterStyleSheet (System type)
setDefaultScreenStyleSheet (System type)
setGenFilter (Table type)
setGenFilter ) (TCursor type)
setGenFilter (UIObject type)
setMenu (Form type)
setMenu (Report type)
setPrivDir (FileSystem type)
setProtoProperty (Form type)
setProtoProperty (Report type) Derived from Form type
setQueryRestartOptions (SQL type)
setRange (Table type)
setRange (TCursor type)
setRange (UIObject type) 
setSelectedObjects (Form type)
setStyleSheet (Form type)
setStyleSheet (Report type) Derived from Form type
setUserLevel (System type)
setWorkingDir (FileSystem type)
showToolbar (Form type)
toHex (AnyType type)
updateLinkNow (OLE type)
wantInMemoryTCursor (Query type)
wantInMemoryTCursor (SQL type) 
windowClientHandle (Report type) Derived from Form type
writeToClipboard (Binary type)

Changed in version 5



addAlias (Session type)
attach (TCursor type)
beginTransaction (Database type)
cCount (Table type)
cCount (TCursor type)
create (Table type)
dmGet (Form type)
dmGetProperty (Form type)
dmHasTable (Form type)
dmLinkToFields (Form type)
dmLinkToIndex (Form type)
dmPut (Form type)
dmRemoveTable (Form type)
dmSetProperty (Form type)
dmUnlink (Form type)
enumAliasNames (Session type)
enumDatabaseTables (Session type)
enumDriverCapabilities (Session type)
enumFieldStruct (Table type)
enumFieldStruct (TCursor type)
enumFolder (Session type)
enumIndexStruct (Table type)
enumIndexStruct (TCursor type)
enumOpenDatabases (Session type)
enumRefIntStruct (Table type)
enumRefIntStruct (TCursor type)
enumTableLinks (Form type) (Table type)
enumSecStruct (Table type)
enumSecStruct (TCursor type)
enumUIObjectProperties (UIObject type)
enumUsers (Session type)
fieldType (Table type) 
fieldType (TCursor type)
format (String type)
getQueryRestartOptions (Query type) Previously in Database type 
isExecuteQBELocal (Query type) Previously in Database type 
load (Form type)
load (Report type)
nRecords (TCursor type)
open (Report type)
print (Report type)
readFromFile (Query type) Replaces executeQBEFile 
readFromFile (SQL type) Replaces executeSQLFile
readFromString (Query type) Replaces executeQBEString
readFromString (SQL type) Replaces executeSQLString 
recNo (TCursor type)
seqNo (TCursor type)
setQueryRestartOptions (Query type) Previously in Database type 
sleep (System type)



{button ,AL(`REF_50;',0,"Defaultoverview",)}      Related Topics



Version 5.0 methods by type
The following list displays the methods that were added or changed for version 5.0. Some of these are derived 
methods from other types.

New to version 5.0

Anytype
fromHex
toHex

Binary

clipboardErase
clipboardHasFormat
enumClipboardFormats
readFromClipboard
writeToClipboard

Database
enumFamily
isSQLServer

FileSystem
setPrivDir
setWorkingDir

Form
disablePreviousError
dmAttach
dmBuildQueryString 
dmEnumLinkFields 
dmResync
enumDataModel 
getProtoProperty 
getSelectedObjects 
getStyleSheet 
hideToolbar 
isDesign
isToolbarShowing 
saveStyleSheet 
selectCurrentTool 
setMenu
setProtoProperty
setSelectedObjects
setStyleSheet
showToolbar 

Library
create
deliver (derived from Form type)
load (derived from Form type)
methodDelete (derived from Form type)
methodGet (derived from Form type)



methodSet (derived from Form type)
save (derived from Form type)

OLE
canLinkFromClipboard
enumServerClassNames
insertObject
isLinked
linkFromClipboard
updateLinkNow

Query
readFromFile (replaces Database type executeQBEFile)
readFromString (replaces Database type executeQBEString)
wantInMemoryTCursor 

Report (derived from Form type)
deliver 
dmAddTable 
dmBuildQueryString 
dmEnumLinkFields 
dmGetProperty 
dmHasTable 
dmLinkToFields 
dmLinkToIndex 
dmRemoveTable 
dmSetProperty 
dmUnlink 
enumDataModel 
enumSource
enumSourceToFile
enumTableLinks
getFileName
getProtoProperty 
getStyleSheet 
isDesign 
load
menuAction
moveTo
saveStyleSheet 
selectCurrentTool 
setMenu (not a derived type)
setProtoProperty
setStyleSheet
windowClientHandle

Script (derived from Form type)
create
deliver 
enumSource
enumSourceToFile
formReturn



load
methodDelete
methodGet 
methodSet 
run
save

Session
addProjectAlias
loadProjectAliases
removeProjectAlias
saveProjectAliases

SQL
isAssigned 
getQueryRestartOptions
setQueryRestartOptions
wantInMemoryTCursor 

System
compileInformation
desktopMenu
enableExtendedCharacters
enumPrinters
enumRTLErrors
exportParadoxDOS (moved to DataTransfer Type in version 7)
formatGetSpec
formatStringToDate
formatStringToNumber 
getDefaultPrinterStyleSheet
getDefaultScreenStyleSheet
getLanguageDriver
getUserLevel
printerGetInfo
printerGetOptions
printerSetCurrent
printerSetOptions
projectViewerClose
projectViewerIsOpen
projectViewerOpen
setDefaultPrinterStyleSheet
setDefaultScreenStyleSheet
setUserLevel

Table
createIndex
dropGenFilter
getGenFilter 
getRange 
setGenFilter 
setRange 

TCursor



createIndex
dmAttach
dropGenFilter
getGenFilter
getIndexName
getRange 
instantiateView
isView
setGenFilter 
setRange

UIObject
bringToFront 
copyToToolbar 
dropGenFilter
getGenFilter 
getRange 
sendToBack
setGenFilter
setRange 

Changed in version 5.0

Database type

beginTransaction 

Form type
dmGet
dmGetProperty 
dmHasTable
dmLinkToFields 
dmLinkToIndex
dmPut 
dmRemoveTable
dmSetProperty 
dmUnlink
enumTableLinks
load 

Query type
executeQBE 
getQueryRestartOptions (previously in the Database type) 
isExecuteQBELocal (previously in the Database type) 
readFromFile (replaces executeQBEFile) 
readFromString (replaces executeQBEString) 
setQueryRestartOptions (previously in the Database type) 
writeQBE 

Report type
load 
open
print



Session type
addAlias 
enumAliasNames 
enumDatabaseTables 
enumDriverCapabilities 
enumFolder 
enumUsers
enumOpenDatabases 

SQL type
readFromFile (replaces executeSQLFile) 
readFromString (replaces executeSQLString) 

String type
format 

System type
sleep 

Table type
cCount 
create
enumFieldStruct 
enumIndexStruct 
enumRefIntStruct
enumSecStruct 
fieldType

TCursor type
attach 
cCount
enumFieldStruct
enumIndexStruct 
enumRefIntStruct 
enumSecStruct 
fieldType 
nRecords 
recNo
seqNo 

UIObject type
enumUIObjectProperties 

{button ,AL(`REF_50;',0,"Defaultoverview",)}      Related Topics



Alphabetical list of Version 7 methods
The following list displays the methods that were added or changed for version 7. Some of these are derived 
methods from other types.

New to version 7
addAddress (Mail type)
addAttachment (Mail type)
addButton (Toolbar type)
addressBook (Mail type)
addressBookTo (Mail type)
aliasName (TCursor type)
appendASCIIFix (DataTransfer type)
appendASCIIVar (DataTransfer type)
appendRow (Query type)
appendTable (Query type)
attach (OleAuto type)
attach (Toolbar type)
checkField (Query type)
checkRow (Query type)
clearCheck (Query type)
close (OleAuto type)
create (Toolbar type)
createAuxTables (Query type)
createQBEString (Query type)
createTabbed (Toolbar type)
deleteRegistryKey (System type)
dlgExport (DataTransfer type) Moved from System Type 
dlgImport (DataTransfer type)
dlgImportAsciiFix (DataTransfer type) Moved from System Type 
dlgImportAsciiVar (DataTransfer type) Moved from System Type 
dlgImportSpreadSheet (DataTransfer type) Moved from System Type 
dlgImportTable (DataTransfer type)
empty (DataTransfer type)
empty (Mail type)
empty (Toolbar type)
emptyAddresses (Mail type)
emptyAttachments (Mail type)
enumAutomationServers (OleAuto type)
enumConstants (OleAuto type)
enumConstantValues (OleAuto type)
enumControls (OleAuto type)
enumDesktopWindowHandles (System type)
enumEvents (OleAuto type)
enumExperts (System type)
enumFieldStruct (Query type)
enumMethods (OleAuto type)
enumObjects (OleAuto type)
enumProperties (OleAuto type)



enumRegistryKeys (System type)
enumRegistryValueNames (System type)
enumServerInfo (OleAuto type)
enumSourcePageList (DataTransfer type)
enumSourceRangeList (DataTransfer type)
enumWindowHandles (System type)
exportASCIIFix (DataTransfer type) Moved from System type 
exportASCIIVar (DataTransfer type) Moved from System type 
exportParadoxDOS (DataTransfer type) Moved from System type 
exportSpreadsheet (DataTransfer type) Moved from System type 
first (OleAuto type)
formatStringToDateTime (System type)
formatStringToTime (System type)
getAddress (Mail type)
getAddressCount (Mail type)
getAnswerFieldOrder (Query type)
getAnswerName (Query type)
getAnswerSortOrder (Query type)
getAppend (DataTransfer type)
getAttachment (Mail type)
getAttachmentCount (Mail type)
getCheck (Query type)
getCriteria (Query type)
getDesktopPreference (System type)
getDestCharSet (DataTransfer type)
getDestDelimitedFields (DataTransfer type)
getDestDelimiter (DataTransfer type)
getDestFieldNamesFromFirst (DataTransfer type)
getDestName (DataTransfer type)
getDestSeparator (DataTransfer type)
getDestType (DataTransfer type)
getKeyviol (DataTransfer type)
getMaxRows (Database type)
getMessage (Mail type)
getMessageType (Mail type)
getPosition (Toolbar type)
getProblems (DataTransfer type)
getRegistryValue (System type)
getRowID (Query type)
getRowNo (Query type)
getRowOp (Query type)
getSourceCharSet (DataTransfer type)
getSourceDelimitedFields (DataTransfer type)
getSourceDelimiter (DataTransfer type)
getSourceFieldNamesFromFirst (DataTransfer type)
getSourceName (DataTransfer type)
getSourceRange (DataTransfer type)
getSourceSeparator (DataTransfer type)
getSourceType (DataTransfer type)



getState (Toolbar type)
getSubject (Mail type)
getTableID (Query type)
getTableNo (Query type)
hasCriteria (Query type)
hide (Toolbar type)
importASCIIFix (DataTransfer type) Moved from System type 
importASCIIVar (DataTransfer type) Moved from System type 
importSpreadsheet (DataTransfer type) Moved from System type 
insertRow (Query type)
insertTable (Query type)
invoke (OleAuto type)
isCompileWithDebug (Form type)
isCreateAuxTables (Query type)
isEmpty (String type)
isEmpty (Query type)
isMousePersistent (System type)
isQueryValid (Query type)
isValidDir (FileSystem type)
isValidFile (FileSystem type)
isVisible (Toolbar type)
loadDestSpec (DataTransfer type)
loadSourceSpec (DataTransfer type)
logoff (Mail type)
logoffDlg (Mail type)
logon (Mail type)
logonDlg (Mail type)
next (OleAuto type)
open (OleAuto type)
openObjectTypeInfo (OleAuto type)
openTypeInfo (OleAuto type)
readFromClipboard (Memo type)
readFromClipboard (String type)
registerControl (OleAuto type)
remove (Toolbar type)
removeButton (Toolbar type)
removeCriteria (Query type)
removeRow (Query type)
removeTable (Query type)
restructure (Table type)
runExpert (System type)
searchRegistry (System type)
send (Mail type)
sendDlg (Mail type)
setAnswerFieldOrder (Query type)
setAnswerName (Query type)
setAnswerSortOrder (Query type)
setAppend (DataTransfer type)
setCompileWithDebug (Form type)



setCriteria (Query type)
setDesktopPreference (System type)
setDest (DataTransfer type)
setDestCharSet (DataTransfer type)
setDestDelimitedFields (DataTransfer type)
setDestDelimiter (DataTransfer type)
setDestFieldNamesFromFirst (DataTransfer type)
setDestSeparator (DataTransfer type)
setIcon (Form type)
setKeyviol (DataTransfer type)
setLanguageDriver (Query type)
setMaxRows (Database type)
setMessage (Mail type)
setMessageType (Mail type)
setMouseShapeFromFile (System type)
setPosition (Toolbar type)
setProblems (DataTransfer type)
setRegistryValue (System type)
setRowOp (Query type)
setSource (DataTransfer type)
setSourceCharSet (DataTransfer type)
setSourceDelimitedFields (DataTransfer type)
setSourceDelimiter (DataTransfer type)
setSourceFieldNamesFromFirst (DataTransfer type)
setSourceRange (DataTransfer type)
setSourceSeparator (DataTransfer type)
setState (Toolbar type)
setSubject (Mail type)
shortName (FileSystem type)
show (Toolbar type)
transferData (DataTransfer type)
unAttach
unregisterControl (OleAuto type)
version (OleAuto type)
writeToClipboard (Memo type)
writeToClipboard (String type)

Changed in version 7
create (UIObject type)
date (Date type)
dlgExport (System type) Moved to DataTransfer type
dlgImportAsciiFix (System type) Moved to DataTransfer type
dlgImportAsciiVar (System type) Moved to DataTransfer type
dlgImportSpreadSheet (System type) Moved to DataTransfer type
exportASCIIFix (System type) Moved to DataTransfer type
exportASCIIVar (System type) Moved to DataTransfer type
exportParadoxDOS (System type) Moved to DataTransfer type
exportSpreadsheet (System type) Moved to DataTransfer type
importASCIIFix (System type) Moved to DataTransfer type



importASCIIVar (System type) Moved to DataTransfer type
importSpreadsheet (System type) Moved to DataTransfer type
init (Built-in type)
sysInfo (System type)

{button ,AL(`REF_7;',0,"Defaultoverview",)}      Related Topics



Version 7 methods by type
The following list displays the methods that were added or changed for version 7. Some of these are derived 
methods from other types.

New to version 7

Database type
getMaxRows
setMaxRows

DataTransfer type
appendASCIIFix
appendASCIIVar
dlgExport (moved from System type)
dlgImport
dlgImportAsciiFix (moved from System type)
dlgImportAsciiVar (moved from System type)
dlgImportSpreadSheet (moved from System type)
dlgImportTable
empty
enumSourcePageList
enumSourceRangeList
exportASCIIFix (moved from System type)
exportASCIIVar (moved from System type)
exportParadoxDOS (moved from System type)
exportSpreadsheet (moved from System type)
getAppend
getDestCharSet
getDestDelimitedFields
getDestDelimiter
getDestFieldNamesFromFirst
getDestName
getDestSeparator
getDestType
getKeyviol
getProblems
getSourceCharSet
getSourceDelimitedFields
getSourceDelimiter
getSourceFieldNamesFromFirst
getSourceName
getSourceRange
getSourceSeparator
getSourceType
importASCIIFix (moved from System type)
importASCIIVar (moved from System type)
importSpreadsheet (moved from System type)
loadDestSpec
loadSourceSpec



setAppend
setDest
setDestCharSet
setDestDelimitedFields
setDestDelimiter
setDestFieldNamesFromFirst
setDestSeparator
setKeyviol
setProblems
setSource
setSourceCharSet
setSourceDelimitedFields
setSourceDelimiter
setSourceFieldNamesFromFirst
setSourceRange
setSourceSeparator
transferData

FileSystem type
isValidDir
isValidFile
shortName

Form type
isCompileWithDebug
setCompileWithDebug
setIcon

Mail type
addAddress
addAttachment
addressBook
addressBookTo
emptyAddresses
emptyAttachments
empty
getAddressCount
getAddress
getAttachmentCount
getAttachment
getMessage
getMessageType
getSubject
logoffDlg
logoff
logonDlg
logon
sendDlg
send
setMessage
setMessageType
setSubject



Memo type
readFromClipboard
writeToClipboard

OleAuto type
attach
close
enumAutomationServers
enumConstants
enumConstantValues
enumControls
enumEvents
enumMethods
enumObjects
enumProperties
enumServerInfo
first
invoke
next
open
openObjectTypeInfo
openTypeInfo
registerControl
unregisterControl
version

Query type
appendRow
appendTable
checkField
checkRow
clearCheck
createAuxTables
createQBEString
enumFieldStruct
getAnswerFieldOrder
getAnswerName
getAnswerSortOrder
getCheck
getCriteria
getRowID
getrowNo
getRowOp
getTableID
getTableNo
hasCriteria
insertRow
insertTable
isCreateAuxTables
isEmpty
isQueryValid



removeCriteria
removeRow
removeTable
setAnswerFieldOrder
setAnswerName
setAnswerSortOrder
setCriteria
setLanguageDriver
setRowOp

String type
isEmpty
readFromClipboard
writeToClipboard
System type

deleteRegistryKey
enumDesktopWindowHandles
enumExperts
enumRegistryKeys
enumRegistryValueNames
enumWindowHandles
formatStringToDateTime
formatStringToTime
getDesktopPreference
getRegistryValue
isMousePersistent
runExpert
searchRegistry
setDesktopPreference
setMouseShapeFromFile
setRegistryValue

Table type
restructure

TCursor type
aliasName
addButton
attach
create
createTabbed
empty
getPosition
getState
hide
isVisible
removeButton
remove
setPosition
setState
show



unAttach

Changed in version 7

Built-in type
init

Date type
date

System type
dlgExport (moved to DataTransfer type)
dlgImportAsciiFix(moved to DataTransfer type)
dlgImportAsciiVar (moved to DataTransfer type)
dlgImportSpreadSheet (moved to DataTransfer type)
exportASCIIFix (moved to DataTransfer type)
exportASCIIVar (moved to DataTransfer type)
exportParadoxDOS (moved to DataTransfer type)
exportSpreadsheet (moved to DataTransfer type)
importASCIIFix (moved to DataTransfer type)
importASCIIVar (moved to DataTransfer type)
importSpreadsheet (moved to DataTransfer type)
sysInfo

UIObject type
create

{button ,AL(`REF_7;',0,"Defaultoverview",)}      Related Topics



Alphabetical list of version 8 methods
The following list displays the methods that were added or changed for version 8. Some of these are derived 
methods from other types.

New to version 8
attach (AddinForm type)
bringToTop (AddinForm type)
close (AddinForm type)
closeQuery (AddinForm type)
enumForms (AddinForm type)
enumInbox (Mail type)
fileBrowserEx (System type)
getHTMLTemplate (UIObject type)
getPosition (AddinForm type)
getPropertyAsInteger (AddinForm type)
getPropertyAsNumber (AddinForm type)
getPropertyAsString (AddinForm type)
getSender (Mail type)
getTitle (AddinForm type)
handle (TCursor type)
hide (AddinForm type)
isAppBarVisible (Toolbar type)
isAssigned (AddinForm type)
isMaximized (AddinForm type)
isMinimized (AddinForm type)
isVisible (AddinForm type)
maximize (AddinForm type)
menuAction (AddinForm type)
methodEdit (Form type)
methodEdit (Library type)
methodEdit (Script type)
methodEdit (UIObject type)
minimize (AddinForm type)
open (AddinForm type)
postMessage (AddinForm type)
readFromRTFFile (Memo type)
readMessage (Mail type)
restructure (Table type)
searchEx (String type)
sendMessage (AddinForm type)
setPosition (AddinForm type)
setProperty (AddinForm type)
setTitle (AddinForm type)
show (AddinForm type)
showApplicationBar (Toolbar type)
sizeEx (String type)
wait (AddinForm type)
writeToRTFFile (Memo type)



Changed in version 8
addButton (Toolbar type)
attach (TCursor type)
enumIndexStruct (Table type)
fill (String type)
getAddress (Mail type)
space (String type)
subStr (String type)

{button ,AL(`REF_75;',0,"Defaultoverview",)}      Related Topics



Version 8 methods by type
The following list displays the methods that were added or changed for version 8. Some of these are derived 
methods from other types.

New to version 8

AddinForm type
attach
bringToTop
close
closeQuery
enumForms
getPosition
getPropertyAsInteger
getPropertyAsNumber
getPropertyAsString
getTitle
hide
isAssigned
isMaximized
isMinimized
isVisible
maximize
menuAction
minimize
open
postMessage
sendMessage
setPosition
setProperty
setTitle
show
wait
windowHandle

Form type
methodEdit

Library type
methodEdit 

Mail type
enumInbox
getSender
readMessage

Memo type
readFromRTFFile
writeToRTFFile

Script type
methodEdit



String type
searchEx
sizeEx

System type
fileBrowserEx

Table type
restructure

TCursor type
handle

Toolbar type
isAppBarVisible
showApplicationBar

UIObject type
methodEdit

Changed in version 8

Mail type
getAddress

Table type
enumIndexStruct

TCursor type
attach

Toolbar type
addButton

String type
fill
space
subStr

{button ,AL(`REF_75;',0,"Defaultoverview",)}      Related Topics



Types of constants
Click any of the following types of constants for more information:
ActionClasses constants
ActionDataCommands constants
ActionEditCommands constants
ActionFieldCommands constants
ActionMoveCommands constants
ActionSelectCommands constants
AggModifiers constants
BrowserOptions constants
ButtonStyles constants
ButtonTypes constants
Colors constants
CompleteDisplay constants
DataTransferCharset constants
DataTransferDelimitCode constants
DataTransferFileType constants
DateRangeTypes constants
DesktopPreferenceTypes constants
ErrorReasons constants
EventErrorCodes constants
ExecuteOptions constants
FieldDisplayTypes constants
FileBrowserFileTypes constants
FontAttributes constants
FrameStyles constants
General constants
GraphBindTypes constants
GraphicMagnification constants
GraphLabelFormats constants
GraphLegendPosition constants
GraphMarker constants
GraphTypeOverRide constants
GraphType constants
IdRange constants
Keyboard constants
KeyBoardStates constants
LibraryScope constants
LineEnd constants
LineStyles constants
LineThickness constants
LineTypes constants
MailAddressTypes constants
MailReadOptions constants
MenuChoiceAttributes constants
MenuCommands constants
MenuReasons constants
MouseShapes constants
MoveReasons constants
PageTilingOptions constants
PatternStyles constants
PrintColor constants
PrintDuplex constants
PrinterOrientation constants



PrinterSizes constants
PrintQuality constants
PrintSources constants
QueryRestartOptions constants
RasterOperations constants
RegistryKeyType constants
ReportOrientation constants
ReportPrintPanel constants
ReportPrintRestart constants
RestructureOperations constants
SpecialFieldTypes constants
StatusReasons constants
TableFrameStyles constants
TextAlignment constants
TextDesignSizing constants
TextSpacing constants
ToolbarBitmap constants
ToolbarButtonType constants
ToolbarClusterID constants
ToolbarState constants
TrackBarStyles constants
UIObjectTypes constants
ValueReasons constants
WindowStyles constants



ActionClasses constants
Constant Data type Description
DataAction SmallInt Data actions are for navigating in a table and for tasks such as record locking 

and record posting.
EditAction SmallInt Edit actions alter data within a field.
FieldAction SmallInt Field actions are a special category of Move action that enable movement 

between field objects.
MoveAction SmallInt Move actions are for moving within a field object.
SelectAction SmallInt Select actions are equivalent to Move actions.

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ActionDataCommands constants
Constant Data type Description
DataArriveRecord SmallInt Indicates a change to the active record (e.g., navigation, 

editing, network refresh, and scrolling)
DataBegin SmallInt Moves to the first record in the table associated with the given 

UIObject. This constant forces recursive action 
(DataUnlockRecord) if the active record has been modified. If 
an error is encountered, it calls the error method. This 
constant is invoked by the First Record button, or Record, First.

DataBeginEdit SmallInt Used to enter Edit mode on the form. This constant is invoked 
by F9, the Edit icon, or View, Edit Data.

DataBeginFirstField SmallInt Moves to the first field in the first record of the table 
associated with the given UIObject. This constant is invoked by
CTRL + HOME.

DataCancelRecord SmallInt Discards changes to a record. Succeeds by default, but user 
could block it. This constant is invoked by Edit, Undo, ALT + 
BACKSPACE, or Record, Cancel Changes menu item. Also used 
internally when moving off a locked but unmodified record.

DataDeleteRecord SmallInt Deletes the active record. If an error is encountered, this 
constant calls the error method. This action is irreversible 
except for dBASE tables.
This constant is invoked by Record, Delete or CTRL + DELETE.

DataDesign SmallInt Switches from running the form to the Form Design window. 
This constant is invoked by F8.

DataDitto SmallInt Copies into the current field the value of the corresponding 
field in the prior record. This constant is invoked by CTRL + D.

DataEnd SmallInt Moves to the final record in the table associated with the given
UIObject. DataEnd forces a recursive action 
(DataUnlockRecord) if the active record has been modified. If 
an error is encountered, this constant will call the error 
method. This constant is invoked by the Last Record button.

DataEndEdit SmallInt Exits Edit mode on the form. This constant is invoked by (2nd) 
F9, Edit Data button on Toolbar, or View, View Data.

DataEndLastField SmallInt Moves to the last field of the last record of the table associated
with a UIObject. This constant is invoked by CTRL + HOME.

DataFastBackward SmallInt Moves backward one set of records (where a set is defined as 
the number of rows in a table frame or MRO). This constant is 
invoked by Record, Previous Set, SHIFT + F11 or Previous 
Record Set button.

DataFastForward SmallInt Moves forward one set of records (where a set is defined as the
number of rows in a table frame or MRO). This constant is 
invoked by Record, Next Set, SHIFT + F11 or Next Record Set 
button.

DataHideDeleted SmallInt Alters the mode of the form so that deleted records will be 
hidden (available only for dBASE tables). This constant is 
invoked by deselecting View, Show Deleted.

DataInsertRecord SmallInt Inserts a new (blank) record before the active record. The new 
record has a locked record state, and does not exist in the 
underlying table until the record is eventually modified and 
unlocked. This constant is invoked by Record, Insert, or INSERT.
Note that records created this way can be discarded by using 
DataDeleteRecord or DataCancelRecord before they have been
unlocked. If you Move off such a record without making 
changes, DataCancelRecord to discard it. 

DataLockRecord SmallInt Locks the active record. If an error is encountered, this 
constant calls the error method. This constant is invoked by 
F5.

DataLookup SmallInt Invokes lookup table for the current field, to accept user's 
choice of a new value, and, if appropriate, to update all 



corresponding fields governed by lookup. DataLookup is 
available only for fields that have been defined as lookup 
fields. This constant is invoked by CTRL + SPACEBAR.

DataLookupMove SmallInt Allows the user to choose a new master record for this detail. 
This constant is invoked by Record, Move Help or CTRL + SHIFT
+ SPACEBAR.

DataNextRecord SmallInt Moves to the next sequential record in the table associated 
with the UIObject. DataNextRecord forces a recursive action 
(DataUnlockRecord) if the active record has been modified. If 
an error is encountered, this constant calls the error method. 
This constant is invoked by Record, Next, the Next Record 
button, F12, and so forth.

DataNextSet SmallInt Moves forward one set of records (where a set is defined as the
number of rows in a table frame or MRO. This constant is 
invoked by PAGEDOWN.

DataPostRecord SmallInt Posts a record. DataPostRecord is just like DataUnlockRecord, 
but the record lock will not be released. As a consequence, if 
changes to key fields mean the record will move to a new 
position in the table, the table's position flies with that record 
(meaning it will still be the active record). This constant is 
invoked by CTRL + F5 or Record, Post/Keep Locked.

DataPrint SmallInt Prints a Form or Table window. This constant is invoked by File, 
Print or the Print button.

DataPriorRecord SmallInt Moves (if possible) to the previous record in the table 
associated with the UIObject. DataPriorRecord forces recursive 
action(DataUnlockRecord) if the active record has been 
modified. If an error is encountered, this constant calls the 
error method. This constant is invoked by Record, Previous, 
the Prior Record button, F11, and so forth.

DataPriorSet SmallInt Moves backward one set of records (where a set is defined as 
the number of rows in a table frame or MRO, or 1 in the case of
a single-record form). DataPriorSet forces a recursive action 
(DataUnlockRecord) if the active record has been modified. If 
an error is encountered, this constant calls the error method. 
This constant is invoked by PAGEUP.

DataRecalc SmallInt Forces an object and all objects it contains to refetch and 
recompute all their data. This constant is invoked by CTRL + 
F3.

DataRefresh SmallInt Notifies users about a refresh of a value in a record displayed 
on the screen.

DataRefreshOutside SmallInt Notifies users about a refresh of a value in a record not 
displayed on the screen.

DataSaveCrosstab SmallInt Writes given crosstab to CROSSTAB.DB. Different from 
EditSaveCrosstab, which brings up a dialog box asking user the
name of the crosstab table to create.

DataSearch SmallInt Opens a dialog box to allow the user to search for a specific 
value within a specified field. This constant is invoked by 
Record, Locate, Value, or CTRL + Z.

DataSearchNext SmallInt Searches for the next record containing the value last specified
in response to the last DataSearch action. This constant is 
invoked by Record, Locate Next, or CTRL + A.

DataSearchRecord SmallInt Opens a dialog box to allow the user to search for a record by 
specifying the record number. This constant is invoked by 
Record, Locate, Record Number.

DataSearchReplace SmallInt Opens a dialog box to allow the user to search for a specific 
value within a specified field and to replace it with a different 
value. This constant is invoked by Record, Locate, and Replace,
or CTRL + SHIFT + Z.

DataShowDeleted SmallInt Alters the mode of the form so that deleted records will be 
shown (available only for dBASE tables). They will look no 
different from normal records, but the status line will reflect 
their state. This constant is invoked by View, Show Deleted.



DataTableView SmallInt Opens a Table View of the master table of a form. If this form 
was originally invoked as preferred form of existing Table View,
this returns focus to that Table View. This constant is invoked 
by F7, the Table View button or View, Table View.

DataToggleDeleted SmallInt Reverses the state of show deleted records for dBASE tables.
DataToggleDeleteRecord SmallInt Reverses the deleted state of records in dBASE tables.
DataToggleEdit SmallInt Reverses the Edit state of the form. DataToggleEdit recursively 

calls DataBeginEdit or DataEndEdit as appropriate. This 
constant is invoked by F9, or the Edit Data button.

DataToggleLockRecord SmallInt Reverses the lock state of the active record. 
DataToggleLockRecord recursively uses DataLockRecord or 
DataUnlockRecord as appropriate. If an error is encountered, 
this constant calls the error method.

DataUnDeleteRecord SmallInt Marks previously deleted record as undeleted (for dBASE 
tables)

DataUnlockRecord SmallInt Commits the record modifications to the table and then (if 
successful) to unlock the record. If an error is encountered, this
constant calls the error method. This constant is invoked by 
Record, Unlock or SHIFT + F5.

{button ,AL(`OPAL_CONST_CONSTYPES;opal_type_actionevent;;;;;',0,"Defaultoverview",)} Related 
Topics



ActionEditCommands constants
Constant Data type Description
EditCommitField SmallInt Writes the current field's modifications to record buffer 

(without leaving field)
EditCopySelection SmallInt Copies selected area of text to Clipboard. This constant is 

invoked by Edit, Copy or CTRL + Ins.
EditCopyToFile SmallInt Invokes a dialog box to copy selection to a file. This constant is

invoked by Edit, Copy To.
EditCutSelection SmallInt Copies selected area of text to Clipboard and deletes it. This 

constant is invoked by Edit, Cut or CTRL + DELETE.
EditDeleteBeginLine SmallInt Deletes from the current position to the beginning of the line
EditDeleteEndLine SmallInt Deletes from the current position to the end of the line
EditDeleteLeft SmallInt Deletes one character position to the left. This constant is 

invoked by Backspace in Field View.
EditDeleteLeftWord SmallInt Deletes up to and including the beginning of the word to the 

left of the current character position
EditDeleteLine SmallInt Deletes the line on which the current position is found
EditDeleteRight SmallInt Deletes one character position to the right. This constant is 

invoked by Del in Field View.
EditDeleteRightWord SmallInt Deletes up to and including the end of the word to the right of 

the current character position
EditDeleteSelection SmallInt Deletes the currently selected area of text. This constant is 

invoked by Edit, Delete.
EditDeleteWord SmallInt Deletes the word around the current position. This constant is 

invoked by CTRL + BACKSPACE.
EditDropDownList SmallInt Drops down the pick list associated with a drop-down edit field.

This constant is invoked by ALT + the Down Arrow key or 
clicking edit field's List icon.

EditEnterFieldView SmallInt Enters Field View for the current field (allowing arrow keys to 
move around within the field). Begins by moving the current 
position to the end of field and unhighlighting it. This constant 
is invoked by F2, View, Field View, or the Field View button.

EditEnterMemoView SmallInt Enters Memo View on memos or OLE fields. This constant is 
invoked by SHIFT + F2 or View, Memo View.

EditEnterPersistFieldView SmallInt Enters Persistent Field View, meaning arrow keys always move 
within character positions within a field, even when moving to 
new fields. This constant is invoked by CTRL + F2 or View, 
Persistent Field View.

EditExitFieldView SmallInt Exits Field View (meaning the arrow keys will move between 
fields again) and highlights entire field. This constant is 
invoked by F2, View, Field View, or the Field View button.

EditExitMemoView SmallInt Exits Memo View on memos or OLE fields, meaning Enter and 
TAB will once again move between fields. This constant is 
invoked by SHIFT + F2 or View, Memo View.

EditExitPersistField View SmallInt Exits Persistent Field View, meaning arrow keys move between 
fields. This constant is invoked by CTRL + F2 or View, 
Persistent Field View.

EditHelp SmallInt Invokes the Help subsystem. This constant is invoked by F1.
EditInsertBlank SmallInt Inserts a blank character at the current position
EditInsertLine SmallInt Inserts a blank line at the current position
EditInsertObject (5.0) SmallInt Inserts a linked or embedded object into the current field (used

only by OLE fields)
EditLaunchServer SmallInt Invokes the server application appropriate for the current field 

(used only by OLE fields)
EditPaste SmallInt Pastes from the Clipboard to the current position (replacing the

active selection if appropriate). This constant is invoked by 



SHIFT + INSERT or Edit, Paste.
EditPasteFromFile SmallInt Invokes a dialog box, allowing user to select file to insert at the

current position. This constant is invoked by Edit, Paste From.
EditPasteLink (5.0) SmallInt Pastes an object from the Clipboard and establishes a link to 

the underlying file (used only by OLE fields). This constant is 
invoked by Edit, Paste Link.

EditProperties SmallInt Invokes the property inspection menu for the given object. 
Only unbound field objects, bound graphic fields, and bound 
formatted memo fields support this. This constant is invoked 
by mouse right-click, Properties, Current Object, or F6.

EditReplace SmallInt Toggles overstrike mode in a field object
EditSaveCrosstab (5.0) SmallInt Invokes a dialog box to allow user to save a crosstab. This 

constant is invoked by Edit, Save Crosstab.
EditTextSearch SmallInt Invokes a dialog box to allow user to search and replace text 

within the current field. This constant is invoked by Edit, 
Search Text.

EditToggleFieldView SmallInt Reverses the current state of Field View. EditToggleFieldView 
recursively calls EditEnterFieldView or EditExitFieldView. This 
constant is invoked by F2, the Field View button, or Edit, Field 
View.

EditUndoField SmallInt Discards the current field's modifications and reverts to value 
in the active record buffer. This constant is invoked by ESC.

{button ,AL(`OPAL_CONST_CONSTYPES;opal_type_actionevent;;;;;',0,"Defaultoverview",)} Related 
Topics



ActionFieldCommands constants
Constant Data type Description
FieldBackward SmallInt Moves one field backward in tab order. This will search for the prior 

UIObject marked as a Tab Stop in left-right/top-down order. This 
constant is invoked by SHIFT + TAB.

FieldDown SmallInt Moves to field below the current field, whether in Field View or not. 
This constant is invoked by ALT + the Down Arrow key.

FieldEnter SmallInt Used to commit modifications to a field (if any) and to move one field 
forward in tab order. This constant is invoked by ENTER.

FieldFirst SmallInt Moves to the first field within a record. This constant is invoked by 
ALT + HOME.

FieldForward SmallInt Moves one field forward in tab order. This will search for the next 
UIObject marked as a Tab Stop in left-right/top-down order. This 
constant is invoked by Tab.

FieldGroupBackward SmallInt Moves one super tab group backward (e.g., between different table 
frames on the same form). This constant is invoked by F3.

FieldGroupForward SmallInt Moves one super tab group forward (e.g., between different table 
frames on the same form). This constant is invoked by F4.

FieldLast SmallInt Moves to the last field within a record. This constant is invoked by ALT
+ END or by END (when not in Field View).

FieldLeft SmallInt Moves to the field left of the current field. This constant is invoked by 
ALT + the Down Arrow key.

FieldNextPage SmallInt Moves to the next sequential page in multi-page form. This constant 
is invoked by View, Page, Next or SHIFT + F4.

FieldPriorPage SmallInt Moves to the prior page in multi-page form. This constant is invoked 
by View, Page, Previous or SHIFT + F3.

FieldRight SmallInt Moves to the field right of the current field, whether in Field View or 
not. This constant is invoked by ALT + the Right Arrow key.

FieldRotate SmallInt Used to rotate columns within a table frame. This constant is invoked 
by CTRL + R.

FieldUp SmallInt Moves to the field above the current field, whether in Field View or 
not. This constant is invoked by ALT + the Up Arrow key.

{button ,AL(`OPAL_CONST_CONSTYPES;opal_type_actionevent;;;;;',0,"Defaultoverview",)} Related 
Topics



ActionMoveCommands constants
Constant Data type Description
MoveBegin SmallInt Moves to the beginning of the document in Memo view; 

otherwise, it moves to the first field in the first record of table. 
This constant is invoked by CTRL + HOME.

MoveBeginLine SmallInt Moves to the beginning of the line in Memo view; otherwise, it 
moves to the first field in the record. This constant is invoked by 
HOME.

MoveBottom SmallInt Moves to the bottom line of the text region in Memo view. 
Otherwise, it moves to the last record in table.

MoveBottomLeft SmallInt Moves to the beginning of the last line on screen in Memo view
MoveBottomRight SmallInt Moves to the end of the last line on screen in Memo view. This 

constant is invoked by CTRL + PAGEDOWN.
MoveDown SmallInt Moves down as appropriate. In Memo View, it moves down one 

line on multi-line fields. Otherwise, it moves to the next Tab Stop 
object below the active object. Table frame objects move to the 
next record. This constant is invoked by the Down Arrow key.

MoveEnd SmallInt Moves to the end of the document in Memo view; otherwise, it 
moves to the last field in the last record of table. This constant is 
invoked by CTRL + END.

MoveEndLine SmallInt Moves to the end of the line in Memo view; otherwise, it moves 
to the last field in the record. This constant is invoked by END.

MoveLeft SmallInt Moves left as appropriate. In Memo View, it moves one character 
position left; otherwise, it moves to the next Tab Stop object right
of the active object. This constant is invoked by the Left Arrow 
key.

MoveLeftWord SmallInt Moves the cursor to the beginning of the word to the left of the 
current insertion point in Memo view. This constant is invoked by 
CTRL + the Left Arrow key.

MoveRight SmallInt Moves right as appropriate. In Memo View, it moves one 
character position right; otherwise, it moves to the next Tab Stop 
object right of the active object. This constant is invoked by the 
Right Arrow key.

MoveRightWord SmallInt Moves the cursor to the beginning of the word to the right of the 
current insertion point. This constant is invoked by CTRL + the 
Right Arrow key.

MoveScrollDown SmallInt Scrolls the image down (effectively moving viewing area up) by 
appropriate amount. Active fields scroll by even lines of text. 
Tables move to a new record. In Memo View, scroll toward the 
bottom of the text. The cursor remains on the same line of the 
display region unless the last line of the text is visible, in which 
case the cursor moves down one line until the last line is 
reached. This constant is invoked by CTRL + the Down Arrow key.

MoveScrollLeft SmallInt Scrolls the image right (effectively moving viewing area to the 
right) by appropriate amount. Active fields scroll roughly one 
character position. Tables move to a new column.

MoveScrollPageDown SmallInt Scrolls the image down (effectively moving viewing area up) by 
the logical size of the object (e.g., the complete page of the 
document). This constant is invoked by PAGEDOWN.

MoveScrollPageLeft SmallInt Scrolls the image left (effectively moving viewing area right) by 
the logical size of the object (e.g., the complete page of the 
document).

MoveScrollPageRight SmallInt Scrolls the image right (effectively moving viewing area left) by 
the logical size of the object (e.g., the complete page of the 
document).

MoveScrollPageUp SmallInt Scrolls the image up (effectively moving viewing area down) by 
the logical size of the object (e.g., the complete page of the 
document). This constant is invoked by PAGEUP.

MoveScrollRight SmallInt Scrolls the image right (effectively moving viewing area to the 



left) by appropriate amount. Active fields scroll roughly one 
character position. Tables move to a new column.

MoveScrollScreenDown SmallInt Scrolls the image down (effectively moving viewing area up) by 
the size of viewing area (e.g., the size of the field). In Memo 
View, moves down in the document by the height of the display 
area.

MoveScrollScreenLeft SmallInt Scrolls the image left (effectively moving viewing area right) by 
the size of viewing area (e.g., the size of the field).

MoveScrollScreenRight SmallInt Scrolls the image right (effectively moving viewing area left) by 
the size of viewing area (e.g., the size of the field).

MoveScrollScreenUp SmallInt Scrolls the image up (effectively moving viewing area down) by 
the size of viewing area (e.g., the size of the field). In Memo 
View, moves up in the document by the height of the display 
area.

MoveScrollUp SmallInt Scroll the image up (effectively moving viewing area down) by 
appropriate amount. Active fields scroll by even lines of text. In 
Memo View, scroll toward the top of the document by one line of 
text. The cursor stays at the same line position unless the top 
line of the document is visible, in which case the cursor moves 
up one line if it can. This constant is invoked by CTRL + the Up 
Arrow key.

MoveTop SmallInt Moves the cursor to the first line of text visible in the display 
region in Memo view; otherwise, it moves to the first record in 
table.

MoveTopLeft SmallInt Moves to the top left of the display region in Memo view; 
otherwise, it moves to top left field. This constant is invoked by 
CTRL + PAGEUP.

MoveTopRight SmallInt Moves to the top right of the display region in Memo view; 
otherwise, it moves to top right field.

MoveUp SmallInt Moves up as appropriate. In Memo View, it moves up one line on 
multi-line fields; otherwise, it moves to the next Tab Stop object 
above the active object. Table frame objects move to the prior 
record. This constant is invoked by the Up Arrow key.

{button ,AL(`OPAL_CONST_CONSTYPES;opal_type_actionevent;;;;;',0,"Defaultoverview",)} Related 
Topics



ActionSelectCommands constants
Constant Data type Description
SelectBegin SmallInt In Memo View, it selects from the current position to the 

beginning of the document; otherwise, it selects from the current
position to the first field in the first record of table. This constant 
is invoked by SHIFT + CTRL + HOME.

SelectBeginLine SmallInt In Memo View, it selects from the current position to the 
beginning of the line; otherwise, it selects from the current 
position to the first field in the record. This constant is invoked by
SHIFT + HOME.

SelectBottom SmallInt In Field View and Memo View, select from the current position to 
bottom of the display region; otherwise, it selects from the 
current position to the last record in table.

SelectBottomLeft SmallInt In Memo View, it selects from the current position to the 
beginning of the last line in the display region. This constant is 
invoked by SHIFT + CTRL + PAGEUP.

SelectBottomRight SmallInt In Memo View, it selects from the current position to the end of 
the last line in the display region. This constant is invoked by 
SHIFT + CTRL + PAGEDOWN.

SelectDown SmallInt Selects down as appropriate. In Field View or Memo View, it 
selects down one line on multi-line fields. Cannot extend 
selection across fields in forms. Table frame objects select to the 
next record. This constant is invoked by SHIFT + the Down Arrow 
key.

SelectEnd SmallInt In Field View or Memo View, it selects from the current position to
the end of the document; otherwise, it selects from the current 
position to the last field in the last record of table. This constant 
is invoked by SHIFT + CTRL + END.

SelectEndLine SmallInt In Field View or Memo View, it selects from the current position to
the end of the line; otherwise, it selects from the current position 
to the last field in the record. This constant is invoked by SHIFT +
END.

SelectLeft SmallInt Selects left as appropriate. In Field View or Memo View, it selects 
one character position left; otherwise, it selects the next Tab Stop
object right of the active object. This constant is invoked by 
SHIFT + the Left Arrow key.

SelectLeftWord SmallInt In Field View or Memo View, if the cursor is between words, it 
selects the word to the left of the cursor. If the cursor is within a 
word, it selects to the beginning of that word. This constant is 
invoked by SHIFT + CTRL + the Left Arrow key.

SelectRight SmallInt Selects right as appropriate. In Field View or Memo View, it 
selects one character position right. This constant is invoked by 
SHIFT + the Right Arrow key.

SelectRightWord SmallInt In Field View or Memo View, it selects to the beginning of the 
next word. If the cursor precedes one or more spaces or tabs, 
selection only includes those spaces or tabs. This constant is 
invoked by SHIFT + CTRL + the Right Arrow key.

SelectScrollDown SmallInt Selects the image down (effectively moving viewing area up) by 
appropriate amount. Active fields select even lines of text. Tables
select a new record. This constant is invoked by SHIFT + CTRL + 
the Down Arrow key.

SelectScrollLeft SmallInt Selects the image on left (effectively moving viewing area to the 
right) by appropriate amount. Active fields select roughly one 
character position. Tables select to a new column.

SelectScrollPageDown SmallInt Selects the image down (effectively moving viewing area up) by 
the logical size of the object (e.g., the complete page of the 
document).

SelectScrollPageLeft SmallInt Selects the image left (effectively moving viewing area right) by 
the logical size of the object (e.g., the complete page of the 
document).



SelectScrollPageRight SmallInt Selects the image right (effectively moving viewing area left) by 
the logical size of the object (e.g., the complete page of the 
document).

SelectScrollPageUp SmallInt Selects the image up (effectively moving viewing area down) by 
the logical size of the object (e.g., the complete page of the 
document).

SelectScrollRight SmallInt Selects the image on right (effectively moving viewing area to 
the left) by appropriate amount. Active fields select roughly one 
character position. Tables select a new column.

SelectScrollScreenDown SmallInt Selects the image down (effectively moving viewing area up) by 
the size of viewing area (e.g., the size of the field). This constant 
is invoked by SHIFT + PAGEDOWN.

SelectScrollScreenLeft SmallInt Selects the image left (effectively moving viewing area right) by 
the size of viewing area (e.g., the size of the field).

SelectScrollScreenRight SmallInt Selects the image right (effectively moving viewing area left) by 
the size of viewing area (e.g., the size of the field).

SelectScrollScreenUp SmallInt Selects the image up (effectively moving viewing area down) by 
the size of viewing area (e.g., the size of the field). This constant 
is invoked by SHIFT + PAGEUP.

SelectScrollUp SmallInt Moves the image up (effectively moving viewing area down) by 
appropriate amount. Active fields move by even lines of text.

SelectSelectAll SmallInt Selects the entire field
SelectTop SmallInt In Field View or Memo View, it selects from the current position to

the top of the display region; otherwise, it selects from the 
current position to the first record in table.

SelectTopLeft SmallInt In Field View or Memo View, it selects from the current position to
the beginning of screen; otherwise, it selects from the current 
position to the top left field. This constant is invoked by SHIFT + 
CTRL + PAGEUP.

SelectTopRight SmallInt In Field View or Memo View, it selects from the current position to
the end of the top line of the screen; otherwise, it selects from 
the current position to the top right field. This constant is invoked
by SHIFT + CTRL + PAGEDOWN.

SelectUp SmallInt Selects up as appropriate. In Field View or Memo View, it selects 
up one line on multi-line fields; otherwise, it selects the next Tab 
Stop object above the active object. Table frame objects select to
the prior record. This constant is invoked by SHIFT + the Up 
Arrow key.

{button ,AL(`OPAL_CONST_CONSTYPES;opal_type_actionevent;;;;;',0,"Defaultoverview",)} Related 
Topics



AggModifiers constants
Constant Data type Description
CumulativeAgg SmallInt A cumulative summary that keeps a running total that extends from the 

start of the report to the end of the current group.
RegularAgg SmallInt A normal summary that considers all non-null values in the set, including 

duplicates.
UniqueAgg SmallInt A unique summary that counts only the unique non-null values in the set. 

Duplicates are ignored.

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



BrowserOptions constants
Constant Data type Description
BrowseOptCreatePrompt LongInt Prompts the user for permission to create a file
BrowseOptFileMustExist LongInt Specifies that the user can type only names of existing files
BrowseOptNoNetButton LongInt Hides the network button on the dialog box 
BrowseOptPathMustExist LongInt Specifies that the user can type only valid paths and 

filenames

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ButtonStyles constants
Constant Data type Description
BorlandButton SmallInt Gives a button the 3D look of buttons in Corel products
Windows3dButton SmallInt Gives a button the same look as 3D buttons in other Windows products
WindowsButton SmallInt Gives a button the same look as flat buttons in other Windows products

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ButtonTypes constants
Constant Data type Description
CheckboxType SmallInt Displays a button as a check box
PushButtonType SmallInt Displays a button as a push button
RadioButtonType SmallInt Displays a button as a radio button

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



Color constants
Constant Data type
Black LongInt
Blue LongInt
Brown LongInt
DarkBlue LongInt
DarkCyan LongInt
DarkGray LongInt
DarkGreen LongInt
DarkMagenta LongInt
DarkRed LongInt
Gray LongInt
Green LongInt
LightBlue LongInt
Magenta LongInt
Red LongInt
Translucent LongInt
Transparent LongInt
White LongInt
Yellow LongInt

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



CompleteDisplay constants
Constant Data type Description
DisplayAll SmallInt Specifies CompleteDisplay for all field objects in the form
DisplayCurrent SmallInt Specifies CompleteDisplay for the current field object

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



DataTransferCharset constants
Constant Data type Description
dtANSI SmallInt Specifies the ANSI character set
dtOEM SmallInt Specifies the OEM character set 

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



DataTransferDelimitCode constants
Constant Data type Description
dtDelimAllFields SmallInt Specifies to delimit all fields 
dtDelimJustText SmallInt Specifies to delimit just text fields

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



DataTransferFileType constants
Constant Data type Description
dt123V1 SmallInt Specifies Lotus 123 (.WKS)
dt123V2 SmallInt Specifies Lotus 123 (.WK1)
dtASCIIFixed SmallInt Specifies ASCII Fixed (BDE)
dtASCIIVar SmallInt Specifies ASCII Delimited
dtAuto SmallInt Automatically determine file type based on file extension
dtdBase3 SmallInt Specifies Export to dBASE III + compatible
dtdBase4 SmallInt Specifies Export to dBASE IV compatible
dtdBase5 SmallInt Export to dBASE 5 compatible, Import any dBASE
dtdBaseAny SmallInt Import (or Export) any dBASE version
dtExcel4 SmallInt Specifies Excel Version 3,4 (.XLS)
dtExcel5 SmallInt Specifies Excel Version 5 (.XLS)
dtParadox3 SmallInt Export to Corel Paradox 3 compatible
dtParadox4 SmallInt Export to Corel Paradox 4 compatible
dtParadox5 SmallInt Export to Corel Paradox 5 compatible
dtParadox7 SmallInt Export to Corel Paradox 7 compatible
dtParadoxAny SmallInt Import (or Export) any Corel Paradox version
dtQPW1 SmallInt Specifies Quattro Pro Windows 1, 5 (.WB1)
dtQPW6 SmallInt Specifies Quattro Pro Windows 6 (.WB2)
dtQPW7 SmallInt Specifies Quattro Pro Windows 95 (.WB3)
dtQuattro SmallInt Specifies Quattro DOS (.WKQ)
dtQuattroPro SmallInt Specifies Quattro Pro DOS (.WQ1)

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



DateRangeTypes constants
Constant Data type Description
ByDay SmallInt Group report records by day
ByMonth SmallInt Group report records by month
ByQuarter SmallInt Group report records by quarter (3 months)
ByWeek SmallInt Group report records by week
ByYear SmallInt Group report records by year

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



DesktopPreferenceTypes constants
Constant Data type Description
Section = prefProjectSection
prefStartUpExpert SmallInt Run the Startup Expert each time Corel Paradox loads 

(Experts page)
prefTitleName SmallInt Title (General page)
prefExpertDefault SmallInt Run the experts when creating objects on documents 

(Experts page)
prefBackgroundName SmallInt Background bitmap (General page)
prefTileBitmap SmallInt Tile bitmap (General page)
prefSaveOnExit SmallInt Desktop state: Save on exit (General page)
prefRestoreDesktop SmallInt Desktop state: Restore on startup (General page)
prefSystemFont SmallInt Default system font (General page)
prefScreenPageDesk SmallInt On-screen size: Size to desktop (Forms/Reports page)
prefScreenPageWidth SmallInt On-screen size: Width (Forms/Reports page)
prefScreenPageHeight SmallInt On-screen size: Height (Forms/Reports page)
prefFormOpen SmallInt Open default: Open forms in design mode (Forms/Reports 

page)
prefReportOpen SmallInt Open default: Open reports in design mode (Forms/Reports 

page)
prefWarnOnDirChange SmallInt Don't show warning prompts when changing directories 

(Advanced page)
prefBitmapButtons SmallInt Changes to Corel-style buttons
prefAltKeyPadChars SmallInt Always use ALT + numeric keypad for character entry 

(Advanced page)
prefExpandBranchs SmallInt Indicate expandable directory branches (Advanced page)
prefScrollBarsInForms SmallInt Use scroll bars in form windows by default (Advanced page)
prefBlankAsZeroName SmallInt Treat blank fields as zeros (Database page)
prefRefreshRate SmallInt Refresh rate (seconds) (Database page)
prefExpertsOnCreate SmallInt Always use expert (New forms/reports)
prefUserLevel SmallInt ObjectPAL level (Developer Preferences: General page)
prefDeveloperMenu SmallInt Show developer menus (Developer Preferences: General 

page) 
prefEnableControlBreak SmallInt Debugger settings: Enable CTRL + Break (Developer 

Preferences, General page)
Section = prefQbeSection
prefAuxOpts SmallInt Generate auxiliary tables
prefSqlRunMode SmallInt Queries against remote tables (Query) 
prefDefCheck SmallInt Default QBE check type
prefSqlconstrained SmallInt SQL answer constraints
Section = prefProjViewSection
prefOpenOnStartup SmallInt Open Project Viewer on startup (Project Viewer settings: 

General page)

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ErrorReasons constants
Constant Data type Description
ErrorCritical SmallInt Displays a message in a modal dialog box
ErrorWarning SmallInt Displays a message in the status area

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



EventErrorCodes constants
Constant Data type Description
Can_Arrive SmallInt Grants permission to arrive at an object
Can_Depart SmallInt Grants permission to leave an object
CanNotArrive SmallInt Refuses permission to arrive at an object (blocks the move)
CanNotDepart SmallInt Refuses permission to leave an object (blocks the move)

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ExecuteOptions constants
Constant Data type Description
ExeHidden SmallInt Hides the Application Window and passes activation to another

window
ExeMinimized SmallInt Minimizes the Application Window and activates the top-level 

window in the window-manager's list
ExeShowMaximized SmallInt Activates the Application Window and displays it as a 

maximized window
ExeShowMinimized SmallInt Activates the Application Window and displays it minimized (as

an icon)
ExeShowMinimizedNoActivate SmallInt Displays the application as an icon. The active window remains

active.
ExeShowNoActivate SmallInt Displays the Application Window at its most recent size and 

position. The active window remains active.
ExeShowNormal SmallInt Activates and displays a window

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



FieldDisplayTypes constants
Constant Data type Description
BitmapField SmallInt Enables a field object to display a bitmap
CheckboxField SmallInt Displays a field as a check box
ComboField SmallInt Displays a field as a drop-down edit list (also called a combo box)
EditField SmallInt Displays an unlabeled field
LabeledField SmallInt Displays a labeled field
ListField SmallInt Displays a list box
OleField SmallInt Enables a field to contain OLE data
RadioButtonField SmallInt Displays a field as one or more radio buttons

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



FileBrowserFileTypes constants
Constant Data type Description
fbAllTables LongInt All table types supported by Corel Paradox (*.db, *.dbf, etc.)
fbASCII LongInt Delimited Text files (*.txt)
fbBitmap LongInt Bitmap graphics (*.bmp)
fbDBase LongInt dBASE tables (*.dbf)
fbDLL (8) LongInt Dynamic Link Libraries (*.dll)
fbDM (5.0) LongInt Data model files (*.dm)
fbExcel LongInt Excel worksheets (*.xls)
fbFiles LongInt All files (*.*)
fbForm LongInt Corel Paradox forms (*.fsl, *.fdl)
fbGraphic LongInt Graphic files (*.bmp, *.eps, *.gif, *.pcx, *.tif)
fbHTML (8) LongInt HTML files (*.htm)
fbHTMLTemplate (8) LongInt HTML template files (*.htt)
fbIni LongInt Initialization files (*.ini)
fbLibrary LongInt ObjectPAL libraries (*.lsl, *.ldl)
fbLotus1 LongInt Lotus 1-2-3 version 1 worksheets (*.wks)
fbLotus2 LongInt Lotus 1-2-3 version 2 worksheets (*.wk1)
fbOCX (8) LongInt ActiveX Controls (*.OCX)
fbParadox LongInt Corel Paradox tables (*.db)
fbQuattro LongInt Quattro worksheets (*.wkq)
fbQuattroPro LongInt Quattro Pro worksheets (*.wq1)
fbQuattroProWindows LongInt Quattro Pro for Windows notebooks (*.wb1)
fbQuery LongInt Query files (*.qbe)
fbReport LongInt Corel Paradox reports (*.rsl, *.rdl)
fbScreenStyle (5.0) LongInt Form style sheets (*.ft)
fbScript LongInt ObjectPAL scripts (*.ssl, *.sdl)
fbSimpleText (8) LongInt Text files (*.txt)
fbSQL (5.0) LongInt SQL files (*.sql)
fbTable LongInt All table types supported by Corel Paradox (*.db, *.dbf, etc.)
fbTableView LongInt Corel Paradox table view files (*.tv)
fbText LongInt All text files (*.txt, *.pxt, *.rtf)

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



FontAttributes constants
Constant Data type Description
FontAttribBold SmallInt bold
FontAttribItalic SmallInt italic
FontAttribNormal SmallInt normal
FontAttribStrikeOut SmallInt strike out
FontAttribUnderline SmallInt underline

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



FrameStyles constants
Constant Data type Description
DashDotDotFrame SmallInt A repeating sequence of one dash followed by two dots
DashDotFrame SmallInt A repeating sequence of one dash followed by one dot
DashedFrame SmallInt A repeating sequence of dashes
DottedFrame SmallInt A repeating sequence of dots
DoubleFrame SmallInt Two concentric boxes
Inside3DFrame SmallInt The frame appears pushed into the form
NoFrame SmallInt No frame
Outside3DFrame SmallInt The frame appears popped out of the form
ShadowFrame SmallInt A drop shadow
SolidFrame SmallInt A single solid box (no dashes or dots)
WideInsideDoubleFrame SmallInt Two concentric boxes; the inside box is wide
WideOutsideDoubleFrame SmallInt Two concentric boxes; the outside box is wide
Windows3dFrame (5.0) SmallInt Uses the default Windows 3D frame style
Windows3dGroup (5.0) SmallInt Uses the default Windows 3D group border

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



General constants
Constant Data type Description
No Logical False
Off Logical False
On Logical True
Pi Number 3.14159265358979323846
Yes Logical True

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



GraphBindTypes constants
Constant Data type Description
Graph1DSummary SmallInt Specifies a one-dimensional summary chart and enables summary 

operators
Graph2DSummary SmallInt Specifies a two-dimensional summary chart and enables summary 

operators and group-by specification
GraphTabular SmallInt Specifies a tabular chart (default)

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



GraphicMagnification constants
Constant Data type Description
Magnify100 SmallInt Displays the chart at its actual size
Magnify200 SmallInt Displays the chart at twice its actual size
Magnify25 SmallInt Displays the chart at a quarter of its actual size
Magnify400 SmallInt Displays the chart at four times its actual size
Magnify50 SmallInt Displays the chart at half its actual size
MagnifyBestFit SmallInt Resizes the chart as necessary to fit the chart in the frame

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



GraphLabelFormats constants
Constant Data type Description
GraphHideY SmallInt Hides the Y-value (2-D and 3-D Pie and Column charts only)
GraphPercent SmallInt Displays the Y-value as a percent (2-D and 3-D Pie and Column charts only)
GraphShowY SmallInt Displays the Y-value in the units used in the table (2-D and 3-D Pie and 

Column charts only)

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



GraphLegendPosition constants
Constant Data type Description
LegendCenter SmallInt Displays the legend centered below the chart
LegendLeft SmallInt Displays the legend to the left of the chart

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



GraphMarkers
Constant Data type Description
MarkerBoxedCross SmallInt Marker is a box with a cross in it
MarkerBoxed_Plus SmallInt Marker is a box with a plus sign in it
MarkerCross SmallInt Marker is a cross
MarkerFilledBox SmallInt Marker is a filled box
MarkerFilledCircle SmallInt Marker is a filled circle
MarkerFilledDownTriangle SmallInt Marker is a filled triangle pointing down
MarkerFilledTriangle SmallInt Marker is a filled triangle pointing up
MarkerFilledTriangles SmallInt Marker is two filled triangles pointing at each other
MarkerHollowBox SmallInt Marker is a hollow (unfilled) box
MarkerHollowCircle SmallInt Marker is a hollow circle
MarkerHollowDownTriangle SmallInt Marker is a hollow triangle pointing down
MarkerHollowTriangle SmallInt Marker is a hollow triangle pointing up
MarkerHollowTriangles SmallInt Marker is two hollow triangles pointing at each other
MarkerHorizontalLine SmallInt Marker is a horizontal line
MarkerPlus SmallInt Marker is a plus sign
MarkerVerticalLine SmallInt Marker is a vertical line

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



GraphTypeOverRide
Constant Data type Description
GraphArea SmallInt Displays specified series as an area chart
GraphBar SmallInt Displays specified series as a bar chart
GraphDefault SmallInt Displays specified series in the default chart type
GraphLine SmallInt Displays specified series as a line chart

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



GraphTypes
Constant Data type Description
Graph2DArea SmallInt 2-dimensional area chart
Graph2DBar SmallInt 2-dimensional bar chart
Graph2DColumns SmallInt 2-dimensional column chart
Graph2DLine SmallInt 2-dimensional line chart
Graph2DPie SmallInt 2-dimensional pie chart
Graph2DRotatedBar SmallInt 2-dimensional rotated bar chart
Graph2DStackedBar SmallInt 2-dimensional stacked bar chart
Graph3DArea SmallInt 3-dimensional area chart
Graph3DBar SmallInt 3-dimensional bar chart
Graph3DColumns SmallInt 3-dimensional column chart
Graph3DPie SmallInt 3-dimensional pie chart
Graph3DRibbon SmallInt 3-dimensional ribbon chart
Graph3DRotatedBar SmallInt 3-dimensional rotated bar chart
Graph3DStackedBar SmallInt 3-dimensional stacked bar chart
Graph3DStep SmallInt 3-dimensional step chart
Graph3DSurface SmallInt 3-dimensional surface chart
GraphXY SmallInt XY chart

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



IdRanges
Constant Data type Description
UserAction SmallInt Minimum value for a user-defined action constant
UserActionMax SmallInt Maximum value for a user-defined action constant
UserError SmallInt Minimum value for a user-defined error constant
UserErrorMax SmallInt Maximum value for a user-defined error constant
UserMenu SmallInt Minimum value for a user-defined menu ID constant
UserMenuMax SmallInt Maximum value for a user-defined menu ID constant

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



Keyboard constants
Constant Data type Description
VK_ADD SmallInt Add key
VK_APPS SmallInt Application property inspection key
VK_BACK SmallInt BACKSPACE key
VK_CANCEL SmallInt Used for control-break processing
VK_CAPITAL SmallInt Capital key
VK_CLEAR SmallInt Clear key
VK_CONTROL SmallInt CTRL key
VK_DECIMAL SmallInt Decimal key
VK_DELETE SmallInt DELETE key
VK_DIVIDE SmallInt Divide key
VK_DOWN SmallInt Down Arrow key
VK_END SmallInt END key
VK_ESCAPE SmallInt ESCAPE key
VK_EXECUTE SmallInt Execute key
VK_F1 SmallInt F1 key
VK_F10 SmallInt F10 key
VK_F11 SmallInt F11 key
VK_F12 SmallInt F12 key
VK_F13 SmallInt F13 key
VK_F14 SmallInt F14 key
VK_F15 SmallInt F15 key
VK_F16 SmallInt F16 key
VK_F2 SmallInt F2 key
VK_F3 SmallInt F3 key
VK_F4 SmallInt F4 key
VK_F5 SmallInt F5 key
VK_F6 SmallInt F6 key
VK_F7 SmallInt F7 key
VK_F8 SmallInt F8 key
VK_F9 SmallInt F9 key
VK_HELP SmallInt Help key
VK_HOME SmallInt HOME key
VK_INSERT SmallInt INSERT key
VK_LBUTTON SmallInt Left mouse button
VK_LEFT SmallInt Left Arrow key
VK_MBUTTON SmallInt Middle mouse button (3-button mouse)
VK_MENU SmallInt Menu key
VK_MULTIPLY SmallInt Multiply key
VK_NEXT SmallInt Page Down key
VK_NUMLOCK SmallInt NUM LOCK key
VK_NUMPAD0 SmallInt Key pad 0 key
VK_NUMPAD1 SmallInt Key pad 1 key
VK_NUMPAD2 SmallInt Key pad 2 key
VK_NUMPAD3 SmallInt Key pad 3 key
VK_NUMPAD4 SmallInt Key pad 4 key
VK_NUMPAD5 SmallInt Key pad 5 key



VK_NUMPAD6 SmallInt Key pad 6 key
VK_NUMPAD7 SmallInt Key pad 7 key
VK_NUMPAD8 SmallInt Key pad 8 key
VK_NUMPAD9 SmallInt Key pad 9 key
VK_PAUSE SmallInt Pause key
VK_PRINT SmallInt OEM specific
VK_PRIOR SmallInt Page Up key
VK_RBUTTON SmallInt Right mouse button
VK_RETURN SmallInt RETURN key
VK_RIGHT SmallInt Right Arrow key
VK_SELECT SmallInt Select key
VK_SEPARATOR SmallInt Separator key
VK_SHIFT SmallInt SHIFT key
VK_SNAPSHOT SmallInt Printscreen key for Windows 3.0 and later
VK_SPACE SmallInt SPACE
VK_SUBTRACT SmallInt Subtract key
VK_TAB SmallInt TAB key
VK_UP SmallInt Up Arrow key

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



KeyBoardStates constants
Constant Data type Description
Alt SmallInt ALT is pressed
Control SmallInt CTRL is pressed
LeftButton SmallInt The left mouse button is clicked
RightButton SmallInt The right mouse button is clicked
Shift SmallInt SHIFT is pressed

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



LibraryScope constants
Constant Data type Description
GlobalToDesktop SmallInt Makes variables in an ObjectPAL library available to one or more 

forms
PrivateToForm SmallInt Makes variables in an ObjectPAL library available to one form only

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



LineEnd constants
Constant Data type Description
ArrowBothEnds SmallInt Adds arrows to both ends of a line (only if LineType = StraightLine)
ArrowOneEnd SmallInt Adds an arrow to the terminal end of a line (only if LineType = 

StraightLine)
NoArrowEnd SmallInt Displays a line without arrows

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



LineStyles constants
Constant Data type Description
DashDotDotLine SmallInt A repeating sequence of one dash followed by two dots
DashDotLine SmallInt A repeating sequence of one dash followed by one dot
DashedLine SmallInt A repeating sequence of dashes
DottedLine SmallInt A repeating sequence of dots
NoLine SmallInt No line
SolidLine SmallInt An unbroken line

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



LineThickness constants
Constant Data type Description
LWidth10Points SmallInt Specifies a thickness of 10 printer's points
LWidth1Point SmallInt Specifies a thickness of 1 printer's point
LWidth2Points SmallInt Specifies a thickness of 2 printer's points
LWidth3Points SmallInt Specifies a thickness of 3 printer's points
LWidth6Points SmallInt Specifies a thickness of 6 printer's points
LWidthHairline SmallInt Specifies a very thin line
LWidthHalfFoint SmallInt Specifies a thickness of one half of a printer's point

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



LineTypes constants
Constant Data type Description
CurvedLine SmallInt Specifies a curved (elliptical) line
StraightLine SmallInt Specifies a straight line

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



MailAddressTypes constants
Constant Data type Description
MailAddrTo SmallInt Specifies this address goes on the To line
MailAddrCC SmallInt Specifies this address goes on the CC line
MailAddrBC SmallInt Specifies this person gets a copy of the message, without letting anyone 

else see it (not be supported by all mail systems)

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



MailReadOptions constants
Constant Data type Description
MailReadBodyAsFile SmallInt Write the message text to a temporary file and add it as 

the first attachment in the attachment list
MailReadEnvelopeOnly SmallInt Read the message header only. Do not copy file 

attachments to temporary files nor read message text. 
(Setting MailReadEnvelopeOnly enhances performance.)

MailReadPeek SmallInt Do not mark the message as read 
Marking a message as read affects its appearance in the 
user interface and generates a read receipt. If the mail 
system you are using does not support this, then 
MailReadPeek is ignored, and the message will be marked 
as read. 

MailReadSuppressAttachments SmallInt Read mail message header and text, but do not copy file 
attachments. This option is ignored if using 
MailReadEnvelopeOnly. Specifying to 
MailReadSuppressAttachments enhances performance.

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



MenuChoiceAttributes constants
Constant Data type Description
MenuChecked SmallInt Inserts a check mark before the menu item
MenuDisabled SmallInt Specifies that a menu item cannot be selected. Menu stays open
MenuEnabled SmallInt Specifies that a menu item can be selected. Menu closes
MenuGrayed SmallInt Displays a menu item in gray characters (dimmed)
MenuHilited SmallInt Highlights a menu item
MenuNotChecked SmallInt Displays a menu item without a check mark
MenuNotGrayed SmallInt Displays a menu item normally (not dimmed)
MenuNotHilited SmallInt Displays a menu item without a highlight

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



MenuCommands constants
Constant Data type Description
MenuAddPage SmallInt Adds a page to a form
MenuAddWatch SmallInt Program, Add Watch
MenuAlignBar SmallInt Toggles the Align option from View, Toolbars
MenuAlignBottom SmallInt Format, Alignment, Align Bottom
MenuAlignCenter SmallInt Format, Alignment, Align Center
MenuAlignMiddle SmallInt Format, Alignment, Align Middle
MenuAlignLeft SmallInt Format, Alignment, Align Left
MenuAlignRight SmallInt Format, Alignment, Align Right
MenuAlignTop SmallInt Format, Alignment, Align Top
MenuBuild (4.5) SmallInt Reports when the desktop is building a form's 

menu
MenuCanClose SmallInt Asks for permission to continue after choosing 

Close (Control menu)
MenuChangedPriv (5.0) SmallInt Reports when the private directory has been 

changed. Forms that remain open after the 
change can use this information to make 
adjustments, as needed.

MenuChangedWork (5.0) SmallInt Reports when the working directory has been 
changed. Forms that remain open after the 
change can use this information to make 
adjustments, as needed.

MenuChangingPriv (5.0) SmallInt Reports when the private directory is about to 
change. Setting the error code to a nonzero value
allows a form to stay open after the change; 
setting the error code to zero closes the form 
before changing the directory.

MenuChangingWork (5.0) SmallInt Reports when the working directory is about to 
change. Setting the error code to a nonzero value
allows a form to stay open after the change; 
setting the error code to zero closes the form 
before changing the directory. 

MenuCheckSyntax SmallInt Program, Check Syntax
MenuCompile SmallInt Program, Compile
MenuCompileWithDebug SmallInt Program, Compile With Debug
MenuControlClose SmallInt Close (Control menu)
MenuControlKeyMenu SmallInt Control menu was invoked by a pressing a key
MenuControlMaximize SmallInt Maximize (Control menu)
MenuControlMinimize SmallInt Minimize (Control menu)
MenuControlMouseMenu SmallInt Control menu was invoked by a mouse click
MenuControlMove SmallInt Move (Control menu)
MenuControlNextWindow SmallInt Next Window (Control menu)
MenuControlPrevWindow SmallInt Prev Window (Control menu)
MenuControlRestore SmallInt Restore (Control menu)
MenuControlSize SmallInt Size (Control menu)
MenuCopyToolbar SmallInt Edit, Copy to Toolbar
MenuDataModel SmallInt Format, Data Model
MenuDataModelDesigner SmallInt Tools, Data Model Designer
MenuDataModelNew SmallInt File, New, Data Model
MenuDeliver SmallInt Format, Deliver
MenuDesignBringFront SmallInt Format, Order, Bring to Front



MenuDesignDuplicate SmallInt Edit, Duplicate
MenuDesignGroup SmallInt Format, Group
MenuDesignLayout SmallInt Format, Layout
MenuDesignSendBack SmallInt Format, Order, Send to Back
MenuDmCommit SmallInt Accepts the changes you have made
MenuDmLoad SmallInt File, Open
MenuDmRestore SmallInt Cancels the change you have made
MenuDmSave SmallInt File, Save
MenuDmUnlink SmallInt Removes existing links
MenuEditCopy SmallInt Edit, Copy
MenuEditCopyTo SmallInt Edit, Copy To
MenuEditCut SmallInt Edit, Cut
MenuEditDelete SmallInt Edit, Delete
MenuEditLinks SmallInt For OLE objects only
MenuEditPaste SmallInt Edit, Paste
MenuEditUndo SmallInt Edit, Undo
MenuExpertsOpen SmallInt Tools, Experts
MenuFieldFilter SmallInt Right-click Filter on Field object
MenuFieldPicture SmallInt Right-click Picture... on unbound fields
MenuFileAliases SmallInt Tools, Alias Manager...
MenuFileAutoRefresh SmallInt Tools, Settings, Preferences, Database, Refresh 

Rate
MenuFileExit SmallInt File, Exit
MenuFileExport SmallInt File, Export
MenuFileImport SmallInt File, Import
MenuFileMultiBlankZero SmallInt Tools, Settings, Preferences, Treat blank fields as 

zeros
MenuFileMultiUserDrivers SmallInt Tools, Settings, Preferences, BDE, Database driver

list
MenuFileMultiUserInfo SmallInt Tools, Settings, Preferences, Database
MenuFileMultiUserLock SmallInt Tools, Security, Set Locks
MenuFileMultiUserLockInfo SmallInt Tools, Security, Display Locks
MenuFileMultiUserRetry SmallInt Tools, Settings, Preferences, Database, Set Retry
MenuFileMultiUserUserName SmallInt Tools, Settings, Preferences, Database, User 

name
MenuFileMultiUserWho SmallInt Tools, Settings, Preferences, Database, Current 

user list
MenuFilePrint SmallInt File, Print
MenuFilePrinterSetup SmallInt File, Printer Setup
MenuFilePrivateDir SmallInt Tools, Settings, Preferences, Database, Private 

directory 
MenuFileTableAdd SmallInt Tools, Utilities, Add
MenuFileTableCopy SmallInt Tools, Utilities, Copy
MenuFileTableDelete SmallInt Tools, Utilities, Delete
MenuFileTableEmpty SmallInt Tools, Utilities, Empty
MenuFileTableInfoStructure SmallInt Tools, Utilities, Info Structure
MenuFileTablePasswords SmallInt Tools, Security, Passwords
MenuFileTableRename SmallInt Tools, Utilities, Rename
MenuFileTableRestructure SmallInt Tools, Utilities, Restructure
MenuFileTableSort SmallInt Tools, Utilities, Sort
MenuFileTableSubtract SmallInt Tools, Utilities, Subtract



MenuFileWorkingDir SmallInt File, Working Directory
MenuFolderOpen SmallInt Tools, Project Viewer
MenuFormatBar SmallInt Toggles the Text Formatting option from View, 

Toolbars
MenuFormDesign SmallInt View, Design Form
MenuFormEditData SmallInt View, Edit Data
MenuFormFieldView SmallInt View, Field View
MenuFormFilter SmallInt Format, Filter
MenuFormMemoView SmallInt View, Memo View
MenuFormNew SmallInt Opens a new form
MenuFormOpen SmallInt Opens a form
MenuFormOrderRange SmallInt Format, Filter
MenuFormPageFirst SmallInt View, Page, First
MenuFormPageGoto SmallInt View, Page, Go To
MenuFormPageLast SmallInt View, Page, Last
MenuFormPageNext SmallInt View, Page, Next
MenuFormPagePrevious SmallInt View, Page, Previous
MenuFormPersistView SmallInt View, Persistent Field View
MenuFormShowDeleted SmallInt View, Show Deleted
MenuFormTableView SmallInt View, Table View
MenuFormView SmallInt View, View Data
MenuFormViewData (5.0) SmallInt View, View Data
MenuHelpAbout SmallInt An Introduction to the available help
MenuHelpCoach (5.0) SmallInt Displays an expert coach to help
MenuHelpContents SmallInt Displays the help table of contents
MenuHelpKeyboard SmallInt Displays keyboard help
MenuHelpSearch SmallInt Displays the ObjectPAL references
MenuHelpSupport SmallInt Displays Technical Support info
MenuHelpToolbar (5.0) SmallInt Displays the Toolbar help
MenuHelpUsingHelp SmallInt Displays an introduction to the help available
MenuInit SmallInt Generated by clicking a menu items
MenuInsertObject SmallInt Edit, Insert Object (For OLE objects only)
MenuInsOleControl SmallInt Tools, Register
MenuLibraryNew SmallInt Opens a new library
MenuLibraryOpen SmallInt Opens a library
MenuNextWarning SmallInt Search, Next Warning
MenuNoteBookAddPage SmallInt Insert, Page
MenuNoteBookFirstPage SmallInt View, Page, First
MenuNoteBookLastPage SmallInt View, Page, Last
MenuNoteBookNextPage SmallInt View, Page, Next
MenuNoteBookPriorPage SmallInt View, Page, Previous
MenuNoteBookRotate SmallInt Format, Rotate Pages
MenuObjectBar SmallInt Toggles the Object option from View, Toolbars
MenuOpenProjectView (5.0) SmallInt Tools, Project Viewer
MenuPageLayout SmallInt Format, Layout
MenuPALSave SmallInt Edit, Save Debug State
MenuPasteFrom SmallInt Edit, Paste From
MenuPasteLink SmallInt Edit, Paste Link
MenuProjAdd SmallInt Add Reference button (Standard toolbar)
MenuProjDelete SmallInt Remove Reference button (Standard toolbar)



MenuPropertiesBandLabels SmallInt View, Band Labels
MenuPropertiesCurrent SmallInt Edit, Current Object
MenuPropertiesCurrentDialog SmallInt Edit, Current Object
MenuPropertiesDesigner SmallInt View, Design Form
MenuPropertiesDesktop SmallInt View, View Data
MenuPropertiesExpandedRuler SmallInt Expanded Ruler (Designer Preferences options)
MenuPropertiesFormRestoreDefaults SmallInt Restores the default settings for a form
MenuPropertiesFormSaveDefaults SmallInt Saves the default settings for a form
MenuPropertiesGroupRepeats SmallInt Format, Properties, Remove group repeat
MenuPropertiesHorizontalRuler SmallInt Horizontal Ruler (Designer Preferences options)
MenuPropertiesMethods SmallInt Object Explorer
MenuPropertiesShowGrid SmallInt View, Grid
MenuPropertiesSizeandPos SmallInt View, Size and Position
MenuPropertiesSizeToFit SmallInt Format, Properties
MenuPropertiesSnapToGrid SmallInt Format, Snap to Grid
MenuPropertiesStyleSheet SmallInt Format, Style Sheet
MenuPropertiesVerticalRuler SmallInt Vertical Ruler (Designer Preferences options)
MenuPropertiesWindow SmallInt Displays the Window Style
MenuPropertiesZoom100 SmallInt View, Zoom, 100%
MenuPropertiesZoom200 SmallInt View, Zoom, 200%
MenuPropertiesZoom25 SmallInt View, Zoom, 25%
MenuPropertiesZoom400 SmallInt View, Zoom, 400%
MenuPropertiesZoom50 SmallInt View, Zoom, 50%
MenuPropertiesZoomBestFit SmallInt View, Zoom, Best Fit
MenuPropertiesZoomFitHeight SmallInt View, Zoom, Fit Height
MenuPropertiesZoomFitWidth SmallInt View, Zoom, Fit Width
MenuQueryNew SmallInt Opens a new query
MenuQueryOpen SmallInt Opens an existing query
MenuQBEDoJoin SmallInt Join Tables button (Query design window toolbar)
MenuQBEProperties SmallInt Query, Properties
MenuQBEShowSQL SmallInt View, Show SQL
MenuQBESortAnswer SmallInt Query, Properties: Sort
MenuQuickForm SmallInt Tools, Quick Form
MenuQuickGraph SmallInt Tools, Quick Chart
MenuQuickReport SmallInt Tools, Quick Report
MenuQuickXTab SmallInt Tools, Quick Crosstab
MenuRecordCancel SmallInt Record, Cancel Changes
MenuRecordDelete SmallInt Record, Delete
MenuRecordFastBackward SmallInt Record, Previous Set
MenuRecordFastForward SmallInt Record, Next Set
MenuRecordFirst SmallInt Record, First
MenuRecordInsert SmallInt Record, Insert
MenuRecordLast SmallInt Record, Last
MenuRecordLocateNext SmallInt Record, Locate Next
MenuRecordLocateRecordNumber SmallInt Record, Locate, Record Number
MenuRecordLocateSearchAndReplace SmallInt Record, Locate, and Replace
MenuRecordLocateValue SmallInt Record, Locate, Value
MenuRecordLock SmallInt Record, Lock
MenuRecordLookup SmallInt Record, Lookup Help



MenuRecordMove SmallInt Record, Move Help
MenuRecordNext SmallInt Record, Next
MenuRecordPost SmallInt Record, Post/Keep Locked
MenuRecordPrevious SmallInt Record, Previous
MenuReportAddBand SmallInt Insert, Group Band
MenuReportNew SmallInt Opens a new report
MenuReportOpen SmallInt Opens a report
MenuReportPageFirst SmallInt View, Page, First
MenuReportPageGoto SmallInt View, Page, Go To
MenuReportPageLast SmallInt View, Page, Last
MenuReportPageNext SmallInt View, Page, Next
MenuReportPagePrevious SmallInt View, Page, Previous
MenuReportPrintDesign SmallInt Prints the file
MenuReportRestartOpts SmallInt Format, Restart Options
MenuRotatePage SmallInt Format, Rotate Pages
MenuSave SmallInt File, Save
MenuSaveAs SmallInt File, Save As...
MenuSaveCrossTab SmallInt Edit, Save Crosstab (must have a defined 

crosstab on a runtime form)
MenuScriptNew SmallInt Opens a new script
MenuScriptOpen SmallInt Opens a script
MenuSearchText SmallInt Edit, Search Text
MenuSelectAll SmallInt Edit, Select All
MenuSetBreakPoint SmallInt Program, Toggle Breakpoint
MenuSizeMaxHeight SmallInt Format, Size, Maximum Height
MenuSizeMaxWidth SmallInt Format, Size, Maximum Width
MenuSizeMinHeight SmallInt Format, Size, Minimum Height
MenuSizeMinWidth SmallInt Format, Size, Minimum Width
MenuSpaceHorz SmallInt Format, Spacing, Horizontal
MenuSpaceVert SmallInt Format, Spacing, Vertical
MenuSQLFileNew SmallInt Opens a new SQL File
MenuSQLFileOpen SmallInt Opens an SQL File
MenuStackPages SmallInt Stacks the pages in a form
MenuStepInto SmallInt Program, Step Into
MenuStepOver SmallInt Program, Step Over
MenuTableNew SmallInt Opens a new table
MenuTableOpen SmallInt Opens a table
MenuTileHorizontal SmallInt Tiles a form's pages side-by-side
MenuTileVertical SmallInt Tiles a form's pages, top and bottom
MenuViewBreakPoints SmallInt View, Breakpoints
MenuViewDebugger SmallInt View, Debugger
MenuViewMethods SmallInt View, ObjectPAL Quick Lookup: Types and 

Methods
MenuViewSource SmallInt View, Source
MenuViewStack SmallInt View, Call Stack
MenuViewTracer SmallInt View, Tracer
MenuViewTypes SmallInt View, ObjectPAL Quick Lookup: Types and 

Methods
MenuViewWatch SmallInt View, Watch
MenuWindowArrangeIcons SmallInt Window, Arrange Icons



MenuWindowCascade SmallInt Window, Cascade
MenuWindowCloseAll SmallInt Window, Close All
MenuWindowTile SmallInt Window, Tile

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



MenuReasons constants
Constant Data type Description
MenuControl SmallInt Triggered by choosing an item from the control menu
MenuDesktop SmallInt Triggered by choosing an item from a built-in Corel Paradox menu
MenuNormal SmallInt Triggered by choosing an item from a custom ObjectPAL menu or by clicking 

a Toolbar button

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



MouseShapes constants
Constant Data type Description
MouseArrow LongInt Standard pointer arrow
MouseCross LongInt Pointer is a cross
MouseIBeam LongInt Pointer is an I-beam (text insertion cursor)
MouseSize LongInt Pointer is normal size
MouseSizeNWSE LongInt Pointer is two-headed arrow pointing Northwest-Southeast
MouseSizeNESW LongInt Pointer is two-headed arrow pointing Northeast-Southwest
MouseSizeWE LongInt Pointer is two-headed arrow pointing East-West
MouseSizeNS LongInt Pointer is two-headed arrow pointing North-South
MouseNo LongInt Pointer is the international symbol for NO
MouseHand LongInt Pointer is a hand
MouseHelp LongInt Pointer is the standard arrow and a question mark
MouseDrag LongInt Pointer is the standard document drag and drop
MouseUpArrow LongInt Pointer is an arrow pointing up
MouseWait LongInt Pointer is an hourglass

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



MoveReasons constants
Constant Data type Description
PalMove SmallInt Caused by an ObjectPAL statement
RefreshMove SmallInt Caused when data is updated, for example, by scrolling through a table
ShutDownMove SmallInt Caused when the form closes
StartupMove SmallInt Caused when the form opens
UserMove SmallInt Caused by the user

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



PageTilingOptions constants
Constant Data type Description
StackPages SmallInt Pages are stacked one on top of the other
TileHorizontal SmallInt Pages are tiled horizontally
TileVertical SmallInt Pages are tiled vertically

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



PatternStyles
Constant Data type
BricksPattern SmallInt
CrosshatchPattern SmallInt
DiagonalCrosshatchPattern SmallInt
DottedLinePattern SmallInt
EmptyPattern SmallInt
FuzzyStripesDownPattern SmallInt
HeavyDotPattern SmallInt
HorizontalLinesPattern SmallInt
LatticePattern SmallInt
LeftDiagonalLinesPattern SmallInt
LightDotPattern SmallInt
MaximumDotPattern SmallInt
MediumDotPattern SmallInt
RightDiagonalLinesPattern SmallInt
ScalesPattern SmallInt
StaggeredDashesPattern SmallInt
ThickHorizontalLinesPattern SmallInt
ThickStripesDownPattern SmallInt
ThickStripesUpPattern SmallInt
ThickVerticalLinesPattern SmallInt
VerticalLinesPattern SmallInt
VeryHeavyDotPattern SmallInt
WeavePattern SmallInt
ZigZagPattern SmallInt

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



PrintColor constants
Constant Data type Description
prnColor LongInt Print in color (color printers only)
prnMonochrome LongInt Print in monochrome

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



PrintDuplex constants
Constant Data type Description
prnHorizontal LongInt Double-sided printing where the left and right edges of consecutive pages 

can be bound (also called bind on edge printing)
prnSimplex LongInt Single-sided printing
prnVertical LongInt Double-sided printing where the top and bottom edges of consecutive pages

can be bound (also called bind on top printing)

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



PrinterOrientation constants
Constant Data type Description
prnLandscape LongInt Landscape (long) orientation
prnPortrait LongInt Portrait (tall) orientation

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



PrinterSizes constants
Constant Data type Description
prn10x14 LongInt 10 by 14 inches
prn11x17 LongInt 11 by 17 inches
prnA3 LongInt A3 297 x 420 mm
prnA4 LongInt A4 210 x 297 mm
prnA4Small LongInt A4 Small 210 x 297 mm
prnA5 LongInt A5 148 x 210 mm
prnB4 LongInt B4 250 x 354
prnB5 LongInt B5 182 x 257 mm
prnCSheet LongInt C size sheet
prnDSheet LongInt D size sheet
prnEnv9 LongInt Envelope #9 3 7/8 x 8 7/8 inches
prnEnv10 LongInt Envelope #10 4 1/8 x 9 1/2 inches
prnEnv11 LongInt Envelope #11 4 1/2 x 10 3/8 inches
prnEnv12 LongInt Envelope #12 4 3/4 x 11 inches
prnEnv14 LongInt Envelope #14 5 x 11 1/2 inches
prnEnvB4 LongInt Envelope B4 250 x 353 mm
prnEnvB5 LongInt Envelope B5 176 x 250 mm
prnEnvB6 LongInt Envelope B6 176 x 125 mm
prnEnvC3 LongInt Envelope C3 324 x 458 mm
prnEnvC4 LongInt Envelope C4 229 x 324 mm
prnEnvC5 LongInt Envelope C5 162 x 229 mm
prnEnvC6 LongInt Envelope C6 114 x 162 mm
prnEnvC65 LongInt Envelope C65 114 x 229 mm
prnEnvDL LongInt Envelope DL 110 x 220mm
prnEnvItaly LongInt Envelope 110 x 230 mm
prnEnvMonarch LongInt Envelope Monarch 3.875 x 7.5 inches
prnEnvPersonal LongInt 6 3/4 Envelope 3 5/8 x 6 1/2 inches
prnESheet LongInt E size sheet
prnExecutive LongInt Executive 7 1/4 x 10 1/2 inches
prnFanfoldLegalGerman LongInt German Legal Fanfold 8 1/2 x 13 inches
prnFanfoldStandardGerman LongInt German Std Fanfold 8 1/2 x 12 inches
prnFanfoldUS LongInt US Std Fanfold 14 7/8 x 11 inches
prnFolio LongInt Folio 8 1/2 x 13 inches
prnLedger LongInt Ledger 17 x 11 inches
prnLegal LongInt Legal 8 1/2 x 14 inches
prnLetter LongInt Letter 8 1/2 x 11 inches
prnLetterSmall LongInt Letter Small 8 1/2 x 11 inches
prnNote LongInt Note 8 1/2 x 11 inches
prnQuarto LongInt Quarto 215 x 275 mm
prnStatement LongInt Statement 5 1/2 x 8 1/2 inches
prnTabloid LongInt Tabloid 11 x 17 inches

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



PrintQuality constants
Constant Data type Description
prnDraft LongInt Draft quality (lowest quality, fastest print time)
prnHigh LongInt High quality (highest quality, slowest print time)
prnLow LongInt Low quality
prnMedium LongInt Medium quality

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



PrintSources constants
Constant Data type Description
prnAuto LongInt Paper source selected automatically
prnCassette LongInt Cassette
prnEnvelope LongInt Envelope, automatic feed
prnEnvManual LongInt Envelope, manual feed
prnLargeCapacity LongInt Large capacity paper source
prnLargeFmt LongInt Large format paper source
prnLower LongInt Lower paper tray
prnManual LongInt Manual feed
prnMiddle LongInt Middle paper tray
prnOnlyOne LongInt Single paper tray
prnSmallFmt LongInt Small format paper source
prnTractor LongInt Tractor feed paper
prnUpper LongInt Upper paper tray

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



QueryRestartOptions constants
Constant Data type Description
QueryDefault SmallInt Use the options specified interactively using the Query Restart Options 

dialog box
QueryLock SmallInt Lock all other users out of the tables needed while the query is running. If 

Corel Paradox cannot lock a table, it does not run the query. This is the least 
polite to other users. You must wait until all the locks can be secured before 
the query will run.

QueryNoLock SmallInt Run the query even if someone changes the data while it's running.
QueryRestart SmallInt Start the query over. Specify QueryRestart when you want to make sure you 

get a snapshot of the data as it existed at some instant. Another user might 
change the data after the query is completed but before the Answer table is 
displayed, but at least you got a snapshot. This is just the nature of multi-
user work.

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



RasterOperations constants
Constant Data type Description
MergePaint LongInt Inverts the source graphic and combines it with the destination using the 

Boolean OR operator
NotSourceCopy LongInt Inverts the source graphic and copies it to the destination
NotSourceErase LongInt Combines the source graphic and the destination and inverts the result 

using the Boolean OR operator
SourceAnd LongInt Combines the source graphic and the destination using the Boolean AND 

operator
SourceCopy LongInt Copies an unchanged source graphic to the destination
SourceErase LongInt Inverts the destination and combines it with the source graphic using the 

Boolean AND operator
SourceInvert LongInt Combines the source graphic and the destination using the Boolean XOR 

operator
SourcePaint LongInt Combines the source graphic and the destination using the Boolean OR 

operator

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



RegistryKeyType constants
Constant Data type Description
regKeyClassesRoot LongInt Alias to HKEY_CLASSES_ROOT in the Registry
regKeyCurrentUser LongInt Alias to HKEY_CURRENT_USER in the Registry
regKeyLocalMachine LongInt Alias to HKEY_LOCAL_MACHINE in the Registry
regKeyUser LongInt Alias to HKEY_USERS in the Registry

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ReportOrientation constants
Constant Data type Description
PrintDefault SmallInt Use the current Windows default orientation
PrintLandscape SmallInt Use landscape (long) orientation
PrintPortrait SmallInt Use portrait (tall) orientation

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ReportPrintPanel constants
Constant Data type Description
PrintClipToWidth SmallInt Clips (trims) all data that does not fit across the page (within the 

margins)
PrintHorizontalPanel SmallInt Prints additional pages as needed to fit all the data. Each of these 

pages immediately follows the page it extends.
PrintOverflowPages SmallInt Same as PrintHorizontalPanel
PrintVerticalPanel SmallInt Creates a secondary page for each page of the report, even if it 

doesn't overflow

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ReportPrintRestart constants
Constant Data type Description
PrintFromCopy SmallInt Prints the report from copies of the tables in the report's data model
PrintLock SmallInt Locks tables in the report's data model before printing
PrintNoLock SmallInt Prints without locking tables in the report's table model
PrintRestart SmallInt Restarts print job when data changes in tables in the report's data model
PrintReturn SmallInt Cancel the print job when data changes in tables in the report's data model

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



RestructureOperations constants
Constant Data type Description
crModify SmallInt Modify an existing field
crAdd SmallInt Add a new field
crDrop SmallInt Drop (delete) an existing field

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



SpecialFieldTypes constants
Constant Data type Description
DateField SmallInt Displays the current system date
NofFieldsField SmallInt Displays the number of fields in the current table
NofPagesField SmallInt Displays the number of pages in the current form or report
NofRecsField SmallInt Displays the number of records in the current table
PageNumField SmallInt Displays the current page number
RecordNoField SmallInt Displays the active record number
TableNameField SmallInt Displays the name of the current table
TimeField SmallInt Displays the current system time

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



StatusReasons constants
Constant Data type Description
ModeWindow1 SmallInt The Status Bar area second from the left
ModeWindow2 SmallInt The Status Bar area third from the left
ModeWindow3 SmallInt The rightmost Status Bar area
StatusWindow SmallInt The leftmost (and largest) Status Bar area

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



TableFrameStyles constants
Constant Data type Description
tf3D SmallInt Table frame has a 3D frame
tfDoubleLine SmallInt Table frame has a double-box frame
tfNoGrid SmallInt Table frame has no grid
tfSingleLine SmallInt Table frame has a box frame
tfTripleLine SmallInt Table frame has a triple-box frame

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



TextAlignment constants
Constant Data type Description
TextAlignBottom SmallInt Bottom of text is aligned (table window only)
TextAlignCenter SmallInt Text is centered horizontally
TextAlignJustify SmallInt Text is justified right and left (does not apply to table window)
TextAlignLeft SmallInt Text is left-justified
TextAlignRight SmallInt Text is right-justified
TextAlignTop SmallInt Top of text is aligned (table window only)
TextAlignVCenter SmallInt Text is centered vertically (table window only)

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



TextDesignSizing constants
Constant Data type Description
TextFixedSized SmallInt Text box does not change size
TextGrowOnly SmallInt Text box grows to accommodate text
TextSizeToFit SmallInt Text box grows or shrinks as necessary to accommodate text

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



TextSpacing constants
Constant Data type Description
TextDoubleSpacing SmallInt 2 lines
TextDoubleSpacing2 SmallInt 2.5 lines
TextSingleSpacing SmallInt 1 line
TextSingleSpacing2 SmallInt 1.5 lines
TextTripleSpacing SmallInt 3 lines

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ToolbarBitmap constants
Constant Data type Description
BitmapAddBand SmallInt System bitmap
BitmapAddTable SmallInt System bitmap
BitmapAddToCat SmallInt System bitmap
BitmapAlignBottom SmallInt System bitmap
BitmapAlignCenter SmallInt System bitmap
BitmapAlignLeft SmallInt System bitmap
BitmapAlignMiddle SmallInt System bitmap
BitmapAlignRight SmallInt System bitmap
BitmapAlignTop SmallInt System bitmap
BitmapBookTool SmallInt System bitmap
BitmapBoxTool SmallInt System bitmap
BitmapBringToFront SmallInt System bitmap
BitmapButtonTool SmallInt System bitmap
BitmapCancel SmallInt System bitmap
BitmapChartTool SmallInt System bitmap
BitmapChkSyntax SmallInt System bitmap
BitmapCoEdit SmallInt System bitmap
BitmapCompile SmallInt System bitmap
BitmapDataBegin SmallInt System bitmap
BitmapDataEnd SmallInt System bitmap
BitmapDataModel SmallInt System bitmap
BitmapDataNextRecord SmallInt System bitmap
BitmapDataNextSet SmallInt System bitmap
BitmapDataPriorRecord SmallInt System bitmap
BitmapDataPriorSet SmallInt System bitmap
BitmapDelTable SmallInt System bitmap
BitmapDesignMode SmallInt System bitmap
BitmapDoJoin SmallInt System bitmap
BitmapDuplicate SmallInt System bitmap
BitmapEditAnswer SmallInt System bitmap
BitmapEditCopy SmallInt System bitmap
BitmapEditCut SmallInt System bitmap
BitmapEditPaste SmallInt System bitmap
BitmapEllipseTool SmallInt System bitmap
BitmapFieldTool SmallInt System bitmap
BitmapFilter SmallInt System bitmap
BitmapFirstPage SmallInt System bitmap
BitmapFldView SmallInt System bitmap
BitmapFontAttribBold SmallInt System bitmap
BitmapFontAttribItalic SmallInt System bitmap
BitmapFontAttribStrikeout SmallInt System bitmap
BitmapFontAttribUnderline SmallInt System bitmap
BitmapGotoPage SmallInt System bitmap
BitmapGraphicTool SmallInt System bitmap
BitmapGroup SmallInt System bitmap
BitmapHelp SmallInt System bitmap



BitmapHSpacing SmallInt System bitmap
BitmapLastPage SmallInt System bitmap
BitmapLineSpace1 SmallInt System bitmap
BitmapLineSpace15 SmallInt System bitmap
BitmapLineSpace2 SmallInt System bitmap
BitmapLineSpace25 SmallInt System bitmap
BitmapLineSpace3 SmallInt System bitmap
BitmapLineSpace35 SmallInt System bitmap
BitmapLineTool SmallInt System bitmap
BitmapLinkDm SmallInt System bitmap
BitmapLoadDm SmallInt System bitmap
BitmapMaxHeight SmallInt System bitmap
BitmapMaxWidth SmallInt System bitmap
BitmapMinHeight SmallInt System bitmap
BitmapMinWidth SmallInt System bitmap
BitmapNextPage SmallInt System bitmap
BitmapNextWarn SmallInt System bitmap
BitmapObjectTree SmallInt System bitmap
BitmapOk SmallInt System bitmap
BitmapOleTool SmallInt System bitmap
BitmapOpenExpert SmallInt System bitmap
BitmapOpenForm SmallInt System bitmap
BitmapOpenLibrary SmallInt System bitmap
BitmapOpenProject SmallInt System bitmap
BitmapOpenQbe SmallInt System bitmap
BitmapOpenReport SmallInt System bitmap
BitmapOpenScript SmallInt System bitmap
BitmapOpenSql SmallInt System bitmap
BitmapOpenTable SmallInt System bitmap
BitmapOpenTutor SmallInt System bitmap
BitmapPageBreak SmallInt System bitmap
BitmapPickTool SmallInt System bitmap
BitmapPrevPage SmallInt System bitmap
BitmapPrint SmallInt System bitmap
BitmapQuickForm SmallInt System bitmap
BitmapQuickGraph SmallInt System bitmap
BitmapQuickReport SmallInt System bitmap
BitmapQuickXTab SmallInt System bitmap
BitmapRecordTool SmallInt System bitmap
BitmapRemoveFromCat SmallInt System bitmap
BitmapRestructure SmallInt System bitmap
BitmapRun SmallInt System bitmap
BitmapSave SmallInt System bitmap
BitmapSaveDm SmallInt System bitmap
BitmapSendToBack SmallInt System bitmap
BitmapSetBreak SmallInt System bitmap
BitmapSetOrgin SmallInt System bitmap
BitmapSetWatch SmallInt System bitmap
BitmapShowSQL SmallInt System bitmap



BitmapSortAnswer SmallInt System bitmap
BitmapSpeedExit SmallInt System bitmap
BitmapSrchNext SmallInt System bitmap
BitmapSrchValue SmallInt System bitmap
BitmapStepInto SmallInt System bitmap
BitmapStepOver SmallInt System bitmap
BitmapStop SmallInt System bitmap
BitmapTableFrameTool SmallInt System bitmap
BitmapTButton SmallInt System bitmap
BitmapTComboBox SmallInt System bitmap
BitmapTextCenter SmallInt System bitmap
BitmapTextJustify SmallInt System bitmap
BitmapTextLeft SmallInt System bitmap
BitmapTextRight SmallInt System bitmap
BitmapTextTool SmallInt System bitmap
BitmapTGuage SmallInt System bitmap
BitmapTHeader SmallInt System bitmap
BitmapTListBox SmallInt System bitmap
BitmapTSpinEdit SmallInt System bitmap
BitmapViewBreak SmallInt System bitmap
BitmapViewCallStack SmallInt System bitmap
BitmapViewDebugger SmallInt System bitmap
BitmapViewMethods SmallInt System bitmap
BitmapViewSource SmallInt System bitmap
BitmapViewTracer SmallInt System bitmap
BitmapViewTypes SmallInt System bitmap
BitmapViewWatch SmallInt System bitmap
BitmapVSpacing SmallInt System bitmap
BitmapXtabTool SmallInt System bitmap

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ToolbarButtonType constants
Constant Data type Description
ToolbarButtonPush SmallInt Specifies a pushbutton type toolbar button
ToolbarButtonRadio SmallInt Specifies a radiobutton type toolbar button
ToolbarButtonRepeat SmallInt Specifies a repeating pushbutton type toolbar button
ToolbarButtonToggle SmallInt Specifies a toggle-action toolbar button

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ToolbarClusterID constants
A cluster is a logical aggregation of buttons There are 13 clusters in the system. Each cluster is always at the 
same position. The position of the cluster is expressed in 'Button widths' on a horizontal Toolbar. For example, 
the Mode cluster starts at a distance of 4 button widths from the left. 
Constant Data type Description
ToolbarFileCluster SmallInt Specifies Toolbar cluster 0 (position 0) 
ToolbarEditCluster SmallInt Specifies Toolbar cluster 1 (position 1, 2, 3) 
ToolbarModeCluster SmallInt Specifies Toolbar cluster 2 (position 4, 5) 
ToolbarToolCluster SmallInt Specifies Toolbar cluster 3 (position 6, 7) 
ToolbarVCRCluster SmallInt Specifies Toolbar cluster 4 (position 8, 9) 
ToolbarInterCluster SmallInt Specifies Toolbar cluster 5 (position 10, 11, 12, 13) 
ToolbarInter2Cluster SmallInt Specifies Toolbar cluster 6 (position 14) 
ToolbarQuickCluster SmallInt Specifies Toolbar cluster 7 (position 15, 16, 17) 
ToolbarMiscCluster SmallInt Specifies Toolbar cluster 8 (position 18, 19) 
ToolbarMisc2Cluster SmallInt Specifies Toolbar cluster 9 (position 20, 21) 
ToolbarObjectCluster SmallInt Specifies Toolbar cluster 10 (position 22) 
ToolbarProjectCluster SmallInt Specifies Toolbar cluster 11 (position 23) 
ToolbarExpertCluster SmallInt Specifies Toolbar cluster 12 (position 24) 

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ToolbarState constants
Constant Data type Description
ToolbarStateBottom SmallInt Specifies a Toolbar docked at screen bottom
ToolbarStateFloatHorizontal SmallInt Specifies a floating horizontal Toolbar
ToolbarStateFloatVertical SmallInt Specifies a floating vertical Toolbar
ToolbarStateLeft SmallInt Specifies a Toolbar docked at screen left
ToolbarStateRight SmallInt Specifies a Toolbar docked at screen right
ToolbarStateTop SmallInt Specifies a Toolbar docked at screen top

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



TrackBarStyles constants
Constant Data type Description
LineSize SmallInt The number of ticks the thumb moves on LineUp and 

LineDown events
PageSize SmallInt The number of ticks the thumb moves on PageUp and 

PageDown events
TrackBarAutoTic Logical Automatically displays tick marks
TrackBarBoth Logical Displays ticks on both sides of the trackbar
TrackBarBottom Logical Thumb points down, tick marks at bottom (TrackBarHorz 

only)
TrackBarEnableSelRange Logical Enables a selected range within the trackbar, used with a 

SelStart and SelEnd value, highlights the selection range
TrackBarHorz Logical Displays trackbar horizontally
TrackBarLeft Logical Thumb, tick marks on left-hand side of trackbar 

(TrackBarVert only)
TrackBarNoTics Logical Do not display tick marks
TrackBarRight Logical Thumb, tickmarks on right-hand side of trackbar 

(TrackBarVert only)
TrackBarTop Logical Thumb points up, tick marks at top (TrackBarHorz only)
TrackBarVert Logical Displays trackbar vertically

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



UIObjectTypes constants
Constant Data type Description
BandTool (5.0) SmallInt Creates a report band
BoxTool SmallInt Creates a box
ButtonTool SmallInt Creates a button
ChartTool SmallInt Creates a chart
EllipseTool SmallInt Creates an ellipse
FieldTool SmallInt Creates a field
GraphicTool SmallInt Creates a graphic object
LineTool SmallInt Creates a line
OleTool SmallInt Creates an OLE object
NoteBookTool (7) SmallInt Creates a tabbed notebook object
PageBrkTool (5.0) SmallInt Creates a page break in a report
RecordTool SmallInt Creates a record
TableFrameTool SmallInt Creates a table frame
TextTool SmallInt Creates a text box
XtabTool SmallInt Creates a crosstab object

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



ValueReasons constants
Constant Data type Description
EditValue SmallInt The built-in newValue method of a radio button field, list, or drop-down edit

list has been triggered (e.g., by choosing a radio button or list item), but the 
field value has not been committed (e.g., by moving off the field).

FieldValue SmallInt A field's built-in newValue method has been triggered, and the value has 
been committed.

StartupValue SmallInt A field's built-in newValue method has been triggered because the form 
has opened.

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



WindowStyles constants
Constant Data type Description
WinDefaultCoordinate LongInt Displays a window at its default size and position
WinStyleBorder LongInt Specifies a sizing border
WinStyleControlMenu LongInt Specifies a system-control menu
WinStyleDefault LongInt Specifies default displays attributes
WinStyleDialog LongInt Specifies dialog box attributes
WinStyleDialogFrame LongInt Specifies a dialog box frame
WinStyleHScroll LongInt Specifies a horizontal scroll bar
WinStyleHidden LongInt Makes a window invisible
WinStyleMaximize LongInt Displays a window at full size
WinStyleMaximizeButton LongInt Specifies a maximize button
WinStyleMinimize LongInt Displays a window as an icon (minimized)
WinStyleMinimizeButton LongInt Specifies a minimize button
WinStyleModal LongInt Makes a window modal
WinStyleThickFrame LongInt Specifies a thick frame
WinStyleTitleBar LongInt Specifies a Title Bar
WinStyleVScroll LongInt Specifies a vertical scroll bar

{button ,AL(`OPAL_CONST_CONSTYPES;',0,"Defaultoverview",)} Related Topics



Basic language elements
You can use basic language elements to assign values, call functions from dynamic link libraries (DLLs), and to 
build control structures like if...then...else...endIf loops, while...endWhile loops, and 
switch...case...endSwitch structures. You can also use the basic language elements to declare methods, 
procedures, constants, variables, and data types. Most of these elements are not bound to specific object types; 
they work for all object types.
Click on a language element for more information.

; (comments) method
{} (comments) passEvent
= (equals) proc
= (assignment) quitLoop
const return
disableDefault scan
doDefault switch
enableDefault try
for type
forEach uses
if var
iif while
loop

{button ,AL(`BLE_OVERVIEW;INTRO_COMPONENTS;INTRO_INTRO;',0,"Defaultoverview",)}      Related 
Topics

 Print related ObjectPAL methods and examples



; (comments) keyword
Designates the beginning of a comment, which is text that is ignored by the compiler. The comment extends 
from the comment operator (;) to the end of the current line.

Syntax
; Comments

Description
Comments are useful for documenting code.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_COMMENT;',0,"Defaultoverview",)} Related Topics



; (comments) example
The following example demonstrates the comment operator (;):

var
   x AnyType; declares the variable x of AnyType
endvar
x = 25      ; x gets a value of 25
; Comments that begin with the comment operator (;) extend only to
; the end of the current line.



{ } (comments) keyword
Designates a comment, which is text that is ignored by the compiler. The comment extends from the open brace 
({) to the closing brace (}); it does not end at the end of the line.

Syntax
{Comments ...
...More Comments}

Description
Comments are used to document code.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_COMMENT;',0,"Defaultoverview",)} Related Topics



{ } (comments) example
The following example demonstrates the comment braces { } operator:

var
   x AnyType {declares the variable x of AnyType}
endvar
x = 25       {x gets a value of 25}
{Comments that begin with the comment braces operator extend from the opening brace to the 
closing brace, regardless of the number of lines occupied.}



= (Assignment operator & Comparison operator) keyword
Syntax
itemSpec = expression

Description
Normally, in an expression, the = is a comparison operator that tests whether the two operands are equal. 
Otherwise, the = operator assigns the value of expression to itemSpec. Any previous value stored in itemSpec is 
lost. When assigning a value to an object, information in itemSpec can include the containership path.
When you use = with numbers, you can assign a numeric value to a field or variable. For example, the following 
code assigns the value 1.5 to i.
i=1.5

You can also use Hex values, like those used in C++ or Borland Delphi, to make numeric assignments. The 
following lines of code assigns 11 to i.
i = 0x0B
i = 11

When you use = with UIObjects, you assign the value of one UIObject to another UIObject. For example, suppose 
a form contains two fields, fieldOne and fieldTwo. The following statement copies the value of fieldTwo into 
fieldOne.
fieldOne = fieldTwo ; fieldOne gets the value of fieldTwo

You can also use = with UIObject variables. ObjectPAL uses attach the way C and Pascal use pointers. For 
example,
var ui UIObject endVar 
ui.attach(fieldOne) ; tells ui to "point to" fieldOne
ui.view() ; displays the value of ui (same as fieldOne) in a dialog box. 
ui = fieldTwo ; ui gets the value of fieldTwo (fieldOne value changes, too)
ui.view() ; displays the value of ui (same as fieldTwo) in a dialog box
ui.color = Red ; sets the color of ui and therefore of fieldOne to red

The following statement assigns to ui all of the information about fieldOne:
ui.attach(fieldOne)

In contrast, the following statement assigns to ui (and to fieldOne) only the value of fieldTwo:
ui = fieldTwo
 Example

{button ,AL(`BLE_OVERVIEW;BLE_EQUAL;',0,"Defaultoverview",)} Related Topics



= example
The following example shows various uses of = both as a comparison operator and as an assignment. MyTable is 
a table frame or multi-record object on the form which contains the fields myField and fieldOne. bigBox, 
bigCircle, smallBox, and smallCircle are UI Objects on the form which are contained within each other. 
amountField is a field UI Object on the form.
method pushButton(var eventInfo Event)
var
   x     AnyType
   ar    Array[5] AnyType
   w     Logical
   y, z  SmallInt
   tempAmountField   Number
   fred, sam         UIObject
endVar
x = 5.14                ; x gets a value of 5.14 (the data type is Number)
ar[1] = "Hello"         ; element 1 of ar gets the value of "Hello" (String)
y = 5                   ; y gets the value of 5
z = 12                  ; z gets the value of 12
x ="foo"                ; x gets a new value: the String "foo"
myTable.myField = y + z ; the field myField gets the value of y + z
amountField = tempAmountField
bigBox.bigCircle.smallBox.smallCircle.color = Blue 
; the color property of smallCircle gets the value of Blue
; the first = assigns a value, all others compare
w = (y = z) ; w gets a value of True if y = z, 
            ; otherwise, w gets a value of False
fred.attach(fieldOne) ; makes fred a "pointer" to fieldOne
sam = fred ; assigns the value of fred to sam



const keyword
Declares constants.

Syntax
const
   constName = { dataType ( value )|value }
endConst

Description
const declares one or more constant values, where dataType, if included, specifies the data type of the 
constant. If dataType is omitted, the data type is inferred from value as either a LongInt, a Number, a SmallInt, or
a String.

 Note
· You declare constants in a const...endConst block in ObjectPAL code or in the Const window in the Object 

Explorer.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_DECLARATION;',0,"Defaultoverview",)} Related Topics



const example
The following example demonstrates how const declares a value.
const
   a = -1000                         ; SmallInt, inferred
   x = 123.45                        ; Number, inferred
   newYear = Date ("01/01/99")       ; Date, assigned
   companyName = String ("Corel")  ; String, assigned
endconst



disableDefault keyword
Disables the default code for a built-in event method.

Syntax
disableDefault

Description
disableDefault prevents an event's built-in code from executing for the current call to a built-in event method. 
Normally, the built-in code executes implicitly at the end of a method, just before the endMethod keyword. 
Using disableDefault in a method disables the implicit call to the built-in code.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_DEFAULT;',0,"Defaultoverview",)} Related Topics



disableDefault example
The following example sets the value of a field to "hello" when the user types a character. The call to 
disableDefault prevents the built-in code from executing, so the character does not display in the field. The 
message statement displays the character in the Status Bar.
method keyChar(var eventInfo KeyEvent)
   self.value = "hello"      ; hello appears in the field
   disableDefault            ; disable the built-in code
   message(eventInfo.char()) ; displays the character in the status bar
endMethod



doDefault keyword
Executes the default code for a built-in event method.

Syntax
doDefault

Description
doDefault executes the built-in code for an event immediately, instead of at the end of the method. Using 
doDefault in a method disables the implicit call to the built-in code. If a method contains more than one 
doDefault statement, only the first one executes; the other statements are ignored.
Generally, if you attach code to an object's built-in open method, you should call doDefault before calling any 
other method or procedure. The call to doDefault executes the built-in code, ensuring the object is completely 
opened and initialized.
 Examples

{button ,AL(`BLE_OVERVIEW;BLE_DEFAULT;',0,"Defaultoverview",)} Related Topics



doDefault examples
Example1          Effects of a call to doDefault
Example2          Making a call to doDefault



doDefault example 1
The following example demonstrates the effect of a call to doDefault. In the following method, the button 
pushes in, waits two seconds and then the system beeps and the button pops out. The built-in code is called 
implicitly, just before the endMethod statement:
method pushButton(var eventInfo Event)
   sleep(2000)
   beep()
endMethod

In the following method, the call to doDefault makes the button pop out before it sleeps and beeps, and it 
disables the implicit code at the end of the method.
method pushButton(var eventInfo Event)
   doDefault
   sleep(2000)
   beep()
endMethod



doDefault example 2
The following example shows how to call doDefault when you attach code to an object's built-in open method. 
The following code is attached to the built-in open method of an unbound field object named greetingFld. The 
code calls doDefault to execute the built-in code and then sets the value of the field object.
greetingFld::open
method open(var eventInfo Event)
   doDefault
   self.Value = "Hello " + getNetUserName()
endMethod



enableDefault keyword
Enables the default code for a built-in event method.

Syntax
enableDefault

Description
enableDefault allows the built-in code to execute normally at the end of a method, just before the endMethod
statement. Compare enableDefault to doDefault, which executes the built-in code immediately.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_DEFAULT;',0,"Defaultoverview",)} Related Topics



enableDefault example
In the following example, default behavior is disabled and custom methods doOpen() or doQuit() are called if 
the respective conditions apply. Otherwise, the default behavior is enabled.
method menuAction(var eventInfo MenuEvent)

var theChoice String endVar
disableDefault
theChoice = eventInfo.menuChoice()
switch
   case theChoice = "Open" : doOpen()
   case theChoice = "Quit" : doQuit()
   otherwise               : enableDefault
endSwitch
endMethod



for keyword
Executes a sequence of statements a specified number of times.

Syntax
for counter [ from startVal  [ to endVal ] [ step stepVal ]
      Statements
endFor

Description
for executes a sequence of Statements as many times as is specified by a counter, which is stored in counter 
and controlled by the optional from, to, and step keywords. Any combination of these keywords can be used to 
specify the number of times the statements in the loop are executed. You don't have to declare counter 
explicitly, but a for loop runs faster if you do.
The arguments startVal, endVal, and stepVal are values or expressions representing the beginning counter value,
ending counter value, and the number by which to increment the counter each time through the loop. These 
values can be any data type represented by AnyType, except Point, Memo, Graphic, String, OLE, and Binary. Also,
counter must be a literal value or a single-valued variable; it can't be an array element or record field value.
You can use for without the from, to, and step keywords:
· If startVal is omitted, the counter starts at the current value of counter.
· If endVal is omitted, the for loop executes indefinitely.
· If stepVal is omitted, the counter increments by 1 each time through the loop.
· startVal, endVal, and stepVal are stored in a temporary buffer; they are not evaluated each time through the 

loop.
If quitLoop is used within the body of statements in the for loop, the for ...endFor loop is exited. If loop is 
used within the body of statements, statements following loop are skipped, the counter is incremented, and 
iteration continues from the top of the for loop.
If step is positive and a to clause is present, iteration continues as long as the value of counter is less than or 
equal to the value of endVal. If step is negative, iteration continues as long as the value of counter is greater 
than or equal to the value of endVal. In either case, when the value of counter reaches or exceeds the limit set 
by step, the for loop stops executing, but counter keeps its value, as shown in the example.
If counter has not previously been assigned a value, from creates the variable and assigns to it the value of 
startVal.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_CONTROL_STRUCTURE;',0,"Defaultoverview",)} Related Topics



for example
The following example demonstrates a simple for loop. Notice the value of the counter variable i after the for 
loop is completed.
var i SmallInt endVar
for i from 1 to 3
   i.view("Inside for loop") ; i = 1, i = 2, i = 3
endFor
i.view("Outside for loop")   ; i = 4



forEach keyword
Repeats the specified statement sequence in elements within a dynamic array, or DynArray.

Syntax
forEach VarName in DynArrayName
      Statements
endForEach

Description
forEach walks through the elements in a DynArray. The argument VarName is a String variable used as a 
placeholder for the DynArray indexes. The argument DynArrayName is a DynArray variable that identifies the 
DynArray to walk through. If DynArrayName does not exist, the forEach statement causes an error when the 
method is compiled. The Statements clause represents the one or more ObjectPAL statements that are to be 
executed for each index in the DynArray.
Generally, you cannot use the for statement to step through a DynArray because the indexes of a DynArray are 
not necessarily integers. Because DynArray indexes are not integers, DynArray elements are not ordered 
sequentially. The forEach statement operates on DynArray elements in an arbitrary order. You should not rely on
a specific ordering of indexes.
If the quitLoop statement is used within the body of statements in the forEach loop, the 
forEach...endForEach loop is exited. If the loop statement is used within the body of Statements, the 
statements following loop are skipped and iteration continues from the top of the forEach loop.
Do not call removeItem or empty to modify a DynArray in a forEach loop.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_CONTROL_STRUCTURE;',0,"Defaultoverview",)} Related Topics



forEach example
The following example uses the forEach statement to display the elements in the dynamic array, or DynArray, 
created by the sysInfo statement:
var
   SystemArray DynArray[] AnyType
   Element AnyType
endVar
sysInfo(SystemArray)
forEach Element IN SystemArray
   message(Element, " : ", SystemArray[Element])
   sleep(1500)
endForEach



if keyword
Executes one of two sequences of statements, depending on the value of a logical condition.

Syntax
if Condition then
      Statements1
[else
      Statements2 ]
endIf

Description
When ObjectPAL comes to an if statement, it evaluates whether the Condition is True. If so, it executes the 
statements listed in Statements1 in sequence. If not, it skips Statements1 and, if the optional else keyword is 
present, executes the statements in Statements2. In either case, execution continues after the endIf keyword.
An if construction can span several lines, especially if there are many statements in Statements1 or 
Statements2. It is recommended that you indent the then and else clauses to show the flow of control.
if Condition then
   Statements1
else 
   Statements2
endIf
The following is an example of an if statement:
if Stock < 100 then
   AddStock()        ; execute a custom method called AddStock() 
   Stock = Stock + 10 ; then, add 10 to the value of Stock
endIf

if statements can be nested; that is, any of the statements in Statements1 or Statements2 can also be if 
statements. Nested if statements must be fully contained within the controlling if structure, in other words, each
nested if statement must have an endIf within the nest. As in the following code, each if...endIf set must 
enclose code or code and another complete if...endIf set.
if Condition then
   if Condition then
      Condition
   endIf
endIf
 Example

{button ,AL(`BLE_OVERVIEW;BLE_CONTROL_STRUCTURE;',0,"Defaultoverview",)} Related Topics



if example
The following example provides code for a nested if statement:
if skillLevel = "Beginner" then
   if skillBox.color = "Red" or skillBox.color = "Yellow" then
      skillBox.color = "Green"
   endIf
endIf



iif keyword
Returns one of two values, depending on the value of a logical condition.

Syntax
iif ( Condition, ValueIfTrue, ValueIfFalse )

Description
iif (immediate if) allows branching within a single statement. You can use iif anywhere you use other 
expressions. iif is especially useful in calculated fields on forms or reports where if...endIf statements are 
illegal.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_CONTROL_STRUCTURE;',0,"Defaultoverview",)} Related Topics



iif example
The following example demonstrates how an iif keyword returns a value.
a = iif(x > 1, b, c) ; if x > 1, a = b; else a = c



loop keyword
Passes control to the top of the nearest enclosing for, forEach, scan, or while loop.

Syntax
loop

Description
When executed within a for, forEach, scan, or while structure, loop skips the statements between it and the 
endFor, endForEach, endScan, or endWhile loops and returns to the beginning of the structure. Otherwise, 
loop causes an error.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_CONTROL_STRUCTURE;',0,"Defaultoverview",)} Related Topics



loop example
The following example shows how the loop keyword passes control to the nearest for statement.
var x SmallInt endVar

for x from 1
   if x <> 5 then
      loop ; go back to for statement, get next value of x
      message("This never appears") ; this statement never executes
   else
      quitLoop                      ; break out of the loop
   endIf
endFor
message(x) ; displays 5



method keyword
Defines an ObjectPAL method.

Syntax
method Name ( parameterDesc [ , parameterDesc ] * ] ) [ returnType ]
[ const section ]
[ type section ]
[ var section ]
Statements

endMethod

Description
method marks the beginning of a method. You must provide the following:
· the method name in Name

· parentheses, even if the method has no arguments
· the Statements that comprise the method
The definition ends with the mandatory endMethod keyword.
Additionally, you can declare constants, data types, variables and procedures before the method keyword, and 
you can declare variables and constants after the method keyword.
Also optional are one or more parameter descriptions (up to a maximum of 29) represented in the prototype by 
parameterDesc, where each description takes the following form:

[var|const] parameter type
The optional returnType declares the data type of the value returned by the method. returnType is optional 
because a method may or may not return a value. However, if the method returns a value, you must specify the 
data type of the value.
Methods and procedures differ in the following ways:
· Methods are visible and exportable to other objects, while procedures are private within a containership 

hierarchy.
· A method can contain a procedure definition, but a procedure can't contain a method definition.

 Note
· The scope of a method depends on where it is declared.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_DECLARATION;',0,"Defaultoverview",)} Related Topics



method example
method pushButton (var eventInfo Event)
   var 
      txt String 
      myNum Number
   endVar
   myNum = 123.321
   txt = String(myNum)
   msgInfo("myNum = ", txt)
endMethod



passEvent keyword
Passes the event to the object's container.

Syntax
passEvent

Description
passEvent passes the event packet to the object's container. Using passEvent in a method does not affect the 
implicit call to the built-in code.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_DEFAULT;',0,"Defaultoverview",)} Related Topics



passEvent example
The code in the following example is attached to a field object. It executes when the pointer is in the field object.
If SHIFT is held down when the mouse is clicked, the code calls disableDefault to prevent the built-in code from
executing and calls passEvent to send the event to the field object's container. This technique is useful when 
you want several objects to respond the same way to a given event.
method mouseDown(var eventInfo MouseEvent)
   if eventInfo.isShiftKeyDown() then
      disableDefault
      passEvent ; let container handle it
   endIf
endMethod



proc keyword
Defines an ObjectPAL procedure.

Syntax
proc ProcName ( [ parameterDesc [ , parameterDesc ] * ] ) [ returnType ]
[ const section ]
[ type section ]
[ var section ]
Statements

endProc

Description
proc begins the definition of a procedure. You must provide the following:
· the procedure name, in ProcName

· parentheses, even if the procedure has no arguments
· zero or more parameter descriptions (up to a maximum of 29) represented in the prototype by 

parameterDesc, where each description takes the following form:
[var|const] parameter type

· use returnType to declare the data type of the value returned by the procedure (if it returns a value)
· sections to declare variables, constants, and types
· the Statements that comprise the procedure
The definition ends with the mandatory endProc keyword.
You can use return in the body of a procedure to return a value to the calling method or procedure.
A procedure used in an expression must return a value, such as
x = NumValidRecs("Orders") ; NumValidRecs is a procedure

 Notes
· You declare procedures in a proc...endProc block in ObjectPAL code or in the Proc window in the Object 

Explorer.
Procedures and methods are similar. The key differences are that methods are visible and exportable to other 

objects, while procedures are private within a containership hierarchy. A method can contain a procedure 
definition, but a procedure can't contain a method definition.

· The scope of a procedure depends on where it is declared.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_DECLARATION;',0,"Defaultoverview",)} Related Topics



proc example
proc inc (x SmallInt) SmallInt
   return x + 1
endProc
method pushButton(var eventInfo Event)
   var x SmallInt endVar
   x = 5
   x = inc(x) ; calls the procedure
   message(x) ; displays 6
endMethod



quitLoop keyword
Terminates the for, forEach, scan, or while loop in which it appears.

Syntax
quitLoop

Description
quitLoop exits immediately from the closest enclosing for, forEach, scan, or while loop. The method 
continues with the statement following the closest endFor, endForEach, endScan, or endWhile.
quitLoop causes an error if executed outside of a for, scan, or while structure.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_CONTROL_STRUCTURE;',0,"Defaultoverview",)} Related Topics



quitLoop example
In the following example, quitLoop is used in a for loop to determine whether an array has any unassigned 
elements:
var 
   myArray Array[12] 
   notAssigned Logical
endVar
notAssigned = False
for i from 1 to 12
   if not isAssigned(myArray[i]) then
      notAssigned = True
      quitLoop
   endIf
endFor



return keyword
Returns control to a method or procedure, optionally passing back a value.

Syntax
return [ Expression ]

Description
return is used to return control from the current procedure or method to the procedure or method that called it, 
whether or not the method or procedure is declared to return a value. The following rules apply to return:
· If return is executed within the body of a procedure, the procedure is exited.
· If return is executed within a method (but outside of the body of a procedure), the method is exited.
You can optionally return the value of Expression when returning from either a procedure or a method. If a 
procedure is called in an expression, then the procedure must return a value, which becomes the value of the 
procedure call.
y = myProc(x) + 3      ; myProc is a procedure

If a procedure is called in a standalone context, then any returned value is ignored. For example:
myProc(x)

If no Expression is supplied, return must not be followed by anything else on the line other than a comment.
The following data types cannot be returned: DDE, Database, Query, Session, Table, or TCursor.
It is not necessary to use return to pass control back to a higher-level method or procedure, since this happens 
automatically when a lower-level method or procedure finishes. However, if the method or procedure is declared 
to return a value, you must use return to return the value; the value won't be returned automatically.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_CONTROL_STRUCTURE;',0,"Defaultoverview",)} Related Topics



return example
The following example adds one to the value of a variable and returns the new value to the calling method:
proc addOne (x SmallInt) SmallInt
   return x + 1
endProc

In a built-in event method, a return statement executes the built-in code unless you explicitly disable the code. 
For example, the following code calls return when the user types a ? into a field object. The call to 
disableDefault prevents the built-in code from displaying the ? in the field object.
method keyChar(var eventInfo KeyEvent)
   if eventInfo.char() = "?" then
      disableDefault
      return
   endIf
endMethod



scan keyword
Scans the TCursor and executes ObjectPAL instructions.

Syntax
scan tcVar [ for booleanExpression ] :
      Statements
endScan
The colon is required, even if you omit the for keyword.

Description
scan searches tcVar (TCursor) and executes Statements (ObjectPAL instructions) for each record. scan always 
begins at the first record of the table and examines each record in sequence. When statements in the scan loop 
change an indexed field, that record moves to its sorted position in the table; It's possible, therefore, to 
encounter the same record more than once in the same loop.
If you supply the for clause, Statements execute only for those records that satisfy the condition; all other 
records are skipped. If the table is empty or if no records meet the condition, the scan has no effect.
scan allows you to prototype a statement sequence for a single record of a table and then place that sequence 
inside a scan loop to apply it to an entire table.
You can use loop, return, and quitLoop in the body of the scan. loop skips the remaining statements between
it, and endScan, moves to the next record, and returns to the top of the scan loop. quitLoop terminates the 
scan altogether, leaving the record being scanned as the active record.
Since scan repeats an entire statement sequence for each record, don't include actions that only need to be 
performed once for the table. Put those statements outside the scan loop. scan automatically moves from 
record to record through the table, so there's no need to call nextRecord.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_CONTROL_STRUCTURE;',0,"Defaultoverview",)} Related Topics



scan example
The following example uses a scan loop to update the Employee table. It scans the Dept. field of each record, 
and if the value is Personnel, changes it to Human Resources.
var
    empTC TCursor
endVar

empTC.open("employee.db") ; These statements need only be executed once,
empTC.edit()              ; so they're placed outside the loop.

scan empTC for empTC.Dept = "Personnel":  ; the colon is required
   empTC.Dept = "Human Resources"
endScan

empTC.endEdit()
empTC.close()



switch keyword
Executes a specified set of statement sequences.

Syntax
switch
   CaseList
   [ otherWise: Statements ]
endSwitch
CaseList is any number of statements in the following form:
case Condition : Statements

Description
switch uses the values of the Condition statements in CaseList to determine which sequence of Statements 
should be executed, if any. switch works like multiple if statements, and each CaseList works like a single if 
statement.
The case Conditions are evaluated in the order in which they appear:
· if one has a value of True, the corresponding Statements sequence is executed and the rest are skipped
· if none has the value True and the optional otherWise clause is present, the Statements in otherWise are 

executed
· if none has the value True and no otherWise clause is present, switch has no effect
Thus, one set of Statements is executed at most. The method resumes with the next statement after 
endSwitch.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_CONTROL_STRUCTURE;',0,"Defaultoverview",)} Related Topics



switch example
The following example creates an array of 100 random numbers and then uses the bubble sort algorithm to sort 
the numbers in numerical order:
method pushButton(var eventInfo Event)
var
   sz, i , itmp, j,k SmallInt
   a Array[100] SmallInt
   tmp Number
endVar

   sz = 100
   a.fill(0)
 
for i from 1 to sz step 1
   tmp = Rand()
   switch
         case tmp < .1 : a[i] = 1
         case tmp < .2 : a[i] = 2
         case tmp < .3 : a[i] = 3
         case tmp < .4 : a[i] = 4
         case tmp < .5 : a[i] = 5
         case tmp < .6 : a[i] = 6
         case tmp < .7 : a[i] = 7
         case tmp < .8 : a[i] = 8
         case tmp < .9 : a[i] = 9
         otherwise:      a[i] = 10
   endSwitch
endFor

for i from 1 to sz-1 step 1
   for j from 1 to sz-i step 1
      if a[j] <> a[j+1] then  
         a.exchange(j, j+1)
      endIf
   endFor
endFor

endMethod



try keyword
Marks a block of statements to try, and specifies a response should an error occur.

Syntax
try
   [ Statements ] ; the transaction block
onFail
   [ Statements ] ; the recovery block
   [ reTry ]         ; optional
EndTry

Description
The try...onFail block builds error recovery into an application is .
The transaction block is a set of Statements. If the transaction block succeeds, the program skips to endTry. If 
the transaction fails, the recovery block executes. You can call reTry to execute the transaction block again.
The program calling the System procedure fail causes a trial to fail by at some point within the transaction block
or within procedures called by the transaction block. This stops system functions from returning status errors or 
null values to their callers.
A fail call can be nested within several procedure calls. Their local variables are removed from the stack, and 
any special objects (such as large text blocks) are deallocated. If reference objects (such as tables) are in use, 
they are closed, and any pending updates are canceled. It's as if the transaction had never started. What 
remains are changes to variables outside of the block, or data added successfully to tables and committed 
before the failure occurred.
If during a recovery block you decide that the error code is not one you expected or is more serious than can be 
handled at this level, call fail again to pass that error code. If no higher-level try...onFail block exists, the whole
application fails, existing actions are canceled, and resources are closed.
By default, a try...onFail block traps critical errors only. Use errorTrapOnWarnings if you want a try...onFail 
block to also trap warnings.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_ERROR;',0,"Defaultoverview",)} Related Topics



try example
The following example attempts to set the Color property of some design objects and uses a try...onFail block 
to handle the situation if the property cannot be set.
method pushButton(var eventInfo Event)
var s String endVar
box1.box2.color = Blue                     ; this works
s = "box5"                                 ; box5 doesn't exist

try
   box1.(s).color = Red                    ; try to set color of box5
onFail                                     ; handle the error
   msgStop("Error", "Couldn't find " + s)
   s = "box2"                              ; box2 exists
   reTry                                   ; try again
endTry

s = "box6"                                 ; box6 doesn't exist
try
   box1.(s).color = Green
onFail
   fail(peObjectNotFound, "The object " + s + "does not exist.")
endTry
endMethod



type keyword
Declares data types.

Syntax
type
   [ newTypeName = existingType ] *
endType

Description
Using type, you can define new data types (based on existing ObjectPAL types). Once defined, you can use 
these types to declare variables in methods.
You declare data types in a type...endType block in ObjectPAL code, or in the Type window on the Methods 
page of the Object Explorer.
For example, an application to track the number of parts in a warehouse might declare a type partQuantity and 
then declare a variable to be of type partQuantity, like this:
type
   partQuantity = SmallInt ; declare a new type
endType

var                  ; use the new type to declare a variable
   pQty partQuantity ; pQty is a SmallInt
endVar               ; because partQuantity is a SmallInt

Later, if the number of parts approaches 32,767 (the maximum value of a SmallInt), you need only change the 
type definition, for example,
type
   partQuantity = LongInt ; change the declaration 
endType

var                  ; use the new type to declare a variable
   pQty partQuantity ; pQty is now a LongInt
endVar               ; because partQuantity is a LongInt
 Example

{button ,AL(`BLE_OVERVIEW;BLE_DECLARATION;',0,"Defaultoverview",)} Related Topics



type example
The following example declares a record Employee that you can use to declare variables in methods and 
procedures. Records defined in an object's Type window have no connection to tables. Instead, they are similar to
records in Pascal and STRUCTs in C, because they allow you to join several related elements of data together 
under one name. 
type
   Employee = record
              LastName   String
              FirstName  String
              Title      String
              Salary     Currency
              DateHired  Date
              endRecord
endType



uses keyword
Declares external ObjectPAL methods, types, constants, or dynamic link library (DLL) routines to use in a method
or procedure. 

Syntax
uses ObjectPAL 
   [ "fileName"]*
endUses
Syntax for declaring DLL routines:
uses LibraryName
   [ routineName ( [parameterList] ) [returnType] [[callingConvention ["linkName"]]] ]*
enduses

 Note
· While the syntax shown above is different from the uses block syntax in version 5.0, any existing uses blocks 

will continue to work as before.

Description
The uses block, declared in an object’s Uses window, makes methods, constants, and type definitions available 
to the object’s methods and procedures. An ObjectPAL uses block is different from a DLL uses block, which is why
they are discussed separately. A Uses window may contain multiple ObjectPAL or DLL uses blocks.
Changes to uses keyword

The uses keyword can now be used to specify types, methods and constants from an ObjectPAL form or library. 
You can use all of the types, methods, and constants in a specific library by specifying the filename of the form 
or library. You don’t have to separately name each of the types, constants, and methods you want to use. 
The syntax for specifying a DLL in a uses block now includes an optional calling convention that lets you control 
the type of call made to the DLL.
Note that Corel Paradox for Windows 95 and Windows NT requires 32-bit DLL’s. Any DLL compiled for 16-bit use 
(such as with Windows 3.1) will no longer work. 

{button ,AL(`BLE_OVERVIEW;BLE_USES;',0,"Defaultoverview",)} Related Topics



ObjectPAL uses block
To use methods, constants, or type definitions stored in an ObjectPAL library or attached to a form, write a uses 
block in an object’s Uses window. 

Syntax
uses ObjectPAL 
   ["fileName"]*
endUses

Description
The keyword ObjectPAL indicates that you are referencing ObjectPAL forms or libraries rather than a dynamic 
link library (DLL).
Specify the filename of each form or library name to reference. You may use an alias or path in each specified 
filename. Each filename must be surrounded by quotation marks and must include the file extension .FSL or .LSL.
Each form or library that you reference must be in the .FSL or .LSL format when the uses block is compiled.
You must open a form or library before calling a method from it; however, you can use constants and type 
definitions without opening the form or library.
Every form or library that you want to reference must be explicitly named in the uses block. You cannot, for 
example, have a form FORM1.FSL, with a uses block that references LIBRARY1.LSL, that in turn has a uses block
that references LIBRARY2.LSL, and then use the constants, types, or method declarations defined in 
LIBRARY2.LSL in the code in FORM1.FSL. (In this case, you would add the uses block for FORM1.FSL shown below
to use the constants, types, and methods from both LIBRARY1.LSL and LIBRARY2.LSL).
Uses ObjectPAL
   "LIBRARY1.LSL" "LIBRARY2.LSL"
endUses

Constants and type definitions defined in the const and type sections of a library are available for other forms, 
libraries, or scripts to access through a uses statement. All methods defined in a library are available after a 
library variable has been attached to the library containing the methods.
Constants and type definitions defined in the const and type sections at the form level only are available for 
other forms, libraries, or scripts to access through a uses statement. All methods defined on all objects of a form
are available to be called after a form variable has been attached to the form containing the methods.
Procedures and variables in external forms or libraries are not available. If you need to access variables in 
libraries, use methods in the library to get and set the values of library variables. Then you can call those 
methods from your forms, libraries, or scripts to share global values.
When your code is compiled or saved, it reads the constants, types, or method declarations from the .FSL or .LSL
files named in uses blocks. Delivered forms or libraries (.FDL and .LDL files) do not have the information required
for this step, so you must have the .FSL or .LSL files available when you make changes to your code.
After you deliver your code, it will run without the .FSL or .LSL files it references. After the code is saved, it will 
run without the .FSL or .LSL files, as long as you don’t make changes to your code.
When you change constant or type information in a form or library that other forms, libraries, or scripts 
reference, all the forms, libraries, or scripts need to be recompiled to use the changed values. To recompile your 
code, make sure you have the Show Developer Menus check box enabled in the Developer Preferences dialog 
box. For each library, or script, open the file in Design mode, click Program, Compile, then File, Save.
 Examples

{button ,AL(`BLE_OVERVIEW;BLE_USES;',0,"Defaultoverview",)} Related Topics



OPAL uses block examples
Example1          Calculating interest rates
Example2          Referencing an existing library
Example3          Creating a reference library
Example4         The importance of multiple uses blocks



ObjectPAL uses block example 1
The following example calculates interest rates by referencing an ObjectPAL library. The library, named 
MATHLIB.LSL, contains the method calcInterest, which takes two arguments: intRate and nPeriods. It returns 
the interest calculated.
The following code, attached to a button's Uses window, reads the declaration for the calcInterest method from
MATHLIB.LSL so the button can use it.
uses ObjectPAL
   "mathlib.lsl"
endUses

The following code, attached to a button's built-in pushButton method, opens the library, reads the values of 
two fields on a tableframe, calls calcInterest, and then displays the results.
method pushButton(var eventInfo Event)
   var
      mathLib   Library
      iRate     Number
      nPeriods  SmallInt
      interest  Number
   endVar
   if mathLib.open("mathlib.lsl") then
      iRate = mortgage.intRate.value
      nPeriods = mortgage.nYears.value * 12
      interest = mathLib.calcInterest(iRate, nPeriods)
      interest.view("Interest")
   endIf
endMethod

In the following example, dot notation specifies where to find the calcInterest method. The following statement 
looks in the library represented by the Library variable mathLib.
interest = mathLib.calcInterest(iRate, nPeriods)

The concept for calling a method attached to another form is the same. Use dot notation to specify the form 
used to search for the method. The following example assumes that the Form variable codeForm has been 
previously declared, and that the form has been opened and referenced in a uses block.
returnValue = codeForm.getObjHelp(self.name)

 Note
· With previous versions of Corel Paradox, the uses block was used to declare external methods to call. The 

declarations are now read directly from the form or library that you are calling. You no longer have to maintain 
multiple copies of method declarations as they change, and Corel Paradox reports parameter mismatches 
when you compile your code rather than later as your code is run.



ObjectPAL uses block example 2
The following example references an ObjectPAL library named PARTS.LSL. The example shows how the uses 
block allows you to share constants, type declarations, and method declarations from forms and libraries. 
The library PARTS.LSL contains a const block, a type block, and a method using the constants and type 
definitions.
const
   DefaultPartName = "N/A"
   DefaultPartNumber = "000-00"
   DefaultPricePerUnit = 1.00
endConst

type
   PartRecordType = Record
      PartName      String
      PartNumber    String
      QtyOnHand     LongInt
      QtyOnOrder    LongInt
      PricePerUnit  Currency
   endRecord
endType

method NewPart(var newPartRecord PartRecordType)
   newPartRecord.PartName = DefaultPartName
   newPartRecord.PartNumber = DefaultPartNumber
   newPartRecord.QtyOnHand = 0
   newPartRecord.QtyOnOrder = 0
   newPartRecord.PricePerUnit = DefaultPricePerUnit
endMethod

The following code, attached to a button’s Uses window, declares DefaultPartName, DefaultPartNumber, 
DefaultPricePerUnit and PartRecordType from the library and declares NewPart so the button can use them:
Uses ObjectPAL
   "parts.lsl"
endUses

The following code, attached to a button’s built-in pushButton method, opens the library and calls the method 
with a PartRecordType variable. Note that PartRecordType is a type defined in the library and is declared 
automatically by the uses block.
method pushButton(var eventInfo Event)
   var
      partsLib    Library
      partRecord  PartRecordType
   endVar

   if partsLib.open("parts") then
      partsLib.newPart(partRecord)
   endIf
endMethod



ObjectPAL uses block example 3
The following example references an ObjectPAL library named WINAPI.LSL. The example shows how to create a 
Reference Library, that is, a library that is only accessed at compile time for constant, type, and method 
declarations. An ObjectPAL Reference Library contains no ObjectPAL code, only definitions.
Certain data structures, constants, and method declarations that you develop in Corel Paradox applications can 
apply to several projects. The uses block allows applications to access centralized libraries that have been 
created solely for the purpose of defining the types, constants, and method declarations used. Changes to types 
and constants automatically propagate to all projects referencing the information (after the projects are 
recompiled to include the change). An ObjectPAL Reference Library is similar to a header file (.H) in the C and C+
+ programming languages.
The following code is attached to the Uses window in WINAPI.LSL. It declares calls made to the Windows 
Application Programming Interface (API). These calls should not change, so you should have them defined in a 
single file that also does not change, where they can be referenced whenever needed.
Uses User32
   GetWindowText(hwin CLONG, title CPTR, nMaxLength CLONG) CLONG  [STDCALL "GetWindowTextA"]
   GetActiveWindow() CHANDLE  [STDCALL "GetActiveWindow"]
   MessageBox(hwin CLONG, text CPTR, title CPTR, flags CLONG) CLONG  [STDCALL "MessageBoxA"]
EndUses

The following code is attached to the Const window in WINAPI.LSL. It assigns a constant used in the MessageBox 
call to the Windows API.
Const
   MB_OK = 0
EndConst

The following code, attached to a pushButton method, calls the functions from the Windows API defined in 
WINAPI.LSL:
uses ObjectPAL
   "winapi.lsl"
enduses

method pushButton(var eventInfo Event)
var
   windowHandle   LongInt
   windowTitle   String
endvar

   windowTitle = fill(" ", 80)   ; reserve 80 characters for title
   windowHandle = GetActiveWindow()
   if GetWindowText(windowHandle, windowTitle, 80) > 0 then
      MessageBox(0, windowTitle, "Title of Active Window", MB_OK)
   endif

endmethod

Other objects (forms, libraries, or scripts) can also access WINAPI.LSL with a uses block and declare USER32.DLL
as the Windows functions in the system dynamic link library (DLL). It is not necessary to have WINAPI.LSL 
present at run time in either source (.LSL) or delivered (.LDL) form.



ObjectPAL uses block example 4
The following example references an ObjectPAL library named PARTSHDR.LSL. The example demonstrates how 
the uses block enables you to share constants, type declarations, and method declarations from forms and 
libraries. It also demonstrates how to use a Reference Library, and that you may need to use multiple uses 
blocks to declare all the information you need.
The library PARTSHDR.LSL contains a const block and a type block. It defines some global constants and types 
that are to be used by several other forms and libraries. PARTSHDR.LSL is considered a Reference Library 
because Corel Paradox only needs to reference the information it contains at compile time.
const
   DefaultPartName = "N/A"
   DefaultPartNumber = "000-00"
   DefaultPricePerUnit = 1.00
endConst

type
   PartRecordType = Record
      PartName      String
      PartNumber      String
      QtyOnHand      LongInt
      QtyOnOrder      LongInt
      PricePerUnit   Currency
   endRecord
endType

The library PARTS.LSL declares the NewPart method. It declares constants and type declarations through a uses
block that references PARTSHDR.LSL.
uses ObjectPAL
   "partshdr.lsl"
endUses

method NewPart(var newPartRecord PartRecordType)
   newPartRecord.PartName = DefaultPartName
   newPartRecord.PartNumber = DefaultPartNumber
   newPartRecord.QtyOnHand = 0
   newPartRecord.QtyOnOrder = 0
   newPartRecord.PricePerUnit = DefaultPricePerUnit
endMethod

The following code is attached to a button’s Uses window. It declares DefaultPartName, DefaultPartNumber, 
DefaultPricePerUnit, and PartRecordType from PARTSHDR.LSL and NewPart from PARTS.LSL so the button can use
them:
Uses ObjectPAL
   "partshdr.lsl" "parts.lsl"
endUses

Even though PARTS.LSL has a uses block that references PARTSHDR.LSL, the uses block for this button must 
explicitly include the reference to PARTSHDR.LSL. An indirect reference is not sufficient. Every object that needs 
to declare constants, type definitions, or methods from external forms or libraries must declare the forms or 
libraries directly in its own uses block or have a definition included in the uses block of one of its containers.
The following code, attached to a button’s built-in pushButton method, opens the library and calls the method 
with a PartRecordType variable.
method pushButton(var eventInfo Event)
   var
      partsLib   Library
      partRecord   PartRecordType
   endVar

   if partsLib.open("parts") then
      partsLib.newPart(partRecord)
   endIf

   partRecord.view() ; display the record to show the changed values

endMethod





DLL uses block
To use routines stored in a dynamic link library (DLL), write a DLL uses block in one of the following places:

· a design object's Uses window
· a window for a built-in method
· a window for a custom method
· a window for a custom procedure

Where you write the block depends on the desired scope (availability) of the routine.
No matter where you write it, the basic structure (shown in the following example) is the same:

Syntax
uses libraryName
[ routineName ( [parameterList] ) [returnType] [[callingConvention ["linkName"]]] ]*
endUses

Description
The required elements in a DLL uses block are libraryName and an optional list of routines. Each routine must be
specified with a routineName and the left and right parentheses. All other arguments are optional.
The argument libraryName specifies the DLL filename. Corel Paradox assumes a file extension of .DLL or .EXE.
Each routine that you declare must include a routineName, the name you use in your ObjectPAL code to call the 
external routine. 
The optional parameterList specifies zero or more argument names and data types.
If the routine returns a value, returnType specifies the return value's data type.
The callingConvention for a DLL call can be PASCAL, STDCALL, or CDECL.
The linkName argument is the name of the routine as it is defined in the DLL. It is dependent on the calling 
convention and is case sensitive in Windows 95 and Windows NT. 
Windows searches for the DLL libraryName in this order:
1. the current directory
2. the Windows directory (folder). You can use the FileSystem procedure windowsDir to find the path to this 

directory (typically, it's C:\WINDOWS).
3. the Windows system directory (folder). You can use the FileSystem procedure windowsSystemDir to get the 

path to this directory (typically, it's C:\WINDOWS\SYSTEM).
4. the directories listed in the PATH environment variable. Refer to your DOS documentation for more 

information.
5. the list of directories mapped in a network
Advanced Windows programmers: If you're calling a routine from a previously loaded DLL (e.g., a DLL loaded
automatically by Windows), you can use libraryName to specify the DLL's module name instead of the filename. 
Consult your programming language's documentation for more information about DLL module names.
A DLL uses block can contain one or more routineNames, and each routineName can have its own 
parameterList. A parameterList specifies zero or more argument names and data types. If the routine returns a 
value, the returnType specifies the return value's data type. ObjectPAL only checks for exact matches in your 
specifications between these arguments and those arguments declared in the routine.
The routines must fit one of the following descriptions:
· Routines written in assembly language, C, C++, or Pascal and stored in a Windows DLL. A DLL is a library of 

executable code or data that you can link to your application at runtime. Using DLLs, you can add features and
functions without modifying your compiled ObjectPAL application.

· Routines from the Windows API (Application Programming Interface). The Windows system is made up of 
several DLL’s. You can use Paradox to access routines within the DLLs that comprise the Windows system.

Declare a uses block in an object's Uses window, and within that window, declare one uses block for each DLL 
you want to use. You don't have to declare every routine the DLL contains, just the ones you want to use. Once 
declared, routines are available to all methods attached to that object, to all objects that object contains, and to 
forms or libraries that reference the declarations through an ObjectPAL uses block.
In a uses block, declare the data types of parameters and return types using the following keywords:



Data type Uses keyword ObjectPAL type C/C++ type Pascal 
type

16-bit integer CWORD SmallInt short (short int) Integer
32-bit integer CLONG LongInt long (long int) Longint
Natural integer (*) CLONG (*) LongInt (*) int Integer
64-bit floating-point number CDOUBLE Number double Double
80-bit floating-point number CLONGDOUBLE Number long double

Extended
String pointer CPTR String char * Pchar
Binary or graphic data CHANDLE Binary, Graphic HANDLE (Windows) Thandle

The size of a natural integer is dependent upon the compiler you use to create your DLL. With Windows 95 and 
Windows NT, natural integers in C and Pascal are 32-bit integers, and map into CLONG. If your compiler uses 16-
bit integers and then the arguments map into CWORD, and you must declare the arguments as CWORD.
The ObjectPAL keywords CWORD, CLONG, CDOUBLE, CLONGDOUBLE, CPTR, and CHANDLE are valid only within a
DLL uses block. Don't use them anywhere else. They are used by Corel Paradox to convert between the more 
complex (and powerful) ObjectPAL data types and the corresponding data types in C or Pascal.

 Note
· Do not modify any passed CPTR. If you change the contents of a string passed as a CPTR, the string must not 

grow beyond the size it had when it was passed to your routine.
 Examples

{button ,AL(`BLE_OVERVIEW;BLE_USES;',0,"Defaultoverview",)} Related Topics



DLL uses block examples
Example1          Declaring variables for use as arguments
Example2          Using existing routines
Example3          Using ObjectPAL to call a function from the Windows API



Calling external routines
Previous versions of Windows (3.1 and earlier) and Corel Paradox used the Pascal calling convention (PASCAL). 
Windows 95 and Windows NT use a different calling convention. Corel Paradox supports this calling convention, 
STDCALL, PASCAL, and the C calling convention, CDECL. Corel Paradox defaults to STDCALL.
Convention Push order Restore stack Link name Used by
PASCAL Left first Callee Uppercase Pascal
CDECL Right first Caller ‘_’ prepended C/C++
STDCALL Right first Callee No change Windows 95, Windows NT

When you declare routines to be called from a dynamic link library (DLL), you must match the calling convention 
that the routines were declared with. All calls to functions in the Windows 95 Application Programming Interface 
(API) or the Windows NT API are case-sensitive and require the use of the STDCALL calling convention.
Calls to functions written in Pascal should be declared with the PASCAL calling convention, and calls to C 
functions should be declared CDECL, unless the routines were explicitly declared to use a different convention 
when the DLL was compiled. For example, a C routine might be declared __stdcall, in which case you would 
declare it STDCALL in the uses block.
If you do not include a link name in the declaration, the routine name will be used in the call with any changes 
listed in the Link name column in the table above.
When passing a value to a C procedure, the ObjectPAL variable must be declared and typed explicitly. However, 
AnyType is not allowed.
All C and C++ functions that you want ObjectPAL to call must be exported in the .DEF file, or tagged with _export
in the function declaration.



Using C++
Calling dynamic link library (DLL) modules written in C++ requires either the use of a C linkage specification or 
the mangled name in the uses block.
To specify a C++ function with C linkage, the modules must be in one of the following forms:
   extern "C" declaration
   extern "C" { declarations }

For example, if a C module contains these functions:
         char *SCopy(char*, char*);
         void ClearScreen(void);

they must be declared in a C++ module in one of the following ways to have a C linkage.
         extern "C" char *SCopy(char*, char*);
         extern "C" void ClearScreen(void);

or
         extern "C" {
         char *SCopy(char*, char*);
         void ClearScreen(void);
         }

Otherwise, you can specify the mangled name of the routine to call. The mangled name can be found by using a 
dumping file on the .OBJ file produced by your compiler.
For example, if a Borland C++ module (named MyLib) contains the function
   int __cdecl MyFunction(int arg)

then you can use this uses block to declare the DLL routine.
   uses MyLib
      MyFunction(CLONG arg) CLONG  [CDECL "@MyFunction$qi"]
   enduses
All C or C++ functions that you want to call from ObjectPAL must be exported, either by using a .DEF file or the 
_export modifier. See your C or C++ compiler documentation for more information on exporting functions when 
creating DLLs.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_USES;',0,"Defaultoverview",)} Related Topics



Passing by value
The following table presents the syntax you should use when passing various data types by value to a C 
procedure. ObjectPAL passes and returns floating-point values by value, as required by the Borland C++ 
compiler. Other C compilers may have different requirements. To ensure compatibility with any C compiler, pass 
values by pointer.
It is assumed that these ObjectPAL variables have been declared: si SmallInt, li LongInt, nu Number, st String, gr 
Graphic, and bi Binary
C data type C syntax In uses block ObjectPAL call
long double void __stdcall cproc(long double value) cproc(numvar CLONGDOUBLE)cproc(si)

cproc(li)
cproc(nu)

double void __stdcall cproc(double value) cproc(numvar CDOUBLE) cproc(si)
cproc(li)
cproc(nu)

long int void __stdcall cproc(long int value) cproc(longvar CLONG) cproc(si)
cproc(li)

short int void __stdcall cproc(short int value) cproc(shortvar CWORD) cproc(si)
int void __stdcall cproc(int value) cproc(longvar CWORD) cproc(si)
(String) void __stdcall cproc(char * value) cproc(stringvar CPTR) cproc(st)
(Graphic) void __stdcall cproc(HANDLE value) cproc(bitmapvar CHANDLE) cproc(gr)
(Binary) void __stdcall cproc(HANDLE value) cproc(binaryvar CHANDLE) cproc(bi)

{button ,AL(`BLE_OVERVIEW;BLE_USES;',0,"Defaultoverview",)} Related Topics



Passing by pointer
When ObjectPAL passes information to a C procedure that takes pointers to information, the pointer points 
directly to the corresponding value in the ObjectPAL object. Variables in ObjectPAL are treated as objects 
internally. For example, if you want an int * and you pass a LongInt, you will get a pointer that points directly to 
the integer value inside the LongInt object. You can then modify the value of the LongInt using the pointer in 
your DLL. This could, however, corrupt ObjectPAL by overwriting memory (writing past the bounds of the 
memory pointer). Use caution when using pointers.
Use pointers to
· change the information (this should be done by function return values if possible)
· Pass floating-point values to C procedures that were not compiled using the Borland C compiler. Different C 

compilers use different conventions for passing and returning floating-point values (double and long double). 
The only way to pass compiler-independent information is by pointer.

The following table presents the syntax you should use when passing various data types by pointer to a C 
procedure, with the assumption that these ObjectPAL variables have been declared: si SmallInt, li LongInt, nu 
Number, st String, gr Graphic, and bi Binary. 
C data type C syntax In USES block ObjectPAL call
long double * void __stdcall cproc(long double * value) cproc(numvar CPTR) cproc(nu)
long int * void __stdcall cproc(long int * value) cproc(longvar CPTR) cproc(li)
int * void __stdcall cproc(int * value) cproc(longvar CPTR) cproc(li)
short int * void __stdcall cproc(short int * value) cproc(shortvar CPTR) cproc(si)
char * void __stdcall cproc(char * value) cproc(strvar CPTR) cproc(st)

{button ,AL(`BLE_OVERVIEW;BLE_USES;',0,"Defaultoverview",)} Related Topics



Returning values
The following table presents the syntax for data type value that have been returned from a C procedure. The 
assumption is that these ObjectPAL variables have been declared: si SmallInt, li LongInt, nu Number, and st 
String
C data type C syntax In USES block ObjectPAL call
long double long double __stdcall cproc(void) cproc() CLONGDOUBLE nu = cproc()
double double __stdcall cproc(void) cproc() CDOUBLE nu = cproc()
long int long int __stdcall cproc(void) cproc() CLONG li = cproc()
short int short int __stdcall cproc(void) cproc() CWORD si = cproc()
char * char * __stdcall cproc(void) cproc() CPTR st = cproc()

{button ,AL(`BLE_OVERVIEW;BLE_USES;',0,"Defaultoverview",)} Related Topics



Notes on Graphic and Binary data (CHANDLE)
Graphic and Binary data are passed via CHANDLE a handle to Windows memory. In C use the HANDLE typedef 
by including it inside code like this:
void __stdcall cproc(HANDLE value)
{
   // declare ptr to point to Global Memory Block
   huge *ptr = (huge *) GlobalLock(value);

   // ... make use of ptr here
   // ... DO NOT use ‘GlobalFree(value);’

   GlobalUnlock(value);
}

For a Binary variable, HANDLE is a handle to memory that holds the information in the binary BLOB. There is no 
header information. As with any strings you pass, you can read or modify the data, but you cannot change its 
size.
For a Graphic variable, HANDLE is a Windows bitmap handle that you can use as you would any other bitmap 
HANDLE.

{button ,AL(`BLE_OVERVIEW;BLE_USES;',0,"Defaultoverview",)} Related Topics



DLL uses block example 1
The following example references a dynamic link library (DLL) named MYSTUFF.DLL. To use a DLL routine in a 
method, declare variables to use as arguments and then call the routine. For example,
; this goes in an object's Uses window
uses myStuff ; reads routines from MYSTUFF.DLL
   doSomething(thisNum CLONG, thatNum CLONG) CDOUBLE ; declare a routine
endUses

; this modifies an object's mouseUp method
method mouseUp(var eventInfo MouseEvent)
var
   thisNum, thatNum LongInt ; declare variables to pass to the routine
   myResult Number
endVar

thisNum = 3155111
thatNum = 5535345
myResult = doSomething(thisNum, thatNum) ; call the routine, return a result
endMethod

In this example, notice how the variables in the method are declared as LongInt and Number, and the arguments
in the uses block are correspondingly declared as CLONG and CDOUBLE.



DLL uses block example 2
The following example uses routines from MINMAX.DLL, written using a 32-bit Pascal compiler. The code for the 
dynamic link library (DLL) is as follows:
library MinMax;

function Min(x, y: integer): integer; stdcall; export;
begin
   if x < y then
      result := x
   else
      result := y;
end;

function Max(x, y: integer): integer; stdcall; export;
begin
   if x > y then
      result := x
   else
      result := y;
end;

exports
   Min, Max;

begin
end.

The following ObjectPAL code uses the routines in the DLL. The code for the Uses window appears first, followed 
by the code that modifies a button's pushButton method:
; the following goes in a button's Uses window
uses
   MinMax ; load routines from MINMAX.DLL
   Min (x CLONG, y CLONG) CLONG  [STDCALL]
   Max (x CLONG, y CLONG) CLONG  [STDCALL]
endUses

The following code modifies a button's built-in pushButton method:
method pushButton(var eventInfo Event)
var
   x, y, z  LongInt 
endVar
   x = 2
   y = 6
   z = Min(x, y)          ; call Min from the DLL
   msgInfo("Min", z) 
   z = Max(x, y)          ; call Max from the DLL
   msgInfo("Max", z)
endMethod



DLL uses block example 3
The following example shows how to use ObjectPAL to call a function from the Windows application programming
interface (API). It calls the Windows API function MessageBox to display a dialog box.
The following code is attached to a button's Uses window:
Uses USER32    ; The MessageBox function is in
               ; the Windows system DLL USER32.DLL
               ; usually found in C:\WINDOWS\SYSTEM
   MessageBox(hWnd CHANDLE, lpText CPTR, lpCaption CPTR, wType CLONG) CLONG
endUses

The following code is attached to a button's built-in pushButton method. It calls MessageBox, passing it zero for
the window handle ensuring that it’s not connected to any particular window. The code also passes text for the 
message and the caption and another zero to signify an OK-style message box. The return value is ignored.
method pushButton(var eventInfo event)
   MessageBox(0,
              "Your message here",
              "Your caption here",
              0)
endMethod

For more information on the parameters for this and other Windows API function calls, see the Windows API 
reference .



var keyword
Declares variables.

Syntax
var
   [ varName [ , varName ] * varType ]*
endVar

Description
The var...endVar block declares variables by associating a variable name varName with a data type varType. 
When you declare more than one variable of the same type on the same line, use commas to separate the 
names.
A variable's scope depends on the block in which it is declared.

 Note
· You declare variables in a var...endVar block in ObjectPAL code or in the Var window on the Methods page of 

the Object Explorer.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_DECLARATION;',0,"Defaultoverview",)} Related Topics



var example
The following example demonstrates how the var keyword declares a variable.
var
   myChars, xx String
   myNum Number
   orders, sales, parts TCursor
   proteus AnyType
   myBox UIObject
   a, b Array[5] SmallInt
   myOtherNum Number
endVar



while keyword
Repeats a sequence of statements as long as a specified condition is True.

Syntax
while Condition
   [ Statements ]
endWhile

Description
while evaluates the logical expression Condition. If Condition is False, the Statements are not executed. If the 
Condition is True, the Statements between Condition and endWhile are executed in sequence. Control then 
returns to the top of the loop, and the Condition is evaluated again. The steps are repeated until the Condition is 
False, at which point the loop is exited and control advances to the next statement after endWhile.
You can use loop within the body of the while variable to force control back to the top of the loop, skipping the 
statements between loop and endWhile. You can also use quitLoop to exit the loop or nest while statements 
to any level.
while and for are used for different reasons. Use for to execute a sequence of statements a known number of 
times. Use while to execute a sequence of statements an arbitrary number of times.
 Example

{button ,AL(`BLE_OVERVIEW;BLE_CONTROL_STRUCTURE;',0,"Defaultoverview",)} Related Topics



while example
The following example creates an array of last names.
var
   myNames TCursor
   namesArray Array[] String
   n SmallInt
endVar

myNames.open("names.db")
namesArray.grow(1)
namesArray[1] = myNames."Last name"
n=1

while myNames.nextRecord()
   n = n + 1
   namesArray.grow(1)
   namesArray[n] = myNames."Last name"
endWhile



Keywords
The keywords in this list cannot be used to name objects, variables, arrays, methods, or procedures. The case of 
the words is irrelevant; they cannot be used in any combination of uppercase or lowercase.
Generally, you should not use object type names, names of basic language elements, names of methods and 
procedures in the run-time library, or names of built-in event methods.
Keywords

active
and
array
as
case
caseInsensitive
const
container
create
Database
descending
disableDefault
doDefault
DynArray
else
enableDefault
endConst
endCreate
endFor
endForEach
endIf
endIndex
endMethod
endProc
endQuery
endRecord
endScan
endSort
endSwitch
endSwitchMenu

endTry
endType
endUses
endVar
endWhile
for
forEach
from
if
iif
in
index
indexStruct
is
key
lastMouseClicked
lastMouseRightClicked
like
loop
maintained
method
not
ObjectPAL
of
on
onFail
or
otherwise
passEvent
primary

proc
query
quitLoop
record
refIntStruct
retry
return
scan
secStruct
self
sort
step
struct
subject
switch
switchMenu
tag
then
to
try
type
unique
uses
var
where
while
with
without

{button ,AL(`BLE_OVERVIEW;BLE_OVERVIEW;OPAL_METH_SYENUMRTLCLASSNAMES;OPAL_METH_SYE
NUMRTLCONSTANTS;OPAL_METH_SYENUMRTLMETHODS;',0,"Defaultoverview",)} Related Topics



Built-in object variables
ObjectPAL provides built-in object variables that you can use to refer to UIObjects. These variables are 
particularly useful for creating generalized code. For example, when the following statement executes, it sets the
color of the active object (the object that has focus). You don't have to specify the object by name.
active.Color = Blue

The built-in object variables are
active
container
lastMouseClicked
lastMouseRightClicked
self
subject

{button ,AL(`BLE_OVERVIEW;BLE_OVERVIEW;',0,"Defaultoverview",)} Related Topics



Properties and property values
Click one of the following properties for more information:

Alignment KeyField
Arrived LabelText
AttachedHeader LeftBorder (read-only)
AutoAppend Line.Color
AvgCharSize Line.LineStyle
BlankRecord Line.Thickness
Border LineEnds
BottomBorder (read-only) LineSpacing
Breakable LineSqueeze
ButtonType LineStyle
ByRows LineType
CalculatedField List.Count
Caption List.Selection
CenterLabel List.Value
CheckedValue Locked
Class LookupTable
Color LookupType
Columnar Magnification
ColumnPosition Manager
ColumnWidth Margins.Bottom
CompleteDisplay Margins.Left
ContainerName Margins.Right
ControlMenu Margins.Top
CurrentColumn MarkerPos
CurrentPage MaximizeButton
CurrentRecordMarker.Color Maximum
CurrentRecordMarker.LineStyle MemoView
CurrentRecordMarker.Show MinimizeButton
CurrentRow Minimum
CursorColumn Modal
CursorLine MouseActivate
CursorPos Name
DataSource NCols
Default Next
DefineGroup NextTabStop
DeleteColumn NoEcho
Deleted NRecords
DeleteWhenEmpty NRows
Design.ContainObjects NumberPages
Design.PinHorizontal Orphan/

Windo
wopal
_prop_
orpha
nwido
w

Design.PinVertical OtherBandName
Design.Selectable OverStrike



Design.SizeToFit Owner
DesignModified PageSize
DesignSizing PageTiling
DesktopForm Pattern.Color
DialogForm Pattern.Style
DialogFrame PersistView
DisplayType Picture (enhanced for 5.0)
DrillDown PinHorizontal
Editing PinVertical
Enabled PositionalOrder
End Position
FieldName PrecedePageHeader
FieldNo Prev
FieldRights PrinterDocument
FieldSize PrintOn1stPage
FieldSqueeze ProgID
FieldType Range
FieldUnits2 RasterOperation
FieldValid Readonly
FieldView RecNo
First Refresh
FirstRow RefreshOption
FitHeight RemoveGroupRepeats
FitWidth RepeatHeader
FlatLook Required
FlyAway RightBorder (read-only)
Focus RowHeight
Font.Color RowNo
Font.Scriptopal_prop_font.script Scroll
Font.Size SeeMouseMove
Font.Style SelectedText
Font.Typeface Select
Format.DateFormat SeqNo
Format.LogicalFormat ShowAllColumns
Format.NumberFormat ShowGrid
Format.TimeFormat Shrinkable
Format.TimeStampFormat Size
Frame.Color SizeToFit
Frame.Style SnapToGrid
Frame.Thickness SortOrder
FrameObjects SpecialField
FullName SquareTabs
FullSize StandardMenu
Grid.Color StandardToolbar
Grid.GridStyle Start
Grid.RecordDivider StartPageNumbers
GridLines.Color Style
GridLines.ColumnLines SummaryModifier
GridLines.HeadingLines TabHeight



GridLines.LineStyle TableName
GridLines.QueryLook TabsAcross
GridLines.RowLines TabsOnTop
GridLines.Spacing TabStop
GridValue Text
GroupObjects ThickFrame
GroupRecords Thickness
Header Title
HeadingHeight TopBorder (read-only)
Headings TopLine
HorizontalScrollBar Touched
HTMLAction Translucent
HTMLFormParams UncheckedValue
HTMLMethod Value
InactiveColor VerticalScrollBar
IncludeAllData Visible
IndexField WideScrollBar
InsertColumn Width
InsertField WordWrap
Inserting Xseparation
Invisible Yseparation
Justification

{button ,AL(`OBJECT_PROPERTIES;',0,"Defaultoverview",)} Related Topics



Alignment property
Data type
SmallInt

Description
Specifies the position of text relative to a field or text object.

Values
TextAlignCenter, TextAlignJustify, TextAlignLeft, TextAlignRight



Arrived property
Data type
Logical

Description
Specifies whether the focus has arrived at the object.

Values
True, False



AttachedHeader property
Data type
Logical

Description
Determines whether a table frame's header is attached to the table frame. If the AttachedHeader property is set 
to True, the header is attached. If this property is set to False, the header is not attached and selection handles 
surround the header object.

Values
True, False



AutoAppend property
Data type
Logical

Description
Determines whether Corel Paradox insets a blank record when you move the cursor past then end of the table 
during editing. If AutoAppend is set to True (default), Corel Paradox inserts a blank record. If AutoAppend is set to
False, Corel Paradox does not insert a blank record. 
Setting an object's AutoAppend property has the same effect as right-clicking a table in the Data Model dialog 
box and choosing Auto-Append from its menu. This property is valid for an object that is bound to a table in the 
data model.

Values
True, False



AvgCharSize property
Data type
Point

Description
Specifies the average width and height of a character in the current font. AvgCharSize is a read-only property.

Values
>0



BlankRecord property
Data type
Logical

Description
Reports whether a record is blank.

Values
True, False



Border property
Data type
Logical

Description
Reports whether a form's window has a border.

Values
True, False



BottomBorder property
Data type
LongInt

Description
Returns the size of an object's bottom border (in twips). You cannot embed another object within an object's 
border.

Values
N/A



Breakable property
Data type
Logical

Description
Specifies whether an object can be divided across page breaks in a report. The breakable property is read-only 
for elliptical lines.

Values
True, False



ButtonType property
Data type
SmallInt

Description
Specifies a button's display type.

Values
CheckBoxType, PushButtonType, RadioButtonType



ByRows property
Data type
Logical

Description
Determines the layout of a multi-record object in a form or report. If the ByRows property is set to True, record 
layout is top-down, then left-right. If the ByRows property is set to False, record layout is left-right, then top-
down.

Values
True, False



CalculatedField property
Data type
Logical

Description
Specifies whether a field is a calculated field.

Values
True, False



Caption property
Data type
Logical

Description
Reports whether a form has a caption or Title Bar.

Values
True, False



CenterLabel property
Data type
Logical

Description
Specifies whether a label is centered on a button.

Values
True, False



CheckedValue property
Data type
String

Description
Specifies the string that the check box or radio button writes to its parent field object when it is chosen.

Values
N/A



Class property
Data type
String

Description
Returns a UIObject's class.

Values
Band, Bitmap, Box, Button, Cell, Chart, Crosstab, EditRegion, Ellipse, Field, Form, FormData, Group, Header, Line, 
List, Multi-record, OLE, Page, Record, Report, ReportPrint, TableFrame, Text



Color property
Data type
LongInt

Description
Specifies an object's display color.

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Columnar property
Data type
Logical

Description
Determines whether a multi-record object displays it records in a fixed grid.
When the Columnar property is set to True, each record expands or contracts when you print or preview the 
report. This means that the multi-record object does not display the records in a fixed-size grid. When the 
Columnar property is set to False, the multi-record object displays its records in a fixed grid. You can fit more 
records on a single page when the Columnar property is set to False.
The Columnar property is valid for multi-record objects in Report Design windows. It is not valid for objects in 
forms.

Values
True, False



ColumnPosition property
Data type
SmallInt

Description
Specifies a new position (starting with 1) for the active column in a table frame.

Values
>0



ColumnWidth property
Data type
LongInt

Description
Specifies the width (in twips) of the active column in a table frame.

Values
>0



CompleteDisplay property
Data type
Logical

Description
Specifies whether to display the complete contents in a field.

Values
True, False



ContainerName property
Data type
String

Description
Reports the name of an object's container.

Values
N/A



ControlMenu property
Data type
Logical

Description
 Specifies whether a form has a Control menu. If the ControlMenu property is set to True (default), the form has a
control menu; otherwise, it does not. ControlMenu is a read/write property.

Values
True, False



CurrentColumn property
Data type
SmallInt

Description
Determines the current column in crosstabs, multi-record objects, and table frames at run time. For example, 
because all cells in a crosstab have the same name, it is impossible to address a single cell. You can use 
CurrentColumn and CurrentRow to move to a particular cell you and have your code address the active object, its
container, and so on.
CurrentColumn also allows you to control column rotation and sizing in table frames at design time. Setting this 
property in the designer does not necessarily affect the visual appearance. Table frames do not have to be 
selected.

Values
>0



CurrentPage property
Data type
String

Description
Returns the active page of the form or notebook, including container objects.



CurrentRecordMarker.Color property
Data type
LongInt

Description
Specifies the display color of the active record in a table view.

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



CurrentRecordMarker.LineStyle property
Data type
SmallInt

Description
Specifies the style of the line that marks the active record in a table view.

Values
DashDotDotLine, DashDotLine, DashedLine, DottedLine, NoLine, SolidLine



CurrentRecordMarker.Show property
Data type
Logical

Description
Specifies whether to highlight the active record in a table view.

Values
True, False



CurrentRow property
Data type
SmallInt

Description
Determines the active row in crosstabs, multi-record objects, and table frames at run time. For example, because
all cells in a crosstab have the same name, it is impossible to address a single cell. You can use CurrentColumn 
and CurrentRow to move to a particular cell you and have your code address the active object, its container, and 
so on.
CurrentRow also allows you to control row rotation and sizing in table frames at design time. Setting this property
in the designer does not necessarily affect the visual appearance. Table frames do not have to be selected.

Values
>0



CursorColumn property
Data type
LongInt

Description
Specifies the horizontal position of the cursor in a field object, where position 0 lies to the left of the first 
character.

Values
N/A



CursorLine property
Data type
LongInt

Description
Specifies the vertical position of the cursor in a field object, where the first line is line 1.

Values
N/A



CursorPos property
Data type
LongInt

Description
Specifies the position of the insertion point in a field object, relative to the first character in the field. Counting 
begins with 0, the position to the left of the first character.

Values
N/A



DataSource property
Data type
String

Description
Specifies the name of the table that supplies the items in a list. DataSource fills a list with values from a 
specified field or column in a table.

Values
N/A



Default property
Data type
String

Description
Specifies a field's default value.

Values
N/A



DefineGroup property
Data type
Logical

Description
Specifies whether a report band defines a group.

Values
True, False



DeleteColumn property
Data type
SmallInt

Description
Specifies the column to delete from a table frame. DeleteColumn is a write-only property.

Values
>0



Deleted property
Data type
Logical

Description
Reports whether a record in a dBASE table has been deleted.

Values
True, False



DeleteWhenEmpty property
Data type
Logical

Description
Determines whether a field is empty and can be deleted from the report. If the DeleteWhenEmpty property is set
to True, the field, including all labels, buttons, and attributes, is deleted.

Values
True, False



Design.ContainObjects property
Data type
Logical

Description
Specifies whether an object can contain other objects.

Values
True, False



Design.PinHorizontal property
Data type
Logical

Description
Specifies whether to prevent an object from moving horizontally.

Values
True, False



Design.PinVertical property
Data type
Logical

Description
Specifies whether to prevent an object from moving vertically.

Values
True, False



Design.Selectable property
Data type
Logical

Description
Specifies whether an object can be selected. The Design.Selectable property is valid for UIObjects in forms and 
reports in design windows and at runtime. When the Design.Selectable property is set to True, you can select the
object, and selection handles appear around the object. When the Design.Selectable property is set to False, you 
cannot select the object, so there are no handles. You can still right-click the object to view its menu.

Values
True, False



Design.SizeToFit property
Data type
Logical

Description
Specifies whether the object resizes to accommodate its contents.

Values
True, False



DesignModified property
Data type
Logical

Description
Specifies whether a form or report has been modified. Corel Paradox sets the DesignModified property to True 
when the form or report's design is changed. When you close a form or report and the DesignModified property is
set to True, Corel Paradox prompts you to save your changes. When the DesignModified property is set to False, 
Corel Paradox closes the form or report, and all changes are lost.

Values
True, False



DesignSizing property
Data type
SmallInt

Description
Specifies design time sizing for a text box.

Values
TextFixedSize, TextGrowOnly, TextSizeToFit



DesktopForm property
Data type
Logical

Description
Specifies whether a form's menus are used by other forms on the desktop.

Values
True, False



DialogForm property
Data type
Logical

Description
Specifies whether a form opens as a dialog box.

Values
True, False



DialogFrame property
Data type
Logical

Description
Specifies whether a form has a conventional dialog box frame. When the DialogFrame property is set to True, and
when DialogForm and Border are also True, the form has a conventional dialog box frame.

Values
True, False



DisplayType property
Data type
SmallInt

Description
Returns a field object's display type.

Values
CheckBoxField, ComboField, EditField, LabeledField, ListField, RadioButtonField



DrillDown property
Data type
Integer

Description
Specifies the detail included in a report that is output to an HTML template file. DrillDown is a property of a 
report group band and is specific to each group band. Setting this property generates a BDE_INDEX tag in the 
HTML template file.
Value Description
0 Creates a single HTML template file for the entire report
1 Creates separate HTML template files for each group in the drilldown
2 Creates separate HTML template files for each nested group in the drilldown
3 Create separate HTML template files for each item in the drilldown

Values
0, 1, 2, 3



Editing property
Data type
Logical

Description
Specifies whether an object's table is in Edit mode. Editing returns True if the table associated with an object is in
Edit mode. For field objects, Editing specifies whether the field is active and using a temporary edit object (e.g., 
field view). Editing is valid for objects including forms bound to tables.
When you put a form in Edit mode (e.g., by pressing F9 or clicking the Edit Data button on the Toolbar), all 
associated tables are also put in Edit mode.

Values
True, False



Enabled property
Data type
Logical

Description
Specifies whether a UI object is enabled (true) or disabled (false). When the Enabled property is set to False, the 
UI object is disabled and its text is grayed. The object does not responds to mouse clicks and you cannot move 
to it using the TAB key. All objects contained by a disabled UI object are also disabled or set to FALSE.

Values
True, False



End property
Data type
Point

Description
Specifies the coordinates of the end of a line. To specify the coordinates of the start of a line, see the Start 
property.

Values
N/A



FieldName property
Data type
String

Description
Specifies the name of the field to which a field object or list is bound.
In addition to setting a FieldName value like Quant or Bookord->Quant or [Bookord.Quant], you can also specify 
sum(Bookord.Quant), to allow aggregated values to be placed. This property's return value now a string just like 
you see when you click the Copy Field button in the Define Field dialog box.
To use these new features, do either of the following:
· Change code that uses expressions like active.TableName + "." + active.FieldName to 
active.FieldName.

· Use the following types of calculations:
actField = active.FieldName
x = actField.SubStr( actField.search( "." ) + 1, actField.Size() )

Values
N/A



FieldNo property
Data type
SmallInt

Description
Reports a field's position in a table, where the first field is field 1.

Values
N/A



FieldRights property
Data type
String

Description
Reports the user's field rights.

Values
ReadOnly, ReadWrite, All



FieldSize property
Data type
SmallInt

Description
Specifies the size of alphanumeric and dBASE number fields.

Values
N/A



FieldSqueeze property
Data type
Logical

Description
Specifies whether to push or pull an embedded object so that text will be positioned properly within it at run 
time. FieldSqueeze is available only for text objects on reports.

Values
True/False



FieldType property
Data type
String

Description
Specifies the a field's data type.

Values
N/A



FieldUnits2 property
Data type
SmallInt

Description
Specifies the number of decimal places in a dBASE number field. For a Corel Paradox table (and any other driver 
or field type that does not require field unit specifications), FielsUnits2 is 0.

Values
N/A



FieldValid property
Data type
Logical

Description
Reports whether a field passes its own value checks.

Values
True, False



FieldView property
Data type
Logical

Description
Reports whether a field is in field view.

Values
True, False



First property
Data type
String

Description
Returns the name of the first child object in a container.

Values
N/A



FirstRow property
Data type
String

Description
FirstRow returns the name of the first record object in a table frame or multi-record object. FirstRow is a read-
only property.

Values
N/A



FitHeight property
Data type
Logical

Description
Specifies whether an edit region expands vertically to accommodate text.

Values
True, False



FitWidth property
Data type
Logical

Description
Specifies whether an edit region or crosstab cell expands horizontally to accommodate text.

Values
True, False



FlatLook property
Data type
Logical

Description
Specifies whether a field object or button appears to be 3-Dimensional, or flat.

Values
True, False



FlyAway property
Data type
Logical

Description
Reports whether a record has moved to its sorted position in a table.

Values
True, False



Focus property
Data type
Logical

Description
Reports whether an object's built-in setFocus method has been called. The Focus property is set to False when 
the object's built-in removeFocus method is called.

Values
True, False



Font.Color property
Data type
LongInt

Description
Specifies the color of characters displayed in a field or text object.

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Font.Script property
Data type
String

Description
The language script or character set of the selected font.

Values
Varies according to individual system fonts.



Font.Size property
Data type
SmallInt

Description
Specifies (in printer's points) the size of characters in a field or text object.

Values
>0



Font.Style property
Data type
SmallInt

Description
Specifies the style of characters displayed in a field or text object.

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



Font.Typeface property
Data type
String

Description
Specifies the typeface of characters displayed in a field or text object.

Values
Varies according to individual system attributes.



Format.DateFormat property
Data type
String

Description
Specifies the format for date values.

Values
Format specification



Format.LogicalFormat property
Data type
String

Description
Specifies the format for logical values.

Values
Format specification



Format.NumberFormat property
Data type
String

Description
Specifies the format for number values.

Values
Format specification



Format.TimeFormat property
Data type
N/A

Description
Specifies the format for time values.

Values
Format specification



Format.TimeStampFormat property
Data type
String

Description
Specifies the format for time stamps.

Values
Format specification



Frame.Color property
Data type
LongInt

Description
Specifies the color of an object's frame.

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Frame.Style property
Data type
SmallInt

Description
Specifies the style of an object's frame.

Values
3DWindows, 3DWindowsGroup, DashDotDotFrame, DashDotFrame, DashedFrame, DottedFrame, DoubleFrame, 
Inside3DFrame, NoFrame, Outside3DFrame, ShadowFrame, SolidFrame, WideInsideDoubleFrame, 
WideOutsideDoubleFrame



Frame.Thickness property
Data type
SmallInt

Description
Specifies the thickness of an object's frame in pixels.

Values
N/A



FrameObjects property
Data type
Logical

Description
Specifies whether a dotted frame is displayed around objects in the designers. If the FrameObjects property is 
set to, it creates a 1 pixel region in which embedding cannot occur.

Values
True, False



FullName property
Data type
String

Description
Returns the full name, including containership path, of form object.

Values
N/A



FullSize property
Data type
Point

Description
Specifies the full size of a scrolling object.

Values
N/A



Grid.Color property
Data type
LongInt

Description
Specifies the color of the grid in a table frame.

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Grid.GridStyle property
Data type
SmallInt

Description
Specifies the style of the gridlines in a table frame.

Values
tf3D, tfDoubleLine, tfNoGrid, tfSingleLine, tfTripleLine



Grid.RecordDivider property
Data type
Logical

Description
Specifies whether dividing lines are displayed between records in a table frame.

Values
True, False



GridLines.Color property
Data type
LongInt

Description
Specifies the color of gridlines in a Table window.

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



GridLines.ColumnLines property
Data type
Logical

Description
Specifies whether column lines are displayed in a Table window.

Values
True, False



GridLines.HeadingLines property
Data type
Logical

Description
Specifies whether heading lines are displayed in a Table window.

Values
True, False



GridLines.LineStyle property
Data type
SmallInt

Description
Specifies the style of gridlines in a Table window.

Values
DashDotDotLine, DashDotLine, DashedLine, DottedLine, NoLine, SolidLine



GridLines.QueryLook property
Data type
Logical

Description
Specifies whether a Table window displays gridlines in the same style as a Query Editor window.

Values
True, False



GridLines.RowLines property
Data type
Logical

Description
Specifies whether to display gridlines in a Table window.

Values
True, False



GridLines.Spacing property
Data type
SmallInt

Description
Specifies the spacing between gridlines in a Table window.

Values
TextSingleSpacing, TextDoubleSpacing, TextTripleSpacing



GridValue property
Data type
Point

Description
Determines the minimum grid interval setting in twips. Only the UI can control the number of grid intervals, 
displayed as major or minor, when the ShowGrid option is enabled. However, GridValue gives more control of the
grid's granularity.

Values
>0



GroupObjects property
Data type
Logical

Description
Specifies whether to group selected objects in forms and reports. You can also group and ungroup selected 
objects in forms and reports using the Group and Ungroup menu items. GroupObjects is a write-only property.

Values
True, False



GroupRecords property
Data type
SmallInt

Description
Determines the number of records grouped together in a report.

Values
>0



Header property
Data type
String

Description
Returns the name of a table frame's header object (if it has one). Header is a read-only property

Values
N/A



HeadingHeight property
Data type
LongInt

Description
Determines the height (in twips) of the heading in a Table window.

Values
>0



Headings property
Data type
String

Description
Specifies which report headings to print.

Values
GroupOnly, PageAndGroup



HTMLAction property
Data type
String

Description
Specifies the value of a <Form> tag's ACTION parameter in the HTML template file. HTMLAction defaults to the 
form object’s noise name (e.g., #Form1), and is used for HTML forms only.

Values
N/A



HTMLFormParams property
Data type
Logical

Description
Specifies whether a form's fields are INPUT fields (with the BDE_PARAM tag), or readOnly fields. If any fields on 
the form are input fields, this property is set to True. You can set individual fields to readOnly as needed.

Values
True, False



HTMLMethod property
Data type
String

Description
Specifies the value of the <Form> tag's METHOD parameter in the HTML template file. This property defaults to 
POST and is used for HTML forms only.

Values
POST, GET



HorizontalScrollBar property
Data type
Logical

Description
Specifies whether a table frame has a horizontal scroll bar.

Values
True, False



InactiveColor property
Data type
LongInt

Description
Specifies the color of the notebook page when it is not selected. 

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, any user-defined color. 



IncludeAllData property
Data type
Logical

Description
Specifies whether all data in a table is included. 

Values
True, False



IndexField property
Data type
Logical

Description
Reports whether a field object is bound to an indexed field in a table.

Values
True, False



InsertColumn property
Data type
SmallInt

Description
Specifies where to insert a column in a table frame. InsertColumn is a write-only property.

Values
>0



InsertField property
Data type
Point

Description
Inserts a field object into a text box. The field's size is specified using a Point value, and its upper-left corner is 
positioned at (0, 0) (relative to the text box). InsertField is a write-only property.

Values
N/A



Inserting property
Data type
Logical

Description
Returns True when a record is inserted anywhere in a form.

Values
True, False



Invisible property
Data type
Logical

Description
Determines whether an object is visible at run time. Invisible applies to boxes and lines in reports. Unlike Visible, 
when you use Invisible to hide an object, contained objects are not hidden. Set Invisible to True to hide an object;
otherwise, objects are visible.

Values
True, False



Justification property
Data type
SmallInt

Description
Specifies the justification of data in a Table window.

Values
TextAlignTop, TextAlignBottom, TextAlignVCenter, TextAlignLeft, TextAlignRight, TextAlignCenter



KeyField property
Data type
Logical

Description
Reports whether a field object is bound to a key field in a table.

Values
True, False



LabelText property
Data type
String

Description
Specifies the text that is displayed on a button label.

Values
N/A



LeftBorder property
Data type
LongInt

Description
Returns the size of an object's left border (in twips). You cannot embed another object within an object's border.

Values
N/A



Line.Color property
Data type
LongInt

Description
Specifies the line color of an ellipse.

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Line.LineStyle property
Data type
SmallInt

Description
Specifies the line style of an ellipse.

Values
DashDotDotLine, DashDotLine, DashedLine, DottedLine, NoLine, SolidLine



Line.Thickness property
Data type
SmallInt

Description
Specifies the line thickness of an ellipse.

Values
N/A



LineEnds property
Data type
SmallInt

Description
Specifies whether to place arrows at the ends of a line.

Values
ArrowBothEnds, ArrowOneEnd, NoArrowEnd



LineSpacing property
Data type
SmallInt

Description
Specifies the number of blank lines to print between each line of text in a field or text object.

Values
TextDoubleSpacing, TextDoubleSpacing2, TextSingleSpacing, TextSingleSpacing2, TextTripleSpacing



LineSqueeze property
Data type
Logical

Description
Specifies whether a line that contains an empty field is blanked out at run time. LineSqueeze is available only for
text objects on reports, when only one field is embedded in the text object.

Values
True/False



LineStyle property
Data type
SmallInt

Description
Specifies a line's style.

Values
DashDotDotLine, DashDotLine, DashedLine, DottedLine, NoLine, SolidLine



LineType property
Data type
SmallInt

Description
Specifies a line's type.

Values
CurvedLine, StraightLine



List.Count property
Data type
SmallInt

Description
Specifies the number of items in a list.

Values
N/A



List.Selection property
Data type
SmallInt

Description
Specifies the item selected from a list.

Values
N/A



List.Value property
Data type
AnyType

Description
Determines an item's value in a list.

Values
N/A



Locked property
Data type
Logical

Description
Reports whether the table that is bound to a design object is locked.

Values
True, False



LookupTable property
Data type
String

Description
Specifies the name of the lookup table for a field object.

Values
N/A



LookupType property
Data type
String

Description
Specifies the type of table lookup.

Values
JustCurrentField, AllCorresponding



Magnification property
Data type
SmallInt

Description
Specifies a bitmap object's display magnification. You can also specify display magnification using literal values.

Values
Magnify25, Magnify50, Magnify100, Magnify200, Magnify400, MagnifyBestFit



Manager property
Data type
String

Description
Returns a form's UIObject name.

Values
N/A



MarkerPos property
Data type
LongInt

Description
Specifies the other end of a selection. For more information, see CursorPos.

Values
N/A



Margins.Bottom property
Data type
LongInt

Description
Determines the height of a report's bottom margin in twips.

Values
>0



Margins.Left property
Data type
LongInt

Description
Determines the width of a report's left margin in twips.

Values
>0



Margins.Right property
Data type
LongInt

Description
Determines the width of a report's right margin in twips.

Values
>0



Margins.Top property
Data type
LongInt

Description
Determines the height of a report's top margin in twips.

Values
>0



MaximizeButton property
Data type
Logical

Description
Determines whether a form's window has a maximize box.

Values
True, False



Maximum property
Data type
String

Description
Specifies the maximum value allowed in a field.

Values
N/A



MemoView property
Data type
Logical

Description
Specifies whether a field object is in Memo View mode.

Values
True, False



MinimizeButton property
Data type
Logical

Description
Specifies whether a form's window has a minimize box.

Values
True, False



Minimum property
Data type
String

Description
Specifies the minimum value allowed in a field.

Values
N/A



Modal property
Data type
Logical

Description
Specifies whether a dialog box is modal. A modal dialog box retains focus until you close it, and cannot be 
resized or moved.

Values
True, False



MouseActivate property
Data type
Logical

Description
Specifies whether a dialog box gets focus because of a MouseEvent.

Values
True, False



NCols property
Data type
SmallInt

Description
Returns the number of columns in a table frame or multi-record object.

Values
N/A



NRecords property
Data type
LongInt

Description
Reports the number of records in the table bound to a design object. This property returns the number of records
in the underlying table only. It does not return the number of records in the object.

 Note
· To retrieve the number of records in a filtered set, attach a TCursor to the UIObject and call cCount. When you

read NRecords after setting a range, the returned value represents the number of records in the set defined by
the range.

Values
N/A



NRows property
Data type
SmallInt

Description
Returns the number of rows in a table frame or multi-record object.

Values
N/A



Name property
Data type
String

Description
Specifies a design object's name.

Values
N/A



Next property
Data type
String

Description
Returns the name of the next object in the same container.

Values
N/A



NextTabStop property
Data type
String

Description
Determines the object name of the next tab stop on a form or report. When you read NextTabStop, it returns a 
UIObject. When you write NextTabStop, you must assign a String.

Values
N/A



NoEcho property
Data type
Logical

Description
Specifies whether characters in a field object are displayed.

Values
True, False



NumberPages property
Data type
SmallInt

Description
Returns the number of pages in a notebook. 



Orphan/Widow property
Data type
Logical

Description
Specifies whether a report protects against widows and orphans in breakable text objects. A widow or orphan is a
single line of text that is displayed on a different page than the main body of text.

Values
True/False



OtherBandName property
Data type
String

Description
Returns the name of a report band's counterpart (the other band in a pair of bands). Given a header band 
OtherBandName returns the name of the footer band. Given a footer band, OtherBandName returns the name of 
the header band. Given a record band, OtherBandName returns the name of that record band.

Values
N/A



OverStrike property
Data type
Logical

Description
Specifies whether a field or text object is in overstrike mode. Overstrike mode is the opposite of insert mode.

Values
True, False



Owner property
Data type
String

Description
Specifies the name of an object's logical container.

Values
N/A



PageSize property
Data type
Point

Description
Determines the size of a report's page in a design window. This property exists because there is no page object 
in a banded report designer.

Values
>0



PageTiling property
Data type
SmallInt

Description
Determines how to arrange pages in a form. This property uses PageTiling constants.

Values
StackPages, TileHorizontal, TileVertical



Pattern.Color property
Data type
LongInt

Description
Specifies a pattern's color.

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Pattern.Style property
Data type
SmallInt

Description
Specifies a pattern's style.

Values
BricksPattern, CrosshatchPattern, DiagonalCrosshatchPattern, DottedLinePattern, EmptyPattern, 
FuzzyStripesDownPattern, HeavyDotPattern, HorizontalLinesPattern, LatticePattern, LeftDiagonalLinesPattern, 
LightDotPattern, MaximumDotPattern, MediumDotPattern, RightDiagonalLinesPattern, ScalesPattern, 
StaggeredDashesPattern, ThickHorizontalLinesPattern, ThickStripesDownPattern, ThickStripesUpPattern, 
ThickVerticalLinesPattern, VerticalLinesPattern, VeryHeavyDotPattern, WeavePattern, ZigZagPattern



PersistView property
Data type
Logical

Description
Specifies whether to remain in Field or Memo view.

Values
True, False



Picture property
Data type
String

Description
Specifies a template that formats a field's value. You can use picture string characters to define a picture for a 
bound or unbound field object in a form. The maximum length of an ObjectPAL picture string is 255 characters. 
The maximum size of a picture defined interactively is 175 characters. If a bound field object has a picture 
defined in the data model, the Picture property does not override it.

Values
N/A



PinHorizontal property
Data type
Logical

Description
Specifies whether the crosstab object can move horizontally at run time. This property is a run-time property; the
equivalent design property is named Design.PinHorizontal. 

Values
True, False



PinVertical property
Data type
Logical

Description
Specifies whether the crosstab object can move vertically at run time. This property is a run-time property; the 
equivalent design property is named Design.PinVertical. 

Values
True, False



Position property
Data type
Point

Description
Specifies the coordinates of the upper-left corner of a design object, relative to its container.

Values
N/A



PositionalOrder property
Data type
SmallInt

Description
Specifies the page number for Page objects and specifies the band position (counting from the top) for Band 
objects. The Report header has a PositionalOrder of 1, the Page header has a PositionalOrder of 2, and so on. 
Only the PositionalOrder of group bands can be set. This property can be used to rearrange groups or to swap 
headers and footers.

Values
>0



PrecedePageHeader property
Data type
Logical

Description
Specifies whether a report band is displayed before the page header.

Values
True, False



Prev property
Data type
String

Description
Returns the name of the previous object in the same container.

Values
N/A



PrinterDocument property
Data type
Logical

Description
Specifies whether the document is designed for printer or screen. This property setting determines the fonts and 
frame widths that are available for the various frame styles.

Values
True, False



PrintOn1stPage property
Data type
Logical

Description
Specifies whether to print a report band on the first page of the report.

Values
True, False



ProgID property
Data type
String

Description
Specifies the internal identifier of a system object or OLE Automation object. When the object is a Corel Paradox 
native Windows control (NWC) (e.g., the TrackBar or ProgressBar), the ProgID returns the string literally. When 
the object is an ActiveX, ProgID returns the OLE 2.0 ProgID. 

Values
N/A



Range property
Data type
SmalInt

Description
Convert a group on a field to a group on a range of that field. Range is also used to change the range on a range 
group. Semantics are the same as the range value in the Define Group dialog box (dependent on field type). The 
DateRangeType constants are provided for date and timestamp fields: ByDay, ByWeek, ByMonth, ByQuarter, and
ByYear.

Values
Varies according to field type.



RasterOperation property
Data type
LongInt

Description
Specifies how to blend colors in two overlapping design objects.

Values
MergePaint, NotSourceCopy, NotSourceErase, SourceAnd, SourceCopy, SourceErase, SourceInvert, SourcePaint



Readonly property
Data type
Logical

Description
Specifies whether a field object is read-only.

Values
True, False



RecNo property
Data type
LongInt

Description
Reports a record's position. Defining the record position in dBASE tables can be time consuming.

Values
N/A



Refresh property
Data type
Logical

Description
Reports when data displayed on screen changes across a network, by an ObjectPAL statement, or by a user 
action.

Values
True, False



RefreshOption property
Data type
SmallInt

Description
Determines what to do when data changes while printing a report. This property uses ReportPrintRestart 
constants.

Values
PrintFromCopy, PrintLock, PrintNoLock, PrintRestart, PrintReturn



RemoveGroupRepeats property
Data type
Logical

Description
Retains or suppresses repeated group values within a record band. When the RemoveGroupRepeats property is 
set to False, Corel Paradox displays of the grouped field value for each record (including duplicates) in the record 
band. When the RemoveGroupRepeats property is set to True, Corel Paradox prints the value of the group's first 
record only.

Values
True, False



RepeatHeader property
Data type
Logical

Description
Determines whether the header is repeated on each page in a report. If the RepeatHeader property is set to True,
the header is repeated; otherwise, the header is not repeated.

Values
True, False



Required property
Data type
Logical

Description
Reports whether a field object have an assigned value for the record to be valid.

Values
True, False



RightBorder property
Data type
LongInt

Description
Returns the size of an object's right border (in twips). You cannot embed another object within an object's border.

Values
N/A



RowHeight property
Data type
LongInt

Description
Determines the height (in twips) of a row in a Table window.

Values
>0



RowNo property
Data type
SmallInt

Description
Reports the row number of a record displayed in a table frame, multi-record object, or table view. Counting starts
at 1.

Values
N/A



Scroll property
Data type
Point

Description
Specifies the distance you've scrolled.

Values
N/A



SeeMouseMove property
Data type
Logical

Description
Specifies whether a form responds to mouse movements when it does not have focus. When the SeeMouseMove 
property is set to True, the form responds to mouse movements (mouseEnter, mouseMove, and mouseExit) even
if it does not have focus. When the SeeMouseMove property is set to False (default), the form does not respond 
to mouse movements unless it has focus. This property is saved with the form.

Values
True, False



Select property
Data type
Logical

Description
Specifies whether an object is selected. Select is valid for UIObjects in a Form Design or Report Design window, 
but is not valid while the form or report is running.

Values
True, False



SelectedText property
Data type
String

Description
Returns the selected text in a field object.

Values
N/A



SeqNo property
Data type
LongInt

Description
Specifies the sequence number of a record, taking filters and indexes into account. This property returns <N/A> 
when the table is from a dynaset or has a filter.

Values
N/A



ShowAllColumns property
Data type
Logical

Description
Specifies whether the tableframe object expands horizontally at runtime to display all columns in the design.

Values
True, False



ShowGrid property
Data type
Logical

Description
Specifies whether the form or report grid is visible.

Values
True, False



Shrinkable property
Data type
Logical

Description
Specifies whether a report band can be shrunk.

Values
True, False



Size property
Data type
Point

Description
Specifies the coordinates of the lower-right corner of a design object, relative to its upper-left corner.

Values
N/A



SizeToFit property
Data type
Logical

Description
Specifies whether a form retains the size of the underlying page when opened. When the SizeToFit property is set
to True, the form retains the size of the underlying page. When the SizeToFit property is set to False, the form 
opens at a preset, default size.

Values
True, False



SnapToGrid property
Data type
Logical

Description
Specifies whether object size and position are affected by the grid. When the SnapToGrid property is set to True, 
design objects jump to the closest minor division of the grid when moved or resized. Internally generated resizes 
(e.g., when you add text to a text object or define a field object) do not snap to the grid. When the SnapToGrid 
property is set to False, object size and position are not affected by the grid.

Values
True, False



SortOrder property
Data type
Logical

Description
Specifies a report's sort order. When the SortOrder property is set to True, the report is sorted in descending 
order. When the SortOrder property is set to False, the report is sorted in ascending order.

Values
Ascending, Descending



SpecialField property
Data type
SmallInt

Description
Determines a special field's type using SpecialFieldTypes constants. On the types that require a table, the field's 
current table is used. If there is no current table, the form or report's master table is used.

Values
DateField, NofFieldsField, NofPagesField, NofRecsField, PageNumField, RecordNoField, TableNameField, TimeField



SquareTabs property
Data type
Logical

Description
Specifies whether the tabs for the notebook pages have squared ( Windows 95 style) rounded corners. 

Values
True, False



StandardMenu property
Data type
Logical

Description
Specifies whether a form or report uses the standard Corel Paradox menus. When the StandardMenu property is 
set it to True, Corel Paradox menus are used. When the StandardMenu property is set it to False, the form or 
report uses alternate menus.

Values
True, False



StandardToolbar property
Data type
Logical

Description
Specifies whether a form or report uses the standard Toolbar. When the StandardToolbar property is set to True, 
the standard Toolbar is used. When the StandardToolbar property is set to False, the form or report uses an 
alternate toolbar.

Values
True, False



Start property
Data type
Point

Description
Specifies the coordinates of the start of a line. To specify the coordinates of the end of a line, see the End 
property.

Values
N/A



StartPageNumbers property
Data type
SmallInt

Description
Determines the starting value for a report's page numbers.

Values
>0



Style property
Data type
SmallInt

Description
Reports or specifies a button's display style.

Values
CorelButton, Windows3dButton, WindowsButton



SummaryModifier property
Data type
SmallInt

Description
Determines how to modify aggregator fields in reports. This property uses AggModifiers constants.

Values
CumulativeAgg, CumUniqueAgg, RegularAgg, UniqueAgg



TabHeight property
Data type
LongInt

Description
Specifies the height of the tab on the notebook page in twips. 



TabsAcross property
Data type
SmallInt

Description
Specifies the maximum number of tabs that can appear across a notebook object. If the number of tabs is 
exceeds the TabsAcross value, and the HorizonatlScrollbar property is set to True, the tabs scroll across the 
notebook. If the number of tabs is exceeds the TabsAcross value, and the HorizonatlScrollbar property is set to 
False, the tabs are stacked in the notebook.



TabsOnTop property
Data type
Logical

Description
Specifies whether tabs are displayed at the top or bottom of a notebook.

Values
True, False



TabStop property
Data type
Logical

Description
Specifies whether a field object is a tab stop.

Values
True, False



TableName property
Data type
String

Description
Specifies the name of the table to which a design object is bound.

Values
N/A



Text property
Data type
String

Description
Specifies the characters that are displayed in a text object.

Values
N/A



ThickFrame property
Data type
Logical

Description
Specifies the thickness of a window frame. When the ThickFrame property is set to True, and DialogForm and 
Border also True, a thick frame replaces the usual pixel-wide frame.

Values
True, False



Thickness property
Data type
SmallInt

Description
Specifies a line's thickness.

Values
LWidth10Points, LWidth1Point, LWidth2Points, LWidth3Points, LWidth6Points, LWidthHairline, LWidthHalfPoint



Title property
Data type
String

Description
Specifies the text that is displayed in a form's caption.

Values
N/A



TopBorder property
Data type
LongInt

Description
Returns the size of an object's top border (in twips). You cannot embed another object within an object's border.

Values
N/A



TopLine property
Data type
LongInt

Description
The number of the line at the top of a text object.

Values
N/A



Touched property
Data type
Logical

Description
Specifies whether the user has made changes that have not yet been committed.

Values
True, False



Translucent property
Data type
Logical

Description
Specifies whether an object's color is translucent.

Values
True, False



UncheckedValue property
Data type
String

Description
Specifies the value that a disabled button writes to its parent field object. This property applies to check boxes 
only.

Values
N/A



Value property
Data type
String

Description
Specifies a design object's value.

Values
N/A



VerticalScrollBar property
Data type
Logical

Description
Specifies whether an object has a vertical scroll bar. This property is not valid for all UIObjects. 

Values
True, False



Visible property
Data type
Logical

Description
Specifies whether an object is displayed in a form at run time. When the Visible property is set to True, it displays
the object and the objects it contains. When the Visible property is set to False, it hides the object and the 
objects it contains.

Values
True, False



WideScrollBar property
Data type
Logical

Description
Determines whether a scroll bar is wide or narrow (the default).When the WiseScroolBar property is set to True, 
the scroll bar is wide; otherwise, the scrollbar is narrow.

Values
True, False



Width property
Data type
LongInt

Description
Determines the width (in twips) of a column in a Table window.

Values
>0



WordWrap property
Data type
Logical

Description
Specifies whether to wrap lines that exceed a field object's width.

Values
True, False



Xseparation property
Data type
LongInt

Description
Specifies the distance (in twips) between records in the indicated direction.

Values
>0



Yseparation property
Data type
LongInt

Description
Specifies the distance (in twips) between records in the indicated direction.

Values
>0



Properties unique to chart objects
Click one the following chart object properties for more information.
BackWall.Color
BackWall.Pattern.Color
BackWall.Pattern.Style
Background.Color
Background.Pattern.Color
Background.Pattern.Style
BaseFloor.Color
BaseFloor.Pattern.Color
BaseFloor.Pattern.Style
BindType
CurrentSeries
CurrentSlice
GraphType
Label.Font.Color
Label.Font.Script (8)
Label.Font.Size
Label.Font.Style
Label.Font.Typeface
Label.LabelFormat
Label.LabelLocation
Label.NumberFormat
LeftWall.Color
LeftWall.Pattern.Color
LeftWall.Pattern.Style
LegendBox.Color
LegendBox.Font.Color
LegendBox.Font.Script (8)
LegendBox.Font.Size
LegendBox.Font.Style
LegendBox.Font.Typeface
LegendBox.LegendPos
LegendBox.Pattern.Color
LegendBox.Pattern.Style
MaxGroups
MaxXValues
MinXValues
Options.Elevation
Options.Rotation
Options.ShowAxes
Options.ShowGrid
Options.ShowLabels
Options.ShowLegend
Options.ShowTitle
Series.Color
Series.Graph_Title.Font.Color
Series.Graph_Title.Font.Script (8)
Series.Graph_Title.Font.Size
Series.Graph_Title.Font.Style
Series.Graph_Title.Font.Typeface
Series.Graph_Title.Text
Series.Graph_Title.UseDefault
Series.Line.Color



Series.Line.LineStyle
Series.Line.Thickness
Series.Marker.Size
Series.Marker.Style
Series.Pattern.Color
Series.Pattern.Style
Series.TypeOverride
SeriesName
Slice.Color
Slice.Explode
Slice.Pattern.Color
Slice.Pattern.Style
TitleBox.Color
TitleBox.Graph_Title.Font.Color
TitleBox.Graph_Title.Font.Script (8)
TitleBox.Graph_Title.Font.Size
TitleBox.Graph_Title.Font.Style
TitleBox.Graph_Title.Font.Typeface
TitleBox.Graph_Title.Text
TitleBox.Graph_Title.UseDefault
TitleBox.Pattern.Color
TitleBox.Pattern.Style
TitleBox.Subtitle.Font.Color
TitleBox.Subtitle.Font.Script (8)
TitleBox.Subtitle.Font.Size
TitleBox.Subtitle.Font.Style
TitleBox.Subtitle.Font.Typeface
TitleBox.Subtitle.Text
TitleBox.Subtitle.UseDefault
TitleBoxName
XAxisName
XAxis.Graph_Title.Font.Color
XAxis.Graph_Title.Font.Script (8)
XAxis.Graph_Title.Font.Size
XAxis.Graph_Title.Font.Style
XAxis.Graph_Title.Font.Typeface
XAxis.Graph_Title.Text
XAxis.Graph_Title.UseDefault
XAxis.Scale.AutoScale
XAxis.Scale.HighValue
XAxis.Scale.Increment
XAxis.Scale.Logarithmic
XAxis.Scale.LowValue
XAxis.Ticks.Alternate
XAxis.Ticks.DateFormat
XAxis.Ticks.Font.Color
XAxis.Ticks.Font.Script (8)
XAxis.Ticks.Font.Size
XAxis.Ticks.Font.Style
XAxis.Ticks.Font.Typeface
XAxis.Ticks.NumberFormat
XAxis.Ticks.TimeFormat
XAxis.Ticks.TimeStampFormat
YAxisName
YAxis.Graph_Title.Font.Color
YAxis.Graph_Title.Font.Script (8)



YAxis.Graph_Title.Font.Size
YAxis.Graph_Title.Font.Style
YAxis.Graph_Title.Font.Typeface
YAxis.Graph_Title.Text
YAxis.Graph_Title.UseDefault
YAxis.Scale.AutoScale
YAxis.Scale.HighValue
YAxis.Scale.Increment
YAxis.Scale.Logarithmic
YAxis.Scale.LowValue
YAxis.Ticks.Alternate
YAxis.Ticks.DateFormat
YAxis.Ticks.Font.Color
YAxis.Ticks.Font.Script (8)
YAxis.Ticks.Font.Size
YAxis.Ticks.Font.Style
YAxis.Ticks.Font.Typeface
YAxis.Ticks.NumberFormat
YAxis.Ticks.TimeFormat
YAxis.Ticks.TimeStampFormat
ZAxisName
ZAxis.Graph_Title.Font.Color
ZAxis.Graph_Title.Font.Script (8)
ZAxis.Graph_Title.Font.Size
ZAxis.Graph_Title.Font.Style
ZAxis.Graph_Title.Font.Typeface
ZAxis.Graph_Title.Text
ZAxis.Graph_Title.UseDefault
ZAxis.Scale.AutoScale
ZAxis.Scale.HighValue
ZAxis.Scale.Increment
ZAxis.Scale.Logarithmic
ZAxis.Scale.LowValue
ZAxis.Ticks.Alternate
ZAxis.Ticks.DateFormat
ZAxis.Ticks.Font.Color
ZAxis.Ticks.Font.Script (8)
ZAxis.Ticks.Font.Size
ZAxis.Ticks.Font.Style
ZAxis.Ticks.Font.Typeface
ZAxis.Ticks.NumberFormat
ZAxis.Ticks.TimeFormat
ZAxis.Ticks.TimeStampFormat

{button ,AL(`OBJECT_PROPERTIES;',0,"Defaultoverview",)} Related Topics



BackWall.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



BackWall.Pattern.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



BackWall.Pattern.Style
This property applies only to chart objects.

Data type
SmallInt

Values
BricksPattern, CrosshatchPattern, DiagonalCrosshatchPattern, DottedLinePattern, EmptyPattern, 
FuzzyStripesDownPattern, HeavyDotPattern, HorizontalLinesPattern, LatticePattern, LeftDiagonalLinesPattern, 
LightDotPattern, MaximumDotPattern, MediumDotPattern, RightDiagonalLinesPattern, ScalesPattern, 
StaggeredDashesPattern, ThickHorizontalLinesPattern, ThickStripesDownPattern, ThickStripesUpPattern, 
ThickVerticalLinesPattern, VerticalLinesPattern, VeryHeavyDotPattern, WeavePattern, ZigZagPattern



Background.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Background.Pattern.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Background.Pattern.Style
This property applies only to chart objects.

Data type
SmallInt

Values
BricksPattern, CrosshatchPattern, DiagonalCrosshatchPattern, DottedLinePattern, EmptyPattern, 
FuzzyStripesDownPattern, HeavyDotPattern, HorizontalLinesPattern, LatticePattern, LeftDiagonalLinesPattern, 
LightDotPattern, MaximumDotPattern, MediumDotPattern, RightDiagonalLinesPattern, ScalesPattern, 
StaggeredDashesPattern, ThickHorizontalLinesPattern, ThickStripesDownPattern, ThickStripesUpPattern, 
ThickVerticalLinesPattern, VerticalLinesPattern, VeryHeavyDotPattern, WeavePattern, ZigZagPattern



BaseFloor.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



BaseFloor.Pattern.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



BaseFloor.Pattern.Style
This property applies only to chart objects.

Data type
SmallInt

Values
BricksPattern, CrosshatchPattern, DiagonalCrosshatchPattern, DottedLinePattern, EmptyPattern, 
FuzzyStripesDownPattern, HeavyDotPattern, HorizontalLinesPattern, LatticePattern, LeftDiagonalLinesPattern, 
LightDotPattern, MaximumDotPattern, MediumDotPattern, RightDiagonalLinesPattern, ScalesPattern, 
StaggeredDashesPattern, ThickHorizontalLinesPattern, ThickStripesDownPattern, ThickStripesUpPattern, 
ThickVerticalLinesPattern, VerticalLinesPattern, VeryHeavyDotPattern, WeavePattern, ZigZagPattern



BindType
This property applies only to chart objects.

Data type
SmallInt

Values
Graph1DSummary, Graph2DSummary, GraphTabular



CurrentSeries
This property applies only to chart objects.

Data type
SmallInt

Values
N/A



CurrentSlice
This property applies only to chart objects.

Data type
SmallInt

Values
N/A



GraphType
This property applies only to chart objects.

Data type
SmallInt

Values
Graph2DArea, Graph2DBar, Graph2DColumns, Graph2DLine, Graph2DPie, Graph2DRotatedBar, 
Graph2DStackedBar, Graph3DArea, Graph3DBar, Graph3DColumns, Graph3DPie, Graph3DRibbon, 
Graph3DRotatedBar, Graph3DStackedBar, Graph3DStep, Graph3DSurface, GraphXY



Label.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Label.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



Label.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



Label.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



Label.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



Label.LabelFormat
This property applies only to chart objects.

Data type
SmallInt

Values
GraphHideY, GraphPercent, GraphShowY



Label.LabelLocation
This property applies only to chart objects.

Data type
SmallInt

Values
Above, Below, Bottom, Center, Left, Middle, Right, Top



Label.NumberFormat
This property applies only to chart objects.

Data type
N/A

Values
Format specification



LeftWall.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



LeftWall.Pattern.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



LeftWall.Pattern.Style
This property applies only to chart objects.

Data type
SmallInt

Values
BricksPattern, CrosshatchPattern, DiagonalCrosshatchPattern, DottedLinePattern, EmptyPattern, 
FuzzyStripesDownPattern, HeavyDotPattern, HorizontalLinesPattern, LatticePattern, LeftDiagonalLinesPattern, 
LightDotPattern, MaximumDotPattern, MediumDotPattern, RightDiagonalLinesPattern, ScalesPattern, 
StaggeredDashesPattern, ThickHorizontalLinesPattern, ThickStripesDownPattern, ThickStripesUpPattern, 
ThickVerticalLinesPattern, VerticalLinesPattern, VeryHeavyDotPattern, WeavePattern, ZigZagPattern



LegendBox.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



LegendBox.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



LegendBox.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



LegendBox.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



LegendBox.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



LegendBox.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



LegendBox.LegendPos
This property applies only to chart objects.

Data type
SmallInt

Values
Bottom, Right



LegendBox.Pattern.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



LegendBox.Pattern.Style
This property applies only to chart objects.

Data type
SmallInt

Values
BricksPattern, CrosshatchPattern, DiagonalCrosshatchPattern, DottedLinePattern, EmptyPattern, 
FuzzyStripesDownPattern, HeavyDotPattern, HorizontalLinesPattern, LatticePattern, LeftDiagonalLinesPattern, 
LightDotPattern, MaximumDotPattern, MediumDotPattern, RightDiagonalLinesPattern, ScalesPattern, 
StaggeredDashesPattern, ThickHorizontalLinesPattern, ThickStripesDownPattern, ThickStripesUpPattern, 
ThickVerticalLinesPattern, VerticalLinesPattern, VeryHeavyDotPattern, WeavePattern, ZigZagPattern



MaxGroups
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on chart



MaxXValues
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on chart



MinXValues
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on chart



Options.Elevation
This property applies only to chart objects.

Data type
SmallInt

Values
0 to 90 degrees



Options.Rotation
This property applies only to chart objects.

Data type
SmallInt

Values
0 to 90 degrees



Options.ShowAxes
This property applies only to chart objects.

Data type
Logical

Values
True, False



Options.ShowGrid
This property applies only to chart objects.

Data type
Logical

Values
True, False



Options.ShowLabels
This property applies only to chart objects.

Data type
Logical

Values
True, False



Options.ShowLegend
This property applies only to chart objects.

Data type
Logical

Values
True, False



Options.ShowTitle
This property applies only to chart objects.

Data type
Logical

Values
True, False



Series.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Series.Graph_Title.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Series.Graph_Title.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



Series.Graph_Title.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



Series.Graph_Title.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



Series.Graph_Title.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



Series.Graph_Title.Text
This property applies only to chart objects.

Data type
String

Values
N/A



Series.Graph_Title.UseDefault
This property applies only to chart objects.

Data type
Logical

Values
True, False



Series.Line.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Series.Line.LineStyle
This property applies only to chart objects.

Data type
SmallInt

Values
DashDotDotLine, DashDotLine, DashedLine, DottedLine, NoLine, SolidLine



Series.Line.Thickness
This property applies only to chart objects.

Data type
SmallInt

Values
LWidth10Points, LWidth1Point, LWidth2Points, LWidth3Points, LWidth6Points, LWidthHairline, LWidthHalfPoint



Series.Marker.Size
This property applies only to chart objects.

Data type
SmallInt

Values
MarkerSize0, MarkerSize2, MarkerSize4, MarkerSize8, MarkerSize12, MarkerSize18, MarkerSize24, MarkerSize36, 
MarkerSize54, MarkerSize72



Series.Marker.Style
This property applies only to chart objects.

Data type
SmallInt

Values
MarkerBoxedCross, MarkerBoxed_Plus, MarkerCross, MarkerFilledBox, MarkerFilledCircle, 
MarkerFilledDownTriangle, MarkerFilledTriangle, MarkerFilledTriangles, MarkerHollowBox, MarkerHollowCircle, 
MarkerHollowDownTriangle, MarkerHollowTriangle, MarkerHollowTriangles, MarkerHorizontalLine, MarkerPlus, 
MarkerVerticalLine



Series.Pattern.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Series.Pattern.Style
This property applies only to chart objects.

Data type
SmallInt

Values
BricksPattern, CrosshatchPattern, DiagonalCrosshatchPattern, DottedLinePattern, EmptyPattern, 
FuzzyStripesDownPattern, HeavyDotPattern, HorizontalLinesPattern, LatticePattern, LeftDiagonalLinesPattern, 
LightDotPattern, MaximumDotPattern, MediumDotPattern, RightDiagonalLinesPattern, ScalesPattern, 
StaggeredDashesPattern, ThickHorizontalLinesPattern, ThickStripesDownPattern, ThickStripesUpPattern, 
ThickVerticalLinesPattern, VerticalLinesPattern, VeryHeavyDotPattern, WeavePattern, ZigZagPattern



Series.TypeOverride
This property applies only to chart objects.

Data type
SmallInt

Values
Graph2DArea, Graph2DBar, Graph2DLine, None



SeriesName
This property applies only to chart objects.

Data type
String

Values
N/A



Slice.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Slice.Explode
This property applies only to chart objects.

Data type
Logical

Values
True, False



Slice.Pattern.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



Slice.Pattern.Style
This property applies only to chart objects.

Data type
SmallInt

Values
BricksPattern, CrosshatchPattern, DiagonalCrosshatchPattern, DottedLinePattern, EmptyPattern, 
FuzzyStripesDownPattern, HeavyDotPattern, HorizontalLinesPattern, LatticePattern, LeftDiagonalLinesPattern, 
LightDotPattern, MaximumDotPattern, MediumDotPattern, RightDiagonalLinesPattern, ScalesPattern, 
StaggeredDashesPattern, ThickHorizontalLinesPattern, ThickStripesDownPattern, ThickStripesUpPattern, 
ThickVerticalLinesPattern, VerticalLinesPattern, VeryHeavyDotPattern, WeavePattern, ZigZagPattern



TitleBox.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



TitleBox.Graph_Title.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



TitleBox.Graph_Title.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



TitleBox.Graph_Title.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



TitleBox.Graph_Title.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



TitleBox.Graph_Title.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



TitleBox.Graph_Title.Text
This property applies only to chart objects.

Data type
String

Values
N/A



TitleBox.Graph_Title.UseDefault
This property applies only to chart objects.

Data type
Logical

Values
True, False



TitleBox.Pattern.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



TitleBox.Pattern.Style
This property applies only to chart objects.

Data type
SmallInt

Values
BricksPattern, CrosshatchPattern, DiagonalCrosshatchPattern, DottedLinePattern, EmptyPattern, 
FuzzyStripesDownPattern, HeavyDotPattern, HorizontalLinesPattern, LatticePattern, LeftDiagonalLinesPattern, 
LightDotPattern, MaximumDotPattern, MediumDotPattern, RightDiagonalLinesPattern, ScalesPattern, 
StaggeredDashesPattern, ThickHorizontalLinesPattern, ThickStripesDownPattern, ThickStripesUpPattern, 
ThickVerticalLinesPattern, VerticalLinesPattern, VeryHeavyDotPattern, WeavePattern, ZigZagPattern



TitleBox.Subtitle.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



TitleBox.Subtitle.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



TitleBox.Subtitle.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



TitleBox.Subtitle.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



TitleBox.Subtitle.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



TitleBox.Subtitle.Text
This property applies only to chart objects.

Data type
String

Values
N/A



TitleBox.Subtitle.UseDefault
This property applies only to chart objects.

Data type
Logical

Values
True, False



TitleBoxName
This property applies only to chart objects.

Data type
String

Values
N/A



XAxisName
This property applies only to chart objects.

Data type
String

Values
N/A



XAxis.Graph_Title.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



XAxis.Graph_Title.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



XAxis.Graph_Title.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



XAxis.Graph_Title.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



XAxis.Graph_Title.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



XAxis.Graph_Title.Text
This property applies only to chart objects.

Data type
String

Values
N/A



XAxis.Graph_Title.UseDefault
This property applies only to chart objects.

Data type
Logical

Values
True, False



XAxis.Scale.AutoScale
This property applies only to chart objects.

Data type
Logical

Values
True, False



XAxis.Scale.HighValue
This property applies only to chart objects.

Data type
Number

Values
Depends on chart



XAxis.Scale.Increment
This property applies only to chart objects.

Data type
Number

Values
Depends on chart



XAxis.Scale.Logarithmic
This property applies only to chart objects.

Data type
Logical

Values
True, False



XAxis.Scale.LowValue
This property applies only to chart objects.

Data type
Number

Values
Depends on chart



XAxis.Ticks.Alternate
This property applies only to chart objects.

Data type
Logical

Values
True, False



XAxis.Ticks.DateFormat
This property applies only to chart objects.

Data type
N/A

Values
Format specification



XAxis.Ticks.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



XAxis.Ticks.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



XAxis.Ticks.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



XAxis.Ticks.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



XAxis.Ticks.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



XAxis.Ticks.NumberFormat
This property applies only to chart objects.

Data type
N/A

Values
Format specification



XAxis.Ticks.TimeFormat
This property applies only to chart objects.

Data type
String

Values
N/A



XAxis.Ticks.TimeStampFormat
This property applies only to chart objects.

Data type
String

Values
N/A



YAxisName
This property applies only to chart objects.

Data type
String

Values
N/A



YAxis.Graph_Title.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



YAxis.Graph_Title.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



YAxis.Graph_Title.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



YAxis.Graph_Title.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



YAxis.Graph_Title.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



YAxis.Graph_Title.Text
This property applies only to chart objects.

Data type
String

Values
N/A



YAxis.Graph_Title.UseDefault
This property applies only to chart objects.

Data type
Logical

Values
True, False



YAxis.Scale.AutoScale
This property applies only to chart objects.

Data type
Logical

Values
True, False



YAxis.Scale.HighValue
This property applies only to chart objects.

Data type
Number

Values
Depends on chart



YAxis.Scale.Increment
This property applies only to chart objects.

Data type
Number

Values
Depends on chart



YAxis.Scale.Logarithmic
This property applies only to chart objects.

Data type
Logical

Values
True, False



YAxis.Scale.LowValue
This property applies only to chart objects.

Data type
Number

Values
Depends on chart



YAxis.Ticks.Alternate
This property applies only to chart objects.

Data type
Logical

Values
True, False



YAxis.Ticks.DateFormat
This property applies only to chart objects.

Data type
N/A

Values
Format specification



YAxis.Ticks.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



YAxis.Ticks.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



YAxis.Ticks.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



YAxis.Ticks.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



YAxis.Ticks.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



YAxis.Ticks.NumberFormat
This property applies only to chart objects.

Data type
N/A

Values
Format specification



YAxis.Ticks.TimeFormat
This property applies only to chart objects.

Data type
String

Values
N/A



YAxis.Ticks.TimeStampFormat
This property applies only to chart objects.

Data type
String

Values
N/A



ZAxisName
This property applies only to chart objects.

Data type
String

Values
N/A



ZAxis.Graph_Title.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



ZAxis.Graph_Title.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



ZAxis.Graph_Title.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



ZAxis.Graph_Title.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



ZAxis.Graph_Title.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



ZAxis.Graph_Title.Text
This property applies only to chart objects.

Data type
String

Values
N/A



ZAxis.Graph_Title.UseDefault
This property applies only to chart objects.

Data type
Logical

Values
True, False



ZAxis.Scale.AutoScale
This property applies only to chart objects.

Data type
Logical

Values
True, False



ZAxis.Scale.HighValue
This property applies only to chart objects.

Data type
Number

Values
Depends on chart



ZAxis.Scale.Increment
This property applies only to chart objects.

Data type
Number

Values
Depends on chart



ZAxis.Scale.Logarithmic
This property applies only to chart objects.

Data type
Logical

Values
True, False



ZAxis.Scale.LowValue
This property applies only to chart objects.

Data type
Number

Values
Depends on chart



ZAxis.Ticks.Alternate
This property applies only to chart objects.

Data type
Logical

Values
True, False



ZAxis.Ticks.DateFormat
This property applies only to chart objects.

Data type
String

Values
N/A



ZAxis.Ticks.Font.Color
This property applies only to chart objects.

Data type
LongInt

Values
Black, Blue, Brown, DarkBlue, DarkCyan, DarkGray, DarkGreen, DarkMagenta, DarkRed, Gray, Green, LightBlue, 
Magenta, Red, White, Yellow, Transparent



ZAxis.Ticks.Font.Script
The language script or character set of the chosen font. This property applies only to chart objects.

Data type
String

Values
Depends on the installed fonts.



ZAxis.Ticks.Font.Size
This property applies only to chart objects.

Data type
SmallInt

Values
Depends on system



ZAxis.Ticks.Font.Style
This property applies only to chart objects.

Data type
SmallInt

Values
FontAttribBold, FontAttribItalic, FontAttribNormal, FontAttribStrikeout, FontAttribUnderline



ZAxis.Ticks.Font.Typeface
This property applies only to chart objects.

Data type
String

Values
Depends on system



ZAxis.Ticks.NumberFormat
This property applies only to chart objects.

Data type
String

Values
N/A



ZAxis.Ticks.TimeFormat
This property applies only to chart objects.

Data type
String

Values
N/A



ZAxis.Ticks.TimeStampFormat
This property applies only to chart objects.

Data type
String

Values
N/A



UIObject properties
Choose from the following UIObjects for a list of applicable properties.
Band
Bitmap
Box
Button
Cell
Chart
Crosstab
EditRegion
Ellipse
Field
Form
Graph (see Chart)
Group
Header
Line
List
Multirecord
Notebook
NotebookPage
OLE
Page
Record
TableFrame
TableView
Text
TVData
TVHeading

{button ,AL(`OBJECT_PROPERTIES;',0,"Defaultoverview",)} Related Topics



Band properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Breakable
Class (read-only)
ContainerName (read-only)
DefineGroup
DrillDown (8)
Enabled (7)
FieldName
First (read-only)
Focus (read-only)
FullName (read-only)
FullSize (read-only)
GroupRecords (5.0)
Headings
LeftBorder (read-only) (5.0)
Manager (read-only)
Name
Next (read-only)
OtherBandName (read-only) (5.0)
Owner (read-only)
Position
PositionalOrder (5.0)
PrecedePageHeader
Prev (read-only)
PrintOn1stPage
Range (5.0)
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
Shrinkable
Size
SortOrder
StartPageNumbers (read-only) (5.0)
TopBorder (read-only) (5.0)



Bitmap properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Class (read-only)
ContainerName (read-only)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
Enabled (7)
First (read-only)
Focus (read-only)
Frame.Color
Frame.Style
Frame.Thickness
FullName (read-only)
FullSize (read-only)
HorizontalScrollBar
LeftBorder (read-only) (5.0)
Magnification
Manager (read-only)
Name
Next (read-only)
NextTabStop (5.0)
Owner (read-only)
Position
Prev (read-only)
RasterOperation
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
Size
TopBorder (read-only) (5.0)
Value
VerticalScrollBar
Visible



Box properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Breakable
Class (read-only)
Color
ContainerName (read-only)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Enabled (7)
First (read-only)
Focus (read-only)
Frame.Color
Frame.Style
Frame.Thickness
FullName (read-only)
FullSize (read-only)
Invisible (5.0)
LeftBorder (read-only) (5.0)
Manager (read-only)
Name
Next (read-only)
Owner (read-only)
Pattern.Color
Pattern.Style
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Select (4.5)
Shrinkable
Size
TopBorder (read-only) (5.0)
Translucent
Visible



Button properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
ButtonType
CenterLabel
CheckedValue (5.0)
Class (read-only)
ContainerName (read-only)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Enabled (7)
First (read-only)
FitHeight
FitWidth
FlatLook
Focus (read-only)
FullName (read-only)
FullSize (read-only)
LabelText
LeftBorder (read-only) (5.0)
Manager (read-only)
Name
Next (read-only)
NextTabStop (5.0)
Owner (read-only)
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Select (4.5)
Size
Style
TabStop
TopBorder (read-only) (5.0)
UncheckedValue (5.0)
Value
Visible



Cell properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Class (read-only)
Color
ContainerName (read-only)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
Enabled (7)
First (read-only)
FitWidth
Focus (read-only)
FullName (read-only)
FullSize (read-only)
HorizontalScrollBar
LeftBorder (read-only) (5.0)
Manager (read-only)
Name
Next (read-only)
NextTabStop (5.0)
Owner (read-only)
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
Size
TopBorder (read-only) (5.0)
VerticalScrollBar



Crosstab properties
Arrived (read-only)
Breakable
Class (read-only)
Color
ContainerName (read-only)
CurrentColumn (5.0)
CurrentRow (5.0)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
Enabled (7)
First (read-only)
FitHeight
FitWidth
Focus (read-only)
FullName (read-only)
FullSize (read-only)
Grid.Color
Grid.GridStyle
HorizontalScrollBar
Manager (read-only)
Name
Next (read-only)
NextTabStop (5.0)
Owner (read-only)
PinHorizontal
PinVertical
Position
Prev (read-only)
Scroll
Select (4.5)
Size
TableName
Touched (read-only)
Translucent
VerticalScrollBar
Visible



EditRegion properties
Alignment
Arrived (read-only)
AvgCharSize (read-only) (5.0)
BottomBorder (read-only) (5.0)
Breakable
Class (read-only)
Color
CompleteDisplay
ContainerName (read-only)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
DisplayType (read-only)
Enabled (7)
First (read-only)
FitHeight
FitWidth
Focus (read-only)
Font.Color
Font.Script (8)
Font.Size
Font.Style
Font.Typeface
Format.DateFormat
Format.LogicalFormat
Format.NumberFormat
Format.TimeFormat
Format.TimeStampFormat
Frame.Color
Frame.Style
Frame.Thickness
FullName (read-only)
FullSize (read-only)
LeftBorder (read-only) (5.0)
Magnification
Manager (read-only)
Name
Next (read-only)
NextTabStop (5.0)
NoEcho
Owner (read-only)
Position
Prev (read-only)
RasterOperation
Readonly
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
Size
TabStop
Text



TopBorder (read-only) (5.0)
Translucent
Value
Visible
WordWrap



Ellipse properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Class (read-only)
Color
ContainerName (read-only)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Enabled (7)
First (read-only)
Focus (read-only)
FullName (read-only)
FullSize (read-only)
LeftBorder (read-only) (5.0)
Line.Color
Line.LineStyle
Line.Thickness
Manager (read-only)
Name
Next (read-only)
NextTabStop (5.0)
Owner (read-only)
Pattern.Color
Pattern.Style
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Select (4.5)
Shrinkable
Size
TopBorder (read-only) (5.0)
Translucent
Visible



Field properties
Alignment
Arrived (read-only)
AutoAppend (4.5)
AvgCharSize (read-only) (5.0)
BlankRecord (read-only)
BottomBorder (read-only) (5.0)
Breakable
CalculatedField (5.0)
Class (read-only)
Color
CompleteDisplay
ContainerName (read-only)
CursorColumn
CursorLine
CursorPos
Default (read-only)
Deleted (read-only)
DeleteWhenEmpty (5.0)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
DisplayType
Editing (read-only) (4.5)
Enabled (7)
FieldName
FieldNo (read-only)
FieldRights (read-only)
FieldSize (read-only)
FieldType (read-only)
FieldUnits2 (read-only)
FieldValid (read-only)
First (read-only)
FitHeight
FitWidth
FlyAway (read-only)
Focus (read-only)
Font.Color
Font.Script (8)
Font.Size
Font.Style
Font.Typeface
Format.DateFormat
Format.LogicalFormat
Format.NumberFormat
Format.TimeFormat
Format.TimeStampFormat
Frame.Color
Frame.Style
Frame.Thickness
FullName (read-only)
FullSize (read-only)



HorizontalScrollBar
IndexField (read-only)
Inserting (read-only)
KeyField (read-only)
LabelText
LeftBorder (read-only) (5.0)
Locked (read-only)
LookupTable (read-only)
LookupType (read-only)
Magnification
Manager (read-only)
MarkerPos
Maximum (read-only)
Minimum (read-only)
Name
Next (read-only)
NextTabStop (5.0)
NoEcho
NRecords (read-only)
OverStrike
Owner (read-only)
Pattern.Color
Pattern.Style
Picture (enhanced for 5.0)
Position
Prev (read-only)
RasterOperation
Readonly
RecNo (read-only)
Refresh (read-only)
Required (read-only)
RightBorder (read-only) (5.0)
RowNo (read-only)
Scroll
Select (4.5)
SelectedText
SeqNo (read-only)
Size
SpecialField (5.0)
SummaryModifier (5.0)
TableName
TabStop
Text
TopBorder (read-only) (5.0)
TopLine
Touched (read-only)
Translucent
Value
VerticalScrollBar
Visible
WideScrollBar (5.0)
WordWrap



Form properties
Arrived (read-only)
AutoAppend (4.5)
BlankRecord (read-only)
Border
Caption
Class (read-only)
ContainerName (read-only)
ControlMenu
Deleted (read-only)
DesignModified (4.5)
DesktopForm
DialogForm
DialogFrame
Editing (read-only) (4.5)
Enabled (7)
FieldView (read-only)
First (read-only)
FlyAway (read-only)
Focus (read-only)
FrameObjects (5.0)
FullName (read-only)
FullSize (read-only)
GridValue (5.0)
GroupObjects (5.0)
HorizontalScrollBar
HTMLAction (8)
HTMLFormParams (8)
HTMLMethod (8)
Inserting (read-only)
Locked (read-only)
Manager (read-only)
MaximizeButton
MemoView (read-only)
MinimizeButton
Modal
MouseActivate
Name
Next (read-only)
NRecords (read-only)
PageTiling (5.0)
PersistView (read-only)
Position
Prev (read-only)
PrinterDocument (5.0)
RecNo (read-only)
Refresh (read-only)
Scroll
SeeMouseMove (5.0)
SeqNo (read-only)
ShowGrid (5.0)
Size (read-only)
SizeToFit
SnapToGrid (5.0)



StandardMenu
StandardToolbar (5.0)
TableName (read-only)
ThickFrame
Title
Touched (read-only)
VerticalScrollBar



Chart properties
Arrived (read-only)
Background.Color
Background.Pattern.Color
Background.Pattern.Style
BackWall.Color
BackWall.Pattern.Color
BackWall.Pattern.Style
BaseFloor.Color
BaseFloor.Pattern.Color
BaseFloor.Pattern.Style
BindType
BottomBorder (read-only) (5.0)
Class (read-only)
Color
ContainerName (read-only)
CurrentSeries
CurrentSlice
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Enabled (7)
First (read-only)
Focus (read-only)
Frame.Color
Frame.Style
Frame.Thickness
FullName (read-only)
FullSize (read-only)
GraphType
Label.Font.Color
Label.Font.Script (8)
Label.Font.Size
Label.Font.Style
Label.Font.Typeface
Label.LabelFormat
Label.LabelLocation
Label.NumberFormat
LeftBorder (read-only) (5.0)
LeftWall.Color
LeftWall.Pattern.Color
LeftWall.Pattern.Style
LegendBox.Color
LegendBox.Font.Color
LegendBox.Font.Script (8)
LegendBox.Font.Size
LegendBox.Font.Style
LegendBox.Font.Typeface
LegendBox.LegendPos
LegendBox.Pattern.Color
LegendBox.Pattern.Style
Manager (read-only)
MaxGroups



MaxXValues
MinXValues
Name
Next (read-only)
NextTabStop (5.0)
Options.Elevation
Options.Rotation
Options.ShowAxes
Options.ShowGrid
Options.ShowLabels
Options.ShowLegend
Options.ShowTitle
Owner (read-only)
Pattern.Color
Pattern.Style
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
Series.Color
Series.Graph_Title.Font.Color
Series.Graph_Title.Font.Script (8)
Series.Graph_Title.Font.Size
Series.Graph_Title.Font.Style
Series.Graph_Title.Font.Typeface
Series.Graph_Title.Text
Series.Graph_Title.UseDefault
Series.Line.Color
Series.Line.LineStyle
Series.Line.Thickness
Series.Marker.Size (5.0)
Series.Marker.Style (5.0)
Series.Pattern.Color
Series.Pattern.Style
Series.TypeOverride
SeriesName (5.0)
Size
Slice.Color
Slice.Explode
Slice.Pattern.Color
Slice.Pattern.Style
TableName
TabStop
TitleBox.Color
TitleBox.Graph_Title.Font.Color
TitleBox.Graph_Title.Font.Script (8)
TitleBox.Graph_Title.Font.Size
TitleBox.Graph_Title.Font.Style
TitleBox.Graph_Title.Font.Typeface
TitleBox.Graph_Title.Text
TitleBox.Graph_Title.UseDefault
TitleBox.Pattern.Color
TitleBox.Pattern.Style
TitleBox.Subtitle.Font.Color
TitleBox.Subtitle.Font.Script (8)



TitleBox.Subtitle.Font.Size
TitleBox.Subtitle.Font.Style
TitleBox.Subtitle.Font.Typeface
TitleBox.Subtitle.Text
TitleBox.Subtitle.UseDefault
TitleBoxName (5.0)
TopBorder (read-only) (5.0)
Touched (read-only)
Translucent
Visible
XAxisName (5.0)
XAxis.Graph_Title.Font.Color
XAxis.Graph_Title.Font.Script (8)
XAxis.Graph_Title.Font.Size
XAxis.Graph_Title.Font.Style
XAxis.Graph_Title.Font.Typeface
XAxis.Graph_Title.Text
XAxis.Graph_Title.UseDefault
XAxis.Scale.AutoScale
XAxis.Scale.HighValue
XAxis.Scale.Increment
XAxis.Scale.Logarithmic
XAxis.Scale.LowValue
XAxis.Ticks.Alternate
XAxis.Ticks.DateFormat
XAxis.Ticks.Font.Color
XAxis.Ticks.Font.Script (8)
XAxis.Ticks.Font.Size
XAxis.Ticks.Font.Style
XAxis.Ticks.Font.Typeface
XAxis.Ticks.NumberFormat
XAxis.Ticks.TimeFormat (5.0)
XAxis.Ticks.TimeStampFormat (5.0)
YAxisName (5.0)
YAxis.Graph_Title.Font.Color
YAxis.Graph_Title.Font.Script (8)
YAxis.Graph_Title.Font.Size
YAxis.Graph_Title.Font.Style
YAxis.Graph_Title.Font.Typeface
YAxis.Graph_Title.Text (5.0)
YAxis.Graph_Title.UseDefault
YAxis.Scale.AutoScale
YAxis.Scale.HighValue
YAxis.Scale.Increment
YAxis.Scale.Logarithmic
YAxis.Scale.LowValue
YAxis.Ticks.Alternate
YAxis.Ticks.DateFormat
YAxis.Ticks.Font.Color
YAxis.Ticks.Font.Script (8)
YAxis.Ticks.Font.Size
YAxis.Ticks.Font.Style
YAxis.Ticks.Font.Typeface
YAxis.Ticks.NumberFormat
YAxis.Ticks.TimeFormat (5.0)
YAxis.Ticks.TimeStampFormat (5.0)



ZAxisName (5.0)
ZAxis.Graph_Title.Font.Color
ZAxis.Graph_Title.Font.Script (8)
ZAxis.Graph_Title.Font.Size
ZAxis.Graph_Title.Font.Style 
ZAxis.Graph_Title.Font.Typeface
ZAxis.Graph_Title.Text (5.0)
ZAxis.Graph_Title.UseDefault
ZAxis.Scale.AutoScale
ZAxis.Scale.HighValue
ZAxis.Scale.Increment
ZAxis.Scale.Logarithmic
ZAxis.Scale.LowValue
ZAxis.Ticks.Alternate
ZAxis.Ticks.DateFormat
ZAxis.Ticks.Font.Color
ZAxis.Ticks.Font.Script (8)
ZAxis.Ticks.Font.Size
ZAxis.Ticks.Font.Style
ZAxis.Ticks.Font.Typeface
ZAxis.Ticks.NumberFormat (5.0)
ZAxis.Ticks.TimeFormat (5.0)
ZAxis.Ticks.TimeStampFormat (5.0)



Group properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Breakable
Class (read-only)
ContainerName (read-only)
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Enabled (7)
First (read-only)
Focus (read-only)
FullName (read-only)
FullSize (read-only)
LeftBorder (read-only) (5.0)
Manager (read-only)
Name
Next (read-only)
Owner (read-only)
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Select (4.5)
Size
TopBorder (read-only) (5.0)
Visible



Header properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Class (read-only)
Color
ContainerName (read-only)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Enabled (7)
First (read-only)
Focus (read-only)
FullName (read-only)
FullSize (read-only)
Invisible
LeftBorder (read-only) (5.0)
Manager (read-only)
Name
Next (read-only)
NextTabStop (5.0)
Owner (read-only)
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
Size
TopBorder (read-only) (5.0)
Translucent
Visible



Line properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Breakable
Class (read-only)
Color
ContainerName (read-only)
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Enabled (7)
End
First (read-only)
Focus (read-only)
FullName (read-only)
FullSize (read-only)
Invisible
LeftBorder (read-only) (5.0)
LineEnds
LineStyle
LineType
Manager (read-only)
Name
Next (read-only)
Owner (read-only)
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Select (4.5)
Size
Start
Thickness
TopBorder (read-only) (5.0)
Visible



List properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Class (read-only)
ContainerName (read-only)
DataSource
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Enabled (7)
First (read-only)
FitHeight
FitWidth
Focus (read-only)
FullName (read-only)
FullSize (read-only)
LeftBorder (read-only) (5.0)
List.Count
List.Selection
List.Value
Manager (read-only)
Name
Next (read-only)
Owner (read-only)
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
Size
TopBorder (read-only) (5.0)
Visible
WideScrollBar (5.0)



Multi-record properties
Arrived (read-only)
AutoAppend (4.5)
BlankRecord (read-only)
BottomBorder (read-only) (5.0)
Breakable
ByRows (5.0)
Class (read-only)
Color
Columnar (4.5)
ContainerName (read-only)
CurrentColumn (5.0)
CurrentRow (5.0)
Deleted (read-only)
Editing (4.5)
Enabled (7)
First (read-only)
FirstRow (read-only) (5.0)
FitHeight
FitWidth
FlyAway (read-only)
Focus (read-only)
Frame.Color
Frame.Style
Frame.Thickness
FullName (read-only)
FullSize (read-only)
Inserting (read-only)
LeftBorder (read-only) (5.0)
Locked (read-only)
Manager (read-only)
Name
NCols
Next (read-only)
NRecords (read-only)
NRows
Owner (read-only)
Pattern.Color
Pattern.Style
Position
Prev (read-only)
Readonly (read-only)
RecNo (read-only)
Refresh (read-only)
RightBorder (read-only) (5.0)
RowNo (read-only)
Scroll
Select (4.5)
SeqNo (read-only)
Size
TableName
TopBorder (read-only) (5.0)
Touched
Translucent



VerticalScrollBar
Visible
WideScrollBar (5.0)
Xseparation (5.0)
Yseparation (5.0)



Notebook properties
Arrived (read-only)
BottomBorder (read-only) 
Class (read-only)
ContainerName (read-only)
CurrentPage
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable 
Design.SizeToFit
Enabled 
First (read-only)
Focus (read-only)
FullName (read-only)
FullSize (read-only)
HorizontalScrollBar
LeftBorder (read-only) 
Manager (read-only)
Name
Next (read-only)
NextTabStop 
NumberPages
Owner (read-only)
Position
Prev (read-only)
RightBorder (read-only)
Scroll
Select 
Size
SquareTabs
TabHeight
TabsAcross
TabsOnTop
TopBorder (read-only)
Visible



Notebook page properties
InactiveColor
Enabled (7)



OLE properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Class (read-only)
ContainerName (read-only)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
Enabled (7)
First (read-only)
Focus (read-only)
Font.Script (8)
Frame.Color
Frame.Style
Frame.Thickness
FullName (read-only)
FullSize (read-only)
HorizontalScrollBar
LeftBorder (read-only) (5.0)
Magnification
Manager (read-only)
Name
Next (read-only)
NextTabStop (5.0)
Owner (read-only)
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
Size
TopBorder (read-only) (5.0)
Value
VerticalScrollBar
Visible
WideScrollBar (5.0)



Page properties
Arrived (read-only)
BottomBorder (read-only) (5.0)
Class (read-only)
Color
ContainerName (read-only)
Enabled (7)
First (read-only)
Focus (read-only)
FullName (read-only)
FullSize (read-only)
LeftBorder (read-only) (5.0)
Manager (read-only)
Name
Next (read-only)
Owner (read-only)
Pattern.Color
Pattern.Style
Position (read-only)
PositionalOrder (5.0)
Prev (read-only)
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
Size
TopBorder (read-only) (5.0)
Translucent
Visible



Record properties
Arrived (read-only)
AutoAppend (4.5)
BlankRecord (read-only)
BottomBorder (read-only) (5.0)
Breakable
Class (read-only)
Color
ContainerName (read-only)
Deleted (read-only)
DeleteWhenEmpty (5.0)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
Editing (read-only) (4.5)
Enabled (7)
First (read-only)
FitHeight
FitWidth
FlyAway (read-only)
Focus (read-only)
Frame.Color
Frame.Style
Frame.Thickness
FullName (read-only)
FullSize (read-only)
Inserting (read-only)
LeftBorder (read-only) (5.0)
Locked (read-only)
Manager (read-only)
Name
Next (read-only)
NRecords (read-only)
Owner (read-only)
Pattern.Color
Pattern.Style
Position
Prev (read-only)
Readonly
RecNo (read-only)
Refresh (read-only)
RightBorder (read-only) (5.0)
RowNo (read-only)
Scroll
Select (4.5)
SeqNo (read-only)
Shrinkable
Size
TableName (read-only)
TopBorder (read-only) (5.0)
Touched
Translucent



Visible



TableFrame properties
Arrived (read-only)
AttachedHeader (read-only) (5.0)
AutoAppend (4.5)
BlankRecord (read-only)
BottomBorder (read-only) (5.0)
Breakable
Class (read-only)
Color
ColumnPosition (5.0)
ColumnWidth (5.0)
ContainerName (read-only)
CurrentColumn (5.0)
CurrentRow (5.0)
DeleteColumn (5.0)
Deleted (read-only)
DeleteWhenEmpty (5.0)
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
Editing (read-only) (4.5)
Enabled (7)
First (read-only)
FirstRow (read-only) (5.0)
FitHeight
FitWidth
FlyAway (read-only)
Focus (read-only)
FullName (read-only)
FullSize (read-only)
Grid.Color
Grid.GridStyle
Grid.RecordDivider
Header (read-only) (5.0)
HorizontalScrollBar
IncludeAllData (7)
InsertColumn (5.0)
Inserting (read-only)
LeftBorder (read-only) (5.0)
Locked (read-only)
Manager (read-only)
Name
NCols
Next (read-only)
NextTabStop (5.0)
NRecords (read-only)
NRows
Owner (read-only)
Pattern.Color
Pattern.Style
PersistView (read-only)
Position
Prev (read-only)



Readonly (read-only)
RecNo (read-only)
Refresh (read-only)
RepeatHeader (5.0)
RightBorder (read-only) (5.0)
RowNo (read-only)
Scroll
Select (4.5)
SeqNo (read-only)
ShowAllColumns (5.0)
Size
TableName
TopBorder (read-only) (5.0)
Touched
Translucent
VerticalScrollBar
Visible
WideScrollBar (5.0)



TableView properties
Arrived (read-only)
BlankRecord (read-only)
BottomBorder (read-only) (5.0)
Class (read-only)
Color
ContainerName (read-only)
CurrentRecordMarker.Color
CurrentRecordMarker.LineStyle
CurrentRecordMarker.Show
Deleted (read-only)
Editing (read-only) (4.5)
Enabled (7)
FieldName (read-only)
FieldNo (read-only)
FieldView (read-only)
Focus (read-only)
FullName (read-only)
FullSize (read-only)
GridLines.Color
GridLines.ColumnLines
GridLines.HeadingLines
GridLines.LineStyle
GridLines.QueryLook (5.0)
GridLines.RowLines
GridLines.Spacing
HeadingHeight (5.0)
Inserting (read-only)
LeftBorder (read-only) (5.0)
Locked (read-only)
Manager (read-only)
MemoView (read-only)
Name (read-only)
NCols (read-only)
NRecords (read-only)
NRows (read-only)
Owner (read-only)
PersistView (read-only)
Position
Readonly (read-only)
RecNo (read-only)
Refresh (read-only)
RightBorder (read-only) (5.0)
RowHeight (5.0)
RowNo
Scroll
Select (4.5)
SeqNo (read-only)
Size
TableName (read-only)
TopBorder (read-only) (5.0)
Touched (read-only)



Text properties
Alignment
Arrived (read-only)
AvgCharSize (read-only) (5.0)
BottomBorder (read-only) (5.0)
Breakable
Class (read-only)
Color
ContainerName (read-only)
CursorColumn
CursorLine
CursorPos
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
DesignSizing
Enabled (7)
FieldSqueeze
First (read-only)
FitHeight
FitWidth
Focus (read-only)
Font.Color
Font.Script (8)
Font.Size
Font.Style
Font.Typeface
Frame.Color
Frame.Style
Frame.Thickness
FullName (read-only)
FullSize (read-only)
HorizontalScrollBar
InsertField (5.0)
LeftBorder (read-only) (5.0)
LineSpacing
LineSqueeze
Manager (read-only)
MarkerPos
Name
Next (read-only)
Orphan/Widow
OverStrike
Owner (read-only)
Pattern.Color
Pattern.Style
Position
Prev (read-only)
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
SelectedText



Size
Text
TopBorder (read-only) (5.0)
TopLine
Translucent
Value
VerticalScrollBar
Visible
WideScrollBar (5.0)
WordWrap



TVData properties
Alignment
Arrived (read-only)
BlankRecord (read-only)
BottomBorder (read-only) (5.0)
Class (read-only)
Color
CompleteDisplay
ContainerName (read-only)
Default (read-only)
Deleted (read-only)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
Editing (read-only) (4.5)
FieldName (read-only)
FieldNo (read-only)
FieldRights (read-only)
FieldSize (read-only)
FieldType (read-only)
FieldUnits2 (read-only)
First (read-only)
Focus (read-only)
Font.Color
Font.Script (8)
Font.Size
Font.Style
Font.Typeface
Format.DateFormat
Format.LogicalFormat
Format.NumberFormat
Format.TimeFormat
Format.TimeStampFormat
FullName (read-only)
FullSize (read-only)
IndexField (read-only)
Inserting
KeyField (read-only)
LeftBorder (read-only) (5.0)
Locked (read-only)
LookupTable (read-only)
LookupType (read-only)
Magnification
Manager (read-only)
Maximum (read-only)
Minimum (read-only)
Name
NextTabStop (5.0)
NRecords (read-only)
Owner (read-only)
Picture (read-only)
Position



RecNo (read-only)
Refresh (read-only)
Required (read-only)
RightBorder (read-only) (5.0)
RowNo (read-only)
Scroll
Select (4.5)
SeqNo (read-only)
Size
TableName (read-only)
TopBorder (read-only) (5.0)
Touched (read-only)
Value
Width (5.0)



TVHeading properties
Alignment
Arrived (read-only)
BottomBorder (read-only) (5.0)
Class (read-only)
Color
ContainerName (read-only)
Design.ContainObjects
Design.PinHorizontal
Design.PinVertical
Design.Selectable (4.5)
Design.SizeToFit
Focus (read-only)
Font.Color
Font.Script (8)
Font.Size
Font.Style
Font.Typeface
FullName (read-only)
FullSize (read-only)
LeftBorder (read-only) (5.0)
Manager (read-only)
Name
Owner (read-only)
Position
RightBorder (read-only) (5.0)
Scroll
Select (4.5)
Size
TopBorder (read-only) (5.0)



List of built-in event methods
The following table lists built-in event methods for internal and external events and special built-in event 
methods. Click one of the following methods for more information.
Internal External Special
arrive action pushButton
canArrive error changeValue
canDepart init newValue
close keyChar
depart keyPhysical
mouseEnter menuAction
mouseExit mouseClick
open mouseDouble
removeFocus mouseDown
setFocus mouseMove
timer mouseRightDouble

mouseRightDown
mouseRightUp
mouseUp
status

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;',0,"Defaultoverview",)}     Related Topics

   Print related ObjectPAL methods and examples  



About built-in event methods
Every object in a form (and the form itself) has built-in event methods for handling events. Built-in event 
methods have the same names as the events that trigger them. For example, changing a value triggers an 
object's built-in changeValue method, pressing the mouse button triggers the built-in mouseDown method, 
and releasing the mouse button triggers the built-in mouseUp method. The behavior of an object is simply the 
combined effects of its built-in event methods. ObjectPAL follows a specific sequence of execution, moving from 
one built-in event method to the next.
There are three kinds of built-in event methods in ObjectPAL:
· built-in event methods for internal events
· built-in event methods for external events
· special built-in event methods

Built-in event methods for internal events
Internal events are generated internally by ObjectPAL. Like all events, internal events go to the form first, which 
dispatches them to the target object. Internal events do not bubble up through the containership hierarchy.

Built-in event methods for external events
External events are typically generated by user actions, although they can also be generated by ObjectPAL 
statements. Processing for all external events begins with the form, which acts as a dispatcher. Any external 
event that can not be handled by an object bubbles up the containership hierarchy. 
Unless otherwise noted, the default behavior for most objects and built-in event methods is to pass the event up 
the containership hierarchy .

Special built-in event methods
Special built-in event methods are additional methods built into a few specific objects.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;',0,"Defaultoverview",)} Related Topics



Editing a built-in event method
Every Corel Paradox object comes with built-in event methods (e.g., open, close, and mouseUp) for each event
it can respond to. The built-in code for these methods specify an object's default behavior in response to a given 
event. You can edit this code using the ObjectPAL Editor.

To edit a built-in event method
1. Open the Object Explorer.
2. Click the Events tab.
3. Double-click the method where you want to attach the code.
4. In the Editor window, make any changes.
You can type the text for a method directly in the ObjectPAL Editor, or use the Clipboard to copy, cut, and paste 
methods and parts of methods from other objects.
Now your code executes whenever this event method you've chosen is called for the object specified.
If you've attached code to the built-in event method, the built-in code executes after your code.
The built-in code is implicit and executes automatically. But, you can change the default behavior; for example, 
by calling the built-in code before your code, or blocking it from executing. You should first understand the 
default behavior for each built-in event method.

 Notes
· If you attach code to an object's built-in open method, you should call doDefault before calling any other 

method or procedure. The call to doDefault executes the built-in code so you can be sure the object is 
completely opened and initialized. Calling disableDefault stops the built-in code from executing.

· To edit more than one method, select them by pressing SHIFT and clicking, and then press ENTER. An Editor 
window opens for each event selected.

{button ,AL(`BUILTIN;OPAL_BLANG_BLDISABLE:INTRO_COMPONENTS_METH;INTRO_COMPONENTS_ME
TH_EV;OPAL_BLANG_BLDODEFAULT;OPAL_BLANG_BLENABLE;',0,"Defaultoverview",)} Related Topics



Sequence of execution
The following figure shows the sequence in which built-in event methods execute when you move from one field 
object to another (for example, by pressing TAB). In this example, the field object you're moving from is 
fromField, and the one you're moving to is toField. 

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;',0,"Defaultoverview",)} Related Topics



init method
The init built-in event method allows you to perform any initialization operations before a form’s open method is
executed. init is called once when a form window is opened to view data. init is a built-in method only to the 
form object; no other UIObject has a built-in init method. 
In previous versions of Corel Paradox, initialization code was placed in the open method of the form. The init 
method executes at the same point that the call to open previously occurred. However, open is now called as 
the default behavior once the init method has executed. While the init method is the preferred location for 
form-level initialization code, existing forms with initialization code placed in the PreFilter block of the open 
method will continue to behave as before. Unlike all other form-level methods, init does not have a PreFilter 
clause.
Both the init and open methods can contain initialization code for your application. Because of the PreFilter 
clause, however, the open method is called once for every object on the form. Depending on the number of 
objects on the form, this may cause a form to load slowly. init allows for pre-processing or initialization code to 
be executed only once at the form level. 

The init method can be used to stop the form from executing (as the open method can) by setting the error code 
to any non-zero value as follows:
   eventInfo.setErrorCode(1)      ; any nonzero error code will work
The init method calls the open method, so any error code returned from the open method bubbles up to init. 
Any forms that return error codes in their open continue to stop the form from executing.

Examples
To setup tables before the open method opens them, write the following code :
   method init(var eventInfo Event)
   createMyTables()     ; createMyTables is a custom method
                        ; implicit doDefault here calls the open method
   endMethod
To have the system open the tables before processing them, write this code :
   method init(var eventInfo Event)
   doDefault                 ; open method is executed here
   tc.attach(tableFrame)     ; add any special processing code here.
                             ; tc is defined in the Var window.
   endMethod

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



open
open is called once for every object on the form, starting from the form and working down each container in 
turn. For every object, the default code for the open method calls the open method for each of its child objects 
(that is, the objects one level below it in the containership hierarchy). In other words, by default, the form's open
method calls the open method for each page in the form, and each page's open method calls the open method
for each object on the page, and so on.

 Note
· The form's open method opens all tables in the form's data model before any other objects are opened. If 

aliases are required to open any of the tables, specify them before executing the default code for open.
An error from any object prevents a form from opening. Also, explicitly setting an error code in an open 
method's event packet prevents a form from opening.
As a general rule, if you attach code to an object's built-in open method, you should call doDefault before 
calling any other method or procedure. The call to doDefault executes the built-in code so you can be sure the 
object is completely opened and initialized.

 Note
· Corel Paradox compiles out of date forms (forms created in earlier versions) before opening them. In this case, 

tables in the form's data model are opened before any ObjectPAL code executes.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



close
close is called once for every object on a form being closed. By default, a form's close method closes all tables 
attached to the form.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



canArrive
canArrive is called when moving to an object. It finds out whether the object (usually a field object) can be 
made active. Corel Paradox calls this method by working through the object's containers, triggering canArrive 
for each object until it reaches the object itself. At any level of the containership, an error denies permission, 
blocking the move.
By default, Corel Paradox blocks canArrive for objects that are not tab stops, and for a crosstab object if the 
target is not a cell.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



arrive
arrive is called only after the target and its containers have allowed a canArrive. As with canArrive, Corel 
Paradox calls arrive on the target object's containers, finishing at the target. Pages, table frames, and multi-
record objects all move to the first tab stop object they contain if they are the final destination of the move.
A successful arrive on a record or a field object makes the record or object active (and opens an Editor window 
for the field object, if appropriate).
arrive can have further effects on a field object, depending on the object's display type. If the object is a drop-
down edit list, focus moves to the list. If it's a radio button, focus moves to the first button.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



setFocus
setFocus is called after a successful arrive or when focus is returned to the form after moving to another 
window. This method is called for each of the active object's containers, starting with the outermost container, 
before it is called for the active object itself.
On an edit field, the default code for setFocus highlights the active selection and makes the cursor blink. At this 
time, also, the object's Focus property is set to True, and the form displays a status message reporting the 
number of the active record and the total number of records.
When a button gets focus, a rectangle displays around the label.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



canDepart
canDepart is called when you try to move the focus off any object. This is the place to attach code to block a 
departure; any error blocks the move. Field objects try to post their contents (triggering changeValue), and 
record objects try to commit the active record if changes have been made. If the record is locked, the form calls 
action(DataUnlockRecord) or action(DataPostRecord).
Switching to another window does not move off an object, it only changes focus. Use setFocus and 
removeFocus to respond to focus events.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



removeFocus
removeFocus removes the flashing cursor and highlight (if appropriate) from a field object, and removes the 
rectangle from a button. The object's Focus property is set to False.
The removeFocus method is called for the active object and all its containers, starting with the active object, 
when the user activates some other window or moves to some other object.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



depart
depart is called after all containers of the active object have been granted permission to leave the field via 
canDepart and removeFocus. Use canDepart to block a move; depart is reserved for closing edit regions, 
and performing general cleanup.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



mouseEnter
mouseEnter is called whenever the pointer crosses into an object. It is called only on the transition into the 
object, not on every move across the object.
By default, field objects set the pointer to the I-beam; form, page, and button objects set the pointer to an arrow.
If a button was the last object to be clicked, and the mouse button is still pressed, the button's value toggles 
between True and False.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



mouseExit
mouseExit is called when the pointer leaves an object. An object that changes the shape of the pointer on 
mouseEnter sets it to an arrow in mouseExit.
If a button was the last object to be clicked, and the mouse button is still pressed, the button's value toggles 
between True and False.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



timer
timer is called whenever a timer interval elapses. Use the UIObject method setTimer to set timer intervals.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



mouseDown
mouseDown is called when the logical left mouse button is pressed. The event packet for this method contains 
the mouse coordinates in twips, relative to the target object.
An active field object enters Field View, positions the cursor, and begins a drag-selection.
When the form handles a mouseDown, it calls mouseExit for all objects no longer under the mouse, and calls 
mouseEnter for all objects now under the mouse. The form then dispatches the mouseDown to the object the 
mouse was pointing at.
This method toggles a button's value between True and False.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



mouseUp
mouseUp is called when the left mouse button is released. It's called for the last object to receive a 
mouseDown so the object always sees the mouseDown/mouseUp pair, even if the button is released outside 
the object.
An active field object ends the selection; a field object that is not active performs a self.moveTo().
When the form handles a mouseUp, it calls mouseExit for all objects no longer under the mouse, and calls 
mouseEnter for all objects now under the mouse. The form then dispatches the mouseUp to the object that 
received the last click.
The mouseUp method toggles a button's value between True and False. If mouseUp is called and the pointer is 
inside a button, it triggers the button's pushButton method. For any other type of object, it triggers the object's
built-in mouseClick method.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



mouseDouble
mouseDouble is called when the left mouse button is double-clicked. In Windows convention, a mouseDown 
and mouseUp are delivered first.
Field objects enter field view on a mouseDouble.
When the form handles a mouseUp, it calls mouseExit for all objects no longer under the mouse, and calls 
mouseEnter for all objects now under the mouse. The form then dispatches mouseDouble to the object that 
received the last click.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



mouseRightDown
mouseRightDown is called when the logical left mouse button is pressed. The event packet for this method 
contains the mouse coordinates in twips, relative to the target object.
An active field object enters Field View, positions the cursor and begins a drag-selection.
When the form handles a mouseRightDown, it calls mouseExit for all objects no longer under the mouse, and 
calls mouseEnter for all objects now under the mouse. The form then dispatches the mouseRightDown to the 
object the mouse was pointing at.
This method toggles a button's value between True and False.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



mouseRightUp
mouseRightUp is called when the left mouse button is released. It's called for the last object to receive a 
mouseRightDown so the object always sees the mouseRightDown/mouseRightUp pair, even if the button is
released outside the object.
When the form handles a mouseRightUp, it calls mouseExit for all objects no longer under the mouse, and 
calls mouseEnter for all objects now under the mouse. The form then dispatches the mouseRightUp to the 
object that received the last click.
This method toggles a button's value between True and False. If mouseRightUp is called and the pointer is 
inside a button, it triggers the button's pushButton method.
In addition, the following field objects display a pop-up menu when they receive a mouseRightUp: formatted 
memo, graphic, OLE, and unbound (undefined).

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



mouseRightDouble
mouseRightDouble is called when the left mouse button is double-clicked. In Windows convention, a 
mouseRightDown and mouseRightUp are delivered first.
When the form handles a mouseRightUp, it calls mouseExit for all objects no longer under the mouse, and 
calls mouseEnter for all objects now under the mouse. The form then dispatches mouseRightDouble to the 
object that received the last click.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



mouseClick
mouseClick is called when the logical left mouse button is pressed and released when the pointer is inside the 
boundaries of an object. mouseClick is not called if the user moves the mouse outside the object before 
releasing the mouse button.
mouseClick is generated from within the mouseUp method.
The mapping from mouseUp to mouseClick happens at the first container object which uses mouseUp. In 
other words, mouseUp in a box bubbles to its container. Only the field object, the button object, the list object, 
and the form intercept mouseUp; those are the only areas where the translation occurs. If you click on an object
inside a button, that object's mouseClick will be called. If that object allows the default (bubbling), then the 
button will ultimately receive that mouseClick, triggering its own pushButton method. In this way, you can 
have code execute on objects you click inside the button, but still trigger the button's pushButton method. 
Setting the error code in mouseUp will inhibit the mouseClick, and setting the error code in mouseClick will 
inhibit a pushButton.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



mouseMove
mouseMove is called whenever the mouse moves within an object. The event packet for this method contains 
the coordinates of the pointer (in twips).
An active edit field checks the state of SHIFT. If SHIFT is down (physically or logically), the area being selected is 
extended. An active graphic field scrolls to show the entire object, if it is too large for it's current frame.
When you press and hold the mouse button inside an object, mouseMove is called until you release it, even 
when the pointer moves outside the object.
When the form handles a mouseMove, it calls mouseExit for all objects no longer under the mouse, and calls 
mouseEnter for all objects now under the mouse.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



keyPhysical
keyPhysical is called when a key is pressed and each time a key auto-repeats. This method goes to the form 
first, and the form dispatches it to the active object. Then, the active object's built-in code decides whether a 
keystroke represents an action or a character displayed in a field, and calls the appropriate action or keyChar 
method.
For example, suppose a field object within a table object is active and the user presses ENTER. The keystroke 
triggers keyPhysical, which interprets this action as a request and maps it to action(FieldEnter), which in turn
triggers the built-in action method. In contrast, when the user presses K, the keystroke triggers keyPhysical, 
which interprets it as a character and triggers the keyChar method.
The event packet for keyPhysical contains information from the Windows WM_KEYDOWN message and an 
optional WM_CHAR. Therefore, the event packet provides both the virtual key code and the ANSI character. This 
method is best for special character handling. For example, if you want to intercept the F9 key explicitly (rather 
than handle the eventual action(DataToggleEdit)), this is the method to use.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



keyChar
keyChar is called when a keyPhysical does not map to an action (see the action built-in event method). 
keyChar goes to the form first, and the form dispatches it to the active object.
When editing a field, the system locks the record before inserting the first character.
If a button receives a keyChar equal to pressing SPACEBAR (for example, keyChar(VK_SPACE)), it calls the 
button's pushButton method.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



menuAction
menuAction is called whenever the user chooses an item from a menu (or clicks a Toolbar button that executes 
a menu action). It goes to the form first, and the form dispatches it to the active object.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



error
error is called when an error occurs. By default, objects (except forms) pass errors to their containers. You can 
attach code to the default method to make an object handle an error, pass an error, or both. 

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



status
status is called before a message is displayed in one of the areas in the Status Bar. Among other things, you can
attach code to the built-in status method to redirect messages to other areas or to change the text of the 
message.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



action
action is called when keyPhysical maps a keystroke to an action, when menuAction maps a menu command 
to an action, or when other methods want an action performed. action goes to the form first, and the form 
dispatches it to the target object. For example, by default, pressing F2 in a field triggers 
action(EditToggleFieldView) after its keyPhysical method executes, and clicking the Forward navigation 
button triggers action(DataNextRecord) after its menuAction method executes.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



pushButton
pushButton is defined only for button objects and fields displayed as list boxes, and is called when the user 
releases the mouse on a button. This method is not called directly by the form, but by the default mouseUp 
method for buttons. You can also call this method directly to accomplish the normal action associated with 
pressing a button object.
By default, buttons change their appearance when clicked. For example, a push button pushes in and pops out, 
check boxes check or uncheck, and a radio button pushes in or pops out. Focus moves to a button when the 
button is clicked (unless its Tab Stop property is set to False).
There are two ways to trigger a button's pushButton method using the keyboard when the button's Tab Stop 
property is set to True, and the button is the active object:
· Press SPACEBAR. The button keeps focus.
· Press ENTER. The focus moves to the next object in the tab order.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



changeValue
Defined only for field objects, changeValue asks for permission to change the value of a field. It is called before 
the value is stored, so you can check the value and do something with it (such as performing additional validity 
checks). changeValue is not called when someone changes a value across a network.
The following statement triggers Quant's changeValue method. Even if Quant is already 10, it triggers the 
statement immediately, without waiting for the method to finish executing.
Quant = 10

Using changeValue with field objects
The built-in code for changeValue commits the changes to the value. Until the built-in code executes, Corel 
Paradox uses the old, unchanged value. For example, suppose a field object has a value of 10, and you move to 
the value and enter a value of 23. Then, when you move off that field object, you trigger its changeValue 
method, to which the following code has been attached:
method changeValue(var eventInfo ValueEvent)
   msgInfo("before the change", self.value) ; displays 10
   doDefault
   msgInfo("after the change", self.value) ; displays 23
endMethod
When this method executes, the first dialog box displays the old value, 10, because the built-in code has not yet 
executed. Then, the call to doDefault executes the built-in code, which commits the changed value, and the 
second dialog box displays the changed value.
Within an object's changeValue method, you can use the ValueEvent type newValue method (this is different 
from the built-in newValue event method) to get the incoming value before the built-in code executes. For 
example, suppose that a field object has a value of 10, and you move to the value, enter a value of 23, and 
trigger its changeValue method, to which the following code has been attached:
method changeValue(var eventInfo ValueEvent)
   msgInfo("before the change", self.value) ; Displays 10
   msgInfo("the new (incoming) value",
           eventInfo.newValue())            ; Displays 23
   doDefault
   msgInfo("after the change", self.value)  ; Displays 23
endMethod
The first dialog box displays the old, unchanged value. The second dialog box calls eventInfo.newValue to 
display the new, incoming value, but that value has not yet been committed. The call to doDefault executes the
built-in code, which commits the change, and the third dialog box displays the changed value.
You can block an attempted change to a value by calling eventInfo.setErrorCode and specifying a non-zero 
value. You can also test (or alter) the incoming value (e.g., to round up to the nearest dollar amount), using 
eventInfo.setNewValue. For example, the following code is attached to a field object's built-in changeValue 
method. It executes when the user changes the field's value and attempts to post (commit) the change. The 
code calls eventInfo.newValue to get the user's value before it is posted. If it is greater than 50, the call to 
eventInfo.setErrorCode prevents the user from posting the value or leaving the field.
method changeValue(var eventInfo ValueEvent)
   var
      atNewVal   AnyType
   endVar

   atNewVal = eventInfo.newValue()
   if atNewVal > 50 then
      eventInfo.setErrorCode(CanNotDepart)
      message("Enter a value less than 50.")
   endIf
endMethod

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



newValue
Defined only for field objects, newValue is called to report that a field object has a new value. For example, 
moving to the next record in a table triggers newValue. When a field is displayed as radio buttons, newValue is
called when you click a button. Note that typing into a field object does not trigger newValue, but it does set 
the Touched property to True. changeValue is not called until you try to move off the field object or otherwise 
try to commit changes. Also, a form's open method triggers newValue for each field object in the form.

Labeled and unlabeled field objects
The following figure shows the sequence in which built-in event methods execute when you move from one field 
object (labeled or unlabeled) to another after editing a value. The field object you're moving from is named 
fromField; the one you're moving to is named toField.

Radio buttons and lists
The following figure shows the sequence in which built-in event methods execute when you move from one field 
object (radio buttons, lists, or check boxes) to another after editing a value. The sequence is the same as for 
regular fields, except for an additional newValue call when you choose a radio button or a list item. The table 
also gives the ValueReason constant for each newValue. The field object you're moving from is fromField; the 
one you're moving to is toField.



 Note
· newValue is called when Corel Paradox needs to refresh the value of the field object (in this case, to update 

the display). Calls to newValue are not part of the canDepart sequence. However, newValue is not 
necessarily the last method to execute.

{button ,AL(`BUILTIN;INTRO_COMPONENTS_METH_EV;INTRO_COMPONENTS_METH;,')} Related Topics



ActionEvent type
ActionEvents are generated primarily by editing and navigating in a table. The ActionEvent type includes several 
derived methods from the Event type.
The only built-in event method that is triggered by an ActionEvent is action. Typically, when you work with 
ActionEvents, you'll also work with ObjectPAL action constants. For example, to prevent users from editing a 
table, you could do something like this:
; thisTableFrame::action
method action(var eventInfo ActionEvent)
; If the user tries to switch to Edit mode, display a dialog box
if eventInfo.id() = DataBeginEdit then  ; DataBeginEdit is a constant.
  msgStop("Stop", "You can't edit this table.")
  eventInfo.setErrorCode(UserError) ; UserError is a constant.
endif
endMethod

The action constants are grouped as follows:
· ActionDataCommands
· ActionEditCommands
· ActionFieldCommands
· ActionMoveCommands
· ActionSelectCommands
You can also use user-defined action constants.
The following table displays the methods for the ActionEvent type:
Methods for the ActionEvent type

Event ActionEvent
errorCode actionClass
getTarget id
isFirstTime setId
isPreFilter
isTargetSelf
reason
setErrorCod
e
setReason

{button ,AL(`OPAL_ACTIONEVENT_USERDEFINEDCONSTANTS;',0,"Defaultoverview",)}      Related 
Topics

 Print related ObjectPAL methods and examples



User-defined action constants
You can define your own action constants, but you must keep them within a specific range. Because this range is
subject to change in future versions of Corel Paradox, ObjectPAL provides the IdRanges constants UserAction and
UserActionMax to represent the minimum and maximum values allowed.
For example, suppose that you want to define two action constants, ThisAction and ThatAction. In a Const 
window, define values for your custom constants as follows:

Const
   ThisAction = 1
   ThatAction = 2
EndConst

Then, to use one of these constants, add it to UserAction. For example,
method action(var eventInfo ActionEvent)

   if eventInfo.id() = UserAction  +  ThisAction then
      doSomething()
   endIf
endMethod

By adding UserAction to your own constant, you guarantee yourself a value above the minimum. To keep the 
value under the maximum, use the value of UserActionMax. One way to check the value is with a message 
statement:
message(UserActionMax)

In Corel Paradox, the difference between UserAction and UserActionMax is 2047. That means the largest value 
you can use for an action constant is UserAction + 2047.

{button ,AL(`opal_type_actionevent;;;;;',0,"Defaultoverview",)} Related Topics



actionClass method
Returns the class number of an ActionEvent.

Syntax
actionClass ( ) SmallInt

Description
actionClass returns an integer value representing an ActionEvent class. Use ActionClasses constants to find out 
which class the integer value represents.
 Example

{button ,AL(`OPAL_TYPE_ACTIONEVENT;OPAL_METH_AEID;OPAL_METH_AESID;OPAL_METH_EVGTAR;',0,"
Defaultoverview",)} Related Topics



actionClass example
The following example uses actionClass to prevent the user from making any changes to a field object. This 
code is attached to a field's built-in action method. See id for an example that traps for the user entering Edit 
mode.

; Site_Notes::action
method action(var eventInfo ActionEvent)
; check for any attempt to edit, and block it
if eventInfo.actionClass() = EditAction then
  ; allow user to start and end field view
  if NOT (eventInfo.id() = EditEnterFieldView) AND
     NOT (eventInfo.id() = EditToggleFieldView) AND 
     NOT (eventInfo.id() = EditExitFieldView) then
     eventInfo.setErrorCode(UserError)
     beep()
     message("Sorry. Can't make changes to this field.")
  endif
endif
endMethod



id method
Returns the ID number of an ActionEvent.

Syntax
id ( ) SmallInt

Description
id returns the ID number of an ActionEvent. ObjectPAL defines constants for these ID numbers (for example, 
DataBeginEdit), so you don't have to remember numeric values.
The action constants are grouped as follows:
· ActionDataCommands
· ActionEditCommands
· ActionFieldCommands
· ActionMoveCommands
· ActionSelectCommands
You can also use user-defined action constants.
 Example

{button ,AL(`OPAL_TYPE_ACTIONEVENT;OPAL_METH_AEACTIONCLASS;OPAL_METH_AESID;',0,"Defaultov
erview",)} Related Topics



id example
The following example uses id to prevent the user from entering Edit mode on a form. This code is attached to a 
form's built-in action method:

; thisForm::action
method action(var eventInfo ActionEvent)
if eventInfo.isPreFilter() then
    ; code here executes for each object in form
else
    ; code here executes just for form itself
    if eventInfo.id() = DataBeginEdit then
      eventInfo.setErrorCode(UserError)     ; don't start Edit mode
      msgStop("Sorry", "View only - can't edit this form")
    endif
endif
endMethod



setId method
Specifies an ActionEvent.

Syntax
setId ( const actionId SmallInt )

Description
setId specifies the ActionEvent represented by the constant actionId. ObjectPAL provides constants (e.g., 
DataNextRecord) for ActionEvents so you don't have to remember numeric values.
The action constants grouped as follows:
· ActionDataCommands
· ActionEditCommands
· ActionFieldCommands
· ActionMoveCommands
· ActionSelectCommands
You can also use user-defined action constants.
 Example

{button ,AL(`OPAL_TYPE_ACTIONEVENT;OPAL_METH_AEID;',0,"Defaultoverview",)} Related Topics



setId example
In the following example, the Toolbar record-movement buttons are remapped to move within a memo field. 
Assume that a form contains a multi-record object, SITES, bound to the Sites table. The following code is 
attached to the action method for the Site_Notes field object:

; Site_Notes::action
method action(var eventInfo ActionEvent)
var
  actID  SmallInt
endVar
; if Site Notes is in Field View, remap record-movement
; actions to move within the memo field
if self.Editing then
   actID = eventInfo.id()
   switch
      case actID = DataPriorRecord  : eventInfo.setId(MoveBeginLine)
      case actID = DataNextRecord   : eventInfo.setID(MoveEndLine)
      case actID = DataFastBackward : eventInfo.setID(MoveBegin)
      case actID = DataFastForward  : eventInfo.setID(MoveEnd)
      case actID = DataBegin        : eventInfo.setID(FieldBackward)
      case actID = DataEnd          : eventInfo.setID(FieldForward)      
   endswitch
endif
endMethod



AnyType type
An AnyType variable can store any one of the data types listed in the following table.
Type Description
AnyType Any basic data type
Binary Machine-readable data
Currency Used to manipulate currency values
Date Calendar data
DateTime Calendar and clock data combined
Graphic A bitmap image
Logical True or False
LongInt Used to represent large integer values
Memo Holds a large amount of text
Number Floating-point values
OLE A link to another application
Point Information about a location on the screen
SmallInt Used to represent relatively small integer values
String Letters
Time Clock data
An AnyType variable can never be a complex type such as TCursor or TextStream. It inherits characteristics from 
the value assigned to it, behaving like a String when assigned a String value, behaving like a Number when 
assigned a Number value, and so on.
AnyType data objects are included in ObjectPAL so you can use variables for basic data types without declaring 
them first. (Remember that it's better to declare variables whenever possible.)

Methods for the AnyType type
blank
dataType
fromHex
isAssigned
isBlank
isFixedType
toHex
unAssign
view

   Print related ObjectPAL methods and examples  



blank method/procedure
Returns a blank value.

Syntax
1. ( Method ) blank ( )
2. ( Procedure ) blank ( ) AnyType

Description
blank generates a blank value to assign to a variable or field. A blank value is not the same as a numeric value 
of zero, but you can use Session type method blankAsZero to treat blank values as zeros in certain 
calculations. You can use the Session type method isBlankZero to find out whether Blank=Zero is on or off.
 Example

{button ,AL(`OPAL_TYPE_ANYTYPE;OPAL_METH_ATISBL;',0,"Defaultoverview",)} Related Topics



blank example
The following example assumes that a form has a table frame bound to the Lineitem table and a button named 
thisButton. When a user presses thisButton, the code scans the Qty field in Lineitem and replaces non-blank 
values with blank values. This code is attached to the built-in pushButton method for thisButton:

; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor 
endVar

if tc.attach(LINEITEM) then              ; attach tc to table frame
  tc.edit()                              ; edit the table frame
  scan tc for tc.Qty.isBlank() = False : ; look for non-blank Qty fields
    tc.Qty.blank()                       ; put a blank value in Qty
  endScan
  tc.endEdit()                           ; end edit mode
endif

endMethod



dataType method
Returns a string representing the data type of a variable.

Syntax
dataType ( ) String

Description
dataType returns a string representing the data type of a variable or expression: Binary, Currency, Date, 
DateTime, Graphic, Logical, LongInt, Memo, Number, OLE, Point, SmallInt, String, or Time. In comparison 
statements, you need to use one of the string values shown here. For example, the following is coded incorrectly 
because it compares String with string.
var s AnyType endVar
s = "This is a String data type."
msgInfo("Test", s.dataType() = "string")  ; displays False - should use "String"

 Note
· This method works for all ObjectPAL types, not just AnyType.
 Example

{button ,AL(`OPAL_TYPE_ANYTYPE;OPAL_METH_ATISAS;',0,"Defaultoverview",)} Related Topics



dataType example
The following example assumes a form has a button and a graphic field named bmpField. The following code 
loads a DynArray with several different types of data and then uses dataType to display the data type of each 
value in the DynArray. This code is attached to the button's built-in pushButton method:

; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  mixedTypes DynArray[] AnyType
endVar

mixedTypes["Make"]  = "Ford"          ; String
mixedTypes["Model"] = "Cobra"         ; String
mixedTypes["Year"]  = 1969            ; SmallInt (not Date)
mixedTypes["Color"] = Black           ; LongInt - used here as a constant
mixedTypes["Photo"] = bmpField.value  ; Graphic

forEach element in mixedTypes    ; display a message for each element

  msgInfo("dataType(" + element + ")", dataType(mixedTypes[element]))  

endForEach

endMethod



fromHex procedure
Converts a hexadecimal number to a decimal number.

Syntax
fromHex ( const value String ) LongInt

Description
fromHex converts a hexadecimal number to a decimal number. The value must range from 0x00000000 to 
0xFFFFFFFF.
 Example

{button ,AL(`OPAL_TYPE_ANYTYPE;OPAL_METH_ATTOHEX;',0,"Defaultoverview",)} Related Topics



fromHex example
In the following example, the pushButton method for a button named convertHex converts a hexadecimal 
string variable to a decimal number.

; convertHex::pushButton
method pushButton(var eventInfo Event)

var
s String
li LongInt

endVar

;Hexadecimal value to convert.
s = "0x0756B5B3"
s.view("Hex value to convert")
li = fromHex(s)
li.view("0x0756B5B3") ; Displays 123123123.

endMethod



isAssigned method
Reports whether a variable has been assigned a value.

Syntax
isAssigned ( ) Logical

Description
isAssigned returns True if the variable has been assigned a value; otherwise, it returns False.

 Note
· This method works for all ObjectPAL types, not just AnyType.
 Example

{button ,AL(`OPAL_TYPE_ANYTYPE;OPAL_METH_ATDTYP;OPAL_METH_ATUNASSIGN;',0,"Defaultoverview
",)} Related Topics



isAssigned example
The following example uses isAssigned to test the value of i before assigning a value to it. If i has been 
assigned, this code increments i by one. The following code is attached in a button's Var window:

; thisButton::var
var
  i SmallInt
endVar

This code is attached to the button's built-in pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)

if i.isAssigned() then ; if i has a value
  i = i + 1            ; increment i
else 
  i = 1                ; otherwise, initialize i to 1 
endif
                       ; now show the value of i
message("The value of i is : " + String(i))

endMethod



isBlank method
Reports whether an expression has a blank value.

Syntax
isBlank ( ) Logical

Description
isBlank returns True if the expression has a blank value; otherwise, it returns False. Blank string values are 
denoted by "". Other blank values can be generated using blank. Note that blank values are not the same as 0, 
spaces ("    "), or unassigned values.
 Example

{button ,AL(`OPAL_TYPE_ANYTYPE;OPAL_METH_ATBLANK;',0,"Defaultoverview",)} Related Topics



isBlank example
The following example uses isBlank to test various values and displays the results in a dialog box. This code is 
attached to a button's pushButton method.

; thisButton::pushButton
method pushButton(var eventInfo Event)

msgInfo("Is the empty string blank?", isBlank(""))      ; True
msgInfo("Is a string of spaces blank?", isBlank("   ")) ; False
msgInfo("Is 5 a blank?", isBlank(5))                    ; False
msgInfo("Is blank blank?", isBlank(blank()))            ; True

endMethod



isFixedType method
Reports whether a variable's data type has been explicitly declared.

Syntax
isFixedType ( ) Logical

Description
isFixedType returns True if the variable has been declared using a var...Endvar block; otherwise, it returns 
False.
 Example

{button ,AL(`OPAL_TYPE_ANYTYPE;OPAL_METH_ATDTYP;OPAL_METH_ATISAS;',0,"Defaultoverview",)} 
Related Topics



isFixedType example
The following example demonstrates when isFixedType returns True. This code is attached to a button's built-in 
pushButton method.

; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  x SmallInt                  ; declare x
endVar

message(x.isFixedType())      ; displays True
sleep(2000)

testMe = 4                    ; testMe was not declared
message(testMe.isFixedType()) ; displays False

endMethod



toHex procedure
Converts a decimal number to a hexadecimal number.

Syntax
toHex ( const value LongInt ) String

Description
toHex converts a decimal number to a hexadecimal number.
 Example

{button ,AL(`OPAL_TYPE_ANYTYPE;OPAL_METH_ATFROMHEX;',0,"Defaultoverview",)} Related Topics



toHex example
In the following example, the pushButton method for a button named convertDecimal converts a long integer 
value to a hexadecimal string.

; convertDecimal::pushButton
method pushButton(var eventInfo Event)

var
s String
li LongInt

endVar

li = 123123123
li.view("Value to convert")
s = toHex(li)
s.view("123123123") ; Displays 0x0756B5B3.

endMethod



unAssign method
Sets a variable's state to unAssigned.

Syntax
unAssign ( )

Description
unAssign sets a variable's state to unAssigned. The unAssigned state is not the same as a value of 0, nor is it 
the same as Blank.
 Example

{button ,AL(`OPAL_TYPE_ANYTYPE;OPAL_METH_ATBLANK;OPAL_METH_ATISAS;',0,"Defaultoverview",)} 
Related Topics



unAssign example
The following example demonstrates unAssign. This code is attached to a button's pushButton method.

; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  x AnyType 
endVar

msgInfo("Is x assigned?", x.isAssigned()) ; displays False
x = 5
msgInfo("Is x assigned?", x.isAssigned()) ; displays True
x.unAssign()
msgInfo("Is x assigned?", x.isAssigned()) ; displays False

endMethod



view method
Displays the value of a variable in a dialog box.

Syntax
view ( [ const title String ] )

Description
view displays the value of a variable in a modal dialog box. ObjectPAL execution suspends until the user closes 
this dialog box. You have the option to specify, in title, a title for the dialog box. If you don't specify a title, the 
variable's data type appears.
The user can change the value displayed in a view dialog box as long as the data type is not an Array, DynArray,
or Record. view cannot display Binary, Graphic, Memo, or OLE AnyTypes. The following table summarizes the 
AnyType variables that can be displayed, and those which the user can modify.
Type Can be viewed Can be modified
Binary no no
Currency yes yes
Date yes yes
DateTime yes yes
Graphic no no
Logical yes yes
LongInt yes yes
Memo no no
Number yes yes
OLE no no
Point yes yes
SmallInt yes yes
String yes yes
Time yes yes
 Examples

{button ,AL(`OPAL_TYPE_ANYTYPE;OPAL_METH_ATISAS;OPAL_METH_ATUNASSIGN;',0,"Defaultoverview"
,)} Related Topics



view method examples
Example1           Beginner
Example2           Advanced



view example 1
The following example shows how you can determine whether the user clicked OK or Cancel (or closed the view 
dialog box another way, for example, by pressing ESC). When the user clicks OK, the value displayed in the 
dialog box is assigned to the variable. If the user closes the dialog box any other way, the value is not assigned.
The following code assigns an initial value to the variable and then tests to see if the variable has been changed.
If the user has entered a valid value, the value is entered into the ShipVia field object in a form bound to the 
Orders table (assuming the form is in Edit mode).
This code is attached to a field object's built-in arrive method:

; shipViaFld::pushButton
method arrive(var eventInfo MoveEvent)
   var
      stShipVia,
      stPrompt  String
   endVar

   stPrompt  = "Enter Express or Regular."
   stShipVia = stPrompt

   stShipVia.view("Ship via:")

   if stShipVia = stPrompt then
         ; User closed the dialog box without changing the value.
         return
   else
         ; User entered a value and clicked OK.
         if stShipVia = "Express" or
               stShipVia = "Regular" then
               orders.shipVia.Value = stShipVia ; Or self.Value = stShipVia
         else
               msgStop("Stop", stPrompt)
         endIf
   endIf
endMethod



view example 2
The following example uses a view dialog box to prompt you for a date. If you enter a valid date, the code 
displays the day of the week for that date; otherwise, an error message is displayed.

; showDOW::pushButton
method pushButton(var eventInfo Event)
var
  theDate AnyType
  fullDays Array[7] String
endvar

fullDays[1] = "Sunday"
fullDays[2] = "Monday"
fullDays[3] = "Tuesday"
fullDays[4] = "Wednesday"
fullDays[5] = "Thursday"
fullDays[6] = "Friday"
fullDays[7] = "Saturday"

 ; initialize theDay variable
theDate = today()
 ; now show today's date in a dialog and prompt the user to enter a new date
theDate.view("Enter a Date")

 ; it's possible the user could enter an invalid date (like "Saturday")
 ; so this try..fail block attempts to convert theDate to a Date with
 ; dateVal() and if successful, displays the day of the week that
 ; theDate falls on
try 
  msgInfo("Day of the week", String(theDate) + " falls on a\n" +
             fullDays[dowOrd(dateVal(theDate))])
onfail
  msgStop("Error!", theDate + " is not a valid date.")
endtry

endMethod



Application type
An Application variable provides a handle for working with the desktop window of the active Corel Paradox 
application. You can use an Application variable in your code to control the size, position, and appearance of the 
desktop, and change the working directory and the private directory at run time.
Although you can have more than one application running at the same time, Application objects can't 
communicate or operate on each other. An Application variable refers to the active Corel Paradox desktop only; 
you can, however, use Session variables to open multiple channels to the database engine (see the Session 
type).
Since there can be only one active application, to get an application handle, you must declare an Application 
type variable. While an Application variable is in scope, it serves as a handle to access the methods in the 
Application type. For instance, in the following example, an Application variable called thisApp is declared, and 
then used in the method's code.

; downSize::pushButton
method pushButton(var eventInfo Event)
var
  thisApp     Application
endVar
thisApp.maximize() ; Maximize the desktop.
endMethod

The following table displays the methods for the Application type, which are derived methods from the Form 
type.
Methods for the Application type

Form Application
bringToTop The Application type consists of 

derived methods from the Form 
type.

GetPosition
getTitle
hide
isMaximized
isMinimized
isVisible
maximize
minimize
setIcon
setPosition
setTitle
show
windowClientHandle
windowHandle



Array Type
An Array holds values (called items or elements) in cells similar to the way mail slots hold mail. An ObjectPAL 
array is one-dimensional, like a single row of slots, where each slot holds one item.
To use arrays in methods, you must declare them by specifying a name, size (number of items), and a data type 
for the items.
 Notes

· In ObjectPAL, array items are counted beginning with 1, not with 0, as in some other languages.
· ObjectPAL also supports dynamic arrays. For more information, see the method and procedures for DynArray.

The following table displays the methods for the Array type, including several derived methods from the AnyType
type.
Methods for the Array type

AnyType Array
blank addLast
dataType append
isAssigned contains
isBlank countOf
isFixedType empty

exchange
fill
grow
indexOf
insert
insertAfter
insertBefore
insertFirst
isResizeable
remove
removeAllItems
removeItem
replaceItem
setSize
size
view

 Print related ObjectPAL methods and examples



addLast method
Inserts an item at the end of a resizeable array.

Syntax
addLast ( const value AnyType )

Description
addLast inserts value after the last item in a resizeable array. The array grows, if necessary, to make room for 
the new item. If you need to add more than one element to an array, use grow or setSize to allocate more 
space in the array rather than several addLast statements. For example, the following code uses addLast in a 
for loop to add 10 new elements to the ar array. Note that this use of addLast forces ObjectPAL to re-allocate 
space in the array 10 times; once each cycle through the loop.
for i from 11 to 20
  ar.addLast(i * 10)
endfor

The following code accomplishes the same as the previous code but executes faster because ObjectPAL allocates
space only once:
ar.grow(10)    ; increase array size by 10 elements
for i from 11 to 20
  ar[i] = (i * 10)
endfor
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARAPPE;OPAL_METH_ARINST;OPAL_METH_ARINAFT;OPAL_
METH_ARINBEF;OPAL_METH_ARINFIRST;',0,"Defaultoverview",)} Related Topics



addLast example
The following example adds an element to a resizeable array each time thisButton is pressed. The pushButton 
method for thisButton increments the value of the newest element by 10 and displays the contents of the array 
in a view dialog box. The code immediately following should be attached in the Var window for thisButton:
; thisButton::Var
var 
  ar Array[] SmallInt  ; declare ar as a resizeable array
  i  SmallInt          ; incrementing variable
endVar

The following code is attached to the built-in pushButton method for thisButton:
; thisButton::pushButton
method pushButton(var eventInfo Event)

                       ; initialize or increment i
i = iif(isAssigned(i), i + 10, 0)

if ar.size() = 0 then  ; true if this is the first time the button was pressed
  ar.setSize(0)        ; initialize size 
endif

ar.addLast(i)          ; add another element to ar, and assign
                       ; the new element with the value of i

  ; display size of array in the title, and the value of  
  ; each element in a view dialog box
ar.view("Size of ar array is " + strVal(ar.size()))

endMethod



append method
Appends the contents of one array to another.

Syntax
append ( const newArray Array[ ] String )

Description
append attaches the items of newArray to a resizeable array. The array grows to make room for the added 
items.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARALAS;OPAL_METH_ARINST;OPAL_METH_ARINAFT;OPAL_
METH_ARINFIRST;',0,"Defaultoverview",)} Related Topics



append example
The following example creates two resizeable arrays, addMe and baseArray, and loads them with numeric 
values. The following example appends the addMe array to the baseArray array and then displays the results in a
view dialog box. This code is attached to a button's built-in pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
   baseArray, addMe Array[] SmallInt
   i SmallInt
endVar

baseArray.setSize(3)
addMe.setSize(3)        ; now both arrays can store 3 values
for i from 1 to 3
   baseArray[i] = i     ; baseArray[1] = 1, [2] = 2, [3] = 3
   addMe[i] = (i + 3)   ;     addMe[1] = 4, [2] = 5, [3] = 6
endFor

baseArray.append(addMe) ; add the addMe array to baseArray
                        ; this grows baseArray to 6 elements

  ; now display the size of baseArray in the title of a view dialog
  ; and show baseArray elements within the dialog
baseArray.view("baseArray size: " + strVal(baseArray.size()))
endMethod



contains method
Searches the items of an array for a pattern of characters.

Syntax
contains ( const value AnyType ) Logical

Description
contains returns True if any item of an array exactly matches value; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARCNTO;',0,"Defaultoverview",)} Related Topics



contains example
The following example defines and loads a resizeable array named dogs when a form opens. Once the form's 
open method loads the array with dog names, the code displays the contents of the array in a dialog box. A 
button on the form contains code that uses the contains method to search the array for a particular name. If 
contains doesn't find the name, the built-in pushButton method attached to the button uses insertFirst to 
add the name to the top of the array.
The following code is attached to the form's Var window:
; thisForm::Var
var
  dogs Array[] String   ; resizeable array
endVar

The following code is attached to the form's built-in open method:
; thisForm::open
method open(var eventInfo Event)
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself

    dogs.setSize(4)     ; now dogs can store 4 values
    dogs[1] = "Bruno"   ; add some dog names
    dogs[2] = "Frodo"
    dogs[3] = "Yipper"
    dogs[4] = "Juneau"

      ; show the contents of the dogs array in a view dialog box
    dogs.view("dogs is initialized with these values")
endif
endMethod

This code is attached to the button's pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)

if dogs.contains("Bandit") = False then
  dogs.insertFirst("Bandit")  ; add new name to the top of the list
                              ; display contents of the array in a dialog box
  dogs.view("dogs size: " + strVal(dogs.size()))
else                          ; "Bandit" must already exist
  msgInfo("Once is enough", "The dogs array already contains Bandit.")
endif

endMethod



countOf method
Counts the occurrences of a value in an array.

Syntax
countOf ( const value AnyType ) LongInt

Description
countOf compares value to each item in an array and returns the number of exact matches or 0 if no match is 
found.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARCONT;',0,"Defaultoverview",)} Related Topics



countOf example
The following example contains code which should be attached to a button's pushButton method. It creates 
and loads a fixed-size array and then uses countOf to display the number of like values in the array:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  zoo Array[4] String
  i   SmallInt
endVar
for i from 1 to 3
  zoo[i] = "cat"       ; add three "cat" values
endFor
zoo[4] = "dog"         ; add one "dog" value

msgInfo("How many cats?", zoo.countOf("cat"))   ; displays 3
msgInfo("How many dogs?", zoo.countOf("dog"))   ; displays 1
msgInfo("How many apes?", zoo.countOf("ape"))   ; displays 0

endMethod



empty method
Removes all items from an array.

Syntax
empty ( )

Description
empty removes all items from an array. A fixed-size array stays the same size, and all items become 
unassigned. A resizeable array is reset to a size of 0.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARREMO;OPAL_METH_ARRALI;',0,"Defaultoverview",)} 
Related Topics



empty example
The following example shows how empty functions for a fixed-size array. The code immediately following 
declares a fixed-size array in a form's Var window. This array is global to all objects on the form.
; thisForm::Var
Var
  ar Array[5] AnyType  ; declare a fixed-size array
endVar

The following code is attached to a button's pushButton method. When this button (fillButton) is pressed, the 
code assigns numeric values to each element in the ar array:
; fillButton::pushButton
method pushButton(var eventInfo Event)
ar[1] = 234    ; load the array with numbers
ar[2] = 356
ar[3] = 98
ar[4] = 989
ar[5] = 2341
               ; view the contents of the array
ar.view("Contents of the ar array")
endMethod

The following code is attached to a button's pushButton method. When this button (emptyButton) is pressed, 
the code empties the ar array and displays the contents of the array. Since ar is a fixed-size array, the number of
elements does not change; there are still five elements, but each value becomes unassigned.
; emptyButton::pushButton
method pushButton(var eventInfo Event)
ar.empty()       ; empty the ar array
                 ; view the contents of the array
ar.view("Contents of the ar array")
endMethod



exchange method
Swaps the contents of two cells in an array.

Syntax
exchange ( const index1 LongInt, const index2 LongInt )

Description
exchange swaps the contents of the cells at index1 and index2 in an array.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARCONT;OPAL_METH_ARCNTO;OPAL_METH_ARINDX;',0,"De
faultoverview",)} Related Topics



exchange example
See the example for indexOf.



fill method
Fills an array with a value.

Syntax
fill ( const value AnyType )

Description
fill assigns a value to every item of an array.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARAPPE;OPAL_METH_ARINST;',0,"Defaultoverview",)} 
Related Topics



fill example
The following example creates a fixed-size array and fills the array with String values. This code is attached to a 
button's pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  myArray Array[4] String
endVar

myArray.fill("Hello")  ; fill myArray with Hello
myArray.view()         ; display four Hello's in a dialog

endMethod



grow method
Increases the size of a resizeable array.

Syntax
grow ( const increment LongInt )

Description
grow appends increment cells to a resizeable array or removes cells if the value of increment is negative. If you 
try to remove more cells than the array contains, an error occurs.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARALAS;OPAL_METH_ARINST;OPAL_METH_ARINFIRST;OPAL
_METH_ARISDY;',0,"Defaultoverview",)} Related Topics



grow example
The following example uses grow to increase and decrease the size of a resizeable array. This code is attached 
to a button's pushButton method.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  ar Array[] SmallInt 
endVar

ar.setSize(2)
ar[1] = 6
ar[2] = 123
message(ar.size()) ; displays 2
sleep(1000)
ar.grow(3)
message(ar.size()) ; displays 5
sleep(1000)
ar.grow(-3)
message(ar.size()) ; displays 2
sleep(1000)

endMethod



indexOf method
Returns the position of an item in an array.

Syntax
indexOf ( const value AnyType ) LongInt

Description
indexOf returns the index of the first occurrence of value in an array or 0 if an exact match is not found.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARCONT;OPAL_METH_ARCNTO;',0,"Defaultoverview",)} 
Related Topics



indexOf example
The following example assumes a form has an undefined field object named thisField. When a user right-clicks 
on the field, a pop-up menu appears, offering a list of payment types. The item selected is inserted into the field.
When the user next right-clicks the field, the last menu item selected is the first in the list of menu choices. The 
following code should be added in the Var window for thisField:
; thisField::Var
Var
  payArray  Array[5] String
  payMenu   PopUpMenu
endVar

The following code is attached to the open method for thisField. When the field first opens, values are assigned 
to the array that is used for the pop-up menu:
; thisField::open
method open(var eventInfo Event)
payArray[1] = "Check"      ; initialize array elements
payArray[2] = "Cash"
payArray[3] = "Visa"
payArray[4] = "MasterCard"
payArray[5] = "AmEx"
endMethod

The following code is attached to the mouseRightUp method for thisField. This code displays the pop-up menu 
and inserts the selection into thisField. The indexOf method is used here to get the ordinal value of the selected
menu item; the selection is then moved, with the exchange method, to the beginning of the array.
; thisField::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)
var
  choiceIndex SmallInt
  choice      String
endVar

disableDefault                ; don't display the normal menu
payMenu.addArray(payArray)    ; add the array to the pop-up menu
choice = payMenu.show()       ; show the menu - assign selection to choice
self.value = choice           ; enter menu selection into field

  ; now prepare the pop-up menu for the next right click
payMenu.empty()                        ; empty the menu 
choiceIndex = payArray.indexOf(choice) ; get the array index of the selection
payArray.exchange(choiceIndex, 1)      ; move the selection to the top
endMethod



insert method
Inserts one or more empty cells into an array.

Syntax
insert ( const index LongInt [ , const numberOfItems LongInt ] )

Description
insert add the number of empty cells specified by numberOfItems empty cells into a resizeable array. If 
numberOfItems is not specified, one cell is inserted. Indexes of subsequent items are increased by the number of
inserted cells.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARINAFT;OPAL_METH_ARINBEF;',0,"Defaultoverview",)} 
Related Topics



insert example
The following example inserts empty elements into a resizeable array at two locations and displays the results. 
This code is attached to a button's pushbutton method:
; thisbutton::pushbutton
method pushbutton(var eventinfo event)
var 
  myArray Array[] SmallInt 
endVar
myArray.setSize(20)   ; allocates space for 20 items
myArray.fill(1)       ; fills the array with 1's
myArray.insert(5)     ; inserts an empty cell at position 5
myArray.insert(12, 4) ; inserts 4 empty cells at position 12
myArray.view()
endMethod



insertAfter method
Inserts an item into an array after a specified item.

Syntax
insertAfter ( const keyItem AnyType, const insertedItem AnyType )

Description
insertAfter places insertedItem before the first occurrence of keyItem in a resizeable array. If keyItem is not 
found, insertedItem is not inserted, and the indexes do not change. If insertedItem is inserted, indexes of 
subsequent items increase by one.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARINST;OPAL_METH_ARINBEF;',0,"Defaultoverview",)} 
Related Topics



insertAfter example
The following example loads a resizeable array, then uses insertAfter to insert a new element after an existing 
array element. This code is attached to a button's pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  zoo Array[] String 
endVar
zoo.setSize(0)
zoo.addLast("ape")      ; [1] = "ape"
zoo.addLast("cow")      ; [2] = "cow"
zoo.addLast("dog")      ; [3] = "dog"

zoo.insertAfter("ape", "bear")
  ; displays size: 4 in the title; zoo[ape, bear, cow, dog]
zoo.view("zoo size: " + strVal(zoo.size()))

endMethod



insertBefore method
Inserts an item into an array before a specified item.

Syntax
insertBefore ( const keyItem AnyType, const insertedItem AnyType )

Description
insertBefore searches a resizeable array for keyItem and inserts insertedItem at keyItem's position. Indexes of 
keyItem (and subsequent items) are increased by one. If keyItem is not found, insertedItem is not inserted, and 
the indexes do not change.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARINST;OPAL_METH_ARINAFT;',0,"Defaultoverview",)} 
Related Topics



insertBefore example
The following example adds an element to a resizeable array using insertBefore. This code is attached to a 
button's pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  foodChain Array[] String
endVar

foodChain.grow(3)         ; start array out with 3 elements
foodChain[1] = "Hawk"
foodChain[2] = "Snake"
foodChain[3] = "Fly"

  ; insert an element - this increases the array to 4 elements
foodChain.insertBefore("Fly", "Frog")
  ; displays size: 4 in title; [Hawk, Snake, Frog, Fly] 
foodChain.view("foodChain size: " + strVal(foodChain.size()))

endMethod



insertFirst method
Inserts an item at the beginning of an array.

Syntax
insertFirst ( const value AnyType )

Description
insertFirst inserts value at the beginning of a resizeable array. Indexes of subsequent items are increased by 
one.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARALAS;OPAL_METH_ARAPPE;OPAL_METH_ARINST;OPAL_M
ETH_ARINAFT;OPAL_METH_ARINBEF;',0,"Defaultoverview",)} Related Topics



insertFirst example
The following example creates a resizeable array and then adds a new element to the beginning of the array. 
This code is attached to a button's built-in pushButton method:
method pushButton(var eventInfo Event)
var 
  myZoo Array[] String 
endVar
myZoo.setSize(2)   ; start the array with two elements
myZoo[1] = "lion"
myZoo[2] = "tiger"

                   ; insert an element at beginning of array -
                   ; this increases the array to three elements
myZoo.insertFirst("bear")
                   ; displays size: 3 in title; [bear, lion, tiger]
myZoo.view("myZoo size: " + strVal(myZoo.size()))

endMethod



isResizeable method
Reports whether an array can be resized.

Syntax
isResizeable ( ) Logical

Description
isResizeable returns True if an array can be resized; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARGROW;OPAL_METH_ARSIZ;',0,"Defaultoverview",)} 
Related Topics



isResizeable example
The following example verifies whether a particular array can be resized before attempting to increase its size. 
This code is attached to a button's pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  myArray Array[] String
endVar
if myArray.isResizeable() = True then  ; if array can be resized
  myArray.grow(5)                      ; add 5 cells to it
else
  msgStop("Problem", "Array cannot be resized.")
endif
endMethod



remove method
Removes one or more items from an array.

Syntax
remove ( const index SmallInt [ const numberOfItems SmallInt ] )

Description
remove deletes the number of items specified by numberOfItems items (or one item if numberOfItems is not 
specified) from an array. Indexes of subsequent items are decreased by numberOfItems (or one if 
numberOfItems is not specified).
 Examples

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARINST;OPAL_METH_ARRITM;OPAL_METH_ARRALI;',0,"Defa
ultoverview",)} Related Topics



remove method examples
Example1          Removing one item from a resizeable array
Example2          Removing more than one item from a resizeable array



remove example 1
The following example removes a single item from a resizeable array. Note that it is common to use the indexOf
method to determine which element you want to remove. This code is attached to a button's built-in 
pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  myZoo Array[] String 
endVar

myZoo.setSize(3)         ; start myZoo out with three elements
myZoo[1] = "lion"
myZoo[2] = "tiger"
myZoo[3] = "bear"

myZoo.remove(myZoo.indexOf("tiger"))  ; same as myZoo.remove(2)

                         ; title displays size: 2
                         ; dialog displays myZoo[lion, bear]
myZoo.view("myZoo size: " + strVal(myZoo.size()))

endMethod



remove example 2
The following example shows how to use remove to eliminate more than one element from a resizeable array. 
This code is attached to a button's pushButton method:
; thatButton::pushButton
method pushButton(var eventInfo Event)
var
  myNums Array[] SmallInt
  i      SmallInt
endVar

myNums.grow(9)      ; start myNums with nine elements
for i from 1 to 9   ; assign nine elements
   myNums[i] = i
endFor

                    ; displays myNums[1, 2, 3, 4, 5, 6, 7, 8, 9]
myNums.view("Before removing elements")
                    ; remove four items, starting with third element  
myNums.remove(3, 4) ; myNums = [1, 2, 7, 8, 9]
                    ; displays myNums[1, 2, 7, 8, 9]
myNums.view("After removing elements")
endMethod



removeAllItems method
Removes all occurrences of an array item.

Syntax
removeAllItems ( const value AnyType )

Description
removeAllItems deletes all occurrences of value from an array. Indexes of subsequent items are decreased by 
one.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARREMO;OPAL_METH_ARRITM;',0,"Defaultoverview",)} 
Related Topics



removeAllItems example
The following example shows how removeAllItems works with a resizeable array. The following code is 
attached to a button's built-in pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
   myZoo Array[] String
endVar
myZoo.setSize(5)
myZoo[1] = "ape"
myZoo[2] = "cow"
myZoo[3] = "pig"
myZoo[4] = "cow"
myZoo[5] = "lion"

  ; display current contents of array in a dialog
myZoo.view("Before removing elements")

  ; removes all occurrences of cow
myZoo.removeAllItems("cow")

  ; now,
  ; myZoo[1] = "ape"
  ; myZoo[2] = "pig"
  ; myZoo[3] = "lion"

  ; display new contents of array in a dialog
myZoo.view("After removing elements")

endMethod



removeItem method
Deletes a specified item from an array.

Syntax
removeItem ( const value AnyType )

Description
removeItem deletes the first occurrence of value from an array. Indexes of subsequent items are decreased by 
one.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARREMO;OPAL_METH_ARRALI;OPAL_METH_ARREIT;',0,"Def
aultoverview",)} Related Topics



removeItem example
The following example uses removeItem to eliminate an item from a resizeable array. This code is attached to a
button's built-in pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  myZoo Array[] String 
endVar

myZoo.setSize(4)
myZoo[1] = "ape"
myZoo[2] = "lion"
myZoo[3] = "tiger"
myZoo[4] = "lion"

  ; this displays [ape, lion, tiger, lion]
myZoo.view("Before removing a lion")

  ; remove first occurrence of "lion"
myZoo.removeItem("lion")

  ; this displays [ape, tiger, lion] in a dialog
myZoo.view("After removing a lion")

endMethod



replaceItem method
Overwrites an item in an array with another item.

Syntax
replaceItem ( const keyItem AnyType, const newItem AnyType )

Description
replaceItem searches an array for keyItem, and replaces the first occurrence of keyItem with newItem.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARRITM;',0,"Defaultoverview",)} Related Topics



replaceItem example
The following example replaces an item in a resizeable array and displays the original value and the results in a 
dialog box. This code is attached to a button's built-in pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  foodChain Array[] String 
endVar

foodChain.setSize(3)
foodChain[1] = "Shark"
foodChain[2] = "Elephant"
foodChain[3] = "Minnow"

  ; display contents of array in a dialog box
foodChain.view("Before replaceItem...")

foodChain.replaceItem("Elephant", "Tuna")
  ; display contents of array in a dialog box ([Shark, Tuna, Minnow])
foodChain.view("After replaceItem...")

endMethod



setSize method
Specifies the size of an array.

Syntax
setSize ( const size LongInt )

Description
setSize saves space for size items in a resizeable array. If setSize makes the array smaller, the array is 
truncated.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARGROW;OPAL_METH_ARISDY;',0,"Defaultoverview",)} 
Related Topics



setSize example
The following example declares a resizeable array in the variable declaration section and then uses setSize to 
initialize the size of the array to three elements. The code fills each element of the array and then executes 
setSize again to resize the array to two elements. Making the array smaller (shown in a dialog box) eliminates 
of the third (and last) element. This code is attached to a button's built-in pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  myArray Array[] SmallInt 
endVar

myArray.setSize(3)          ; size is 3

myArray[1] = 123
myArray[2] = 2353
myArray[3] = 18

  ; display size: 3 in title; [123, 2353, 18] in a dialog box
myArray.view("myArray size: " + strVal(myArray.size()))

myArray.setSize(2)          ; size is 2- myArray[3] truncated

  ; display size: 2 in title; [123, 2353] in a dialog box
myArray.view("Now myArray size: " + strVal(myArray.size()))

endMethod



size method
Returns the number of items in an array.

Syntax
size ( ) LongInt

Description
size returns the number of items in an array, even if one or more elements are blank.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARGROW;OPAL_METH_ARSETSIZ;',0,"Defaultoverview",)} 
Related Topics



size example
See the example for setSize.



view method
Displays the contents of an array in a dialog box.

Syntax
view ( [ const title String ] )

Description
view displays the contents of an array in a modal dialog box. ObjectPAL execution suspends until the user closes
this dialog box. You have the option to specify, in title, a title for the dialog box. If you omit title, the title is Array.
Unlike many other data types, Array values displayed in a view dialog box can not be changed interactively. For 
more information, see AnyType.
 Example

{button ,AL(`OPAL_TYPE_ARRAY;OPAL_METH_ARCONT;',0,"Defaultoverview",)} Related Topics



view example
The following example displays the contents of an array in a dialog box without a custom title and then with a 
custom title. This code is attached to a button's pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  ar Array[]  SmallInt
  i           SmallInt
endVar

ar.setSize(10)
for i from 1 to 10
  ar[i] = i * 10
endfor

ar.view()        ; displays 10, 20, 30, etc (no title)
                 ; this displays "ar size: 10" in the title
ar.view("ar size: " + strVal(ar.size()))

endMethod



Binary type
A binary object (sometimes called a binary large object or BLOB) contains data that only a computer can read 
and interpret. An example of a binary object is a sound file; a human can't read or interpret the file in its raw 
form, but a computer can.
When you declare a Binary variable, you create a handle to a binary object. You can refer to this variable in your 
code to move binary data back and forth between a disk file and a binary field in a table or from a disk file or a 
table to a method or procedure.
The Binary type includes several derived methods from the AnyType type.
Methods for the Binary type

AnyType Binary
blank clipboardErase
dataType clipboardHasFormat
isAssigne enumClipboardFormats

isBlank readFromClipboard
isFixedTy readFromFile

size
writeToClipboard
writeToFile

   Print related ObjectPAL methods and examples     



clipboardErase method
Clears the Windows Clipboard.

Syntax
clipboardErase ( )

Description
clipboardErase clears the Windows Clipboard on the user's system.
 Example

{button ,AL(`OPAL_TYPE_BINARY;OPAL_METH_BIENUMCLIPBOARDFORMATS;OPAL_METH_BICLIPBOARDH
ASFORMAT;OPAL_METH_BIREADFROMCLIPBOARD;OPAL_METH_BIWRITETOCLIPBOARD;',0,"Defaultovervi
ew",)} Related Topics



clipboardErase example
See the example for clipboardHasFormat.



clipboardHasFormat procedure
Reports whether a format name is on the Windows Clipboard.

Syntax
clipboardHasFormat ( const formatName String ) Logical

Description
clipboardHasFormat returns True if the format name formatName is on the Windows Clipboard on a user's 
system; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_BINARY;OPAL_METH_BIENUMCLIPBOARDFORMATS;OPAL_METH_BICLIPBOARDE
RASE;OPAL_METH_BIREADFROMCLIPBOARD;OPAL_METH_BIWRITETOCLIPBOARD;',0,"Defaultoverview",)
} Related Topics



clipboardHasFormat example
In the following example, the pushButton method for a button named clearClipboard checks the Windows 
Clipboard for a Corel Form Object and if it is there, clears the Clipboard.
;btnClearClipboard::pushButton
method pushButton(var eventInfo Event)
   var
      b   Binary
   endVar

   if clipboardHasFormat("Corel Form Object") then
      b.clipBoardErase()
      message("Clipboard cleared")
   else
      message("Corel form object not on Clipboard")
   endIf
endMethod



enumClipboardFormats method
Creates an array listing the formats on the Windows Clipboard.

Syntax
enumClipboardFormats ( var formatNames Array[ ] String ) SmallInt

Description
enumClipboardFormats creates an array formatNames that lists the formats on the Windows Clipboard on the 
user's system. You must declare the array before you call this method.
 Example

{button ,AL(`OPAL_TYPE_BINARY;OPAL_METH_BICLIPBOARDERASE;OPAL_METH_BICLIPBOARDHASFORM
AT;OPAL_METH_BIREADFROMCLIPBOARD;OPAL_METH_BIWRITETOCLIPBOARD;',0,"Defaultoverview",)} 
Related Topics



enumClipboardFormats example
The following example writes the Clipboard format names to an array named ar, then displays ar in a view 
dialog box.
;btnShowClipboard :: pushButton
method pushButton(var eventInfo Event)
   var
      b    Binary
      ar   Array[] String
   endVar

   b.enumClipboardFormats( ar )
   ar.view("Formats in Windows Clipboard")
endmethod



readFromClipboard method
Reads a binary object from the Clipboard.

Syntax
readFromClipboard ( const clipboardFormat String ) Logical

Description
readFromClipboard reads a binary object clipboardFormat from the Clipboard. If the Clipboard contains a 
Binary object that can be copied to a Binary variable, readFromClipboard returns True. If the Clipboard is 
empty or does not contain a valid Binary object, readFromClipboard returns False.
 Example

{button ,AL(`OPAL_TYPE_BINARY;OPAL_METH_BIENUMCLIPBOARDFORMATS;OPAL_METH_BICLIPBOARDE
RASE;OPAL_METH_BICLIPBOARDHASFORMAT;OPAL_METH_BIWRITETOCLIPBOARD;',0,"Defaultoverview",)
} Related Topics



readFromClipboard example
See the example for writeToClipboard.



readFromFile method
Reads data from a file and stores it in a Binary variable.

Syntax
readFromFile ( const fileName String ) Logical

Description
readFromFile reads binary data from the disk file named in fileName. This method returns True if successful; 
otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_BINARY;OPAL_METH_BISIZE;OPAL_METH_BIWRITETOFILE;OPAL_TYPE_FILESYST
EM;',0,"Defaultoverview",)} Related Topics



readFromFile example
The following example declares a Binary variable theSound, reads binary data from a file into theSound, and 
then assigns the value of the variable to a Binary field in a table. Assume that SOUNDS.DB is a Corel Paradox 
table with the following structure: SoundName, A32; SoundData, and B.
; getFile::pushButton
method pushButton(var eventInfo Event)
var
  soundsTC TCursor
  theSound Binary
endVar
if theSound.readFromFile("noise.bin") then ; True if readFromFile succeeds
  if soundsTC.open("sounds.db") then
     soundsTC.edit()
     soundsTC.insertRecord()
     soundsTC.SoundName = "Noise"
     soundsTC.SoundData = theSound  ; put file contents in a binary field
     soundsTC.endEdit()
     soundsTC.close()
  endIf
endIf

endMethod



size method
Returns the number of bytes in a Binary variable.

Syntax
size ( ) LongInt

Description
size returns a value representing the number of bytes stored in a Binary variable.
 Example

{button ,AL(`OPAL_TYPE_BINARY;OPAL_METH_BIREADFROMFILE;OPAL_METH_BIWRITETOFILE;OPAL_TYP
E_FILESYSTEM;',0,"Defaultoverview",)} Related Topics



size example
The following example tests the size of each Binary field in a table. If there's enough free disk space, the code 
writes the data to a disk file. Assume that SOUNDS.DB is a Corel Paradox table with the following structure: 
SoundName, A32; SoundData, and B. This code is attached to a custom method named writeBinFiles:
method writeBinFiles()
var
  binVar    Binary
  fs        FileSystem
  soundsTC  TCursor
  freeSpace LongInt
endVar

if soundsTC.open("Sounds.db") then
  scan soundsTC for not isBlank(soundsTC.SoundData) : 
    binVar = soundsTC.SoundData     ; binVar = SoundData field value
    freeSpace = fs.freeDiskSpace("B")
    if freeSpace > binVar.size() then     ; if there's room on B:
binVar.writeToFile(soundsTC.SoundName)     ; write binVar to file
    else          ; else the file won't fit on B:
      msgStop("Stop", "The disk in drive B: is full.")
      return
    endIf
  endScan
endif

endMethod



writeToClipboard method
Writes a binary object to the Clipboard.

Syntax
writeToClipboard ( const clipboardFormat String ) Logical

Description
writeToClipboard writes (copies) a binary object to the Windows Clipboard. Specify the Clipboard format to use 
with the parameter clipboardFormat. writeToClipboard returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_BINARY;OPAL_METH_BIENUMCLIPBOARDFORMATS;OPAL_METH_BICLIPBOARDE
RASE;OPAL_METH_BICLIPBOARDHASFORMAT;OPAL_METH_BIREADFROMCLIPBOARD;',0,"Defaultoverview
",)} Related Topics



writeToClipboard example
In the following example, a form contains two buttons. The button named btnStoreClip stores the native portion 
of the Windows Clipboard in a file called NATIVE.CLP. The second button, btnRetrieveClip, retrieves the clip from 
the file and writes it to the Clipboard.
The following code is attached to btnStoreClip.
;btnStoreClip :: pushButton
method pushButton(var eventInfo Event)
   var
      b   Binary
   endVar

   if not b.readFromClipboard("Native") then
      msgInfo("Instructions", "First copy something to Clipboard.")
   endIf

   b.writeToFile("Native.clp")
endmethod

The following code is attached to btnRetrieveClip.
;btnRetrieveClip :: pushButton
method pushButton(var eventInfo Event)
   var
      b   Binary
   endVar

   if not b.readFromFile("Native.clp") then
      beep()
      message("File does not exist")
   endIf

   b.writeToClipBoard("Native")
endMethod



writeToFile method
Writes the data stored in a Binary variable to a disk file.

Syntax
writeToFile ( const fileName String ) Logical

Description
writeToFile copies the data stored in a Binary variable to the disk file specified in fileName. This method returns
True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_BINARY;OPAL_METH_BIREADFROMFILE;OPAL_METH_BISIZE;OPAL_TYPE_FILESY
STEM;',0,"Defaultoverview",)} Related Topics



writeToFile example
The following example tests the size of each Binary field in a table. If there's enough free disk space, the code 
writes the data to a disk file. Assume that SOUNDS.DB is a Corel Paradox table with the following structure: 
SoundName, A32; SoundData, and B. This code is attached to a custom method named writeBinFiles:
method writeBinFiles()
var
  binVar    Binary
  fs        FileSystem
  soundsTC  TCursor
  freeSpace LongInt
endVar

if soundsTC.open("Sounds.db") then
  scan soundsTC for not isBlank(soundsTC.SoundData) : 
    binVar = soundsTC.SoundData   ; binVar = SoundData field value
    freeSpace = fs.freeDiskSpace("B")
    if freeSpace > binVar.size() then         ; if there's room on B:
      binVar.writeToFile(soundsTC.SoundName) ; write binVar to file
    else                                     ; else the file won't fit
                                             ; on B:
      msgStop("Stop", "The disk in drive B: is full.")
      return
    endIf
  endScan
endif

endMethod



Currency type
Currency values can range from ± 3.4E-4930 to ± 1.1E4930 (precise to 18 decimal places). The number of 
decimal places displayed depends on the user's Control Panel settings. However, the values in a table are stored 
up to 18 decimal places.
The following table lists the methods for Currency type, including several derived methods from the Number and 
AnyType types.
Methods for the Currency type

AnyType Number Currency
blank abs currency
dataType acos
isAssigned asin
isBlank atan
isFixedType atan2
view ceil

cos
cosh
exp
floor
fraction
fv
ln
log
max
min
mod
number
numVal
pmt
pow
pow10
pv
rand
round
sin
sinh
sqrt
tan
tanh
truncate

   Print related ObjectPAL methods and examples  



currency procedure
Converts a value's data type to Currency.

Syntax
currency ( const value AnyType ) Currency

Description
currency casts value as a Currency.
 Example

{button ,AL(`OPAL_TYPE_CURRENCY;OPAL_METH_NUNUMB;',0,"Defaultoverview",)} Related Topics



currency procedure examples
Example1          Performing a simple calculation
Example2          Performing more than one calculation



currency example 1
In the following example, a number is stored to a String variable and then cast as a Currency type for use in a 
calculation. The pushButton method for showDouble displays the type of the variable, and then calculates and 
displays the result of the string cast as Currency, and multiplied by two.
; showDouble::pushButton
method pushButton(var eventInfo Event)

var 
  numstr   String
endVar

numStr = "12.34"
msgInfo("The data type of numStr is:", dataType(numStr))
; before multiplying numStr by two, it must be cast
; to a numeric type
msgInfo("Double " + numStr, currency(numStr) * 2)
endMethod



currency example 2
In the following example, the pushButton method for the watchPrecision button calculates a number using 
variables of the Number type, then performs the same calculation with the values cast as Currency. The result of 
the two calculations varies slightly.
; watchPrecision::pushButton
method pushButton(var eventInfo Event)

var
  x, y, z Number
endVar

x = 1.2 / 3.323        ; stores greatest precision
y = 4.9 / 7.3
z = 2.0 * x * y        ; calculates on full values
msgInfo("Result of Number calculation", 
         format("W14.6", z))     ; displays .484790
x = Currency(1.2 / 3.323)        ; stores precision to 6th decimal place
y = Currency(4.9 / 7.3)
z = 2.0 * x * y                  ; calculates on 6 decimal precision values 
msgInfo("Result of Currency calculation", 
         format("W14.6", z))     ; displays .484791

endMethod



Database type
A Database variable provides a handle to a database (a directory). When you start a Corel Paradox application, 
Corel Paradox opens the default database (the working directory). The default database stores the path to the 
working directory. To work with tables stored in another database, declare a Database variable and use an open 
statement to create a handle to the database. You can also specify the full path to a table each time you wanted 
to use it, but code that uses Database variables is easier to maintain.
The following example demonstrates how to use open and an alias to specify which database to open:
var 
   custInfo Database 
endVar
; addAlias is defined for the Session type
addAlias("CustomerInfo", "Standard", "c:\\Corel\\Suite8\\Paradox\\tables\\custdata") 
custInfo.open("CustomerInfo") ; opens the CustomerInfo database
                              ; CustomerInfo must be a valid alias

Corel Paradox now recognizes two databases: the default database and CustomerInfo. The custInfo variable is a 
handle to the CustomerInfo database and can be used in statements to refer to the CustomerInfo database. For 
example, suppose you have two files named ORDERS.DB (one in your working directory, and one in the 
CustomerInfo database), and you want to find out if these files are tables. The following example uses custInfo 
as a handle for the CustomerInfo database and tests ORDERS.DB:
var 
   custInfo Database 
endVar
addAlias("CustomerInfo", "Standard", "c:\\Corel\\Suite8\\Paradox\\tables\\custdata") 
custInfo.open("CustomerInfo") 

if isTable("orders.db") then        ; test ORDERS.DB in the default database
   msgInfo("Working directory", "ORDERS.DB is a table.")
endIf

if custInfo.isTable("orders.db") then   ; use custInfo as a handle for
                                        ; the CustomerInfo database
   msgInfo("CustomerInfo", "ORDERS.DB is a table.")
endIf

If you use open but don't specify a database, Corel Paradox assumes you want a handle for the default 
database. For example, the following syntax gives you a handle for the default database, which you can pass to 
a custom method that requires a database handle.
var defaultDb Database endVar
defaultDb.open() ; opens the default database

Methods for the Database type
beginTransaction
close
commitTransaction
delete
enumFamily
getMaxRows
isAssigned
isSQLServer
isTable
open
setMaxRows
rollBackTransaction
transactionActive

 Print related ObjectPAL methods and examples 



beginTransaction method
Starts a transaction.

Syntax
beginTransaction ( [ const isoLevel String ] ) Logical

Description
beginTransaction starts a transaction on a database that supports transactions, such as Corel Paradox, dBASE, 
and most SQL databases.
The optional argument isoLevel specifies an isolation level to use when transactions are supported on SQL 
databases. If you do not specify an isolation level, the highest (most isolated) isolation level supported by the 
server is used. The following table lists values for isoLevel from lowest to highest isolation level.
isoLevel value Description
DirtyRead The transaction reads uncommitted changes made by other transactions.
ReadCommitted Changes made by other transactions affect data read by the current transaction.
RepeatableRead Data previously read in the current transaction is not affected by changes made 

by other transactions.
The beginTransaction method returns True if successful; otherwise, it returns False. While the transaction is 
active, statements that operate on tables associated with the specified database (except passthrough SQL 
statements) are included as part of the transaction. Only one transaction is allowed for each database.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBCOMMITTRANS;OPAL_METH_DBROLLBACKTRANS;OP
AL_METH_DBTRANSACTIVE;',0,"Defaultoverview",)} Related Topics



beginTransaction example
The following example processes a withdrawal of cash from an automatic teller machine. The call to 
beginTransaction starts a transaction consisting of three operations: debiting the customer's account, debiting 
the cash on hand, and dispensing cash to the customer. The result of each operation is stored in a dynamic array
(DynArray). When all of the operations are completed, this code checks each item in the DynArray and calls 
commitTransaction (if all items are True) or rollbackTransaction (if an item is False).
This example uses beginTransaction, commitTransaction, rollbackTransaction, transactionActive, 
enumAliasNames, and getAliasProperty.
method pushButton(var eventInfo Event)
   var
      db                   Database
      opResult             DynArray[] Logical
      Element              AnyType
      All_OK               Logical
      serverType,
      myAlias,
      custID               String         
      aliasNamTC           TCursor
      xAmount              Currency
      xDate                Date
      xTime                Time
   endVar

   ; initialize variables
   myAlias = "ITCHY"
   custID = "RHALL001"
   xAmount = Currency(120.00)
   xDate = today() ; returns current date
   xTime = time()  ; returns current time

   ; use alias to get database handle to server
   if not db.open(myAlias) then 
            errorShow("Could not open the database.")
      return ; exit the method
   endIf   

   if db.transactionActive() then
      db.commitTransaction()       ; commit any previous transaction
   endIf

   db.beginTransaction()           ; begin a transaction

   ; execute the operations for this transaction
   ; debitAccount, debitCashOnHand, and dispenseCash 
   ; are custom procs assumed to be defined elsewhere
   ; after calling debitAccount and debitCashOnHand, the code
   ; calls transactionActive to check the transaction status
   ; before calling dispenseCash

   opResult["Debit customer account"] =
            debitAccount(custID, xAmount)
   opResult["Debit cash on hand"] = 
            debitCashOnHand(xAmount, xDate, xTime)

   ; the following if...then...else block is not required
   ; it's included to show one way to use transactionActive

   if db.transactionActive() then  ; make sure everything is OK
      msgInfo("Transaction Status", "In a Transaction")
   else
      errorShow("NOT in a Transaction")
      return 
   endIf



   opResult["Dispense cash"] = dispenseCash(xAmount)   

   All_OK = True                 ; initialize to True

   forEach element in opResult   ; Check operation results
      if opResult[element] = False then                
         All_OK = False
         quitLoop                             
      endIf
   endForEach

   ; inform user of transaction status
   if All_OK then
      if db.commitTransaction() then
         msgInfo("Transaction Status","Transaction committed.")
      else
         errorShow("Transaction NOT committed")
      endIf
   else
      if msgQuestion("Transaction failed",
                     "View results?") = "Yes" then
         opResult.view("Operation results")
      endIf   

      if db.rollbackTransaction() then
         msgInfo("Transaction Status",
                 "Transaction rolled back.")
      else
         errorShow("Transaction NOT rolled back.")
      endIf
   endIf

endMethod



close method
Closes a database.

Syntax
close ( ) Logical

Description
close disassociates a Database variable and a database, making the variable unassigned. close returns True if it
succeeds; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBOPEN;',0,"Defaultoverview",)} Related Topics



close example
The following example opens the database with the alias someTables. If the Orders table doesn't exist in 
someTables, this code closes someTables and opens another database with the alias moreTables. This code 
assumes that both aliases have been defined elsewhere and are valid.
; sumButton::pushButton
method pushButton(var eventInfo Event)
var
  db Database
  tc TCursor
endVar
db.open("someTables")              ; open the database alias someTables
if db.isTable("Orders.db") then    ; if Orders.db is in the database,
  tc.open("Orders.db", db)         ; open a TCursor for it
                                   ; calculate the total balance due
  msgInfo("Balance Due", tc.cSum("Balance Due"))
else
  db.close()                       ; close someTables database
  db.open("moreTables")            ; and open another one
  if db.isTable("Orders.db") then
    tc.open("Orders.db", db)
    msgInfo("Balance Due", tc.cSum("Balance Due"))
  endIf
endIf
endMethod



commitTransaction method
Commits all changes within a transaction.

Syntax
commitTransaction ( ) Logical

Description
commitTransaction commits all changes made within a transaction on a database that supports transactions, 
such as Corel Paradox, dBASE, and most SQL databases.
commitTransaction returns True if successful; otherwise, it returns False. This method does not check the 
results of the operations in the transaction; instead, you must evaluate the results and decide whether to 
commit the transaction or roll it back.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBBEGINTRANS;OPAL_METH_DBROLLBACKTRANS;OPA
L_METH_DBTRANSACTIVE;',0,"Defaultoverview,")} Related Topics



commitTransaction example
See the beginTransaction example.



delete method/procedure
Deletes a table from a database.

Syntax
1. delete ( const tableName String [ , const tableType String ] ) Logical
2. delete ( const tableVar Table ) Logical

Description
delete removes a table and any associated index files or table view files from the database without asking for 
confirmation. If you use Syntax 1 and the file extension is not standard or not supplied, you can use the optional 
argument tableType to specify the type of table to delete (e.g., Corel Paradox or dBASE). If tableType is not 
specified or not standard, delete removes the Corel Paradox table. If you use Syntax 2, you can use the 
argument tableVar to specify a Table variable. This method uses the name and type of table described by the 
Table variable, but does not use its database association. In either case, the deletion can't be undone.
This method returns True if the table is successfully deleted; otherwise, it returns False. If the table is open, 
delete fails.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBISTA;',0,"Defaultoverview",)} Related Topics



delete example
In the following example, the pushButton method for delTable deletes a table from the database with the alias 
megaData.
; delTable::pushButton
method pushButton(var eventInfo Event)
var
  myDb Database 
  tableName String 
endVar  
tableName = "OldTable.dbf"
myDb.open("megadata")
if isTable(tableName) then
  myDb.delete(tableName, "dBASE") ; removes OldTable.dbf from megadata
endif 
endMethod



enumFamily method/procedure
Lists the files in a table family.

Type
Database

Syntax
enumFamily ( var members DynArray[ ] String, const tableName String ) Logical

Description
enumFamily lists the files in the table family of the table tableName. It assigns values to a dynamic array, or 
DynArray, named members that you pass as an argument. The value of tableName must include a file extension 
if the table name includes one. For example, if you specify ORDERS as the value, this method does not list the 
table family for ORDERS.DB; instead, enumFamily looks for a table named ORDERS.
The DynArray's indexes represent the full filenames of the table family members, and the corresponding value is 
one of the following strings:
Blobfile
Form
Index
Report
SecondaryIndex
SecondaryIndex2
Table
Unknown
ValCheck
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBISTA;OPAL_METH_TCFAM;',0,"Defaultoverview",)} 
Related Topics



enumFamily example
The following example copies the family information from the Orders table to a dynamic array dyn. A forEach 
loop then displays each element of the family information in a dialog box.
;btnFamilyInfo :: pushButton
method pushButton(var eventInfo Event)
   var
      dyn      DynArray[] String
      sElement   String
   endVar

   enumFamily(dyn, "ORDERS.DB")
   
   forEach sElement in dyn
      msgInfo(sElement, dyn[sElement])
   endForEach
   ; You could also do dyn.view().
endmethod



getMaxRows method
Retrieves the setting of setMaxRows (the maximum number of rows that are returned from an SQL server).

Syntax
getMaxRows ( const maxRows LongInt ) Logical

Description
getMaxRows retrieves the setting on the maximum number of rows that are returned from an SQL server in 
response to a query. Use setMaxRows to set the maximum number of returns.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBISSQLSERVER;',0,"Defaultoverview",)} Related 
Topics



getMaxRows example
The following example puts a 1000 record limit on the query if the maximum is set to less than 1000.
var myQBE Query 
endvar
   if getMaxRows() < 1000 then
      setMaxRows(1000)
   endif
   myQBE = Query
         Customer    |Customer No |Name  |
                     | Check      |A..  |
   endQuery



isAssigned method
Reports whether a Database variable has been assigned a value.

Syntax
isAssigned ( ) Logical

Description
isAssigned returns True if the Database variable has been assigned a value; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBISTA;',0,"Defaultoverview",)} Related Topics



isAssigned example
In the following example, a form has been created with an unassigned field named coRating and a button named
showRating. The code attached to showRating's pushButton method uses isAssigned to determine whether 
the Database variable db is assigned. If a value has now been assigned to the variable db, a database alias is 
assigned to the Database variable. Once the variable is defined, the code opens a TCursor for the NewCust table 
contained in the database. The TCursor locates a value in the Company field, then displays that company's credit
rating in the coRating field on the form. The following code is attached to the pushButton method for 
showRating:
; showRating::pushButton
method pushButton(var eventInfo Event)
var 
  db Database
  tc TCursor
endVar 

if not isAssigned(db) then
  addAlias("myTables", "Standard", "c:\\Corel\\Suite8\\Paradox\\myTables")
  db.open("myTables")
endif

tc.open("NewCust.dbf", db)
if tc.locatePattern("Company", "Thompson's..") then
  coRating.value = tc.Rating
else
  message("Error", "Thompson's.. not found.")
endif

endMethod



isSQLServer method
Reports whether a Database is opens on an SQL server.

Syntax
isSQLServer ( ) Logical

Description
isSQLServer returns True if the Database variable is open on an SQL server; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBISASSIGN;OPAL_METH_DBISTA;',0,"Defaultoverview
",)} Related Topics



isSQLServer example
In the following example, a Database variable is opened on an alias. The code then determines if the Database 
variable points to an SQL server, and displays the results.
; showRating::pushButton
method pushButton(var eventInfo Event)
   var
      db Database
   endVar

   db.open(":fred:")

   if db.isSQLServer() then
      msgInfo(":FRED:", "Is on a SQL server.")
   else
      msgInfo(":FRED:", "Is not on a SQL server.")
   endIf

endMethod



isTable method/procedure
Reports whether a database contains a table.

Syntax
1. isTable ( const tableName String [ , const tableType String ] ) Logical
2. isTable ( const tableVar Table ) Logical

Description
isTable returns True if the specified table is found in the database; otherwise, it returns False.
If you use Syntax 1, you can specify the table's name and type in the arguments tableName and tableType. If 
you use Syntax 2, you can specify a Table variable in tableVar. This method uses the table name and type 
described by the Table variable, and not the database association.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBISASSIGN;',0,"Defaultoverview",)} Related Topics



isTable example
The following example uses isTable to determine whether the Orders table exists in a given database. The code 
is attached to the built-in pushButton method for thisButton.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  db        Database 
  testMe    String  
  testMeToo Table
  myTable   TableView
endVar 

db.open()                        ; opens the default database
testMe = "Orders.db"  
if db.isTable(testMe) then  
  myTable.open(testMe)  
else  
  message(testMe, " is not a table!")  
endIf

testMeToo.attach("sales.db")
if testMeToo.isTable() then
  tot = testMeToo.cSum("Total sales")
  msgInfo("total sales:", tot)
endif
endMethod



open method/procedure
Opens a database.

Syntax
1. open ( ) Logical
2. open ( const aliasName String ) Logical
3. open ( const ses Session ) Logical
4. open ( const aliasName String, const ses Session ) Logical
5. open ( [ const aliasName String, ] [ const ses Session, ] 
             [ const parms DynArray ] ) Logical

Description
open opens a database. In Syntax 1, where no arguments are given, open opens the default database. In 
Syntax 2, you specify in aliasName a database to open in the current session. Syntax 3 opens the default 
database in the session specified in ses. Use Syntax 4 to open a specified database in a specified session. In 
Syntax 5, the parms argument represents a list of parameters and values to use when opening a database on an
SQL server. The items in the parameter list correspond to the fields in the Alias Manager dialog box for a given 
alias. The items vary depending on the server you're connecting to; see your server documentation for more 
information.
open returns True if it opens the specified database; otherwise, it returns False.
 Notes

· If you use Syntax 2, 4, or 5, aliasName must be a valid alias in the current session or the ses session. The 
colons around the alias name are optional.

· Syntaxes 3, 4, and 5 require that a valid session variable has been opened; the current session is assumed in 
Syntaxes 1 and 2.

· When you use Syntax 5, the settings in the parms dynamic array override previously set values, both in code 
and interactively. For example, if the OPEN MODE parameter was previously set to READ/WRITE, the following 
statement would set it to READ ONLY when you open the database.
dbParmsDA["OPEN MODE"] = "READ ONLY"

· When you use parms to specify parameters, the Alias Manager dialog box does not open.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBCLOS;OPAL_TYPE_SESSION;',0,"Defaultoverview",)} 
Related Topics



open example
For the following example, the pushButton method for thisButton opens four databases in the current session.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  dDb, myDb, pDb, rDb  Database
  dbParmsDA            DynArray[] AnyType
  currSes              Session
endVar 

currSes.open()          ; get a handle to the current session

dDb.open()              ; associate dDb with the default database 
myDb.open("custInfo")   ; associate myDb with the Custinfo database 
                        ; (custInfo is an alias defined elsewhere)
pDb.open("PRIV")        ; associate pDb with the Private directory

; specify parameters for SQL database
dbParmsDA["OPEN MODE"] = "READ/WRITE"
dbParmsDA["Password"]  = "tycobb"

rDb.open("remote", currSes, dbParmsDA) ; (remote is an alias defined elsewhere)
endMethod



rollBackTransaction method
Rolls back or undoes all changes within a transaction, on a server that supports transactions.

Syntax
rollbackTransaction ( ) Logical

Description
rollbackTransaction undoes the effects of all operations within a transaction. This method returns True if 
successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBBEGINTRANS;OPAL_METH_DBCOMMITTRANS;OPAL_
METH_DBTRANSACTIVE;',0,"Defaultoverview",)} Related Topics



rollBackTransaction example
See the beginTransaction example.



setMaxRows method
Sets the maximum number of rows that can be retrieved by one query.

Syntax
setMaxRows ( const maxRows LongInt ) Logical

Description
setMaxRows sets the maximum number of rows that can be returned from an SQL server in response to a 
single query. The argument maxRows is a long integer that specifies the maximum number of rows returned. 
setMaxRows returns True if the maximum number of rows specified by maxRows is successfully set; otherwise, 
it returns False. 
SetMaxRows resemble the Borland Database Engine (BDE) configuration option MAX ROWS. MAX ROWS is set 
in the BDE Configuration file’s DB OPEN section and sets the maximum number of rows that the SQL driver will 
attempt to fetch for any single SQL statement that is sent to the server. If a request exceeds the maximum 
specified by MAX ROWS, Corel Paradox generates a DBIERR_ROWFETCHLIMIT error. 
 Notes

· The maximum specified with the setMaxRows method can exceed that specified by the MAX ROWS BDE 
configuration option. 

· If no setMaxRows method is issued or if the maxRows argument is set to -1, Corel Paradox imposes no limit 
on rows. If present, the BDE MAX ROWS limit is imposed. 

 Example
{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBISSQLSERVER;',0,"Defaultoverview",)} Related 
Topics



setMaxRows example
The following example puts a 1000 record limit on the query if the maximum is set to less than 1000. This 
example assumes the database is open.

var 
myQBE Query 
myDatabase Database

endvar
myDatabase.open("Work")
   if database.getmaxrows()<1000 then
then
      database.setmaxrows(1000)   
endif
myQBE = Query
         Customer      |Customer No |Name  |
                       | Check      |A..  |
   endQuery



transactionActive method
Reports whether a transaction is active in the specified database.

Syntax
transactionActive ( ) Logical

Description
transactionActive reports whether a transaction is active in the specified database. Because Corel Paradox 
allows only one active transaction for each database, call transactionActive to determine whether a 
transaction is active before beginning a transaction.
 Example

{button ,AL(`OPAL_TYPE_DATABASE;OPAL_METH_DBBEGINTRANS;OPAL_METH_DBCOMMITTRANS;OPAL_
METH_DBROLLBACKTRANS;',0,"Defaultoverview",)} Related Topics



transactionActive example
See the beginTransaction example.



Date type
In ObjectPAL, you can represent Date values in either month/day/year, day-month-year, or day.month.year 
format. Dates must be explicitly declared. For example, the following code assigns the date December 21 1997 
to d.
var 
  d Date 
endVar
d = date("12/21/1997")
If you omit the quotes around the Date value ObjectPAL divides the values.
The Date type includes methods defined for the AnyType type and the DateTime type. For more information, see 
AnyType and DateTime.
Date values are formatted by the formatSetDateDefault method (System type), or by ObjectPAL formatting 
statements.
Dates from the 20th century can be specified using two digits for the year, as in
myDay = date("11/09/59")        ; November 9, 1959
Dates from the 2nd to the 10th centuries must include three digits of the year (e.g., 12/17/243). Dates from the 
11th to the 19th centuries must have four digits (e.g.,12/17/1043). The year cannot be omitted completely. Corel
Paradox treats all dates in the B.C. era as leap years.
The Date type includes several derived methods from the DateTime and AnyType types. The Date type also 
includes several methods defined for the DateTime type. For more information, see DateTime.
Methods for the Date type

AnyType DateTime Date
blank day date
dataType daysInMonth dateVal
isAssigned dow today
isBlank dowOrd
isFixedType doy
view isLeapYear

month
moy
year

   Print related ObjectPAL methods and examples  



date method
Returns a Date value.

Syntax
1. date ( const value AnyType ) Date
2. date ( ) Date
3. date ( month SmallInt, day SmallInt, year SmallInt ) Date
Description
date casts value as a date. If the date specified by value is invalid, the method fails. If you do not define 
value, date returns the current system date as a Date value.
If you use Syntax 3, the month ranges from 1 to 12. The day range depends on the month and can range from 1 
to 28 or 31. The year can range from -9999 to 9999 all four digits must be used (i.e., 1997). An error is returned 
if a value does not lie within the required range. For example, specifying 40 for the day value generates a Bad 
Day Specification error message.
 Example

{button ,AL(`OPAL_TYPE_DATE;OPAL_METH_DADAVA;',0,"Defaultoverview",)} Related Topics



date example
The following example casts a String value as a date, uses the Date value in a calculation, and displays the result
in a dialog box:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  s String
  d Date
endVar

s = "11/11/99"   ; s is a String value
d = date(s) + 7  ; convert String type to a Date type and add 7 days
                 ; and add 7 days

d.view()         ; show value of d in a dialog box (11/18/99)
                 ; dialog box title displays "Date"
endMethod



dateVal procedure
Returns a specified value as a date.

Syntax
dateVal ( const value AnyType ) Date
Description
dateVal returns a specified value as a date.
 Example

{button ,AL(`OPAL_TYPE_DATE;OPAL_METH_DADATE;',0,"Defaultoverview",)} Related Topics



dateVal example
In the following example, the pushButton method for a button uses dateVal to convert a String value into a 
Date value. The result is displayed in a dialog box.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  s String
  d Date
endVar

s = "11/11/99"   ; s is a String value
d = dateVal(s)   ; d holds the date equivalent of s

d.view()         ; show value of d in a dialog box (11/11/99)
                 ; dialog box title displays "Date"
endMethod



today procedure
Returns the current date.

Syntax
today ( ) Date
Description
today returns the current date, as displayed on your system clock/calendar.
 Example

{button ,AL(`OPAL_TYPE_DATE;OPAL_METH_DADATE;OPAL_METH_DTDAY;OPAL_METH_DTMONTH;OPAL_M
ETH_DTYEAR;',0,"Defaultoverview",)} Related Topics



today example
The following example displays the current date in a dialog box:
; CurrentDate::pushButton
method pushButton(var eventInfo Event)
msgInfo("Today's Date", today())       ; displays the current date
endMethod



DateTime type
A DateTime variable stores data in the form hour-minute-second-millisecond year-month-day. DateTime values 
are used only in ObjectPAL calculations; you cannot store a DateTime value in a Corel Paradox table. DateTime 
values must be explicitly declared. For example, in the following statements, the time assigned to the DateTime 
variable dt is 10 minutes and 40 seconds past eleven o'clock and the date is December 21, 1997. DateTime 
values must be enclosed in quotation marks.
var dt DateTime endVar
dt = DateTime("11:10:40 am 12/21/97")

You can use the following characters as separators in your DateTime specifications: blank, tab, space, comma, 
hyphen, slash, period, colon, and semicolon. DateTime values are formatted by the 
formatSetDateTimeDefault procedure (System type) or by ObjectPAL formatting statements.
You must specify a DateTime value completely, including all of the fields. Specify a value of zero for empty fields.
For more information, see the methods and procedures for the Date type and the Time type. 
The following table lists the methods of the DateTime type, including several derived methods from the AnyType 
type.
Methods for the DateTime type

AnyType DateTime
blank dateTime
dataType day
isAssigned daysInMonth
isBlank dow
isFixedType dowOrd
view doy

hour
isLeapYear
milliSec
minute
month
moy
second
year

 Print related ObjectPAL methods and examples 



dateTime method
Returns a DateTime value.

Syntax
1. dateTime ( const value AnyType ) DateTime
2. dateTime ( ) DateTime

Description
dateTime casts value as a DateTime data type. If value is not supplied, dateTime returns the system date and 
time as a DateTime value.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTDAY;OPAL_METH_DTHOUR;OPAL_METH_DTMONTH;OP
AL_METH_DTYEAR;',0,"Defaultoverview",)} Related Topics



dateTime example
The following statements assign date and time values to the DateTime variable dt. The time is 10 minutes and 
40 seconds past eleven o'clock and the date is December 21, 1997. This code assumes the current date and 
time format is in the form hh:mm:ss am/pm mm/dd/yy. DateTime values must be enclosed in quotation marks.
var dt DateTime endVar
dt = dateTime("11:10:40 am 12/21/97")

You can use the following characters as separators in your DateTime specifications: blank, tab, space, comma, 
hyphen, slash, period, colon, and semicolon. DateTime values are formatted by formatSetDateTimeDefault 
(System type) or by ObjectPAL formatting statements.
You must specify a DateTime value completely, including all of the fields. Specify a value of zero for empty fields.



day method
Extracts the day of the month from a date.

Syntax
day ( ) SmallInt

Description
day extracts the day of the month from a DateTime value and returns a value between 1 and 31. If the DateTime
value is invalid, the method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTDOW;OPAL_METH_DTDOWORD;OPAL_METH_DTDOY;O
PAL_METH_DTMONTH;OPAL_METH_DTMOY;OPAL_METH_DTYEAR;',0,"Defaultoverview",)} Related Topics



day example
The following example uses a button's pushButton method to display the current day of the month in a dialog 
box. This code assumes the current date and time format is in the form hh:mm:ss am/pm mm/dd/yy.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  theDay DateTime
endVar
theDay = DateTime("12:00:00 am 12/22/92")

  ; displays 22 in a dialog box
msgInfo("Day of the month", theDay.day())  

endMethod



daysInMonth method
Returns the number of days in a month.

Syntax
daysInMonth ( ) SmallInt

Description
daysInMonth returns the number of days in the month specified in a DateTime value. If the DateTime value is 
invalid, the method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTDAY;OPAL_METH_DTDOW;OPAL_METH_DTDOWORD;O
PAL_METH_DTMOY;',0,"Defaultoverview",)} Related Topics



daysInMonth example
The following example uses a button's pushButton method to display the number of days in February 1992 in a 
dialog box. This code assumes the current date and time format is in the form hh:mm:ss am/pm mm/dd/yy.
; FebDays::pushButton
method pushButton(var eventInfo Event)
var
  daysInFeb SmallInt
endVar
daysInFeb = daysInMonth(DateTime("5:15:35 AM 2/1/92"))
msgInfo("Number of days", "There are " + String(daysInFeb) + 
            " days in February 1992")

  ; displays "There are 29 days in February 1992" in a dialog box
  ; (1992 is a leap year)
endMethod



dow method
Returns the day of the week.

Syntax
dow ( ) String

Description
dow returns the first three letters of the day in a specified DateTime value. If the DateTime value is not valid, 
the method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTDATETIME;OPAL_METH_DTDAY;OPAL_METH_DTDOWO
RD;OPAL_METH_DTDOY;OPAL_METH_DTMOY;',0,"Defaultoverview",)} Related Topics



dow example
The following example displays the day of week from a specified DateTime value. This code assumes the current 
date and time format is in the form hh:mm:ss am/pm mm/dd/yy.
; showDay::pushButton
method pushButton(var eventInfo Event)
var
  theDate DateTime
endVar

theDate = DateTime("11:20:15 pm 3/9/93")

  ; displays "Tue" in a dialog box
msgInfo("Day of Week", strVal(theDate) + " falls on a " + dow(theDate))

endMethod



dowOrd method
Returns the number representing a specified day's position in the week.

Syntax
dowOrd ( ) SmallInt

Description
dowOrd returns an integer from one to seven representing a specified day's position in the week. Sunday is day 
one, Monday is day two, and so on. If the DateTime value given is invalid, the method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTDATETIME;OPAL_METH_DTDAY;OPAL_METH_DTDOW;
OPAL_METH_DTDOY;OPAL_METH_DTMOY;',0,"Defaultoverview",)} Related Topics



dowOrd example
The following example displays the day of the week by name rather than by abbreviation or number. This code 
uses dowOrd to retrieve the appropriate subscript of a fixed array, then displays the value of the array element 
in a dialog box. This code is attached to the pushButton method for the fullDay button. This example assumes 
the current date and time format is in the form hh:mm:ss am/pm mm/dd/yy.
; fullDay::pushButton
method pushButton(var eventInfo Event)
var 
  fullDays Array[7] String
  givenDate         DateTime
endVar

fullDays[1] = "Sunday"
fullDays[2] = "Monday"
fullDays[3] = "Tuesday"
fullDays[4] = "Wednesday"
fullDays[5] = "Thursday"
fullDays[6] = "Friday"
fullDays[7] = "Saturday"

givenDate = DateTime("5:35:20 AM 12/25/93")
  ; this displays "Saturday" in a dialog box
msgInfo("Day of the week", fullDays[dowOrd(givenDate)])

endMethod



doy method
Returns the number representing a specified day's position in the year.

Syntax
doy ( ) SmallInt

Description
doy returns an integer from 1 to 366 representing a specified day's position in the year. January 1 is day one, 
February 1 is day 32, and so on. If the DateTime value given is invalid, the method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTDOW;OPAL_METH_DTMOY;',0,"Defaultoverview",)} 
Related Topics



doy example
The following example uses a button's pushButton method to display a day's position in a specified year. This 
example assumes the current date and time format is in the form hh:mm:ss am/pm mm/dd/yy.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  theDate DateTime
endVar

theDate = DateTime("5:35:20 AM 6/1/92")

  ; this displays "5:35:20, 6/1/92 is 
  ; 153 days past the first of the year"
msgInfo("Date", String(theDate) + " is " + String(theDate.doy()) +
                " days past the first of the year.")

endMethod



hour method
Extracts the hour from a specified DateTime value.

Syntax
hour ( ) SmallInt

Description
hour returns an integer representing the hour of the day in the 24-hour format. If the DateTime value given is 
not valid, the method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTDAY;OPAL_METH_DTMONTH;OPAL_METH_DTMINUTE;
OPAL_METH_DTMILLISEC;OPAL_METH_DTYEAR;',0,"Defaultoverview",)} Related Topics



hour example
The following example extracts the hour from a specified DateTime and displays it in a dialog box. If the 
DateTime value is specified in the 12-hour format, hour returns its 24-hour equivalent.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  dt DateTime
endVar

dt = DateTime("8:15:18 pm 12/29/92")
msgInfo("Hour", dt.hour())     ; displays 20 in a dialog

endMethod



isLeapYear method
Reports whether a year has 366 days.

Syntax
isLeapYear ( ) Logical

Description
isLeapYear returns True if the year within a specified DateTime value has 366 days; otherwise, it returns False. 
If the DateTime value given is not valid, the method fails.
 Note

· isLeapYear returns True for all B.C. era dates. 
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTYEAR;',0,"Defaultoverview",)} Related Topics



isLeapYear example
The following example uses the pushButton method for the testLeapYr button to display True if the specified 
DateTime is a leap year; otherwise the method displays False. This code assumes the current date and time 
format is in the form hh:mm:ss am/pm mm/dd/yy.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  bDay     DateTime
  leapYear Logical
endVar

bDay = DateTime("5:35:20 AM 6/1/92")

leapYear = bDay.isLeapYear()
leapYear.view("bDay")          ; displays True

endMethod



milliSec method
Extracts the milliseconds from a DateTime.

Syntax
milliSec ( ) SmallInt

Description
milliSec returns an integer representing the milliseconds specified in a DateTime value. If the DateTime value 
given is not valid, the method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTHOUR;OPAL_METH_DTMINUTE;OPAL_METH_DTSECON
D;',0,"Defaultoverview",)} Related Topics



milliSec example
The following example constructs a DateTime value from integer calculations and displays the milliseconds in a 
dialog box.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  dt DateTime
  oneSecond, oneMinute, oneHour LongInt
endVar
oneSecond = 1000                ; milliseconds
oneMinute = oneSecond * 60
oneHour   = oneMinute * 60

  ; the following statement assigns dt a DateTime value
  ; of "1:20:30.4 pm 00/00/00" (the statement does not
  ; assign a date, so DateTime sets date portion to 0)
dt = DateTime(13 * oneHour   +
              20 * oneMinute +  ; specifies 1:20 pm
              30 * oneSecond +  ; + 30 seconds
              400)              ; + 400 milliseconds

msgInfo("Milliseconds", dt.milliSec())   ; displays 400

endMethod



minute method
Extracts the minutes from a DateTime.

Syntax
minute ( ) SmallInt

Description
minute returns an integer representing the minutes in a specified DateTime value. If the DateTime value given 
is not valid, the method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTHOUR;OPAL_METH_DTMILLISEC;OPAL_METH_DTSECO
ND;',0,"Defaultoverview",)} Related Topics



minute example
The following example uses the pushButton method for thisButton to display the minutes in a specified 
DateTime. This code assumes the current date and time format is in the form hh:mm:ss am/pm mm/dd/yy.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  dt DateTime
endVar

dt = DateTime("9:20:15 am 8/2/93")

msgInfo("Minutes", dt.minute())    ; displays 20

endMethod



month method
Extracts as a number the month from a specified DateTime.

Syntax
month ( ) SmallInt

Description
month returns an integer representing the specified month's position in the year. January is month one, 
February is month two, and so on. If the DateTime value given is not valid, the method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTMOY;',0,"Defaultoverview",)} Related Topics



month example
The following example displays the month of the year by name rather than by abbreviation or number. This code
uses month to retrieve the appropriate subscript of a fixed array and displays the value of the array element in 
a dialog box. This code is attached to the pushButton method for the fullMonth button. This example assumes 
the current date and time format is in the form hh:mm:ss am/pm mm/dd/yy.
; fullMonth::pushButton
method pushButton(var eventInfo Event)
var 
  fullMonth Array[12] String
  orderDate DateTime
endVar

fullMonth[1] =  "January"
fullMonth[2] =  "February"
fullMonth[3] =  "March"
fullMonth[4] =  "April"
fullMonth[5] =  "May"
fullMonth[6] =  "June"
fullMonth[7] =  "July"
fullMonth[8] =  "August"
fullMonth[9] =  "September"
fullMonth[10] = "October"
fullMonth[11] = "November"
fullMonth[12] = "December"

orderDate = DateTime("5:35:20 AM 9/18/93")

  ; this displays "September" in a dialog box
msgInfo("Order Month", fullMonth[month(orderDate)])

endMethod



moy method
Extracts the month from a specified DateTime as a string.

Syntax
moy ( ) String

Description
moy returns the first three letters of the name of the specified month. If the DateTime value given is not valid, 
the method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTMONTH;',0,"Defaultoverview",)} Related Topics



moy example
The following example uses the pushButton method for thisButton to display the abbreviated month name of a 
specified DateTime. This code assumes the current date and time format is in the form hh:mm:ss am/pm 
mm/dd/yy.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  orderDate DateTime
endVar

orderDate = DateTime("2:09:00 AM 3/3/97")
msgInfo("Order date", orderDate.moy())    ; displays Mar

endMethod



second method
Extracts the seconds from a specified DateTime.

Syntax
second ( ) SmallInt

Description
second returns an integer representing the seconds in a DateTime. If the DateTime value given is not valid, the 
method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTHOUR;OPAL_METH_DTMILLISEC;OPAL_METH_DTMINU
TE;',0,"Defaultoverview",)} Related Topics



second example
The following example constructs a DateTime value from integer calculation and displays the seconds the 
DateTime in a dialog box.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  dt DateTime
  oneSecond, oneMinute, oneHour LongInt
endVar
oneSecond = 1000                 ; milliseconds
oneMinute = oneSecond * 60
oneHour   = oneMinute * 60

  ; the following statement assigns dt a DateTime value
  ; of "1:20:30.4 pm 00/00/00" (the statement does not
  ; assign a date, so DateTime sets date portion to 0)
dt = DateTime(13 * oneHour   +
              20 * oneMinute +   ; specifies 1:20 pm
              30 * oneSecond +   ; + 30 seconds
              400)               ; + 400 milliseconds

msgInfo("Seconds", dt.second())  ; displays 30

endMethod



year method
Extracts the year from a specified DateTime.

Syntax
year ( ) SmallInt

Description
year returns an integer representing the year within a specified DateTime. If the DateTime value given is invalid,
this method fails.
 Example

{button ,AL(`OPAL_TYPE_DATETIME;OPAL_METH_DTDAY;OPAL_METH_DTISLEAPYEAR;OPAL_METH_DTMO
NTH;OPAL_METH_DTMOY;',0,"Defaultoverview",)} Related Topics



year example
The following example uses yearButton's pushButton method to display the four-digit year in a specified 
DateTime value. This code assumes the current date and time format is in the form hh:mm:ss am/pm mm/dd/yy.
; yearButton::pushButton
method pushButton(var eventInfo Event)
var 
  orderDate DateTime
endVar

orderDate = DateTime("2:15:24 pm 3/3/97")
msgInfo("Order date", orderDate.year())   ; displays 1997

endMethod



DDE type
Dynamic data exchange (DDE) is a Windows protocol that allows Corel Paradox to share data with other 
applications that adopt the DDE protocol. DDE methods grant you access to data created and stored in other 
applications. You can also use DDE methods to send commands and data to other applications.
 Notes

· When you use DDE to access Corel Paradox from another application, the Corel Paradox application name is 
PDXWIN32.

· Corel Paradox and ObjectPAL also support OLE, another protocol for sharing data between applications. For 
more information, see the OLE type and to About OLE.

Methods for the DDE type
close
execute
open
setItem

 Print related ObjectPAL methods and examples



close method
Closes a DDE link.

Syntax
close ( )

Description
close ends a DDE conversation by closing the link between Corel Paradox and the other application. close does 
not affect the status of the other application.
 Example

{button ,AL(`OPAL_TYPE_DDE;OPAL_METH_DDOPEN;OPAL_METH_DDSETI;',0,"Defaultoverview",)} 
Related Topics



close example
The following example retrieves data from a Quattro Pro for Windows worksheet and then uses the Quattro Pro 
for Windows macro command {FileExit} to close Quattro Pro for Windows before the close method is called.
var
   ddeVar  DDE
   Winery  AnyType
endVar

ddeVar.open("QPW", "C:\\QPW\\SAMPLES\\WINES.WB2", "$A:$C$2")

Winery = ddeVar
msginfo("First Winery", Winery)

ddeVar.execute("{FileExit}")

ddeVar.close()



execute method
Uses a DDE link to send a command to another application.

Syntax
execute ( const command String )

Description
execute uses a DDE link to send the string command to an application. The nature of command varies from one 
application to another. For example, a string that is understood by a word processing program may not be 
accepted by a spreadsheet application, and spreadsheets from different manufacturers may use different 
commands to perform similar activities.
 Example

{button ,AL(`OPAL_TYPE_DDE;OPAL_METH_DDSETI;OPAL_METH_DDOPEN;OPAL_METH_DDCLOS;',0,"Defa
ultoverview",)} Related Topics



execute example
See the open example.



open method
Opens a DDE link to another application.

Syntax
1. open ( const server String ) Logical
2. open ( const server String, const topic String ) Logical
3. open ( const server String, const topic String, const item String ) Logical

Description
open creates a DDE link to another application, and instructs the application to open a document specified in 
item
This method returns True if the application is successfully opened; otherwise, it returns False. If the server 
application cannot open the application this method fails.
The nature of item varies from one application to another. For example, a string that is understood by a word 
processing program may not be accepted by a spreadsheet, and spreadsheets from different manufacturers may
use different commands to perform similar activities.
 Note

· A DDE session can only be started with a running application, a fully-registered application, or an application 
that resides in the known system path (e.g., an application that is within the path statement in the 
Autoexec.bat).

 Example
{button ,AL(`OPAL_TYPE_DDE;OPAL_METH_DDCLOS;OPAL_METH_DDSETI;OPAL_METH_DDEXEC;',0,"Defau
ltoverview",)} Related Topics



open example
The following example uses a Corel Paradox DDE Session to launch WordPerfect 7, minimize the application and 
invoke the WordPerfect Import dialog box. 
This example uses getRegistryValue to locate the path for the WordPerfect executable, and uses execute to 
launch the application.

Method pushButton(var eventInfo Event)
var
wpDDE dde  ;declare a variable of DDE type
strLevel String  ;declare a variable of string type
endVar

strLevel = getRegistryValue( "Software\\Microsoft\\Windows\\CurrentVersion\\App Paths\\
WPWin.exe","",

RegKeyLocalMachine ) ; check registry for path to WordPerfect application

 IF NOT execute(strLevel ) THEN ;attempt to launch WordPerfect
 MSGINFO("Stop","Could not find WordPerfect!") ;alert user if launch failed
 else
sleep(5000)  ; sleep allows WordPerfect time to open and get ready to accept DDE commands

 if not wpDDE.open(WPWin7_MACROS","commands") then  ;attempt to start DDE dialog with 
WordPerfect
 sleep (5000);sleep some more in case WordPerfect isn't fully open
 wpDDE.open("WPWin7_MACROS","commands") ; try DDE link again
 wpDDE.execute("AppMinimize()")     ; minimize WordPerfect
 wpDDE.execute("importdlg ()")     ; open WordPerfect's import dialog box
else
wpDDE.execute("AppMinimize()")     ; minimize WordPerfect
 wpDDE.execute("importdlg ()")     ;open WordPerfect's import dialog box
 endif
 endif
endMethod



setItem method
Specifies an item in a DDE conversation.

Syntax
setItem ( const item String )

Description
setItem specifies an item in a DDE link where the application and topic are established. The argument item 
specifies a new item. The nature of item varies from application to application. For example, a string that is 
understood by a word processing program may not be accepted by a spreadsheet, and spreadsheets from 
different manufacturers may use different commands to perform similar activities.
 Example

{button ,AL(`OPAL_TYPE_DDE;OPAL_METH_DDEXEC;OPAL_METH_DDCLOS;;',0,"Defaultoverview",)} 
Related Topics



setItem example
The following example uses setItem to retrieve the values of two cells in a QPW worksheet:
var
   winesLink            DDE
   Appellation, Region  AnyType
endVar

; link to the QPW worksheet
winesLink.open("QPW", "C:\\QPW\\SAMPLES\\WINES.WB2")

winesLink.setItem("$A:$D$2")    ;// item is cell A:D2
Appellation = winesLink         ;// sets Appellation = cell D2

winesLink.setItem("$A:$E$2")    ;// item is cell A:E2
Region = winesLink              ;// sets Region = cell E2

msgInfo("Wines Information",
        "Appellation is: " + String(Appellation)+
        ", Region is " + String(Region))

winesLink.close()



DynArray type
A DynArray is a flexibly structured dynamic array. Using a DynArray, you can retrieve values quickly, even when 
the dynamic array contains a large number of items.
This type of array is dynamic because you do not specify its size. Instead, a DynArray's dimensions automatically
change as items are added or removed. A DynArray's size is limited only by system memory.
ObjectPAL also supports fixed-size and resizeable arrays. For more information, see Array type. 
The indexes of dynamic arrays are not integers; dynamic array indexes (also called keys) can be any valid 
ObjectPAL expression that evaluates to a String. Each index in a dynamic array is associated with a value.
The following table list the methods of the DynArray type, including several derived methods from the AnyType 
type.
Methods for the DynArray type

AnyType DynArray
blank contains
dataType empty
isAssigned getKeys
isBlank removeItem
isFixedType size

view

   Print related ObjectPAL methods and examples   



contains method
Searches the indexes in a DynArray.

Syntax
contains ( const value AnyType ) Logical
Description
contains returns True if an elements index in a DynArray matches the specified value, character for character; 
otherwise, it returns False. contains is not case sensitive.
 Example

{button ,AL(`OPAL_TYPE_DYNARRAY;OPAL_METH_DYGETKEYS;OPAL_METH_ATVIEW;',0,"Defaultoverview
",)} Related Topics



contains example
The following example uses contains to test whether a dynamic array index corresponds to a menu item. In this
example, the form's open method creates a menu and assigns several values to a dynamic array. When the user
selects an item from the menu, the form's menuAction method compares the menu selection with indexes in 
the DynArray. If a DynArray index is defined for the selected menu item, the menuAction method displays the 
value associated with that DynArray element; otherwise it displays the value of another element.
The following code goes in the form's Var window:
; thisForm::Var
var
  msg DynArray[] AnyType    ; stores messages
  m1             Menu       ; menu bar
  p1             PopUpMenu  ; pop-up attached to menu item
  choice         String     ; user's menu selection
endVar

The following code is attached to the form's open method:
; thisForm::open
method open(var eventInfo Event)
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself

    p1.addText("Time")             ; add items to the pop-up menu
    p1.addText("Date")
    p1.addText("Colors")

    m1.addPopUp("&Utilities", p1)  ; attach the pop-up to a menu bar item
    m1.show()                      ; show the menu bar

      ; Now initialize the msg dynamic array. msg Indexes correspond to 
      ; the pop-up menu items generated above. msg values are values that
      ; appear in a dialog box when the user selects a menu. Note that
      ; msg does NOT contain a "Colors" index.
    msg["Time"] = time()           ; show current date for "Time" selection
    msg["Date"] = date()           ; show current date for "Date" selection
    msg["Error"] = "Sorry, this menu selection is not implemented."

endif
endMethod
The following code is attached to the form's menuAction method:
; thisForm::menuAction
method menuAction(var eventInfo MenuEvent)
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form

    choice = eventInfo.menuChoice()

    if isBlank(choice) = False then    ; if user selected a menu
      if msg.contains(choice) then     ; if selection matches an index in
                                       ; the msg dynamic array
        msgInfo(choice, msg[choice])   ; display the value of that element
      else                             ; else selection didn't match an element
        msgStop("Stop!", msg["Error"]) ; display the value of another element
      endif
    endif

  else
    ;code here executes just for form itself
endif



endMethod



empty method
Removes all items from a dynamic array.

Syntax
empty ( )
Description
empty removes all items from an dynamic array. The size of the DynArray becomes 0.
 Example

{button ,AL(`OPAL_TYPE_DYNARRAY;OPAL_METH_DYCON;',0,"Defaultoverview",)} Related Topics



empty example
The following example removes all items from a dynamic array. The code immediately following declares a 
dynamic array in a form's Var window. This dynamic array is global to all objects on the form.
; thisForm::Var
Var
  myCar DynArray[] AnyType  ; declare a dynamic array
endVar
The following code is attached to the pushButton method of the fillButton. When this button is pressed, the 
code assigns several elements of the myCar DynArray.
; fillButton::pushButton
method pushButton(var eventInfo Event)

myCar["Make"]  = "Porsche"  ; load the DynArray
myCar["Model"] = "911 sc"
myCar["Color"] = "Dark Blue"
myCar["Year"]  = 1986
  ; display myCar DynArray and indicate size in the title (4)
myCar.view("myCar size: " + String(myCar.size()))
endMethod
The following code is attached to the pushButton method of the emptyButton button. When this button is 
pressed, the code empties the myCar array and displays its contents.
; emptyButton::pushButton
method pushButton(var eventInfo Event)
myCar.empty()     ; empty the myCar DynArray
                 
  ; display myCar DynArray and indicate size in the title (0)
myCar.view("myCar size: " + String(myCar.size()))
endMethod



getKeys method
Loads the indexes of an existing DynArray into a resizeable array.

Syntax
getKeys ( var keyNames Array[ ] String )
Description
getKeys creates the resizeable array specified in keyNames and assigns the index in the DynArray to the values
of each element. This method loads the index values from a DynArray into a resizeable array. If keyNames exists,
getKeys overwrites it without asking for confirmation. Index values are sorted into the new array so that the 
lowest index value becomes keyNames[1].
 Example

{button ,AL(`OPAL_TYPE_DYNARRAY;OPAL_METH_DYCON;',0,"Defaultoverview",)} Related Topics



getKeys example
The following example assigns several elements to the myCar DynArray and then uses getKeys to create an 
array that stores the myCar indexes. The results are displayed in a view dialog box.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  myCar DynArray[] AnyType
  ar    Array[] String
endVar

; add some elements to the DynArray
myCar["Make"]  = "Porsche"  ; load the DynArray
myCar["Model"] = "911 sc"
myCar["Color"] = "Dark Blue"
myCar["Year"]  = 1986

; now grow ar to 4 items then view the
; new array in a dialog box
myCar.getKeys(ar)
ar.view()

; displays
;  Color      (ar[1])
;  Make       (ar[2])
;  Model      (ar[3])
;  Year       (ar[4])

endMethod



removeItem method
Deletes a specified item from a DynArray.

Syntax
removeItem ( const value AnyType )
Description
removeItem deletes the item in value (specified by its index) from a DynArray. removeItem is not case 
sensitive.
 Example

{button ,AL(`OPAL_TYPE_DYNARRAY;OPAL_METH_DYEMPTY;OPAL_METH_DYCON;',0,"Defaultoverview",)}
Related Topics



removeItem example
The following example concatenates two values in a dynamic array and uses removeItem to remove the 
obsolete element.
The following code is attached to a form's Var window:
; thisForm::Var
var 
  CustInfo DynArray[] AnyType
endVar
The following code is attached to the pushButton method for the getCustInfo button. This code loads the 
dynamic array with street address information. Your application might have a custom method that loads the 
dynamic array from a table or from information entered by the user.
; getCustInfo::pushButton
method pushButton(var eventInfo Event)
  ; load the DynArray
CustInfo["Company"] = "Ultra-Fast Computers"
CustInfo["Street"]  = "1234 Able Street"
CustInfo["City"]    = "Anywhere"
CustInfo["State"]   = "Your State"
CustInfo["Zip"]     = "99444"
CustInfo["ZipExt"]  = "9344"

  ; display contents of the CustInfo Dynarray
CustInfo.view("Contents of CustInfo")
endMethod
In the following code, the value of the ZipExt element is concatenated to the value of the Zip element and the 
ZipExt element is removed from the dynamic array. The following code is attached to the pushButton method 
for the catZipExt button:
; catZipExt::pushButton
method pushButton(var eventInfo Event)
if CustInfo.contains("ZipExt") then
  CustInfo["Zip"] = CustInfo["Zip"] + "-" + CustInfo["ZipExt"]
  CustInfo.removeItem("ZipExt")       ; remove obsolete element
else
  msgInfo("Once is enough", "Zip code has been concatenated")
endif
  ; display the results
CustInfo.view("Contents of CustInfo")
endMethod



size method
Returns the number of elements in a DynArray.

Syntax
size ( ) LongInt
Description
size returns the number of elements in a DynArray.
 Example

{button ,AL(`OPAL_TYPE_DYNARRAY;OPAL_METH_DYCON;',0,"Defaultoverview",)} Related Topics



size example
The following example uses the pushButton method for thisButton to create a dynamic array and displays its 
size in a dialog box:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  dy DynArray[] String
endVar

dy["Name"]     = "MAST"           ; load the DynArray
dy["Business"] = "Diving"
dy["Contact"]  = "Jane Doherty"

  ; this displays "dy has 3 elements"
msgInfo("dy", "dy has " + string(dy.size()) + " elements.")  
endMethod



view method
Displays the contents of a DynArray in a dialog box.

Syntax
view ( [ const title String ] )
Description
view displays the indexes and elements of a DynArray in a modal dialog box. ObjectPAL execution suspends 
until the user closes this dialog box. title specifies the title of the dialog box. If you omit the title string, the 
dialog box is named DynArray. view sorts the DynArray on its index before displaying the dialog box.
Unlike other data types, DynArray values displayed in a view dialog box cannot be changed interactively. See 
view   (AnyType type)   for information about other data types.
 Example

{button ,AL(`OPAL_TYPE_DYNARRAY;OPAL_METH_DYCON;',0,"Defaultoverview",)} Related Topics



view example
The following example uses the pushButton method for the thisButton button to create a dynamic array and 
displays its contents in a dialog box:
;thisButton::pushButton
method pushButton(var eventInfo Event)
var
  dy DynArray[] String
endVar

dy["one"] = "first"
dy["two"] = "second"
dy["three"] "third"
dy.view("This DynArray contains:")
  ; displays the following:
  ; This DynArray contains:
  ; one     first
  ; three   third
  ; two     second
endMethod



ErrorEvent type
The ErrorEvent type provides methods that allow you to retrieve and set information about ObjectPAL execution 
errors. The only built-in event method triggered by an ErrorEvent is error.
The following table lists the methods of the ErrorEvent type, including several derived methods from the Event 
type.
Methods for the ErrorEvent type

Event ErrorEvent
errorCode reason
getTarget setReason
isFirstTime
isPreFilter
isTargetSelf
setErrorCode

{button ,AL(`ERROREV;',0,"Defaultoverview",)}      Related Topics
   Print related ObjectPAL methods and examples  



User-defined error constants
You can define your own error constants within a specific range. Because the error constant range is subject to 
change in future versions of Corel Paradox, ObjectPAL provides the IdRanges constants UserError and 
UserErrorMax. These constants represent the minimum and maximum values accepted for user-defined error 
constants.
To define ThisError and ThatError as constants, set values in a Const window as follows:
Const
   ThisError = 1
   ThatError = 2
EndConst
To use one of these constants, add it to UserError:
method error(var eventInfo ErrorEvent)
   if eventInfo.errorCode() = UserError + ThisError then
      doSomething()
   endIf
endMethod
By adding your own constant, a value above the minimum is guaranteed. To keep the value under the maximum,
use the value of UserErrorMax. You can check the value with a message statement:
message(UserErrorMax)
In Corel Paradox, the difference between UserError and UserErrorMax is 2046. This means the largest value that 
you can use for an error constant is UserError + 2046. The error code 0 is reserved to mean there is no error.

{button ,AL(`ERROREV;',0,"Defaultoverview",)} Related Topics



reason method
Reports the cause of an error.

Syntax
reason ( ) SmallInt
Description
reason returns an integer value to report the cause of an ErrorEvent. ObjectPAL provides the ErrorReasons 
constants for testing the value returned by reason.
 Note

· Use errorCode    to identify an error, and reason to identify the cause of an error.
 Example

{button ,AL(`ERROREV;OPAL_METH_EESETREASON;OPAL_METH_EVERRORCODE;',0,"Defaultoverview",)}
Related Topics



reason example
The following example shows code which should be attached to a form's built-in error method. This code reports
the error code, the reason, and the message associated with the error.
; thisForm::error
method error(var eventInfo ErrorEvent)
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
    msgInfo("Error", eventInfo.errorCode())
    if eventInfo.reason() = ErrorWarning then
      msgInfo("Warning Error", errorMessage()) 
    else
      msgInfo("Critical Error", errorMessage()) 
    endif
    disableDefault
  else
    ; code here executes just for form itself
    
endif
endMethod



setReason method
Specifies a reason for generating an ErrorEvent.

Syntax
setReason ( const reasonId SmallInt )
Description
setReason specifies a reason for generating an ErrorEvent. This method takes an ErrorReasons constant as an 
argument.
 Example

{button ,AL(`ERROREV;OPAL_METH_EEREASON;',0,"Defaultoverview",)} Related Topics



setReason example
The following example creates an ErrorEvent, sets the reason to ErrorWarning, and sends the ErrorEvent to the 
form.
; sendAnError::pushButton
method pushButton(var eventInfo Event)
var
   ev  ErrorEvent
endVar
ev.setErrorCode(1)         ; set an error code of 1
                           ; (any nonzero will do)
ev.setReason(ErrorWarning) ; set the reason to ErrorWarning
thisForm.error(ev)         ; send the error to the form
endMethod



Event type
The Event type is the base type from which the other event types (e.g., ActionEvent) are derived. Many of the 
methods listed here are also used by other event types as derived methods.
The following built-in event methods are triggered by events: 
· open
· close
· setFocus
· removeFocus
· newValue
· pushButton

Methods for the Event type
errorCode
getTarget
isFirstTime
isPreFilter
isTargetSelf
reason
setErrorCode
setReason

Print related ObjectPAL methods and examples



errorCode method
Reports the status of an error flag.

Syntax
errorCode ( ) SmallInt
Description
errorCode returns a nonzero error code if there is an error; otherwise, errorCode returns 0. To test for a 
specific error, use the ObjectPAL Errors constants (e.g., peDiskError) or a user-defined error constant. To create a 
list of the Error constants and the corresponding error messages, use enumRTLErrors. 
 Example

{button ,AL(`OPAL_TYPE_EVENT;OPAL_METH_EVSETERRORCODE;',0,"Defaultoverview",)} Related Topics



errorCode example
The following example assume that a form contains a field object, bound to the Quant field of the Orders table. 
When the field's value changes, this code executes the built-in code for this method and determines whether an 
error occurred.
; Quant::changeValue
method changeValue(var eventInfo ValueEvent)
   doDefault
   ; check the event to see if it has an error
   if eventInfo.errorCode() <> 0 then
      errorShow() ; Display the error message in a dialog box.
   endif
endMethod



getTarget method
Creates a handle to the target of an event.

Syntax
getTarget ( var target UIObject )
Description
getTarget returns in target the handle of the UIObject that was the target of the most recent event. The target 
does not change as the event bubbles up the containership hierarchy.
 Example

{button ,AL(`OPAL_TYPE_EVENT;OPAL_TYPE_ACTIONEVENT;OPAL_METH_EVISPREFILTER;',0,"Defaultover
view",)} Related Topics



getTarget example
The following example assumes that a number of fields from the Customer table are placed on a form. As the 
user moves from field to field, the form's setFocus method identifies the target of the event, determines if the 
target is a field, and changes the field's color to light blue. This provides a more dramatic visual cue than the 
normal highlight. The field's previous color is stored in the global variable called oldFieldColor. When the focus is 
removed from the field, the form's removeFocus method restores the field to its original color. The previous 
field color is stored in a variable declared in the form's Var window.
; thisForm::Var
Var
  oldFieldColor LongInt     ; to store the previous color of the field
endVar
The following code is attached to the form's setFocus method:
; thisForm::setFocus
method setFocus(var eventInfo Event)
var
  targObj    UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
    ; get the target
    eventInfo.getTarget(targObj)
    if targObj.Class = "Field" then  ; if it's a field, change its color
      oldFieldColor = targObj.Color  ; save old color in var global to form
      targObj.Color = LightBlue      ; highlight field on focus
    endif
  else
    ; code here executes just for form itself
    
endif
endMethod
This code is attached to the form's removeFocus method:
; thisForm::removeFocus
method removeFocus(var eventInfo Event)
var
  targObj  UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
    ; get the target
    eventInfo.getTarget(targObj)
    if targObj.Class = "Field" then  ; if it's a field, 
      targObj.Color = oldFieldColor  ; restore color from global var
    endif    
  else
    ; code here executes just for form itself
    
endif
endMethod



isFirstTime method
Reports whether the form is handling an event for the first time before dispatching it.

Syntax
isFirstTime ( ) Logical
Description
isFirstTime reports whether the form is handling an event before dispatching it to the target object, or whether 
the event has been dispatched and has subsequently bubbled up the containership hierarchy. This method 
returns True if the form is handling the event for the first time; otherwise, it returns False. Use isFirstTime in the
form's built-in event methods.
 Example

{button ,AL(`OPAL_TYPE_EVENT;OPAL_TYPE_ACTIONEVENT;OPAL_METH_EVISPREFILTER;OPAL_BMETH_A
BOUT;',0,"Defaultoverview",)} Related Topics



isFirstTime example
The following example uses isFirstTime with isTargetSelf to evaluate an event in a form-level method. This 
code replaces the default code for the form's pushButton method, which normally tests isPreFilter.
; thisForm::pushButton
method pushButton(var eventInfo Event)
var
  targObj   UIObject
endVar
; This example breaks out isFirstTime and isTargetSelf from isPreFilter.
; Three valid possibilities.
; Form's own event :
  ; isTargetSelf = True, isFirstTime = True

; Dispatched events (prefiltered events):
  ; isTargetSelf = False, isFirstTime = True

; Bubbled events (explicitly passed):
   ; isTargetSelf = False, isFirstTime = False

; For the form, isTargetSelf is never True when isFirstTime is False.

eventInfo.getTarget(targObj)    ; get the target to targObj
switch
  case eventInfo.isTargetSelf() AND eventInfo.isFirstTime() :
  ; This happens only when the form is handling its own event.
       msgInfo("Status",
               "This line will not execute for pushButton events.")

  case NOT eventInfo.isTargetSelf() AND eventInfo.isFirstTime() :
    ; This happens only when the form is dispatching an event
    ; for another object. isPrefilter returns True.

       msgInfo("Status", "Dispatching a pushButton event to "
                         + targObj.Name + ".")

  case NOT eventInfo.isTargetSelf() AND NOT eventInfo.isFirstTime() :
    ; The event has been explicitly bubbled back to the form.
    ; isPrefilter returns False.

       msgInfo("Status", "A pushButton Event " +
               "has been explicitly bubbled back to the form.")
endswitch

endMethod
The following code is attached to the pushButton method for the form's testPassEvent button. When the form's 
pushButton method has prefiltered the event and dispatched it to the button, the button's pushButton 
method returns it to the form with the passEvent command. When the event returns to the form, the methods 
isTargetSelf, isFirstTime, and isPrefilter return False.
; testPassEvent::pushButton
method pushButton(var eventInfo Event)
passEvent    ; bubble the event up the hierarchy
endMethod



isPreFilter method
Reports whether the form is handling an event for another object.

Syntax
isPreFilter ( ) Logical
Description
isPreFilter reports whether the form is handling an event for another object. This method returns True when the
target is some object other than the form and the form has not already handled this event. isPreFilter is 
logically equivalent to the form evaluating the following statement:
if (NOT eventInfo.isTargetSelf()) AND eventInfo.isFirstTime()
This method returns True for all internal methods, and for all external methods when they first reach the form. 
When external methods bubble back to the form, this method returns False. See About built-in methods for 
information about internal and external methods.
 Note

· Form methods are not prefiltered. When an event occurs for the form, isPreFilter returns False.
 Example

{button ,AL(`OPAL_TYPE_EVENT;OPAL_TYPE_ACTIONEVENT;OPAL_METH_EVISFIRSTTIME;OPAL_BMETH_A
BOUT;',0,"Defaultoverview",)} Related Topics



isPreFilter example
See the example for getTarget.



isTargetSelf method
Reports whether an object is the target of an event.

Syntax
isTargetSelf ( ) Logical
Description
isTargetSelf reports whether an object is the target of an event. Use isTargetSelf in the form's built-in event 
methods .
 Example

{button ,AL(`OPAL_TYPE_EVENT;OPAL_METH_EVISFIRSTTIME;OPAL_BMETH_ABOUT;',0,"Defaultoverview"
,)} Related Topics



isTargetSelf example
See the isFirstTime example.



reason method
Reports why an event occurred.

Syntax
reason ( ) SmallInt
Description
reason returns an integer value to report why an event occurred. The return value depends on the event type. 
ObjectPAL provides the ValueReasons constants for testing the value returned by reason. ErrorReasons 
constants are defined for ErrorEvents, MenuReasons constants for MenuEvents, MoveReasons constants for 
MoveEvents, and StatusReasons constants for StatusEvents.
The reason method is valid for other event types, including ActionEvent, KeyEvent, MouseEvent, and 
ValueEvent, but returns a value of zero. setReason is also valid for ActionEvent, KeyEvent, MouseEvent, and 
ValueEvent, but can only be uses to set user-defined Reason constants.
 Example

{button ,AL(`OPAL_TYPE_EVENT;OPAL_TYPE_ACTIONEVENT;OPAL_TYPE_MOVEEVENT;OPAL_TYPE_STATUS
EVENT;OPAL_TYPE_ERROREVENT;OPAL_TYPE_VALUEEVENT;OPAL_METH_EVSREA;OPAL_BMETH_ABOUT;',0
,"Defaultoverview",)} Related Topics



reason example
The following example assumes that a form contains a multi-record object bound to the Orders table, and that 
the Ship_VIA field is a set of radio buttons. Assume also that the form is in Edit mode. The newValue method for
Ship_VIA displays a message indicating why newValue was called. When the form opens, the Reason will be 
StartupValue.
; Ship_VIA::newValue
method newValue(var eventInfo Event)
; show why the newValue method was called
msgInfo("newValue reason",
    iif(eventInfo.reason() = StartupValue, "StartupValue",
    iif(eventInfo.reason() = FieldValue, "FieldValue", "EditValue")))
endMethod
When the user scrolls through the table or clicks the nextRec button, the Reason will be FieldValue.
; nextRec::pushButton
method pushButton(var eventInfo Event)
action(DataNextRecord)    ; this triggers a newValue for Ship_Via
                          ; with a Reason constant FieldValue
endMethod
When the user chooses a different radio button on Ship_VIA or clicks the changeRadio button, the Reason will be 
EditValue.
; changeRadio::pushButton
method pushButton(var eventInfo Event)
ORDERS.Ship_Via = "US Mail"    ; this triggers a newValue for Ship_Via
                               ; with a Reason of EditValue
endMethod



setErrorCode method
Sets the error code for an event.

Syntax
setErrorCode ( const errorId SmallInt )
Description
setErrorCode sets the error code for an event packet. If errorId is 0, it means there has been no error, and any 
non zero value for errorId indicates an error. To indicate a specific error, use an EventErrorCodes constant or a 
user-defined error constant.
Calling setErrorCode is not the same as calling errorLog, which adds error information directly to the error 
stack. setErrorCode adds the error code to the current event packet. This code may be added to the error 
stack, depending on how custom code and built-in code handles it. 
 Example

{button ,AL(`OPAL_TYPE_EVENT;OPAL_TYPE_ACTIONEVENT;OPAL_METH_EVERRORCODE;OPAL_BMETH_A
BOUT;',0,"Defaultoverview",)} Related Topics



setErrorCode example
See the errorCode example.



setReason method
Specifies a reason for generating a move.

Syntax
setReason ( const reasonId SmallInt )
Description
setReason specifies in reasonId a reason for generating an event in an object's built-in newValue method, 
where reasonId is a ValueReasons constant.
 Note

· ErrorReasons constants are defined for ErrorEvents, MenuReasons constants for MenuEvents, MoveReasons 
constants for MoveEvents, and StatusReasons constants for StatusEvents. See the entry for setReason in 
those sections for examples. setReason is also valid for ActionEvent, KeyEvent, MouseEvent, and ValueEvent,
but can be used only to set user-defined Reason constants.

 Example
{button ,AL(`OPAL_TYPE_EVENT;OPAL_TYPE_ACTIONEVENT;OPAL_METH_EVREAS;OPAL_BMETH_ABOUT;',
0,"Defaultoverview",)} Related Topics



setReason example
The following example assumes that a form contains a multi-record object bound to the Orders table, and that 
the Ship_VIA field is a set of radio buttons. The newValue method for Ship_VIA displays a message indicating 
why newValue was called.
; Ship_VIA::newValue
method newValue(var eventInfo Event)
; show why the newValue method was called
msgInfo("newValue reason", 
        iif(eventInfo.reason() = StartupValue, "StartupValue",
        iif(eventInfo.reason() = FieldValue, "FieldValue", "EditValue")))
endMethod
The following example demonstrates how to set a reason for an event and send the event to an object.
; triggerValReason::pushButton
method pushButton(var eventInfo Event)
var
  ev  Event
endVar
ev.setReason(FieldValue)       ; set a reason constant for the event
ORDERS.Ship_VIA.newValue(ev)   ; send the event to the Ship_VIA field
endMethod



FileSystem type
FileSystem variables provide access to and information about disk files, drives, and directories. They provide a 
handle, a variable you can use in ObjectPAL statements to work with a directory or a file. You can use findFirst 
to view available information and initialize the FileSystem variable.

Methods for the FileSystem type
accessRights
clearDirLock
copy
delete
deleteDir
drives
enumFileList
existDrive
findFirst
findNext
freeDiskSpace
fullName
getDir
getDrive
getFileAccessRights
getValidFileExtensions
isDir
isFile
isFixed
isRemote
isRemovable
isValidDir
isValidFile
makeDir
name
privDir
rename
setDir
setDirLock
setDrive
setFileAccessRights
setPrivDir
setWorkingDir
shortName
size
splitFullFileName
startUpDir
time
totalDiskSpace
windowsDir
windowsSystemDir
workingDir



 Print related ObjectPAL methods and examples



accessRights method
Reports a file's access rights.

Syntax
accessRights ( ) String

Description
accessRights returns a string which describes the file's access rights. Access rights can be one or more of the 
following: A, D, H, R, S, V (for archive, directory, hidden, read-only, system, and volume, respectively). If 
accessRights returns an empty string, the file has no attributes set. You must use findFirst before using 
accessRights.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSGETFILEACCESSRIGHTS;OPAL_METH_FSSETFILEAC
CESSRIGHTS;',0,"Defaultoverview",)} Related Topics



accessRights example
Checks the attributes of the file MEMO14.TXT. Calls findFirst to ensure that the file exists and then calls 
accessRights. If the file is writable, calls Notepad so you can edit the file.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var    
   fileName  String
   fs        FileSystem
endVar

fileName = "c:\\Corel\\Suite8\\Paradox\\myfiles\\memo14.txt"

if fs.findFirst(fileName) then

      ; if file attributes include R (read only)
   if search(fs.accessRights(), "R") > 0 then
      msgStop(fileName, "This file is marked read-only.")
   else
      ; run notepad editor for the file
      execute("NotePad.exe " + fileName)
   endIf
else
   msgStop("Error", "Can't find " + fileName)
endIf

endMethod



clearDirLock procedure
Unlocks a specified directory.

Syntax
clearDirLock ( const dirName String ) Logical

Description
clearDirLock removes a directory lock from the directory specified in dirName. This method returns True if it 
succeeds; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSSETDIRLOCK;',0,"Defaultoverview",)} Related 
Topics



clearDirLock example
See the setDirLock example.



copy method
Copies a file.

Syntax
copy ( const srcName String, const dstName String ) Logical

Description
copy returns True if successful in copying source file srcName to destination file dstName; otherwise, it returns 
False. If dstName exists, this method overwrites the file without asking for confirmation. This method copies only 
one file at a time and does not accept DOS wildcard characters. 
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSRNAM;OPAL_METH_FSDEL;',0,"Defaultoverview",)
} Related Topics



copy example
Searches the current directory for sourceFile. If sourceFile exists, copy creates a new file called destFile, which 
contains the original file's information.
; copyButton::pushButton
method pushButton(var eventInfo Event)
var 
   fs           FileSystem
   sourceFile,
   destFile     String
endVar

sourceFile = "memo14.txt"
destFile = "memo14.bak"

if fs.findFirst(sourceFile) then
   if fs.copy(sourceFile, destFile) then
      message(sourceFile + " copied to " + destFile)
   else
      message("Copy failed...")
   endif
else
   msgInfo(sourceFile, "File not found.")
endIf

endMethod



delete method
Deletes a file.

Syntax
delete ( const name String ) Logical

Description
Returns True if it deletes the specified file; otherwise, returns False. This method can delete only one file at a 
time and does not accept DOS wildcard characters.
 Examples 

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSDELD;',0,"Defaultoverview",)} Related Topics



delete method examples
Example1         Displaying a Yes/No dialog box
Example2          Using a while loop to delete files



delete example 1
Displays a dialog box asking whether you want to delete fileName. If you choose Yes, delete deletes the file.
; delOne::pushButton
method pushButton(var eventInfo Event)
var 
    fs       FileSystem
    oldFile  String
endVar

fileName = "MyText.old"

if fs.findFirst(fileName) then
   if msgYesNoCancel("Delete?", fileName) = "Yes" then
      fs.delete(fileName)
   endIf
else
   msgInfo(fileName, "File not found.")
endIf

endMethod



delete example 2
Uses a while loop to delete files with the .OLD extension in the current directory.
; delAll::pushButton
method pushButton(var eventInfo Event)
var
   fs  FileSystem
endVar

if fs.findFirst("*.old") then
   fs.delete(fs.name())
   while fs.findNext()
      fs.delete(fs.name())
   endWhile
else
   msgInfo("*.OLD", "File not found.")
endIf

endMethod



deleteDir method
Deletes a directory, but only if the directory is empty (contains no files).

Syntax
deleteDir ( const name String ) Logical

Description
Returns True if successful in deleting the specified directory; otherwise, returns False. This method does not 
prompt for confirmation before deleting.
 Examples

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSDEL;OPAL_METH_FSMDIR;',0,"Defaultoverview",)} 
Related Topics



deleteDir method examples
Example1          Simple deletion
Example2          Deleting a directory by first creating an array



deleteDir example 1
Deletes the directory (folder) C:\DOS. If the C:\DOS folder contains files, deleteDir cannot delete it and an error 
message is displayed.
; delDOS::pushButton
method pushButton(var eventInfo Event)
var 
   fs  FileSystem 
endVar

if fs.findFirst("c:\\dos") then
   if not fs.deleteDir("c:\\dos") then
      msgStop("Error", "Could not delete directory.")
   endIf
endIf

endMethod

In the following code, enumFileList checks whether the directory C:\SCAN\SUBSCAN is empty. If so, it creates an
array containing one item (the directory name), and deleteDir deletes the directory:
; delDir1::pushButton
method pushButton(var eventInfo event)
var 
   fs  FileSystem 
   fileNames Array[] String
endVar

fs.enumFileList("c:\\scan\\subscan", fileNames)

; compare size to 1 because directory has no filespec
if fileNames.size() = 1 then
   fs.deleteDir("c:\\scan\\subscan")
else
   msgStop("Stop", "Directory is not empty.")
endIf

endMethod



deleteDir example 2
deleteDir deletes the directory (folder) C:\SCAN\SUBSCAN. Before the directory is deleted, enumFileList 
creates an array that contains the current directory and its parent directory.
; delDir2::pushButton
method pushButton(var eventInfo event)
var 
   fs  FileSystem 
   fileNames Array[] String
endVar

fs.enumFileList("c:\\scan\\subscan\\*.*", fileNames)

; compare size to 2 because directory has the *.* filespec
if fileNames.size() = 2 then ; size = 2 because of *.* filespec
   fs.deleteDir("c:\\scan\\subscan")
else
   msgStop("Stop", "Directory is not empty.")
endIf

endMethod



drives method
Returns the letters of the drives attached to the system and known to Windows.

Syntax
drives ( ) String

Description
drives returns a string containing the letters of the drives that are attached to the system and known to 
Windows.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSEXDR;',0,"Defaultoverview",)} Related Topics



drives example
Displays a dialog box listing the ID letters of the drives that are attached to the system:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
   fs  FileSystem
endVar

; this displays a list of attached drives
; example:  ABCHJKXY
msgInfo("Drives", fs.drives())

endMethod



enumFileList method
Lists information about files.

Syntax
1. enumFileList ( const fileSpec String, var arrayName Array[ ] String )
2. enumFileList ( const fileSpec String, const tableName String )

Description
enumFileList lists information about files that match the criteria specified in fileSpec. If fileSpec is *.*, the array
or table includes records for the current directory (.) and the parent directory (..).
Syntax 1 writes data to the array arrayName, which you must declare before calling this method. The resulting 
array contains filenames and extensions, but does not contain paths.
Syntax 2 writes data to the table tableName. If the table does not exist, creates it automatically and enumerates
the file list. If tableName does not specify a path, enumFileList creates the table in the working directory. If the 
table exists and is open, this method appends data to it; if the table is closed, overwrites its data.
The following table describes the structure of the table:
Field name Type & size Description
Name Alpha        255 Filename (and extension
Size Numeric File size in bytes
Attributes Alpha        10 DOS file attributes
Date Alpha        10 Date of last modification
Time Alpha        10 Time of last modification
enumFileList lists filenames in the same order as the directory.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSVALFE;OPAL_METH_FSISFIL;',0,"Defaultoverview",
)} Related Topics



enumFileList example
Demonstrates both syntaxes of enumFileList. First, enumFileList searches the specified directory (folder) for 
forms and uses Syntax 1 to create an array of filenames, which is displayed in a pop-up menu. Then, 
enumFileList uses Syntax 2 to create a table of information about the files in a Table window.
; demoButton::pushButton
method pushButton(var eventInfo Event)
var
   fs  FileSystem
   formDir,  theForm String
   formNames Array[] String
   tv  tableView
   p  PopUpMenu
endVar

formDir = "C:\\Corel\\Suite8\\Paradox\\samples\\*.f?l"

if fs.findFirst(formDir) then          ; if one *.f?l is found
   fs.enumFileList(formDir, formNames)  ; create an array of *.f?l files
   p.addArray(formNames)                ; show the array in a pop-up menu
   theForm = p.show()                   ; display a pop-up menu of filenames
endIf

if fs.findFirst(formDir) then          ; if one *.f?l is found
   fs.enumFileList(formDir, "forms.db") ; create FORMS.DB listing *.f?l files
   tv.open("forms.db")                  ; display FORMS.DB table
endIf

endMethod



existDrive method
Reports whether a drive is attached to the system.

Syntax
existDrive ( const driveLetter String ) Logical

Description
existDrive returns True if the specified drive is attached to the system; otherwise, it returns False. You can 
specify the drive using a letter (C) or a letter and a colon (C:).
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSDRIV;OPAL_METH_FSGDRV;OPAL_METH_FSIRMO;O
PAL_METH_FSIRMV;',0,"Defaultoverview",)} Related Topics



existDrive example
Calls existDrive to check whether drive P exists. If existDrive returns True, setDrive sets drive P as the default
drive.
; checkDrive::pushButton
method pushButton(var eventInfo Event)
var 
   fs         FileSystem
   driveName  String
endVar

driveName = "P"

if fs.existDrive(driveName) then
   fs.setDrive(driveName)
else
   msgStop("Stop", "Drive " + driveName + " is not attached.")
endIf

endMethod



findFirst method
Searches a file system for a filename.

Syntax
findFirst ( const pattern String ) Logical

Description
findFirst returns True if a file is found whose name matches pattern; otherwise, it returns False. pattern may 
contain the DOS wildcard characters * and ?, as used with the DOS command DIR. Examples of pattern include:
· C:\\*.*
· ..\\myDir\\*.*
· *.txt
· fr*.db?
Use findFirst to check whether a file or directory exists and to initialize a FileSystem variable before calling 
another FileSystem method or procedure. You must fully qualify findFirst calls to other than the current default 
drive or path, unless you reset the default drive and path with the setDir method.
Under Windows 95, findFirst also finds the 8.3 format of the filename that exists in the file system for long 
filenames.
 Note

· findFirst finds file and directory names in the order that they're listed in the directory. The first value returned
by findFirst depends on the path and file specification.

 Example
{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSFINX;OPAL_METH_FSNAME;',0,"Defaultoverview",)
} Related Topics



findFirst example
The following example demonstrates how findFirst behaves depending on the file specification in pattern:
; buttonOne::pushButton
method pushButton(var eventInfo Event)
var
   fs FileSystem
endVar

; Search in the root folder for a file
; or folder named COREL\SUITE8\PARADOX.
if fs.findFirst("c:\\Corel\\Suite8\\Paradox") then
   ; this displays COREL\SUITE8\PARADOX (findFirst finds the folder)
   msgInfo("Pattern: c:\\Corel\\Suite8\\Paradox", "Name: " + fs.name())
else
   errorShow()
endIf

; >>INVALID PATTERN CAUSES AN ERROR!! <<
if fs.findFirst("c:\\Corel\\Suite8\\Paradox\\") then
   message("This message never displays.")
else
   errorShow("Invalid pattern: c:\\Corel\\Suite8\\Paradox\\")
endIf

; Search in the COREL\SUITE8\PARADOX folder for
; any file or folder.
if fs.findFirst("c:\\Corel\\Suite8\\Paradox\\*.*") then
   ; This displays one dot (.) because the
   ; first file in a directory is a single dot (.).
   msgInfo("Pattern: c:\\Corel\\Suite8\\Paradox\\*.*", "Name: " + fs.name())
else
   errorShow()
endIf

endmethod



findNext method
Searches a file system for multiple instances of a filename.

Syntax
findNext ( [ const fileSpec String ] ) Logical

Description
After findFirst succeeds, findNext searches for the next file whose name matches Pattern. findNext returns 
True if successful; otherwise, it returns False.
You can also use the optional argument fileSpec to specify a path and file specification. If you do, the call to 
findFirst is unnecessary.
 Examples

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSFIFI;',0,"Defaultoverview",)} Related Topics



findNext method examples
Example1        If the list has already been placed in a form
Example2        Using a file specification as an argument



findNext example 1
The following example calls findNext to fill a list with the names of the tables in the current directory (folder). 
The example assumes that a field displayed as a drop-down list has already been placed in the form. The code is 
attached to the built-in open method of the list object contained by the field object.
; tablesFld.listObj::open
method open(var eventInfo Event)
var
   fs FileSystem
endVar

doDefault

;   This while loop fills the list in the drop-down edit
; box with *.db files in the default sample directory
while fs.findNext("c:\\Corel\\Suite8\\Paradox\\samples\\*.db")
   self.list.selection =
   self.list.selection + 1
   self.list.value = fs.name()
endWhile
endMethod



findNext example 2
The following example uses findNext with a file specification as an argument and displays a pop-up menu listing
the files in the C:\COREL\SUITE8\PARADOX directory (folder):
; editText::pushButton
method pushButton(var eventInfo Event)
var
   fs      FileSystem
   p       PopUpMenu
   choice  String
endVar

; search for *.txt files in the COREL\SUITE8\PARADOX directory
; then add their names to a pop-up menu
while fs.findNext("c:\\Corel\\Suite8\\Paradox\\*.txt") 
   p.addText(fs.name())
endWhile

choice = p.show()                   ; show the pop-up menu
if not choice.isBlank() then        ; if user selected a file
   execute("Notepad.exe " + choice)  ; edit the file in Notepad
endif

endMethod



freeDiskSpace method
Returns the amount of free space on a drive, measured in bytes.

Syntax
freeDiskSpace ( const driveLetter String ) LongInt

Description
freeDiskSpace returns the number of bytes available on a specified drive. You can specify the drive using a 
letter (C) or a letter and a colon (C:).
 Examples

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSTDSP;OPAL_METH_FSFIFI;OPAL_METH_FSGDRV;',0,
"Defaultoverview",)} Related Topics



freeDiskSpace method examples
Example1        Listing available disk space
Example2        Copying a file if enough disk space remains



freeDiskSpace example 1
The following example displays a dialog box listing the number of bytes available on drive C.
; showCSpace::pushButton
method pushButton(var eventInfo Event)
var    
   fs  FileSystem
endVar

msgInfo("Free bytes on drive C:", fs.freeDiskSpace("C"))

endMethod



freeDiskSpace example 2
The following example compares the size of the file MEMO14.TXT with the amount of space available on the 
current drive. If there's enough space, the code calls copy to copy the file.
; copyFile::pushButton
method pushButton(var eventInfo Event)
   var
      fs           FileSystem
      stDrive      String
      liFileSize,
      liFreeSpace  LongInt
      dyFileInfo   DynArray[] String
   endVar

   if fs.findFirst(":WORK:memo14.txt") then
      liFileSize = fs.size()
      splitFullFileName(workingDir(), dyFileInfo)
      stDrive = dyFileInfo["DRIVE"]
      liFreeSpace = fs.freeDiskSpace(stDrive)
   else
      msgStop("MEMO14.TXT", "File not found.")
      return
   endIf

   if liFreeSpace > liFileSize then
      fs.copy("memo14.txt", "memo14.bak")
      message("File copied successfully.")
   else
      msgStop("Copy", "Not enough disk space to copy file.")
   endIf

endMethod



fullName method/procedure
Returns the full path to a file.

Syntax
1. (Method) fullName ( ) String
2. (Procedure) fullName ( const fileName String ) String

Description
In Syntax 1, after a successful findFirst or findNext, fullName returns the full path of the found file. Use this 
method with splitFullFileName to analyze the components of a filename.
Syntax 2 operates on a filename, expanding or translating aliases and returning the expanded string. For 
example, if the working directory (:WORK:) is defined as C:\COREL\SUITE8\PARADOX\FORMS. Given the 
string :WORK:myForm.fsl Syntax 2 returns C:\COREL\SUITE8\PARADOX\FORMS\myForm.fsl.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSNAME;OPAL_METH_FSFIFI;OPAL_METH_FSFINX;OP
AL_METH_FSSPLIT;',0,"Defaultoverview",)} Related Topics



fullName example
The following example calls fullName to get the full name of the first form listed in the current directory. The 
code then calls splitFullFileName to split the name into its component parts and store them in a dynamic 
array. Finally, the code calls view to display the dynamic array.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
   fs  FileSystem
   splitName DynArray[] String
   fullFileName  String
endVar

; if the customer.db file is in the sample directory
if fs.findFirst("c:\\Corel\\Suite8\\Paradox\\samples\\customer.db") then

   ; store the full filename to a variable
   fullFileName = fs.fullName()

   ; split filename into parts and store them in a DynArray
   splitFullFileName(fullFileName, splitName)

   ; display the component parts 
   splitName.view("Split name")
endIf

endMethod



getDir method
Returns the path to which the FileSystem variable points.

Syntax
getDir ( ) String

Description
getDir returns a string that represents the path to which the FileSystem variable points. You can use setDir to 
make a FileSystem variable point to a specified directory. To get a drive letter, use getDrive.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSSDIR;OPAL_METH_FSGDRV;',0,"Defaultoverview",)
} Related Topics



getDir example
The following example gets the path of the directory to which the FileSystem variable points, and compares it 
with a path. If the directories don't match, getDir calls setDir to change the directory.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
   fs  FileSystem
   st  String
endVar

   st = "c:\\Corel\\Suite8\\Paradox\\myforms"

   if fs.getDir() <> st then
      fs.setDir(st)
   endIf
endMethod



getDrive method
Returns the drive letter or alias that the FileSystem variable points to.

Syntax
getDrive ( ) String

Description
getDrive returns a string representing the drive letter or alias that the FileSystem variable points to.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSEXDR;OPAL_METH_FSGDIR;OPAL_METH_FSSDRV;',
0,"Defaultoverview",)} Related Topics



getDrive example
The following example calls getDrive to return the alias of the working directory. The code then sets the default 
drive to H and calls getDrive again to confirm the change.
; setH::pushButton
method pushButton(var eventInfo Event)
var 
   fs        FileSystem
   newDrive  String
endVar

msgInfo("Default drive", fs.getDrive())       ; Displays :WORK:

newDrive = "H"

if fs.existDrive(newDrive) then
   if fs.setDrive(newDrive) then
      msgInfo("Default drive", fs.getDrive())   ; Displays H:
   else
      msgStop(newDrive, "Could not set drive.")
   endIf
else
   msgStop(newDrive, "Drive is not attached.")
endIf

endMethod



getFileAccessRights procedure
Reports a file's access rights.

Syntax
getFileAccessRights ( const fileName String ) String

Description
getFileAccessRights returns a string that describes the access rights of a file. The return values can be one or 
more of the following: A, D, H, R, S, V (for archive, directory, hidden, read-only, system, and volume, 
respectively). If getFileAccessRights returns an empty string, the file has no attributes set.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSACCR;OPAL_METH_FSSETFILEACCESSRIGHTS;',0,"D
efaultoverview",)} Related Topics



getFileAccessRights example
The following example displays the file attributes for C:\CONFIG.SYS.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
   fileName String
endVar

fileName = "C:\\CONFIG.SYS"

msgInfo(fileName, getFileAccessRights(fileName))

endMethod



getValidFileExtensions procedure
Returns the valid file extensions for a specified object.

Syntax
getValidFileExtensions ( const objectType String ) String

Description
getValidFileExtensions returns a string containing the valid file extensions for the object specified in 
objectType, which is a Form, Library, Report, or Script.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSGDIR;OPAL_METH_FSGDRV;OPAL_METH_FSSPLIT;',
0,"Defaultoverview",)} Related Topics



getValidFileExtensions example
The following example displays a dialog box listing the valid file extensions for forms.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
   fx String
endVar

fx = getValidFileExtensions("Form")
msgInfo("Form file extensions:", fx)    ; displays fsl fdl

endMethod



isDir procedure
Reports whether a specified string represents the name of a directory.

Syntax
isDir ( const dirName String ) Logical

Description
isDir returns True if dirName is a valid directory name; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSDELD;OPAL_METH_FSGDIR;OPAL_METH_FSMDIR;O
PAL_METH_FSSDIR;',0,"Defaultoverview",)} Related Topics



isDir example
The following example calls isDir to ensure that the directory (folder) specified by the variable newDir is valid. If 
so, the code calls setDir to make newDir the default directory. In this example, the value of newDir is hard 
coded, but it can also be supplied by the user, read from a table, or extracted from another source.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
   fs      FileSystem
   newDir  String
endVar

newDir = "C:\\Corel\\Suite8\\Paradox\\diveplan"
if isDir(newDir) then
   fs.setDir(newDir)
   msgInfo("Current directory", fs.getDir())
else
   msgStop(newDir, "Directory does not exist.")
endIf

endMethod



isFile procedure
Reports whether a specified string is a filename in the active file system.

Syntax
isFile ( const fileName String ) Logical

Description
isFile returns True if fileName is a file in the current file system; otherwise, it returns False.
 Examples

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSFIFI;OPAL_METH_FSISDIR;',0,"Defaultoverview",)}
Related Topics



isFile procedure examples
Example1          Verifying whether a file exists
Example2         Deleting specified files



isFile example 1
The following example calls isFile and displays messages reporting whether the file specifications represent 
actual files.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
   fs FileSystem
endVar

message(isFile("c:\\dos\\chkdsk.exe")) ; displays True
sleep(1500)
message(isFile("c:\\dos\\MyXFilex.ext"))   ; displays False
sleep(1500)

endMethod



isFile example 2
The following example asks for the full path and filename of a file to delete. The code calls isFile to test whether
the file exists, and then calls delete to delete it.
; buttonOne::pushButton
method pushButton(var eventInfo Event)
var 
   fs        FileSystem
   fileName  String
endVar

fileName = "Enter full path and filename here."
fileName.view("Delete a file")

if isFile(fileName) then         ; if the specified file exists
   fs.delete(fileName)            ; delete the file
   message("File deleted.")
else   
   msgStop(fileName, "File not found.")
endIf

endMethod



isFixed method
Reports whether a drive is fixed (not removable or networked).

Syntax
isFixed ( const driveLetter String ) Logical

Description
isFixed returns True if the specified drive represents a fixed drive; otherwise, it returns False. You can specify the
drive using a letter (C) or a letter and a colon (C:).
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSIRMO;OPAL_METH_FSIRMV;',0,"Defaultoverview",)
} Related Topics



isFixed example
In the following example, drive C is the user's local hard disk, and drive H is a network drive:
; thisButton::pushButton
method pushButton(var eventInfo Event) 
var 
   fs  FileSystem 
endVar

msgInfo("Is drive C fixed?", fs.isFixed("C"))  ; displays True
msgInfo("Is drive H fixed?", fs.isFixed("H"))  ; displays False

endMethod



isRemote method
Reports whether a drive is a remote (network) drive.

Syntax
isRemote ( const driveLetter String ) Logical

description
isRemote returns True if the specified drive represents a remote (network) drive; otherwise, it returns False. You 
can specify the drive using a letter (C) or a letter and a colon (C:).
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSIFIX;OPAL_METH_FSIRMV;',0,"Defaultoverview",)} 
Related Topics



isRemote example
The following example calls existDrive to ensure drive H is attached and then calls isRemote to determine 
whether drive H is a network drive.
var
   h FileSystem
endVar 
if h.existDrive("h") then ; if drive H is attached
   if h.isRemote("h") then 
      msgInfo("Drive H: ", "Remote Drive") 
   else 
      msgInfo("Drive H:", "Not a Remote Drive.") 
   endIf 
else
   msgStop("Drive H", "Drive is not attached.")
endIf



isRemovable method
Reports whether a drive is removable.

Syntax
isRemovable ( const driveLetter String ) Logical

Description
isRemovable returns True if the specified drive is a removable drive; otherwise, it returns False. You can specify 
the drive using a letter (C) or a letter and a colon (C:).
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSIFIX;OPAL_METH_FSIRMO;',0,"Defaultoverview",)}
Related Topics



isRemovable example
The following example calls existDrive to ensure drive D is attached, then calls isRemovable to determine 
whether drive D is a removable drive.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
   fs  FileSystem
   s   String
endVar 

if fs.existDrive("D:") then ; if drive D is attached
   if fs.isRemovable("D") then 
      msgInfo("Drive D: ", "Removable Drive") 
   else 
      msgInfo("Drive D:", "Not a Removable Drive.") 
   endIf 
endIf 

endMethod



isValidDir procedure
Checks whether a directory name is valid.

Syntax
isValidDir ( const dirName String ) Logical

Description
isValidDir checks whether the directory name is valid for the file system. Use isValidDir to see if long filenames
are supported on a specific volume. This procedure returns True if the directory is valid; otherwise, it returns 
False.
Use the isValidFile method to check the validity of the entire path.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSISVALIDFILE;',0,"Defaultoverview",)} Related 
Topics



isValidDir example
See the isValidFile example.



isValidFile procedure
Checks whether a filename is valid.

Syntax
isValidFile ( const fileName String ) Logical

Description
isValidFile checks whether the filename is valid for the file system. Use isValidFile to see if long filenames are 
supported on a specific volume. This procedure returns True if the file is valid; otherwise it returns false.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSPRIV;OPAL_METH_FSWDIR;OPAL_METH_FSWSDI;',0
,"Defaultoverview",)} Related Topics



isValidFile example
The following example uses the view dialog to request a new filename. isValidFile is used to check whether the 
file is valid for the volume so that it can be copied to that volume.
proc copyNewFile( origFileName  String )
var
   newFile string
endVar

newFile.view()

if isValidFile( newFile ) then
   copy( origFileName, newFile )
else
   msgInfo( "Error", "This is not a valid filename" )
endif

endProc



makeDir method
Creates a new directory.

Syntax
makeDir ( const name String ) Logical

Description
makeDir creates all directories and subdirectories specified in name. MakeDir returns True if successful in 
creating name (or if the directory already exists); otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSDELD;OPAL_METH_FSISDIR;',0,"Defaultoverview",)
} Related Topics



makeDir example
The following example tries to create a new directory (folder) on drive C, and displays a dialog box to report 
success or failure.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
   fs            FileSystem
   returnValue   Logical
endVar 

; this creates \New and \New\Directory etc...
returnValue = fs.makeDir("C:\\New\\Directory\\Tree")

msgInfo("Status", iif(returnValue, "New directory created", "makeDir Failed"))

endMethod



name method
Returns a filename.

Syntax
name ( ) String

Description
After a successful findFirst or findNext, name returns the filename that matches the pattern.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSFUNM;OPAL_METH_FSFIFI;OPAL_METH_FSFINX;',0,
"Defaultoverview",)} Related Topics



name example
The following example calls findFirst and findNext to find the tables in the current directory and then calls 
name to create a pop-up menu listing the filenames.
; showName::pushButton
method pushButton(var eventInfo Event)
var 
   fs  FileSystem
   p  PopUpMenu
   tv  TableView
   choice, path  String
endVar

if fs.findFirst("*.db") then    ; if a *.db file exists
   p.addStaticText("Tables")     ; create a pop-up menu
   p.addSeparator()
   p.addText(fs.name())          ; use filenames in pop-up
   while fs.findNext()
      p.addText(fs.name())
   endWhile
   choice = p.show()             ; show the menu
   if not choice.isBlank() then  ; if user selected a table
      tv.open(choice)             ; display the selected table
   endif
endIf

endMethod



privDir procedure
Returns the name of the private directory.

Syntax
privDir ( ) String

Description
privDir returns a string containing the full DOS path (including the drive letter) of the private directory.
Each user must have a private directory that stores temporary tables. The private directory can be on a network 
or on a local drive. Use setPrivDir to set the path to the private directory.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSGDIR;OPAL_METH_FSSETPRIVDIR;OPAL_METH_FSS
TART;OPAL_METH_FSWORKINGDIR;',0,"Defaultoverview",)} Related Topics



privDir example
The following example calls privDir to display the path to the private directory (:PRIV:) in the Status Bar.
method pushButton(var eventInfo Event)
   message("Your private directory is: ", privDir())
endMethod



rename method
Renames a file.

Syntax
rename ( const oldName String, const newName String ) Logical

Description
rename changes the name of the file oldName to newName. If newName is used by another file, the method 
does not overwrite the existing file. The rename method returns True if successful; otherwise, it returns False. 
rename is independent of findFirst and findLast.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSCOPY;OPAL_METH_FSDEL;OPAL_METH_FSFIFI;OPAL
_METH_FSFINX;',0,"Defaultoverview",)} Related Topics



rename example
The following example searches the current directory for the file specified in the oldName variable. If the file 
exists, the example calls rename to rename it. A dialog box reports any errors.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
   fs  FileSystem
   oldName, newName  String
endVar

oldName = "memo14.txt"
newName = "memo14.bak"

if fs.findFirst(oldName) then
   if not fs.rename(oldName, newName) then
      msgStop("Could not rename file", newName + " already exists.")
   endIf   
else
   msgStop(oldName, "File not found.")
endIf

endMethod



setDir method
Sets the directory path for a FileSystem variable.

Syntax
setDir ( const name String ) Logical

Description
setDir sets the path to name for a FileSystem variable. Use setDrive to set the default drive.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSGDIR;OPAL_METH_FSSDRV;',0,"Defaultoverview",)
} Related Topics



setDir example
The following example calls isDir to check whether the directory newDir is valid. If the directory is valid, the 
code calls setDir to set newDir as the default directory.
method pushButton(var eventInfo Event)
var 
   fs      FileSystem
   newDir  String
endVar

   newDir = "c:\\Corel\\Suite8\\Paradox\\mine\\zap"
   
   if isDir(newDir) then
      fs.setDir(newDir)
   else
      msgStop(newDir, "Not a valid directory.")
   endIf
      
   message(fs.getDir()) ; displays \Corel\Suite8\Paradox\mine\zap
endMethod



setDirLock procedure
Locks a specified directory.

Syntax
setDirLock ( const dirName String ) Logical

Description
setDirLock locks the directory dirName. The code returns True if successful; otherwise, it returns False.
A directory lock makes the directory read-only. This prevents Corel Paradox from reading from or writing to a lock
file in that directory. A directory lock is required for Corel Paradox to access data from a CD-ROM drive, and can 
improve performance on network drives and local drives. A lock is not be respected on a local drive if Local Share
is turned off.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSCLEARDIRLOCK;',0,"Defaultoverview",)} Related 
Topics



setDirLock example
The following example calls setDirLock to make a network drive read-only when the form opens, and calls 
clearDirLock to remove the lock when the form closes.
The following code is attached to the form's built-in open method:
method open(var eventInfo Event)
   var
      h FileSystem
   endVar

   if eventInfo.isPreFilter() then
      ;// This code executes for each object on the form:
      
   else
      ;// This code executes only for the form:
      if h.existDrive("h") then ; if drive H is attached
         if h.isRemote("h") then
            setDirLock("h")
            message("Drive H: locked.")
         else
            msgStop("Drive H:", "Not a Remote Drive.")
            return
         endIf
      else
         msgStop("Drive H:", "Drive is not attached.")
         return
      endIf

   endIf
endMethod

The following code is attached to the form's built-in close method:
method close(var eventInfo Event)

   var
      h FileSystem
   endVar

   if eventInfo.isPreFilter() then
      ;// This code executes for each object on the form:
      
   else
      ;// This code executes only for the form:
      if h.existDrive("h") then ; if drive H is attached
         if h.isRemote("h") then
            clearDirLock("h")
            message("Drive H: unlocked.")
         else
            msgStop("Drive H:", "Not a Remote Drive.")
            return
         endIf
      else
         msgStop("Drive H:", "Drive is not attached.")
         return
      endIf

   endIf

endMethod



setDrive method
Sets a specified drive as the default drive.

Syntax
setDrive ( const name String ) Logical

Description
setDrive sets the specified drive as the default. The method returns True if successful; otherwise, it returns 
False. You can specify the drive with a letter (C), a letter and a colon (C:), or an alias (e.g., :MAST:).
 Examples

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSGDRV;OPAL_METH_FSSDIR;',0,"Defaultoverview",)
} Related Topics



setDrive method examples
Example1          Using view
Example2          Using an alias



setDrive example 1
The following example calls view, cast for the String type, to display a dialog box and ask for input. If you type a 
valid drive letter, the code calls setDrive to set the specified drive as the default.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
   fs        FileSystem
   newDrive  String
endVar

newDrive = "Enter drive ID or alias here."
newDrive.view("Change default drive.") ; prompt user for input

if fs.existDrive(newDrive) then
   fs.setDrive(newDrive)
else
   msgStop(newDrive, "Drive not available.")
endIf

endMethod



setDrive example 2
Shows how to use an alias with setDrive. This example assumes that the alias (:MAST:) has already been 
defined.
; setDrive::pushButton
method pushButton(var eventInfo Event)
var
   fs FileSystem
endVar

fs.setDrive(":MAST:")

endMethod



setFileAccessRights procedure
Sets a file's access rights.

Syntax
setFileAccessRights ( const fileName String, const rights String ) Logical

Description
setFileAccessRights sets the access rights of a specified file to those specified in rights. Rights is a string that 
contains one or more of the following: A, D, H, R, S, V (for archive, directory, hidden, read-only, system, and 
volume, respectively). If rights is an empty string (""), setFileAccessRights removes all access rights settings 
for the specified file. You don't have to declare a FileSystem variable (or use the findFirst method) before calling
setFileAccessRights.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSACCR;OPAL_METH_FSGETFILEACCESSRIGHTS;',0,"
Defaultoverview",)} Related Topics



setFileAccessRights example
The following example sets the file access rights for C:\CONFIG.SYS to read-only (R) and hidden (H).
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
   fileName  String
endVar

fileName = "C:\\CONFIG.SYS"

; set file attribute for CONFIG.SYS to read only and hidden
if setFileAccessRights(fileName, "RH") then
   ; if successful, display a message with the current attributes
   message (fileName + " attributes set to " + 
            getFileAccessRights(fileName))
else
   ; otherwise, the procedure failed
   message("Can't set file attributes for " + fileName)
endif

endMethod



setPrivDir procedure
Sets or changes the private directory.

Syntax
setPrivDir ( const path String ) Logical

Description
setPrivDir sets a path to the current private directory. setPrivDir returns True if successful; otherwise, it 
returns False. The following table displays valid path values.
Value of path Example
Directory name ORDERS
Full path C:\\COREL\\SUITE8\\PARADOX\\APPS\\ORDERS\\
Relative path ..\\..\\ORDERS
Alias :ORDERS:
Corel Paradox closes all of its open windows and frees all locks before setting the private directory. Therefore, 
setPrivDir does not take effect until all ObjectPAL code has finished executing. You can keep a form open by 
adding code to its built-in menuAction method to trap for the MenuChangingPriv menu command (see the 
example for details). If you do so, save any documents that need saving before changing the working directory. 
setPrivDir returns True if successful; otherwise, it returns False.
ObjectPAL provides the following MenuCommands constants for handling changes to the private directory:
Constant Description
MenuFilePrivateDir Issued when the user chooses Tools, Settings, Preferences, Database, Private 

Directory from the Corel Paradox menu. Trap for this constant to prevent the user 
from changing the private directory.

MenuChangingPriv Issued just before the private directory changes. Trap for this constant to keep a 
form open when changing the private directory.

MenuChangedPriv Issued just after the private directory changes. Trap for this constant to find out 
when the private directory has changed.

ObjectPAL also provides the constant MenuFileWorkingDir, issued when the user clicks Tools, Settings, 
Preferences, Database, Working Directory.
 Examples

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSPRIV;OPAL_METH_FSSETWORKINGDIR;',0,"Default
overview",)} Related Topics



setPrivDir procedure examples
Example1          Using a menu choice to set the private directory
Example2         Using a form's open and menuAction methods



setPrivDir example 1
The following example changes the private directory and the resulting menu commands generated by Corel 
Paradox. When you click Tools, Settings, Preferences, Database, Private Directory the code calls disableDefault 
to block the default behavior. This prevents Corel Paradox from displaying the Set Private Directory dialog box 
and then tests the value of a Logical variable okToChangePriv (declared and assigned elsewhere). If 
okToChangePriv is True, the code calls setPrivDir to set the private directory (:PRIV:) behind the scenes.
This example also handles the MenuChangingPriv menu command, issued by Corel Paradox just before it 
changes the private directory. setErrorCode sets the error code to a nonzero value, which keeps this form open 
when the private directory changes. The code responds to the MenuChangedPriv menu command, issued by 
Corel Paradox just after it changes the private directory.
method menuAction(var eventInfo MenuEvent)

const
   kKeepFormOpen = UserMenu  ; UserMenu is an ObjectPAL constant.
endConst                     ; Any nonzero value keeps the form open.

   ; In a real app you'd declare and assign this variable elsewhere.
   okToChangePriv = True

   switch
      case eventInfo.id() = MenuFilePrivateDir :
         disableDefault                 ; Block the default behavior.
         if okToChangePriv then
            setPrivDir("c:\\pdx\\mine") ; Set :PRIV: to hard-coded path.
         else
            return
         endIf

      case eventInfo.id() = MenuChangingPriv : 
         eventInfo.setErrorCode(kKeepFormOpen)

      case eventInfo.id() = MenuChangedPriv : 
         ; You may want to take some action after changing :PRIV:.
         ; This example just displays the new path.
         message(privDir()) 
         sleep(1000)

      otherwise : doDefault
   endSwitch
endMethod



setPrivDir example 2
The following example uses the open and the menuAction methods of a form to set the private directory 
before the form opens. In the form's built-in open method, setPrivDir changes the private directory to the same
directory as the form. The ObjectPAL code in the menuAction prevents the form from closing during the change.
The following code is attached to the form's built-in open method:
;frm1 :: open
method open(var eventInfo Event)
   var
      f               Form
      dynPath   DynArray[] String
   endVar

   if eventInfo.isPreFilter() then
      ;// This code executes for each object on the form:
      f.attach()
      splitFullFileName(f.getFileName(), dynPath)
      setPrivDir(dynPath["Drive"] + dynPath["Path"])
   else
      ;// This code executes only for the form:
   endIf
endMethod

The following code is attached to the form's built-in menuAction method:
;frm1 :: menuAction
method menuAction(var eventInfo MenuEvent)
const
   kKeepFormOpen = UserMenu    ; UserMenu is an ObjectPAL constant.
endConst               ; Any nonzero value keeps the form open.

   if eventInfo.isPreFilter() then
      ;// This code executes for each object on the form:
      if eventInfo.id() = MenuChangingPriv then
         eventInfo.setErrorCode(kKeepFormOpen)
      endIf
   else
      ;// This code executes only for the form:
   endIf
endMethod



setWorkingDir procedure
Sets the working directory.

Syntax
setWorkingDir ( const path String ) Logical

Description
setWorkingDir sets the path of the current working directory. The following table gives examples of valid values
for path:
Value of path Example
Directory name ORDERS
Full path C:\\COREL\\SUITE8\\PARADOX\\APPS\\ORDERS\\
Relative path ..\\..\\ORDERS
Alias :ORDERS:
By default, Corel Paradox closes all open windows before setting the working directory, and prompts you to save 
modified documents. Therefore, setWorkingDir does not take effect until all ObjectPAL code executes. You can 
keep a form open by adding code to its built-in menuAction method to trap for the MenuChangingWork menu 
command. If you do so, save any active documents before changing the working directory.
Use the following ObjectPAL MenuCommands constants to handle changes to the working folder:
Constant Description
MenuFileWorkingDir Issued when the user clicks Tools, Settings, Preferences, Database, Working 

Directory. Trap for this constant to prevent the user from changing the working 
directory.

MenuChangingWork Issued before the working directory changes. Trap for this constant to keep a form 
open when changing the working directory.

MenuChangedWork Issued after the working directory changes. Trap for this constant to determine 
whether the working directory has changed.

ObjectPAL also provides the constant MenuFilePrivateDir, issued when the user clicks Tools, Settings, 
Preferences, Database, Private Directory.
 Examples

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSSETPRIVDIR;OPAL_METH_FSWORKINGDIR;',0,"Defa
ultoverview",)} Related Topics



setWorkingDir procedure examples
Example1         Using a menu command to set the working directory
Example2          Using a form's open and menuAction methods



setWorkingDir example 1
The following example uses a menu command to change the working directory, and the resulting menu 
commands. When you click Tools, Settings, Preferences, Database, Working Directory, the code calls 
disableDefault to block the default behavior and prevent Corel Paradox from displaying the Set Working 
Directory dialog box. Next, this code tests the value of a Logical variable okToChangeWork (declared and 
assigned elsewhere). If okToChangeWork is True, it calls setWorkingDir to set the working directory (:WORK:) 
behind the scenes.
Also handles the MenuChangingWork menu command, issued by Corel Paradox just before it changes the 
working directory. The call to setErrorCode sets the error code to a nonzero value, which keeps the form open 
when the working directory changes. The code in this example responds to the MenuChangedWork menu 
command, issued by Corel Paradox just after it changes the working directory.
method menuAction(var eventInfo MenuEvent)
const
   kKeepFormOpen = UserMenu   ; UserMenu is an ObjectPAL constant.
endConst               ; Any nonzero value keeps the form open.

   ; In a real app you'd declare and assign this variable elsewhere.
   okToChangeWork = True

   switch
      case eventInfo.id() = MenuFileWorkingDir :
         disableDefault                 ; Block the default behavior.
         if okToChangeWork then
            setWorkingDir("c:\\pdx\\mine") ; Set :WORK: to hard-coded path.
         else
            return
         endIf

      case eventInfo.id() = MenuChangingWork : 
         eventInfo.setErrorCode(kKeepFormOpen)

      case eventInfo.id() = MenuChangedWork : 
         ; You may want to take some action after changing :WORK:.
         ; This example just displays the new path.
         message(workingDir()) 
         sleep(1000)

      otherwise : doDefault
   endSwitch
endMethod



setWorkingDir example 2
The following example uses a form's open and menuAction methods to set the working directory before the 
form opens. In the form's built-in open method, setWorkingDir changes the current working directory to the 
same directory as the form. The ObjectPAL code in the menuAction prevents the form from closing during the 
change.
The following code is attached to the form's built-in open method:
;frm1 :: open
method open(var eventInfo Event)
var
   f                  Form
   dynPath   DynArray[]  String
endVar

if eventInfo.isPreFilter() then
   ;// This code executes for each object on the form:
else
   ;// This code executes only for the form:
   f.attach()
   splitFullFileName(f.getFileName(), dynPath)
   setWorkingDir(dynPath["Drive"] + dynPath["Path"])
endIf

endMethod

The following code is attached to the form's built-in menuAction method:
;frm1 :: menuAction
method menuAction(var eventInfo MenuEvent)
const
   kKeepFormOpen = UserMenu   ; UserMenu is an ObjectPAL constant.
endConst                      ; Any nonzero value keeps the form open.

   if eventInfo.isPreFilter() then
      ;// This code executes for each object on the form:
      if eventInfo.id() = MenuChangingWork then
         eventInfo.setErrorCode(kKeepFormOpen)
      endIf
   else
      ;// This code executes only for the form:
   endIf
endMethod



shortName method
Returns the short name of a file.

Syntax
shortName ( ) String

Description
After a successful findFirst or findNext, shortName returns the short name of the file whose name matches 
the pattern. A short name is the 8.3 filename stored in the file system.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSFDSP;OPAL_METH_FSTDSP;',0,"Defaultoverview",)
} Related Topics



shortName example
The following example calls findFirst and findNext to locate tables in the current directory and then calls 
shortName to create a pop-up menu listing the filenames.
; showName::pushButton
method pushButton(var eventInfo Event)
var 
   fs  FileSystem
   p  PopUpMenu
   tv  TableView
   choice, path  String
endVar

if fs.findFirst("*.db") then    ; if a *.db file exists
   p.addStaticText("Tables")     ; create a pop-up menu
   p.addSeparator()
   p.addText(fs.shortName())          ; use filenames in pop-up
   while fs.findNext()
      p.addText(fs.shortName())
   endWhile
   choice = p.show()             ; show the menu
   if not choice.isBlank() then  ; if user selected a table
      tv.open(choice)             ; display the selected table
   endif
endIf

endMethod



size method
Returns the size of a file.

Syntax
size ( ) LongInt

Description
size returns the size of a file, measured in bytes, after a successful findFirst or findNext.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSFDSP;OPAL_METH_FSTDSP;',0,"Defaultoverview",)
} Related Topics



size example
The following example creates a dynamic array (DynArray) containing the filenames and sizes of the Corel 
Paradox tables in the current directory. The call to view, defined for the DynArray type, displays the information 
in a dialog box.
; demoButton::pushButton
method pushButton(var eventInfo Event)
var 
  fs FileSystem
  da DynArray[] LongInt
endVar

if fs.findFirst("*.db") then
  da[fs.name()] = fs.size()
  while fs.findNext()
    da[fs.name()] = fs.size()
  endWhile
  da.view("Names and sizes")
else
  msgStop("*.db", "file not found.")
endIf

endMethod



splitFullFileName procedure
Breaks a full path name into its component parts.

Syntax
1. splitFullFileName ( const fullFileName String, var components DynArray[ ] String )
2. splitFullFileName ( const fullFileName String, var driveName String, var pathName String, 

var fileName String, var extensionName String )

Description
splitFullFileName divides a full path (obtained using fullName  )   into its component parts. SplitFullFileName 
does not return the values directly, but assigns them to variables that you declare and pass as arguments.
Syntax 1 assigns the returned values to a dynamic array that you must declare and pass as an argument. The 
DynArray has the following keys: DRIVE, PATH, NAME, and EXT.
Syntax 2 assigns the returned values to four String variables that you must declare and pass as arguments.
With both syntaxes, path components can include colons, periods, slashes, and backslashes. For example, if 
given C:\COREL\SUITE8\PARADOX\FORMS\ORDERS.FSL, splitFullFileName assigns values as follows:
DRIVE = C:
PATH = \COREL\SUITE8\PARADOX\FORMS\
NAME = ORDERS, and EXT = .FSL
The DRIVE variable (or key) stores everything up to and including the last colon in the filename. If the filename 
includes an alias, the alias is assigned to DRIVE. If the filename does not include a drive or an alias, an empty 
string is assigned to the DRIVE variable.
The PATH variable (or key) stores everything following the drive, up to and including the last backslash or slash. 
If the filename does not include a path, an empty string is assigned to the PATH variable. If a directory name in 
the path includes an extension, it is included in the PATH variable.
The NAME variable (or key) stores everything following the path, up to but not including the period that 
separates a filename from its extension. If the filename does not include a name, an empty string is assigned to 
the NAME variable.
The EXT variable (or key) stores everything following the filename, including the last period. If the filename does 
not include an extension, an empty string is assigned to the EXT variable. 
 Note

· The extension must be registered in the HKEY_CLASSES_ROOT section of the system registry to be return a 
value in this field. For more information about HKEY_CLASSES_ROOT, see your Windows documentation.

 Examples
{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSFUNM;',0,"Defaultoverview",)} Related Topics



splitFullFileName procedure examples
Example1          Calling fullName first, then splitting the name
Example2          Splitting the name
Example3          Dealing with aliases



splitFullFileName example 1
The following example calls fullName to return the full name of the first form listed in the current directory. 
Then calls splitFullFileName to split the name into its component parts and store them in a dynamic array. The
call to view displays the dynamic array.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  fs FileSystem
  splitName DynArray[] anytype
  fullFileName String
endVar

; if the customer.db file is in the sample directory
if fs.findFirst("c:\\Corel\\Suite8\\Paradox\\samples\\customer.db") then

  ; store the full filename to a variable
  fullFileName = fs.fullName()

  ; split filename into parts and store them in a DynArray
  splitFullFileName(fullFileName, splitName)

  ; display the component parts 
  splitName.view("Split name")
endIf

endMethod



splitFullFileName example 2
The following example calls splitFullFileName to split the full name of a form into its component parts, then 
displays the path and the filename (without an extension) in dialog boxes.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
   fs FileSystem
   driveName, pathName, fileName, extName String
endVar

   splitFullFileName("c:\\data\\sales\\stats.fsl", driveName, pathName, fileName, extName)
   pathName.view("Path name") ; displays the path
   fileName.view("Filename") ; displays the filename (no extension)

endMethod



splitFullFileName example 3
The following example displays a dialog box and prompts you to enter a filename. splitFullFileName splits the 
filename into its component parts and then displays the parts in dialog boxes. 
; thisButton::pushButton
method pushButton(var eventInfo Event)
   var
      stTestFileName,
      stPrompt,
      stDrive,
      stPath,
      stName,
      stExt         String
      dyFileName   DynArray[] String
   endVar

   stPrompt = "Enter a filename here."
   stTestFileName = stPrompt

   stTestFileName.view("Enter a filename to split:")

   if stTestFileName = stPrompt then
      ; User closed the dialog box without clicking OK,
      ; or clicked OK without typing a value.
      return
   else
      ; User typed a value and clicked OK.
      splitFullFileName(stTestFileName, dyFileName)
      dyFileName.view("DynArray")

      splitFullFileName(stTestFileName, stDrive, stPath, stName, stExt)
      stDrive.view("Drive")
      stPath.view("Path")
      stName.view("Name")
      stExt.view("Ext")
   endIf
endMethod



startUpDir procedure
Returns a string containing the path to your start-up directory (folder).

Syntax
startUpDir ( ) String

Description
startUpDir returns a string containing the path (including the drive letter) of the Corel Paradox start-up 
directory (folder).
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSPRIV;OPAL_METH_FSWORKINGDIR;',0,"Defaultover
view",)} Related Topics



startUpDir example
The following example opens a dialog box that displays the path to the Corel Paradox start-up directory (folder).
; thisButton::pushButton
method pushButton(var eventInfo Event)

msgInfo("Start-up directory", startUpDir())

endMethod



time method
Returns the time and date of a file's last modification.

Syntax
time ( ) DateTime

Description
time returns a DateTime value that represents the time and date of the file's last modification.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSFUNM;OPAL_METH_FSSIZE;',0,"Defaultoverview",)
} Related Topics



time example
The following example calls time to return the time and date of the most recent modification to the Customer 
table. The code then compares the modification date with today's date and reports the results.
method pushButton(var eventInfo Event)
   var 
      fs FileSystem
   endVar
   
   if fs.findFirst("customer.db") then
      if fs.time() < DateTime(today()) then
         message("old version")
      else
         message("new version")
      endif
   endIf
endMethod



totalDiskSpace method
Returns the total capacity of a specified drive, measured in bytes.

Syntax
totalDiskSpace ( const driveLetter String ) LongInt

Description
totalDiskSpace returns the total number of bytes the specified drive can hold. You can specify a drive using a 
letter (C) or a letter and a colon (C:).
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSFDSP;',0,"Defaultoverview",)} Related Topics



totalDiskSpace example
The following example calls totalDiskSpace and freeDiskSpace to calculate the amount of space available. 
The code stores the information in a dynamic array and then calls the appropriate view method to display the 
information in a dialog box.
; spaceUsed::pushButton
method pushButton(var eventInfo Event)
var 
  fs FileSystem
  da DynArray[] LongInt
endVar

da["Total space"] = fs.totalDiskSpace("C")
da["Free space"] = fs.freeDiskSpace("C")
da["Space in use"] = da["Total space"] - da["Free space"]
da.view("Drive C")

endMethod



windowsDir procedure
Returns the path to the WINDOWS directory (folder).

Syntax
windowsDir ( ) String

Description
windowsDir returns the path to the WINDOWS directory.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSWSDI;OPAL_METH_FSWORKINGDIR;OPAL_METH_FS
PRIV;OPAL_METH_FSSTART;',0,"Defaultoverview",)} Related Topics



windowsDir example
The following example reads WIN.INI from drive B and copies it to the WINDOWS folder on the default drive.
; copyWinIni::pushButton
method pushButton(var eventInfo Event)
var 
   fs  FileSystem
   fileName, destName  String
endVar

fileName = "\\win.ini"

fs.setDrive("B")
if fs.findFirst(fileName) then
   destName = windowsDir() + fileName
   fs.copy(fileName, destName)
endIf

endMethod



windowsSystemDir procedure
Returns the path to the Windows System directory (folder).

Syntax
windowsSystemDir ( ) String

Description
windowsSystemDir returns the path to the Windows System directory.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSWDIR;',0,"Defaultoverview",)} Related Topics



windowsSystemDir example
The following example reads SPECIAL.DRV from drive B and copies it to the Windows System directory (folder) on
the default drive.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
   fs  FileSystem
   fileName, destName  String
endVar

fileName = "\\special.drv"

fs.setDrive("B")
if fs.findFirst(fileName) then
   destName = windowsSystemDir() + fileName
   fs.copy(fileName, destName)
endIf

endMethod



workingDir procedure
Returns the name of the working directory.

Syntax
workingDir ( ) String

Description
workingDir returns the name (including the path) of the working directory.
 Example

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_METH_FSPRIV;OPAL_METH_FSWDIR;OPAL_METH_FSWSDI;',0
,"Defaultoverview",)} Related Topics



workingDir example
The following example displays a message that contains the path to the working directory:
; thisButton::pushButton
method pushButton(var eventInfo Event)

message("Working directory is: " + workingDir())

endMethod



Disk errors
When a method fails because of a disk error, the error code constant is peDiskError and the error message is, "A 
disk error occurred" plus one of the following strings:
"Invalid function number."
"The file could not be found."
"The directory path could not be found."
"No file handle available."
"Access to this file is denied. It is read only or a directory."
"Invalid handle."
"Memory control blocks have been damaged."
"Insufficient memory to allocate file structures."
"Invalid memory block address."
"Invalid environment."
"Invalid format."
"Invalid file access byte."
"Invalid data."
"Invalid drive."
"Cannot remove the current directory."
"Not the same device."
"No more files match the wildcard specification."
"Cannot write to a write-protected disk."
"Unknown unit."
"The drive is not ready."
"Command is not recognized."
"Checksum error (Bad CRC)."
"Invalid request structure length."
"File seek error."
"Unknown media type."
"Sector not found."
"Out of paper."
"An error occurred while trying to write to the disk."
"An error occurred while trying to read from the disk."
"General DOS error."
"File sharing violation."
"File lock violation."
"Invalid disk change."
"File control blocks unavailable."
"Sharing buffer overflow."
"Bad code page."
"Handle EOF."
"The disk is full."
"Device is not supported."
"Device is not listening."
"Duplicate name."
"Invalid network path."
"The network is busy."
"The device does not exist."
"Too many commands."



"Adapter error."
"Invalid network response."
"Network error."
"Adapter is incompatible."
"The print queue is full."
"Out of spool space."
"Print job was canceled."
"The network name was deleted."
"Your access to the network is denied."
"Invalid device type."
"Invalid network name."
"Too many names."
"Too many sessions."
"Sharing pause."
"Request not accepted."
"Redirection pause."
"The file already exists."
"Duplicate file control blocks."
"Cannot create the specified directory."
"DOS critical error."
"Out of structures. Cannot perform operation."
"Drive is already assigned."
"Invalid password."
"Invalid parameter."
"Network write error."
"Comp command is not loaded."
"The mode specification is invalid."
"Cannot write to the file because it was opened in read-only mode."

{button ,AL(`OPAL_TYPE_FILESYSTEM;OPAL_TYPE_FILESYSTEM;;',0,"Defaultoverview",)} Related 
Topics



Form type
A Form variable provides a handle for working with a Corel Paradox form. Form type methods let you
· load a form in a Form Design window and save a design
· open and close a form
· attach to an open form
· work with tables in a data model
· work with table aliases
· enumerate object names, properties, and source code for methods
· determine and change the position of a form, as well as maximize or minimize the form
· send events to a form, such as a mouseUp or keyPhysical
· get and set methods for a form
The Form type is the base type from which the other display manager types (for example, Report) are derived. 
Many of the methods listed in this section are also used by the Application, Report, and TableView types.

Methods in the Form type
action
attach
bringToTop
close
create
delayScreenUpdates
deliver
design
disableBreakMessage
disablePreviousError
dmAddTable
dmAttach
dmBuildQueryString
dmEnumLinkFields
dmGet
dmGetProperty
dmHasTable
dmLinkToFields
dmLinkToIndex
dmPut
dmRemoveTable
dmResync
dmSetProperty
dmUnlink
enumDataModel
enumSource
enumSourceToFile
enumTableLinks
enumUIObjectNames
enumUIObjectProperties
formCaller
formReturn
getFileName



getPosition
getProtoProperty
getSelectedObjects
getStyleSheet
getTitle
hide
hideToolbar
isCompileWithDebug
isDesign
isMaximized
isMinimized
isToolbarShowing
isVisible
keyChar
keyPhysical
load
maximize
menuAction
methodDelete
methodEdit
methodGet
methodSet
minimize
mouseDouble
mouseDown
mouseEnter
mouseExit
mouseMove
mouseRightDouble
mouseRightDown
mouseRightUp
mouseUp
moveToPage
open
openAsDialog
postAction
run
save
saveStyleSheet
selectCurrentTool
setCompileWithDebug
setIcon
setMenu
setPosition
setProtoProperty
setSelectedObjects
setStyleSheet
setTitle
show



showToolbar
wait
windowClientHandle
windowHandle
writeText

 Print related ObjectPAL methods and examples 



action method/procedure
Performs an action command.

Syntax
action ( const actionId SmallInt ) Logical

Description
action performs the function represented by the constant actionId, where actionId is a constant in one of the 
following action classes:
· ActionDataCommands
· ActionEditCommands
· ActionFieldCommands
· ActionMoveCommands
· ActionSelectCommands
You can also use action to send a user-defined action constant to a built-in action method. User-defined action 
constants are simply integers that don't interfere with any of ObjectPAL's constants. You can use user-defined 
action constants to signal other parts of an application. For example, assume that the Const window for a form 
declares a constant named myAction. In the built-in action method for a page on the form, you might check the 
value of every incoming ActionEvent (with the id method); if the value is equal to myAction, you can respond to 
that action accordingly. Corel Paradox's default response for user-defined action constants is simply to pass the 
action to the action method.
This action method is distinct from the built-in action method for a form or for any other UIObject. The built-in 
action method for an object responds to an action event; this method causes an ActionEvent.
 Note

· When you call the action method as a procedure, the form dispatches it to the object represented by self. The
event bubbles through the containership hierarchy until the event either reaches an object that can handle the
action or the event reaches the form. If the event reaches the form, and the action is a data action, the form 
sends the event to the master table for the form.

 Example
{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_UIACTI;',0,"Defaultoverview",)} Related Topics



action example
In the following example, a form named Sitenote contains field objects bound to the Sites table. The current form
contains a button named openEditSites; the pushButton method for openEditSites opens Sitenote, starts Edit 
mode, and waits for Sitenote to be closed:
; openEditSites::pushButton
method pushButton(var eventInfo Event)
var 
   siteForm  Form 
endVar  
siteForm.open("Sitenote.fsl")  ; open Sitenote
siteForm.action(DataBeginEdit) ; start Edit mode on siteForm 
message("To return, close Sitenote form.")
siteForm.wait()                ; this form will be inactive until
                               ; Sitenote returns
siteForm.close()               ; this form must close Sitenote
endMethod



attach method
Associates a Form variable with an open form.

Syntax
attach ( [ const formTitle String ] ) Logical

Description
attach associates a Form variable with an open form. You can use formTitle to specify a form's title, or you can 
omit formTitle to attach to the form where attach is executing. This method returns True if successful; 
otherwise, it returns False.
 Note

· The argument formTitle specifies a form's title as displayed in the Title Bar (for example, Orders), not the 
form's filename or UIObject name. You can specify a form's title interactively by right-clicking the form's Title 
Bar, choosing Window Style, and entering a value in the Window Style dialog box. You can specify a title in 
ObjectPAL by setting a form's Title property, or by calling setTitle.

 Example
{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOGETT;OPAL_METH_FOSTIT;OPAL_METH_FOOPEN;',0,"Defa
ultoverview",)} Related Topics



attach example
In the following example, a form has two buttons: openSites and attachToSites. The pushButton method for 
openSites opens the Sitenote form. The pushButton method for attachToSites attaches the form variable 
sitesForm to the open form by way of the form's current title. In this case, the form title wasn't changed; 
therefore attachToSites can attach to Sitenote using the default title. Once attached, the pushButton method 
uses the sitesForm handle to minimize, maximize, and restore Sitenote.
The following code is attached to the pushButton method for openSites:
; openSites::pushButton
method pushButton(var eventInfo Event)
var
   sitesForm Form
endVar
sitesForm.open("Sitenote")
sitesForm.Title = "Notes" ; Set the form's title.

endMethod

The following code is attached to the pushButton method for attachToSites:
; attachToSites::pushButton
method pushButton(var eventInfo Event)
var
   sitesForm  Form
endVar

; Attach to Sitenote by its title (Notes).
; Note that this won't work:   sitesForm.attach("Sitenote")
if not sitesForm.attach("Notes") then
      errorShow()
      return
endIf

; cycle through sizes
sitesForm.minimize()                ; minimize the form
sleep(2000)                         ; pause
sitesForm.maximize()                ; maximize the form
sleep(2000)                         ; pause
sitesForm.show()                    ; restore to original size
endMethod



bringToTop method/procedure
Brings the window to the top of the display stack and makes it active.

Syntax
bringToTop ( )

Description
When several windows are displayed they seem to overlap and give the appearance of layers. Use bringToTop 
to display a window on the top of the stack and not overlapped by any other windows. bringToTop makes a 
form the active window.
If a hide statement has made a form invisible, bringToTop makes it visible again.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOIVIS;OPAL_METH_FOHIDE;OPAL_METH_FOSHOW;OPAL_TY
PE_APPLICATION;',0,"Defaultoverview",)} Related Topics



bringToTop example
In the following example, the pushButton method for a button named openSeveral opens the Sitenote form and
then opens a Table window for the Orders table. The Table window, orderTV, opens over the Sitenote form, 
siteForm. The method pauses for a few seconds and then makes siteForm the topmost layer:
; openSeveral::pushButton
method pushButton(var eventInfo Event)
var 
   siteForm  Form 
   orderTV   TableView
endVar  
siteForm.open("Sitenote.fsl")   ; opens Sitenote form
orderTV.open("orders")          ; opens Orders over Sitenote 
message("About to make the Sitenote form the highest layer.")
beep()
sleep(5000)                   ; pause
siteForm.bringToTop()         ; make Sitenote highest layer

endMethod



close method/procedure
Closes a window.

Syntax
1. ( Method ) close ( )
2. ( Procedure ) close ( [ const returnValue AnyType ] )

Description
close closes a window as if the user has chosen Close from the Control menu.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOOPEN;',0,"Defaultoverview",)} Related Topics



close example
The following example uses close to return a value to a form that called it with wait. Assume a form contains a 
button called btn1. A second form contains two buttons called btnReturnOK and btnReturnCancel. The first form 
opens the second form and waits for one of three values: OK, Cancel, or False. OK and Cancel are returned from 
the two buttons on the second form (see the following code) and False is returned if the user closes the second 
form without pressing a button. The first form processes the user's selection in a switch statement that calls one
of three custom methods (assumed to be defined elsewhere).
The following code is attached to the button btn1 in the first (calling) form.
;frm1.btn1 :: pushButton
method pushButton(var eventInfo Event)
   var
      f   Form        ;Declare form variable.
      s   String      ;Declare string value.
   endVar

   f.open("wait2")      ;Open form that will return string.
   s = string(f.wait())      ;Wait for value from other form.
   s.view("Returned value")   ;View returned value.

   ;Process returned value using custom methods defined elsewhere.
   switch
      case s = "OK"    : cmOK()       ;User pressed the OK button.
      case s = "Cancel": cmCancel();User pressed the Cancel button.
      case s = "False" : cmNone()  ;User closed form, no button pressed.
   endSwitch
endmethod

The following code is attached to the button btnReturnOK in the second (called) form:
;frm2.btnReturnOK :: pushButton
method pushButton(var eventInfo Event)
   close("OK")         ;Close & return OK.
endmethod

The following code is attached to the button btnReturnCancel in the second (called) form:
;frm2.btnReturnCancel :: pushButton
method pushButton(var eventInfo Event)
   close("Cancel")      ;Close & return Cancel.
endmethod



create method
Creates a blank form in a Form Design window.

Syntax
create ( ) Logical

Description
create opens a blank form and leaves it in a Form Design window. You can use the UIObject type methods 
create and methodSet to place objects in the new form and attach methods to them. You can attach methods 
to the form using the Form type method methodSet. Use the Form type method run to open the form in a Form
window.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODESIGN;OPAL_METH_FOLOAD;OPAL_METH_FOOPEN;OPAL
_METH_FOMETHODGET;OPAL_METH_FOMETHODSET;OPAL_METH_FORUN;OPAL_METH_UICREATE;OPAL_M
ETH_UIMETHODGET;OPAL_METH_UIMETHODSET;',0,"Defaultoverview",)} Related Topics



create example
In the following example, the pushButton method for a button named createAForm creates a new form with the
create method and sets the value of the new form's mouseUp method with setMethod. The pushButton 
method for createAForm then saves the new form to a file named NEWHELLO.FSL, runs the form, and calls the 
new form's mouseUp method (supplying the correct arguments). The mouseUp method for the Newhello form 
opens a dialog box that displays Hello. After the dialog box is closed (by the user), the pushButton method for 
createAForm closes the Newhello form.
; createAForm::pushButton
method pushButton(var eventInfo Event)
var 
   newForm Form 
endVar
newForm.create()              ; create a new blank form (a Form Design window)
newForm.methodSet("mouseUp",  ; set the mouseUp method for the form
"method mouseUp(var eventInfo MouseEvent)
msgInfo(\"Greetings\", \"Hello\")
endMethod")                   ; backslashes delimit embedded quotes
newForm.save("newhello")      ; save the form
newForm.run()                 ; run the new form (View Data window)
                              ; call the mouseUp method for the form
newForm.mouseUp(100, 100, LeftButton )  ; dialog box displays "Hello"
newForm.close()               ; close the form
endMethod



delayScreenUpdates procedure
Turns delayed screen updates on or off.

Syntax
delayScreenUpdates ( const yesNo Logical )

Description
delayScreenUpdates postpones or enables the redrawing of areas of the screen. You must specify Yes or No in 
yesNo. Specifying Yes delays screen updates (redraws) until the system yields or is idle. This can increase 
performance in operations that frequently refresh the display (e.g., when using ObjectPAL to add items to a list). 
Specifying No allows screen updates to occur without delay.
For some operations, you won't notice a difference when delayScreenUpdates is set to Yes. 
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_SYSLEEP;',0,"Defaultoverview",)} Related Topics



delayScreenUpdates example
The following two methods override the pushButton methods for their respective buttons. The drawOneByOne 
button draws a number of boxes without changing delayScreenUpdates. The drawAllAtOnce button draws the 
same number of boxes, to a different location, but first sets delayScreenUpdates to Yes. When this code runs, 
you'll see the boxes created by drawOneByOne appear one at a time, but still rapidly. The boxes created by 
drawAllAtOnce are created behind the scenes which causes a short pause
then they all appear at the same time.
; drawOneByOne::pushButton
method pushButton(var eventInfo Event)
var
  ui UIObject
endVar

; delayScreenUpdates(No) is the default
; Create and display a set of boxes, showing them as
; they're created.
for i from 750 to 2550 step 300
  for j from 750 to 2550 step 300
    ui.create(boxTool, i, j, 150, 150)
    ui.Color = Blue
    ui.Visible = Yes
  endfor
endfor
endMethod

The drawAllAtOnce button on the same form creates the same number of boxes, but does so with 
delayScreenUpdates set to Yes. On very fast machines, you still may not be able to see the difference.
; drawAllAtOnce::pushButton
method pushButton(var eventInfo Event)
var
  ui UIObject
endVar

delayScreenUpdates(Yes)
; This code will create all boxes and then display
; them all at once.
for i from 4950 to 6750 step 300
  for j from 750 to 2550 step 300
    ui.create(boxTool, i, j, 150, 150)
    ui.Color = Red
    ui.Visible = Yes
  endfor
endfor
; reset to default
delayScreenUpdates(No)

endMethod



deliver method
Delivers a form.

Syntax
deliver ( ) Logical

Description
deliver behaves like Format, Deliver. This method saves a copy of a form with an .FDL extension, which prevents
users from editing the form in the Form Design window. Users can open the form only in a Form window. 
Switching to the Form Design window on an open, delivered form is also prohibited.
Corel Paradox opens saved forms before delivered forms with the same name. For example, suppose the working
directory contains ORDERS.FSL (a saved form) and ORDERS.FDL (a delivered form).
The following statement opens the saved form, ORDERS.FSL.
ordersForm.open("ORDERS") ; Opens :WORK:ORDERS.FSL.

To specify a delivered form, include the .FDL extension. For example,
ordersForm.open("ORDERS.FDL") ; Opens the delivered form.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOSAVE;',0,"Defaultoverview",)} Related Topics



deliver example
In the following example, the createDeliver button creates a new form, saves it to the name Newhello and then 
delivers it (which saves a version as NEWHELLO.FDL). When the method attempts to load the form in a Form 
Design window, load returns False because a delivered form can't be loaded in a Form Design window.
; createDeliver::pushButton
method pushButton(var eventInfo Event)
var 
   newForm Form 
endVar
newForm.create()              ; create a new blank form (a Form Design window)
newForm.save("newhello")      ; save the form
newForm.deliver()             ; deliver the newly created form
newForm.close()               ; close the form
if NOT newForm.load("newhello.fdl") then  ; load will return False
   errorShow("Can't load a delivered form.")
endif
endMethod



design method
Switches a form from the Form window to the Form Design window.

Syntax
design ( ) Logical

Description
design switches a form from the Form window to the Form Design window. This method works only with saved 
forms (.FSL); it does not work with delivered forms (.FDL).
Use run to switch from the Form Design window to the Form window.
 Note

· Some form actions are especially processor-intensive. In some situations, you might need to follow a call to 
open, load, design, or run with a call to sleep. For more information, see the sleep method in the System 
type.

 Example
{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOCREATE;OPAL_METH_FOLOAD;OPAL_METH_FOOPEN;OPAL
_METH_FORUN;',0,"Defaultoverview",)} Related Topics



design example
The following example uses a custom procedure to force a form (specified by its title) into design mode.
proc forceDesign(const foTemp Form) Logical
if foTemp.isDesign() then
   return True
else
   return foTemp.design()
endIf
endProc



disableBreakMessage procedure
Prevents program interruption by CTRL + Break.

Syntax
disableBreakMessage ( const yesNo Logical ) Logical

Description
disableBreakMessage lets you prevent or allow the user to interrupt a running program with CTRL + Break.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODISABLEPREVIOUSERROR;OPAL_METH_SYDEBUG;',0,"Def
aultoverview",)} Related Topics



disableBreakMessage example
In the following example, assume a form contains a table frame bound to the Orders table. 
The following code prevents the loop from being interrupted by a CTRL + Break.
; throughTable::pushButton
method pushButton(var eventInfo Event)
; just a loop to test CTRL-breaking out of
disableBreakMessage(Yes)     ; don't allow a CTRL + Break
while NOT ORDERS.atLast()
  ORDERS.action(DataNextRecord)
endwhile
endMethod



disablePreviousError procedure
Specifies whether you have access to the Previous Error dialog box.

Syntax
disablePreviousError ( const yesNo Logical ) Logical

Description
By default, when you move the pointer over the Status Bar, the pointer changes shape; you can then click the 
Status Bar to display the Previous Error dialog box (if error information is available). If yesNo is Yes (or True), 
disablePreviousError prevents this behavior; otherwise it restores the default behavior.
Returns True if successful; otherwise, returns False. This setting remains in effect (and affects all forms) as long 
as Corel Paradox is running. The default behavior is restored the next time you start Corel Paradox.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_SYDEBUG;OPAL_METH_FODISABLEBREAKMESSAGE;',0,"Def
aultoverview",)} Related Topics



disablePreviousError example
The following example uses disablePreviousError in a script named InitApp to prevent user access to the 
Previous Error dialog box:
; InitApp::run
method run(var eventInfo Event)
   disablePreviousError(Yes)
   openMainForm() ; Call a custom method to open the main application form.
endMethod



dmAddTable method/procedure
Adds a table to a form's data model.

Syntax
dmAddTable ( const tableName String ) Logical

Description
dmAddTable adds the table tableName to a form's data model, where tableName is a valid table name. This 
method returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMHASTABLE;OPAL_METH_FODMREMOVETABLE;',0,"Def
aultoverview",)} Related Topics



dmAddTable example
In the following example, a form contains a button named toggleSites and a list field named showSiteNames. The
list data for the showSiteNames field is set with the DataSource property of its list object, ListNames. The 
pushButton method for toggleSites checks to see if the Sites table is in the data model for the form. If so, the 
reference to Sites is removed from the DataSource property of ListNames and then Sites is removed from the 
data model; otherwise, the Sites table is added to the data model and the DataSource property of ListNames is 
set to the Site Name field of Sites.
The following code is attached to the pushButton method of toggleSites:
; toggleSites::pushButton
method pushButton(var eventInfo Event)
      ; toggle Sites.db in and out of the data model
if dmHasTable("Sites") then    ; is Sites in data model?
      ; if so, remove dependencies and then remove table
      ; remove Sites as source from showSiteNames.ListNames
   showSiteNames.ListNames.DataSource = ""
   showSiteNames.Visible = False
      ; remove Sites from the data model
   dmRemoveTable("Sites")  
   whichTable = ""
else
      ; if not already in data model and then add Sites
   dmAddTable("Sites")
      ; set the data for the list from the Sites table
   showSiteNames.ListNames.DataSource = "[Sites.Site Name]"
   showSiteNames.Visible = True
   whichTable = "Sites"
endIf

endMethod



dmAttach method/procedure
Associates a TCursor variable with a table in the form's data model.

Syntax
dmAttach ( tc TCursor, const tableName String ) Logical

Description
dmAttach associates the TCursor variable tc with the table tableName in the form's data model, where 
tableName is either a valid table name or a table alias. This method returns True if successful; otherwise it 
returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMHASTABLE;OPAL_METH_TCDMATTACH;OPAL_METH_TC
OPEN;IDH_MULT_TABALIAS@PDOX.HLP;',0,"Defaultoverview",)} Related Topics



dmAttach example
The following example demonstrates how to use dmAttach and dmResync to keep two forms synchronized. 
Both forms have the Customer table in their data models. When the user moves from the first form frm1 to the 
second form frm2, a form variable f is used to attach back to the first form and dmAttach is used to attach to 
the appropriate table in its data model. dmResync is used to move to the same record as the first form.
;Frm2.pge1 :: setFocus
method setFocus(var eventInfo Event)
var
   f   Form         ;Declare a form variable.
   tc   TCursor   ;Declare a TCursor variable.
endVar

if f.attach("dmAttach2") then   ;Attach to other form.
   f.dmAttach(tc, "Customer.db")   ;Attach tc to a table in the
   dmResync("Customer.db", tc)   ;data model of the other form.
                              ;Then sync the two forms.
endIf
endMethod



dmBuildQueryString method/procedure
Builds a query string based on the data model of a form.

Syntax
dmBuildQueryString ( var queryString String ) Logical

Description
dmBuildQueryString creates a query string queryString based on the data model of a form. The query built by 
dmBuildQueryString creates checked example elements for all the link fields in the data model. The form’s 
data model must have a linked table. dmBuildQueryString returns True if it is successful; otherwise, it returns 
False.
 Examples

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMHASTABLE;OPAL_METH_FOENUMDATAMODEL;OPAL_M
ETH_QUREADFROMSTRING;',0,"Defaultoverview",)} Related Topics



dmBuildQueryString examples
Example1          Displaying a query string based on an existing data model
Example2          A pushButton method uses dmBuildQueryString to generate a query string



dmBuildQueryString example 1
The following example assumes a data model has the Customer and Orders tables linked on the CustomerNo 
field. The code displays a query string based on that data model.
method pushButton(var eventInfo Event)
   var
      stQBE String
   endVar
   dmBuildQueryString(stQBE)
   stQBE.view("Query String")

{
Displays the following string:
Query

::C:\COREL\SUITE8\PARADOX\BLDNOTES\CUSTOMER.DB|CustomerNo   |
                                 |Check _join1!|

::C:\COREL\SUITE8\PARADOX\BLDNOTES\ORDERS.DB|CustomerNo  |
                               |Check _join1|

EndQuery
}
endMethod



dmBuildQueryString example 2
The following example assumes a form contains a button named btnDMQuery. The pushButton method for 
btnDMQuery uses dmBuildQueryString as a procedure to generate a query string in s. readFromString is 
called to assign the string to a Query variable and the method runs the query and opens a Table window for the 
Answer table.
;btnDMQuery :: pushButton
method pushButton(var eventInfo Event)
   var
      s   String
      tv   TableView
      qVar   Query
   endVar

   dmBuildQueryString(s)
   qVar.readFromString(s)
   if qVar.executeQBE() then
      tv.open(":PRIV:ANSWER.DB")
   else
      errorShow()
      return
   endIf
endMethod



dmEnumLinkFields method/procedure
Lists the fields that link two tables.

Syntax
dmEnumLinkFields ( var masterTable String, var masterFields Array[ ] String, const detailTable 
String, var detailFields Array[ ] String, var detailIndex String ) Logical

Description
dmEnumLinkFields lists the fields that link the tables named in masterTable and detailTable. You must supply a
table name or table alias for detailTable. This method assigns values to the other variables (passed as 
arguments) as follows:
Variable Assigned value
masterTable The name of the master table. Blank if the table specified in detailTable has no master 

table.
masterFields Names of the linking fields in the master table. Blank if the table specified in detailTable

has no master table.
detailFields Names of the linking fields in the detail table. Blank if the table specified in detailTable 

has no master table. If the detail table is a dBASE table and uses an expression index, 
the expression is returned in angled brackets. Examples: <FIRSTNAME + LASTNAME> 
means an expression index based on the fields named FIRSTNAME and LASTNAME; 
<FIRSTNAME + LASTNAME;QTY > 1> means an expression index based on the fields 
named FIRSTNAME and LASTNAME with QTY > 1 as a subset condition.

indexName Name of the index used by the detail table. Blank if the table specified in detailTable is 
not using an index. If the detail table is a dBASE table, you can use dmGetProperty to
get the associated tag name, if any.

The tables must already be in the specified data model. This method returns True if successful; otherwise, it 
returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMHASTABLE;IDH_MULT_TABALIAS@PDOX.HLP;',0,"Defa
ultoverview",)} Related Topics



dmEnumLinkFields example
In the following example, assume that a form's data model links the Customer and Orders tables on the 
CustomerNo field, with the Orders table as the detail table. The tables do not use secondary indexes.
method pushButton(Var eventInfo Event)
   var
      mAr, dAr Array[] String
      m, d, inx String
   endVar

   d = "orders"
   dmEnumLinkFields(m, mAr, d, dAr, inx)
   m.view("Master table name")    ; Displays CUSTOMER.DB
   mAr.view("Master link fields") ; Displays Customer No
   d.view("Detail table name")    ; Displays ORDERS.DB
   dAr.view("Detail link fields") ; Displays Customer No
   inx.view("Index name")         ; Displays Customer No
endMethod



dmGet method/procedure
Retrieves a field value from a table in the data model.

Syntax
dmGet ( const tableName String, const fieldName String, var datum AnyType ) Logical

Description
dmGet provides access to table data in the form's data model. dmGet writes to datum, a field value from a 
specified table. The table specified by tableName must be the name or table alias of a table in the form's data 
model. fieldName must be a field in tableName.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMPUT;',0,"Defaultoverview",)} Related Topics



dmGet example
In the following example, a form contains a table frame bound to the Sites table. The table frame contains only 
two fields: Site No and Site Name. The pushButton method for a button named getHighlight uses dmGet to 
find the value of the Site Highlight field for the active record. The method then displays the Site Highlight value 
in a dialog box and asks the user whether to change the value. If the user answers Yes in the dialog box, the 
method shows the original value for Site Highlight in a dialog box and prompts the user for a new value. The 
method then uses dmPut to write the changed value back to the Sites table.
; getHighlight::pushButton
method pushButton(var eventInfo Event)
var
  siteHighlight AnyType
  qAnswer       String
endVar
; get the value in the Site Highlight field for the active record
if dmGet("Sites", "Site Highlight", siteHighlight) then
 ; show the highlight and ask the user whether to change it
 qAnswer = msgQuestion("Change Highlight?",  
              "At site " + SITES.Site_Name + 
              " the highlight is " + 
              String(siteHighlight) + ". Change highlight?")
 if qAnswer = "Yes" then
   ; check for Edit mode
   if thisForm.Editing <> True then
     action(DataBeginEdit)
   endif
   ; ask user to replace existing highlight value in View dialog box
   siteHighlight.view("Enter a new highlight:")
   ; write the changed highlight back to the Site Highlight field
   dmPut("Sites", "Site Highlight", siteHighlight)
 endif 
else
  msgStop("Sorry", "Couldn't find the highlight for this site.")
endif
endMethod

For information on table aliases, see Table Aliases in the Corel Paradox User's Guide help.



dmGetProperty method/procedure
Returns the value of a specified table property.

Syntax
1. dmGetProperty ( const tableName String, const propertyName String ) AnyType
2. dmGetProperty ( const tableName String, const propertyName String, var value AnyType ) 
Logical

Description
Returns the value of a property propertyName of the table tableName in the specified data model. The value of 
tableName must be a valid table name or a table alias.
The return value depends on the value of propertyName that you supply from the following:
This value Returns
AutoAppend True if Auto Append is set to True for the table; otherwise, it returns False.
Editing True when a form is in Edit mode, or a field object is active and being edited; otherwise,

it returns False.
Flyaway True when a record has moved to its sorted position in a table; otherwise, it returns 

False.
FullName The full filename (as a string, including path or alias) of the table. 
Index The name of the index (as a string) that is currently used to view the table. For a child 

table, it returns the name of the index chosen in the link diagram. For a master table or 
unlinked table, it returns the setting of ORDER/RANGE. It returns an empty string when 
the primary key is used.

Inserting True when a record is being inserted anywhere in a form; otherwise, it returns False.
LinkType A string describing the way the table relates to its master table: None, One-to-one, or 

One-to-many.
Locked True when the table bound to a design object is locked; otherwise, it returns False.
Name The table's alias (as a string) if it exists; otherwise, returns an empty string. 
Next The name (as a string) of the next object in the same container.
One-to-many The name (as a string) of the first detail table linked 1:M to this table.
One-to-one The name (as a string) of the first detail table linked 1:1 to this table.
Parent The table name (as a string) of this table's master in the data model.
Read-only True if READONLY is set to True for the table; otherwise, it returns False.
Refresh True when data displayed onscreen is being changed, either across a network (by an 

ObjectPAL statement) or by a user action; otherwise, it returns False.
StrictTranslation True if STRICT TRANSLATION is set to True for the table; otherwise, it returns False.
TagName The tag name (as a string) for the current dBASE index (if any); otherwise, it returns an 

empty string.
Touched True when the user has made changes to data not yet committed.

Syntax 1 returns the property value directly.
Syntax 2 assigns the value to value, an AnyType variable that you declare and pass as an argument. Syntax 2 
returns True if the method succeeds; otherwise, it returns False.
For both syntaxes, dmGetProperty returns False if tableName is not in the data model, or if the value of 
propertyName is not one of the strings listed earlier. 
The value of tableName must be a valid table name or a table alias .
If propertyValue = Name this method returns the table's alias (as a string) if it exists; otherwise, it returns an 
empty string.
If propertyValue = FullName this method returns the full filename (including path or alias) of the table. 
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMSETPROPERTY;',0,"Defaultoverview",)} Related 
Topics



dmGetProperty example
The following example sets a table's Auto Append property to False if the table isn't read-only and then checks to
see if the table has a one-to-many link to another table. If it does, the read-only setting of the master table is set
to the same read-only setting as the detail (subject) table.
method UpdateProperties()

if dmGetProperty(subject.tableName, "ReadOnly") <> True then
  dmSetProperty(subject.tableName, "AutoAppend", False)
endif

if dmGetProperty(subject.tableName, "LinkType") = "One-to-many" then
  dmSetProperty(dmGetProperty(subject.tableName,"Parent"),"ReadOnly",
                dmGetProperty(subject.tableName, "ReadOnly"))
endif

endMethod

For information on table aliases, see Table Aliases in the Corel Paradox User's Guide help.



dmHasTable method/procedure
Reports whether a table is part of the data model of a form.

Syntax
dmHasTable ( const tableName String ) Logical

Description
dmHasTable reports whether tableName is a table associated with a form, where tableName is a valid table 
name or table alias.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMADDTABLE;OPAL_METH_FODMREMOVETABLE;',0,"Def
aultoverview",)} Related Topics



dmHasTable example
See the example for dmAddTable for an illustration of how to use dmHasTable as a procedure.
The following example shows how dmHasTable is used as a method. The pushButton method for a button 
named isStockInDM works with the form specified by the variable thatForm. This method opens the Ordentry 
form and then checks to see if the Stock table is in thatForm's data model. If not, the Stock table is added to the 
data model for thatForm.
; isStockInDM::pushButton
method pushButton(var eventInfo Event)
var 
  thatForm Form 
endVar
thatForm.load("Ordentry")                   ; open ORDENTRY form
if not thatForm.dmHasTable("stock") then    ; is Stock in data model
  msgInfo("Status", "Adding Stock to data model for form.")
  thatForm.dmAddTable("stock")              ; if not, add it
  thatForm.save()
else
  msgInfo("Status", "Stock is already in data model for form.")
endif
thatForm.close()
endMethod

For information on table aliases, see Table Aliases in the Corel Paradox User's Guide help.



dmLinkToFields method/procedure
Links two tables in a data model based on lists of field names.

Syntax
dmLinkToFields ( const masterTable String, const masterFields Array[ ] String, const 
detailTable String, const detailFields Array[ ] String ) Logical

Description
dmLinkToFields links the tables specified in masterTable and detailTable on the field names listed in 
masterFields and detailFields (resizeable arrays of strings). The values of masterTable and detailTable can be 
table names or table aliases. The tables must already be in the form's data model.
The linking fields cannot be any of the following types: Binary, Byte, Formatted Memo, Graphic, Logical, Memo, 
or Object Linking and Embedding (OLE). This method returns True if successful; otherwise, it returns False. If the 
detail table does not have an index that matches the fields in detailFields, it returns False.
 Examples

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMLINKTOINDEX;OPAL_METH_FODMUNLINK;',0,"Default
overview",)} Related Topics



dmLinkToFields examples
Example1          Linking two tables
Example2          Linking three tables



dmLinkToFields example 1
The following example creates a form, adds the Customer and Orders tables to the new specified data model, 
and calls dmLinkToFields to link the tables. It also creates some field objects and a table frame and binds them
to the tables. Finally, this code runs the new form so you can see the results.
The following code specifies the names of the fields to link; you could leave this to Corel Paradox, but default 
linking in Corel Paradox may not give the results you expect.
method pushButton(var eventInfo Event)
   var    
      masterTC, detailTC      TCursor
      newForm                 Form
      masterFieldsAr, 
      detailFieldsAr,
      keyFieldsAr               Array[] String
      badKeyTypesAr            Array[7] String
      masterName, 
      detailName,
      keyFieldName,
      newFormName             String
      newField, 
      newTFrame               UIObject
      x, y, w, h, offset      LongInt
      i                       SmallInt
   endVar

   ; initialize variables
   masterName = "customer.db"
   detailName = "orders.db"
   newFormName = "custOrd.fsl"

   badKeyTypesAr[1] = "MEMO"       ; types not allowed as key fields
   badKeyTypesAr[2] = "FMTMEMO"
   badKeyTypesAr[3] = "BINARYBLOB"
   badKeyTypesAr[4] = "GRAPHIC"
   badKeyTypesAr[5] = "OLEOBJ"
   badKeyTypesAr[6] = "LOGICAL"
   badKeyTypesAr[7] = "BYTES"

   masterTC.open(masterName)
   masterTC.enumFieldNames(masterFieldsAr)

   detailTC.open(detailName)
   detailTC.enumFieldNames(detailFieldsAr)

   ; specify the key field(s)
   keyFieldName = "Customer No"

   ; make sure key field type is valid
   if badKeyTypesAr.contains(masterTC.fieldType(keyFieldName)) or
      badKeyTypesAr.contains(detailTC.fieldType(keyFieldName)) then
      msgStop("Invalid key field type:", 
              keyFieldName + " in\n" +
              masterName + " or\n" + detailName)
      return
   else
      keyFieldsAr.grow(1)
      keyFieldsAr[1] = keyFieldName
   endIf

   ; create the form
   newForm.create()
   newForm.dmAddTable(masterName)
   newForm.dmAddTable(detailName)



   if newForm.dmLinkToFields(masterName, keyFieldsAr,
                             detailName, keyFieldsAr) then

   ; place objects in the form

      x = 100
      y = 100
      w = 2880
      h = 360
      offset = 10

   ; create field objects bound to master table
      for i from 1 to masterFieldsAr.size()
         newField.create(FieldTool, x, y, w, h, newForm)
         y = y + h + offset   
         newField.TableName = masterName   
         newField.FieldName = masterFieldsAr[i]
         newField.Visible = Yes
      endFor

   ; create a table frame bound to detail table
      newTFrame.create(TableFrameTool, x, y, w, 8 * h, newForm)
      newTFrame.TableName = detailName
      newTFrame.Visible = Yes
 
   ; save the form and run it
      newForm.save(newFormName)
      newForm.run()

   else
      
      errorShow("Link failed")
   endIf

endMethod



dmLinkToFields example 2
The following example shows how to use dmLinkToFields to link three tables 1:M:M. Like the Example 1, this 
code specifies which fields to link.
method pushButton(var eventInfo Event)
   var 
      firstTable,
      secondTable,
      thirdTable      String
      firstKeyAr,
      secondKeyAr,
      thirdKeyAr      Array[] String
      newForm         Form      
   endVar

   ; initialize variables
   firstTable = "customer.db"
   secondTable = "orders.db"
   thirdTable = "lineitem.db"

   firstKeyAr.grow(1)
   firstKeyAr[1] = "Customer No"
   secondKeyAr.grow(1)
   secondKeyAr[1] = "Customer No"
   ; thirdKeyAr is initialized below, after 1st link

   ; create the form
   newForm.create()

   newForm.dmAddTable(firstTable)
   newForm.dmAddTable(secondTable)
   newForm.dmAddTable(thirdTable)

   ; 1st link
   if newForm.dmLinkToFields(firstTable, firstKeyAr, 
                          secondTable, secondKeyAr) then

      ; initialize arrays for 2nd link
      secondKeyAr[1] = "Order No"

      thirdKeyAr.grow(1)
      thirdKeyAr[1]  = "Order No"

      ; 2nd link
      if newForm.dmLinkToFields(secondTable, secondKeyAr,
                          thirdTable, thirdKeyAr) then

         {Code to create UIObjects in new form could go here.}

         newForm.save("ordentry.fsl")

      else
         errorShow("2:3 link failed.")
      endIf

   else
      errorShow("1:2 link failed.")
   endIf

endMethod



dmLinkToIndex method/procedure
Links two tables in the form's data model based on a list of field names and an index name.

Syntax
dmLinkToIndex ( const masterTable String, const masterFields Array[ ] String, const detailTable
String, const detailIndex String ) Logical

Description
Links the tables specified in masterTable and detailTable to the field names listed in masterFields and the index 
specified in detailIndex. You can specify a Corel Paradox table's primary index by assigning an empty string to 
detailIndex.
The values of masterTable and detailTable can be table names or table aliases. The tables must already be in the
form's data model. This method returns True if successful; otherwise, it returns False.
The linking fields cannot be any of the following types: Binary, Bytes, Formatted Memo, Graphic, Logical, Memo, 
or Object Linking and Embedding (OLE).
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMLINKTOFIELDS;OPAL_METH_FODMUNLINK;',0,"Defaul
toverview",)} Related Topics



dmLinkToIndex example
The following example creates a form, adds the Customer and Orders tables to the new specified data model, 
and calls dmLinkToIndex to link the tables. It also creates some field objects and a table frame and binds them 
to the tables. Finally, this code runs the new form so you can see the results.
method pushButton(var eventInfo Event)
   var    
      masterTC, detailTC      TCursor
      newForm                 Form
      masterFieldsAr, 
      detailFieldsAr,
      masterKeysAr,
      detailKeysAr            Array[] String
      masterName, 
      detailName,
      detailIndexName,
      newFormName             String
      newField, 
      newTFrame               UIObject
      x, y, w, h, offset      LongInt
      i                       SmallInt
   endVar

   ; Initialize variables
   detailIndexName = "Customer No"
   newFormName = "idxDemo"
   masterName = "customer.db"
   detailName = "orders.db"

   masterTC.open(masterName)
   masterTC.enumFieldNames(masterFieldsAr)
   masterTC.enumFieldNamesInIndex(masterKeysAr)

   detailTC.open(detailName)
   detailTC.enumFieldNames(detailFieldsAr)

   ; create the form
   newForm.create()
   newForm.dmAddTable(masterName)
   newForm.dmAddTable(detailName)

   if newForm.dmLinkToIndex(masterName, masterKeysAr,
                            detailName, detailIndexName) then

      x = 100
      y = 100
      w = 2880
      h = 360
      offset = 10

      for i from 1 to masterFieldsAr.size()
         newField.create(FieldTool, x, y, w, h, newForm)
         y = y + h + offset   
         newField.TableName = masterName   
         newField.FieldName = masterFieldsAr[i]
         newField.Visible = Yes
      endFor

      newTFrame.create(TableFrameTool, x, y, w, 8 * h, newForm)
      newTFrame.TableName = detailName
      newTFrame.Visible = Yes
 
      newForm.save(newFormName)



      newForm.run()
   
   else
      
      errorShow("Link failed")

   endIf

endMethod

For information on table aliases, see Table Aliases in the Corel Paradox User's Guide help.



dmPut method/procedure
Writes data to a table in the data model.

Syntax
dmPut ( const tableName String, const fieldName String, const datum AnyType ) Logical

Description
dmPut provides access to table data in the data model. dmPut writes datum to a field in a specified table. The 
value of tableName can be a table name or a table alias. The table specified by tableName must be one of the 
tables in the data model. fieldName must be a field in tableName. This method returns True if successful; 
otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMGET;',0,"Defaultoverview",)} Related Topics



dmPut example
See the dmGet example.



dmRemoveTable method/procedure
Removes a table from the form's data model.

Syntax
dmRemoveTable ( const tableName String ) Logical

Description
dmRemoveTable removes tableName from a form's data model. The value of tableName can be a table name 
or a table alias. Any objects on the form that depend on the table will be undefined when the table is removed. If
any UIObjects in the form are bound to the table, dmRemoveTable fails. It returns True if successful; otherwise, 
it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMADDTABLE;OPAL_METH_FODMHASTABLE;',0,"Default
overview",)} Related Topics



dmRemoveTable example
See the dmAddTable example.
For information on table aliases, see Table Aliases in the Corel Paradox User's Guide help.



dmResync method/procedure
Resynchronizes a table in the form's data model to a TCursor.

Syntax
dmResync ( const tableName String, var tc TCursor ) Logical

Description
dmResync synchronizes a specified table in a data model with the TCursor tc. The value of tableName can be a 
table name or a table alias.
When you resynchronize a table to a TCursor, the table's filter, index, and active record position will be changed 
to those of the TCursor. (For dBASE tables, the table will also take the Show Deleted setting of the TCursor.) This 
method works on forms in design mode or run mode.
 Note

· dmResync only works when the TCursor is associated with the table in the data model. However, the table 
does not have to be displayed in the form.

 Example
{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMATTACH;OPAL_METH_FODMHASTABLE;OPAL_METH_UI
RESYNC;',0,"Defaultoverview",)} Related Topics



dmResync example
The following example shows how to use dmResync with the DataSource property to add items to a drop-down 
edit list. First, it shows how to use DataSource alone, which fills a list with values from a specified field (column) 
of a table. Then it shows how to use a TCursor and dmResync to fill a list with a specified subset of those 
values.
A field displayed as a drop-down edit list is a compound object: the field object (which displays the field value) 
contains a list object (which contains the items in the list). In a form, the list object is represented by the down-
arrow (the arrow you click to display the list).
The usual place to attach list-building code is the list object's built-in open method, but you can attach the code 
to other methods or even to other objects (as shown in the second part of this example).
Assume a form contains a field object displayed as a drop-down edit list. The field object is bound to the ShipVia 
field of the Orders table. The following code is attached to the built-in open method of the list object (not the 
field object) named shipViaList. It fills the list with all the values in the ShippingCo field of the Shippers table in 
the working directory.
; shipViaList::open
; Full containership path: form.page.ShipVia.shipViaList
method open (var eventInfo Event)
   doDefault
   ; Fills list with all values in ShippingCo field of Shippers table.
   self.DataSource = "[Shippers.ShippingCo]"
endMethod

The following code uses dmResync to filter the list based on the value of another field. The premise here is that 
certain shipping methods are less expensive (and so more desirable) in certain parts of the country. When the 
user changes the value of the State field, this code updates the items in the list of shippers.
; State::changeValue
method changeValue (var eventInfo ValueEvent)
   var
      tcShippers   TCursor
      stStateCode,
      stFldName,
      stDmTbName   String
      dyCriteria   DynArray[] AnyType
   endVar

   doDefault ; Execute the built-in code to commit the field value.
   if eventInfo.errorCode() <> 0 then
      return ; If there's an error, exit the method.
   endIf

   stStateCode = self.Value  ; Get the value of the State field.
   stFldName   = "State"     ; Filter on the State field.
   stDmTbName  = "Shippers"

   dyCriteria[stFldName] = stStateCode

   ; Associate a TCursor with a table in the form's data model.
   dmAttach(tcShippers, stDmTbName)

   tcShippers.setGenFilter(dyCriteria) ; Set a filter on the TCursor.
   ; You could also set an index, etc.

   ; Synchronize the table in the data model with the TCursor.
   ; The table takes the filter from the TCursor.
   dmResync(stDmTbName, tcShippers)

   ; Now the list displays only the shippers for the specified state.
   ShipVia.shipViaList.DataSource = "[Shippers.ShippingCo]"

endMethod

For information on table aliases, see Table Aliases in the Corel Paradox User's Guide help.





dmSetProperty method/procedure
Sets the value of a specified table property.

Syntax
dmSetProperty ( const tableName String, const propertyName String, value AnyType) Logical

Description
dmSetProperty lets you change the value of a property (specified in propertyName) associated with the table 
specified in tableName and found in the data model.
The value of tableName can be a table name or a table alias. The value of propertyName is one of the following 
properties:
AutoAppend Set propertyValue to True to set AUTO APPEND ON for the table; otherwise, set it to 

False.
Name The value of propertyValue specifies the table's alias as a string. The operation fails if 

the table alias is already in use.
ReadOnly Set propertyValue to True if READONLY should be True for the table; otherwise, set it to 

False.
StrictTranslation Set propertyValue to True if STRICT TRANSLATION should be True for the table.; 

otherwise, set it to False.
Touched Set propertyValue to True when the user has made changes not yet committed.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMGETPROPERTY;',0,"Defaultoverview",)} Related 
Topics



dmSetProperty example
See the dmGetProperty example.
For information on table aliases, see Table Aliases in the Corel Paradox User's Guide help.



dmUnlink method/procedure
Unlinks two tables in the form's data model.

Syntax
dmUnlink ( const masterTable String, const detailTable String ) Logical

Description
dmUnlink breaks the link between the tables specified in masterTable and detailTable. masterTable must refer 
to the master table in the link, and detailTable must refer to the detail table in the link. The values of 
masterTable and detailTable can be table names or table aliases.
This method fails if the tables are not in the data model; it also fails if they are in the data model but not linked.
This method returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMLINKTOFIELDS;OPAL_METH_FODMLINKTOINDEX;',0,"
Defaultoverview",)} Related Topics



dmUnlink example
The following example uses dmUnlink to break the link between two tables:
method pushButton(var eventInfo Event)

   var 
      theForm            Form
      masterTable,
      oldDetailTable,
      newDetailTable,
      oldFormName,
      newFormName         String
      newKeysAr         Array[] String
   endVar

   ; initialize variables
   oldFormName = "custOrd"
   newFormName = "newOrd"

   masterTable    = "CUSTOMER"
   oldDetailTable = "ORDERS"
   newDetailTable = "NEW_ord"

   newKeysAr.grow(1)
   newKeysAr[1] = "Customer No"

   ; load the form and change the data model
   theForm.load(oldFormName)

   if theForm.dmHasTable(masterTable) and
      theForm.dmHasTable(oldDetailTable) then

      theForm.dmAddTable(newDetailTable)
      theForm.dmUnlink(masterTable, oldDetailTable)

      theForm.dmLinkToFields(masterTable, newKeysAr,
                             newDetailTable, newKeysAr)

      theForm.ORDERS.TableName = newDetailTable

      theForm.dmRemoveTable(oldDetailTable)
      theForm.save(newFormName)

   else
      errorShow()
   endIf

endMethod

For information on table aliases, see Table Aliases in the Corel Paradox User's Guide help.



enumDataModel method/procedure
Lists the tables in the form's data model.

Syntax
enumDataModel ( const tableName String ) Logical

Description
enumDataModel creates a table that lists information about the tables in the form's data model. Use the 
argument tableName to specify a name for the table. If tableName already exists, this method overwrites it 
without asking for confirmation. If tableName is already open, this method fails. You can include an alias or path 
in tableName; if no alias or path is specified, Corel Paradox creates tableName in the working directory (:WORK:).
The structure of the created table is
Field Name Type Description
TableName A128 Table alias, if it exists, or filename of the table (without file extension)
PropertyName A64 A property name
PropertyValue A255 Value of the corresponding property
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODMENUMLINKFIELDS;OPAL_METH_FODMGETPROPERTY;O
PAL_METH_FOENUMSOURCE;',0,"Defaultoverview",)} Related Topics



enumDataModel example
In the following example, a form contains a button named enumerateDataModel. The pushButton method for 
enumerateDataModel uses enumDataModel as a procedure to enumerate the properties of all the tables in the 
data model for the current form to a table called DMORDERS.DB. The method then opens a Table window for the 
DMOrders table.
;enumerateDataModel::pushButton
method pushButton(var eventInfo Event)
   var
      tv   TableView
   endVar

   enumDataModel("dmOrders.db")
   tv.open("dmOrders.db")
endMethod



Property Names for enumDataModel (Form type)
Property Description
AutoAppend Returns True if AUTO APPEND is set to True for the table; otherwise, it returns False
FullName Returns the full filename (including path or alias) of the table
Index Returns the name of the index (as a string) that is currently used to view the table. For 

a child table, it returns the name of the index chosen in the link diagram. For a master 
table or unlinked table, it returns the setting of ORDER/RANGE. It returns an empty 
string when the primary key is used.

LinkFields Returns a comma-separated list of fields that define the link. If the detail table is a 
dBASE table and uses an expression index, the expression is returned in angled 
brackets. Examples: <FIRSTNAME + LASTNAME> means an expression index based on 
the fields named FIRSTNAME and LASTNAME; <FIRSTNAME + LASTNAME;QTY > 1> 
means an expression index based on the fields named FIRSTNAME and LASTNAME with 
QTY > 1 as a subset condition.

LinkType Returns a string describing the way the table relates to its master: None, One-to-one, or
One-to-many

Name Returns the table's alias (as a string) if it exists; otherwise, returns an empty string
Next Returns the name (as a string) of the next object in the same container
One-to-many Returns the name (as a string) of the first detail table linked 1:M to this table
One-to-one Returns the name (as a string) of the first detail table linked 1:1 to this table
Parent Returns the table name (as a string) of this table's master in the data model. For 

example, in a CUSTOMER->>BOOKORD form, dmGetProperty("BOOKORD,""PARENT") = 
"CUSTOMER.DB." If the table has no master, an empty string is returned.

Read-only Returns True if READONLY is set to True for the table; otherwise, it returns False
StrictTranslation Returns True if STRICT TRANSLATION is set to True for the table; otherwise, it returns 

False
TagName Returns the tag name (as a string) for the current dBASE index (if any); otherwise, it 

returns an empty string



enumSource method/procedure
Creates a table that lists the methods for each object in a form.

Syntax
enumSource ( const tableName String [ , const recurse Logical ] ) Logical

Description
enumSource creates a Corel Paradox table that lists every object for which you have written a method, and the 
ObjectPAL source code for the method. Use the argument tableName to specify a name for the table. If 
tableName already exists, this method overwrites it without asking for confirmation. If tableName is already 
open, this method fails. You can include an alias or path in tableName; if no alias or path is specified, Corel 
Paradox creates tableName in the working directory.
The structure of the created table is as follows:
Field name Type Size
Object A 128
MethodName A 128
Source M 64
The Object field contains the full path name of the object.
If recurse is False, this method returns only the method definitions for the form. To include the source code of 
methods for all objects contained by the form, recurse must be True.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOENUMSOURCETOFILE;OPAL_METH_FOENNAM;OPAL_MET
H_FOENPRO;',0,"Defaultoverview",)} Related Topics



enumSource example
In the following example, a form contains a button named getSource. The pushButton method for getSource 
uses enumSource as a procedure to enumerate the source code for the current form to a table named 
TEMPSORC.DB. The method opens a Table window for the Tempsorc table and waits for the user to close it. The 
method then opens the Sitenote form to siteForm, uses enumSource as a method to write the source code for 
siteForm to a table named SITESORC.DB, and views the table:
; getSource::pushButton
method pushButton(var eventInfo Event)
var 
  siteForm   Form 
  tempTable  TableView
endVar

siteForm.open("Sitenote.fsl")        ; open another form

; write source for siteForm to SITESORC.DB
siteForm.enumSource("sitesorc.db", True)
siteForm.close()                 ; close the form
tempTable.open("sitesorc.db")    ; view the new table
tempTable.wait()                 ; wait for the user to close
                                 ; the table
endMethod



enumSourceToFile method/procedure
Creates a file that lists the methods for each object in a form.

Syntax
enumSourceToFile ( const fileName String [ , const recurse Logical ] ) Logical

Description
enumSourceToFile creates a text file that lists every object for which you've written a method, and the 
ObjectPAL source code for the method. Use the argument fileName to specify a name for the file. If fileName 
already exists, this method overwrites it without asking for confirmation. You can include an alias or path in 
fileName; if no alias or path is specified, Corel Paradox creates fileName in the working directory.
If recurse is False, this method returns only the method definitions for the form. To include the source code of 
methods for all objects contained by the form, recurse must be True.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOENUMSOURCE;OPAL_METH_FOENNAM;OPAL_METH_FOEN
PRO;',0,"Defaultoverview",)} Related Topics



enumSourceToFile example
In the following example, code is attached to the pushButton method for a button named getSourceToFile. This 
method writes all the source code for the current form to TEMPSORC.TXT. The method then opens the Sitenote 
form and writes all the code for that form to a file named SITESORC.TXT:
; getSourceToFile::pushButton
method pushButton(var eventInfo Event)
var 
  siteForm   Form 
endVar
enumSourceToFile("tempsorc.txt", True) ; writes all source for the
                                       ; current form to TEMPSORC.TXT

siteForm.open("Sitenote.fsl")              ; open another form
; write source for siteForm to SITESORC.TXT
siteForm.enumSourceToFile("sitesorc.txt", True)
siteForm.close()                       ; close the form
endMethod



enumTableLinks method/procedure
Creates a table that lists the tables linked in a form.

Syntax
enumTableLinks ( const tableName String ) Logical

Description
enumTableLinks creates a Corel Paradox table that lists the names of tables linked in a form and the types of 
links. Use the argument tableName to specify a name for the table. If tableName already exists, this method 
overwrites it without asking for confirmation. If tableName is already open, this method fails. You can include an 
alias or path in tableName; if no alias or path is specified, Corel Paradox creates tableName in the working 
directory.
This method creates a table that contains one record for each table in the data model. The structure of the table 
is:
Field name Type Description
Table A255* Table name, without alias, path, or extension (for example, ORDERS).
Parent A255* Name of parent table, or blank if table has no parent.
LinkType A24* Type of link between table and master table: None, One-to-many, or One-to-

one.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOENUMDATAMODEL;OPAL_METH_FOENNAM;OPAL_METH_F
OENPRO;OPAL_METH_TCENUMREFINTSTRUCT;',0,"Defaultoverview",)} Related Topics



enumTableLinks example
In the following example, the pushButton method for a button named showTableLinks writes table links for the 
current form to a table named TEMPLINK.DB. The method then opens the Sitenote form and writes the table links
for that form to a table named SITENOTE.DB.
; showTableLinks::pushButton
method pushButton(var eventInfo Event)
var 
  siteForm  Form 
  tempTable TableView
endVar
enumTableLinks("templink.db")          ; lists links to current form
tempTable.open("templink")
tempTable.wait()
siteForm.open("Sitenote.fsl")
siteForm.enumTableLinks("Sitenote.db") ; lists links to siteForm
siteForm.close()
tempTable.open("Sitenote.db")
tempTable.wait()
tempTable.close()
endMethod



enumUIObjectNames method
Creates a table that lists the UIObjects contained in a form.

Syntax
enumUIObjectNames ( const tableName String ) Logical

Description
enumUIObjectNames creates a Corel Paradox table that lists the name and type of each object contained in a 
form. Use the argument tableName to specify a name for the table. If tableName already exists, this method 
overwrites it without asking for confirmation. If tableName is already open, this method fails. You can include an 
alias or path in tableName; if no alias or path is specified, Corel Paradox creates tableName in the working 
directory.
The structure of tableName is as follows:
Field Name Type Size
ObjectName A 128
ObjectClass A 32
 Note

· ObjectName includes the entire path name of the object.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOENPRO;OPAL_METH_FOENUMSOURCE;OPAL_METH_FOEN
UMSOURCETOFILE;',0,"Defaultoverview",)} Related Topics



enumUIObjectNames example
In the following example, the pushButton method for a button named getObjectNames opens the Sitenote form
and enumerates all the object names on the form to a table named Siteobjs. The method then opens the Siteobjs
table and waits for the user to close the table.
; getObjectNames::pushButton
method pushButton(var eventInfo Event)
var 
  siteForm  Form 
  tempTable TableView
endVar
if siteForm.open("Sitenote.fsl") then           ; open the form
  siteForm.enumUIObjectNames("siteobjs.db") ; write object names
                                            ; SITEOBJS.DB 
  siteForm.close()                          ; close the form
  tempTable.open("siteobjs")                ; open the new table
  tempTable.wait()                          ; wait for return
  tempTable.close()                         ; close after return
endIf
endMethod



enumUIObjectProperties method
Lists the properties of each UIObject contained in a form.

Syntax
enumUIObjectProperties ( const tableName String ) Logical

Description
enumUIObjectProperties creates a Corel Paradox table that lists the name, property name, and property value
of each object contained in a form. Use the argument tableName to specify a name for the table. If tableName 
already exists, this method overwrites it without asking for confirmation. If tableName is already open, this 
method fails.
The structure of tableName is:
Field name Type Size
ObjectName A 128
PropertyName A 64
PropertyType A 48
PropertyValue A 255
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_UIEOPT;',0,"Defaultoverview",)} Related Topics



enumUIObjectProperties example
In the following example, the pushButton method for a button named getProps writes the properties for all 
objects contained by the current form to a table named Tempprop:
; getProperties::pushButton
method pushButton(var eventInfo Event)
var 
  siteForm  Form 
  tempTable TableView
endVar
if siteForm.open("Sitenote.fsl") then
  message("Enumerating properties to Siteprop table.")
  siteForm.enumUIObjectProperties("siteProp.db")
  tempTable.open("siteprop")
  message("Close the table to continue.")
  tempTable.wait()
  tempTable.close()
endIf
; to enumerate objects for current form, use the UIObject
; type method enumUIObjectProperties
; thisForm is the object ID for current form
message("Enumerating properties to Tempprop table.")
   enumUIObjectProperties("tempprop.db")
tempTable.open("tempprop")
message("Close the table to continue.")
tempTable.wait() 
tempTable.close()
endMethod



formCaller procedure
Creates a handle to the calling form.

Syntax
formCaller ( var caller Form ) Logical

Description
formCaller assigns the handle of the current form's calling form to caller, if the form is waiting. If the current 
form was not opened by another form, and the form that opened the current form is not waiting for the current 
form, the method returns False and caller is unassigned.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOWAIT;',0,"Defaultoverview",)} Related Topics



formCaller example
In the following example, the pushButton method for whoCalledMe finds out which form called the current 
form:
; callOtherForm::pushButton  (calling form)
method pushButton(var eventInfo Event)
var
  siteForm  Form
endVar
siteForm.open("sitenote.fsl")  ; open siteForm
siteForm.wait()                ; wait for siteForm to return
siteForm.close()               ; close siteForm
endMethod 

The following code is for whoCalledMe on the current form. 
; whoCalledMe::pushButton
method pushButton(var eventInfo Event)
var
  myCaller     Form
  callerTitle  AnyType
endVar
if formCaller(myCaller) then        ; try to get a handle to
                                    ; the calling form
  callerTitle = myCaller.getTitle() ; get the form's title
  msgInfo("FYI", "I was called by: \n" + callerTitle)
endif
formReturn()
endMethod



formReturn procedure
Returns control to a suspended method.

Syntax
formReturn ( [ const returnValue AnyType ] )

Description
When one form opens another form and calls wait, the first form suspends ObjectPAL execution (in effect, 
yielding to the second form) until the second form returns control by calling formReturn. You can choose to 
return a value to the first form in returnValue. You can also use formReturn to return control (and a value) from 
a script.
formReturn posts a message to the Windows message queue; therefore, ObjectPAL statements that follow 
formReturn will execute before the form returns control.
If no other form is waiting for the current form, formReturn closes the current form. If a form is waiting for the 
current form, formReturn does not close the current form.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOFORMCALLER;OPAL_METH_FOWAIT;OPAL_METH_SCRUN;'
,0,"Defaultoverview",)} Related Topics



formReturn example
The following example consists of three methods. The pushButton method for openDialog opens another form 
as a dialog box and waits for it to return a value. The other two methods are attached to buttons in the dialog 
box form. They use formReturn to return control and values to the calling form. Note that the calling form must 
call close to close the dialog box; the call to formReturn does not close the dialog box.
; openDialog::pushButton
method pushButton(var eventInfo Event)
var
  dlgForm     Form
  whichButton String
endVar
if dlgForm.openAsDialog("foforet2", WinStyleDefault, 
                        1440, 1440, 7200, 5760) then
  ; waits until dlgForm calls formReturn or is closed
  ; returned value is stored to whichButton
  whichButton = String(dlgForm.wait())
  dlgForm.close()
  ; return value is cast as a String so that it will be correct
  ; type even if user closes dialog box from the system menu
  msgInfo("Button pressed", whichButton)
else
  msgStop("Stop", "Couldn't open the form.")
endIf
endMethod

The following method is attached to the pushButton method for OKButton in dlgForm. It returns a value of OK 
when it returns control to the method that called wait:
; OKButton::pushButton
method pushButton(var eventInfo Event)
formReturn("OK")      ; return "OK" to calling form
endMethod

The following method is attached to cancelButton in dlgForm. It returns a value of Cancel when it returns control 
to the method that called wait. The message statement that follows the call to formReturn is not required; it 
is included here to show that statements following a call to formReturn execute before control is returned to 
the calling form.
; cancelButton::pushButton
method pushButton(var eventInfo Event)
formReturn("Cancel")  ; return "Cancel" to calling form
message("Cancel")     ; This statement will execute.
endMethod



getFileName method/procedure
Returns the path, filename, and extension of the associated form.

Syntax
getFileName( ) String

Description
As a method, getFileName returns the path, filename, and extension of the form associated with a Form 
variable. As a procedure, it returns the path, filename, and extension of the current form. Compare this method 
to getTitle, which returns the text in a Form window's Title Bar.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOGETT;',0,"Defaultoverview",)} Related Topics



getFileName example
The following example displays the filename of the current form in the Status Bar.
method pushButton(var eventInfo Event)
   message(getFileName())
endMethod



getPosition method/procedure
Reports the position of a window onscreen.

Syntax
getPosition ( var x LongInt, var y LongInt, var w LongInt, var h LongInt )

Description
getPosition gets the position of a window relative to the Corel Paradox desktop. The arguments x and y contain
the horizontal and vertical coordinates of the upper-left corner of the form (in twips), and w and h contain the 
width and height (in twips).
To ObjectPAL, the screen is a two-dimensional grid, with the origin (0, 0) at the upper-left corner of an object's 
container, positive x-values extending to the right, and positive y-values extending down.
For dialog boxes, and for the Corel Paradox desktop application, the position is given relative to the entire 
screen; for forms, reports, and Table windows, the position is given relative to the Corel Paradox desktop.
 Example

{button ,AL(`OPAL_TYPE_FROM;OPAL_TYPE_APPLICATION;OPAL_METH_FOSPOS;;;',0,"Defaultoverview",)
} Related Topics



getPosition example
In the following example, the pushButton method for moveOtherForm opens a form and gets its position. The 
method then opens a second instance of the same form and sets its position so that no part of the second form 
overlaps the first.
; moveOtherForm::pushButton
method pushButton(var eventInfo Event)
var
  siteFormOne,
  siteFormTwo    Form
  x, y, w, h     LongInt
endVar
if siteFormOne.open("Sitenote") then
  siteFormOne.getPosition(x, y, w, h)
  siteFormTwo.open("Sitenote.fsl")    ; open another instance
  ; set position so that no part overlaps other instance
  siteFormTwo.setPosition(x + w, y + h, w, h)
endif
endMethod



getProtoProperty method/procedure
Reports the value of a specified property of a prototype object.

Syntax
getProtoProperty ( const objectType SmallInt, propertyName String ) AnyType

Description
getProtoProperty returns the value of the property specified in propertyName of the prototype object specified
in objectType. To specify objectType, use one of the UIObjectTypes constants. If called as a method, 
getProtoProperty operates on prototype objects in the style sheet of the specified form. If called as a 
procedure, getProtoProperty uses the style sheet of the current form.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOSETPROTOPROPERTY;OPAL_METH_FOGETSTYLESHEET;O
PAL_METH_FOSAVESTYLESHEET;',0,"Defaultoverview",)} Related Topics



getProtoProperty example
The following example uses getProtoProperty to store the current default color for the box tool. Next, it 
specifies a new box color and creates three new boxes, and then restores the default box color.
   const
      kOneInch = 1440 ; One inch = 1,440 twips.
   endConst
method mouseClick(var eventInfo MouseEvent)
   var
      uiRedBox       UIObject
      thisForm      Form
      liDefaultBoxColor    LongInt
   endVar
   thisForm.attach() ; Get a handle to this form.

   ; Get current default color.
   liDefaultBoxColor = thisForm.getProtoProperty(BoxTool, "Color")

   ; Set box color and create 3 boxes using new prototype.
   thisForm.setProtoProperty(BoxTool, "Color", Red)
   uiRedBox.create(BoxTool, kOneInch, kOneInch, kOneInch, kOneInch)
   uiRedBox.Visible = Yes
   uiRedBox.create(BoxTool, 2 * kOneInch, kOneInch, kOneInch, kOneInch)
   uiRedBox.Visible = Yes
   uiRedBox.create(BoxTool, 3 * kOneInch, kOneInch, kOneInch, kOneInch)
   uiRedBox.Visible = Yes

   ; Restore the default box color.
   thisForm.setProtoProperty(BoxTool, "Color", liDefaultBoxColor)
endMethod



getSelectedObjects method/procedure
Creates an array that lists the selected objects in a form.

Syntax
getSelectedObjects ( var objects Array[ ] UIObject ) SmallInt

Description
getSelectedObjects creates an array objects that lists the selected objects of a form and returns the number of
objects selected. This procedure is useful for creating routines that manipulate objects on forms in design mode.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOSETSELECTEDOBJECTS;',0,"Defaultoverview",)} Related 
Topics



getSelectedObjects example
The following example creates a form that contains three boxes, selects two of the boxes, displays their names in
a dialog box, and sets their color to blue:
;btnObjectsSelected :: pushButton
const
   kOneInch = 1440 ; One inch = 1,440 twips.
endConst

method pushButton(var eventInfo Event)
   var
      foTemp   Form
      arObjects   Array[] UIObject
      arObjNames   Array[] String
      uiVar      UIObject
      si,
      siSelObj   SmallInt
      stBoxName   String
      
   endVar

   foTemp.create()

   ; Create 3 boxes.
   for si from 1 to 3
      uiVar.create(BoxTool, si * kOneInch, si*kOneInch, 
                   kOneInch, kOneInch, foTemp)
      uiVar.Name = "Box" + String(si)
      uiVar.Visible = Yes
   endFor

   ; Select Box2 and Box3 by setting the Select property.
   for si from 2 to 3
      stBoxName = "Box" + String(si)
      uiVar.attach(foTemp.(stBoxName))
      uiVar.Select = Yes
   endFor

   ; Get the selected objects.
   siSelObj = foTemp.getSelectedObjects(arObjects)
   siSelObj.view("Number of selected objects:")

   ; Get the names of the selected objects.
   arObjNames.setSize(siSelObj)
   for si from 1 to siSelObj
      uiVar.attach(arObjects[si])
      arObjNames[si] = uiVar.Name
   endFor
   arObjNames.view("Names of selected objects:")

   ; Change the color of the selected objects.
   for si from 1 to arObjects.size()
      uiVar.attach(arObjects[si])
      uiVar.Color = Blue
   endFor

   foTemp.close()
endMethod



getStyleSheet method/procedure
Returns the name of a form's style sheet.

Syntax
getStyleSheet ( ) String

Description
getStyleSheet returns the filename of a form's style sheet. If the style sheet is in the working directory 
(:WORK:), getStyleSheet returns the filename and extension, if any (e.g., COREL.FT); otherwise, 
getStyleSheet returns the full path (e.g., C:\COREL\SUITE8\PARADOX\COREL.FT).
If called as a method, getStyleSheet returns the filename of the style sheet of the specified form. If called as a 
procedure, it uses the style sheet of the current form.
getStyleSheet returns the name of the style sheet used by the specified form, which may be different from the 
Corel Paradox system style sheet. To get the name of the default screen style sheet, call the 
getDefaultScreenStyleSheet procedure defined for the System type. To get the name of the default printer 
style sheet, call the getDefaultPrinterStyleSheet procedure defined for the System type.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOSETSTYLESHEET;OPAL_METH_FOSAVESTYLESHEET;OPAL_
METH_FOGETPROTOPROPERTY;OPAL_METH_FOSETPROTOPROPERTY;OPAL_METH_SYGETDEFAULTPRINTE
RSTYLESHEET;OPAL_METH_SYGETDEFAULTSCREENSTYLESHEET;',0,"Defaultoverview",)} Related Topics



getStyleSheet example
See the setStyleSheet example.



getTitle method/procedure
Returns the text in the window's Title Bar.

Syntax
getTitle ( ) String

Description
getTitle returns the text in the Title Bar of the window that contains the object.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOSTIT;OPAL_METH_FOATTA;OPAL_TYPE_APPLICATION;',0,"
Defaultoverview",)} Related Topics



getTitle example
In the following example, the pushButton method for showTitle opens a form, gets the new form's title, and 
displays the title in a dialog box. This method then switches the open form to the Form Design window and 
retrieves its title again.
; showTitle::pushButton
method pushButton(var eventInfo Event)
var 
   siteForm  Form   
   titleText String  
endVar  
siteForm.open("Sitenote.fsl")
titleText = siteForm.getTitle() ; reads window title into titleText 
msgInfo("Title:", titleText)    ; displays "Form : SITENOTE.FSL"
siteForm.design()               ; switch to the Form Design window
sleep()                         ; yield!
titleText = siteForm.getTitle() ; get the Form Design window title
msgInfo("Title:", titleText)    ; displays "Form Design: SITENOTE.FSL"
siteForm.close()
endMethod



hide method/procedure
Makes a window invisible.

Syntax
hide ( )

Description
hide makes a window invisible but doesn't close the window.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOSHOW;OPAL_METH_FOBRTT;OPAL_METH_FOOPEN;OPAL_
METH_FOOPAD;OPAL_TYPE_APPLICATION;',0,"Defaultoverview",)} Related Topics



hide example
In the following example, the pushButton method for hideForm opens a form, hides it and then shows it again:
; hideForm::pushButton
method pushButton(var eventInfo Event)
var 
  siteForm Form 
endVar 
siteForm.open("Sitenote.fsl")         ; displays Sitenote form  
siteForm.hide()                   ; makes form invisible
siteForm.action(DataEnd)          ; move to the end of the table
siteForm.action(DataBeginEdit)    ; start edit mode
siteForm.action(DataInsertRecord) ; insert a new, blank record
if NOT siteForm.isVisible() then
  msgInfo("Status", "It's hidden.")
endif
message("Come out, come out, wherever you are!")
siteForm.show()                   ; make form visible again
if siteForm.isVisible() then
  msgInfo("Status", "It's visible.")
endif
endMethod



hideToolbar procedure
Makes the standard Toolbar invisible.

Syntax
hideToolbar ( )

Description
hideToolbar removes the standard Toolbar from the desktop. You must call showToolbar to restore the Toolbar.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOISBARSHO;OPAL_METH_FOSHOBAR;',0,"Defaultoverview
",)} Related Topics



hideToolbar example
In the following example, the pushButton method for the toggleToolbar button checks whether the Toolbar is 
showing. If the Toolbar is visible, this method hides it; if the Toolbar isn't visible, this method shows it:
; toggleToolbar::pushButton
method pushButton(var eventInfo Event)
if isToolbarShowing() then   ; if Toolbar is off
   hideToolbar()             ; hide it
else                         ; otherwise
   showToolbar()             ; show it
endif
endMethod



isCompileWithDebug method
Reports the status of the Compile With Debug setting.

Syntax
isCompileWithDebug ( ) Logical

Description
isCompileWithDebug reports the status of the Compile With Debug setting that can be set interactively during 
form design. isCompileWithDebug returns True if Compile With Debug is set in the form; otherwise, it returns 
False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOSETCOMPILEWITHDEBUG;OPAL_METH_SYDEBUG;',0,"Def
aultoverview",)} Related Topics



isCompileWithDebug example
In the following example, the central form of a management system has two buttons: getCompileStatus and 
setCompileStatus. The pushButton method of each button opens the Windows 95 Explorer dialog to allow a user 
to select the file that will be examined/manipulated. Each method analyzes the fileName selected to determine 
the file Type and to open the file under the appropriate object type.
The following code is attached to the pushButton method for getCompileStatus:
; getCompileStatus::pushButton
method pushButton(var eventInfo Event)
var
   theForm  Form         ;// Object variable for forms
   theLibrary  Library      ;// Object variable for libraries
   theScript  Script      ;// Object variable for scripts
   fbi  FileBrowserInfo      ;// File Browser information structure
   selectedFile  String      ;// FileName selected by user
   fileType  String      ;// File type of file selected by user
   status  Logical      ;// Debug status of the selected file
endVar
         ;//Set allowable file types: Forms, Libraries, and Scripts
   fbi.AllowableTypes = fbForm + fbLibrary + fbScript
   if fileBrowser(selectedFile, fbi) then
      ;// The user selected a file
     fileType = upper(substr(selectedFile, selectedFile.size() - 2, 3))
      switch
         case fileType = "FSL" :
            ;// Load the Form
            theform.load(fbi.Drive + fbi.Path + selectedFile)
            ;// Determine its status
            status = theForm.isCompileWithDebug()
            ;// Close the Form
            theForm.close()

         case fileType = "LSL" :
            ;// Load the Library
            theLibrary.load(fbi.Drive + fbi.Path + selectedFile)
            ;// Determine its status
            status = theLibrary.isCompileWithDebug()
            ;// Close the Library
            theLibrary.close()

         case fileType = "SSL" :
            ;// Load the Script
            theScript.load(fbi.Drive + fbi.Path + selectedFile)
            ;// Determine its status
            status = theScript.isCompileWithDebug()
            ;// Close the Script
            theScript.close()
      endSwitch
      ;// Inform the user
      msgInfo(selectedFile + " compiled with Debug information?", status)
   else
      ;// The user didn't select a file
      msgInfo("No file selected", "Please try again.")
   endIf
endMethod



isDesign method/procedure
Reports whether a form is displayed in a Form Design window.

Syntax
isDesign ( ) Logical

Description
isDesign returns True if a form is displayed in a Form Design window; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOIMAX;OPAL_METH_FOIMIN;',0,"Defaultoverview",)} 
Related Topics



isDesign example
In the following example, enumFormNames is used to populate an array ar with the names of the open forms. 
A for loop then steps through the array and saves the form if it is in design mode.
;btnSaveForms :: pushButton
method pushButton(var eventInfo Event)
   var
      ar               Array[] AnyType
      siCounter   SmallInt
      f                  Form
   endVar

   enumFormNames(ar)

   for siCounter from 1 to ar.size()
      f.attach(ar[siCounter])
      if f.getFileName() = "" then
         msgStop("Warning", "At least one form is a new form.")
      else
         if f.isDesign() then
            f.save()
         endIf
      endIf
   endFor
endMethod



isMaximized method/procedure
Reports whether a window is displayed at its maximum size.

Syntax
isMaximized ( ) Logical

Description
isMaximized returns True if a form is displayed full screen; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_TYPE_FOMAXI;OPAL_TYPE_FOMINI;OPAL_TYPE_FOIMIN;OPAL_TYPE
_APPLICATION;',0,"Defaultoverview",)} Related Topics



isMaximized example
In the following example, the pushButton method for the cycleSize button (on the current form) opens or 
attaches to the Sitenote form with the variable siteForm. If siteForm is maximized, this method minimizes it. If 
siteForm is minimized, this method restores it to its previous size with the show method. If siteForm is neither 
maximized nor minimized, this method maximizes it:
; cycleSize::pushButton
method pushButton(var eventInfo Event)
var
  siteForm Form
endVar
; try attaching to form, since it might be open
if NOT siteForm.attach("Form : SITENOTE.FSL") then
  ; if attaching fails, try opening the form
  if NOT siteForm.open("sitenote.fsl") then
    msgStop("Failed", "Couldn't open Sitenote.")
    return     ; if open fails, give up
  endif
endif  

; if we reach this point, we have a good form handle
switch
  case isMaximized()  :                   ; if forms are maximized
    msgInfo("Status", "Siteform is maximized.")
    siteForm.show()                       ; restore size
  case siteForm.isMinimized() :           ; if form is minimized
    msgInfo("Status", "Siteform is minimized.")
    siteForm.maximize()
  case NOT (siteForm.isMaximized() OR siteForm.isMinimized()):
    msgInfo("Status", "Siteform is neither minimized or maximized.")
    siteForm.minimize()                            ; minimize 
  otherwise :
    msgStop("Stop", "Unable to change size of Siteform.")
endswitch
endMethod



isMinimized method/procedure
Reports whether a window is displayed as an icon.

Syntax
isMinimized ( ) Logical

Description
isMinimized returns True if a form is displayed as an icon; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMINI;OPAL_METH_FOIMAX;OPAL_METH_FOMAXI;OPAL_TY
PE_APPLICATION;',0,"Defaultoverview",)} Related Topics



isMinimized example
See the isMaximized example.



isToolbarShowing procedure
Reports whether the standard Toolbar is visible.

Syntax
isToolbarShowing ( ) Logical

Description
isToolbarShowing returns True if the standard Toolbar is visible; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOHTOOLBAR;OPAL_METH_FOSHOBAR;',0,"Defaultoverview
",)} Related Topics



isToolbarShowing example
See the hideToolbar example.



isVisible method/procedure
Reports whether any part of a window is displayed.

Syntax
isVisible ( ) Logical

Description
isVisible returns True if any part of a window is displayed (not hidden); otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOHIDE;OPAL_METH_FOSHOW;OPAL_METH_FOBRTT;OPAL_T
YPE_APPLICATION;',0,"Defaultoverview",)} Related Topics



isVisible example
In the following example, the pushButton method for the siteToTop button attempts to attach to an open form. 
If the attach is successful, the method checks to see if the form is visible. If the form is visible, the method 
makes it the top window:
; siteToTop::pushButton
method pushButton(var eventInfo Event)
var
  siteForm Form
endVar
; if form is on desktop
if siteForm.attach("Form : SITENOTE.FSL") then
  if siteForm.isVisible() then     ; if form is visible
    siteForm.bringToTop()          ; make it the topmost layer
  else
    msgStop("Sorry", "Can't see Sitenote form.")
  endif
endif
endMethod



keyChar method
Sends an event to a form's keyChar method.

Syntax
1. keyChar ( const aChar SmallInt, const vChar SmallInt, const state SmallInt ) Logical
2. keyChar ( const characters String [ , const state SmallInt ] ) Logical

Description
keyChar sends an event to a form's keyChar method. For Syntax 1, you must specify the ANSI character code 
in aChar, the virtual key code in vChar, and the keyboard state in state (using KeyboardStates constants). For 
Syntax 2, you can specify a string of one or more characters and, optionally, use the KeyBoardStates constants 
to specify a keyboard state.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOKEYPH;',0,"Defaultoverview",)} Related Topics



keyChar example
In the following example, a form named Otherfrm is already open and contains one field named fieldOne. The 
form-level keyChar method for Otherfrm echoes characters to fieldOne. The pushButton method of a button 
named callOtherKeyC on the current form attaches to Otherfrm as otherForm, calls the keyChar method for 
otherForm, and passes it a string. 
The following is the code for the pushButton method for callOtherKeyC on the current form:
; callOtherKeyC::pushButton
method pushButton(var eventInfo Event)
var
  otherForm Form
endVar
; attach to the other form (assumes it's open)
if otherForm.attach("Form : OTHERFRM.FSL") then
  otherForm.keyChar("Hi! ")   ; send a string
else
  msgStop("Error", "The other form is not available.")
endif
endMethod

The following code is attached to Otherfrm's form-level keyChar method:
; thisForm::keyChar  (OTHERFRM.FSL)
method keyChar(var eventInfo KeyEvent)
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; send the key on to fieldOne
    msgInfo("Status", "Executing Otherfrm's keychar.")
    fieldOne.keyChar(eventInfo.char())
endif
endMethod



keyPhysical method
Sends an event to a form's keyPhysical method.

Syntax
keyPhysical ( const aChar SmallInt, const vChar SmallInt, const state SmallInt ) Logical

Description
keyPhysical sends an event to a form's keyPhysical method. You must specify the ANSI character code in 
aChar, the virtual key code in vChar, and the keyboard state in state (using KeyboardStates constants).
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOKEYCH;',0,"Defaultoverview",)} Related Topics



keyPhysical example
In the following example, a form named OtherFr2 is already open, and it contains one field named fieldOneThere.
The form-level keyPhysical method for Otherfrm echoes characters to fieldOneThere. The keyPhysical method
of a field named fieldOneHere on the current form attaches to Otherfrm as otherForm. The method then calls the
keyPhysical method for otherForm, and passes it the ANSI code of the character or keystroke, the virtual ANSI 
code of the character or keypress, and the keyboard state. 
The following code is attached to the keyPhysical method for fieldOneHere on the current form:
; fieldOneHere::keyPhysical    (current form)
method keyPhysical(var eventInfo KeyEvent)
var
  otherForm Form
endVar
; attach to the other form (assumes it's open)
if otherForm.attach("Form : OTHERFR2.FSL") then
  ; switch statement sorts out keyBoardState
  switch
    case eventInfo.isShiftKeyDown() :
      otherForm.keyPhysical(eventInfo.charAnsiCode(),
                           eventInfo.vCharCode(), Shift)
    case eventInfo.isAltKeyDown() :
      otherForm.keyPhysical(eventInfo.charAnsiCode(),
                           eventInfo.vCharCode(),
                           Alt)
    case eventInfo.isControlKeyDown() :
      otherForm.keyPhysical(eventInfo.charAnsiCode(),
                           eventInfo.vCharCode(),
                           Control)
    otherwise:
      otherForm.keyPhysical(eventInfo.charAnsiCode(),
                           eventInfo.vCharCode(),
                           0)

  endSwitch
else
  msgStop("Error", "The other form is not available.")
endif
endMethod

The following code is attached to the keyPhysical method for otherForm:
; thisForm::keyPhysical   (OTHERFRM)
method keyPhysical(var eventInfo KeyEvent)
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself
    ; pass keyPhysical on to fieldOneThere
    ; switch statement sorts out keyBoardState
    switch
      case eventInfo.isShiftKeyDown() :
        fieldOneThere.keyPhysical(eventInfo.charAnsiCode(),
                                  eventInfo.vCharCode(), Shift)
      case eventInfo.isAltKeyDown() :
        fieldOneThere.keyPhysical(eventInfo.charAnsiCode(),
                                  eventInfo.vCharCode(), Alt)
      case eventInfo.isControlKeyDown() :
        fieldOneThere.keyPhysical(eventInfo.charAnsiCode(),
                                  eventInfo.vCharCode(), Control)
      otherwise :
        fieldOneThere.keyPhysical(eventInfo.charAnsiCode(),
                                  eventInfo.vCharCode(), 0)
    endSwitch
endif
endMethod



load method
Opens a form in the Form Design window.

Syntax
load ( const formName String, [const windowStyle LongInt [ , const x LongInt, const y LongInt, 
const w LongInt, const h LongInt ] ] ) Logical

Description
load opens formName in the Form Design window. You have the option to specify in windowStyle a 
WindowStyles constant (or combination of constants). You also have the option to specify (in twips) the window's 
size and position: arguments x and y specify the position of the upper-left corner, arguments w and h specify the 
width and height, respectively. This method works only with saved forms (.FSL); it does not work with delivered 
forms (.FDL).
Compare this method to open, which opens a form in the Form window. To switch from the Form Design window 
to the Form window, use run. To switch from the Form window to the Form Design window, use design.
In either the Form Design window or the Form window, you can use UIObject type methods create and 
methodSet to place objects in the new form and attach methods to them. However, if you create objects while 
the form is in the Form window, the newly created objects will not automatically be saved when the form is 
closed.
 Note

·  Some form actions are especially processor-intensive. In some situations, you might need to follow a call to 
open, load, design, or run with a call to sleep. For more information, see the sleep procedure in the System
type.

 Example
{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOCREATE;OPAL_METH_FOOPEN;OPAL_METH_FOOPAD;OPAL
_METH_FODESIGN;',0,"Defaultoverview",)} Related Topics



load example
In the following example, the pushButton method for a button named drawABox loads the Sitenote form in a 
Form Design window. The method then sets the position of the form, creates a small box, names the box 
newBox, and sets its color to Blue. In the Form window, the box won't be visible; by default, the Visible property 
of objects created in this manner is False.
; drawABox::pushButton
method pushButton(var eventInfo Event)
var
   myForm Form
   newObj UIObject
endVar
; open Sitenote in a Form Design window 
if myForm.load("Sitenote.fsl") then    
   myForm.setPosition(720, 720, 1440*6, 1440*5)  ; 6" by 5"
   newObj.create(BoxTool, 1440, 1440*3, 360, 360, myForm)
   newObj.name = "newBox"
   newObj.color = Blue
else
   msgStop("Stop", "Couldn't load the form.")
endIf
endMethod



maximize method/procedure
Maximizes a window.

Syntax
maximize ( )

Description
maximize displays a window at its full size. Calling this method is equivalent to clicking Maximize on the Control
menu.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMINI;OPAL_METH_FOIMIN;OPAL_METH_FOIMAX;OPAL_ME
TH_FOSHOW;',0,"Defaultoverview",)} Related Topics



maximize example
In the following example, the pushButton method for the goSites button opens the Sitenote form (assumed to 
be in the current database), minimizes the current form and then waits for a response. If Sitenote returns OK, 
this method maximizes the current form; otherwise, it restores the current form to its previous size.
; goSites::pushButton
method pushButton(var eventInfo Event)
var
  siteForm     Form
  returnString String
endVar
; open the Sitenote form, minimize self (this form) and then wait
siteForm.open("Sitenote")
minimize()
returnString = String(siteForm.wait())
; if siteForm returned "OK", then maximize--otherwise, restore
if returnString = "OK" then
  maximize()
  siteForm.close()
else
  show()
  siteForm.close()
endif
endMethod

The following code is attached to a button named OKButton on Sitenote:
; OKButton::pushButton
method pushButton(var eventInfo Event)
formReturn("OK")    ; return the string "OK" to the calling form
endMethod



menuAction method/procedure
Sends an event to a form's menuAction method.

Syntax
menuAction ( const action SmallInt ) Logical

Description
menuAction constructs a MenuEvent and calls a specified form's menuAction method. action is either one of 
the MenuCommand constants or a user-defined menu constant.
 Note

· You can't use menuAction to send a MenuCommand constant that is equivalent to a File, New menu choice or
a File, Open menu choice. To simulate these choices, call the appropriate ObjectPAL method (e.g., create 
{Form type} or open {TableView type}).

 Example
{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOACTI;',0,"Defaultoverview",)} Related Topics



menuAction example
In the following example, the sendATile button on the current form opens the Sitenote form and sends it a 
MenuWindowTile action.
; sendATile::pushButton
method pushButton(var eventInfo Event)
var
  siteForm  Form
endVar
if siteForm.open("Sitenote.fsl") then
  siteForm.menuAction(MenuWindowTile)
endif
endMethod



methodDelete method
Deletes a form-level method from a form.

Syntax
methodDelete ( const methodName String ) Logical

Description
methodDelete deletes a built-in or custom method specified in methodName from a form. You can also specify 
Var, Proc, Uses, or Const in methodName to clear the Var, Proc, Uses, or Const window of a form. If methodName 
is a built-in event method, the built-in behavior for that method is restored.
This method works only with saved forms (.FSL); it does not work with delivered forms (.FDL).
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMETHEDIT;OPAL_METH_FOMETHODGET;OPAL_METH_FOM
ETHODSET;OPAL_METH_UICREATE;OPAL_METH_UIMETHODGET;OPAL_METH_UIMETHODSET;',0,"Defaultov
erview",)} Related Topics



methodDelete example
In the following example, two forms are on the desktop in a Form Design window: Otherone and Othertwo. The 
pushButton method for a button named moveMethod (on the current form) moves a method from Otherone to 
Othertwo.
; moveMethod::pushButton
method pushButton(var eventInfo Event)
var
  tempFormSrc,
  tempFormDest    Form
  transMethod String
endVar
; try to attach to both the source and the destination form
; assume source and destination are on the desktop in a Form Design window
if tempFormSrc.attach("Form Design : OTHERONE.FSL") AND
   tempFormDest.attach("Form Design : OTHERTWO.FSL") then
  ; get definition for source form's mouseRightUp, then delete
  transMethod = tempFormSrc.methodGet("mouseRightUp")
  tempFormSrc.methodDelete("mouseRightUp")
  ; copy the method to the destination form mouseRightUp
  tempFormDest.methodSet("mouseRightUp", transMethod)
else
  msgStop("Error", "Couldn't attach to source and destination forms.")
endif
endMethod



methodEdit method
Opens a form-level method in an Editor window.
Syntax

methodEdit (const methodName String) Logical

Description
methodEdit opens the method specified by methodName in an Editor window. If you try to open a method that 
doesn't exist, methodEdit will create it for you. methodEdit fails if you try to open a method that is running.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMETHODGET;OPAL_METH_FOMETHODSET;OPAL_METH_F
OMETHODDELETE;;',0,"Defaultoverview",)} Related Topics



methodEdit example
The following example opens the form's testMethod method in an Editor window: 

method pushButton(var eventInfo Event)
var 

MyForm  form
endvar
MyForm.load("vendors.fsl")
MyForm.methodEdit("testMethod")
endMethod



methodGet method
Gets a form-level method.

Syntax
methodGet (const methodName String ) String

Description
methodGet gets the text of the built-in or custom form-level method specified in methodName attached to a 
form. You can also specify Var, Const, Uses, or Proc to get the contents of the Var, Const, Uses, or Proc window of 
a form.
This method works only with saved forms (.FSL); it does not work with delivered forms (.FDL).
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMETHEDIT;OPAL_METH_FOMETHODDELETE;OPAL_METH_
FOMETHODSET;OPAL_METH_FOENUMSOURCETOFILE;OPAL_METH_UICREATE;OPAL_METH_UIMETHODGET;
OPAL_METH_UIMETHODSET;',0,"Defaultoverview",)} Related Topics



methodGet example
See the methodDelete example.



methodSet method
Sets the definition of a method that is attached to a form.

Syntax
methodSet (const methodName String, const methodText String ) Logical

Description
methodSet writes the text in methodText to the built-in or custom form-level method methodName and 
overwrites any existing method definition. You can also specify Var, Const, Uses, or Proc to set the contents of 
the Var, Const, Uses, or Proc window of a form.
This method works only with saved forms (.FSL); it does not work with delivered forms (.FDL).
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMETHEDIT;OPAL_METH_FOMETHODDELETE;OPAL_METH_
FOMETHODGET;OPAL_METH_UICREATE;OPAL_METH_UIMETHODGET;OPAL_METH_UIMETHODSET;',0,"Defa
ultoverview",)} Related Topics



methodSet example
See the methodDelete example.



minimize method/procedure
Minimizes a window.

Syntax
minimize ( )

Description
minimize displays a window as an icon. Calling this method is equivalent to choosing Minimize from the Control 
menu.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMAXI;OPAL_METH_FOIMAX;OPAL_METH_FOIMIN;OPAL_M
ETH_FOSHOW;OPAL_TYPE_APPLICATION;',0,"Defaultoverview",)} Related Topics



minimize example
See the maximize example.



mouseDouble method
Sends an event to a form's mouseDouble method.

Syntax
mouseDouble ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseDouble constructs a MouseEvent and sends it to a form's mouseDouble method. The arguments x and 
y specify (in twips) the location of the event, and state specifies a key state using KeyBoardStates constants.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMDOWN;OPAL_METH_FOMRDOU;',0,"Defaultoverview",)
} Related Topics



mouseDouble example
In the following example, the form Othermse is open in the Form window. The pushButton method for a button 
named sendMouseDouble on the current form attaches to Othermse as otherForm and then calls the 
mouseDouble method for otherForm.
; sendMouseDouble::pushButton
method pushButton(var eventInfo Event)
var 
  otherForm Form 
endVar
; try to attach to target form
if otherForm.attach("Form : OTHERMSE.FSL") then
  ; send a mouseDouble to target form at coordinates 1000, 1000
  otherForm.mouseDouble(1000, 1000, LeftButton)
else 
  msgStop("Quitting", "Could not find target form.")
endif
endMethod

The following code is attached to the mouseDouble method for otherForm (Othermse):
; otherMouse::mouseDouble  (OTHERMSE)
method mouseDouble(var eventInfo MouseEvent)
var
  targObj  UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; write method name to the lastMethod field
    lastMethod = "mouseDouble"
    ; get the target and write name to lastTarget field
    eventInfo.getTarget(targObj)
    lastTarget = targObj.Name
endif
endMethod



mouseDown method
Sends an event to a form's mouseDown method.

Syntax
mouseDown ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseDown constructs an event and sends it to a form's mouseDown method. The arguments x and y specify
(in twips) the location of the event, and state specifies a key state using KeyBoardStates constants.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMRDOW;OPAL_METH_FOMUP;',0,"Defaultoverview",)} 
Related Topics



mouseDown example
In the following example, the form Othermse is open in the Form window. The pushButton method for a button 
named sendMouseDown on the current form attaches to Othermse as otherForm and then calls the 
mouseDown method for otherForm.
; sendMouseDown::pushButton
method pushButton(var eventInfo Event)
var 
  otherForm Form 
endVar
; try to attach to target form
if otherForm.attach("Form : OTHERMSE.FSL") then
  ; send a mouseDown to target form at coordinates 1000, 1000
  otherForm.mouseDown(1000, 1000, LeftButton)
else 
  msgStop("Quitting", "Could not find target form.")
endif
endMethod

The following code is attached to the mouseDown method for otherForm (Othermse):
; otherMouse::mouseDown  (OTHERMSE)
method mouseDown(var eventInfo MouseEvent)
var
  targObj  UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; write method name to the lastMethod field
    lastMethod = "mouseDown"
    ; get the target and write name to lastTarget field
    eventInfo.getTarget(targObj)
    lastTarget = targObj.Name
endif
endMethod



mouseEnter method
Sends an event to a form's mouseEnter method.

Syntax
mouseEnter ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseEnter constructs a MouseEvent and sends it to a form's mouseEnter method. The arguments x and y 
specify (in twips) the location of the event, and state specifies a key state using KeyBoardStates constants.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMEXIT;',0,"Defaultoverview",)} Related Topics



mouseEnter example
In the following example, the form Othermse is open in the Form window. The pushButton method for a button 
named sendMouseEnter on the current form attaches to Othermse as otherForm and then calls the mouseEnter
method for otherForm.
; sendMouseEnter::pushButton
method pushButton(var eventInfo Event)
var 
  otherForm Form 
endVar
; try to attach to target form
if otherForm.attach("Form : OTHERMSE.FSL") then
  ; send a mouseEnter to target form at coordinates 1000, 1000
  otherForm.mouseEnter (1000, 1000, LeftButton)
else 
  msgStop("Quitting", "Could not find target form.")
endif
endMethod

The following code is attached to the mouseEnter method for otherForm (Othermse):
; otherMouse::mouseEnter  (Othermse)
method mouseEnter(var eventInfo MouseEvent)
var
  targObj  UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; write method name to the lastMethod field
    lastMethod = "mouseEnter"
    ; get the target and write name to lastTarget field
    eventInfo.getTarget(targObj)
    lastTarget = targObj.Name
endif
endMethod



mouseExit method
Sends an event to a form's mouseExit method.

Syntax
mouseExit ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseExit constructs a MouseEvent and sends it to a form's mouseExit method. The arguments x and y 
specify (in twips) the location of the event, and state specifies a key state using KeyBoardStates constants.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMENTER;',0,"Defaultoverview",)} Related Topics



mouseExit example
In the following example, the form Othermse is open in the Form window. The pushButton method for a button 
named sendMouseExit on the current form attaches to Othermse as otherForm and then calls the mouseExit 
method for otherForm.
; sendMouseExit::pushButton
method pushButton(var eventInfo Event)
var 
  otherForm Form 
endVar
; try to attach to target form
if otherForm.attach("Form : OTHERMSE.FSL") then
  ; send a mouseExit to target form at coordinates 1000, 1000
  otherForm.mouseExit(1000, 1000, LeftButton)
else 
  msgStop("Quitting", "Could not find target form.")
endif
endMethod

The following code is attached to the mouseExit method for otherForm (Othermse):
; otherMouse::mouseExit  (Othermse)
method mouseExit(var eventInfo MouseEvent)
var
  targObj  UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; write method name to the lastMethod field
    lastMethod = "mouseExit"
    ; get the target and write name to lastTarget field
    eventInfo.getTarget(targObj)
    lastTarget = targObj.Name
endif
endMethod



mouseMove method
Sends an event to a form's mouseMove method.

Syntax
mouseMove ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseMove constructs an event and sends it to a form's mouseMove method. The arguments x and y specify 
(in twips) the location of the event, and state specifies a key state using KeyBoardStates constants.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMENTER;OPAL_METH_FOMEXIT;',0,"Defaultoverview",)} 
Related Topics



mouseMove example
In the following example, the form Othermse is open in the Form window. The pushButton method for a button 
named sendMouseMove on the current form attaches to Othermse as otherForm and then calls the mouseMove
method for otherForm.
; sendMouseMove::pushButton
method pushButton(var eventInfo Event)
var 
  otherForm Form 
endVar
; try to attach to target form
if otherForm.attach("Form : OTHERMSE.FSL") then
  ; send a mouseMove to target form at coordinates 1000, 1000
  otherForm.mouseMove(1000, 1000, LeftButton)
else 
  msgStop("Quitting", "Could not find target form.")
endif
endMethod

The following code is attached to the mouseMove method for otherForm (Othermse):
; otherMouse::mouseMove  (Othermse)
method mouseMove(var eventInfo MouseEvent)
var
  targObj  UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; write method name to the lastMethod field
    lastMethod = "mouseMove"
    ; get the target and write name to lastTarget field
    eventInfo.getTarget(targObj)
    lastTarget = targObj.Name
endif
endMethod



mouseRightDouble method
Sends an event to a form's mouseRightDouble method.

Syntax
mouseRightDouble (const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseRightDouble constructs a MouseEvent and sends it to a form's mouseRightDouble method. The 
arguments x and y specify (in twips) the location of the event, and state specifies a key state using 
KeyBoardStates constants.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMRDOU;OPAL_METH_FOMDOWN;',0,"Defaultoverview",)
} Related Topics



mouseRightDouble example
In the following example, the form Othermse is open in the Form window. The pushButton method for a button 
named send MouseRightDouble on the current form attaches to Othermse as otherForm and then calls the 
mouseRightDouble method for otherForm.
; mouseRightDouble::pushButton
method pushButton(var eventInfo Event)
var 
  otherForm Form 
endVar
; try to attach to target form
if otherForm.attach("Form : OTHERMSE.FSL") then
  ; send a mouseRightDouble to target form at coordinates 1000, 1000
  otherForm.mouseRightDouble(1000, 1000, RightButton)
else 
  msgStop("Quitting", "Could not find target form.")
endif
endMethod

The following code is attached to the mouseRightDouble method for otherForm (Othermse):
; otherMouse::mouseRightDouble  (Othermse)
method mouseRightDouble(var eventInfo MouseEvent)
var
  targObj  UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; write method name to the lastMethod field
    lastMethod = "mouseRightDouble"
    ; get the target and write name to lastTarget field
    eventInfo.getTarget(targObj)
    lastTarget = targObj.Name
endif
endMethod



mouseRightDown method
Sends an event to a form's mouseRightDown method.

Syntax
mouseRightDown ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseRightDown constructs a MouseEvent and sends it to a form's mouseRightDown method. The 
arguments x and y specify (in twips) the location of the event, and state specifies a key state using 
KeyBoardStates constants.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMRDOU;OPAL_METH_FOMDOWN;',0,"Defaultoverview",)
} Related Topics



mouseRightDown example
In the following example, the form Othermse is open in the Form window. The pushButton method for a button 
named sendMouseRightDown on the current form attaches to Othermse as otherForm and then calls the 
mouseRightDown method for otherForm.
; mouseRightDown::pushButton
method pushButton(var eventInfo Event)
var 
  otherForm Form 
endVar
; try to attach to target form
if otherForm.attach("Form : OTHERMSE.FSL") then
  ; send a mouseRightDown to target form at coordinates 1000, 1000
  otherForm.mouseRightDown(1000, 1000, RightButton)
else 
  msgStop("Quitting", "Could not find target form.")
endif
endMethod

The following code is attached to the mouseRightDown method for otherForm (Othermse):
; otherMouse::mouseRightDown  (Othermse)
method mouseRightDown(var eventInfo MouseEvent)
var
  targObj  UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; write method name to the lastMethod field
    lastMethod = "mouseRightDown"
    ; get the target and write name to lastTarget field
    eventInfo.getTarget(targObj)
    lastTarget = targObj.Name
endif
endMethod



mouseRightUp method
Sends an event to a form's mouseRightUp method.

Syntax
mouseRightUp ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseRightUp constructs a MouseEvent and sends it to a form's mouseRightUp method. The arguments x 
and y specify (in twips) the location of the event, and state specifies a key state using KeyBoardStates constants.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMUP;OPAL_METH_FOMRDOW;',0,"Defaultoverview",)} 
Related Topics



mouseRightUp example
In the following example, assume the form Othermse is already open. The pushButton method for a button 
named sendMouseRightUp on the current form attaches to Othermse as otherForm and then calls the 
mouseRightUp method for otherForm.
; mouseRightUp::pushButton
method pushButton(var eventInfo Event)
var 
  otherForm Form 
endVar
; try to attach to target form
if otherForm.attach("Form : OTHERMSE.FSL") then
  ; send a mouseRightUp to target form at coordinates 1000, 1000
  otherForm.mouseRightUp(1000, 1000, RightButton)
else 
  msgStop("Quitting", "Could not find target form.")
endif
endMethod

The following code is attached to the mouseRightUp method for otherForm (Othermse):
; otherMouse::mouseRightUp  (Othermse)
method mouseRightUp(var eventInfo MouseEvent)
var
  targObj  UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; write method name to the lastMethod field
    lastMethod = "mouseRightUp"
    ; get the target and write name to lastTarget field
    eventInfo.getTarget(targObj)
    lastTarget = targObj.Name
endif
endMethod



mouseUp method
Sends an event to a form's mouseUp method.

Syntax
mouseUp ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseUp constructs a MouseEvent and sends it to a form's mouseUp method. The arguments x and y specify 
(in twips) the location of the event, and state specifies a key state using KeyBoardStates constants.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMRUP;OPAL_METH_FOMDOWN;',0,"Defaultoverview",)} 
Related Topics



mouseUp example
In the following example, the form Othermse is open in the Form window. The pushButton method for a button 
named sendMouseUp on the current form attaches to Othermse as otherForm and then calls the mouseUp 
method for otherForm.
; sendMouseUp::pushButton
method pushButton(var eventInfo Event)
var 
  otherForm Form 
endVar
; try to attach to target form
if otherForm.attach("Form : OTHERMSE.FSL") then
  ; send a mouseUp to target form at coordinates 1000, 1000
  otherForm.mouseUp(1000, 1000, LeftButton)
else 
  msgStop("Quitting", "Could not find target form.")
endif
endMethod

The following code is attached to the mouseUp method for otherForm (Othermse):
; otherMouse::mouseUp  (Othermse)
method mouseUp(var eventInfo MouseEvent)
var
  targObj  UIObject
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; write method name to the lastMethod field
    lastMethod = "mouseUp"
    ; get the target and write name to lastTarget field
    eventInfo.getTarget(targObj)
    lastTarget = targObj.Name
endif
endMethod



moveTo method
Moves to a form.

Syntax
moveTo ( [const objectName String] ) Logical

Description
moveTo moves the focus to a form. Optionally, it moves to the object specified in objectName.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOMOTP;',0,"Defaultoverview",)} Related Topics



moveTo example
In the following example, a form named Sitenote is already open in the Form window. The pushButton method 
for the goToSites button in the current form attaches the variable otherForm to Sitenote, determines if otherForm
is visible, and, if so, moves to otherForm. If otherForm is not visible, the method uses show to display the form 
at its default size (show also moves the focus to the target form).
; goToSites::pushButton
method pushButton(var eventInfo Event)
var
  otherForm  Form
endVar
; assume that Sitenote form is already open 
if otherForm.attach("Form : SITENOTE.FSL") then
  if otherForm.isVisible() then 
    otherForm.moveTo()       ; if form is visible, move to it
  else
    otherForm.show()         ; otherwise, make it visible
  endif
else
  msgStop("Stop", "Couldn't find form.")
endif
endMethod



moveToPage method/procedure
Displays a specified page of a form.

Syntax
moveToPage ( const pageNumber SmallInt ) Logical

Description
moveToPage displays the page of a form specified in pageNumber. pageNumber can be an integer variable or 
an integer constant, but it can't be an object ID. To move to a page by using its object ID, use the moveTo 
method from the UIObject type.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOBRTT;',0,"Defaultoverview",)} Related Topics



moveToPage example
In the following example, the current form has two pages. The Sitenote form exists in the working directory and 
has four pages. The pushButton method for pageThruSites (on the current form) moves to the second page of 
the current form, opens the Sitenote form to the otherForm variable, and pages through otherForm.
; pageThruSites::pushButton
method pushButton(var eventInfo Event)
const
   BillingInfo = SmallInt(4)
endConst
var
   myForm, otherForm  Form
   somePage           SmallInt
endVar
moveToPage(2)                       ; moves to page 2 on this form
if otherForm.open("Sitenote.fsl") then  ; opens to first page
  sleep(2000)                       ; pause
  otherForm.moveToPage(2)           ; moves to page 2 of SiteNote
  sleep(2000)
  somePage = 3
  otherForm.moveToPage(somePage)    ; moves to page 3
  sleep(2000)  
  otherForm.moveToPage(BillingInfo) ; moves to page 4
  sleep(2000)
endIf
endMethod



open method
Opens a window.

Syntax
1. open ( const formName String [ , const windowStyle LongInt ] ) Logical
2. open ( const formName String, const windowStyle LongInt, const x SmallInt, const y SmallInt,
const w SmallInt, const h SmallInt ) Logical
3. open ( const openInfo FormOpenInfo ) Logical

Description
open displays the form specified in formName. The form is opened in a Form window. The optional arguments x 
and y specify the location of the upper-left corner of the form (in twips), w and h specify the width and height (in 
twips), and windowStyle specifies display attributes using WindowStyles constants. You can specify more than 
one window style element by adding the constants together. The following code opens a form and specifies both 
vertical and horizontal scroll bars:
theForm.open("sales", WinStyleDefault + WinStyleVScroll + WinStyleHScroll)

Compare this method with load, which opens a form in a Form Design window.
Syntax 3 lets you specify form settings from openInfo, a record of type FormOpenInfo. The predefined 
FormOpenInfo record has the following structure:
x, y, w, h     LongInt ;position and size of the form
name           String  ;name of form to open
masterTable    String  ;new master table name 
queryString    String  ;query to run (actual query string)
SQLString      String  ;SQL query to run (actual query string)
windowStyle    LongInt ;window style constant(s)

You can use the masterTable member to specify a different master table for the form (this is similar to choosing a
different table for a form when you open the form from the Open Form dialog box). Alternatively, you can specify
a query string in the queryString member. If the query string is an SQL query, replace queryString with 
SQLString. Corel Paradox executes the query and opens the form; the result of the query is the master table.
Corel Paradox opens saved forms before delivered forms with the same name. For example, suppose the working
directory contains ORDERS.FSL (a saved form) and ORDERS.FDL (a delivered form). The following statement 
opens the saved form, ORDERS.FSL.
ordersForm.open("ORDERS") ; Opens :WORK:ORDERS.FSL.

To specify a delivered form, include the .FDL extension. 
ordersForm.open("ORDERS.FDL") ; Opens the delivered form.

In addition to being a table name for a QBE file, the MasterTable field may be the name of a SQL file that 
produces an Answer table.
FormOpenInfo now has a new field, SQLString, which can be used to specify an SQL statement to execute. 
SQLString is of type String.
To rebind a report to a newly created SQL statement, save the SQL statement to a file and specify the filename in
ReportPrintInfo.MasterTable or ReportOpenInfo.MasterTable. 
 Note

· Some form actions are especially processor-intensive. In some situations, you might need to follow a call to 
open, load, design, or run with a sleep. For more information, see the sleep procedure in the System type.

 Examples
{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOCLOS;OPAL_METH_REPRINT;OPAL_METH_FOCREATE;OPAL
_METH_FOLOAD;OPAL_METH_FOOPAD;OPAL_METH_FODESIGN;',0,"Defaultoverview",)} Related Topics



open method examples
Example1          Using keyPhysical to open a form
Example2          Using FormOpenInfo to set the characteristics of the form opened



open example 1
In the following example, the keyPhysical method for a field named fieldOne tests all key events. When the 
user presses F1, the form HELPFORM opens. The keyPhysical method opens a form from the current directory:
; fieldOne::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
var 
  helpForm Form 
endVar  
message(eventInfo.vChar())
if eventInfo.vChar() = "VK_F1" then
  helpForm.open("helpform", WinStyleDefault, 
                 720, 720, 1440 * 2, 1440 * 4)
  disableDefault
endIf

endMethod



open example 2
The following example works like the previous example, except that it uses a FormOpenInfo record to set the 
characteristics of the form to be opened.
; fieldOne::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
var
  openHelpForm FormOpenInfo   ; a predeclared record type 
  helpForm     Form 
endVar  
message(eventInfo.vChar())
if eventInfo.vChar() = "VK_F1" then
  openHelpForm.x = 720
  openHelpForm.y = 720
  openHelpForm.w = 2 * 1440
  openHelpForm.h = 4 * 1440
  openHelpForm.name = "helpform"
  helpForm.open(openHelpForm)
  disableDefault
endIf
endMethod



openAsDialog method
Opens a Form window as a dialog box.

Syntax
1. openAsDialog ( const formName [ , const windowStyle LongInt] ) Logical
2. openAsDialog ( const formName String, const windowStyle LongInt, const x SmallInt, const y 
SmallInt, const w SmallInt, const h SmallInt ) Logical
3. openAsDialog ( const openInfo FormOpenInfo ) Logical

Description
openAsDialog opens the form formName and displays it on top of any other open windows. The form is in the 
Form window. formName is always on top, whether it's active or not. The optional arguments x and y specify the 
upper-left corner of the window (in twips), w and h specify the width and height (in twips), and windowStyle 
specifies display attributes using WindowStyles constants. You can specify more than one window style element 
by adding the constants. The following code opens a form and specifies both vertical and horizontal scroll bars:
theForm.openAsDialog("sales", WinStyleDefault + WinStyleVScroll + WinStyleHScroll)

Syntax 3 lets you specify form settings from openInfo, a record of type FormOpenInfo. The FormOpenInfo record 
type is predeclared and has the following structure:
x, y, w, h      LongInt  ; position and size of the form
name            String   ; name of form to open
masterTable     String   ; master table name
queryString     String   ; run this query
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOOPEN;OPAL_METH_FOWAIT;OPAL_METH_FOFORMCALLER
;OPAL_METH_FOFORR;',0,"Defaultoverview",)} Related Topics



openAsDialog example
In the following example, the keyPhysical method for a field named fieldOne tests all key events. When the 
user presses F1, the form HELPFORM opens. The keyPhysical method opens a form as a dialog box.
; fieldOne::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
var 
  helpForm Form 
endVar  
; if user presses F1, open a help dialog box
if eventInfo.vChar() = "VK_F1" then

  helpForm.openAsDialog("helpform", WinStyleDefault, 
                        720, 720, 1440 * 4, 1440 * 3)

  helpForm.setTitle("Application Help")
  helpForm.wait()
  helpForm.close()
  disableDefault                        ; don't call Help system
endIf
endMethod



postAction method
Posts an action to an action queue for delayed execution.

Syntax
postAction ( const actionId SmallInt )

Description
postAction works like action, except that the action is not executed immediately. Instead, the action specified 
by actionID is posted to an action queue at the time of the method call; Corel Paradox waits until a yield occurs 
(e.g., by the current method completing execution or by a call to sleep).
The value of actionID can be a user-defined action constant or a constant from one of the following Action 
classes:
ActionDataCommands
ActionEditCommands
ActionFieldCommands
ActionMoveCommands
ActionSelectCommands
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOACTI;',0,"Defaultoverview",)} Related Topics



postAction example
In the following example, the pushButton method for openSitesNew opens the Sitenote form to the variable 
otherForm. The method then posts three actions to otherForm and displays a message in a dialog box. The 
actions specified by postAction occur when Corel Paradox yields:
; openSitesNew::pushButton
method pushButton(var eventInfo Event)
; otherForm variable is global to form--stays in scope after method ends
if otherForm.open("Sitenote.fsl") then
  ; these actions will not execute until after this method ends
  otherForm.postAction(DataEnd)          ; move to the last record
  otherForm.postAction(DataBeginEdit)    ; start Edit mode
  otherForm.postAction(DataInsertRecord) ; insert a new blank record
  msgInfo("Status", "About to perform posted actions. Watch closely.")
else
  msgStop("Stopped", "Could not open form.")
endif
endMethod



run method
Switches a form from the Form Design window to the Form window.

Syntax
run ( ) Logical

Description
run switches a form from the Form Design window to the Form window. This method works only with saved 
forms (.FSL); it does not work with delivered forms (.FDL). 
To switch from the Form window to the Form Design window, use design.
 Note

· Some form actions are especially processor-intensive. In some situations, you might need to follow a call to 
open, load, design, or run with a call to sleep. For more information, see the sleep method in the System 
type.

 Example
{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FODESIGN;',0,"Defaultoverview",)} Related Topics



run example
The following example opens the Sitenote form in a Form Design window, deletes the pushButton method from 
the form and then runs the form. Assume that the Sitenote form is in the current directory. This code is attached 
to the pushButton code for delPushButton.
; delPushButton::pushButton
method pushButton(var eventInfo Event)
var
  otherForm  Form
endVar
; load the Sitenote form, delete the pushButton 
; method, then run the form
if otherForm.load("Sitenote") then
  otherForm.methodDelete("pushButton")
  otherForm.run()
endif               ; won't be permanent
endMethod



save method
Saves a form to disk.

Syntax
save ( [ const newFormName String ] ) Logical

Description
save writes a form to disk in the user's working directory. This method works only when the form is in a Form 
Design window.
The newFormName argument specifies the name for the form. If the form already has a name, Corel Paradox 
saves the form using that name. If you omit newFormName and the form doesn't have a name already, this 
method returns an error. 
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOCREATE;OPAL_METH_FODESIGN;',0,"Defaultoverview",)}
Related Topics



save example
See the create example.



saveStyleSheet method
Saves a style sheet.

Syntax
saveStyleSheet ( const fileName String, const overWrite Logical ) Logical

Description
saveStyleSheet saves a style sheet to the file specified in fileName. If fileName does not specify a full path for 
the style sheet file, this method saves it to the working directory.
The value of overWrite specifies what to do if the file already exists. If overWrite is True and the file exists, Corel 
Paradox overwrites the file without asking for confirmation. If overWrite is False and the file exists, the file is not 
saved. This method returns True if it saves the file; otherwise, it returns False.
saveStyleSheet saves the form's current style sheet, including any changes made interactively, or by using 
ObjectPAL. If called as a method, saveStyleSheet operates on the specified form. If called as a procedure, 
saveStyleSheet operates on the current form. It returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOGETSTYLESHEET;OPAL_METH_FOSETSTYLESHEET;OPAL_
METH_FOGETPROTOPROPERTY;OPAL_METH_FOSETPROTOPROPERTY;',0,"Defaultoverview",)} Related 
Topics



saveStyleSheet example
The following example sets the frame style of field objects and text objects and then saves the form's style sheet
to a file named IN3DFRAM.FT. If the file exists, it is overwritten.
const
   kOverWrite = Yes
endConst

method mouseClick(var eventInfo MouseEvent)
   var
      thisForm Form
   endVar

   thisForm.attach()
   thisForm.setProtoProperty(FieldTool, "Frame.Style", Inside3DFrame)
   thisForm.setProtoProperty(TextTool, "Frame.Style", Inside3DFrame)
   thisForm.saveStyleSheet("in3dfram.ft", kOverWrite)
endmethod



selectCurrentTool method
Specifies a Toolbar tool to use.

Syntax
selectCurrentTool ( const objType SmallInt ) Logical

Description
selectCurrentTool specifies which Toolbar tool to use, where objType is one of the UIObjectTypes constants. 
When used with a form in the Form Design window, this method makes the specified tool active and sets the 
mouse shape accordingly.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOSETSELECTEDOBJECTS;',0,"Defaultoverview",)} Related 
Topics



selectCurrentTool example
The following example creates a form and sets the current tool to the Field tool.
method pushButton(var eventInfo Event)
   var
      foTest   Form
   endVar

   foTest.create()
   foTest.selectCurrentTool(FieldTool)
   msgInfo("Next step:",
          "Click and drag to draw a field object.")
endMethod



setCompileWithDebug method
Sets Compile With Debug.

Syntax
setCompileWithDebug ( const yesNo Logical ) Logical

Description
setCompileWithDebug sets the Compile With Debug flag to true or false. This is the same as setting Compile 
With Debug interactively in a Form Design window. setCompileWithDebug returns True if successful; 
otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOISCOMPILEWITHDEBUG;OPAL_METH_SYDEBUG;',0,"Defa
ultoverview",)} Related Topics



setCompileWithDebug example
In the following example, the central form of a management system has two buttons: getCompileStatus and 
setCompileStatus. The pushButton method of each button opens the Windows 95 Explorer dialog box to allow a
user to select the file that will be examined or manipulated. Each method analyzes the fileName selected to 
determine the fileType and opens the file under the appropriate object type.
The following code is attached to the pushButton method for setCompileStatus: 
; setCompileStatus::pushButton
method pushButton(var eventInfo Event)
var
   theForm       Form             ;// Object variable for forms
   theLibrary    Library          ;// Object variable for libraries
   theScript     Script           ;// Object variable for scripts
   fbi           FileBrowserInfo  ;// File Browser information structure
   selectedFile  String           ;// FileName selected by user
   fileType      String           ;// File type of file
                                  ;// selected by user
   status        Logical          ;// Debug status of the selected file
   toggle        String           ;// User choice for 
endVar

      ;//Set allowable file types: Forms, Libraries, and Scripts
   fbi.AllowableTypes = fbForm + fbLibrary + fbScript
   if fileBrowser(selectedFile, fbi) then
      ;// The user selected a file
      fileType = upper(substr(selectedFile, selectedFile.size() - 2, 3))
      switch
         case fileType = "FSL" :
            ;// Load the Form
            theform.load(fbi.Drive + fbi.Path + selectedFile)
            ;// Determine its status
            status = theForm.isCompileWithDebug()
            toggle = msgYesNoCancel ("Select a choice", selectedFile 
                                   + iif(status, " is ", " is not ") +
                       "compiled with Debug information - toggle?")
            switch
               case toggle = "Yes" :
                  ;// Toggle status
                  theForm.setCompileWithDebug(NOT(status))
                  ;// Save the change
                  theForm.save()
                  msgInfo("User Notification", 
                          "Toggle of Debug State Completed.")
               case toggle = "No" or toggle = "Cancel" :
                  msgInfo("User Notification",
                          "Toggle of Debug State Canceled.")
            endSwitch
            ;// Close the Form
            theForm.close()

         case fileType = "LSL" :
            ;// Load the Library
            theLibrary.load(fbi.Drive + fbi.Path + selectedFile)
            ;// Determine its status
            status = theLibrary.isCompileWithDebug()
            toggle = msgYesNoCancel ("Select a choice", selectedFile
                                   + iif(status, " is ", " is not ")
                       + "compiled with Debug information - toggle?")
            switch
               case toggle = "Yes" :
                  ;// Toggle status
                  theLibrary.setCompileWithDebug(NOT(status))
                  ;// Save the change
                  theLibrary.save()
                  msgInfo("User Notification", 
                          "Toggle of Debug State Completed.")
               case toggle = "No" or toggle = "Cancel" :
                  msgInfo("User Notification",



                          "Toggle of Debug State Canceled.")
            endSwitch
            ;// Close the Library
            theLibrary.close()

         case fileType = "SSL" :
            ;// Load the Script
            theScript.load(fbi.Drive + fbi.Path + selectedFile)
            ;// Determine its status
            status = theScript.isCompileWithDebug()
            toggle = msgYesNoCancel ("Select a choice", selectedFile
                                + iif(status, " is ", " is not ")
                         + "compiled with Debug information - toggle?")
            switch
               case toggle = "Yes" :
                  ;// Toggle status
                  theScript.setCompileWithDebug(NOT(status))
                  ;// Save the change
                  theScript.save()
                  msgInfo("User Notification",
                          "Toggle of Debug State Completed.")
               case toggle = "No" or toggle = "Cancel" :
                  msgInfo("User Notification",
                          "Toggle of Debug State Canceled.")
            endSwitch
            ;// Close the Script
            theScript.close()
      endSwitch
      ;// Inform the user
      msgInfo(selectedFile
            + " compiled with Debug information?",
                 status)
   else
      ;// The user didn't select a file
      msgInfo("No file selected", "Please try again")
   endIf
endMethod



setIcon method/procedure
Specifies the icon to be used with a form, report, or desktop.

Syntax
setIcon ( const fileName String ) Logical

Description
setIcon specifies the icon to be used with a form, report, or desktop. The file specified with fileName must be a 
valid icon file and the file’s name must have an extension of .ICO. setIcon returns True if successful; otherwise it
returns False.
After you set the icon for a form, all the forms on the desktop will change to the new icon and any form that is 
opened will be set to the new icon.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOATTA;OPAL_METH_FOOPEN;OPAL_TYPE_APPLICATION;',0,
"Defaultoverview",)} Related Topics



setIcon example
The following example sets the file, DOCFILE.ICO as the icon. 
method init ( var eventInfo Event ) 
   setIcon ( "i:\\resource\\docfile.ico" ) 
endMethod



setMenu method
Associates a menu with a form.

Syntax
setMenu ( const menuVar Menu )

Description
setMenu associates the menu specified in menuVar with a form. This method performs the same function as the
Menu type show, and adds the following features:
· when the form gets focus, Corel Paradox displays the associated menu
· actions that result from choices from that menu are sent to that form
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_MUSHOW;OPAL_METH_POATEX;OPAL_METH_RESETMENU;',0
,"Defaultoverview",)} Related Topics



setMenu example
The following example is a script. It opens a form, builds a simple menu and then uses setMenu to assign the 
menu to the form:
method run(var eventInfo Event)
   var
      foOrders   Form
      muOrderForm   Menu
      puFormFile   PopUpMenu
   endVar

; Build a menu for the form.
   foOrders.open("orders")

; Setting the StandardMenu property to False
; (either in ObjectPAL code or interactively)
; can reduce flicker when changing menus.
   foOrders.StandardMenu = False

   puFormFile.addText("&New Form", MenuEnabled, MenuFormNew)
   puFormFile.addText("&Open Form", MenuEnabled, MenuFormOpen)
   puFormFile.addText("&Exit", MenuEnabled, MenuFileExit)

   muOrderForm.addPopUp("&File", puFormFile)

   foOrders.setMenu(muOrderForm)

endMethod



setPosition method/procedure
Positions a window on screen.

Syntax
setPosition ( const x LongInt, const y LongInt, const w LongInt, const h LongInt )

Description
setPosition positions a window on screen. The arguments x and y specify the coordinates of the upper-left 
corner of the form (in twips), and w and h specify the width and height (in twips).
To ObjectPAL, the screen is a two-dimensional grid, with the origin (0, 0) at the upper-left corner of an object's 
container, positive x-values extending to the right, and positive y-values extending down.
For dialog boxes and for the Corel Paradox desktop application, the position is given relative to the entire screen;
for forms, reports, and Table windows, the position is given relative to the Corel Paradox desktop.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOOPEN;OPAL_TYPE_APPLICATION;;;',0,"Defaultoverview",)
} Related Topics



setPosition example
See the getPosition example.



setProtoProperty method/procedure
Sets the value of a specified property of a prototype object.

Syntax
setProtoProperty ( const objectType SmallInt, propertyName String, value AnyType ) Logical

Description
setProtoProperty sets the property specified in propertyName of the prototype object specified in objectType 
to the value specified in value. To specify objectType, use one of the UIObjectTypes constants. If called as a 
method, setProtoProperty operates on prototype objects in the style sheet of the specified form. If called as a 
procedure, setProtoProperty uses the style sheet of the current form.
Changes to the style sheet are not saved automatically. You must either save the style sheet interactively or call 
saveStyleSheet.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOGETPROTOPROPERTY;OPAL_METH_FOGETSTYLESHEET;O
PAL_METH_FOSAVESTYLESHEET;',0,"Defaultoverview",)} Related Topics



setProtoProperty example
See the saveStyleSheet example.



setSelectedObjects method
Selects specified objects in a form.

Syntax
setSelectedObjects ( var objects Array[ ] UIObject, const yesNo Logical ) 

Description
setSelectedObjects selects specified objects in a form in a Form Design window as if you had selected the 
objects interactively. The array objects is an array of available UIObjects (not the object names). Use attach to 
assign a UIObject to an array.
The argument yesNo specifies whether to show selection handles If yesNo is True, the selected objects have 
handles; otherwise, they do not.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOGETSELECTEDOBJECTS;OPAL_METH_UIATTA;',0,"Defaulto
verview",)} Related Topics



setSelectedObjects example
The following example creates a form, creates two boxes in it, and calls setSelectedObjects to select the 
boxes. You must use attach to assign a UIObject to an array.
method pushButton(var eventInfo Event)
   var
      foTemp      Form
      uiTemp      UIObject
      arObjects   Array[2] UIObject
   endVar

   const
      kOneInch = 1440 ; One inch = 1,440 twips.
      kShowHandles = Yes
   endConst

   foTemp.create()

   uiTemp.create(BoxTool, 300, 300, kOneInch, kOneInch, foTemp)
   uiTemp.Visible = Yes
   arObjects[1].attach(uiTemp)

   uiTemp.create(BoxTool, 300, 2200, kOneInch, kOneInch, foTemp)
   uiTemp.Visible = Yes
   arObjects[2].attach(uiTemp)

   foTemp.setSelectedObjects(arObjects, kShowHandles)
endMethod



setStyleSheet method/procedure
Specifies a form's style sheet.

Syntax
setStyleSheet ( const fileName String )

Description
setStyleSheet makes a form use the style sheet specified in fileName. If fileName does not specify a full path 
to the style sheet, this method searches for it in the working directory. If called as a method, setStyleSheet 
operates on the specified form. If called as a procedure, it operates on the current form.
Any UIObjects created in the form while the style sheet is active will have the properties and methods of the 
corresponding prototype objects in the style sheet. setStyleSheet does not change the properties or methods 
of UIObjects that already exist. This method affects only the specified form; it does not affect the screen or 
printer style sheets. Use the System procedures setDefaultScreenStyleSheet and 
setDefaultPrinterStyleSheet to set the properties if the screen and printer style sheets.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOGETSTYLESHEET;OPAL_METH_FOSAVESTYLESHEET;OPAL
_METH_FOGETPROTOPROPERTY;OPAL_METH_FOSETPROTOPROPERTY;OPAL_METH_SYSETDEFAULTPRINTE
RSTYLESHEET;OPAL_METH_SYSETDEFAULTSCREENSTYLESHEET;',0,"Defaultoverview",)} Related Topics



setStyleSheet example
The following example opens a form and then calls getStyleSheet to see which style sheet the form is using. If 
the style sheet is not COREL.FT, the code calls setStyleSheet to set it and then calls getStyleSheet again to 
make sure it was set successfully. setStyleSheet requires double backslashes in the path, but getStyleSheet 
returns single backslashes.
method pushButton(var eventInfo Event)
   var
      f Form
   endVar
   f.open("orders")
   ; Get and set the style sheet for this form.
   if f.getStyleSheet() <> "c:\\Corel\\Suite8\\Paradox\\Corel.ft" then
      f.setStyleSheet("c:\\Corel\\Suite8\\Paradox\\Corel.ft")
      if f.getStyleSheet() <> "c:\\Corel\\Suite8\\Paradox\\Corel.ft" then
         msgStop("Problem", "Could not set the style sheet.")
       endIf
   endIf
endMethod



setTitle method/procedure
Sets the text in the Title Bar of the window.

Syntax
setTitle ( const text String )

Description
setTitle changes the text of the window's Title Bar to the text specified in text. The maximum length of text is 
78 characters. If you change a form's title, remember to use the new title when you want to attach anything to 
that form. For more information, see the description of attach.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_TYPE_APPLICATION;OPAL_METH_FOGETT;OPAL_METH_FOATTA;;',0,
"Defaultoverview",)} Related Topics



setTitle example
See the openAsDialog example.



show method/procedure
Displays a minimized window at its previous size; makes a hidden form visible.

Syntax
show ( )

Description
show makes a hidden form visible. show also restores a minimized window to the size it was before it was 
minimized. This method is similar to the Restore command on the Control menu.
show doesn't make a form the top window; use bringToTop to make a form the top layer and give it focus.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOHIDE;OPAL_METH_FOIVIS;OPAL_TYPE_APPLICATION;',0,"
Defaultoverview",)} Related Topics



show example
See the hide example.



showToolbar procedure
Makes the standard Toolbar visible.

Syntax
showToolbar ( )

Description
showToolbar displays the standard Toolbar.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOHTOOLBAR;OPAL_METH_FOISBARSHO;',0,"Defaultovervi
ew",)} Related Topics



showToolbar example
See the hideToolbar example.



wait method
Suspends execution of a method.

Syntax
wait ( ) AnyType

Description
wait suspends execution of the current method until the form you're waiting for returns (see formReturn). This 
method is used to open a second form as a dialog box. Execution resumes in the first form when the second form
(the one you're waiting for) calls formReturn or when the second form closes. After the called form returns, the 
calling form should close it with close. The called form does not automatically close, even if the user closes it; it 
stays open to allow the code on the calling form to examine the it (e.g., to see settings on a dialog box).
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOFORR;OPAL_METH_FOFORMCALLER;OPAL_METH_FOOPAD
;',0,"Defaultoverview",)} Related Topics



wait example
See the formReturn example.



windowClientHandle method/procedure
Returns the handle of a window.

Syntax
windowClientHandle ( ) LongInt

Description
A window handle is a unique integer identifier that is assigned to a window by Windows. windowClientHandle 
returns an integer value that represents the window handle of the client area of a form. When called as a 
procedure, it returns the window handle of the client area of the current form. This method should be used only 
by advanced programmers.
This information is useful only if you're using functions from a dynamic link library (DLL).
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_TYPE_APPLICATION;OPAL_METH_FOWINDOWHANDLE;;;',0,"Defaul
toverview",)} Related Topics



windowClientHandle example
In the following example, assume that a dynamic link library (DLL) called MYTEST.DLL exists and that it contains 
a function called doSomething. The doSomething function takes one argument, a window handle. Because 
doSomething is not an ObjectPAL method, information about the method must be declared in the Uses window. 
The following code defines the prototype information for doSomething and appears in the Uses window at the 
form level:
;Form1::Uses
Uses MYTEST
  doSomething(wHandle CLONG)
EndUses

The following code appears in the pushButton method on the form:
; someButton::pushButton
method pushButton(var eventInfo Event)
doSomething(windowClientHandle())  ; call doSomething and supply the
                                   ; handle of the client portion
                                   ; of the current form
endMethod



windowHandle method/procedure
Returns the handle of a window.

Syntax
windowHandle ( ) LongInt

Description
A window handle is a unique integer identifier that is assigned to a window by Windows. windowHandle returns
an integer value that represents the window handle of a form. When called as a procedure, windowHandle 
returns the window handle of the current form. This method should be used only by advanced programmers.
This information is useful only if you're using functions from a dynamic link library (DLL).
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_FOWINDOWCLIENTHANDLE;',0,"Defaultoverview",)} 
Related Topics



windowHandle example
In the following example, assume that a (DLL) called MYTEST.DLL exists and that it contains a function called 
doSomething. The doSomething function takes one argument, a window handle. Because doSomething is not an 
ObjectPAL method, information about the method must be declared in the Uses window. The following code 
defines the prototype information for doSomething and appears in the Uses window at the form level:
;Form1::Uses
Uses MYTEST
  doSomething(wHandle CLONG)
EndUses

The following code appears in the pushButton method on the form:
; someButton::pushButton
method pushButton(var eventInfo Event)
   doSomething(windowHandle())  ; call doSomething and supply the
                             ; window handle of the current form
endMethod



writeText method
Writes text contents of a form to file.
Syntax

writeText (const filename    String ) Logical
Description

writeText writes all text displayed on a form to the disk file specified by filename. This method attempts to keep
the relative position of all text constants within the text file, but does not write the character or point size 
attributes. For forms with multiple pages, all text is written to the file, with the latter pages appended to the 
bottom of the file. This method writes only text. It does not write chart, graphic or OLE field information to the 
file.
 Example

{button ,AL(`OPAL_TYPE_FORM;OPAL_METH_UIENUMSOURCETOFILE;OPAL_METH_GRWFILE;OPAL_METH_
OLWRITETO;;',0,"Defaultoverview",)} Related Topics



writeText example
The following example writes the contents of the form BIOLIFE.FSL to the text file test.txt . This example 
assumes that a form named BIOLIFE.FSL already exists in the working directory.
method pushButton(var eventInfo Event)
 var
 f form
 endvar

if not f.open("BIOLIFE")  then ;// attempts to open Biolife.fsl. If not successful, alerts t
                                                    ;// the user and returns to the form
msginfo("stop","could not open Biolife form")
return
endif
 f.attach("BIOLIFE")                   ;// attaches form variable to biolife.fsl
 f.writetext(":WORK:test.txt")     ;// writes the displayed contents of biolife.fsl to the file
test.txt
 f.close()                                    ;// closes  biolife.fsl
endMethod



Graphic type
A Graphic variable provides a handle that is used to manipulate a graphic object. That is, you can use Graphic 
variables in ObjectPAL code to manipulate graphic objects. Graphic objects contain and display graphics in 
bitmap format (BMP). However, Corel Paradox can import the following graphic formats: bitmap (BMP), 
encapsulated Postscript (EPS), graphic interchange format (GIF), Paintbrush (PCX), and tagged information file 
format (TIF).
You can use Graphic type methods readFromClipboard, writeToClipboard, readFromFile, and writeToFile 
to transfer bitmaps between forms (and reports), tables, the Clipboard, and disk files.
The Graphic type includes several derived methods from the AnyType type.
Methods for the Graphic type

AnyType Graphic
blank readFromClipboard
dataType readFromFile
isAssigned writeToClipboard
isBlank writeToFile
isFixedType

   Print related ObjectPAL methods and examples  



readFromClipboard method
Reads a graphic from the Clipboard.

Syntax
readFromClipboard ( ) Logical

Description
readFromClipboard reads a graphic from the Clipboard to a variable of type Graphic. If the Clipboard contains 
a graphic that can be copied to the Graphic variable, readFromClipboard returns True. If the Clipboard is empty
or does not contain a valid graphic, readFromClipboard returns False. readFromClipboard can read bitmap 
(BMP) and device independent bitmap (DIB) formats.
 Example

{button ,AL(`OPAL_TYPE_GRAPHIC;OPAL_METH_GRRFILE;OPAL_METH_GRWCLIP;',0,"Defaultoverview",)}
Related Topics



readFromClipboard example
In the following example, a form contains a multi-record object named BIOLIFE bound to the Biolife table, and a 
button named getGraphic. The pushButton method for getGraphic locates the record with a Common Name 
field value of Firefish and writes the contents of the Clipboard to that record's Graphic field. If the Clipboard is 
empty or does not contain a graphic, the readFromClipboard method returns False and the value of the 
Graphic field is not changed.
; getGraphic::pushButton
method pushButton(var eventInfo Event)

var 
  myGraphic Graphic 
endVar

if BIOLIFE.locate("Common Name", "Firefish") then   

  if myGraphic.readFromClipboard() then 
    ; get the current Clipboard contents to myGraphic
    BIOLIFE.edit()                 ; start Edit mode on the table
    BIOLIFE.Graphic = myGraphic    ; write the bitmap to the field
    BIOLIFE.endEdit()              ; end Edit mode 
  endIf
endIf
endMethod



readFromFile method
Reads a graphic from a file.

Syntax
readFromFile ( const fileName String ) Logical
Description
readFromFile reads a graphic from a disk file specified in fileName. readFromFile returns True if the fileName 
name exists and contains a graphic format that can be imported; otherwise, it returns False. Corel Paradox can 
import the following graphic formats:
· bitmap (BMP)
· encapsulated Postscript (EPS)
· graphic interchange format (GIF)
· Paintbrush (PCX)
· tagged information file format (TIF)
 Example

{button ,AL(`OPAL_TYPE_GRAPHIC;OPAL_METH_GRRCLIP;OPAL_METH_GRWFILE;',0,"Defaultoverview",)}
Related Topics



readFromFile example
The following example assumes that a form contains a button named getChess and an unbound graphic field 
named bitmapField. The pushButton method for getChess attempts to read the bitmap file CHESS.BMP from 
the C:\WINDOWS folder and stores CHESS.BMP in the chessBmp variable. If readFromFile is successful, 
chessBmp is written to the bitmapField object.
; getChess::pushButton
method pushButton(var eventInfo Event)
var 
  chessBmp Graphic 
endVar  
; get the bitmap chess.bmp from the C:\Windows folder,
; and write it to the bitmapField graphic 
if chessBmp.readFromFile("c:\\windows\\chess.bmp") then
  bitmapField = chessBmp
endIf
endMethod



writeToClipboard method
Writes a bitmap to the Clipboard.

Syntax
writeToClipboard ( ) Logical

Description
writeToClipboard writes a bitmap to the Clipboard. writeToClipboard returns True if successful; otherwise, it 
returns False. Formats copied to the Clipboard can be bitmap (BMP) or device independent bitmap (DIB).
 Example

{button ,AL(`OPAL_TYPE_GRAPHIC;OPAL_METH_GRWFILE;OPAL_METH_GRRCLIP;',0,"Defaultoverview",)}
Related Topics



writeToClipboard example
The following example assumes that a form contains a button named getChessToClip and a bitmap field named 
bitmapField. The pushButton method for getChessToClip stores the value of bitmapField to chessBmp and then 
writes chessBmp to the Clipboard.
; getChessToClip::pushButton
method pushButton(var eventInfo Event)
var 
   chessBmp Graphic 
endVar  
; get the bitmap from the bitmapField,
; and write it to the Clipboard 
if NOT bitmapField.isblank() then
  chessBmp = bitmapField
  chessBmp.writeToClipboard()
endif
endMethod



writeToFile method
Writes a bitmap to a file.

Syntax
writeToFile ( const fileName String ) Logical
Description
writeToFile writes a bitmap to a disk file specified in fileName. If fileName does not specify a path, this method 
writes to the working directory (:WORK:). writeToFile returns True if the file specified can be created; otherwise,
it returns False.
 Example

{button ,AL(`OPAL_TYPE_GRAPHIC;OPAL_METH_GRWCLIP;',0,"Defaultoverview",)} Related Topics



writeToFile example
The following example assumes that a form contains a button named writeChessToFile and a bitmap named 
bitmapField. The pushButton method for writeChessToFile stores the value of bitmapField to chessBmp and 
then writes chessBmp to a file named CHESS1.BMP in the working directory.
; writeChessToFile::pushButton
method pushButton(var eventInfo Event)
var 
   chessBmp Graphic 
endVar  
; get the bitmap from the bitmapField,
; and write it to the Clipboard 
if NOT bitmapField.isblank() then
  chessBmp = bitmapField
  chessBmp.writeToFile("chess1.bmp")
endif
endMethod



KeyEvent type
A KeyEvent object gets and sets information about keystroke events.
The following built-in event methods are triggered by the KeyEvents keyChar and keyPhysical.
The KeyEvent type includes several derived methods from the Event type.
Methods for the KeyEvent type

Event KeyEvent
errorCode char
getTarget charAnsiCode
isFirstTime isAltKeyDown
isPreFilter isControlKeyDown
isTargetSelf isFromUI
reason isShiftKeyDown
setErrorCod setAltKeyDown

setReason setChar
setControlKeyDown
setShiftKeyDown
setVChar
setVCharCode
vChar
vCharCode

 Print related ObjectPAL methods and examples



char method
Returns the character associated with a keystroke.

Syntax
char ( ) String

Description
char returns the character associated with a keystroke. For example, if you type a, char returns a. If you press 
SHIFT + A, char returns A. If a keystroke results in an unprintable character, char returns an empty string ("").
char is the easiest way to check for an alphanumeric keystroke when case matters. If case doesn't matter, use 
vChar to test against the string value of a virtual key code. For example, if it matters whether the user presses a
lowercase a or an uppercase A, use char to return the string value of the character pressed, and compare it to a 
or A. If you want to find out if either a or A was pressed, use vChar and compare it to A (the virtual key code 
string for either a lowercase a or an uppercase A).
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KECHARANSICODE;OPAL_METH_KESCHA;OPAL_METH_K
EVCHA;OPAL_METH_STANSICODE;OPAL_METH_STCHRTOKEYNAME;OPAL_METH_STTOANSI;OPAL_METH_S
TTOOEM;',0,"Defaultoverview",)} Related Topics



char example
The following example displays the character typed into a field object as a message at the bottom of the screen. 
The code is attached to a field object's built-in keyChar method.
; thisField::keyChar
method keyChar(var eventInfo KeyEvent)
  doDefault                  ; put character in the field
  message(eventInfo.char())  ; then display character as a message
endMethod



charAnsiCode method
Returns the ANSI value associated with a keystroke.

Syntax
charAnsiCode ( ) SmallInt

Description
charAnsiCode returns an integer that represents the ANSI value associated with a keystroke. For example, if 
you type a, charAnsiCode returns 97. If you press SHIFT + A, charAnsiCode returns 65. charAnsiCode works 
with unprintable characters as well. For example, if you press ENTER, charAnsiCode returns 13.
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KECHAR;OPAL_METH_KEVCHA;OPAL_METH_KESVCH;OP
AL_METH_STANSICODE;OPAL_METH_STCHRTOKEYNAME;OPAL_METH_STTOANSI;OPAL_METH_STTOOEM;',
0,"Defaultoverview",)} Related Topics



charAnsiCode example
The following example beeps when a user presses BACKSPACE or CTRL + H. This code is attached to a field 
object's built-in keyPhysical method.
; thisField::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
if eventInfo.charAnsiCode() = 8 then  ; if user presses CTRL + H or BACKSPACE
  beep()                             ; make a sound
endif
endMethod



isAltKeyDown method
Reports whether ALT was held down during a KeyEvent.

Syntax
isAltKeyDown ( ) Logical

Description
isAltKeyDown returns True if ALT was held down at the time a KeyEvent occurred; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KEICKD;OPAL_METH_KEISKD;OPAL_METH_KESETALTKEY
DOWN;',0,"Defaultoverview",)} Related Topics



isAltKeyDown example
The following example assumes a form has a box named boxOne. When the user presses ALT + C, the 
keyPhysical method for the form changes the color of boxOne. This code is attached to a form's keyPhysical 
method
; thisForm::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
if eventInfo.isPreFilter()
  then
    ;code here  executes for each object in form

    if eventInfo.isAltKeyDown() AND    ; if user presses ALT + C
       eventInfo.vChar() = "C" then
       disableDefault                  ; block normal processing
       ; alternate a boxOne's color between red and blue
       boxOne.color = iif(boxOne.color = Red, Blue, Red)
    endif

  else
    ;code here executes just for form itself
endif
endMethod



isControlKeyDown method
Reports whether CTRL was held down during a KeyEvent.

Syntax
isControlKeyDown ( ) Logical

Description
isControlKeyDown returns True if CTRL was held down at the time a KeyEvent occurred; otherwise, it returns 
False.
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KESETCONTROLKEYDOWN;OPAL_METH_KEISALTKEYDO
WN;OPAL_METH_KEISKD;',0,"Defaultoverview",)} Related Topics



isControlKeyDown example
See the setControlKeyDown example.



isFromUI method
Reports whether an event was generated by the user interacting with Corel Paradox.

Syntax
isFromUI ( ) Logical

Description
isFromUI reports whether a KeyEvent was generated either by the user interacting with Corel Paradox or 
internally (e.g., by an ObjectPAL statement). This method returns True only for the first KeyEvent generated by a 
keystroke; for subsequent events and actions, it returns False.
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_EVISPREFILTER;',0,"Defaultoverview",)} Related 
Topics



isFromUI example
The following example shows how to put one of two messages on the Status Bar depending on whether a 
character is put in a field by a user or by ObjectPAL. This method returns True for user actions (including 
sendKeys, which mimics user input). It returns False with all other ObjectPAL methods, including keyPhysical.
The following code is attached to the pushButton method of a button named btnAutoFill. This method sends 
the character a to the field fldPassword:
; btnAutofill :: pushButton
method pushButton(var eventInfo Event)
   fldPassword.keyPhysical(97, 97, Shift)   ; send an "a"
endMethod

The following code is attached to the keyPhysical method of a field named fldPassword. This method sends one
of two messages depending on whether the user typed in a character or used the btnAutofill button:
;fldPassword :: keyPhysical
method keyPhysical(var eventInfo KeyEvent)
   if eventInfo.isFromUI() then
      message("Try using the autofill button.")
   else
      message("Automatically typing value.")
   endIf
endMethod



isShiftKeyDown method
Reports whether SHIFT was held down during a KeyEvent.

Syntax
isShiftKeyDown ( ) Logical

Description
isShiftKeyDown returns True if SHIFT was held down at the time a KeyEvent occurred; otherwise, it returns 
False.
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KESSKD;OPAL_METH_KEISALTKEYDOWN;OPAL_METH_K
EICKD;',0,"Defaultoverview",)} Related Topics



isShiftKeyDown example
See the setShiftKeyDown example.



setAltKeyDown method
Simulates pressing and holding ALT during a KeyEvent.

Syntax
setAltKeyDown ( const yesNo Logical )

Description
setAltKeyDown adds information about the state of ALT to a KeyEvent. You must specify Yes or No. Yes means 
ALT was pressed during a KeyEvent; No means ALT was not pressed.
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KEISALTKEYDOWN;OPAL_METH_KESETCONTROLKEYDO
WN;OPAL_METH_KESSKD;',0,"Defaultoverview",)} Related Topics



setAltKeyDown example
The following example assumes a form has a box named boxOne. When the user presses ALT + C, the 
keyPhysical method for the form changes the color of boxOne. This code is attached to a form's keyPhysical 
method:
; thisForm::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
    if eventInfo.isAltKeyDown() and    ; if user presses ALT + C
       eventInfo.vChar() = "C" then
       disableDefault                  ; block normal processing
       ; alternate a boxOne's color between red and blue
       boxOne.color = iif(boxOne.color = Red, Blue, Red)
    endif
  else
    ; code here executes just for form itself
endif
endMethod

To simulate pressing ALT + C, the code for this method creates a KeyEvent variable and sets its virtual key 
character to C and sets the ALT key down.
; sendAltC::pushButton
method pushButton(var eventInfo Event)
var
  ke KeyEvent
endVar
ke.setVChar("C")             ; set the character to C
ke.setAltKeyDown(Yes)        ; set the ALT key state to pressed
thisForm.keyPhysical(ke)     ; send off the event
endMethod



setChar method
Specifies an ANSI character for a KeyEvent.

Syntax
setChar ( const char String )

Description
setChar sets a KeyEvent to have an ANSI character based on the value of char, where char evaluates to single 
character string (e.g., a).
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KESVCH;OPAL_METH_KESETVCHARCODE;OPAL_METH_S
TTOOEM;OPAL_METH_STCHR;OPAL_METH_STCHROEM;OPAL_METH_STKEYNAMETOCHR;OPAL_METH_STTO
ANSI;',0,"Defaultoverview",)} Related Topics



setChar example
The following example attaches code to a field's built-in keyChar method. The keyChar method for fieldOne 
converts each space to an underscore as the user types characters into the field.
; thisField::keyChar
method keyChar(var eventInfo KeyEvent)
  if eventInfo.Char() = " " then  ; when user enters a space
    eventInfo.setChar("_")        ; convert it to underscore
  endif                           ; process other keystrokes normally
endMethod



setControlKeyDown method
Simulates pressing and holding CTRL during a KeyEvent.

Syntax
setControlKeyDown ( const yesNo Logical )

Description
setControlKeyDown adds information about the state of CTRL to eventInfo for a KeyEvent. You must specify 
Yes or No. Yes means CTRL was pressed during a KeyEvent; No means CTRL was not pressed.
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KEICKD;OPAL_METH_KESETALTKEYDOWN;OPAL_METH_
KESSKD;',0,"Defaultoverview",)} Related Topics



setControlKeyDown example
The following example assumes a form has a box named boxOne. When the user presses CTRL + C, the 
keyPhysical method for the form changes the color of boxOne. This code is attached to a form's keyPhysical 
method:
; thisForm::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
if eventInfo.isPreFilter() then
  ; code here executes for each object in form
  if eventInfo.isControlKeyDown() and   ; if user presses CTRL + C
    eventInfo.vChar() = "C" then
    disableDefault                      ; block normal processing
    ; alternate color of boxOne between red and blue
    boxOne.color = iif(boxOne.color = Red, Blue, Red)
  endif
else
  ; code here executes just for form itself
endif
endMethod

To simulate CTRL + C, the code for this method creates a KeyEvent variable and sets its virtual key character to 
C and sets the CTRL key down.
; sendCTRLC::pushButton
method pushButton(var eventInfo Event)
var
  ke KeyEvent
endVar
ke.setChar("C")              ; set the character to C
ke.setControlKeyDown(Yes)    ; set the CTRL key state to pressed
thisForm.keyPhysical(ke)     ; send off the event
endMethod



setShiftKeyDown method
Simulates pressing and holding SHIFT during a KeyEvent.

Syntax
setShiftKeyDown ( const yesNo Logical )

Description
setShiftDown adds information about the state of SHIFT to a KeyEvent. You must specify Yes or No. Yes means 
SHIFT was pressed and held; No means SHIFT wasn't pressed.
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KEISKD;OPAL_METH_KESETALTKEYDOWN;OPAL_METH_
KESETCONTROLKEYDOWN;',0,"Defaultoverview",)} Related Topics



setShiftKeyDown example
The following example assumes a form has a box named boxOne. When the user presses SHIFT + C, the 
keyPhysical method for the form changes the color of boxOne. This code is attached to a form's keyPhysical 
method:
; thisForm::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
if eventInfo.isPreFilter() then
  ; code here executes for each object in form
  if eventInfo.isShiftKeyDown() and    ; if user presses CTRL + C
    eventInfo.vChar() = "C" then
    disableDefault                     ; block normal processing
    ; alternate color of boxOne between red and blue
    boxOne.color = iif(boxOne.color = Red, Blue, Red)
  endif
else
  ; code here executes just for form itself
endif
endMethod

To simulate pressing SHIFT + C, the code for this method creates a KeyEvent variable, sets its virtual key 
character to C, and sets the SHIFT key down.
; sendShiftC::pushButton
method pushButton(var eventInfo Event)
var
  ke KeyEvent
endVar
ke.setVChar("C")           ; set the character to C
ke.setShiftKeyDown(Yes)    ; set the SHIFT key state to pressed
thisForm.keyPhysical(ke)   ; send off the event
endMethod



setVChar method
Specifies a Windows virtual character for a KeyEvent.

Syntax
setVChar ( const char String )

Description
setVChar specifies in char a one-character string for a KeyEvent. Use setVChar with an uppercase letter or a 
Keyboard constant to specify a code string for a single letter, but use the constant as a quoted string instead of 
an integer value. In the following example, the code statement specifies a tab character:
eventInfo.setVChar("VK_TAB")

The virtual character code string for any letter is the uppercase letter. For example, the virtual character code 
string for the letter k is K (uppercase only).
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KESCHA;OPAL_METH_KESETVCHARCODE;OPAL_METH_S
TCHR;OPAL_METH_STCHROEM;',0,"Defaultoverview",)} Related Topics



setVChar example
See the setAltKeyDown example or the String type chrToKeyName.



setVCharCode method
Specifies a Windows virtual character for a KeyEvent.

Syntax
setVCharCode ( const VK_Constant SmallInt )

Description
setVCharCode uses a Keyboard constant in VK_Constant to specify a Windows virtual character for a KeyEvent.
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KESCHA;OPAL_METH_KESVCH;OPAL_METH_STKEYNAM
ETOVKCODE;',0,"Defaultoverview",)} Related Topics



setVCharCode example
The following example attaches code to a form's built-in keyPhysical method. When the user types ?, this code 
invokes the Corel Paradox Help system:
; thisForm::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
    if eventInfo.char() = "?" then   ; if user types ?
      eventInfo.setVCharCode(VK_HELP)  ; invoke built-in help system
    endif
  else
    ; code here executes just for form itself
endif
endMethod



vChar method
Returns a Windows virtual character.

Syntax
vChar ( ) String

Description
vChar returns a Windows virtual key name as a string. Use Keyboard constants to find out which Windows virtual
character was returned, but use the constants as quoted strings instead of integer values. In the following 
example, the statements are equivalent (they both beep when you press Return). The first statement uses 
vCharCode and the constant VK_RETURN to test for an integer value, the second statement uses vChar and 
VK_RETURN to test for a string value.
if vCharCode = VK_RETURN then beep() endIf
if vChar = "VK_RETURN" then beep() endIf
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KECHAR;OPAL_METH_STANSICODE;OPAL_METH_STCHR
TOKEYNAME;OPAL_METH_STTOANSI;OPAL_METH_STTOOEM;',0,"Defaultoverview",)} Related Topics



vChar example
In the following example, assume a form contains a box named boxOne. When the user presses a movement 
key, this code moves boxOne in increments of 100 twips. If SHIFT is held down in combination with a movement 
key, boxOne moves 1000 twips. Because vChar returns the virtual key name as a string, this code must 
compare key names against string values such as VK_LEFT. This code is attached to a form's built-in 
keyPhysical method:
; thisForm::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
var
  kp      String        ; key name of the keystroke
  posPt   Point         ; x and y position of the box object
  boxStep SmallInt      ; number of Points to move the box
  x, y    LongInt       ; coordinates of the box object
endVar

if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
    disableDefault                   ; don't execute built-in code

    kp = eventInfo.vChar()           ; load kp with vChar string
    posPt = boxOne.position          ; posPt stores current position of box
    x = posPt.x()                    ; x stores the horizontal position
    y = posPt.y()                    ; y stores the vertical position

    ; if the SHIFT key was held down when the movement key was pressed,
    ; assign a large number to boxStep, else, a small number
    boxStep = iif(eventInfo.isShiftKeyDown(), 1000, 100)

    ; this block assigns x or y variables according to
    ; the key combination that the user presses
    switch
      case kp = "VK_LEFT"  : x = x - boxStep
      case kp = "VK_RIGHT" : x = x + boxStep
      case kp = "VK_UP"    : y = y - boxStep
      case kp = "VK_DOWN"  : y = y + boxStep
      otherwise            : enableDefault    ; let built-in code execute
    endswitch

    ; now move the box to location specified by x and y variables,
    ; and display the virtual key name associated with the keystroke
    boxOne.position = Point(x,y)
    message("Value of vChar() was " + kp)

  else
    ;code here executes just for form itself
endif
endMethod



vCharCode method
Returns the integer value of a Windows virtual character.

Syntax
vCharCode ( ) SmallInt

Description
vCharCode returns the integer value of a Windows virtual character. Use Keyboard constants to find out which 
Windows virtual character the integer value represents.
 Example

{button ,AL(`OPAL_TYPE_KEYEVENT;OPAL_METH_KEVCHA;',0,"Defaultoverview",)} Related Topics



vCharCode example
For the following example, assume a form has a field named thisField. When the user types a value in thisField 
and presses Return, the code creates and executes a query based on the value of the field. This code is attached
to the built-in keyPhysical method for thisField.
; thisField::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
var
  cName String      ; used as tilde var
  qVar Query          ; the query statement
  tv TableView      ; tableView handle
endVar

if eventInfo.vCharCode() = VK_RETURN then  ; if user presses Enter
  cName = self.value                           ; store value of field
  qVar = Query

         c:\Corel\Suite8\Paradox\samples\biolife.db|Common Name |Species Name|
                                     |check ~cName|check|

       endQuery

  ; run query, write contents to myFish table
  qVar.executeQBE("myFish.db")
  tv.open("myFish")              ; view myFish view
endif
endMethod



Library type
A library is a Corel Paradox object that stores custom methods, custom procedures, variables, constants, and 
user-defined data types. Libraries are used to store and maintain frequently-used routines and to share custom 
methods and variables among several forms.
In many ways, working with a library is like working with a form. Like a form, a library has built-in event methods.
You add code to a library, just as you do to a form, by using the Object Explorer and the ObjectPAL Editor. 
(However, you can't place design objects in the library.) As with a form, you can open Editor windows to declare 
custom ObjectPAL methods, procedures, variables, constants, data types, and external routines. 
The Library type includes several derived methods from the Form type.
Methods for the Library type

Form Library
deliver close
isCompileWit create

load enumSource
methodDelet enumSourceToFile

methodGet execMethod
methodSet methodEdit
save open
setCompileW

   Print related ObjectPAL methods and examples  



close method
Closes a library.

Syntax
close ( )

Description
close closes a library and ends the association between a Library variable and the underlying library file.
 Example

{button ,AL(`OPAL_TYPE_LIBRARY;OPAL_METH_LBOPEN;',0,"Defaultoverview",)} Related Topics



close example
The following example declares a Library variable named lib, and calls open to associate lib with the library 
TOOLS.LSL. The example executes a method from that library and then calls close to end the association 
between the variable and the library. Another call to open associates lib with the library KIT.LSL to make 
methods in that library available.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  lib Library          ; declare a Library variable
endVar

lib.open("TOOLS.LSL")  ; associate lib with the library TOOLS.LSL
lib.doThis()           ; execute a method from the library
lib.close()            ; end the association between lib and the library

lib.open("KIT.LSL")    ; associate lib with another library
lib.doThat()           ; execute a method from the library

endMethod



create method
Creates a library.

Syntax
create ( ) Logical

Description
create creates a blank library and leaves it in a design window. You can use methodSet (derived from the Form
type) to alter or add methods in the new library.
 Example

{button ,AL(`OPAL_TYPE_LIBRARY;OPAL_METH_LBOPEN;',0,"Defaultoverview",)} Related Topics



create example
The following example uses create to make a new library, adds a custom method to it with methodSet, save 
the library with save and then close the library.
; btnCreateLibrary :: pushButton
method pushButton(var eventInfo Event)
   var
      lib   Library
   endVar

   ;Create library.
   lib.create()
   lib.methodSet("cmMessage", "method cmMessage()
       msgInfo(\"From new library\", \"Hello World!\") endMethod")
   lib.save("library")
   lib.close()

endmethod



enumSource method
Writes the code from a library to a Corel Paradox table.

Syntax
enumSource ( const tableName String [ , const recurse Logical ] )

Description
enumSource lists, in the Corel Paradox table specified in tableName, all the custom code (e.g., methods, 
procedures, and variables) stored in a library. If the table does not exist, Corel Paradox creates it in the working 
directory; if the table does exist, information is appended to the table.
The structure of the table is:
Field name Type Size
Object A 128
MethodName A 128
Source M  64
The Object field stores the UIObject name of the library, the MethodName field stores the name of the method, 
procedure, or window (Var, Const, Proc, Type, or Uses), and the Source field stores the corresponding source 
code.
This method also applies to the Form type. For forms, the optional argument recurse specifies whether to include
overridden methods for all objects contained by the form. Because a Library does not contain objects, the 
recurse argument is not meaningful in the context of a Library.
You must open or load the library before calling this method.
 Example

{button ,AL(`OPAL_TYPE_LIBRARY;OPAL_METH_LBENUMSOURCETOFILE;OPAL_METH_LBOPEN;',0,"Defaul
toverview",)} Related Topics



enumSource example
The following example declares a Library variable named lib, calls open to associate lib with the library 
TOOLS.LSL, and calls enumSource to list the code from the library to a Corel Paradox table named LIBSRC.DB:
; srcToTable::pushButton
method pushButton(var eventInfo Event)
var 
  lib Library 
endVar

if lib.open("TOOLS.LSL", PrivateToForm) then 

  ; write contents of TOOLS.LSL to LIBSRC.DB--
  ; goes to :WORK: by default
  lib.enumSource("LIBSRC.DB")

else
  msgStop("TOOLS.LSL", "Could not open library.")
endIf

endMethod



enumSourceToFile method
Writes the code from a library to a text file.

Syntax
enumSourceToFile ( const fileName String [ , const recurse Logical ] )

Description
enumSourceToFile lists all the custom code (e.g., methods, procedures, and variables) stored in a library to the
text file specified in fileName. If the file does not exist, Corel Paradox creates it. If the file does exist, Corel 
Paradox overwrites it without asking for confirmation. If fileName contains no path or alias, the file is created in 
the working directory.
In the text file, comment lines are used to identify and mark the beginning and end of each method, procedure, 
or variable. The following example shows the code for a library's built-in open method:
;|BeginMethod|#Library1|open|
method open(var eventInfo Event)
   var
      myMsgTCursor   Tcursor
   endVar
   if not myMsgCursor.open("Msghelp.db") then
      msgStop("Error", "Couldn't open MsgHelp.db")
      fail()
   endIf
endMethod
;|EndMethod|#Library1|open|

This method also applies to the Form type. For forms, the optional argument recurse specifies whether to include
overridden methods for all objects contained by the form. Because a Library does not contain objects, the 
recurse argument is not meaningful in the context of a Library.
You must call open or load the library before calling this method.
 Example

{button ,AL(`OPAL_TYPE_LIBRARY;OPAL_METH_LBENUMSOURCE;OPAL_METH_LBOPEN;',0,"Defaultovervi
ew",)} Related Topics



enumSourceToFile example
The following example declares a Library variable named lib, calls open to associate lib with the library 
TOOLS.LSL, and calls enumSourceToFile to list the code from the library to a text file named LIBSRC.TXT.
; getSource::pushButton
method pushButton(var eventInfo Event)
var 
  lib Library 
endVar

if lib.open("TOOLS.LSL", PrivateToForm) then 

  ; write contents of TOOLS.LSL to LIBSRC.TXT--
  ; goes to :PRIV: by default
  lib.enumSourceToFile("LIBSRC.TXT")

else
  msgStop("TOOLS.LSL", "Could not open library.")
endIf

endMethod



execMethod method
Calls a custom method that takes no arguments.

Syntax
execMethod ( const methodName String )

Description
execMethod calls the custom method indicated by the string methodName. The method named in 
methodName takes no arguments. execMethod allows you to call a library method based on the contents of a 
variable, which means the compiler does not know the method to call until run time.
 Example

{button ,AL(`OPAL_TYPE_LIBRARY;OPAL_METH_LBOPEN;',0,"Defaultoverview",)} Related Topics



execMethod example
The following example creates an array of three items, each of which is the name of a custom method in a 
library. The code opens the library and calls execMethod for each item in the array:
var
   lib Library
   libMethods Array[3] String
   i SmallInt
endVar

libMethods[1] = "doThis"
libMethods[2] = "doThat"
libMethods[3] = "doOther"

if lib.open("tools.lsl", GlobalToDeskTop) then
   for i from 1 to libMethods.size()
      lib.execMethod(libMethods[i])
   endFor
else
   msgStop("TOOLS.LSL", "Could not open library.")
endIf



methodEdit method
Opens a library's method in an Editor window.
Syntax

methodEdit (const methodName String) Logical

Description
methodEdit opens the method specified by methodName in an Editor window. If you specify a method that 
doesn't exist, methodEdit will create it for you. methodEdit fails if you try to open a method that is running.

 Example
{button ,AL(`OPAL_TYPE_LIBRARY;OPAL_METH_FOMETHODGET;OPAL_METH_FOMETHODSET;OPAL_METH_
FOMETHODDELETE;;',0,"Defaultoverview",)} Related Topics



methodEdit example
The following example opens the library's testMethod method in an editor window: 

method pushButton(var eventInfo Event)
var 

MyLib  library
endvar
MyLib.load("Main.lsl")
MyLib.methodEdit("testMethod")
endMethod



open method
Associates a Library variable with a library and makes the library code available.

Syntax
open ( const libraryName String [ , const libScope SmallInt ] ) Logical

Description
open associates a Library variable with a library and makes the library code, variables, constants, and type 
declarations available to the form. Variables declared in the library can be kept private to the form, or they can 
be shared with other forms and libraries that have opened this library, depending on the value of libScope. 
ObjectPAL defines the following two LibraryScope constants to specify the scope of variables declared in the 
library: 
· PrivateToForm specifies that each form that opens the library has its own copy of the variables.
· GlobalToDesktop specifies that every form in the desktop (Corel Paradox session) that opens the library shares 

the variables declared in the library.
To open a library and make its variables available to every form that opens the library in the current session of 
Corel Paradox, use the constant GlobalToDesktop. The following example opens the library MYLIB.LSL:
lib.open("myLib.lsl", GlobalToDesktop)

For two or more forms to share the same library, each form must open the library global to the desktop, and 
each form must have a Uses window that declares which library routines to use. This level of scope is useful in 
multiform applications because it allows several forms access to the same custom methods and allows the forms
to share the same global variables.
A library can be opened private to the form in one form and global to the desktop in another form. Corel Paradox 
will load a new instance of the library, if necessary.
By default, a library opens global to the desktop. The following statements are equivalent:
lib.open("myLib.lsl") ; these statements are equivalent
lib.open("myLib.lsl", GlobalToDesktop)
 Example

{button ,AL(`OPAL_TYPE_LIBRARY;OPAL_METH_LBCLOSE;',0,"Defaultoverview",)} Related Topics



open example
The following example shows how two forms can open a library global to the desktop and share the library. The 
following code is attached to a form's built-in open method, and opens libOne private to the form. libOne cannot
be shared. libTwo is opened global to the desktop and can be shared. libOne and libTwo are library variables that
have been declared in the var block of the form. 
; formOne::open
method open(var eventInfo Event)

if eventInfo.isPreFilter()
   then
   ; code here executes for each object in the form
else
   ; code here executes just for the form itself

   libOne.open("TOOLS.LSL", PrivateToForm)   ; no sharing variables
                                             ; with other forms
   libTwo.open("KIT.LSL", GlobalToDesktop)   ; can be shared
                                             ; with other forms
endIf
endMethod

The following code is attached to another form's built-in open method. This code calls open to open the library 
KIT.LSL global to the desktop. This form and the previous form can now share KIT.LSL. kitLib is a library variable 
declared in the var block of the form. 
; formTwo::open
method open(var eventInfo Event)

if eventInfo.isPreFilter()
   then
   ; code here executes for each object in the form
else
   ; code here executes just for the form itself
   kitLib.open("KIT.LSL", GlobalToDesktop) ; can be shared with other forms

endIf
endMethod



Logical type
Logical variables have two possible values: True or False. You can use the ObjectPAL constants Yes or On in place 
of True, and use No or Off in place of False.
A Logical variable occupies 1 byte of storage. In order of precedence, the logical operators are NOT, AND, and 
OR.
Logical variables often answer questions about other objects and operations, for example:
· Did that statement execute successfully?
· Is that table empty?
· Is that form displayed as an icon?
The Logical type includes several derived methods from the AnyType type.
Methods for the Logical type

AnyType Logical
blank logical
dataType
isAssigned
isBlank
isFixedType
view

   Print related ObjectPAL methods and examples   



logical procedure
Casts a value as type Logical.

Syntax
logical ( const value AnyType ) Logical
Description
logical casts value to the data type Logical. If value is a numeric data type, non-zero values evaluate to True 
and zero evaluates to False. If value is a string, it must evaluate to "True" or "False." (However, you can use True 
or False without the quotation marks.) ObjectPAL also provides Logical constants: On and Yes for True and Off and
No for False.
 Example

{button ,AL(`OPAL_TYPE_LOGICAL;',0,"Defaultoverview",)} Related Topics



logical example
In the following example, the pushButton method of a button named showLogical creates a string, casts it to a 
Logical type, then displays the result:
; showLogical::pushButton
method pushButton(var eventInfo Event)
var 
  myVal     String
  theResult Logical
endVar
myVal = "True"             ; set a String of True
theResult = logical(myVal) ; and cast it to a Logical type
theResult.view()           ; show the result--Title displays Logical
endMethod



LongInt type
LongInt values are long integers; that is, they can be represented by a long series of digits. A LongInt variable 
occupies 4 bytes. ObjectPAL converts LongInt values to range from -2,147,483,648 to 2,147,483,647. The 
following example attempts to assign a value outside of this range to a LongInt variable causes an error:
var
   x, y, z LongInt
endVar

x = 2147483647 ; The upper limit value for a LongInt variable.
y = 1
z = x + y      ; This statement causes an error.
When ObjectPAL performs an operation on LongInt values, it expects the result to be a LongInt. That's why the 
addition operation in the previous example causes an error: the result is too large to be a LongInt. To work with a 
boundary value (in either the positive or negative direction), you must convert the value to a type that can 
accommodate it. In the following example, ObjectPAL converts one LongInt to a Number before doing the 
addition, and the statement succeeds. This example also assigns the result to a Number variable (which can 
handle the large value), instead of assigning it to a LongInt variable (which could not).
var
   x, y LongInt
   z    Number ; Declare z as a Number so it can hold the result.
endVar

x = 2147483647 ; The upper limit value for a LongInt variable.
y = 1
z = Number(x) + y ; This statement succeeds.
 Note

· Run-time library methods defined for the Number type also work with LongInt variables. The syntax is the 
same, and the returned value is a number.

The following table displays the methods for the LongInt type, including several derived methods from the 
Number and AnyType types.
Methods for the LongInt type

AnyType Number LongInt
blank abs bitAND
dataType acos bitIsSet
isAssigned asin bitOR
isBlank atan bitXOR
isFixedType atan2 LongInt
view ceil

cos
cosh
exp
floor
fraction
fv
ln
log
max
min
mod
number
numVal
pmt
pow
pow10



pv
rand
round
sin
sinh
sqrt
tan
tanh
truncate

 Print related ObjectPAL methods and examples     



bitAND method
Performs a bitwise AND operation on two values.

Syntax
bitAND ( const value LongInt ) LongInt
Description
bitAND returns the result of a bitwise AND operation on value. bitAND operates on the binary representations 
of two integers and compares them one bit at a time. The truth table for bitAND is:
a b a bitAND b
0 0 0
1 0 0
0 1 0
1 1 1
 Example

{button ,AL(`OPAL_TYPE_LONGINT;OPAL_METH_LIBOR;OPAL_METH_LIBXOR;',0,"Defaultoverview",)} 
Related Topics



bitAND example
In the following example, the pushButton method for a button named andTwoNums takes two integers and 
performs a bitwise AND calculation on them. The result of the calculation is displayed in a dialog box.
; andTwoNums::pushButton
method pushButton(var eventInfo Event)
var 
  a, b LongInt 
endVar
a = 33333   ; binary 00000000 00000000 10000010 00110101
b = -77777  ; binary 11111111 11111110 11010000 00101111
a.bitAND(b) ; binary 00000000 00000000 10000000 00100101
msgInfo("The result of a bitAND b is:", a.bitAND(b)) 
; displays 32805
endMethod



bitIsSet method
Reports whether a bit is 1 or 0.

Syntax
bitIsSet ( const value LongInt ) Logical
Description
bitIsSet examines the binary representation of an integer and reports whether the value bit is 0 or 1. bitIsSet 
returns True if the bit specified is 1 and False if the bit is 0.
value is a number specified by , where n is an integer between 0 and 30. The exponent n corresponds to one 
less than the position of the bit to test (counting from the right). For example, to specify the third bit from the 
right, use 

.
 Examples

{button ,AL(`OPAL_TYPE_LONGINT;OPAL_METH_LIBAND;OPAL_METH_LIBOR;OPAL_METH_LIBXOR;',0,"Def
aultoverview",)} Related Topics



bitIsSet methods examples
Example1          Using pushButton
Example2         Using bitIsSet to display an integer as a binary number



bitIsSet example 1
In the following example, the pushButton method for a button named isABitSet, examines the values in two 
unbound field objects: whichBit and whatNum. whichBit contains the bit position (counting from the right) of the 
bit to test. whatNum contains the long integer to test.
The pushButton method uses whichBit to calculate the value of the position and assigns the result to bitNum. 
This method then checks Num to see if the bitNum bit is set, and displays the Logical result with a msgInfo 
dialog box:
; isABitSet::pushButton
method pushButton(var eventInfo Event)
var
  bitNum,
  Num      LongInt
endVar
; get the bit position number from the whichBit
; field and convert to multiple of 2
bitNum = LongInt(pow(2, whichBit - 1))
; get the number to test from the whatNum field 
Num = whatNum                  
; is the bit for value bitNum 1 in Num?
msgInfo("Is Bit Set?", Num.bitIsSet(bitNum))
endMethod



bitIsSet example 2
The following example illustrates how you can use bitIsSet to display a long integer as a binary number. The 
pushButton method for showBinary constructs a string of zeros and ones by testing each bit of a four-byte long 
integer. For readability, a blank is added to the string every 8 digits.
; showBinary::pushButton
method pushButton(var eventInfo Event)
var 
  binString  String    ; to construct the binary string
  Num        LongInt   
  i          SmallInt  ; for loop index
endVar
if NOT whatNum.isBlank() then
  Num = whatNum                ; get the number test from whatNum      
  binString = ""               ; initialize the string
  for i from 0 to 30
    if Num.bitIsSet(LongInt(pow(2, i))) then
      binString = "1" + binString    ; add a 1 to the front of the string
    else
      binString = "0" + binString    ; add a 0 to the front of the string
    endif
    if i = 7 OR i = 15 OR i = 23 then
      binString = " " + binString    ; add a space every 8 digits
    endif
  endfor 
  if Num < 0 then
    binString = "1" + binString      ; set the sign bit 
  else
    binString = "0" + binString
  endif
  ; show the number
  message("The binary equivalent is ", binString)
endif
endMethod



bitOR method
Performs a bitwise OR operation on two values.

Syntax
bitOR ( const value LongInt ) LongInt
Description
bitOR returns the result of a bitwise OR operation on value. bitOR operates on the binary representations of two
integers and compares them one bit at a time. Here is the truth table for bitOR:
a b a bitAND b
0 0 0
1 0 1
0 1 1
1 1 1
 Example

{button ,AL(`OPAL_TYPE_LONGINT;OPAL_METH_LIBAND;OPAL_METH_LIBXOR;',0,"Defaultoverview",)} 
Related Topics



bitOR example
In the following example, the pushButton method for a button named orTwoNums takes two integers and 
performs a bitwise OR calculation on them. The result of the calculation is displayed in a dialog box.
; orTwoNums::pushButton
method pushButton(var eventInfo Event)
var 
  a, b LongInt 
endVar
a = 33333  ; binary 00000000 00000000 10000010 00110101
b = -77777 ; binary 11111111 11111110 11010000 00101111
a.bitOR(b) ; binary 11111111 11111110 11010010 00111111
msgInfo("33333 OR -77777", a.bitOR(b)) ; displays -77249
endMethod



bitXOR method
Performs a bitwise XOR operation on two values.

Syntax
bitXOR ( const value LongInt ) LongInt
Description
bitXOR performs a bitwise XOR (exclusive OR) operation on value. bitXOR operates on the binary 
representations of two integers and compares them one bit at a time. Here is the truth table for bitXOR:
a b a bitXOR(b)
0 0 0
1 0 1
0 1 1
1 1 0
 Example

{button ,AL(`OPAL_TYPE_LONGINT;OPAL_METH_LIBAND;OPAL_METH_LIBOR;',0,"Defaultoverview",)} 
Related Topics



bitXOR example
In the following example, the pushButton method for a button named xorTwoNums takes two integers and 
performs a bitwise XOR calculation on them. The result of the calculation is displayed in a dialog box.
; xorTwoNums::pushButton
method pushButton(var eventInfo Event)
var 
  a, b LongInt 
endVar
a = 33333   ; binary 00000000 00000000 10000010 00110101
b = -77777  ; binary 11111111 11111110 11010000 00101111
a.bitXOR(b) ; binary 11111111 11111110 01010010 00011010
msgInfo("33333 XOR -77777", a.bitXOR(b)) ; displays -110054
endMethod



LongInt procedure
Casts a value as a LongInt.

Syntax
LongInt ( const value AnyType ) LongInt
Description
LongInt casts the data type of value to a long integer. If you convert from a more precise type (e.g., Number), 
precision may be lost.
 Example

{button ,AL(`OPAL_TYPE_LONGINT;OPAL_METH_ATVIEW;',0,"Defaultoverview",)} Related Topics



LongInt example
The following example assigns a number to x, casts x to LongInt, and assigns the result to l. Notice that the 
decimal precision of x is lost when it is cast as a LongInt and assigned to l.
; convertToInt::pushButton
method pushButton(var eventInfo Event)
var 
  x Number
  y LongInt 
endVar 
x = 12.34             ; give x a value
x.view()              ; view x, title of dialog will be "Number"
y = LongInt(x)        ; cast x as a LongInt and assign to y 
y.view()              ; show y, note that decimal places are lost 
                      ; displays 12 with "LongInt" as title of dialog         
endMethod



Memo type
Memos contain text and formatting data up to 512MB in Corel Paradox tables. Using Memo type methods 
readFromFile and writeToFile, you can transfer memos between forms (and reports), tables, and disk files.

You can also use the (=) operator to assign the value of a memo field to a Memo variable or a String variable. Note 
that there are no arithmetic or comparison operators for Memo variables.
If you assign a memo field to a String variable, you get only the memo text without any formatting. If you assign a 
memo field to a Memo variable, you get the text and the formatting.

The Memo type includes several derived methods from the AnyType type.
Methods for the Memo type

AnyType Memo
blank memo
dataType readFromClipboar

isAssigned readFromFile
isBlank readFromRTFFile
isFixedType writeToClipboard

writeToFile
writeToRTFFile

   Print related ObjectPAL methods and examples  



memo procedure
Casts a value as a Memo.

Syntax
memo ( const value AnyType [ , const value AnyType ] * ) Memo

Description
memo casts the expression value to a Memo. If you specify multiple arguments, this method will cast all of them
to Memos and concatenate them to one Memo.
 Example

{button ,AL(`OPAL_TYPE_MEMO;OPAL_METH_MMREADFROMCLIPBOARD;OPAL_METH_MMRFILE;OPAL_ME
TH_MMWRITETOCLIPBOARD;OPAL_METH_MMWFILE;',0,"Defaultoverview",)} Related Topics



memo example
The following example assumes that DOCFILES.DB exists and has an alpha field named Memo Name, a Date field
named Memo Date, and a formatted memo field named Memo Data. For this example, a form has unbound fields
named stringObject and memoObject and a button named getMemoData. The code attached to getMemoData's 
pushButton method defines a TCursor to locate a particular record in DocFiles. The code then casts and 
concatenates the contents of the three DocFiles fields to a String value and then to a Memo value. The value 
cast as a String is displayed in the stringObject object and the value cast as a Memo is displayed in the 
memoObject object. When the value is cast as a String, formatting information is not displayed in stringObject. 
When cast as a Memo, memoObject displays all formatting information.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar

if tc.open("DocFiles.db") then
  if tc.locate("Memo Name", "Project Notes") then

    ; this line casts data from three DOCFILES.DB fields as a String
    ; because this is cast as a String, the data that appears in stringObject 
    ; displays WITHOUT formatting 
    stringObject.value = string(tc."Memo Name", "\t",  
                                tc."Memo Date", "\n", tc."Memo Data")

    ; this line casts data from three DOCFILES.DB fields as a memo

    ; because this is cast as a MEMO, the data that appears in memoObject 
    ; displays with FORMATTED text 
    memoObject.value = memo(tc."Memo Name", "\t", 
                            tc."Memo Date", "\n", tc."Memo Data")

  else
    msgStop("Error", "Can't find Project Notes.")
  endif
else
  msgStop("Error", "Can't open DocFiles table.")
endif

endMethod



readFromClipboard method
Reads text from the Clipboard.

Syntax
readFromClipboard ( ) Logical

Description
readFromClipboard reads text from the Clipboard. readFromClipboard will attempt to read in Rich Text 
Format if the format is available in the Clipboard. Otherwise, text ( CF_TEXT ) will be read in. This method returns
True if successful and False if unsuccessful.
 Example

{button ,AL(`OPAL_TYPE_MEMO;OPAL_METH_MMMEMO;OPAL_METH_MMRFILE;OPAL_METH_MMWRITETO
CLIPBOARD;OPAL_METH_MMWFILE;',0,"Defaultoverview",)} Related Topics



readFromClipboard example
In the following example, a form has two buttons: readFromClipboard and writeToClipboard. The first button will 
read RTF formatted text from the Clipboard into a Memo variable that will then be stored in a table. The second 
button reads a memo value from a table and writes it to the Clipboard.
The following code is attached to the pushButton method for btnReadFromClipboard:
; btnReadFromClipboard::pushButton
method pushButton(var eventInfo Event)
var
   vrMemo  Memo
   tcMemo  TCursor
endVar

   ;// Open table to hold memos
   tcMemo.open("mymemos.db")
   tcMemo.edit()
   if vrMemo.readFromClipboard() then
      ;// Add a record to the table and insert the value
      tcMemo.insertRecord()
      tcMemo.MemoField = vrMemo
      tcMemo.unlockRecord()
   endIf
   tcMemo.close()

endMethod

The following code is attached to the pushButton method for btnWriteToClipboard:
; btnWriteToClipboard::pushButton
method pushButton(var eventInfo Event)
var
   vrMemo  Memo
   tcMemo  TCursor
endVar

   ;// Open table to which contains memos
   tcMemo.open("mymemos.db")
   ;// Make sure there is data in the table
   if tcMemo.nRecords() <> 0 then
      ;// Copy a value to the Memo variable
      vrMemo = tcMemo.MemoField
      ;// Write it out to the Clipboard
      vrMemo.writeToClipboard()
   endIf
   tcMemo.close()

endMethod



readFromFile method
Reads a memo from a file.

Syntax
readFromFile ( const fileName String ) Logical

Description
readFromFile reads a memo from a disk file specified in fileName. This method reads text only. It does not read 
the formatting of formatted memos.
 Example

{button ,AL(`OPAL_TYPE_MEMO;OPAL_METH_MMMEMO;OPAL_METH_MMREADFROMCLIPBOARD;OPAL_M
ETH_MMWRITETOCLIPBOARD;OPAL_METH_MMWFILE;',0,"Defaultoverview",)} Related Topics



readFromFile example
The following example reads the contents of a text file to a memo field in a table. This examples assumes that a 
table named PJNotes exists in the current directory, and has the following fields: ProjDate, a Date field, and 
ProjNotes, a Memo field. The pushButton method for a button named getFile opens, edits, and inserts a new 
record in the PJNotes table, fills the ProjDate field with the current date, and fills the ProjNotes field with text from
a file named NOTES.TXT.
; getFile::pushButton
method pushButton(var eventInfo Event)
var 
  MemoFile Memo 
  pTC      TCursor
endVar  

if pTC.open("pjNotes.db") then    ; open TCursor for PJNOTES.DB
  if MemoFile.readFromFile("notes.txt") then
    ; if memo file read was successful
    pTC.edit()                    ; edit PJNotes.DB table    
    pTC.insertRecord()            ; insert a new blank record
    pTC.ProjDate = today()        ; fill the ProjDate field 
    pTC.ProjNotes = MemoFile      ; write memo to ProjNotes field
    pTC.endEdit()                 ; end Edit mode
  endif
  pTC.close()                     ; close the TCursor
endIf
endMethod



writeToClipboard method
Writes a memo to the Clipboard.

Syntax
writeToClipboard ( ) Logical

Description
writeToClipboard writes a memo to the Clipboard. The formats copied to the Clipboard are text ( CF_TEXT ) and
Rich Text Format. writeToClipboard returns True if successful and False if unsuccessful.
 Example

{button ,AL(`OPAL_TYPE_MEMO;OPAL_METH_MMMEMO;OPAL_METH_MMREADFROMCLIPBOARD;OPAL_M
ETH_MMRFILE;OPAL_METH_MMWFILE;',0,"Defaultoverview",)} Related Topics



writeToClipboard example
In the following example, a form has two buttons: readFromClipboard and writeToClipboard. The first button will 
read Rich Text Format text from the Clipboard into a Memo variable that will then be stored in a table. The 
second button reads a memo value from a table and writes it out to the Clipboard.
The following code is attached to the pushButton method for btnReadFromClipboard:
; btnReadFromClipboard::pushButton
method pushButton(var eventInfo Event)
var
   vrMemo  Memo
   tcMemo  TCursor
endVar

   ;// Open table to hold memos
   tcMemo.open("mymemos.db")
   if vrMemo.readFromClipboard() then
      ;// Add a record to the table and insert the value
      tcMemo.insertRecord()
      tcMemo.MemoField = vrMemo
      tcMemo.unlockRecord()
   endIf
   tcMemo.close()

endMethod

The following code is attached to the pushButton method for btnWriteToClipboard:
; btnWriteToClipboard::pushButton
method pushButton(var eventInfo Event)
var
   vrMemo  Memo
   tcMemo  TCursor
endVar

   ;// Open table to which contains memos
   tcMemo.open("mymemos.db")
   ;// Make sure there is data in the table
   if tcMemo.nRecords() <> 0 then
      ;// Copy a value to the Memo variable
      vrMemo = tcMemo.MemoField
      ;// Write it out to the Clipboard
      vrMemo.writeToClipboard()
   endIf
   tcMemo.close()

endMethod



writeToFile method
Writes a memo to a file.

Syntax
writeToFile ( const fileName String ) Logical

Description
writeToFile writes a memo to a disk file specified in fileName. This method writes text only. It does not write the
formatting of formatted memos.
 Example

{button ,AL(`OPAL_TYPE_MEMO;OPAL_METH_MMMEMO;OPAL_METH_MMREADFROMCLIPBOARD;OPAL_M
ETH_MMRFILE;OPAL_METH_MMWRITETOCLIPBOARD;',0,"Defaultoverview",)} Related Topics



writeToFile example
The following example writes the contents of a memo to a text file. This example assumes that a table named 
PJNotes exists in the current directory, and has the following fields: ProjDate, a Date field, and ProjNotes, a Memo
field. The pushButton method for a button named writeFile opens the PJNotes table, locates a record with the 
current date, and writes the contents of the ProjNotes field for that record to a file named NOTETDAY.TXT.
; getFile::pushButton
method pushButton(var eventInfo Event)
var 
  MemoFile Memo 
  pTC      TCursor
endVar  

if pTC.open("pjNotes.db") then             ; open PJNotes.DB table
  if pTC.locate("ProjDate", today()) then
    if NOT (pTC.ProjNotes = blank()) then  ; check if memo is blank
      MemoFile = pTC.ProjNotes             ; if not, write to MemoFile var
      MemoFile.writeToFile("notetday.txt") ; write MemoFile to text file
    endif
  endif
  pTC.close()                              ; close the TCursor
endIf
endMethod



writeToRTFFile method
Writes a memo to an RTF file.

Syntax
writeToRTFFile ( const fileName String ) Logical

Description
writeToRTFFile writes a memo to an RTF disk file specified in fileName. This method writes text including the 
formatting of formatted memos.
 Example

{button ,AL(`OPAL_TYPE_MEMO;OPAL_METH_MMMEMO;OPAL_METH_MMREADFROMCLIPBOARD;OPAL_M
ETH_MMRFILE;OPAL_METH_MMWRITETOCLIPBOARD;',0,"Defaultoverview",)} Related Topics



writeToRTFFile example
See the example for writeToFile.



readFromRTFFile method
Reads a memo from an RTF file.

Syntax
readFromRTFFile ( const fileName String ) Logical

Description
readFromRTFFile reads a memo from a disk file specified in fileName. This method reads text including the 
formatting of formatted memos.
 Example

{button ,AL(`OPAL_TYPE_MEMO;OPAL_METH_MMMEMO;OPAL_METH_MMREADFROMCLIPBOARD;OPAL_M
ETH_MMWRITETOCLIPBOARD;OPAL_METH_MMWFILE;',0,"Defaultoverview",)} Related Topics



readFromRTFFile example
See the example for readFromFile.



Menu type
A Menu object is a list of items that appears in the application Menu Bar. When the user chooses an item from a 
menu, the text of that item is returned. Menus you build in ObjectPAL completely replace Corel Paradox's built-in 
event menus (but you can get them back using removeMenu).
By default, menus do not exist across forms; each form has its own menu system associated with it. If you create
a menu for a form, the menu appears only when that form is active. If you then open a second form, the second 
form uses the built-in event menus, not the menu you created for the first form. If you create a custom menu for 
each form, you can simulate context-sensitive menus in an application.
If you want two (or more) forms to display the same custom menu, set each form's StandardMenu property to 
Off. This instructs Corel Paradox to retain the current menu when the user moves from one form to another. You 
can use the StandardMenu property to construct a single menu system for an entire application.
 Note

· A typical application uses both Menu objects and PopUpMenu objects. For more information, see the 
PopUpMenu type.

Methods for the Menu type
addArray
addBreak
addPopUp
addStaticText
addText
contains
count
empty
getMenuChoiceAttribute
getMenuChoiceAttributeById
hasMenuChoiceAttribute
remove
removeMenu
setMenuChoiceAttribute
setMenuChoiceAttributeById
show

 Print related ObjectPAL methods and examples



addArray method
Appends elements of an array to a menu.

Syntax
addArray ( const items Array[ ] String )
Description
addArray appends items from an array to a menu. The array items are displayed from left to right across the 
Menu Bar. To create a drop-down menu or a cascading menu, use addPopUp.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUABRE;OPAL_METH_MUAPOP;OPAL_METH_MUASTA;OPAL_
METH_MUATEX;',0,"Defaultoverview",)} Related Topics



addArray example
The following example constructs and displays an application Menu Bar when a form opens. This could be the 
application's main menu. Throughout the application, the menu displayed here can be changed by methods for 
other objects.
; thisForm::open
method open(var eventInfo Event)
var
  mMenu            Menu     ; main menu
  mmItems Array[3] String   ; main menu items
endVar

if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself
    ;menu appears when the form first opens
    mmItems[1] = "File"        ; fill the array
    mmItems[2] = "Edit"
    mmItems[3] = "Window"
    mMenu.addArray(mmItems)    ; same as mMenu.addText(...) 3 times
    mMenu.show()               ; show the menu
endif
endMethod



addBreak method
Starts a new row in a menu.

Syntax
addBreak ( )
Description
addBreak starts a new row in a menu. addBreak lets you explicitly wrap large menu constructs to two or more 
rows.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUAARR;OPAL_METH_MUAPOP;OPAL_METH_MUASTA;OPAL_
METH_MUATEX;',0,"Defaultoverview",)} Related Topics



addBreak example
The following example constructs and displays an application Menu Bar when a form opens. It uses addBreak to
add a second row on the Menu Bar.
; thisform::open
method open(var eventInfo Event)
var
  mMenu Menu
endVar
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself
    ;menu appears when the form first opens
    mMenu.addText("File")
    mMenu.addText("Edit")
    mMenu.addBreak()
    mMenu.addText("About...")  ; this appears on the second row
    mMenu.show()               ; show the menu
endif
endMethod



addPopUp method
Adds a pop-up menu to a Menu Bar item.

Syntax
addPopUp ( const menuName String, const cascadedPopup PopUpMenu )
Description
addPopUp adds the heading menuName and a pop-up menu cascadedPopup to a menu. This method is useful 
for creating drop-down menus and cascading menus.
 Note

· If you use addPopUp with a menuName of &Window, Windows automatically appends a list of open windows 
to that pop-up menu.

 Example
{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUAARR;OPAL_METH_MUABRE;',0,"Defaultoverview",)} 
Related Topics



addPopUp example
In the following example the code is attached to the built-in arrive method for each of two pages of a form. The 
arrive method for pageOne creates and displays a custom menu. The arrive method for pageTwo of the same 
form removes the custom menu. addPopUp is used to create a cascading pop-up menu and a drop-down menu.
 Note

· Use SHIFT + F4 to move from the first page to the second. Use SHIFT + F3 to move from the second page to 
the first.

Here is pageOne's arrive method:
pageOne::arrive
method arrive(var eventInfo MoveEvent)
var
  p1, p2, p3  PopUpMenu
  m1          Menu
endVar

p1.addText("Passwords...")    ; add items to p1 popup
p1.addText("Attributes...")

p2.addText("Basic...")        ; add items to p2 popup
p2.addText("Scientific...")

p1.addPopUp("Calculator", p2) ; add another item to p1 popup,
                              ; and display p2 popup when the 
                              ; item is selected

p3.addText("About...")        ; add an item to 3rd popup

m1.addPopUp("Utilities", p1)  ; add item to Menu Bar, 
                              ; and drop-down p1 when selected
m1.addPopUp("Help", p3)       ; add item to Menu Bar, 
                              ; and drop-down p3 when selected
m1.show()                     ; show the Menu Bar (not PopUpMenu)

endMethod
Here is pageTwo's arrive method:
; pageTwo::arrive
method arrive(var eventInfo MoveEvent)
  removeMenu()    ; remove the custom menu the default menu
                  ; will appear instead
endMethod



addStaticText method
Adds an unselectable text string to a menu.

Syntax
addStaticText ( const item String )
Description
addStaticText appends item to a menu as unselectable text.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUATEX;',0,"Defaultoverview",)} Related Topics



addStaticText example
In the following example, code attached to a form's open method creates a Menu Bar. This example uses 
addStaticText to add a static menu item to the Menu Bar:
thisForm::open
method open(var eventInfo Event)
var
  mMenu Menu
endVar

if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself
    mMenu.addStaticText("Main menu")    ; first item is static
    mMenu.addText("File")               ; add two more items
    mMenu.addText("Edit")
    mMenu.show()                        ; show the menu
endif
endMethod



addText method
Adds a selectable text string to a menu.

Syntax
1. addText ( const menuName String )
2. addText ( const menuName String, const attrib SmallInt )
3. addText ( const menuName String, const attrib SmallInt, const id SmallInt )
Description
addText adds a selectable text string to a menu.
Syntax 1 adds the item menuName to a menu. Menu items are displayed from left to right across the Menu Bar.
In Syntax 2, you can use attrib to preset the display attribute of menuName. Use MenuChoiceAttributes 
constants to specify attributes.
In Syntax 3, you can specify an id number (a SmallInt) to identify the menu by number instead of by menuName.
In the built-in event menuAction method, you can use the id number to determine which menu the user 
chooses. When you specify a menu id, you should use the built-in IdRanges constant UserMenu as a base 
constant and then add your own number to it or create a user-defined menu constant. In the following example, 
the code adds File to the myMenu menu and specifies an id number for that menu item:
myMenu.addText("File", MenuEnabled, UserMenu + 1)
You can use an ampersand in an item to designate an accelerator key. For example, the item &File would display 
as File and the user could choose it by pressing ALT + F. If you rely on menuName to test for the user's choice, 
you need to include the ampersand in the comparison string. In the following example, the return value is &File, 
not File.
To right-align menu items, you can precede menuName with the string value \008. After you include \008 in 
menuName, all subsequent menu items appear right-aligned; you don't have to use \008 again. In the following 
example, the code displays File on the left and Help and Utilities on the right:
myMenu.addText("File")
myMenu.addText("\008Help")
myMenu.addText("Utilities")
myMenu.show()
 Examples

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUASTA;OPAL_METH_MUAARR;',0,"Defaultoverview",)} 
Related Topics



addText method examples
Example1          Using the first addText syntax
Example2         Using the id clause with addText



addText example 1
Examples 1 and 2 demonstrate how addText syntax influences the way you test for the user's menu choice.
The following example uses the first form of addText syntax to create a simple menu. It does not use id in the 
addText statements. The code attached to the built-in event menuAction method must evaluate the string 
specified in menuName to determine the user's menu choice. The following code is attached to the open 
method for pageOne:
; pageOne::open
method open(var eventInfo Event)
var
  mainMenu Menu
  utilPU PopUpMenu
endVar

 ; build a pop-up menu
utilPU.addText("&Time")
utilPU.addText("&Date")
    
 ; attach pop-up to the Utilities main menu item 
mainMenu.addPopUp("&Utilities", utilPU)

 ; add "Help" to the menu and right-align "Help" with \008
mainMenu.addText("\008&Help")

 ; now display the menu
mainMenu.show()

endMethod
The following code is attached to the menuAction method for pageOne. This code uses the menuChoice 
method to obtain the string value defined by menuName:
; pageOne::menuAction
method menuAction(var eventInfo MenuEvent)
var
  choice String
endVar

choice = eventInfo.menuChoice()  ; assign string value to choice

  ; now use choice value to determine which menu was selected
switch
  case choice = "&Time"  :  
    msgInfo("Current Time", time())
  case choice = "&Date"  :  
    msgInfo("Today's date", today())
  case choice = "\008&Help" :
    ; open the built-in help system
    action(EditHelp)
endSwitch

endMethod



addText example 2
The following example demonstrates how you can use the id clause with addText to refer to menu items by 
number instead of by name. This code establishes user-defined constants to make it easy to remember the 
menu id assignments. The following code goes in the Const window for pageOne:
; pageOne::Const
Const
  ; define constants for menu id's
  ; actual values (1, 2 and 3) are arbitrary
  TimeMenu = 1
  DateMenu = 2
  HelpMenu = 3
endConst
The following code is attached to the open method for pageOne. To control the menu display attributes, this 
code uses built-in constants such as MenuEnabled. To identify each menu item by number, the code uses the 
constants defined in the Const window for pageOne (TimeMenu, DateMenu, and HelpMenu).
; pageOne::open
method open(var eventInfo Event)
var
  mainMenu Menu
  utilPU PopUpMenu
endVar

 ; build a pop-up menu and use constants (i.e.: TimeMenu)
 ; defined in the Const window for thisPage
utilPU.addText("&Time", MenuEnabled, TimeMenu + UserMenu)
utilPU.addText("&Date", MenuEnabled, DateMenu + UserMenu)
    
 ; attach pop-up to the Utilities main menu item 
mainMenu.addPopUp("&Utilities", utilPU)

 ; add "Help" to the Menu Bar and right-align "Help" with \008
mainMenu.addText("\008&Help", MenuEnabled, HelpMenu + UserMenu)

mainMenu.show()                 ; display the menu

endMethod
The following code is attached to the menuAction method for pageOne. This method evaluates menu selections
by id number rather than by the name specified in menuName.
; pageOne::menuAction
method menuAction(var eventInfo MenuEvent)
var
  choice SmallInt
endVar

choice = eventInfo.id()      ; assign constant value (i.e.: 900) to choice

  ; now use constants to determine which menu was selected
switch
  case choice = TimeMenu + UserMenu:
    msgInfo("Current Time", time())
  case choice = DateMenu + UserMenu:
    msgInfo("Today's Date", today())
  case choice = HelpMenu + UserMenu:
    ; open the built-in help system
    action(EditHelp)
endSwitch

endMethod



contains method
Reports whether an item is in a menu.

Syntax
contains ( const item AnyType ) Logical
Description
contains returns True if item is in the list of items in a menu; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUCOUN;',0,"Defaultoverview",)} Related Topics



contains example
The following example assumes that a multi-record object is on the form. When the user changes the value in a 
field contained in the multi-record object, an Undo menu item is added to the existing custom Menu Bar. When 
the user moves to another record, Undo is removed. This example uses contains to determine if Undo is present
before it adds or removes the item. The menu variable is defined in the form's Var window. The Menu Bar is 
created by the form's open method.
The following code goes in the form's Var window:
; thisForm::var
Var
  m1 Menu
endVar
The following code is for the form's open method:
; thisForm::open
method open(var eventInfo Event)
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself
    m1.addText("&Insert")
    m1.addText("&Delete")
    m1.show()               ; show two item menu
endif
endMethod
The following code is for the form's action method:
; thisForm::action
method action(var eventInfo ActionEvent)
if eventInfo.isPreFilter() then
  ;code here executes for each object in form

  switch
      ; when user locks a record (starts to change a field value)
    case eventInfo.id() = DataLockRecord :
            if not m1.contains("&Undo") then
         ; add Undo and redisplay the menu
         m1.addText("&Undo")
         m1.show()
            endIf

      ; when user posts the record (moves to another record)
    case eventInfo.id() = DataUnlockRecord :
            if m1.contains("&Undo") then
         ; remove Undo redisplay the menu
         m1.remove("&Undo")
         m1.show()
            endIf
  endswitch

endif
endMethod
The following code is for the form's menuAction method:
; thisForm::menuAction
method menuAction(var eventInfo MenuEvent)
var
  choice String
endVar

if eventInfo.isPreFilter() then
  ;code here executes for each object in form

  choice = eventInfo.menuChoice()



  switch
    case choice = "&Insert" :
      active.action(DataInsertRecord) ; insert new record
    case choice = "&Delete" : 
      active.action(DataDeleteRecord) ; delete active record
    case choice = "&Undo"   :
      active.action(DataCancelRecord) ; restore original state
      m1.remove("&Undo")              ; remove Undo menu item
      m1.show()                       ; redisplay menu without Undo
  endswitch

endif
endMethod



count method
Returns the number of items in a menu.

Syntax
count ( ) SmallInt
Description
count returns the number of items in a menu, including separators, bars, and breaks.
count returns the number of items in a single menu. If you attach a pop-up menu to a Menu Bar item with 
addPopUp. count returns the number of items in the pop-up menu or the number of items in the Menu Bar, but
not the total number of items in both menus.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUCONT;',0,"Defaultoverview",)} Related Topics



count example
The following example constructs a menu and a pop-up menu and then displays the number of items in each 
menu. count returns the number of items in a menu whether or not the menu is displayed.
; countMenus::pushButton
method pushButton(var eventInfo Event)
var
  m Menu
  p PopUpMenu
endVar

p.addText("&One")
p.addBar()
p.addText("T&wo")
p.addText("Th&ree")       ; 3 items + 1 bar = 4 elements

m.addText("&First")
m.addText("&Second")
m.addPopUp("&Third", p)   ; 3 items in Menu Bar

msgInfo("Menu Bar items", m.count()) ; displays 3 counts Menu Bar only
msgInfo("Pop-up items", p.count())   ; displays 4
counts pop-up only

endMethod



empty method
Removes all items from a menu.

Syntax
empty ( )
Description
empty removes all items from a custom menu. Use empty when you need to clear an existing menu before you
rebuild it.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUREMO;',0,"Defaultoverview",)} Related Topics



empty example
The following example uses two buttons to display alternate menus. Both methods affect the same menu, which 
is declared with the variable mainMenu in the form's Var window.
The following code goes in the form's Var window:
; thisForm::Var
Var
  mainMenu Menu  ; custom Menu Bar
endVar
The following code is for showMenuOne's pushButton method:
; showMenuOne::pushButton
method pushButton(var eventInfo Event)
  mainMenu.empty()          ; clear the menu
  mainMenu.addText("&One")  ; reconstruct it
  mainMenu.addText("&Two")
  mainMenu.show()           ; display the changed menu
endMethod
The following code is for showMenuTwo's pushButton method:
; showMenuTwo::pushButton
method pushButton(var eventInfo Event)
  mainMenu.empty()              ; clear the menu  
  mainMenu.addText("File")      ; reconstruct it
  mainMenu.addText("Edit")
  mainMenu.show()               ; show it again
endMethod



getMenuChoiceAttribute procedure
Reports the display attributes of a menu item.

Syntax
getMenuChoiceAttribute ( const menuChoice String ) SmallInt
Description
getMenuChoiceAttribute returns an integer that represents the display attributes of the menu item specified 
in menuChoice. The integer value represents the combination of attributes that apply. Use MenuChoiceAttributes
constants to test attributes. Use getMenuChoiceAttribute with hasMenuChoiceAttribute to determine 
whether a specific display attribute applies for a menu item.
This procedure returns the attribute of the currently displayed menu; if you have not created a custom menu, 
getMenuChoiceAttribute operates on the built-in menu.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUGETMCATTRIBUTEBYID;OPAL_METH_MUHASMENUCHOIC
EATTRIBUTE;OPAL_METH_MUSETMENUCHOICEATTRIBUTE;OPAL_METH_MUSETMCATTRIBUTEBYID;',0,"Def
aultoverview",)} Related Topics



getMenuChoiceAttribute example
In the following example, the open method for pageOne constructs and displays a simple menu. The 
getMenuState button reports whether or not the Time menu item is enabled.
The following code is attached to the open method for pageOne:
; pageOne::open
method open(var eventInfo Event)
var
  mainMenu Menu
  utilPU PopUpMenu
endVar

 ; build a pop-up menu, disable Time option
utilPU.addText("&Time", MenuDisabled + MenuGrayed)     
utilPU.addText("&Date")
 ; attach pop-up and show the Menu Bar
mainMenu.addPopUp("&Utilities", utilPU)
mainMenu.addText("&Help")
mainMenu.show()

endMethod
The following code is for getMenuState's pushButton method:
; getMenuState::pushButton
method pushButton(var eventInfo Event)
var
  attrib SmallInt
endVar

  ; store attributes of Time in attrib
attrib = getMenuChoiceAttribute("&Time")
  ; this displays False because Time is disabled
msgInfo("Time enabled?", HasMenuChoiceAttribute(attrib, MenuEnabled))
  ; this displays True because Time is grayed
msgInfo("Time grayed?", hasMenuChoiceAttribute(attrib, MenuGrayed))

endMethod



getMenuChoiceAttributeById procedure
Reports the display attribute of a menu item specified by its menu ID.

Syntax
getMenuChoiceAttributeById ( const menuId SmallInt ) SmallInt
Description
getMenuChoiceAttributeById returns an integer that represents the display attributes of the menu item 
specified in menuId. The integer value represents the combination of attributes that apply. Use 
MenuChoiceAttributes constants to test attributes. Use getMenuChoiceAttributeById with 
hasMenuChoiceAttribute to determine whether a specific display attribute applies for a menu item.
This procedure returns the attribute of the currently displayed menu; if you have not created a custom menu, 
getMenuChoiceAttributeById operates on the built-in menu.
This procedure is similar to getMenuChoiceAttribute in that both report the display attributes for a specified 
menu item. The difference is that you specify the actual menu ID (a SmallInt value) for 
getMenuChoiceAttributeById and the menu name (a String value) for getMenuChoiceAttribute. 
getMenuChoiceAttributeById is especially useful when you specify a menu ID as part of addText syntax.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUGMCA;OPAL_METH_MUHASMENUCHOICEATTRIBUTE;OPA
L_METH_MUSETMENUCHOICEATTRIBUTE;',0,"Defaultoverview",)} Related Topics



getMenuChoiceAttributeById example
The following example demonstrates how you can use getMenuChoiceAttributeById with 
hasMenuChoiceAttribute to determine whether a menu item is disabled. In this example, the open method 
for pageOne constructs a small menu. The pushButton method for the getMenuState button reports on the 
state of the Undo menu item.
The following code goes in the form's Var window:
; thisForm::Var
Var
  m1     Menu
  p1, p2 PopUpMenu
endVar
The following code goes in the form's Const window:
; thisForm::Const
Const
  UndoMenu  = 1
  InsMenu   = 2
  DelMenu   = 3
  IndexMenu = 4
  AboutMenu = 5
endConst
The following code is for the page's open method:
; pageOne::open
method open(var eventInfo Event)

p1.addText("Undo",   MenuDisabled + MenuGrayed, UndoMenu + UserMenu)
p1.addText("Insert", MenuEnabled, InsMenu + UserMenu)
p1.addText("Delete", MenuEnabled, DelMenu + UserMenu)
p2.addText("Index",  MenuEnabled, IndexMenu + UserMenu)
p2.addText("About",  MenuEnabled, AboutMenu + UserMenu)

m1.addPopUp("&Record", p1)
m1.addPopUp("&Help", p2)
m1.show()

endMethod
The following code is attached to the getMenuState's pushButton method:
; getMenuState::pushButton
method pushButton(var eventInfo Event)

  ; store attributes of Undo menu in attrib
attrib = getMenuChoiceAttributeById(UndoMenu + UserMenu)

  ; this displays False because Undo is disabled
msgInfo("Undo enabled?", hasMenuChoiceAttribute(attrib, MenuEnabled))
  ; this displays True because Undo is grayed
msgInfo("Undo grayed?", hasMenuChoiceAttribute(attrib, MenuGrayed))
endMethod



hasMenuChoiceAttribute procedure
Reports whether a menu item contains a given display attribute.

Syntax
hasMenuChoiceAttribute ( const attrib SmallInt , const attribSet SmallInt ) Logical
Description
hasMenuChoiceAttribute returns True if attribSet contains the attribute specified in attrib; otherwise, it returns
False. Use MenuChoiceAttributes constants to specify attributes.
Use hasMenuChoiceAttribute with getMenuChoiceAttribute  or getMenuChoiceAttributeById to 
determine whether a particular display attribute for a menu item is represented in attribSet.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUGMCA;OPAL_METH_MUGETMCATTRIBUTEBYID;',0,"Defau
ltoverview",)} Related Topics



hasMenuChoiceAttribute example
The following example demonstrates how you can use hasMenuChoiceAttribute with 
getMenuChoiceAttribute to determine whether a particular attribute applies to the currently displayed menu. 
The following code is attached to the open method for pageOne:
; pageOne::open
method open(var eventInfo Event)
var
  m1 Menu
  p1 PopUpMenu
endVar

p1.addText("&Insert")   ; create a simple menu
p1.addText("&Delete")
p1.addText("&Undo")
m1.addPopUp("&Record", p1)
m1.show()

endMethod
The following code is attached to the pushButton method for the toggleMenuState button:
; toggleMenuState::pushButton
method pushButton(var eventInfo Event)
var
  attribSet SmallInt
endVar

 ; store composite menu attributes in attribSet
attribSet = getMenuChoiceAttribute("&Undo")

 ; this is True if Undo is enabled
if hasMenuChoiceAttribute(attribSet, MenuEnabled) then
   setMenuChoiceAttribute("&Undo", MenuDisabled + MenuGrayed)
else
  setMenuChoiceAttribute("&Undo", MenuEnabled)
endif

endMethod



remove method
Removes an item from a menu.

Syntax
remove ( const item AnyType )
Description
remove deletes the first occurrence of item from a menu. This method is used to change one item in a menu 
without having to rebuild the entire menu.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUCONT;OPAL_METH_MUEMPT;',0,"Defaultoverview",)} 
Related Topics



remove example
The following example changes a menu immediately by removing an item and adding another item in its place.
; changeMenu::pushButton
method pushButton(var eventInfo Event)
var
   mainMenu Menu
endVar

; First, assume the user is working with a form.
; You could display a menu like this:
mainMenu.addText("File")
mainMenu.addText("Edit")
mainMenu.addText("Form")
mainMenu.show()
msgInfo("Status", "About to change menus. Watch closely.")

; Then, suppose the user switches to work on a report.
; You could change the menu like this:
mainMenu.remove("Form")
mainMenu.addText("Report")
mainMenu.show()

msgInfo("Status", "About to remove the menus. Watch closely.")

; remove entire menu, reveal built-in menus
removeMenu()      
endMethod



removeMenu procedure
Removes a custom menu and displays the default menu.

Syntax
removeMenu ( )
Description
removeMenu replaces a menu built using ObjectPAL with Corel Paradox's default menu.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUEMPT;OPAL_METH_MUREMO;',0,"Defaultoverview",)} 
Related Topics



removeMenu example
In the following example, the form's open method constructs a menu (but does not display it). The arrive 
method for pageOne displays the menu with show. The arrive method for pageTwo removes the menu and 
reveals the built-in Corel Paradox menu.
The following code goes in the form's Var window:
; thisForm::var
Var
  m1 Menu
endVar
The following code is attached to the form's open method:
; thisForm::open
method open(var eventInfo Event)
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself

     m1.addText("&File")   ; construct a menu
     m1.addText("&Edit")
     m1.addText("For&m")

endif

endMethod
The following code is attached to the arrive method for pageOne:
; pageOne::arrive
method arrive(var eventInfo MoveEvent)
m1.show()  ; display the application menu
endMethod
The following code is attached to the arrive method for pageTwo:
; pageTwo::arrive
method arrive(var eventInfo MoveEvent)
removeMenu()   ; remove application menu, reveal built-in menu
endMethod



setMenuChoiceAttribute procedure
Sets the display attribute of a menu item.

Syntax
setMenuChoiceAttribute ( const menuChoice String, const menuAttribute SmallInt )
Description
setMenuChoiceAttribute sets the display attribute of menuChoice to menuAttribute. Use 
MenuChoiceAttributes constants to specify attributes. This procedure affects the currently displayed menu; if you
have not created a custom menu, setMenuChoiceAttribute affects the built-in menu.
 Note

· If a menu item's definition includes an accelerator key (for example, Print which is defined as &Print), 
remember to include the ampersand in the comparison string menuChoice.

 Example
{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUGMCA;OPAL_METH_MUGETMCATTRIBUTEBYID;OPAL_MET
H_MUHASMENUCHOICEATTRIBUTE;OPAL_METH_MUSETMCATTRIBUTEBYID;',0,"Defaultoverview",)} 
Related Topics



setMenuChoiceAttribute example
The following example changes the attribute of the Undo option, depending on whether there is anything to 
undo. As the user makes changes to the record, the Undo item can be selected. After posting the changes, Undo 
is unavailable.
The following code goes in the form's Var window:
; thisForm::var
Var
  m1 Menu
  p1 PopUpMenu
endVar
The following code is for the form's open method:
; thisForm::open
method open(var eventInfo Event)
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself

    ; create a menu and show it
    p1.addText("&Undo", MenuDisabled + MenuGrayed)
    p1.addText("&Insert")
    p1.addText("&Delete")
    m1.addPopUp("&Record", p1)
    m1.show()

endif

endMethod
The following code is for the form's action method:
; thisForm::action
method action(var eventInfo ActionEvent)

if eventInfo.isPreFilter() 
  then
    ;code here executes for each object in form

    switch
         ; when user locks a record (starts to change a field value)
      case eventInfo.id() = DataLockRecord :
         ; enable Undo menu item
        setMenuChoiceAttribute("&Undo", MenuEnabled)

        ; when user posts the record (moves to another record)
      case eventInfo.id() = DataUnlockRecord : 
        ; disable and gray Undo menu item
        setMenuChoiceAttribute("&Undo", MenuDisabled + MenuGrayed)
    endswitch

  else
    ;code here executes just for form itself
  endif

endMethod
The following code is for the form's menuAction method:
; thisForm::menuAction
method menuAction(var eventInfo MenuEvent)
var
  choice String
endVar



if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
 
    choice = eventInfo.menuChoice()
    switch
      case choice = "&Insert" :
        active.action(DataInsertRecord)  ; insert new record
      case choice = "&Delete" : 
        active.action(DataDeleteRecord)  ; delete active record
      case choice = "&Undo"   :
        active.action(DataCancelRecord)  ; revert record to original state
        setMenuChoiceAttribute("&Undo", MenuDisabled + MenuGrayed)
    endswitch

  else
    ;code here executes just for form itself
endif

endMethod



setMenuChoiceAttributeById procedure
Sets the display attribute of a menu item.

Syntax
setMenuChoiceAttributeById ( const menuId String, const menuAttribute SmallInt )
Description
setMenuChoiceAttributeById sets the display attribute of menuId to menuAttribute. Use 
MenuChoiceAttributes constants to specify attributes. This procedure affects the currently displayed menu; if you
have not created a custom menu, setMenuChoiceAttributeById affects the built-in menu.
 Note

· If a menu item's definition includes an accelerator key (e.g., Print which is defined as &Print), remember to 
include the ampersand in the comparison string menuChoice.

 Example
{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUGMCA;OPAL_METH_MUGETMCATTRIBUTEBYID;OPAL_MET
H_MUHASMENUCHOICEATTRIBUTE;OPAL_METH_MUSETMENUCHOICEATTRIBUTE;',0,"Defaultoverview",)}
Related Topics



setMenuChoiceAttributeById example
The following example changes the attribute of the Undo option, depending on whether there is anything to 
undo. As the user makes changes to the record, the Undo item can be selected. After posting the changes, Undo 
is unavailable. This example uses the menuId clause in addText so that the code can refer to menu items by 
number rather than by menu name.
The following code goes in the form's Var window:
; thisForm::var
Var
  m1 Menu
  p1 PopUpMenu
endVar
The following code goes in the form's Const Window:
; thisForm::const
Const
  InsMenu  = 1  ; use constants for menu id's
  DelMenu  = 2
  UndoMenu = 3
endConst
The following code is attached to the form's open method:
; thisForm::open
method open(var eventInfo Event)

if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself

     ; construct a menu and display it
     p1.addText("&Undo",   MenuDisabled + MenuGrayed, UndoMenu + UserMenu)
     p1.addText("&Delete", MenuEnabled, DelMenu + UserMenu)
     p1.addText("&Insert", MenuEnabled, InsMenu + UserMenu)
     m1.addPopUp("&Record", p1)
     m1.show()    

  endif

endMethod
The following code is attached to the form's action method:
; thisForm::action
method action(var eventInfo ActionEvent)

if eventInfo.isPreFilter() 
  then
    ;code here executes for each object in form

    switch
         ; when user locks a record (starts to change a field value)
      case eventInfo.id() = DataLockRecord :
         ; enable Undo menu item
        setMenuChoiceAttributeById(UndoMenu + UserMenu,
                                   MenuEnabled)

         ; when user posts the record (moves to another record)
      case eventInfo.id() = DataUnlockRecord : 
         ; disable and dim Undo menu item
        setMenuChoiceAttributeById(UndoMenu + UserMenu,
                                   MenuGrayed + MenuDisabled)
    endswitch

  else



    ;code here executes just for form itself
endif

endMethod
The following code is attached to the form's menuAction method:
; thisForm::menuAction
method menuAction(var eventInfo MenuEvent)
var
  menuItem SmallInt
endVar

if eventInfo.isPreFilter() then
  ;code here executes for each object in form

  menuItem = eventInfo.id()
  switch
    case menuItem = InsMenu :
      active.action(DataInsertRecord)    ; insert new record
    case menuItem = DelMenu : 
      active.action(DataDeleteRecord)    ; delete active record
    case menuItem = UndoMenu :
      active.action(DataCancelRecord)    ; revert record to original state
      setMenuChoiceAttributeById(UndoMenu, MenuDisabled + MenuGrayed)
  endswitch

  endswitch

else
  ;code here executes just for form itself
endif

endMethod



show method
Displays a menu.

Syntax
show ( )
Description
show displays a menu.
The user's choice is handled using the built-in event methods menuAction and menuChoice from the 
MenuEvent type.
 Example

{button ,AL(`OPAL_TYPE_MENU;OPAL_METH_MUATEX;OPAL_METH_FOSETMENU;',0,"Defaultoverview",)}
Related Topics



show example
In the following example, a form's open method constructs a simple menu and displays it with show. The 
menuAction method for the form handles the user's menu choice. The following code is attached to the open 
method for thisForm.
; thisForm::open
method open(var eventInfo Event)
var
  p1 PopUpMenu
  m1 Menu
endVar

if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself

    p1.addText("&Time")           ; construct a pop-up
    p1.addText("&Date")
    m1.addPopUp("&Utilities", p1) ; attach pop-up to menu item
    m1.show()                     ; display the m1 menu
     
endif

endMethod
The following code is attached to the form's menuAction method:
; thisForm::menuAction
method menuAction(var eventInfo MenuEvent)
var
  menuName String
endVar

if eventInfo.isPreFilter() then
  ;code here executes for each object in form

  menuName = eventInfo.menuChoice()
  switch
    case menuName = "&Time" : msgInfo("Current Time", time())
    case menuName = "&Date" : msgInfo("Today's Date", date())
  endSwitch

else
  ;code here executes just for form itself
endif

endMethod



MenuEvent type
MenuEvent variables contain data related to menu selections in the application Menu Bar. When the user 
chooses an item from a menu, it triggers the built-in menuAction method. By modifying an object's built-in 
menuAction method, you can define how the object responds.
The MenuEvent type includes several derived methods from the Event type.
Methods for the MenuEvent type

Event MenuEvent
errorCode data
getTarget id
isFirstTime isFromUI
isPreFilter menuChoice
isTargetSelf reason
setErrorCode setData

setId
setReason

{button ,AL(`MENUEV;',0,"Defaultoverview",)}      Related Topics
 Print related ObjectPAL methods and examples



User-defined menu constants
You can define your own menu constants, but you must keep them within a specific range. Because this range is 
subject to change in future versions of Paradox, ObjectPAL provides the IdRanges constants UserMenu and 
UserMenuMax to represent the minimum and maximum values allowed.
The following example supposes that you want to define two menu constants, ThisMenuItem and ThatMenuItem. 
You would define values for your custom constants in a Const window as follows:
Const
   ThisMenuItem = 1
   ThatMenuItem = 2
EndConst
To use one of these constants, you would add it to UserMenu. For example,
method menuAction(var eventInfo MenuEvent)
   if eventInfo.id() = UserMenu + ThisMenuItem then
      doSomething()
   endIf
endMethod
By adding UserMenu to your own constant, you guarantee yourself a value above the minimum. To keep the 
value under the maximum, use the value of UserMenuMax. One way to check the value is with the following 
message statement:
message(UserMenuMax)
In this version of Paradox, the difference between UserMenu and UserMenuMax is 2047. That means the largest 
value you can use for a menu constant is UserMenu + 2047.

{button ,AL(`MENUEV;',0,"Defaultoverview",)} Related Topics



data method
Returns information about a MenuEvent.

Syntax
data ( ) LongInt
Description
data should be used by Windows programmers only. data returns the lParam argument (usually zero) of specific
Windows messages, such as WM_SYSCOMMAND and WM_COMMAND. For more information, see your Windows 
programming documentation.

{button ,AL(`OPAL_METH_MNID;OPAL_METH_MNSETDATA;OPAL_METH_MNSID;',0,"Defaultoverview",)
} Related Topics



id method
Returns the ID of a MenuEvent.

Syntax
id ( ) SmallInt
Description
id returns the ID number of a MenuEvent. ObjectPAL provides MenuCommands constants (like MenuFileOpen) for
many common menu choices. You can also use user-defined menu constants to test the value returned by id.
 Examples

{button ,AL(`OPAL_METH_MNSID;',0,"Defaultoverview",)} Related Topics



id method examples
Example1          Using a form's built-in menuAction method
Example2          Using a menu ID argument with addText
Example3          Using the ID MenuCanClose



id example 1
The following example attaches code to a form's built-in menuAction method. When the user selects Close from
the System menu, attempts to toggle to a design window, or chooses File, Exit, the method asks the user to 
confirm whether or not to leave the form.
; thisForm::menuAction
method menuAction(var eventInfo MenuEvent)
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    if eventInfo.id() = MenuControlClose OR
      eventInfo.id() = MenuFileExit OR
      eventInfo.id() = MenuFormDesign then
      disableDefault                      ; block departure
      ans = msgQuestion("Please confirm",
                        "Do you really want to leave?")
      if ans = "Yes" then
        dodefault
      endif
    endif
endif
endMethod



id example 2
The following example demonstrates how you can use the menu ID argument with addText to refer to menu 
items by number (ideally, user-defined constants) instead of by name. This code establishes user-defined 
constants to make it easy to remember the menu ID assignments. 
The following code defines constants global to pageOne:
; pageOne::Const
Const
  ; define constants for menu IDs
  ; actual values (1, 2 and 3) are arbitrary
  TimeMenu = 1   
  DateMenu = 2
  HelpMenu = 3
endConst
The following code is attached to the open method for pageOne. To control the menu display attributes, this 
code uses built-in constants such as MenuEnabled. To identify each menu item by number, the code uses the 
constants defined in the Const window for pageOne (TimeMenu, DateMenu, and HelpMenu).
; pageOne::open
method open(var eventInfo Event)
var
  mainMenu Menu
  utilPU PopUpMenu
endVar

 ; build a pop-up menu and use constants (i.e.: TimeMenu)
 ; defined in the Const window for thisPage
utilPU.addText("&Time", MenuEnabled, TimeMenu + UserMenu)
utilPU.addText("&Date", MenuEnabled, DateMenu + UserMenu)
 ; UserMenu is an ObjectPAL constant
 ; attach pop-up to the Utilities main menu item 
mainMenu.addPopUp("&Utilities", utilPU)

 ; add "Help" to the Menu Bar and right-justify "Help" with \008
mainMenu.addText("\008&Help", MenuEnabled, HelpMenu) + UserMenu

mainMenu.show()                 ; display the menu

endMethod
The following code is attached to the menuAction method for pageOne. This method evaluates menu selections
by ID number rather than by the name specified in menuName.
; pageOne::menuAction
method menuAction(var eventInfo MenuEvent)
var
  choice SmallInt
endVar

choice = eventInfo.id()      ; assign constant value to choice

  ; now use constants to determine which menu was selected
switch
  case choice = TimeMenu + UserMenu:
    msgInfo("Current Time", time())
  case choice = DateMenu + UserMenu: 
    msgInfo("Today's Date", today())
  case choice = HelpMenu + UserMenu:
    ; change menu ID to built-in constant (MenuHelpContents)
    ; this effectively opens the built-in help system.
    eventInfo.setId(MenuHelpContents)
    eventInfo.setReason(MenuDesktop)
endSwitch

endMethod



id example 3
The following example shows you how to use the menu action event and to test for the ID MenuCanClose. This 
will display a message before the user can close the form. To stop the closure of the form, use setErrorCode and 
provide any non zero value.

method MenuAction (var eventInfo MenuEvent)

if eventInfo.isPrefilter() then

else
   if eventInfo.id() = MenuCanClose then
      if msgQuestion("Exit?", "Are you sure?") = "No" then
         eventInfo.setErrorCode(1)   ;// Any non-zero error code works
      endif
   endif
endif

endMethod



isFromUI method
Reports whether an event was generated by the user interacting with Corel Paradox.

Syntax
isFromUI ( ) Logical
Description
isFromUI reports whether an event was generated by the user interacting with Corel Paradox, or internally (e.g.,
by an ObjectPAL statement). This method returns True if the event was generated by the user; otherwise, it 
returns False.
 Examples

{button ,AL(`OPAL_METH_EVISPREFILTER;',0,"Defaultoverview",)} Related Topics



isFormUI method examples
Example1          Checking for a Delete menu action
Example2          Indicating the source of a menu action



isFromUI example 1
The following example checks for a menu action to delete a record. If the action is from the UI (that is, if the user
made the menu choice), a dialog box prompts for confirmation before the record is deleted.
;frm :: menuAction
method menuAction(var eventInfo MenuEvent)

   if eventInfo.isPreFilter() then
      ;// This code executes for each object on the form:
      
   else
      ;// This code executes only for the form:

      if eventInfo.id() = MenuRecordDelete and
      eventInfo.isFromUI() then
            if msgQuestion("Delete record?",
                     "Delete this record?") <> "Yes" then   

               disableDefault
               return
            endIf
         endIf
   endif

endMethod



isFromUI example 2
The following example shows how you can use isFromUI to indicate if the menu action was sent by 
menuAction or by sendKeys.
The following code is attached to the page's Const window. It declares constants to make it easy to remember 
the menu ID assignments.
; pageOne::Const
Const
  ; define constants for menu IDs
  ; actual values (1, 2 and 3) are arbitrary
  kTimeMenu = 1
  kDateMenu = 2
  kHelpMenu = 3
endConst
The following code is attached to the open method for pageOne. To control the menu display attributes, this 
code uses ObjectPAL constants such as MenuEnabled. To identify each menu item by number, the code uses the 
constants defined in the Const window for pageOne (kTimeMenu, kDateMenu, and kHelpMenu).
; pageOne::open
method open(var eventInfo Event)
var
  mainMenu Menu
  utilPU    PopUpMenu
endVar

 ; build a pop-up menu and use constants (i.e.: kTimeMenu)
 ; defined in the Const window for thisPage
utilPU.addText("&Time", MenuEnabled, kTimeMenu + UserMenu)
utilPU.addText("&Date", MenuEnabled, kDateMenu + UserMenu)
 ; UserMenu is an ObjectPAL constant
 ; attach pop-up to the Utilities main menu item
mainMenu.addPopUp("&Utilities", utilPU)

 ; add "Help" to the Menu Bar and right-justify "Help" with \008
mainMenu.addText("\008&Help", MenuEnabled, kHelpMenu + UserMenu)

mainMenu.show()                 ; display the menu

endMethod
The following code is attached to the menuAction method for pageOne. This method evaluates menu selections
by ID number rather than by the name specified in menuName. In addition, it uses isFromUI to report whether 
the menu event was generated by menuAction or by keyPhysical.
; pageOne::menuAction
method menuAction(var eventInfo MenuEvent)
var
  choice          SmallInt
  youDoneIt   Logical
endVar

youDoneIt = eventInfo.isFromUI()
choice = eventInfo.id()      ; assign constant value to choice

  ; now use constants to determine which menu was selected
switch
  case choice = kTimeMenu + UserMenu:
    msgInfo("Did a user do this", youDoneIt)
    msgInfo("Current Time", time())
  case choice = kDateMenu + UserMenu:
    msgInfo("Did a user do this", youDoneIt)
    msgInfo("Today's Date", today())
  case choice = kHelpMenu + UserMenu:
    ; change menu ID to built-in constant (MenuHelpContents)
    ; this effectively opens the built-in help system.
    eventInfo.setId(MenuHelpContents)
    eventInfo.setReason(MenuDesktop)



endSwitch
endMethod
The following two buttons demonstrate the use of the code above. The following code is attached to the 
pushButton method of a button named btnObjectPAL. It uses menuAction to send a menu event:
;btnObjectPAL :: pushButton
method pushButton(var eventInfo Event)
   menuAction(kDateMenu + UserMenu)
endMethod
The following code is attached to the pushButton method of a button named btnSendKeys. It uses sendKeys 
to send the keystrokes ALT + u + t . Use this button to simulate a user selecting a menu.
;btnSendKeys :: pushButton
method pushButton(var eventInfo Event)
   sendKeys("%ut")
endMethod



menuChoice method
Returns a string that contains an item chosen from a menu.

Syntax
menuChoice ( ) String
Description
menuChoice returns a string that contains an item chosen from a menu. Use menuChoice to modify an 
object's built-in menuAction method to specify how that object responds to menu choices.
If the definition of a menu item includes an accelerator key (e.g., &Print), remember to include the ampersand in 
the comparison string. The following example compares the return value of menuChoice with the string &Print:
if eventInfo.menuChoice() = "&Print" then
   ; print the report
endif
 Example

{button ,AL(`OPAL_METH_MNID;OPAL_METH_MNSID;',0,"Defaultoverview",)} Related Topics



menuChoice example
The following example assumes a form contains at least one memo field, named thisMemoField. When the user 
arrives on thisMemoField, the built-in arrive method displays a menu that lets the user perform basic cut and 
paste operations. The built-in menuAction method attached to thisMemoField uses menuChoice to evaluate 
the user's selection and to take appropriate action. Although this example mimics the behavior of the default 
menus, this technique is necessary when the default menus are replaced by custom menus.
The following code is attached to the built-in arrive method for thisMemoField:
; thisMemoField::arrive
method arrive(var eventInfo MoveEvent)
Var
  EditPopUp PopUpMenu
  EditMenu  Menu
endVar

EditPopUp.addText("&Cut")              ; create a pop-up menu
EditPopUp.addText("&Copy")
EditPopUp.addText("&Paste")

EditMenu.addPopUp("&Edit", EditPopUp)  ; add pop-up Menu Bar item
EditMenu.show()                        ; display the menu
endMethod
The following code is attached to the built-in menuAction method for thisMemoField. Note that comparisons in 
the switch...endSwitch statement must include the ampersand, such as &Cut:
thisMemoField::menuAction
method menuAction(var eventInfo MenuEvent)
var
  choice String
endVar
choice = eventInfo.menuChoice()       ; store the menu selection to choice

; now respond to the selection appropriately
switch
  case choice = "&Cut"   : self.action(EditCutSelection)
  case choice = "&Copy"  : self.action(EditCopySelection)
  case choice = "&Paste" : self.action(EditPaste)
endSwitch
endMethod
The following code is attached to the built-in depart method for thisMemoField. When the user leaves 
thisMemoField, this code removes the menu. In this example, the default menus reappear when the user moves 
off the field. In a similar situation, you might want to display another custom menu structure.
; thisMemoField::depart
method depart(var eventInfo MoveEvent)
removeMenu()          ; remove the Edit menu
endMethod



reason method
Reports the type of menu chosen.

Syntax
reason ( ) SmallInt
Description
reason returns an integer value to report why a MenuEvent occurred. MenuEvent reasons occur when a built-in 
menuAction method is called. ObjectPAL provides MenuReasons constants to test the value returned by 
reason.
 Example

{button ,AL(`OPAL_METH_MNSREA;',0,"Defaultoverview",)} Related Topics



reason example
In the following example, the form's menuAction method examines every MenuEvent to determine the reason 
for the MenuEvent. The reason is then displayed in the menuReasonField field object.
; thisForm::menuAction
method menuAction(var eventInfo MenuEvent)
var
  reasonStr String
endVar
  if eventInfo.isPreFilter() then
    ; sort out the reason, and assign equivalent string to reasonStr
    reasonStr = iif(eventInfo.reason() = MenuNormal, "MenuNormal",
                iif(eventInfo.reason() = MenuControl, "MenuControl",
                 "MenuDesktop"))
    reasonId = eventInfo.reason()
    menuReasonField = String(reasonId) + " " + reasonStr
     ; Code here executes before each object
  else
     ; Code here executes afterwards (or for form)
     
  endif
endMethod



setData method
Specifies information about a MenuEvent.

Syntax
setData ( const menuData LongInt )
Description
setData should be used by Windows programmers only. setData specifies the lParam argument (usually zero) 
of specific Windows messages, such as WM_SYSCOMMAND and WM_COMMAND. For more information, see your 
Windows programming documentation.

{button ,AL(`OPAL_METH_MNDATA;OPAL_METH_MNID;OPAL_METH_MNSID;',0,"Defaultoverview",)} 
Related Topics



setId method
Specifies the ID of a MenuEvent.

Syntax
setId ( const commandId SmallInt )
Description
setId specifies in commandId an action to take as the result of a menu choice, where commandId is a 
MenuCommands constant.
If you change the ID for a MenuEvent with setId, you may also need to change the reason for that MenuEvent 
with setReason.
In many circumstances, you should use menuAction from the Form type or UIObject type to invoke a menu 
command. Although it is possible to change the reason and ID for an existing MenuEvent (eventInfo), and it is 
also possible to create a new MenuEvent and set the reason and ID for that event (only advanced users should 
try this), this technique is not always advisable.
 Example

{button ,AL(`OPAL_METH_MNID;OPAL_METH_EVERRORCODE;OPAL_METH_EVSETERRORCODE;OPAL_MET
H_FOMENUACTION;OPAL_METH_UIMENUACTION;',0,"Defaultoverview",)} Related Topics



setId example
See the id example.



setReason method
Specifies a reason for generating a MenuEvent.

Syntax
setReason ( const reasonId SmallInt )
Description
setReason specifies in reasonId a reason for generating a MenuEvent, where reasonId is a MenuReasons 
constant.
In many circumstances, you should use menuAction from the Form type or UIObject type to invoke a menu 
command. Although it is possible to change the reason and ID for an existing MenuEvent (eventInfo), and it is 
also possible to create a new MenuEvent and set the reason and ID for that event (only advanced users should 
try this), this technique is not always advisable.
 Example

{button ,AL(`OPAL_METH_MNREAS;OPAL_METH_MNID;OPAL_METH_FOMENUACTION;OPAL_METH_UIMEN
UACTION;',0,"Defaultoverview",)} Related Topics



setReason example
See the id example.



MouseEvent type
A MouseEvent object answers questions about the mouse, including
· where the mouse is located
· was a mouse button clicked
· which mouse button was clicked or held down during an operation
The following built-in object variables are useful when you work with the MouseEvents lastMouseClicked and 
lastMouseRightClicked.
Many methods defined for the MouseEvent type use or return Point values. Methods defined for the Point type 
get and set information about screen coordinates and relative positions of points. For example, the size and 
position properties of a design object are specified in points.
ObjectPAL calculates point values relative to the container of the design object in question. For example, if a box 
contains a button, ObjectPAL calculates the button's position relative to the box. If the button sits in an empty 
page, ObjectPAL calculates the button's position relative to the page. Methods that take or return Point values as 
arguments use this relative framework. The method convertPointWithRespectTo defined for the UIObject type
can be used to convert values in different frameworks.
The following built-in event methods are triggered by MouseEvents: mouseClick, mouseDown, mouseUp, 
mouseDouble, mouseRightUp, mouseRightDown, mouseRightDouble, mouseMove, mouseEnter, and 
mouseExit.
The following table displays the methods for the MouseEvent type, including several derived methods from the 
Event type.
Methods for the MouseEvent type

Event MouseEvent
errorCode getMousePosition
getTarget getObjectHit
isFirstTime isControlKeyDown
isPreFilter isFromUI
isTargetSelf isInside
reason isLeftDown
setErrorCod isMiddleDown

setReason isRightDown
isShiftKeyDown
setControlKeyDown
setInside
setLeftDown
setMiddleDown
setMousePosition
setRightDown
setShiftKeyDown
setX
setY
x
y

   Print related ObjectPAL methods and examples  



getMousePosition method
Returns the mouse position as a Point.

Syntax
1. getMousePosition ( var p Point )
2. getMousePosition ( var xPosition LongInt, yPosition LongInt )

Description
getMousePosition returns the mouse position. This method gets the mouse position at the time the method 
was called. It doesn't track subsequent mouse movements.
Syntax 1 stores the value in a Point variable, p. When you use Syntax 1, you can use Point type methods (for 
example, isLeft and isRight) to get more information.
Syntax 2 stores the value in xPosition and yPosition, two LongInt variables the represent the x and y coordinates 
of the pointer.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MESPOS;OPAL_METH_MEGETOBJECTHIT;OPAL_METH
_EVGTAR;OPAL_METH_SYGMOUS;OPAL_METH_SYSMPOS;',0,"Defaultoverview",)} Related Topics



getMousePosition example
The following example gets the position of the last mouseUp event and draws a small circle at that position. The
method checks if the source of the event was from the UI (in this case, from the user) and if the target of the 
event is the page itself (as opposed to whether it was bubbled up to the page from some other object). This 
method draws the circle only when the user clicks on the page:
; pageOne::mouseUp
method mouseUp(var eventInfo MouseEvent)
var
  crObj UIObject
  x, y  LongInt    ; point coordinates
endVar
if eventInfo.isFromUI() AND eventInfo.isTargetSelf() then
  ; create a small blue circle at the mouse position
  eventInfo.getMousePosition(x, y)
  crObj.create(ellipseTool, x, y, 1440, 1440)
  crObj.Color = DarkBlue
  crObj.Visible = True
endif
endMethod



getObjectHit method
Creates a handle to the UIObject that received the event.

Syntax
getObjectHit ( var target UIObject ) Logical

Description
getObjectHit returns in target a handle to the UIObject that was clicked. This method is useful for the internal 
MouseEvents that call the built-in event methods mouseExit and mouseEnter. getObjectHit can return a 
different object than getTarget during a mouseExit or mouseEnter method.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEGPOS;OPAL_METH_EVGTAR;',0,"Defaultoverview
",)} Related Topics



getObjectHit example
The following method is attached to the mouseExit method of a form. When the mouse exits an object, a 
message appears in the Status Window showing the name of the target object (getTarget) and the name of the 
object hit (getObjectHit).
; thisForm::mouseExit
method mouseExit(var eventInfo MouseEvent)
var
  targObj,
  hitObj   UIObject
endVar
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
    eventInfo.getTarget(targObj)
    eventInfo.getObjectHit(hitObj)
    message(targObj.Name + " vs. " + hitObj.Name)
  else
    ;code here executes just for form itself
    
endif
endMethod



isControlKeyDown method
Reports whether the user has held (or is holding) down CTRL during a MouseEvent.

Syntax
isControlKeyDown ( ) Logical

Description
isControlKeyDown returns True if CTRL is held down during a MouseEvent; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MESCKD;OPAL_METH_MEISKD;',0,"Defaultoverview
",)} Related Topics



isControlKeyDown example
The following example examines the keyboard state during a mouse click to determine whether to automatically 
insert the highest value in the range, the lowest value in a range, or the default value. 
The following constants are declared in the Const window for fieldOne:
; fieldOne::Const
Const
  HighRangeVal = Number(10000)
  LowRangeVal = Number(100000)
  DefaultVal = Number(50000)
endConst

The following code is the method for mouseUp for fieldOne:
; fieldOne::mouseUp
method mouseUp(var eventInfo MouseEvent)
; insert high, low, or default value depending on how mouse was clicked
switch
  case eventInfo.isControlKeyDown() : self.Value = LowRangeVal
                                      message("CTRL-click")
  case eventInfo.isShiftKeyDown()   : self.Value = HighRangeVal
                                      message("SHIFT-click")
  otherwise                         : self.Value = LowRangeVal
                                      message("Click")
endswitch
endMethod



isFromUI method
Reports whether an event was generated by the user interacting with Corel Paradox.

Syntax
isFromUI ( ) Logical

Description
isFromUI reports whether an event was generated by the user interacting with Corel Paradox, or internally (e.g.,
by an ObjectPAL statement). This method returns True if the event was generated by the user; otherwise, it 
returns False.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_EVISPREFILTER;',0,"Defaultoverview",)} Related 
Topics



isFromUI example
Sometimes you need to know whether a MouseEvent was generated by the user interacting with the form or by 
ObjectPAL; for example, in a computer tutorial. In the following example, isFromUI is used to determine whether
a button's built-in mouseEnter method was triggered by the user or by ObjectPAL:
;btnOpenCust :: mouseEnter
method mouseEnter(var eventInfo MouseEvent)
   if eventInfo.isFromUI() then
      message("This button opens the customer form.")
   else
      message("After you press this button, the customer form opens.")
   endIf
endMethod



isInside method
Reports whether the mouse is inside the border of the target object.

Syntax
isInside ( ) Logical

Description
isInside reports whether the mouse is within the border of the target object at the time of the event.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEGETOBJECTHIT;OPAL_METH_MESEIN;',0,"Default
overview",)} Related Topics



isInside example
In the following example, the mouseUp method for buttonOne reports whether the last event is inside the 
borders of the target object. If you click buttonOne, the mouseUp MouseEvent is delivered to buttonOne and 
isInside returns True. If you drag from inside the button to outside the button, so that the mouseUp occurs 
outside of the borders of buttonOne. The MouseEvent occurs for buttonOne, and triggers the mouseUp method, 
but isInside returns False for that MouseEvent.
; buttonOne::mouseUp
method mouseUp(var eventInfo MouseEvent)
msgInfo("Is the last event inside ?", eventInfo.isInside())
endMethod



isLeftDown method
Reports whether the left mouse button is held down during a MouseEvent.

Syntax
isLeftDown ( ) Logical

Description
isLeftDown returns True if the left mouse button is held down during a MouseEvent, for example, while 
dragging the mouse; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEIRDN;OPAL_METH_MEIMDN;OPAL_METH_MESLDN
;',0,"Defaultoverview",)} Related Topics



isLeftDown example
In the following example, assume that the Site Notes field from the Sites table is placed on a form. This method, 
attached to the mouseMove method for Site Notes, checks whether the left or right mouse button is down at 
the time of the move. If the left mouse button is down, the field is selected from the point of the click to the 
beginning of the field. If the right mouse button is down, the field is selected from the point of the click to the 
end of the field.
; Site Notes::mouseMove
method mouseMove(var eventInfo MouseEvent)
if eventInfo.isLeftDown() then      
  self.action(SelectTop)            ; select from point to beginning 
else 
  if eventInfo.isRightDown() then
    self.action(SelectBottom)       ; select from point to end
  endif
endif
endMethod



isMiddleDown method
Reports whether the middle mouse button is held down during a MouseEvent.

Syntax
isMiddleDown ( ) Logical

Description
isMiddleDown returns True if the middle mouse button is held down during a MouseEvent; otherwise (even if 
there is no middle mouse button), it returns False.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MESMDN;OPAL_METH_MEILDN;OPAL_METH_MEIRDN
;',0,"Defaultoverview",)} Related Topics



isMiddleDown example
The following example assumes that a form contains a button called sendMove and a field from the Sites table 
called Site Notes. The pushButton method for sendMove constructs a MouseEvent with the middle button down
and then sends the MouseEvent off to the Site Notes field.
; sendMove::pushButton
method pushButton(var eventInfo Event)
var
  mo  MouseEvent         ; declare a MouseEvent to send
  ui  UIObject
endVar
ui.attach("Site Notes")  ; attach to Site Notes
mo.setMiddleDown(Yes)    ; set middle button down on MouseEvent
ui.mouseMove(mo)         ; dispatch event to mouseMove for Site Notes
endMethod

The following method is attached to the mouseMove method for Site Notes. If the middle button is down for the
MouseEvent, the method moves to the beginning of the current word and then selects the entire word.
; Site_Notes::mouseMove
method mouseMove(var eventInfo MouseEvent)
if eventInfo.isMiddleDown() then
  self.action(MoveLeftWord)    ; go to the beginning of the word
  self.action(SelectRightWord) ; select the entire word
endif
endMethod



isRightDown method
Reports whether the right mouse button is held down during a MouseEvent.

Syntax
isRightDown ( ) Logical

Description
isRightDown returns True if the right mouse button is held down during a MouseEvent, for example, while right-
dragging; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MESRDN;OPAL_METH_MEILDN;OPAL_METH_MEIMDN
;',0,"Defaultoverview",)} Related Topics



isRightDown example
In the following example, assume that the Site Notes field from the Sites table is placed on a form. The 
mouseMove method for Site Notes checks whether the left or right mouse button is down at the time of the 
move. If the left mouse button is down, the field is selected from the point of the click to the beginning of the 
field; if the right mouse button is down, the field is selected from the point of the click to the end of the field.
; Site Notes::mouseMove
method mouseMove(var eventInfo MouseEvent)
if eventInfo.isLeftDown() then      
  self.action(SelectTop)            ; select from point to beginning 
else 
  if eventInfo.isRightDown() then
    self.action(SelectBottom)       ; select from point to end
  endif
endif
endMethod



isShiftKeyDown method
Reports whether SHIFT is held down during a MouseEvent.

Syntax
isShiftKeyDown ( ) Logical

Description
isShiftKeyDown returns True if SHIFT is held down during a MouseEvent; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEICKD;OPAL_METH_MESSKD;',0,"Defaultoverview
",)} Related Topics



isShiftKeyDown example
The following example is attached to the mouseUp method for the Site Notes field. When the user presses 
SHIFT while clicking, the word to the right of the cursor is selected.
; Site Notes::mouseUp
method mouseUp(var eventInfo MouseEvent)
;if SHIFT is down, select the word to the right
if eventInfo.isShiftKeyDown() then 
   self.action(SelectRightWord)
endif
endMethod



setControlKeyDown method
Simulates pressing and holding CTRL during a MouseEvent.

Syntax
setControlKeyDown ( const yesNo Logical )

Description
setControlKeyDown adds information about the state of CTRL for a MouseEvent. You must specify Yes or No. 
Yes means CTRL was pressed and held during a MouseEvent; No means CTRL was not pressed.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEICKD;OPAL_METH_MESSKD;',0,"Defaultoverview
",)} Related Topics



setControlKeyDown example
The following example creates a MouseEvent and sets CTRL to Yes. The event is then sent to the mouseUp built-
in event method for a field called lcField. This method is attached to the pushButton method for a button 
named sendCTRL:
; sendCTRL::pushButton
method pushButton(var eventInfo Event)
var
  CTRLMsEvent MouseEvent             ; declare the event
endVar

CTRLMsEvent.setControlKeyDown(Yes)   ; set the Control key
lcField.mouseUp(CTRLMsEvent)         ; send the event
endMethod

The following code is attached to the mouseUp method for lcField. This method checks whether CTRL is pressed
when the mouse is clicked. If so, the value in the field is changed to all lowercase.
; lcField::mouseUp
method mouseUp(var eventInfo MouseEvent)
if eventInfo.isControlKeyDown() then   ; check for Control key
  self.Value = lower(self.Value)       ; change to lowercase
endif
endMethod



setInside method
Sets the mouse to be inside the current object.

Syntax
setInside ( const TrueFalse Logical ) Logical

Description
setInside sets the MouseEvent to be inside the current object.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEISINSIDE;OPAL_METH_MEGETOBJECTHIT;',0,"Def
aultoverview",)} Related Topics



setInside example
In the following example, the mouseUp method for sendAnEvent uses setInside to change the eventInfo 
variable and then sends the event to buttonOne.
; sendAnEvent::mouseUp
method mouseUp(var eventInfo MouseEvent)
eventInfo.setInside(Yes)
buttonOne.mouseUp(eventInfo)
endMethod



setLeftDown method
Simulates clicking the left mouse button.

Syntax
setLeftDown ( const yesNo Logical )

Description
setLeftDown adds information about the state of the left mouse button for a MouseEvent. You must specify Yes 
or No. Yes means the left mouse button was clicked; No means the left mouse button was not clicked.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEILDN;OPAL_METH_MESMDN;OPAL_METH_MESRD
N;',0,"Defaultoverview",)} Related Topics



setLeftDown example
The following example constructs a MouseEvent with the left mouse button set down. The MouseEvent is then 
sent to the mouseMove method for Site_Notes. The following code is attached to the pushButton method for 
sendLeftButton:
; sendLeftButton::pushButton
method pushButton(var eventInfo Event)
var
  leftMoveMouse MouseEvent     ; create the mouse event
  ui            UIObject    
endVar
leftMoveMouse.setLeftDown(Yes) ; set Left button to Yes
ui.attach("Site_Notes")
ui.mouseMove(leftMoveMouse)    ; send the event to Site_Notes
endMethod

The following code is attached to the mouseMove method for Site Notes:
; Site_Notes::mouseMove
method mouseMove(var eventInfo MouseEvent)
if eventInfo.isLeftDown() then      
  self.action(SelectTop)            ; select from point to beginning 
else 
  if eventInfo.isRightDown() then
    self.action(SelectBottom)       ; select from point to end
  endif
endif
endMethod



setMiddleDown method
Simulates clicking the middle mouse button.

Syntax
setMiddleDown ( const yesNo Logical )

Description
setMiddleDown adds information about the state of the middle mouse button for a MouseEvent. You must 
specify Yes or No. Yes means the middle button was clicked; No means the middle mouse button was not clicked.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEIMDN;OPAL_METH_MESLDN;OPAL_METH_MESRD
N;',0,"Defaultoverview",)} Related Topics



setMiddleDown example
The following example assumes that a form contains a button called sendMove and a field object from the Sites 
table called Site_Notes. The pushButton method for sendMove constructs a MouseEvent with the middle mouse
button down and then sends MouseEvent to the Site_Notes field object.
; sendMove::pushButton
method pushButton(var eventInfo Event)
var
  mo  MouseEvent         ; declare a MouseEvent to send
  ui  UIObject
endVar
ui.attach("Site_Notes")  ; attach to Site_Notes
mo.setMiddleDown(Yes)    ; set middle button down on MouseEvent
ui.mouseMove(mo)         ; dispatch event to mouseMove for Site Notes
endMethod

The following method is attached to the mouseMove method for Site_Notes. If the middle button is down for the
MouseEvent, the method moves to the beginning of the current word and then selects the entire word.
; Site_Notes::mouseMove
method mouseMove(var eventInfo MouseEvent)
if eventInfo.isMiddleDown() then
  self.action(MoveLeftWord)    ; go to the beginning of the word
  self.action(SelectRightWord) ; select the entire word
endif
endMethod



setMousePosition method
Sets the position of the mouse for an event.

Syntax
1. setMousePosition ( const xPosition LongInt, const yPosition  LongInt )
2. setMousePosition ( const p Point )

Description
setMousePosition adds information about the position of the mouse for a MouseEvent. xPosition and yPosition 
specify the x and y coordinates in twips, relative to the upper-left corner of the target object's container.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEGPOS;OPAL_METH_SYGMOUS;OPAL_METH_SYSM
POS;',0,"Defaultoverview",)} Related Topics



setMousePosition example
The following example creates a new event, sets the mouse position to 500 twips to the right and below the 
current mouse position, and sends the event to the mouseRightUp method for the same object. 
The following code is attached to the mouseUp method for an object called boxOne:
; boxOne::mouseUp
method mouseUp(var eventInfo MouseEvent)
var
  rightEvent MouseEvent
endVar
; set the new position to current plus 500, 500
rightEvent.setMousePosition(eventInfo.x() + 500, 
                            eventInfo.y() + 500)
mouseRightUp(rightEvent)            ; send off the new event
endMethod



setRightDown method
Simulates clicking the right mouse button.

Syntax
setRightDown ( const yesNo Logical )

Description
setRightDown adds information about the state of the right mouse button for a MouseEvent. You must specify 
Yes or No. Yes means the right mouse button was clicked; No means the right mouse button was not clicked.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEIRDN;OPAL_METH_MESMDN;OPAL_METH_MESLD
N;',0,"Defaultoverview",)} Related Topics



setRightDown example
The following example constructs a MouseEvent with the right mouse button set down. The MouseEvent is then 
sent to the mouseMove method for Site_Notes. This code is attached to the pushButton method for 
sendRightButton:
; sendRightButton::pushButton
method pushButton(var eventInfo Event)
var
  rightMoveMouse MouseEvent      ; declare the event
  ui            UIObject
endVar
rightMoveMouse.setRightDown(Yes) ; set right button down
ui.attach("Site_Notes")
ui.mouseMove(rightMoveMouse)     ; send the event to Site Notes
endMethod

The following code is attached to the mouseMove method for Site_Notes:
; Site_Notes::mouseMove
method mouseMove(var eventInfo MouseEvent)
if eventInfo.isLeftDown() then      
  self.action(SelectTop)            ; select from point to beginning 
else 
  if eventInfo.isRightDown() then
    self.action(SelectBottom)       ; select from point to end
  endif
endif
endMethod



setShiftKeyDown method
Simulates pressing and holding SHIFT.

Syntax
setShiftKeyDown ( const yesNo Logical )

Description
setShiftDown adds information about the state of SHIFT for a MouseEvent. You must specify Yes or No. Yes 
means SHIFT was pressed and held; No means SHIFT was not pressed.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEISKD;OPAL_METH_MESCKD;',0,"Defaultoverview
",)} Related Topics



setShiftKeyDown example
The following example creates a MouseEvent and sets SHIFT to Yes. The event is then sent to the mouseUp 
built-in event method for a field called ucField. This method is attached to the pushButton method for a button 
named sendShift
; sendShift::pushButton
method pushButton(var eventInfo Event)
var
  ShiftMsEvent MouseEvent             ; declare the event
endVar

ShiftMsEvent.setShiftKeyDown(Yes)     ; set the SHIFT key
ucField.mouseUp(ShiftMsEvent)         ; send the event
  
endMethod

The following code is attached to the mouseUp method for ucField. This method checks whether SHIFT is 
pressed when the mouse is clicked. If so, the value in the field is changed to all uppercase.
; ucField::mouseUp
method mouseUp(var eventInfo MouseEvent)
if eventInfo.isShiftKeyDown() then    ; check for SHIFT key
  self.Value = upper(self.Value)      ; change to uppercase
endif
endMethod



setX method
Specifies the horizontal coordinate of the mouse-pointer position.

Syntax
setX ( const xPosition LongInt )

Description
setX sets the horizontal coordinate (in twips) of the mouse-pointer position to xPosition. Coordinates must be 
specified relative to the upper-left corner of the current object.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEX;OPAL_METH_MEY;OPAL_METH_MESETY;OPAL_M
ETH_UICONV;',0,"Defaultoverview",)} Related Topics



setX example
The following example involves two methods for the same object, boxOne. The mouseUp method creates a 
MouseEvent, setting the coordinates to 500 twips greater than the point of the click. The mouseUp method then
sends the event to mouseRightUp. The mouseRightUp method gets the coordinates, converts them so they 
are placed properly on boxOne, and draws a box at the point indicated by the MouseEvent. If the MouseEvent is 
the result of a user interaction (isFromUI returns True), the new box is painted Red. If the MouseEvent is not the 
result of a user interaction, like when the event is passed from the mouseUp method, the new box is painted 
Green. The mouseUp method for boxOne is:
; boxOne::mouseUp
method mouseUp(var eventInfo MouseEvent)
var
  rightEvent MouseEvent
endVar
; set the new position to current plus 500, 500
rightEvent.setX(eventInfo.x() + 500)
rightEvent.setY(eventInfo.y() + 500)
mouseRightUp(rightEvent)            ; send off the new event
endMethod

The following code is attached to the mouseRightUp method for boxOne:
; boxOne::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)
var
  ui     UIObject     ; to create object at point of click
  msPt   Point        ; the x, y point of click
endVar

; get the x and y coordinates of the click
msPt = Point(eventInfo.x(), eventInfo.y())

; convert the point from the page to the box
self.convertPointWithRespectTo(pageOne, msPt, msPt) 

; create the box, color it, and set it to visible
ui.create(boxTool, msPt.x(), msPt.y(), 200, 200)  
ui.Visible = True                                 
if eventInfo.isFromUI() then
  ui.Color = Red         ; native event    
else
  ui.Color = Green       ; mouse event passed from mouseUp
endif
endMethod



setY method
Specifies the vertical coordinate of the mouse-pointer position.

Syntax
setY ( const yPosition LongInt )

Description
setY sets the vertical coordinate (in twips) of the mouse-pointer position to yPosition. Coordinates must be 
specified relative to the upper-left corner of the current object.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEX;OPAL_METH_MEY;OPAL_METH_MESETX;OPAL_
METH_UICONV;',0,"Defaultoverview",)} Related Topics



setY example
See the setX example.



x method
Returns the horizontal coordinate of the mouse-pointer position.

Syntax
x ( ) LongInt

Description
x returns (in twips) the horizontal coordinate of the mouse-pointer position.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEY;OPAL_METH_MESETX;OPAL_METH_UICONV;',0,"
Defaultoverview",)} Related Topics



x example
See the setX example.



y method
Returns the vertical coordinate of the mouse-pointer position.

Syntax
y ( ) LongInt

Description
y returns (in twips) the vertical coordinate of the mouse-pointer position.
 Example

{button ,AL(`OPAL_TYPE_MOUSEEVENT;OPAL_METH_MEX;OPAL_METH_MESETY;OPAL_METH_MESETX;OP
AL_METH_UICONV;',0,"Defaultoverview",)} Related Topics



y example
See the setX example.



MoveEvent type
Methods for the MoveEvent type enable you to get and set information about the events that occur as you 
navigate from one object to another in a form.
The following built-in event methods are triggered by MoveEvents: arrive, canArrive, canDepart, and depart.
The MoveEvent type includes several derived methods from the Event type.
Methods for the MoveEvent type

Event MoveEvent
errorCode getDestination
getTarget reason
isFirstTime setReason
isPreFilter
isTargetSelf
setErrorCode

 Print related ObjectPAL methods and examples



getDestination method
Reports which object is the destination of a move.

Syntax
getDestination ( var dest UIObject )
Description
getDestination returns in dest the object that Corel Paradox is trying to move to in a form.
 Example

{button ,AL(`OPAL_TYPE_MOVEEVENT;OPAL_METH_MVREASON;OPAL_METH_EVGTAR;',0,"Defaultovervie
w",)} Related Topics



getDestination example
In the following example, assume that the form contains a multi-record object bound to the Orders table. The 
canDepart method for the form is called whenever the user attempts to move off a field or other object in the 
form. The canDepart method shown in this example uses getDestination to find the intended destination of 
the MoveEvent. This method uses getTarget to find the source of the move and compare it with the destination.
If the containers of the two objects are the same, such as when the user is moving from one field to the next in a
multi-record object, the method displays a dialog box asking for confirmation. When the user responds, the move
occurs and the field the user moved from is set to yellow. If the target's container and the destination's container
are different, such as when the user is attempting to leave the form altogether, the method doesn't display the 
dialog box. 
The following code is attached to the canDepart method for a form:
; thisForm::canDepart
method canDepart(var eventInfo MoveEvent)
var 
  destObj UIObject 
  targObj UIObject
  doMove  String
endVar
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
    eventInfo.getTarget(targObj)
    eventInfo.getDestination(destObj)
    if targObj.ContainerName = destObj.ContainerName then
      ; handle only field-to-field moves within the MRO
      doMove = msgQuestion("Move?", "Move to " + destObj.name + " ?")
      if doMove = "No" then
        eventInfo.setErrorCode(CanNotDepart)
      else
        targObj.Color = Yellow    ; leave a trail of yellow fields
      endIf
    endIf
  else
    ;code here executes just for form itself
    
endIf
endMethod



reason method
Reports why a move occurred.

Syntax
reason ( ) SmallInt
Description
reason returns an integer value to report why a MoveEvent occurred. MoveEvent reasons occur when a built-in 
arrive, depart, canArrive, or canDepart method is called. ObjectPAL provides MoveReasons constants for 
testing the value returned by reason.
 Example

{button ,AL(`OPAL_TYPE_MOVEEVENT;OPAL_METH_MVSETREASON;',0,"Defaultoverview",)} Related 
Topics



reason example
In the following example, assume a form contains two field objects, fieldOne and fieldTwo, and a button named 
moveToFieldOne. A move away from fieldOne is treated as normal; however, to return to fieldOne, the user must 
press the moveToFieldOne button. The canArrive method for fieldOne checks the reason for the move and 
blocks field arrival if the reason is not UserMove. 
The following code is attached to the canArrive method for fieldOne:
; fieldOne::canArrive
method canArrive(var eventInfo MoveEvent)
; don't allow user to move to field by tabbing or clicking
if eventInfo.reason() = UserMove then
  eventInfo.setErrorCode(CanNotArrive)
  beep()
  message("Press the Move to Field One button to move to Field One.")
endIf
endMethod
The following code is attached to the pushButton method for moveToFieldOne:
; moveToFieldOne::pushButton
method pushButton(var eventInfo Event)
; move to fieldOne if it does not currently have focus
if fieldOne.Focus = False then
  fieldOne.moveTo()
else
  fieldTwo.moveTo()
endIf
endMethod



setReason method
Specifies a reason for a Move Event.

Syntax
setReason ( const reasonId SmallInt )
Description
setReason specifies a reason for generating a MoveEvent. This method takes a MoveReasons constant as an 
argument.
 Example

{button ,AL(`OPAL_TYPE_MOVEEVENT;OPAL_METH_MVREASON;',0,"Defaultoverview",)} Related Topics



setReason example
In the following example, the canArrive method for fieldOne blocks field arrival if the reason for the move is 
UserMove. To temporarily circumvent this restriction, the form's canArrive method changes the reason for 
UserMove events to PalMove events.
The following code is attached to the canArrive method for fieldOne:
; fieldOne::canArrive
method canArrive(var eventInfo MoveEvent)
; don't allow user to move to field by tabbing or clicking
if eventInfo.reason() = UserMove then
  eventInfo.setErrorCode(CanNotArrive)
  beep()
  message("Press the Move to Field One button to move to Field One.")
endIf
endMethod
The following code is attached to the canArrive method for the form:
; thisForm::canArrive
method canArrive(var eventInfo MoveEvent)
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
    ; change events with a reason of UserMove to PalMove
    if eventInfo.reason() = UserMove then
      eventInfo.setReason(PalMove)
    endIf
  else
    ;code here executes just for form itself
    
endIf
endMethod



Number type
Number variables represent floating-point values consisting of a significand (fractional portion, for example, 
3.224) multiplied by a power of 10. The significand contains up to 18 significant digits, and the power of 10 
ranges from ± 3.4E-4930 to ± 1.1E4930. Assigning values outside of this range to a Number variable causes an 
error.
The following code demonstrates ObjectPAL's alternate syntax:
methodName ( objVar, argument [ , argument ] )
methodName is the name of the method, objVar is the variable representing an object, and argument represents
one or more arguments. For example, the following statement uses the standard ObjectPAL syntax to return the 
sine of a number:
theNum.sin()

The following statement uses the alternate syntax:
sin(theNum)

Use ObjectPAL's standard syntax for clarity and consistency and use the alternate syntax only where convenient.
Although the numeric method's display formats may vary depending on the user's Windows number format, 
ObjectPAL's internal representation is always the same.
Run-time library methods and procedures defined for the Number type also work with LongInt and SmallInt 
variables. In all cases, the syntax is the same, and the returned value is a Number. Although sin does not appear 
in the list of methods for the LongInt type, the following code executes:
var 
   abc LongInt 
   xyz Number
endVar
abc = 43
xyz = abc.sin()

The following table displays the methods of the Number type, including several derived methods from the 
AnyType type:
Methods for the Number type

AnyType Number
blank abs
dataType acos
isAssigned asin
isBlank atan
isFixedType atan2
view ceil

cos
cosh
exp
floor
fraction
fv
ln
log
max
min
mod
number
numVal
pmt
pow
pow10
pv



rand
round
sin
sinh
sqrt
tan
tanh
truncate

 Print related ObjectPAL methods and examples



abs method
Returns the absolute value of a number.

Syntax
abs ( ) Number

Description
abs removes the sign from a number.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUNUMB;',0,"Defaultoverview",)} Related Topics



abs example
The following example assumes that a form contains three field objects: forecastAmt, actualAmt, and diffPercent.
The newValue method for actualAmt calculates the difference between forecastAmt and actualAmt and then 
determines the accuracy of the forecast. The difference between forecastAmt and actualAmt can be positive or 
negative. abs returns the absolute value of the number, which is then multiplied by 100 to determine the 
percentage of error. This code is attached to the newValue method for actualAmt::
; actualAmt::newValue
method newValue(var eventInfo Event)
var
  difference  Number
endVar
; don't execute if newValue is being called at startup, or
; if one of the fields involved is blank
if eventInfo.reason() <> StartupValue then
  if NOT self.isBlank() AND
     NOT forecastAmt.isBlank() then
    ; find out how much forecast differs from actual
    difference = (forecastAmt - Number(self.Value)) / forecastAmt
    diffPercent = difference.abs() * 100  ; get the variation as
                                          ; an absolute value
  else
    msgStop("Error", "The forecastAmt field can't be blank.")
  endIf
endIf
endMethod



acos method
Returns the 2-quadrant arc cosine of a number.

Syntax
acos ( ) Number

Description
Given a number between -1 and 1, acos returns a numeric value between 0 and pi, expressed in radians. acos 
is called the 2-quadrant arc cosine because it returns values within quadrants 1 and 4 (i.e., between -pi/2 and 
pi/2). acos is the inverse of cos if acos(x) = y and then cos(y) = x.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUASIN;OPAL_METH_NUATAN;',0,"Defaultoverview",)} 
Related Topics



acos example
The following example uses pushButton method for the findArcCos button to calculate and display the arc 
cosine of a value:
; findArcCos::pushButton
method pushButton(var eventInfo Event)
   var
      nuUserVal,
      nuArcCos   Number
      stPrompt   String
   endVar

   stPrompt = "Enter a number from -1 to 1"
   nuUserVal = 0

   nuUserVal.view(stPrompt)
   if (nuUserVal >= -1) and (nuUserVal <= 1) then
      nuArcCos = nuUserVal.acos()
      nuArcCos.view("Arc cosine of " + String(nuUserVal))
   else
      msgStop("You entered: " + String(nuUserVal), stPrompt)
   endIf      
endMethod



asin method
Returns the 2-quadrant arc sine of a number.

Syntax
asin ( ) Number

Description
Given a number between -1 and 1, asin returns a numeric value between -pi/2 and pi/2, expressed in radians. 
asin is the inverse of sin if asin(x) = y and then sin(y) = x.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUACOS;OPAL_METH_NUATAN;OPAL_METH_NUCOS;OPAL
_METH_NUSIN;',0,"Defaultoverview",)} Related Topics



asin example
In the following example, the pushButton method for the findASin button displays the arc sine of a number.
; findASin::pushButton
method pushButton(var eventInfo Event)
var
  x Number
endvar
x = .5
msgInfo("arc sine of .5", x.asin())   ; displays .52
endMethod



atan method
Returns the 2-quadrant arctangent of a number.

Syntax
atan ( ) Number

Description
Given a tangent in radians, atan returns the angle in radians. atan is called the 2-quadrant arctangent because 
it returns values within quadrants 1 and 4 (i.e., between -pi/2 and pi/2). atan is the inverse of tan if atan(x) = 
y and then tan(y) = x.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUCOS;OPAL_METH_NUSIN;OPAL_METH_NUTAN;OPAL_M
ETH_NUTANH;OPAL_METH_NUATAN2;',0,"Defaultoverview",)} Related Topics



atan example
In the following example, the pushButton method for getAtan calculates the 2-quadrant arctangent of x and y :
; getAtan::pushButton
method pushButton(var eventInfo Event)
var 
  x   Number
  checkPi, fortyFiveDegrees Number
endvar
x = 1
fortyFiveDegrees = x.atan()
msgInfo("45 degrees in radians: ", fortyFiveDegrees)  ; 0.79
checkPi = fortyFiveDegrees * 4       ; pi radians = 180 degrees
msgInfo("pi: ", format("w12.10", checkPi))
endMethod



atan2 method
Returns the 4-quadrant arctangent of a number.

Syntax
atan2 ( const x Number ) Number

Description
Given a sine in radians, atan2 returns an angle in radians with cosine x. atan2 is called the 4-quadrant 
arctangent because it returns values in all four quadrants.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUCOS;OPAL_METH_NUSIN;OPAL_METH_NUTAN;OPAL_M
ETH_NUTANH;',0,"Defaultoverview",)} Related Topics



atan2 example
The following example assumes that a form contains a button named getAtan2. The pushButton method for 
getAtan2 calculates the 4-quadrant arctangent of x and y and then displays the results:
; getAtan2::pushButton
method pushButton(var eventInfo Event)
var 
  x, 
  y, 
  checkpi, 
  fortyFiveDegrees Number
endvar
x = 1                          ; The angle whose tangent is 1 / 1
y = 1                          ; is a 45 degree angle
fortyFiveDegrees = x.atan2(y)
msgInfo("45 degrees in radians: ", fortyFiveDegrees)  ; 0.79
checkpi = fortyFiveDegrees * 4.0      ; pi radians = 180 degrees
msgInfo("pi: ", format("w12.10", checkpi))
endMethod



ceil method
Rounds a numeric expression up to the nearest whole number.

Syntax
ceil ( ) Number

Description
ceil rounds a numeric expression up (toward positive infinity) to the nearest whole number.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUFLOR;',0,"Defaultoverview",)} Related Topics



ceil example
In the following example, the pushButton method for a button named ceilVsRound calculates the ceiling value 
of a number and then displays the rounded value of that number:
; ceilVsRound::pushButton
method pushButton(var eventInfo Event)
var
  x  Number
endVar
x = 3.1
msgInfo("The ceil of " + String(x) + " is", ceil(x))     ; displays 4.0
msgInfo("The round of " + String(x) + " is", x.round(0)) ; displays 3
endMethod



cos method
Returns the cosine of an angle.

Syntax
cos ( ) Number

Description
cos returns a value between -1 and 1 representing the cosine of an angle in radians.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUACOS;OPAL_METH_NUCOSH;OPAL_METH_NUSIN;OPAL
_METH_NUTAN;',0,"Defaultoverview",)} Related Topics



cos example
In the following example, the pushButton method for the findCosine button calculates and displays the cosine 
of a 60-degree angle:
; findCosine::pushButton
method pushButton(var eventInfo Event)
var
  sixtyDegrees Number
endVar
sixtyDegrees = PI / 3.0
msgInfo("The cosine of 60 degrees", sixtyDegrees.cos()) ; displays 0.50
endMethod



cosh method
Returns the hyperbolic cosine of an angle.

Syntax
cosh ( ) Number

Description
cosh returns the hyperbolic cosine of an angle in radians. cosh uses the following formula:
cosh(angle) = (exp(angle) + exp(-angle)) / 2
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUCOS;OPAL_METH_NUSIN;OPAL_METH_NUTAN;',0,"Defa
ultoverview",)} Related Topics



cosh example
The following example uses the pushButton method for the findCosineH button to calculate and display the 
hyperbolic cosine of a 60 degree angle:
; findCosineH::pushButton
method pushButton(var eventInfo Event)
var
  sixtyDegrees Number
endVar
sixtyDegrees = PI / 3.0
msgInfo("The h cosine of " + format("W8.6", sixtyDegrees) + " radians",
         format("W14.12", sixtyDegrees.cosh()))     
; displays 1.600286857702
endMethod



exp method
Returns the exponential (base e) of a number.

Syntax
exp ( ) Number

Description
exp computes e to the x power, where the constant e is 2.7182845905 (the so-called natural number), and the 
return value is the exponent x. The inverse method is the natural log, ln.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NULN;OPAL_METH_NULOG;',0,"Defaultoverview",)} 
Related Topics



exp example
In the following example, the pushButton method for a button named getExponent button calculates and 
displays the base e of 1:
; getExponent::pushButton
method pushButton(var eventInfo Event)
msgInfo("The exp of 1.0", format("W14.12", exp(1.0)))
; exp(1) formatted to display full precision
endMethod



floor method
Rounds a numeric expression down to the nearest whole number.

Syntax
floor ( ) Number

Description
floor rounds a numeric expression down (toward negative infinity) to the nearest whole number.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUCEIL;',0,"Defaultoverview",)} Related Topics



floor example
In the following example, the pushButton method for a button named floorVsRound uses floor to round x down
to the nearest integer. By comparison, for the same number, round results in a higher number.
; floorVsRound::pushButton
method pushButton(var eventInfo Event)
var
  x  Number
endVar
x = 3.9
msgInfo("The floor of " + String(x) + " is", floor(x))   ; displays 3.0
msgInfo("The round of " + String(x) + " is", x.round(0)) ; displays 4.0
endMethod



fraction method
Returns the fractional portion of a number.

Syntax
fraction ( ) Number

Description
fraction returns the fractional portion of a number (i.e., the part to the right of the decimal).
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUMOD;',0,"Defaultoverview",)} Related Topics



fraction example
In the following example, the pushButton method for fractButton displays the fraction portion of a numeric 
variable:
; fractButton::pushButton
method pushButton(var eventInfo Event)
var 
  myNum Number 
endVar
myNum = 12.23
msgInfo("Fractional part of " + String(myNum), 
         myNum.fraction())                  ; displays .23
endMethod



fv method
Returns the future value of a series of equal payments.

Syntax
fv ( const interestRate Number, periods Number ) Number

Description
fv returns the future value of a series of equal payment periods, invested at an interest rate specified by 
interestRate. interestRate is expressed as a decimal number. Ensure that the rate period matches the deposit 
period (i.e., if the deposits are monthly, the interest rate is also monthly).
fv uses the following formula:
FV = payment(pow(1 + rate, periods) - 1) / rate
fv is also called the future or compound value of an annuity because it calculates the amount accumulated in an 
annuity fund when making regular, equal payments over time.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUPMT;OPAL_METH_NUPV;',0,"Defaultoverview",)} 
Related Topics



fv example
The following example calculates how much a 14.5% Individual Retirement Account is worth if $166.67 is 
deposited each month for 30 years.
; findFutureVal::pushButton
method pushButton(var eventInfo Event)
var 
  depositAmt, 
  intRate, 
  numPayments, 
  iraValue       Number 
endVar
intRate = .145 / 12      ; convert yearly interest to monthly interest
numPayments = 360        ; monthly payments for 30 years 
depositAmt = 166.67      ; monthly deposit amount ($2000 a year)
iraValue = depositAmt.fv(intRate, numPayments)
msgInfo("IRA Value", "Depositing " + String(depositAmt) +
        " a month for " + String(numPayments/12) + " years at " +
        String(intRate * 12 * 100) + "% yields " + String(iraValue) +
        ". You'll be old but you'll be rich!")
; displays "Depositing 166.67 a month for 30 years
;           at 14.50% yields 1,027,394.23 ..."
endMethod



ln method
Returns the natural logarithm of a numeric expression.

Syntax
ln ( ) Number

Description
ln calculates the natural logarithm to the base e of a positive value. The constant e is the natural number, 
approximated by the value 2.7182845905. If the specified value is 0 or negative, ln fails.
The inverse method is exp. Use log to compute base 10 logarithms.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUEXP;OPAL_METH_NULOG;',0,"Defaultoverview",)} 
Related Topics



ln example
In the following example, the pushButton method for the findNatLog button calculates and displays the natural 
logarithm of several numbers:
; findNatLog::pushButton
method pushButton(var eventInfo Event)
var
  x  Number
endVar
x = 2.71828
msgInfo("Natural log of " + Format("W10.6", x), ln(x)) ; displays 1.00
x = 7.3891
msgInfo("Natural log of " + Format("W10.6", x), ln(x)) ; displays 2.00
x = 20.0855
msgInfo("Natural log of " + Format("W10.6", x), ln(x)) ; displays 3.00
endMethod



log method
Returns the base 10 logarithm of a numeric expression.

Syntax
log ( ) Number

Description
log returns the base 10 logarithm of a value or numeric expression. If the specified value is 0 or negative, log 
fails.
Use ln to compute natural logarithms.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUEXP;OPAL_METH_NULN;',0,"Defaultoverview",)} 
Related Topics



log example
The following example uses the a button's pushButton method to calculate and display the base 10 logarithm 
of a value.
; findLog::pushButton
method pushButton(var eventInfo Event)
var
  x Number
endVar
x = 10
msgInfo("The logarithm of " + String(x), log(x)) ; displays 1.00
x = 100
msgInfo("The logarithm of " + String(x), log(x)) ; displays 2.00
x = 1000
msgInfo("The logarithm of " + String(x), log(x)) ; displays 3.00
endMethod



max procedure
Returns the larger of two numbers.

Syntax
max ( const x1 AnyType, const x2 AnyType ) AnyType

Description
max returns the larger of two values specified by x1 and x2.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUMIN;',0,"Defaultoverview",)} Related Topics



max example
The following example, calculates a medical deduction for tax purposes. The pushButton method for 
findMedDeduct calculates the maximum of 7.5% of AGI or medExpense and then deducts 7.5% of AGI from the 
result. Finding the maximum number first ensures that the calculation returns a positive number.
; findMedDeduct
method pushButton(var eventInfo Event)
var
  medExpense, 
  AGI        Number 
endVar
AGI = 32000.45
medExpense = 4035.24
msgInfo("Allowed Medical Deduction",
        max(medExpense, AGI * .075) - (AGI * .075))  ; displays 1,635.21 
; assumes that you can deduct only that part of your medical and dental
; expenses greater than 7.5% of Adjusted Gross Income
endMethod



min procedure
Returns the smaller of two numbers.

Syntax
min ( const x1 AnyType, const x2 AnyType ) AnyType

Description
min returns the smaller of two values specified by x1 and x2.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUMAX;',0,"Defaultoverview",)} Related Topics



min example
The following example calculates the maximum amount of tax-deductible charitable contributions when no more
than 30% of the adjusted gross income can be deducted. The pushButton method for the findCharityDeduct 
button calculates and displays the minimum of 30% of AGI and charity.
; findCharityDeduct::pushButton
method pushButton(var eventInfo Event)
var
  charity,
  AGI       Number
endVar
AGI = 32000.45     ; Adjusted Gross Income
charity = 12000    ; charitable contributions for the year
msgInfo("Allowed Charity Deduction", min(charity, AGI * .30))
; displays 9,600.13
; assumes charitable contributions up to 30% of AGI 
; are allowed as deductions
endMethod



mod method
Returns the remainder when one number is divided by another.

Syntax
mod ( const modulo Number ) Number

Description
mod returns the remainder (or modulus) when one number is divided by the value of modulo. If the number is 
greater than the value of modulo, mod returns the remainder. If the number is less than modulo, mod returns 
the number. If the number equals modulo, mod returns 0. The following table illustrates each scenario:
Fraction ObjectPAL code Return value
5/2 num = 5 um.mod(2) 1
2/5 num = 2 um.mod(5) 2
2/2 num = 2 um.mod(2) 0
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUFRACTION;',0,"Defaultoverview",)} Related Topics



mod example
In the following example, the pushButton method for the showRemainder button calculates and displays the 
modulus for a series of division operations:
; showRemainder::pushButton
method pushButton(var eventInfo Event)
var 
  x Number 
endVar
x = 8
msgInfo("The remainder of " + String(x) + "/" + "3", 
          x.mod(3))                    ; displays 2
msgInfo("The remainder of " + String(x) + "/" + "12", 
         x.mod(12))                    ; displays 8
x = -2
msgInfo("The remainder of " + String(x) + "/" + "10", 
          x.mod(10))                   ; displays -2
x = -10
msgInfo("The remainder of " + String(x) + "/" + "-100", 
        x.mod(-100))                   ; displays -10
endMethod



number procedure
Casts a value as a Number.

Syntax
number ( const value AnyType ) Number

Description
number casts value to a Number. value must be in the form of a valid number that can be entered in a field. 
When a numeric operand is required in an expression, or when a numeric argument is required in a procedure or 
method, number is used to cast a non-numeric type to a Number. number behaves the same as numVal.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUNVAL;',0,"Defaultoverview",)} Related Topics



number example
In the following example, a variable x is declared as a String and then assigned a string of numbers. The 
pushButton method for the showDouble button casts x to a Number before doubling it:
; showDouble::pushButton
method pushButton(var eventInfo Event)
var 
  x  String
endVar
x = "1123.54"
; cast x to a Number before multiplying by 2
msgInfo("Double " + x + " is", Number(x) * 2) ; displays 2,247.08
endMethod



numVal procedure
Casts a value as a Number.

Syntax
numVal ( const value AnyType ) Number

Description
numVal casts value to a Number. value must be in the form of a valid number that can be entered in a field. 
numVal is most often used to cast a non-numeric type to a Number when a numeric operand is required in an 
expression, or a numeric argument is required in a procedure or method. numVal behaves the same as 
number.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUNUMB;',0,"Defaultoverview",)} Related Topics



numVal example
In the following example, a variable x is declared as a String and then assigned a string of numbers. The 
pushButton method for the showDouble button casts x to a Number before doubling it:
; showDouble::pushButton
method pushButton(var eventInfo Event)
var 
  x  String
endVar
x = "1123.54"
; cast x to a Number before multiplying by 2
msgInfo("Double " + x + " is", numVal(x) * 2) ; displays 2,247.08
endMethod



pmt method
Returns the periodic payment required to pay off a loan.

Syntax
pmt ( const interestRate Number, const periods Number ) Number

Description
pmt returns the constant, regular payment required to pay off a loan. pmt uses the following formula:

PMT = p * i / ( 1 - ( 1 + i) ^-t)
(where p = principal amount, i = effective interest rate per period, and t = term of the loan or number of 
payment periods).
Payments are due at the end of each period.
pmt works for amortization-type loans (e.g., conventional home mortgages), in which part of the payment 
consists of interest on the remaining principal, and the remainder pays off part of the principal of the loan. pmt 
does not work for consumer-type loans (e.g., repayments of credit accounts or automobile loans).
The interest rate used in pmt is a decimal number. Ensure that the rate period matches the payment periods 
(i.e., if the payments are monthly, the interest rate should also be monthly). Because the interest rate for 
amortization loans (mortgages) is usually annual, you can divide it by 12 for monthly payments or by 4 for 
quarterly payments.
Use the nominal annual interest rate quoted instead of the accompanying annual percentage rate (APR).
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUFV;OPAL_METH_NUPV;',0,"Defaultoverview",)} 
Related Topics



pmt example
In the following example, the pushButton method for the findPayment button calculates the monthly payment 
for a 24-month loan of $1,000 at a 12% interest rate:
; findPayment::pushButton
method pushButton(var eventInfo Event)
var 
  monthlyPayment, 
  loanAmt, 
  intRate, 
  numPayments Number 
endVar
loanAmt = 1000        ; borrow $1000
intRate = .12 / 12    ; 12 percent annual interest
numPayments = 24      ; 1 payment per month for 2 years
monthlyPayment = loanAmt.pmt(intRate, numPayments) 
msgInfo("Monthly payment", "The monthly payment for a loan of " +
        String(loanAmt) + " at " + String(intRate * 12 * 100) + 
        "% interest for " + String(SmallInt(numPayments)) + 
        " months is " + String(monthlyPayment))    ; payment is $47.07
endMethod



pow method
Raises a number to a specified power.

Syntax
pow ( const exponent Number ) Number

Description
pow returns the value of a number raised to the power specified in exponent. If the return value is larger than 
1E308 or smaller than 1E-308, pow returns an error.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUPOW10;OPAL_METH_NULN;OPAL_METH_NULOG;',0,"D
efaultoverview",)} Related Topics



pow example
In the following example, the pushButton method for the raiseTwo button calculates  and displays the 
result:
; raiseTwo::pushButton
method pushButton(var eventInfo Event)
var
  root,
  expn    Number
endVar
root = 2
expn = 8
msgInfo(String(root) + " raised to the power of " + 
        String(expn), root.pow(expn)) ; displays 256
endMethod



pow10 method
Calculates 10 to a specified power.

Syntax
pow10 ( ) Number

Description
pow10 returns the value of 10 raised to a specified power.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUPOW;OPAL_METH_NULN;OPAL_METH_NULOG;',0,"Defa
ultoverview",)} Related Topics



pow10 example
In the following example, the pushButton method for the raiseTen button calculates  and displays the 
result:
; raiseTen::pushButton
method pushButton(var eventInfo Event)
var
  expn,
  result Number
endVar
expn = 9
result = expn.pow10() 
msgInfo("Ten raised by a power of " + String(expn), 
        format("EC", result))                  ; displays 1,000,000,000
endMethod



pv method
Returns the current value of a series of equal payments.

Syntax
pv ( const interestRate Number, const periods Number ) Number

Description
pv calculates the current value of equal, regular payments on a loan (or withdrawals from an investment) at a 
rate specified in interestRate for a term specified in periods. The payments reduce the principal, but the 
remaining balance continues to generate and compound interest.
pv uses the following formula:
PV = payment * (1-  / rate)

(where n is the number of periods)
The interest rate used in pv is expressed as a decimal number. Ensure that the rate period matches the payment
period (i.e., if the payments are monthly, the interest rate should also be monthly). Use pv to calculate the size 
of the mortgage you can afford. (Use pmt to work in reverse and find the monthly payment needed to amortize 
a given amount.) You can also use pv to calculate the amount you'll need to purchase an annuity that makes 
regular, equal payments to you over time. For this reason, pv is also called the present value of an annuity.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUFV;OPAL_METH_NUPMT;',0,"Defaultoverview",)} 
Related Topics



pv example
The following example assumes that you can afford to pay $1,200 per month and can get a 30-year mortgage at 
a fixed annual rate of 9% (0.75% monthly). The pushButton method for findPV calculates and displays the loan 
amount for which you qualify:
; findPV::pushButton
method pushButton(var eventInfo Event)
var 
  payAmt,
  intRate,
  term, 
  mortgage    Number 
endVar
payAmt   = 1200
intRate  = .09 / 12             ; monthly interest for 9% a year
term     = 360                  ; 30 years (expressed in months) 
mortgage = payAmt.pv(intRate, term)
msgInfo("Maximum Mortgage", "If you can pay " + String(payAmt) +
        " a month for " + String(term /12) + " years at " + 
        String(intRate * 12 * 100) + "% you can qualify for " +
        format("E$C", mortgage))     ; displays $149,138
endMethod

Imagine when you retire you would like to withdraw $2,500 each month for 30 years from an annuity account 
that accumulates 7.5% annual interest. This code uses the pushButton method for the findAnnuity button to 
calculate how much you'll need in the account:
; findAnnuity::pushButton
method pushButton(var eventInfo Event)
var 
  monthlyAmt,
  term,
  intRate,
  investment  Number
endVar

monthlyAmt = 2500.00  ; monthly amount you want annuity to pay
term = 360            ; 30 years, converted to 360 months
intRate = .075/12     ; 7.5% a year, converted to monthly rate
investment = monthlyAmt.pv(intRate, term)  ; what you need to start with
msgInfo("Annuity Required", "For an annuity to return $" +
        String(monthlyAmt) + " a month at " +
        format("W4.2", intRate * 12 * 100) + "% for " + 
        String(SmallInt(term / 12)) + 
        " years, the original amount must be " + 
        String(investment))                ; displays 357,544.07
endMethod



rand procedure
Generates a random value ranging from 0 to 1.

Syntax
rand ( ) Number

Description
rand generates a random value ranging from 0 to 1.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUTRUNCATE;',0,"Defaultoverview",)} Related Topics



rand example
In the following example, the pushButton method for the getRand button calculates and displays a random 
number x between 1 (minNum) and 10 (maxNum).
; getRand::pushButton
method pushButton(var eventInfo Event)
var 
  x, 
  minNum,
  maxNum  SmallInt 
endVar
minNum = 1
maxNum = 10
; get a random integer between minNum and maxNum
x = SmallInt(rand() * (maxNum - minNum + 1) + minNum)
msgInfo("A number between " + String(minNum) + " and " +
        String(maxNum),  x)
endMethod



round method
Rounds a number to a specified number of decimal places.

Syntax
round ( const places SmallInt ) Number

Description
round returns a number rounded to the number of decimal places specified in places.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUTRUNCATE;OPAL_METH_NUCEIL;OPAL_METH_NUFLOR;
',0,"Defaultoverview",)} Related Topics



round example
In the following example, the pushButton method for the showRound button rounds a number to 4 decimal 
places and displays the result. This code then rounds and displays a number to the nearest 1000.
; showRound::pushButton 
method pushButton(var eventInfo Event)
var 
  roundMe Number 
endVar
roundMe = 1.2356838
msgInfo(format("W9.7",roundMe) + " rounded to 4 decimal places", 
          format("W6.4", roundMe.round(4))) ; displays 1.2357
roundMe = 678394
msgInfo(String(roundMe) + " rounded to -3 decimal places", 
          roundMe.round(-3))                ; displays 678,000
endMethod



sin method
Returns the sine of an angle.

Syntax
sin ( ) Number

Description
sin returns a number between -1 and 1 representing the sine of an angle in radians.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUASIN;OPAL_METH_NUCOS;OPAL_METH_NUTAN;',0,"Def
aultoverview",)} Related Topics



sin example
The following example uses the pushButton method for the findSin button to calculate the sine of a 45-degree 
angle:
; findSin::pushButton
method pushButton(var eventInfo Event)
var
  fortyFiveDegrees Number
endVar
fortyFiveDegrees  = PI / 4.0
msgInfo("The sine of 45 degrees", 
         format("W14.12", fortyFiveDegrees.sin()))   
; displays 0.707106781187
endMethod



sinh method
Returns the hyperbolic sine of an angle.

Syntax
sinh ( ) Number

Description
sinh returns the hyperbolic sine of an angle in radians. sinh uses the following formula:
sinh ( angle ) = ( exp ( angle ) - exp ( -angle ) ) / 2
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUSIN;OPAL_METH_NUCOS;OPAL_METH_NUTAN;',0,"Defa
ultoverview",)} Related Topics



sinh example
In the following example, the pushButton method for the getHSine button calculates the hyperbolic sine of a 
45-degree angle:
; getHSine
method pushButton(var eventInfo Event)
var
  fortyFiveDegrees Number
endVar
fortyFiveDegrees = PI / 4.0
msgInfo("The hyperbolic sine of 45 degrees", 
        format("w14.12", fortyFiveDegrees.sinh()))
; displays 0.868670961486
endMethod



sqrt method
Returns the square root of a number.

Syntax
sqrt ( ) Number

Description
sqrt returns the square root of a positive value or numeric expression.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUEXP;',0,"Defaultoverview",)} Related Topics



sqrt example
In the following example, the pushButton method for the getSqrt button assigns the value from fieldOne (an 
unbound field object) to x. If x is positive, the code then calculates and displays the square root of x:
; getSqrt::pushButton
method pushButton(var eventInfo Event)
var
  x Number
endVar
x = fieldOne
if x < 0 then
  msgStop("Sorry", 
          "Can't take the square root of a negative number.")
else
  msgInfo("The square root of " + String(x), 
           format("w14.6", sqrt(x))) ; displays result
endIf
endMethod



tan method
Returns the tangent of an angle.

Syntax
tan ( ) Number

Description
tan returns the tangent of an angle in radians. tan diverges at -pi/2, pi/2, and every ± pi radians from those 
values.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUATAN;OPAL_METH_NUATAN2;OPAL_METH_NUCOS;OPA
L_METH_NUSIN;',0,"Defaultoverview",)} Related Topics



tan example
In the following example, the pushButton method for the getTan button calculates the tangent of a 45-degree 
angle and displays the result:
; getTan::pushButton
method pushButton(var eventInfo Event)
var
  fortyFiveDegrees Number
endVar
fortyFiveDegrees = PI / 4.0
msgInfo("Tangent of 45 degrees", fortyFiveDegrees.tan())   ; displays 1.00
endMethod



tanh method
Returns the hyperbolic tangent of an angle.

Syntax
tanh ( ) Number

Description
tanh returns the hyperbolic tangent of an angle in radians. tanh uses the following formula:
tanh ( angle ) = sinh ( angle ) / cosh ( angle )
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUATAN;OPAL_METH_NUCOS;OPAL_METH_NUSIN;',0,"Def
aultoverview",)} Related Topics



tanh example
In the following example, the pushButton method for a button named getHTan calculates the hyperbolic 
tangent of a 60-degree angle and displays the result:
; getHTan::pushButton
method pushButton(var eventInfo Event)
var
  sixtyDegrees Number
endVar
sixtyDegrees = PI / 3.0
msgInfo("The hyperbolic tangent of 60 degrees", 
        format("W14.12", sixtyDegrees.tanh())) 
; displays .780714435359
endMethod



truncate method
Shortens a number to a specified number of decimal places.

Syntax
truncate ( const places SmallInt ) Number

Description
truncate returns a number truncated toward 0 to the number of decimal places specified in places. truncate 
does not round the value.
 Example

{button ,AL(`OPAL_TYPE_NUMBER;OPAL_METH_NUCEIL;OPAL_METH_NUFLOR;OPAL_METH_NUROUND;',0,
"Defaultoverview",)} Related Topics



truncate example
In the following example, the pushButton method for the chopAValue button assigns the value from fieldOne 
(an unbound field object) to x. the code then truncates x to 3 decimal places, and displays the truncated result:
; chopAValue::pushButton
method pushButton(var eventInfo Event)
var 
  x Number
endVar
x = fieldOne
msgInfo("x truncated to 3 places",
        format("W14.6", x.truncate(3))) ; displays truncated version of x
endMethod



OLE type
Object Linking and Embedding (OLE) is a protocol that allows you to access another application without leaving 
Corel Paradox.
For example, suppose you have tables that contain bitmap graphics, and you want to create a Corel Paradox 
application that enables users to edit those graphics. One approach is to create the graphics using a paint 
program that is an OLE server (defined below). Then, use ObjectPAL OLE type methods to make the functionality 
of the paint program available to your users (assuming, of course, that your users have the paint program 
installed on their systems).
ObjectPAL and Corel Paradox also support Dynamic Data Exchange (DDE) another protocol that allows you to 
share data among applications.

The following terms are used when discussing OLE operations:
OLE server An application that uses the OLE mechanism to provide access to its documents. Corel Paradox 

is an OLE server.
OLE container An application that uses the OLE mechanism to access documents created by an OLE server. 

Corel Paradox is an OLE container.
OLE object A document created using an OLE server. A document that contains the data you want to use in 

your Corel Paradox application.
OLE variable An ObjectPAL variable declared as an OLE type. An OLE variable provides a handle for 

manipulating an OLE object. You can use OLE variables in ObjectPAL code to manipulate OLE 
objects.

Asynchronous Code in each application executes independently (i.e., one application does not wait for the 
other). When you use a method that launches an OLE server for user input, declare the OLE 
variable in a Var window or in a method window above the method keyword. This ensures that 
the OLE variable is and in scope, even if the method finishes before the server application is 
closed.

The following table lists the methods for the OLE type, including several derived methods from the AnyType type.
Methods for the OLE type

AnyType OLE
blank canLinkFromClipboard
dataType canReadFromClipboard
isAssigned edit
isBlank enumServerClassNames
isFixedType enumVerbs
unAssign getServerName

insertObject
isLinked
linkFromClipboard
readFromClipboard
updateLinkNow
writeToClipboard

   Print related ObjectPAL methods and examples  



canLinkFromClipboard method
Reports whether an OLE object can be linked from the Clipboard to an OLE variable.

Syntax
canLinkFromClipboard ( ) Logical

Description
canLinkFromClipboard returns True if an OLE object can be linked from the Clipboard to an OLE variable; 
otherwise, it returns False. After an OLE object is linked from the Clipboard, changes made to the OLE object, 
while in Corel Paradox, affect the underlying file.
canLinkFromClipboard is useful in a routine that determines whether a linkFromClipboard operation is 
possible. A menu item is dimmed and inactive when canLinkFromClipboard returns False.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLLINKFROMCLIPBOARD;OPAL_METH_OLCANREADFROM;OPA
L_METH_OLREADFROM;',0,"Defaultoverview",)} Related Topics



canLinkFromClipboard example
The following example attempts to link an OLE object from the Clipboard to a field in a specified record in a 
table. If the OLE object can't be linked, this code prompts the user to embed or read the OLE object instead.
; btnLinkOrRead::pushButton
method mouseClick(var eventInfo MouseEvent)
   var
      stReadOLE      String
      oleObj         OLE
      tcEmployee      TCursor
   endVar

   ; Move to specified record in table.
   tcEmployee.open("employee")
   tcEmployee.locate("EmpName", "Frank Corel")

   ; Link if you can, otherwise read (embed).
   switch
      case oleObj.canLinkFromClipboard() :
         oleObj.linkFromClipboard()

      case oleObj.canReadFromClipboard() :
         stReadOLE = msgQuestion("Can't link OLE object.",      
                              "Do you want to embed it instead?")
         if stReadOLE = "Yes" then
            oleObj.readFromClipboard()
         else
            message("No update.")
            return
         endIf
      
      otherwise :
         msgInfo("Can't link or embed the OLE object.",
              "The Clipboard may be empty.")
         return
   endSwitch      

   ; Update the table.
   tcEmployee.edit()
   tcEmployee.VoiceSample = oleObj
   tcEmployee.endEdit()
   message("Update complete")
endMethod



canReadFromClipboard method
Reports whether an OLE object can be embedded from the Clipboard to an OLE variable.

Syntax
canReadFromClipboard ( ) Logical

Description
canReadFromClipboard returns True if an OLE object can be embedded or read from the Clipboard into an OLE
variable; otherwise, it returns False. After an OLE object is read from the Clipboard, changes made to the OLE 
object while in Corel Paradox, do not affect the underlying file.
canReadFromClipboard is useful in a routine that determines whether a readFromClipboard operation is 
possible. A menu item is dimmed and inactive when canReadFromClipboard returns False.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLREADFROM;OPAL_METH_OLLINKFROMCLIPBOARD;OPAL_M
ETH_OLCANLINKFROMCLIPBOARD;',0,"Defaultoverview",)} Related Topics



canReadFromClipboard example
See the canLinkFromClipboard example.



edit method
Launches the OLE server and allows the user to edit the object or perform another action.

Syntax
edit ( const oleText String, const verb SmallInt ) Logical

Description
edit launches the OLE server application and gives control to the user. The argument oleText is a string that 
Corel Paradox passes to the server application. Many server applications displays oleText in the Title Bar. edit 
passes verb to the application server to specify an operation.
verb is an integer that corresponds to one of the OLE server's action constants. The meaning of verb varies from 
application to application a verb that is appropriate for one application may not be appropriate for another. Use
enumVerbs to determine which verbs the server supports and then select a verb for the call to edit.
If you want to launch an OLE server without using enumVerbs, use 0 for verb this value represents the 
primary verb, and should be supported by all OLE servers.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLENUMVERBS;',0,"Defaultoverview",)} Related Topics



edit example
The following example assumes that the Pics table stores Paintbrush graphics in an OLE field. The table has two 
fields: PicName (A8) and PicData (O). When you click editButton, this code locates a record in the table and uses 
edit to invoke Paintbrush (enabling the user to edit the graphic in the OLE field). When you click updateButton, 
the code updates the Pics table.
Code is attached to the page's Var window, to the editButton's pushButton method, and to the updateButton's 
pushButton method. Variables are declared in the page's Var window for two reasons: to make them available 
to both buttons; it ensures the OLE variable is available, even if edit finishes executing before Paintbrush is 
closed.
The page's Var window contains the following code:
 var 
   olePic  OLE
   picTC   TCursor
endVar

The editButton's pushButton method contains the following code:
 method pushButton(var eventInfo Event)
   if picTC.open ("pics.db") then
      if picTC.locate("PicName", "blueLine") then

                  ; The PicData field stores OLE objects
                  ; created using Paintbrush.
         olePic = picTC.PicData

                  ; Launch Paintbrush so user can edit the bitmap.
         olePic.edit("PDOXWIN", 0) 
      else
         msgStop("Stop", "Couldn't find blueLine.")
      endIf
   else
      msgStop("Stop", "Couldn't open table.")
   endIf
endMethod

The updateButton's pushButton method contains the following code:
 method pushButton(var eventInfo Event)
   picTC.edit()
   picTC.PicData = olePic
   picTC.endEdit()
   picTC.close()
endMethod



enumServerClassNames method
Lists the registered OLE servers.

Syntax
enumServerClassNames ( var serverClasses DynArray[ ] String ) Logical

Description
enumServerClassNames lists the OLE servers registered on the user's system. The information is assigned to 
serverClasses, a dynamic array (DynArray) that you must declare and pass as an argument. This method returns 
True if it succeeds; otherwise, it returns False.
The DynArray's indexes are the end-user server names (e.g., Corel Paradox Table), and the corresponding items 
are the internal OLE names.
Use enumServerClassNames to pass a server name to insertObject.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLENUMVERBS;OPAL_METH_OLINSERTOBJECT;',0,"Defaultove
rview",)} Related Topics



enumServerClassNames example
See the insertObject example.



enumVerbs method
Lists the actions supported by an OLE server.

Syntax
enumVerbs ( var verbs DynArray[ ] SmallInt ) Logical

Description
enumVerbs creates a dynamic array (DynArray) listing the action commands or verbs supported by the OLE 
server associated with an OLE variable.
When you associate an OLE variable with an OLE object, Corel Paradox recognizes the server application which 
generated the object. OLE methods like enumVerbs and getServerName allow you to ask questions.
enumVerbs requests the server for a list of supported verbs and then loads them into a DynArray. Each 
DynArray index corresponds to the name of a specific action (i.e., DynArray items correspond to the action 
constant used by the server). Because each verb's meaning varies from application to application, you must 
know which verb to pass to the server to instruct it to do what you want.
Windows Paintbrush is an OLE server that has only one action command (Edit, with a value of 0). The following 
code a Paintbrush graphic from the Clipboard and generates a dynamic array using enumVerbs. This code then 
displays the DynArray's contents in a dialog box.
var
  oleVar OLE
  dy DynArray[] SmallInt
endVar

oleVar.readFromClipboard() ; read from the Clipboard into oleVar
oleVar.enumverbs(dy)       ; generate a DynArray of verbs
dy.view()                  ; display DynArray contents in a dialog

This code assumes the Clipboard contains an OLE object (a graphic image) that was generated in Paintbrush. 
The dynamic array contains one element whose index is Edit and whose value is 0. Some OLE servers use more 
than one verb, and would therefore generate a larger list. Other OLE servers use Edit but preface the name with 
an ampersand (&Edit). The ampersand prefix is especially useful when you want to display action names in a 
menu. Corel Paradox recognizes the ampersand as a special character and displays &Edit as Edit. E is designated
as an accelerator key.
For more information, see Menu methods.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLENUMSERVERCLASSNAMES;OPAL_METH_OLGETSERVERNA
ME;OPAL_METH_OLREADFROM;',0,"Defaultoverview",)} Related Topics



enumVerbs example
The following example assumes the Sounds table contains an alpha field named SoundName and an OLE field 
named SoundData. Data displayed in the OLE field is copied from the Windows Sound Recorder to the Clipboard. 
The following code uses enumVerbs to create a pop-up menu that lists the verbs (actions) for Sound Recorder 
when you click a button named btnEditSounds. Because Sound Recorder supports two actions (Edit and Play), 
this example allows the user to edit or play the sound contained in the OLE field.
The following code is attached to the button's Var window and declares the OLE variable. Declaring the OLE 
variable in the Var window, ensures that the variable is available, even if the method finishes before the server 
application is closed.
; btnEditSounds::Var
Var
   oleVar OLE
endVar

The following code is attached to the button's built-in pushButton method. It builds and displays a pop-up menu
and launches the server application.
; btnEditSounds::pushButton
method pushButton(var eventInfo Event)
var
  oleVar  OLE
  p       PopUpMenu
  verbs   DynArray[] SmallInt
  tc      TCursor
  mChoice, tagName String
endvar
soundName = "tada.wav"
tblName = "Sounds.db"

if tc.open(tblName) then
  if tc.locate(1, soundName) then ; Search in first field for tada.wav
    oleVar = tc.SoundData    ; Assign field value to OLE var
    oleVar.enumVerbs(verbs)  ; Get list of Sound Recorder actions.
    forEach tagName in verbs ; Create a pop-up menu of verbs.
      p.addText(tagName) ; Sound Recorder's verbs are &Edit and &Play
    endForEach
    mChoice = p.show()  ; display "Edit" and "Play" in the pop-up menu

    ; If the user selects from the menu,
    ; pass the selected "verb" to the 
    ; edit method. verbs[mChoice] evaluates to 0 or 1.
    ; "PdoxWin" appears in Sound Recorder's Title Bar
    ; when Edit is selected
    if not mChoice.isBlank() then
      oleVar.edit("PdoxWin", verbs[mChoice])
    endIf

  else
    errorShow("Can't find " + soundName + ".")
  endIf
else
  errorShow("Can't open " + tblName + ".")
endIf

endMethod



getServerName method
Reports the name of the OLE server for an OLE object.

Syntax
getServerName ( ) String

Description
getServerName reports the name of the OLE server for an OLE object. getServerName is especially useful 
when you want to provide the user with the OLE server name.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLEDIT;OPAL_METH_OLENUMSERVERCLASSNAMES;OPAL_MET
H_OLENUMVERBS;',0,"Defaultoverview",)} Related Topics



getServerName example
The following example assumes that the Media table has an alpha field named MediaName, an alpha field named
ServerName, and an OLE field named MediaData. This code scans through Media's records placing the name of 
the OLE server that generated data in the MediaData field.
; getServerName::pushButton
method pushButton(var eventInfo Event)
var
  oleVar  OLE
  tc      TCursor
endvar

if tc.open("Media") then
  tc.edit()
  scan tc for not isBlank(tc.SoundData) :
    oleVar = tc.SoundData
    tc.ServerName = oleVar.getServerName()
  endScan
  tc.close()
else
  msgStop("Error", "Can't open Media table.")
endIf

endMethod



insertObject method
Inserts a linked or embedded OLE object into an OLE variable.

Syntax
1. insertObject ( ) Logical
2. insertObject ( const fileName String , const link Logical ) Logical
3. insertObject ( const className String ) Logical

Description
insertObject assigns a linked or embedded OLE object to an OLE variable. This method returns True if it 
succeeds; otherwise, it returns False.
Syntax 1 invokes the Insert Object dialog box. The user must supply any necessary information and close the 
dialog box. For example, the user can choose Create New to insert a new OLE object or Create From File to insert 
an existing OLE object from a file.
Syntax 2 inserts an object from the file specified in fileName without launching the server application for user 
input. The argument link specifies whether to link to the file. If link is True, changes made to the object in Corel 
Paradox are reflected in the underlying file. If link is False, changes made in Corel Paradox do not affect the file.
Syntax 3 launches the server application for user input and inserts an object from the class specified in 
className. className is the name of a registered OLE server class. Use enumServerClassNames to view a 
list of OLE server class names.
 Note

· When creating a new file, the server application may prompt the user for file creation information.
 Examples

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLCANREADFROM;OPAL_METH_OLLINKFROMCLIPBOARD;OPA
L_METH_OLREADFROM;',0,"Defaultoverview",)} Related Topics



insertObject method examples
Example1          Using variables declared in the Var window
Example2         Using insertObject without launching a server application
Example3          Using insertObject to launch a specified application



insertObject example 1
In the following example, a form contains buttons named btnInsertOLE and btnEditOLE and a field object named 
mugShot. mugShot is bound to an OLE field named MugShot in a table in the form's data model. The variables 
oleVar and loInserted are declared in the page's Var window to make them available to both buttons, and to 
ensure that the OLE variable is available if a method finishes before the server application is closed.
The following code is attached to the page's Var window. It declares the OLE variable named oleVar and a Logical
flag variable named loInserted that tracks whether an OLE object was inserted into the OLE variable.
; thePage::Var
Var
   oleVar         OLE
   loInserted   Logical
endVar

The following code is attached to the pushButton method of btnInsertOLE. It displays the Insert Object dialog 
box, allowing the user to insert an OLE object:
; btnInsertOLE :: pushButton
method pushButton(var eventInfo Event)

   if not oleVar.insertObject() then ; Invoke Insert Object dialog box.
      errorShow()
      loInserted = No
      return
   else
      loInserted = Yes
   endIf

endMethod

The following code is attached to the pushButton method of btnEditOLE:
; btnEditOLE :: pushButton
method pushButton(var eventInfo Event)

   if not loInserted.isAssigned() then
      loInserted = No
   endIf

   if loInserted = Yes then
      edit()
      mugShot.Value = oleVar
      loInserted = No ; Reset the flag.
      endEdit()
   else
      msgInfo("No OLE object to insert.",
           "Click the Insert button.")
   endIf

endMethod



insertObject example 2
In the following example, a form contains a button named btnInsertOLE and a field object named fldOLE. fldOLE 
is bound to an OLE field in a table in the form's data model. The pushButton method uses an OLE variable 
oleVar and insertObject to read a wave file into the OLE variable named oleVar. The code then assigns the file 
to the field fldOLE. This example does not launch the server application for user input.
;btnInsertOLEFile :: pushButton
const
   ; Changes made in Corel Paradox will not
   ; affect the underlying file.
   kNoLink = False
endConst

var
   oleVar OLE
endVar

method pushButton(var eventInfo Event)
   var
      stFileName,
      stPrompt   String
   endVar

   stPrompt = "Type the filename here."
   stFileName = stPrompt
   stFileName.view("Enter a filename.")
   if stFileName = stPrompt then
      return ; User didn't type a filename and click OK.
   endIf
   
   if oleVar.insertObject(stFileName, kNoLink) then
      edit()
      fldOLE.Value = oleVar
      endEdit()
   else
      errorShow("Could not insert OLE object: " + stFileName)
   endIf   
endMethod



insertObject example 3
Imagine that you are using Corel Paradox to maintain and publish a database for a school and each record 
represents a course syllabus. Since different instructors prefer different word processors, you can store syllabus 
data in an OLE field and let the instructors edit it any application that is an OLE server.
The following example assumes a form contains a table frame bound to the Courses table and that each record 
in the table frame contains a field object named Syllabus. The following code is attached to a button named 
btnAddSyllabus that allows the user to add a new syllabus to the table. This code displays a list of the OLE server
applications installed in the user's system a in a pop-up menu. When the user chooses an application name from 
the pop-up menu, the call to insertObject inserts an object of the specified type.
; btnAddSyllabus :: pushButton
var
   oleVar   OLE
endVar

method pushButton(var eventInfo Event)
   var
      puServers      PopUpMenu
      stOLEServer,
      stUserServer      String
      dyOLEServers      DynArray[] String
   endVar

   ; Specify a title for the pop-up menu.
   puServers.addStaticText("Choose one:")
   puServers.addSeparator()

   ; enumServerClassNames returns a DynArray where the keys are
   ; the external names and the corresponding items are the
   ; names used internally by OLE.

   oleVar.enumServerClassNames(dyOLEServers)

   forEach stOLEServer in dyOLEServers
      puServers.addText(stOLEServer)
   endForEach

   stUserServer = puServers.show()
   if stUserServer <> "" then

     ; insertObject uses the internal name to specify an OLE server.
      if oleVar.insertObject(dyOLEServers[stUserServer]) then
         action(DataBeginEdit)
         Courses.Syllabus.Value = oleVar         
         action(DataEndEdit)   
      else
         errorShow("Could not insert " + stOLEServer)
      endIf
   else
      return ; User didn't choose a server.
   endIf
endMethod



isLinked method
Reports whether an OLE object is a linked object.

Syntax
isLinked ( ) Logical

Description
isLinked returns True if an OLE object is a linked object and False if it is an embedded object. When used with 
updateLinkNow, you can use this method to update the linked OLE fields in a table.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLCANREADFROM;OPAL_METH_OLREADFROM;OPAL_METH_OL
UPDATELINKNOW;',0,"Defaultoverview",)} Related Topics



isLinked example
See the updateLinkNow example.



linkFromClipboard method
Pastes a link between an OLE object from the Clipboard and an OLE variable.

Syntax
linkFromClipboard ( ) Logical

Description
linkFromClipboard returns True if an OLE object is successfully pasted from the Clipboard and linked to an OLE 
variable; otherwise, it returns False. 
After an OLE object is linked from the Clipboard, changes made while in Corel Paradox affect the underlying file. 
Compare this method to readFromClipboard, where changes made in Corel Paradox do not affect the 
underlying file.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLCANREADFROM;OPAL_METH_OLREADFROM;',0,"Defaultove
rview",)} Related Topics



linkFromClipboard example
See the canReadFromClipboard example.



readFromClipboard method
Pastes an OLE object from the Clipboard into an OLE variable.

Syntax
readFromClipboard ( ) Logical

Description
readFromClipboard returns True if an OLE object is successfully pasted from the Clipboard into an OLE 
variable; otherwise, it returns False.
After an OLE object is pasted from the Clipboard, changes made while in Corel Paradox do not affect the 
underlying file. Compare this method to linkFromClipboard, where changes made in Corel Paradox affect the 
underlying file.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLCANREADFROM;',0,"Defaultoverview",)} Related Topics



readFromClipboard example
See the canReadFromClipboard example.



updateLinkNow method
Updates a linked OLE object.

Syntax
updateLinkNow ( ) Logical

Description
updateLinkNow updates a linked OLE object and returns True if successful. It returns False if the OLE object is 
an embedded object. You can use this method with isLinked to update the linked OLE fields in a table.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLISLINKED;',0,"Defaultoverview",)} Related Topics



updateLinkNow example
The following example scans the Employee table and updates any linked values in the OLE field named 
VoiceSample:
;btnUpdateLinks::pushButton
method pushButton(var eventInfo Event)
   var
      oleObj      OLE
      tcEmployee   TCursor
   endVar

   tcEmployee.open("employee")
   tcEmployee.edit()

   scan tcEmployee :
      oleObj = tcEmployee.VoiceSample    ; VoiceSample is an OLE field.
      if oleObj.isLinked() then
            oleObj.updateLinkNow()          ; Update the OLE variable.
            tcEmployee.VoiceSample = oleObj ; Assign the new value to the field in the 
underlying table.
      endIf
   endScan

   tcEmployee.endEdit()
endMethod



writeToClipboard method
Copies an OLE variable to the Clipboard.

Syntax
writeToClipboard ( ) Logical

Description
writeToClipboard copies an original OLE object to the Clipboard. This method erases the Clipboard before 
copying the OLE object.
This method returns True if an OLE object is successfully copied to the Clipboard; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_OLE;OPAL_METH_OLREADFRO;',0,"Defaultoverview",)} Related Topics



writeToClipboard example
The following example reads an OLE field in a Corel Paradox table and assigns its value to an OLE variable. This 
code then writes the variable to the Clipboard, where it can be used by Corel Paradox or another application. The
code assumes that EMPLOYEE.DB has an alpha field named Last Name and an OLE field named Picture.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  empTC TCursor
  oleImage OLE
endVar

empTC.open("Employee.db")     ; EMPLOYEE.DB has OLE images

if empTC.locate("Last Name", "Binkley") then

  oleImage = empTC.Picture    ; Picture is an OLE field
  oleImage.writeToClipboard() ; write contents of OLE field to variable

else
  msgStop("Error", "Can't find Binkley...")
endIf
endMethod



Point type
A Point variable contains information about a point on the screen. ObjectPAL considers the screen to be a two-
dimensional grid, with the origin at the upper-left corner of the design object's container, the positive x values 
extending to the right, and the positive y values extending down. A Point has an x value and a y value, where x 
and y are measured in twips. A twip is 1/1440 of a logical inch, and 1/20 of a printer's point.
Methods defined for the Point type get and set information about screen coordinates and relative point positions.
For example, a design object's size and position properties are specified in points.
ObjectPAL calculates point values relative to the container of the specified design object. This means that if a 
box contains a button, ObjectPAL calculates the button's position relative to the box. Similarly, if the button sits 
in an empty page, ObjectPAL calculates the button's position relative to the page. Methods that take or return 
Point values as arguments use this relative framework. You can use convertPointWithRespectTo defined for 
the UIObject type to convert values in different frameworks.
You can use Point operators (+, -, =, <, >, <=, and >=) to add, subtract, and compare Point variables. As the 
following example illustrates, these operators affect the x coordinates of each point first and then the y 
coordinates. 
var
   p1, p2, p3 Point
endVar
   
   p1 = Point(10, 30)
   p2 = Point(10, 30)
   p3 = Point(10, 33)
   
   message(p1 + p2)  ; Displays (20, 60), because 10 + 10 = 20, and 30 + 30 = 60.
   message(p1 = p2)  ; Displays True. Both x and y coordinates are equal.
   message(p1 = p3)  ; Displays False. Both coordinates must be equal.
   message(p3 > p1)  ; Displays False. Both coordinates must be greater.
   message(p3 >= p1) ; Displays True. Both coordinates are either greater or equal.
The following table displays the methods for the Point type, including the derived methods from the AnyType 
type.
Methods for the Point type

AnyType Point
blank distance
dataType isAbove
isAssigned isBelow
isBlank isLeft
isFixedType isRight
view point

setX
setXY
setY
x
y

   Print related ObjectPAL methods and examples     



distance method
Returns the distance between two points, measured in twips.

Syntax
distance ( const pt Point ) Number
Description
distance returns the number of twips between a specified point and pt.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTISAB;OPAL_METH_PTISBE;OPAL_METH_PTISLE;OPAL_MET
H_PTISRI;OPAL_METH_PTX;OPAL_METH_PTY;',0,"Defaultoverview",)} Related Topics



distance example
The following example assumes a form contains 2 boxes: redBox and brownBox. The pushButton method for a 
button named getDistance determines the distance between the upper-left corners of the boxes:
; brownBox::pushButton
method pushButton(var eventInfo Event)
var 
  p1, p2 Point 
endVar
p1 = redBox.Position
p2 = brownBox.Position
msgInfo("Distance between boxes", p1.distance(p2)) 
; shows the distance between the top left corner of
; redBox and the top left corner of brownBox
endMethod



isAbove method
Reports whether a point is positioned above another point.

Syntax
isAbove ( const pt Point ) Logical
Description
isAbove returns True if the y coordinate of a point is less than the y coordinate of pt; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTISBE;OPAL_METH_PTISLE;OPAL_METH_PTISRI;',0,"Default
overview",)} Related Topics



isAbove example
The following example uses the pushButton method for convergeBoxes to move boxOne closer to boxTwo, until
the two boxes converge. Assume that boxOne is originally positioned above and left of boxTwo. Each time the 
button is clicked, boxOne moves down until it is on the same vertical plane and then moves to the right until it is 
covered by boxTwo.
; convergeBoxes::pushButton
method pushButton(var eventInfo Event)
var
  p1, p2 Point
endVar
p1 = boxOne.position             ; get the position of boxOne
p2 = boxTwo.position             ; get the position of boxTwo
if p1.isAbove(p2) then           ; compare the two points
  ; if p1 is higher than p2, move boxOne down
  boxOne.position = Point(p1.x(), p1.y() + 100)
else
  if p1.isLeft(p2) then
    ; if p1 is to the left of p2, move boxOne to the right
    boxOne.position = Point(p1.x() + 100, p1.y())
  endIf
endIf
endMethod



isBelow method
Reports whether a point is positioned below another point.

Syntax
isBelow ( const pt Point ) Logical
Description
isBelow returns True if the y coordinate of a point is greater than the y coordinate of pt; otherwise, it returns 
False.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTISAB;OPAL_METH_PTISLE;OPAL_METH_PTISRI;',0,"Defaul
toverview",)} Related Topics



isBelow example
The following example uses the pushButton method for convergeBoxes to move boxTwo closer to boxOne, until
the two boxes converge. Assume that boxTwo is originally positioned below and to the right of boxOne. Each 
time the button is clicked, boxTwo moves up until it is on the same vertical plane and then moves left until it is 
covered by boxOne.
; convergeBoxes::pushButton
method pushButton(var eventInfo Event)
var
  p1, p2 Point
endVar
p1 = boxOne.position             ; get the position of boxOne
p2 = boxTwo.position             ; get the position of boxTwo
if p2.isBelow(p1) then           ; compare the two points
  ; if p2 is lower than p1, move boxTwo up
  boxTwo.position = Point(p2.x(), p2.y() - 100)
else
  if p2.isRight(p1) then
    ; if p2 is to the left of p1, move boxTwo to the left
    boxTwo.position = Point(p2.x() - 100, p2.y())
  endIf
endIf
endMethod



isLeft method
Reports whether a point is positioned to the left of another point.

Syntax
isLeft ( const pt Point ) Logical
Description
isLeft returns True if the x coordinate of a point is less than the x coordinate of pt; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTISAB;OPAL_METH_PTISBE;OPAL_METH_PTISRI;',0,"Defaul
toverview",)} Related Topics



isLeft example
See the isAbove example.



isRight method
Reports whether a point is positioned to the right of another point.

Syntax
isRight ( const pt Point ) Logical
Description
isRight returns True if the x coordinate of a point is greater than the x coordinate of pt; otherwise, it returns 
False.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTISAB;OPAL_METH_PTISBE;OPAL_METH_PTISLE;',0,"Defaul
toverview",)} Related Topics



isRight example
See the isBelow example.



point procedure
Casts an expression as a Point.

Syntax
1. point ( const x LongInt, const y LongInt ) Point
2. point ( const newPoint Point ) Point
Description
point casts an expression as a Point.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTSETX;OPAL_METH_PTSETY;',0,"Defaultoverview",)} 
Related Topics



point example
The following example varies the position of a box called rateBox. The values of an unbound field object named 
rateField range from 0 to 10. The position of rateBox is determined by the value in rateField. The following code 
is attached to the changeValue method for rateField:
; rateField::changeValue
method changeValue(var eventInfo ValueEvent)
Const
  baseXPosition = LongInt(3000)
  baseYPosition = LongInt(1000)
endConst
Var
  rateX   LongInt
endVar
try
  ; this if statement will fail if the field contents can't
  ; be compared to the integers 0 and 10 - for instance, if
  ; the user enters a string
  if eventInfo.newValue() >= 0 AND eventInfo.newValue() <= 10 then
    rateX = (eventInfo.newValue() * 400) + baseXPosition
    rateBox.Position = point(rateX, baseYPosition)
  else
    fail() ; if the value is a number but is out of range,
           ; call the fail block
  endIf
onFail
  disableDefault
  eventInfo.setErrorCode(CanNotDepart)
  msgStop("Stop", "Rating should be a number between 0 and 10.")
endTry

endMethod



setX method
Sets the x coordinate of a point.

Syntax
setX ( const newXValue LongInt )
Description
setX sets the x coordinate of a point to newXValue. If newXValue is not a LongInt, it is converted to a LongInt. 
This conversion may result in a loss of precision.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTSETY;',0,"Defaultoverview",)} Related Topics



setX example
In the following example, a form contains an ellipse named circleOne and a button named moveRight. The 
pushButton method for moveRight uses setX to change the horizontal coordinate of a point and then sets the 
position of circleOne to the changed point:
; moveRight::pushButton
method pushButton(var eventInfo Event)
var
  p1 Point
endVar
p1 = circleOne.position    ; get the position of the circle
p1.setX(p1.x() + 100)      ; add 100 twips to the x coordinate
circleOne.Position = p1    ; set the new position
message(p1)                ; display coordinates
endMethod



setXY method
Sets the x and y coordinates of a point.

Syntax
setXY ( const newXValue LongInt, const newYValue LongInt )
Description
setXY sets the x and y coordinates of a point to newXValue and newYValue. This method combines the functions
of setX and setY. If newXValue and newYValue are not LongInts, they are converted to LongInts. This conversion
may result in a loss of precision.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTSETX;OPAL_METH_PTSETY;',0,"Defaultoverview",)} 
Related Topics



setXY example
In the following example, a form contains an ellipse called circleOne and a button named moveDiagonal. The 
pushButton method for moveDiagonal uses setXY to change the horizontal and vertical coordinates of a point 
and then sets the position of circleOne to the changed point:
; moveDiagonal::pushButton
method pushButton(var eventInfo Event)
var
  p1 Point
endVar
p1 = circleOne.position               ; get the position of the circle
p1.setXY(p1.x() + 100, p1.y() + 100)  ; add 100 twips to each coordinate 
circleOne.Position = p1               ; set the new position 
message(p1)                           ; display coordinates
endMethod



setY method
Sets the y coordinate of a point.

Syntax
setY ( const newYValue LongInt )
Description
setY sets the y coordinate of a point to newYValue. If newYValue is not a LongInt, it is converted to a LongInt, 
and precision may be lost.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTSETX;OPAL_METH_PTSETXY;',0,"Defaultoverview",)} 
Related Topics



setY example
In the following example, a form contains an ellipse called circleOne and a button named moveDown. The 
pushButton method for moveDown uses setY to change the vertical coordinate of a point and then sets the 
position of circleOne to the changed point:
; moveDown::pushButton
method pushButton(var eventInfo Event)
var
  p1 Point
endVar
p1 = circleOne.position  ; get the position of the circle
p1.setY(p1.y() + 100)    ; add 100 twips to y coordinate
circleOne.Position = p1  ; set the new position
message(p1)              ; display coordinates
endMethod



x method
Returns the x coordinate of a point.

Syntax
x ( ) LongInt
Description
x returns the x coordinate of a point.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTSETX;OPAL_METH_PTSETY;OPAL_METH_PTY;',0,"Defaulto
verview",)} Related Topics



x example
See the setX example.



y method
Returns the y coordinate of a point.

Syntax
y ( ) LongInt
Description
y returns the y coordinate of a point.
 Example

{button ,AL(`OPAL_TYPE_POINT;OPAL_METH_PTSETY;OPAL_METH_PTSETX;OPAL_METH_PTX;',0,"Defaulto
verview",)} Related Topics



y example
See the setY example.



PopUpMenu type
A PopUpMenu is a list of items that appears vertically in response to an Event (e.g., a mouse click). When the 
user chooses an item from a pop-up menu, the corresponding text is returned to the method. A PopUpMenu is 
distinct from a Menu, a list of items that appears horizontally in the application Menu Bar.
Choosing an item from a pop-up menu does not trigger the built-in menuAction method unless the pop-up 
menu is attached to a custom menu.

Using PopUpMenu methods, you can
· build a pop-up menu
· display the pop-up menu and return a selected item
· inspect the items in a pop-up menu
· provide keyboard access
The following table displays the methods for the PopUpMenu type, including several derived methods from the 
Menu type.
Methods for the PopUpMenu type

Menu PopUpMenu
contains addArray
count addBar
empty addBreak
remove addPopUp
removeMen addSeparator

addStaticText
addText
show
switchMenu

 Print related ObjectPAL methods and examples



addArray method
Appends elements of an array to a pop-up menu.

Syntax
addArray ( const items Array[ ] String )
Description
addArray adds elements from an array to a pop-up menu.
 Example

{button ,AL(`OPAL_TYPE_POPUPMENU;OPAL_METH_POABAR;OPAL_METH_MUABRE;OPAL_METH_POASEP;
OPAL_METH_POASTE;OPAL_METH_POATEX;',0,"Defaultoverview",)} Related Topics



addArray example
In the following example, when the user right-clicks the field, a list of available payment types appears in a pop-
up menu. The following code is attached to the mouseRightUp method for paymentField:
; paymentType::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)
var
  items  Array[4] String
  p1     PopUpMenu          ;  addArray is called for this PopUpMenu
  choice String
endVar

disableDefault              ; don't show default Font menu

items[1] = "Visa"
items[2] = "MasterCharge"
items[3] = "Check"
items[4] = "Cash"

p1.addArray(items)          ; add items array to the PopUpMenu
choice = p1.show()          ; display menu, remember choice
if not choice.isBlank() then
  self.value = choice
endIf

endMethod



addBar method
Adds a vertical bar to a pop-up menu.

Syntax
addBar ( )
Description
addBar adds a vertical bar to a pop-up menu. The addBar method creates a new column in the pop-up menu 
and inserts a vertical bar immediately before the new column. addBar is the vertical equivalent of 
addSeparator.
 Example

{button ,AL(`OPAL_TYPE_POPUPMENU;OPAL_METH_POABRK;OPAL_METH_POASEP;',0,"Defaultoverview",
)} Related Topics



addBar example
The following example displays a pop-up menu with two columns of choices. The first two choices are displayed 
in the left column, and all the remaining choices are displayed in the right column. This code is attached to a 
field's mouseRightUp method:
; navField::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)
var
  navPopUp   PopUpMenu    ; to show a navigate pop-up menu
  navChoice  String       ; store the menu choice
endVar

disableDefault                        ; don't show normal menu for field

navPopUp.addText("Previous record")   ; left menu
navPopUp.addText("First record")
navPopUp.addBar()                     ; add vertical bar
navPopUp.addText("Next record")       ; right menu
navPopUp.addText("Last record")

navChoice = navPopUp.show()           ; invoke menu
; ...
; process choice
; ...

endMethod



addBreak method
Starts a new column in a pop-up menu.

Syntax
addBreak ( )
Description
addBreak starts a new column in a pop-up menu. The first item added after the call to addBreak is displayed 
at the top of the column to the right of the previous column, and subsequent items follow below it. The 
addBreak method behaves like addBar in that it marks the beginning of a new column of choices. However, 
addBreak doesn't create a vertical bar between columns. addBreak doesn't create a cascading menu; use 
addPopUp instead.
 Example

{button ,AL(`OPAL_TYPE_POPUPMENU;OPAL_METH_POABAR;OPAL_METH_POASEP;',0,"Defaultoverview",
)} Related Topics



addBreak example
The following example creates a pop-up menu with nine choices displayed in three vertical columns. This code is 
attached to whereToButton's pushButton method:
; whereToButton::pushButton
method pushButton(var eventInfo Event)
var
  navPopUp      PopUpMenu       ; a pop-up of navigation choices
  navChoice     String          ; navigation chosen        
endVar

navPopUp.addText("Home")        ; left menu
navPopUp.addText("Left")
navPopUp.addText("End")

navPopUp.addBreak()             ; start second column
navPopUp.addText("Up")
navPopUp.addText("Center")
navPopUp.addText("Down")

navPopUp.addBreak()             ; start third column
navPopUp.addText("PgUp")        ; right menu
navPopUp.addText("Right")
navPopUp.addText("PgDn")

navChoice = navPopUp.show()     ; invoke menu

; ... process choice

endMethod



addPopUp method
Adds a pop-up menu to the existing pop-up menu structure.

Syntax
addPopUp ( const menuName String, const cascadedPopup PopUpMenu )
Description
addPopUp adds menuName and cascadedPopup to the current pop-up menu structure, creating a cascading 
menu. menuName is displayed as an item in the original pop-up menu, and the first item in cascadedPopup 
appears next to it. Subsequent items in cascadedPopUp are displayed in a column below the first item.
 Examples

{button ,AL(`OPAL_TYPE_POPUPMENU;OPAL_METH_POABRK;',0,"Defaultoverview",)} Related Topics



addPopUp method examples
Example1          Attaching a cascading menu to a Menu Bar item
Example2          Creating an unattached menu



addPopUp example 1
The following example uses addPopUp to attach a cascading menu to a Menu Bar item (a menu from the Menu 
type). In this example, the code attached to the built-in open method for thisPage creates and displays the pop-
up menu structure. The code attached to thisPage's menuAction handles the user's selection because the pop-
up menus are attached to a Menu Bar item.
The following code is attached to the open method for thisPage:
; thisPage::open
method open(var eventInfo Event)
var
  mainMenu Menu
  subMenu1, subMenu2 PopUpMenu
endVar

  ; create 2nd level submenu
subMenu2.addText("&Time")
subMenu2.addText("&Date")

  ; add 2nd level to 1st level
subMenu1.addPopUp("&Utilities", subMenu2)

  ; add 1st level to Menu Bar
mainMenu.addPopUp("&File", subMenu1)

  ; display the Menu Bar
mainMenu.show()

endMethod
The following code is attached to thisPage's menuAction method:
; thisPage::menuAction
method menuAction(var eventInfo MenuEvent)
var
  choice String
endVar

choice = eventInfo.menuChoice()
switch
  case choice = "&Time" : msgInfo("Current Time", time())
  case choice = "&Date" : msgInfo("Today's Date", date())
endSwitch

endMethod



addPopUp example 2
The following example uses addPopUp to create a cascading pop-up menu. This menu structure is not attached 
to a Menu Bar item, and the built-in menuAction method is not used. The code immediately following the call to
show executes based on the user's selection.
The following code is attached to the mouseRightUp method for pageTwo:
; pageTwo::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)
var
  p1, p2, p3 PopUpMenu
  choice String
endVar

disableDefault                ; don't show normal pop-up menu

p2.addText("&Time")           ; build p2 and p3 submenus
p2.addText("&Date")
p3.addText("&Red")
p3.addText("&Green")
p3.addText("&Blue")

p1.addPopUp("&Utilities", p2) ; create Utilities item and attach p2 to it
p1.addPopUp("&Colors", p3)    ; create Colors item and attach p3 to it

choice = p1.show()            ; display menu and store selection to choice

switch                        ; now take action based on selection
  case choice = "&Red"   : self.color = Red
  case choice = "&Green" : self.color = Green
  case choice = "&Blue"  : self.color = Blue
  case choice = "&Time"  : msgInfo("Current Time", time())
  case choice = "&Date"  : msgInfo("Today's Date", date())
endSwitch

endMethod



addSeparator method
Adds a horizontal bar to a pop-up menu.

Syntax
addSeparator ( )
Description
addSeparator adds a horizontal bar to separate item groups in a pop-up menu. addSeparator is used to group
similar commands within a menu.
 Example

{button ,AL(`OPAL_TYPE_POPUPMENU;OPAL_METH_POABAR;OPAL_METH_POABRK;',0,"Defaultoverview"
,)} Related Topics



addSeparator example
The following example uses addSeparator to group pop-up menu commands. This code is attached to the built-
in open method for thisPage:
; thisPage::open
method open(var eventInfo Event)
var
  mainMenu Menu
  subMenu1, clrMenu PopUpMenu
endVar

clrMenu.addText("&Red")
clrMenu.addText("&Blue")
clrMenu.addText("&White")

subMenu1.addText("&Time")
subMenu1.addText("&Date")
subMenu1.addSeparator()
subMenu1.addPopUp("&Page colors", clrMenu)
subMenu1.addSeparator()
subMenu1.addText("&About")

mainMenu.addPopUp("&Utilities", subMenu1)
mainMenu.show()
endMethod
The following code is attached to the built-in menuAction method for thisPage:
; thisPage::menuAction
method menuAction(var eventInfo MenuEvent)
var
  choice String
endVar
choice = eventInfo.menuChoice()
switch
  case choice = "&Red"   : self.color = Red
  case choice = "&Blue"  : self.color = Blue
  case choice = "&White" : self.color = White
  case choice = "&Time"  : msgInfo("Current Time", time())
  case choice = "&Date"  : msgInfo("Today's Date", date())
  case choice = "&About" : eventInfo.setId(MenuHelpAbout)
endSwitch
endMethod



addStaticText method
Adds a static (unselectable) text string to a pop-up menu.

Syntax
addStaticText ( const item String )
Description
addStaticText adds a static (unselectable) text string to a pop-up menu. Static text is used as the title (first 
item) in a pop-up menu.
 Example

{button ,AL(`OPAL_TYPE_POPUPMENU;OPAL_METH_POATEX;',0,"Defaultoverview",)} Related Topics



addStaticText example
In the following example, when the user right-clicks the field, a list of available payment types is displayed in a 
pop-up menu. This example displays the first item as static text. The following code is attached to the 
mouseRightUp method for paymentField.
; paymentType::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)
var
  items  Array[4] String
  p1     PopUpMenu          ;  addArray is called for this PopUpMenu
  choice String
endVar

disableDefault              ; don't show default Font menu

items[1] = "Visa"
items[2] = "MasterCharge"
items[3] = "Check"
items[4] = "Cash"

                            ; display first item as static text
p1.addStaticText("Payment Method")
p1.addSeparator()           ; add a horizontal separator
p1.addArray(items)          ; add items array to the PopUpMenu
choice = p1.show()          ; display menu, remember choice
if not choice.isBlank() then
  self.value = choice
endIf

endMethod



addText method
Adds a selectable text string to a pop-up menu.

Syntax
1. addText ( const menuName String )
2. addText ( const menuName String, const attrib SmallInt )
3. addText ( const menuName String, const attrib SmallInt, const id SmallInt )
Description
addText adds a selectable text string to a pop-up menu. The pop-up menu can be displayed alone, or as part of 
a menu in the Menu Bar.
Syntax 1 uses menuName to specify the string to add to the pop-up menu.
Syntax 2, you can use attrib to preset the display attribute of menuName. ObjectPAL's MenuChoiceAttributes 
constants (e.g., MenuDisabled) for display attributes.
Syntax 3 is used only when the pop-up menu is attached to a Menu object. You can specify an id number (of type
SmallInt) to identify the menu by number instead of by menuName. Then use in the built-in menuAction 
method, you use the id number to determine which menu the user chooses.
You can also use Syntax 3 to create a menu that provides the same functions as a built-in Corel Paradox menu. 
Use a MenuCommands constant to assign a value to the id argument. When the user chooses that item from a 
menu, Corel Paradox performs the default action. For example, the following line adds Next to the puRecord 
PopUpMenu and uses the MenuCommands constant MenuRecordNext to assign an ID value.
puRecord.addText("Next", MenuEnabled, MenuRecordNext)
You must display, enable, or disable menu items to ensure that the Corel Paradox operation that the user triggers
is valid (e.g., you can only lock records in edit mode).
You can specify custom menu IDs, by adding a number or a user-defined menu constant to UserMenu. For 
example, the following code adds "File" to the myPopup PopUpMenu and specifies an id number for that menu 
item:
myPopup.addText("File", MenuEnabled, UserMenu + 1)
You can use an ampersand in an item so the user can select it using the keyboard. For example, the item &File 
would display as File, and the user could choose it by pressing F. When testing the user's choice, remember to 
include the ampersand. In this case, the returned value is &File, not File.
You can also use \t to insert a Tab between an item and its accelerator. For example, the item &Edit Data\tF9 
displays Edit Data left-aligned and F9 right-aligned. In this case the string value returned is &Edit Data\tF9.
 Examples

{button ,AL(`OPAL_TYPE_POPUPMENU;OPAL_METH_POASTE;',0,"Defaultoverview",)} Related Topics



addText examples
Example1         Right-clicking an unbound field
Example2         Using the idclause



addText example 1
The following example displays a variation of the addText syntax.
For this example, assume a form has an unbound field named payField. When the user right-clicks the field, a list
of available payment methods is displayed in a pop-up menu. The user can choose use the list to insert that 
value into the field or press ESC to cancel. The following code goes in the Var window for payField:
; payField::var
var
  payPopUp PopUpMenu
  mChoice  String
endVar
The following code is attached to the open method for payField. When the field opens for the first time, this 
code adds four items to the payPopUp PopUpMenu. This code prepares the pop-up menu for future display.
; payField::open
method open(var eventInfo Event)

payPopUp.addText("Visa")
payPopUp.addText("MasterCard")
payPopUp.addText("Check")
payPopUp.addText("Cash")

endMethod
The following code is attached to payField's built-in mouseRightUp method. When the user right-clicks the 
field, this method uses show to display the menu and then inserts the user's choice in the unbound field.
; payField::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)

disableDefault               ; don't show default pop-up menu

mChoice = payPopUp.show()    ; display menu, store selection to mChoice
if not isBlank(mChoice) then ; if user does not press ESC
  self.value = mChoice       ; insert mChoice in unbound field
endIf
endMethod



addText example 2
The following example displays a variation of the addText syntax.
This example uses the id clause for pop-up menus attached to a Menu object. This code establishes user-defined 
constants to make it easy to remember the menu id assignments. The following code is added to Const window 
for thisPage.
; thisPage::const
Const
  kMenuRed   = 1  ; define constant values for menu ids
  kMenuBlue  = 2
  kMenuWhite = 3
  kMenuTime  = 4
  kMenuDate  = 5
  kMenuAbout = 6
endConst
The following code is attached to the open method for thisPage. To control the menu display attributes, this 
code uses built-in constants (e.g., MenuEnabled). To identify each menu item by number, the code uses the 
constants defined in the Const window for thisPage (menuRed, menuBlue, etc.).
; thisPage::open
method open(var eventInfo Event)
var
  mainMenu Menu
  subMenu1, clrMenu, puRecord PopUpMenu
endVar

  ; add text to pop-up menus and use user-defined constants
clrMenu.addText("&Red", MenuEnabled, kMenuRed + UserMenu)
clrMenu.addText("&Blue", MenuEnabled, kMenuBlue + UserMenu)
clrMenu.addText("&White", MenuEnabled, kMenuWhite + UserMenu)

subMenu1.addText("&Time", MenuEnabled, kMenuTime + UserMenu)
subMenu1.addText("&Date", MenuEnabled, kMenuDate + UserMenu)
subMenu1.addSeparator()
subMenu1.addPopUp("&Page colors", clrMenu)
subMenu1.addSeparator()
subMenu1.addText("&About", MenuEnabled, kMenuAbout + UserMenu)
; Build a pop-up menu to attach to the Record menu.
; Use ObjectPAL MenuCommands constants to assign item IDs.
puRecord.addText("&First", MenuEnabled, MenuRecordFirst)
puRecord.addText("&Prev", MenuEnabled, MenuRecordPrevious)
puRecord.addText("&Next", MenuEnabled, MenuRecordNext)
puRecord.addText("&Last", MenuEnabled, MenuRecordLast)
  ; attach pop-up menus to mainMenu and display the Menu Bar
mainMenu.addPopUp("&Utilities", subMenu1)
mainMenu.addPopUp("&Record", puRecord)
mainMenu.show()
endMethod
The following code is attached to the menuAction method for thisPage. This example evaluates menu 
selections by ID number:
; thisPage::menuAction
method menuAction(var eventInfo MenuEvent)
var
  menuId SmallInt
endVar

menuId = eventInfo.id()   ; store menu id number in menuId

switch
  case menuId = kMenuRed + UserMenu   : self.color = Red
  case menuId = kMenuBlue + UserMenu  : self.color = Blue
  case menuId = kMenuWhite + UserMenu : self.color = White
  case menuId = kMenuTime  + UserMenu : msgInfo("Time", time())
  case menuId = kMenuDate + UserMenu  : msgInfo("Date", date())
  case menuId = kMenuAbout + UserMenu : eventInfo.setId(MenuHelpAbout)



   ; No extra code is needed to handle choices from the Record menu,
   ; because item IDs were assigned using MenuCommands constants.
   ; Corel Paradox handles them automatically.
endSwitch

endMethod



show method
Displays a pop-up menu and returns the selected item.

Syntax
show ( [ const xTwips SmallInt, const yTwips SmallInt ] ) String
Description
show displays a pop-up menu and returns the selected item. If the user presses ESC without making a selection,
the returned value is a zero-length string. The optional arguments xTwips and yTwips specify the coordinates of 
the upper left corner of the pop-up menu. If not specified, these arguments are set to the x and y coordinates of 
the pointer.
 Example

{button ,AL(`OPAL_TYPE_POPUPMENU;OPAL_METH_MUEMPT;',0,"Defaultoverview",)} Related Topics



show example
For the following example, assume a form has an unbound field named payField. When the user right-clicks the 
field, a list of payment types is displayed in a pop-up menu. The user can choose from the list to insert that value
into the field or press ESC to cancel. The following code is added to the Var window for payField:
; payField::var
var
  payPopUp PopUpMenu
  mChoice  String
endVar
The following code is attached to the open method for payField. When the field opens for the first time, this 
code adds four items to the payPopUp PopUpMenu. This code prepares the menu for future display.
; payField::open
method open(var eventInfo Event)

payPopUp.addText("Visa")
payPopUp.addText("MasterCard")
payPopUp.addText("Check")
payPopUp.addText("Cash")

endMethod
The following code is attached to payField's built-in mouseRightUp method. When the user right-clicks the 
field, this method uses show to display the menu and inserts the user's choice in the unbound field.
; payField::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)

disableDefault               ; don't show default pop-up menu

mChoice = payPopUp.show()    ; display menu, store selection to mChoice
if not isBlank(mChoice) then ; if user does not press ESC
  self.value = mChoice       ; insert mChoice into unbound field
endIf
endMethod



switchMenu procedure
Builds and displays a pop-up menu, and handles the menu choice.

Syntax
switchMenu
   CaseList
   [ otherwise : Statements ]
endSwitchMenu
CaseList is any number of statements in the following form:
CASE menuItem : Statements

Description
switchMenu uses the values of the menuItem argument in each CaseList to create and display a pop-up menu. 
The Statements following each menuItem specify how to handle each menu choice. The optional otherwise 
clause specifies an action if the user closes the menu without making a choice (e.g., by pressing ESC).
 Example

{button ,AL(`OPAL_TYPE_POPUPMENU;OPAL_METH_POATEX;OPAL_METH_POSHOW;',0,"Defaultoverview"
,)} Related Topics



switchMenu example
The following example uses switchMenu to create, display, and process a choice from a pop-up menu. A string 
describing the selection is displayed in the status line.
; actionButton::pushButton
method pushButton(var eventInfo Event)
switchMenu
  case "Add"    : message("Add selected.")
  case "Edit"   : message("Edit selected.")
  case "Delete" : message("Delete selected.")
  otherwise     : message("No selection from menu.")
endSwitchMenu
endMethod



Query type
An ObjectPAL Query variable is a query by example (QBE). You can use ObjectPAL to create and execute queries 
from methods in the same way that you use Corel Paradox interactively. You can execute a query from a query 
file, a query statement, or a string. Some queries require Corel Paradox to create temporary tables in your 
private directory.

Methods for the Query type
appendRow
appendTable
checkField
checkRow
clearCheck
createAuxTables
createQBEString
enumFieldStruct
executeQBE
getAnswerFieldOrder
getAnswerName
getAnswerSortOrder
getCheck
getCriteria
getQueryRestartOptions
getRowID
getRowNo
getRowOp
getTableID
getTableNo
hasCriteria
insertRow
insertTable
isAssigned
isCreateAuxTables
isEmpty
isExecuteQBELocal
isQueryValid
query
readFromFile
readFromString
removeCriteria
removeRow
removeTable
setAnswerFieldOrder
setAnswerName
setAnswerSortOrder
setCriteria
setLanguageDriver
setQueryRestartOptions
setRowOp
wantInMemoryTCursor
writeQBE



 Print related ObjectPAL methods and examples



appendRow method
Appends a row to a query table image.

Syntax
appendRow ( const tableID SmallInt ) SmallInt
appendRow ( const tableName String ) SmallInt

Description
appendRow adds a new row to the specified table image in a query by example (QBE). The table is specified 
numerically by tableID or by tableName. appendRow returns the numeric rowID of the new row which is used to
manipulate the row's contents. Even is rows are inserted or deleted ahead of the appended row, the rowID 
doesn't change.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUAPPENDTABLE;OPAL_METH_QUINSE
RTROW;OPAL_METH_QUINSERTTABLE;OPAL_METH_QUREMOVEROW;OPAL_METH_QUREMOVETABLE;OPAL_
METH_QUSETROWOP;',0,"Defaultoverview",)} Related Topics



appendRow example
The following example appends a row to the query for the CUSTOMER.DB table:
method pushButton(var eventInfo Event)
var
   qVar Query
   rowID SmallInt
endVar

   qVar.appendTable( "CUSTOMER.DB" )
   rowID = qVar.appendRow( "CUSTOMER.DB" )
   qVar.setCriteria( "CUSTOMER.DB", rowID, "State/Prov", "CA or HI" )
   qvar.checkRow("Customer.db", rowID, CheckCheck)
   qvar.writeQBE("MyQBE")
endMethod



appendTable method
Appends a table to a query image.

Syntax
appendTable ( const tableName String ) SmallInt

Description
appendTable adds the table specified by tableName to the query image in a query by example (QBE) and 
returns a numeric ID which can be used to manipulate the table image's contents. Even if table images are 
inserted or deleted ahead of the appended table, its ID doesn't change. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUINSERTROW;OPAL_METH_QUINSERT
TABLE;OPAL_METH_QUREMOVEROW;OPAL_METH_QUREMOVETABLE;OPAL_METH_QUSETROWOP;',0,"Defa
ultoverview",)} Related Topics



appendTable example
The following example appends a table to a query image:
method pushButton(var eventInfo Event)
var
   qVar Query
   rowID SmallInt
   tblID SmallInt
endVar

   tblID = qVar.appendTable( "CUSTOMER.DB" )
   rowID = qVar.appendRow( tblID )
   qVar.setCriteria( tblID , rowID, "State/Prov", "CA or HI" )
   qvar.checkRow("Customer.db", rowID, CheckCheck)
   qvar.writeQBE("MyQBE")
endMethod



checkField method
Creates a check mark in a specified field of a query table image. 

Syntax
checkField ( const tableID SmallInt, const fieldID SmallInt, const checkType SmallInt ) Logical
checkField ( const tableID SmallInt, const fieldID SmallInt, const rowID SmallInt, const 
checkType SmallInt ) Logical
checkField ( const tableID SmallInt, const fieldName String, const checkType SmallInt ) Logical
checkField ( const tableID SmallInt, const fieldName String, const rowID SmallInt, const 
checkType SmallInt ) Logical
checkField ( const tableName String, const fieldID SmallInt, const checkType SmallInt ) Logical
checkField ( const tableName String, const fieldID SmallInt, const rowID SmallInt, const 
checkType SmallInt ) Logical
checkField ( const tableName String, const fieldName String, const checkType SmallInt ) Logical
checkField ( const tableName String, const fieldName String, const rowID SmallInt, const 
checkType SmallInt ) Logical

Description
checkField creates a check mark in a specified field. The table is specified numerically by tableID or by 
tableName. The field is specified by fieldID or fieldName. The corresponding row is specified by the row identifier
rowID. If no row is specified, the checkField method defaults to the first row. 
The checkType is one of the following qbeCheckType constants:
CheckCheck Check mark (unique keys only)
CheckDesc Descending order check
CheckGroup GroupBy check
CheckNone Invisible check
CheckPlus Plus sign (include duplicate keys)
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUCHECKROW;OPAL_METH_QUCLEARC
HECK;OPAL_METH_QUGETCHECK;',0,"Defaultoverview",)} Related Topics



checkField example
The following example checks the State/Prov field in the CUSTOMER.DB table of the specified query image: 
method pushButton(var eventInfo Event)
var
   qVar Query
   rowID SmallInt
   tblID SmallInt
   MyQBEValidateStr String
endVar

   tblID = qVar.appendTable( "CUSTOMER.DB" )
   rowID = qVar.appendRow( tblID )
   qVar.setCriteria( tblID , rowID, "State/Prov", "CA or HI" )
   qVar.checkField( tblID, rowID, "State/Prov", CheckPlus )
   MyQBEValidateStr = qVar.createQBEString()
   MyQBEValidateStr.view()
endMethod



checkRow method
Creates a check mark in each field of a specified row of a query table image.

Syntax
checkRow ( const tableName String, const rowID SmallInt, const checkType SmallInt ) Logical
checkRow ( const tableName String, const checkType SmallInt ) Logical

Description
checkRow creates a check mark in each field of a specified row of a table image. The table is specified 
numerically by tableID or by tableName. The row is specified by the row identifier rowID. If no row is specified, 
this method defaults to the first row.
The checkType is one of the following qbeCheckType constants:
CheckCheck Check mark (unique keys only)
CheckDesc Descending order check
CheckGroup GroupBy check
CheckNone Invisible check
CheckPlus Plus sign (include duplicate keys)
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUCHECKFIELD;OPAL_METH_QUCLEAR
CHECK;OPAL_METH_QUGETCHECK;',0,"Defaultoverview",)} Related Topics



checkRow example
The following example puts the CheckPlus symbol in every field in first row of the CUSTOMER.DB query table 
image and saves the query as ALLCust.QBE: 
method pushButton(var eventInfo Event)
var
   qVar Query
endVar

   qVar.appendTable( "Customer.db" )
   qVar.checkRow( "Customer.db", CheckPlus )  ; row not specified,
                                              ; use first row
   qVar.writeQBE("ALLCust.QBE")
endMethod



clearCheck method
Deletes a check mark from a specified field or row of a query table image.

Syntax
clearCheck ( const tableID SmallInt, const fieldID SmallInt ) Logical
clearCheck ( const tableID SmallInt, const fieldName String ) Logical
clearCheck ( const tableID SmallInt, const rowID SmallInt, const fieldID SmallInt ) Logical
clearCheck ( const tableID SmallInt, const rowID SmallInt, const fieldName String ) Logical
clearCheck ( const tableName String, const fieldID SmallInt ) Logical
clearCheck ( const tableName String, const fieldName String ) Logical
clearCheck ( const tableName String, const rowID SmallInt, const fieldID SmallInt ) Logical
clearCheck ( const tableName String, const rowID SmallInt, const fieldName String ) Logical

Description
clearCheck removes a check mark from a specified field in the query by example (QBE). The table is specified 
numerically by tableID or by tableName. The field is specified by the fieldID or by fieldName. The row is specified
by the row identifier rowID. If no row is specified, this method defaults to the first row.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUCHECKFIELD;OPAL_METH_QUCHECK
ROW;OPAL_METH_QUGETCHECK;',0,"Defaultoverview",)} Related Topics



clearCheck example
The following example removes the check mark from the State/Prov field in the CUSTOMER.DB query table image
and then runs the query:
method pushButton(var eventInfo Event)
var
   qVar Query
endVar

   qVar.readFromFile( "monthly.qbe" )
   qVar.clearCheck( "Customer.db" , "State/Prov" )
   qVar.executeQBE()
endMethod



createAuxTables method
Enables the use of auxiliary tables. 

Syntax
createAuxTables ( const useAuxTables Logical ) Logical

Description
createAuxTables enables the use of auxiliary tables if useAuxTables is set to True 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUISCREATEAUXTABLES;',0,"Defaultov
erview",)} Related Topics



createAuxTables example
The following example contains a query that uses auxiliary tables: 
method pushButton(var eventInfo Event)var
myQBE Query
endvar

myQBE = Query

      Customer.db  |  Name        |
      Delete       |  Johnson..  |

endQuery

myQBE.createAuxTables(True)
myQBE.executeQBE()
endMethod



createQBEString method
Returns the QBE string of a query.

Syntax
createQBEString ( ) String

Description
createQBEString returns the QBE string of a query variable. If the query by example (QBE) is invalid, 
createQBEString returns a blank string and errorCode() determines the cause of the failure. The QBE must be 
a valid query against existing tables in order for this function to return a query string, so it should not be used to 
generate partial (incomplete) query strings or queries which will generate syntax errors if compiled or executed. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUWRITEQBE;OPAL_METH_QUISQUERY
VALID;OPAL_METH_QUREADFROMFILE;OPAL_METH_QUREADFROMSTRING;',0,"Defaultoverview",)} 
Related Topics



createQBEString example
The following example displays a QBE string from a modified version of the MONTHLY.QBE query.
method pushButton(var eventInfo Event)
var
   qVar Query
   qStr String
endVar

   qVar.readFromFile( "Monthly.qbe" )
   qVar.clearCheck( "Customer.db" , "State/Prov" )
   qVar.checkField( "Customer.db" , "Name", CheckPlus )
   qStr = qVar.createQBEString()
   if isblank( qStr ) then
      errorShow()
   else
      qStr.view( "Query String" )
   endif 

endMethod



enumFieldStruct method
Lists the field structure of an answer table.

Syntax
1. enumFieldStruct ( const tableName String ) Logical
2. enumFieldStruct ( var inMemoryTC TCursor ) Logical

Description
enumFieldStruct lists the field structure of the answer table that is generated from the query by example 
(QBE) statement. Syntax 1 creates a Corel Paradox table, and Syntax 2 stores the information in a TCursor 
variable. enumFieldStruct returns True if successful; otherwise, it returns False.
Syntax 1 creates the Corel Paradox table specified in tableName. If tableName exists, enumFieldStruct 
overwrites it without confirmation. You can include an alias or path in tableName but if no alias or path exists, 
Corel Paradox creates tableName in the working directory.
Syntax 2 stores the information in the TCursor variable named inMemoryTC. You pass inMemoryTC as an 
argument.
The following table describes the structure of the table (Syntax 1) or TCursor (Syntax 2):
Field Type Description
Field Name A31 Name of field
Type A31 Data type of field
Size S Size of field
Dec S Number of decimal places in the field (0 if field type doesn't support 

decimal places)
Key A1 * = key field, blank = not key field
_Required Value A1 T = required field, N (or blank) = Not required
_Min Value A255 Minimum value, if specified; otherwise blank
_Max Value A255 Maximum value, if specified; otherwise blank
_Default Value A255 Default value, if specified; otherwise blank
_Picture Value A175 Picture, if specified; otherwise blank
_Table Lookup A255 Name of lookup table; including full path if the lookup table is not 

in :WORK:
_Table Lookup Type A1 Type of lookup table. 0 (or blank) = no lookup table, 1 = Corel Paradox
_Invariant Field ID S Ordinal position of field in the table (first field = 1, second field = 2, etc.)
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUEXECUTEQBE;OPAL_METH_QUISEXQBELOC;OPAL_METH_
QUISQUERYVALID;OPAL_METH_QUERY;OPAL_METH_QUREADFROMFILE;OPAL_METH_QUREADFROMSTRIN
G;OPAL_METH_QUWRITEQBE;',0,"Defaultoverview",)} Related Topics



enumFieldStruct example
The following example creates the Corel Paradox table MYANSWER.DB containing the structure of the answer 
table that is built by the query MYQUERY.QBE: 
method pushButton(var eventInfo Event)
var
   qVar      Query
endVar
   qVar.readFromFile( "myquery.qbe" )
   qVar.enumFieldStruct("QSTRUCT.DB")
endMethod



executeQBE method/procedure
Executes a query by example (QBE).

Syntax
1. (Method) 
executeQBE ( [ { const ansTbl String | 
                    var ansTbl Table | 
                   var ansTbl TCursor } ] ) Logical
2. (Procedure)
executeQBE ( var db Database, var qVar Query 
                 [ , { const ansTbl String | 
                          var ansTbl Table | 
                         var ansTbl TCursor } ] ) Logical

Description
executeQBE executes the query assigned to a Query variable and writes the results to :PRIV:ANSWER.DB or to 
the table specified in ansTbl. You can assign a query to a Query variable using a query statement. Create a 
query statement by calling readfromFile or readfromString or by building it with appendTable, 
appendRow, or setCriteria.
Syntax 1 calls executeQBE as a method. You can write the query result to ansTbl where ansTbl is a table name, 
a Table variable, or a TCursor. If ansTbl is not specified, executeQBE writes the results to ANSWER.DB in the 
private directory.
Syntax 2 calls executeQBE as a procedure. Specify a Database variable in db and a Query variable in qVar. You 
can write the query result to ansTbl where ansTbl is a table name, a Table variable, or a TCursor. If ansTbl is not 
specified, executeQBE writes the results to ANSWER.DB in the private directory.
The following notes apply to both syntaxes:
· If you specify the table name as a string and don't include a file extension, ansTbl    defaults to specify a Corel 

Paradox.
· If you specify ansTbl as a Table variable, ansTbl must be assigned and valid.
· If you specify ansTbl as a TCursor, the results are stored in memory only.
· If executeQBE is successful (ansTbl or ANSWER.DB is created)this method returns True; otherwise it returns 

False. executeQBE returns True even if the resulting table is empty.
 Examples

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUWRITEQBE;OPAL_METH_QUREADFR
OMFILE;OPAL_METH_QUREADFROMSTRING;',0,"Defaultoverview",)} Related Topics



executeQBE method examples
Example1       executeQBE as a method
Example2        executeQBE as a procedure



executeQBE example 1
The following example calls executeQBE as a method. The pushButton method for the getReceivables button 
constructs a query statement, assigns it to a Query variable and then runs it with executeQBE. The query 
statement in this example is an insert query: it retrieves records from CUSTOMER.DB and ORDERS.DB and inserts
them into the existing MyCust table. The selection criteria for this example uses a tilde variable myState that 
includes Oregon customers in the results. Because OR is an ObjectPAL keyword, the myState variable must 
evaluate to a quoted string to distinguish it from the abbreviation for Oregon.
method pushButton(var eventInfo Event)
var 
   qVar     Query
   myState  String
   tv       TableView
endVar 

; add samp alias for the sample directory
addAlias("samp", "Standard", "c:\\Corel\\Suite8\\Paradox\\samples")

; OR is the abbreviation for Oregon, but because it's 
; also an ObjectPAL keyword, it must be enclosed in quotes.
myState = "\"OR\""  

; now use myState as a tilde variable in this query statement
qVar = Query

      :samp:Customer.db|Customer No|Name |State/Prov|Phone  |
                       |_cust      |_name|  ~myState|_phone |

      :samp:Orders.db |Customer No|Balance Due|
                      |_cust      |0, _balDue |

            myCust.db |Customer No|Name |Balance Due|Phone |
              insert  |_cust      |_name|_balDue    |_phone|

      EndQuery 

qVar.executeQBE("myCust.db")   ; put results into myCust.db 
tv.open("myCust.db")           ; view the table

endMethod



executeQBE example 2
The following example calls executeQBE as a procedure. The pushButton method for the getReceivables 
button constructs a query statement, assigns it to a Query variable and then runs it with executeQBE. The 
query statement in this example is an insert query: it retrieves records from CUSTOMER.DB and ORDERS.DB and 
inserts them into the existing MyCust table. The selection criteria for this example uses a tilde variable myState 
that includes Oregon customers in the results. Because OR is an ObjectPAL keyword, the myState variable must 
evaluate to a quoted string to distinguish it from the abbreviation for Oregon.
method pushButton(var eventInfo Event)
var
   db      Database
   qVar    Query
   myState String
   tv      TableView
endVar 

db.open() ; Get a handle to the default database.

; add samp alias for the sample directory
addAlias("samp", "Standard", "c:\\Corel\\Suite8\\Paradox\\samples")

; OR is the abbreviation for Oregon, but because it is also
; a Corel Paradox keyword it must be enclosed in quotes
myState = "\"OR\""  

; now use myState as a tilde variable in this query statement
qVar = Query

       :samp:Customer.db|Customer No|Name |State/Prov|Phone  |
                        |_cust      |_name|  ~myState|_phone |

        :samp:Orders.db |Customer No|Balance Due|
                        |_cust      |0, _balDue |

              myCust.db |Customer No|Name |Balance Due|Phone |
                insert  |_cust      |_name|_balDue    |_phone|

        EndQuery 

executeQBE(db, qVar, "myCust.db")   ; put results into myCust.db 
tv.open("myCust.db")                ; view the table

endMethod



getAnswerFieldOrder method
Retrieves the field names of the custom field order in the answer table generated by a query. 

Syntax
getAnswerFieldOrder ( var fieldOrder Array[] String ) Logical

Description
getAnswerFieldOrder retrieves an array of the fields in the answer table for the current query, when a custom 
field order is specified. If a custom field order is not specified for the query, this method returns an empty array. 
If the query compiles successfully, the array fieldOrder is filled with the field names in the answer table. These 
names can rearranged and the array can be submitted to the setAnswerFieldOrder and 
setAnswerSortOrder methods. The array must be resizable. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUGETANSWERNAME;OPAL_METH_QUGETANSWERSORTOR
DER;OPAL_METH_QUERY;OPAL_METH_QUSETANSWERFIELDORDER;OPAL_METH_QUSETANSWERNAME;OP
AL_METH_QUSETANSWERSORTORDER;',0,"Defaultoverview",)} Related Topics



getAnswerFieldOrder example
The following example retrieves the existing field order specified in MYQUERY.QBE, reorders the fields, and then 
uses setAnswerFieldOrder to put the new order in place. 
method pushButton(var eventInfo Event)
var
   qVar  Query
   arFields  Array[] String
endVar
qVar.readFromFile( "myquery.qbe" )
qVar.getAnswerFieldOrder( arFields )
   if arFields.size() > 0 then   ; swap the first and third fields
                                 ; in the answer table.
   arFields.exchange(1,3)
   qVar.setAnswerFieldOrder( arFields )
   qVar.executeQBE()
   endif
endMethod



getAnswerName method
Retrieves the name of the answer table. 

Syntax
getAnswerName () String

Description
getAnswerName retrieves the name of the answer table that is produced by the query.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUGETANSWERFIELDORDER;OPAL_METH_QUGETANSWERS
ORTORDER;OPAL_METH_QUERY;OPAL_METH_QUSETANSWERFIELDORDER;OPAL_METH_QUSETANSWERNA
ME;OPAL_METH_QUSETANSWERSORTORDER;',0,"Defaultoverview",)} Related Topics



getAnswerName example
The following example allows the user to change the answer table name for MYQUERY.QBE:
method pushButton(var eventInfo Event)
var
   qVar  Query
   AnsTblName String
endVar
if msgQuestion("Query",
               "Would you like to change the " 
             + "answer table name?") = "Yes" then
   qVar.readFromFile("MYQUERY.QBE")
   AnsTblName = qVar.getAnswerName()
   AnsTblName.view("Make changes below")
   qVar.setAnswerName(AnsTblName)
   qVar.writeQBE("MYQUERY.QBE")
endif
endMethod



getAnswerSortOrder method
Retrieves the custom sort order specified for the answer table. 

Syntax
getAnswerSortOrder ( var sortFields Array[] String ) Logical

Description
getAnswerSortOrder retrieves the custom sort order specified for the answer table. If a custom sort order is 
not specified, this method returns an empty array. The array sortFields contains an ordered list of field names. 
After you retrieve an array of these field names using getAnswerSortOrder, you can change the sort order. 
If you retrieve the list of fields and then change the answer field list (e.g., by unchecking a field), the array is 
instantly outdated. You must remove the modified field from your array before attempting to use this array for 
field sorting. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUGETANSWERFIELDORDER;OPAL_METH_QUGETANSWERN
AME;OPAL_METH_QUERY;OPAL_METH_QUSETANSWERFIELDORDER;OPAL_METH_QUSETANSWERNAME;OP
AL_METH_QUSETANSWERSORTORDER;',0,"Defaultoverview",)} Related Topics



getAnswerSortOrder example
The following example retrieves the field list from MYQUERY.QBE, reorders the fields, and saves the new sort 
order back into the query using setAnswerSortOrder:
method pushButton(var eventInfo Event)
var
   qVar  Query
   arFields  Array[] String
endVar
qVar.readFromFile( "myquery.qbe" )
qVar.getAnswerSortOrder( arFields )
   if arFields.size() > 0 then   ; swap the first and third fields
                                 ; in the sort order.
      arFields.exchange(1,3)
      qVar.setAnswerSortOrder( arFields )
      qVar.executeQBE()
   endif
endMethod



getCheck method
Returns the check type for a specified field in a query image.

Syntax
getCheck ( const tableID SmallInt, const fieldID SmallInt ) SmallInt
getCheck ( const tableID SmallInt, const fieldName String ) SmallInt
getCheck ( const tableID SmallInt, rowID SmallInt, const fieldID SmallInt ) SmallInt
getCheck ( const tableID SmallInt, rowID SmallInt, const fieldName String ) SmallInt
getCheck ( const tableName String, const fieldID SmallInt ) SmallInt
getCheck ( const tableName String, const fieldName String ) SmallInt
getCheck ( const tableName String, rowID SmallInt, const fieldID SmallInt ) SmallInt
getCheck ( const tableName String, rowID SmallInt, const fieldName String ) SmallInt

Description
getCheck returns the check type for a specified field in a query image. The table is specified numerically by 
tableID or by tableName. The field is specified by the fieldID or by fieldName. The row is specified by the row 
identifier rowID. If no row is specified, this method defaults to the first row.
The checkType is one of the following qbeCheckType constants:
CheckCheck Check mark (unique keys only)
CheckDesc Descending order check
CheckGroup GroupBy check
CheckNone Invisible check
CheckPlus Plus sign (include duplicate keys)
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUCHECKFIELD;OPAL_METH_QUCHECK
ROW;OPAL_METH_QUCLEARCHECK;',0,"Defaultoverview",)} Related Topics



getCheck example
The following example changes the type of check used in the State/Prov field of the CUSTOMER.DB query table 
image from CheckPlus to CheckDesc. 
method pushButton(var eventInfo Event)
var
   qVar Query
   qStr String
endVar
qVar.readFromFile( "monthly.qbe" )
   if qVar.getCheck( "Customer.db" , "State/Prov" ) = CheckPlus then
      qVar.CheckField( "Customer.db" , "State/Prov" , CheckDesc )
      qVar.writeQBE("Monthly.QBE")
   endif
endMethod



getCriteria method
Returns the query expression used in a query image.

Syntax
getCriteria ( const tableID SmallInt, const fieldID SmallInt ) String
getCriteria ( const tableID SmallInt, const fieldName String ) String
getCriteria ( const tableID SmallInt, const rowID SmallInt, const fieldID SmallInt ) String
getCriteria ( const tableID SmallInt, const rowID SmallInt, const fieldName String ) String
getCriteria ( const tableName String, const fieldID SmallInt ) String
getCriteria ( const tableName String, const fieldName String ) String
getCriteria ( const tableName String, const rowID SmallInt, const fieldID SmallInt ) String
getCriteria ( const tableName String, const rowID SmallInt, const fieldName String ) String

Description
getCriteria returns the selection conditions and calculation statements in a specified field of a query image. The
table is specified numerically by tableID or by tableName. The field is specified by the fieldID or by fieldName. 
The row is specified by the row identifier rowID. If no row is specified, this method defaults to the first row.
This expression does not include the check mark, but does contain the remaining field contents.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUHASCRITERIA;OPAL_METH_QUISQUE
RYVALID;OPAL_METH_QUREMOVECRITERIA;OPAL_METH_QUSETCRITERIA;',0,"Defaultoverview",)} 
Related Topics



getCriteria example
The following example changes the selection conditions for the Name field in the CUSTOMER.DB query table 
image:
method pushButton(var eventInfo Event)
var
   qVar Query
   NameCriteria String
endVar
   qVar.readFromFile( "monthly.qbe" )
   NameCriteria = qVar.getCriteria ( "Customer.db" , "Name")
                                   ; default to the first row
   NameCriteria = NameCriteria + " or Unisco" 
   qVar.setCriteria( "Customer.db" , "Name" , NameCriteria )

endMethod



getQueryRestartOptions method
Returns a value representing the user's query restart setting.

Syntax
getQueryRestartOptions ( ) SmallInt

Description
getQueryRestartOptions returns an integer value representing the user's query restart setting. Use one of the
following ObjectPAL QueryRestartOptions constants to test the value:
QueryDefault Use the options specified interactively by using the Query Restart Options dialog box.
QueryLock Lock other users out of the tables needed to run the query. If Corel Paradox cannot lock a table, 

it does not run the query. 
QueryNoLock Continue to run the query if a change is made to the data during its execution.
QueryRestart Restart the query. Specify QueryRestart to get a snapshot of the data as it existed at a particular

instant. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_TYPE_SQL;OPAL_METH_QUSETQRESTART;',0,"Defaultoverview",)}
Related Topics



getQueryRestartOptions example
See the setQueryRestartOptions example.



getRowID method
Returns the row identifier for a specified sequence row number.

Syntax
getRowID ( const tableID SmallInt, const seqNo SmallInt ) SmallInt

Description
getRowID returns the rowID for the specified sequence. The rowID is any number, regardless of where the row 
resides in the table image on the query workspace. The table is specified numerically by tableID. 
To determine the rowID of a specified sequence you must convert the row's sequence number to the rowID. For 
example, the second row of the Customer.db table image might have a rowID of 32760. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUGETROWNO;OPAL_METH_QUGETTAB
LEID;OPAL_METH_QUGETTABLENO;',0,"Defaultoverview",)} Related Topics



getRowID example
The following example returns the row identifier of the second row in CUSTOMER.DB, assigns the name 
secondRow, changes the criteria of the Country field, and runs the query: 
method pushButton(var eventInfo Event)
var
   qVar Query
   secondRow SmallInt
endVar
   qVar.readFromFile( "monthly.qbe" )
   secondRow = qVar.getRowID( qvar.getTableID(1), 2 )
   qVar.setCriteria( "Customer.db", secondRow, "Country", "Fiji" )
   qVar.executeQBE()
endMethod



getRowNo method
Returns the sequence number of a specific row.

Syntax
getRowNo ( const tableID SmallInt, const rowID SmallInt ) SmallInt

Description
getRowNo returns the sequence number of the row specified by rowID. The sequence number is the 
complement of getRowID. Given a unique numeric row identifier (rowID), getRowNo returns the current 
position (sequence) of the row in the query table image. For example, a rowID of 32760 might be the third row in
a table image. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUGETROWID;OPAL_METH_QUGETTAB
LEID;OPAL_METH_QUGETTABLENO;',0,"Defaultoverview",)} Related Topics



getRowNo example
The following example creates a Query variable and appends the CUSTOMER.DB table image to the query. The 
code then prints the new row’s sequence number.
method pushButton(var eventInfo Event)
var
   qVar         Query
   seqNo,
   rowID,
   tableID      SmallInt
endVar
   tableID=qVar.appendTable( "Customer.db" )
   rowID = qVar.appendRow( "Customer.db" )
   seqNo = qVar.getRowNo( tableID,rowID )
   message( "The newly appended row is row number ",seqNo,
            " in the customer.db query image" )
endMethod



getRowOp method
Retrieves the row operator set for a specified row.

Syntax
getRowOp ( const tableID SmallInt [, const rowID SmallInt] ) SmallInt
getRowOp ( const tableName String [, const rowID SmallInt] ) SmallInt

Description
getRowOp returns the row operator set for a specified row. The table is specified numerically by tableID or by 
tableName. The row can be specified by the row identifier rowID. If no row is specified, this method defaults to 
the first row.
The rowOperator is one of the following values:
qbeRowDelete Delete operator
qbeRowInsert Insert operator
qbeRowNone No operator
qbeRowSet Set operator
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUAPPENDTABLE;OPAL_METH_QUINSE
RTROW;OPAL_METH_QUINSERTTABLE;OPAL_METH_QUREMOVEROW;OPAL_METH_QUREMOVETABLE;OPAL_
METH_QUSETROWOP;',0,"Defaultoverview",)} Related Topics



getRowOp example
The following example deletes records containing blank Customer No fields:
method pushButton(var eventInfo Event)
var
   qVar  Query
   rowop  SmallInt
endVar

   qVar.readFromFile( "Sample.qbe" )
   rowop = qVar.getRowOp( "Customer.db" ) 

endMethod



getTableID method
Returns the tableID for a specified table in the query image.

Syntax
getTableID ( const seqNo SmallInt ) SmallInt

Description
getTableID returns the tableID for a specified table in the query image. This ID differs from the table's 
sequential number, and using the sequential number results in errors. You can replace the tableID with the table 
name in those methods that accept the table name as a valid entry.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUGETROWID;OPAL_METH_QUGETRO
WNO;OPAL_METH_QUGETTABLENO;',0,"Defaultoverview",)} Related Topics



getTableID example
The following example retrieves the table ID for the third table and the row ID for the second row of the query 
MONTHLY.QBE. The code then uses these IDs to determine the criteria set in the Name field. 
method pushButton(var eventInfo Event)
var
   qVar Query
   thirdTableID, secondrowID  SmallInt 
   condition String
endVar

qVar.readFromFile("MONTHLY.QBE")
thirdTableID = qVar.getTableID(3)
secondRowID = qVar.getRowID(thirdTableID, 2)
condition = qVar.getCriteria(thirdTableID, secondRowID, "Name")
msgInfo("Condition", "The criteria for the Name field in the "
      + "second row of the third table is " + condition)
endMethod



getTableNo method
Returns the table number for a specified table.

Syntax
getTableNo ( const tableID SmallInt ) SmallInt

Description
getTableNo returns the table number for the table specified by tableID. Given a unique numeric tableID, 
getTableNo returns its current position in the query. For example, if a tableID of 32760 represents the second 
table on the query workspace, this method returns a value of 2.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUGETROWID;OPAL_METH_QUGETRO
WNO;OPAL_METH_QUGETTABLEID;',0,"Defaultoverview",)} Related Topics



getTableNo example
The following example displays a specified table's position in the query:
method pushButton(var eventInfo Event)
var
   qVar Query
   qStr String
   seqNo, rowID, newTableID   SmallInt
endVar
   qVar.readFromFile( "monthly.qbe" )
   newTableID = qVar.appendTable( "Vendors.db" )
   seqNo = qVar.getTableNo( newTableID )
   message( "The newly appended table is table number ",
            seqNo," in the query image" )
endMethod



hasCriteria method
Indicates whether a specific field contains query criteria:

Syntax
hasCriteria ( const tableID SmallInt, const fieldID SmallInt ) Logical
hasCriteria ( const tableID SmallInt, const fieldName String ) Logical
hasCriteria ( const tableID SmallInt, const rowID SmallInt, const fieldID SmallInt ) Logical
hasCriteria ( const tableID SmallInt, const rowID SmallInt, const fieldName String ) Logical
hasCriteria ( const tableName String, const fieldID SmallInt ) Logical
hasCriteria ( const tableName String, const fieldName String ) Logical
hasCriteria ( const tableName String, const rowID SmallInt, const fieldID SmallInt ) Logical
hasCriteria ( const tableName String, const rowID SmallInt, const fieldName String ) Logical

Description
hasCriteria returns a Logical value indicating whether a specified field contains query criteria. The table is 
specified numerically by tableID or by tableName. The field is specified by the fieldID or by fieldName. The row is
specified by the row identifier rowID, or omitted to default to the first row.
hasCriteria examines the field for a query expression but does not detect check marks. Use getCheck to 
determine whether a field is checked.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUGETCHECK;OPAL_METH_QUGETCRIT
ERIA;OPAL_METH_QUISQUERYVALID;OPAL_METH_QUREMOVECRITERIA;OPAL_METH_QUSETCRITERIA;',0,"
Defaultoverview",)} Related Topics



hasCriteria example
The following example retrieves criteria from the Sale Date field in the table ORDERS.DB in the query and runs 
the query:
method pushButton(var eventInfo Event)
var
   qVar          Query
   newTableID    SmallInt
   DateCriteria  String
endVar
   qVar.readFromFile( "monthly.qbe" )
   if qVar.hasCriteria( "Orders.db" , "Sale Date" ) then
      DateCriteria = qVar.getCriteria( "Orders.db" , "Sale Date") 
   else
      DateCriteria = ""
   endif
   DateCriteria.view( "Enter Date Criteria" )   
   qVar.setCriteria( "Orders.db", "Sale Date", DateCriteria )
   qVar.executeQBE()
endMethod



insertRow method
Adds a new row above an existing row in the query.

Syntax
insertRow ( const tableID SmallInt, beforeRowID SmallInt ) SmallInt
insertRow ( const tableName String, beforeRowID SmallInt ) SmallInt

Description
insertRow adds a new row above an existing row in the query. The table is specified numerically by tableID or 
by tableName. The parameter beforeRowID specifies the ID of the row which should be pushed down by the new 
row.
insertRow returns a SmallInt representing the row ID of the new row. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUAPPENDTABLE;OPAL_METH_QUINSE
RTTABLE;OPAL_METH_QUREMOVEROW;OPAL_METH_QUREMOVETABLE;OPAL_METH_QUSETROWOP;',0,"D
efaultoverview",)} Related Topics



insertRow example
The following example creates a query, based on the CUSTOMER.DB table, that retrieves customer records for 
two cities. After one row is appended and its query criteria set, another row is inserted and its criteria is set.
method pushButton(var eventInfo Event)
var
   qVar                 Query
   firstRow, secondRow  SmallInt
endVar

   qVar.appendTable( "CUSTOMER.DB" )
   secondRow = qVar.appendRow( "CUSTOMER.DB " )
   qVar.checkRow( "CUSTOMER.DB" , CheckCheck )
   qVar.setCriteria( "CUSTOMER.DB", "City", "Waterville")
   qVar.setCriteria( "CUSTOMER.DB", "Country", "USA")
   firstRow = qVar.insertRow( "CUSTOMER.DB", secondRow)
   qvar.checkRow( "CUSTOMER.DB", CheckCheck)
   qVar.setCriteria( "CUSTOMER.DB", "City", "Vancouver")
   qVar.setCriteria( "CUSTOMER.DB", "Country", "Canada")
   qVar.writeQBE( "TwoCity.QBE" )
endMethod



insertTable method
Inserts a new table above an existing table in the query.

Syntax
insertTable ( const tableName String, const beforeTableID SmallInt ) SmallInt
insertTable ( const tableName String, const beforeTableName String ) SmallInt

Description
insertTable inserts a new table above an existing table in the query and returns the tableID for the new table. 
The parameter tableName specifies the name of the table to insert. The parameters beforeTableID and 
beforeTableName specify the ID and name (respectively) of the table that follows the new table.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUAPPENDTABLE;OPAL_METH_QUINSE
RTROW;OPAL_METH_QUREMOVEROW;OPAL_METH_QUREMOVETABLE;OPAL_METH_QUSETROWOP;',0,"Def
aultoverview",)} Related Topics



insertTable example
The following example creates a query that includes the Customer and Orders tables. The two tables are linked 
with an example element on their common field, Customer No, and all fields are checked in the Customer table. 
The query produces an answer table that lists all customer records containing order records.
method pushButton(var eventInfo Event)
var
   qVar  Query
endVar
qVar.appendTable("CUSTOMER.DB")
qVar.checkRow("CUSTOMER.DB", CheckCheck)
qVar.setCriteria("CUSTOMER.DB", "Customer No", "_Join1")
qVar.insertTable("ORDERS.DB", "CUSTOMER.DB")
qVar.setCriteria("CUSTOMER.DB", "Customer No", "_Join1")
qVar.executeQBE()
endMethod



isAssigned method
Reports whether a Query variable has an assigned value.

Syntax
isAssigned ( ) Logical

Description
isAssigned returns True if a Query variable has been assigned a value; otherwise, it returns False. This method 
does not check the validity of the assigned query.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;',0,"Defaultoverview",)} Related Topics



isAssigned example
The following example uses isAssigned to determine if qVar had been assigned a value. Although the value is 
not a valid query, isAssigned returns True.
method pushButton(var eventInfo Event)
var
   qVar Query
endVar

qVar = Query

      This is not a query

      endQuery

msgInfo("Assigned?", qVar.isAssigned())    ; displays True

endMethod



isCreateAuxTables method
Reports whether the use of auxiliary tables is enabled.

Syntax
isCreateAuxTables ( ) Logical

Description
isCreateAuxTables reports whether the use of auxiliary tables is enabled. If isCreateAuxTables returns True, 
auxiliary tables are used to create a query's answer table.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUISCREATEAUXTABLES;',0,"Defaultov
erview",)} Related Topics



isCreateAuxTables example
The following example contains a query that uses auxiliary tables: 
method pushButton(var eventInfo Event)
var
myQBE Query
endvar

myQBE = Query

      Customer.db  |  Name        |
      Delete       |  Johnson..  |

EndQuery

if myQBE.isCreateAuxTables() = False then
   myQBE.createAuxTables(True)
else
endif
myQBE.executeQBE()
endMethod



isEmpty method
Determines whether the query is empty.

Syntax
isEmpty ( ) Logical

Description
isEmpty returns a Logical value indicating whether the query is empty. This method determines whether you 
have added anything to your query but does not determine if the query contains enough information to be run. 
For example, you can append an empty row to a query and use isEmpty to determine if the query is empty. 
IsEmpty returns False because you have appended pieces of the query. isQueryValid also returns False, 
because you did not complete the query.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUISQUERYVALID;',0,"Defaultovervie
w",)} Related Topics



isEmpty example
The following example reports if the Query variable is empty, before and after a query by example (QBE) file is 
read into the Query variable. The Query variable is empty before it has been assigned a value. If the 
readFromFile method is successful, the Query variable contains data. 
method pushButton(var eventInfo Event)
var
   qVar  Query
endVar

msgInfo( "Before readFromFile", "Query is " +
         iif(qVar.isEmpty(), "empty", "not empty"))
qVar.readFromFile("MyQuery.QBE")
msgInfo( "After readFromFile", "Query is " +
         iif(qVar.isEmpty(), "empty", "not empty"))
endMethod



isExecuteQBELocal method
Reports whether a query by example (QBE) was executed locally or on a server.

Syntax
isExecuteQBELocal ( ) Logical

Description
isExecuteQBELocal returns True if the query was executed locally; otherwise, it returns False. This method is 
especially useful when the server uses a different character set, sort order, or other feature that affects the 
query's result.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUEXECUTEQBE;',0,"Defaultoverview",)} Related Topics



isExecuteQBELocal example
The following example calls isExecuteQBELocal to determine whether a query by example (QBE) was executed
locally or on a server.
method pushButton (var eventInfo Event)
   var
      qbeVar        Query
      dlgTitleText,
      dlgBodyText   String
     endVar

    dlgTitleText = "Remote query"
    dlgBodyText  = "This query was not run on the server. \n" +
                   "Check the sort order"

    qbeVar = Query

             :WestData:orders.db |CustName|Qty        |
                                 |Check   |Check > 10 |

             endQuery

   if qbeVar.executeQBE() then
      if qbeVar.isExecuteQBELocal() then
         msgInfo(dlgTitleText, dlgBodyText)
      endIf
   else
         errorShow()
   endIf

endMethod



isQueryValid method
Compiles the current query and indicates whether it contains errors that prevent it from being run.

Syntax
isQueryValid ( ) Logical

Description
isQueryValid compiles the current query and indicates whether it contains errors that prevent it from being run.
This is the same procedure that occurs when you interactively save a query to disk, execute a query, or request 
a query string. isQueryValid returns False if the query contains an error. To get information on the error, use 
errorCode (System type).
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUGETCRITERIA;OPAL_METH_QUHASC
RITERIA;OPAL_METH_QUREMOVECRITERIA;OPAL_METH_QUSETCRITERIA;',0,"Defaultoverview",)} 
Related Topics



isQueryValid example
The following example creates a query and reports an error if isQueryValid returns False: 
method pushButton(var eventInfo Event)
var
   qVar Query
   orderID SmallInt
endVar
orderID = qVar.appendTable( "Orders.db" )
qVar.setCriteria( orderID, "Sale Date", "> 1/1/95" )
if not qVar.isQueryValid() then 
      errorShow()   ; note that no fields are checked
endif
endMethod



query keyword
Marks the beginning of a query statement.

Syntax
query
   tableName|fieldName|[ fieldName|] *
            |criteria |[ criteria |] *
 [ tableName|fieldName|[ fieldName|] *
            |criteria |[ criteria |] * ] *
endQuery

Description
query marks the beginning of a query by example (QBE) statement, which assigns a query to a Query variable. 
A QBE statement extracts data from one or more tables according to the fields specified in fieldName and the 
selection criteria (criteria can be any valid QBE expression). Because this type of query is not a string, it can 
contain tilde variables. For more information, see readFromString.)
A query statement contains a Query variable, the = sign, and the keyword query followed by a blank line. The 
body of the query is followed by another blank line, and the query ends with the keyword endQuery.
 Note

· You don't have to list all the fields in the table. The following example lists only those fields that affect the 
query:

var myQBE Query endvar
myQBE = Query

             Customer|Customer No|Name  |
                     |Check      |A..  |

          endQuery

This query statement retrieves customer numbers whose names start with A from the Customer table. Only two 
of the Customer table's fields are specified.
You can align the vertical field separators to make the code more readable; however, ObjectPAL also recognizes 
the following code:
var myQBE Query endvar
myQBE = Query

Customer|Customer No           |Name  |
|Check| A..  |

    endQuery

If you construct a query statement that includes two or more tables, you must separate each table with a blank 
line. The following code example separates the Customer and Orders tables with a blank line:
var myQBE Query endvar
myQBE = Query

            Customer|Customer No|Name |Phone |
                    |_x         |Check|Check |

            Orders  |Customer No|Balance Due|
                    |_x         |Check 0    |

         endQuery

You can use absolute paths or aliases to specify where to find tables in the query definition. Corel Paradox also 
searches for unqualified table names (i.e, table names without paths or aliases) in a specified database. If a 
database is not specified, Corel Paradox searches the default database (the working directory).
 Example



{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUEXECUTEQBE;OPAL_METH_QUREADFROMFILE;OPAL_ME
TH_QUREADFROMSTRING;OPAL_METH_QUWRITEQBE;',0,"Defaultoverview",)} Related Topics



query example
The following example uses the pushButton method for the getReceivables button to construct a query 
statement, assign it to a Query variable and run it with executeQBE. In this example, the query statement is an 
insert query; it retrieves records from CUSTOMER.DB and ORDERS.DB and inserts them into the existing MyCust 
table. The selection criteria uses a tilde variable called myState that includes Oregon customers in the results. 
Since OR is the abbreviation for Oregon, the myState variable must evaluate to a quoted string to distinguish 
between the selection criteria and the OR query expression.
method pushButton(var eventInfo Event)
var 
   qVar    Query
   myState String
   tv      TableView
endVar 

; add samp alias for the sample directory
addAlias("samp", "Standard", "c:\\Corel\\Suite8\\Paradox\\samples")

; OR is the abbreviation for Oregon, but because it's 
; also an ObjectPAL keyword, it must be enclosed in quotes.
myState = "\"OR\""  

; now use myState as a tilde variable in this query statement
qVar = Query

      :samp:Customer.db|Customer No|Name |State/Prov|Phone  |
                       |_cust      |_name|  ~myState|_phone |

       :samp:Orders.db |Customer No|Balance Due|
                       |_cust      |0, _balDue |

             myCust.db |Customer No|Name |Balance Due|Phone  |
               insert  |_cust      |_name|_balDue    |_phone |

        EndQuery 

qVar.executeQBE("myCust.db")   ; put results into myCust.db 
tv.open("myCust.db")            ; view the table

endMethod



readFromFile method
Assigns the contents of a query by example (QBE) file to a Query variable.

Syntax
readFromFile ( const qbeFileName String ) Logical

Description
readFromFile opens qbeFileName and assigns the contents to a Query variable. There are several ways to 
create a query file; for example, in ObjectPAL using writeQBE, or interactively using the Query Editor. Use 
executeQBE to execute the query.
If the value of qbeFileName does not include a path or alias, readFromFile searches for the file in the directory 
associated with a specified database. If a database is not specified, readFromFile searches the default 
database. If the value of qbeFileName does not include an extension, this method assumes an extension of .QBE.
To specify a filename that does not have an extension, add a period to the end of the name. For example, the 
following table lists the resulting filenames for various values of qbeFileName.
Value of qbeFileName QBE filename
newcust newcust.qbe
newcust. newcust
newcust.q newcust.q
readFromFile returns True if it succeeds; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUREADFROMSTRING;',0,"Defaultoverview",)} Related 
Topics



readFromFile example
The following example reads and executes the query.
method pushButton(var eventInfo Event)
var 
   qVar   Query
endVar 

 ; this writes results into :PRIV:ANSWER.DB
qVar.readFromFile("GetCust.qbe")
qVar.executeQBE()

endMethod



readFromString method
Assigns a query string to a Query variable.

Syntax
readFromString ( const QBEString String ) Logical

Description
readFromString assigns the query string specified in QBEString to a Query variable. Use executeQBE to 
execute the query.
Use readFromString to build a QBE string from smaller strings a QBE string can be a combination of quoted 
strings and string variables. 

You can use absolute paths or aliases to specify where to find tables in the query definition. Corel Paradox also 
searches for unqualified table names (i.e., table names without paths or aliases) in a specified database. If a 
database is not specified, Corel Paradox searches the default database (the working directory). Double backslashes 
are required when specifying a path.

Because a QBE string is a quoted string, it cannot contain tilde variables; however you can use string variables 
to achieve the same effect. To include tilde variables in a query, use a query statement.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUEXECUTEQBE;OPAL_METH_QUREADFROMFILE;',0,"Defau
ltoverview",)} Related Topics



readFromString example
The following example uses the pushButton method for btnFindName to define a query as a string value and 
then uses readFromString to assign the string to a Query variable:
method pushButton(var eventInfo Event)
var
   db Database
   qs String
   tv TableView
   tc TCursor
   qVar   Query
endVar 

; Add the sampData alias then open the database.
addAlias("sampData", "Standard", "c:\\Corel\\Suite8\\Paradox\\samples")
db.open("sampData")

; Open a TCursor for the Stock table.
tc.open("Stock.db", db)

; If locate finds Krypton Flashlight in the Description field.
if tc.locate("Description", "Krypton Flashlight") then

   ; Now use the Stock No field value in Stock.db in a query string.
   qs = "Query\n\n" + 
       ":sampData:Lineitem|Order No|Stock No |\n" +
                         "| _ordNo |" + tc."Stock No" + "|\n\n" + 
         ":sampData:Orders|Order No|Customer No |\n" +
                         "| _ordNo|_cust |\n\n" +
       ":sampData:Customer|Customer No|Name|Phone |\n" +
                         "| _cust|Check|Check |\n\n" +
        "EndQuery"

   ; Note that the vertical lines (|) don't have to be aligned.

   qVar.readFromString(qs)

   if qVar.executeQBE() then
      tv.open(":priv:answer.db")       ; Display the answer table.
   else
      msgStop("Error", "Query failed") ; Otherwise, query failed.
   endIf

else
   msgStop("Error", "Can't find Krypton Flashlight")
endIf

endMethod



removeCriteria method
Removes the query expression from a specified field. 

Syntax
removeCriteria ( const tableID SmallInt, const fieldID SmallInt ) Logical
removeCriteria ( const tableID SmallInt, const fieldName String ) Logical
removeCriteria ( const tableID SmallInt, const rowID SmallInt, const fieldID SmallInt ) Logical
removeCriteria ( const tableID SmallInt, const rowID SmallInt, const fieldName String ) Logical
removeCriteria ( const tableName String, const fieldID SmallInt ) Logical
removeCriteria ( const tableName String, const fieldName String ) Logical
removeCriteria ( const tableName String, const rowID SmallInt, const fieldID SmallInt ) Logical
removeCriteria ( const tableName String, const rowID SmallInt, const fieldName String ) Logical

Description
removeCriteria removes the query expression in a specified field, but does not remove check marks. Use 
setCheck and clearCheck to manipulate query check marks.
The table is specified numerically by tableID or by tableName. The field is specified by the fieldID or by 
fieldName. The row is specified by the row identifier rowID. If no row is specified, this method defaults to the first
row.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUGETCRITERIA;OPAL_METH_QUHASC
RITERIA;OPAL_METH_QUISQUERYVALID;OPAL_METH_QUSETCRITERIA;',0,"Defaultoverview",)} Related 
Topics



removeCriteria example
The following example removes the criteria from the Name field in the CUSTOMER.DB table in the query: 
method pushButton(var eventInfo Event)
var
   qVar Query
endVar

   qVar.readFromFile( "Myquery.qbe" )
   qVar.removeCriteria( "Customer.db" , "Name" )
   qVar.executeQBE()      ; execute the saved query minus the
                          ; customer name criteria.
endMethod



removeRow method
Deletes a row and its contents from the query workspace. 

Syntax
removeRow ( const rowID SmallInt, const tableID SmallInt ) Logical
removeRow ( const rowID String, const tableName SmallInt ) Logical

Description
removeRow deletes a row and its contents from a query. 
The table is specified numerically by tableID or by tableName. The row is specified by the row identifier rowID. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUAPPENDTABLE;OPAL_METH_QUINSE
RTROW;OPAL_METH_QUINSERTTABLE;OPAL_METH_QUREMOVETABLE;OPAL_METH_QUSETROWOP;',0,"Def
aultoverview",)} Related Topics



removeRow example
The following example removes the second row from the ORDER.DB table in MYQUERY.QBE:
method pushButton(var eventInfo Event)
var
   qVar Query
   rowID SmallInt
endVar
   qVar.readFromFile( "MyQuery.qbe" )
   rowID = qVar.getRowID( "ORDERS.DB", 2 )  ; get the 2nd row
   qVar.removeRow( "ORDERS.DB", rowID )
   qVar.executeQBE()
endMethod



removeTable method
Deletes a table from the query.

Syntax
removeTable ( const tableID SmallInt ) Logical
removeTable ( const tableName String ) Logical

Description
removeTable deletes a table from the query. The table is specified numerically by tableID or by tableName. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUAPPENDTABLE;OPAL_METH_QUINSE
RTROW;OPAL_METH_QUINSERTTABLE;OPAL_METH_QUREMOVEROW;OPAL_METH_QUSETROWOP;',0,"Defa
ultoverview",)} Related Topics



removeTable example
The following example removes the table ORDERS.DB from the query image MYQUERY.QBE:
method pushButton(var eventInfo Event)
var
   qVar Query
endVar

   qVar.readFromFile( "MyQuery.qbe" )
   qVar.removeTable( "Orders.db" )          ; remove Orders.db from
                                            ; the workspace
   qVar.removeCriteria("Customer.db", "Customer No" )  ; clear the
                                            ; example element link.
   qVar.executeQBE()
endMethod



setAnswerFieldOrder method
Sets the field order of the answer table that is generated by a query. 

Syntax
setAnswerFieldOrder ( var fieldOrder Array[] String ) Logical

Description
setAnswerFieldOrder sets the field order of the answer table generated by a query. The parameter fieldOrder 
is an array of field names that can be used the answer table structure. Use getAnswerName to retrieve an 
array of these field names and then modify the order. 
If you retrieve an array of field names and change the answer field list (e.g., by unchecking a field), the array is 
instantly out of date. You must remove the modified field from your array before using the array for field 
ordering. A specified field order must contain the same number of elements as fields in the answer table. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUGETANSWERFIELDORDER;OPAL_METH_QUGETANSWERN
AME;OPAL_METH_QUGETANSWERSORTORDER;OPAL_METH_QUERY;OPAL_METH_QUSETANSWERNAME;OP
AL_METH_QUSETANSWERSORTORDER;',0,"Defaultoverview",)} Related Topics



setAnswerFieldOrder example
The following example retrieves the field names from MYQUERY.QBE, changes their order, and uses 
setAnswerFieldOrder to put the new order in place. 
method pushButton(var eventInfo Event)
var
   qVar  Query
   arFields  Array[] String
endVar
   qVar.readFromFile( "myquery.qbe" )
   qVar.getAnswerFieldOrder( arFields )
      if arFields.size() > 0 then     ; swap the first and third fields
                                      ; in the answer table.
         arFields.exchange(1,3)
         qVar.setAnswerFieldOrder( arFields )
         qVar.executeQBE()
      endif
endMethod



setAnswerName method
Sets the name of the answer table that is generated by a query. 

Syntax
setAnswerName ( const tableName String ) Logical

Description
setAnswerName specifies tableName as the name of the answer table that is created by the query. 
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUGETANSWERFIELDORDER;OPAL_METH_QUGETANSWERN
AME;OPAL_METH_QUGETANSWERSORTORDER;OPAL_METH_QUERY;OPAL_METH_QUSETANSWERFIELDORD
ER;OPAL_METH_QUSETANSWERSORTORDER;',0,"Defaultoverview",)} Related Topics



setAnswerName example
The following example allows the user to change the answer table name for MYQUERY.QBE:
method pushButton(var eventInfo Event)
var
   qVar  Query
   AnsTblName String
endVar
if msgQuestion("Query",
               "Would you like to change the " 
             + "answer table name?") = "Yes" then
   qVar.readFromFile("MYQUERY.QBE")
   AnsTblName = qVar.getAnswerName()
   AnsTblName.view("Make changes below")
   qVar.setAnswerName(AnsTblName)
   qVar.writeQBE("MYQUERY.QBE")
endif
endMethod



setAnswerSortOrder method
Specifies the sort order for fields in the answer table. 

Syntax
setAnswerSortOrder ( var sortFields Array[] String ) Logical

Description
setAnswerSortOrder specifies the sort order for fields in the answer table. The array sortFields contains an 
ordered list of field names. Use getAnswerSortOrder to retrieve this array and then change the field name 
positions to create a new sort order. 
If you retrieve an array of field names and change the answer field list (e.g., by unchecking a field), the array is 
instantly out of date. You must remove the modified field from your array before using the array for field 
ordering.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUGETANSWERFIELDORDER;OPAL_METH_QUGETANSWERN
AME;OPAL_METH_QUGETANSWERSORTORDER;OPAL_METH_QUERY;OPAL_METH_QUSETANSWERFIELDORD
ER;OPAL_METH_QUSETANSWERNAME;',0,"Defaultoverview",)} Related Topics



setAnswerSortOrder example
The following example retrieves the field list from MYQUERY.QBE, reorders the fields, and uses 
setAnswerSortOrder to put the new order in place:
method pushButton(var eventInfo Event)
var
   qVar  Query
   arFields  Array[] String
endVar
   qVar.readFromFile( "myquery.qbe" )
   qVar.getAnswerSortOrder( arFields )
      if arFields.size() > 0 then     ; swap the first and third fields
                                      ; in the sort order.
         arFields.exchange(1,3)
         qVar.setAnswerSortOrder( arFields )
         qVar.executeQBE()
      endif
endMethod



setCriteria method
Specifies the criteria for a table's field.

Syntax
setCriteria ( const tableID SmallInt, const fieldID SmallInt, const newCriteria String ) 
Logical
setCriteria ( const tableID SmallInt, const fieldName String, const newCriteria String ) 
Logical
setCriteria ( const tableID SmallInt, const rowID SmallInt, const fieldID SmallInt, const 
newCriteria String ) Logical
setCriteria ( const tableID SmallInt, const rowID SmallInt, const fieldName String, const 
newCriteria String ) Logical
setCriteria ( const tableName String, const fieldID SmallInt, const newCriteria String ) 
Logical
setCriteria ( const tableName String, const fieldName String, const newCriteria String ) 
Logical
setCriteria ( const tableName String, const rowID SmallInt, const fieldID SmallInt, const 
newCriteria String ) Logical
setCriteria ( const tableName String, const rowID SmallInt, const fieldName String, const 
newCriteria String ) Logical

Description
setCriteria specifies a query expression string to be used as the criteria for a specific table's field. The table is 
specified numerically by tableID or by tableName. The field is specified by the fieldID or by fieldName. The row is
specified by the row identifier rowID. If no row is specified, this method defaults to the first row. The criteria is 
specified by newCriteria. 
setCriteria does not support check marks.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUGETCRITERIA;OPAL_METH_QUHASC
RITERIA;OPAL_METH_QUISQUERYVALID;OPAL_METH_QUREMOVECRITERIA;',0,"Defaultoverview",)} 
Related Topics



setCriteria example
The following example sets the criteria for the appended row (State/Prov) to either CA or HI. 
method pushButton(var eventInfo Event)
var
   qVar Query
   rowID SmallInt
endVar

   qVar.appendTable( "CUSTOMER.DB" )
   rowID = qVar.appendRow( "CUSTOMER.DB" )
   qVar.setCriteria( "CUSTOMER.DB", rowID, "State/Prov", "CA or HI" )
   qvar.checkRow("Customer.db", rowID, CheckCheck)
   qvar.writeQBE("MyQBE")
endMethod



setLanguageDriver method
Specifies the name of the default language driver for your system.

Syntax
setLanguageDriver ( const languageDriver String ) Logical

Description
setLanguageDriver specifies the default language driver to the driver specified by languageDriver. The 
language driver is a part of the table's definition. The language drivers for Corel Paradox tables are listed in of 
the description of the Table type's create method. 
If you execute a query on a table that uses a different language driver you can use System type's 
getLanguageDriver to identify the language driver of the table. Set the language driver for the query using 
setLanguageDriver, to create the query's answer table with the same driver.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_SYGETLANGUAGEDRIVER;OPAL_METH_SYSYSINFO;OPAL_M
ETH_TBCREA;OPAL_METH_TCGETLANGUAGEDRIVER;',0,"Defaultoverview",)} Related Topics



setLanguageDriver example
The following example sets the language driver to Czech: 
method pushButton(var eventInfo Event)
var
myQBE Query
endvar

myQBE = Query

   Customer|Customer No | Name  |
           |Check       | A..  |

endQuery
myQBE.setLanguageDriver ("ANCZECH")
myQBE.executeQBE()
endMethod



setQueryRestartOptions method
Specifies the function of the underlying tables while running a query.

Syntax
setQueryRestartOptions ( const qryRestartType SmallInt ) Logical

Description
setQueryRestartOptions tells Corel Paradox what to do if data changes while you're running a query in a 
multi-user environment. The argument qryRestartType represents one of the following ObjectPAL 
QueryRestartOptions constants:
QueryDefault Use the options specified interactively by using the Query Restart Options dialog box.
QueryLock Lock other users out of the tables needed to run the query. If Corel Paradox cannot lock a table, 

it does not run the query. 
QueryNoLock Run the query even if the data changes while it's running.
QueryRestart Restart the query. Specify QueryRestart to get a snapshot of the data as it existed at a particular

instant. 
 Examples

{button ,AL(`OPAL_TYPE_SQL;OPAL_TYPE_QUERY;OPAL_METH_QUGETQRESTART;',0,"Defaultoverview",)}
Related Topics



setQueryRestart examples
Example1          Using executeSQL 
Example2          Using executeQBE



setQueryRestartOptions example 1
The following example calls getQueryRestartOptions to retrieve the user's query restart options. The code 
uses executeSQL.    If the setting is not QueryRestart, this code calls setQueryRestartOptions to set it before 
executing the query:
method pushButton(var eventInfo Event)
   var
      qVar   SQL
      MyDB  database
   endVar

  MyDB.open("work")

  if qVar.getQueryRestartOptions() <> QueryRestart then
     setQueryRestartOptions(QueryRestart)
  endIf

   if qVar.readFromFile("newcust.sql") then
      qVar.executeSQL(MyDB)
   else
      errorShow()
   endIf
endMethod



setQueryRestartOptions example 2
The following example calls getQueryRestartOptions to retrieve the current query restart options. The code 
uses executeQBE. If the setting is not QueryRestart, this code calls setQueryRestartOptions to set it and 
executes the query:
method pushButton(var eventInfo Event)
   var
      qVar   Query
   endVar

   if getQueryRestartOptions() <> QueryRestart then
      setQueryRestartOptions(QueryRestart)
   endIf

   if qVar.readFromFile("newcust.qbe") then
      qVar.executeQBE()
   else
      errorShow()
   endIf

endMethod



setRowOp method
Sets the row operator for a specific row.

Syntax
setRowOp ( const tableID SmallInt, const rowID SmallInt, const rowOperator SmallInt) Logical
setRowOp ( const tableID SmallInt, const rowOperator SmallInt) Logical
setRowOp ( const tableName String, const rowID SmallInt, const rowOperator SmallInt) Logical
setRowOp ( const tableName String, const rowOperator SmallInt) Logical

Description
setRowOp sets one of the four row operators in a specified row. The table is specified numerically by tableID or 
by tableName. The row is specified by the row identifier rowID. If no row is specified, this method defaults to the 
first row.
The rowOperator is one of the following values:
qbeRowDelete Delete operator
qbeRowInsert Insert operator
qbeRowNone No operator
qbeRowSet Set operator
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUERY;OPAL_METH_QUAPPENDTABLE;OPAL_METH_QUINSE
RTROW;OPAL_METH_QUINSERTTABLE;OPAL_METH_QUREMOVEROW;OPAL_METH_QUREMOVETABLE;',0,"D
efaultoverview",)} Related Topics



setRowOp example
The following example deletes records with blank Customer No. fields.
method pushButton(var eventInfo Event)
var
   qVar  Query
endVar

   qVar.appendTable( "Customer.db" )
   qVar.setRowOp( "Customer.db" , qbeRowDelete) 
   qVar.setCriteria( "Customer.db" , "Customer No" , "blank" )
                                  ; delete blank Customer No records.
   qVar.executeQBE()

endMethod



wantInMemoryTCursor method
Specifies how to create a TCursor resulting from a query.

Syntax
wantInMemoryTCursor ( [ const yesNo Logical ] )

Description
wantInMemoryTCursor specifies how to create a TCursor resulting from a query. When you call 
wantInMemoryTCursor with yesNo set to as Yes or omitted, Corel Paradox creates a dead TCursor in system 
memory, with no connection to underlying tables. When yesNo is No, Corel Paradox creates a TCursor in a live 
query view. By default, when you execute a query to a TCursor, that TCursor will point to a live query view
changes made to the TCursor will affect the underlying tables. Set wantInMemoryTCursor to Yes when you 
don't want a live query view.
An in-memory TCursor can be useful for performing quick analyses. Suppose you want to study the effects of 
giving each employee a 15 percent raise. Query the employee data to increase everyone's salary by 15 percent 
and execute the query to an in-memory TCursor. Now you can work with the queried data there, without 
affecting the actual employee data.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUEXECUTEQBE;OPAL_METH_SQLWANTINMEMORYTCURSO
R;OPAL_METH_TCINSTANTIATEVIEW;OPAL_METH_TCISINMEMORYTCURSOR;OPAL_METH_TCISVIEW;',0,"De
faultoverview",)} Related Topics



wantInMemoryTCursor example
The following example uses an in-memory TCursor to study the effects of giving every employee a 15 percent 
raise. The code reads and executes a predefined query and then uses the results in a calculation:
method pushButton(var eventInfo Event)
   var
      qVar            Query
      tcRaise15       TCursor
      nuTotalPayroll  Number
   endVar

   qVar.wantInMemoryTCursor(Yes)
   qVar.readFromFile("raise15.qbe")
   qVar.executeQBE(tcRaise15)

   nuTotalPayroll = tcRaise15.cSum("Salary")
   nuTotalPayroll.view("Payroll after 15%   raise:")

endMethod



writeQBE method/procedure
Writes a query statement to a specified file.

Syntax
1. (Method) writeQBE ( const fileName String ) Logical
2. (Procedure) writeQBE ( const str String , const fileName String ) Logical

Description
writeQBE writes a predefined query to the file specified in fileName. If fileName exists, this method overwrites it
without asking for confirmation. If fileName does not specify a path, Corel Paradox writes to the working 
directory. writeQBE returns True if the write succeeds; otherwise it returns False.
Syntax 1 calls writeQBE as a method. It writes the query represented by an assigned Query variable to the file 
specified in fileName.
Syntax 2 calls writeQBE as a procedure. It writes the query string represented by str to the file specified in 
fileName.
 Example

{button ,AL(`OPAL_TYPE_QUERY;OPAL_METH_QUEXECUTEQBE;OPAL_METH_QUREADFROMFILE;OPAL_ME
TH_QUREADFROMSTRING;',0,"Defaultoverview",)} Related Topics



writeQBE example
The following example assumes that a form contains a button named getDest. When the form opens, this code 
determines whether the GETDEST.QBE file exists in the current directory. If the file does not exist, the built-in 
open method for pageOne uses writeQBE to write a query string to GETDEST.QBE. The built-in pushButton for
getDest runs the query and then opens the table. This example assumes that the :MAST: alias has already been 
defined.
The following code is attached to the open method for pageOne:
method pushButton(var eventInfo Event)
Var
   qVar Query
endVar

; if the GetDest.qbe query file doesn't exist
if not isFile("GetDest.qbe") then

   ; construct a query
   qVar = Query

            :mastApp:Dest|Destination Name|Avg Temp (F)|
                         |Check           |Check 70    |

          EndQuery

   ; write the query statement to the GetNames.qbe file
   qVar.writeQBE("GetDest.qbe")

endIf
endMethod

The following code is attached the built-in pushButton method for the getDest button. This code does not check
whether GETDEST.QBE exists because the open method for the page ensures that the file is available.
method pushButton(var eventInfo Event)
var
   qVar   Query
   tv    TableView
endVar

qVar.readFromFile("GetDest.qbe")
qVar.executeQBE("MyDest")
tv.open("MyDest")

endMethod

You can also use writeQBE method with ObjectPAL to create and save a query that your user can run 
interactively, using the Query Editor.



Record type
ObjectPAL's Record type is a programmatic, user-defined collection of information that resembles a record in 
Pascal or a struct in C. Records that are defined in ObjectPAL code are separate and distinct from records 
associated with a table.
The following code declares a Record data type:
TYPE
recordName = RECORD
                     fieldName fieldType
                   [ fieldName fieldType ] *
             ENDRECORD
ENDTYPE
fieldName identifies fields or columns in the record, and fieldType specifies one of the data types. Records are 
declared in a design object's Type window.
After you declare a Record data type, you can use the = and <> comparison operators to compare records. You 
can also use the (=) assignment operator to copy a record's contents to another record.
Several predefined record structures have been created for specific situations. For more information, see the 
following topics:
· FormOpenInfo (see Open   (Form type)  
· ReportOpenInfo (see Open   (Report type)  
· FileBrowserInfo (see FileBrowser   (System type)  
· PrinterOptionInfo, PrinterGetOptions (Sytem type), and PrinterSetOptions (System type).
When declaring a record variable of these structures, use the predefined structure name instead of declaring the
variable as a Record type. For example, if you want to declare a variable called MySettings which has the 
predefined structure of FormOpenInfo, do the following:
var
     MySettings       FormOpenInfo        ; note that you do not declare MySettings as type 
Record
endvar
ObjectPAL automatically creates the MySettings variable with the predefined structure for a FormOpenInfo 
record. Any Record methods can be used with MySettings.
The Record type includes several derived methods from the AnyType type.
Methods for the Record type

AnyType Record
blank view
dataType
isAssigned
isBlank
isFixedType

   Print related ObjectPAL methods and examples  



view method
Displays the value of a variable in a dialog box.

Syntax
view ( [ const title String ] )
Description
view displays the value or values assigned to a Record variable in a modal dialog box. ObjectPAL execution 
suspends until the user closes this dialog box. You can specify the dialog box's title in title, or you can omit title 
to display the variable's data type.
 Note

· Values in a Record can't be changed when displayed in a view dialog box. For more information, see AnyType.
 Example

{button ,AL(`OPAL_TYPE_RECORD;OPAL_TYPE_ARRAY;OPAL_TYPE_DYNARRAY;',0,"Defaultoverview",)} 
Related Topics



view example
The following example uses the pushButton method for getAndViewRec to declare a variable called myRec of 
the MyRecord type. This method opens a TCursor to the Customer table, fills myRec with the Customer No and 
Name field values, and uses view to display the record in a dialog box. The operation is then repeated for the 
second record in Customer.
The following code is attached to the Type window for getAndViewRec to create a user-defined type named 
MyRecord:
; getAndViewRec::Type
Type
  MyRecord = RECORD         ; define a Record structure
               ID    String
               Name  String
             ENDRECORD
endType
The following code is attached to the pushButton method for a button named getAndViewRec:
; getAndViewRec::pushButton
method pushButton(var eventInfo Event)
var 
  recOne, recTwo MyRecord
  tc             TCursor 
endVar

if tc.open("Customer.db") then
  recOne.ID = tc."Customer No"     ; put some values into the record
  recOne.Name = tc."Name"
  recOne.view("First record")      ; display the record in a dialog box

  tc.nextRecord()                  ; move to the next record  

  recTwo.ID = tc."Customer No"     ; get new values
  recTwo.Name = tc."Name"
  recTwo.view("Second record")     ; display second record

  msgInfo("recOne = recTwo?", recOne = recTwo)  ; displays False

  recOne = recTwo                  ; now both records have the same values
  msgInfo("recOne = recTwo?", recOne = recTwo)  ; displays True

else
  msgStop("Stop", "Couldn't open the Customer table.")
endIf
endMethod



Report type
A Report variable provides a handle to a report. You use Report variables in code to manipulate the report 
onscreen. Report methods control the window's size, position, and appearance, and allow you to view and print 
the report.
Use load to load a report file in the Report Design window; use open to open the report in the Report window, 
and use print to open a report and print it. You cannot attach methods to objects in a report but you can attach 
code to calculated fields.
The foloowing table displays the methods for the Report type, including several derived methods from the Form 
type.
Methods for the Report type

Form Report
bringToTop attach
create close
deliver currentPage
dmAddTable design
dmBuildQueryString enumUIObjectNames
dmEnumLinkFields enumUIObjectProperties
dmGetProperty load
dmHasTable moveToPage
dmLinkToFields open
dmLinkToIndex print
dmRemoveTable run
dmSetProperty setMenu
dmUnlink
enumDataModel
enumSource
enumTableLinks
getFileName
getPosition
getProtoProperty
getStyleSheet
getTitle
hide
isDesign
isMaximized
isMinimized
isVisible
maximize
menuAction
minimize
moveTo
save
saveStyleSheet
selectCurrentTool
setIcon
setPosition
setProtoProperty
setSelectedObjects
setStyleSheet



setTitle
show
wait
windowClientHandle
windowHandle

   Print related ObjectPAL methods and examples  



attach method
Associates a Report variable with an open report.

Syntax
attach ( const reportTitle String ) Logical

Description
attach associates a Report variable with the open report. reportTitle specifies the title of an open report.
 Note

· The argument reportTitle refers to the text displayed in the Title Bar of the Report window (not to the 
filename). You can use getTitle to return this text, or you can use setTitle to specify a new title.

 Example
{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_REOPEN;OPAL_METH_FOGETT;OPAL_METH_FOSTIT;',0,"De
faultoverview",)} Related Topics



attach example
In the following example, assume the form's open method opened the STOCK.RSL report and retitled the 
window as Stock Report. The pushButton method for printStock attaches to the open report and prints its 
content.
; printStock::pushButton
method pushButton(var eventInfo Event)
var
  stockRep  Report
endVar
; the Stock report was opened and retitled by the form's open method
stockRep.attach("Stock Report")  ; attach by report's title
stockRep.print()                 ; print the report
endMethod

This code is attached to the form's open method:
; thisForm::open
method open(var eventInfo Event)
var
  stockRep  Report
endVar
if eventInfo.isPreFilter()
  then
    ;code here executes for each object in form
  else
    ;code here executes just for form itself
    stockRep.open("stock.rsl")
    stockRep.setTitle("Stock Report")
    bringToTop()          ; bring this form back to the top
endIf
endMethod



close method
Closes a Report window.

Syntax
close ( )

Description
close closes a Report window. This method is the equivalent of choosing Close from the Control menu.
 Example

{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_REOPEN;',0,"Defaultoverview",)} Related Topics



close example
The following example assumes that the form's open method opened the STOCK.RSL report and retitled the 
window as Stock Report. The close method for the form attaches to the open report and closes it when the form 
closes.
; thisForm::close
method close(var eventInfo Event)
var
  stockRep  Report
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; the Stock report was opened and retitled by 
    ; the form's open method
    stockRep.attach("Stock Report")
    stockRep.close()
endIf
endMethod



currentPage method
Returns the report's current page number.

Syntax
currentPage ( ) SmallInt

Description
currentPage returns the report's current page number.
 Example

{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_REMOTP;',0,"Defaultoverview",)} Related Topics



currentPage example
In the following example, the pushButton method for plusTwoPages attaches to an open report. If this fails, the 
code opens the report. When the ordersRep variable points to an open report, this code moves the report 
forward two pages.
; plusTwoPages::pushButton
method pushButton(var eventInfo Event)
var
  ordersRep Report
endVar
; report might be open already, so attempt an attach first
if NOT ordersRep.attach("Report : ORDERS.RSL") then
  if NOT ordersRep.open("Orders.rsl") then
    msgStop("FYI", "Could not open or attach to report.")
    return
  endIf
endIf
; move to two pages past the current page
ordersRep.moveToPage(ordersRep.currentPage() + 2)
bringToTop()   ; make this form the top layer again
endMethod



design method
Switches a report from a Report window to a Report Design window.

Syntax
design ( ) Logical

Description
design switches a report from the Report window to the Report Design window. This method works only with 
saved reports (.RSL) and not with delivered reports (.RDL).
Use run to switch from a Report Design window to a Report window. Use load to open a report in a Report 
Design window.
 Note

· You might need to follow a call to open, load, design, or run with a sleep. For more information, see the 
sleep method in the System type.

 Example
{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_RELOAD;OPAL_METH_REOPEN;OPAL_METH_RERUN;',0,"De
faultoverview",)} Related Topics



design example
In the following example, assume that the form's open method opened the STOCK.RSL report and retitled the 
window as Stock Report. The pushButton method for stockDesign attaches to the open report and switches the 
report to the Report Design window.
; stockDesign::pushButton
method pushButton(var eventInfo Event)
var
  stockRep  Report
endVar
; the form's open method opened and retitled the Stock report  
stockRep.attach("Stock Report")  
stockRep.design()            ; switch to Design mode
endMethod



enumUIObjectNames method
Creates a table listing the UIObjects in a report.

Syntax
enumUIObjectNames ( const tableName String ) Logical

Description
enumUIObjectNames creates a Corel Paradox table listing the name and type of objects contained in a 
specified report. Use the argument tableName to specify a name for the table. If tableName already exists, this 
method overwrites it without asking for confirmation. If tableName is already open, this method fails. You can 
include an alias or path in tableName; if no alias or path is specified, Corel Paradox creates tableName in the 
working directory.
The following table displays the structure of tableName:
Field Type Size
ObjectName A 128
ObjectClass A  32
 Example

{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_REENPRO;',0,"Defaultoverview",)} Related Topics



enumUIObjectNames example
In the following example, the pushButton method for describeReport uses enumUIObjectNames and 
enumUIObjectProperties to document a report:
; describeReport::pushButton
method pushButton(var eventInfo Event)
var
  ordersRep Report
  tempTable TableView
endVar
ordersRep.load("Orders.rsl")                     ; load report in Report Design window
ordersRep.enumUIObjectNames("ordnames.db")       ; write names to table
ordersRep.enumUIObjectProperties("ordprops.db")  ; write properties to table
ordersRep.close()
tempTable.open("ordnames")                       ; observe your handiwork
tempTable.wait()
tempTable.open("ordprops")
tempTable.wait()
tempTable.close()
endMethod



enumUIObjectProperties method
Lists the properties of each UIObject in a report.

Syntax
enumUIObjectProperties ( const tableName String ) Logical

Description
enumUIObjectProperties creates a Corel Paradox table listing the name, property name, and property value of
each object in a report. Use the argument tableName to specify a name for the table. If tableName already 
exists, this method overwrites it without asking for confirmation. If tableName is already open, this method fails.
The following table displays the structure of tableName is:
Field Type Size
ObjectName A 128
PropertyName A  64
PropertyType A  48
PropertyValue A 255
 Example

{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_REENNAM;',0,"Defaultoverview",)} Related Topics



enumUIObjectProperties example
See the enumUIObjectNames example.



load method
Opens a report in the Report Design window.

Syntax
load ( const reportName String, [const windowStyle LongInt [ , const x LongInt, const y 
LongInt, const w LongInt, const h LongInt ] ] ) Logical

Description
load opens reportName in the Report Design window. You can specify a WindowStyles constant (or combination 
of constants) in windowStyle. You can also specify the window's size and position (in twips). Arguments x and y 
specify the position of the upper-left corner, and arguments w and h specify the window's width and height, 
respectively. This method supports only saved reports (.RSL), and not delivered reports (.RDL).
Compare this method to open, which opens a report in the Report window.
 Note

· You might need to follow a call to open, load, design, or run with a sleep. For more information, see the 
sleep method in the System type.

 Example
{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_REDESIGN;OPAL_METH_RERUN;OPAL_METH_REOPEN;',0,"
Defaultoverview",)} Related Topics



load example
In the following example, the pushButton method for the loadOrders button loads the ORDERS.RSL report in 
the Report Design window. This code creates a text box in the page header, and writes a string to the text box.
; loadOrders::pushButton
method pushButton(var eventInfo Event)
var
  ordersRep Report
  pageTitle UIObject
endVar
if ordersRep.load("Orders.rsl") then 
  ; assume report has room in the page header for a text box
  pageTitle.create(TextTool, 1440*3, 720, 1440*2, 360, ordersRep)
  pageTitle.Name = "NewTitleText"
  pageTitle.Text = "Orders Report " + String(time())
  pageTitle.Color = LightBlue
  pageTitle.Visible = True
  ordersRep.run()
endIf
endMethod



moveToPage method
Displays the specified page of a report.

Syntax
moveToPage ( const pageNumber SmallInt ) Logical

Description
moveToPage displays the page of a report specified in pageNumber. This method doesn't make the report 
active. To make the report active, follow moveToPage with bringToTop (for more information about 
bringToTop, see the Form type).
 Example

{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_FOBRTT;OPAL_METH_RECURRENTPAGE;',0,"Defaultovervi
ew",)} Related Topics



moveToPage example
See the currentPage example.



open method
Opens a report.

Syntax
1. open ( const reportName String [, windowStyle LongInt ] ) Logical
2. open ( const reportName String, const windowStyle LongInt, const x SmallInt, const y 
SmallInt, const w SmallInt, const h SmallInt ) Logical
3. open ( const openInfo ReportOpenInfo ) Logical

Description
open displays the report specified in reportName. Optional arguments specify the location of the report's upper-
left corner (x and y), its width and height (w and h), and its style (windowStyle).
The value of windowStyle must be one of the WindowStyles constants. You can specify more than one window 
style by adding the constants. The following code opens a report window that has horizontal and vertical scroll 
bars:
salesReport.open("sales.rsl", WinStyleDefault + WinStyleHScroll + WinStyleVScroll)

Syntax 3 allows you to specify form settings from openInfo, a predefined record of type ReportOpenInfo. A 
ReportOpenInfo record is an instance of the Record Type, and has the following structure:
x, y, w, h         LongInt  ;size and position of report
name               String   ;name of report to open (preView) 
masterTable        String   ;master table name
queryString        String   ;run this query (actual query string) 
restartOptions     SmallInt ;one of the ReportPrintRestart constants
SQLString          String   ;run this SQL query (actual query string) 
winStyle           LongInt  ;one of the WindowStyle constants

The MasterTable field can also be the name of a SQL file that produces an Answer table.
ReportOpenInfo now has a new field called SQLString, which can be used to specify an SQL statement to 
execute. 
To rebind a report to a newly-created SQL statement, save the SQL statement to a file and specify the filename in
ReportPrintInfo.MasterTable or ReportOpenInfo.MasterTable. 
 Note

· You might need to follow a call to open, load, design, or run with a sleep. For more information, see the 
sleep procedure in the System type.

 Example
{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_RECLOS;OPAL_METH_REDESIGN;OPAL_METH_REPRINT;OP
AL_METH_RELOAD;',0,"Defaultoverview",)} Related Topics



open example
In the following example, the pushButton method for openSmall opens the ORDERS.RSL report and minimizes it
by supplying the window style constant WinStyleMinimize:
; openSmall::pushButton
method pushButton(var eventInfo Event)
var
  ordersRep Report
endVar
ordersRep.open("Orders.rsl", WinStyleMinimize)   ; open Orders Report minimized
endMethod



print method
Prints a report.

Syntax
1. print ( ) Logical
2. print ( const reportName String, const reportPrintRestart SmallInt ) Logical
3. print (const ri ReportPrintInfo ) Logical

Description
print prints a report. Syntax 1 instructs Corel Paradox to open the Print dialog box for the current report, which 
allows the user to specify print settings. Syntax 2 allows you to specify a report name in reportName and set 
restart options in reportPrintRestart. The value of reportPrintRestart must be one of the ReportPrintRestart 
constants. Syntax 3 lets you set print settings with a ReportPrintInfo record. The predefined ReportPrintInfo 
records, which are of the Record Type, have the following structure:
Field name Type Description
endPage LongInt Specifies the last page in a range (defaults to the last page of the 

report)
makeCopies Logical Specifies whether copies are made by Corel Paradox or the printer.

If set to True, Corel Paradox make copies; otherwise, the printer 
makes copies (defaults to True). The value is ignored if the printer 
cannot print multiple copies.

masterTable String Specifies the name of the master table for the report
name String Specifies the name of a report to run (if one is not already running)
nCopies SmallInt Specifies the number of copies (defaults to one)
orient SmallInt Specifies the page orientation. Use one of the three 

ReportOrientation Constants: Landscape, Portrait, or the windows 
default.

pageIncrement SmallInt Specifies the page increment for multi-pass printing (defaults to 
one)

panelOptions SmallInt Specifies how to handle overflow pages. Use one of the 
ReportPrintPanel constants (defaults to PrintClipToWidth)

printBackwards Logical Specifies whether to print forward (from first page to last page) or 
backward (from last page to first page). If set to False, Corel 
Paradox prints forward; otherwise it prints backwards    (defaults to 
False).

queryString String Specifies a QBE string to execute
restartOptions SmallInt Specifies what to do when data changes while printing a report. 

Use one of the ReportPrintRestart constants (defaults to 
PrintReturn)

SQLString String Specifies a SQL query string to execute
startPage LongInt Specifies the first page of a range (defaults to one)
startPageNum LongInt Specifies the page number to print on the first page of the report. 

Incremented for subsequent pages (defaults to one)
xOffset LongInt Specifies the horizontal page offset (defaults to zero)
yOffset LongInt Specifies the vertical page offset (defaults to zero)
 Example

{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_FOOPEN;OPAL_METH_REOPEN;OPAL_METH_RERUN;',0,"De
faultoverview",)} Related Topics



print example
The following example uses Syntax 3 to print using a ReportPrintInfo record. To print using Syntax 1, see the 
attach example.
; printWithRecord::pushButton
method pushButton(var eventInfo Event)
var
  stockRep  Report
  repInfo   ReportPrintInfo
endVar
; first, set up the repInfo record
repInfo.nCopies = 2
repInfo.makeCopies = True
repInfo.name = "Stock"
stockRep.print(repInfo)
endMethod



run method
Switches a report from the Report Design window to the Report window.

Syntax
run ( ) Logical

Description
run switches a report from the Report Design window to the View Data window. This method works only with 
saved reports (.RSL), and not with delivered reports (.RDL).
Use design to switch from the View Data window to the design window.
 Note

· You might need to follow a call to open, load, design, or run with a sleep. For more information, see the 
sleep procedure in the System type.

 Example
{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_REDESIGN;OPAL_METH_RELOAD;',0,"Defaultoverview",)} 
Related Topics



run example
See the load example.



setMenu method
Associates a menu with a report.

Syntax
setMenu ( const menuVar Menu )

Description
setMenu associates the menu specified in menuVar with a report. This method performs the same function as 
the Menu type show, and adds the following:
· When the report gets focus, Corel Paradox displays the associated menu.
· Actions resulting from choices from that menu are sent to that report.
 Note

· When you build a custom menu for a report, use MenuCommands constants (e.g., MenuFilePrint) to assign ID 
values to menu items. Because reports do not have menuAction methods for handling menu choices, these ID 
values are the only values that a report can respond to.

 Example
{button ,AL(`OPAL_TYPE_REPORT;OPAL_METH_FOSETMENU;OPAL_METH_MUSHOW;OPAL_METH_POATEX;
;',0,"Defaultoverview",)} Related Topics



setMenu example
The following example is a script that opens a report, builds a simple menu and then uses setMenu to assign 
the menu to the report:
method run(var eventInfo Event)
   var
      reOrders   Report
      muOrderRpt   Menu
      puRptFile   PopUpMenu
   endVar

; Build a menu for the report.
   reOrders.open("orders")

; Setting the StandardMenu property to False
; (either in ObjectPAL code or interactively)
; can reduce flicker when changing menus.
   reOrders.StandardMenu = False

; IMPORTANT: When you build a custom menu for a report,
; use MenuCommands constants (like MenuFilePrint) to assign
; ID values to menu items. These are the only values a report
; can respond to, because (unlike a form) a report has no
; menuAction method you can modify to handle menu choices.

   puRptFile.addText("&Print Report", MenuEnabled, MenuFilePrint)
   puRptFile.addText("&Exit", MenuEnabled, MenuFileExit)
   muOrderRpt.addPopUp("&File", puRptFile)
   reOrders.setMenu(muOrderRpt)
endMethod



Script type
Script type includes methods for manipulating scripts and the code they contain
from within an ObjectPAL method or procedure.

The Script type includes several derived methods from the Form type.
Methods for the Script type

Form Script
deliver attach
enumSource create
enumSourceToFile load
formReturn methodEdit
isCompileWithDebug run
methodDelete
methodGet
methodSet
save
setCompileWithDebug

{button ,AL(`OPAL_TYPE_SCRIPT;INTRO_SCRIPTS;',0,"Defaultoverview",)}      Related Topics
 Print related ObjectPAL methods and examples



attach method
Associates a Script variable with the active script.

Syntax
attach ( ) Logical
Description
attach associates a Script variable with the active script. Because this method must be called in code attached 
to the script itself, the script must be running. This means that attach allows a running script to create a handle 
to itself. Since ObjectPAL can't return Script variables or pass them as arguments, you must only use the handle 
within the method that created it. attach can be used with enumSource or enumSourceToFile to create a 
script that enumerates its own code.
This method returns True if it succeeds; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SCRIPT;OPAL_METH_SCCREATE;OPAL_METH_SCLOAD;',0,"Defaultoverview",)} 
Related Topics



attach example
The following example uses attach to create a script that enumerates its source to a text file. The code is 
attached to the script's built-in run method, which executes when you run the script.
method run(var eventInfo Event)
  var
    s Script
  endVar
  s.attach()
  s.enumSourceToFile("script.src", Yes)
endMethod



create method
Creates a script.

Syntax
create ( ) Logical
Description
create creates an empty script but does not display an Editor window. Use methodSet to add code to the 
script.
 Example

{button ,AL(`OPAL_TYPE_SCRIPT;OPAL_METH_SCATTACH;OPAL_METH_SCLOAD;OPAL_METH_SCRUN;',0,"D
efaultoverview",)} Related Topics



create example
The following example uses the pushButton method for a button named editScript to create a script named 
MSG. The code then calls methodSet to attach code to its built-in run method, calls save to save the script as 
NewMsg, and calls run to execute it. Corel Paradox automatically appends the .SSL extension.
; editScript::pushButton
method pushButton(var eventInfo Event)
  var
    theScript    Script
    stMsg       String
  endVar

stMsg = 
"method newMsg()
  msgInfo(\"New message\", \"New message\")
endMethod"

  theScript.create()
  theScript.methodSet("run", stMsg)
  theScript.save("NewMsg") ; Saves script as NEWMSG.SSL.
  theScript.run()          ; Calls the script's built-in run method.
endMethod



load method
Loads a script into system memory.

Syntax
load ( const scriptName String ) Logical
Description
load loads the script specified in scriptName into system memory, but does not display an Editor window. If you 
don't specify a path or an alias in scriptName Corel Paradox looks for the script in the working directory. This 
method returns True if it succeeds; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SCRIPT;OPAL_METH_SCATTACH;OPAL_METH_SCCREATE;',0,"Defaultoverview",)
} Related Topics



load example
The following example uses the pushButton method for a button named editScript to load the script named 
MSG. MSG must have been created and saved previously. The code then uses methodSet to add a custom 
method, calls save to save the script, and calls run to execute it.
; editScript::pushButton
method pushButton(var eventInfo Event)
  var
    theScript    Script
    stMsg       String
  endVar

stMsg = 
"method newMsg()
  msgInfo(\"New message\", \"New message\")
endMethod"

  if theScript.load("msg") then
    theScript.methodSet("newMsg", stMsg)
    theScript.save()
    theScript.run() ; Executes the script's built-in run method.
  else
    errorShow("Couldn't load the script.")
  endIf
endMethod



methodEdit method
Opens a script's method in an Editor window.
Syntax

methodEdit (const methodName String) Logical

Description
methodEdit opens the method specified by methodName in an Editor window. If you specify a method that 
doesn't exist, methodEdit will create it for you. methodEdit fails if you try to open a method that is running.
 Example

{button ,AL(`OPAL_TYPE_SCRIPT;OPAL_METH_FOMETHODSET;OPAL_METH_FOMETHODGET;OPAL_METH_F
OMETHODDELETE;;',0,"Defaultoverview",)} Related Topics



methodEdit example
The following example opens the script's testMethod method in an editor window:
method pushButton(var eventInfo Event)
var 

MyScript  script
endvar
MyScript.load("update.ssl")
MyScript.methodEdit("testMethod")
endMethod



run method
Runs a script.

Syntax
run ( ) AnyType
Description
run runs a script by calling the script's built-in run method. run performs the same operation as the System 
procedure play. To return a value from a script, you must call formReturn from within the script.
 Example

{button ,AL(`OPAL_TYPE_SCRIPT;OPAL_METH_SCLOAD;OPAL_METH_SYPLAY;;',0,"Defaultoverview",)} 
Related Topics



run example
The following example runs a script and makes it return a value. The following code is attached to a button in a 
form. It runs a script and displays the returned value in a dialog box.
method pushButton(var eventInfo Event)
   var
      scTest      Script
      atRetVal   AnyType
   endVar

   scTest.load("test")
   atRetVal = scTest.run()
   atRetVal.view()
endMethod
The following code is attached to a script's built-in run method. It assigns a value to a variable and returns the 
value to the form.
method run(var eventInfo Event)
   var
      atNow   AnyType
   endVar
   atNow = time()
   formReturn(atNow)
endMethod



Session type
A Session object represents a channel to the database engine. When you launch a Corel Paradox application one 
session opens by default. You can use ObjectPAL to open additional sessions from within an application. Only the 
default session can be managed using Corel Paradox interactively. You must manage other sessions using 
ObjectPAL.
Locks set by ObjectPAL interact as peers with locks set interactively in the same session.

Methods for the Session type
addAlias
addPassword
addProjectAlias
advancedWildcardsInLocate
blankAsZero
close
enumAliasLoginInfo
enumAliasNames
enumDatabaseTables
enumDriverCapabilities
enumDriverInfo
enumDriverNames
enumDriverTopics
enumEngineInfo
enumFolder
enumOpenDatabases
enumUsers
getAliasPath
getAliasProperty
getNetUserName
ignoreCaseInLocate
isAdvancedWildcardsInLocate
isAssigned
isBlankZero
isIgnoreCaseInLocate
loadProjectAliases
lock
open
removeAlias
removeAllPasswords
removePassword
removeProjectAlias
retryPeriod
saveCFG
saveProjectAliases
setAliasPassword
setAliasPath
setAliasProperty
setRetryPeriod
unLock



   Print related ObjectPAL methods and examples  



addAlias method/procedure
Adds a public alias to a session.

Syntax
1. addAlias ( const aliasName String, const type String, const path String ) Logical
2. addAlias ( const aliasName String, const type String, const params DynArray[ ] String ) 
Logical
3. addAlias ( const aliasName String, const existingAlias String ) Logical

Description
addAlias adds public alias a to a session. To add a project alias, use addProjectAlias. 
In Syntax 1, specify the alias name in aliasName, its (Standard) in type, and its full DOS path in path.
In Syntax 2, specify the alias name in aliasName, the SQL alias type (Interbase, Oracle, Sybase, or Informix) in 
type, and the parameters in params.
Syntax 3 copies an alias from existingAlias to aliasName.
An alias added using addAlias is known only to the session for which it is defined, and exists only until the 
session is closed. Use saveCFG to save public aliases in a file. By default, public aliases are stored in IDAPI.CFG. 
They are available from any working directory and visible to any application that uses Borland Database Engine 
(BDE).
 Examples

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSADDPROJECTALIAS;OPAL_METH_SSGALPATH;OPAL_ME
TH_SSENUMALIASNAMES;OPAL_METH_SSSAVECFG;',0,"Defaultoverview",)} Related Topics



addAlias Method examples
Example1        Adding an alias to the active session
Example2        Adding an Oracle type alias
Example3        Copying an existing alias



addAlias example 1
The following example adds an alias to the active session and supplies the new alias to the open method 
defined for the Database type. This code is attached to the built-in open method for the pageOne page:
; pageOne::open
method open(var eventInfo Event)
var 
  custInfo Database 
endVar

; add the CustomerInfo alias to the active session
addAlias("CustomerInfo", "Standard", "D:\\Corel\\Suite8\\Paradox\\tables\\custdata") 

; now use the alias to specify which database to open
custInfo.open("CustomerInfo") ; opens the CustomerInfo database

endMethod



addAlias example 2
The following example adds an Oracle type alias to the active session and supplies the new alias to the open 
method defined for the Database type. This code is attached to the built-in open method for the pgeOne page:
; pgeOne::open
method open(var eventInfo Event)
   var
      tv      TableView
      SQLdb        Database
      AliasInfo    DynArray[]  String
   endVar

   AliasInfo["SERVER NAME"]       = "Server1"
   AliasInfo["USER NAME"]            = "guest"
   AliasInfo["OPEN MODE"]            = "READ/WRITE"
   AliasInfo["SCHEMA CACHE SIZE"]    = "8"
   AliasInfo["NET PROTOCOL"]         = "SPX/IPX"
   AliasInfo["LANGDRIVER"]           = ""
   AliasInfo["SQLQRYMODE"]           = ""
   AliasInfo["PASSWORD"]             = "guest"

   addAlias("Guest_Account", "Oracle", AliasInfo)
   SQLdb.open("Guest_Account", AliasInfo)
   tv.open(":Guest_Account:mprestwood.customer")
endMethod



addAlias example 3
The following example adds an alias to the active session by copying the existing work alias to the a new alias 
named NewAlias:
; btnCopyWork::pushButton
method pushButton(var eventInfo Event)
   addAlias("NewAlias", "work")
endMethod



addPassword method/procedure
Defines a password allowing access to a protected table.

Syntax
addPassword ( const password String )

Description
addPassword provides a Corel Paradox session the password specified in password. Subsequent attempts to 
access a table protected by that password are not challenged. 
The argument password represents an owner password or an auxiliary password. Auxiliary passwords generally 
confer less comprehensive rights than owner passwords. Because password is case-sensitive, a table protected 
with Sesame won't open for SESAME.
Passwords added using this method are valid only for the session for which they are defined, and exist only until 
the session is closed. Defining a password does not affect the state of tables (e.g., an open table remains open).
Access to tables opened before the password is presented is controlled by previously defined passwords. For 
example, if a table was opened using an auxiliary password, the access rights to that table do not change when 
the owner password is defined. To confer owner rights to a previously-opened table, close the table and present 
the owner password, and then reopen the table.
Use removePassword to restore protection to tables.
 Note

· Passwords apply to Corel Paradox tables only and cannot exceed 31 characters.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSRMPAS;OPAL_METH_SSRMALLPAS;',0,"Defaultovervie
w",)} Related Topics



addPassword example
The following example acquires a user's password, and defines it for the active session:
; getAddPass::pushButton
method pushButton(var eventInfo Event)
var
  newPass String
endVar
; assume that the variable ses is global, and has been
; opened by another method
if ses.isAssigned() then
  newPass.view("Enter Password (up to 31 characters) to Add.")
  ses.addPassword(newPass)
else
  msgStop("Help!","Session variable is not Assigned!")
endIf
endMethod



addProjectAlias method/procedure
Adds a project alias to a session.

Syntax
1. addProjectAlias ( const aliasName String, const type String, const path String ) Logical
2. addProjectAlias ( const aliasName String, const type String, const params DynArray[ ] String
) Logical
3. addProjectAlias ( const aliasName String, const existingAlias String ) Logical

Description
addProjectAlias adds a project alias to a session. Use addAlias to add a public alias.
In Syntax 1, specify the alias name in aliasName, its (Standard) in type, and its full DOS path in path.
In Syntax 2, specify the alias name in aliasName, the SQL alias type (Interbase, Oracle, Sybase, or Informix) in 
type, and the parameters in params.
Syntax 3 copies an alias from existingAlias to aliasName.
An alias added using addProjectAlias is known only to the project for which it is defined, and exists only until 
the working directory is changed. Use saveProjectAliases to save project aliases in a file.
When :WORK: is set (e.g., at startup) or changed (interactively or using ObjectPAL), Corel Paradox discards all 
current project aliases and loads those project aliases that are specific to the new working directory. Public 
aliases remain active and available and if a project alias has the same name as a public alias, Corel Paradox does
not load the project alias. By default, Corel Paradox reads project aliases from :WORK:PDOXWORK.CFG. You can 
use loadProjectAliases to specify a different file.
 Examples

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSAALIAS;OPAL_METH_SSLOADPROJECTALIASES;OPAL_M
ETH_SSREMOVEPROJECTALIAS;OPAL_METH_SSSAVEPROJECTALIASES;',0,"Defaultoverview",)} Related 
Topics



addProjectAlias examples
Example1         Adding an alias to a active project
Example2         Adding an Oracle type alias
Example3          Copying an existing alias



addProjectAlias example 1
The following example adds an alias to the active project and supplies the new alias to the open method defined
for the Database type. This code is attached to the built-in open method for the pageOne page.
; pageOne::open
method open(var eventInfo Event)
var 
  custInfo Database 
endVar

; add the CustomerInfo alias to the project
addProjectAlias("CustomerInfo", "Standard", "D:\\Corel\\Suite8\\Paradox\\tables\\custdata") 

; now use the alias specify the database to open
custInfo.open("CustomerInfo") ; opens the CustomerInfo database

endMethod



addProjectAlias example 2
The following example adds an Oracle type alias to the active project and supplies the new alias to the open 
method defined for the Database type. This code is attached to the built-in open method for the pgeOne page.
; pgeOne::open
method open(var eventInfo Event)
   var
      tv      TableView
      SQLdb        Database
      AliasInfo    DynArray[]  String
   endVar

   AliasInfo["SERVER NAME"]       = "Server1"
   AliasInfo["USER NAME"]            = "guest"
   AliasInfo["OPEN MODE"]            = "READ/WRITE"
   AliasInfo["SCHEMA CACHE SIZE"]    = "8"
   AliasInfo["NET PROTOCOL"]         = "SPX/IPX"
   AliasInfo["LANGDRIVER"]           = ""
   AliasInfo["SQLQRYMODE"]           = ""
   AliasInfo["PASSWORD"]             = "guest"

   addProjectAlias("Guest_Account", "Oracle", AliasInfo)
   SQLdb.open("Guest_Account", AliasInfo)
   tv.open(":Guest_Account:mprestwood.customer")
endMethod



addProjectAlias example 3
The following example adds an alias to the active session by copying the existing work alias to the new alias 
NewAlias:
; btnCopyWork::pushButton
method pushButton(var eventInfo Event)
   addProjectAlias("NewAlias", "work")
endMethod



advancedWildcardsInLocate procedure
Specifies whether the active session can use advanced wildcards in locate operations.

Syntax
advancedWildcardsInLocate ( [ const yesNo Logical ] )

Description
advancedWildcardsInLocate specifies whether the active session can use advanced wildcards found in 
pattern strings during locate operations. If yesNo is set to Yes (default), pattern strings used in locate operations 
can contain advanced wildcard characters. If yesNo is set to No, pattern strings in locate operations cannot 
contain advanced wildcards.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSISADVANCEDWILDCARDSINLOCATE;',0,"Defaultovervi
ew",)} Related Topics



advancedWildcardsInLocate example
The following example calls advancedWildcardsInLocate to determine whether advanced wildcards can be 
used in a locate operation. The code then calls locatePattern to use an advanced wildcard pattern.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  thisSession Session
endVar

if tc.open("Orders.db") then

  ; if advanced wild cards can't be used in patterns
  if NOT isAdvancedWildcardsInLocate() then
    ; specify that this session can use advanced
    ; pattern characters in subsequent locate operations
    advancedWildcardsInLocate(Yes)
  endIf

  if tc.locatePattern("Ship VIA", "[^UPS]") then
    msgInfo("Order Number", tc."Order No")
  else
    msgStop("Error", "Can't find record")
  endIf
else
  msgStop("Error", "Can't open Orders table.")
endIf

endMethod



blankAsZero method/procedure
Specifies whether to assign blank numeric fields a value of 0 in calculations.

Syntax
blankAsZero ( const yesNo Logical )

Description
blankAsZero specifies whether to assign blank numeric fields a value of 0 in calculations. If yesNo is set to Yes, 
blanks are treated as zeros. If yesNo is set to No blank numeric fields remain empty.
Calculations affected by blankAsZero include:
· calculated fields in forms and reports
· calculations in queries
· column calculations that involve the number of fields or the number of non-blank fields (e.g., those performed 

with cCount, cAverage, and others)
You can also use isBlankZero to test the state, and blankAsZero to set it.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSISBLANKZERO;',0,"Defaultoverview",)} Related Topics



blankAsZero example
The following example sets blankAsZero to True so that a call to the cAverage method assigns blank field 
values a value of 0.
; getAvgPmt::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar

if tc.open("Orders.db") then
  if not isBlankZero() then
    blankAsZero(True)
  endIf

  msgInfo("Average Amount Paid", tc.cAverage("Amount Paid"))

else
  msgStop("Error", "Can't open Orders table.")
endIf

endMethod



close method
Closes a session.

Syntax
close ( ) Logical

Description
close ends a session by closing the channel to the database engine. close frees one user count, and leaves the 
Session variable unassigned.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSOPEN;',0,"Defaultoverview",)} Related Topics



close example
The following example assumes that the variable ses is assigned to an open session. This example closes the 
session:
; closeSession::pushButton
method pushButton(var eventInfo Event)
; assume that the variable ses is global, and has been
; opened by another method
if ses.isAssigned() then
  if ses.close() then
    msgInfo("We have TouchDown","Session close Successful.")
  else
    msgStop("Crash and Burn","Session close Unsuccessful.")
  endIf
else
  msgStop("Help!","Session variable is not Assigned! Who am I?")
endIf
endMethod



enumAliasLoginInfo method
Writes server alias data to a table.

Syntax
enumAliasLoginInfo ( const tableName String, const aliasName String ) Logical

Description
enumAliasLoginInfo writes information about the server alias specified in aliasName to the Corel Paradox table
specified in tableName. This method returns True if successful; otherwise, it returns False.
enumAliasLoginInfo operates on aliases that are stored in IDAPI.CFG and on new aliases opened and stored in 
system memory. This method fails if the table specified in tableName is already open.
enumAliasLoginInfo applies only to remote databases. Standard (Corel Paradox or dBASE) databases are not 
affected by this method.
The following table displays the structure of the resulting tableName table:
Field Type Description
DBName A32* Specifies the database name
Property A32* Specifies the property name (e.g., OPEN MODE, NET PROTOCOL, SERVER 

NAME, and USER NAME)
PropertyValue A82 Specifies the property value
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSENUMALIASNAMES;',0,"Defaultoverview",)} Related 
Topics



enumAliasLoginInfo example
The following example calls enumAliasLoginInfo to write alias data about an alias to a Corel Paradox table. The
code then searches the table to test whether the OPEN MODE property for the alias is set to READ/WRITE. If 
OPEN MODE is set to READ/WRITE, the code calls a custom procedure named doSomething to continue 
processing; otherwise, the code displays information about properties and property values in a modal dialog box.
method pushButton(var eventInfo Event)

   var 
      db                Database
      aliasInfoTC       TCursor
      aliasName,
      infoTableName,
      fieldName1, 
      fieldName2,
      propName,
      propVal           String
      propValDA         DynArray[] AnyType
   endVar

   ; initialize variables
   aliasName = "itchy"
   infoTableName = "dbAlias.db"
   fieldName1 = "Property"
   fieldName2 = "PropertyValue"
   propName  = "OPEN MODE"
   propVal  = "READ/WRITE" 

   ; open database, get alias info
   if db.open(aliasName) then
      if enumAliasLoginInfo(infoTableName, aliasName) then
         aliasInfoTC.open(infoTableName)

         ; search for info of interest
         if aliasInfoTC.locate(fieldName1, propName) then

            ; compare expected and actual values
            if aliasInfoTC.(fieldName2) <> propVal then

               ; inform user if values don't match
               propValDA["Property:"] = aliasInfoTC.(fieldName1)
               propValDA["Expected value:"] = propVal 
               propValDA["Actual value:"] = aliasInfoTC.(fieldName2)
               propValDA.view("Property mismatch")
               return
            endIf

         else
            errorShow("Property not found.")
            return
         endIf
      else
         errorShow("Can't write to table: " + infoTableName)
         return
      endIf
   else
      errorShow("Couldn't open " + aliasName)
      return
   endIf

   doSomething() ; if property values are OK, continue processing

endMethod





enumAliasNames method/procedure
Lists the database aliases available to a session.

Syntax
1. enumAliasNames ( const tableName String [ , const LoginInfoTableName String ] ) Logical
2. enumAliasNames ( var aliasNames Array[ ] String ) Logical
Description
enumAliasNames lists the database aliases available to a session.
Syntax 1 creates a Corel Paradox table tableName. If tableName already exists, this method overwrites it without
asking for confirmation. If tableName is open, this method fails. You can also include an alias or path in 
tableName. If an alias or path is not specified, Corel Paradox creates the table in the working directory.
The following table displays the structure of tableName:
Field Name Type Description
DBName A32* Specifies the database alias name
DBType A32 Specifies the driver type
DBPath A82 Specifies the alias path

If you include the optional argument LoginInfoTableName, Corel Paradox also writes login data to the table, just 
as if you had called enumAliasLoginInfo.
The structure of the resulting table is
Field Type Description
DBName A32* Specifies the database name
Property A32* Specifies the property name (e.g., OPEN MODE, NET PROTOCOL, SERVER 

NAME, and USER NAME)
PropertyValue A82 Specifies the property value

Syntax 2 assigns the database names to items in an array named aliasNames that you declare and pass as an 
argument.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSAALIAS;OPAL_METH_SSGALPATH;',0,"Defaultoverview
",)} Related Topics



enumAliasNames example
In the following example, the pushButton method for getAliasButton writes the alias names for the active 
session to an array. If the array does not contain the name of a specified alias, addAlias adds it to the session.
; getAliasButton::pushButton
method pushButton(var eventInfo Event)
   var
      stAliasName,
      stAliasPath   String
      arAliasNames   Array[] String
   endVar

   stAliasName = "NewCust"
   stAliasPath = "g:\\netdata\\newcust"

   enumAliasNames(arAliasNames)   ; List names to an array.
   if arAliasNames.contains(stAliasName) then   
         return
   else
         addAlias(stAliasName, "STANDARD", stAliasPath)   
   endIf
endMethod



enumDatabaseTables method/procedure
Lists the files in a database.

Syntax
1. enumDatabaseTables ( const tableName String, const databaseName String, const fileSpec 
String )
2. enumDatabaseTables ( var tableNames Array[ ] String, const databaseName String, const 
fileSpec String )

Description
enumDatabaseTables lists the files in a database specified by databaseName, where databaseName is an alias
known to the session. fileSpec specifies a DOS file specification that can include the wildcard *.
Syntax 1 creates a Corel Paradox table named tableName. If tableName already exists, enumDatabaseTables 
overwrites it without asking for confirmation. You can also include an alias or path in tableName. If an alias or 
path is not specified, Corel Paradox creates tableName in the working directory.
The structure of the table is
Field Type Description
DBName A32* Specifies the database alias
TableName A32* Specifies the table name (or the name of another file, depending on the 

file specification)
Syntax 2 assigns the table names to items in an array tableNames that you pass as an argument.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSENDRCAP;',0,"Defaultoverview",)} Related Topics



enumDatabaseTables example
The following example lists the Corel Paradox and dBASE tables (and any other file whose extension is DB 
followed by 0 or 1 characters) in the private directory. This code uses enumDatabaseTables as a procedure 
and works in the active session.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  dbName,
  fileSpec,
  tbName    String
  tv1       TableView
endVar

; Init variables.
dbName   = ":PRIV:"
fileSpec = "*.db" ; Lists <filename>.db
tbName   = "TabList"

enumDatabaseTables(tbName, dbName, fileSpec)
tv1.open(tbName)  ; Open the created table.
endMethod



enumDriverCapabilities procedure
Lists the capabilities of the current driver.

Syntax
enumDriverCapabilities ( const drvCapName String, const tblCapName String, const fldCapName 
String [ , const inxCapName String ] ) Logical

Description
enumDriverCapabilities creates three Corel Paradox tables that list the capabilities of the current driver. If 
these tables already exist, Corel Paradox overwrites them without asking for confirmation. You can also include 
an alias or path in the specified table names. If an alias or path is not specified, Corel Paradox creates the tables 
in the working directory.
Each supported table type is described by a record. Driver capabilities are written to a table named drvCapName
which has the following structure:
Field Type Description
DriverType A32* Specifies the driver name    (e.g., dBASE)
Description A32 Describes    the driver (e.g., dBASE driver)
Category A32 Specifies the driver category
DB A4 Specifies whether the driver supports a true database concept
DBType A32 Specifies the database type to be used (e.g., STANDARD)
MultiUser A4 Specifies whether the driver supports multi-user access
ReadWrite A4 Specifies whether the driver is read-write
Transactions A4 Specifies whether the driver supports transactions
PassThruSQL A4 Specifies whether the driver supports pass-through SQL
Login A4 Specifies whether the driver requires an explicit login (for example, to 

access a SQL server)
CreateDb A4 Specifies whether the driver can create a database
DeleteDb A4 Specifies whether the driver can delete a database
CreateTable A4 Specifies whether the driver can create a table
DeleteTable A4 Specifies whether the driver can delete a table
MultiPasswords A4 Specifies whether the driver supports multiple passwords
Table capabilities are written to a table named tblCapName which has the following structure:

Field Type Description
DriverType A32* Specifies the table type (e.g., dBASE)
TableType A32* Describes    the table type (e.g., PDOX 5.0)
Format A32* Specifies the table format (e.g., CLUSTERED)
ReadWrite A4 Specifies whether the user can read from and write to the table
Create A4 Specifies whether the user can create a table of this type
Restructure A4 Specifies whether the user can restructure a table of this type
ValChecks A4 Specifies whether the user can specify validity checks for a table of this 

type
Security A4 Specifies whether the table can be password-protected
RefInt A4 Specifies whether the table can participate in a referential integrity 

relationship
PrimaryKey A4 Specifies whether the table supports primary keys
Indexing A4 Specifies whether the table can have other (secondary) indexes
NoFieldType A6 Specifies the number of physical field types supported
MaxRecSize A6 Specifies the maximum record size (in bytes)
MaxFlds A6 Specifies the maximum number of fields per record

Field capabilities are written to a table named fldCapName, which has the following structure:



Field Type Description
DriverType A32* Specifies the driver type (e.g., dBASE)
TableType A32* Specifies the table type (e.g., PDOX 5.0)
Format A32* Specifies the table format (e.g., CLUSTERED)
FieldType A32* Specifies the field type
Description A32 Specifies the field type (e.g., Long integer)
NativeType A6 Specifies the numeric value of native field type (e.g., 266)
XType A6 Specifies the numeric value of translated field type (e.g., 3)
XSubType A6 Specifies the numeric value of translated field subtype (e.g., 3)
MaxUnits1 A6 Specifies the maximum places to the left of the decimal point (or number 

of characters) (e.g., 240)
MaxUnits2 A6 Specifies the maximum places to the right of the decimal point (e.g., 19)
Size A6 Specifies the field size (e.g., 8)
Required A4 Specifies whether the field is a required field
Default A4 Specifies whether the field has a specified default value
Min A4 Specifies whether the field has a specified minimum value
Max A4 Specifies whether the field has a specified maximum value
RefInt A4 Specifies whether the field is part of a referential integrity relationship
Other A4 Reserved
Key A4 Specifies whether the field can be part of an index (keyed)
Multi A4 Specifies whether the driver supports more than one of these fields per 

record
MinUnits1 A6 Specifies the minimum places to the left of the decimal point (or number 

of characters) (e.g., 240)
MinUnits2 A6 Specifies the minimum places to the right of the decimal point (e.g., 19) 
Createable A4 Specifies whether the driver can create a table using this field type 

If you include an optional argument named inxCapName , index capabilities are written to the table specified in 
inxCapName. inxCapName has the following structure:
Field Type Description
DriverType A32* Specifies the driver type (e.g., dBASE)
TableType A32* Specifies the table type (e.g., PDOX 5.0)
Format A32* Specifies the table format (e.g., CLUSTERED)
Name A32* Specifies an internal name describing the type of index (e.g., 

SECONDARY) to correspond with the description in the Description field
Format1 A32* Specifies the index format (e.g., BTREE)
Description A32 Describes the index (e.g., Non-maintained Secondary index)
Composite A4 Specifies whether the index supports composite keys
Primary A4 Specifies whether the index is a primary index
Unique A4 Specifies whether the index is a unique index
keyDescending A4 Specifies whether the whole key can be descending
fldDescending A4 Specifies whether the index is field level descending
Maintained A4 Specifies whether the index is a maintained index
Subset A4 Specifies whether the index is a subset index
KeyExp A4 Specifies whether the index is an expression index
CaseInsensitive A4 Specifies whether the index is insensitive to case
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSENDRINF;OPAL_METH_SSENDRNAM;OPAL_METH_SSEN
DRTOP;',0,"Defaultoverview",)} Related Topics



Categories for enumDriverCapabilities (Session type)
Value Description
File File-based (Corel Paradox, dBASE)
SQL Server SQL-based server
Other Server A server that is not file or SQL-based



Field types for enumDriverCapabilities (Session type)
The following tables display the field types for Corel Paradox and dBASE tables:
Corel Paradox field type Return value
Alpha ALPHA
Autoincrement AUTOINCREMENT
BCD BCD
Binary BINARY
Bytes BYTES
Date DATE
FmtMemo FMTMEMO
Graphic GRAPHIC
Logical LOGICAL
LongInt LONG
Memo MEMO
Money MONEY
Number NUMBER
OLE OLE
Short SHORT
Time TIME
TimeStamp TIMESTAMP

dBASE field type Return value
BINARY BINARY
CHAR CHARACTER
DATE DATE
FLOAT FLOAT
LOGICAL LOGICAL
MEMO MEMO
NUMBER NUMERIC
OLE OLE



enumDriverCapabilities example
In the following example, the describeDriver button creates and views three tables that describe the engine 
driver:
; describeDriver::pushButton
method pushButton(var eventInfo Event)
var
  tv1, tv2, tv3  TableView
endVar
enumDriverCapabilities("dbcap", "tblcap", "fldcap")
tv1.open("dbcap")
tv2.open("tblcap")
tv3.open("fldcap")
endMethod



enumDriverInfo procedure
Lists information about available drivers.

Syntax
enumDriverInfo ( const tableName String )

Description
enumDriverInfo lists information about available driver types in a table named tableName. If tableName 
already exists, Corel Paradox overwrites it without asking for confirmation. You can also include an alias or path 
in tableName. If an alias or path is not specified, Corel Paradox creates tableName in the working directory.
The following table displays the structure oftableName:
Field Type Description
DriverType A32* Specifies the driver type or name (e.g., COREL PARADOX)
Topic A32* Specifies the driver function (e.g., TABLE CREATE)
Property A32* Specifies the property of corresponding driver function (e.g., BLOCK SIZE)
PropertyValue A68 Specifies the value of corresponding property (e.g., 2048)
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSENDRCAP;OPAL_METH_SSENDRNAM;OPAL_METH_SSEN
DRTOP;',0,"Defaultoverview",)} Related Topics



enumDriverInfo example
The following example enumerates driver information to a table named DriveInf and displays the results:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tv1 TableView
endVar
; create and view the DriveInf table
enumDriverInfo("Driveinf")
tv1.open("DriveInf")
endMethod



enumDriverNames method/procedure
Creates a Corel Paradox table listing the names of available drivers.

Syntax
enumDriverNames ( const tableName String )

Description
enumDriverNames writes the available driver names to tableName. If tableName already exists, Corel Paradox 
overwrites it without asking for confirmation. You can also include an alias or path in tableName. If an alias or 
path is not specified, Corel Paradox creates tableName in the working directory.
The structure of the table is DriverType, A32*.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSENDRCAP;OPAL_METH_SSENDRINF;OPAL_METH_SSEN
DRTOP;',0,"Defaultoverview",)} Related Topics



enumDriverNames example
The following example enumerates available driver names to a table named DrivName and displays the results:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tv1  TableView
endVar
; create and view the DrivName table
enumDriverNames("DrivName")
tv1.open("DrivName")
endMethod



enumDriverTopics procedure
Lists the topics currently available for each driver type.

Syntax
enumDriverTopics ( const tableName String )

Description
enumDriverTopics writes the driver topics available for each driver type to a table named tableName. If 
tableName already exists, Corel Paradox overwrites it without asking for confirmation. You can also include an 
alias or path in tableName. If an alias or path is not specified, Corel Paradox creates tableName in the working 
directory.
The following table displays the structure oftableName:
Field name Type Description
DriverType A32* Specifies the driver type or name (e.g., COREL PARADOX)
Topic A32* Specifies the driver function For Corel Paradox and dBASE tables, the 

topics are INIT and TABLE CREATE
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSENDRCAP;OPAL_METH_SSENDRINF;OPAL_METH_SSEN
DRNAM;',0,"Defaultoverview",)} Related Topics



enumDriverTopics example
The following example enumerates available driver topics to a table named DrivTop and displays the results:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tv1  TableView
endVar
; create and view the DrivTop table
enumDriverTopics("drivtop")
tv1.open("drivtop")
endMethod



enumEngineInfo procedure
Creates a Corel Paradox table listing the current Borland Database Engine (BDE) engine properties.

Syntax
enumEngineInfo ( const tableName String )

Description
enumEngineInfo creates a Corel Paradox table that describes the contents of the BDE System Information 
dialog box. Each setting name and value is written to a record in a table named tableName. If tableName already
exists, Corel Paradox overwrites it without asking confirmation. You can also include an alias or path in 
tableName. If an alias or path is not specified, Corel Paradox creates tableName in the working directory.
The following table displays the structure oftableName:
Field name Type Description
Property A32* Specifies the engine property
PropertyValue A68 Specifies the value of corresponding property
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSENDRINF;',0,"Defaultoverview",)} Related Topics



enumEngineInfo example
The following example enumerates engine information to a table named EngInf and displays the results:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tv1  TableView
endVar
enumEngineInfo("EngInf")
tv1.open("EngInf")
endMethod



Properties for enumEngineInfo
Engine property Description
LANGDRIVER Specifies the name of language driver (e.g., ASCII)
LANGDRVDIR Specifies the language driver folder
LOCAL SHARE Specifies whether the Local Share is active
MAXBUFSIZE Specifies the maximum buffer size (in bytes)
MAXFILEHANDLES Specifies the maximum number of file handles
MINBUFSIZE Specifies the minimum buffer size (in bytes)
NET DIR Specifies the path to NET folder
NET TYPE Specifies the network type
SYSFLAGS Specifies the number of system flags
VERSION Specifies the BDE version number



enumFolder procedure
Lists the names of files in a folder or project.

Syntax
1. enumFolder ( const tableName String [ , const fileSpec String ] ) Logical
2. enumFolder ( var result Array[ ] String [ , const fileSpec String ] ) Logical

Description
enumFolder lists the names of files in a folder or project. By default, a project includes all the objects in :WORK:
and :PRIV:. You can also add references to objects in other directories.
Syntax 1 creates a Corel Paradox table named tableName. If tableName already exists, this method overwrites it 
without asking for confirmation. You can also include an alias or path in tableName. If an alias or path is not 
specified, Corel Paradox creates tableName in the working directory.
Syntax 2 lists the files in an array named result which you must declare and pass as an argument. For each file, 
the array lists the filename (and extension, if one exists), and includes the path if the file is not in the working 
directory.
You can list files using a particular extension using an optional argument named fileSpec. For example, to list all 
forms in a file, specify .FSL infileSpec.
The structure of the table created by Syntax 1 is
Field Type Description
Name A128 Specifies the filename (and extension, if one exists). Includes the path if 

the file is not in :WORK:.
LocalName A68 Specifies the filename without extension. Includes the path if the file is 

not in :WORK:.
IsReference A4 Specifies whether the filename refers to a file in a directory other 

than :WORK:
IsPrivate A4 Specifies whether the filename refers to a file in :PRIV:
IsTemp A4 Reserved
Position A10 Reserved
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSENDBTAB;OPAL_METH_SSLOADPROJECTALIASES;',0,"D
efaultoverview",)} Related Topics



enumFolder example
In the following example, the method prompts the user to type a file specification (e.g., *.FSL). The file 
specification entered is then used by enumFolder to create a table listing the files that match the specification.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  filespec String
  tv1      TableView
endVar
filespec.view("Enter filename specification")
enumFolder("PartCat", filespec)
message("Table lists files that match your specification.")
tv1.open("PartCat")
endMethod



enumOpenDatabases method/procedure
Lists the open databases.

Syntax
1. enumOpenDatabases ( const tableName String ) Logical
2. enumOpenDatabases ( var tableNames Array[ ] String ) Logical

Description
enumOpenDatabases lists the databases open in the active session.
Syntax 1 creates a Corel Paradox table named tableName. If tableName already exists, this method overwrites it 
without asking for confirmation. You can also include an alias or path in tableName. If an alias or path is not 
specified, Corel Paradox creates tableName in the working directory.
The following table displays the structure of the resulting table:
Field name Type Description
DBName A32* Specifies the database alias name
DBType A32 Specifies the database driver type
ShareMode A32 Specifies the database share mode
OpenMode A32 Specifies the database open mode

Syntax 2 writes the data to an array tableNames that you declare and pass as an argument.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSENDBTAB;',0,"Defaultoverview",)} Related Topics



enumOpenDatabases example
In the following example, enumOpenDatabases creates a table named OPENDB.DB, and then displays the 
table.
; btnOpenDB :: pushButton
method pushButton(var eventInfo Event)
   var
      tv   TableView
   endVar

   enumOpenDatabases("OPENDB.DB")
   tv.open("OPENDB.DB")
endMethod



enumUsers procedure
Creates a Corel Paradox table listing all known users with an open channel to the Borland Database Engine (BDE)
engine.

Syntax
1. enumUsers ( const tableName String ) LongInt
2. enumUsers ( var userNames Array[ ] String ) LongInt

Description
enumUsers creates a list of all users with an open path to the BDE database engine.
Syntax 1 creates a table named tableName that lists all users with an open path to BDE. If tableName already 
exists, Corel Paradox overwrites it without asking for confirmation. You can also include an alias or path in 
tableName. If an alias or path is not specified, Corel Paradox creates tableName in the working directory.
The following table displays the structure of the resulting table:
Field Name Type Description
UserName A15 Specifies the network user name
NetSession N Specifies the network session number
ProductClass N Specifies the user's product class ID number
SerialNumber A22 Specifies the serial number (version 1.0 only)

Syntax 2 lists the network names of users who currently have an open path to BDE in an array. You must declare 
the array before calling this procedure.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSGETNETUSERNAME;',0,"Defaultoverview",)} Related 
Topics



enumUsers example
The following example writes information about current users to a table named Users and displays the table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tv1 TableView
endVar
  enumUsers("users")
  tv1.open("users")
endMethod



getAliasPath method/procedure
Returns the path for a specified alias.

Syntax
getAliasPath ( const aliasName String ) String

Description
getAliasPath returns the path for an alias named aliasName.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSAALIAS;OPAL_METH_SSSETALIASPATH;',0,"Defaultover
view",)} Related Topics



getAliasPath example
The following example prompts the user for an alias name and displays the corresponding path:
; getShowPath::pushButton
method pushButton(var eventInfo Event)
   var
      stPrompt,
      stAliasName,
      stCurrentPath,
      stMyPath      String
   endVar

   stPrompt    = "Enter an Alias Name."
   stAliasName = stPrompt
   stMyPath    = "d:\\Corel\\Suite8\\Paradox\\data"

   stAliasName.view(stPrompt)    ; prompt for an alias name
   if stAliasName = stPrompt then
         return ; User didn't click the OK button.
   else
         stCurrentPath = getAliasPath(stAliasName)  ; get the path
   endIf

   if stCurrentPath = stMyPath then
         return
   else
         setAliasPath(stAliasName, stMyPath)
   endIf
endMethod



getAliasProperty method
Returns the property value for a specified server alias.

Syntax
getAliasProperty ( const aliasName String, const property String ) String

Description
getAliasProperty returns a string representing the property value specified by property for the server alias 
specified in aliasName. If the property is not valid for the alias, this method returns an error. getAliasProperty 
operates on aliases stored in IDAPI.CFG and on new aliases that have been opened and stored in system 
memory.
This method only applies to remote databases, and not to standard (Corel Paradox or dBASE) databases.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSSETALIASPROPERTY;',0,"Defaultoverview",)} Related 
Topics



getAliasProperty example
The following example uses getAliasProperty to retrieve the value of the OPEN MODE property. This code 
compares the returned (actual) value with the expected value. If the returned and expected values match, the 
code calls a custom procedure named doSomething to continue processing. If the returned and expected values 
do not match, the code informs the user of a property mismatch and calls setAliasProperty to set the property 
to the expected value.
method pushButton(var eventInfo Event)

   var 
      db                Database
      aliasName,
      propName,
      expectedPropVal,
      actualPropVal     String
      propValDA         DynArray[] AnyType
   endVar

   ; initialize variables
   aliasName = "itchy"
   propName = "OPEN MODE"
   expectedPropVal = "READ/WRITE"

   if db.open(aliasName) then

      ; get property value and compare with expected value
      actualPropVal = getAliasProperty(aliasName, propName)
      if actualPropVal = expectedPropVal then
         doSomething() ; continue processing
         return
      else

         ; inform the user if there's a mismatch
         propValDA["Property name"] = propName
         propValDA["Expected value"] = expectedPropVal
         propValDA["Actual value"] = actualPropVal
         propValDA.view("Property mismatch:")

         ; let user decide what to do
         if msgQuestion("Set property value?",
            "Set "+propName+" to " + expectedPropVal + "?") = "Yes" then
            
            ; set property to expected value and continue processing
          if setAliasProperty(aliasName, propName, expectedPropVal) then
               doSomething() ; Continue processing
               return
          else
               errorShow("Couldn't set property value.", 
                         "Operation canceled.")
               return
          endIf

         else
            msgInfo("Operation canceled.", "Property not set.")
            return
         endIf

      endIf

   else
      msgStop(aliasName, "Couldn't open database.")
      return
   endIf
         



endMethod



getNetUserName method/procedure
Returns the name of the current network user.

Syntax
getNetUserName ( ) String

Description
getNetUserName returns the name of the current network user.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSENUMUSERS;',0,"Defaultoverview",)} Related Topics



getNetUserName example
The following example displays the current user's network name in a dialog box:
; thisButton::pushButton
method pushButton(var eventInfo Event)
msgInfo("Who Am I?", getNetUserName())
endMethod



ignoreCaseInLocate procedure
Specifies whether to ignore case-sensitivity in locate operations.

Syntax
ignoreCaseInLocate ( [ const yesNo Logical ] )

Description
ignoreCaseInLocate specifies whether the active session ignores case-sensitivity during locate operations. If 
an optional argument named yesNo is set to Yes or omitted, all subsequent locate operations ignore case in 
string comparisons. If yesNo is set to No, locate operations will respect case.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSISIGNORECASEINLOCATE;',0,"Defaultoverview",)} 
Related Topics



ignoreCaseInLocate example
The following example calls ignoreCaseInLocate to prepare for a call to the locate method:
; findName::pushButton
method pushButton(var eventInfo Event)
var
  tc                TCursor
   loIgnoreCase   Logical
endVar

if tc.open("Customer.db") then

   loIgnoreCase = isIgnoreCaseInLocate() ; Get user's setting.

  if loIgnoreCase then

    ; locate values based on value as entered
    ; (do not ignore case in string compares)
    ignoreCaseInLocate(No)
  endIf

  ; search for case-sensitive MacAnaly in Name field
  if tc.locate("Name", "MacAnaly") then
    tc.edit()
    tc.Name = "Macanaly"
    tc.endEdit()
  else
    message("Couldn't find MacAnaly...")
  endIf

   ignoreCaseinLocate(loIgnoreCase) ; Restore user's setting.  

else
  msgStop("Error", "Can't open Customer table.")
endIf

endMethod



isAdvancedWildcardsInLocate procedure
Reports whether the active session is using advanced wildcards during locate operations.

Syntax
isAdvancedWildcardsInLocate ( ) Logical

Description
isAdvancedWildcardsInLocate reports whether the active session is using advanced wildcards during locate 
operations that include pattern strings.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSADVANCEDWILDCARDSINLOCATE;',0,"Defaultoverview
",)} Related Topics



isAdvancedWildcardsInLocate example
The following example calls advancedWildcardsInLocate to specify that advanced wild cards can be used in a 
locate operation. The code the calls to locatePattern, which uses an advanced wildcard pattern.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  thisSession Session
endVar

if tc.open("Orders.db") then

  ; if advanced wild cards can't be used in patterns
  if NOT isAdvancedWildcardsInLocate() then
    ; specify that this session can use advanced
    ; pattern characters in subsequent locate operations
    advancedWildcardsInLocate(Yes)
  endIf

  if tc.locatePattern("Ship VIA", "[^UPS]") then
    msgInfo("Order Number", tc."Order No")
  else
    msgStop("Error", "Can't find record")
  endIf
else
  msgStop("Error", "Can't open Orders table.")
endIf

endMethod



isAssigned method
Reports whether a Session variable is assigned.

Syntax
isAssigned ( ) Logical

Description
isAssigned reports whether a Session variable is assigned.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSOPEN;OPAL_METH_SSCLOSE;',0,"Defaultoverview",)} 
Related Topics



isAssigned example
See the close example.



isBlankZero method/procedure
Reports whether blank values are treated as zero in calculations.

Syntax
isBlankZero ( ) Logical

Description
isBlankZero returns True if blank fields are treated as zero in calculations, or as filled fields in counting 
calculation (e.g., cCount). If blank fields are treated as blanks or are being ignored in calculations and counts, 
isBlankZero returns False. Use blankAsZero to change this setting.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSBLANKASZERO;',0,"Defaultoverview",)} Related 
Topics



isBlankZero example
See the blankAsZero example.



isIgnoreCaseInLocate procedure
Reports whether the active session ignores case-sensitivity in locate operations.

Syntax
isIgnoreCaseInLocate ( ) Logical

Description
isIgnoreCaseInLocate reports whether the active session ignores case-sensitivity during locate operations.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSIGNORECASEINLOCATE;',0,"Defaultoverview",)} 
Related Topics



isIgnoreCaseInLocate example
See the ignoreCaseInLocate example.



loadProjectAliases procedure
Loads project alias specifications.

Syntax
loadProjectAliases ( const cfgFileName String ) Logical

Description
loadProjectAliases loads project alias specifications from the file specified in cfgFileName. If cfgFileName does 
not specify a path, Corel Paradox searches for the file in the working directory. Corel Paradox automatically reads
project aliases from :WORK:PDOXWORK.CFG. This method lets you specify a different file.
When :WORK: is set (e.g., at startup) or changed (interactively or through ObjectPAL), Corel Paradox discards all 
current project aliases and loads those project aliases that are specific to the new working directory. Public 
aliases remain active and available. If a project alias has the same name as a public alias, Corel Paradox does 
not load the project alias. This method returns True if it succeeds; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSAALIAS;OPAL_METH_SSADDPROJECTALIAS;OPAL_METH
_SSREMOVEPROJECTALIAS;OPAL_METH_SSSAVEPROJECTALIASES;OPAL_METH_FSSETWORKINGDIR;',0,"De
faultoverview",)} Related Topics



loadProjectAliases example
The following example loads the project aliases in the open method of the form's first page. This code reads a 
list of custom aliases from C:\COREL\SUITE8\PARADOX\CUSTOM.CFG instead of from the Corel Paradox default 
configuration file.
;pge1 :: open
method open(var eventInfo Event)
   loadProjectAliases("C:\\COREL\UITE8\\PARADOX\\CUSTOM.CFG")
endMethod



lock procedure
Locks one or more tables.

Syntax
lock ( const table { Table|TCursor|String },  const lockType String [ , const table { Table|
TCursor| String },  const lockType String ] * ) Logical

Description
lock locks one or more of the tables specified in comma-separated pairs of tables and lock types. You can use a 
TCursor or a Table to specify a table. You can mix TCursor and Table variables in the list.
The following lockType values are listed in order of decreasing strength and increasing concurrency:
String value Description
Full Specifies whether the active session has exclusive access to the table. Cannot be used with 

dBASE tables.
Write Specifies whether the active session can write to and read from the table. No other session 

can place a write lock or a read lock on the table.
Read Specifies whether the active session can read from the table. No other session can place a 

write lock, full lock, or exclusive lock on the table.

If lock locks all the tables in the list, it returns True; otherwise, it returns False. If lock can't lock all the tables, it 
doesn't lock any.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSUNLOCK;',0,"Defaultoverview",)} Related Topics



lock example
The following example attempts to place a write lock on the Orders table and a read lock on the Customer table. 
If lock is able to lock both tables, the code displays data from both tables in a dialog box. The code then calls 
unlock to remove the explicit locks placed on Customer and Orders.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  ordTB    Table
  custTC   TCursor
  sampDB   Database
  otherSes Session
endVar

otherSes.open("other") ; Open another session
otherSes.addAlias("samples", "Standard", "c:\\Corel\\Suite8\\Paradox\\samples")
sampDB.open("samples", otherSes)

custTC.open("Customer.db", sampDB)
ordTB.attach("Orders.db", sampDB)

if lock(custTC, "Read", ordTB, "Write") then
  if custTC.locate("Name", "Unisco") then
    custNo = custTC."Customer No"
    ordTB.setIndex("Customer No")
    ordTB.setFilter(custNo, custNo)
    msgInfo(String("Total for order ", custNo),
            ordTB.cSum("Total Invoice"))
    unlock(custTC, "Read", ordTB, "Write")
  else
    msgStop("Error", "Can't find Unisco.")
  endIf
else
  errorShow()
endIf

endMethod



open method
Opens a session (a channel to the database engine).

Syntax
1. open ( ) Logical
2. open ( const sessionName String ) Logical

Description
open opens a session (a channel to the database engine). Calling open with no arguments (Syntax 1) gives you 
a handle to the active session; it does not exhaust a user count. When you use sessionName to specify a session 
name (Syntax 2), you open another channel to the database engine and exhaust one user count. The 
sessionName value can be any valid string.
If you open multiple sessions from the same workstation, Corel Paradox views each session as a separate user 
(e.g., locks set in one session block access from the other).
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSCLOSE;',0,"Defaultoverview",)} Related Topics



open example
The following example calls open to retrieve a handle to the active session, and to open a new session. The 
code then calls blankAsZero to specify how each session handles blank values in calculations. Finally, the code 
passes the Session variables to a custom procedure named doSomething. Because different sessions have 
different blankAsZero, the results of doSomething vary.
; openSession::pushButton
method pushButton(var eventInfo Event)
var
  currentSes,
  otherSes    Session
endVar

; Open sessions.
currentSes.open()      
otherSes.open("other")

; Set session properties.
currentSes.blankAsZero(Yes)
otherSes.blankAsZero(No) 

; Pass session handles to a custom procedure.
; Results will differ depending on settings for each session.
doSomething(currentSes)
doSomething(otherSes)

endMethod



removeAlias method/procedure
Removes an alias from a session.

Syntax
removeAlias ( const aliasName String ) Logical

Description
removeAlias removes the alias aliasName from a session. You cannot remove :WORK:, :PRIV:, or an open alias.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSAALIAS;',0,"Defaultoverview",)} Related Topics



removeAlias example
The following example adds an alias to the active session and makes the new alias available to the open 
method defined for the Database type. When the alias is no longer needed, this code calls removeAlias to 
remove the alias from the active session.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  custInfo Database 
endVar

; Add the CustomerInfo alias to the current session.
addAlias("CustomerInfo", "Standard", "D:\\Corel\\Suite8\\Paradox\\tables\\custdata") 

; Now use the alias specify the database to open.
custInfo.open("CustomerInfo") ; Opens the CustomerInfo database.

; Do something with the opened database, 
; then when the alias is no longer needed, close the
; database and remove the alias from the current session.

custInfo.close()
removeAlias("CustomerInfo")

endMethod



removeAllPasswords method/procedure
Removes passwords defined for a session.

Syntax
removeAllPasswords ( )

Description
removeAllPasswords removes passwords defined for a session. This method withdraws the passwords required
to access protected tables, but does not remove security from tables.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSAPASS;OPAL_METH_SSRMPAS;',0,"Defaultoverview",)}
Related Topics



removeAllPasswords example
The following example removes all the passwords from the session named ses.
; removePasses::pushButton
method pushButton(var eventInfo Event)
; assume that the variable ses is global, and has been
; opened by another method
if ses.isAssigned() then
  ses.removeAllPasswords()
else
  msgStop("Help!","Session variable is not Assigned!")
endIf
endMethod



removePassword method/procedure
Removes a password defined for a session.

Syntax
removePassword ( const password String )

Description
removePassword removes a password defined for a session. This method withdraws the password specified in 
the argument password , but does not unprotect the table. password is case-sensitive.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSAPASS;OPAL_METH_SSRMALLPAS;',0,"Defaultoverview
",)} Related Topics



removePassword example
In the following example, the getRemovePass button acquires a password to remove from the user and removes 
the password from the active session. Subsequent attempts to open tables protected by that password fail.
; getRemovePass::pushButton
method pushButton(var eventInfo Event)
var
  newPass string
endVar
; assume that the variable ses is global, and has been
; opened by another method
if ses.isAssigned() then
  newPass.view("Enter Password to Remove")
  ses.removePassword(newPass)
else
  msgStop("Help!", "Session variable is not Assigned!")
endIf
endMethod



removeProjectAlias procedure
Removes a project alias. For information about aliases, see Public and Project Aliases in the User's Guide Help.

Syntax
removeProjectAlias ( const alias String ) Logical

Description
removeProjectAlias removes the project alias specified in alias.
When the working directory is set (e.g., at startup) or changed (interactively or through ObjectPAL), Corel 
Paradox discards all current project aliases and loads those project aliases that are specific to the new working 
directory. Public aliases remain active and available. If a project alias has the same name as a public alias, Corel 
Paradox does not load the project alias. By default, Corel Paradox reads project aliases 
from :WORK:PDOXWORK.CFG; however, you can use loadProjectAliases to specify a different path and file.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSAALIAS;OPAL_METH_SSADDPROJECTALIAS;OPAL_METH
_SSLOADPROJECTALIASES;OPAL_METH_SSREMOVEALIAS;OPAL_METH_SSSAVEPROJECTALIASES;OPAL_ME
TH_FSSETWORKINGDIR;',0,"Defaultoverview",)} Related Topics



removeProjectAlias example
The following example uses addProjectAlias in the page's built-in arrive method to add an alias to the current 
project. The code then uses removeProjectAlias in the page's built-in depart method to remove the alias.
The following code is attached to the page's built-in arrive method:
;pge1 :: arrive
method arrive(var eventInfo MoveEvent)
   ;Add the CustomerInfo alias to the project.
   addProjectAlias("CustomerInfo", "Standard", "D:\\COREL\\SUITE8\\PARADOX\\SAMPLES")
endMethod

The following code is attached to the page's built-in depart method.
;pge1 :: depart
method depart(var eventInfo MoveEvent)
   ;Remove the CustomerInfo alias from the project.
   if not removeProjectAlias("CustomerInfo") then
      errorShow("Could not remove project alias CustomerInfo.")
   endIf
endMethod



retryPeriod method/procedure
Returns the number of seconds allowed to retry an operation on a locked record or table.

Syntax
retryPeriod ( ) SmallInt

Description
retryPeriod returns the number of seconds allowed to retry an operation on a locked record or table. If the 
retryPeriod is set to 0 (default), operations are not retried.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSSRETRY;',0,"Defaultoverview",)} Related Topics



retryPeriod example
The following example displays the current retry period:
; getShowRetry::pushButton
method pushButton(var eventInfo Event)
var
  rp smallint
endVar
; assume that the variable ses is global, and has been
; opened by another method
if ses.isAssigned() then
  rp = ses.RetryPeriod()            ; get the current retry period
  rp.view("The Retry Period is...") ; display the value
else
  msgStop("Help!","Session variable is not assigned!")
endIf
endMethod



saveCFG method/procedure
Saves the active session's alias information to a file.

Syntax
saveCFG ( const fileName String ) Logical

Description
saveCFG saves the BDE configuration for the active session in fileName. The configuration file specified by 
fileName can be loaded using the -o command-line option to set session information at startup.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SYDLGNETSYSTEM;',0,"Defaultoverview",)} Related 
Topics



saveCFG example
The following example saves the current BDE settings to MyConfig.cfg.
;// saveconfiguration::pushButton
method pushButton(var eventInfo Event)
;// saves the BDE setting to file MyConfig.cfg
saveCfg("MyConfig.cfg")
endMethod



saveProjectAliases procedure
Saves project alias specifications to a file. For information about aliases, see Public and project aliases in the 
User's Guide Help.

Syntax
saveProjectAliases ( [ const fileName String ] ) Logical

Description
saveProjectAliases saves project alias specifications to a file. You can use the optional argument fileName to 
specify a filename. If you omit fileName, Corel Paradox saves the alias to :WORK:PDOXWORK.CFG.
When :WORK: is set (e.g., at startup) or changed (interactively or through ObjectPAL), Corel Paradox discards all 
current project aliases and loads those project aliases that are specific to the new working directory. Public 
aliases remain active and available. If a project alias has the same name as a public alias, Corel Paradox does 
not load the project alias. By default, Corel Paradox reads project aliases from :WORK:PDOXWORK.CFG; however,
you can use loadProjectAliases to specify a different path and file.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSAALIAS;OPAL_METH_SSADDPROJECTALIAS;OPAL_METH
_SSLOADPROJECTALIASES;OPAL_METH_SSREMOVEPROJECTALIAS;OPAL_METH_FSSETWORKINGDIR;',0,"D
efaultoverview",)} Related Topics



saveProjectAliases example
The following example uses saveProjectAliases to save new project aliases to MYPROJ.CFG:
;pge1 :: open
method open(var eventInfo Event)
   ; Add project alias.
   addProjectAlias("MYPROJ", "Standard", "D:\\COREL\\SUITE8\\PARADOX\\\MYPROJ")

   ; Save project aliases.
   saveProjectAliases("MYPROJ.CFG")
endMethod



setAliasPassword method
Sets the in-memory password for a specified alias.

Syntax
setAliasPassword ( const aliasName, const password String ) Logical

Description
setAliasPassword sets the in-memory password for the alias specified in aliasName to the value specified in 
password. Passwords have a maximum length of 31 characters. The next time you open that alias, you do not 
have to supply the password. 
Calling setAliasPassword has the same effect as defining a password interactively using the Alias Manager 
dialog box. setAliasPassword has no effect on the password stored and maintained on the server. This method 
returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSGETALIASPROPERTY;OPAL_METH_SSSETALIASPROPER
TY;',0,"Defaultoverview",)} Related Topics



setAliasPassword example
The following example calls setAliasPassword to define the password for a specified alias. When the call to 
open executes, this code opens the database without prompting the user for a password.
method pushButton(var eventInfo Event)
   var 
      aliasName,
      aliasPassword   String
      db              Database
   endVar

   ; initialize variables
   aliasName = "bedrock"
   aliasPassword = "fred" ; Max length: 31 characters

   ; set alias password and open database
   if setAliasPassword(aliasName, aliasPassword) then
   db.open(aliasName) ; opens without prompting for password
   else
      errorShow("Couldn't set alias password.")
      return
   endIf
         
endMethod



setAliasPath method/procedure
Sets the path for an alias.

Syntax
setAliasPath ( const aliasName String, const aliasPath String ) Logical

Description
setAliasPath sets the path aliasPath for the alias aliasName.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSGALPATH;',0,"Defaultoverview",)} Related Topics



setAliasPath example
See the getAliasPath example.



setAliasProperty method
Sets the value of a specified property for a specified alias.

Syntax
setAliasProperty ( const aliasName String, const property String, const propertyValue String ) 
Logical

Description
setAliasProperty sets the value specified in property, to the value specified in propertyValue, for the alias 
specified in aliasName. This method returns True if successful; otherwise, it returns False.
Properties that you set using this method are displayed in the Alias Manager dialog box. Since property settings 
are not automatically saved to IDAPI.CFG, you must use the Session procedure saveCFG to save alias properties
to a file.
This method applies only to remote databases, and not to standard (Corel Paradox or dBASE) databases.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSGETALIASPROPERTY;OPAL_METH_SSSETALIASPASSWO
RD;',0,"Defaultoverview",)} Related Topics



setAliasProperty example
See the getAliasProperty example.



setRetryPeriod method/procedure
Sets the number of seconds allowed to retry an action on a locked table or record.

Syntax
setRetryPeriod ( const period SmallInt ) Logical

Description
setRetryPeriod specifies the number of seconds to allowed retry an action on a locked table or record. If you 
set setRetryPeriod to 0, actions are not retried.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSRETRY;',0,"Defaultoverview",)} Related Topics



setRetryPeriod example
The following example prompts the user to specify a retry period and sets the session's retry period to that 
value:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  rp Smallint
endVar
; assume that the variable ses is global, and has been
; opened by another method
if ses.isAssigned() then
  rp = ses.retryPeriod()
  rp.view("Enter retry period")  ; get a retry period from user
  ses.setRetryPeriod(rp)         ; set the session's retry period
else
  msgStop("Help!","Session variable is not assigned!")
endIf
endMethod



unlock procedure
Unlocks one or more tables.

Syntax
unlock ( const table { Table|TCursor|String } ,    
         const lockType String [ , const table { Table|TCursor|String } ,  
         const lockType String ] * ) Logical

Description
unlock unlocks one or more of the tables specified in a comma-separated list of tables and lock types.
unlock removes locks explicitly placed by a particular user or application but does not affect locks placed 
automatically by Corel Paradox. The lockType value must be one of the following: Exclusive, Write, Read, or Full. 
Read and Full apply only to Corel Paradox tables.
If one unlock attempt fails, previous locks are not restored the tables remain unlocked. You don't have to 
specify a session in which to use this method, because session data is set when you open a TCursor or attach to
a Table.
To ensure maximum concurrent availability of tables, unlock tables when the lock is no longer required. When 
you lock a table twice, you must unlock it twice. You can use the lockStatus method (defined for the TCursor 
and UIObject types) to determine how many explicit locks you have placed on a table. If you try to unlock a table
that isn't locked or cannot be unlocked, unlock returns False.
 Example

{button ,AL(`OPAL_TYPE_SESSION;OPAL_METH_SSLOCK;OPAL_METH_TCLSTA;OPAL_METH_UILOCKSTATU
S;',0,"Defaultoverview",)} Related Topics



unlock example
See the lock example.



SmallInt type
SmallInt values are small integers that can be represented by a short series of digits. A SmallInt variable 
occupies 2 bytes of storage.
ObjectPAL converts SmallInt values to range from -32,768 to 32,767. If you attempt to assign a value outside of 
this range to a SmallInt variable, an error occurs.
var
   x, y, z SmallInt
endVar

x = 32767 ; The upper limit value for a SmallInt variable.
y = 1
z = x + y ; This statement causes an error.
When ObjectPAL performs an operation on SmallInt values, the result must also be a SmallInt value. To work with
a boundary value (in either the positive or negative direction), convert it to a type that can accommodate it. In 
the following example, ObjectPAL converts a SmallInt to a LongInt before performing the addition. The result is 
assigned to a LongInt variable which can handle the large value.
var
   x, y SmallInt
   z    LongInt   ; Declare z as a LongInt so it can hold the result.
endVar

x = 32767 ; the upper limit value for a SmallInt variable
y = 1
z = LongInt(x) + y
 Notes

· The SmallInt value -32,768 cannot be stored in a Corel Paradox table. Corel Paradox considers 
-32,768 to be a blank. This value can be used in calculations and stored in a dBASE table. Store such large 
numbers as LongInt or Number data types.

· Run-time library methods and procedures defined for the Number type also work with LongInt and SmallInt 
variables. The syntax is the same, and the returned value is a Number. For example, the following code returns
a Number value, even though sin does not appear in the methods for the SmallInt type:
var 
   abc LongInt 
   xyz Number
endVar
abc = 43
xyz = abc.sin()

The SmallInt type includes several derived methods from the Number and AnyType types.
Methods for the SmallInt type

AnyType Number LongInt
blank abs bitAND
dataType acos bitIsSet
isAssigned asin bitOR
isBlank atan bitXOR
isFixedType atan2 int
view ceil smallInt

cos
cosh
exp
floor
fraction
fv
ln
log
max



min
mod
number
numVal
pmt
pow
pow10
pv
rand
round
sin
sinh
sqrt
tan
tanh
truncate

 Print related ObjectPAL methods and examples



bitAND method
Performs a bitwise AND operation on two values.

Syntax
bitAND ( const value SmallInt ) SmallInt
Description
bitAND returns the result of a bitwise AND operation on value. bitAND operates on the binary representations 
of two integers, comparing them one bit at a time. The truth table for bitAND is:
a b a bitAND b
0 0 0
1 0 0
0 1 0
1 1 1
 Example

{button ,AL(`OPAL_TYPE_SMALLINT;OPAL_METH_SIBOR;OPAL_METH_SIBXOR;',0,"Defaultoverview",)} 
Related Topics



bitAND example
In the following example, the pushButton method for a button named andTwoNums performs a bitwise AND 
calculation on two integers. The result is displayed in a dialog box.
; andTwoNums::pushButton
method pushButton(var eventInfo Event)
var 
  a, b SmallInt 
endVar
a = 30233   ; binary 01110110 00011001
b = 1233    ; binary 00000100 11010001
a.bitAND(b) ; binary 00000100 00010001
msgInfo("The result of 30233 bitAND 1233 is:", a.bitAND(b)) 
; displays 1041
endMethod



bitIsSet method
Reports whether a bit is 1 or 0.

Syntax
bitIsSet ( const value SmallInt ) Logical
Description
bitIsSet examines the binary representation of an integer and reports whether the value bit is 0 or 1. This 
method returns True if the bit is 1, and False if it is 0.
value is a number specified by , where n is an integer between 0 and 14. The exponent n corresponds to one 
position less than the position of the bit to test, counting from the right. For example, to specify the third bit from
the right, use 

.
 Examples

{button ,AL(`OPAL_TYPE_SMALLINT;OPAL_METH_SIBAND;OPAL_METH_SIBOR;OPAL_METH_SIBXOR;',0,"D
efaultoverview",)} Related Topics



bitIsSet method examples
Example1          Using pushButton
Example2          Using bitIsSet to display an integer as a binary number



bitIsSet example 1
The following example uses the pushButton method for a button named isABitSet, to examine the values in two
unbound field objects: whichBit and whatNum. whichBit contains the bit position (counting from the right) of the 
bit test. whatNum contains the integer to test. The pushButton method uses whichBit to calculate the value of 
the position, then assigns the result to bitNum. The code then checks Num to determine whether the bitNum bit 
is set and displays the Logical result in a msgInfo dialog box.
; isABitSet::pushButton
method pushButton(var eventInfo Event)
var
  bitNum,
  Num      SmallInt
endVar
; get the bit position number from the whichBit
; field and convert to multiple of 2
bitNum = SmallInt(pow(2, whichBit - 1))
; get the number to test from the whatNum field 
Num = whatNum                  
; is the bit for value bitNum 1 in Num?
msgInfo("Is Bit Set?", Num.bitIsSet(bitNum))
endMethod



bitIsSet example 2
The following example uses bitIsSet to display an integer as a binary number. The pushButton method for 
showBinary constructs a string of zeros and ones, by testing each bit of a four-byte integer. A blank is added 
after the 8th digit in the string for readability.
; showBinary::pushButton
method pushButton(var eventInfo Event)
var 
  binString  String    ; to construct the binary string
  Num        SmallInt  ; number to test
  i          SmallInt  ; for loop index
endVar
if NOT whatNum.isBlank() then
  Num = whatNum                ; get the number test from whatNum      
  binString = ""               ; initialize the string
  for i from 0 to 14
    if Num.bitIsSet(SmallInt(pow(2, i))) then
      binString = "1" + binString    ; add a 1 to the front of the string
    else
      binString = "0" + binString    ; add a 0 to the front of the string
    endIf
    if i = 7 then
      binSTring = " " + binString    ; add a space every 8 digits
    endIf
  endfor 
  if Num < 0 then
    binString = "1" + binString      ; set the sign bit 
  else
    binString = "0" + binString
  endIf
  ; show the number
  message("The binary equivalent is ", binString)
endIf
endMethod



bitOR method
Performs a bitwise OR operation on two values.

Syntax
bitOR ( const value SmallInt ) SmallInt
Description
bitOR performs a bitwise OR operation on value. bitOR operates on the binary representations of two integers, 
comparing them one bit at a time. The truth table for bitOR is:
a b a bitOR b
0 0 0
1 0 1
0 1 1
1 1 1
 Example

{button ,AL(`OPAL_TYPE_SMALLINT;OPAL_METH_SIBAND;OPAL_METH_SIBXOR;',0,"Defaultoverview",)} 
Related Topics



bitOR example
In the following example, the pushButton method for a button named orTwoNums performs a bitwise OR 
calculation on two integers. The result is displayed in a dialog box.
; orTwoNums::pushButton
method pushButton(var eventInfo Event)
var 
  a, b SmallInt
endVar
a = 30233  ; binary 01110110 00011001
b = 1233   ; binary 00000100 11010001
a.bitOR(b) ; binary 01110110 11011001
msgInfo("30233 OR 1233", a.bitOR(b)) ; displays 30425
endMethod



bitXOR method
Performs a bitwise XOR operation on two values.

Syntax
bitXOR ( const value SmallInt ) SmallInt
Description
bitXOR performs a bitwise XOR (exclusive OR) operation on value. bitXOR operates on the binary 
representations of two integers, comparing them one bit at a time. The truth table for bitXOR is:
a b a bitXOR(b)
0 0 0
1 0 1
0 1 1
1 1 0
 Example

{button ,AL(`OPAL_TYPE_SMALLINT;OPAL_METH_SIBAND;OPAL_METH_SIBOR;',0,"Defaultoverview",)} 
Related Topics



bitXOR example
In the following example, the pushButton method for a button named xorTwoNums takes two integers and 
performs a bitwise XOR calculation on them. The result of the calculation is displayed in a dialog box.
; xorTwoNums::pushButton
method pushButton(var eventInfo Event)
var 
  a, b SmallInt
endVar
a = 30233   ; binary 01110110 00011001
b = 1233    ; binary 00000100 11010001
a.bitXOR(b) ; binary 01110010 11001000
msgInfo("30233 XOR 1233", a.bitXOR(b)) ; displays 29384
endMethod



int procedure
Casts a value as an integer.

Syntax
int ( const value AnyType ) SmallInt
Description
int casts the numeric expression value to an integer. If value is of a more precise type (e.g., Number), precision 
is lost.
 Example

{button ,AL(`OPAL_TYPE_SMALLINT;OPAL_METH_SISMIN;',0,"Defaultoverview",)} Related Topics



int example
The following example assigns a number to nn, views the value of nn in a dialog box and displays nn as an 
integer. This code is attached to the pushButton method for the showInt button:
; showInt::pushButton
method pushButton(var eventInfo Event)
var
   nn Number
endVar
nn = 123.12
view(nn)                             ; displays 123.12
msgInfo("nn as Integer", int(nn))   ; displays 123
endMethod



smallInt procedure
Casts a value as a small integer.

Syntax
smallInt ( const value AnyType ) SmallInt
Description
smallInt casts the numeric expression value to a SmallInt. If value is of a more precise type (e.g., Number), 
precision is lost.
 Example

{button ,AL(`OPAL_TYPE_SMALLINT;OPAL_METH_SIINT;',0,"Defaultoverview",)} Related Topics



smallInt example
The following example assigns a number to x, casts x to SmallInt, and assigns the result to s. The decimal 
precision of x is lost when it is cast as a SmallInt.
; convertToInt::pushButton
method pushButton(var eventInfo Event)
var 
  x Number
  s SmallInt 
endVar 
x = 12.34             ; give x a value
x.view()              ; view x, title of dialog will be "Number"
s = SmallInt(x)       ; cast x as a LongInt and assign to s
s.view()              ; show s, note that decimal places are lost 
                      ; displays 12        
endMethod



SQL type
An ObjectPAL SQL variable represents an    SQL statement. You can use ObjectPAL to create and execute SQL 
commands from methods in the same way that your create and execute SQL commands interactively. SQL 
commands can be executed from an SQL file, an SQL statement, or a string. Some queries require Corel Paradox 
to create temporary tables in the private directory.

Methods for the SQL type
executeSQL
getQueryRestartOptions
isAssigned
readFromFile
readFromString
setQueryRestartOptions
wantInMemoryTCursor
writeSQL

 Print related ObjectPAL methods and examples



executeSQL method/procedure
Executes an    SQL statement.

Syntax
Method:
1. executeSQL ( const db Database) Logical
2. executeSQL ( const db Database, ansTbl String ) Logical
3. executeSQL ( const db Database, ansTbl Table ) Logical
4. executeSQL ( const db Database, ansTbl TCursor ) Logical
Procedure:
1. executeSQL ( const db Database, const qbeVar SQL ) Logical
2. executeSQL ( const db Database, const qbeVar SQL, ansTbl String ) Logical
3. executeSQL ( const db Database, const qbeVar SQL, ansTbl Table ) Logical
4. executeSQL ( const db Database, const qbeVar SQL, ansTbl TCursor ) Logical
Description
executeSQL executes a pass through SQL query created in an ObjectPAL method or procedure.
In Syntax 1 the answer table is not specified. executeSQL writes to ANSWER.DB in the private directory.
In Syntax 2 the answer table is specified as a string. If you do not include a file extension, the answer table is a 
Corel Paradox table by default.
In Syntax 3 ansTbl is a Table variable. ansTbl must be assigned and valid.
In Syntax 4 a TCursor is opened onto the answer set. The TCursor may be an in-memory table or a cursor onto 
the answer set.
executeSQL returns True if the query is executed on the server (even if the resulting table is empty); otherwise,
it returns False.
An SQL query in ObjectPAL code begins with an SQL variable, the = sign, and the keyword SQL followed by a 
blank line. The code continues with the SQL statements that make up the body of the query, followed by another
blank line. The query ends with the keyword endSQL. Because this query is not a quoted string, it can contain 
tilde variables. 
 Note

· executeSQL is a pass through function. The SQL statements are sent directly to the server as if by another 
user. SQL statements do not execute within the context of a database handle or active transaction.

 Example
{button ,AL(`OPAL_TYPE_SQL;OPAL_METH_SQLREADFROMFILE;OPAL_METH_SQLREADFROMSTRING;',0,"
Defaultoverview",)} Related Topics



executeSQL example
The following example prompts the user to type an item name and stores the user's input in a variable. The code
then it uses the variable as a tilde variable in an SQL query and calls executeSQL to execute the query. The 
results are stored in a TCursor in system memory. If the query executes successfully, the results are passed to a 
custom procedure for additional processing.
method pushButton(var eventInfo Event)
   var    
      itemNameSQL SQL
      ViewName tableview

db database
   endVar
db.open(":aliasname:");this will open the connection to the local table or SQL table via the 
alias
itemNameSQL = SQL ;stores the SQL statement into the variable
SELECT DISTINCT Field1, Field2, etc.
FROM "DatabaseName.DB"
endSQL
executeSQL(db, itemNameSQL, ":aliasname:answertablename") ;execute the SQL statement into an 
answer table
view2.open(":aliasname:answertablename") ;to view the answer table
endMethod



isAssigned method
Reports whether an    SQL variable has an assigned value.

Syntax
isAssigned ( ) Logical
Description
isAssigned returns True if an SQL variable has been assigned a value; otherwise, it returns False. isAssigned 
does not determine if the assigned SQL statement is valid.
 Example

{button ,AL(`OPAL_TYPE_SQL;OPAL_METH_QUERY;',0,"Defaultoverview",)} Related Topics



isAssigned example
In the following example, the call to isAssigned returns True. The SQL variable sqlVar has been assigned a value
even though the value is not a valid SQL variable.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  sqlVar SQL
endVar
sqlVar = SQL
     This is not a valid SQL statement
     endSQL
msgInfo("Assigned?", sqlVar.isAssigned())    ; displays True
endMethod



readFromFile method
Assigns the contents of an SQL file to an SQL variable.

Syntax
readFromFile ( const sqlFileName SQL ) Logical
Description
readFromFile assigns the contents of sqlFileName to an SQL variable. SqlFileName is created with writeSQL or
interactively with the SQL Editor. Do not use the SQL and endSQL keywords. Use executeSQL to execute the 
query.
If fileName does not include a path or alias, readFromFile searches for the file in the directory associated with 
the specified database (or the default database, if a database is not specified). If the value of fileName does not 
include an extension, readFromFile assumes an extension of .SQL. To specify a filename that does not have an 
extension, type a period after the name. The following table lists the filenames different fileName values:
fileName value SQL filename
newcust newcust.sql
newcust. newcust
newcust.s newcust.s

readFromFile returns True if it succeeds; otherwise, it returns False.
 Note

· readFromFile is a pass through function. The SQL statements are sent directly to the server as if by another 
user. SQL statements do not execute within the context of a database handle or active transaction.

 Example
{button ,AL(`OPAL_TYPE_SQL;OPAL_METH_SQLEXECUTESQL;OPAL_METH_SQLREADFROMSTRING;',0,"Def
aultoverview",)} Related Topics



readFromFile example
The following example creates a pop-up menu listing the SQL files stored in the private directory. When the user 
chooses a file from the menu, this code calls readFromFile. readFromFile reads the query, assigns it to an 
SQL variable, executes the query, and stores the results in a TCursor. The code then passes the TCursor to a 
custom procedure (assumed to be defined elsewhere) for additional processing.
method pushButton(var eventInfo Event)
   var    
      myAlias,
      aliasTableName,
      sqlFileName,
      sqlFileSpec      String
      aliasNamTC,
      answerTC         TCursor
      sqlPop           PopUpMenu
      db               Database
      sqlFS            FileSystem
      sqlFileAr        Array[] String
      sqlVar           SQL
   endVar

   ; initialize variables
   myAlias = "itchy"
   aliasTableName = ":PRIV:aliasNam.db"
   sqlFileSpec = ":PRIV:*.SQL"

   enumAliasNames(aliasTableName) ; create a table of aliases

   aliasNamTC.open(aliasTableName)
   if aliasNamTC.locate("DBName", myAlias) then
      db.open(myAlias)  ; use alias to get database handle to server
   else
      msgStop("Stop",
              "The alias " + myAlias +
              " has not been defined.")
      return ; exit the method
   endIf   

   ; build a pop-up menu listing SQL files in the target directory
   if sqlFS.findFirst(sqlFileSpec) then
      sqlFS.enumFileList(sqlFileSpec, sqlFileAr)
      sqlPop.addArray(sqlFileAr)
      sqlFileName = sqlPop.show() ; variable stores user's menu choice

      ; read and execute the SQL file chosen by the user
      sqlVar.readFromFile(sqlFileName)
      if sqlVar.executeSQL(db,answerTC) then
         doSomething(answerTC) ; call custom proc to process data
      else
         errorShow("readFromFile failed")
      endIf

   else
      msgStop("File not found:", sqlFileSpec)
   endIf

endMethod



readFromString method
Assigns a query string to an SQL variable.

Syntax
readFromString ( const sqlString SQL ) Logical
Description
readFromString assigns the SQL query string specified in sqlString to an SQL variable. Do not enclose the 
string between the SQL and endSQL keywords. Use executeSQL to execute the query.
 Notes

· readFromFile is a pass through function. The SQL statements are sent directly to the server as if by another 
user. SQL statements do not execute within the context of a database handle or active transaction.

 Example
{button ,AL(`OPAL_TYPE_SQL;OPAL_METH_SQLEXECUTESQL;OPAL_METH_SQLREADFROMFILE;',0,"Defaul
toverview",)} Related Topics



readFromString example
The following example prompts the user to type an SQL keyword and uses that keyword in an SQL string. If the 
user enters a valid SQL keyword and the query executes successfully, the results are stored in a TCursor and 
passed to a predefined custom procedure for additional processing.
method pushButton(var eventInfo Event)
   var    
      sqlKeyword,
      promptString,
      bigOrderString   String
      aliasNamTC,
      bigOrderTC       TCursor
      db               Database
      myAlias,
      aliasTableName   String
      sqlVar           SQL
   endVar

   ; Initialize variables.
   myAlias = "itchy"
   aliasTableName = ":PRIV:aliasNam.db"
   promptString = "Enter an SQL keyword (e.g. SELECT):"

   enumAliasNames(aliasTableName)

   ; Prompt user to enter an SQL keyword.
   sqlKeyword.view("SQL Keyword")
   if sqlKeyword = promptString then
      return ; Exit method if user doesn't enter a keyword.
   endIf

   ; Use alias to open database.
   aliasNamTC.open(aliasTableName)
   if aliasNamTC.locate("DBName", myAlias) then
      db.open(myAlias)  ; Use alias to get database handle to server
   else
      msgStop("Stop", "The alias " + myAlias + 
                      " has not been defined.")
      return
   endIf   

   
   ; Combine SQL statements and String variable sqlKeyword
   ; to create an SQL string.
   bigOrderString = sqlKeyword +
                    "CustName, Order_no, Sale_date, Qty
                    FROM     Customer
                    WHERE    Qty > 1000 "

   ; Read and execute the query and process the results.
   sqlVar.readFromString(bigOrderString)
   if sqlVar.executeSQL(bigOrderTC) then
      doSomething(bigOrderTC) ; call custom proc to process data
   else
      errorShow()
   endIf

endMethod



wantInMemoryTCursor method
Specifies how to create a TCursor resulting from a query.

Syntax
wantInMemoryTCursor ( [ const yesNo Logical ] )
Description
wantInMemoryTCursor specifies how to create a TCursor from a query. When you execute a query to a 
TCursor, that TCursor points to a live query view and changes made to the TCursor affect the underlying tables. 
When you call wantInMemoryTCursor with yesNo set to Yes or omitted, Corel Paradox creates the TCursor in 
system memory, without a connection to underlying tables.
An in-memory TCursor is especially useful for performing quick what-if analyses. For example, to study the effect
of giving each employee a 15 percent raise, you can query the employee data to increase all salaries by 15 
percent. If you execute the query to an in-memory TCursor, you can manipulate the data there, without affecting
the actual employee data.
 Example

{button ,AL(`OPAL_TYPE_SQL;OPAL_METH_SQLEXECUTESQL;OPAL_METH_QUWANTINMEMORYTCURSOR;
OPAL_METH_TCINSTANTIATEVIEW;OPAL_METH_TCISINMEMORYTCURSOR;OPAL_METH_TCISVIEW;',0,"Defa
ultoverview",)} Related Topics



wantInMemoryTCursor example
The following example uses an in-memory TCursor to study the effects of giving all employees a 15 percent 
raise. The code reads a predefined query from a file and uses the results in a calculation.
method pushButton(var eventInfo Event)
   var
      qVar            SQL
      tcRaise15       TCursor
      nuTotalPayroll  Number
      MyDB            Database
   endVar

   MyDB.open("work")
   qVar.wantInMemoryTCursor(Yes)
   qVar.readFromFile("raise15.sql")
   qVar.executeSQL(MyDB, tcRaise15)

   nuTotalPayroll = tcRaise15.cSum("Salary")
   nuTotalPayroll.view("Payroll after 15%   raise:")
endMethod



writeSQL method/procedure
Writes an SQL statement or an SQL string to a file.

Syntax
Method:
1. writeSQL ( const fileName String ) Logical
Procedure:
2. writeSQL ( const sqlString String, const fileName String ) Logical
Description
writeSQL writes a predefined SQL statement or SQL string to the file specified in fileName. If fileName already 
exists, Corel Paradox overwrites it without asking for confirmation. writeSQL returns True if successful; 
otherwise, it returns False. This method does not evaluate the SQL commands.
Syntax 1 is a method use dot notation to specify an SQL variable (e.g., sqlVar.writeSQL("bigOrder.sql").

Syntax 2 is a procedure use a String variable as the first argument (e.g., writeSQL(sqlString, "bigOrder.sql").
 Example

{button ,AL(`OPAL_TYPE_SQL;OPAL_METH_SQLEXECUTESQL;OPAL_METH_SQLREADFROMSTRING;OPAL_
METH_SQLREADFROMFILE;',0,"Defaultoverview",)} Related Topics



writeSQL example
The following example prompts the user to type a table name and stores the name in a String variable. The code
then it uses the String variable as a tilde variable in an SQL statement. The call to writeSQL writes the SQL 
statement (including the expanded tilde variable) to a file. If the user types ORDERS as the table name, the 
resulting SQL file would contain the following statement:
SELECT * FROM ORDERS
writeSQL does not determine whether the SQL statements are valid.
method pushButton(var eventInfo Event)
   var    
      sqlString       SQL
      userTableName,
      sqlFileName,
      promptString    String
   endVar

   ; Initialize variables.
   sqlFileName = "user001.sql"
   promptString = "Enter table name here."
   userTableName = promptString

   ; Display a view() dialog box and prompt user for input.
   userTableName.view("Select * from table:")

   ; If user enters a string, use it in a tilde variable
   ; in the following SQL query.
   if userTableName <> promptString then
      sqlString =  
         SQL
            SELECT * FROM ~userTableName
         endSQL
      writeSQL(sqlString, sqlFileName) ; Write user's query to a file.
   endIf

endMethod



StatusEvent type
StatusEvent type methods control messages that appear in the desktop Status Bar. Using StatusEvent type 
methods, you can attach code to built-in event methods to determine where and why messages are displayed. 
You can block messages or display them in a different status area, or in another object (e.g., a field object or text
file). You can also use StatusEvent type methods to specify the text to be displayed in the message.
Use the StatusReasons constants to refer to specific areas on the Status Bar.
The StatusEvent type includes several derived methods from the Event type.
Methods for the StatusEvent type

Event StatusEvent
errorCode reason
getTarget setReason
isFirstTime setStatusValue
isPreFilter statusValue
isTargetSelf
reason
setErrorCod

setReason

   Print related ObjectPAL methods and examples  



reason method
Reports why a StatusEvent occurred.

Syntax
reason ( ) SmallInt
Description
reason returns an integer value that reports why a StatusEvent occurred. StatusEvent reasons occur each time 
a built-in status method is called. ObjectPAL uses StatusReasons constants to test the value returned by 
reason.
 Example

{button ,AL(`OPAL_TYPE_STATUSEVENT;OPAL_METH_SESREA;',0,"Defaultoverview",)} Related Topics



reason example
The following example copies all the messages that are sent to the Status Bar to a field. Assume that a form 
contains a field named fldStatus. The form's built-in status method examines the event packet to determine the 
reason. If the reason is StatusWindow, the form's built-in status method sends the status value to a field named 
fldStatus.
;frm1 :: status
method status(var eventInfo StatusEvent)
if eventInfo.isPreFilter()
   then
      ; This code executes for each object on the form.
   else
      ; This code executes only for the form.
      if eventinfo.reason() = StatusWindow then
         fldStatus.Value = eventinfo.statusValue()
      endIf
endIf
endMethod



setReason method
Specifies a reason for generating a StatusEvent.

Syntax
setReason ( const reasonId SmallInt )
Description
setReason specifies a reason for generating a StatusEvent. StatusEvent reasons indicate which Status Bar 
window received the message. ObjectPAL uses StatusReasons constants to set the reason for a StatusEvent.
 Example

{button ,AL(`OPAL_TYPE_STATUSEVENT;OPAL_METH_SEREAS;OPAL_METH_EVERRORCODE;OPAL_METH_E
VSETERRORCODE;',0,"Defaultoverview",)} Related Topics



setReason example
In the following example, for StatusEvent bubbled up to the form from a field, the form's status method changes
the reason and the content of the message. The code changes the reason to ModeWindow1, and sets the 
message value to the name of the object that initiated the event (the target).
; thisForm::status
method status(var eventInfo StatusEvent)
var
  targObj  UIObject
  nameStr  String
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    ; after regular message has displayed, also show 
    ; field name in ModeWindow1
    eventInfo.getTarget(targObj)
    if targObj.Class = "Field" then      ; if this is a field
      nameStr = targObj.Name       ; get the field name
      eventInfo.setReason(ModeWindow1)   ; set the window
      eventInfo.setStatusValue(nameStr)  ; send the string
    endIf
endIf
endMethod



setStatusValue method
Specifies the text of a status message.

Syntax
setStatusValue ( const statusValue AnyType )
Description
setStatusValue specifies the text of a status message.
 Example

{button ,AL(`OPAL_TYPE_STATUSEVENT;OPAL_METH_SESREA;OPAL_METH_SESTVAL;',0,"Defaultoverview
",)} Related Topics



setStatusValue example
See the setReason example.



statusValue method
Returns the text of a status message.

Syntax
statusValue ( ) AnyType
Description
statusValue returns the text of a status message.
 Examples

{button ,AL(`OPAL_TYPE_STATUSEVENT;OPAL_METH_SEREAS;OPAL_METH_SESSTAT;',0,"Defaultoverview
",)} Related Topics



statusValue method examples
Example 1       Copying status messages to a field on a form
Example 2        Working with the status method



statusValue example 1
The following example makes the default status messages more prominent to a user by copying each message 
to a field on the form. This feature is controlled by the magnifyMessage button on the same form. The following 
code is attached to the pushButton method of the magnifyMessage button:
; magnifyMessage::pushButton
method pushButton(var eventInfo Event)
; toggle statusMessageField to visible or invisible and
; toggle label between "Magnified Messages" and "Normal Messages"
if self.LabelText = "Magnified Messages" then
  statusMessageField.Visible = True
  self.LabelText = "Normal Messages"
else
  statusMessageField.Visible = False
  self.LabelText = "Magnified Messages"
endIf
endMethod
The following is attached to the form's status method:
; thisForm::status
method status(var eventInfo StatusEvent)
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
    ; write every status event to a field on the form
    if statusMessageField.Visible = True then 
      if eventInfo.reason() = StatusWindow then
        statusMessageField = eventInfo.statusValue()
      endIf
    endIf
  else
    ; code here executes just for form itself

endIf
endMethod



statusValue example 2
In this example, code is placed in the status method at the form's page level and traps for a change in the 
Persistent Field View setting. modeWindow3 refers to the right field of the message line and displays the current 
view setting (e.g., Field View, Persistent Field View or Memo View). If the field is in Persistent Field View, a custom
method named persistFldVw is called to perform predefined actions. 
method status(var eventInfo StatusEvent)
if eventinfo.reason() = modeWindow3 then
   if eventinfo.statusvalue()="Persist " then   ; note "Persist " is
                                                ; followed by a space
       persistFldVw()                           ; call custom method
   endIf
endIf
endMethod



String type
Strings store and manipulate alphanumeric data. A String variable's length is limited to the virtual memory on 
your computer. Strings occupy 1 byte of storage space per character. Empty stings are represented by double 
quotes ("")
String lengths may also be limited according to their use. For example, if you assign a String variable to an Alpha
field in a Corel Paradox table, the String variable cannot exceed the width of the Alpha field.

The String type includes several derived methods from the AnyType type.
 Notes

· ObjectPAL supports an alternate syntax:
methodName ( objVar , argument [ , argument ] )

methodName represents the name of the method, objVar is the variable representing an object, and argument 
represents one or more arguments. For example, the following statement uses the standard ObjectPAL syntax to 
return a lowercase version of a string:
theString.lower()

The following statement uses the alternate syntax:
lower(theString)

It's best to use standard syntax for clarity and consistency, but you can use the alternate syntax wherever it's 
convenient.
· Virtual memory is related to available disk space. For more information, see your Windows documentation.
Methods for the String type

AnyType String
blank advMatch
dataType ansiCode
isAssigned breakApart
isBlank chr
isFixedType chrOEM
view chrToKeyName

fill
format
ignoreCaseInStringCompares
isEmpty
isIgnoreCaseInStringCompares
isSpace
keyNameToChr
keyNameToVKCode
lower
lTrim
match
oemCode
readFromClipboard
rTrim
search
searchEx
size
sizeEx
space
string
strVal
substr



toANSI
toOEM
upper
vkCodeToKeyName
writeToClipboard

 Print related ObjectPAL methods and examples



advMatch method
Searches text for a specified string.

Syntax
advMatch ( const pattern String [ , var matchVar String ] * ) Logical

Description
advMatch returns True if pattern is found within the string; otherwise, it returns False. To specify pattern, use a 
string and the optional symbols listed in the table. By default, this method is case sensitive by default. Use the 
String procedure ignoreCaseInStringCompares to change the case-sensitivity.
advMatch assigns matched patterns to matchVar variables as the patterns are found. The portions of the string 
that match wildcard elements are assigned to the variables from left to right. Because there multiple matches 
might be found, the first matching substring is assigned to the first variable, the second matching substring to 
the second variable, and so on. If no match is found, variables are not assigned values.
If you supply pattern from within a method, you must use two backslashes to instruct advMatch to treat a 
special character as a literal. For example, \\( tells advMatch to treat the parenthesis as a literal character. 
If you're trying to search for a question mark embedded in a string, you might call advMatch like so:
s = "a string?"
advMatch(s, "\?")       ; this won't work!

You might think that you're telling advMatch to search for the literal question mark. However, the compiler sees
the string first and returns a syntax error because \? is not a valid escape sequence. To prevent the compiler 
from interpreting the backslash as the beginning of an escape sequence, precede the backslash by another 
backslash. This will work:
s = "a string?"
advMatch(s, "\\?")       ; this does work!

If you supply pattern from a field in a table or a TextStream, special advMatch symbols are recognized without a
preceding backslash. In this case, one backslash and plus symbol (\+) yields a literal character.
Symbol Matches
\ Include special characters (e.g., \t for Tab) as regular characters. Use two backslashes in quoted 

strings.
[ ] Match the enclosed set. (e.g., [aeiou0-9] matches a, e, i, o, u, and 0 through 9)
[^ ] Do not match the enclosed set. (e.g., [^aeiou0-9] match anything except a, e, i, o, u, and 0 

through 9)
( ) Grouping
^ Beginning of string 
$ End of string
.. Match anything
@ Match any single character
* Zero or more of the preceding character or expression
+ One or more of the preceding character or expression
? None or one of the preceding character or expression
| OR operation
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STMAT;OPAL_METH_STSEARCH;OPAL_METH_TSAMAT;',0,"
Defaultoverview",)} Related Topics



advMatch example
The following example demonstrates advMatch functionality:
method pushButton(var eventInfo Event)
var 
  w, x, y, z      String
  l               Logical
endVar

l = advMatch("this is", "s")
l.view()
  ; returns True (different from match) 

l = advMatch("this is", "^s")
l.view()
  ; returns False, because it requires s to be at the beginning of the line 

l = advMatch("this is", "S")
l.view()
  ; returns False, it is case sensitive.

l = advMatch("this is", "[sS]")
l.view()
  ; returns True, because [sS] specifies any in this set

l = advMatch("this is", "[a-z]")
l.view()
  ; returns True, because [a-z] specifies any in this set of a through z

l = advMatch("this is", "[a-c]")
l.view()
  ; returns False, because [a-c] specifies any in this set of a through c 
  ; and "this is" does not contain a, b, or c

l = advMatch("this is", "[a-cs]") 
l.view()
  ; returns True, because [a-cc] specifies any in this set of a through c
  ; or s and "this is" does contain s
  ; note that [a-c, s] would specify any in the set of a through c,
  ; a comma, a space, or an s

l = advMatch("this is", "(@)s", x) 
l.view()
x.view()
  ; returns True, x = "i" because the "()" operators specify a group, 
  ; unlike match, advMatch places only those things that you group 
  ; in the variables

l = advMatch("this is a test", "((t@@s)|(t@s))|(@s)", w, x, y, z)
l.view()   ; returns True, and
w.view()   ; "this", the result of the first set of parentheses,
           ; that is, for the entire expression ((t@@s)|(t@s))
           ; also, "this" was matched before "test"
x.view()   ; also "this", for the result of the second set of     
           ; parentheses, (t@@s)
y.view()   ; the result of (t@s), blank, because the t@@s 
           ; satisfied the expression ((t@@s)|(t@s))
z.view()   ; also blank, because the expression ((t@@s)|(t@s)) satisfied
           ; the entire pattern ((t@@s)|(t@s))|(@s)
; NOTE: Match variables are matched to groups in the order of occurrence,
;       not in the order of precedence: The first group starting from 
;       the left
is assigned to the first variable.



l = advMatch("this is so", "(..)is(..)", x, y) 
l.view()
x.view()
y.view()
  ; returns True, x = "this", y = " so"

l = advMatch("this is so", "[a-c]|[f-l]s" ) 
l.view()
  ; returns True, because an s is preceded by either a through 
  ; c or f through l

l = advMatch("this as so", "[a-c]|[t-z]s" ) 
l.view()
  ; returns True, because an s is preceded by either a through 
  ; c or t through z

endMethod



ansiCode procedure
Returns the ANSI code of a one-character string.

Syntax
ansiCode ( const char String ) SmallInt

Description
ansiCode returns the ANSI code of a one-character string. The returned value is an integer between 1 and 255.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STCHR;OPAL_METH_STCHRTOKEYNAME;',0,"Defaultovervi
ew",)} Related Topics



ansiCode example
The following example assumes that a form contains four field objects: showAllChars, ANSIField, OEMField, and 
KeyNameField. The keyPhysical method for showAllChars translates each character in the string to its ANSI 
code, OEM code, and key-name equivalent. These character codes are then written to ANSIField, OEMField, and 
KeyNameField.
; showAllChars::keyPhysical
method keyPhysical(var eventInfo KeyEvent)
var
  anyChar   String
  anyANSI   SmallInt
  anyKeyN   String
  anyOEM    SmallInt
endVar
anyChar = eventInfo.char()           ; get the character typed
anyANSI = ansiCode(anyChar)          ; convert to ANSI code
ANSIField = anyANSI                  ; write ANSI code to ANSIField 

anyCode = eventInfo.vCharCode()      ; get the VK_Code of character

anyKeyN = VKCodeToKeyName(anyCode)   ; convert VK_Code to key name
KeyNameField = anyKeyN               ; write key name to KeyNameField

anyOEM = oemCode(anyChar)            ; convert char to OEM code
OEMField = anyOEM                    ; write OEM code to OEMField
beep()
endMethod



breakApart method
Splits a string into an array of substrings.

Syntax
breakApart ( var tokenArray Array[ ] String [ , const separators String ] )

Description
breakApart splits a string into an array of substrings and each substring is written to an element of an array 
named tokenArray. You can specify one or more delimiting characters in separators. If you omit separators, 
substrings are delimited by a space. Delimiting characters are not included in tokenArray. breakApart is 
especially useful for importing data from a text file into a table.
 Note

· Two empty delimiters parse as a token and result in an empty array element.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STSUB;',0,"Defaultoverview",)} Related Topics



breakApart example
In the following example, the pushButton method for a button named breakToArray creates three arrays from 
the same string. The first time, the call to the breakApart method does not specify delimiters. By default, the 
method treats spaces as delimiters. The second call to breakApart specifies the asterisk as a delimiter. Empty 
array elements are created each time an asterisk immediately follows another asterisk. The third call specifies 
question mark, comma, and semicolon as delimiters.
; breakToArray::pushButton
method pushButton(var eventInfo Event)
var 
  ar Array[] String ; Must be resizable
  s String
endvar 

s = "this is, a : delimited ? string"

s.breakApart(ar) ; breaks on spaces by default
ar.view()
{
ar = this
     is,
     a
     :
     delimited
     ?
     string
}

s = "this*is*a*delimited**string"
s.breakApart(ar, "*") ; breaks on specified characters
ar.view()
{
ar = this
     is
     a
     delimited

     string
}

s = "this is, a : delimited ? string"
s.breakApart(ar, ",:?") ; breaks on specified characters
                        ; this time, no space in list of delimiters
ar.view()
{
ar = this is
      a
      delimited
      string
}

endMethod



chr procedure
Returns the one-character string represented by an ANSI code.

Syntax
chr ( const ansiCode SmallInt ) String

Description
chr returns a one-character string containing the ANSI character that corresponds to ansiCode. If ansiCode is not
an integer between 1 and 255, chr fails.
You can use chr to generate characters that are not easily accessible with the keyboard.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STCHROEM;OPAL_METH_STCHRTOKEYNAME;OPAL_METH_
STSTR;',0,"Defaultoverview",)} Related Topics



chr example
In the following example, the pushButton method for a button named showChar assigns the ANSI character 167
to the sectionChar variable. The code then converts character 167 to its key name, assigns it to 
sectionKeyName, and displays both versions of the character in a dialog box.
; showChar::pushButton
method pushButton(var eventInfo Event)
var
  sectionChar    String
  sectionKeyName String
endVar
sectionChar = chr(167)                           ; get the character
sectionKeyName = chrToKeyName(chr(167))          ; get the key name
msgInfo("The section character", sectionChar +   ; show the character and
        " has a key name of " + sectionKeyName)  ; the key name
endMethod



chrOEM procedure
Returns the one-character string of an OEM code.

Syntax
chrOEM ( const oemCode SmallInt ) String

Description
chrOEM returns a one-character string containing the OEM character that corresponds to oemCode. If oemCode 
is not an integer between 1 and 255, chrOEM fails.
You can use chrOEM to generate characters that are not easily accessible with the keyboard.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STCHR;OPAL_METH_STSTR;',0,"Defaultoverview",)} 
Related Topics



chrOEM example
In the following example, a form has a button named showOEM and a field named fieldOne. The pushButton 
method for showOEM displays the OEM character specified by the number in fieldOne.
; showOEM::pushButton
method pushButton(var eventInfo Event)
msgInfo("OEM char described by fieldOne", chrOEM(fieldOne))
endMethod



chrToKeyName procedure
Returns the virtual key code string of a one-character string.

Syntax
chrToKeyName ( const char String ) String

Description
chrToKeyName returns the virtual key code of char as a string. A key name is a virtual key code (e.g., VK_BACK 
for Backspace). This method returns the Keyboard constant name as a string (e.g., VK_BACK). Alphanumeric 
characters and symbols have one-character key names (e.g., J for the letter J).
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STVKCODETOKEYNAME;',0,"Defaultoverview",)} Related 
Topics



chrToKeyName example
See the chr example.



fill procedure
Returns a string containing repeated instances of a character.

Syntax
fill ( const fillCharacter String, const fillNumber LongInt ) String

Description
fill returns a string containing repeated instances of the first character in fillCharacter (usually a one-character 
string), where fillCharacter is repeated the number of times specified in fillNumber. fillNumber must be a non-
negative integer. If fillNumber is 0, fill returns an empty string.
In Corel Paradox 8, the fillNumber parameter was changed to a LongInt.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STSPACE;',0,"Defaultoverview",)} Related Topics



fill example
In the following example, the pushButton method for the fillAndView button creates two strings using the fill 
procedure. The first string is created by filling a variable with the same letter five times. The second string is 
created by repeating the string Shakespeare four times.
; fillAndView::pushButton
method pushButton(var eventInfo Event)
var
  str String
endVar
str = fill("X", 5)
str.view()                      ; displays the string XXXXX
str = fill("Shakespeare ", 4)   ; add a space after
                                ; every occurrence
str.view()                   
; displays: Shakespeare Shakespeare Shakespeare Shakespeare 
endMethod



format procedure
Controls the format of displayed or printed values.

Syntax
format ( const FormatSpec String, const value AnyType ) String

Description
format controls the format of displayed or printed values. formatSpec is a string expression containing one or 
more format specifications to be applied to String.
The following table lists the default format specifications and valid data types for each format category. You can 
also use AnyType values as data types, if the values can be interpreted consistently with the format category.
Format Meaning Valid data types Default 
Width Set allowable field width All Entire data value

and decimal precision
Alignment Alignment within width All AR (right-aligned) for all numeric types, 

AL (left-aligned) for all others (including 
point)

Case Uppercase or lowercase All string types No default
strings

Edit Specify characters and spacing All numeric types See following defaults
Include a specified symbol No default
Decimal point character ED. (period as decimal point)
Whole number separator No separator
Number of leading zeros None
Symbol spacing None
Scientific notation No
Hide trailing spaces No (show spaces)
Use zeros as fill pattern No
Scale numbers up No
Precede with dollar sign No
U.S. or Int'l separators U.S.

Sign Format of positive and All numeric See following
negative numbers
Positive No leading positive sign 999
Negative Leading minus sign -999

Date Specify date formats Date & DateTime mm/dd/yy(yy) for Date or hh:mm:ss 
am(pm), mm/dd/yy(yy) for DateTime

Time Specify time formats Time & DateTime hh:mm:ss am(pm) for Date or hh:mm:ss 
am(pm), mm/dd/yy(yy) for DateTime

Logical Logical value representation Logical True/False

You can combine two or more format specifications in formatSpec by separating them with commas.

Type Spec Meaning
Width Wn Specifies the total format width, including special characters, leading symbols or 

spaces, decimal point, and whole number separators
W.n Specifies the number of decimal places (W12.2 specifies a 12 character field, two 

of which are after the decimal point)
W.W Use decimal places from Windows numbers
W.$ Use decimal places from Windows currency

Alignment AL Left align in field



AR Right align in field
AC Center in field

Case CU Convert to uppercase
CL Convert to lowercase
CC Convert to initial capitals

Edit E(s) s specifies the symbol that precedes a number
E$W Include currency symbol from Windows
EDd d specifies a decimal point character
EDW Use the Windows decimal point character
ENc c specifies whole-number separator
ENW Use the Windows whole number separator
ELn n specifies the number of leading zeros
ELW Use the Windows leading zero setting
EP0 No symbol spacing
EP- Make symbol spacing for negatives
EP+ Make symbol spacing for positives
EPB Make symbol spacing for all numbers
EPW Use the Windows symbol spacing setting
ES Use scientific notation
ET Hide trailing spaces
EZ Use zeros as fill pattern
EB Use blanks as fill pattern
E* Use '*' as fill pattern
E+n Scale the number up
E-n Scale the number down
E$ The same as E($)
EC The same as EN (or EN.D)
EI The same as ED (or ED,N. if EC is set)

Sign S+0 Format positives as $999
S+1 Format positives as +$999
S+2 Format positives as $+999
S+3 Format positives as $999+
S+4 Format positives as 999$
S+5 Format positives as +999$
S+6 Format positives as 999+$
S+7 Format positives as 999$+
S+8 Format positives as $999DB
S+W Format positives as Windows currency
S-0 Format negatives as ($999)
S-1 Format negatives as -$999
S-2 Format negatives as $-999
S-3 Format negatives as $999-
S-4 Format negatives as (999$)
S-5 Format negatives as -999$
S-6 Format negatives as 999-$
S-7 Format negatives as 999$-
S-8 Format negatives as $999CR
S-W Format negatives as Windows currency
SP The same as S-0



S- The same as S-1
S+ The same as S-1+1
SC The same as S-8
SD The same as S-8+8

Date DW1 Day of week as Mon
DW2 Day of week as Monday
DWL Day of week from Windows Long Date
DM1 Month as 1
DM2 Month as 01
DM3 Month as Jan
DM4 Month as January
DML Month from Windows Long Date
DMS Month from Windows Short Date
DD1 Day as 1
DD2 Day as 01
DDL Day from Windows Long Date
DDS Day from Windows Short Date
DY1 Year as 1
DY2 Year as 01
DY3 Year as 1901
DYL Year from Windows Long Date
DYS Year from Windows Short Date
DO(s) s specifies order and separators, use %W for weekday,%D for numeric day, %M for 

month, and %Y for year. Separators are literal (12/28/92 as DO(%W %M-%D-%Y) is 
Mon 12-28-92)

DOL Order and separators as Windows Long Date
DOS Order and separators as Windows ShortDate
D1 Default date format
D2 As DM4Y3O(%M %D,%Y)
D3 As DO(%M/%D)
D4 As DO(%M/%Y)
D5 As DM3O(%D-%M-%Y)
D6 As DM3O(%M %Y)
D7 As DM3Y3O(%D-%M-%Y)
D8 As DY3O(%M/%D/%Y)
D9 As DO(%D.%M.%Y)
D10 As DO(%D/%M/%Y)
D11 As DO(%Y-%M-%D)
DEYEA(s) s specifies A.D. dates
DEYEB(s) s specifies B.C. dates

Time TH1 Hours as 1T
TH2 Hours as 01
THW Hours from Windows
TM1 Minutes as 1
TM2 Minutes as 01
TMW Minutes from Windows
TS1 Seconds as 1
TS2 Seconds as 01
TSW Seconds from Windows
TNA(s) s is a string that follows times before noon



TNP(s) s is a string that follows times after noon
TNW Noon settings from Windows
TO(s) s specifies the order and separators, use %H for hours, %M for minutes, %S for 

seconds, %N for am/pm
TOW Order and separators from Windows

Logical LT(s) s specifies the representation of the logical True value
LF(s) s specifies the representation of the logical False value
LY Logical values as Yes and No
LO Logical values as On and Off

 Example
{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STSTR;',0,"Defaultoverview",)} Related Topics



format example
In the following examples assume that a form contains a field named formatField and a button named 
demoFormat. The pushButton method for demoFormat demonstrates different format specifications. In each 
example, the method fills the formatField with the formatted string and displays a copy of the format 
specification in a dialog box (using view). The method does not move to the next example until the View dialog 
box is closed, allowing you to examine both the format specification and the formatted output before proceeding.
; demoFormat::pushButton
method pushButton(var eventInfo Event)
var
  x  AnyType
  fs, formatField String
endVar

fs = "\"w6\",\"This is a test\""
formatField = format("w6","This is a test") 
; displays This i
formatfield.view("format: "+fs)

fs = "\"w7\",1234567"
formatField = format("w7",1234567)
; displays 1234567
formatfield.view("format: "+fs)

fs = "\"w9.2\",1234.567"
formatField = format("w9.2",1234.567)      
; displays   1234.57
formatfield.view("format: "+fs)

; Here are some examples of alignment specifications:
fs = "\"w20,ac\",\"This is\""
formatField = format("w20,ac","This is")       
; displays              This is
formatfield.view("format: "+fs)

fs = "\"w20,ac\",\"The Title\""
formatField = format("w20,ac","The Title")     
; displays            The Title
formatfield.view("format: "+fs)

fs = "\"w20,ac\",\"Of the Book\""
formatField = format("w20,ac","Of the Book")   
; displays          Of the Book
formatfield.view("format: "+fs)

fs = "\"w20,al\",123456"
formatField = format("w20,al",123456)          
; displays 123456
formatfield.view("format: "+fs)

fs = "\"w20,ar\",123456"
formatField = format("w20,ar",123456)          
; displays               123456
formatfield.view("format: "+fs)

; Here are some examples of case specifications:
fs = "\"cu\",\"the quick brown fox\""
formatField = format("cu","the quick brown fox")    
; displays THE QUICK BROWN FOX
formatfield.view("format: "+fs)



fs = "\"cl\",\"JUMPS OVER THE LAZY\""
formatField = format("cl","JUMPS OVER THE LAZY")    
; displays jumps over the lazy
formatfield.view("format: "+fs)

fs = "\"cc\",\"dOG.\""
formatField = format("cc","dOG.")                   
; displays Dog.
formatfield.view("format: "+fs)

fs = "\"cc\",\"widgets'r us \" + \"too\""
formatField = format("cc","widgets'r us " + "too")  
; displays Widgets'R Us Too
formatfield.view("format: "+fs)

; Here are some examples of edit specifications:
x = 34567.89
fs = "\"w10.2, e$c\", x"
formatField = format("w10.2, e$c", x)      ; displays $34,567.89
formatfield.view("format: "+fs)

fs = "\"w10.2, e$ci\", x"
formatField = format("w10.2, e$ci", x)     ; displays $34.567,89
formatfield.view("format: "+fs)

fs = "\"w13.2, e$c\", x"
formatField = format("w13.2, e$c", x)      ; displays    $34,567.89
formatfield.view("format: "+fs)

fs = "\"w14.2, e$cb, al\", x"
formatField = format("w14.2, e$cb, al", x) ; displays $   34,567.89
formatfield.view("format: "+fs)

fs = "\"w15.2, e$cz, al\", x"
formatField = format("w15.2, e$cz, al", x) ; displays $0000034,567.89
formatfield.view("format: "+fs)

fs = "\"w15.2, e$c*, al\", x"
formatField = format("w15.2, e$c*, al", x) ; displays $*****34,567.89
formatfield.view("format: "+fs)

; Here are some examples of sign specifications:
x = -3456.12
fs = "\"w8.2, s+\", x"
formatField = format("w8.2, s+", x)          ; displays -3456.12
formatfield.view("format: "+fs)

fs = "\"w11.2, e$c, sc\", x"
formatField = format("w11.2, e$c, sc", x)    ; displays $3,456.12CR
formatfield.view("format: "+fs)

fs = "\"w14.2, e$c*, sp\", x"
formatField = format("w14.2, e$c*, sp", x)   ; displays ($***3,456.12)
formatfield.view("format: "+fs)

fs = "\"w13.2, e$c*, s+\", x"
formatField = format("w13.2, e$c*, s+", x)   ; displays -$***3,456.12
formatfield.view("format: "+fs)

fs = "\"w14.2, e$c*, sd\", x"
formatField = format("w14.2, e$c*, sd", x)   ; displays $***3,456.12CR
formatfield.view("format: "+fs)



; Here are some miscellaneous examples:
fs = "\"D2\", Date(\"3/7/1948\""
formatField = format("D2", Date("3/7/1948"))   ; displays March 07,1948
formatfield.view("format: "+fs)

fs = "\"W9.2, AL\", 1234.123"
formatField = format("W9.2, AL", 1234.123)
; displays 1234.12
formatfield.view("format: "+fs)

fs = "\"W9.2, AR\", 1234.123"
formatField = format("W9.2, AR", 1234.123) 
; displays 1234.12 right aligned in same field
formatfield.view("format: "+fs)

; to display date and time in 24-hour format
fs = "\"TNA(), TNP(), TO(%H:%M:%S %D), DO(%W %M/%D/%Y)\"," + 
     " DateTime(\"2:30:00 pm 11/24/92\")"
formatField = format("TNA(), TNP(), TO(%H:%M:%S %D), DO(%W %M/%D/%Y)", 
                     DateTime("2:30:00 pm 11/24/92"))
; displays   14:30:00 Tue 11/24/92
formatfield.view("format: "+fs)

; To display a date including the era (B.C. or A.D.):
fs = "\"DEYEA(A.D.)EB(B.C.)O(%M/%D/%Y %E)\",
       date(\"11/15/81\")"
formatField = format("DEYEA(A.D.)EB(B.C.)O(%M/%D/%Y %E)",
                     date("11/15/81"))
; displays 11/15/81 A.D.
formatfield.view("format: "+fs)

endMethod



isEmpty
Performs the same function as isBlank.

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_ATISBL;',0,"Defaultoverview",)} Related Topics



ignoreCaseInStringCompares procedure
Specifies whether to consider case when comparing strings.

Syntax
ignoreCaseInStringCompares ( const yesNo Logical )

Description
ignoreCaseInStringCompares specifies whether to consider case when comparing strings. By default, string 
comparisons are case-sensitive (e.g., Q and q are not the same). If you use 
ignoreCaseInStringCompares(Yes), string comparisons become case0insenesitive. Once you call 
ignoreCaseInStringCompares(Yes), it stays in effect until you call ignoreCaseInStringCompares(No).
To determine whether case is being considered, use isIgnoreCaseInStringCompares.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STISIC;',0,"Defaultoverview",)} Related Topics



ignoreCaseInStringCompares example
In the following example, the pushButton method for the tryCompare button determines whether Corel Paradox
is set to ignore case in string comparisons. If isIgnoreCaseInStringCompares returns Yes, this code uses 
ignoreCaseInStringCompares to set it to No. The code then compares an uppercase and lowercase string. A 
message window informs the user that the strings are not equivalent. The code then sets 
isIgnoreCaseInStringCompares to Yes and compares the two strings again, which returns True.
; tryCompare::pushButton
method pushButton(var eventInfo Event)
var
  s1, 
  s2  String
endVar
s1 = "cat"
s2 = "CAT"
if isIgnoreCaseInStringCompares() then
  ignoreCaseInStringCompares(No)
endIf
x = (s1 = s2)              ; the first  "=" assigns, all others compare
msgInfo(s1 + " = " + s2 + "?", x)    ; displays False
ignoreCaseInStringCompares(Yes)
x = (s1 = s2)              
msgInfo(s1 + " = " + s2 + "?", x)    ; displays True
endMethod



isIgnoreCaseInStringCompares procedure
Reports whether case is considered when comparing strings.

Syntax
isIgnoreCaseInStringCompares ( ) Logical

Description
isIgnoreCaseInStringCompares returns True if case is considered when comparing strings; otherwise, it 
returns False.
To specify whether to consider case, use ignoreCaseInStringCompares.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STIGN;',0,"Defaultoverview",)} Related Topics



isIgnoreCaseInStringCompares example
See the ignoreCaseInStringCompares example.



isSpace method
Reports whether a string contains white space or is empty.

Syntax
isSpace ( const string String ) Logical

Description
isSpace returns True if string contains only white space or is empty (""); otherwise, it returns False. White space 
characters include spaces, tabs, carriage returns, linefeeds, and formfeeds.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STSPACE;',0,"Defaultoverview",)} Related Topics



isSpace example
The following example creates several strings and determines whether they contain only white space or are 
empty. The following code is for the pushButton method for the valString button:
; valString::pushButton
method pushButton(var eventInfo Event)
var 
  s String 
endVar
s = space(3)                           ; 3 spaces
msgInfo("3 Spaces", s.isSpace())       ; True
s = ""                                 ; empty String
msgInfo("Empty String", s.isSpace())   ; True
s = "Z" + space(2)                     ; Z and 2 spaces
msgInfo("Z and 2 Spaces", s.isSpace()) ; False
endMethod



keyNameToChr procedure
Returns the one-character string represented by a virtual key-code string.

Syntax
keyNameToChr ( const keyName String ) String

Description
keyNameToChr returns the one-character string represented by the virtual key code keyName.
keyName must be a Keyboard constant (e.g., VK_BACK for Backspace) but must be supplied as a string (e.g., 
VK_BACK). Alphanumeric characters and symbols have one-character key names (e.g., J for the letter J).
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STCHRTOKEYNAME;OPAL_METH_STKEYNAMETOVKCODE;',
0,"Defaultoverview",)} Related Topics



keyNameToChr example
See the keyNameToVKCode example.



keyNameToVKCode procedure
Returns the VK_Code of a virtual key-code string.

Syntax
keyNameToVKCode ( const keyName String ) SmallInt

Description
keyNameToVKCode returns the virtual key code (VK_Code) of the character represented by the virtual key code
keyName, given as a string.
keyName must be a Keyboard constant (e.g., VK_BACK for Backspace) but must be supplied as a string (e.g., 
VK_BACK). Alphanumeric characters and symbols have one-character key names (e.g., J for the letter J).
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STCHRTOKEYNAME;OPAL_METH_STKEYNAMETOCHR;OPAL
_METH_STVKCODETOKEYNAME;',0,"Defaultoverview",)} Related Topics



keyNameToVKCode example
In the following example, the pushButton method for showCode sets a string variable named keyStr to an open
bracket ([). The code then displays the ANSI code and the key name of keyStr in a dialog box.
; showCode::pushButton
method pushButton(var eventInfo Event)
var
  keyStr  String
endVar
keyStr = "["              ; set the key name for open bracket
msgInfo("VK_Code/Char", "VK_Code: " +           ; VK_Code 91
        String(keyNameToVKCode(keyStr)) +
        "\nCharacter: " + keyNameToChr(keyStr)) ; char "["
endMethod



lower method
Converts a string to lowercase letters.

Syntax
lower ( ) String

Description
lower converts a string to lowercase letters. Use upper to convert a string to uppercase letters.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STUPP;',0,"Defaultoverview",)} Related Topics



lower example
In the following example, the pushButton method for makeLower creates an uppercase string. The code then 
uses lower to display it in lowercase.
; makeLower::pushButton
method pushButton(var eventInfo Event)
var 
  myText String 
endVar  
myText = "HEY, EVERYBODY! IT'S QUITTIN' TIME"  
msgInfo("Official Notice", myText.lower()) 
; displays "hey everybody! it's quittin' time"
endMethod



lTrim method
Removes leading blanks from a string.

Syntax
lTrim ( ) String

Description
lTrim removes spaces and Tab characters from the left end of a string.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STRTRIM;',0,"Defaultoverview",)} Related Topics



lTrim example
In the following example, the pushButton method for trimLeft creates a string with leading spaces and a 
leading tab (the escape sequence \t). The method displays the original string, uses lTrim to remove the leading 
non-printing characters and then displays the trimmed version.
; trimLeft::pushButton
method pushButton(var eventInfo Event)
var 
  trimMe, trimmed String 
endVar
trimMe = "  \t   First word"  ; string with spaces and a tab
msgInfo("Original string", trimMe)

trimmed = trimMe.lTrim()      ; trim off spaces and tab
msgInfo("A slightly shorter version", trimmed)
; displays "First word"
endMethod



match method
Compares a string with a pattern.

Syntax
match ( const pattern String [ , var matchVar String ] * ) Logical

Description
match compares a string with a pattern. If the string matches the pattern, match extracts the components that 
match the wildcard elements. The value of pattern consists of characters interlaced with the wildcard 
operators .. and @. The .. matches multiple characters (or no characters), and @ matches any single character. 
match ignores or considers case depending on your system settings. Use isIgnoreCaseInStringCompares to 
determine the system setting and use ignoreCaseInStringCompares to turn case-sensitivity on or off.
matchVar is a variable to which the matching components are assigned. match assigns matched patterns to 
matchVar variables as the patterns are found. The portions of the string matching the wildcard elements are 
assigned to the variables from left to right. The first matching substring is assigned to the first variable, the 
second matching substring to the second variable, and so on. If no match is found, variables are not assigned 
values.
 Note

· Quotes in pattern require special handling, periods do not. To embed a quote, precede it with a backslash (\"). 
match treats periods as alphanumeric characters.

· Earlier versions of PAL required backslashes to delimit periods.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STAMAT;OPAL_METH_STSEARCH;OPAL_METH_SSIGNOREC
ASEINLOCATE;OPAL_METH_SSISIGNORECASEINLOCATE;',0,"Defaultoverview",)} Related Topics



match example
The following example demonstrates match functionality:
var 
  s, x, y, z String 
endVar

s = "this and that"

msgInfo("match?", s.match("t.."))         ; displays True
msgInfo("match?", s.match("@his.."))      ; displays True
msgInfo("match?", s.match("@ and that"))  ; displays False
msgInfo("match?", s.match("..and.."))     ; displays True

msgInfo("match?", s.match("..and..", x, y))
                      ; displays True (x = this, y = that)

msgInfo("match?", s.match("T..", z))
  ; If isIgnoreCaseInString() is False, this statement displays
  ; False, and z is not assigned. Use 
  ; ignoreCaseInStringCompares(Yes) to get this to display
  ; True, and set z to "his and that"



oemCode procedure
Returns the OEM code of a one-character string.

Syntax
oemCode ( const char String ) SmallInt

Description
oemCode returns the OEM code of char. char is a one-character string. The OEM code is an integer between 1 
and 255.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STANSICODE;OPAL_METH_STCHRTOKEYNAME;',0,"Default
overview",)} Related Topics



oemCode example
See the ansiCode example.



readFromClipboard method
Reads text from the Clipboard.

Syntax
readFromClipboard ( ) Logical

Description
readFromClipboard reads text from the Clipboard. This method reads text in CF_TEXT format. 
readFromClipboard returns True if successful; otherwise it returns False.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STWRITETOCLIPBOARD;',0,"Defaultoverview",)} Related 
Topics



readFromClipboard example
In the following example, a form has two buttons: readFromClipboard and writeToClipboard. The first button 
reads text from the Clipboard into a String variable that is stored in a table. The second button reads a String 
value from a table and writes it to the Clipboard.
The following code is attached to the pushButton method for btnReadFromClipboard:
; btnReadFromClipboard::pushButton
method pushButton(var eventInfo Event)
var
   vrString  String
   tcString  TCursor
endVar

   ;// Open table to hold Strings
  tcString.open("mystrings.db")
   if vrString.readFromClipboard() then
      ;// Add a record to the table and insert the value
      tcString.insertRecord()
      tcString.stringField = vrString
      tcString.unlockRecord()
   endIf
   tcString.close()
endMethod

The following code is attached to the pushButton method for btnWriteToClipboard:
; btnWriteToClipboard::pushButton
method pushButton(var eventInfo Event)
var
   vrString  String
   tcString  TCursor
endVar

   ;// Open table to which contains strings
   tcString.open("mystrings.db")
   ;// Make sure there is data in the table
   if tcString.nRecords() <> 0 then
      ;// Copy a value to the String variable
      vrString = tcString.stringField
      ;// Write it out to the Clipboard
      vrString.writeToClipboard()
   endIf
   tcString.close()
endMethod



rTrim method
Removes trailing blanks from a string.

Syntax
rTrim ( ) String

Description
rTrim removes spaces, tabs, carriage returns, and linefeed characters from the right end of a string.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STLTRIM;',0,"Defaultoverview",)} Related Topics



rTrim example
In the following example, the pushButton method for trimRight creates a string with trailing spaces. The code 
displays the original string, uses rTrim to remove the trailing non-printing characters and displays the trimmed 
version.
; trimRight::pushButton
method pushButton(var eventInfo Event)
var 
  trimMe, trimmed String 
endVar
trimMe = "Last word     "     ; string with trailing spaces
msgInfo("Original string", trimMe + "The end")
; displays "Last word     The end"

trimmed = trimMe.rTrim()      ; trim off spaces
msgInfo("A slightly shorter version", trimmed + "The end")
; displays "Last wordThe end"
endMethod



search method
Returns the position of one string inside another string.

Syntax
search ( const str String ) SmallInt

Description
search searches for str within a target string. If str is found, search returns the starting character position of str
within the target string; otherwise, it returns 0. The search always begins at the first character of the target 
string.
By default, search is case-sensitive. Use ignoreCaseInStringCompares to make the search case-insensitive.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STAMAT;OPAL_METH_STMAT;',0,"Defaultoverview",)} 
Related Topics



search example
The following example searches for parts of the string Goliath and Golgolithic. This code is attached to the 
pushButton method for the searchStr button.
; searchStr::pushButton
method pushButton(var eventInfo Event)
var 
  s String 
endVar
s = "Goliath"
msgInfo("Where is lia in Goliath?", s.search("lia")) ; displays 3
msgInfo("Where is lai in Goliath?", s.search("lai")) ; displays 0
ignoreCaseInStringCompares(No)
s = "Golgolithic"
msgInfo("Where is gol in Golgolithic?", s.search("gol")) 
; displays 4
; Note: If ignoreCaseInStringCompares is on, the last
; search yields a 1 instead.
endMethod



searchEx method
Returns the position of one string inside another string.

Syntax
searchEx ( const str String ) LongInt

Description
searchEx searches for str within a target string. Use searchEx when working with very large string values. The 
searchEx returns a LongInt, while search returns a SmallInt value.
If str is found, searchEx returns the starting character position of str within the target string; otherwise, it 
returns 0. The search always begins at the first character of the target string.
By default, searchEx is case-sensitive. Use ignoreCaseInStringCompares to make it case-insensitive.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STAMAT;OPAL_METH_STMAT;OPAL_METH_STSIZEEX;',0,"D
efaultoverview",)} Related Topics



searchEx example
See the search example.



size method
Returns the number of characters in a string.

Syntax
size ( ) SmallInt

Description
size returns the number of characters (including spaces) in a string as a SmallInt.
 Note

· The maximum size of a string has been increased in version 8, and is now limited by available virtual memory 
only. size has been retained for compatibility with existing applications; however, sizeEx (which returns a 
LongInt) is preferred because it returns the length of both small and large strings.

 Example
{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STSTR;',0,"Defaultoverview",)} Related Topics



size example
In the following example, the pushButton method for getSize assigns a string to the variable sourceText. The 
code then displays the sentence and its size in a dialog box. The example then uses size to retrieve the first half 
of sourceText, and assign it back to sourceText. The size of the sourceText and the smaller sourceText are 
displayed in a dialog box.
; getSize::pushButton
method pushButton(var eventInfo Event)
var 
  sourceText String 
endVar  
sourceText = "This is a short sentence."  
msgInfo("Size", "Length: " + String(sourceText.size()) +
                "\n" + sourceText)
; displays   Length: 25
;            This is a short sentence.

; now chop the sentence in half
sourceText = subStr(sourceText, 1, SmallInt(sourceText.size()/2))  
msgInfo("Half-Size", "Length: " + strVal(sourceText.size()) 
                     + "\n" + sourceText) 
; displays   Length: 12
;            This is a sh
endMethod



sizeEx method
Returns the number of characters in a string.

Syntax
sizeEx ( ) LongInt

Description
sizeEx returns the number of characters (including spaces) in a string.
Use sizeEx when working with very large string values since the returned length is expressed as a LongInt (size 
returns a SmallInt).
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STSTR;OPAL_METH_STLENG;OPAL_METH_STSTRINGEX;',0,
"Defaultoverview",)} Related Topics



sizeEx example
See the size example.



space method
Creates a string containing a specified number of spaces.

Syntax
space ( const numberOfSpaces LongInt ) String

Description
space creates a string containing the number of spaces specified by numberOfSpaces.
The numberOfSpaces parameter has been changed to LongInt in version 8.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STISPAC;',0,"Defaultoverview",)} Related Topics



space example
See the isSpace example.



string procedure
Casts a value as a string.

Syntax
string ( const value AnyType [ , const value AnyType ] * ) String

Description
string casts a value as a string. If you specify multiple arguments, string will cast them all to strings and 
concatenate them to one string.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STFOR;',0,"Defaultoverview",)} Related Topics



string example
In the following example, the pushButton method for getNumToString requests a number from the user. The 
code then casts it as a string and concatenates it with another string for display in a msgInfo dialog box.
; getNumToString::pushButton
method pushButton(var eventInfo Event)
var
   nn Number
endVar
nn = 0.0                     ; initialize the number
nn.View("Enter a number")    ; display it, and ask for input

; Note: Because you can enter only one argument for the text of
; the msgInfo dialog box, if you have any non-string elements, they
; must be cast as strings, then concatenated. Here, nn is cast
; to a String type before being concatenated with "You entered "
msgInfo("Status", "You entered " + string(nn))
msgInfo("Status", string("You entered ", nn))  ; also works
endMethod



strVal procedure
Converts a value to a string.

Syntax
strVal ( const value AnyType ) String

Description
strVal converts value to a string. The data type specified in value can be an AnyType type.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STSTR;OPAL_METH_STLENG;',0,"Defaultoverview",)} 
Related Topics



strVal example
See the size example.



subStr method
Returns a portion of a string.

Syntax
substr ( const startIndex LongInt [ , const numberOfChars LongInt ] ) String

Description
substr returns a portion of a string that starts at startIndex and continues for the number of characters specified
by numberOfChars. The value of startIndex must be greater than 0 and less than or equal to the size of the 
string. If numberOfChars is 0, substr returns a null string. If numberOfChars is omitted, substr returns the 
character that lies at the position specified by startIndex.
The startIndex and numberOfChars parameters have been changed to LongInt in version 8.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STBREAK;OPAL_METH_STSEARCH;OPAL_METH_STLENG;',0
,"Defaultoverview",)} Related Topics



subStr example
The following example assumes that a form contains a button named getPhone and four fields named 
wholePhone, phAreaCode, phExchange, and phNumber. This example uses substr to extract three groups of 
digits from a U.S. phone number. The following code is attached to the pushButton method for getPhone:
; getPhone::pushButton
method pushButton(var eventInfo Event)
var 
  phoneNum  String 
endVar
phoneNum = wholePhone.Value
; assume phone number has been entered as ###-###-####
; start from first position, take three characters
phAreaCode.Value = phoneNum.substr(1, 3)  ; get the area code
phExchange.Value = phoneNum.substr(5, 3)  ; get the exchange
phNumber.Value   = phoneNum.substr(9, 4)  ; get the number
beep()
endMethod



toANSI method
Converts a string of OEM characters to ANSI characters.

Syntax
toANSI ( ) String

Description
toANSI converts a string of OEM characters to ANSI characters.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STTOOEM;',0,"Defaultoverview",)} Related Topics



toANSI example
In the following example, the pushButton method for a button named showANSI displays a string in two ways: 
as text, in the title of the dialog box and as ANSI code in the window of the dialog box. The last character in the 
string is the copyright symbol (©). This symbol appears in the title of the dialog box but is replaced by an 
underscore (_) in the window of the dialog box.
; showANSI::pushButton
method pushButton(var eventInfo Event)
var 
  ss String 
endVar
; string plus copyright symbol
ss = "A string of characters " + chr(169)
msgInfo(ss, ss.toANSI())
; displays string plus "_" in window of dialog box - system-dependent
endMethod



toOEM method
Converts a string of ANSI characters to OEM characters.

Syntax
toOEM ( ) String

Description
toOEM converts a string of ANSI characters to OEM characters.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STTOANSI;',0,"Defaultoverview",)} Related Topics



toOEM example
In the following example, the pushButton method for a button named showOEM displays a string in two ways: 
as text, in the title of the dialog box and as OEM code in the window of the dialog box. The last character in the 
string is the copyright symbol (©). This symbol appears in the title of the dialog box but is replaced by an 
underscore (_) in the window of the dialog box.
; showOEM::pushButton
method pushButton(var eventInfo Event)
var 
  ss String 
endVar
; string plus copyright symbol
ss = "A string of characters " + chr(169)     
msgInfo(ss, ss.toOEM())
; displays string plus "c" in window of dialog box
endMethod



upper method
Converts a string to uppercase letters.

Syntax
upper ( ) String

Description
upper converts a string to uppercase letters. Use lower to convert a string to lowercase letters.
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STLOWR;',0,"Defaultoverview",)} Related Topics



upper example
In the following example, the pushButton method for makeUpper retrieves a string from the user and converts 
it to uppercase letters. The converted string is then compared to an uppercase string constant.
;makeUpper:pushButton
method pushButton(var eventInfo Event)
const
  ORDERTYPE = "BIDORDER"   ; concatenate two valid types
endConst
var 
  myText String 
  x      SmallInt
endVar  
myText = ""                           ; initialize the string
myText.view("Enter 'Bid' or 'Order'") ; get a response
myText = myText.upper()               ; convert to uppercase
if search(ORDERTYPE, myText) > 0 then  
  ; search for a matching string -- returns location 
  ; of match, or zero if no match
  msgInfo("Status", "You entered a valid type.")
else
  msgStop("Stop", "You must enter either Bid or Order.")
endIf
endMethod



vkCodeToKeyName procedure
Converts a virtual key code constant to a virtual key code string.

Syntax
vkCodeToKeyName ( const vkCode SmallInt ) String

Description
vkCodeToKeyName returns the virtual key code name, as a string, of the character represented by the integer 
value vkCode.
This method returns the name of a Keyboard constant (e.g., VK_BACK for Backspace) as a string (e.g., VK_BACK).
Alphanumeric characters and symbols have one-character key names (e.g., J for the letter J).
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STANSICODE;OPAL_METH_STCHR;OPAL_METH_STCHRTOK
EYNAME;OPAL_METH_STKEYNAMETOCHR;',0,"Defaultoverview",)} Related Topics



vkCodeToKeyName example
See the ansiCode example.



writeToClipboard method
Writes a string to the Clipboard.

Syntax
writeToClipboard ( ) Logical

Description
writeToClipboard writes a string to the Clipboard. This method copies strings in the CF_TEXT format. 
writeToClipboard returns True if successful and False if unsuccessful. The text copied to the Clipboard is ANSI. 
 Example

{button ,AL(`OPAL_TYPE_STRING;OPAL_METH_STREADFROMCLIPBOARD;;',0,"Defaultoverview",)} 
Related Topics



writeToClipboard example
In the following example, a form has two buttons: readFromClipboard and writeToClipboard. The first button will 
read text from the Clipboard into a String variable which will then be stored in a table. The second button read a 
String value from a table and writes it out to the Clipboard.
The following code is attached to the pushButton method for btnReadFromClipboard:
; btnReadFromClipboard::pushButton
method pushButton(var eventInfo Event)
var
   vrString  String
   tcString  TCursor
endVar

   ;// Open table to hold Strings
  tcString.open("mystrings.db")
   if vrString.readFromClipboard() then
      ;// Add a record to the table and insert the value
      tcString.insertRecord()
      tcString.stringField = vrString
      tcString.unlockRecord()
   endIf
   tcString.close()
endMethod

The following code is attached to the pushButton method for btnWriteToClipboard:
; btnWriteToClipboard::pushButton
method pushButton(var eventInfo Event)
var
   vrString  String
   tcString  TCursor
endVar

   ;// Open table to which contains strings
   tcString.open("mystrings.db")
   ;// Make sure there is data in the table
   if tcString.nRecords() <> 0 then
      ;// Copy a value to the String variable
      vrString = tcString.stringField
      ;// Write it out to the Clipboard
      vrString.writeToClipboard()
   endIf
   tcString.close()
endMethod



System type
The System type contains methods and procedures for displaying messages, locating system information, setting
printer options, manipulating the File Browser, working with the online Help system, and more.

Methods and procedures for the System type
beep
close
compileInformation
constantNameToValue
constantValueToName
cpuClockTime
debug
deleteRegistryKey
desktopMenu
dlgAdd
dlgCopy
dlgCreate
dlgDelete
dlgEmpty
dlgNetDrivers
dlgNetLocks
dlgNetRefresh
dlgNetRetry
dlgNetSetLocks
dlgNetSystem
dlgNetUserName
dlgNetWho
dlgRename
dlgRestructure
dlgSort
dlgSubtract
dlgTableInfo
enableExtendedCharacters
enumDesktopWindowHandles
enumDesktopWindowNames
enumEnvironmentStrings
enumExperts
enumFonts
enumFormats
enumFormNames
enumPrinters
enumRegistryKeys
enumRegistryValueNames
enumReportNames
enumRTLClassNames
enumRTLConstants
enumRTLErrors
enumRTLMethods
enumWindowHandles



enumWindowNames
errorClear
errorCode
errorHasErrorCode
errorHasNativeErrorCode
errorLog
errorMessage
errorNativeCode
errorPop
errorShow
errorTrapOnWarnings
execute
executeString
exit
fail
fileBrowser
fileBrowserEx
formatAdd
formatDelete
formatExist
formatGetSpec
formatSetCurrencyDefault
formatSetDateDefault
formatSetDateTimeDefault
formatSetLogicalDefault
formatSetLongIntDefault
formatSetNumberDefault
formatSetSmallIntDefault
formatSetTimeDefault
formatStringToDate
formatStringToDateTime
formatStringToNumber
formatStringToTime
getDefaultPrinterStyleSheet
getDefaultScreenStyleSheet
getDesktopPreference
getLanguageDriver
getMouseScreenPosition
getRegistryValue
getUserLevel
helpOnHelp
helpQuit
helpSetIndex
helpShowContext
helpShowIndex
helpShowTopic
helpShowTopicInKeywordTable
isErrorTrapOnWarnings
isMousePersistent



message
msgAbortRetryIgnore
msgInfo
msgQuestion
msgRetryCancel
msgStop
msgYesNoCancel
pixelsToTwips
play
projectViewerClose
projectViewerIsOpen
projectViewerOpen
printerGetInfo
printerGetOptions
printerSetCurrent
printerSetOptions
readEnvironmentString
readProfileString
resourceInfo
runExpert
searchRegistry
sendKeys
sendKeysActionID
setDefaultPrinterStyleSheet
setDefaultScreenStyleSheet
setDesktopPreference
setMouseScreenPosition
setMouseShape
setMouseShapeFromFile
setRegistryValue
setUserLevel
sleep
sound
sysInfo
tracerClear
tracerHide
tracerOff
tracerOn
tracerSave
tracerShow
tracerToTop
tracerWrite
twipsToPixels
version
winGetMessageID
winPostMessage
winSendMessage
writeEnvironmentString
writeProfileString



   Print related ObjectPAL methods and examples  



beep procedure
Sounds the Windows default beep.

Syntax
beep ( )

Description
beep sounds the Windows default beep. The beep is audible only if a sound device is installed and active. 
To play a sound with a specific pitch and duration, use sound.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYSOUND;',0,"Defaultoverview",)} Related Topics



beep example
The following example prompts you to enter a number and beeps if the number is out of range. This code is 
attached to a button's pushButton method:
; getANumber::pushButton
method pushButton(var eventInfo Event)
var
  someNumber  SmallInt
endVar
someNumber = 1
someNumber.view("Pick a number between 1 and 10")
while someNumber < 1 OR someNumber > 10
  beep()          ; beep
  sleep(100)      ; slight pause, otherwise beeps run together as one
  beep()
  msgStop("Oops", "That number is too large or too small. Try again.")
  someNumber.view("Pick a number between 1 and 10")
endwhile
endMethod



close procedure
Closes the active form.

Syntax
close ( [ const returnValue AnyType ] )

Description
close returns a value to the calling form when returnValue (optional) is specified. This method does not generate
an error if returnValue is specified and there is no calling form. Starts the process of closing the form, which 
includes removing the focus and departing.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYEXIT;',0,"Defaultoverview",)} Related Topics



close example
The following example closes the active form after asking for confirmation:
; closeButton::pushButton
method pushButton(var eventInfo Event)
var
  qAnswer String
endVar
qAnswer = msgYesNoCancel("Closing Application",
          "Do you want to close this form?")
if qAnswer = "Yes" then
  close()                 ; close the current form
else
  message("Application not closed.")
endIf
endMethod



compileInformation procedure
Lists information about the most recently compiled form.

Syntax
compileInformation ( var info DynArray[ ] AnyType )

Description
compileInformation lists information about the most recently compiled form. It writes the data to a dynamic 
array (DynArray) named info that you declare and pass as an argument. You can use compileInformation for 
analyzing large forms, libraries, scripts, and reports.
The following table displays the structure of the info DynArray:
Index Definition
CodeSize Compiled size of the code segment (in bytes).
CompileTime Compile time (in milliseconds)
DataSize Compiled size of the data segment (in bytes) 
MethodCount Number of methods that have code and/or comments
SourceSize Size of the uncompiled source code (in bytes)
SymbolTableSize Compiled size of the symbol table (in bytes) 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_FOENUMSOURCE;OPAL_METH_FOENUMSOURCETOFILE;OP
AL_METH_SYSYSINFO;',0,"Defaultoverview",)} Related Topics



compileInformation example
The following example writes compiler information to a dynamic array dynCompileInfo, and then displays it in a 
view dialog box:
;analyzeObject::pushButton
method pushButton(var eventInfo Event)
  var
    dynCompileInfo   Dynarray[]   AnyType
  endVar

  compileInformation(dynCompileInfo)
  dynCompileInfo.view()
endmethod



constantNameToValue procedure
Returns the numeric value of a constant named constantName.

Syntax
constantNameToValue ( const constantName String ) AnyType

Description
constantNameToValue returns values for predefined ObjectPAL constants only. This method does not return 
values for user-defined constants.
 Note

· For readability, ease of maintenance, and portability, use constants rather than numeric values.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYCONSTANTVALUETONAME;OPAL_METH_SYENUMRTLCO
NSTANTS;OPAL_ACTIONEVENT_USERDEFINEDCONSTANTS;OPAL_ERROREVENT_USERDEFINEDCONSTANT
S;OPAL_MENUEVENT_USERDEFINEDCONSTANTS;',0,"Defaultoverview",)} Related Topics



constantNameToValue example
The following example returns the numeric value for an action constant named DataBeginEdit:
; showValOfConst::pushButton
method pushButton(var eventInfo Event)
var 
  constValue   AnyType
  constString  String
  tf           Logical
endvar
constValue = constantNameToValue("DataBeginEdit")  ; constant is passed as a
                                                   ; String
msgInfo("The value of DataBeginEdit is", constValue)
tf = constantValueToName("ActionDataCommands", constValue, constString)
if tf then   ; if the conversion worked properly, display the string
  msgInfo("The name of " + String(constValue) + " is", constString)
else
  msgInfo("Status", "Something went wrong with that conversion.")
endIf
endMethod



constantValueToName procedure
Reports the name of a constant.

Syntax
constantValueToName ( const groupName String, const value AnyType, var constName String ) 
Logical

Description
constantValueToName writes the name of a constant to constName. The constant's value equals value and 
that belongs to the group groupName, where groupName is one of the Types of Constants. This method returns 
True if successful; otherwise, it returns False.
Works for names of predefined ObjectPAL constants only; not for user-defined constants.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYCONSTANTNAMETOVALUE;OPAL_METH_SYENUMRTLCO
NSTANTS;OPAL_ACTIONEVENT_USERDEFINEDCONSTANTS;OPAL_ERROREVENT_USERDEFINEDCONSTANT
S;OPAL_MENUEVENT_USERDEFINEDCONSTANTS;',0,"Defaultoverview",)} Related Topics



constantValueToName example
See the constantNameToValue example.



cpuClockTime procedure
Returns the number of milliseconds that have passed since the computer was booted.

Syntax
cpuClockTime ( ) LongInt

Description
cpuClockTime returns the number of milliseconds that have passed since the computer was booted. The 
minimum clock increment is 55 milliseconds. This procedure is useful for measuring the interval between two 
events.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_TITIME;OPAL_TYPE_TIMEREVENT;',0,"Defaultoverview",)}
Related Topics



cpuClockTime example
The following example compares execution times for two for loops: one with an undeclared variable, the other 
with a declared variable. The code executes significantly faster when the variable is declared, although execution
times vary by system.
; clockVars::pushButton
method pushButton(var eventInfo Event)
var 
  fastVar    SmallInt
  delta      String
  startTime, 
  stopTime   LongInt
endvar
startTime = cpuClockTime()                 ; clock's time before starting
for slowVar from 1 to 10000                ; slowVar is undeclared
  slowVar = slowVar + 1
endFor
stopTime = cpuClockTime()                  ; clock's time after 10000 loops
delta = String(stopTime - startTime)       ; find the elapsed time using
delta.view("Time for undeclared variable") ; an undeclared variable --
                                           ; times vary by system
startTime = cpuClockTime()
for fastVar from 1 to 10000                ; fastVar is declared
  fastVar = fastVar + 1
endFor
stopTime = cpuClockTime()
delta = String(stopTime - startTime)       ; find the elapsed time using
delta.view("Time for declared variable")   ; a declared variable
msgInfo("And the moral is:", "For the best performance, " +
        "declare variables!")
endMethod



debug procedure
Halts execution of a method and invokes the Debugger.

Syntax
debug ( )

Description
debug halts execution of a method and invokes the debugger. debug statements have the same effect as 
setting a breakpoint, although unlike breakpoints, debug statements are saved with the method's source code. 
This procedure is useful for setting persistent breakpoints in methods while you are developing an application.
debug statements are only activated when you click Program, Compile With Debug; otherwise, they are ignored.
This allows you to toggle debug statements without having to remove them from your code. 
Turn Program, Compile With Debug on to test the application.
Turn Program, Compile With Debug off to deliver the application.
 Note

· debug works only in methods and procedures that you write, not for methods and procedures in the 
ObjectPAL run-time library.

 Example
{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYEXEC;',0,"Defaultoverview",)} Related Topics



debug example
The following example executes a for loop. Halfway through the loop, a call to debug suspends execution and 
opens an Editor window containing the code. Click Program, Run to resume execution, or use the other Debugger 
features. Assume the command Program, Compile With Debug has been chosen from the ObjectPAL Editor menu.
; startDebugAt50::pushButton
method pushButton(var eventInfo Event)
var 
  i SmallInt 
endVar
for i from 1 to 100
  message(i)
  if i = 50 then 
      debug()    ; will work only if Program, Compile With Debug 
                 ; ObjectPAL Editor menu command is checked
  endIf
endFor
endMethod



deleteRegistryKey method
Deletes a registry key and/or value.

Syntax
deleteRegistryKey ( const key String, const value String, const rootKey LongInt ) Logical

Description
deleteRegistryKey deletes the registry key specified by key. deleteRegistryKey returns True if successful; 
otherwise, it returns False. If the parameter value is not empty, key's value name is deleted, but not key itself. If 
value is empty, then only key is deleted. If key has subkeys a warning is generated, and key is not deleted.
You can set the rootKey with the predefined RegistryKeyType Constants. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMREGISTRYKEYS;OPAL_METH_SYENUMREGISTRYV
ALUENAMES;OPAL_METH_SYGETREGISTRYVALUE;OPAL_METH_SYSEARCHREGISTRY;OPAL_METH_SYSETRE
GISTRYVALUE;',0,"Defaultoverview",)} Related Topics



deleteRegistryKey example
The following example adds and then deletes a registry key. If the value parameter is blank, the entire key is 
deleted; otherwise, the value and corresponding data are deleted.
var
   ar Array[] String
endvar

   setRegistryValue( "Software\\Corel\\Paradox\\8.0\\Pdoxwin\\Designer\\MyKey", "MyKeyValue", 
"MyKeyData", RegKeyCurrentUser )

   enumRegistryKeys( "Software\\Corel\\Paradox\\8.0\\Pdoxwin\\Designer", RegKeyCurrentUser, 
ar )
   ar.view()

   deleteRegistryKey( "Software\\Corel\\Paradox\\8.0\\Pdoxwin\\Designer\\MyKey", "", 
RegKeyCurrentUser )

   enumRegistryKeys( "Software\\Corel\\Paradox\\8.0\\Pdoxwin\\Designer", RegKeyCurrentUser, 
ar )
   ar.view()



desktopMenu procedure
Displays the Corel Paradox desktop menu.

Syntax
desktopMenu ( )

Description
desktopMenu displays the Corel Paradox desktop menu. This method is useful when you use a form as a dialog 
box that doesn't have an associated menu.
After you call desktopMenu, the Corel Paradox desktop menu persists until:
· the current form or report loses focus
· a call to removeMenu restores the default menu for the form or report
· a call to show displays a custom menu

   Example  
{button ,AL(`OPAL_TYPE_SYSTEM;',0,"Defaultoverview",)} Related Topics



desktopMenu example
The following example calls desktopMenu in the setFocus method on the page of a dialog box to display the 
Corel Paradox default menu:
;pge1 :: setFocus
method setFocus(var eventInfo Event)
   desktopMenu()
endMethod



dlgAdd procedure
Displays the Add Records In <table> To dialog box.

Syntax
dlgAdd ( const tableName String )

Description
dlgAdd displays the Add Records In <table> dialog box.
tableName specifies the source table.
ObjectPAL code suspends execution until the user closes this dialog box. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGCOPY;OPAL_METH_SYDLGEMPTY;OPAL_METH_SYDL
GSUBTRACT;',0,"Defaultoverview",)} Related Topics



dlgAdd example
The following example displays the Add Records In <table> To dialog box and inserts the Customer table name 
as the source table. To complete the example, type the target table name and close the dialog box.
; showAddDlg::pushButton
method pushButton(var eventInfo Event)
; invoke the Add Records In <table> To dialog box with Customer as the source
dlgAdd("customer.db")
endMethod



dlgCopy procedure
Displays the Copy <table> To dialog box.

Syntax
dlgCopy ( const tableName String )

Description
dlgCopy displays the Copy <table> To dialog box. The argument tableName specifies the source table.
ObjectPAL code suspends execution until the user closes this dialog box.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGADD;OPAL_METH_SYDLGEMPTY;OPAL_METH_SYDL
GSUBTRACT;',0,"Defaultoverview",)} Related Topics



dlgCopy example
The following example displays the Copy <table> To dialog box and specifies the Customer table name as the 
source table. To complete the example, type the target table name and close the dialog box.
; showCopyDlg::pushButton
method pushButton(var eventInfo Event)
; invoke the Copy <table> To dialog box with the Customer table as the source
dlgCopy("customer.db")
endMethod



dlgCreate procedure
Displays the Create Table dialog box.

Syntax
dlgCreate ( const tableName String )

Description
Displays the Create Table dialog box. The argument tableName specifies the name of the table to create. When 
you choose a table type and close the dialog box, this procedure opens a Table Type dialog box for the specified 
table type.
ObjectPAL code suspends execution until the user closes this dialog box.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGCOPY;OPAL_METH_SYDLGDELETE;',0,"Defaultoverv
iew",)} Related Topics



dlgCreate example
The following example displays the Table Type dialog box. To complete the example, choose the table type, fill 
out the field roster, and save the table.
; showCreateDlg::pushButton
method pushButton(var eventInfo Event)
; invoke the Table Type dialog box -- table name is not used
dlgCreate("sometbl.db")
endMethod



dlgDelete procedure
Displays a warning dialog box prompting the user to confirm deletion of the table.

Syntax
dlgDelete ( const tableName String )

Description
dlgDelete displays a warning dialog box prompting the user to confirm deletion of the table. The argument 
tableName specifies the name of table to delete.
ObjectPAL code suspends execution until the user closes this dialog box. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGCREATE;OPAL_METH_SYDLGEMPTY;',0,"Defaultove
rview",)} Related Topics



dlgDelete example
The following example displays a warning dialog box and inserts the Customer table name as the table to delete.
To complete the example, close the dialog box and confirm the deletion.
; showDeleteDlg::pushButton
method pushButton(var eventInfo Event)
; invoke warning dialog box for the Customer table
dlgDelete("Customer.db")  ; same as Tools, Utilities, Delete
endMethod



dlgEmpty procedure
Displays a warning dialog box prompting the user to confirm the emptying of the table.

Syntax
dlgEmpty ( const tableName String )

Description
dlgEmpty displays a warning dialog box prompting the user to confirm the emptying of the table. The argument 
tableName specifies the name of table to empty.
ObjectPAL code suspends execution until the user closes this dialog box. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGDELETE;OPAL_METH_SYDLGSUBTRACT;',0,"Default
overview",)} Related Topics



dlgEmpty example
The following example displays the warning dialog box and inserts the Customer table name as the table to 
empty. To complete the example, close the dialog box and confirm the data deletion.
method pushButton(var eventInfo Event)
; Displays the warning dialog box for Customer table
dlgEmpty("Customer.db")
endMethod



dlgNetDrivers procedure
Opens the Borland Database Engine (BDE) page of the Preferences dialog box.

Syntax
dlgNetDrivers ( )

Description
dlgNetDrivers opens the BDE page of the Preferences dialog box. ObjectPAL code suspends execution until the 
user closes the dialog box. 
For more information about drivers, see About language drivers.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SSENDRCAP;OPAL_METH_SSENDRINF;OPAL_METH_SSEND
RNAM;',0,"Defaultoverview",)} Related Topics



dlgNetDrivers example
The following example opens the BDE page of the Preferences dialog box:
; showNetDrivers::pushButton
method pushButton(var eventInfo Event)
; invoke the BDE page of the Preferences dialog box
dlgNetDrivers()
endMethod



dlgNetLocks procedure
Creates and displays a table displaying lock information.

Syntax
dlgNetLocks ( )

Description
dlgNetLocks displays the Select File dialog box and prompts you to choose a table. Click Open to create a Corel 
Paradox table named LOCKS.DB in your private directory. If the table already exists, Corel Paradox overwrites it 
without asking for confirmation. If the table is already open, this procedure fails.
Here is the structure of LOCKS.DB:
Field name Type & size Description
Type S          25 Lock type value
Username A          14 User name of lock owner
Net Session S Net level session number
Our Session S BDE session number (if the lock is a BDE lock)
Record Number A          33 Record number of locked record (if Type = Record Lock (Write)
Corel Paradox creates the Locks table and displays it in a Table window.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGNETSETLOCKS;OPAL_METH_SYDLGNETRETRY;OPAL
_METH_TCENLOC;',0,"Defaultoverview",)} Related Topics



Lock type values for dlgNetLocks (System type)
0 = Record lock
1 = Special record lock
2 = Group lock
3 = Image lock
4 = Table open (no lock)
5 = Table read lock
6 = Table write lock
7 = Table exclusive lock
9 = Unknown lock



dlgNetLocks example
The following example opens the Select File dialog box. After you choose a file, dlgNetLocks creates and 
displays a Locks table.
; showNetLocks::pushButton
method pushButton(var eventInfo Event)
; creates a table of lock info :PRIV:LOCKS.DB, then displays it
dlgNetLocks()
endMethod



dlgNetRefresh procedure
Displays the Database page of the Preferences dialog box.

Syntax
dlgNetRefresh ( )

Description
dlgNetRefresh displays the Database page of the Preferences dialog box. ObjectPAL code suspends execution 
until the user closes this dialog box. 
For more information, see Database page (Preferences dialog box).
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGNETRETRY;OPAL_METH_SYDLGNETWHO;',0,"Defaul
toverview",)} Related Topics



dlgNetRefresh example
The following example opens the Database page of the Preferences dialog box:
; showNetRefresh::pushButton
method pushButton(var eventInfo Event)
; invoke the Database page of the Preferences dialog
dlgNetRefresh()
endMethod



dlgNetRetry procedure
Displays the Database page of the Preferences dialog box.

Syntax
dlgNetRetry ( )

Description
dlgNetRetry displays the Database page of the Preferences dialog box. ObjectPAL code suspends execution 
until the user closes this dialog box. 
For more information, see Database page (Preferences dialog box).
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGNETLOCKS;',0,"Defaultoverview",)} Related Topics



dlgNetRetry example
The following example opens the Database page of the Preferences dialog box:
; showNetRetryDlg::pushButton
method pushButton(var eventInfo Event)
; invoke the Database page of the Preferences dialog box
dlgNetRetry()
endMethod



dlgNetSetLocks procedure
Displays the Table Locks dialog box, allowing you to place a lock on a table.

Syntax
dlgNetSetLocks ( )

Description
dlgNetSetLocks displays the Table Locks dialog box, allowing you to place a lock on a table. ObjectPAL code 
suspends execution until the user closes this dialog box. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGNETLOCKS;',0,"Defaultoverview",)} Related Topics



dlgNetSetLocks example
The following example opens the Table Locks dialog box:
; showSetLocks::pushButton
method pushButton(var eventInfo Event)
dlgNetSetLocks()  ; invoke the Table Locks dialog box
endMethod



dlgNetSystem procedure
Displays the Borland Database Engine (BDE) page of the Preferences dialog box:

Syntax
dlgNetSystem ( )

Description
dlgNetSystem displays the BDE page of the Preferences dialog box. ObjectPAL code suspends execution until 
the user closes this dialog box. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGNETDRIVERS;OPAL_METH_SSENDRCAP;OPAL_METH
_SSENDRINF;OPAL_METH_SSENDRNAM;',0,"Defaultoverview",)} Related Topics



dlgNetSystem example
The following example opens the Borland Database Engine (BDE) page of the Preferences dialog box:
; showNetSystem::pushButton
method pushButton(var eventInfo Event)
; invoke the BDE page of the Preferences dialog box
dlgNetSystem()
endMethod



dlgNetUserName procedure
Displays the Database page of the Preferences dialog box. The Database page shows the current user's network 
name.

Syntax
dlgNetUserName ( )

Description
dlgNetUserName displays the Database page of the Preferences dialog box. The Database page displays the 
current user's network name. ObjectPAL code suspends execution until the user closes this dialog box. 
For more information, see Database page (Preferences dialog box).
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGNETWHO;',0,"Defaultoverview",)} Related Topics



dlgNetUserName example
The following example opens the Database page of the Preferences dialog box, which shows the current network 
user's name:
; showUserName::pushButton
method pushButton(var eventInfo Event)
; invoke the Database page of the Preferences dialog box
dlgNetUserName()
endMethod



dlgNetWho procedure
Displays the Database page of the Preferences dialog box.

Syntax
dlgNetWho ( )

Description
dlgNetWho displays the Database page of the Preferences dialog box. ObjectPAL code suspends execution until 
the user closes this dialog box. 
For more information, see Database page (Preferences dialog box).
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGNETUSERNAME;',0,"Defaultoverview",)} Related 
Topics



dlgNetWho example
The following example opens the Database page of the Preferences dialog box:
; showUserList::pushButton
method pushButton(var eventInfo Event)
; invoke the Database page of the Preferences dialog box
dlgNetWho()
endMethod



dlgRename procedure
Displays the Rename <table> To dialog box.

Syntax
dlgRename ( const tableName String )

Description
dlgRename displays the Rename <table> To dialog box. The argument tableName specifies the table to 
rename.
ObjectPAL code suspends execution until the user closes this dialog box. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGCOPY;OPAL_METH_SYDLGDELETE;OPAL_METH_SYD
LGSORT;',0,"Defaultoverview",)} Related Topics



dlgRename example
The following example displays the Rename <table> To dialog box and specifies Customer as the table to 
rename. To complete the example, type a new name and close the dialog box.
; showRenameDlg::pushButton
method pushButton(var eventInfo Event)
; invoke the Table Rename <table> To dialog box
dlgRename("customer.db")
endMethod



dlgRestructure procedure
Displays the Restructure Table dialog box.

Syntax
dlgRestructure ( const tableName String )

Description
dlgRestructure displays the Restructure Table dialog box. The argument tableName specifies the table to 
restructure, including the filename's extension. If tableName does not specify a path, dlgRestructure searches 
for the table in the working directory.
If tableName does not specify an extension, or specifies an extension of .DB, dlgRestructure displays the 
Restructure Corel Paradox Table dialog box.
If tableName specifies an extension of .DBF, dlgRestructure displays the Restructure dBASE Table dialog box.
ObjectPAL code suspends execution until the user closes this dialog box. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGCREATE;',0,"Defaultoverview",)} Related Topics



dlgRestructure example
The following example displays the Restructure Table dialog box and specifies Customer as the table to 
restructure. To complete the example, modify the structure and close the dialog box.
; showRestructureDlg::pushButton
method pushButton(var eventInfo Event)
; invoke the Restructure Table dialog box for Customer table
dlgRestructure("customer.db")
endMethod



dlgSort procedure
Displays the Sort Table dialog box.

Syntax
dlgSort ( const tableName String )

Description
tableName specifies the name of table to sort.
ObjectPAL code suspends execution until the user closes this dialog box. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGRENAME;',0,"Defaultoverview",)} Related Topics



dlgSort example
The following example displays the Sort Table dialog box and chooses Customer as the table to sort. To complete 
the example, create a sort specification and close the dialog box.
; showSortDlg::pushButton
method pushButton(var eventInfo Event)
; invoke the Sort Table dialog box
dlgSort("customer.db")
endMethod



dlgSubtract procedure
Displays the Subtract Records In <table> From dialog box.

Syntax
dlgSubtract ( const tableName String )

Description
dlgSubtract displays the Subtract Records In <table> From dialog box. The argument tableName specifies the 
table from which to subtract records.
The dialog box opens with the argument tableName already specified, prompting the user to choose what to 
subtract from tableName. ObjectPAL code suspends execution until the user closes this dialog box. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGADD;OPAL_METH_SYDLGDELETE;',0,"Defaultovervi
ew",)} Related Topics



dlgSubtract example
The following example displays the Subtract Records In <table> From dialog box and specifies Customer as the 
source table from which to subtract records. To complete the example, close the dialog box.
; showSubtractDlg::pushButton
method pushButton(var eventInfo Event)
; invoke the Subtract Records In <table> From dialog box
dlgSubtract("customer.db")  ;
endMethod



dlgTableInfo procedure
Displays the Structure Information dialog box.

Syntax
dlgTableInfo ( const tableName String )

Description
dlgTableInfo displays the Structure Information dialog box. The argument tableName specifies the table from 
which to obtain the structure information.
ObjectPAL code suspends execution until the user closes this dialog box. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDLGCREATE;OPAL_METH_SYDLGRESTRUCTURE;',0,"Def
aultoverview",)} Related Topics



dlgTableInfo example
The following example displays the Structure Information dialog box for the Customer table:
; showTableInfo::pushButton
method pushButton(var eventInfo Event)
; invoke the Structure Information dialog box for the Customer table
dlgTableInfo("customer.db")
endMethod



enableExtendedCharacters procedure
Determines whether you can type extended character codes from the numeric keypad without enabling the 
NumLock key.

Syntax
enableExtendedCharacters ( const yesNo Logical ) Logical

Description
enableExtendedCharacters determines whether you can type extended character codes from the numeric 
keypad without enabling the NumLock key. If yesNo is set to True, you can type extended characters without 
NumLock. If yesNo is set to False, NumLock must be on to enter extended character codes; otherwise, keypad 
keys function as navigation keys. This setting affects all forms, and remains active while Corel Paradox is 
running. This setting is not saved when you exit.
enableExtendedCharacters is used in international applications or other environments where keyboards do 
not have NumLock keys. This method returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYSYSINFO;',0,"Defaultoverview",)} Related Topics



enableExtendedCharacters example
The following example enables extended characters when the form opens:
method open(var eventInfo Event)

   if eventInfo.isPreFilter() then
      ;// This code executes for each object on the form:
      
   else
      ;// This code executes only for the form:
      doDefault
      enableExtendedCharacters(Yes)
   endIf

endMethod



enumDesktopWindowHandles procedure
Lists the window handles of open windows on the Corel Paradox desktop.

Syntax
enumDesktopWindowHandles ( var windowHandles DynArray [ ] AnyType [, const className String ] )

Description
enumDesktopWindowHandles lists the handles of open windows on the Corel Paradox desktop. This 
procedure writes the list to a dynamic array (DynArray) named windowHandles. The windowHandles index 
contains the handle and specifies the name of the window. The optional className argument specifies that the 
DynArray contains only windows whose className equals the name of the window class.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMWINDOWHANDLES;',0,"Defaultoverview",)} 
Related Topics



enumDesktopWindowHandles example
The following example builds and displays a dynamic array (DynArray) of all the window titles open on the Corel 
Paradox desktop:
method pushButton(var eventInfo Event)
var
   winHandles DynArray[] String
endvar

enumDesktopWindowHandles(winHandles)   ;// enumerate desktop window
                                       ;// handles to a DynArray
winHandles.view()                      ;// lists all windows open
                                       ;// in the Corel Paradox desktop

endMethod



enumDesktopWindowNames procedure
Lists the names of open windows on the Corel Paradox desktop.

Syntax
1. enumDesktopWindowNames ( const tableName String ) Logical
2. enumDesktopWindowNames ( const windowNames Array [ ] String [, const className String] )

Description
enumDesktopWindowNames lists the names of open windows owned by the Corel Paradox desktop. Syntax 1 
creates a Corel Paradox table named tableName that lists the name, class, position, and size of each window. If 
tableName does not specify a path, enumDesktopWindowNames creates the table in the working directory. If 
tableName already exists, this method overwrites it without asking for confirmation. If tableName is open, this 
method fails.
The following table displays the structure of tableName:
Field name Type & size Description
WindowName A                  64 Window name (if the window has no name, this field is empty)
ClassName A                  63 Window type
Position A                  12 Coordinates of upper-left corner (e.g.,456, 553)
Size A                  12 Coordinates of lower-right corner (e.g.,889, 221)
Handle I Window handle
ChildId I ID number of child window (0 = no child window)
ParentHandle I Handle of parent window
InstanceHandle I Handle of window instance

Syntax 2 fills the array specified by winArray with the names of the windows. You must declare winArray before 
calling this method. Applications are listed in Windows z-order the top window is listed first in the array, the 
window in the second layer is listed second, and so on. The optional argument className specifies that winArray
displays only the names of windows whose class is equal to className .
Compare this method to enumWindowNames, which lists all of the Windows applications running on your 
system.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMFORMNAMES;OPAL_METH_SYENUMREPORTNAME
S;OPAL_METH_SYENUMWINDOWNAMES;',0,"Defaultoverview",)} Related Topics



enumDesktopWindowNames example
The following example writes the open desktop window titles to an array. The code then creates and displays a 
table that lists the open desktop window names.
; getDesktopWinNames::pushButton
method pushButton(var eventInfo Event)
var
  winNames Array[] String
  tempTV           TableView
endvar
tempTV.open("Customer")               ; open a table view
enumDesktopWindowNames(winNames)      ; enum desktop window names to an array
winNames.view() ; lists all windows open in the Corel Paradox desktop, if
                ; method editor window is open, lists first 32 chars
enumDesktopWindowNames("wNameTbl.db") ; enum to a table
tempTV.open("wNameTbl")               ; show the table
endMethod



enumEnvironmentStrings procedure
Lists all of the items from the DOS environment.

Syntax
enumEnvironmentStrings ( var values DynArray[ ] String ) Logical

Description
enumEnvironmentStrings lists all of the items from the DOS environment. This method writes the items to a 
dynamic array named values, which you declare and pass as an argument.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYRESOURCEINFO;',0,"Defaultoverview",)} Related 
Topics



enumEnvironmentStrings example
The following example creates and displays a dynamic array named dyn that lists items from the DOS 
environment:
;thisButton::pushButton
method pushButton(var eventInfo Event)
  var
    dyn   DynArray[] String
  endVar

  enumEnvironmentStrings(dyn)
  dyn.view()
endmethod



enumExperts procedure
Lists all of the experts available to Corel Paradox.

Syntax
1. enumExperts ( const expertType String, var expertNames DynArray [ ] AnyType )
2. enumExperts ( const expertType String, const expertName String ) 

Description
enumExperts lists the experts available to Corel Paradox. The expertType parameter specifies the type of 
experts that are included in the list. Syntax 1 fills a dynamic array (DynArray) named expertNames with the 
names of the experts. Syntax 2 lists the experts in a table. The following table displays the format of the table 
created in Syntax 2:
Field Type & size Description
Expert Alpha        25 Registered expert name
Name Alpha        25 Visible expert name
Description Alpha        255 Help description text
File Name Alpha        255 Expert filename (including the path)
Icon Graphic Experts icon graphic

The valid values for expertType are:
Document Identifies document experts (e.g., Table or Form experts)
Object Identifies experts that are activated when placing an object on a form or report (e.g., the 

Button Expert)
CoreUI Identifies experts selected from a menu (e.g., Text Import Expert)
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYRUNEXPERT;',0,"Defaultoverview",)} Related Topics



enumExperts example
The following example enumerates the available experts and determines if expertForm is in the list. If 
expertForm is available, the code runs the expert.
method pushButton(var eventInfo Event)
Var
   da       DynArray[] AnyType
   expertForm    String
endVar

expertForm = "Form"
enumExperts( "Document", da )

if da.contains( expertForm ) then
   runExpert( "Document", expertForm )
else
   msgStop( "Error", "Unable to run the expert:" + expertForm )
endIf
endMethod



enumFonts procedure
Creates a table listing the fonts installed on your system.

Syntax
1. enumFonts ( const tableName String )
2. enumFonts ( const deviceType SmallInt, var fontList Array[] String )

Description
enumFonts creates a table listing the fonts on your system. The argument tableName specifies the table. By 
default, enumFonts creates tableName in your working directory. If tableName already exists, this procedure 
overwrites it without asking for confirmation. If tableName is open, enumFonts fails.
The following table displays the structure of tableName:
Field name Type & size Description
FaceName A                  64 Font name. (e.g., Arial)
FontSize A                      8 Font size in printer's points. (e.g., 12)
Attribute A                  64 Display/print attribute.(e.g., Normal)

Syntax 2 builds an array of fonts in fontList. The argument deviceType has two possible values: 1 (indicating 
screen display fonts), and 2 (indicating printer fonts).
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMRTLCONSTANTS;',0,"Defaultoverview",)} 
Related Topics



enumFonts example
The following example creates and lists system fonts in a table named FONTS.DB. The code then searches a 
TCursor for a font named Modern. If Modern is in the table, the code sets the Font.TypeFace property of an 
unlabeled field object named balanceField to Modern.
; getFonts::pushButton
method pushButton(var eventInfo Event)
var
  fontsTC TCursor
  tempTV  TableView
endVar
enumFonts("fonts.db")        ; write font names to a table
tempTV.open("fonts.db")      ; show the table
dlgTableInfo("fonts.db")     ; show the table structure
fontsTC.open("fonts.db")
if fontsTC.locate("FaceName", "Modern") then
  balanceField.Font.TypeFace = "Modern"
endIf
fontsTC.close()
endMethod



enumFormats procedure
Lists the current formats.

Syntax
enumFormats ( const formatType String, var formats DynArray[ ] String ) Logical

Description
enumFormats lists the current formats. The data type of the argument formatType is Date, Number, Time, 
DateTime or Logical. This method writes the list to formats, a dynamic array that you declare and pass as an 
argument.
This method returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;',0,"Defaultoverview",)} Related Topics



enumFormats example
The following example creates and displays a dynamic array named dyn that lists the formats for Date:
; btnInspectFormat :: pushButton
method pushButton(var eventInfo Event)
  var
    s   String
    dyn   DynArray[] String
  endVar

  s = "Date"
  s.view("Enter format to inspect")
  enumFormats(s, dyn)
  dyn.view()
endmethod



enumFormNames procedure
Creates an array listing open forms.

Syntax
enumFormNames ( var formNames Array[ ] String )

Description
enumFormNames creates an array named formNames that lists the open forms. You must declare formNames 
as a resizeable array before calling enumFormNames. Forms are listed in Windows z-order the top form is 
listed first in the array, the form in the second layer is listed second, and so on.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMWINDOWNAMES;OPAL_METH_SYENUMREPORTN
AMES;OPAL_METH_SYENUMDESKTOPWINDOWNAMES;',0,"Defaultoverview",)} Related Topics



enumFormNames example
The following example writes the filenames of open forms to an array named openForms. The code then displays
openForms.
; getFormNames::pushButton
method pushButton(var eventInfo Event)
var
  openForms Array[] String
endVar
enumFormNames(openForms)
openForms.view()         ; Lists filenames of open forms.
endMethod



enumPrinters procedure
Lists the printers installed on your system.

Syntax
enumPrinters ( var printers Array[ ] String ) Logical

Description
enumPrinters lists the printers installed on your system. enumPrinters fills an array named printers with 
elements that each contain the name, driver name, and port (separated by commas) of every printer installed on
your system. You must declare printers as a resizeable array before calling this method.
If the printer name is Postscript Printer, the driver is PSCRIPT.DRV, and the port is LPT1:
PostScript Printer,pscript,LPT1:

You pass an array item to printerSetCurrent to specify the active printer. Use the String method breakApart 
to separate the components (e.g., to display a list of printer names).
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYPRINTERGETINFO;OPAL_METH_SYPRINTERGETOPTION
S;OPAL_METH_SYPRINTERSETCURRENT;OPAL_METH_SYPRINTERSETOPTIONS;',0,"Defaultoverview",)} 
Related Topics



enumPrinters example
The following example retrieves a list of printers installed on your system. If the list includes a PostScript printer, 
printerSetCurrent sets it as the active printer. This example assumes that PostScript printers use a driver 
named PSCRIPT.DRV.
method pushButton(var eventInfo Event)
   var
      arPrinters,
      arPrnNames  Array[] String
      stDrvName,
      stPrnName,
      stPrnInfo   String
      i           SmallInt
   endVar

   stDrvName = "pscript"

   enumPrinters(arPrinters) ; Get a list of installed printers.

   ; See if the list includes a PostScript printer that
  ; uses the "pscript" driver.
   for i from 1 to arPrinters.size()
      stPrnInfo = arPrinters[i]

      ; Info is separated by commas.
      stPrnInfo.breakApart(arPrnNames, ",")

      ; After breakApart, array item 1 is the printer name,
      ; array item 2 is the driver name.
      if arPrnNames[2] = stDrvName then
         ; If a PostScript printer is found, make it current.
         if printerSetCurrent(stPrnInfo) then
            msgInfo("Current printer:", arPrnNames[1])
         else
            errorShow()
         endIf
         return
      endIf
   endFor

   msgStop("Printer setup", "A PostScript printer must be installed.")
endMethod



enumRegistryKeys method
Fills an array with keys from the registry.

Syntax
enumRegistryKeys ( const key String, const rootKey LongInt , var keyinfo Array[] String, ) 
Logical

Description
enumRegistryKeys fills an array with keys from the registry. enumRegistryKeys returns True if successful; 
otherwise, it returns False. An array named keyinfo is populated with the full key path from the specified key and
rootKey. The subkeys of key are also placed in the array. If key is blank, the subkeys of rootKey are enumerated.
Set rootKey with the predefined RegistryKeyType Constants. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDELETEREGISTRYKEY;OPAL_METH_SYENUMREGISTRYV
ALUENAMES;OPAL_METH_SYGETREGISTRYVALUE;OPAL_METH_SYSEARCHREGISTRY;OPAL_METH_SYSETRE
GISTRYVALUE;',0,"Defaultoverview",)} Related Topics



enumRegistryKeys example
The following example builds an array of the registry keys that contain the string "software\Corel":
enumRegistryKeys( "software\\Corel", regKeyLocalMachine, ar )
;\\ values in array
ar[1] = "software\\Corel"

The following example displays all registry keys residing under the "Software\Corel\Paradox\8.0\Pdoxwin" key:
var
   ar Array[] String
endvar

   enumRegistryKeys( "Software\\Corel\\Paradox\\8.0\\Pdoxwin", RegKeyCurrentUser, ar )
   ar.view()



enumRegistryValueNames method
Fills a dynamic array with values and data from the registry. 

Syntax
enumRegistryValueNames ( const key String, const rootKey LongInt, var keyInfo Array[] String ) 
Logical

Description
enumRegistryValueNames fills an array named keyInfo with the value names of the registry specified in key. 
enumRegistryValueNames returns True if successful; otherwise, it returns False.
key is entered as a path similar to a file path; however, unlike a file path, wildcards are not expanded. key 
cannot contain a single backslash and cannot be empty. Its maximum size is 65,534 bytes. keyInfo contains the 
value names for the specified key. rootKey is analogous to a directory drive. Set rootKey with the predefined 
RegistryKeyType Constants. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDELETEREGISTRYKEY;OPAL_METH_SYENUMREGISTRYK
EYS;OPAL_METH_SYGETREGISTRYVALUE;OPAL_METH_SYSEARCHREGISTRY;OPAL_METH_SYSETREGISTRYV
ALUE;',0,"Defaultoverview",)} Related Topics



enumRegistryValueNames example
The following example lists all the value names under the Software\Corel\Paradox\8.0\Pdoxwin\Designer key. The 
code assigns the value names and their corresponding values to a DynArray, and displays it:
var
   ar      Array[]       String
   dyn   DynArray[]    AnyType
   i      SmallInt
endvar

   enumRegistryValueNames( "Software\\Corel\\Paradox\\8.0\\Pdoxwin\\Designer", 
RegKeyCurrentUser, ar )

   if ar.size() > 0 then
      for i from 1 to ar.size()
         dyn[ ar[ i ] ] = getRegistryValue( "Software\\Corel\\Paradox\\8.0\\Pdoxwin\\Designer",
ar[ i ], RegKeyCurrentUser )
      endfor
   endif

   dyn.view()



enumReportNames procedure
Creates an array listing open reports.

Syntax
enumReportNames ( var reportNames Array[ ] String )

Description
enumReportNames fills an array named reportNames with the names of open reports in your desktop. You 
must declare reportNames as a resizeable array before calling this method. Reports are listed in Windows z-order

the top report is listed first in the array, the report in the second layer is listed second, and so on.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMFORMNAMES;OPAL_METH_SYENUMDESKTOPWIN
DOWNAMES;OPAL_METH_SYENUMWINDOWNAMES;',0,"Defaultoverview",)} Related Topics



enumReportNames example
The following example writes the open report names to an array named openReports and then displays the 
array:
; getReportNames::pushButton
method pushButton(var eventInfo Event)
var
  openReports Array[] String
endVar
enumReportNames(openReports)
openReports.view()           ; lists open reports
endMethod



enumRTLClassNames procedure
Creates a table listing the object types or classes known to ObjectPAL.

Syntax
enumRTLClassNames ( const tableName String ) Logical

Description
enumRTLClassNames creates a table named tableName listing the object types (classes) in the ObjectPAL run-
time library. By default, enumRTLClassNames saves tableName in the working directory. If tableName already 
exists, enumRTLClassNames overwrites it without asking for confirmation. If tableName is open, 
enumRTLClassNames fails. This method returns True if successful; otherwise, it returns False.
The following table displays the structure of tableName:
Field name Type & size Description
ClassName A                  32 ObjectPAL type name. (e.g., UIObject)
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMRTLCONSTANTS;OPAL_METH_SYENUMRTLERROR
S;OPAL_METH_SYENUMRTLMETHODS;OPAL_TYPE_CATEGORIES;',0,"Defaultoverview",)} Related Topics



enumRTLClassNames example
The following example writes the run-time library class names to a table named Rtlclass. The code then displays 
the table.
; getRTLClasses::pushButton
method pushButton(var eventInfo Event)
var
  tempTV TableView
endVar
enumRTLCLassNames("rtlclass.db")      ; write class names to table
tempTV.open("rtlclass")               ; show the table
endMethod



enumRTLConstants procedure
Creates a table listing the constants defined by ObjectPAL.

Syntax
enumRTLConstants ( const tableName String ) Logical

Description
enumRTLConstants creates a table named tableName listing all the constants defined in the ObjectPAL run-
time library. By default, enumRTLConstants creates tableName in the working directory. If tableName already 
exists, enumRTLConstants overwrites it without asking for confirmation. If tableName is open, 
enumRTLConstants fails. 
The following table displays the structure of tableName:
Field name Type & size Description
GroupName* A                  32 One of the types of constants (e.g., ActionDataCommands)
ConstantName* A                  48 Symbolic name of the constant (e.g., DataArriveRecord)
Type A                  48 Data type of the constant (e.g., SmallInt)
Value A                  64 Value of the constant (e.g., 3111)
( * = key field )
 Note

· Although Corel Paradox provides the constant's values, refer to constants by name in your code. Use the 
constantValueToName and constantNameToValue methods to convert values and constants.

 Example
{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMRTLCLASSNAMES;OPAL_METH_SYENUMRTLERRO
RS;OPAL_METH_SYENUMRTLMETHODS;',0,"Defaultoverview",)} Related Topics



enumRTLConstants example
The following example writes the run-time library constant descriptions to a table named Rtlconst. The code then
displays the table.
; getRTLConsts::pushButton
method pushButton(var eventInfo Event)
var
  tempTV TableView
endVar
enumRTLConstants("rtlconst.db")     ; write constants names to table
tempTV.open("rtlconst")             ; show the table
endMethod



enumRTLErrors procedure
Lists the error codes and messages used by ObjectPAL.

Syntax
enumRTLErrors ( const tableName String ) Logical

Description
enumRTLErrors creates a table named tableName listing the error codes and messages used by ObjectPAL. By 
default, enumRTLErrors creates tableName in the working directory. IftableName already exists, 
enumRTLErrors overwrites it without asking for confirmation. 
The following table displays the structure of tableName:
Field Type & size Description
ErrorNo* N Error number (decimal)
ErrorNoX A                        8 Error number (hex)
Name A                    48 Error constant name, if it exists (e.g., peNoMemory). If an error 

constant name does not exist, the Name field displays the 
following string<<Unmapped Error>>

Value M                230 Error message (e.g.,    Insufficient memory for this operation)
( * = key field )

This method returns True if successful; otherwise, it returns False. If you pass enumRTLErrors an invalid table 
name, this procedure fails and returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMRTLCLASSNAMES;OPAL_METH_SYENUMRTLCONS
TANTS;OPAL_METH_SYENUMRTLMETHODS;',0,"Defaultoverview",)} Related Topics



enumRTLErrors example
The following example writes the run-time library error codes and descriptions to a table named Rtlerror. The 
code then displays the table.
;getRTLErrors::pushButton
method pushButton(var eventInfo Event)
  var
    tv  TableView
  endVar

  enumRTLErrors("RTLerror.db")
  tv.open("RTLerror.db")
endMethod



enumRTLMethods procedure
Creates a table listing the RTL methods and RTL procedures in ObjectPAL.

Syntax
enumRTLMethods ( const tableName String ) Logical

Description
enumRTLMethods creates a table named tableName listing the RTL methods and procedures used by 
ObjectPAL. By default, enumRTLMethods creates tableName in the working directory. IftableName already 
exists, enumRTLMethods overwrites it without asking for confirmation. If tableName is open, 
enumRTLMethods fails. 
The following table displays the structure of tableName:

Field name Type & size Description
ClassName* A                  32 ObjectPAL type name (e.g.,    FileSystem)
MethodType* A                      8 Method (for methods) or Proc (for procedures)
MethodName* A                  64 Name of method or procedure (e.g.,    isDir)
MethodArgs* A              255 Arguments to the method or procedure (e.g.,    const dirName 

String)
ReturnType* A                  32 Data type of returned value or blank if no return value (e.g.,    

Logical)
( * = key field )
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMRTLCLASSNAMES;OPAL_METH_SYENUMRTLCONS
TANTS;OPAL_METH_SYENUMRTLERRORS;',0,"Defaultoverview",)} Related Topics



enumRTLMethods example
The following example writes the run-time library method descriptions to a table named Rtlmeth. The code then 
displays the table.
; getRTLMethods::pushButton
method pushButton(var eventInfo Event)
var
  tempTV TableView
endVar
enumRTLMethods("rtlmeth.db")   ; write method names to table
tempTV.open("rtlmeth")         ; show the table
endMethod



enumWindowHandles procedure
Lists the open window handles.

Syntax
enumWindowHandles ( var windowHandles DynArray [ ] AnyType [, const className String ] )

Description
enumWindowHandles lists the handles of the open windows running under Windows. This procedure writes the
list to a dynamic array (DynArray) named windowHandles. The windowHandles index contains the handle and 
the value is the name of the window. The optional className argument specifies that the generated list contains
only those windows whose className equals the name of the window class.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMDESKTOPWINDOWHANDLES;',0,"Defaultovervie
w",)} Related Topics



enumWindowHandles example
The following example builds and displays a dynamic array(DynArray) of all the window handles:
method pushButton(var eventInfo Event)
var
   winHandles DynArray[] String
endvar

enumWindowHandles(winHandles)   ;// enumerate desktop window
                                ;// handles to a DynArray
winHandles.view()               ;// lists all open windows

endMethod



enumWindowNames procedure
The following example creates a list of the applications currently running under Windows.

Syntax
1. enumWindowNames ( const tableName String ) Logical
2. enumWindowNames ( var windowNames Array [ ] String [, const className String] )

Description
enumWindowNames creates a list of applications currently running under Windows. Syntax 1 creates a table 
named tableName listing the name, class, position, size, and handles to each open application on your system. 
By default, enumWindowNames creates tableName in the working directory. IftableName already exists, 
enumWindowNames overwrites it without asking for confirmation. If tableName is open, 
enumWindowNames fails. 
The following table displays the structure of tableName:
Field name Type & size Description
WindowName A                  64 Name of window, or blank if no name
ClassName A                  64 Window type
Position A                  12 Coordinates of upper-left corner (e.g., 456, 553).
Size A                  12 Coordinates of lower-right corner (e.g., 889, 221).
Handle I Window handle
ChildId I ID number of child window (0 = no child window)
ParentHandle I Handle of parent window
InstanceHandle I Handle of window instance

Syntax 2 fills an array named winArray with the names of all current applications, in Windows z-order the top 
application is listed first in the array, the application in the second layer is listed second, and so on. You must 
declare winArray before calling this procedure. An optional argument named className specifies that only those
windows whose class is equal to className appear in winArray.
Compare this method to enumDesktopWindowNames, which lists only the open windows owned by Corel 
Paradox.
 Examples



enumWindowNames examples
Example1        Using the pushButton method to display window information
Example2       Using the pushButton method to search for window information



enumWindowNames example 1
The following example uses the pushButton method for a button named getWindowNames to write and display 
open window information in two ways. First, it fills an array with the titles of the open windows and displays the 
array. Next, it fills a table with descriptions of the open windows, and displays the table.
; getWindowNames::pushButton
method pushButton(var eventInfo Event)
var
  winNames Array[] String
  tempTV           TableView
endvar
enumWindowNames(winNames)       ; write names to an array
winNames.view()                 ; lists all open windows
                                ; if a method editor window is open, 
                                ; lists first 32 chars
enumWindowNames("wNameTbl.db")  ; write window descriptions to a table
tempTV.open("wNameTbl")         ; show the table
dlgTableInfo("wNameTbl.db")     ; show the table structure
endMethod



enumWindowNames example 2
The following example uses the pushButton method for a button named btnCalc to write the open window 
information to a table named :PRIV:APPS.DB. The code then searches the table for Calculator. If Calculator is 
found, the code uses the Windows API call bringToTop (registered in the Uses window of the button) to switch to
Calculator. If Calculator is not found, the pushButton method executes CALC.EXE.
;btnCalc :: Uses
uses USER32
   BringWindowToTop(WinHandle CWORD)
endUses

;btnCalc :: pushButton
method pushButton(var eventInfo Event)
   var
      stApps       String
      tc           TCursor
      siWinHandle  SmallInt
   endVar

   stApps = ":PRIV:APPS.DB"
   enumWindowNames(stApps)

   tc.open(stApps)

   if tc.locate("WindowName", "Calculator") then
      siWinHandle = tc.handle
      BringWindowToTop(siWinHandle)
   else
      execute("CALC.EXE")
   endIf
endmethod



errorClear procedure
Clears the error stack.

Syntax
errorClear ( )

Description
errorClear clears the error stack of all error codes and error messages. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERCOD;OPAL_METH_SYERMES;OPAL_METH_SYERRORP
OP;',0,"Defaultoverview",)} Related Topics



errorClear example
The following example clears the error stack:
; clearError::pushButton
method pushButton(var eventInfo Event)
errorClear()           ; clear the error stack
endMethod



errorCode procedure
Returns a number representing the most recent run-time error or error condition.

Syntax
errorCode ( ) SmallInt

Description
errorCode returns a number representing the most recent run-time error or error condition. ObjectPAL provides 
error constants for these integers (e.g., peObjectNotFound). Use enumRTLErrors to create a list of error codes 
and error messages.
Calling errorCode is not the same as calling eventInfo.setErrorCode, which adds error information to the 
event packet, but not to the error stack.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERRORHASERRORCODE;OPAL_METH_SYERRORHASNAT
IVEERRORCODE;OPAL_METH_SYERRORLOG;OPAL_METH_SYERMES;OPAL_METH_SYERRORPOP;OPAL_MET
H_SYENUMRTLERRORS;',0,"Defaultoverview",)} Related Topics



errorCode example
The following example uses a try clause to attempt to attach to an object boxOne to the current form. If the 
object doesn't exist, a critical error occurs, and control moves to the onFail clause. The onFail clause uses 
errorCode to identify the error and then takes appropriate action.
; handleErrorcode::pushButton
method pushButton(var eventInfo Event)
var 
  obj UIObject 
endVar
try
  obj.attach("boxOne")
  obj.color = Red
onFail
  if errorCode() = peObjectNotFound then
     obj.create(BoxTool, 180, 180, 360, 360)
     obj.name = "boxOne"
     obj.visible = Yes
     reTry
  else
     fail()
  endIf
endTry
endMethod



errorHasErrorCode method
Searches for a specific error code in the error stack.

Syntax
errorHasErrorCode ( const errCode SmallInt ) Logical

Description
errorHasErrorCode searches the error stack for the error specified by errCode. errCode is an Errors constant or
a user-defined error constant. errorHasErrorCode returns True if the error is found; otherwise, it returns False.
Use enumRTLErrors to create a list of error codes and error messages.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERCOD;OPAL_METH_SYERRORHASNATIVEERRORCODE;
OPAL_METH_SYERRORLOG;OPAL_METH_SYERMES;OPAL_METH_SYERRORPOP;',0,"Defaultoverview",)} 
Related Topics



errorHasErrorCode example
The following example searches the error stack for a key violation:
  if errorHasErrorCode(peKeyViol) then

       ; error handling code goes here

  endIf



errorHasNativeErrorCode method
Searches for an SQL error code the error stack.

Syntax
errorHasNativeErrorCode ( const errCode LongInt ) Logical

Description
errorHasNativeErrorCode searches the error stack for an SQL error code. The SQL error is specified by the 
argument errCode. Error codes vary depending on the server and may overlap with some Corel Paradox error 
codes. errorHasNativeErrorCode returns True if the error is found; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERRORHASERRORCODE;OPAL_METH_SYENUMRTLERRO
RS;OPAL_METH_SYERCOD;OPAL_METH_SYERRORLOG;OPAL_METH_SYERMES;OPAL_METH_SYERRORNATIV
ECODE;OPAL_METH_SYERRORPOP;OPAL_METH_SYENUMRTLERRORS;',0,"Defaultoverview",)} Related 
Topics



errorHasNativeErrorCode example
The following example searches the error stack for the server error associated with the peServerPathIllegal 
constant. The constant is set to an error code listed in the server's documentation:
if errorHasNativeErrorCode(peServerPathIllegal) then

     ; error handling code goes here

endIf



errorLog procedure
The following example adds error information to the error stack.

Syntax
errorLog ( const errorCode SmallInt, const errorMessage String )

Description
errorLog adds error information to the error stack. Use Errors constants or user-defined error constants to 
specify the value of errorCode. Use enumRTLErrors to create a list of error codes and error messages.
Calling errorLog is not the same as calling eventInfo.setErrorCode, which adds error information to the event
packet, but not to the error stack.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERCOD;OPAL_METH_SYERRORHASERRORCODE;OPAL_
METH_SYERRORHASNATIVEERRORCODE;OPAL_METH_SYERMES;OPAL_METH_SYERRORNATIVECODE;OPAL
_METH_SYERRORPOP;',0,"Defaultoverview",)} Related Topics



errorLog example
The following example uses a try clause to attempt to attach to an object boxOne to the current form. If the 
object doesn't exist, a critical error occurs, and control moves to the onFail clause. If the error code isn't 
peObjectNotFound, the method creates and logs a custom error.
; pushMessage::pushButton
method pushButton(var eventInfo Event)
var 
  obj    UIObject 
  eCode  LongInt
  eMsg   String
endVar
try
  obj.attach("boxOne")
  obj.color = "RedBlue"   ; invalid color constant--will cause an error
                          ; other than peObjectNotFound
onFail
  if errorCode() = peObjectNotFound then
    msgInfo("And the error was", errorMessage())
    obj.create(BoxTool, 180, 180, 360, 360)
    obj.name = "boxOne"
    obj.visible = Yes
    reTry
 else
   ; pop off the original error
   eCode = errorCode()
   eMsg = errorMessage()
   errorPop() 
   ; push the original error back onto the stack, but 
   ; modify the error message
   errorLog(eCode, self.Name + "::pushButton failed at " +
            String(time()) + ". " + eMsg)
   msgInfo("And the new error is", errorMessage())
   fail()
 endIf
endTry
endMethod



errorMessage procedure
Returns a string containing the most recent run-time error message or error condition from the error stack.

Syntax
errorMessage ( ) String

Description
errorMessage returns a string containing the most recent run-time error message or error condition from the 
error stack. This method returns the empty string ("") if no error has occurred. errorMessage is especially 
useful for logging error messages during a session.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERCOD;OPAL_METH_SYERRORHASERRORCODE;OPAL_
METH_SYERRORHASNATIVEERRORCODE;OPAL_METH_SYERRORLOG;OPAL_METH_SYERRORNATIVECODE;
OPAL_METH_SYERRORPOP;OPAL_METH_SYENUMRTLERRORS;',0,"Defaultoverview",)} Related Topics



errorMessage example
See the errorLog example.



errorNativeCode method
Returns the SQL server's error code.

Syntax
errorNativeCode ( ) LongInt

Description
errorNativeCode returns the SQL server's error code. The SQL server's error code varies depending on the 
server and might overlap some Corel Paradox error codes. If errorCode returns the constant peGeneralSQL, 
errorNativeCode returns the server's error code. errorNativeCode usually returns zero.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERRORHASERRORCODE;OPAL_METH_SYERRORHASNAT
IVEERRORCODE;OPAL_METH_SYERMES;',0,"Defaultoverview",)} Related Topics



errorNativeCode example
The following example determines whether a server has error occurred. If a server error has occurred, the code 
displays the error code.
if errorCode() = peGeneralSQL then
   message("SQL server error number " + string(errorNativeCode()))
endIf



errorPop procedure
Removes the most recently added error code and error message from the error stack.

Syntax
errorPop ( ) Logical

Description
errorPop removes the most recently added error code and error message from the error stack. This procedure 
allows you to access the stack layer below the current layer.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERRORHASERRORCODE;OPAL_METH_SYENUMRTLERRO
RS;OPAL_METH_SYERCOD;OPAL_METH_SYERRORLOG;OPAL_METH_SYERMES;OPAL_METH_SYERRORNATIV
ECODE;OPAL_METH_SYENUMRTLERRORS;OPAL_METH_SYERRORSHOW;',0,"Defaultoverview",)} Related 
Topics



errorPop example
See the errorLog example.



errorShow procedure
Displays the current error information in the Error log box.

Syntax
errorShow ( [ const topHelp String [ , const bottomHelp String ] ] ) Logical

Description
errorShow displays the current error information in the Error log box. The argument topHelp labels the top 
portion of the dialog box, and bottomHelp the bottom.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERRORHASERRORCODE;OPAL_METH_SYENUMRTLERRO
RS;OPAL_METH_SYERCOD;OPAL_METH_SYERRORLOG;OPAL_METH_SYERMES;OPAL_METH_SYERRORNATIV
ECODE;OPAL_METH_SYERRORPOP;OPAL_METH_SYENUMRTLERRORS;',0,"Defaultoverview",)} Related 
Topics



errorShow example
The following example uses a button named tryAnError to log several errors onto the error stack, and uses 
errorShow to display them:
; tryAnError::pushButton
method pushButton(var eventInfo Event)
; add two errors to the error stack
errorLog(1, "First error")
errorLog(2, "Second error")
; show the error dialog box (error 2 shows first)
errorShow("Title for top", "Title for bottom")
endMethod



errorTrapOnWarnings procedure
Specifies whether to handle warning errors as critical errors.

Syntax
errorTrapOnWarnings ( const yesNo Logical )

Description
errorTrapOnWarnings specifies whether to handle warning errors as critical errors. By default, warning errors 
are not trapped in a try...onFail block. If you set the argument yesNo to Yes, errorTrapOnWarnings traps 
warning errors as critical errors. This procedure affects only the active form.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERRORLOG;OPAL_METH_SYERCOD;OPAL_METH_SYERM
ES;OPAL_METH_SYERRORSHOW;',0,"Defaultoverview",)} Related Topics



errorTrapOnWarnings example
The following example attempts to open an invalid form. If errorTrapOnWarnings is set to yes, and error 
message Is produced; otherwise, no message is produced.
; warningToError::pushButton
method pushButton(var eventInfo Event)
var
  someForm Form
endVar
someForm.open("someFile.fsl") ; attempt to attach to a nonexistent form
                              ; normally, this doesn't cause an error
errorTrapOnWarnings(Yes)      ; set the trap
someForm.open("someFile.fsl") ; this time, you get an error message
errorTrapOnWarnings(No)       ; restore to normal
endMethod



execute procedure
Executes a program or DOS command.

Syntax
execute ( const programName String [ , const wait Logical [ , const displayMode SmallInt ] ] ) 
Logical

Description
execute executes a program or DOS command. The argument programName specifies the program or DOS 
command to be launched. An optional argument named wait specifies whether ObjectPAL suspends execution 
until you close the program. An optional ExecuteOption named displayMode specifies the video display mode 
used when executing the command.
If you have to specify a path to programName's directory, use double backslashes (\\) in the path names.
 Note

· The wait statement is not valid when executed within the WindowsNT environment.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYPLAY;',0,"Defaultoverview",)} Related Topics



execute example
The following example launches the Windows Clock application in the default window and waits for you to close 
it before resuming execution:
; showClock::pushButton
method pushButton(var eventInfo Event)
   execute("clock.exe", Yes, ExeShowNormal)  ; execute Windows Clock
endMethod



executeString method
Converts a string to an ObjectPAL script and runs the script.

Syntax
executeString ( const scriptText String [, const otherText String] ) AnyType

Description

executeString converts a string to an ObjectPAL script and runs the script. This method inserts the string in the
script's built-in run method. You can declare types, constants, and variables within the string. The optional 
otherText argument allows you to include ObjectPAL constructs (e.g., procedures or a Uses clause). The otherText
argument refers to constructs included before the script’s built-in run method.
To return a value from executeString, use formReturn.
If the string contains syntax errors, the Script window remains on the desktop.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYEXEC;',0,"Defaultoverview",)} Related Topics



executeString example
The following example calls a routine from Windows and runs it:
method run(var eventInfo Event)
var
   msgText, usesText  string
endvar

; Note the backslash char protects quotes inside the quoted string
msgText = "MessageBoxA(0,\"A Message\", \"Hello World\" , 1)"

usesText = "Uses USER32
      MessageBoxA(hwnd CLONG, 
                  str1 CPTR, 
                  str2 CPTR, 
                  boxType CLONG) CLONG
         endUses"
   ;// Now display the message box
executeString(msgText, usesText)
endMethod



exit procedure
Exits the Corel Paradox application.

Syntax
exit ( )

Description
exit closes Corel Paradox. If you try to exit Corel Paradox without saving your changes, exit prompts you to save
your work.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYCLOSE;',0,"Defaultoverview",)} Related Topics



exit example
The following example creates an Exit button which asks for confirmation and closes Corel Paradox:
; btnExit::pushButton
method pushButton(var eventInfo Event)
   var
      stQuit  String
   endVar

   stQuit  = msgYesNoCancel("Exit", "Do you want to quit?")
   if stQuit = "Yes" then
      exit() ; If user chooses Yes, then exit.
   endIf
endMethod



fail procedure
Causes a method to fail.

Syntax
fail ( [ const errorNumber SmallInt, const errorMessage String ] )

Description
fail causes a method to fail. Executing fail in the onFail section of a try...onFail block forces a jump to the next
highest block (if one exists). fail then jumps to the implicit try...onFail block that ObjectPAL wraps around every
method. Use an Errors constant or a user-defined error constant to set a value for errorNumber, which specifies 
an error code on failure. errorMessage (optional) specifies a displayed error message.
enumRTLErrors creates a list of error codes and error messages. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_BLANG_BLTRY;OPAL_METH_SYERCOD;OPAL_METH_SYERMES;OP
AL_METH_SYERRORSHOW;',0,"Defaultoverview",)} Related Topics



fail example
See the errorCode example.



fileBrowser
See fileBrowserEx. 
fileBrowserEx replaces fileBrowser in this version. fileBrowser still functions, and can still be used when 
working with forms created using older versions of Corel Paradox. However, only fileBrowserEx guarantees that
the full filename, including its drive or alias, is returned. 



fileBrowserEx procedure
Displays the Corel Paradox File Browser and returns the names of the files you select.

Syntax
1. fileBrowserEx ( var selectedFile String [ , var browserInfo FileBrowserInfo ] ) Logical
2. fileBrowserEx ( var selectedFiles Array[ ] String [ , var browserInfo FileBrowserInfo ] ) 
Logical

Description
fileBrowserEx suspends ObjectPAL execution until you close the File Browser. This method returns True if you 
select at least one file; otherwise, it returns False (even if you click OK to close the dialog box).
Use Syntax 1 to return one filename in selectedFile. Use Syntax 2 to return an array of filenames in the 
resizeable array selectedFiles.
In either syntax, you can provide an optional record that specifies the data that the File Browser displays. For 
example, you can instruct the File Browser to display Corel Paradox tables only, forms only, forms and reports, 
and so on. ObjectPAL provides a special predefined Record structure called FileBrowserInfo that you use only with
the fileBrowserEx procedure.

The following table displays the structure of FileBrowserInfo:
Field Type Description
Title String The dialog box title
Options LongInt Handling instructions for the filename that the user inputs
AllowableTypes LongInt The permitted file types, based on file extensions
SelectedType LongInt One of the allowable types
FileFilters String The file specification in the edit box
CustomFilter String One or more file masks in the Files Of Type list box. Each file mask contains

the list box text, and the file mask. The two parts are separated by a 
delimiter character (|). The mask can include any valid filename character, 
and the ? and * wildcard characters. To display all Corel Paradox tables, use
the following custom filter: "Corel Paradox tables|*.db|".
To display a list box that allows you to display all Corel Paradox tables or all
dBASE tables, use the following custom filter: "Corel Paradox tables|*.db|
dBASE tables|*.dbf|". The string's last character determines the delimiter.

Alias String The alias or drive name listed in the Alias box
Path String The path of the selected file or files. The value is returned by the File 

Browser and cannot be set directly.
Drive String The drive of the selected file or files. The value is returned by the File 

Browser and cannot be set directly.
DefaultExt String The default file extension. Use DefaultExt and NewFileOnly to allow users to

omit the file extension when naming a new file.
PathOnly Logical The path only of the selected file or files, without filename.
NewFileOnly Logical If True, the File Browser behaves like the Save As dialog box. If False, the 

File Browser behaves like the Open dialog box.

This record structure is built into ObjectPAL. Simply declare a variable of type FileBrowserInfo and assign values 
to the fields in its structure.
When you call fileBrowserEx, values from the File Browser dialog box are inserted in the Alias, Path, and Drive 
fields. This allows you to determine what you selected in the File Browser.
The AllowableTypes field specifies what appears in the list box for the Types panel in the File Browser. The 
SelectedType field indicates which of the AllowableTypes is currently selected. Use FileBrowserFileTypes 
constants for values in the SelectedType and AllowableTypes fields.
Because the fileBrowserEx procedure affects the field names in a structure, you can pass to it a simpler record 
structure that contains only those which interest you.
 Examples

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_TYPE_FILESYSTEM;OPAL_CONST_COFILEBROWSERFILETYPES;',0
,"Defaultoverview",)} Related Topics



fileBrowserEx procedure examples
Example1        Using fileBrowserEx to open a window and return an array of names
Example2       Using fileBrowserInfo to pass information



fileBrowserEx example 1
The following example calls fileBrowserEx twice. First, fileBrowserEx returns one filename. If that filename is 
a table name, fileBrowserEx opens a Table window. Next, fileBrowserEx returns an array of filenames and 
displays the array in a dialog box. The array of filenames is selected by pressing SHIFT and clicking files.
; fileBrowserExButton::pushButton
method pushButton(var eventInfo Event)
var
   oneFile           String
   manyFiles Array[] String
   tView             TableView
endVar
fileBrowserEx(oneFile)   ; display the File Browser, and wait 
                       ; for you to choose one file
                       ; variable oneFile stores the filename chosen
if isTable(oneFile) then
   tView.open(oneFile) ; open a Table window for the chosen file
endIf

fileBrowserEx(manyFiles) ; let you select multiple files and store 
                       ; the filenames in an array   
manyFiles.view()       ; displays your choices
endMethod



fileBrowserEx example 2
The following example uses a FileBrowserInfo record to pass information. Attach the following code to a button's 
built-in pushButton method. When it executes, this code displays the Browser, waits for you to choose a file, 
and displays information about your choice in the status area.
method pushButton(var eventInfo Event)
var  
   fbi FileBrowserInfo ; Declare a variable that uses the predefined
                       ; FileBrowserInfo record structure
   selectedFile String
endVar
; The following statements assign values to fields in the 
; record of file browser information
fbi.Alias = ":WORK:" ; Search the current working directory
fbi.AllowableTypes = fbTable + fbForm ; Search for tables and forms
fbi.CustomFilter = "(Bitmap image) *.bmp|*.bmp|(Other graphics files) *.jpg;*.pcx|
*.jpg;*.pcx||"

; Display the Browser and process your selection
if fileBrowserEx(selectedFile, fbi) then
   message("You selected ", selectedFile)
else
   message("You selected cancel")
endIf

endMethod



formatAdd procedure
Adds a format.

Syntax
formatAdd ( const formatName String, const formatSpec String ) Logical

Description
formatAdd adds a format. It creates a format named formatName which is described by formatSpec. The new 
format is available to the current session. This method returns True if successful; otherwise, it returns False.
 Note

· formatAdd does not save Field width (Wn), Alignment (AR, AL, AC), and Case specifiers (CU, CL, CC) in the 
new format definition. However, save decimal precision (W.n) is preserved. See format in the String type for a 
complete description of format specifiers.

 Example
{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYFORMATDELETE;OPAL_METH_SYFORMATEXIST;',0,"Def
aultoverview",)} Related Topics



formatAdd example
The following example adds a new format specification to the session and then sets the default Currency format 
to the new format:
; addAFormat::pushButton
method pushButton(var eventInfo Event)
var
  someNum Currency
endVar
; first, add a currency format with 4 decimal digits and
; a floating dollar sign (windows dollar sign)
formatAdd("FourCurrency", "W.4, E$W")
; then, set the default format for Currency to the new format
formatSetCurrencyDefault("FourCurrency")
someNum = 41324.09876
someNum.view()                   ; appears as $41,324.0988
endMethod



formatDelete procedure
Deletes a format.

Syntax
formatDelete ( const formatName String ) Logical

Description
formatDelete deletes the format specified by the argument formatName from the current session.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATADD;OPAL_METH_SYFORM
ATEXIST;',0,"Defaultoverview",)} Related Topics



formatDelete example
The following example deletes the custom format named FourCurrency:
; deleteAFormat::pushButton
method pushButton(var eventInfo Event)
if formatExist("FourCurrency") then 
  formatDelete("FourCurrency")
else
  msgInfo("FYI", "Format was not found.")
endIf
endMethod



formatExist procedure
Reports whether a format exists.

Syntax
formatExist ( const formatName String ) Logical

Description
formatExist reports whether the format formatName is available in the current session. This method returns 
True if the format is available; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATADD;OPAL_METH_SYFORM
ATDELETE;',0,"Defaultoverview",)} Related Topics



formatExist example
The following example determines whether a custom format named FourCurrency exists. IfFourCurrency does 
not exist, the code adds the format specification and displays a number formatted in the new format.
; addCurrFormatExist::pushButton
method pushButton(var eventInfo Event)
var
  someNum Currency
endVar
; check if custom format exists already
if NOT formatExist("FourCurrency") then
  ; if not, add a currency format with 4 decimal digits and
  ; a floating dollar sign (windows dollar sign)
  msgInfo("FYI", "Format does not exist. Adding it now.")
  formatAdd("FourCurrency", "W.4, E$W")
else
  msgInfo("FYI", "Format already exists.")
endIf
; set the default format for Currency to the new format
formatSetCurrencyDefault("FourCurrency")
someNum = 41324.09876  
someNum.view()        ; displays number as $41324.0988, because
                      ; someNum is a variable of Currency type
endMethod



formatGetSpec procedure
Returns the format specification for a named format.

Syntax
formatGetSpec ( const formatName String ) String

Description
formatGetSpec returns the format specification for the format specified by formatName. You can pass the 
return value to formatStringToDate and formatStringToNumber to format a string into a date or number.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATDELETE;OPAL_METH_SYFO
RMATEXIST;',0,"Defaultoverview",)} Related Topics



formatGetSpec example
The following example uses formatGetSpec and formatStringToDate to assign a date to a Date type variable 
the Windows Long format:
;Btn :: pushButton
method pushButton(var eventInfo Event)
   var
      d  Date
   endVar

   d = formatStringToDate("Friday, January 08, 1965", formatGetSpec("Windows Long"))
   d.view()
endMethod



formatSetCurrencyDefault procedure
Sets the default display format for Currency values.

Syntax
formatSetCurrencyDefault ( const formatName String ) Logical

Description
formatSetCurrencyDefault sets the default display format for Currency values. This setting remains in effect 
throughout the session.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATSETNUMBERDEFAULT;',0,"
Defaultoverview",)} Related Topics



formatSetCurrencyDefault example
See the formatExist example.



formatSetDateDefault procedure
Sets the default display format for Date values.

Syntax
formatSetDateDefault ( const formatName String ) Logical

Description
formatSetDateDefault sets the default display format for Date values. This setting remains in effect 
throughout the session.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATSETTIMEDEFAULT;OPAL_M
ETH_SYFORMATSETDATETIMEDEFAULT;',0,"Defaultoverview",)} Related Topics



formatSetDateDefault example
The following example uses the pushButton method for a button named setDateFormat to set the default 
display format for Date values to the Windows Long format. The code then displays a date in the new format:
; setDateFormat::pushButton
method pushButton(var eventInfo Event)
var
  someDate Date
endVar
if formatExist("Windows Long") then
  formatSetDateDefault("Windows Long")
  someDate = date("9/15/92")
  someDate.view()              ; displays "Tuesday, September 15, 1992"
else
  msgStop("Stop", "Requested format does not exist.")  
endIf
endMethod



formatSetDateTimeDefault procedure
Sets the default display format for DateTime values.

Syntax
formatSetDateTimeDefault ( const formatName String ) Logical

Description
formatSetDateTimeDefault sets the default display format for DateTime values. This setting remains in effect 
throughout the session.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATSETDATEDEFAULT;OPAL_M
ETH_SYFORMATSETTIMEDEFAULT;',0,"Defaultoverview",)} Related Topics



formatSetDateTimeDefault example
The following example uses the pushButton method for a button named setDateTimeFormat to set the default 
display format for DateTime values. The code then uses view to display a DateTime value in the new format:
setDateTimeFormat::pushButton
method pushButton(var eventInfo Event)
var
  someDateTime DateTime
endVar
if formatExist("h:m:s am m/d/y") then
  formatSetDateTimeDefault("h:m:s am m/d/y")
  someDateTime = DateTime("11:45:25 am 11/24/61")   
  someDateTime.view()                   ; displays 11:45:25 AM 11/24/61
else
  msgInfo("Status", "Requested format does not exist.")
endIf
endMethod



formatSetLogicalDefault procedure
Sets the default display format for Logical values.

Syntax
formatSetLogicalDefault ( const formatName String ) Logical

Description
formatSetLogicalDefault sets the default display format for Logical values. This setting remains in effect 
throughout the session.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATADD;',0,"Defaultoverview"
,)} Related Topics



formatSetLogicalDefault example
The following example uses the pushButton method for a button named setLogicalFormat to set the default 
display format for Logical values to the Male/Female format. The code then displays a logical value in the new 
format.
; setLogicalFormat::pushButton
method pushButton(var eventInfo Event)
var
  someLogical  Logical
endVar
if formatExist("Male/Female") then
  formatSetLogicalDefault("Male/Female")
  someLogical = True
  someLogical.view()               ; displays Male
else
  msgStop("Stop", "Requested format does not exist.")  
endIf
endMethod



formatSetLongIntDefault procedure
Sets the default display format for LongInt values.

Syntax
formatSetLongIntDefault ( const formatName String ) Logical

Description
formatSetLongIntDefault sets the default display format for LongInt values. This setting remains in effect 
throughout the session.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATSETSMALLINTDEFAULT;',0,
"Defaultoverview",)} Related Topics



formatSetLongIntDefault example
The following example uses the pushButton method for a button named setIntegerFormat to set the default 
display format for LongInt values to the Integer format. The code then displays a long integer in the new format.
; setIntegerFormat::pushButton
method pushButton(var eventInfo Event)
var
  someInt  LongInt
endVar
if formatExist("Integer") then
  formatSetLongIntDefault("Integer")
  someInt = 238756
  someInt.view()                       ; displays 238756
else
  msgStop("Stop", "Requested format does not exist.")  
endIf
endMethod



formatSetNumberDefault procedure
Sets the default display format for Number values.

Syntax
formatSetNumberDefault ( const formatName String ) Logical

Description
formatSetNumberDefault sets the default display format for Number values. This setting remains in effect 
throughout the session.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATSETCURRENCYDEFAULT;',0
,"Defaultoverview",)} Related Topics



formatSetNumberDefault example
The following example uses the pushButton method for a button named setNumberFormat to set the default 
display format for Number values to the Scientific format. The code then displays a number in the new default 
format.
; setNumberFormat::pushButton
method pushButton(var eventInfo Event)
var
  someNum Number
endVar
if formatExist("Scientific") then
  formatSetNumberDefault("Scientific")
  someNum = 3489.283
  someNum.view()             ; Displays 3.489283e+3.
else
  msgStop("Stop", "Requested format does not exist.")
endIf
endMethod



formatSetSmallIntDefault procedure
Sets the default display format for SmallInt values.

Syntax
formatSetSmallIntDefault ( const formatName String ) Logical

Description
formatSetSmallIntDefault sets the default display format for SmallInt values. This setting remains in effect 
throughout the session.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATSETLONGINTDEFAULT;',0,"
Defaultoverview",)} Related Topics



formatSetSmallIntDefault example
The following example uses the pushButton method for a button named setSmallIntFormat to set the default 
display format for SmallInt values to the Integer format. The code then displays a small integer in the new 
default format.
; setSmallIntFormat::pushButton
method pushButton(var eventInfo Event)
var
  someInt  SmallInt
endVar
if formatExist("Integer") then
  formatSetSmallIntDefault("Integer")
  someInt = 324
  someInt.view()                     ; displays 324
else
  msgStop("Stop", "Requested format does not exist.")
endIf
endMethod



formatSetTimeDefault procedure
Sets the default display format for Time values.

Syntax
formatSetTimeDefault ( const formatName String ) Logical

Description
formatSetTimeDefault sets the default display format for Time values. This setting remains in effect 
throughout the session.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATSETDATEDEFAULT;OPAL_M
ETH_SYFORMATSETDATETIMEDEFAULT;',0,"Defaultoverview",)} Related Topics



formatSetTimeDefault example
The following example uses the pushButton method for a button named setTimeFormat to set the default 
display format for Time values to the format hh:mm:ss am. The code then display a time in the new default 
format.
; setTimeFormat::pushButton
method pushButton(var eventInfo Event)
var
  someTime Time
  someStr  String
endVar
if formatExist("hh:mm:ss am") then
  formatSetTimeDefault("hh:mm:ss am")
  someTime = time("12:22:45 pm")   
  someTime.view()                    ; displays 12:22:45 PM
else
  msgInfo("Status", "Requested format does not exist.")
endIf
endMethod



formatStringToDate procedure
Uses a format specification to translate a String value to a Date value.

Syntax
formatStringToDate ( dateString String, formatSpec String ) Date

Description
formatStringToDate uses a format specification to translate a String value to a Date value. This method 
translates dateString (a string value representing a date) to a Date type value using to the format specification 
in formatSpec. This method returns the Date value and leaves the String value unmodified.
formatSpec is the format specification of a named format not the format name itself. To retrieve the format 
specification of a named format, use formatGetSpec.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATDELETE;OPAL_METH_SYFO
RMATEXIST;OPAL_METH_SYFORMATGETSPEC;OPAL_METH_SYFORMATSTRINGTODATETIME;OPAL_METH_S
YFORMATSTRINGTONUMBER;OPAL_METH_SYFORMATSTRINGTOTIME;',0,"Defaultoverview",)} Related 
Topics



formatStringToDate example
The following example formats a String value as a valid date. The code is attached to the built-in changeValue 
method of an Alpha field and executes when you type a value and leave the field (e.g., press ENTER).
If the field object is bound to a Date field (instead of an Alpha field), Corel Paradox validates the date without 
writing ObjectPAL code.
method changeValue(var eventInfo ValueEvent)
   var
      stUserDate   String
      daValidDate  Date
   endVar

   doDefault

   ; Assume user enters "09-94-23" into this Alpha field object.
   stUserDate = self.Value

   try
      ; Format your value as a valid date.
      daValidDate = formatStringToDate(stUserDate, "DO(%M-%Y-%D)")

      ; formatStringToDate does not change the String value.
      ; It returns a Date value. The following statement displays
      ;         You entered: 09-94-23
      ;         Valid date: 09/23/94

      msgInfo("You entered: " + stUserDate,
            "Valid date: " + String(daValidDate))

   onFail
      ; If user's value cannot be formatted as a date,
      ; display a message.
      msgStop(stUserDate, "Cannot format that value as a Date.")
   endTry

endMethod



formatStringToDateTime method
Translates a String value to a DateTime value.

Syntax
formatStringToDateTime ( const dateTimeString String, const formatSpec String ) DateTime

Description
formatStringToDateTime translates dateTimeString to a DateTime value, using the format specification in 
formatSpec. If successful, formatStringToDateTime returns a DateTime value and leaves the dateTimeString 
value unmodified. The value of formatSpec must be the format specification of a named format not the format 
name. To retrieve the format specification of a named format, use formatGetSpec.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATDELETE;OPAL_METH_SYFO
RMATEXIST;OPAL_METH_SYFORMATGETSPEC;OPAL_METH_SYFORMATSTRINGTODATE;OPAL_METH_SYFOR
MATSTRINGTONUMBER;OPAL_METH_SYFORMATSTRINGTOTIME;',0,"Defaultoverview",)} Related Topics



formatStringToDateTime example
The following example converts the specified string to the DateTime data type and displays the result:
view( formatStringToDateTime( "23:59:59, 3/23/99", "TH1O(%H:%M:%S, %D)" ) )



formatStringToNumber procedure
Uses a format specification to translate a String value to a Number value.

Syntax
formatStringToNumber ( numberString String, formatSpec String ) Number

Description
formatStringToNumber translates numberString (a string value that represents a number) to a Number value, 
using the format specification in formatSpec. If successful, this procedure returns the Number value and leaves 
the String value unmodified.
The value of formatSpec must be the format specification of a named format not the format name. To retrieve 
the format specification of a named format, use formatGetSpec.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATDELETE;OPAL_METH_SYFO
RMATEXIST;OPAL_METH_SYFORMATSTRINGTODATE;',0,"Defaultoverview",)} Related Topics



formatStringToNumber example
In the following example, two strings are concatenated to form a number in scientific notation format. 
formatStringToNumber is used to assign the value to a Number variable and the formatted and unformatted 
values are displayed in a dialog box. formatStringToNumber assigns the formatted value to a Number 
variable, but leaves the String value unmodified.
;btnScientific :: pushButton
method pushButton(var eventInfo Event)
   var
      st1,
      st2,
      stSciNot  String
      nuResult  Number
   endVar

   st1 = "1.e"
   st2 = "+2"
   stSciNot = st1 + st2
   nuResult = formatStringToNumber(stSciNot, "S-4")
   
   ; The following statement displays
   ; Before format: 1.e+2
   ; After format: 100.00
   msgInfo("Before format: " + stSciNot,
          "After format: " + String(nuResult))
endMethod



formatStringToTime method
Translates a String value to a Time value.

Syntax
formatStringToTime (const timeString String, const formatSpec String ) Time

Description
formatStringToTime translates timeString to a Time value, using the format specification in formatSpec. If 
successful, formatStringToTime returns a Time value and leaves the String value unmodified. The value of 
formatSpec must be the format specification of a named format not the format name. To retrieve the format 
specification of a named format, use formatGetSpec.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_STFOR;OPAL_METH_SYFORMATDELETE;OPAL_METH_SYFO
RMATEXIST;OPAL_METH_SYFORMATGETSPEC;OPAL_METH_SYFORMATSTRINGTODATE;OPAL_METH_SYFOR
MATSTRINGTODATETIME;OPAL_METH_SYFORMATSTRINGTONUMBER;',0,"Defaultoverview",)} Related 
Topics



formatStringToTime example
The following example converts the specified string to the Time data type and displays the result:
view( formatStringToTime( "23:59:59", "TH1O(%H:%M:%S)" ) )



getDefaultPrinterStyleSheet procedure
Returns the name of the default printer style sheet used by documents designed for the printer.

Syntax
getDefaultPrinterStyleSheet ( ) String

Description
getDefaultPrinterStyleSheet returns the name of the default printer style sheet used by documents designed
for the printer. If the style sheet is in the working directory, getDefaultPrinterStyleSheet returns the filename 
and extension (e.g., COREL.FP). If the style sheet resides in another directory, getDefaultPrinterStyleSheet 
returns the full path (e.g., C:\COREL\SUITE8\PARADOX\COREL.FP).
Use getStyleSheet and setStyleSheet for forms and reports that use different style sheets..
Use getDefaultScreenStyleSheet to retrieve the default screen style sheet. This screen style sheet is used 
when you create design documents for the screen.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYSETDEFAULTSCREENSTYLESHEET;OPAL_METH_FOSETS
TYLESHEET;OPAL_METH_FOSAVESTYLESHEET;OPAL_METH_FOGETPROTOPROPERTY;OPAL_METH_FOSETP
ROTOPROPERTY;',0,"Defaultoverview",)} Related Topics



getDefaultPrinterStyleSheet example
See the setDefaultPrinterStyleSheet example.



getDefaultScreenStyleSheet procedure
Returns the name of the default screen style sheet used by design documents that are created for the screen.

Syntax
getDefaultScreenStyleSheet ( ) String

Description
getDefaultScreenStyleSheet returns the filename of the default style sheet for screen documents. If the style 
sheet is in the working directory, getDefaultScreenStyleSheet returns the filename and extension (e.g., 
COREL.FP). If the style sheet resides in another directory, getDefaultScreenStyleSheet returns the full path 
(e.g., C:\COREL\SUITE8\PARADOX\COREL.FP).
Use getStyleSheet and setStyleSheet for forms and reports that use different style sheets.
Use getDefaultPrinterStyleSheet to retrieve the name of the default printer style sheet, used whenever you 
create design documents that are designed for the printer.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYSETDEFAULTPRINTERSTYLESHEET;OPAL_METH_SYSETD
EFAULTSCREENSTYLESHEET;OPAL_METH_FOSAVESTYLESHEET;OPAL_METH_FOGETPROTOPROPERTY;OPA
L_METH_FOSETPROTOPROPERTY;',0,"Defaultoverview",)} Related Topics



getDefaultScreenStyleSheet example
See the setDefaultScreenStyleSheet example.



getDesktopPreference procedure
Retrieves a desktop preference value.

Syntax
getDesktopPreference (const section AnyType, const name AnyType) AnyType

Description
getDesktopPreference returns the value of the desktop preference specified by the section and name 
arguments. The value returned corresponds to one of the DesktopPreferenceTypes Constants. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYSETDESKTOPPREFERENCE;',0,"Defaultoverview",)} 
Related Topics



getDesktopPreference example
The following example displays the sets the title name preference and then retrieves and displays the name:
method pushButton(var eventInfo Event)
setDesktopPreference( PrefProjectSection, prefTitleName,"Corel Paradox pour Windows" )

x = getDesktopPreference( PrefProjectSection, prefTitleName )

x.view()
endmethod



getLanguageDriver procedure
Returns the default language driver name for the system.

Syntax
getLanguageDriver ( ) String

Description
getLanguageDriver returns the default language driver name for the system. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_TCGETLANGUAGEDRIVER;OPAL_METH_QUSETLANGUAGED
RIVER;',0,"Defaultoverview",)} Related Topics



getLanguageDriver example
The following example displays the system's language driver name on the Status Bar:
;btnDefaultDriver :: pushButton
method pushButton(var eventInfo Event)
  message(getLanguageDriver())
endmethod



getMouseScreenPosition procedure
Returns the mouse position as a Point data type.

Syntax
getMouseScreenPosition ( ) Point

Description
getMouseScreenPosition returns the coordinates (in twips) of the pointer relative to the screen. Use Point type
methods (e.g., x and y) to retrieve more information.
getMouseScreenPosition retrieves the mouse position at the precise time of an event. The coordinates of the 
current mouse position might be different.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYSMPOS;OPAL_METH_MEGPOS;OPAL_METH_MESPOS;',0,
"Defaultoverview",)} Related Topics



getMouseScreenPosition example
In the following example, the mouse moves one inch down and one inch to the left when you click the 
nervousMouse button:
; nervousMouse::pushButton
method pushButton(var eventInfo Event)
var
  mouseP,
  newMouseP Point
endVar
mouseP = getMouseScreenPosition()
newMouseP = mouseP + Point(1440, 1440)
setMouseScreenPosition(newMouseP)   ; move pointer 1 inch down and
                                    ; 1 inch to the right
endMethod



getRegistryValue method
Retrieves a registry value.

Syntax
getRegistryValue ( const key String, const value String , const rootKey LongInt ) AnyType

Description
getRegistryValue retrieves data from a specified key and value in the registry. If getRegistryValue is 
successful, the registry value is returned as an AnyType; otherwise, it returns an empty string. 
key is a path similar to a file path. However, wildcards are not expanded in the key. key cannot contain a single 
backslash and cannot be empty. Its size is limited to 65,534 bytes. 
The value is a string that is limited to 65,534 bytes. value can contain backslashes and can be empty. rootKey is 
analogous to a directory drive. Set rootKey with the predefined RegistryKeyType Constants. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDELETEREGISTRYKEY;OPAL_METH_SYENUMREGISTRYK
EYS;OPAL_METH_SYENUMREGISTRYVALUENAMES;OPAL_METH_SYSEARCHREGISTRY;OPAL_METH_SYSETR
EGISTRYVALUE;',0,"Defaultoverview",)} Related Topics



getRegistryValue example
The following example retrieves the current ObjectPAL Level from the registry and displays it:
var
   strLevel   String
endvar

   strLevel = getRegistryValue( "Software\\Corel\\Paradox\\8.0\\Pdoxwin\\Properties", "Level",
      RegKeyCurrentUser )
   strLevel.view()



getUserLevel procedure
Returns your ObjectPAL level property setting (Advanced or Beginner).

Syntax
getUserLevel ( ) String

Description
getUserLevel returns Advanced or Beginner to specify your ObjectPAL level property setting. Use 
setUserLevel to change this setting.
 Note

· The ObjectPAL level property setting does not affect code execution. The setting only affects the ObjectPAL 
language elements that are displayed in the user interface.

 Example
{button ,AL(`OPAL_TYPE_SYSTEM;INTRO_INTRO;OPAL_METH_SYSETUSERLEVEL;;;',0,"Defaultoverview",)
} Related Topics



getUserLevel example
See the setUserLevel example.



helpOnHelp procedure
Displays information about using the Windows Help system and opens Help if necessary.

Syntax
helpOnHelp ( ) Logical

Description
helpOnHelp opens the WINHLP32.HLP file by default.
To open another Help file
1. Open the Help project file in a text editor.
2. Add a SetHelpOnFile macro to the [CONFIG] section, specifying the Help file you want to use in How to Use 

Help.
3. Compile the Help file.
The following macro, when placed in the [CONFIG] section of the Help project file changes the Help file, causes 
helpOnHelp to open:
[CONFIG]
SetHelpOnFile("howhelp.hlp")
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYHSCONT;OPAL_METH_SYHSINDEX;',0,"Defaultoverview
",)} Related Topics



helpOnHelp example
The following example opens a Help file when you click Help, Help On Help from a custom menu:
method menuAction(var eventInfo MenuEvent)
   var
      siMenuChoice SmallInt
   endVar

   siMenuChoice = eventInfo.id()

   switch
      case siMenuChoice = UserMenu + MenuHelpOnHelp : 
           helpOnHelp()
      ; Handle other cases here
   endSwitch

endmethod



helpQuit procedure
Notifies the Help application that it is no longer needed by the current application.

Syntax
helpQuit ( const helpFileName String ) Logical

Description
helpQuit notifies the Windows Help application (WINHELP.EXE) that the Help file helpFileName is no longer 
needed by the current Corel Paradox application. If the directory where helpFileName resides is not specified in 
the path, you must specify its full path. If no other applications require the Help application, Windows closes it.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYHONHELP;',0,"Defaultoverview",)} Related Topics



helpQuit example
The following example executes when you choose an item from a custom menu. If you click File, Close Form, 
helpQuit notifies the Help application that it is no longer needed and closes the current form.
method menuAction(var eventInfo MenuEvent)
   const
      ; Typically, menu choice constants are defined elsewhere, 
      ; with the rest of the menu-building code. The following
      ; constant is defined here so the example will compile.
      kMyMenuFileCloseForm = 104
   endConst

   var
      siMenuChoice   SmallInt
      stHelpFileName String
   endVar

   siMenuChoice = eventInfo.id()
   stHelpFileName = "c:\\pdoxapps\\ordentry\\ordentry.hlp"

   switch
      case siMenuChoice = UserMenu + kMyMenuFileCloseForm :
           helpQuit(stHelpFileName) ; Tell Help we don't need it any more.
           close() ; Close the form.
   ; Handle other cases here
   endSwitch

endMethod



helpSetIndex procedure
Specifies what help file will be used as the Help contents (index).

Syntax
helpSetIndex ( const helpFileName String, const indexId LongInt ) Logical

Description
helpSetIndex specifies what help file will be used as the Help contents (index). This procedure instructs the 
Windows Help application (WINHELP.EXE) to use the topic in helpFileName (specified by indexID) as the Contents
topic. If helpFileName does not reside in the directory specified in your path, you must specify the full path or the
directory.
When you open a Help file, WinHelp displays the Contents topic by default. When you create a Help file, you 
specify the Contents topic using the Contents option in the [CONFIG] section of the Help project file. For 
example, when placed in the project file's [CONFIG] section, the following SetContents macro sets the Contents 
topic for a Help file to topic number 100 in CWH.HLP.
[CONFIG]
SetContents("cwh.hlp", 100)

If you do not use the SetContents option, the Contents topic is the first topic in the first file listed in the [FILES] 
section of the Help project file.
You can use helpSetIndex to specify a Contents topic from within an application.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYHSINDEX;',0,"Defaultoverview",)} Related Topics



helpSetIndex example
The following example sets the Contents topic for a Help file to topic number 100 in the file ORDENTRY.HLP:
method setHelpContents() Logical
   return helpSetIndex("c:\\pdoxapps\\ordentry\\ordentry.hlp", 100)
endMethod



helpShowContext procedure
Displays the Help topic specified by helpId in the file helpFileName .

Syntax
helpShowContext ( const helpFileName String, const helpId LongInt ) Logical

Description
helpShowContext instructs the Windows Help application to search helpFileName for the topic identified by 
helpId; and to display the topic. If the directory where helpFileName resides is not in your path, you must specify 
its full path.
In a Help source file, each topic is identified by a context ID. A context ID is a string defined by a # footnote. The 
context ID is mapped to an integer value in the [MAP] section of the Help project file (.HPJ). helpShowContext 
uses this mapped integer value to locate the Help topic.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYHSINDEX;OPAL_METH_SYHSTOPIC;',0,"Defaultovervie
w",)} Related Topics



helpShowContext example
The following example instructs the Windows Help application to display context-sensitive Help for the active 
object in a form. Assume that the form contains three buttons and two field objects. The code is attached to a 
button whose TabStop property is set to False. If the code is attached to a button whose TabStop property is set 
to True, the button becomes active when clicked.
helpButton::pushButton
const
; These integer values must also be listed 
; in the [MAP] section of the Help project file.
   kNewOrdBtn   = LongInt(1020) 
   kEditOrdBtn  = LongInt(1021)
   kDelOrdBtn   = LongInt(1022)
   kCustNameFld = LongInt(2020)
   kOrderNoFld  = LongInt (2021)
endConst

method pushButton(var eventInfo Event)

var
   stObjName,
   stHelpFileName String
   liContextId    LongInt
endVar

   stObjName = active.name ; Get the name of the active object.
   stHelpFileName = "c:\\pdoxapps\\ordentry\\ordentry.hlp"

   switch
      case stObjName = "newOrdBtn"    : liContextId = kNewOrdBtn
      case stObjName = "editOrdBtn"   : liContextId = kEditOrdBtn
      case stObjName = "delOrdBtn"    : liContextId = kDelOrdBtn
      case stObjName = "custNameFld"  : liContextId = kCustNameFld
      case stObjName = "orderNoFld"   : liContextId = kOrderNoFld
   endSwitch

   if not helpShowContext(stHelpFileName, liContextId) then
      errorShow("Could not display Help topic.")
   endIf

endMethod



helpShowIndex procedure
Displays the contents topic (index) of a specified Help file.

Syntax
helpShowIndex ( const helpFileName String ) Logical

Description
helpShowIndex instructs the Windows Help application (WINHELP.EXE) to display the Contents topic (index) in 
the Help file specified by helpFileName. If the directory where helpFileName resides is not on your path, you 
must specify its full path.
When you open a Help file, WinHelp displays the Contents topic by default. When you create a Help file, you 
specify the Contents topic using the Contents option in the [CONFIG] section of the Help project file. For 
example, when placed in the project file's [CONFIG] section, the following SetContents macro sets the Contents 
topic for a Help file to topic number 100 in CWH.HLP.
[CONFIG]
SetContents("cwh.hlp", 100)

If you do not use the SetContents option, the Contents topic is the first topic in the first file listed in the [FILES] 
section of the Help project file.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYHSCONT;OPAL_METH_SYHSTOPIC;',0,"Defaultoverview
",)} Related Topics



helpShowIndex example
The following example executes when you choose an item from a custom menu. If you click Help, Contents, 
helpShowIndex instructs the Help application to display the Contents topic for the specified Help file.
method menuAction(var eventInfo MenuEvent)
   const
      ; Typically, menu choice constants are defined elsewhere, 
      ; with the rest of the menu-building code. The following
      ; constant is defined here so the example will compile.
      kMyMenuHelpContents = 501
   endConst

   var
      siMenuChoice   SmallInt
      stHelpFileName String
   endVar

   siMenuChoice = eventInfo.id()
   stHelpFileName = "c:\\pdoxapps\\ordentry\\ordentry.hlp"

   switch
      case siMenuChoice = UserMenu + kMyMenuHelpContents :
           helpShowIndex(stHelpFileName) ; Display the Contents topic.
      ; Handle other cases here
   endSwitch

endMethod



helpShowTopic procedure
Displays help for a specified context ID.

Syntax
helpShowTopic ( const helpFileName String, const topicKey String ) Logical

Description
helpShowTopic instructs the Windows Help application to search the file helpFileName for the topic associated 
with topicKey, and to display the topic. If the directory where helpFileName resides is not on your path, you must
specify its full path. topicKey must match a keyword defined by a K footnote in the Help source file. If topicKey 
does not match a keyword, the search fails and the Windows Help application displays an error message.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYHSKEY;OPAL_METH_SYHSCONT;OPAL_METH_SYHSINDE
X;',0,"Defaultoverview",)} Related Topics



helpShowTopic example
The following example prompts you to type a word or phrase and then searches for the text in the specified Help 
file:
method pushButton(var eventInfo Event)
   var
      stHelpFileName,
      stTopicKey,
      stPromptText    String
   endVar

   stHelpFileName = "c:\\pdoxapps\\ordentry\\ordEntry.hlp" 
   stPromptText   = "Enter a word or phrase here."
   stTopicKey     = stPromptText

   stTopicKey.view("Enter text to search for.")
   if stTopicKey <> stPromptText then
      helpShowTopic(stHelpFileName, stTopicKey)
   endIf
endMethod



helpShowTopicInKeywordTable procedure
Displays Help for a topic identified by a keyword in an alternate keyword table.

Syntax
helpShowTopicInKeywordTable ( const helpFileName String, const keyTableLetter String, const 
topicKey String ) Logical

Description
helpShowTopicInKeywordTable instructs the Windows Help application to search the file helpFileName for the
topic associated with keyTableLetter and topicKey, and to display the topic. If the directory where helpFileName 
resides is not in your path, you must specify its full path. The value of keyTableLetter must match a multi-key 
index specified in the [OPTIONS] section of the Help project file. For example, if a Help project file includes the 
following code, assign L to keyTableLetter.
[OPTIONS]
MULTIKEY=L

The value of topicKey must match a keyword defined using a multi-key index footnote in the Help source file. If 
topicKey does not match, the search fails and the Windows Help application displays an error message.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYHSTOPIC;OPAL_METH_SYHSCONT;OPAL_METH_SYHSIN
DEX;',0,"Defaultoverview",)} Related Topics



helpShowTopicInKeywordTable example
The following example prompts you to type COREL PARADOX or dBASE and then searches for field types in the 
keyword table of the specified Help file. Assume that an application is handling a user's request for Help on the 
topic field types.
method pushButton(var eventInfo Event)
   var
      stHelpFileName,
      stPromptText,
      stUserChoice,
      stTopicKey,
      stKeyTableLetter    String
   endVar

   stHelpFileName   = "c:\\pdoxapps\\ordentry\\ordEntry.hlp" 
   stPromptText     = "Enter COREL PARADOX or dBASE here."
   stUserChoice     = stPromptText
   stTopicKey       = "field types"

   stUserChoice.view("Do you want Corel Paradox Help or dBASE Help?")
   if stUserChoice <> stPromptText then
      switch
         case stUserChoice = "COREL PARADOX" : stKeyTableLetter = "P"
         case stUserChoice = "dBASE"   : stKeyTableLetter = "D"
         otherwise : return
      endSwitch

      helpShowTopicInKeywordTable(stHelpFileName, stKeyTableLetter, stTopicKey)
   endIf
endMethod



isErrorTrapOnWarnings procedure
Reports whether this session handles warning errors as critical errors.

Syntax
isErrorTrapOnWarnings ( ) Logical

Description
isErrorTrapOnWarnings reports whether this session handles warning errors as critical errors. This method 
returns True if the active session treats warning errors as critical errors; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYERRORTRAPONWARNINGS;',0,"Defaultoverview",)} 
Related Topics



isErrorTrapOnWarnings example
The following example uses the pushButton method for btnToggleWarning to toggle between critical and non-
critical warning errors:
; btnToggleWarning :: pushButton
method pushButton(var eventInfo Event)
  errorTrapOnWarnings(not isErrorTrapOnWarnings())
  msgInfo("Warning errors are critical", isErrorTrapOnWarnings())
endmethod



isMousePersistent method
Reports if mouse persistence is turned on.

Syntax
isMousePersistent ( ) Logical

Description
isMousePersistent reports if mouse persistence is on. isMousePersistent returns True if mouse persistence is
turned on, and False if mouse persistence is turned off. To set mouse persistence, use setMouseShape or 
setMouseShapeFromFile.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYSMPOS;OPAL_METH_SYSMSHAP;OPAL_METH_SYSETMO
USESHAPEFROMFILE;',0,"Defaultoverview",)} Related Topics



isMousePersistent example
In the following example, a form has two buttons: btnNonPersistent and btnPersistent. The pushButton method 
for each button uses setMouseShape() to set the mouse shape of the cursor. The first button has mouse 
persistence turned off, and the second button had mouse persistence turned on. The second button, 
btnPersistent, also contains a mouseEnter method which uses isMousePersistent() to evaluate the persistency of 
the cursor and revert it to its original state. When the first button is pressed, the pointer changes. However, 
when the cursor moves off the button, it reverts to its original setting. When the second button is pressed, the 
cursor changes and remains unmodified until the cursor moves back over the second button. This triggers the 
mouseEnter method of the second button and reverts the cursor back to its original state.
The following code is attached to the pushButton method for btnNonPersistent:
; btnNonPersistent::pushButton
method pushButton(var eventInfo Event)
   ;// Set the shape to MouseWait and persistence to False
   setMouseShape(MouseWait,FALSE)
endMethod

The following code is attached to the pushButton method for btnPersistent:
; btnPersistent::pushButton
method pushButton(var eventInfo Event)
   ;// Set the shape to MouseWait and persistence to TRUE
   setMouseShape(MouseWait,TRUE)
endMethod

The following code is attached to the mouseEnter method for btnPersistent:
; btnPersistent::mouseEnter
method mouseEnterpushButton(var eventInfo MouseEvent)
   if isMousePersistent() then
      ;// If it's persistent, set it back to the arrow cursor
      setMouseShape(MouseArrow,FALSE)
   endIf
endMethod



message procedure
Displays a message composed of up to six strings in the status line.

Syntax
message ( const message String [ , const message String ] * )

Description
message displays a message composed of up to six strings in the status line.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYMINF;OPAL_METH_SYMQUE;OPAL_METH_SYMSTP;',0,"D
efaultoverview",)} Related Topics



message example
The following example writes a message to the status line:
; showMessage::pushButton
method pushButton(var eventInfo Event)
var 
  lastName, firstName String 
endVar 
lastName = "Corel"
firstName = "Frank" 
message("Hello, my name is ", firstName, " ", lastName, ".")
endMethod



msgAbortRetryIgnore procedure
Displays a dialog box containing a message and the Abort, Retry, and Ignore buttons.

Syntax
msgAbortRetryIgnore ( const caption String, const text String ) String

Description
msgAbortRetryIgnore displays a three-button dialog box, where caption specifies the text in the Title Bar and 
text specifies the message. The return value is a mixed upper and lowercase string, that corresponds to the 
button you click. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYMRCA;OPAL_METH_SYMYNC;',0,"Defaultoverview",)} 
Related Topics



msgAbortRetryIgnore example
The following example uses the showAbortRetryIgnore button to warn you that an operation may take a long 
time and asks you whether to Abort, Retry, or Ignore:
; showAbortRetryIgnore::pushButton
method pushButton(var eventInfo Event)
var 
  doThis String 
endVar 
doThis = msgAbortRetryIgnore("Note", "This may take a long time. 
Do you want to stop?")  ; This message spans 2 lines.

doThis.view() ; Display your choice.

; Display a message based on your choice.
switch 
   case doThis = "Abort"  : message("Aborting operation.")
   case doThis = "Retry"  : message("Retrying operation.") 
   case doThis = "Ignore" : message("Ignoring problem.")
endSwitch
endMethod



msgInfo procedure
Displays a one-button dialog box containing the information icon, a caption and message, and an OK button.

Syntax
msgInfo ( const caption String, const text String )

Description
msgInfo displays a one-button dialog box containing the information icon, a caption and message, and an OK 
button. caption is displayed in the Title Bar, and text is displayed in the box. Click OK or press ESC to close the 
dialog box. This procedure does not return a value.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYMQUE;OPAL_METH_SYMSTP;',0,"Defaultoverview",)} 
Related Topics



msgInfo example
The following example uses the msgInfo method displays a message:
; showMsgInfo::pushButton
method pushButton(var eventInfo Event)
msgInfo("Trivia", "The capital of Oregon is Salem.")
endMethod



msgQuestion procedure
Displays a dialog box containing a caption and message, a question mark icon, and Yes and No buttons.

Syntax
msgQuestion ( const caption String, const text String ) String

Description
msgQuestion displays a dialog box containing a caption and message, a question mark icon, and Yes and No 
buttons. It displays caption in the Title Bar, and text in the box itself. This procedure returns your selection (Yes 
or No) in mixed upper and lowercase.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYMINF;OPAL_METH_SYMSTP;',0,"Defaultoverview",)} 
Related Topics



msgQuestion example
The following example asks you whether to change the desktop title. If you choose Yes, the desktop title is 
changed and then restored.
; showMsgQuestion::pushButton
method pushButton(var eventInfo Event)
var 
  userChoice String 
  thisApp    Application
endVar 
userChoice = msgQuestion("Confirm", "Are you sure you want to
change the title to 'Custom Application'?") 
switch 
   case userChoice = "Yes" : 
     thisApp.setTitle("Custom Application")  ; Change desktop title.
     sleep(2000)                             ; Pause.
     thisApp.setTitle("Corel Paradox for Windows") ; Restore it.
   case userChoice = "No"  : 
     message("Application title not changed.") 
endSwitch
endMethod



msgRetryCancel procedure
Displays a dialog box containing a caption, a message, and the Retry and Cancel buttons.

Syntax
msgRetryCancel ( const caption String, const text String ) String

Description
msgRetryCancel displays a dialog box containing a caption, a message, and the Retry and Cancel buttons. The 
argument caption specifies the text in the dialog box's Title Bar. text specifies the message displayed. 
msgRetryCancel returns your selection (Retry or Cancel). If you press ESC or select Close, returns Cancel. 
Values are returned in mixed upper and lowercase.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYMYNC;OPAL_METH_SYMARI;',0,"Defaultoverview",)} 
Related Topics



msgRetryCancel example
The following example poses a question and confirms your response on the status line:
; showMsgRetryCancel::pushButton
method pushButton(var eventInfo Event)
var 
  confirm String 
endVar 
confirm = msgRetryCancel("Dilemma", "What will you do?") 
switch 
  case confirm = "Retry"  : message("Retrying.") 
  case confirm = "Cancel" : message("Giving up.") 
endSwitch
endMethod



msgStop procedure
Displays a dialog box containing a stop sign icon, a caption and message, and an OK button.

Syntax
msgStop ( const caption String, const text String )

Description
msgStop displays a dialog box containing a stop sign icon, a caption and message, and an OK button. It displays
caption in the Title Bar, and text and a Stop icon in the box itself. Click OK or press ESC to close the dialog box. 
This procedure does not return a value.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYMINF;OPAL_METH_SYMQUE;',0,"Defaultoverview",)} 
Related Topics



msgStop example
The following example uses the pushButton method for showMsgStop to alert you to a potentially dangerous 
action:
; showMsgStop::pushButton
method pushButton(var eventInfo Event)
msgStop("Stop!", "If you do that, changes to the form will not be saved.")
endMethod



msgYesNoCancel procedure
Displays a dialog box containing a caption, a message and the Yes, No, and Cancel buttons.

Syntax
msgYesNoCancel ( const caption String, const text String ) String

Description
msgYesNoCancel displays a dialog box containing a caption, a message and the Yes, No, and Cancel buttons. 
The argument caption specifies the text in the dialog box's Title Bar. text specifies the message displayed. 
msgYesNoCancel returns your selection (Yes, No or Cancel) in mixed upper and lowercase. If you press ESC or 
select Close, this procedure returns Cancel. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYMRCA;OPAL_METH_SYMARI;',0,"Defaultoverview",)} 
Related Topics



msgYesNoCancel example
The following example uses msgYesNoCancel to ask you whether to save the data before quitting, to discard 
the data, or to cancel the quit the operation:
; showMsgYesNoCancel::pushButton
method pushButton(var eventInfo Event)
var 
  theChoice String 
endVar
theChoice = msgYesNoCancel("Quit", "Save data before quitting?") 
switch 
   case theChoice = "Yes"    : message("Saving data.")
   case theChoice = "No"     : message("Discarding data.")
   case theChoice = "Cancel" : message("Remaining in application.")
endSwitch
endMethod



pixelsToTwips procedure
Converts the screen coordinates from pixels to twips.

Syntax
pixelsToTwips ( const pixels Point ) Point

Description
pixelsToTwips converts the screen coordinates from pixels to twips.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYTWIPSTOPIXELS;',0,"Defaultoverview",)} Related 
Topics



pixelsToTwips example
The following example uses the object variable self to show the position of the button in twips and in pixels. This 
code displays the screen resolution in pixels opens a window in the center of the display.
; convertTwipsPixels::pushButton
method pushButton(var eventInfo Event)
var
  selfP,
  sysTwips  Point
  thisSys   DynArray[] AnyType
  x, y      SmallInt
  custForm  Form
endVar
selfP = self.Position
selfP.view("Position of this button in twips")
selfP = twipsToPixels(selfP)
selfP.view("Position of this button in pixels")
; open a 2" by 2" form exactly in the center of the screen
sysInfo(thisSys)                ; fill a dynamic array with system information
sysTwips = Point(thisSys["FullWidth"], thisSys["FullHeight"])  
sysTwips = pixelsToTwips(sysTwips)
x = int(sysTwips.x()/2) - 1440  ; calculate x-coordinate 1 inch left of center
y = int(sysTwips.y()/2) - 1440  ; calculate y-coordinate 1 inch above center
custForm.open("Customer.fsl", WinStyleDefault, x, y, 2880, 2880)
 
endMethod



play procedure
Plays a standalone script.

Syntax
play ( const scriptName String ) AnyType

Description
play executes scriptName to play a standalone script. To return a value from a script, call formReturn from 
within the script.
For more information, refer to the Script type.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYEXEC;OPAL_TYPE_SCRIPT;',0,"Defaultoverview",)} 
Related Topics



play example
The following example plays a script called TESTSCR.SSL, which resides in the working directory:
; playAScript::pushButton
method pushButton(var eventInfo Event)
play("Testscr.ssl")
endMethod



printerGetInfo procedure
Retrieves information about the printer installed on your system.

Syntax
printerGetInfo ( var printInfo PrinterInfo ) Logical

Description
printerGetInfo assigns printer information to printInfo, a record that you declare using a special ObjectPAL data
type named PrinterInfo. The following table displays the structure of PrinterInfo:
Field Type Description
DriverName String Name of the printer driver (e.g.,    PSCRIPT.DRV)
DeviceName String Name that identifies the printer type (e.g.,    Apple LaserWriter Plus)
PortName String Name of the printer port (e.g.,    LPT1)
DefaultPrinter Logical Determines whether the current printer is the default
This procedure returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMPRINTERS;OPAL_METH_SYPRINTERGETOPTIONS;
OPAL_METH_SYPRINTERSETCURRENT;OPAL_METH_SYPRINTERSETOPTIONS;',0,"Defaultoverview",)} 
Related Topics



printerGetInfo example
See the printerSetOptions example.



printerGetOptions procedure
Retrieves information about your system printer's settings.

Syntax
1. printerGetOptions ( var printOptions PrinterOptionInfo ) Logical
2. printerGetOptions ( var printerInfo DynArray[] AnyType ) Logical

Description
printerGetOptions assigns printer information to printInfo. PrintInfo is a variable you declare as an ObjectPAL 
record with a predefined structure called PrinterOptionInfo.
printerGetOptions assigns printer information to printInfo, a record you declare as an ObjectPAL data type 
PrinterOptionInfo.

Syntax 2 fills an array named printerInfo with supported print options.
This procedure returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMPRINTERS;OPAL_METH_SYPRINTERGETINFO;OPA
L_METH_SYPRINTERSETCURRENT;OPAL_METH_SYPRINTERSETOPTIONS;',0,"Defaultoverview",)} Related 
Topics



printerGetOptions example
The following example sets the current printer settings and determines whether the printer is using a large 
format paper source:
method pushButton(var eventInfo Event)
   var
      recUserOptions,
      recMyOptions   PrinterOptionInfo
   endVar

   ; Get the current printer settings.
   printerGetOptions(recUserOptions)
   if recUserOptions.DefaultSource = prnLargeFmt then
      return
   endIf

   ; Specify new printer settings. prnLargeFmt is a PrintSources constant.
   recMyOptions.DefaultSource = prnLargeFmt

   if printerSetOptions(recMyOptions) then
      message("Printer setup complete.")
   else
      errorShow()
   endIf
endMethod



PrinterOptionInfo record structure
Field Type Description
Orientation LongInt Paper orientation (portrait or landscape). Use a PrinterOrientation constant 

to test the value.
PaperSize LongInt Paper size. Use a PrinterSizes constant to test the value.
PaperWidth LongInt Custom paper width in twips (maximum of 64K twips). This value is 

converted internally to the tenths of a millimeter required by Windows.
PaperLength LongInt Custom paper length in twips (maximum of 64K twips). This value is 

converted internally to the tenths of a millimeter required by Windows.
Scale LongInt Scaling factor in percent. A scale value of 50 reduces the original to one-

half its size. A value of 200 increases the original to twice its size. Scaling 
only applies to printers that support scaling for all functions, graphics, and 
fonts (e.g., Postscript printers and the Microsoft Windows Printing System).

Copies LongInt Number of copies for the printer to make. The Copies option works only 
with page printers (e.g., laser printers) where the full page can be held in 
printer memory. Some printer drivers support this feature on printers that 
cannot do full page printing.
The Copies setting is equivalent to unchecking the Collate button in the 
Print File dialog box. Output is not collated. This operation is faster than 
repeatedly sending the full document to the printer, but requires hand 
sorting at completion.

DefaultSource LongInt Bin, tray, or feeder used by the default printer. Use a PrintSources constant 
to test the value.

PrintQuality LongInt Higher print qualities are used for final output, and lower print qualities for 
draft output. Lower quality prints differ significantly from the preview 
appearance of the document. Use a PrintQuality constant to test the value.

Color LongInt Sets color printers to color or monochrome printing. Monochrome printing is
usually faster. Use a PrintColor constant to test the value.

Duplex LongInt Double-sided printing. Some printer drivers can support double-sided 
printing on otherwise single-sided printers by making two passes over the 
document. Use a PrintDuplex constant to test the value.



printerSetCurrent procedure
Sets the active printer on your system.

Syntax
printerSetCurrent ( printerInfo String ) Logical

Description
printerSetCurrent sets the active printer on your system. The argument printerInfo specifies the printer name, 
driver name, and printer port (separated by commas). For example, if the printer name is Postscript Printer, the 
driver is PSCRIPT.DRV, and the port is LPT1, the following code applies:
PostScript Printer,pscript,LPT1:

This procedure returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMPRINTERS;OPAL_METH_SYPRINTERGETINFO;OPA
L_METH_SYPRINTERGETOPTIONS;OPAL_METH_SYPRINTERSETOPTIONS;',0,"Defaultoverview",)} Related 
Topics



printerSetCurrent example
See the enumPrinters example.



printerSetOptions procedure
Specifies settings for your system printer.

Syntax
1. printerSetOptions ( PrintOptions PrinterOptionInfo ) Logical
2. printerSetOptions ( var printerInfo DynArray[] AnyType [const overRide Logical] ) Logical

Description
printerSetOptions specifies settings for your system printer. printerSettings is a record of the special 
ObjectPAL data type PrinterOptionInfo that you must declare. You don't have to specify values for each field in a 
PrinterOptionInfo record. The printer substitutes its current setting for any value you don't specify.
Syntax 2 uses an array named printerInfo (obtained with printerGetOptions) to send the printer settings for 
only those options that the printer supports. The optional overRide argument tells printerSetOptions to 
override printer settings specified in the Form or Report level. 
printerSetOptions returns True if successful; otherwise, it returns False. If you specify a value that doesn't 
apply to your printer, this method returns False. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMPRINTERS;OPAL_METH_SYPRINTERGETINFO;OPA
L_METH_SYPRINTERGETOPTIONS;OPAL_METH_SYPRINTERSETCURRENT;',0,"Defaultoverview",)} Related
Topics



printerSetOptions example
The following example prompts you to specify the number of copies of a report to print, sets up the printer, and 
prints the copies:
method pushButton(var eventInfo Event)
   var
      siNCopies   SmallInt
      stPrompt    String
      prnOptions  PrinterOptionInfo
      reOrders    Report
   endVar

   siNCopies = 0
   stPrompt  = "Print how many copies?"

   siNCopies.view(stPrompt)
   if siNCopies > 0 then
      prnOptions.Copies = siNCopies
   else
      return
   endIf

; Use constant to specify lower paper tray.
   prnOptions.DefaultSource = prnLower

; Use constant to specify landscape (long) orientation.
   prnOptions.Orientation = prnLandscape

; Use constant to specify high quality print.
   prnOptions.PrintQuality = prnHigh

   if printerSetOptions(prnOptions) then
      reOrders.print("orders")
   else
      errorShow("Could not set printer options.")
   endIf

endMethod



projectViewerClose procedure
Closes the Project Viewer window.

Syntax
projectViewerClose ( ) Logical

Description
projectViewerClose closes the Project Viewer window. This procedure returns True if successful; otherwise, it 
returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYPROJECTVIEWERISOPEN;OPAL_METH_SYPROJECTVIEW
EROPEN;',0,"Defaultoverview",)} Related Topics



projectViewerClose example
The following example calls projectViewerIsOpen to determine whether the Project Viewer window is open. If 
the Project viewer is open, this code closes it.
method open(var eventInfo Event)
   if eventInfo.isPreFilter() then
      ;// This code executes for each object on the form:
      
   else
      ;// This code executes only for the form:
      if projectViewerIsOpen() then
         projectViewerClose()
      endIf
   endIf
endMethod



projectViewerIsOpen procedure
Tells whether the Project Viewer window is open.

Syntax
projectViewerIsOpen ( ) Logical

Description
projectViewerIsOpen determines whether the Project Viewer window is open. This procedure returns True if the
Project Viewer window is open; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYPROJECTVIEWERCLOSE;OPAL_METH_SYPROJECTVIEWE
ROPEN;',0,"Defaultoverview",)} Related Topics



projectViewerIsOpen example
See the projectViewerClose example.



projectViewerOpen procedure
Opens the Project Viewer window.

Syntax
projectViewerOpen ( ) Logical

Description
projectViewerOpen opens the Project Viewer window. This procedure returns True if successful; otherwise, it 
returns False.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYPROJECTVIEWERCLOSE;OPAL_METH_SYPROJECTVIEWE
RISOPEN;',0,"Defaultoverview",)} Related Topics



projectViewerOpen example
The following example calls projectViewerIsOpen to determine whether the Project Viewer window is open. If 
the Project viewer is open, this code closes it.
method open(var eventInfo Event)
   if eventInfo.isPreFilter() then
      ;// This code executes for each object on the form:
      
   else
      ;// This code executes only for the form:
      if not projectViewerIsOpen() then
         projectViewerOpen()
      endIf
   endIf
endMethod



readEnvironmentString procedure
Reads an item from the Corel Paradox copy of the DOS environment.

Syntax
readEnvironmentString ( const key String ) String

Description
readEnvironmentString returns a string containing information about the DOS environment variable specified 
by key. When you launch Corel Paradox it makes a copy of the DOS environment. readEnvironmentString 
reads that copy and compiles information in a string. Changes made to DOS environment variables after Corel 
Paradox is launched are not read by this procedure. 
The DOS command SET assigns values to the environment variables. These values control the appearance and 
function of DOS and some batch files. Commonly used environment variables include PATH, PROMPT, and 
COMSPEC. For more information, see the SET command your DOS manuals, especially .
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYRPROF;OPAL_METH_SYWRITEENVIRONMENTSTRING;',0
,"Defaultoverview",)} Related Topics



readEnvironmentString example
The following example uses readEnvironmentString to retrieve the value of the PATH environment variable. 
The code then uses writeEnvironmentString to change it.
; changeEnvironmentStr::pushButton
method pushButton(var eventInfo Event)
var 
   fs              FileSystem
   thePath, myDir  String 
   pathArr Array[] String
endVar
; fs.getDir() currently returns some high-ANSI char--not a meaningful string
myDir = getaliaspath(fs.getDir())       ; get the current directory
myDir.view("Current directory")
thePath = readEnvironmentString("PATH") ; read the path environment var
thePath.breakApart(pathArr, ";")        ; break on semicolon
pathArr.view("An array of paths")       ; view the results
if NOT pathArr.contains(myDir) then     ; if current dir not in path
   msgInfo("FYI", "Adding current directory to path.")
   writeEnvironmentString("PATH", thePath + ";" + myDir)  ; add it
endIf
thePath = readEnvironmentString("PATH") ; read the changed environment var
thePath.view()
thePath.breakApart(pathArr, ";")        ; break it up
pathArr.view("An array of paths")       ; view the results
endMethod



readProfileString procedure
Returns a value from a specified section of a file.

Syntax
readProfileString ( const fileName String, const section String, const key String ) String

Description
readProfileString returns a value from a specified section of a file. By default this procedure searches the 
WINDOWS directory. You can also use this method to read your WIN.INI file, so fileName would be WIN.INI.
Each section header in WIN.INI is bounded by square brackets on a separate line (e.g., [windows]). To specify a 
section, omit the brackets (e.g., use windows). In each section, a value marker is followed by an equal sign (e.g., 
Beep =). The equal sign is not required when you specify the value of key.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYRENV;',0,"Defaultoverview",)} Related Topics



readProfileString example
The following example uses readProfileString to retrieve the setting for the Windows beep, and 
writeProfileString to change the setting:
; changeProfileStr::pushButton
method pushButton(var eventInfo Event)
var
   myBeep String
   winDir String
endVar
winDir = windowsDir()
myBeep = readProfileString(winDir + "\\win.ini", "windows", "Beep")
msgInfo("Beep?", myBeep) ; displays yes or no, depending on user's settings
if myBeep <> "yes" then
  msgInfo("Alert", "Changing profile string for Beep to yes.")
  writeProfileString(winDir + "\\win.ini", "windows", "Beep", "yes")
  beep()
else
  msgInfo("Alert", "Changing profile string for Beep to no.")
  writeProfileString(winDir + "\\win.ini", "windows", "Beep", "no")
  beep()
endIf
endMethod



resourceInfo procedure
Lists the system resources.

Syntax
resourceInfo ( var info DynArray[ ] AnyType )

Description
resourceInfo writes system resource data to info. Info is a dynamic array (DynArray) that you declare and pass 
as an argument. 
The following table displays the information returned in info:
Index Definition
DiskAvail Available disk space on the current drive
DiskTotal Total disk space on the current drive
FreeGdiResources Percentage of free Windows GDI resources. This item is not supported in the 32-bit 

Windows environment.)
FreeSpace Free Windows memory
FreeSystemResources Percentage of free Windows system resources. This item is not supported in the 32-

bit Windows environment.
FreeUserResources Percentage of free Windows user resources. This item is not supported in the 32-bit 

Windows environment.
InternalVersion Corel Paradox internal Borland Database Engine (BDE) version
MemoryLoad Percent of memory in use
MemPhysicalTotal Total physical memory
MemPhysicalFree Available physical memory
MemPageFileTotal Total page/file memory
MemPageFileFree Available page/file memory
MemVirtualTotal Total virtual memory
MemVirtualFree Available virtual memory
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMENVIRONMENTSTRINGS;',0,"Defaultoverview",)}
Related Topics



resourceInfo example
The following example writes resource information to a dynamic array named dyn and then displays dyn in a 
View dialog box:
; btnResourceInfo::pushButton
method pushButton(var eventInfo Event)
  var
    dynResources  Dynarray[] String
  endVar

  resourceInfo(dynResources)
  dynResources.view()
endmethod



runExpert procedure
Runs a registered Corel Paradox expert.

Syntax
runExpert ( const expertType String, const expertName String ) 

Description
runExpert runs a registered Corel Paradox expert. The expertName argument specifies which expert to run. The
expertType parameter determines the type of experts to list. ObjectPAL provides ExpertTypes constants for this 
purpose.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYENUMEXPERTS;',0,"Defaultoverview",)} Related 
Topics



runExpert example
The following example enumerates the available experts, and runs expertForm if it is available:
method pushButton(var eventInfo Event)
var
   da dynarray[] anytype
   expert string
endvar

expertForm = "Form"
enumExperts(  "Document", da )

if da.contains( expertForm ) then
   runExpert( "Document", expertForm )
else
   msgStop( "Error", "Unable to run the expert :" + expertForm )
endif
endmethod



searchRegistry procedure
Searches the registry for a specified value.

Syntax
searchRegistry ( const key String, const searchStr String, const rootKey LongInt, const 
searchMode LongInt, const inMem TCursor ) Logical

Description
searchRegistry searches the registry string data types for the value in searchStr. Searches performed by 
searchRegistry are case insensitive and the results are placed in inMem, an in-memory TCursor. 
searchRegistry returns True if successful; otherwise, it returns False.
key is entered as a path similar to a file path. If key is not blank, the search begins at the specified path; 
otherwise, it starts from the rootKey. searchStr is the value of the object you want to locate. searchRegistry 
only searches strings, and not registry DWORD or Binary types. If searchStr is blank, searchRegistry returns an 
error. Set rootKey with the predefined RegistryKeyType Constants, or it can be set to zero. If rootKey is zero, then 
all rootKeys are searched.
searchMode specifies the registry objects you want to search in the registry. Registry objects include keys, value 
names, and data. The following table describes the searchMode flags:
searchMode Registry objects searched
0 All
1 Keys
2 Value names
3 Data
4 Keys and value names
5 Keys and Data
6 Value names and Data
The inMem TCursor has three fields that are limited to A255. The values in these fields are truncated if the key 
returned is greater than 255 characters. searchRegistry returns a warning if the field limit is reached. The 
following table displays the structure of inMem:
Field Type Description
RegistryType A12 Registry object type (Key, ValueName or Data)
RootKeyConst A25 Predefined rootKey constant as a string
KeyPath A255 Full path of the key
ValueName A255 Full value name
Data A255 Full Data
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDELETEREGISTRYKEY;OPAL_METH_SYENUMREGISTRYK
EYS;OPAL_METH_SYENUMREGISTRYVALUENAMES;OPAL_METH_SYGETREGISTRYVALUE;OPAL_METH_SYSE
TREGISTRYVALUE;',0,"Defaultoverview",)} Related Topics



searchRegistry example
The following example searches the registry for all keys containing the string Corel. The results are displayed in a
TableView window.
;// Search the registry for keys that have the string "Corel" in them, and write
;// the results to a table
var
   tc TCursor
endVar
searchRegistry( "", "Corel", 0, 1, tc )  ; Search the registry
                                           ; for keys that have
                                           ; "Corel" in them
if NOT tc.isEmpty() then
   tc.instantiateView("keytab.db")    ; write the results to a table
endif
tc.close()

The following example searches the entire registry for keys containing the word Pdoxwin. The results are 
displayed in a TableView window.
var
   tc   Tcursor
   tv   TableView
endvar

searchRegistry( "", "Pdoxwin", 0, 1, tc )
tc.instantiateView( ":priv:keysreg" )
tv.open( ":priv:keysreg" )
tv.wait()
tv.close()



sendKeys procedure
Sends one or more keystrokes to the active window.

Syntax

sendkeys ( const keyText String [ , const wait Logical ] ) Logical
Description
sendKeys sends one or more keystrokes to the active window as if they had been entered at the keyboard. The 
active window does not have to be Corel Paradox. The argument keyText specifies the keystrokes to send. wait 
(optional) specifies whether to continue executing keystroke sequences in the message loop without waiting. 
sendKeys returns False if an error it from sending the keys. errorCode returns one of the following messages:
Error code Error message
peskMissingCloseBrace Missing closing brace
peskInvalidKey The key name is not correct
peskMissingCloseParen Missing closing parentheses
peskInvalidCount The repeat count is not correct
peskStringTooLong The keys string is too long
peskCantInstallHook Could not install Windows journal hook
 Note

· sendKeys can only send keystrokes to Microsoft Windows applications. It cannot send the Print Screen (PRINT 
SCRN) key to any application.

The keyText argument
Each key is represented by one or more lowercase characters. To represent the letter A, use "a" for keyText. To 
represent more than one character, string them together. To send the letters a, b, and c, use "abc" for keyText. 
The plus sign (+), caret (^), percent sign (%), tilde (~), and parentheses ( ) have special meanings to sendKeys.
To specify one of these characters, enclose it inside braces. To specify the plus sign, use{+}. To send brace 
characters, enclose each brace in braces: {{} and {}}.
To specify non-printing characters (such as ENTER or TAB) and keys that represent actions rather than 
characters, use the following codes:
Key Codes
BACKSPACE {backspace}, {bs}, {bksp}, {vk_back}
BREAK {break}, {vk_break}
CAPS LOCK {capslock}, {vk_captial}
CLEAR {clear}, {vk_clear}
DEL {delete}, {del}, {vk_delete}
Down Arrow {down}, {vk_down}
END {end}, {vk_end}
ENTER {enter}, {return}, {vk_return} (the character ~)
ESC {escape}, {esc}, {vk_escape}
HELP {help}, {vk_help}
HOME {home}, {vk_home}
INS {insert}, {vk_insert}
Left Arrow {left}, {vk_left}
NUM LOCK {numlock}, {vk_numlock}
PAGE DOWN {pgdn}, {vk_next}
PAGE UP {pgup}, {vk_prior}
PRINT SCRN {prtsc}, {vk_snapshot}
Right Arrow {right}, {vk_right}
SCROLL LOCK {scrolllock}, {vk_scroll}
SPACEBAR {vk_space}
TAB {tab}, {vk_tab}



Up Arrow {up}, {vk_up}
F1 {F1}, {vk_F1}
F2 {F2}, {vk_F2}
F3 {F3}, {vk_F3}
F4 {F4}, {vk_F4}
F5 {F5}, {vk_F5}
F6 {F6}, {vk_F6}
F7 {F7}, {vk_F7}
F8 {F8}, {vk_F8}
F9 {F9}, {vk_F9}
F10 {F10}, {vk_F10}
F11 {F11}, {vk_F11}
F12 {F12}, {vk_F12}
F13 {F13}, {vk_F13}
F14 {F14}, {vk_F14}
F15 {F15}, {vk_F15}
F16 {F16}, {vk_F16}

The ~ character represents the ENTER key. For example, sendKeys("abc~") types the letters abc and the 
carriage return.
To specify keys combined with SHIFT, CTRL, and ALT, precede the regular key code with one or more of the 
following codes:
Key Code
SHIFT +
CTRL ^
ALT %

For example, use the following syntax to display the File menu list in Corel Paradox: sendKeys("%f").

The following code moves down 3 menu items: sendKeys("{down 3}").
Pick the item using the following syntax: sendKeys("~"). 

To combine these three steps into one: sendKeys("%f{down 3}~")
To specify that SHIFT, CTRL, and (or) ALT must be held down while one or more keys are pressed, enclose the key
codes in parentheses. For example, if SHIFT is pressed while a and b are pressed, use "+(ab)". If SHIFT is 
pressed while a is pressed, and b is pressed without SHIFT, use "+ab".
To specify repeating keys, enclose a string and a number in braces {key number}. For example, {left 42} 
specifies you must press the left arrow key 42 times; and {h 9} means you must press h 9 times.

Special commands
The following are special commands you can include as part of the keyText argument:
· {delay value}

delay sets the delay (in milliseconds) between keystrokes. {delay 1000} waits 1 second between 
keystrokes; this is approximate and may vary if SHIFT, Alt, or CTRL are set. If the actual time to execute the 
command is longer, you may see additional delays.
delay is mainly used to let dialog boxes display. Without it the keys are sent at full speed, and Windows 
processes the keys too quickly to paint the dialog box on the screen. delay remains in effect until another 
delay or a sendKeys statement executes; it does not affect action commands.

· {action integervalue}
action sends an action to the object in the form that issued the sendKeys statement. It allows you to gain 
control while sendKeys executes, to inspect the state of forms or dialog boxes. integervalue is a value between
0 and 2047. Do not call any methods or procedures that wait for user input, and do not open a form or report.

· {cmt comment}
cmt lets you insert comments. comment represents your remarks; all characters are allowed.

· {beginexact}text {endexact}
sendKeys normally ignores carriage returns and line feeds, and assigns meanings to certain characters. To 



bypass this processing, enclose the text with {beginexact} and {endexact}. Once a {beginexact} is 
encountered, all text is processed exactly as is until the {endexact}.
If you call sendKeys while another sendKeys statement is executing, Corel Paradox adds the new key 
sequence to the end of the event queue.

· {menu integervalue}
This sends a menu command to the active object. integervalue represents a value from the menu command 
constants.

The wait argument
wait specifies whether to wait after keys are sent, or to continue ObjectPAL execution. The recommended setting
is False. Windows sometimes stops responding to sendKeys if the wait parameter is True (e.g., when keys are 
sent to nested dialogs). Set wait to False when changing the working directory or the private directory.
 Note

· sendKeys statements are not portable across language barriers.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYSENDKEYSACTIONID;OPAL_TYPE_TIMEREVENT;',0,"Def
aultoverview",)} Related Topics



sendKeys example
The following example uses the execute system procedure to run the Windows Notepad application and then 
sendKeys sends keystrokes to Notepad twice and saves the file as TWOLINES.TXT:
method pushButton(var eventInfo event)

   execute("notepad.exe")          ; run Notepad.
   sleep(1000)
   ; write a short note.

   sendKeys("this is the first line of a 2-line note.~")
   sendKeys("this is the second line of a 2-line note.")

   ; send alt+f, s to choose File, Save.

   sendKeys("%fs") 

   ; send a filename to the dialog box, and 
   ; send enter to save the file.

 sendKeys("twolines.txt~") 

   ; send Alt+f4 to close Notepad.

   sendKeys("%{f4}")

endMethod



sendKeysActionID method
Allows the sendKeys procedure to notify you when the sendKeys queue is empty.

Syntax
sendKeysActionID ( const id SmallInt )

Description
sendKeysActionID allows the sendKeys procedure to notify you when the sendKeys queue is empty. The 
argument id is a user-defined action constant whose value is between the IdRanges constants UserAction and 
UserActionMax. id is sent to the form's active object (or to the form itself if there is no active object) that issued 
the sendKeys method.
The code used to process sendKeysActionID is usually placed at the form level. If there is an active object, it 
receives the ID in its action method. The default, however, is to bubble the action ID to the form.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;',0,"Defaultoverview",)} Related Topics



sendKeysActionID example
The following example specifies the action ID value sent when the queue is empty. Suppose a form contains an 
unbound field and a button. The following code is attached to the form's Const window:
const
   kMyCustomAction = 1
endConst

The following code is attached to the form's built-in action method.
method action(var eventInfo ActionEvent)
  if eventInfo.id() = UserAction + kMyCustomAction then
     message("sendKeys has finished sending")
  endIf
endMethod

The following code is attached to a button's built-in pushButton method.
method pushButton(var eventInfo Event)
   ; Send keys but do not wait.
   sendKeys("This is some text", FALSE)

   ; Set the action id to send when the queue is empty.
   sendKeysActionID(UserAction + kMyCustomAction)
endMethod



setDefaultPrinterStyleSheet procedure
Specifies a default printer style sheet.

Syntax
setDefaultPrinterStyleSheet ( const fileName String )

Description
setDefaultPrinterStyleSheet sets the Corel Paradox style sheet, specified by fileName, as the default for 
documents designed for the printer. If fileName does not specify a full path, setDefaultPrinterStyleSheet 
searches the working directory.
Any UIObjects created in forms and reports while the style sheet is active are given the properties and methods 
of the corresponding prototype objects in the style sheet.
This procedure does not change the properties or methods of existing UIObjects and has no effect on UIObjects 
in forms and reports that use different style sheets.
Use getStyleSheet and setStyleSheet to work with style sheets for specific forms and reports.
Use setDefaultScreenStyleSheet to specify the name of the default screen style sheet. The screen style sheet
is used whenever you create design documents that are designed for the screen.
 Note

· Printer style sheet files have an .FP extension and screen style sheet files have and .FT the extension. Printer 
and screen style sheets are not interchangeable.

 Example
{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYGETDEFAULTPRINTERSTYLESHEET;OPAL_METH_SYGET
DEFAULTSCREENSTYLESHEET;OPAL_METH_SYSETDEFAULTSCREENSTYLESHEET;OPAL_METH_FOSAVESTYL
ESHEET;OPAL_METH_FOGETPROTOPROPERTY;OPAL_METH_FOSETPROTOPROPERTY;',0,"Defaultoverview"
,)} Related Topics



setDefaultPrinterStyleSheet example
The following example calls getDefaultPrinterStyleSheet to determine the current default style sheet. If the 
style sheet is not COREL.FT, the code calls setDefaultPrinterStyleSheet to set it. The code then calls 
getDefaultPrinterStyleSheet again to make sure it was reset successfully.
setDefaultPrinterStyleSheet requires double backslashes in the path, but getDefaultPrinterStyleSheet 
returns single backslashes.
method pushButton(var eventInfo Event)
   ; Get and set the system style sheet.
   if getDefaultPrinterStyleSheet() <> "c:\\Corel\\Suite8\\Paradox\\Corel.fp" then
      setDefaultPrinterStyleSheet("c:\\Corel\\Suite8\\Paradox\\Corel.fp")
      if getDefaultPrinterStyleSheet() <> "c:\\Corel\\Suite8\\Paradox\\Corel.fp" then
         msgStop("Problem", "Could not set the style sheet.")
      endIf
   endIf
endMethod



setDefaultScreenStyleSheet procedure
Specifies a default screen style sheet.

Syntax

setDefaultScreenStyleSheet ( const fileName String )
Description
setDefaultScreenStyleSheet sets the Corel Paradox style sheet specified by fileName as the default for 
documents designed for the screen. If fileName does not specify a full path, setDefaultScreenStyleSheet 
searches the working directory.
Any UIObjects created in forms and reports while the style sheet is active are given the properties and methods 
of the corresponding prototype objects in the style sheet.
This procedure does not change the properties or methods of existing UIObjects and has no effect on UIObjects 
in forms and reports that use different style sheets.
Use getStyleSheet and setStyleSheet to work with style sheets for specific forms and reports.
Use setDefaultScreenStyleSheet to specify the name of the default screen style sheet. The screen style sheet is 
used whenever you create design documents that are designed for the screen.
 Note

· Printer style sheet files have an .FP extension and screen style sheet files have and .FT the extension. Printer 
and screen style sheets are not interchangeable.

 Example
{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYGETDEFAULTPRINTERSTYLESHEET;OPAL_METH_SYGET
DEFAULTSCREENSTYLESHEET;OPAL_METH_FOSAVESTYLESHEET;OPAL_METH_FOGETPROTOPROPERTY;OP
AL_METH_FOSETPROTOPROPERTY;',0,"Defaultoverview",)} Related Topics



setDefaultScreenStyleSheet example
The following example calls getDefaultScreenStyleSheet to determine the current system style sheet. If it is 
not COREL.FT, setDefaultScreenStyleSheet sets it. The code then makes sure it was set successfully.
method pushButton(var eventInfo Event)
   ; Get and set the system style sheet.
   if getDefaultScreenStyleSheet() <> "c:\\Corel\\Suite8\\Paradox\\Corel.ft" then
      setDefaultScreenStyleSheet("c:\\Corel\\Suite8\\Paradox\\Corel.ft")
      if getDefaultScreenStyleSheet() <> "c:\\Corel\\Suite8\\Paradox\\Corel.ft" then
         msgStop("Problem", "Could not set the style sheet.")
      endIf
   endIf
endMethod



setDesktopPreference procedure
Sets a desktop preference.

Syntax
setDesktopPreference ( const section AnyType, const name AnyType, const value AnyType ) Logical

Description
setDesktopPreference sets the desktop preference specified by the section and name arguments. The value 
argument corresponds to one of the DesktopPreferenceTypes Constants. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYGETDESKTOPPREFERENCE;',0,"Defaultoverview",)} 
Related Topics



setDesktopPreference example
The following example sets the title name preference, retrieves the name, and displays it:
method pushButton(var eventInfo Event)
setDesktopPreference( PrefProjectSection, prefTitleName,"Corel Paradox pour Windows" )

x = getDesktopPreference( PrefProjectSection, prefTitleName )

x.view()
endmethod



setMouseScreenPosition procedure
Displays the pointer at a specified position.

Syntax
1. setMouseScreenPosition ( const mousePosition Point )
2. setMouseScreenPosition ( const x LongInt, const y LongInt )

Description
setMouseScreenPosition displays the pointer at the specified position. In Syntax 1, the pointer is displayed at 
the point specified in mousePosition. In Syntax 2 the pointer is displayed at the coordinates specified in twips by 
x and y.
Use Point type methods such as x and y to retrieve more information.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYGMOUS;OPAL_METH_MEGPOS;OPAL_METH_MESPOS;',0
,"Defaultoverview",)} Related Topics



setMouseScreenPosition example
See the getMouseScreenPosition example.



setMouseShape procedure
Sets the shape of the pointer.

Syntax
setMouseShape ( const mouseShapeId LongInt [,const persist Logical] ) LongInt

Description
setMouseShape sets the shape of the pointer. The argument mouseShapeId specifies the shape of the pointer. 
ObjectPAL provides MouseShapes constants for this purpose.
If persist is true then the pointer will be persistent (will not change shape) to objects that implicitly change the 
shape of the mouse (e.g., button objects and field objects). persist will not affect where the ObjectPAL 
developer has explicitly changed the shape of the mouse. For example, in a mouseEnter method of an object, 
setMouseShape will override mouse persistence. persist does not affect ActiveX or native Windows controls.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYGMOUS;OPAL_METH_SYISMOUSEPERSISTENT;OPAL_ME
TH_SYSMPOS;OPAL_METH_SYSETMOUSESHAPEFROMFILE;',0,"Defaultoverview",)} Related Topics



setMouseShape example
In the following example, a form has two buttons: btnNonPersistent and btnPersistent. The pushButton method 
of each button uses setMouseShape to set the mouse shape of the cursor; the first with persistence set to 
False, the second with persistence set to True. The second button, btnPersistent also contains a mouseEnter 
method which will use isMousePersistent to evaluate the persistency of the pointer and return it to its original 
state.
When the first button is pressed, the pointer changes. However, when the pointer moves off the button, the 
pointer returns to its original setting. When the second button is pressed, the pointer changes and remains that 
way until the pointer moves back over the second button. This triggers the mouseEnter method of the second 
button and return the pointer back to its original state.
The following code is attached to the pushButton method for btnNonPersistent:
; btnNonPersistent::pushButton
method pushButton(var eventInfo Event)
   ;// Set the shape to international symbol for No - non-persistent
   setMouseShape(MouseNo,FALSE)
endMethod

The following code is attached to the pushButton method for btnPersistent:
; btnPersistent::pushButton
method pushButton(var eventInfo Event)
   ;// Set the shape to international symbol for No - persistent
   setMouseShape(MouseNo,TRUE)
endMethod

The following code is attached to the mouseEnter method for btnPersistent:
; btnPersistent::mouseEnter
method mouseEnter(var eventInfo MouseEvent)
   if isMousePersistent() then
      ;// If its persistent, set it back to the arrow cursor
      setMouseShape(MouseArrow,FALSE)
   endIf
endMethod



setMouseShapeFromFile method
Specifies the shape of the pointer.

Syntax
setMouseShapeFromFile ( const fileName String [,const persist Logical] ) LongInt

Description
setMouseShapeFromFile specifies the shape of the pointer based on data contained in fileName. fileName is a
*.CUR or *.ANI file that supports paths and aliases. If fileName does not exist, a warning is generated. 
setMouseShapeFromFile returns a LongInt handle to the mouse shape.
If persist is True then the pointer is persistent (will not change shape) to objects that implicitly change the shape 
of the mouse (e.g., button objects and field objects). persist does not affect where the ObjectPAL developer has 
explicitly changed the shape of the mouse. For example, in a mouseEnter method of an object, 
setMouseShape overrides mouse persistence. persist does not affect ActiveX or native Windows controls.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYGMOUS;OPAL_METH_SYISMOUSEPERSISTENT;OPAL_ME
TH_SYSMPOS;OPAL_METH_SYSMSHAP;',0,"Defaultoverview",)} Related Topics



setMouseShapeFromFile example
In the following example, a form has two buttons: btnNonPersistent and btnPersistent. The pushButton method 
of each button uses setMouseShapeFromFile to set the mouse shape of the cursor to an animated cursor 
provided with Windows 95 and Windows NT; the first with persistence set to false, the second with persistence 
set to true. The second button, btnPersistent also contains a mouseEnter method which will use 
isMousePersistent to evaluate the persistency of the pointer and return it to its original state. 
When the first button is pressed, the pointer changes. However, when the pointer moves off the button, the 
pointer returns to its original setting. When the second button is pressed, the pointer changes and remains that 
way until the pointer is moved back over the second button. This triggers the mouseEnter method of the 
second button and returns the pointer back to its original state. Each pushButton method will determine which 
operating system its running under to determine where to find the animated cursor file.
The following code is attached to the pushButton method for btnNonPersistent:
; btnNonPersistent::pushButton
method pushButton(var eventInfo Event)
var
   sysDyn       DynArray[] AnyType
   mouseHandle  LongInt
endVar
   sysInfo(sysDyn)
   if sysDyn["WindowsPlatform"] = "WIN95" then
                   ;// if Windows 95
      mouseHandle = setMouseShapeFromFile( windowsDir() +
                  "\\CURSORS\\HOURGLAS.ANI", FALSE)
   else
         ;// if Windows NT
      mouseHandle = setMouseShapeFromFile( windowsSystemDir() + 
                  "\\HOURGLAS.ANI", FALSE)
   endIf
endMethod

The following code is attached to the pushButton method for btnPersistent:
; btnPersistent::pushButton
method pushButton(var eventInfo Event)
var
   sysDyn       DynArray[] AnyType
   mouseHandle  LongInt
endVar
   sysInfo(sysDyn)
   if sysDyn["WindowsPlatform"] = "WIN95" then
         ;// if Windows 95
      mouseHandle = setMouseShapeFromFile( windowsDir() +
                  "\\CURSORS\\HOURGLAS.ANI", TRUE)
   else
         ;// if Windows NT
      mouseHandle = setMouseShapeFromFile( windowsSystemDir() + 
                  "\\HOURGLAS.ANI", TRUE)
   endIf
endMethod

The following code is attached to the mouseEnter method for btnPersistent:
; btnPersistent::mouseEnter
method mouseEnterpushButton(var eventInfo MouseEvent)
   if isMousePersistent() then
         ;// If its persistent, set it back to the arrow cursor
      setMouseShap(MouseArrow,FALSE)
   endIf
endMethod



setRegistryValue method
Sets a value in the registry.

Syntax
setRegistryValue ( const key String, const value String, const data AnyType, const rootKey 
LongInt ) Logical

Description
setRegistryValue writes data to a specified value of a registry key. If the key or value do not exist, then they 
will be created. If data is empty then only key is created. If value is empty, then key and data are created. 
key is a path similar to a file path. However, wildcards are not expanded in the key. key cannot contain a single 
backslash and cannot be empty. Its size is limited to 65,534 bytes. 
The value is a string that is limited to 65,534 bytes. value can contain backslashes and can be empty. 
setRegistryValue returns True if successful; otherwise, it returns False.
data accepts the following types:
ObjectPAL Type Registry type Size limitation
Currency String 32k
Date String 32k
DateTime String 32k
Logical String 32k
LongInt DWORD 32k
Memo String 32k
Number String 32k
Point String 32k
SmallInt DWORD 32k
String String 32k
Time String 32k

rootKey is analogous to a directory drive. Set rootKey with the predefined RegistryKeyType Constants. 
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYDELETEREGISTRYKEY;OPAL_METH_SYENUMREGISTRYK
EYS;OPAL_METH_SYENUMREGISTRYVALUENAMES;OPAL_METH_SYGETREGISTRYVALUE;OPAL_METH_SYSE
ARCHREGISTRY;',0,"Defaultoverview",)} Related Topics



setRegistryValue example
The following example sets the current ObjectPAL level in the registry:
var
   strLevel   String
endvar

;// create key, value and data in regCurrentUser
setRegistryValue( "Software\\Corel\\Myapp\\Settings", "ObjectValue", "An object", 
regKeyCurrentUser )



setUserLevel procedure
Sets your ObjectPAL level (Beginner or Advanced). Beginner restricts the methods displayed for each object in 
the Integrated Development Environment (IDE) to those a new ObjectPAL user would likely need; Advanced 
displays all methods.

Syntax
setUserLevel ( const level String )

Description
setUserLevel Sets your ObjectPAL level (Beginner or Advanced). Use getUserLevel to return the current 
setting.
 Notes

· The ObjectPAL level setting does not affect how code executes; it only affects what is displayed in the user 
interface.

· The advanced setting is highly recommended.
   Example  

{button ,AL(`OPAL_TYPE_SYSTEM;INTRO_INTRO;OPAL_METH_SYSETUSERLEVEL;;;',0,"Defaultoverview",)
} Related Topics



setUserLevel example
Uses getUserLevel to determine if the ObjectPAL user level is set to Beginner. If the ObjectPAL level is set to 
Beginner, setUserLevel sets it to Advanced. If the ObjectPAL user level is already set to Advanced, the code 
sends a message stating this to the Status Bar.
;setToAdvanced::pushButton
method pushButton(var eventInfo Event)
   if getUserLevel() = "Beginner" then
      setUserLevel("Advanced")
      message("ObjectPAL level is now set to Advanced")
   else
      message("ObjectPAL level was already set to Advanced")
   endIf
endmethod



sleep procedure
The following example produces a delay of a specified duration.

Syntax
sleep ( [ const numberOfMilliSeconds LongInt ] )

Description
sleep disables the executing form for the number of milliseconds specified in numberofMilliseconds. sleep does 
not disable the desktop or stop timer events. When the form is disabled, it cannot receive keystrokes, mouse 
events or focus.
 Note

· When sleep is called with no argument, it does not disable the form. Instead, it causes the current method to 
yield to Windows to let a single pending message be processed.

 Example
{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_TYPE_TIMEREVENT;OPAL_METH_FOWAIT;',0,"Defaultoverview",)
} Related Topics



sleep example
The following example displays a message in the status line and then waits five seconds before displaying a 
second message:
; goToSleep::pushButton
method pushButton(var eventInfo Event)
var 
   yourTurn SmallInt 
endVar  
yourTurn = 5000 
beep()
message("Next message in 5 seconds.") 
sleep(yourTurn)                     ; waits for 5 seconds 
message("5 seconds have elapsed.")
endMethod



sound procedure
Creates a sound of specified frequency and duration.

Syntax
sound ( const freqHertz, const durationMilliSecs LongInt )

Description
sound creates a sound of the frequency specified by freqHertz (in Hertz) for a time durationMilliSecs (in 
milliseconds) . Frequency values can range from 1 to 50,000 Hertz. The sound is played through the computer's 
internal speaker, and not the system sound card.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYBEEP;',0,"Defaultoverview",)} Related Topics



sound example
The following example uses the pushButton method for makeMusic to declare constants for frequency values in
a scale. These notes specify the frequency argument in the calls to the sound method. After playing a few bars 
from a tune, the method demonstrates the calculation for notes in a chromatic scale (proceeds by half notes).
; makeMusic::pushButton
method pushButton(var eventInfo Event)
var
   quarterNote, octave, note LongInt
   power                     Number
endVar
; frequency values for notes in a scale
const
  noteA1  = 110
  noteA#1 = 116
  noteB1  = 123
  noteC1  = 130
  noteC#1 = 138
  noteD1  = 146
  noteD#1 = 155
  noteE1  = 164
  noteF1  = 174
  noteF#1 = 184
  noteG1  = 195
  noteG#1 = 207
  noteA2  = 220
  noteA#2 = 234
  noteB2  = 249
  noteC2  = 265
  noteC#2 = 282
  noteD2  = 300
endConst
; several bars from Peter and the Wolf
sound(noteA1, 200)
sound(noteD1, 150)
sound(noteF#1, 50)
sound(noteA2, 100)
sound(noteB2, 100)
sound(noteA2, 150)

sound(noteF#1, 50)
sound(noteA2, 100)
sound(noteB2, 100)
sound(noteC#2, 150)
sound(noteD2, 50)
sound(noteA2, 100)
sound(noteF#1, 100)
sound(noteD1, 100)
sleep(1000)

; play a few chromatic scales
quarterNote = 120
for octave from 0 to 1
   for note from 0 to 11
      sound(int(pow(2, octave + note / 12.0) * 110), quarterNote)
   endFor
endFor
sound(int(pow(2, 2) * 110), quarterNote) ; finish out the scale
endMethod



sysInfo procedure
Creates a dynamic array of information about the system running Corel Paradox.

Syntax
sysInfo ( var info DynArray[ ] AnyType )

Description
sysInfo creates a dynamic array of information about the system running Corel Paradox. Declare a dynamic 
array named info before calling sysInfo . info contains indexes for system attributes and their values. The 
following table describes the structure of info:
System Attribute Index Definition
AnsiCodePage The ANSI (Windows) code page loaded by Windows
AreMouseButtonsSwapped Functions of the left and right mouse buttons are reversed
CodePage The code page currently loaded by Windows
CPU Processor type
Edition Corel Paradox edition (e.g., Standard)
EngineDate Creation date of database engine
EngineLanguageID The language used for Borland Database Engine (BDE) messages and QUERY 

BY EXAMPLE (QBE) keywords, shown in the list of language identifiers
EngineVersion Version number of database engine
FullHeight Vertical working area in a maximized window (in pixels)
FullWidth Horizontal working area in a maximized window (in pixels )
IconHeight Height of icons (in pixels)
IconWidth Width of icons (in pixels)
KeyboardFNKeys Number of function keys
KeyboardLayoutID The layout name for the currently loaded keyboard (usually a language ID)
KeyboardSubType An OEM-dependent value
KeyboardType Keyboard type and manufacturer
LanguageDriver Default language drivers for Corel Paradox tables
LocalShare Reports whether Local Share is active
Memory Available memory in bytes, including swap file (if present)
Mouse The number of mouses attached to the system
NetDir The path to PDOXUSRS.NET
NetProtocol Network protocol
NetShare Reports whether Net Share is active
NetType Network type
ParadoxSystemDir The path of the Corel Paradox folder
ScreenHeight Total height of screen (in pixels)
ScreenWidth Total width of screen (in pixels)
StartupDir The full path (including the drive ID letter) to your start-up folder (the folder 

from which Corel Paradox was launched)
SystemDefaultLCID The system default locale ID (a 32-bit value which is the combination of a 

language ID and a sort ID)
UserDefaultLCID The user default locale ID
UserName Network user name
WindowsBuild# The internal build number
WindowsDir Path to the WINDOWS directory (folder)
WindowsPlatform Win95, NT, or WIN32s
WindowsSystemDir Path to the WINDOWS\SYSTEM directory (folder)
WindowsText Arbitrary information



WindowsVersion Windows version number
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYRPROF;OPAL_METH_SYRENV;OPAL_METH_SYRESOURCE
INFO;OPAL_METH_SYVERSION;',0,"Defaultoverview",)} Related Topics



sysInfo example
The following example writes system information to a dynamic array named userSys and then displays userSys 
in a View dialog box:
; showSysInfo::pushButton
method pushButton(var eventInfo Event)
var
   userSys DynArray[] AnyType
endVar
sysInfo(userSys)   ; fill the array with system information
userSys.view()     ; show the array
endMethod



Language identifiers
Language identifiers consists of the primary language ID and the sub_language ID.
The following codes are included in the primary language IDs:
Code Language Code Language
0x0401 Arabic 0x0415 Polish
0x0402 Bulgarian 0x0416 Brazilian Portuguese
0x0403 Catalan 0x0417 Rhaeto-Romanic
0x0404 Traditional Chinese 0x0418 Romanian
0x0405 Czech 0x0419 Russian
0x0406 Danish 0x041A Croato-Serbian (Latin)
0x0407 German 0x041B Slovak
0x0408 Greek 0x041C Albanian
0x0409 U.S. English 0x041D Swedish
0x040A Castilian Spanish 0x041E Thai
0x040B Finnish 0x041F Turkish
0x040C French 0x0420 Urdu
0x040D Hebrew 0x0421 Bahasa
0x040E Hungarian 0x0804 Simplified Chinese
0x040F Icelandic 0x0807 Swiss German
0x0410 Italian 0x0809 U.K. English
0x0411 Japanese 0x080A Mexican Spanish
0x0412 Korean 0x080C Belgian French
0x0413 Dutch 0x0C0C Canadian French
0x0414 Norwegian - Bokml 0x100C Swiss French
0x0810 Swiss Italian 0x0816 Portuguese
0x0813 Belgian Dutch 0x081A Serbo-Croatian(Cyrillic)
0x0814 Norwegian - Nynorsk



tracerClear procedure
Clears the Tracer window.

Syntax
tracerClear ( )

Description
tracerClear clears the Tracer window. You can open the Tracer window with the tracerOn procedure at run 
time, or by clicking View, Tracer in the ObjectPAL Editor.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYTRACERHIDE;OPAL_METH_SYTRACEROFF;OPAL_METH_
SYTRACERON;OPAL_METH_SYTRACERSAVE;OPAL_METH_SYTRACERSHOW;OPAL_METH_SYTRACERTOTOP;
OPAL_METH_SYTRACERWRITE;',0,"Defaultoverview",)} Related Topics



tracerClear example
The following example clears the Tracer window. Assume that the Tracer window is open and contains 
information.
; wipeTracer::pushButton
method pushButton(var eventInfo Event)
tracerClear()                     ; clear the Tracer window
endMethod



tracerHide procedure
Hides the Tracer window.

Syntax
tracerHide ( )

Description
tracerHide hides the Tracer window. This procedure makes the Tracer window invisible but does not clear or 
close it. To view the Tracer again, use tracerShow.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYTRACERCLEAR;OPAL_METH_SYTRACEROFF;OPAL_METH
_SYTRACERON;OPAL_METH_SYTRACERSAVE;OPAL_METH_SYTRACERSHOW;OPAL_METH_SYTRACERTOTOP
;OPAL_METH_SYTRACERWRITE;',0,"Defaultoverview",)} Related Topics



tracerHide example
The following example hides the Tracer window, pauses and then displays it again. Assume that the Tracer 
window is open.
; toggleTracerWin::pushButton
method pushButton(var eventInfo Event)
tracerHide()                     ; make the Tracer window invisible
message("Hiding Tracer window. Pausing...")
sleep(2000)
message("Showing Tracer window.")
tracerShow()                     ; make the Tracer window visible again
tracerToTop()                    ; bring it to the top
endMethod



tracerOff procedure
Closes the Tracer window.

Syntax
tracerOff ( )

Description
tracerOff closes the Tracer window. This procedure stops writing code traces to the Tracer window. You can 
resume tracing code with the tracerOn procedure. By default, tracing is turned on when the Tracer window is 
opened.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYTRACERCLEAR;OPAL_METH_SYTRACERHIDE;OPAL_MET
H_SYTRACERON;OPAL_METH_SYTRACERSAVE;OPAL_METH_SYTRACERSHOW;OPAL_METH_SYTRACERTOTO
P;OPAL_METH_SYTRACERWRITE;',0,"Defaultoverview",)} Related Topics



tracerOff example
The following example turns off code tracing:
; stopTracer::pushButton
method pushButton(var eventInfo Event)
tracerOff()                     ; close the Tracer window
endMethod



tracerOn procedure
Activates code tracing.

Syntax
tracerOn ( )

Description
tracerOn activates code tracing. This procedure resumes writing code traces to the Tracer window.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYTRACERCLEAR;OPAL_METH_SYTRACERHIDE;OPAL_MET
H_SYTRACEROFF;OPAL_METH_SYTRACERSAVE;OPAL_METH_SYTRACERSHOW;OPAL_METH_SYTRACERTOT
OP;OPAL_METH_SYTRACERWRITE;',0,"Defaultoverview",)} Related Topics



tracerOn example
The following example reactivates code tracing:
; startTracer::pushButton
method pushButton(var eventInfo Event)
tracerOn()                     ; reactivate the Tracer window
endMethod



tracerSave procedure
Saves the contents of the Tracer window to a file.

Syntax
tracerSave ( const fileName String )

Description
tracerSave saves the contents of the Tracer window to the file specified by fileName.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYTRACERCLEAR;OPAL_METH_SYTRACERHIDE;OPAL_MET
H_SYTRACEROFF;OPAL_METH_SYTRACERON;OPAL_METH_SYTRACERSHOW;OPAL_METH_SYTRACERTOTOP
;OPAL_METH_SYTRACERWRITE;',0,"Defaultoverview",)} Related Topics



tracerSave example
The following example saves the contents of the Tracer window to a file named MYTRACE.TXT:
; saveTracerToFile::pushButton
method pushButton(var eventInfo Event)
tracerSave("mytrace.txt")         ; save the Tracer window to a file
endMethod



tracerShow procedure
Makes the Tracer window visible.

Syntax
tracerShow ( )

Description
tracerShow makes the Tracer window visible. You can make the Tracer window invisible using the tracerHide 
procedure.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYTRACERCLEAR;OPAL_METH_SYTRACERHIDE;OPAL_MET
H_SYTRACEROFF;OPAL_METH_SYTRACERON;OPAL_METH_SYTRACERSAVE;OPAL_METH_SYTRACERTOTOP;
OPAL_METH_SYTRACERWRITE;',0,"Defaultoverview",)} Related Topics



tracerShow example
See the tracerHide example.



tracerToTop procedure
Positions the Tracer window on top of all other windows on the desktop.

Syntax
tracerToTop ( )

Description
tracerToTop places the Tracer window on top of all other windows on the desktop.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYTRACERCLEAR;OPAL_METH_SYTRACERHIDE;OPAL_MET
H_SYTRACEROFF;OPAL_METH_SYTRACERON;OPAL_METH_SYTRACERSAVE;OPAL_METH_SYTRACERSHOW;
OPAL_METH_SYTRACERWRITE;',0,"Defaultoverview",)} Related Topics



tracerToTop example
See the tracerWrite example.



tracerWrite procedure
Writes a message to the Tracer window.

Syntax
tracerWrite ( const message String [ , const message String ] * )

Description
tracerWrite writes a message to the Tracer window.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYTRACERCLEAR;OPAL_METH_SYTRACERHIDE;OPAL_MET
H_SYTRACEROFF;OPAL_METH_SYTRACERON;OPAL_METH_SYTRACERSAVE;OPAL_METH_SYTRACERSHOW;
OPAL_METH_SYTRACERTOTOP;',0,"Defaultoverview",)} Related Topics



tracerWrite example
The following example logs a message to the Tracer window and places the Tracer window on top of all other 
windows on the desktop:
; logTracerMsg::pushButton
method pushButton(var eventInfo Event)
tracerWrite("Tracer hit by " + String(self.Name) + 
            " at " + String(time()))              ; log a message
tracerToTop()            ; make the Tracer window the top-layer window
endMethod



twipsToPixels procedure
Converts screen coordinates from twips to pixels.

Syntax
twipsToPixels ( const twips Point ) Point

Description
twipstToPixels converts the screen coordinates specified in twips from twips to pixels.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYPIXELSTOTWIPS;',0,"Defaultoverview",)} Related 
Topics



twipsToPixels example
See the pixelsToTwips example.



version procedure
Returns the Corel Paradox version number.

Syntax
version ( ) String

Description
version returns the Corel Paradox version number. If you have more than one version installed, version returns 
the version number of the active application.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYSYSINFO;',0,"Defaultoverview",)} Related Topics



version example
The following example uses the pushButton method for showVersion to show which version of Corel Paradox is 
active:
; showVersion::pushButton
method pushButton(var eventInfo Event)
   msgInfo("FYI", "You are running version " + version() + ".")
endMethod



winGetMessageID procedure
Returns the ID of a Windows message.

Syntax
winGetMessageID ( const msgName String ) SmallInt

Description
winGetMessageID returns the integer value of the Windows message represented by the string specified in 
msgName. Messages may include WM_CLOSE (sent as a signal that a window or application should terminate), 
and WM_ACTIVATE (sent when a window is activated or deactivated).
winGetMessageID returns 0 if msgName is not recognized as a Windows message. For more information, see 
your Windows programming documentation.
 Note

· winGetMessageID should only be used by Windows programmers who are familiar with Windows messages.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYWINPOSTMESSAGE;OPAL_METH_SYWINSENDMESSAGE
;OPAL_METH_MNDATA;OPAL_METH_MNID;OPAL_METH_FOWINDOWCLIENTHANDLE;OPAL_METH_FOWINDO
WHANDLE;',0,"Defaultoverview",)} Related Topics



winGetMessageID example
The following example displays the integer value of the Windows message WM_LBUTTONDOWN:
method pushButton(var eventInfo event)
  var
    smMsgID   SmallInt
    stMsgName   String
  endVar

  stMsgName = "WM_LBUTTONDOWN" 
  smMsgID = winGetMessageID(stMsgName)
  smMsgID.view(stMsgName) ; Displays 513 in Win32.
  ; The value may be different in other versions of Windows.
endMethod



winPostMessage procedure
Posts a message to Windows.

Syntax
winPostMessage ( const hWnd LongInt, const msg LongInt, const wParam LongInt, const lParam 
LongInt ) Logical

Description
winPostMessage posts a message to Windows. Unlike winSendMessage, which dispatches its message 
immediately, winPostMessage method adds its message to the end of the Windows message queue. Messages
in the queue are dispatched in the order than they appear. Windows determines which arguments are valid to 
winPostMessage For more information, see your Windows programming documentation.
 Note

· winPostMessage should only be used by Windows programmers who are familiar with Windows messages.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYWINGETMESSAGEID;OPAL_METH_SYWINSENDMESSAG
E;OPAL_METH_MNDATA;OPAL_METH_MNID;OPAL_METH_FOWINDOWCLIENTHANDLE;OPAL_METH_FOWIND
OWHANDLE;',0,"Defaultoverview",)} Related Topics



winPostMessage example
See the winSendMessage example.



winSendMessage procedure
Sends a message to Windows.

Syntax
winSendMessage ( const hWnd LongInt, const msg LongInt, const  wParam LongInt, const lParam 
LongInt ) LongInt

Description
winSendMessage sends a message to Windows. Windows determines which arguments are valid to 
winSendMessage For more information, see your Windows programming documentation.
 Note

· winPostMessage should only be used by Windows programmers who are familiar with Windows messages.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYWINGETMESSAGEID;OPAL_METH_SYWINPOSTMESSAGE
;OPAL_METH_MNDATA;OPAL_METH_MNID;OPAL_METH_FOWINDOWCLIENTHANDLE;OPAL_METH_FOWINDO
WHANDLE;',0,"Defaultoverview",)} Related Topics



winSendMessage example
The following example opens Notepad and calls enumWindowNames to create a table of data about the 
windows currently open on your system. The code then searches the table for information about Notepad, and 
gets the handle for that window. Next, calls winGetMessageID to retrieve the integer value of the command 
represented by the string "WM_CLOSE." Finally, the code calls winSendMessage with the window handle and 
command value as arguments. The message is dispatched to Windows, and Notepad is closed. To add the 
message to the end of the Windows message queue, call winPostMessage instead of winSendMessage.
method pushButton(var eventInfo Event)
  var
    tcOpenWin   TCursor
    tbOpenWin   Table
    stTbName    String
    siWinHandle,
    siWinMsgID  SmallInt
  endVar

  stTbName = ":PRIV:openWin"

  execute("Notepad.exe", No, ExeShowNormal)           ; Run Notepad.
  sleep(1000)                  ;  Pause so you can see what happens.

  enumWindowNames(stTbName)                     ; List open windows.

  tcOpenWin.open(stTbName)
  ; Locate the Notepad window in the list of names.
  if tcOpenWin.locatePattern("ClassName", "Notepad") then 
    ; Get the Windows handle for the Notepad window.
    siWinHandle = tcOpenWin."Handle"                        
    ; Get the Windows message ID for WM_CLOSE to close the window.
    siWinMsgID = winGetMessageId("WM_CLOSE")                
    ; Send the specified message to the specified window.
    winSendMessage(siWinHandle, siWinMsgID, 0, 0)           
  else
    errorShow()
  endIf
endmethod



writeEnvironmentString procedure
Sets a variable in the Corel Paradox copy of the DOS environment.

Syntax
writeEnvironmentString ( const key String, const value String ) Logical

Description
writeEnvironmentString sets a variable in the Corel Paradox copy of the DOS environment. When Corel 
Paradox launches, a copy of the DOS environment is made. writeEnvironmentString writes to that copy but 
changes are not written to the DOS environment. 
You can use the SET command to assign environment variables. These assigned values control the appearance 
and function of DOS and some batch files. Some common environment variables include PATH, PROMPT, and 
COMSPEC. For more information, the SET command in your DOS manuals.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYRENV;OPAL_METH_SYWPROF;',0,"Defaultoverview",)} 
Related Topics



writeEnvironmentString example
See the readEnvironmentString example.



writeProfileString procedure
Writes system information to a file.

Syntax
writeProfileString ( const fileName String, const section String, const key String, const value
String ) Logical

Description
writeProfileString writes system information to a specified file on your system. If you specify a filename 
without a path, this method searches for the file in the WINDOWS directory (folder).
Typically, you use this method to modify your WIN.INI file. In this case, fileName would be WIN.INI. Sections are 
defined by square brackets and reside on a separate line in the WIN.INI file. To specify a section, simply type the 
string or section name (e.g., to specify the [windows] section, type "windows').
In each section, a value marker is followed by an equal sign (e.g., Beep =). The equal sign is not required when 
you specify the value of key.
 Example

{button ,AL(`OPAL_TYPE_SYSTEM;OPAL_METH_SYRPROF;OPAL_METH_SYWRITEENVIRONMENTSTRING;OP
AL_METH_FSWDIR;',0,"Defaultoverview",)} Related Topics



writeProfileString example
See the readProfileString example.



Table type
A Table variable describes a table. It differs from a TCursor which is a pointer to a table's data, and from a table 
frame or a TableView, which are objects that display the data.
You can use Table variables to add, copy, create, and index tables, to perform column calculations in columns, 
retrieve information about a table's structure, and more. Some table operations require Corel Paradox to create 
temporary tables in the private directory.
The create, index, and sort structures are basic language elements (not methods or procedures) that operate 
on Table variables. Table variables cannot be used to edit records you must use a TCursor or table frame 
(UIObject) to modify a record in a table.

Methods for the Table type
add
attach
cAverage
cCount
cMax
cMin
cNpv
compact
copy
create
createIndex
cSamStd
cSamVar
cStd
cSum
cVar
delete
dropGenFilter
dropIndex
empty
enumFieldNames
enumFieldNamesInIndex
enumFieldStruct
enumIndexStruct
enumRefIntStruct
enumSecStruct
familyRights
fieldName
fieldNo
fieldType
getGenFilter
getRange
index
isAssigned
isEmpty
isEncrypted
isShared
isTable
lock



nFields
nKeyFields
nRecords
protect
reIndex
reIndexAll
rename
restructure
setExclusive
setGenFilter
setIndex
setRange
setReadOnly
showDeleted
sort
subtract
tableRights
type
unAttach
unlock
unProtect
usesIndexes

 Print related ObjectPAL methods and examples



add method/procedure
Adds data from one table to another table.

Syntax
1. add ( const destTableName String [ , const append Logical [ , const update Logical ] ] ) 
Logical
2. add ( const destTableVar Table [ , const append Logical [ , const update Logical ] ] ) 
Logical

Description
add adds data from a table to a target table, which can be specified using a String (destTableName in Syntax 1) 
or a Table variable (destTableVar in Syntax 2). If the target table does not exist, this method creates it. The 
source table and the target table can be any types that have compatible field structures.
When set to True, append adds records at the end of a non-indexed target table, or at the appropriate place in an
indexed target table. When set to True, update compares records in both tables, and where key values match, 
replaces the data in the target table. When both are set to True, records with matching key values are updated, 
and others are appended. These arguments are optional, but if you specify update, you must also specify 
append. By default, both arguments are True. 
myTable.add(yourTable, False, True) ; specifies update
myTable.add(yourTable)              ; specifies update and append by 
                                    ; default

Key violations (including validity check violations) are listed in KEYVIOL.DB in the private directory. If KEYVIOL.DB
already exists, add overwrites it. If KEYVIOL.DB does not exist, this method creates it. 
When tables are keyed, add uses the keyed fields to determine which records to update and which to append. If 
the target table is not keyed and update is set to True, add fails. If the target table is not keyed, the structure of 
the entire record in the source table must match the record structure in the target table.

DOS
If you are a DOS PAL programmer, you can use the following procedure to operate on tables by specifying the 
table name, rather than using a variable.

Syntax
1. add ( const sourceTableName String, const destTableName String [ , const append Logical [ , 
const update Logical ] ] ) Logical
2. add ( const sourceTableName String, const destTableVar Table [ , const append Logical [ , 
const update Logical ] ] ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCOPY;OPAL_METH_TBSUB;',0,"Defaultoverview",)} 
Related Topics



add example
The following example uses the pushButton method for updateCust to run a query from an existing file and add
records from the Answer table to the Customer table:
; updateCust::pushButton
method pushButton(var eventInfo Event)
var
  newCust Query
  ansTbl Table
  destTbl String
endVar
destTbl = "Customer.db"

newCust.readFromFile("newCust.qbe")

if newCust.executeQBE() then         ; if the query succeeds
  ansTbl.attach(":PRIV:Answer.db") 

  ; attempt to add Answer.db records to Customer.db
  if isTable(destTbl) then
    if NOT ansTbl.add(destTbl) then
      errorShow()
    endIf
  else
    msgStop("Error", "Can't find " + destTbl + ".")
  endIf
else
  errorShow("Query failed.")
endIf

endMethod



attach method
Associates a Table variable with a table on disk.

Syntax
1. attach ( const tableName String ) Logical
2. attach ( const tableName String, const db Database ) Logical
3. attach ( const tableName String, const tableType String ) Logical
4. attach ( const tableName String, const tableType String, const db Database ) Logical

Description
attach associates a Table variable with the table specified in tableName. Optional arguments tableType and db 
specify a table type (Corel Paradox or dBASE) and a database. If you don't specify tableType, ObjectPAL 
determines the table type from the table name's file extension. If you don't specify db, ObjectPAL works in the 
default database.
This method fails if the value of tableName is not valid (e.g., the table name doesn't match the table type, or 
conflicts with the database name). This method returns True if successful; otherwise, it returns False.
 Notes

· attach does not verify that tableName exists, or is a table. Use the isTable method to verify a table's 
existence.

· To free a Table variable completely, use unAttach. To associate the Table variable with another table, just use 
attach again; the unAttach happens automatically.

 Example
{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCREA;OPAL_METH_TBUNATT;',0,"Defaultoverview",)} 
Related Topics



attach example
In the following example, the westTable Table variable is attached to Orders so that cSum can be used with that 
Table variable. This example uses isTable to determine whether Orders exists in the default database before 
performing a calculation.
; getWestTotal::pushButton
method pushButton(var eventInfo Event)
var 
  westTable Table 
  westTotal Number
endVar

if isTable("Orders.db")      then

   ; attach to Corel Paradox table Orders in the default database
  westTable.attach("Orders", "Corel Paradox")
   ; get total of Total Invoice field and store result in westTotal
  westTotal = westTable.cSum("Total Invoice")
   ; display total invoices
  msgInfo("Total Invoices", westTotal)

else
  msgInfo("Status", "Can't find Orders.db table.")
endIf

endMethod



cAverage method/procedure
Returns the average of values in a column of fields.

Syntax
1. cAverage ( const fieldName String ) Number
2. cAverage ( const fieldNum SmallInt ) Number

Description
cAverage returns the average of values in the column of fields specified by fieldName or fieldNum. If the 
column contains empty fields, cAverage uses the blankAsZero setting for the session. This method respects 
the limits of restricted views set by setRange or setGenFilter.
Throughout the retry period cAverage attempts to place a write lock on the table. If a lock cannot be placed, the
method fails.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. cAverage ( const tableName String, const fieldName String ) Number
2. cAverage ( const tableName String, const fieldNum SmallInt ) Number
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCCNT;OPAL_METH_TBCMAX;OPAL_METH_TBCMIN;OPAL_
METH_TBCSUM;OPAL_METH_TBCSTD;',0,"Defaultoverview",)} Related Topics



cAverage example
The following example uses cAverage to calculate the average order size in the Orders table. This code is 
attached to the pushButton method for the getAvgSales button:
; getAvgSales::pushButton
method pushButton(var eventInfo Event)
var 
  ordTbl   Table 
  avgSales Number 
endVar 

ordTbl.attach("Orders.db") 
avgSales = ordTbl.cAverage("Total Invoice") ; store average invoice total
                                            ; in avgSales
msgInfo("Average Order size", avgSales)     ; display avgSales in a dialog

endMethod



cCount method/procedure
Returns the number of nonblank values in a table column.

Syntax
1. cCount ( const fieldName String ) LongInt
2. cCount ( const fieldNum SmallInt ) LongInt

Description
cCount returns the number of values in the column specified by fieldName or fieldNum. cCount works for all 
field types. If the column contains numeric values cCount this method handles blank values as specified in the 
blankAsZero setting for the session. If the field is non-numeric, cCount returns the number of nonblank values 
in the column of fields. 
This method respects the limits of restricted views set by setRange or setGenFilter.
Throughout the retry period cCount attempts to place a read lock on the table. If a lock cannot be placed, the 
method fails.

DOS
 If you are a DOS PAL programmers, you can use this procedure to operate on tables by specifying the table 
name, rather than using a variable.

Syntax
1. cCount ( const tableName String, const fieldName String ) Number
2. cCount ( const tableName String, const fieldNum SmallInt ) Number
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCAVE;OPAL_METH_TBCMAX;OPAL_METH_TBCMIN;OPAL_
METH_TBCSTD;OPAL_METH_TBCSUM;',0,"Defaultoverview",)} Related Topics



cCount example
In the following example, the pushButton method for lineItemInfo uses cAverage and cCount to perform 
calculations on the Qty field in LINEITEM.DB. The code attempts to place a write lock on the table so that 
changes cannot be made to the table between the calls to cAverage and cCount. If the lock cannot be placed, 
the operation is aborted.
; lineItemInfo::pushButton
method pushButton(var eventInfo Event)
var 
  lineTbl Table 
  avgQty Number
  numItems LongInt
endVar 
if lineTbl.attach("Lineitem.db") then
  if lineTbl.lock("Write") then           ; if write lock succeeds
    avgQty = lineTbl.cAverage("Qty")
    numItems = lineTbl.cCount(4)          ; assumes Qty is field 4
    lineTbl.unLock("Write")               ; unlock the table
    msgInfo("Average quantity",
            String(avgQty, "\nbased on ", numItems, " items."))
  else
    errorShow("Can't lock Lineitem table.")
  endIf
else
  errorShow("Can't attach to Lineitem table.")
endIf

endMethod



cMax method/procedure
Returns the maximum value of a table's column.

Syntax
1. cMax ( const fieldName String ) Number
2. cMax ( const fieldNum SmallInt ) Number

Description
cMax returns the maximum value in the column of fields specified by fieldName or fieldNum. cMax respects the 
limits of restricted views set by setRange or setGenFilter. cMax handles blank values as specified in the 
blankAsZero setting for the session.
Throughout the retry period, this method attempts to place a write lock on the table. If a lock cannot be placed, 
the method fails.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. cMax ( const tableName String, const fieldName String ) Number
2. cMax ( const tableName String, const fieldNum SmallInt ) Number
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCAVE;OPAL_METH_TBCMIN;OPAL_METH_TBCSTD;OPAL_M
ETH_TBCSUM;OPAL_METH_TBCCNT;',0,"Defaultoverview",)} Related Topics



cMax example
The following example displays the maximum value in the Total Invoice field of the Orders table:
; showMaxOrder::pushButton
method pushButton(var eventInfo Event)
var 
  orderTbl Table
endVar 

if orderTbl.attach("Orders.db") then
  ; display maximum order in a dialog box
  msgInfo("Biggest Order in History", orderTbl.cMax("Total Invoice"))
else
  msgStop("Sorry", "Can't open Orders table.")
endIf

endMethod



cMin method/procedure
Returns the minimum value of a table's column.

Syntax
1. cMin ( const fieldName String ) Number
2. cMin ( const fieldNum SmallInt ) Number

Description
cMin returns the minimum value in the column of fields specified by fieldName or fieldNum. This method 
respects the limits of restricted views set by setRange or setGenFilter. cMin handles blank values as specified
in the blankAsZero setting for the session.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. cMin ( const tableName String, const fieldName String ) Number
2. cMin ( const tableName String, const fieldNum SmallInt ) Number
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCAVE;OPAL_METH_TBCCNT;OPAL_METH_TBCSTD;OPAL_M
ETH_TBCSUM;OPAL_METH_TBCMAX;',0,"Defaultoverview",)} Related Topics



cMin example
The following example displays the minimum value in the Total Invoice field of the Orders table:
; showMinOrder::pushButton
method pushButton(var eventInfo Event)
var 
  orderTbl Table
endVar 

if orderTbl.attach("Orders.db") then
    ; display smallest order in a dialog box
    msgInfo("Smallest Order in History", orderTbl.cMin("Total Invoice"))

else
  msgStop("Sorry", "Can't open Orders table.")
endIf

endMethod



cNpv method/procedure
Returns the net present value of a column, based on a discount or interest rate.

Syntax
1. cNpv ( const fieldName String, const discRate AnyType ) Number
2. cNpv ( const fieldNum SmallInt, const discRate AnyType ) Number

Description
cNpv returns the net present value of the column of fields specified by fieldName or fieldNum. This method 
respects the limits of restricted views set by setRange or setGenFilter. cNpv handles blank values as specified
in the blankAsZero setting for the session.
The net present value calculation is based on discRate, expressed as a decimal (e.g., 0.12 for 12 percent). cNpv 
calculates net present values using the following formula:
cNpv = sum(p = 1 to n) of Vp / (1 + r)p
(n = number of periods, Vp = cash flow in pth period, and r = rate per period)
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. cNpv ( const tableName String, const fieldName String, const discRate AnyType ) Number
2. cNpv ( const tableName String, const fieldNum SmallInt, const discRate AnyType ) Number
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCAVE;OPAL_METH_TBCMAX;OPAL_METH_TBCMIN;OPAL_
METH_TBCSUM;OPAL_METH_TBCVAR;',0,"Defaultoverview",)} Related Topics



cNpv example
The following example defines a Table variable for the GoodFund table and calculates the net present value for 
the Expected Return field. The net present value is calculated based on a monthly interest rate.
; calcNPV::pushButton
method pushButton(var eventInfo Event)
var 
  tbl Table  
  goodFundNPV, apr Number  
endVar  
apr = .125                     ; annual percentage rate

tbl.attach("GoodFund.db")

; calculate net present value based on monthly interest rate
goodFundNPV = tbl.cNpv("Expected Return", (apr / 12))
msgInfo("Net present value", goodFundNPV)

endMethod



compact method
Removes deleted records from a table.

Syntax
compact ( [ const regIndex Logical ] ) Logical

Description
compact removes deleted records from a table. 
Deleted records are not immediately removed from a dBASE table. Instead, they are flagged as deleted and kept 
in the table. The optional argument regIndex specifies whether to regenerate or update the indexes associated 
with the table. When regIndex is set to True, this method regenerates all indexes associated with the table. This 
includes indexes specified by usesIndexes, and the .MDX index (whose name matches the table name). If 
regIndex is set to False, indexes are not regenerated. By default, regIndex is set to True.
If you delete records from a Corel Paradox table, they cannot be retrieved. However, the table file and associated
index files contain dead space where the record was originally stored. If you use compact with a Corel Paradox 
table, all indexes are regenerated and dead space is removed.
This method fails if any locks have been placed on the table, or the table is open. This method returns True if 
successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBSHDEL;OPAL_METH_TBUSIND;',0,"Defaultoverview",)} 
Related Topics



compact example
The following example demonstrates how compact affects indexes specified by usesIndexes. In this example, 
the ordTbl Table variable is attached to ORDERS.DBF and salesTbl is attached to SALES.DBF. Because ordTbl uses
INDEX1.NDX and INDEX2.NDX (specified by usesIndexes), compact regenerates INDEX1.NDX and INDEX2.NDX
if regIndex is set to True. In this example, regIndex is set to False and compact affects only ORDERS.NDX:
; compactTbls::pushButton
method pushButton(var eventInfo Event)
var
  ordTbl, salesTbl Table
endVar

ordTbl.usesIndexes("index1.ndx", "index2.ndx")
ordTbl.attach("Orders.dbf")
ordTbl.compact(False)
  ; removes deleted records and fixes Orders.mdx

salesTbl.usesIndexes("index3.mdx")
salesTbl.attach("Sales.dbf")
salesTbl.compact()
  ; removes deleted records and regenerates all indexes

endMethod



copy method/procedure
Copies a table.

Syntax
1. copy ( const destTable String ) Logical
2. copy ( const destTable Table ) Logical

Description
copy copies the records from a source table to a target table specified in destTable. The data from the source 
table completely replaces the data in target table. The source and target tables can be different table types. If 
the target table is open, the method fails.
Throughout the retry period, this method attempts to place a write lock on the source table, and a full (exclusive)
lock on the target table. If either lock cannot be placed, the method fails.
For more information, see Copying to a different table type in the User's Guide Help.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. copy ( const sourceTable String, const destTable String ) Logical
2. copy ( const sourceTable String, const destTable Table ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBADD;OPAL_METH_TBSUB;OPAL_METH_TBRENA;',0,"Defau
ltoverview",)} Related Topics



copy example
In the following example, the pushButton method for backupCust copies the Customer table to CustBak. If 
CustBak already exists in the current directory, this code asks for confirmation before overwriting it:
; backupCust::pushButton
method pushButton(var eventInfo Event)
var 
  srcTbl  Table
  destTbl String
endVar 
destTbl = "CustBak.db"
srcTbl.attach("Customer.db")

if isTable(destTbl) then      ; if "CustBak.db" exists
                              ; ask for confirmation
  if msgQuestion("Copy table", "Overwrite " + destTbl + "?") = "Yes" then
    return
  endIf
endIf
srcTbl.copy(destTbl)    ; this copies Customer.db to CustBak.db
; Does not copy .VAL file if all it contains is RI information.
endMethod



create keyword
Creates a table.

Syntax
create tableName [ as tableType ] [ database db ]
    [ [ like likeObject ]
      [ with fieldName : type [ , fieldName : type ] * ]
      [ where fieldID is newname [ , fieldID is newname ] * ]
      [ without fieldID [ , fieldID ] * ]
      [ struct fieldStructTable ]
      [ indexStruct indexStructTable ]
      [ refIntStruct refIntStructTable ]
      [ secStruct secStructTable ]
      [ languageDriver driverName ]
      [ versionLevel versionNumber ]
      ] *
    [ key fieldID [ , fieldID ] * ]
endCreate

Description
create creates a table specified by tableName. Unless an as clause explicitly specifies a table type (see below), 
create uses the tableName extension to infer a table type (.DB is a Corel Paradox table and .DBF is a dBASE 
table.) For example, given Orders.dbf for tableName, create creates a dBASE table. If tableName does not 
include an extension, create creates a Corel Paradox table.
If tableName exists, create attempts to place a full lock on it throughout the retry period. If the lock cannot be 
placed, create fails.
The following clauses specify table attributes. They are optional, and can appear in any order within the create 
structure. The clauses are executed in the order they appear in the structure.
The as tableType clause specifies the table format:
AS "Corel Paradox"
If as is omitted, create creates a Corel Paradox table by default (unless the table resides on a SQL server. See 
the discussion of the database clause, below).
The database db clause specifies a Database variable (opened before creating the new table) that determines 
where the table resides. If the database is on an SQL server, the table is of a type appropriate for the server. By 
default, the table is created in the working directory:
DATABASE megaData
The like likeObject clause specifies an open TCursor, table name, or Table variable from which you can borrow 
field names, field types, the language driver, and the version level. The like clause does not borrow validity 
checks, primary or secondary indexes, referential integrity information, or security information. (Use struct, 
indexStruct, refIntStruct, and secStruct options to borrow more detailed information):
LIKE "Sales.dbf"              ; table name as a string
LIKE ordersTC                    ; a TCursor variable pointing to ORDERS.DB
LIKE ordersTB                    ; a Table variable pointing to ORDERS.DB
The with fieldName : type clause adds one or more fields to the table structure:
with "Last name" : "A20", "First name" : "A15", "Quantity" : "N"
You can specify the field type for fieldName in type. Valid values for type vary depending on the type of table you
are creating. Corel Paradox tables use specific field names. Tables created on servers other than Corel Paradox 
require field name translations.
The following tables list valid field specifications for Corel Paradox and dBASE tables: 
Corel Paradox tables 3.5 and earlier 4.5 5.0 7
Alpha Annn Annn Annn Annn
Number N N      N N



Money $ $      $ $
Date D D      D D
Short S S      S S
Memo (none) Mnnn Mnnn Mnnn
Formatted Memo (none) (none) Fnnn Fnnn
Binary (none) Bnnn Bnnn Bnnn
Graphic (none) (none) Gnnn Gnnn
OLE (none) (none) Onnn Onnn
Logical (none) (none) L L
Long Integer (none) (none) II
Time (none) (none) T T
Timestamp (none) (none) @ @
BCD (none) (none) # #
Autoincrement (none) (none) + +
Bytes (none) (none) Y Y
dBASE tables III+ IV V
Character Cnnn Cnnn Cnnn
Number Nnnn Nnnn Nnnn
Date D D      D
Logical L L      L
Memo M M      M
Float (none) Fnnn.d Fnnn.d
OLE (none) (none) O
Binary (none) (none) B
The where fieldID is "newName" clause changes the name of one or more fields specified by the name or 
number fieldID to newName:
where "Last name" IS "Customer last name", 2 IS "Customer first name"

The without fieldID clause removes one or more fields (specified by name or number) from the structure. 
Example:
without 4, "Country code"

The struct clause specifies in fieldStructTable an open TCursor, table name, or Table variable from which you 
can borrow the field-level structure. Unlike the like clause, struct borrows all validity check and primary key 
information. Use enumFieldStruct to generate fieldStructTable (or create it manually) before executing create:
struct "CustFlds.db"

The indexStruct clause specifies in indexStructTable an open TCursor, table name, or Table variable from which 
you can borrow secondary index information. Use enumIndexStruct to generate indexStructTable (or create it 
manually) before executing create:
indexStruct "CustIndx.db"

The refIntStruct clause specifies an open TCursor, table name, or Table variable from which you can borrow 
referential integrity information. Use enumRefIntStruct to generate refIntStructTable (or create it manually) 
before executing create:
refIntStruct "Cust_Ref.db"

The secStruct clause specifies in secStructTable an open TCursor, table name, or Table variable from which you 
can borrow security information. Use enumSecStruct to generate secStructTable (or create your own) before 
executing create:
secStruct "Cust_Sec.db"

When you use secStruct, Corel Paradox automatically protects the table with the master password secret. For 
information about master passwords, see About password security in the User's Guide help.
The languageDriver clause specifies in driverName the internal name of a language driver to use with the 
table. A language driver determines the table's sort order and available character set. For a list if language 
drivers, see the User's Guide Help topics on language drivers for Corel Paradox tables, or language drivers for 
dBASE tables.



The versionLevel clause specifies in versionNumber what level of table to create. Valid values for 
versionNumber are listed in the following table.
Table type Version number
Corel Paradox 3 specifies a level 3 table corresponding to that created for Corel Paradox 3.5 and earlier 

(Corel Paradox Engine version 2)
4 specifies a level 4 table corresponding to Corel Paradox for Windows 4.5 and earlier and 
Corel Paradox for DOS 4.0 and 4.5 (Corel Paradox Engine version 3)
5 specifies a level 5 table corresponding to Corel Paradox for Windows 5.0
7 specifies a level 7 table corresponding to Corel Paradox 7

dBASE 3 specifies a dBASE III table
4 specifies a dBASE IV table
5 specifies a dBASE for Windows table

The key fieldID clause specifies one or more key fields. You must specify key fields in order from left to right:
key "Last name", "First name"

Fields are created in the order you specify them, whether explicitly using a with clause, or as implied by one or 
more like clauses. where and without clauses are meaningless unless preceded by a like clause.
 Note

· Because create is not a method, dot notation is inappropriate. Instead, use = to assign the create structure 
to a Table variable.

 Examples
{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBRESTRUCTURE;OPAL_METH_TBCOPY;OPAL_METH_TBENU
MFIELDSTRUCT;OPAL_METH_TBENUMINDEXSTRUCT;OPAL_METH_TBENUMREFINTSTRUCT;OPAL_METH_TB
ENUMSECSTRUCT;',0,"Defaultoverview",)} Related Topics



create keyword examples
Example1          Creating a new table
Example2          Using an existing table's structure



create example 1
The following example creates a Corel Paradox table named PARTS.DB. The table has three fields (Part number, 
Part name, and Quantity) and one key field (Part number).
; createParts::pushButton
method pushButton(var eventInfo Event)
var
  newParts Table
  partsTV TableView
endVar
if isTable("Parts.db") then
  if msgQuestion("Confirm",
                 "Parts.db exists. Overwrite it?") <> "Yes" then
    return
  endIf
endIf

newParts = create "Parts.db" 
             WITH "Part number" : "A20",
                  "Part name" : "A20",
                  "Quantity" : "S"
             KEY "Part number"
           endCreate
  
partsTV.open("Parts.db")      ; Open the new table.
endMethod



create example 2
The following examples show two ways to create a dBASE table named NEWSALES.DBF using the same structure
as the dBASE table SALES.DBF:
; version 1
var
  newSales Table
endVar
newSales = CREATE "Newsales.dbf"
             LIKE "Sales.dbf"
           ENDCREATE

; version 2
var 
  newSales Table
  salesTC TCursor
endVar
salesTC.open("Sales.dbf")
newSales = CREATE
             LIKE salesTC
           ENDCREATE

The following example uses the struct option to borrow field-level information (including primary keys and 
validity checks) for use in a new table. For more information, see enumFieldStruct.
; makeNewCust::pushButton
method pushButton(var eventInfo Event)
var
  custTbl, newCustTbl Table
  custTC TCursor
endVar

custTbl.attach("Customer.db")
if custTbl.isTable() then

  if custTbl.enumFieldStruct("CustFlds.db") then

    ; Open a TCursor for CustFlds table.
    custTC.open("CustFlds.db")
    custTC.edit()

    ; This loop scans through the CustFlds table and 
    ; changes ValCheck definitions for every field. 
    scan custTC :
      custTC."_Required Value" = 1   ; Make all fields required.
    endScan

    ; Now create NEWCUST.DB and borrow field names,
    ; ValChecks and key fields from CUSTFLDS.DB.
    newCustTbl = CREATE "NewCust.db"
                   STRUCT "CustFlds.db"
                 ENDCREATE

    ; NEWCUST.DB requires that all fields be filled

  else
    msgStop("Error", "Can't get field structure for Customer table.")
  endIf

else
  msgStop("Error", "Can't find Customer table.")
endIf

endMethod





Language drivers for Corel Paradox tables
The following table displays the language drivers that you can use for Corel Paradox tables, and the code page 
for each driver. Use the internal name to specify driverName.
 Note

· Internal language driver names are case-sensitive.
Driver name Internal Language/DOS Code Page
Corel Paradox 'ascii' ASCII English (US)/437
Corel Paradox 'hebrew' HEBREW Hebrew
Corel Paradox 'intl' INTL International/437
Corel Paradox 'intl850' INTL850 International/850
Corel Paradox 'nordan' NORDAN Danish-Norwegian
Corel Paradox 'turk' TURK Turkish
Corel Paradox ANSI 'turk' ANTURK Turkish
Corel Paradox ANSI China ANCHINA Chinese
Corel Paradox ANSI Cyrillic ANCYRR Russian
Corel Paradox ANSI Czech ANCZECH Czech
Corel Paradox ANSI Greek ANGREEK1 Greek
Corel Paradox ANSI HEBREW ANHEBREW ANSI Hebrew
Corel Paradox ANSI Hun DC ANHUNDC Hungarian
Corel Paradox ANSI Intl ANSIINTL ANSI International
Corel Paradox ANSI Intl850 ANSII850 ANSI International/850
Corel Paradox ANSI Korea ANKOREA Korean
Corel Paradox ANSI Nordan4 ANSINOR4 ANSI Danish-Norwegian/4
Corel Paradox ANSI Polish ANPOLISH Polish
Corel Paradox ANSI Slovene ANSISLOV Yugoslavia
Corel Paradox ANSI Spanish ANSISPAN ANSI Spanish
Corel Paradox ANSI Swedfin ANSISWFN ANSI Swedish-Finnish
Corel Paradox ANSI Thai ANTHAI ANSI Thai
Corel Paradox China 437 CHINA Chinese/437
Corel Paradox Cyrr 866 CYRR Russian/866
Corel Paradox Czech 852 CZECH Czech/852
Corel Paradox Czech 867 CSKAMEN Czech/867
Corel Paradox ESP 437 SPANISH Spanish/437
Corel Paradox Greek GR437 GRCP437 Greek/437
Corel Paradox Hun 852 DC HUN852DC Hungarian/852
Corel Paradox ISL 861 ICELAND Iceland/861
Corel Paradox Korea 949 KOREA Korean/949
Corel Paradox NORDAN NORDAN Danish-Norwegian/865
Corel Paradox NORDAN40 NORDAN40 Danish-Norwegian/865
Corel Paradox Polish 852 POLISH Polish/852
Corel Paradox Slovene 852 SLOVENE Yugoslavia/852
Corel Paradox SWEDFIN SWEDFIN Swedish-Finnish/437
Corel Paradox Thai 437 THAI Thai/437



Language drivers for dBASE tables
The following table displays the language drivers that you can use for dBASE tables. Use the internal name to 
specify driverName.
 Note

· Internal language driver names are case-sensitive.
Driver Internal name Language
dBASE CHN pc437 DB437CN0 Chinese
dBASE CSY cp852 DB852CZ0 Czech
dBASE CSY cp867 DB867CZ0 Czech
dBASE DAN cp865 DB865DA0 Danish
dBASE DEU cp437 DB437DE0 German
dBASE DEU cp850 DB850DE0 German
dBASE ELL GR437 DB437GR0 Greek
dBASE ENG cp437 DB437UK0 English (U.K)
dBASE ENG cp850 DB850UK0 English (U.K)
dBASE ENU cp437 DB437US0 English (U.S.)
dBASE ENU cp850 DB850US0 English (U.S.)
dBASE ESP cp437 DB437ES1 Spanish
dBASE ESP cp850 DB850ES0 Spanish
dBASE FIN cp437 DB437FI0 Finnish
dBASE FRA cp437 DB437FR0 French
dBASE FRA cp850 DB850FR0 French
dBASE FRC cp850 DB850CF0 French (Can.)
dBASE FRC cp863 DB863CF1 French (Can.)
dBASE HUN cp852 DB852HDC Hungarian
dBASE ITA cp437 DB437IT0 Italian
dBASE ITA cp850 DB850IT0 Italian
dBASE KOR cp949 DB949KO0 Korean
dBASE NLD cp437 DB437NL0 Dutch
dBASE NLD cp850 DB850NL0 Dutch
dBASE NOR cp437 DB437NO0 Norwegian
dBASE NOR cp865 DB865NO0 Norwegian
dBASE PLK pc852 DB852PO0 Polish
dBASE PTB cp850 DB850PT0 Portuguese (Bra.)
dBASE PTG cp860 DB860PT0 Portuguese
dBASE RUS cp866 DB866RU0 Russian
dBASE SLO cp852 DB852SL0 Yugoslavian
dBASE SVE cp437 DB437SV0 Swedish
dBASE SVE cp850 DB850SV0 Swedish
dBASE TRK cp857 DB857TR0 Turkish
dBASE TWN cp437 DB437TW0 Taiwanese



Field translations for tables
The following table displays the field names used in tables that are created on dBASE, Oracle, Sybase, InterBase 
and Informix servers:
Corel Paradox dBASE Interbase Oracle Sybase Informix
Alpha Character Varying Character VarChar Character
Number Float{20.4} Double Number Float Float
Money Float{20.4} Double Number Money Money{16.2}
Date Date Date Date DateTime Date
Short Number{6.0} Short Number SmallInt SmallInt
Memo Memo Blob/1 Long Text Text
Binary Memo Blob LongRaw Image Byte
Formatted Memo Memo Blob LongRaw Image Byte
OLE Memo Blob LongRaw Image Byte
Graphic Memo Blob LongRaw Image Byte
Long Number{11.0} Long Number Int Integer
Time Character{>8} Character{>8} Character{>8} Character{>8} Character{>8}
DateTime Character{>8} Date Date DateTime DateTime
Bool Bool Character{1} Character{1} Bit Character
AutoInc Number{11.0} Long Number Int Integer
Bytes Bytes Blob LongRaw Image Byte
BCD N/A N/A N/A N/A N/A



createIndex method
Creates an index for a table.

Syntax
1. createIndex ( const attrib DynArray[ ] AnyType, const fieldNames Array[ ] String ) Logical
2. createIndex ( const attrib DynArray[ ] AnyType, const fieldNums Array[ ] SmallInt ) Logical

Description
createIndex creates an index using attributes specified in a DynArray named attrib and the field names (or 
numbers) specified in an Array named fieldNames (or fieldNums). This method is provided as an alternative to 
the index structure. It is especially useful when you don't know the index structure beforehand (e.g., when the 
information is supplied by the user).
Each key of the DynArray must be a string. You do not have to include all the keys to use createIndex. Any key 
you omit is assigned the corresponding default value.
The following table displays the key strings and their corresponding values:
String value Description
MAINTAINED If True, the index is incrementally maintained. That is, after a table is changed, only 

that portion of the index affected by the change is updated. If False, Corel Paradox 
does not maintain the index automatically. Maintained indexes typically result in 
better performance. Default = False (Corel Paradox tables only).

PRIMARY If True, the index is a primary index. If False, it's a secondary index. Default = False 
(Corel Paradox tables only).

CASEINSENSITIVE If True, the index ignores differences in case. If False, it considers case. Default = 
False (Corel Paradox tables only).

DESCENDING If True, the index is sorted in descending order, from highest values to lowest. If 
False, it is sorted in ascending order. 
Default = False.

UNIQUE If True, records with duplicate values in key fields are ignored. If False, duplicates are 
included and available.

IndexName A name used to identify this index. No default value, unless you're creating a 
secondary, case-sensitive index on a single field, in which case the default value is 
the field name. For dBASE tables, the index name must be a valid DOS filename. If 
you do not specify an extension, .NDX is added automatically.

TagName The name of the index tag associated with the index specified in indexName (dBASE 
tables only).

For more information on indexes, see About keys and indexes in tables in the User's Guide Help.
 Examples

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBDROP;OPAL_METH_TBINDE;OPAL_METH_TBSIND;OPAL_M
ETH_TBUSIND;',0,"Defaultoverview",)} Related Topics



createIndex method examples
Example1        Building a secondary index
Example2        Adding unique index tags



createIndex example 1
The following example builds a maintained secondary index for a Corel Paradox table named CUSTOMER.DB. If 
the Customer table cannot be found or locked, createIndex aborts the operation.
method pushButton(var eventInfo Event)
var
   stTbName      String
   tbCust         Table
   arFieldNames   Array[3] String
   dyAttrib      DynArray[]AnyType
endVar

stTbName = "Customer.db"

arFieldNames[1] = "Customer No"
arFieldNames[2] = "Name"
arFieldNames[3] = "Street"

dyAttrib["PRIMARY"]    = False
dyAttrib["MAINTAINED"] = True
dyAttrib["IndexName"]  = "NumberNameStreet"

if isTable(stTbName) then
  tbCust.attach(stTbName)
   if not tbCust.lock("FULL") then
      errorShow()
      return
   endIf

   if not tbCust.createIndex(dyAttrib, arFieldNames) then
      errorShow()
   endIf

; This createIndex statement has the same effect
; as the following INDEX structure:
{
  INDEX tbCust                  ; Create index for Customer.db.
     MAINTAINED
    ON "Customer No", "Name", "Street"
  ENDINDEX
}

else
  errorShow()
endIf

endMethod



createIndex example 2
The following example adds a unique index tag named StatProv to the production index for a dBASE table named
CUSTOMER.DBF:
method pushButton(var eventInfo Event)
var
   tbCust         Table
   arFieldNames   Array[1] String
   dyAttrib      DynArray[]AnyType
endVar

arFieldNames[1] = "STATE_PROV"

dyAttrib["UNIQUE"]     = True
dyAttrib["MAINTAINED"] = True

; A dBASE index name must be a valid DOS filename.
; If an extension is omitted, .NDX is appended automatically.

dyAttrib["IndexName"] = "Customer.Mdx"
dyAttrib["TagName"] = "StatProv"

if isTable("Customer.dbf") then
  tbCust.attach("Customer.dbf")

  if not tbCust.createIndex(dyAttrib, arFieldNames) then
       errorShow()
  endIf   

; This createIndex statement has the same effect
; as the following INDEX structure:
{
  INDEX tbCust                        ; Create index for Customer.dbf.
       UNIQUE
    ON "STATE_PROV"                   ; Index on this field.
    TAG "StatProv" OF "Customer.dbf"  ; Name the tag "StatProv".
  ENDINDEX
}

else
  errorShow()
endIf

endMethod



cSamStd method/procedure
Returns the sample standard deviation of a table's column.

Syntax
1. cSamStd ( const fieldName String ) Number
2. cSamStd ( const fieldNum SmallInt ) Number

Description
cSamStd returns the sample standard deviation for the column of numeric fields specified by fieldName or 
fieldNum. This method respects the limits of restricted views displayed in a linked table frame or multi-record 
object. cSamStd handles blank values as specified in the blankAsZero setting for the session.
The sample standard deviation calculation is based on the sample variance and uses the following formula:
sqrt( (sampVar) * ( n/(n-1)) )
(sampVar = cSamVar(tableName, fieldName) and n = cCount(tableName, fieldName)
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.
The population standard deviation is calculated using the cStd method.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. cSamStd ( const tableName String, const fieldName String ) Number
2. cSamStd ( const tableName String, const fieldNum SmallInt ) Number
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCSVA;OPAL_METH_TBCAVE;OPAL_METH_TBCCNT;OPAL_M
ETH_TBCMAX;OPAL_METH_TBCMIN;OPAL_METH_TBCNPV;OPAL_METH_TBCSUM;OPAL_METH_TBCVAR;OPA
L_METH_TBCSTD;',0,"Defaultoverview",)} Related Topics



cSamStd example
The following example calculates the sample standard deviation of test scores for the Winter quarter. This code 
is attached to the pushButton method for showSamStd:
; showSamStd::pushButton
method pushButton(var eventInfo Event)
   const
      kTbName = "winter"
   endConst
   
   var  
      tbWinter   Table
      nuSamStd    Number
   endVar

   tbWinter.attach(kTbName)
   nuSamStd = tbWinter.cSamStd("TestScore")
   nuSamStd.view()
endMethod



cSamVar method/procedure
Returns the sample variance of a table's column.

Syntax
1. cSamVar ( const fieldName String ) Number
2. cSamVar ( const fieldNum SmallInt ) Number

Description
cSamVar returns the sample variance for the column of fields specified by fieldName or fieldNum. This method 
respects the limits of restricted views set by setRange or setGenFilter. cSamVar handles blank values as 
specified in the blankAsZero setting for the session.
The sample variance is calculated using the formula:
cVar(tableName, fieldName) * (n/(n - 1))
(n = cCount(tableName, fieldName))
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. cSamVar ( const tableName String, const fieldName String ) Number
2. cSamVar ( const tableName String, const fieldNum SmallInt ) Number
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCAVE;OPAL_METH_TBCCNT;OPAL_METH_TBCMAX;OPAL_
METH_TBCMIN;OPAL_METH_TBCNPV;OPAL_METH_TBCSST;OPAL_METH_TBCSTD;OPAL_METH_TBCSUM;OP
AL_METH_TBCVAR;',0,"Defaultoverview",)} Related Topics



cSamVar example
The following example calculates the sample variance of two fields in the Answer table. This code is attached to 
the pushButton method for showSamVar.
; showSamVar::pushButton
method pushButton(var eventInfo Event)
var  
   empTbl Table  
   tblName String
   calcSalary, calcYears Number
endVar  
tblName = "Answer"

empTbl.attach(tblName)
calcSalary = empTbl.cSamVar("Salary")  ; get sample variance for Salaries
calcYears  = empTbl.cSamVar(2)         ; assume "Years in service" is field 2
msgInfo("Sample Variance",             ; display info in a dialog box
        "Salaries : " + String(calcSalary, 
        "\nYears in service : ", calcYears))

endMethod



cStd method/procedure
Returns the standard deviation of the values in a column.

Syntax
1. cStd ( const fieldName String ) Number
2. cStd ( const fieldNum SmallInt ) Number

Description
cStd returns the population standard deviation of the column of fields specified by fieldName or fieldNum. This 
method respects the limits of restricted views set by setRange or setGenFilter. This method handles blank 
values as specified in the blankAsZero setting for the session. Population standard deviation calculations are 
based on the variance. For more information, see cVar.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. cStd ( const tableName String, const fieldName String ) Number
2. cStd ( const tableName String, const fieldNum SmallInt ) Number
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCSST;OPAL_METH_TBCSVA;OPAL_METH_TBCSUM;OPAL_M
ETH_TBCAVE;OPAL_METH_TBCCNT;OPAL_METH_TBCMAX;OPAL_METH_TBCMIN;OPAL_METH_TBCNPV;OPAL
_METH_TBCVAR;',0,"Defaultoverview",)} Related Topics



cStd example
In the following example, the pushButton method for thisButton calculates the population standard deviation 
for two separate fields and displays the results in a dialog box:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var  
  myTable Table  
  test1, test2 Number  
endVar  
myTable.attach("scores.db")  
test1 = myTable.cStd("Test1")
test2 = myTable.cStd(2)         ; assumes Test2 is field 2
msgInfo("Standard Deviation",
        "Test1 results : " + String(test1) + "\n" +
        "Test2 results : " + String(test2))
endMethod



cSum method/procedure
Returns the sum of the values in of a table's column.

Syntax
1. cSum ( const fieldName String ) Number
2. cSum ( const fieldNum SmallInt ) Number

Description
cSum returns the sum of the values in the column of fields specified by fieldName or fieldNum. This method 
respects the limits of restricted views set by setRange or setGenFilter. cSum handles blank values as 
specified in the blankAsZero setting for the session.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. cSum ( const tableName String, const fieldName String ) Number
2. cSum ( const tableName String, const fieldNum SmallInt ) Number
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCAVE;OPAL_METH_TBCCNT;OPAL_METH_TBCMAX;OPAL_
METH_TBCMIN;OPAL_METH_TBCNPV;OPAL_METH_TBCSST;OPAL_METH_TBCSVA;OPAL_METH_TBCSTD;OPA
L_METH_TBCVAR;',0,"Defaultoverview",)} Related Topics



cSum example
In the following example, the pushButton method for sumOrders uses both forms of cSum syntax to calculate 
totals for two fields in ORDERS.DB:
; sumOrders::pushButton
method pushButton(var eventInfo Event)
var  
  orderTbl Table
  orderTotal, amtPaid Number  
  tblName String
endVar  
tblName = "Orders"

orderTbl.attach(tblName)
orderTotal = orderTbl.cSum("Total Invoice")
amtPaid    = orderTbl.cSum(7)    ; assumes Amount Paid is field 7
msgInfo("Order Totals",
        "Total Orders : " + String(orderTotal) + "\n" +
        "Total Receipts : " + String(amtPaid))

endMethod



cVar method/procedure
Returns the variance of a field in a table.

Syntax
1. cVar ( const fieldName String ) Number
2. cVar ( const fieldNum SmallInt ) Number

Description
cVar returns the population variance of the column of fields specified by fieldName or fieldNum. This method 
respects the limits of restricted views set by setRange or setGenFilter. cVar handles blank values as specified 
in the blankAsZero setting for the session.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. cVar ( const tableName String, const fieldName String ) Number
2. cVar ( const tableName String, const fieldNum SmallInt ) Number
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCAVE;OPAL_METH_TBCCNT;OPAL_METH_TBCMAX;OPAL_
METH_TBCMIN;OPAL_METH_TBCNPV;OPAL_METH_TBCSVA;OPAL_METH_TBCSST;OPAL_METH_TBCSUM;',0,
"Defaultoverview",)} Related Topics



cVar example
In the following example, the pushButton method for thisButton calculates the population variance deviation 
for two separate fields and displays the results in a dialog box:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var  
  myTable Table  
  test1, test2 Number  
endVar  
myTable.attach("scores.db")  
test1 = myTable.cVar("Test1")
test2 = myTable.cVar(2)       ; assumes Test2 is field 2
msgInfo("Population Variance",
        "Test1 results : " + String(test1) + "\n" +
        "Test2 results : " + String(test2))

endMethod



delete method/procedure
Deletes a table.

Syntax
delete ( ) Logical

Description
delete deletes a table without asking for confirmation. Compare this method to empty, which removes data 
from a table but does not delete it.
If the table is open or is locked, delete fails.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
delete ( const tableName String ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBEMPT;',0,"Defaultoverview",)} Related Topics



delete example
The following example deletes ANSWER.DB from the private directory:
; delAnswer::pushButton
method pushButton(var eventInfo Event)
var
  tbl Table
  tblName String
endVar

tblName = privDir() + "\\Answer.db"

tbl.attach(tblName)
if tbl.isTable() then
  tbl.delete()
  message(tblName, " deleted.")
else
  message("Can't find ", tblName, ".")
endIf

endMethod



dropGenFilter method
Removes the filter criteria associated with a Table variable.

Syntax
dropGenFilter ( ) Logical

Description
dropGenFilter removes the filter criteria associated with a Table variable. Any indexes and ranges remain in 
effect in the unfiltered table.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBGETGENFILTER;OPAL_METH_TBSETGENFILTER;OPAL_MET
H_TCDROPGENFILTER;OPAL_METH_UIDROPGENFILTER;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Def
aultoverview",)} Related Topics



dropGenFilter example
In the following example, a form contains a button named btnCACustomers. The pushButton method for 
btnCACustomers attaches a Table variable to the Customer table, sets filter criteria, and stores the value in the 
number variable nSubTotal. dropGenFilter removes the filter and the total number of records is stored in a 
number variable named nTotal. Finally, a message information box displays the number of customers in 
California compared to the total number of customers.
;btnCACustomers :: pushButton
method pushButton(var eventInfo Event)
   var
      tbl            Table
      dyn            DynArray[] AnyType
      nTotal,      
      nSubTotal   Number
   endVar

   tbl.attach("CUSTOMER.DB")

   dyn["State/Prov"] = "CA"
   tbl.setGenFilter(dyn)
   nSubTotal = tbl.cCount("State/Prov")   ;Get customers in CA.

   tbl.dropGenFilter()
   nTotal = tbl.nRecords()         ;Get all customers.

   msgInfo("Customer Analysis",  string(nSubtotal) + " out of " + string(nTotal) + " reside in 
California.")
endMethod



dropIndex method
Deletes a specified index file or tag.

Syntax
1. (Corel Paradox tables) dropIndex ( const indexName String ) Logical
2. (dBASE tables) dropIndex ( const indexName String 
                        [ , const tagName String ] ) Logical

Description
dropIndex deletes a specified index file or tag.
In a Corel Paradox table, indexName specifies a secondary index. If you specify an empty string in indexName, 
the primary index is removed.
In a dBASE table, indexName specifies an .NDX file. You can also use indexName and tagName to specify 
an .MDX file and an index tag.
You must call setExclusive before calling dropIndex to obtain exclusive rights to the table.
dropIndex fails if the index you're trying to delete is in use, or if the table is open.
For more information about indexes, see About keys and indexes in tables in the User's Guide Help.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBSIND;OPAL_METH_TBUSIND;',0,"Defaultoverview",)} 
Related Topics



dropIndex example
In the following example, the pushButton method for thisButton deletes the CustName tag from an .MDX file:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  salesTbl Table 
endVar

salesTbl.attach("Sales.dbf")          ; Sales.dbf is a dBASE table
if isTable(salesTbl) then             ; if salesTbl is a table

  ; Get exclusive access to the table.
  salesTbl.setExclusive(Yes)
  ; delete CustName tag from index2.mdx file
  if salesTbl.dropIndex("index2.mdx", "CustName") then
    msgInfo("Status", "CustName index deleted.")
  else
    msgInfo("Error", "Can't drop CustName from Index2.")
  endIf

else
  msgStop("Stop!", "Could not find Sales.dbf table.")
endIf

endMethod



empty method/procedure
Removes all records from a table.

Syntax
empty ( ) Logical

Description
empty removes all records from a table without asking for confirmation. This operation cannot be undone. This 
method returns True if it succeeds; otherwise, it returns False.
empty removes information from the table, but does not delete the table itself. Compare this method to delete, 
which does delete the table.
empty first tries to gain exclusive rights to the table. If it can't, it tries to place a write lock on the table.
If empty gains exclusive rights, it deletes all records in the table at once. If a write lock is placed on the table, 
empty must delete each record individually.
If empty gains exclusive rights to a dBASE table, all records are deleted and the table is compacted. If a write 
lock is placed on the table, this method flags all records as deleted, but does not remove them from the table. 
(Records can be undeleted from a dBASE table if they have not been removed with the compact method.)

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
empty ( const tableName String ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBDELETE;',0,"Defaultoverview",)} Related Topics



empty example
The following example prompts the user for confirmation before deleting all records from the Scratch table:
; tblEmpty::pushButton
method pushButton(var eventInfo Event)
var
  tblName String
  tblVar Table
endVar
tblName = "Scratch.db"

tblVar.attach(tblName)
if isTable(tblName) then
  if msgQuestion("Empty?", "Empty " + tblName + " ?") = "Yes" then

    if tblVar.empty() then
      message("All " + tblName + " records have been deleted.")
    else
      errorShow()
    endIf

  endIf
else
  errorShow()
endIf
endMethod



enumFieldNames method
Fills an array with the table's field names.

Syntax
enumFieldNames ( var fieldArray Array[ ] String ) Logical

Description
enumFieldNames fills an array named fieldArray with a table's field names. You must declare fieldArray as a 
resizeable array before calling this method. If fieldArray already exists, enumFieldNames overwrites it without 
asking for confirmation.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBENUMFIELDNAMESININDEX;OPAL_METH_TBENUMFIELDS
TRUCT;OPAL_METH_TBENUMINDEXSTRUCT;OPAL_METH_TBENUMREFINTSTRUCT;OPAL_METH_TBENUMSE
CSTRUCT;',0,"Defaultoverview",)} Related Topics



enumFieldNames example
In the following example, the pushButton method for the btnEnumFields button stores field names in a 
resizeable array and uses view to display the contents of the array:
; btnEnumFields::pushButton
method pushButton(var eventInfo Event)
var 
  tbl Table
  arFieldNames Array[] AnyType 
endVar

tbl.attach("Sales.dbf")
if tbl.isTable() then
  tbl.enumFieldNames(arFieldNames)
  arFieldNames.view() 
else
  errorShow()
endIf

endMethod



enumFieldNamesInIndex method
Fills an array with a table index's field names.

Syntax
1. (Corel Paradox tables) enumFieldNamesInIndex ( [ const indexName String, ] var fieldArray 
Array[ ] String ) Logical
2. (dBASE tables) enumFieldNamesInIndex ( [ const indexName String, [ const tagName String, ] ]
var fieldArray Array[ ] String ) Logical

Description
enumFieldNamesInIndex fills an array named fieldArray with the names of the fields in a table's index, as 
specified in indexName. You must declare fieldArray as a resizeable array before calling this method. If fieldArray
already exists, this method overwrites it without asking for confirmation.
In a dBASE table, the argument tagName is required to specify an index tag within an .MDX file.
By default, indexName corresponds to the index currently being used.
For more information on indexes, see About keys and indexes in tables in the User's Guide Help.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBENUMFIELDNAMES;OPAL_METH_TBENUMFIELDSTRUCT;O
PAL_METH_TBENUMINDEXSTRUCT;OPAL_METH_TBENUMREFINTSTRUCT;OPAL_METH_TBENUMSECSTRUCT
;',0,"Defaultoverview",)} Related Topics



enumFieldNamesInIndex example
In the following example, the pushButton method for the showIndexFlds button stores field names in a 
resizeable array and uses view to display the array's contents:
; showIndexFlds::pushButton
method pushButton(var eventInfo Event)
var 
  tbl Table
  fieldNames Array[] String
endVar

tbl.attach("Sales.dbf")
if tbl.isTable() then
  tbl.enumFieldNamesInIndex("DateIndx", "byDate", fieldNames)
  ; display the index field names for byDate in DateIndx
  fieldNames.view() 
else
  msgStop("Stop", "Couldn't find Sales.dbf.")
endIf

endMethod



enumFieldStruct method
Lists a table's field structure.

Syntax
1. enumFieldStruct ( const tableName String ) Logical
2. enumFieldStruct ( inMem TCursor ) Logical

Description
enumFieldStruct lists the field structure of a Table variable. Syntax 1 creates a Corel Paradox table; Syntax 2 
stores the information in a TCursor variable.
Syntax 1 creates a Corel Paradox table tableName. If tableName already exists, this method overwrites it without
asking for confirmation. If tableName is open, this method fails. You can also include an alias or path in 
tableName. If an alias or path is not specified, Corel Paradox creates the table in the working directory. You can 
supply tableName to the struct option in a create statement to borrow that table's field structure (including 
primary keys and validity checks) for use in the new table.
In Syntax 2, the structure information is stored in the TCursor variable inMem that you pass as an argument. 
Syntax 2 results in faster performance because the information is stored in system memory. 
The following table displays the structure of the table in Syntax 1 or the TCursor    in Syntax 2:
Field Type Description
Field Name A31 Specifies the name of field
Type A31 Specifies the data type of field
Size S Specifies the size of field
Dec S Specifies the number of decimal places, or 0 if field type doesn't 

support decimal places
Key A1 Specifies whether the field is a key (* = key field, blank = not key field)
_Required Value A1 Specifies whether the field is required (T = required, N (or blank) = Not

required)
_Min Value A255 Specifies the field's minimum value
_Max Value A255 Specifies the field's maximum value
_Default Value A255 Specifies the field's default value
_Picture Value A175 Specifies the field's picture
_Table Lookup A255 Specifies the name of lookup table (including the full path if the lookup

table is not in :WORK:)
_Table Lookup Type A1 Specifies the type of lookup table 

0 (or blank) = no lookup table, 
1 = Current field + private 
2 = All corresponding + no help
3 = Just current field + help and field
4 = All corresponding + help

_Invariant Field ID S Specifies the field's ordinal position in table 
(first field = 1, second field = 2, etc.)

Once tableName is created, you can modify values in the table and use it with the struct option in the create 
command.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBENUMFIELDNAMES;OPAL_METH_TBENUMFIELDNAMESINI
NDEX;OPAL_METH_TBENUMINDEXSTRUCT;OPAL_METH_TBENUMREFINTSTRUCT;OPAL_METH_TBENUMSEC
STRUCT;',0,"Defaultoverview",)} Related Topics



enumFieldStruct example
The following example assumes that you want a new table named NewCust that is similar to the Customer table.
It also assumes that you want all of the fields in NewCust to be required fields. The following code uses 
enumFieldStruct to load a new table (CUSTFLDS.DB) with the field-level information from Customer. The code 
then scans CustFlds and modifies the field definitions so that each record describes a required field. CustFlds is 
then supplied in the struct clause of a create statement.
; makeNewCust::pushButton
method pushButton(var eventInfo Event)
var
  custTbl, newCustTbl Table
  custTC TCursor
endVar

custTbl.attach("Customer.db")
if custTbl.isTable() then

  if custTbl.enumFieldStruct("CustFlds.db") then

    ; Open a TCursor for CustFlds table.
    custTC.open("CustFlds.db")
    custTC.edit()

    ; This loop scans through the CustFlds table and 
    ; changes ValCheck definitions for every field .
    scan custTC :
      custTC."_Required Value" = 1    ; Make all fields required.
    endScan

    ; Now create NEWCUST.DB and borrow field names,
    ; ValChecks and key fields from CUSTFLDS.DB.
    newCustTbl = CREATE "NewCust.db"
                   STRUCT "CustFlds.db"
                 endCreate

    ; NEWCUST.DB requires that all fields be filled.

  else
    msgStop("Error", "Can't get field structure for Customer table.")
  endIf

else
  msgStop("Error", "Can't find Customer table.")
endIf

endMethod



enumIndexStruct method
Lists the structure of a table's secondary indexes.

Syntax
1. enumIndexStruct ( const tableName String ) Logical
2. enumIndexStruct ( inMem TCursor ) Logical

Description
enumIndexStruct lists the structure of a table's secondary indexes. Syntax 1 creates a Corel Paradox table; 
Syntax 2 stores the information in a TCursor variable.
Syntax 1 creates the Corel Paradox table specified in tableName. For dBASE tables, this method lists the 
structure of the indexes associated with the table by the usesIndexes method. If tableName already exists, this 
method overwrites it without asking for confirmation. You can also include an alias or path in tableName. If an 
alias or path is not specified, Corel Paradox creates the table in the working directory. You can supply tableName 
to the indexStruct option in a create statement to borrow that table's field structure (including primary keys 
and validity checks) for use in the new table.
In Syntax 2, the structure information is stored in the TCursor variable inMem that you pass as an argument. 
Syntax 2 results in faster performance because the information is stored in system memory. 
The following table displays the structure of the table in Syntax 1 or the TCursor    in Syntax 2:
Field Type Description
infoHeader A1 Specifies whether this record is a header for (and the data it 

contains is shared by) subsequent consecutive records that have a
value of N in this field

szName A255 Specifies the index name, including path
szTagName A31 Specifies the tag name, no path (dBASE only)
szFormat A31 Specifies the optional index type, e.g., BTREE, HASH
bPrimary A1 Specifies whether the index is primary
bUnique A1 Specifies whether the index is unique
bDescending A1 Specifies whether the index is descending
bMaintained A1 Specifies whether the index is maintained
bCaseInsensitive A1 Specifies whether the index is case-sensitive
bSubset A1 Specifies whether the index is a subset index (dBASE only)
bExpIdx A1 Specifies whether the index is an expression index (dBASE only)
iKeyExpType N Specifies the key type of index expression (dBASE only)
szKeyExp A220 Specifies the key expression for expression index (dBASE only)
szKeyCond A220 Specifies the subset condition for subset index (dBASE only)
FieldNo N Specifies the ordinal position of key field in table
FieldName A31 Specifies the name of key field
bDescendingField A1 Specifies whether the field is indexed in descending order
iIndexId N Specifies the ID of the index (generated by BDE) Used by 

restructure to specify the addition, modification or deletion of an 
index

tableName also includes information for indexes that are used if the dBASE table is open. To specify which 
indexes to associate to a Table variable, use the usesIndexes method and call enumIndexStruct to create a 
table that list those indexes.
For more information on indexes, see About keys and indexes in tables in the User's Guide Help.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBENUMFIELDNAMES;OPAL_METH_TBENUMFIELDNAMESINI
NDEX;OPAL_METH_TBENUMFIELDSTRUCT;OPAL_METH_TBENUMREFINTSTRUCT;OPAL_METH_TBENUMSEC
STRUCT;',0,"Defaultoverview",)} Related Topics



enumIndexStruct example
The following example assumes that you want a new table named NewCust that is similar to the Customer table.
It also assumes that you don't want to borrow referential integrity or security information. The following code 
uses enumFieldStruct and enumIndexStruct to generate two tables (CUSTFLDS.DB and CUSTINDX.DB). 
CustFlds and CustIndx are then supplied to the struct and indexStruct clauses of a create statement.
; makeNewCust::pushButton
method pushButton(var eventInfo Event)
var
  custTbl, newCustTbl Table
  custTC TCursor
endVar

custTbl.attach("Customer.db")
if custTbl.isTable() then

  custTbl.enumFieldStruct("CustFlds.db")
  custTbl.enumIndexStruct("CustIndx.db")

  ; Now create NEWCUST.DB.
  ; Borrow field names, ValChecks, and key fields from CUSTFLDS.DB.
  ; Borrow secondary indexes from CUSTINDX.DB.
  newCustTbl = CREATE "NewCust.db"
                 STRUCT "CustFlds.db"
                 INDEXSTRUCT "CustIndx.db"
               ENDCREATE

else
  msgStop("Error", "Can't find Customer table.")
endIf

endMethod



enumRefIntStruct method
Lists a table's referential integrity information.

Syntax
1. enumRefIntStruct ( const tableName String ) Logical
2. enumRefIntStruct ( inMem TCursor ) Logical

Description
enumRefIntStruct lists referential integrity information for a Table variable. Syntax 1 creates a Corel Paradox 
table; Syntax 2 stores the information in a TCursor variable. 
Syntax 1 creates the Corel Paradox table specified in tableName. If tableName is open, this method fails. If 
tableName already exists, this method overwrites it without asking for confirmation. You can also include an alias
or path in tableName. If an alias or path is not specified, Corel Paradox creates the table in the working directory.
You can supply tableName to the refIntStruct option in a create statement to borrow that table's field structure
(including primary keys and validity checks) for use in the new table.
In Syntax 2, the structure information is stored in the TCursor variable inMem that you pass as an argument. 
Syntax 2 results in faster performance because the information is stored in system memory. 
The following table displays the structure of the table in Syntax 1 or the TCursor    in Syntax 2:
Field name Type Description
infoHeader A1 Specifies whether the record is a header for (and the data it contains is 

shared by) subsequent consecutive records that have a value of N in this 
field

RefName A31 Specifies the name to identify this referential integrity constraint
OtherTable A255 Specifies the name (including path) of the other table in the referential 

integrity relationship
Slave A1 Specifies whether the table is slave, not master (i.e., the table is 

dependent)
Modify A1 Specifies the update rule (Y = Cascade, blank = Prohibit)
Delete A1 Specifies the delete rule (blank = Prohibit). Corel Paradox does not support 

cascading deletes for Corel Paradox or dBASE tables.
FieldNo N Specifies the ordinal position of the field in this table involved in a 

referential integrity relationship
aiThisTabField A31 Specifies the name of the field in this table involved in a referential 

integrity relationship
Other FieldNo N Specifies the ordinal position of the field in the other table involved in a 

referential integrity relationship
aiOthTabField A31 Specifies the name of the field in the other table involved in a referential 

integrity relationship
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBENUMFIELDNAMES;OPAL_METH_TBENUMFIELDNAMESINI
NDEX;OPAL_METH_TBENUMFIELDSTRUCT;OPAL_METH_TBENUMINDEXSTRUCT;OPAL_METH_TBENUMSECS
TRUCT;',0,"Defaultoverview",)} Related Topics



enumRefIntStruct example
The following example uses enumRefIntStruct to write CUSTOMER.DB referential integrity information to the 
CustRef table. The code supplies CustRef to the refIntStruct clause in a create statement. When using the 
referential integrity structure from another table, you must use the secondary index structure. 
; thisButton::pushButton
method pushButton(var eventInfo Event)
   var
      tb1, tb2 Table
   endVar

   tb1.attach("Customer.db")
   tb1.enumRefIntStruct("CustRef.db")
   tb1.enumFieldStruct("CustFlds.db")
   tb1.enumIndexStruct("CustIdx.db")

   try
      tb2 = CREATE "NewCust.db"
                     struct "CustFlds.db"
                     refIntStruct "CustRef.db"
                     indexStruct "CustIdx.db"
                  ENDCREATE
   onFail
      errorShow()
   endTry

endMethod



enumSecStruct method
Lists a table's security information.

Syntax
1. enumSecStruct ( const tableName String ) Logical
2. enumSecStruct ( inMem TCursor ) Logical

Description
enumSecStruct lists the security information (access rights) of a Table variable. Syntax 1 creates a Corel 
Paradox table; Syntax 2 stores the information in a TCursor variable.
Syntax 1 creates the Corel Paradox table specified in tableName. For dBASE tables, this method lists the 
structure of the indexes associated with the table by the usesIndexes method. If tableName is open, this 
method fails. If tableName already exists, this method overwrites it without asking for confirmation. You can also 
include an alias or path in tableName. If an alias or path is not specified, Corel Paradox creates the table in the 
working directory. You can supply tableName to the secStruct option in a create statement to borrow that 
table's field structure (including primary keys and validity checks) for use in the new table.
In Syntax 2, the structure information is stored in the TCursor variable inMem that you pass as an argument. 
Syntax 2 results in faster performance because the information is stored in system memory. 
The following table displays the structure of the table in Syntax 1 or the TCursor    in Syntax 2:
Field name Type Description
infoHeader A1 Specifies whether the record is a header for (and the data it contains is 

shared by) subsequent consecutive records that have a value of N in this 
field

iSecNum N Specifies the number to identify security description 
(first description = 1)

eprvTable N Specifies the table privilege value
eprvTableSym A10 Specifies the table privilege name
iFamRights N Specifies the family rights value
iFamRightsSym A10 Specifies the family rights name
szPassword A31 Specifies the password
fldNum N Specifies the ordinal position of field in table
aprvFld N Specifies the field privilege value
aprvFldSym A10 Specifies the field privilege name
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBENUMFIELDNAMES;OPAL_METH_TBENUMFIELDNAMESINI
NDEX;OPAL_METH_TBENUMFIELDSTRUCT;OPAL_METH_TBENUMINDEXSTRUCT;OPAL_METH_TBENUMREFI
NTSTRUCT;',0,"Defaultoverview",)} Related Topics



enumSecStruct example
The following example creates a new table based on the security information that is associated with the Secrets 
table. The code uses enumSecStruct to write security information to the SecInfo table which is then used to 
create the MySecrts table.
; getSecrets::pushButton
method pushButton(var eventInfo Event)
var
  tb1, tb2 Table
endVar

tb1.attach("Secrets.db")
tb1.enumSecStruct("SecInfo.db")

tb2 = CREATE "MySecrts.db"
        LIKE "Secrets.db"
        SECSTRUCT "SecInfo.db"
      ENDCREATE

endMethod



Privilege values and names for enumSecStruct
The following table lists numeric values and symbolic names for table and field privileges.
Value Name Description
0 None Specifies no privileges
1 ReadOnly Specifies a read-only field or table
3 Modify Specifies a read and modify field or table
7 Insert Specifies insert + all of the above privileges (table only)
15 InsDel Specifies delete + all of the above privileges (table only)
31 Full Specifies full rights (table only)
255 Unknown Specifies privileges unknown



Family rights values and names for enumSecStruct
The following table lists numeric values and symbolic names for family rights.
Value Name Description
0 NoFamRights Specifies no family rights
1 FormRights Specifies the right to change forms only
2 RptRights Specifies the right to change reports only
4 ValRights Specifies    the right to change val checks only
8 SetRights Specifies the right to change image settings
15 AllFamRights Specifies all of the above



familyRights method
Tests a user's ability to create or modify objects in a table's family.

Syntax
familyRights ( const rights String) Logical

Description
familyRights determines whether you can create or modify objects in a table's family. This method returns True 
if you have rights to the type of object specified in rights; otherwise, it returns False. rights is a single-letter 
string F (form), R (report), S (image settings), or V (validity checks)
that indicates the object type to which you may have rights. This method preserves the functionality required by 

Corel Paradox 3.5 tables but does not apply to tables created in versions of Corel Paradox after 3.5.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
familyRights( const tableName String, rights AnyType ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBTBRI;',0,"Defaultoverview",)} Related Topics



familyRights example
The following example determines whether you have F rights to CUSTOMER.DB.
; showFRights::pushButton
method pushButton(var eventInfo Event)
var
  custTB Table
endVar

custTB.attach("Orders.db")
if custTB.isTable() then
  msgInfo("Rights", "Form Rights: " +
          String(custTB.familyRights("F")))
  ;displays True if you have Form rights to Orders.db
else
  msgStop("Error", "Can't find Orders.db.")
endIf

endMethod



fieldName method/procedure
Returns the name of a table's field, given a field number.

Syntax
fieldName ( const fieldNum SmallInt ) String

Description
fieldName returns the name of the field specified in fieldNum. If fieldNum is greater than the number of fields in
the table, fieldName returns an empty string.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
fieldName ( const tableName String, const fieldNum SmallInt ) String
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBFNO;',0,"Defaultoverview",)} Related Topics



fieldName example
The following example uses fieldName to display the name of field number two in the Answer table. This code is
attached to the built-in pushButton method of a button.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tbl Table 
  fldName, tblName String 
  fldNum SmallInt
endVar 
tblName = "Answer.db"
fldNum = 2

tbl.attach(tblName)
if isTable(tbl) then
  fldName = tbl.fieldName(fldNum)   ; store name of field 2 in fldName
  msgInfo("The name of field " + String(fldNum) + " is:", fldName)
else
  msgStop("Sorry", "Can't find " + tblName + " table.")
endIf

endMethod



fieldNo method/procedure
Returns the position of a field in a table.

Syntax
fieldNo ( const fieldName String ) SmallInt

Description
fieldNo returns the position of the field specified by fieldName, or 0 if fieldName is not found. Fields are 
numbered from left to right, beginning with 1.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
fieldNo ( const tableName String, const fieldName String ) SmallInt
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBFNAM;',0,"Defaultoverview",)} Related Topics



fieldNo example
The following example displays the field number of the Date field in the Orders table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  ord Table 
  fldNo SmallInt
endVar 

ord.attach("Orders.db")
fldNo = ord.fieldNo("Date")

if fldNo = 0 then
  msgInfo("Orders table", "Date is not a field in this table.")
else
  msgInfo("Orders table", "Date is field number " + String(fldNo))
endIf

endMethod



fieldType method/procedure
Returns the data type of a field in a table.

Syntax
1. fieldType ( const fieldName String ) String
2. fieldType ( const fieldNum SmallInt ) String

Description
fieldType returns the data type of a field. If the specified field is not found, this method returns "unknown." The 
following tables list the possible return values for Corel Paradox and dBASE tables:
Corel Paradox Field Type Return Value
Alpha ALPHA
Autoincrement AUTOINCREMENT
BCD BCD
Binary BINARY
Bytes BYTES
Date DATE
Formatted Memo FMTMEMO
Graphic GRAPHIC
Logical LOGICAL
Long Integer LONG
Memo MEMO
Money MONEY
Number NUMBER
OLE OLE
Short SHORT
Time TIME
Timestamp TIMESTAMP

dBASE Field Type Return Value
BINARY BINARY
CHARACTER CHARACTER
DATE DATE
FLOAT FLOAT
LOGICAL LOGICAL
MEMO MEMO
NUMBER NUMERIC
OLE OLE

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. fieldType ( const tableName String, const fieldName String ) String
2. fieldType ( const tableName String, const fieldNum SmallInt ) String
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBFNO;',0,"Defaultoverview",)} Related Topics



fieldType example
The following example uses a dynamic array to store the data type of each field in the BioLife table and displays 
the contents of the dynamic array in a dialog box.
; showFldTypes::pushButton
method pushButton(var eventInfo Event)
var
  tblVar Table
  i SmallInt
  fldTypes DynArray[] AnyType
  tblName String
endVar
tblName = "BioLife.db"

if isTable(tblName) then
  tblVar.attach(tblName)
    ; This FOR loop loads the DynArray with BioLife.db field types.
  for i from 1 to tblVar.nFields()
    fldTypes[tblVar.fieldName(i)] = tblVar.fieldtype(i)
  endFor
    ; Now show the contents of the DynArray.
  fldTypes.view(tblName + " field types")
else
  msgStop("Sorry", "Can't find " + tblName + " table.")
endIf
endMethod



getGenFilter method
Retrieves the filter criteria that is associated with a Table variable.

Syntax
1. getGenFilter ( criteria DynArray[ ] AnyType ) Logical
2. getGenFilter ( criteria Array[ ] AnyType [ , fieldName Array[ ] AnyType ] ) Logical
3. getGenFilter ( criteria String ) Logical

Description
getGenFilter retrieves the filter criteria that is associated with a Table variable. This method assigns values to a
dynamic array (DynArray) variable in Syntax 1, or to two Array variables that you declare and include as 
arguments in Syntax 2.
In Syntax 1, the DynArray criteria lists fields and filtering conditions as follows: the index is the field name or 
number (depending on how it was set), and the item is the corresponding filter expression.
In Syntax 2, the Array criteria lists filtering conditions, and the optional Array fieldName lists corresponding field 
names. If you omit fieldName, conditions apply to fields in the order they appear in the criteria array (the first 
condition applies to the first field in the table, the second condition applies to the second field, and so on).
If the arrays used in Syntax 2 are resizeable, this method sets the array size to equal the number of fields in the 
underlying table. If fixed-size arrays are used, this method stores as many criteria as possible, beginning with 
criteria field 1. If there are more array items than fields, the remaining items are empty. If there are more fields 
than items, this method fills the array.
In Syntax 3, filter criteria is assigned to a String variable criteria that you must declare and pass as an argument.
 Examples

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TCSETGENFILTER;OPAL_METH_TCDROPGENFILTER;OPAL_ME
TH_TCSETRANGE;OPAL_METH_UIGETGENFILTER;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Defaultov
erview",)} Related Topics



getGenFilter method examples
Example1          Using a pushButton method
Example2         Attaching a custom method



getGenFilter example 1
In the following example, the pushButton method for a button named btnShowFilter uses getGenFilter to fill a
DynArray named dyn with a table's filter criteria. The code then determines whether the current criteria filters 
the State/Prov field with a value of CA, and resets the filter if necessary.
;btnShowFilter :: pushButton
method pushButton(var eventInfo Event)
   var
      custTb         Table
      dyn            DynArray[] AnyType
      keysAr         Array[] AnyType
      stFilterFld,
      stCriteria     String
   endVar

   stFilterFld = "State/Prov"
   stCriteria  = "CA"
   custTb.attach("Customer")

   custTb.getGenFilter(dyn)   ; Get filter information.

   dyn.getKeys(keysAr)
   if keysAr.contains(stFilterFld) then
         if dyn[stFilterFld] = stCriteria then
               return               ; Filter is set correctly.
         endIf
   else
         dyn.empty()             ; Set filter criteria correctly.
         dyn[stFilterFld] = stCriteria
         custTb.setGenFilter(dyn)
   endIf
endMethod



getGenFilter example 2
In the following example, a form contains a custom method named cmGetOrders. This custom method is used by
a button named btnViewOrders to set a filter and return the number of records in the filter. The following code is 
attached to the form:
;Form :: cmGetOrders
method cmGetOrders(var tbl Table) Number
   var
      dynCurrent   DynArray[] AnyType
      dynNew      DynArray[] AnyType
   endVar

   dynNew["Ship Via"] = "UPS"      ;Set filter criteria.
   dynNew["Total Invoice"] = "> 10000"
   tbl.getGenFilter(dynCurrent)   ;Get the current criteria.
   
   if dynCurrent <> dynNew then   ;If current criteria is not
      tbl.setGenFilter(dynNew)      ;the same as new criteria,
   endIf                     ;then set new criteria.

   return(tbl.cCount("Order No"))   ;Return number of orders.
endMethod

The following code is attached to the button. It associates a Table variable with a table and calls the custom 
method attached to the form to operate on the data.
;btnViewOrders :: pushButton
method pushButton(var eventInfo Event)
   var
      tbl   Table
   endVar

   tbl.attach("ORD_JUN.DB")
   view(cmGetOrders(tbl), "UPS orders over $10,000 in June")

   tbl.attach("ORD_JUL.DB")
   view(cmGetOrders(tbl), "UPS orders over $10,000 in July")
endMethod



getRange method
Retrieves the values that specify a range for a Table variable.

Syntax
getRange ( var rangeVals Array[ ] String ) Logical

Description
getRange retrieves the values that specify a range for a Table variable. This method assigns values to an Array 
variable that you declare and include as an argument. The following table displays the array values and the 
corresponding range criteria:
Number of array items Range specification
No items (empty array) Specifies no range criteria is associated with the Table variable
One item Specifies a value for an exact match on the first field of the index
Two items Specifies a range for the first field of the index
Three items The first item specifies an exact match for the first field of the index; items 2 and 

3 specify a range for the second field of the index.
More than three items For an array of size n, specifies exact matches on the first n-2 fields of the index. 

The last two array items specify a range for the n-1 field of the index
If the array is resizeable, this method sets the array size to equal the number of fields in the underlying table. If 
fixed-size arrays are used, this method stores as many criteria as it can, starting with criteria field 1. If there are 
more array items than fields, the remaining items are left empty; if there are more fields than items, this method
fills the array and then stops.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_UISETRANGE;OPAL_METH_UIGETGENFILTER;OPAL_METH_TB
GETRANGE;OPAL_METH_TCGETRANGE;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Defaultoverview",)
} Related Topics



getRange example
In the following example, getRange is used on a Table variable tbl to test if the current range criteria is the 
same as the new range criteria. If it is not, then the new range is set using setRange.
;btnSetRange :: pushButton
method pushButton(var eventInfo Event)
   var
      arGet         Array[2] Anytype
      arSet         Array[2] Anytype
   endVar

   arSet[1] = "A"
   arSet[2] = "B"

   ;The following assumes a Table variable
   ;is declared and used elsewhere.

   tbl.getRange(arGet)      ;Get the current range.
   if arGet <> arSet then   ;Compare current range with new.
      tbl.setRange(arSet)      ;Show records starting with A.
   endIf
endMethod



index keyword
Creates an index on a the specified fields of a table.

Syntax
1. index
      [ maintained ] tableDesc on fieldID
    endIndex
2. index tableDesc
      [ maintained ]             (Corel Paradox)
      [ primary ]                (Corel Paradox)
      [ caseInsensitive ]        (Corel Paradox)
      [ descending ]             (Corel Paradox and dBASE)
      [ unique ]                 (dBASE)
      on
        { fieldDesc [ , fieldDesc ] [ to indexName ]
          |
        { keyExp
          to ndxFileName|tag tagName [ of mdxFileName ]
            |
          for condition } }
    endIndex

Description
index generates a primary or secondary index on the specified fields of a table. Corel Paradox uses the index to 
accelerate queries and searches that access those fields.
For Corel Paradox tables, the keywords maintained, primary, and caseInsensitive are available. The primary
keyword specifies a primary index (key), which is required to create any secondary indexes. If the table has a 
primary index and you create another one, the new index replaces the original. A primary index must be 
declared on one or more consecutive fields, beginning with the first field in the table. Memo fields, formatted 
memo fields, OLE fields, and Graphic fields cannot be indexed.
Secondary indexes can be either maintained (created using the maintained keyword) or non-maintained. Corel 
Paradox updates a maintained index as records are added, deleted, or changed. A non-maintained index is only 
updated when in use. If you use the maintained keyword for Corel Paradox tables and specify a non-keyed table
to index, index fails. For dBASE tables, all opened index files are automatically maintained.
The caseInsensitive keyword causes an index to ignore case. A primary index must be case-sensitive. For Corel
Paradox tables, a case-sensitive, maintained index on a single field must have the same name as that field. A 
case-insensitive, maintained index on a single field must not have the same name as that field.
The on clause specifies which fields to index and two forms: one for Corel Paradox tables, and one for dBASE 
tables.
For Corel Paradox tables, use
on fieldDesc [ , fieldDesc ] to indexName
(fieldDesc specifies one or more field names or field numbers, and indexName specifies the index file. Other 
methods use this name to refer to the index.)
For dBASE tables, use
keyExp to ndxFileName|tag tagName [ of mdxFileName ]
(which lets you choose between an .NDX file or a tag in an .MDX file. If mdxFileName is omitted, the 
default .MDX filename is the same as the table. A dBASE table can only be indexed on one field or expression)
In multi-user applications, index places a full lock on the table while it is being indexed. If the table has already 
been locked by another user or application, the command is retried throughout the retry period. If the lock 
cannot be obtained by the end of the period, index fails. You can use the lock method to determine whether you
can lock the table before you use the index command.
It can be convenient to develop your applications without worrying about indexes and introduce them where 



appropriate to speed up queries and searches.
The index command fails if
· too many indexes already exist (maximum of 255 for a single table)
· an index being defined is already in use
index is not a method, so dot notation is inappropriate. Instead, you create an index structure to specify how to 
index the table.
For more information on indexes, see About keys and indexes in tables in the User's Guide Help.
 Examples

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCREA;OPAL_METH_TBCREATEINDEX;OPAL_METH_TBENU
MINDEXSTRUCT;OPAL_METH_TBSIND;OPAL_METH_TBUSIND;',0,"Defaultoverview",)} Related Topics



index keyword examples
Example1         Building a primary index
Example2          Building a secondary index



index example 1
The following example builds a primary index for a Corel Paradox table named CUSTOMER.DB. If the Customer 
table can not be found, or cannot be locked, this code aborts the index operation. If the table is indexed, the 
code enumerates indexed fields to an array and displays the array's contents in a dialog box.
; newCustKeys::pushButton
method pushButton(var eventInfo Event)
var
  tblToIndex String
  tblVar Table
  indexedFlds Array[] String
endVar
tblToIndex = "Customer.db"

if isTable(tblToIndex) then
  tblVar.attach(tblToIndex)
  if not tblVar.lock("Full") then
    msgStop("Stop!", "Can't lock " + tblToIndex + " table.")
    return
  endIf
  INDEX tblVar              ; create new primary index for Customer.db
    PRIMARY
    ON "Customer No", "Name", "Street"
  ENDINDEX

    ; now display Customer's keyed fields in a dialog box
  tblVar.enumFieldNamesInIndex(indexedFlds)
  indexedFlds.view("Primary key fields for " + tblToIndex)

else
  msgStop("Stop!", "Can't find " + tblToIndex + " table.")
endIf

endMethod



index example 2
The following example builds a maintained secondary index named CityState for the Corel Paradox table, 
CUSTOMER.DB. If successful, this code enumerates the indexed field names to an array and displays them in a 
dialog box:
; cityStateIndex::pushButton
method pushButton(var eventInfo Event)
var
  tblToIndex String
  tblVar Table
  indexedFlds Array[] String
  tv TableView
endVar
tblToIndex = "Customer.db"

if isTable(tblToIndex) then
  tblVar.attach(tblToIndex)
  if not tblVar.lock("Full") then
    msgStop("Stop!", "Can't lock " + tblToIndex + " table.")
    return
  endIf

  INDEX tblVar              ; create secondary index for Customer.db
    MAINTAINED              ; maintain index incrementally
    ON "City", "State/Prov" ; index on these two fields
    TO "CityState"          ; name the index "CityState"
  ENDINDEX

    ; now display Customer's keyed fields in a dialog box
  tblVar.enumFieldNamesInIndex("CityState", indexedFlds)
  indexedFlds.view("Fields in the CityState index")

else
  msgStop("Stop!", "Can't find " + tblToIndex + " table.")
endIf

endMethod



isAssigned method
Reports whether a Table variable has an assigned value.

Syntax
isAssigned ( ) Logical

Description
isAssigned returns True if a Table variable has an assigned value; otherwise, it returns False. You can assign a 
value to a Table variable using create or attach.
 Note

· Even if isAssigned returns True, the table may not exist. For example, the following code displays True in a 
dialog box:
var tb Table endVar
tb.attach("zxcv.qw")                  ; attach to some nonsense filename
msgInfo("Assigned?", tb.isAssigned()) ; displays True
displays True in the dialog box.

 Example
{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBATT;OPAL_METH_TBISTAB;',0,"Defaultoverview",)} 
Related Topics



isAssigned example
The following example determines whether the Table variable is assigned before attaching to a table. The 
following code goes in the Var window for the thisForm form:
; thisForm::var
var
  tblVar Table
endVar

The following code is attached to the pushButton method for the thisButton button. If tblVar is not already 
assigned, it is attached to the Orders table.
; thisButton::pushButton
method pushButton(var eventInfo Event)

if NOT tblVar.isAssigned() then
  tblVar.attach("Orders.db")
else
  msgStop("Error", "Can't attach tblVar to Orders.db")
endIf

endMethod



isEmpty method/procedure
Reports whether a table contains any records. 

Syntax
isEmpty ( ) Logical

Description
isEmpty returns True if there are no records in a table; otherwise, it returns False.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
isEmpty ( const tableName String ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBEMPT;OPAL_METH_TBISTAB;',0,"Defaultoverview",)} 
Related Topics



isEmpty example
In the following example, the pushButton method for the rptRecNo button displays the number of records in the
Orders table. If Orders is empty, this code informs the user:
; rptRecNo::pushButton
method pushButton(var eventInfo Event)
var 
  tblVar Table
  tblName String
endVar  
tblName = "Orders.db"

if isTable(tblName) then
  tblVar.attach(tblName)
  if tblVar.isEmpty() then     ; if Orders.db table is empty
    msgStop("Hey!", tblName + " table is empty!")
  else
    msgInfo(tblName + " table has", String(tblVar.nRecords()) + " records")
  endIf
else
  msgStop("Sorry", "Can't open " + tblName + " table.")
endIf
endMethod



isEncrypted method/procedure
Reports whether a table is password-protected.

Syntax
isEncrypted ( [ const tableName String ] ) Logical

Description
isEncrypted returns True if a table is password-protected; otherwise, it returns False. A TCursor can't be opened 
on an encrypted table until the password is presented interactively or using the Session type method 
addPassword. To determine whether a user has access rights to the table use tableRights .

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
isEncrypted ( const tableName String ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBPROT;OPAL_METH_TBTBRI;OPAL_METH_SSAPASS;OPAL_
METH_SSRMPAS;',0,"Defaultoverview",)} Related Topics



isEncrypted example
The following example uses isEncrypted to determine whether the Secrets table is password-protected ; if it is, 
the user must enter a password.
method pushButton(var eventInfo Event)
   const
      kTbName = "Secrets"
   endConst

   var
      tbSecret Table
      tvSecret TableView
   endvar

   tbSecret.attach(kTbName)

   ; If the table is encrypted, prompt the
   ; user for the password.

   if tbSecret.isEncrypted() then
      menuAction(MenuFileTablePasswords)
   endIf

   if not tvSecret.open(kTbName) then
      errorShow("Could not open " + kTbName)
   endIf

endMethod



isShared method/procedure
Reports whether a table is currently shared with another user on the network.

Syntax
isShared ( ) Logical

Description
isShared returns True if a table is being shared by another user on a network; otherwise, it returns False. 
isShared does not report whether a table is being shared with another session.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
isShared ( const tableName String ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBTBRI;',0,"Defaultoverview",)} Related Topics



isShared example
In the following example, a Table variable is attached to the Customer table. This code uses setExclusive to 
give the user exclusive rights to Customer then uses isShared to demonstrate the effect that setExclusive has 
on tables in a multi-user environment:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tblVar Table
  tblName String
endVar
tblName = "Customer.db"

tblVar.attach(tblName)

tblVar.setExclusive(True)   ; give user exclusive rights to Customer.db
if tblVar.isShared() then   ; this is never True!
                            ; exclusive tables can't be shared
  msgStop("", "This message will never appear!")
else
  msgInfo("Multi-user Status", tblName + " is not shared.")
endIf

endMethod



isTable method/procedure
Reports whether a table exists in a database.

Syntax
isTable ( ) Logical

Description
isTable returns True if the specified Table variable represents a table that can be opened; otherwise, it returns 
False.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
isTable ( const tableName String ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBISASSIGNED;',0,"Defaultoverview",)} Related Topics



isTable example
The following example uses isTable to determine whether the Customer table exists before doing anything with 
the table. If Customer exists in the default database, this code stores Customer field names in an array and 
displays the contents of the array in a dialog box:
; showCustFlds::pushButton
method pushButton(var eventInfo Event)
var
  tblVar Table
  tblName String
  fldNames Array[] AnyType
endVar 
tblName = "Customer.db"

tblVar.attach(tblName)
if isTable(tblVar) then
  tblVar.enumFieldNames(fldNames)
  fldNames.view(tblName + " fields")
else
  msgStop("Stop!", "Can't find " + tblName + " table.")
endIf

endMethod



lock method
Locks a specified table.

Syntax
lock ( const lockType String ) Logical

Description
lock locks a specified table. The lockType argument is one of the following String values, listed in order of 
decreasing strength and increasing concurrency:
String value Description
Full The current session has exclusive access to the table. Cannot be used with dBASE tables.
Write The current session can write to and read from the table. No other session can place a write lock

or a read lock on the table.
Read The current session can read from the table. No other session can place a write lock, full lock, or 

exclusive lock on the table.

If successful, lock  returns True; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBUNLOCK;OPAL_METH_SSLOCK;OPAL_METH_SSUNLOCK;',0
,"Defaultoverview",)} Related Topics



lock example
The following example attaches a Table variable to Customer, places an exclusive lock on the table and uses 
reIndex to rebuild the Phone_Zip index. When the index is rebuilt, this code unlocks Customer so other network 
users can gain access to the table:
; reindexCust::pushButton
method pushButton(var eventInfo Event)
var 
  tblVar Table
  pdoxTbl String
endVar
pdoxTbl = "Customer.db"

if isTable(pdoxTbl) then
  tblVar.attach(pdoxTbl)
  if tblVar.lock("Exclusive") then    ; Try to lock the table.
    tblVar.reIndex("Phone_Zip")       ; Rebuild Phone_Zip index.
    tblVar.unLock("Exclusive")        ; Unlock the table.
  else
    msgStop("Sorry", "Can't lock " + pdoxTbl + " table.")
  endIf
else
  msgStop("Sorry", "Can't find " + pdoxTbl + " table.")
endIf
endMethod



nFields method/procedure
Returns the number of fields in a table.

Syntax
nFields ( ) LongInt

Description
nFields returns the number of fields in a table.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
nFields ( const tableName String ) LongInt
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBNKEY;OPAL_METH_TBNREC;',0,"Defaultoverview",)} 
Related Topics



nFields example
In the following example, the pushButton method for thisButton displays the number of fields in the BioLife 
table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tblVar Table 
endVar 

tblVar.attach("BioLife.db")
msgInfo("BioLife", "BioLife has " + 
        String(tblVar.nFields(), " fields."))

endMethod



nKeyFields method/procedure
Returns the number of fields in the primary index for a table.

Syntax
nKeyFields ( ) LongInt

Description
nKeyFields returns the number of fields in the primary index for a table. Use getIndexName   (TCursor type)   to 
retrieve the index's name.
For more information on indexes, see About keys and indexes in tables in the User's Guide Help.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
nKeyFields ( const tableName String ) LongInt
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TCGETINDEXNAME;OPAL_METH_TBNFLD;',0,"Defaultovervi
ew",)} Related Topics



nKeyFields example
The following example returns the number of primary key fields in a Corel Paradox table (ORDERS.DB). This code 
also returns the number of primary key fields in the LastName tag of the SCORES.MDX index for a dBASE table 
(SCORES.DBF):
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  pdoxTbl, dBaseTbl Table 
  nkf LongInt 
endVar 

pdoxTbl.attach("Orders.db")
nkf = pdoxTbl.nKeyFields()        ; number of key fields in the primary index
msgInfo("Orders", "Orders.db has " + String(nkf) + " key fields.")

dBaseTbl.attach("Scores.dbf")
dBaseTbl.setIndex("Scores", "LastName")
nkf = dBaseTbl.nKeyFields() ; key fields in LastName tag
msgInfo("Scores.dbf", "LastName tag has "
                      + String(nkf) + " key fields.")

endMethod



nRecords method/procedure
Returns the number of records in a table.

Syntax
nRecords ( ) LongInt

Description
nRecords returns the number of records in the table associated with a Table variable. 
If you call nRecords after setting a filter, the return value does not represent the number of records in the 
filtered set. To retrieve that information, use cCount. If you call nRecords after setting a range, the return value 
represents the number of records in the set defined by the range.
nRecords counts deleted records in dBASE tables if showDeleted is turned on. If showDeleted is turned off, 
deleted records are not counted.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
nRecords ( const tableName String ) LongInt
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBNFLD;OPAL_METH_TBNKEY;',0,"Defaultoverview",)} 
Related Topics



nRecords example
The following example prompts the user for confirmation before deleting all records from the Scratch table. If the
user does not confirm the action, this code uses nRecords to indicate how many records exist in SCRATCH.DB:
; tblEmpty::pushButton
method pushButton(var eventInfo Event)
var
  tblName String
  tblVar Table
endVar
tblName = "Scratch.db"

if isTable(tblName) then
  tblVar.attach(tblName)
  if msgYesNoCancel("Confirm", "Empty " + tblName + " table?") = "Yes" then
    tblVar.empty()
    message("All " + tblName + " records have been deleted.")
  else
    message(tblname + " has " + String(tblVar.nRecords()) + " records.")
  endIf
else
  msgInfo("Error", "Can't find " + tblName + " table.")
endIf
endMethod



protect method/procedure
Assigns an owner password to a table.

Syntax
protect ( const password String ) Logical

Description
protect assigns an owner password to a table. The password cannot exceed 31 characters. A password-
protected table cannot be accessed without presenting the password specified in password. If the table already 
has a password, protect fails.
Once a table is protected, you can use the addPassword method to present the password, and the 
removePassword method to withdraw the password. password is case-sensitive (e.g., a table protected with 
Sesame won't open for SESAME).
Do not confuse protect with lock  :   protect encrypts tables, while lock controls simultaneous access to tables.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
protect ( const tableName String, const password String ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBISEN;OPAL_METH_SSAPASS;OPAL_METH_SSRMPAS;',0,"D
efaultoverview",)} Related Topics



protect example
In the following example, the pushButton method for protectSecrets password-protects the Secrets table in the 
default database:
; protectSecrets::pushButton
method pushButton(var eventInfo Event)
var
  secretData Table
endVar

secretData.attach("Secrets.db")
if not secretData.isEncrypted() then
  secretData.protect("Get007") ; Password-protect table with "Get007"
endIf

endMethod



reIndex method
Rebuilds an index or index tag that is not automatically maintained.

Syntax
1. (Corel Paradox tables) reIndex ( const indexName String ) Logical
2. (dBASE tables) reIndex ( const indexName String [ const tagName String ] ) Logical

Description
reIndex rebuilds an index or index tag that is not automatically maintained. In a Corel Paradox table, use 
indexName to specify an index. In a dBASE table, use indexName to specify an .NDX file, or indexName and 
tagName to specify an index tag in an .MDX file. reIndex requires exclusive access to the table.
For more information on indexes, see About keys and indexes in tables in the User's Guide Help.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBREINDAL;',0,"Defaultoverview",)} Related Topics



reIndex example
The following example attaches a Table variable to a Corel Paradox table named Customer, places an exclusive 
lock on the table and uses reIndex to rebuild the Phone_Zip index:
; reindexCust::pushButton
method pushButton(var eventInfo Event)
var 
  tblVar Table
  pdoxTbl String
endVar
pdoxTbl = "Customer.db"

tblVar.attach(pdoxTbl)
if tblVar.lock("Exclusive") then  ; Try to lock the table.
  tblVar.reIndex("Phone_Zip")     ; Rebuild Phone_Zip index.
  tblVar.unLock("Exclusive")      ; Unlock the table.
else
  msgStop("Sorry", "Can't lock " + pdoxTbl + " table.")
endIf

endMethod



reIndexAll method
Rebuilds all index files associated with a table.

Syntax
reIndexAll ( ) Logical

Description
reIndexAll rebuilds all index files associated with a table. This method requires exclusive rights to rebuild a 
maintained index and a write lock to rebuild a non-maintained index.
For more information on indexes, see About keys and indexes in tables in the User's Guide Help.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBREIND;',0,"Defaultoverview",)} Related Topics



reIndexAll example
In the following example, the pushButton method for a button attempts to place an exclusive lock on the 
Customer table. If lock is successful, this code rebuilds all indexes for the Customer table and unlocks the table:
; reindexAllCust::pushButton
method pushButton(var eventInfo Event)
var 
  tblVar Table
  pdoxTbl String
endVar
pdoxTbl = "Customer.db"

tblVar.attach(pdoxTbl)
if tblVar.lock("Exclusive") then    ; attempt to lock Customer.db
  tblVar.reIndexAll()               ; rebuild all Customer.db indexes
  tblVar.unLock("Exclusive")        ; unlock the table
else
  msgStop("Sorry", "Can't lock " + pdoxTbl + " table.")
endIf

endMethod



rename method/procedure
Renames a table.

Syntax
rename ( const destTableName String ) Logical

Description
rename changes a table's name to the name specified by destTableName. If the table named by destTableName
already exists, an error results.
Throughout the retry period, this method attempts to place a full lock on the table. If the lock cannot be placed, 
an error results.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
rename ( const tableName String, const destTableName String ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCOPY;',0,"Defaultoverview",)} Related Topics



rename example
The following example renames CUSTOMER.DB to OLDCUST. If OldCust already exists, this code allows you to 
abort the operation:
; renameCust::pushButton
method pushButton(var eventInfo Event)
var
  tblVar Table
  oldName, newName String  
endVar

oldName = "Customer.db"
newName = "OldCust.db"

tblVar.attach(oldName)
if tblVar.isTable() then
  if isTable(newName) then
    if msgQuestion("Confirm", newName + " exists. Overwrite it?") <> "Yes" then
      message("Operation canceled.")
      return
    endIf
  endIf
  tblVar.rename(newName)
  message(oldName + " renamed to " + newName)
else
  msgStop("Stop!", "Can't find " + oldName + " table.")
endIf

endMethod



restructure method
Restructures a table.

Syntax
restructure( const createSpec DynArray[ ] AnyType ) Logical

Description
restructure allows you to modify a table's structure under program control. You can add, delete, or modify the 
fields in your table, create indexes, change referential integrity relationships, and so on. restructure also allows
you to perform other operations that are available when restructuring a table (e.g., packing the table).
restructure uses a dynamic array named createSpec, which contains the information on the changes to make 
to the table.
To specify the kind of change to be made, the field, index, referential integrity, and security structure tables, if 
specified, must include an ID field. This ID field is named slightly differently in each structure file, however, all 
end with id. Use this ID field to specify the type of operation to perform. The RestructureOperations constants 
crModify, crAdd, and crDrop are provided for each operation.
restructure returns True if successful, and False if the restructure operation fails, or if a Keyviol or Problems 
table is generated. It also fails if it cannot obtain a full lock on the table.
The following clauses specify table attributes in createSpec and are optional. They can appear in any order 
within the dynamic array:
saveAs specifies a new name for the restructured table, leaving the original table unchanged. By default, the 
restructured table is saved with the same name, which overwrites the original table.
Keyviol specifies the table to which any records causing a key violation are saved.
Problems specifies the table to which any problem records are saved. If data is lost during the restructure, the 
problem records are placed in the problems table, and the operation that caused the problem is not performed 
on those records.
fieldStruct specifies the name of the table from which you can borrow field structure information. Use 
enumFieldStruct to generate the field structure table before executing restructure. The _Invariant Field Id 
field of the field structure table contains the original field number of the table to be restructured. Use the 
_Invariant Field Id field to specify the change to be made to the table. To add a field, insert a new record in the 
field structure table describing the new field and place crAdd in the _Invariant Field Id field. To delete an existing 
field, remove the record from the field structure table.
indexStruct specifies the name of the table from which you can borrow index structure information. Use 
enumIndexStruct to generate the index structure table (or create it manually). Use the iIndexId field of the 
index structure table to specify the change to be made to the table. To modify an index, use crModify in the 
iIndexId field. You can modify an index name by dropping (crDrop), and adding (crAdd) another record with the 
changed name.
refIntStruct specifies the name of the table from which you can borrow referential integrity structure 
information. Use enumRefIntStruct to generate the referential integrity structure table (or create it manually). 
Use the iRefId field of the referential integrity structure table to specify the change to be made to the table. Use 
crModify to modify existing values, crAdd to add, or crDrop to delete.
secStruct specifies the table from which you can borrow security structure information. Use enumSecStruct to
generate the security structure table name (or create it manually). Use the iSecId field in the security structure 
table to specify the change to be made to the table. Use crModify to modify existing values, crAdd to add, or 
crDrop to delete.
pack specifies whether to pack the table. Valid values are True or False. For more information, see compact 
(Table type).
versionLevel specifies the table version level. See create for a listing of version numbers for Corel Paradox and
dBASE tables.
languageDriver specifies the language driver name. For a list of language drivers for Corel Paradox tables, see 
Language drivers for Corel Paradox tables. For dBASE tables, see Language drivers for dBASE tables.
blockSize specifies the size of data blocks used to store information in the table, in kilobytes. (A kilobyte is 
1,024 bytes.) Valid block sizes depend on the file format of the table. For Corel Paradox versions 4.5 or earlier, 1K
through 4K are valid. For versions 5.0 and later, 1K through 4K, 8K, 16K, and 32K are valid.
warnings specifies whether warnings encountered during the restructure operation are displayed. Valid values 
are True or False. If warnings is set to True, warnings can be placed on the error stack for examination.
If errorTrapOnWarnings is set to True, the first warning generated terminates the restructure operation.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCREA;OPAL_METH_TBENUMFIELDSTRUCT;OPAL_METH_TB



ENUMINDEXSTRUCT;OPAL_METH_TBENUMREFINTSTRUCT;OPAL_METH_TBENUMSECSTRUCT;',0,"Defaulto
verview",)} Related Topics



restructure example
The following example appears in a script window and modifies the Customer table by changing a field name. 
This code uses enumFieldStruct to create the field structure information, updates the information, copies the 
updated information to a dynamic array and passes the dynamic array to the restructure method:

method run(var eventInfo Event)
var
     tbl         Table
     tcFlds      TCursor
     dynNewStru  DynArray[] Anytype
endvar

tbl.attach( "Customer.db" )
tbl.enumFieldStruct( "field_struct.db" )

tcFlds.open("field_struct.db" )
tcFlds.edit()

scan tcFlds :
   if tcFlds."Field Name" = "Name" then
      tcFlds."Field Name" = "Company Name"
      quitLoop
   endif
endscan
tcFlds.endEdit()
tcFlds.close()

dynNewStru["FIELDSTRUCT"] = "field_struct.db"
tbl.restructure( dynNewStru )
endmethod



setExclusive method
Specifies whether to grant the user exclusive rights to a table when it is opened.

Syntax
setExclusive ( [ const yesNo Logical ] )

Description
setExclusive specifies whether to open a table with shared or exclusive rights. This method does not place 
locks on the table an exclusive lock is placed on the table only when it is opened. Exclusive locks are more 
powerful than full locks.

By default, tables are opened in shared mode. Optional argument yesNo specifies whether to set exclusive rights. A 
value of Yes requests exclusive rights so that no other user can read or write to the table; a value of No allows the 
table to be opened in shared mode. By default, yesNo is set to Yes.

 Example
{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBATT;OPAL_METH_TBSIND;OPAL_METH_TBSETREADONLY;',
0,"Defaultoverview",)} Related Topics



setExclusive example
The following example demonstrates how setExclusive affects access rights to a table. This code defines a 
Table variable for the Customer table and calls setExclusive so Customer is opened exclusively. Then, a TCursor
is opened for Customer. If the TCursor is successfully opened, it has exclusive rights to the table and lockStatus
is called to indicate that an exclusive lock has been placed on Customer.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tblVar Table
  tc     TCursor
endvar 

tblVar.attach("Customer.db")
if tblVar.isTable() then
  ; set exclusive rights for the Table variable
  tblVar.setExclusive()

  ; attempt to open a TCursor on Customer.db
  ; if successful, tc has exclusive rights to Customer.db
  if tc.open(tblVar) then
  
    ; if tc.open was successful, this message indicates
    ; that tc has 1 exclusive lock on Customer.db
    msgInfo("Lock Status", tc.lockStatus("Exclusive"))

  else
    ; else open failed
    msgInfo("Status", "Can't open Customer.db")
  endIf

else
  msgInfo("Status", "Can't find Customer.db table.")
endIf

if tc.isAssigned() then    ; if the TCursor was opened
  tc.close()               ; close tc
now Customer.db is not

                           ; locked and can be opened by another user
endIf

endMethod



setGenFilter method
Specifies conditions for including records in a TCursor opened on a Table variable.

Syntax
1. setGenFilter ( criteria DynArray[ ] AnyType ) Logical
2. setGenFilter ( criteria Array[ ] AnyType [ , fieldId Array[ ] AnyType ] ) Logical

Description
setGenFilter specifies conditions for including records in a TCursor opened on a Table variable. Records that 
meet the specified conditions are included in the TCursor. Records that don't meet the criteria are filtered out, 
creating a restricted view of the table. setGenFilter must be executed before opening a table with a TCursor.
In Syntax 1, a dynamic array (DynArray) named criteria specifies fields and filtering conditions. The index is the 
field name or number, and the item is the filter expression.
The following code specifies criteria based on the values of three fields:
criteriaDA[1]      = "Widget"            ; The value of the first field
                                         ; in the table is Widget.

criteriaDA["Size"] = "> 4"               ; The value of the field named 
                                         ; Size is greater than 4.

criteriaDA["Cost"] = ">= 10.95, < 22.50" ; The value of the field named 
                                         ; Cost is greater than or 
                                         ; equal to 10.95  and less 
                                         ; than 22.50.

If the DynArray is empty, all existing filter criteria are removed.
In Syntax 2, an Array named criteria specifies filtering conditions, and an optional Array named fieldId specifies 
field names and numbers. If you omit fieldID, conditions are applied to fields in the order they appear in the 
criteria array (the first condition applies to the first field, the second condition applies to the second field, and so 
on). The following example specifies the same criteria as the example for Syntax 1:
criteriaAR[1] = "Widget"
criteriaAR[2] = "> 4"
criteriaAR[3] = ">= 10.95, < 22.50" 
fieldAR[1] = 1
fieldAR[2] = "Size"
fieldAR[3] = "Cost"

If the Array is empty, all existing filter criteria are removed.
 Examples

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBGETGENFILTER;OPAL_METH_TBDROPGENFILTER;OPAL_M
ETH_TCSETGENFILTER;OPAL_METH_UISETGENFILTER;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Defau
ltoverview",)} Related Topics



setGenFilter method examples
Example1          Attaching a table variable with a built-in run method
Example2          Attaching a table variable with a pushButton method



setGenFilter example 1
In the following example, the built-in run method for a script attaches a Table variable to the Customer table and
sets filter criteria on the State field to equal CA:
;Script :: run
method run(var eventInfo Event)
   var
      tb         Table
      dyn      DynArray[] AnyType
   endVar

   dyn["State/Prov"] = "CA"

   tb.attach("CUSTOMER.DB")
   tb.setGenFilter(dyn)

endMethod



setGenFilter example 2
In the following example, a form contains a button named btnBalanceStatus. The pushButton method for 
btnBalanceStatus attaches a Table variable to the Orders table and sets filter criteria that displays only those 
records with a positive balance. cCount then retrieves the number of records, cAverage retrieves the average 
balance due, and cSum retrieves the total balance due. Finally, a dialog box displays the values.
;btnBalanceStatus
method pushButton(var eventInfo Event)
   var
      tbl         Table
      dyn         DynArray[] AnyType
      s1,
      s2,
      s3            String
   endVar

   tbl.attach("ORDERS")
   Dyn["Balance Due"] = "> 0"
   tbl.setGenFilter(Dyn)

   s1 = string(tbl.cCount("Balance Due"))
   s2 = string(tbl.cAverage("Balance Due"))
   s3 = string(tbl.cSum("Balance Due"))

   msgInfo("Outstanding balances", "There are " + s1 + " orders with an average balance due of 
" + s2 + ", totaling " + s3 + ".")
endMethod



setIndex method
Specifies an index for a table.

Syntax
1. (Corel Paradox tables) setIndex ( const indexName String ) Logical
2. (dBASE tables) setIndex ( const indexName String [ , const tagName String ] ) Logical

Description
setIndex specifies an index to use when a table is opened.
In a Corel Paradox table, use indexName to specify an index. In a dBASE table, you can use indexName to specify
an .NDX file, or indexName and tagName to specify an index tag in an .MDX file.
For more information on indexes, see About keys and indexes in tables in the User's Guide Help.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBSETRANGE;',0,"Defaultoverview",)} Related Topics



setIndex example
The following example assumes that the Corel Paradox Customer table has a secondary index named CityState. 
The following code specifies CityState with setIndex to set up for a call to setRange. When the filter is set for 
Customer, this code loads a DynArray with information from the filtered table then displays the DynArray's 
contents in a dialog box:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  custTbl Table
  tc TCursor
  dy DynArray[] Anytype
endVar

custTbl.attach("Customer.db")
if isTable(custTbl) then

  ; now use the secondary index named CityState
  custTbl.setIndex("CityState")

  ; filter out everything but St. Thomas
  custTbl.setRange("St. Thomas", "St. Thomas")

  ; open a TCursor for the filtered Customer table
  if tc.open(custTbl) then

    ; scan the table and load the DynArray with
    ; company names (Name) and phone numbers
    scan tc:
      dy[tc.Name] = tc.Phone
    endScan
    ; display contents of the DynArray
    dy.view("St. Thomas Phone Numbers")

  else
    msgStop("Error", "Can't open TCursor.")
  endIf
  
else
  msgStop("Error", "Can't find Customer.db")
endIf
endMethod



setRange method
Specifies a range of records to associate with a Table variable. This method enhances the functionality of 
setFilter, which it replaces in this version. Code that calls setFilter continues to execute as before.

Syntax
1. setRange ( [ const exactMatchVal AnyType] * [ , const minVal AnyType, const maxVal AnyType ]
) Logical
2. setRange ( rangeVals Array[ ] AnyType ) Logical

Description
setRange specifies conditions for associating a contiguous range of records with a Table variable. Records that 
meet the conditions are included when the table is opened. setRange compares the criteria you specify with 
values in the corresponding fields of a table's index. If the table is not indexed, this method fails. If you call 
setRange without any arguments, the range criteria is reset to include the entire table.
Syntax 1 allows you to set a range based on the value of the first field of the index by specifying values in minVal
and maxVal. For example, the following statement examines values in the first field of the index of each record:
tableVar.setRange(14, 88)

If a value is less than 14 or greater than 88, that record is filtered out. To specify an exact match on the first field
of the index, assign the same value to minVal and maxVal. For example, the following statement filters out all 
values except 55:
tableVar.setRange(55, 55)

To set a range based on the values of more than one field, specify exact matches except for the last one in the 
list. For example, the following statement looks for exact matches on Corel and Corel Paradox (assuming they 
are the first fields in the index), and values ranging from 100 to 500 (inclusive) for the third field:
tableVar.setRange("Corel", "Corel Paradox", 100, 500)

Syntax 2 allows you to pass an    array of values to specify the range criteria, as listed in the following table.
Number of Array Items Range Specification
No items (empty array) Resets range criteria to include the entire table
One item Specifies a value for an exact match on the first field of the index
Two items Specifies a range for the first field of the index
Three items The first item specifies an exact match for the first field of the index; items 2 and 3 

specify a range for the second field of the index.
More than three items For an array of size n, specify exact matches on the first n-2 fields of the index. The 

last two array items specify a range for the n-1 field of the index.
 Examples

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBSETGENFILTER;OPAL_METH_TBSIND;OPAL_METH_TCSETR
ANGE;OPAL_METH_UISETRANGE;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Defaultoverview",)} 
Related Topics



setRange method examples
Example1         Calculating totals in a field
Example2          Calling setRange with a criteria array of more than three items



setRange example 1
The following example assumes that Lineitem's key field is Order No. and that you want to know the total for 
order number 1005. The following code attaches a Table variable to the Lineitem table, limits the range of 
records to those with 1005 in the first field of the primary index and uses cSum to calculate the total for order 
number 1005:
; getDetailSum::pushButton
method pushButton(var eventInfo Event)
var
  tblVar Table
  tblName String
endVar
tblName = "LineItem.db"
tblVar.attach(tblName)

  ; this limits TCursor's view to records that have
  ; 1005 in the first field of the primary index
tblVar.setRange(1005, 1005)       

  ; now display the total for Order No. 1005
msgInfo("Total for Order 1005", tblVar.cSum("Total"))

endMethod



setRange example 2
The following example calls setRange with a criteria array that contains more than three items. The following 
code sets a range to include orders from a person with a specific first name, middle initial, and last name, and an
order quantity ranging from 100 to 500 items. The code then counts the number of records in this range and 
displays the value in a dialog box. This example assumes that the PartsOrd table is indexed on the FirstName, 
MiddleInitial, LastName, and Qty fields:
; setQtyRange::pushButton
method pushButton(var eventInfo Event)
   var
      tbPartsOrd   Table
      arRangeInfo   Array[5] AnyType
      nuCount      Number
   endVar

   arRangeInfo[1] = "Frank"      ; FirstName (exact match)
   arRangeInfo[2] = "P."         ; MiddleInitial (exact match)
   arRangeInfo[3] = "Corel"    ; LastName (exact match)
   arRangeInfo[4] = 100          ; Minimum qty value
   arRangeInfo[5] = 500          ; Maximum qty value

   if tbPartsOrd.attach("PartsOrd") then
         tbPartsOrd.setRange(arRangeInfo)
         nuCount = tbPartsOrd.cCount(1)
         nuCount.view("Number of big orders by Frank P. Corel:")
   else
         errorShow("Can't open the table.")
   endIf
endMethod



setReadOnly method
Specifies whether to grant the user read-only rights to a table when it is opened.

Syntax
setReadOnly ( [ const yesNo Logical ] )

Description
setReadOnly specifies whether to grant the user read-only rights to a table when it is opened. This method fails
if the table has been locked by another user or if the table is open.
Optional argument yesNo specifies whether to set read-only rights: a value of Yes grants read-only rights, a value
of No allows full rights to the table. By default, yesNo is set to Yes.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBSETEXCLUSIVE;',0,"Defaultoverview",)} Related Topics



setReadOnly example
The following example attaches a Table variable to the Orders table, calls setReadOnly to limit rights and opens
a TCursor for Orders:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tblVar Table
  tc TCursor
endVar

errorTrapOnWarnings()
tblVar.attach("Orders.db")  ; attach Table var to Orders.db
tblVar.setReadOnly()        ; set Table to read-only
tc.open(tblVar)             ; open a TCursor for Orders.db
tc.edit()

endMethod



showDeleted method
Specifies whether to display deleted records in a dBASE table.

Syntax
showDeleted ( [ const yesNo Logical ] ) Logical

Description
showDeleted specifies whether to display deleted records in a dBASE table. Records deleted from a dBASE 
table aren't immediately removed. Instead, they are flagged for deletion and removed later. showDeleted is 
relevant only for dBASE tables.
Optional argument yesNo specifies whether to display deleted records (a value of Yes) or hide deleted records (a 
value of No). By default, yesNo is set to Yes. If you don't call this method before using the Table variable 
associated with the table, deleted records are not displayed.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBCOM;OPAL_METH_TBDELETE;',0,"Defaultoverview",)} 
Related Topics



showDeleted example
In the following example, the pushButton method attached to the showDeletedRecs button displays a Table 
variable's deleted records:
; showDeletedRecs::pushButton
method pushButton(var eventInfo Event)
var
  tblVar Table
endVar

tblVar.attach("Orders.dbf")
if isTable(tblVar) then

  ; show deleted records in Orders.dbf
  tblVar.showDeleted(Yes)

  ; display sum of deleted and undeleted records
  msgInfo("Total # of Records", tblVar.nRecords())
else
  msgStop("Error", "Can't find Orders table.")
endIf

endMethod



sort keyword
Sorts a table.

Syntax
sort sourceTable [ on fieldNameList [ D ] ] [ to destTable ]    endSort

Description
sort sorts the table specified in sourceTable .
sourceTable can be a Table, TCursor, or String type. destTable can be a Table or String type. However, you can't 
sort a TCursor onto itself.
If you include the optional on clause, the table is sorted on the first field specified in fieldNameList. Each 
subsequent field settles ties in the preceding fields. An optional D after a field name specifies a sort in 
descending order. If you omit the on clause, records are sorted in ascending order, moving from left to right 
across the fields.
If you include the optional to clause, the sort result written to the table specified by destTable. If that table 
already exists, it is overwritten without asking for confirmation. If you omit the to clause, the sorted records are 
returned to sourceTable (this fails if the table is open). You must specify the to clause if the source table is 
keyed.
sort automatically places a full lock on the tables being sorted if the result is written to the same table. 
Otherwise, a write lock is required for the source table and a full lock for the target table.
sort is not a method, so dot notation is inappropriate. Instead, you create a structure to specify how to sort the 
table.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBINDE;OPAL_METH_TCSORTTO;',0,"Defaultoverview",)} 
Related Topics



sort example
The following example sorts Customer on the Last Name and First Name fields, and displays the results in the 
CustSort table:
; sortCustTable::pushButtton
method pushButton(var eventInfo Event)
var
  custTbl Table
  tv TableView
endVar

custTbl.attach("Customer.db")

sort custTbl
  on "Country" D, "Name" D     ; sort in descending order
  to "CustSort.db"
endSort

tv.open("CustSort.db")                 ; open the sorted table

endMethod



subtract method/procedure
Subtracts the records in one table from another table.

Syntax
1. subtract ( const destTableName String ) Logical
2. subtract ( const destTableName Table ) Logical

Description
subtract determines whether records that reside in the source table also reside in destTableName. If matching 
records are found, subtract deletes them from destTableName without asking for confirmation.
If destTableName is keyed, subtract deletes the records with keys that match the values of key fields in the 
source table. If destTableName is not keyed, subtract deletes the records that match any record in the source 
table. Whether tables are keyed or not, this method considers only fields that could be keyed (based on data 
type, not position). For example, numeric fields are considered, but formatted memos are not. This method 
requires read/write access to both tables.
If the target table is not keyed, this operation can be time-consuming.
Throughout the retry period, this method attempts to place a full lock on both tables. If locks cannot be placed, 
an error results.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
1. subtract ( const sourceTableName String, const destTableName String ) Logical
2. subtract ( const sourceTableName String, const destTableName Table ) Logical
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBADD;',0,"Defaultoverview",)} Related Topics



subtract example
The following example subtracts records found in the Inserted table (in the private directory) from the Customer 
table:
; subtractCust::pushButton
method pushButton(var eventInfo Event)
var
  insTbl, CustTbl Table
  fs FileSystem
  tblName String
endVar
tblName = privDir() + "\\Inserted.db"

insTbl.attach(tblName)
if insTbl.isTable() then
  insTbl.subtract(custTbl)    ; remove from custTbl matching records in insTbl
else
  msgInfo("Sorry", "Can't find " + tblName + " table.")
endIf

endMethod



tableRights method/procedure
Specifies whether the user has the right to perform table operations.

Syntax
tableRights ( const rights String ) Logical

Description
tableRights specifies whether the user has the right to perform table operations. The following table describes 
rights:
Value Description
ReadOnly Specifies the right to read from the table without making changes
Modify Specifies the right to enter or change data
Insert Specifies the right to add new records
InsDel Specifies the right to add and delete records
Full or All Specifies the right to perform all of the above operations
This method returns True if the user has the specified rights; otherwise, it returns False.

DOS
If you are a DOS PAL programmer, you can use this procedure to operate on tables by specifying the table name,
rather than using a variable.

Syntax
tableRights ( const tableName String, const rights String )
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBFAMR;',0,"Defaultoverview",)} Related Topics



tableRights example
The following example reports whether the user has All rights to the Orders table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  myRights Logical 
  ordTbl   Table
endVar

ordTbl.attach("Orders.db")
if ordTbl.isTable() then
  myRights = ordTbl.tableRights("All")

  ; this displays True if you have All rights to Orders.db
  msgInfo("All Rights?", myRights)

else
  message("Can't find Orders table.")
endIf
endMethod



type method
Returns a table's type.

Syntax
type ( ) String

Description
type returns the string value COREL PARADOX or DBASE to specify the table's type.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBATT;',0,"Defaultoverview",)} Related Topics



type example
The following example removes deleted records from the Orders table if type returns DBASE. If type returns 
Corel Paradox, a message is displayed:
; compactButton::pushButton
method pushButton(var eventInfo Event)
var
  tblVar Table
endVar
tblVar.attach("Orders")
if tblVar.type() = "DBASE" then
  tblVar.compact()
else
  msgStop("Stop!", "Orders is a " + tblVar.type() + " table.")
endIf

endMethod



unAttach method
Ends the association between a Table variable and a table description.

Syntax
unAttach ( ) Logical

Description
unAttach ends the association (created using attach or create) between a Table variable and a table 
description. You don't have to end the association between a Table variable and a table to attach the same 
variable to another table. unAttach is automatically called when a Table variable is assigned to a different table.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBATT;',0,"Defaultoverview",)} Related Topics



unAttach example
In the following example, a Table variable is used to summarize sales information from two different tables. 
When the Table variable (tableVar) is no longer needed, this code calls unAttach to end the association between
tableVar and the table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tableVar Table 
  q1, q2   Number
  msg      String
endVar

tableVar.attach("q1_sales.db")  ; attach to q1_sales table
q1 = tableVar.cSum("Amount")    ; get a summary

tableVar.attach("q2_sales.db")  ; no need to unattach
q2 = tableVar.cSum("Amount")    ; get summary from q2_sales

tableVar.unAttach()             ; we don't need tableVar anymore
                                ; so end the association to q2_sales

switch
   case q2 < q1 : msg = "Sales are down."
   case q2 = q1 : msg = "Sales are flat."
   case q2 > q1 : msg = "Sales are up."
endSwitch

msgInfo("Sales", msg)

endMethod



unlock method
Unlocks a specified table.

Syntax
unlock ( const lockType String ) Logical

Description
unlock removes locks that are explicitly placed on the table associated with a Table variable. lockType is one of 
the following String values, listed in order of decreasing strength and increasing concurrency:
String value Description
Full The current session has exclusive access to the table. No other session can open the table. 

Cannot be used with dBASE tables.
Write The current session can write to and read from the table. No other session can place a write lock

or a read lock on the table.
Read The current session can read from the table. No other session can place a write lock, full lock, or 

exclusive lock on the table.
unlock removes locks that have been explicitly placed by a particular user or application using lock. unlock has
no effect on locks placed automatically by Corel Paradox. To ensure maximum concurrent availability of tables 
unlock a table that has been explicitly locked as soon as the lock is no longer needed. If you lock a table twice, 
you must unlock it twice. You can use lockStatus (defined for the TCursor and UIObject types) to determine how
many explicit locks you have placed on a table. If you try to unlock a table that isn't locked or cannot be 
unlocked, unlock returns False .
If successful, this method returns True; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBLOCK;OPAL_METH_TCLSTA;OPAL_METH_UILOCKSTATUS;',
0,"Defaultoverview",)} Related Topics



unlock example
In the following example, the pushButton method for updateCust runs a query from an existing file and adds 
records from the Answer table to the Customer table. This code attempts to place a write lock on the Customer 
table before adding records to it. If the lock is placed, this code adds Answer records and uses unlock to unlock 
Customer:
; updateCust::pushButton
method pushButton(var eventInfo Event)
var
  newCust Query
  ansTbl Table
  destTbl String
endVar
destTbl = "Customer.db"

newCust.readFromFile("getCust.qbe")

if newCust.executeQBE() then           ; If the query succeeds,
  ansTbl.attach(":PRIV:Answer.db") 
  if destTbl.lock("Write") then        ; try to write lock the table.
    ansTbl.add(destTbl)                ; Add records from Answer.db.
    destTbl.unLock("Write")            ; Unlock the table.
  else
    msgStop("Stop", "Can't write lock " + destTbl + " table.")
  endIf
else
  msgStop("Stop!", "Query failed.")
endIf

endMethod



unProtect method/procedure
Permanently removes an owner password from a table.

Syntax
1. ( Procedure ) unProtect ( const tableName String [ , const Password String ] )
2. ( Method ) unProtect ( [ const password String ] )

Description
unProtect permanently removes an owner password from a table. A protected table is encrypted and cannot be
accessed without presenting the password that is specified in password. If you have already issued the master 
password for a table, password is not necessary.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBISEN;OPAL_METH_TBPROT;OPAL_METH_SSAPASS;OPAL_
METH_SSRMPAS;',0,"Defaultoverview",)} Related Topics



unProtect example
The following example permanently removes password protection from the Secrets table:
; decrypt::pushButton
method pushButton(var eventInfo Event)
var
  tblVar Table
  tblName String
endVar

tblName = "Secrets.db"
tblVar.attach(tblName)
if tblVar.isEncrypted() then
  tblVar.unprotect("Get007")   ; permanently remove password
                               ; this assumes Get007 is the master password
endIf

endMethod



usesIndexes method
Specifies index files to use and maintain with a dBASE table.

Syntax
usesIndexes ( const indexFileName String [ , const indexFileName String ] * Logical

Description
usesIndexes specifies one or more index files (.NDX and .MDX) to maintain while you use a dBASE table. This 
method specifies index files to open when the table is opened. This method is not used to open production files 
(e.g., the .MDX file with the same name as the table) for a dBASE table. These files are opened automatically.
If any of the specified index files do not exist, this method fails.
For more information on indexes, see About keys and indexes in tables in the User's Guide Help.
 Example

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBREIND;OPAL_METH_TBREINDAL;OPAL_METH_TBSIND;',0,"
Defaultoverview",)} Related Topics



usesIndexes example
The following example calls usesIndexes to specify two different indexes in the Orders table and opens a 
TCursor for the table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tblVar Table
  tc     TCursor
endvar

tblVar.attach("Orders.dbf")
if tblVar.isTable() then

  ; specify NameStat and Ord_Name indexes
  tblVar.usesIndexes("NAMESTAT.NDX", "ORD_NAME.NDX")

  ; now attempt to open the table, using the specified indexes
  if tc.open(tblVar) then
    if tc.locate("State", "FL", "Contact", "Simons") then
      msgInfo("Order Date", tc."Order Date")
    else
      msgStop("Error", "Can't find values.")
    endIf
  endIf
else
  msgStop("Error", "Can't find Orders.dbf table.")
endIf
endMethod



Using ranges and filters
Although ranges and filters allow you to select a subset of the records in a Table variable, a TCursor, or a 
UIObject, they operate differently.
A range is based on the fields in an index. When you apply a range to a table, a subset of records that are 
contiguous and consecutive is created. For this reason, a range gives faster performance than a filter.
A filter offers greater flexibility when selecting fields and specifying criteria. A filter is based on any table field 
and can use expressions to specify criteria. For example, a filter can select records in which the Quantity field 
has values of 125, 200, and 350. A range could only specify values ranging from 125 to 350.
For more information on indexes, see About keys and indexes in tables in the User's Guide Help.

{button ,AL(`OPAL_TYPE_TABLE;OPAL_METH_TBSETGENFILTER;OPAL_METH_TCSETGENFILTER;OPAL_M
ETH_UISETGENFILTER;OPAL_METH_TBSETRANGE;OPAL_METH_TCSETRANGE;OPAL_METH_UISETRANGE;
',0,"Defaultoverview",)} Related Topics



TableView type
A TableView object displays a table's data in its own window. A TableView object is distinct from a table frame, 
which is a UIObject placed in a form, and from a TCursor, which is a programmatic construct that points to the 
data in a table.
If you declare a TableView variable and open a TableView object to that variable, a handle to the TableView 
window is created. You can refer to the handle in your code to manipulate the TableView object.
TableView methods are a subset of the Form type methods and control the Table window's size, position, and 
appearance. Although you can start and end Edit mode for a table view, you cannot use ObjectPAL to directly 
edit the data in a table view. You can use ObjectPAL to manipulate TableView properties in the following areas:
· the TableView object as a whole (e.g., background color, grid style, number of records, and the value of the 

active record)

· the field-level data in the table (e.g., font, color, and display format (TVData))
· the TableView heading (e.g., font, color, and alignment (TVHeading))

The TableView type includes several derived methods from the Form type.
Methods for the TableView type

Form TableView
bringToTop action
getPosition close
getTitle moveToRecord
hide open
isMaximized wait
isMinimized
isVisible
maximize
minimize
setPosition
setTitle
show
windowHandle

 Print related ObjectPAL methods and examples



action method
Performs an action command.

Syntax
action ( const actionID SmallInt ) Logical
Description
action performs the action specified by the constant actionId. actionId is a constant in one of the following 
action classes:
· ActionDataCommands
· ActionEditCommands
· ActionFieldCommands
· ActionMoveCommands
· ActionSelectCommands

You can also use action to send a user-defined action constant to a built-in action method. User-defined action 
constants are integers that don't interfere with any of ObjectPAL's constants. User-defined constants can be used
to signal other parts of an application. For example, assume that the Const window for a form declares a 
constant named myAction. You can use the id method to verify the value of each incoming ActionEvent. If the 
value is equal to myAction, you can respond to that action accordingly. By default, Corel Paradox passes the 
action to the action method.
The action method is distinct from the built-in action method for a TableView or for any form or UIObject. The 
built-in action method for an object responds to an action event; this method causes an ActionEvent.
 Example

{button ,AL(`OPAL_TYPE_TABLEVIEW;OPAL_METH_TVOPE;',0,"Defaultoverview",)} Related Topics



action example
The following example opens a TableView for the Orders table, moves the cursor to the end of the table, starts 
Edit mode, and inserts a new record. This code is attached to the pushButton method for a button named 
startEditInsert:
; startEditInsert::pushButton
method pushButton(var eventInfo Event)
var
  orderTV  TableView
endVar
if orderTV.open("Orders") then
  orderTV.action(DataEnd)           ; move to the end of the table
  orderTV.action(DataBeginEdit)     ; start Edit mode
  orderTV.action(DataInsertRecord)  ; insert a new blank record
  orderTV.wait()                    ; wait until TableView object is closed
  orderTV.close()                   ; close when return
else
  msgStop("Status", "Could not find Orders table.")
endIf
endMethod



close method
Closes a table window.

Syntax
close ( )
Description
close closes a table window. close performs the same function as the Close command in the Control menu.
 Example

{button ,AL(`OPAL_TYPE_TABLEVIEW;OPAL_METH_TVOPE;',0,"Defaultoverview",)} Related Topics



close example
In the following example, a form's open method opens a TableView object for the Customer table to a global 
variable named custTV. When the form closes, its close method closes the custTV TableView. This code is 
attached to the close method for the form:
; thisForm::close
method close(var eventInfo Event)
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    custTV.close()     ; close the Customer table that was
                       ; opened by thisForm's open method
endIf
endMethod
The following code is attached to the form's Var window:
; thisForm::Var
Var
  custTV  TableView   ; global to form, the TableView object is opened by
                      ; form's open method
endVar
The following code is attached to the form's open method:
; thisForm::open
method open(var eventInfo Event)
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
  else
    ; code here executes just for form itself
    custTV.open("Customer")  ; open the Customer table view
endIf
endMethod



moveToRecord method
Moves to a specific record in a table.

Syntax
moveToRecord ( const tc TCursor ) Logical
Description
moveToRecord moves to the record pointed to by a TCursor named tc. Use the RecNo property to accelerate 
performance in dBASE tables.
 Example

{button ,AL(`OPAL_TYPE_TABLEVIEW;OPAL_METH_TVACTION;',0,"Defaultoverview",)} Related Topics



moveToRecord example
The following example uses a TCursor to search for a customer named Jones and calls moveToRecord to display
that record. The following code is attached to a button's built-in pushButton method:
method pushButton (var eventInfo Event)
var
   custTC TCursor
   custTV TableView
endVar

custTC.open ("customer.db")
custTV.open ("customer.db")

if custTC.locate ("Name", "Ocean Paradise") then
  custTV.moveToRecord (custTC)
else
   msgInfo("Search failed", "Couldn't find Ocean Paradise.")
endIf

endMethod



open method
Opens a table window.

Syntax
1. open ( const tvName String [ , const windowStyle LongInt ] ) Logical
2. open ( const tvName String, const windowStyle LongInt, const x SmallInt, const y SmallInt, 
const w SmallInt, const h SmallInt ) Logical
Description
open opens the table specified by tvName in a table window. Optional arguments specify (in twips) the location 
of the upper-left corner of the form (x and y), the form's width and height (w and h), and the form's style 
(windowStyle). The windowStyle argument is required for Syntax 2. To specify a size and position for the form, 
use a window style constant (WinStyleDefault).
 Example

{button ,AL(`OPAL_TYPE_TABLEVIEW;OPAL_METH_TVCLO;',0,"Defaultoverview",)} Related Topics



open example
In the following example, the pushButton method for a button named openWaitOrders opens the Orders table:
; openWaitOrders::pushButton
method pushButton(var eventInfo Event)
var
  ordersTV  TableView
endVar
if ordersTV.open("Orders", WinStyleDefault, 100, 100,
                 1440*5, 1440*4) then
  ordersTV.wait()    ; wait for user to close
  ordersTV.close()   ; close Orders table
endIf
endMethod



wait method
Suspends a method's execution.

Syntax
wait ( )
Description
wait suspends a method's execution. Execution resumes when the TableView object is closed. When a TableView
object has been called by wait, the method suspends execution until the TableView object is closed using the 
close method.
 Example

{button ,AL(`OPAL_TYPE_TABLEVIEW;OPAL_METH_TVCLO;OPAL_METH_TVOPE;',0,"Defaultoverview",)} 
Related Topics



wait example
See the open example.



TCursor type
A TCursor is a pointer to data that is contained in a table. Using TCursors, you can manipulate a table's data 
without displaying the table. When you edit records in a TCursor, the underlying table is changed. Locks on the 
table affect the TCursor. A TCursor can point to an entire table or to a subset of the records in a table (e.g., those 
specified by a restricted view, detail set, filter, or range).
For more information about related objects, see the Table, TableView, and UIObject types.
Some table operations require Corel Paradox to create temporary tables in the private directory.

Methods for the TCursor type
add
aliasName
atFirst
atLast
attach
attachToKeyViol
bot
cancelEdit
cAverage
cCount
close
cMax
cMin
cNpv
compact
copy
copyFromArray
copyRecord
copyToArray
createIndex
cSamStd
cSamVar
cStd
cSum
currRecord
cVar
deleteRecord
didFlyAway
dmAttach
dropGenFilter
dropIndex
edit
empty
end
endEdit
enumFieldNames
enumFieldNamesInIndex
enumFieldStruct
enumIndexStruct
enumLocks
enumRefIntStruct



enumSecStruct
enumTableProperties
eot
familyRights
fieldName
fieldNo
fieldRights
fieldSize
fieldType
fieldUnits2
fieldValue
forceRefresh
getGenFilter
getIndexName
getLanguageDriver
getLanguageDriverDesc
getRange
handle
home
initRecord
insertAfterRecord
insertBeforeRecord
insertRecord
instantiateView
isAssigned
isEdit
isEmpty
isEncrypted
isOpenOnUniqueIndex
isRecordDeleted
isShared
isShowDeletedOn
isValid
isView
locate
locateNext
locateNextPattern
locatePattern
locatePrior
locatePriorPattern
lock
lockRecord
lockStatus
moveToRecord
moveToRecNo
nextRecord
nFields
nKeyFields
nRecords



open
postRecord
priorRecord
qLocate
recNo
recordStatus
reIndex
reIndexAll
seqNo
setBatchOff
setBatchOn
setFlyAwayControl
setFieldValue
setGenFilter
setRange
showDeleted
skip
subtract
switchIndex
tableName
tableRights
type
unDeleteRecord
unlock
unlockRecord
updateRecord

   Print related ObjectPAL methods and examples  



add method
Adds records from one table to another table.

Syntax
1. add ( const destTable String [ , const append Logical [ , const update Logical ] ] ) Logical
2. add ( const destTable Table [ , const append Logical [ , const update Logical ] ] ) Logical
3. add ( const destTable TCursor [ , const append Logical [ , const update Logical ] ] ) 
Logical

Description
add adds the records pointed to by a TCursor to the target table specified in destTable. If the destination does 
not exist, this method creates it. The source table and the target table can be the same type or different types; 
in any case, the tables must have compatible field structures.
When set to True, append adds records at the end of a non-indexed target table, or at the appropriate place in an
indexed target table. When set to True, update compares records in both tables, and where key values match, 
replaces the data in the target table. When both are set to True, records with matching key values are updated, 
and others are appended. These arguments are optional, but if you specify update, you must also specify 
append. By default, both arguments are True. 
myTCursor.add("yourTable", False, True) ; specifies update
myTCursor.add("yourTable") ; specifies update and append by default

Key violations (including validity check violations) are listed in KEYVIOL.DB in the private directory. If KEYVIOL.DB
already exists, add overwrites it. If KEYVIOL.DB does not exist, this method creates it. 
When tables are keyed, add uses the keyed fields to determine which records to update and which to append. If 
the target table is not keyed and update is set to True, add fails. add respects the limits of restricted views set 
by setRange or setGenFilter.
Throughout the retry period this method tries to place write locks on the source and target tables. If either lock 
cannot be placed, the method fails.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCOPY;OPAL_METH_TCSUB;',0,"Defaultoverview",)} 
Related Topics



add example
The following example assumes that the OldCust and NewCust tables exist in the active directory. The following 
code associates a TCursor with each of the tables, adds NewCust records to OldCust and adds all records to a 
table named MyCust. If MyCust does not exist in the active directory, add creates it. This code is attached to a 
button’s pushButton method:
; getMyCust::pushButton
method pushButton(var eventInfo Event)
var
  TC1, TC2 TCursor
endVar

if TC1.open("oldCust.db") and
   TC2.open("newCust.db") then  ; if both TCursors can be associated
   TC2.add(TC1, True)           ; append oldCust records to newCust 

                                ; records now TC1 has
                                ; records from both tables
   TC1.add("myCust.db", True)   ; add TC1 to myCust table

   TC1.close()                  ; close both TCursors
   TC2.close()
else
   msgStop("Stop!", "Could not open one or more tables.")
endIf

endMethod



aliasName method
Returns a TCursor's alias.

Syntax
aliasName ( ) String

Description
aliasName returns a string containing a TCursor's alias. Only TCursors that were opened using an alias returns 
an alias name. If the TCursor was not opened using an alias, aliasName returns an empty string.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCADD;',0,"Defaultoverview",)} Related Topics



aliasName example
The following example uses aliasName to determine the OPEN MODE property value for the open TCursor:
method pushButton(var eventInfo Event)
var
   actualPropVal,
   expectedPropVal,
   propertyName,
   tableName       String
   tc              TCursor
endVar

;// initialize variables
propertyName = "OPEN MODE"           ;// SQL alias property name
expectedPropVal = "READ/WRITE"       ;// SQL alias property value
tableName = ":Interbase4:Customer"   ;// SQL table name (includes
                                     ;// the SQL alias name)

if tc.open( tableName ) then
   ;// Get the current property value by specifying the alias name
   ;// using tc.aliasName() and compare with expected value
   actualPropVal = getAliasProperty( tc.aliasName(), propertyName )

   if actualPropVal = expectedPropVal then
      msgInfo("SQL Table Access Mode", actualPropVal)
   else
      ;// try to set to the desired property by specifying the alias
      ;// name using tc.aliasName() and notify the user
      setAliasProperty( tc.aliasName(), propertyName, expectedPropVal )
      msgInfo("SQL Table Access Mode Updated", actualPropVal)
   endif
endIf
endMethod



atFirst method
Reports whether the TCursor is pointing to the table's first record.

Syntax
atFirst ( ) Logical

Description
atFirst returns True if the TCursor is pointing to the table's first record; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCALAS;OPAL_METH_TCBOT;OPAL_METH_TCEOT;',0,"Def
aultoverview",)} Related Topics



atFirst example
The following example assumes that a form has a button named moveToFirst and a multi-record object bound to 
ORDERS.DB. The code attached to the pushButton method for moveToFirst uses atFirst to determine whether 
the TCursor points to the first record. If atFirst returns False, this code moves the TCursor to the first record:
; moveHome::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar  

tc.attach(orders)         ; orders is a multi-record object
if not tc.atFirst() then  ; if not at the first record
  tc.home()               ; move to it
  orders.moveToRecord(tc) ; move highlight to first record
else
  msgStop("Currently on record " + String(tc.recNo()), 
          "You’re already at the top of the list!")
endIf
endMethod



atLast method
Reports whether the TCursor is pointing to the table's last record.

Syntax
atLast ( ) Logical

Description
atLast returns True if the TCursor is pointing to the table's last record; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCAFIR;OPAL_METH_TCBOT;OPAL_METH_TCEOT;',0,"Def
aultoverview",)} Related Topics



atLast example
The following example assumes that a form has a button named moveToLast and a multi-record object bound to 
ORDERS.DB. The code attached to the pushButton method for moveToLast uses atLast to determine whether 
the TCursor points to the last record. If atLast returns False, this code moves the TCursor to the last record:
; moveToLast::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar  

tc.attach(ORDERS)
if not tc.atLast() then   ; if not on the last record
  tc.end()                ; move TCursor to the last record
  orders.moveToRecord(tc) ; move highlight to the last record
else
  msgStop("Currently on record " + String(tc.recNo()), 
          "You’re already at the last record!")
endIf
endMethod



attach method
Associates a TCursor with a specified table.
Syntax
1. attach ( const object UIObject ) Logical
2. attach ( const srcTCursor TCursor ) Logical
3. attach ( const tv TableView ) Logical
4. attach ( const srcHandle LongInt ) Logical

Description
attach associates a TCursor with a specified table. The data (including filters, indexes, and edit mode) comes 
from the underlying table. The TCursor retrieves data from committed records only (and not from records being 
edited or inserted).
Syntax 1 associates a TCursor with the table displayed in a UIObject named object.
Syntax 2 associates the TCursor with the table represented by another TCursor, named srcTCursor.
Syntax 3 associates the TCursor with the TableView object named tv.
Syntax 4 associates the TCursor with the opened cursor handle named srcHandle. The TCursor's data comes 
from the underlying cursor, pointed to by srcHandle, which is typically from an external DLL call. attach clones 
the cursor for use in ObjectPAL. The external DLL is responsible for opening and closing the cursor. Explicitly 
close the TCursor using a TCursor.close() in Corel Paradox before closing the cursor in the external DLL. 
attach returns True if successful; otherwise, it returns False and adds the following warning to the error stack: 
"You have tried to access a document that is not open."
 Examples

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCISVA;',0,"Defaultoverview",)} Related Topics



attach method examples
Example 1         Using a pushButton method
Example 2         Using code contained in a script window



attach example 1
The following example assumes that a form contains a table frame bound to ORDERS.DB, and another table 
frame bound to LINEITEM.DB. The Orders table has a one-to-many link to LineItem. The form also contains a 
button named findDetails . To allow your users to search the entire LineItem table. The pushButton method for 
findDetails searches for orders that include the current part number.
The following code is attached to the Var window for the findDetails button:
; findDetails::Var
Var
  lineTC TCursor  ; instance of LINEITEM for searching
endVar

The following code is attached to the open method for the findDetails button. This code associates the lineTC 
TCursor with LINEITEM.DB:
; findDetails::open
method open(var eventInfo Event)
   lineTC.open("LineItem.db")
endMethod

The following code is attached to the pushButton method for findDetails:
; findDetails::pushButton
method pushButton(var eventInfo Event)
var
   stockNum,
   orderNum   Number
   orderTC      TCursor
endVar
; Get Stock No from current LineItem record.
stockNum = LINEITEM.Stock_No
 
; LineTC was declared in Var window and opened by open method.
if NOT lineTC.locateNext("Stock No", stockNum) then
  lineTC.locate("Stock No", stockNum)
endIf

orderTC.attach(ORDERS)       ; Attach TCursor to table frame.
orderTC.locate("Order No", lineTC."Order No")
ORDERS.moveToRecord(orderTC) ; Move to CUSTOMER and 
                             ; resynchronize with TCursor.
LINEITEM.moveTo()            ; Move TCursor to LINEITEM detail.

; Move TCursor to matching record.
LINEITEM.locate("Stock No", stockNum)   
endMethod

The following code is attached to the close method for findDetails:
; findDetails::close
method close(var eventInfo Event)
lineTC.close()   ; Close the TCursor to LineItem.
endMethod



attach example 2
The following example is contained in a Script window. PDXTEST.DLL contains the openTable(), moveTo(), and 
closeTable() methods. This code opens a cursor by calling the DLL's openTable() method. A returned handle hcur,
an ObjectPAL TCursor attaches to the DLL's cursor, and displays the TCursor's active record number. The DLL's 
moveTo() method is then used to change the cursor's position to record 3. attach is called to resynchronize 
ObjectPAL's TCursor with the DLL's cursor. ObjectPAL's TCursor and the DLL's cursor are then closed.
; describe the methods from PDXTEST.DLL that will be called
Uses PDXTEST
   openTable ( tableName CPTR) CLONG [stdcall]
   moveTo    ( pos CLONG ) [stdcall]
   closeTable() [stdcall]
endUses
method run(var eventInfo Event)
var
   tc   tcursor
   hCur LongInt
endvar

; Returns a cursor to the table
hCur = openTable( "aspace.db" )

; Attach to the open cursor, and get the record position.
; (When attaching to the open cursor, Corel Paradox creates a clone of hCur.)
tc.attach( hCur )
view(tc.recNo())

; Move to the 3rd record by calling the moveTo method of the DLL.
; (The DLL's cursor's record position is changed, not ObjectPAL's
; TCursor.)
moveTo( 3 )

; Reattach the cursor to sync to the new cursor position.
tc.attach( hCur )
view(tc.recNo())

; Close the ObjectPAL cloned cursor before closing the handle 
; in the DLL
tc.close()

; Close the handles in the DLL. The DLL is responsible for closing 
; all handles opened by the DLL.
closeTable()

endMethod



attachToKeyViol method
Attaches a TCursor to the original record when a key violation occurs.

Syntax
attachToKeyViol ( const oldTC TCursor ) Logical

Description
attachToKeyViol attaches a TCursor to the original record after a key violation occurs. Specify the TCursor that 
points to the record that caused the key violation (the new, unposted record).
This method allows you to compare conflicting records before replacing or discarding changes to an existing 
record. oldTC must already be pointing to the new (yet unposted) record.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCPOSTRECORD;OPAL_METH_TCUPDATERECORD;',0,"De
faultoverview",)} Related Topics



attachToKeyViol example
The following example uses attachToKeyViol a key violation occurs. The code declares two TCursors: keyViolTC 
and originalRecTC. The code opens keyViolTC for the Orders table and deliberately inserts a record whose key 
value conflicts with another record. The code then forces a key violation by posting the new record to the table. 
If the user chooses to view the existing record, the code calls attachToKeyViol, attaches the second TCursor 
(originalRecTC) to the original record, and displays the record in a view dialog box. If the user chooses to update
the original record with data from the new record, this code calls updateRecord:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  keyViolTC, originalRecTC TCursor
  rec DynArray[] AnyType
endvar

keyViolTC.open("Orders.db")          ; open TCursor for Orders
keyViolTC.edit()                     ; put TCursor in Edit mode
keyViolTC.insertRecord()             ; insert a new record
keyViolTC."Order No" = 1011          ; 1011 is a duplicate key

; if this attempt to post the new record fails
if NOT keyViolTC.postRecord() then

  ; attach originalRecTC to the existing record
  originalRecTC.attachToKeyViol(keyViolTC)

  ; give user the option to see the existing record
  if msgQuestion("Key Exists!",
     "Do you want to see the existing record?") = "Yes" then

    originalRecTC.copyToArray(rec)   ; copy existing record to rec
    rec.view("Original Record")      ; display rec in a dialog box 

  endIf

  ; give user the option to replace the existing record
  if msgQuestion("Confirm Update",         
     "Do you want to replace existing record?") = "Yes" then

    ; force the new record to post
    keyViolTC.updateRecord(True)
  else
    message("Original record left intact.")
    sleep(1500)
  endIf
else
  message("Posted order number 1011.")
endIf

endMethod



bot method
Determines whether a command attempts to move past the table's first record.

Syntax
bot ( ) Logical

Description
bot returns True if a command attempts to move past the table's first record; otherwise, it returns False. bot is 
reset by the next move operation.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCAFIR;OPAL_METH_TCALAS;OPAL_METH_TCEND;OPAL_
METH_TCEOT;OPAL_METH_TCHOME;',0,"Defaultoverview",)} Related Topics



bot example
The following example moves a TCursor backwards through a table and displays a message. This code is 
attached to a button’s pushButton method:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  myTable TCursor 
endVar  
myTable.open("sites.db")  
myTable.end()                         ; moves to end of table  
while myTable.bot() = False           ; loop until we hit the top
   myTable.priorRecord()              ; move backwards through table
endWhile  
msgInfo("The Top", "You’re at the beginning.")
msgInfo("At the top?", myTable.bot()) ; displays True
myTable.nextRecord()
msgInfo("At the top?", myTable.bot()) ; displays False
endMethod



cancelEdit method
Ends Edit mode without saving changes to the active record.

Syntax
cancelEdit ( ) Logical

Description
cancelEdit ends Edit mode without saving changes to the active record. Use cancelEdit before committing or 
unlocking the record. Once you move the TCursor, changes to the record are committed.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCOED;OPAL_METH_TCENDED;',0,"Defaultoverview",)}
Related Topics



cancelEdit example
The following example is attached to the pushButton method for the changeKey button. This code associates a 
TCursor with the Customer table and attempts to change a value in a keyed field. If the record cannot be posted 
(e.g., because of a key violation) an error message is displayed and cancelEdit is called to restore the record to 
the original values and end Edit mode:
; changeKey::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  rec Array[] AnyType
endVar

tc.open("Customer.db")           
if tc.locate("Customer No", 1231) then 
  tc.edit()
  tc."Customer No" = 1221   ; attempt to change key value
  if not tc.endEdit() then  ; if endEdit fails
    errorShow("Can’t complete the operation.")
    tc.cancelEdit()         ; restore record and leave edit mode
    message("Record left intact.")
  else
    message("Key value changed.")
  endIf
else
  errorShow("Can’t find Customer 1231")
endIf

endMethod



cAverage method
Returns the average of values in a column of fields.

Syntax
1. cAverage ( const fieldName String ) Number
2. cAverage ( const fieldNum SmallInt ) Number

Description
cAverage returns the average of values in the column of fields specified by fieldName or fieldNum. This method 
respects the limits of restricted views set by setRange or setGenFilter. cAverage handles blank values as 
specified in the blankAsZero setting for the session.
Throughout the retry period, this method attempts to place a write lock on the table. If a lock cannot be placed, 
the method fails.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCCNT;OPAL_METH_TCCSUM;OPAL_METH_TCCMAX;OP
AL_METH_TCCMIN;OPAL_METH_TCCSTD;OPAL_METH_SSBLANKASZERO;',0,"Defaultoverview",)} Related 
Topics



cAverage example
The following example uses cAverage to calculate the average order size in the Orders table. This code is 
attached to the pushButton method for the getAvgSales button:
; getAvgSales::pushButton
method pushButton(var eventInfo Event)
var 
  ordTC TCursor 
  avgSales Number 
endVar 

; open TCursor for ORDERS table
ordTC.open("Orders.db") 
; store average invoice total in avgSales variable
avgSales = ordTC.cAverage("Total Invoice")
; display avgSales in a dialog
msgInfo("Average Order size", avgSales)

endMethod



cCount method
Returns the number of values in a column of fields.

Syntax
1. cCount ( const fieldName String ) LongInt
2. cCount ( const fieldNum SmallInt ) LongInt

Description
cCount returns the number of values in a column of fields specified by fieldName or fieldNum. cCount works for
all field types. If the field is numeric, this method handles blank values as specified in the blankAsZero setting 
for the session. If the field is non-numeric and contains blank fields, cCount returns the number of nonblank 
values in the column of fields. 
This method respects the limits of restricted views set by setRange or setGenFilter.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.
cCount is especially useful for returning the number of entries used by another column function.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCAVE;OPAL_METH_TCCSUM;OPAL_METH_TCCMAX;OP
AL_METH_TCCMIN;OPAL_METH_TCCSTD;OPAL_METH_SSBLANKASZERO;',0,"Defaultoverview",)} Related 
Topics



cCount example
The following example opens a TCursor for a table and uses cCount to display the number of records in the 
TCursor. This code is attached to the pushButton method for the lineItemInfo button:
; lineItemInfo::pushButton
method pushButton(var eventInfo Event)
var
numbersTC TCursor
avgQty Number
numRecs LongInt
endVar
numbersTC.open("Lineitem.db")
avgQty = numbersTC.cAverage("Qty")
numRecs = numbersTC.cCount(4)        ; assumes Quantity is field 4
msgInfo("Average quantity", "Average quantity: " +
String(avgQty) + " \nbased on " + String(numRecs) + " records.")

endMethod



close method
Closes a table.

Syntax
close ( ) Logical

Description
close closes a TCursor, and makes the TCursor variable unassigned. If the active record cannot be committed, 
close closes the TCursor and discards any changes to the record.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_ATISAS;OPAL_METH_TCOPEN;',0,"Defaultoverview",)} 
Related Topics



close example
The following example opens a TCursor for a table, displays information found in the table's last record and 
closes the TCursor. This code displays a message indicating whether the TCursor variable remains assigned when
the TCursor is closed, and is attached to the built-in pushButton method for thisButton:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar  

tc.open("Orders.db")  ; open TCursor for the Orders table
tc.end()              ; move to the end of the table 

; display information in the last record
msgInfo("Last Order", "Order number: " + String(tc."Order No") +
        " \nOrder date: " + String(tc."Sale Date"))

tc.close()                                   ; close tc TCursor
msgInfo("Is tc Assigned?", tc.isAssigned())  ; displays False

endMethod



cMax method
Returns the maximum value of a column of fields.

Syntax
1. cMax ( const fieldName String ) Number
2. cMax ( const fieldNum SmallInt ) Number

Description
cMax returns the maximum value in the column of fields specified by fieldName or fieldNum. If a field is 
numeric, this method handles blank values as specified in the blankAsZero setting for the session. This method
respects the limits of restricted views set by setRange or setGenFilter.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCAVE;OPAL_METH_TCCMIN;OPAL_METH_TCCSUM;OPA
L_METH_TCCCNT;OPAL_METH_TCCSTD;OPAL_METH_SSBLANKASZERO;',0,"Defaultoverview",)} Related 
Topics



cMax example
The following example assumes that a form has a button named getMaxBalance, and a table frame that is bound
to the Orders table. The pushButton method for getMaxBalance associates the table frame with a TCursor and 
locates the highest balance due in the Orders table:
; getMaxBalance::pushButton
method pushButton(var eventInfo Event)
var  
  ordTC TCursor  
endVar  

ordTC.attach(ORDERS)   ; ORDERS is a table frame on the form

; now locate the maximum value in the "Balance Due" field
ordTC.locate("Balance Due", ordTC.cMax("Balance Due"))
; synchronize the table frame to the TCursor
ORDERS.moveToRecord(ordTC)

endMethod



cMin method
Returns the minimum value in a column of fields.

Syntax
1. cMin ( const fieldName String ) Number
2. cMin ( const fieldNum SmallInt ) Number

Description
cMin returns the minimum value in the column of fields specified by fieldName or fieldNum. If the field is 
numeric, this method handles blank values as specified in the blankAsZero setting for the session. This method
respects the limits of restricted views set by setRange or setGenFilter.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCMAX;OPAL_METH_TCCAVE;OPAL_METH_TCCCNT;OPA
L_METH_TCCSTD;OPAL_METH_TCCSUM;OPAL_METH_SSBLANKASZERO;',0,"Defaultoverview",)} Related 
Topics



cMin example
The following example calculates the minimum values in the ORDERS.DB table:
; showMinimums::pushButton
method pushButton(var eventInfo Event)
var 
  OrdTC TCursor  
  minBalDue, minOrder Number  
endVar  
OrdTC.open("Orders.db")  
minBalDue = ordTC.cMin("Balance Due")  ; get minimum balance due
minOrder  = ordTC.cMin(6) ; assumes "Total Invoice" is field 6

; display results in a dialog box
msgInfo("Minimums", "Minimum balance due: " +
String(minBalDue) + "\n" +
                    "Minimum order : " + String(minOrder))
endMethod



cNpv method
Returns the net present value of a column, based on a discount or interest rate.

Syntax
1. cNpv ( const fieldName String, const discRate Number ) Number
2. cNpv ( const fieldNum SmallInt, const discRate Number ) Number

Description
cNpv returns the net present value of the entries in a column of fields. The net present value calculation is 
based on the interest or discount rate specified by discRate. discRate is a decimal number (e.g., 12 percent is 
expressed as .12). This method handles blank values as specified in the blankAsZero setting for the session.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails. This method respects the limits of restricted views set by setRange or setGenFilter.
This method calculates net present value using the following formula:
cNpv = sum(p=1 to n) of Vp/(1+i)p
(where n = number of periods, Vp = cash flow in pth period, and i = interest rate per period)
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCAVE;OPAL_METH_TCCSUM;',0,"Defaultoverview",)} 
Related Topics



cNpv example
The following example associates a TCursor with the GoodFund table, then calculates the net present value for 
the Expected Return field. The net present value is calculated based on a monthly interest rate. This code is 
attached to the pushButton method for the calcNPV button:
; calcNPV::pushButton
method pushButton(var eventInfo Event)
var 
  SavingsTC TCursor  
  goodFundNPV, apr Number  
endVar  
SavingsTC.open("GoodFund.db")  ; associate TCursor with Savings table
apr = .125                     ; annual percentage rate

; now calculate net present value based on monthly interest rate
goodFundNPV = SavingsTC.cNpv("Expected Return", (apr / 12))
msgInfo("Net present value", goodFundNPV)

endMethod



compact method
Removes deleted records from a dBASE table.

Syntax
compact ( [ const regIndex Logical ] ) Logical

Description
compact removes deleted records from a dBASE table. Deleted records are not immediately removed from a 
dBASE table. Instead, they are flagged as deleted and kept in the table. The optional argument regIndex 
specifies whether to regenerate or update the indexes associated with the table. When regIndex is set to True, 
this method regenerates all indexes associated with the TCursor and frees any unused space in the indexes. If 
regIndex is set to False, indexes are not regenerated. By default, regIndex is set to True.
This method fails if any locks have been placed on the table, or if the table is open. If the table has maintained 
indexes, this method requires exclusive access; otherwise it requires a write lock.
This method returns True if successful; otherwise, it returns False.
The compact method defined for the TCursor type does not work with Corel Paradox tables. To pack a Corel 
Paradox table, use the compact method defined for the Table type.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCDREC;OPAL_METH_TCSHDEL;OPAL_METH_TBCOM;',0,"
Defaultoverview",)} Related Topics



compact example
The following example removes deleted records from a dBASE table named OLDDATA.DBF. This code is attached 
the pushButton method for the purgeTable button:
; purgeTable::pushButton
method pushButton(var eventInfo Event)
var
tb Table
tc TCursor
endVar
tb.attach("OldData.dbf")
   tb.setExclusive()            ; Get exclusive rights to the table.

   tc.open(tb)                  ; Associate TCursor with OldData table.

   if tc.compact() then         ; Remove all deleted records.
tc.close()
message("Old records purged.")
else
errorShow()
endIf
endMethod



copy method
Copies a table.

Syntax
1. copy ( const tableName String ) Logical
2. copy ( const tableName Table ) Logical

Description
copy copies a table to the target table named tableName. If tableName does not exist, copy creates it. If 
tableName already exists, copy overwrites it without asking for confirmation.
Throughout the retry period, this method attempts to place a write lock on the source table and a full lock on the
target table. This method fails if either lock cannot be placed, or if the target table is open.
This method does not respect the limits of restricted views.
For more information, see Copying to a different table type in the User's Guide help.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCADD;OPAL_METH_TCCREC;',0,"Defaultoverview",)} 
Related Topics



copy example
The following example copies the Customer table to the NewCust table. This code uses the isTable method 
(from the DataBase type) to test whether NewCust exists; if it does, the user is prompted to confirm the action 
before NewCust is overwritten:
; copyCust::pushButton
method pushButton(var eventInfo Event)
var 
  sourceTC TCursor 
  destTb Table
endVar 
destTb.attach("NewCust.db")
sourceTC.open("Customer.db")

; if NewCust.db exists, ask for confirmation
if isTable(destTb) then
  if msgYesNoCancel("Copy table", "Overwrite Newcust.db?") = "Yes" then

    ; copy Customer.db records to NewCust.db
; If .VAL file contains only RI info, it is not copied.
    sourceTC.copy(destTb)
  endIf
endIf

endMethod



copyFromArray method
Copies data from an array to the fields of the active record.

Syntax
1. copyFromArray ( const ar Array[ ] AnyType ) Logical
2. copyFromArray ( const ar DynArray[ ] AnyType ) Logical

Description
copyFromArray copies the elements of an array or a dynamic array (DynArray) to the record pointed to by a 
TCursor. The TCursor must be in Edit mode.
Syntax 1 uses an array named ar. The first element of the array is copied to the first field, the second element to
the second field, and so on, until the array is exhausted or the record is full.
Syntax 2 uses a DynArray named ar, where each index is a field name or a field number, and the corresponding 
item is the field value.
This method fails if an attempt is made to copy an unassigned array element or if the structures do not match. If 
there are more elements in the array than fields in the record, the extra elements are ignored. Use 
insertRecord to insert a blank record before using copyFromArray to copy a new record into an empty table.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCREC;OPAL_METH_TCCTAR;OPAL_METH_TCIREC;OPAL
_METH_TCIAFR;OPAL_METH_TCIBER;',0,"Defaultoverview",)} Related Topics



copyFromArray example
The following example assumes that CUSTNAME.DB has three fields: Last Name, A20; First name, A20; and 
Telephone, A12. This code associates a TCursor with the CustName table, creates an array with three elements, 
inserts a new record in the table and uses copyFromArray to copy data from the array to the new record:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  aa Array[3] AnyType
endVar
aa[1] = "Corel"
aa[2] = "Frank"
aa[3] = "555-1212"
if tc.open("CustName.db") then  ; open table
  tc.edit()                     ; copyFromArray works only in Edit mode
  tc.insertRecord()             ; insert new record
  tc.copyFromArray(aa)          ; copy from array to table
  tc.endEdit()
else
  msgStop("Stop", "Couldn’t open CustName.db.")
endIf
endMethod



copyRecord method
Copies a record from one TCursor into another TCursor.

Syntax
copyRecord ( const sourceTC TCursor ) Logical

Description
copyRecord copies the record pointed to by one TCursor into the record pointed to by another TCursor. The 
following code copies a record from the sourceTC TCursor into the destinationTC TCursor:
destinationTC.copyRecord(sourceTC)

The TCursor specified by sourceTC does not have to be in Edit mode; however, the destination TCursor must be 
in Edit mode. This method fails if any field in the source record cannot be converted to the data type of the 
corresponding field in the destination record. This method returns True if it succeeds; otherwise, it returns False.
 Note

· You cannot use copyRecord to copy a record into an empty table. To copy a new record into an empty table, 
use insertRecord.

 Example
{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCTAR;OPAL_METH_TCIAFR;OPAL_METH_TCIBER;OPAL_
METH_TCIREC;',0,"Defaultoverview",)} Related Topics



copyRecord example
The following example uses a TCursor to scan the Orders table for sales posted within the last 10 days and 
copies them to the NewOrdrs table in the active directory. This code is attached to the pushButton method for 
the getNewOrders button:
; getNewOrders::pushButton
method pushButton(var eventInfo Event)
var
  ordTC,
   newOrdTC    TCursor
  tvNewOrds   TableView
endVar

ordTC.open("Orders.db")
newOrdTC.open("NewOrdrs.db")
newOrdTC.edit()                ; copyRecord only works in Edit mode.

; Scan Orders.db table for records posted in the last ten days. 
scan ordTC for ordTC."Sale Date" >= (today() - 10) and
               ordTC."Sale Date" <= today() :
  newOrdTC.insertRecord()      ; Insert a new record in NewOrdrs.db.
  newOrdTC.copyRecord(ordTC)   ; Copy from Orders.db into NewOrdrs.db.
endScan
newOrdTC.endEdit()             ; End Edit mode for TCursor.

tvNewOrds.open("NewOrdrs.db")  ; Display the table.
endMethod



copyToArray method
Copies a record's fields to an array.

Syntax
1. copyToArray ( var ar Array[ ] AnyType ) Logical
2. copyToArray ( var ar DynArray[ ] AnyType ) Logical

Description
copyToArray copies a record's fields to the elements of an array specified by ar. You must declare the array as 
an AnyType type, or another type that matches each field in the table.
In Syntax 1, where ar is a fixed or resizeable array, the value of the first field is copied to the first element of the 
array, the value of the second field to the second element, and so on. If the array is resizeable, it expands to 
hold the number of fields in the record. If the array is fixed, it holds as many fields as possible, and discards the 
rest.
If Syntax 2, where ar is a dynamic array (DynArray), index values correspond to the field names and DynArray 
values correspond to field values.
ar [ fieldName ] = fieldValue
The record number field and any display-only or calculated fields that appear in a table's Form window are not 
copied to the array.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCFAR;',0,"Defaultoverview",)} Related Topics



copyToArray example
The following example assumes that a form has a table frame named CUSTOMER that is bound to 
CUSTOMER.DB. When the user attempts to delete a CUSTOMER record, this code uses copyToArray and 
copyFromArray to copy the record to an archive table (CUSTARC.DB). If CUSTARC.DB cannot be opened, this 
code informs the user and does not delete the record. The following code is attached to the built-in action 
method:
; CUSTOMER::action
method action(var eventInfo ActionEvent)
var
  tcOrig, tcArc TCursor
  arcRec Array[] AnyType
endVar

if eventInfo.id() = DataDeleteRecord then ; when user deletes a record
  if thisForm.Editing = True then         ; if form is in Edit mode
    disableDefault                        ; don’t delete the record

                                          ; ask for confirmation
    if msgQuestion("Confirm", "Delete record?") = "Yes" then

      tcOrig.attach(CUSTOMER)             ; sync TCursor to UIObject
      tcOrig.copyToArray(arcRec)          ; store the record in arcRec
      if tcArc.open("CustArc.db") then    ; True if tcArc can open CustArc
        tcArc.edit()                      ; copyFromArray requires Edit
        tcArc.insertAfterRecord()         ; create a new record
        tcArc.copyFromArray(arcRec)       ; copy arcRec to new record
        enableDefault                     ; delete the record in Customer
      else                                ; can’t open Customer TCursor
        msgStop("Stop!", "Sorry, Can’t archive record.")
      endIf
    else                                  ; user didn’t confirm dialog box
      message("Record not deleted.") 
    endIf

  else                                    ; not in Edit mode
    msgStop("Stop!", "Press F9 to edit data.")
  endIf
endIf
endMethod



createIndex method
Creates an index for a table.

Syntax
1. createIndex ( const attrib DynArray[ ] AnyType, const fieldNames Array[ ] String ) Logical
2. createIndex ( const attrib DynArray[ ] AnyType, const fieldNums Array[ ] SmallInt ) Logical

Description
createIndex creates an index using attributes specified in a dynamic array (DynArray) named attrib and the 
field names (or numbers) specified in an Array named fieldNames (or fieldNums). This method is provided as an 
alternative to the index structure. It is especially useful when you don't know the index structure beforehand 
(e.g., when the information is supplied by the user).
Each key of the DynArray must be a string. You do not have to include all the keys to use createIndex. Any key 
you omit is assigned the corresponding default value.
The following table displays the key strings and their corresponding values:
String value Description
MAINTAINED If True, the index is incrementally maintained. That is, after a table is changed, only 

that portion of the index affected by the change is updated. If False, Corel Paradox 
does not maintain the index automatically. Maintained indexes typically result in 
better performance. Default = False (Corel Paradox tables only).

PRIMARY If True, the index is a primary index. If False, it's a secondary index. Default = False 
(Corel Paradox tables only).

CASEINSENSITIVE If True, the index ignores differences in case. If False, it considers case. Default = 
False (Corel Paradox tables only).

DESCENDING If True, the index is sorted in descending order, from highest values to lowest. If 
False, it is sorted in ascending order. 
Default = False.

UNIQUE If True, records with duplicate values in key fields are ignored. If False, duplicates are 
included and available.

IndexName A name used to identify this index. No default value, unless you're creating a 
secondary, case-sensitive index on a single field, in which case the default value is 
the field name. For dBASE tables, the index name must be a valid DOS filename. If 
you do not specify an extension, .NDX is added automatically.

TagName The name of the index tag associated with the index specified in indexName (dBASE 
tables only).

For more information on indexes, see About keys and indexes in tables in the User's Guide Help.
 Examples

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCDROP;OPAL_METH_TBINDE;OPAL_METH_TBSIND;OPAL
_METH_TBUSIND;',0,"Defaultoverview",)} Related Topics



createIndex method examples
Example1         Building a maintained secondary index
Example2          Building a unique index



createIndex example 1
The following example builds a maintained secondary index for a Corel Paradox table named CUSTOMER.DB. If 
the Customer table cannot be found or locked, this code aborts the operation:
method pushButton(var eventInfo Event)
var
   tbCust         Table
   stTbName         String
   tcCust         TCursor
   arFieldNames   Array[3] String
   dyAttrib         DynArray[]AnyType
endVar

stTbName        = "Customer.db"

arFieldNames[1] = "Customer No"
arFieldNames[2] = "Name"
arFieldNames[3] = "Street"

dyAttrib["PRIMARY"]    = False
dyAttrib["MAINTAINED"] = True
dyAttrib["IndexName"]  = "NumberNameStreet"

if isTable(stTbName) then
   tbCust.attach(stTbName)
   tbCust.setExclusive()

   if tcCust.open(tbCust) = FALSE then
      msgStop("Stop!", "Can't lock " + stTbName + " table.")
      return
   endif

   if not tcCust.createIndex(dyAttrib, arFieldNames) then
      errorShow()
   endif

; This createIndex statement has the same effect
; as the following INDEX structure:

 {

  INDEX "Customer.db"       
    MAINTAINED              
    ON "Customer No", "Name", "Street"
    TO "NumberNameStree"
  ENDINDEX

  }

else
  msgStop("Stop!", "Can't find " + stTbName + " table.")
endIf

endMethod



createIndex example 2
The following example builds a unique index named CITYSTAT.NDX for the dBASE table named CUSTOMER.DBF:
; cityStateIndex::pushButton
method pushButton(var eventInfo Event)
var
   tbCust      Table
   stTbName      String
   tcCust         TCursor
   arFieldNames   Array[1] String
   dyAttrib      DynArray[]AnyType
endVar

stTbName        = "Cust.dbf"

arFieldNames[1] = "CITY"

dyAttrib["UNIQUE"]     = True
dyAttrib["MAINTAINED"] = True

; A dBASE index name must be a valid DOS filename. 
; If an extension is omitted, .NDX is appended automatically.

dyAttrib["IndexName"] = "City"

if isTable(stTbName) then
   tbCust.attach(stTbName)
   tbCust.setExclusive()
   if tcCust.open(tbCust) = False then
      msgStop("Stop!", "Can't lock " + stTbName + " table.")
      return
     endif

  tcCust.createIndex(dyAttrib, arFieldNames)
; This createIndex statement has the same effect
; as the following INDEX structure:
{ 
  INDEX "Cust.dbf"          
       UNIQUE
    ON "CITY", "STATE_PROV" 
    TO "CityStat"           
  ENDINDEX
}

else
  msgStop("Stop!", "Can't find " + stTbName + " table.")

endif

endMethod



cSamStd method
Returns the sample standard deviation of a table's column.

Syntax
1. cSamStd ( const fieldName String ) Number
2. cSamStd ( const fieldNum SmallInt ) Number

Description
cSamStd returns the sample standard deviation for the column of numeric fields specified by fieldName or 
fieldNum. This method respects the limits of restricted views displayed in a linked table frame or multi-record 
object. cSamStd handles blank values as specified in the blankAsZero setting for the session.
The sample standard deviation calculation is based on the sample variance and uses the following formula:
sqrt(TCursor.cVar(FieldName) * (n/(n-1)))
where
(variance = TCursor.cVar(fieldName) and n = TCursor.cCount(fieldName))
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.
The population standard deviation is calculated using the cStd method.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCAVE;OPAL_METH_TCCCNT;OPAL_METH_TCCMAX;OPA
L_METH_TCCMIN;OPAL_METH_TCCNPV;OPAL_METH_TCCSVA;OPAL_METH_TCCSTD;OPAL_METH_TCCSUM;O
PAL_METH_TCCVAR;',0,"Defaultoverview",)} Related Topics



cSamStd example
The following example calculates the sample standard deviation of two fields in the Answer table. This code is 
attached to the pushButton method for showSamStd:
; showSamStd::pushButton
method pushButton(var eventInfo Event)
var  
  empTC TCursor  
  tblName String
  CalcSalary, CalcYears Number
endVar  
tblName = "Answer"
if empTC.open(tblName) then
  CalcSalary = empTC.cSamStd("Salary")  ; get sample std deviation for salaries
  CalcYears  = empTC.cSamStd(2)         ; assume "Years in service" is field 2
  msgInfo("Sample Std Deviation",       ; display info in a dialog box
          "Salaries : " + String(CalcSalary) + "\n" +
          "Years in service : " + String(CalcYears))
else
  msgInfo("Sorry", "Can’t open " + tblName + " table.")
endIf
endMethod



cSamVar method
Returns the sample variance in a column of fields.

Syntax
1. cSamVar ( const fieldName String ) Number
2. cSamVar ( const fieldNum SmallInt ) Number

Description
cSamVar returns the sample variance of the values in a column of fields. This method respects the limits of 
restricted views set by setRange or setGenFilter. This method handles blank values as specified in the 
blankAsZero setting for the session.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.
The sample variance is calculated using this formula:
TCursor.cVar(fieldName) * (n/(n-1))
(n = TCursor.cCount(fieldName))
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCAVE;OPAL_METH_TCCCNT;OPAL_METH_TCCMAX;OPA
L_METH_TCCMIN;OPAL_METH_TCCNPV;OPAL_METH_TCCSST;OPAL_METH_TCCSTD;OPAL_METH_TCCSUM;O
PAL_METH_TCCVAR;',0,"Defaultoverview",)} Related Topics



cSamVar example
The following example calculates the sample variance of two different fields in the Answer table. This code is 
attached to the pushButton method for showSamVar:
; showSamVar::pushButton
method pushButton(var eventInfo Event)
var  
  empTC TCursor  
  tblName String
  CalcSalary, CalcYears Number
endVar  
tblName = "Answer"
if empTC.open(tblName) then
  CalcSalary = empTC.cSamVar("Salary") ; get sample variance for salaries
  CalcYears  = empTC.cSamVar(2)        ; assume "Years in service" is field 2
  msgInfo("Sample Variance",           ; display info in a dialog box
          "Salaries : " + String(CalcSalary) + "\n" +
          "Years in service : " + String(CalcYears))
else
  msgInfo("Sorry", "Can’t open " + tblName + " table.")
endIf
endMethod



cStd method
Returns the standard deviation of the values in a column.

Syntax
1. cStd ( const fieldName String ) Number
2. cStd ( const fieldNum SmallInt ) Number

Description
cStd returns the population standard deviation of the values in a column of fields. The calculation is based on 
the variance. This method respects the limits of restricted views set by setRange or setGenFilter. This method
handles blank values as specified in the blankAsZero setting for the session.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCAVE;OPAL_METH_TCCCNT;OPAL_METH_TCCMAX;OPA
L_METH_TCCMIN;OPAL_METH_TCCNPV;OPAL_METH_TCCSST;OPAL_METH_TCCSVA;OPAL_METH_TCCSUM;O
PAL_METH_TCCVAR;',0,"Defaultoverview",)} Related Topics



cStd example
In the following example, the pushButton method for thisButton calculates the population standard deviation 
for two separate fields. The results are displayed in a dialog box:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var  
  tc TCursor  
  test1, test2 Number  
endVar  
tc.open("scores.dbf")  
test1 = tc.cStd("Test1")
test2 = tc.cStd(2)             ; assumes Test2 is field 2

; show results in a dialog
msgInfo("Standard Deviation",
        "Test1 results : " + String(test1) + "\n" +
        "Test2 results : " + String(test2))

endMethod



cSum method
Returns the sum of the values in a column of fields.

Syntax
1. cSum ( const fieldName String ) Number
2. cSum ( const fieldNum SmallInt ) Number

Description
cSum returns the sum of the values in a column of fields. This method respects the limits of restricted views set 
by setRange or setGenFilter. This method handles blank values as specified in the blankAsZero setting for 
the session.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCAVE;OPAL_METH_TCCCNT;OPAL_METH_TCCMAX;OPA
L_METH_TCCMIN;OPAL_METH_TCCNPV;OPAL_METH_TCCSST;OPAL_METH_TCCSVA;OPAL_METH_TCCSTD;O
PAL_METH_TCCVAR;',0,"Defaultoverview",)} Related Topics



cSum example
In the following example, the pushButton method for sumOrders calculates totals for two fields in ORDERS.DB:
; sumOrders::pushButton
method pushButton(var eventInfo Event)
var  
  orderTC TCursor  
  orderTotal, amtPaid Number  
  tblName String
endVar  
tblName = "Orders"
if orderTC.open(tblName) then
  orderTotal = orderTC.cSum("Total Invoice")  ; get sum for Total Invoice field
  amtPaid    = orderTC.cSum(7)                ; assumes Amount Paid is field 7
  msgInfo("Order Totals",
          "Total Orders : " + String(orderTotal) + "\n" +
          "Total Receipts : " + String(amtPaid))
else
  msgInfo("Sorry", "Can’t open " + tblName + " table.")
endIf
endMethod



currRecord method
Reads the active record into the record buffer.

Syntax
currRecord ( ) Logical

Description
currRecord reads the values in the active record of the underlying table into the record buffer. currRecord 
cancels any unposted changes to the TCursor. This method ensures that you’re using the most recent version of 
the record on a network.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCHOME;OPAL_METH_TCEND;OPAL_METH_TCNERE;OPAL
_METH_TCPRRE;OPAL_METH_TCSKIP;OPAL_METH_TCMTRE;',0,"Defaultoverview",)} Related Topics



currRecord example
The following example is part of a system that processes concert ticket orders. This code determines which artist
the customer wants to see and how many seats the customer needs.
; updateSeats::pushButton
method pushButton(var eventInfo Event)
   var
      tcConcert      TCursor
      siSeatsNeeded,
      siCustSeats      SmallInt
      stArtist      String
   endVar

   ; Call a custom method to find out which artist
   ; the customer wants to see.
   stArtist = getArtistName() 
   tcConcert.open("concerts")
   tcConcert.locate("Artist", stArtist) 

   if tcConcert.SoldOut = True then
         msgStop("Sorry", "Sold out")
         return
   else

      ; Call a custom method to find out how many seats 
      ; the customer needs (this may take awhile).
      siCustSeats = getCustSeats() 

      ; Meanwhile, other customers may have ordered seats for this    
      ; concert, so read current values into the record buffer.
      tcConcert.currRecord() 

      if tcConcert.Seats >= siCustSeats then
            processOrder() ; Call a custom method to process the order.
      else
            notEnoughSeats() ; Call a custom method.
      endIf
   endIf
endMethod



cVar method
Returns the variance of the values in a column of numeric fields.

Syntax
1. cVar ( const fieldName String ) Number
2. cVar ( const fieldNum SmallInt ) Number

Description
cVar returns the population variance of values in a column of numeric fields. This method respects the limits of 
restricted views set by setRange or setGenFilter. cVar handles blank values as specified in the blankAsZero 
setting for the session.
Throughout the retry period, this method attempts to place a read lock on the table. If a lock cannot be placed, 
the method fails.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCAVE;OPAL_METH_TCCCNT;OPAL_METH_TCCMAX;OPA
L_METH_TCCMIN;OPAL_METH_TCCNPV;OPAL_METH_TCCSVA;OPAL_METH_TCCSST;OPAL_METH_TCCSTD;O
PAL_METH_TCCSUM;',0,"Defaultoverview",)} Related Topics



cVar example
In the following example, the pushButton method for thisButton calculates the population variance deviation 
for two fields. The results are displayed in a dialog box:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var  
  myTable TCursor  
  test1, test2 Number  
endVar  
myTable.open("scores.dbf")  
test1 = myTable.cVar("Test1")     ; get Test1 cVar
test2 = myTable.cVar(2)           ; assumes Test2 is field 2
msgInfo("Population Variance",
        "Test1 results : " + String(test1) + "\n" +
        "Test2 results : " + String(test2))
endMethod



deleteRecord method
Deletes the record pointed to by a TCursor.

Syntax
deleteRecord ( ) Logical

Description
deleteRecord deletes the record pointed to by a TCursor without asking for confirmation. Deleted Corel Paradox
records cannot be retrieve, but deleted dBASE records can. The table must be in Edit mode.
If the specified record is contained in a dBASE table and is locked or has already been deleted by another user, 
this method fails.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCANC;OPAL_METH_TCEMPT;OPAL_METH_TCUNDELETE
RECORD;',0,"Defaultoverview",)} Related Topics



deleteRecord example
In the following example, the pushButton method for the checkIOU button determines whether a debt has been
paid. If the record has been marked as paid, this code uses deleteRecord to delete the record:
; checkIOU::pushButton
method pushButton(var eventInfo Event)
var 
  iou TCursor 
  searchName String
endVar  
searchName = "Hall"
iou.open("iou.db")  
iou.edit()
if iou.locate("Name", searchName) then
  if iou."paid" = "Yes" then
    iou.deleteRecord()           ; delete the active record
    message(searchName + " deleted")
  else
    sendBill()                   ; run custom procedure
  endIf
else
   msgStop("Stop", "Couldn’t find " + searchName)
endIf
endMethod



didFlyAway method
Reports whether a key value change moved the active record moved to a different position in the table.

Syntax
didFlyAway ( ) Logical

Description
didFlyAway returns True if the most recent call to unlockRecord caused the record to move to a different 
position in the table; otherwise, it returns False. This method is only accurate if the setFlyAwayControl method 
has been set to True; otherwise, didFlyAway returns always False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCSETFLYAWAYCONTROL;OPAL_METH_TCUNREC;',0,"Def
aultoverview",)} Related Topics



didFlyAway example
The following example demonstrates how setFlyAwayControl affects the position of a TCursor after a call to 
unlockRecord, and under what circumstances didFlyAway returns True:
; demoButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endvar

tc.open("MyTable.db")

; Assume that MyTable.db has the following
; values in its only key field, "Customer No" :
;  Record#  Customer No
;     1        110
;     2        120   ; the code below changes this value to 145
;     3        130
;     4        140
                     ; which moves the record to this position
;     5        150

tc.setFlyAwayControl(Yes) ; Enable flyaway tracking.

if tc.locate("Customer No", 120) then
  tc.edit()

  ; Change the key value so that the record
  ; changes relative position.
  tc."Customer No" = 145

  tc.unlockRecord()       ; Unlock the record. 

  ; The dialog box displays True because the new key value
  ; changes the record’s relative position in the table.
  msgInfo("Did 145 fly away?", tc.didFlyAway())
      
else
  message("120 not found.")
endIf

endMethod



dmAttach method
Associates a TCursor with a table in the data model.

Syntax
dmAttach ( const dmTableName String ) Logical

Description
dmAttach associates a TCursor with the table specified by dmTableName. The table must be in the data model. 
This method returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCATT;OPAL_METH_TCOPEN;OPAL_METH_FODMATTACH;
',0,"Defaultoverview",)} Related Topics



dmAttach example
The following example uses dmAttach to open a TCursor to a table in the data model. The TCursor respects the 
restricted view of the data model. The code uses cSum to gather information stored in the string variables s1, 
s2, and s3. The information is displayed in a dialog box.
;btnCustomerSummary :: pushButton
method pushButton(var eventInfo Event)
var
      tc   TCursor
      s1   String
      s2   String
      s3   String
endVar
tc.dmAttach("Orders.db")
s1 = string(tc.cSum("Total Invoice"))
s2 = string(tc.cSum("Amount Paid"))
s3 = string(tc.cSum("Balance Due"))

msgInfo("Customer Summary",
"Total Orders = " + s1 +
"\nTotal Paid = " + s2 +
"\nTotal Due = " + s3)
endMethod



dropGenFilter method
Removes the filter criteria associated with a TCursor.

Syntax
dropGenFilter ( ) Logical

Description
dropGenFilter removes the filter criteria associated with a TCursor. Any indexes and tags remain in effect in the
unfiltered TCursor.
 Examples

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCGETGENFILTER;OPAL_METH_TCSETGENFILTER;OPAL_
METH_TCSETRANGE;OPAL_METH_UIDROPGENFILTER;',0,"Defaultoverview",)} Related Topics



dropGenFilter method examples
Example1         Using a TCursor to calculate averages in a table
Example2          Using the pushButton method to attach a TCursor



dropGenFilter example 1
The following example attaches a TCursor to a table frame that is bound to the Orders table. This code calculates
the average total invoice amount for the entire table by calling dropGenFilter to remove any user-defined or 
automatically generated filter criteria. The call to dropGenFilter operates on the TCursor only it does not 
affect the table frame.
; btnCalAvgInvoice::pushButton
method pushButton(var eventInfo Event)
var
      ordersTC   TCursor
      nuAvgInvoice   Number
endVar
   ordersTC.attach(Orders)    ; Attach to the Orders table frame.
   ordersTC.dropGenFilter()   ; Remove any filters on the TCursor.

nuAvgInvoice = ordersTC.cAverage("Total Invoice")
nuAvgInvoice.view("Average Total Invoice:")
endMethod



dropGenFilter example 2
In the following example, a form contains a button named btnCascadeDelete. The pushButton method for 
btnCascadeDelete attaches a TCursor to a child table (the UIObject LINEITEM), uses dropGenFilter to ensure 
the TCursor can see all the child records, moves the TCursor to the first record, and puts the TCursor in edit 
mode. A while loop deletes all the child records and then the form is placed in edit mode and the parent record 
is deleted.
;btnCascadeDelete::pushButton
method pushButton(var eventInfo Event)
var
      tc               TCursor
      siCounter   SmallInt
endVar

tc.attach(LINEITEM)  ;Attach to detail table.
tc.dropGenFilter()   ;Drop any user set filters.
tc.home()            ;Make sure TCursor is on first record.

tc.edit()
while not tc.eot()        ;If there are any child
   tc.deleteRecord()      ;records, delete all of them.
endWhile

edit()                    ;Make sure form is in edit mode.
Order_No.deleteRecord()   ;Delete the parent record.
endMethod



dropIndex method
Deletes a specified index file or tag.

Syntax
1. (Corel Paradox tables) dropIndex ( const indexName String ) Logical
2. (dBASE tables) dropIndex ( const indexName String [ , const tagName String ] ) Logical

Description
dropIndex deletes a specified index file or tag. You can’t delete an index that’s in use.
In a Corel Paradox table, indexName is required to specify a secondary index. You can’t use a TCursor to drop the
primary index of a Corel Paradox table.
In a dBASE table, you can use indexName to specify an .NDX file, or use indexName and tagName to specify 
an .MDX file and an index tag.
 Note

· You must open the TCursor on a Table variable that has called the Table method setExclusive (before opening
the table) before calling dropIndex.

For more information about indexes, see About keys and indexes in tables in the User's Guide help.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCSWIT;',0,"Defaultoverview",)} Related Topics



dropIndex example
In the following example, the pushButton method for a button deletes the CustName tag from an .MDX file:
method pushButton(var eventInfo Event)
var 
   tc1  TCursor 
   tb1  Table
endVar

if isTable("Sales.dbf") then
tb1.attach("Sales.dbf") ; Sales.dbf is a dBASE table
tb1.setExclusive (Yes)
tc1.open(tb1)

      ; delete CustName tag from index2 file
   if tc1.dropIndex("index2.mdx", "CustName") then
      msgInfo("", "custname dropped")
   else
      errorShow("Could not drop index.")
   endIf
else
  msgStop("Stop!", "Could not find Sales.dbf table.")
endIf

endMethod



edit method
Places a TCursor in Edit mode.

Syntax
edit ( ) Logical

Description
edit places a TCursor in Edit mode allowing you to modify the active record. To remain in Edit mode, move off 
the record or use postRecord or unlockRecord to accept changes. To leave Edit mode, use cancelEdit to 
cancel changes to the record or use endEdit to accept changes.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCANC;OPAL_METH_TCENDED;OPAL_METH_TCPOSTRE
CORD;',0,"Defaultoverview",)} Related Topics



edit example
The following example creates an array and uses copyFromArray to copy its contents to a new record in the 
CustName table. Because the TCursor must be in Edit mode before the new record is inserted, this code uses 
edit to begin editing the table. After the new record is inserted, endEdit accepts changes and exits Edit mode:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  aa Array[3] AnyType
endVar
aa[1] = "Corel"
aa[2] = "Frank"
aa[3] = "555-1212"
if tc.open("custname.db") then  ; open table
  tc.edit()                     ; put TCursor in Edit mode
  tc.insertRecord()             ; insert new record
  tc.copyFromArray(aa)          ; copy from array to table
  tc.endEdit()                  ; end Edit mode
else
  msgStop("Stop", "Couldn’t open Custname.db.")
endIf
endMethod



empty method
Deletes all records from a table.

Syntax
empty ( ) Logical

Description
empty deletes all records from a table without asking for confirmation. If the TCursor is associated with a dBASE 
table, the records are flagged as deleted and the table is compacted (if possible). The TCursor does not have to 
be in Edit mode to empty records, but a write lock is required. This operation cannot be undone.
empty removes information from the table, but does not delete the table itself. Compare this method to delete, 
which does delete the table.
empty first tries to gain exclusive rights to the table. If it can't, it tries to place a write lock on the table.
If empty gains exclusive rights, it deletes all records in the table at once. If a write lock is placed on the table, 
empty must delete each record individually.
If empty gains exclusive rights to a dBASE table, all records are deleted and the table is compacted. If a write 
lock is placed on the table, this method flags all records as deleted, but does not remove them from the table. 
(Records can be undeleted from a dBASE table if they have not been removed with the compact method.)
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCDREC;OPAL_METH_TCNREC;OPAL_METH_TBDELETE;O
PAL_METH_TBEMPT;',0,"Defaultoverview",)} Related Topics



empty example
The following example prompts the user for confirmation before deleting all records from the Scratch table. If the
user does not confirm the action, this code uses nRecords to determine how many records exist in SCRATCH.DB:
; tblEmpty::pushButton
method pushButton(var eventInfo Event)
var
  tblName String
  tc TCursor
endVar

tblName = "Scratch.db"
if isTable(tblName) then
  tc.open(tblName)
  if msgQuestion("Confirm", "Empty " + tblName + " table?") = "Yes" then
    tc.empty()
    message("All " + tblName + " records have been deleted.")
  else
    message(tblname + " has " + String(tc.nRecords()) + " records.")
  endIf
else
  msgInfo("Error", "Can’t find " + tblName + " table.")
endIf
endMethod



end method
Moves a TCursor to the table's last record.

Syntax
end ( ) Logical

Description
end sets the active record (and the record buffer) to the table's last record.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCHOME;OPAL_METH_TCNERE;OPAL_METH_TCPRRE;OPA
L_METH_TCCURE;OPAL_METH_TCSKIP;OPAL_METH_TCMTRE;',0,"Defaultoverview",)} Related Topics



end example
The following example uses end to move a TCursor to the last record in the Orders table. The information in the 
last record is displayed in a dialog box.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor 
endVar  
tc.open("Orders.db")        ; open tc for Orders table
tc.end()                    ; move to the last record in the table
                            ; display info in last record
msgInfo("Customer No " + tc."Customer No",
        "Outstanding balance: " + tc."Balance Due")

endMethod



endEdit method
Exits Edit mode and accepts changes to the active record.

Syntax
endEdit ( ) Logical

Description
endEdit exits Edit mode and accepts changes to the active record. This method does not close the TCursor. 
Changes to previous records are committed or canceled as the user navigates the table.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCANC;OPAL_METH_TCCOED;',0,"Defaultoverview",)} 
Related Topics



endEdit example
The following example creates an array and uses copyFromArray to copy its contents to a new record in the 
CustName table. Because CustName must be in Edit mode before the new record is inserted, this code uses edit
to begin editing the table. When the new record is inserted, this code uses endEdit to exit Edit mode:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  aa Array[3] AnyType
endVar
aa[1] = "Corel"
aa[2] = "Frank"
aa[3] = "555-1212"
if tc.open("custname.db") then  ; open table
  tc.edit()                     ; put TCursor in Edit mode
  tc.insertRecord()             ; insert new record
  tc.copyFromArray(aa)          ; copy from array to table
  tc.endEdit()                  ; end Edit mode
else
  msgStop("Stop", "Couldn’t open Custname.db.")
endIf
endMethod



enumFieldNames method
Fills an array with the table's field names.

Syntax
enumFieldNames ( const fieldArray Array[ ] String ) Logical

Description
enumFieldNames fills an array named fieldArray with a table's field names. If fieldArray is resizeable, it 
expands to hold the field names. If fieldArray is fixed, it holds as many field names as possible and discards the 
rest. If fieldArray already exists, enumFieldNames overwrites it without asking for confirmation.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCENUMFIELDNAMESININDEX;',0,"Defaultoverview",)} 
Related Topics



enumFieldNames example
In the following example, the pushButton method for the btnEnumFields button stores field names in a 
resizeable array and uses view to display the contents of the array:
; enumFields::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor
  fieldNames Array[] String     ; field names for tables are always strings
endVar
if tc.open("orders.db") then
  tc.enumFieldNames(fieldNames) ; load fieldNames with names of Orders.db fields
  fieldNames.view()             ; display field names in a dialog box
else
  msgStop("Stop", "Couldn’t open Orders.db.")
endIf

endMethod



enumFieldNamesInIndex method
Fills an array with a table index's field names.

Syntax
1. (Corel Paradox tables) enumFieldNamesInIndex ( [ const indexName String, ] var fieldArray 
Array[ ] String ) Logical
2. (dBASE tables) enumFieldNamesInIndex ( [ const indexName String [ , const tagName String, ] 
var fieldArray Array[ ] String ) Logical

Description
enumFieldNamesInIndex fills fieldArray with the names of the fields in a table’s index, as specified in 
indexName. If indexName is omitted, this method uses the current index. If fieldArray is resizeable, it expands to
hold all of the field names. If fieldArray is fixed, it holds as many field names as possible, and discards the rest. If
fieldArray already exists, this method overwrites it without asking for confirmation.
In a dBASE table, you can use the optional argument tagName to specify an index tag within an .MDX file.
For more information on indexes, see About keys and indexes in tables in the User's Guide help.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCENUMINDEXSTRUCT;',0,"Defaultoverview",)} Related
Topics



enumFieldNamesInIndex example
In the following example, the pushButton method for the enumIndex button stores field names in a resizeable 
array and uses view to display the contents of the array:
; enumIndex::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor 
  fieldNames Array[] String
endVar
if tc.open("Sales.dbf") then
  ; load fieldNames array with field names in the byDate index
  tc.enumFieldNamesInIndex("DateIndx.MDX", "byDate", fieldNames)
  ; display the index field names for byDate in DateIndx
  fieldNames.view() 
else
  msgStop("Stop", "Couldn’t open Sales.dbf.")
endIf
endMethod



enumFieldStruct method
Lists the field structure of a TCursor.

Syntax
1. enumFieldStruct ( const tableName String ) Logical
2. enumFieldStruct ( inMem TCursor ) Logical

Description
enumFieldStruct lists the field structure of a TCursor. Syntax 1 creates a Corel Paradox table; Syntax 2 stores 
the information in a TCursor variable.
Syntax 1 creates a Corel Paradox table tableName. If tableName already exists, this method overwrites it without
asking for confirmation. If tableName is open, this method fails. You can also include an alias or path in 
tableName. If an alias or path is not specified, Corel Paradox creates the table in the working directory. You can 
supply tableName to the struct option in a create statement to borrow that table's field structure (including 
primary keys and validity checks) for use in the new table.
In Syntax 2, the structure information is stored in the TCursor variable inMem that you pass as an argument. 
Syntax 2 results in faster performance because the information is stored in system memory. 
The following table displays the structure of the table in Syntax 1 or the TCursor    in Syntax 2:
Field Type Description
Field Name A31 Specifies the name of field
Type A31 Specifies the data type of field
Size S Specifies the size of field
Dec S Specifies the number of decimal places, or 0 if field type doesn't 

support decimal places
Key A1 Specifies whether the field is a key (* = key field, blank = not key field)
_Required Value A1 Specifies whether the field is required (T = required, N (or blank) = Not

required)
_Min Value A255 Specifies the field's minimum value
_Max Value A255 Specifies the field's maximum value
_Default Value A255 Specifies the field's default value
_Picture Value A175 Specifies the field's picture
_Table Lookup A255 Specifies the name of lookup table (including the full path if the lookup

table is not in :WORK:)
_Table Lookup Type A1 Specifies the type of lookup table 

0 (or blank) = no lookup table, 
1 = Current field + private 
2 = All corresponding + no help
3 = Just current field + help and field
4 = All corresponding + help

_Invariant Field ID S Specifies the field's ordinal position in table 
(first field = 1, second field = 2, etc.)

 Example
{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCENUMFIELDNAMES;OPAL_METH_TCENUMFIELDNAME
SININDEX;OPAL_METH_TCENUMINDEXSTRUCT;OPAL_METH_TCENUMREFINTSTRUCT;OPAL_METH_TCENUM
SECSTRUCT;',0,"Defaultoverview",)} Related Topics



enumFieldStruct example
The following example assumes that you want a new table named NewCust that is similar to the Customer table.
It also assumes that you want all of the fields in NewCust to be required fields. The following code uses 
enumFieldStruct to load a new table (CUSTFLDS.DB) with the field-level information from Customer. The code 
then scans CustFlds and modifies the field definitions so that each record describes a required field. CustFlds is 
then supplied in the struct clause of a create statement.
; makeNewCust::pushButton
method pushButton(var eventInfo Event)
var
  newCustTbl Table
  tc   TCursor
  structName, sourceName String
endVar

structName = "CustFlds.db"
sourceName = "Customer.db"

if tc.open(sourceName) then

  tc.enumFieldStruct(structName)

  ; Point the TCursor to the CustFlds table.
  tc.open(structName)
  tc.edit()
  
  ; This loop scans through the CustFlds table and
  ; changes ValCheck definitions for every field.
  scan tc : 
    tc."_Required Value" = 1    ; Make all fields required.
  endScan

  ; Now create NEWCUST.DB and borrow field names,
  ; ValChecks and key fields from CUSTFLDS.DB.
  newCustTbl = CREATE "NewCust.db"
                 STRUCT structName
               ENDCREATE

  ; NEWCUST.DB requires that all fields be filled.

else
  msgStop("Error", "Can’t get field structure for Customer table.")
endIf

endMethod



enumIndexStruct method
Lists the structure of a TCursor’s secondary indexes.

Syntax
1. enumIndexStruct ( const tableName String ) Logical
2. enumIndexStruct ( inMem TCursor ) Logical

Description
enumIndexStruct lists the structure of a TCursor’s secondary indexes. Syntax 1 creates a Corel Paradox table; 
Syntax 2 stores the information in a TCursor variable.
Syntax 1 creates the Corel Paradox table specified in tableName. For dBASE tables, this method lists the 
structure of the indexes associated with the table by the usesIndexes method. If tableName already exists, this 
method overwrites it without asking for confirmation. You can also include an alias or path in tableName. If an 
alias or path is not specified, Corel Paradox creates the table in the working directory. You can supply tableName 
to the indexStruct option in a create statement to borrow that table's field structure (including primary keys 
and validity checks) for use in the new table.
In Syntax 2, the structure information is stored in the TCursor variable inMem that you pass as an argument. 
Syntax 2 results in faster performance because the information is stored in system memory. 
The following table displays the structure of the table in Syntax 1 or the TCursor    in Syntax 2:
Field Type Description
infoHeader A1 Specifies whether this record is a header for (and the data it 

contains is shared by) subsequent consecutive records that have a
value of N in this field

szName A255 Specifies the index name, including path
szTagName A31 Specifies the tag name, no path (dBASE only)
szFormat A31 Specifies the optional index type, e.g., BTREE, HASH
bPrimary A1 Specifies whether the index is primary
bUnique A1 Specifies whether the index is unique
bDescending A1 Specifies whether the index is descending
bMaintained A1 Specifies whether the index is maintained
bCaseInsensitive A1 Specifies whether the index is case-sensitive
bSubset A1 Specifies whether the index is a subset index (dBASE only)
bExpIdx A1 Specifies whether the index is an expression index (dBASE only)
iKeyExpType N Specifies the key type of index expression (dBASE only)
szKeyExp A220 Specifies the key expression for expression index (dBASE only)
szKeyCond A220 Specifies the subset condition for subset index (dBASE only)
FieldNo N Specifies the ordinal position of key field in table
FieldName A31 Specifies the name of key field

For more information on indexes, see About keys and indexes in tables in the User's Guide help.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCENUMFIELDNAMES;OPAL_METH_TCENUMFIELDNAME
SININDEX;OPAL_METH_TCENUMFIELDSTRUCT;OPAL_METH_TCENUMREFINTSTRUCT;OPAL_METH_TCENUM
SECSTRUCT;',0,"Defaultoverview",)} Related Topics



enumIndexStruct example
The following example assumes that you want a new table named NewCust that is similar to the Customer table.
It also assumes that you don't want to borrow referential integrity or security information. The following code 
uses enumFieldStruct and enumIndexStruct to generate two tables (CUSTFLDS.DB and CUSTINDX.DB). 
CustFlds and CustIndx are then supplied to the struct and indexStruct clauses of a create statement.
; makeNewCust::pushButton
method pushButton(var eventInfo Event)
var
  newcustTC Table
  custTC    TCursor
endVar

if custTC.open("Customer.db") then

  ; write field level information to CUSTFLDS.DB 
  custTC.enumFieldStruct("CustFlds.db")

  ; write secondary index information to CUSTINDX.DB
  custTC.enumIndexStruct("CustIndx.db")

  ; now create NEWCUST.DB
  ; borrow field names, ValChecks, and key fields from CUSTFLDS.DB
  ; borrow secondary indexes from CUSTINDX.DB
  newcustTC = CREATE "NewCust.db"
                STRUCT "CustFlds.db"
                INDEXSTRUCT "CustIndx.db"
              ENDCREATE

else
  msgStop("Error", "Can’t find Customer table.")
endIf

endMethod



enumLocks method
Creates a Corel Paradox table listing the locks currently applied to a table.

Syntax
enumLocks ( const tableName String ) LongInt

Description
enumLocks creates a Corel Paradox table specified by tableName that lists the number of locks on the specified
table. If tableName already exists, this method overwrites it without asking for confirmation. If tableName is 
open, this method fails. For dBASE tables, this method lists only the lock you’ve placed (not all locks currently on
the table). You can also include an alias or path in tableName; if an alias or path is not specified, Corel Paradox 
creates tableName in the working directory.
The following table describes the structure of tableName :
Field name Field type Description
UserName A15 Specifies the user name
LockType A32 Describes the type of lock (e.g., Table Write Lock)
NetSession N Specifies the net level session number
Session N Specifies the BDE session number (if the lock was placed by BDE)
RecordNumber N Specifies the record number (if the lock is a record lock; otherwise 0)
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLOCK;OPAL_METH_TCLSTA;',0,"Defaultoverview",)} 
Related Topics



enumLocks example
In the following example, the built-in pushButton method for the showOrdersLcks button creates a table listing 
the locks currently applied to ORDERS.DB:
; showOrdersLcks::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  tv TableView
endVar
if tc.open("Orders.db") then   
  tc.enumLocks("OrderLck.db")  ; store Orders.db locks in OrderLck.db
  tv.open("OrderLck.db")       ; open OrderLck.db
else
  msgStop("Stop!", "Can’t open Orders.db table")
endIf

endMethod



enumRefIntStruct method
Lists referential integrity information for a TCursor.

Syntax
1. enumRefIntStruct ( const tableName String ) Logical
2. enumRefIntStruct ( inMem TCursor ) Logical

Description
enumRefIntStruct lists referential integrity information for a TCursor. Syntax 1 creates a Corel Paradox table; 
Syntax 2 stores the information in a TCursor variable. 
Syntax 1 creates the Corel Paradox table specified in tableName. If tableName is open, this method fails. If 
tableName already exists, this method overwrites it without asking for confirmation. You can also include an alias
or path in tableName. If an alias or path is not specified, Corel Paradox creates the table in the working directory.
You can supply tableName to the refIntStruct option in a create statement to borrow that table's field structure
(including primary keys and validity checks) for use in the new table.
In Syntax 2, the structure information is stored in the TCursor variable inMem that you pass as an argument. 
Syntax 2 results in faster performance because the information is stored in system memory. 
The following table displays the structure of the table in Syntax 1 or the TCursor    in Syntax 2:
Field name Type Description
infoHeader A1 Specifies whether the record is a header for (and the data it contains is 

shared by) subsequent consecutive records that have a value of N in this 
field

RefName A31 Specifies the name to identify this referential integrity constraint
OtherTable A255 Specifies the name (including path) of the other table in the referential 

integrity relationship
Slave A1 Specifies whether the table is slave, not master (i.e., the table is 

dependent)
Modify A1 Specifies the update rule (Y = Cascade, blank = Prohibit)
Delete A1 Specifies the delete rule (blank = Prohibit). Corel Paradox does not support 

cascading deletes for Corel Paradox or dBASE tables.
FieldNo N Specifies the ordinal position of the field in this table involved in a 

referential integrity relationship
aiThisTabField A31 Specifies the name of the field in this table involved in a referential 

integrity relationship
Other FieldNo N Specifies the ordinal position of the field in the other table involved in a 

referential integrity relationship
aiOthTabField A31 Specifies the name of the field in the other table involved in a referential 

integrity relationship
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCENUMFIELDNAMES;OPAL_METH_TCENUMFIELDNAME
SININDEX;OPAL_METH_TCENUMFIELDSTRUCT;OPAL_METH_TCENUMINDEXSTRUCT;OPAL_METH_TCENUMS
ECSTRUCT;OPAL_METH_FOENTAB;',0,"Defaultoverview",)} Related Topics



enumRefIntStruct example
The following example uses enumRefIntStruct to write CUSTOMER.DB referential integrity information to the 
CustRef table. The code supplies CustRef to the refIntStruct clause in a create statement:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc  TCursor
  tbl Table
endVar

tc.open("Customer.db")

; Write referential integrity information to CustRef.
tc.enumRefIntStruct("CustRef.db")
; Write field level information to CustFlds.
tc.enumFieldStruct("CustFlds.db")
tc.close()
; Now create NEWCUST.DB.
; Borrow field level information from CUSTFLDS.DB.
; Borrow referential integrity information from CUSTREF.DB.
tbl = CREATE "NewCust.db"
        STRUCT "CustFlds.db"
        REFINTSTRUCT "CustRef.db"
      ENDCREATE

endMethod



enumSecStruct method
Lists a TCursor's security information.

Syntax
1. enumSecStruct ( const tableName String ) Logical
2. enumSecStruct ( inMem TCursor ) Logical

Description
enumSecStruct lists the security information (access rights) of a TCursor. Syntax 1 creates a Corel Paradox 
table; Syntax 2 stores the information in a TCursor variable.
Syntax 1 creates the Corel Paradox table specified in tableName. For dBASE tables, this method lists the 
structure of the indexes associated with the table by the usesIndexes method. If tableName is open, this 
method fails. If tableName already exists, this method overwrites it without asking for confirmation. You can also 
include an alias or path in tableName. If an alias or path is not specified, Corel Paradox creates the table in the 
working directory. You can supply tableName to the secStruct option in a create statement to borrow that 
table's field structure (including primary keys and validity checks) for use in the new table.
In Syntax 2, the structure information is stored in the TCursor variable inMem that you pass as an argument. 
Syntax 2 results in faster performance because the information is stored in system memory. 
The following table displays the structure of the table in Syntax 1 or the TCursor    in Syntax 2:
Field name Type Description
infoHeader A1 Specifies whether the record is a header for (and the data it contains is 

shared by) subsequent consecutive records that have a value of N in this 
field

iSecNum N Specifies the number to identify security description 
(first description = 1)

eprvTable N Specifies the table privilege value
eprvTableSym A10 Specifies the table privilege name
iFamRights N Specifies the family rights value
iFamRightsSym A10 Specifies the family rights name
szPassword A31 Specifies the password
fldNum N Specifies the ordinal position of field in table
aprvFld N Specifies the field privilege value
aprvFldSym A10 Specifies the field privilege name
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCENUMFIELDNAMES;OPAL_METH_TCENUMFIELDNAME
SININDEX;OPAL_METH_TCENUMFIELDSTRUCT;OPAL_METH_TCENUMINDEXSTRUCT;OPAL_METH_TCENUMR
EFINTSTRUCT;',0,"Defaultoverview",)} Related Topics



enumSecStruct example
The following example creates a new table based on the security information that is associated with the Secrets 
table. This code uses enumSecStruct to write security information to the SecInfo table which is then used to 
create the MySecrts table:
method pushButton(var eventInfo Event)
var
  tc  TCursor
  tbl Table
endVar

; Associate tc with SECRETS.DB.
tc.open("Secrets.db") 
; Write security information to SECINFO.DB.
tc.enumSecStruct("SecInfo.db") 

; Now create MYSECRTS.DB.
; Borrow field names and types from SECRETS.DB.
; Borrow security information from SECINFO.DB.
tbl = CREATE "MySecrts.db"
        LIKE "Secrets.db"
        SECSTRUCT "SecInfo.db"
      ENDCREATE
endMethod



Privilege values and names for enumSecStruct

The following table lists numeric values and symbolic names for table and field privileges.
Value Name Description
0 None Specifies no privileges
1 ReadOnly Specifies a read-only field or table
3 Modify Specifies a read and modify field or table
7 Insert Specifies insert + all of the above privileges (table only)
15 InsDel Specifies delete + all of the above privileges (table only)
31 Full Specifies full rights (table only)
255 Unknown Specifies privileges unknown



Family rights values and names for enumSecStruct

The following table lists numeric values and symbolic names for family rights.
Value Name Description
0 NoFamRights Specifies no family rights
1 FormRights Specifies the right to change forms only
2 RptRights Specifies the right to change reports only
4 ValRights Specifies    the right to change val checks only
8 SetRights Specifies the right to change image settings
15 AllFamRights Specifies all of the above



enumTableProperties method
Writes the properties of a TCursor to a Corel Paradox table.

Syntax
enumTableProperties ( const tableName String ) Logical

Description
enumTableProperties writes the properties of a table associated with a TCursor to the table specified in 
tableName. If tableName already exists, this method prompts the user for confirmation before overwriting the 
table. If tableName is open, this method fails. You can also include an alias or path in tableName. If an alias or 
path is not specified, Corel Paradox creates the table in the working directory. 
The following table displays the structure of tableName:
Field name Field type Description
TableName A32 Specifies the table name only (i.e., no path, no extension)
PropertyName A64 Specifies the property name (e.g., for Corel Paradox and dBASE tables: Name,

Type, FieldCount, LogicalRecordSize, PhysicalRecordSize, KeySize, 
IndexCount, ValCheckCount, ReferentialCount, BookMarkSize, 
StableBookMarks, OpenMode, ShareMode)

PropertyValue A255 Specifies the corresponding property value
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCENUMFIELDNAMES;',0,"Defaultoverview",)} Related 
Topics



enumTableProperties example
The following example uses enumTableProperties to write ORDERS.DB properties to ORDPROPS.DB. If 
ORDPROPS.DB exists, this code asks for confirmation before overwriting the table:
; showTblProps::pushButton
method pushButton(var eventInfo Event)
var
  tblName, propTbl String
  tc TCursor
  tv TableView
endVar
tblName = "Orders.db"
propTbl = "OrdProps.db"

if tc.open(tblName) then
  if isTable(propTbl) then
    if msgYesNoCancel("Confirm", 
       propTbl + " exists. Overwrite it?") <> "Yes" then
      return
    endIf
  endIf
  ; Write Orders.db properties to OrdProps.db.
  tc.enumTableProperties(propTbl)
  ; Open newly created OrdProps.db table.
  tv.open(propTbl)               
else
  msgStop("Stop!", "Can’t open " + tblName + " table.")
endIf

endMethod



eot method
Determines whether a command attempts to move past the table's last record.

Syntax
eot ( ) Logical

Description
eot returns True if a command attempts to move past the table's last record; otherwise, it returns False. eot is 
reset by the next move operation.
eot (and bot) returns True if a command forces the TCursor to point to a nonexistent record. For example, 
assume that the Customer table has values in the first key field that range from 1,000 to 10,000. If you call 
setRange and point the TCursor to key values from 1 to 10 (outside the possible range of Customer values), the 
TCursor points to a nonexistent record. The following code fragment demonstrates how setRange can affect eot
and bot  :  
var tc TCursor endvar
tc.open("Customer.db")
; Suppose values in field 1 range from 1,000 to 10,000.
tc.setRange(1, 10)           ; filter ranges from 1 to 10
  ; tc.eot() and tc.bot() are True at this point

If a call to setGenFilter forces the TCursor to point to a nonexistent record, eot and bot methods return True.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCBOT;OPAL_METH_TCEND;OPAL_METH_TCHOME;',0,"D
efaultoverview",)} Related Topics



eot example
In the following example, a while loop controls a TCursor’s movement through the Orders table. When code 
within the loop attempts to move past the end of the table, eot returns True and the loop terminates.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  tblName String
  fldVal AnyType
endVar  
tblName = "Customer.db"
if tc.open(tblName) then 
  while tc.eot() = False      ; While subsequent commands do not
                              ; move past end of the table,
    message(tc."Customer No") ; display value in Customer No field,
    sleep(250)                ; pause for the message,
    tc.nextRecord()           ; move to the next record.
  endWhile
  msgInfo("End", "That’s all, folks!")
else
  msgStop("Stop!", "Can’t open " + tblName + " table.")
endIf
endMethod



familyRights method
Tests for a user’s ability to create or modify objects in a table’s family.

Syntax
familyRights ( const rights String ) Logical

Description
familyRights determines whether you can create or modify objects in a table's family. This method returns True 
if you have rights to the type of object specified in rights; otherwise, it returns False. rights is a single-letter 
string that indicates the object type to which you may have rights (e.g., F (form), R (report), S (image settings), 
or V (validity checks)). This method preserves the functionality required by Corel Paradox 3.5 tables but does not
apply to tables created in versions of Corel Paradox after 3.5.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCTRIG;',0,"Defaultoverview",)} Related Topics



familyRights example
The following example determines whether you have F rights to CUSTOMER.DB:
; showFRights::pushButton
method pushButton(var eventInfo Event)
var
  custTC TCursor
endVar

custTC.open("Customer.db")
msgInfo("Rights", "Form Rights: " + String(custTC.familyRights("F")))
; Displays True if you have Form rights to CUSTOMER.DB.

endMethod



fieldName method
Returns the name of a field.

Syntax
fieldName ( const fieldNum SmallInt ) String

Description
fieldName returns the name of field specified by fieldNum. Fields are numbered from left to right, beginning 
with 1.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TBFNO;OPAL_METH_TCFTYP;OPAL_METH_TCFVAL;',0,"D
efaultoverview",)} Related Topics



fieldName example
The following example uses fieldName to display the name of field number two in the Answer table. This code is
attached to the built-in pushButton method of a button:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor 
  fldName, tblName String 
  fldNum SmallInt
endVar 
tblName = "Answer.db"

if tc.open(tblName) then 
  fldName = tc.fieldName(2)       ; store name of field 2 in fldName
  msgInfo("Field Name",           ; display field 2 field name
          "Field name for field 2 is\n" + fldName)
else
  msgStop("Sorry", "Can’t open " + tblName + " table.")
endIf

endMethod



fieldNo method
Returns the position of a field in a table.

Syntax
fieldNo ( const fieldName String ) SmallInt

Description
fieldNo returns the position of the field specified by fieldName. Fields are numbered from left to right, beginning
with 1.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCFVAL;',0,"Defaultoverview",)} Related Topics



fieldNo example
In the following example, code is attached to the pushButton method for thisButton. When you press 
thisButton, this code uses fieldNo to display the position of Common Name in the BioLife table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor 
  fldNum SmallInt 
endVar  

if tc.open("biolife.db") then
  fldNum = tc.fieldNo("Common Name")   ; store field number in fldNum
  msgInfo("Field Number", 
          "Common Name field is\n field number " + String(fldNum))
else
  msgInfo("Sorry", "Can’t open BioLife.db table.")
endIf

endMethod



fieldRights method
Reports whether a user can read or modify a field in a table.

Syntax
1. fieldRights ( const fieldName String, const rights String ) Logical
2. fieldRights ( const fieldNum SmallInt, const rights String ) Logical

Description
fieldRights returns True if the user has rights to the field specified in fieldName or fieldNum; otherwise, it 
returns False. The value of rights must be an expression that evaluates to one of the following strings: ReadAll, 
ReadOnly, or None. Rights are obtained using addPassword (Session type). Rights cannot be acquired after the 
table is opened.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCTRIG;',0,"Defaultoverview",)} Related Topics



fieldRights example
The following example uses fieldRights to determine whether a TCursor has adequate field rights before 
modifying the field’s value:
; updateCust::pushButton
method pushButton(var eventInfo Event)
var
  custTC TCursor
endVar
custTC.open("Customer.db")
if custTC.locate("Name", "Unisco") then
  ; if we don’t have sufficient rights to change the Name field
  if NOT custTC.fieldRights("Name", "ReadWrite") then
    ; display error message and abort operation
    msgStop("Error!", "Insufficient rights to change Name field")
  else
    ; otherwise, we have rights to make changes to the field
    custTC.edit()
    custTC.Name = "Unisco Worldwide, Inc."
    message("Changed Unisco to Unisco Worldwide, Inc.")
    custTC.endEdit()
  endIf
else
  msgStop("Error", "Can’t find Unisco")
endIf

endMethod



fieldSize method
Returns the size of a field.

Syntax
1. fieldSize ( const fieldName String ) SmallInt
2. fieldSize ( const fieldNum SmallInt ) SmallInt

Description
fieldSize returns the size of a field, as defined when the table was created. The return value represents the 
maximum number of characters a field can contain. For example, given a field defined as Alpha20, fieldSize 
returns a value of 20. The return value can represent the maximum amount of data the field can display. For 
example, given a table or a Memo field fieldSize returns the number of characters that can be displayed.
Numeric fields in dBASE tables can specify the number of digits to display on each side of the decimal point. For 
example, a field defined as Number 8.2 displays up to 8 digits total, with 6 digits to the left of the decimal and 2 
digits to the right. fieldSize returns the number of digits to the left of the decimal. To get the second part, use 
fieldUnits2.
For field types that do not display characters or numbers (e.g., OLE, binary, graphic), this method returns 0.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCFNAM;OPAL_METH_TCFTYP;OPAL_METH_TCFUNIT;',0,
"Defaultoverview",)} Related Topics



fieldSize example
The following example uses a dynamic array to store the size of each field in the BioLife table and displays the 
contents of the dynamic array in a dialog box:
; showFldSizes::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  i SmallInt
  fldSizes DynArray[] AnyType
  tblName String
endVar
tblName = "BioLife.db"

if tc.open(tblName) then
   ; this FOR loop loads the DynArray with BioLife.db field sizes
  for i from 1 to tc.nFields()
    fldSizes[tc.fieldName(i)] = tc.fieldSize(i)
  endFor
   ; now show the contents of the DynArray
  fldSizes.view(tblName + " field sizes.")
else
  msgStop("Sorry", "Can’t open " + tblName + " table.")
endIf
endMethod



fieldType method
Returns the data type of a field.

Syntax
1. fieldType ( const fieldName String ) String
2. fieldType ( const fieldNum SmallInt ) String

Description
fieldType returns the data type of a field. If the specified field is not found, this method returns "unknown." The 
following tables list the possible return values for Corel Paradox and dBASE tables:
Corel Paradox Field Type Return Value
Alpha ALPHA
Autoincrement AUTOINCREMENT
BCD BCD
Binary BINARY
Bytes BYTES
Date DATE
Formatted Memo FMTMEMO
Graphic GRAPHIC
Logical LOGICAL
Long Integer LONG
Memo MEMO
Money MONEY
Number NUMBER
OLE OLE
Short SHORT
Time TIME
Timestamp TIMESTAMP

dBASE Field Type Return Value
BINARY BINARY
CHARACTER CHARACTER
DATE DATE
FLOAT FLOAT
LOGICAL LOGICAL
MEMO MEMO
NUMBER NUMERIC
OLE OLE
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCFNO;',0,"Defaultoverview",)} Related Topics



fieldType example
The following example uses a dynamic array to store the data type of each field in the BioLife table and displays 
the contents of the dynamic array in a dialog box:
; showFldTypes::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  i SmallInt
  fldTypes DynArray[] AnyType
  tblName String
endVar
tblName = "BioLife.db"

if tc.open(tblName) then
   ; this FOR loop loads the DynArray with BioLife.db field types
  for i from 1 to tc.nFields()
    fldTypes[tc.fieldName(i)] = tc.fieldtype(i)
  endFor
   ; now show the contents of the DynArray
  fldTypes.view(tblName + " field types.")
else
  msgStop("Sorry", "Can’t open " + tblName + " table.")
endIf
endMethod



fieldUnits2 method
Returns the number of decimal places defined for a numeric field in a dBASE table.

Syntax
1. fieldUnits2 ( const fieldName String ) SmallInt
2. fieldUnits2 ( const fieldNum SmallInt ) SmallInt

Description
fieldUnits2 returns the number of decimal places defined for a numeric field in a dBASE table. For a Corel 
Paradox table or any other driver or field type that does not require field units to be specified, this method 
returns 0. 
Numeric fields in dBASE tables can specify the number of digits to display on each side of the decimal point. For 
example, a field defined as Number 8.2 displays up to 8 digits total, with 6 digits to the left of the decimal and 2 
digits to the right. fieldSize returns the number of digits to the left of the decimal. To get the second part, use 
fieldUnits2.
For field types that do not display characters or numbers (e.g., OLE, binary, graphic), this method returns 0.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCFNAM;OPAL_METH_TCFNO;OPAL_METH_TCFSIZ;OPAL_
METH_TCFTYP;',0,"Defaultoverview",)} Related Topics



fieldUnits2 example
For the following example, the pushButton method for thisButton concatenates values returned from fieldSize 
and fieldUnits2 so that both sides of the decimal point are expressed in a single number. For example, if a 
field’s size is 11 and is defined with 2 decimal places, this method concatenates the values to 11.2. This code 
uses a DynArray to store concatenated values for each field in SCORES.DBF then displays the contents of the 
array in a dialog box:
; showFldSizes::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  i SmallInt
  fldSizes DynArray[] AnyType
  tblName String
  totalSize Number
endVar
tblName = "Scores.dbf"

if tc.open(tblName) then
   ; This FOR loop loads the DynArray with the full field spec.
   ; For example if fieldSize(1) = 11 and fieldUnits2(1) = 2,
   ; one value in the DynArray would be 11.2
  for i from 1 to tc.nFields()
    totalSize = numVal(String(tc.fieldsize(i)) + "." +
                       String(tc.fieldUnits2(i)))
    fldSizes[tc.fieldName(i)] = totalSize
  endFor
   ; now show the contents of the DynArray
  fldSizes.view(tblName + " total field sizes.")
else
  msgStop("Sorry", "Can’t open " + tblName + " table.")
endIf
endMethod



fieldValue method
Reads the value of a specified field.

Syntax
1. fieldValue ( const fieldName String, var result AnyType ) Logical
2. fieldValue ( const fieldNum SmallInt, var result AnyType ) Logical

Description
fieldValue retrieves the value the field (fieldName or fieldNum) and assigns it to the variable result. This 
method returns True if successful; otherwise, it returns False.
You can also read the value of a specified field using dot notation. For example, the following statement uses dot 
notation to assign the myPrice variable with data from the Last Bid field:
myCost = tcVar."Last Bid"

The following statement uses fieldValue to achieve the same results:
tcVar.fieldValue("Last Bid", myCost)
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCSFVA;',0,"Defaultoverview",)} Related Topics



fieldValue example
The following example assumes that a form has at least one field, named paymentField. When you right-click 
paymentField, the code presents a PopUpMenu listing possible values for the field. When you choose a menu 
item from the list, that item is added to the field.
The following code is attached to the field’s Var window:
; paymentField::Var
Var
  lkupTbl String
  menuArray Array[] String
  fldVal AnyType
  p1 PopUpMenu
  tc TCursor
endVar

The following code is attached to the field’s open method. When the field opens, this code scans the PayMethd 
table and loads the menuArray array with values from the Pay Method field:
; paymentField::open
method open(var eventInfo Event)

lkupTbl = "PayMethd.db"
tc.open(lkupTbl) 
scan tc :                             ; scan through table
  tc.fieldValue("Pay Method", fldVal) ; store field value in fldVal
  menuArray.addLast(fldVal)           ; add new element to menuArray
endScan
p1.addStaticText("Possible Values")   ; put static text at top of menu
p1.addSeparator()                     ; add a horizontal bar below static text
p1.addArray(menuArray)                ; add array to the menu

endMethod

The following code is attached to the field’s mouseRightUp method. When you right-click the field, this code 
presents a PopUpMenu. The values that you choose is displayed in the field.
; paymentField::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)

disableDefault              ; don’t show the default menu
choice = p1.show()          ; show the pop-up menu
if NOT isBlank(choice) then ; if user did not press Esc
  self.value = choice       ; enter choice into the field
endIf

endMethod



forceRefresh method
Forces a TCursor to point to the data in the underlying table.

Syntax
forceRefresh( ) Logical

Description
forceRefresh empties a TCursor’s record buffer and refreshes it with data from the underlying table. The record 
position is maintained, provided the record still exists in the table. On an SQL server, a call to forceRefresh 
forces a read from the server. This is the only way to get a refresh from the server; it may be a time-consuming 
operation. forceRefresh only works on SQL tables that have a unique index.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCURE;OPAL_METH_UIFORCEREFRESH;',0,"Defaultover
view",)} Related Topics



forceRefresh example
The following example opens a TCursor on the Orders table and executes two scan loops to perform two 
calculations. The first calculation returns the total quantity of orders from California. The code then calls 
forceRefresh to get the latest data from the table before executing the second scan loop. The second 
calculation calculates the total quantity of orders from Florida.
method pushButton(var eventInfo Event)
   var
      tc       TCursor
      tName,
      fName,
      fVal_1,
      fVal_2   String
      caQty,
      flQty    LongInt
   endVar

   ; initialize variables
   tName  = "orders" ; assign table name
   fName  = "State"  ; assign field name
   caQty  = 0        ; assign CA quantity
   flQty  = 0        ; assign FL quantity
   fVal_1 = "CA"     ; assign 1st field value
   fVal_2 = "FL"     ; assign 2nd field value

   tc.open(tName)

   scan tc for tc.State = fVal_1:
      caQty = caQty + tc.Qty
   endScan

; during the first scan, other users may 
; change data in the underlying table

   tc.forceRefresh() ; Get latest data from table

   scan tc for tc.State = fVal_2:
      flQty = flQty + tc.Qty
   endScan

   msgInfo("CA Qty and FL Qty:",
           "CA = " + String(caQty) + "\n" + "FL = " + String(flQty))

endMethod



getGenFilter method
Retrieves the filter criteria associated with a TCursor.

Syntax
1. getGenFilter ( criteria DynArray[ ] AnyType ) Logical
2. getGenFilter ( criteria Array[ ] AnyType [ , fieldName Array[ ] AnyType ] ) Logical
3. getGenFilter ( criteria String ) Logical

Description
getGenFilter retrieves the filter criteria associated with a TCursor. This method assigns values to a dynamic 
array (DynArray) variable in Syntax 1, or to two Array variables that you declare and include as arguments in 
Syntax 2.
In Syntax 1, the DynArray criteria lists fields and filtering conditions as follows: the index is the field name or 
number (depending on how it was set), and the item is the corresponding filter expression.
In Syntax 2, the Array criteria lists filtering conditions, and the optional Array fieldName lists corresponding field 
names. If you omit fieldName, conditions apply to fields in the order they appear in the criteria array (the first 
condition applies to the first field in the table, the second condition applies to the second field, and so on).
If the arrays used in Syntax 2 are resizeable, this method sets the array size to equal the number of fields in the 
underlying table. If fixed-size arrays are used, this method stores as many criteria as possible, beginning with 
criteria field 1. If there are more array items than fields, the remaining items are empty. If there are more fields 
than items, this method fills the array.
In Syntax 3, filter criteria is assigned to a String variable criteria that you must declare and pass as an argument.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCSETGENFILTER;OPAL_METH_TCDROPGENFILTER;OPAL
_METH_TCSETRANGE;OPAL_METH_UIGETGENFILTER;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Defaul
toverview",)} Related Topics



getGenFilter example
In the following example, the pushButton method for a button named btnShowFilter uses getGenFilter to fill a
dynamic array (DynArray) named dyn with a TCursor’s filter criteria. The code then determines whether the 
current criteria filters the State/Prov field with a value of CA, and resets the filter if necessary.
;btnShowFilter :: pushButton
method pushButton(var eventInfo Event)
var
      custTC      TCursor
      dyn         DynArray[] AnyType
      keysAr      Array[] AnyType
stFilterFld,
stCriteria   String
endVar
stFilterFld = "State/Prov"
stCriteria  = "CA"
custTC.open("Customer")

custTC.getGenFilter(dyn)   ; Get filter info.
dyn.getKeys(keysAr)
if keysAr.contains(stFilterFld) then
if dyn[stFilterFld] = stCriteria then
return               ; Filter is set correctly.
endIf
else
dyn.empty()             ; Set filter criteria correctly.
dyn[stFilterFld] = stCriteria
custTC.setGenFilter(dyn)
endIf
endMethod



getIndexName method
Retrieves the name of a table's current index.

Syntax
1. (Corel Paradox tables) getIndexName ( indexName String ) Logical
2. (dBASE tables) getIndexName ( indexName String [ , tagName String ] ) Logical

Description
getIndexName retrieves the name of the current index. getIndexName can also retrieve the current tag for 
dBASE tables. This method assigns values to String variables that you must declare and provide as arguments.
For more information on indexes, see About keys and indexes in tables in the User's Guide help.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCGETGENFILTER;OPAL_METH_TCSETGENFILTER;',0,"Def
aultoverview",)} Related Topics



getIndexName example
The following example retrieves and displays the name of the index associated with the Orders table:
method pushButton(var eventInfo Event)
   var
      ordersTC TCursor
      indexName String
   endVar

   ordersTC.open("orders")

   ; Get the index name and assign the value to the String variable indexName.
   ordersTC.getIndexName(indexName) 

   if indexName.isAssigned() then
      indexName.view("Current index")
   else
      msgInfo("indexName", "No value for indexName.")
   endIf
endMethod



getLanguageDriver method
Returns the name of the table's current language.

Syntax
getLanguageDriver ( ) String

Description
getLanguageDriver returns a String value that specifies the language driver for a table.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCGETLANGUAGEDRIVERDESC;OPAL_METH_QUSETLANG
UAGEDRIVER;',0,"Defaultoverview",)} Related Topics



getLanguageDriver example
The following example displays the language driver for the Customer table in a dialog box:
; getDriver::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar
tc.open("Customer.db")
msgInfo("", tc.getLanguageDriver())  ; displays "ascii"
endMethod



getLanguageDriverDesc method
Returns the name of the table's current language driver description.

Syntax
getLanguageDriverDesc ( ) String

Description
getLanguageDriverDesc returns a String value that specifies the table's language driver.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCGETLANGUAGEDRIVER;OPAL_METH_QUSETLANGUAGE
DRIVER;',0,"Defaultoverview",)} Related Topics



getLanguageDriverDesc example
The following example displays the language driver description for the Customer table in a dialog box:
; getDriverDesc::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar
tc.open("Customer.db")
msgInfo("", tc.getLanguageDriverDesc())  ; displays "Corel Paradox ascii"
endMethod



getRange method
Retrieves the values that specify a range for a TCursor.

Syntax
getRange ( var rangeVals Array[ ] String ) Logical

Description
getRange retrieves the values that specify a range for a TCursor. This method assigns values to an Array 
variable that you declare and include as an argument. The following table displays the array values and the 
corresponding range criteria:
Number of array items Range specification
No items (empty array) Specifies no range criteria is associated with the Table variable
One item Specifies a value for an exact match on the first field of the index
Two items Specifies a range for the first field of the index
Three items The first item specifies an exact match for the first field of the index; items 2 and 

3 specify a range for the second field of the index.
More than three items For an array of size n, specifies exact matches on the first n-2 fields of the index. 

The last two array items specify a range for the n-1 field of the index
If the array is resizeable, this method sets the array size to equal the number of fields in the underlying table. If 
fixed-size arrays are used, this method stores as many criteria as it can, starting with criteria field 1. If there are 
more array items than fields, the remaining items are left empty; if there are more fields than items, this method
fills the array and then stops.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCSETRANGE;OPAL_METH_TCGETGENFILTER;OPAL_MET
H_TBGETRANGE;OPAL_METH_UIGETRANGE;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Defaultovervie
w",)} Related Topics



getRange example
In the following example, a button on a form is used to display the number of orders for any customer number 
per month. Assume that a form with the Orders table in its data model contains a Customer_No field, a Month 
field, and a button named btnCustOrdersByMonth. In this example a secondary index named secCustomerMonth,
getRange, getIndexName, switchIndex and setRange is used to speed up the task.
;btnCustOrdersByMonth :: pushButton
method pushButton(var eventInfo Event)
var
      tc               TCursor
      nuCustomer   Number
arGet,
arSet         Array[2] AnyType
stMonth,
stActiveInd,
stDisplay   String
endVar
   nuCustomer = Customer_No.value   ;Customer field on form.
   nuCustomer.view("Customer #:")   ;Allow user to alter cust #.

   stMonth = Month.value       ;Month field on form.
   stMonth.view("Month:")      ;Allow user to alter month.

   arSet[1] = nuCustomer       ;Set array to range criteria.
arSet[2] = stMonth
   tc.attach(Customer_No)      ;Attach tc to Customer field.

   tc.getIndexName(stActiveInd)    ;Get the active index name.
if stActiveInd = "secCustomerMonth" then
      tc.getRange(arGet)          ;Get the current range.
      if arGet <> arSet then      ;Compare current range.
tc.setRange(nuCustomer, stMonth, stMonth)
endIf
else
;You must create a secondary index named secCustomerMonth
;for this example to work.
tc.switchIndex("secCustomerMonth")
tc.setRange(nuCustomer, stMonth, stMonth)
endIf
stDisplay = String(nuCustomer) + " had "
•   String(tc.nRecords()) +
" orders in " + stMonth
msgInfo("Orders in a month", stDisplay)
endMethod



handle method
Returns a cursor handle for use in an external DLL call.

Syntax
handle ( ) LongInt

Description
handle returns the cursor handle for use in an external DLL call.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_AFATTACH;OPAL_METH_AFWINDOWHANDLE;',0,"Default
overview",)} Related Topics



handle example
In the following example, the displayTable method of the PDXTEST.DLL is called with the handle of the TCursor.
The following code appears in an ObjectPAL Editor window for the script's built-in run method"
; Define the prototype information for the displayTable method
; of PDXTEST.DLL
Uses PDXTEST
     displayTable( handle CLONG ) CLONG 
endUses

method run(var eventInfo Event)
var
    tc   TCursor
    hCur LongInt
endvar

; Open the TCursor and get the handle of the opened table
tc.open( "aspace.db" )
hCur = tc.handle()

; Call the DLL's displayTable method, which displays the table's data.
; The DLL method should clone the cursor then close the cloned cursor 
; after it has completed the pack.
displayTable ( hCur )

; Close the TCursor
tc.close()
endMethod



home method
Moves to a table's first record.

Syntax
home ( ) Logical

Description
home moves to a table's first record.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCEND;OPAL_METH_TCMTRE;OPAL_METH_TCMTRENO;O
PAL_METH_TCNERE;OPAL_METH_TCPRRE;OPAL_METH_TCSKIP;',0,"Defaultoverview",)} Related Topics



home example
For the following example, the pushButton method associates a TCursor with the Orders table and loads an 
array with field values in a scan loop. When the loop terminates, the TCursor is positioned in the table's last 
record. This code uses home to move the TCursor back to the table's first record:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  fldArray Array[] AnyType
  fldVal AnyType
endVar  
tc.open("Orders.db")
fldArray.grow(tc.nRecords())
; scan table and store order numbers in fldArray
scan tc: 
  tc.fieldValue(1, fldVal)
  fldArray[tc.recNo()] = tc.fldVal
endScan
; TCursor is on the last record after the scan loop

fldArray.view()            ; display contents of array

tc.home()                  ; move TCursor to the first record
endMethod



initRecord method
Empties the record buffer.

Syntax
initRecord ( ) Logical

Description
initRecord initializes the record buffer by filling it with blanks (not spaces). If you have set default values for 
fields, initRecord initializes those fields with the default.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCREC;OPAL_METH_TCCURE;',0,"Defaultoverview",)} 
Related Topics



initRecord example
See the example for lockRecord.



insertAfterRecord method
Inserts a record below the active record.

Syntax
insertAfterRecord ( [ const pointer TCursor ] ) Logical

Description
insertAfterRecord inserts a record below active record. This method can be used to add new records to the 
end of a table. The optional argument pointer inserts the record pointed to by a different TCursor. Omitting the 
argument inserts a blank record.
If the table is indexed, the record is placed in its sorted position when the data is committed; otherwise, it is 
inserted after the active record.
This method fails if the table is not in Edit mode, or if the active record cannot be committed (e.g., because of a 
key violation).
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCIREC;OPAL_METH_TCIBER;',0,"Defaultoverview",)} 
Related Topics



insertAfterRecord example
The following example assumes that a form has a table frame named CUSTOMER that is bound to 
CUSTOMER.DB. When the user deletes a record, the built-in action method for CUSTOMER moves the record to 
CUSTARC.DB before deleting it from CUSTOMER. 
You could use copyFromArray and copyToArray to accomplish the same thing, but if you use 
insertAfterRecord you don’t have to store the record in an array in order to copy it.
 This code uses the optional argument pointer to insert the record pointed to by a TCursor:
; CUSTOMER::action
method action(var eventInfo ActionEvent)
var
  tcCust, tcArc TCursor
endVar
if eventInfo.id() = DataDeleteRecord then ; if user attempts to delete a record
  if thisForm.Editing = True then         ; if form is in Edit mode
    disableDefault                        ; don’t process DataDeleteRecord yet

    if msgYesNoCancel("Confirm",          ; if user confirms delete
       "Delete the active record?") = "Yes" then
      tcCust.attach(CUSTOMER)             ; sync TCursor to CUSTOMER pointer
      if tcArc.open("CustArc.db") then
        tcArc.edit()
        tcArc.end()                       ; move to end of table
        tcArc.insertAfterRecord(tcCust)   ; insert current CUSTOMER record
                                          ; after last record in CustArc.db
        doDefault                         ; process DataDeleteRecord now
      else
        msgStop("Stop!", "Sorry, Can’t archive record.")
      endIf
    else                                  ; else user didn’t confirm delete
      message("Record not deleted.")
    endIf
  else                                    ; else form is not in Edit mode
    msgStop("Stop!", "Press F9 to edit data.")
  endIf
endIf
endMethod



insertBeforeRecord method
Inserts a record above the active record.

Syntax
insertBeforeRecord ( [ const pointer TCursor ] ) Logical

Description
insertBeforeRecord inserts a record above the active record. You can use the optional argument pointer to 
insert the record pointed to by another TCursor. If you omit the pointer argument, a blank record is inserted.
If the table is indexed, the record is placed in its sorted position when the data is committed; otherwise, it is 
inserted after the active record.
This method fails if the table is not in Edit mode, or if the active record cannot be committed (e.g., because of a 
key violation).
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCIREC;OPAL_METH_TCIAFR;',0,"Defaultoverview",)} 
Related Topics



insertBeforeRecord example
The following example assumes that a form has a table frame named CUSTOMER that is bound to 
CUSTOMER.DB. When the user deletes a record, the built-in action method for CUSTOMER moves the record to 
CUSTARC.DB before deleting it from CUSTOMER. 
You could use copyFromArray and copyToArray to accomplish the same thing, but if you use 
insertAfterRecord you don’t have to store the record in an array in order to copy it.
 This code uses the optional argument pointer to insert the record pointed to by a TCursor:
; CUSTOMER::action
method action(var eventInfo ActionEvent)
var
  tcCust, tcArc TCursor
endVar
if eventInfo.id() = DataDeleteRecord then ; if user attempts to delete a record
  if thisForm.Editing = True then         ; if form is in Edit mode
    disableDefault                        ; don’t process DataDeleteRecord yet

    if msgYesNoCancel("Confirm",          ; if user confirms delete
       "Delete the active record?") = "Yes" then
      tcCust.attach(CUSTOMER)             ; sync TCursor to CUSTOMER pointer
      if tcArc.open("CustArc.db") then
        tcArc.edit()
        tcArc.insertBeforeRecord(tcCust)  ; insert current CUSTOMER record
                                          ; before active record in CustArc.db
        doDefault                         ; process DataDeleteRecord now
      else
        msgStop("Stop!", "Sorry, Can’t archive record.")
      endIf
    else                                  ; else user didn’t confirm delete
      message("Record not deleted.")
    endIf
  else                                    ; else form is not in Edit mode
    msgStop("Stop!", "Press F9 to edit data.")
  endIf
endIf
endMethod



insertRecord method
Inserts a record above the active record.

Syntax
insertRecord ( [ const pointer TCursor ] ) Logical

Description
insertRecord inserts a record into a table above the active record. You can use the optional argument pointer to
insert the record pointed to by another TCursor. If you omit the pointer argument, a blank record is inserted.
If the table is indexed, the record is placed in its sorted position when the data is committed; otherwise, it is 
inserted after the active record.
This method fails if the table is not in Edit mode, or if the active record cannot be committed (e.g., because of a 
key violation).
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCIAFR;OPAL_METH_TCIBER;',0,"Defaultoverview",)} 
Related Topics



insertRecord example
The following example assumes that a form has a table frame named CUSTOMER that is bound to 
CUSTOMER.DB. When the user deletes a record, the built-in action method for CUSTOMER moves the record to 
CUSTARC.DB before deleting it from CUSTOMER. 
You could use copyFromArray and copyToArray to accomplish the same thing, but if you use 
insertAfterRecord you don’t have to store the record in an array in order to copy it.
 This code uses the optional argument pointer to insert the record pointed to by a TCursor:
; CUSTOMER::action
method action(var eventInfo ActionEvent)
var
  tcCust, tcArc TCursor
endVar
if eventInfo.id() = DataDeleteRecord then ; if user attempts to delete a record
  if thisForm.Editing = True then         ; if form is in Edit mode
    disableDefault                        ; don’t process DataDeleteRecord yet

    if msgYesNoCancel("Confirm",          ; if user confirms delete
       "Delete the active record?") = "Yes" then
      tcCust.attach(CUSTOMER)             ; sync TCursor to CUSTOMER pointer
      if tcArc.open("CustArc.db") then
        tcArc.edit()
        tcArc.insertRecord(tcCust)        ; insert current CUSTOMER record
                                          ; before active record in CustArc.db
        doDefault                         ; process DataDeleteRecord now
      else
        msgStop("Stop!", "Sorry, Can’t archive record.")
      endIf
    else                                  ; else user didn’t confirm delete
      message("Record not deleted.")
    endIf
  else                                    ; else form is not in Edit mode
    msgStop("Stop!", "Press F9 to edit data.")
  endIf
endIf
endMethod



instantiateView method
Copies an in-memory TCursor to a physical table and points the TCursor to it.

Syntax
1. instantiateView ( const tableName String ) Logical
2. instantiateView ( const tableVar Table ) Logical

Description
instantiateView copies an in-memory TCursor to a physical table and points the TCursor to it. This method 
returns True if successful; otherwise, it returns False.
Syntax 1 creates the table using the name specified in tableName.
Syntax 2 associates the table with the Table variable specified in tableVar.

Use this method after executing a query that generates a TCursor onto a live query view. instantiateView 
copies the data from the live query view to a table on disk and makes the TCursor point to it. You can use the 
TCursor to manipulate the table's data. The resulting table has no relationship to the underlying tables in the 
query.
For more information on live query views, see Live query views in the User's Guide help.
You can also use instantiateView with TCursors created by ObjectPAL methods.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCISINMEMORYTCURSOR;OPAL_METH_TCISVIEW;OPAL_
METH_QUWANTINMEMORYTCURSOR;',0,"Defaultoverview",)} Related Topics



instantiateView example
The following example executes a query to a TCursor and determines whether the result is a live query view. If 
so, the code calls instantiateView to write the view to a physical table. The table is displayed in a Table 
window.
method pushButton(var eventInfo Event)
const
      kName = "salary"
endConst
var
      qbeVar     Query
      tcAnswer   TCursor
      tvAnswer   TableView
endVar

qbeVar.readFromFile(kName)
qbeVar.executeQBE(tcAnswer)

if tcAnswer.isView() then
     tcAnswer.instantiateView(kName)
     tvAnswer.open(kName)
else
     return
endIf
endMethod



isAssigned method
Reports whether a TCursor variable has been assigned a value.

Syntax
isAssigned ( ) Logical

Description
isAssigned returns True if a TCursor variable has been assigned a value using open or attach; otherwise, it 
returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCOPEN;OPAL_METH_TCCLO;',0,"Defaultoverview",)} 
Related Topics



isAssigned example
The following example associates a TCursor with a table, displays the last record and closes the TCursor. The 
code displays a message indicating whether the TCursor variable remains assigned when the TCursor is closed. 
This code is attached to the built-in pushButton method for thisButton:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar  
tc.open("Orders.db")         ; open a TCursor for Orders.db
tc.end()                     ; move to end of the table

; display information in last record
msgInfo("Last Order", "Order number: " + 
String(tc."Order No") + " \nOrder date: " + String(tc."Sale Date"))

tc.close()                   ; attempt to close TCursor

; if close is successful, this displays False (tc is no longer assigned)
; otherwise, it displays True (tc is still assigned if close fails)
msgInfo("Is tc Assigned?", tc.isAssigned())

endMethod



isEdit method
Reports whether a TCursor is in Edit mode.

Syntax
isEdit ( ) Logical

Description
isEdit returns True if the TCursor is in Edit mode; otherwise, it returns False. If you attach a TCursor to a display 
manager that is in Edit mode (e.g., a UIObject or TableView), the TCursor will be in Edit mode as well.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCOED;OPAL_METH_TCENDED;',0,"Defaultoverview",)}
Related Topics



isEdit example
The following example assumes that a form has a button and a table frame that is bound to the Customer table. 
The pushButton method for thisButton attaches a TCursor to the table frame and uses isEdit to determine 
whether the TCursor is in Edit mode. If the table frame is in Edit mode when the TCursor is attached, the TCursor 
is also in Edit mode.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor 
endvar

; attach to the table frame
tc.attach(CUSTOMER)

; if CUSTOMER was in Edit mode, tc will be in Edit mode too

if NOT tc.isEdit() then    ; test whether tc is in Edit mode
  tc.edit()
endIf

if tc.locate("Name", "Action Club") then
  tc.phone = "808-555-1234"
else
  msgStop("Sorry", "Can't find Action club")
endIf

endMethod



isEmpty method
Determines whether a table contains any records.

Syntax
isEmpty ( ) Logical

Description
isEmpty returns True if there are no records in the table associated with the TCursor; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCEMPT;OPAL_METH_TCNREC;OPAL_METH_TCIREC;',0,"
Defaultoverview",)} Related Topics



isEmpty example
In the following example the pushButton method for the rptRecNo button displays the number of records in the
Orders table. If the table is empty, this code alerts the user that the table is empty:
; rptRecNo::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor
  tblName String
endVar  
tblName = "Orders.db"

if tc.open(tblName) then
  if tc.isEmpty() then                          ; if Orders.db is empty
    msgStop("Hey!", 
             tblName + " table is empty!")
  else
    msgInfo(tblName + " table has",             ; report number of records
            String(tc.nRecords()) + " records")
  endIf
else
  msgStop("Sorry", "Can't open " + tblName + " table.")
endIf
endMethod



isEncrypted method
Reports whether a table is password-protected.

Syntax
isEncrypted ( ) Logical

Description
isEncrypted returns True if a table is password-protected; otherwise, it returns False. You cannot open a TCursor
on an encrypted table until you use addPassword (Session type) to present the required password. Use 
tableRights to report whether a user has access rights to the table.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCTRIG;OPAL_METH_SSAPASS;OPAL_METH_TBPROT;',0,"
Defaultoverview",)} Related Topics



isEncrypted example
The following example determines whether the Customer table is encrypted:
; thisButton::pushButton
method open(var eventInfo Event)
var
  tc TCursor
endvar

if tc.open("Customer.db") then
  if tc.isEncrypted() then
    msgInfo("Table is protected", "An acceptable password has been presented.")
  endif
else
  msgStop("Error", "Can't open the Customer table.")
endIf

endMethod



isInMemoryTCursor method
Reports whether a TCursor points to a table in system memory or to a physical table.

Syntax
isInMemoryTCursor ( ) Logical

Description
isInMemoryTCursor returns True if the TCursor is associated with a table in system memory (e.g., a table 
generated by an ObjectPAL method that enumerates information to a TCursor); otherwise, it returns False.
By default, when you execute a query, Corel Paradox attempts to create a live query view. Use 
isInMemoryTCursor to determine whether the query creates or an in-memory answer table. If the query 
creates a live query view, changes made to the TCursor affect the underlying tables. If the query creates an in-
memory answer table, the underlying tables are not affected. If the query results in a live query view, 
isInMemoryTCursor returns False and isView returns True. You can use wantInMemoryTCursor to specify 
how to create a TCursor resulting from a query.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_QUEXECUTEQBE;OPAL_METH_QUWANTINMEMORYTCUR
SOR;OPAL_METH_TCINSTANTIATEVIEW;OPAL_METH_TCISINMEMORYTCURSOR;OPAL_METH_TCISVIEW;',0,
"Defaultoverview",)} Related Topics



isInMemoryTCursor example
The following example executes a query from a file and uses a scan loop to increase the salary of each 
employee by 12 percent. Because you cannot determine whether the query will create a live query view before it
is run, this code calls isInMemoryTCursor to prevent changes from affecting the actual employee salary data:
method pushButton(var eventInfo Event)
   var
      qbeVar    Query
      tcAnswer  TCursor
   endVar

   ; Read the query from a file.
   qbeVar.readFromFile("Salary.qbe")

   ; We don't know if this query will generate a live
   ; query view, so use isInMemoryTCursor to find out.
   if qbeVar.executeQBE(tcAnswer) then

      ; If it is in memory (i.e., not live) and
      ; see the effects of a 12% raise for all employees.
      if tcAnswer.isInMemoryTCursor() then
         nuOldTotalPayroll = tcAnswer.cSum("Salary")

         tcAnswer.edit()
         scan tcAnswer :
            tcAnswer.Salary = tcAnswer.Salary * .15
         endScan
         tcAnswer.endEdit()

         nuNewTotalPayroll = tcAnswer.cSum("Salary")
      
         msgInfo("Before raise: " + String(nuOldTotalPayroll),
                 "After raise: " + String(nuNewTotalPayroll))

      else
         ; If it is live, inform user and quit the method.
         msgStop("Live query view",
             "Edits would affect the underlying table.")
         return
      endIf
   else
      errorShow()
   endIf

endmethod



isOnSQLServer method
Reports whether a TCursor is associated with a table on a SQL server.

Syntax
isOnSQLServer ( ) Logical

Description
isOnSQLServer returns True if the TCursor is associated with a table on a SQL server; otherwise, it returns 
False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCISOPENONUNIQINDX;',0,"Defaultoverview",)} 
Related Topics



isOnSQLServer example
The following example is a custom method that uses isOnSQLServer to determine whether a TCursor is 
associated with a remote table. If isOnSQLServer returns True, this code displays a msgQuestion dialog box 
and prompts the user to confirm the lock on the remote table:
method confirmRemoteLock(const tc TCursor) Logical

   if tc.isOnSQLServer() then
      
      ; you might not want to lock remote tables
      if msgQuestion("Lock table?", 
                     "Lock a remote table?") = "Yes" then
         return True
      else
         return False
      endIf
   endIf
endMethod



isOpenOnUniqueIndex method
Reports whether a TCursor is open on a unique index.

Syntax
isOpenOnUniqueIndex ( ) Logical

Description
isOpenOnUniqueIndex returns True if a TCursor is open on a unique index; otherwise, it returns False. A unique
index is an index that does not allow duplicate key values. 
This method allows you to update remote tables easily. Remote operations (e.g., editing data or deleting records)
may fail unless the TCursor is opened on a unique index.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCISINMEMORYTCURSOR;OPAL_METH_TCISONSQLSERV
ER;OPAL_METH_TCISVIEW;',0,"Defaultoverview",)} Related Topics



isOpenOnUniqueIndex example
The following example is a custom method that calls isOpenOnUniqueIndex before placing the TCursor in Edit 
mode:
method editIfUniqueIndex(const tc TCursor) Logical
   if tc.isOpenOnUniqueIndex() then
      return tc.edit()
   else
      return False
   endIf
endMethod



isRecordDeleted method
Reports whether the active record has been deleted From a dBASE table.

Syntax
isRecordDeleted ( ) Logical

Description
isRecordDeleted reports whether the active record has been deleted. isRecordDeleted works only for dBASE 
tables because deleted Corel Paradox records can't be displayed. This method returns True if the active record 
has been deleted; otherwise, it returns False.
By default, deleted records in a dBASE table are not displayed. To display deleted records in the table, call 
showDeleted; otherwise, deleted records are not visible to isRecordDeleted.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCISSHOWDELETEDON;OPAL_METH_TCSHDEL;',0,"Defau
ltoverview",)} Related Topics



isRecordDeleted example
The following example opens a TCursor for the SCORES.DBF dBASE table and uses showDeleted to display the 
table's deleted records. This code then attempts to locate a specific record in the table. This example uses 
isRecordDeleted to determine whether the record has been deleted. If it returns true, the record is undeleted 
using undeleteRecord. The following code is attached to the pushButton method for thisButton:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar
tc.open("Scores.dbf")                 ; open TCursor on a dBASE table
tc.showDeleted()                      ; show deleted records
if tc.locate("Name", "Jones") then    ; if locate finds Jones in Name field
  if tc.isRecordDeleted() then        ; if the record has been deleted
    tc.edit()                         ; begin Edit mode
    tc.undeleteRecord()               ; undelete the record
    message("Jones record undeleted")
  endIf
else
  msgStop("Error", "Can't find Jones.")
endIf
endMethod



isShared method
Reports whether a table is currently shared with another user on the network.

Syntax
isShared ( ) Logical

Description
isShared returns True if another user has opened the table specified by a TCursor; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCISASSIGNED;OPAL_METH_TCISVA;',0,"Defaultovervie
w",)} Related Topics



isShared example
In the following example, a form's built-in open method determines whether CUSTOMER.DB is currently shared 
by another user. If it is, the user is warned and given the option to continue or abort.
; thisPage::open
method open(var eventInfo Event)
var
  tc TCursor
endVar
tc.open("Customer.db")              ; open a TCursor for Customer
if tc.isShared() then               ; if table is currently shared
  if msgYesNoCancel("Continue?",    ; ask for confirmation
     "Customer table is currently being shared.\n" +
     "Continue anyway?") <> "Yes" then

    close()                         ; close this form
  endIf
endIf
endMethod



isShowDeletedOn method
Reports whether deleted records in a dBASE table are displayed.

Syntax
isShowDeletedOn ( ) Logical

Description
isShowDeletedOn reports whether the table pointed to by a TCursor displays its deleted records. Use the 
showDeleted method display deleted records and use isShowDeletedOn to determine states. 
isShowDeletedOn applies only to dBASE tables.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCOMP;OPAL_METH_TCISRECORDDELETED;OPAL_MET
H_TCSHDEL;OPAL_METH_TCSHDEL;',0,"Defaultoverview",)} Related Topics



isShowDeletedOn example
The following example calls showDeleted to display deleted records in ORDERS.DBF if isShowDeletedOn 
returns False:
; showDeletedRecs::pushButton
method pushButton(var eventInfo Event)
var
  dbfTC TCursor
endVar
if dbfTC.open("Orders.dbf") then
  if NOT dbfTC.isShowDeletedOn() then   ; if deleted records are not shown
    dbfTC.showDeleted(Yes)              ; show deleted records
  endIf
else
  msgStop("Sorry", "Can't open Orders.dbf table.")
endIf
endMethod



isValid method
Reports whether the contents of a field are valid and complete.

Syntax
1. isValid ( const fieldName String, const value AnyType ) Logical
2. isValid ( const fieldNum SmallInt, const value AnyType ) Logical

Description
isValid reports whether the value specified in value conforms with field type and validity checks for the field 
specified in fieldNum or fieldName. This method allows you to determine whether a new field value is valid 
before you attempt to post the record.
isValid returns True if value conforms to field type and validity checks; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCPOSTRECORD;OPAL_METH_TCSFVA;',0,"Defaultovervi
ew",)} Related Topics



isValid example
The following example uses isValid to determine whether a value is valid for a Date field. If the value is not 
valid, this code warns the user; otherwise the value is entered into the field. The following code is attached to 
the pushButton method for thisButton:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  tryValue String
endVar
tryValue = "100/5/1994" ; Invalid date.
tc.open("Orders.db")
if NOT tc.isValid("Sale Date", tryValue) then  
  msgStop("Error",
  String(tryValue) + " is not valid for this field.")
else                  ; this condition is never met
  tc."Sale Date" = tryValue
  tc.postRecord() 
endIf

endMethod



isView method
Reports whether a TCursor is associated with a live query view.

Syntax
isView ( ) Logical

Description
isView returns True if the TCursor is associated with a live query view; otherwise, it returns False.
If isView is True, isInMemoryTCursor returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCINSTANTIATEVIEW;OPAL_METH_TCISINMEMORYTCUR
SOR;OPAL_METH_QUWANTINMEMORYTCURSOR;',0,"Defaultoverview",)} Related Topics



isView example
See the instantiateView example.



locate method
 Searches for a specified field value.

Syntax
1. locate ( const fieldName String, const exactMatch AnyType [ , const fieldName String, const 
exactMatch AnyType ] * ) Logical
2. locate ( const fieldNum SmallInt,  const exactMatch AnyType [ , const fieldNum SmallInt, 
const exactMatch AnyType ] * ) Logical

Description
locate searches a table for values that match the criteria specified in one or more field value pairs. Specify the 
value to search for in exactMatch and the field to search in fieldName or fieldNum. This method guarantees that 
the first value matching exactMatch is found and given the current view of the records. If the TCursor is using a 
secondary index, locate finds the first record in the secondary index order.
The search begins at the top of the table, but if no match is found, the TCursor returns to the original record. If a 
match is found, the TCursor moves to that record. This operation fails if the active record cannot be posted (e.g., 
because of a key violation).
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is set to True.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLNEX;OPAL_METH_TCLPAT;OPAL_METH_TCLNPA;',0,"D
efaultoverview",)} Related Topics



locate example
In the following example, the pushButton method for the fixSpelling button searches for a value in the Name 
field of the Customer table. If locate is successful, this code replaces the name with a new value and informs the
user of the change:
; fixSpelling::pushButton
method pushButton(var eventInfo Event)
var
  ordTC TCursor
endVar 

ordTC.open("Customer.db") 
; if locate finds "Proffessional Divers, Ltd." in the Name field
if ordTC.locate("Name", "Proffessional Divers, Ltd.") then 
  ; begin Edit mode
  ordTC.edit()
  ; correct spelling (Professional)
  ordTC.Name = "Professional Divers, Ltd." 
  msgInfo("Success", "Corrected spelling error.") 
else
  msgInfo("Search Failed",
          "Couldn't find \nProfessional Divers, Ltd.")
endIf 
ordTC.endEdit()
endMethod



locateNext method
 Searches for a specified field value.

Syntax
1. locateNext ( const fieldName String, const exactMatch AnyType [ , const fieldName String, 
const exactMatch AnyType ] * ) Logical
2. locateNext ( const fieldNum SmallInt, const exactMatch AnyType [ , const fieldNum SmallInt, 
const exactMatch AnyType ] * ) Logical

Description
locateNext searches a table for values that match the criteria specified in one or more field value pairs. Specify 
the value to search for in exactMatch and the field to search in fieldName or fieldNum. This method guarantees 
that the first value matching exactMatch is found and given the current view of the records. If the TCursor is 
using a secondary index, locate finds the first record in the secondary index order.
The search begins at the top of the table, but if no match is found, the TCursor returns to the original record. If a 
match is found, the TCursor moves to that record. This operation fails if the active record cannot be posted (e.g., 
because of a key violation).
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is set to True.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLOCA;OPAL_METH_TCLNPA;OPAL_METH_TCLPAT;',0,"D
efaultoverview",)} Related Topics



locateNext example
The following example uses locate and locateNext to count the number of records that have FL in the 
State/Prov field of the Customer table. The following code is attached to the pushButton method for findFL :
; findFL::pushButton
method pushButton(var eventInfo Event)
var 
  CustTC TCursor 
  numFound LongInt
endVar 
custTC.open("Customer.db") 

if custTC.locate("State/Prov", "FL") then 
  numFound = 1
  while custTC.locateNext("State/Prov", "FL") 
    numFound = numFound + 1
  endWhile
  msgInfo("Records Found", String("Found ", numFound, " companies in FL"))
else
  msgInfo("Sorry", "Can't find FL in State/Prov field.")
endIf

endMethod



locateNextPattern method
Locates the next record containing a field that has a specified pattern of characters.

Syntax
1. locateNextPattern ( [ const fieldName String, const exactMatch AnyType ] * const fieldName 
String, const pattern AnyType ) Logical
2. locateNextPattern ( [ const fieldNum SmallInt, const exactMatch AnyType ] * const fieldNum 
SmallInt, const pattern AnyType ) Logical

Description
locateNextPattern finds sub-strings (e.g., comp in computer). The search begins with the record after the 
active record. If a match is found, the TCursor moves to that record. If no match is found, the TCursor returns to 
the original record. If the TCursor is using a secondary index, locateNextPattern finds the next record in 
secondary index order regardless of that record's primary index order.

This operation fails if the active record cannot be committed (e.g., because of a key violation). To start a search at 
the beginning of a table, use locatePattern.

To search for records by the value of a single field, specify the field in fieldName or fieldNum (use fieldNum for 
faster performance) and specify a pattern of characters in pattern.
You can include the standard pattern operators @ and .. in the pattern argument. The .. operator specifies any 
string of characters (including no string). The @ operator specifies for any single character. Any combination of 
literal characters and wildcards can be used to construct a search. If advancedWildCardsInLocate (Session 
type) is enabled, you can use advanced match pattern operators. For more information, see the description of 
advMatch.
For example, the following statement examines the values in the first field of each record. If a value is anything 
except Corel, locateNextPattern returns True.
tc.locateNextPattern(1, [^Corel])

To search for records by the values of more than one field, specify exact matches on all fields except the last one
in the list. For example, the following code searches the Name field for exact matches on the word Corel, the 
Product field for Corel Paradox, and the Keywords field for words beginning with data (e.g., database).
tc.locateNextPattern("Name", "Corel"  "Product", "Corel Paradox" "Keywords", "data..")

For examples, see Sample search strings with wildcards in the User's Guide help.
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is set to True.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLPAT;OPAL_METH_TCLNEX;OPAL_METH_STAMAT;OPAL
_METH_SSADVANCEDWILDCARDSINLOCATE;OPAL_METH_SSISADVANCEDWILDCARDSINLOCATE;',0,"Defau
ltoverview",)} Related Topics



locateNextPattern example
In the following example, assume the SOFTWARE.DB table exists in the current directory. Assume further that 
two of the fields are named Product and Name. This code searches for records whose Name field contains Corel 
and whose Product field begins with Par. This code keeps track of the matches found and stores field values in a 
resizeable array. If the method can't locate any more records that match the criteria, the results are displayed in 
a dialog box. The following code is attached to a button's pushButton method:
; findGoodProducts::pushButton
method pushButton(var eventInfo Event)
var 
  myNames TCursor 
  searchFor String 
  numFound SmallInt
  productNames Array[] String
endVar 
myNames.open("software.db") 
searchFor = "Corel" 

; this searches for records with "Corel" in the Name field
; and values starting with "Par" in the Product field
if myNames.locatePattern("Name", searchFor, "Product", "Par..") then
  numFound = 1
  productNames.grow(1)
  productNames[numFound] = myNames.Product

  ; now continue searching through fields with same criteria and
  ; store Product values in productNames array
  while myNames.locateNextPattern("Name", searchFor, "Product", "Par..") 
    numFound = numFound + 1
    productNames.addLast(myNames.product)
  endWhile
endIf
if productNames.size() > 0 then
  productNames.view()
endIf
endMethod



locatePattern method
Locates a record containing a field that has a specified pattern of characters.

Syntax
1. locatePattern ( [ const fieldName String, const exactMatch AnyType ] * const fieldName 
String, const pattern String ) Logical
2. locatePattern ( [ const fieldNum SmallInt, const exactMatch AnyType ] * const fieldNum 
SmallInt, const pattern String ) Logical

Description
locatePattern finds sub-strings (e.g., comp in computer). The search always starts at the beginning of the 
table, but if no match is found, the TCursor returns original record. If a match is found, the TCursor moves to that
record. If the TCursor is using a secondary index, locate finds the first record in secondary index order
regardless of that record's primary index order.

This operation fails if the active record cannot be committed (e.g., because of a key violation). To start a search 
after the active record, use locateNextPattern. To start a search before the active record, use 
locatePriorPattern.

To search for records by the value of a single field, specify the field in fieldName or fieldNum (use fieldNum for 
faster performance) and specify a pattern of characters in pattern.
You can include the standard pattern operators @ and .. in the pattern argument. The .. operator specifies any 
string of characters (including no string). The @ operator specifies for any single character. Any combination of 
literal characters and wildcards can be used to construct a search. If advancedWildCardsInLocate (Session 
type) is enabled, you can use advanced match pattern operators. For more information, see the description of 
advMatch.
For example, the following statement examines values in the first field of each record. If a value is anything 
except Corel, locatePattern returns True.
tc.locatePattern(1, [^Corel])

To search for records by the values of more than one field, specify exact matches on all fields except the last one
in the list. For example, the following code searches the Name field for exact matches on the word Corel, the 
Product field for Corel Paradox, and the Keywords field for words beginning with data (e.g., database).
To start a search from the beginning of a table, use locateNextPattern:
tc.locateNextPattern("Name", "Corel"  "Product", "Corel Paradox" "Keywords", "data..")

For examples, see Sample search strings with wildcards in the User's Guide help.
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is set to True.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLNPA;OPAL_METH_TCLOCA;OPAL_METH_STAMAT;OPA
L_METH_SSADVANCEDWILDCARDSINLOCATE;OPAL_METH_SSISADVANCEDWILDCARDSINLOCATE;',0,"Defa
ultoverview",)} Related Topics



locatePattern example
In the following example, assume the SOFTWARE.DB table exists in the current directory. Assume further that 
two of the fields are named Product and Name. This code searches for records whose Name field contains Corel 
and whose Product field begins with Par. This code keeps track of the matches found and stores field values in a 
resizeable array. If the method can't locate any more records that match the criteria, the results are displayed in 
a dialog box. The following code is attached to a button's pushButton method:
; findGoodProducts::pushButton
method pushButton(var eventInfo Event)
var 
  myNames TCursor 
  searchFor String 
  numFound SmallInt
  productNames Array[] String
endVar 
myNames.open("software.db") 
searchFor = "Corel" 

; this searches for records with "Corel" in the Name field
; and values starting with "Par" in the Product field
if myNames.locatePattern("Name", searchFor, "Product", "Par..") then
  numFound = 1
  productNames.grow(1)
  productNames[numFound] = myNames.Product

  ; now continue searching through fields with same criteria and
  ; store Product values in productNames array
  while myNames.locateNextPattern("Name", searchFor, "Product", "Par..") 
    numFound = numFound + 1
    productNames.addLast(myNames.product)
  endWhile
endIf
if productNames.size() > 0 then
  productNames.view()
endIf
endMethod



locatePrior method
Searches for a specified field value.

Syntax
1. locatePrior ( const fieldName String, const exactMatch AnyType 
                 [ , const fieldName String, const exactMatch AnyType ] * ) Logical
2. locatePrior ( const fieldNum SmallInt, const exactMatch AnyType 
                 [ , const fieldNum SmallInt, const exactMatch AnyType ] * ) Logical

Description
locatePrior searches backwards from the active record in a table for record values that match one or more 
field/value pairs. Specify the search value in exactMatch and the search field in fieldName or fieldNum (use 
fieldNum for faster performance). This method guarantees that the previous value matching exactMatch is 
found, given the current view of the records. If the TCursor is using a secondary index, locatePrior finds the 
previous record in secondary index order.
The search begins with the record before the active record and moves up through the table. If a match is found, 
the TCursor moves to that record. This operation fails if the active record cannot be posted and unlocked (e.g., 
due to a key violation). If no match is found, the cursor returns to the active record. This method returns True if a 
successful match was made; otherwise, it returns False.
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is set to True.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLNEX;OPAL_METH_TCLNPA;OPAL_METH_TCLPAT;',0,"D
efaultoverview",)} Related Topics



locatePrior example
In the following example, the pushButton method for showPrior searches backwards through the Lineitem table
for records with a certain order number. The lineTC variable is declared in the page's Var window, and opened to 
the Lineitem table in the open method for the page.
The following code goes in the Var window for thisPage:
; thisPage::var
Var
  lineTC TCursor
endVar

The following code is attached to the open method for thisPage:
; thisPage::open
method open(var eventInfo Event)
  lineTC.open("Lineitem")        ; open a TCursor for LineItem.db
endMethod

The following code is attached to the pushButton method for the showPrior button:
; showPrior::pushButton
method pushButton(var eventInfo Event)
var
  rec Array[] AnyType
endVar

if lineTC.locatePrior("Order No", 1005) then
  lineTC.copyToArray(rec)
  rec.view("Record #" + String(lineTC.recNo()))
else
  msgStop("Sorry", "No more records.")
endIf
endMethod



locatePriorPattern method
Locates the previous record containing a field that has a specified pattern of characters.

Syntax
1. locatePriorPattern ( [ const fieldName String, const exactMatch AnyType ] * const fieldName 
String, const pattern String ) Logical
2. locatePriorPattern ( [ const fieldNum SmallInt, const exactMatch AnyType ] * const fieldNum 
SmallInt, const pattern String ) Logical

Description
locatePriorPattern finds sub-strings (e.g., comp in computer). The search begins with the record before the 
active record. If a match is found, the TCursor moves to that record. If no match is found, the TCursor returns to 
the original record. If the TCursor is using a secondary index, locatePriorPattern finds the previous record in 
secondary index order regardless of that record's primary index order.

This operation fails if the active record cannot be committed (e.g., due to a key violation). If no match is found, the 
cursor returns to the active record. To start a search at the beginning of a table, use locatePattern.

To search for records by the value of a single field, specify the field in fieldName or fieldNum (use fieldNum for 
faster performance) and specify a pattern of characters in pattern.
You can include the standard pattern operators @ and .. in the pattern argument. The .. operator specifies any 
string of characters (including no string). The @ operator specifies for any single character. Any combination of 
literal characters and wildcards can be used to construct a search. If advancedWildCardsInLocate (Session 
type) is enabled, you can use advanced match pattern operators. For more information, see the description of 
advMatch.
For example, the following statement examines values in first field of each record. If a value is anything except 
Corel, locatePriorPattern returns True.
tc.locatePriorPattern(1, [^Corel])

To search for records by the values of more than one field, specify exact matches on all fields except the last one
in the list. For example, the following code searches the Name field for exact matches on the word Corel, the 
Product field for Corel Paradox, and the Keywords field for words beginning with data (e.g., database).
To start a search from the beginning of a table, use locateNextPattern.
tc.locateNextPattern("Name", "Corel"  "Product", "Corel Paradox" "Keywords", "data..")

For examples, see Sample search strings with wildcards in the User's Guide help.
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is set to True.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLPAT;OPAL_METH_TCLNPA;OPAL_METH_STAMAT;OPAL
_METH_SSADVANCEDWILDCARDSINLOCATE;OPAL_METH_SSISADVANCEDWILDCARDSINLOCATE;',0,"Defau
ltoverview",)} Related Topics



locatePriorPattern example
In the following example, the pushButton method for showPriorPtrn searches backwards through the Software 
table for records with a certain company and product name. The tc variable is declared in the page's Var window,
and opened to the Software table in the open method for the page.
The following code goes in the Var window for thisPage:
; thisPage::var
Var
  tc        TCursor
  searchFor String
endVar

The following code is attached to the open method for thisPage:
; thisPage::open
method open(var eventInfo Event)
  tc.open("Software.db")  ; open TCursor for Software.db
  tc.end()                ; move TCursor to the last record
  searchFor = "Corel"
endMethod

The following code is attached to the pushButton method for the showPriorPtrn button:
; showPrior::pushButton
method pushButton(var eventInfo Event)
var
  rec Array[] AnyType
endVar

; search for the previous pattern
if tc.locatePriorPattern("Name", searchFor, "Product", "Par..") then
  tc.copyToArray(rec)
  rec.view("Record #" + String(tc.recNo()))
else
  msgStop("Sorry", "No more records.")
endIf
endMethod



lock method
 Places specified locks on a table.

Syntax
lock ( const lockType String ) Logical

Description
lock places locks on the TCursor. The lockType argument is one of the following String values, listed in order of 
decreasing strength and increasing concurrency.
String value Description
Full The current session has exclusive access to the table. Cannot be used with dBASE tables.
Write The current session can write to and read from the table. No other session can place a write lock

or a read lock on the table.
Read The current session can read from the table. No other session can place a write lock, full lock, or 

exclusive lock on the table.

If successful, lock  returns True; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLSTA;OPAL_METH_TCUNLOCK;',0,"Defaultoverview",)
} Related Topics



lock example
The following example attaches a Table variable to Customer, places an exclusive lock on the table and uses 
reIndex to rebuild the Phone_Zip index. When the index is rebuilt, this code unlocks Customer so other network 
users can gain access to the table.
; reindexCust::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  pdoxTbl String
endVar
pdoxTbl = "Customer.db"

if tc.open(pdoxTbl) then
  if tc.lock("Full") then     ; attempt to place Full lock
    tc.reIndex("Phone_Zip")   ; rebuild Phone_Zip index
    tc.unLock("Full")         ; unlock the table
    message("Phone_Zip rebuilt.")
  else
    msgStop("Sorry", "Can't lock " + pdoxTbl + " table.")
  endIf
endIf
endMethod



lockRecord method
Puts a write lock on the active record.

Syntax
lockRecord ( ) Logical

Description
lockRecord attempts to place a write lock on the record pointed to by a TCursor (an explicit record lock). 
lockRecord returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCUNREC;',0,"Defaultoverview",)} Related Topics



lockRecord example
In the following example, the pushButton method for thisButton searches for a record in the Customer table. If 
the search is successful, this code locks the record using lockRecord. When the record has been locked, a 
custom procedure is called to get new customer information from the user. If lockRecord is not successful, the 
user is asked to try again later.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  custTC, myCustTC TCursor
endVar
custTC.open("Customer.db")

; attempt to locate record in Customer.db
if custTC.locatePattern("Name", "Jamaica..") then
  custTC.edit()
  if custTC.lockRecord() then        ; attempt to lock the record
    custTC.initRecord()              ; initialize record to the 
                                     ; defaults
    getCustInfo()                    ; call a custom procedure
  else                               ; otherwise record couldn't be 
                                     ; locked
    msgStop("Sorry", "Can't lock record. \n Try again later.")
  endIf
else
  msgStop("Sorry", "Can't find record.")
endIf
    
endMethod



lockStatus method
Returns the number of locks on a TCursor.

Syntax
lockStatus ( lockType String ) SmallInt

Description
lockStatus returns the number of times you have placed a lock of type lockType on a TCursor. lockType's value 
is Write, Read, or Any.
If you haven't placed any locks on the table lockStatus returns 0.
If you specify Any for lockType, lockStatus returns the total number of locks you've placed on the TCursor. 
lockStatus does not include locks placed by Corel Paradox or by other users or applications.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLOCK;OPAL_METH_TCUNREC;',0,"Defaultoverview",)}
Related Topics



lockStatus example
The following example uses lockStatus to report on locks you've placed explicitly on a TCursor. Assume a form 
contains a button named thisButton and a field object named Balance_Due that is bound to the Balance Due field
of the Orders table.
; thisButton::pushButton
const
   kTbName = "locks"
   kStatus = "Any"
endConst

var
   tcOrders   TCursor
   tvLocks   TableView
endVar

proc displayLockInfo()
   tcOrders.enumLocks(kTbName)
   tvLocks.open(kTbName)
   tvLocks.setTitle("Locks on Orders table:")

   siNumLocks = tcOrders.lockStatus(kStatus)
   siNumLocks.view("Locks on TCursor:")
   tvLocks.close()
endProc

method pushButton(var eventInfo Event)

   ; Associate TCursor with a field object bound
   ; to the Balance Due field in the Orders table.
   ; TCursor gets locks from the UIObject.
   tcOrders.attach(Balance_Due)
   
   displayLockInfo() ; Table is locked, but not TCursor.

   tcOrders.lock("Write") ; Lock TCursor.

   displayLockInfo() ; Table and TCursor are locked,
                    ; but locks are different.
endmethod



moveToRecNo method
Moves a TCursor to a specific record.

Syntax
moveToRecNo ( const recordNum LongInt ) Logical

Description
moveToRecNo moves to the record specified in recordNum. This method returns an error if recordNum doesn't 
exist. Use the nRecords method or examine the NRecords property to determine the number of records in a 
table. This method is recommended only for dBASE tables. If used for a Corel Paradox table, moveToRecNo 
behaves exactly like the moveToRecord method.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCURE;OPAL_METH_TCEND;OPAL_METH_TCHOME;OPAL
_METH_TCMTRE;OPAL_METH_TCNERE;OPAL_METH_TCNREC;OPAL_METH_TCPRRE;OPAL_METH_TCSKIP;',0,
"Defaultoverview",)} Related Topics



moveToRecNo example
The following example uses moveToRecNo to move to a specified record in the dBASE table ORDERS.DBF. This 
code then displays the value of the SALE_DATE field for that record.
method pushButton(var eventInfo Event)
   var
      tcOrders   TCursor
      siRecNo      SmallInt
      daSaleDate   Date
   endVar

   tcOrders.open("orders.dbf")
   
   siRecNo = 0
   siRecNo.view("Enter a record number:")

   if siRecNo > 0 then
      if   tcOrders.moveToRecNo(siRecNo) then
         daSaleDate = tcOrders."SALE_DATE"
         daSaleDate.view("Sale date: ")
      else
         errorShow("Invalid record number.")
      endIf
   else
      return
   endIf

endMethod



moveToRecord method
Moves a TCursor to a specific record in a table.

Syntax
moveToRecord ( const recordNum LongInt ) Logical

Description
moveToRecord moves a TCursor to the record specified in recordNum. This method returns an error if 
recordNum is greater than the number of records in the table. Use nRecords to determine how many records a 
table contains. This method can be very slow for dBASE tables; use moveToRecNo instead.
This operation fails if the active record cannot be committed (e.g., because of a key violation).
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCNREC;OPAL_METH_TCHOME;OPAL_METH_TCEND;OPAL
_METH_TCNERE;OPAL_METH_TCPRRE;OPAL_METH_TCCURE;OPAL_METH_TCSKIP;',0,"Defaultoverview",)} 
Related Topics



moveToRecord example
The following example uses moveToRecord to move to a specified record in the Orders table. This code then 
displays the value of the Sale Date field for the specified record:
method pushButton(var eventInfo Event)
   var
      tcOrders   TCursor
      siRecNo      SmallInt
      daSaleDate   Date
   endVar

   tcOrders.open("orders.db")
   
   siRecNo = 0
   siRecNo.view("Enter a record number:")

   if siRecNo > 0 then
      if   tcOrders.moveToRecord(siRecNo) then
         daSaleDate = tcOrders."Sale Date"
         daSaleDate.view("Sale date: ")
      else
         errorShow("Invalid record number.")
      endIf
   else
      return
   endIf

endMethod



nextRecord method
Moves to the next record in a table.

Syntax
nextRecord ( ) Logical

Description
nextRecord moves the TCursor to the next record in the table. If the table is in Edit mode, nextRecord 
commits changes to the active record before moving. This operation fails if the active record cannot be 
committed (e.g., because of a key violation).
If you attempt to move past the end of the table, nextRecord returns False, the last record of the table becomes
the active record, and eot returns True.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCHOME;OPAL_METH_TCEND;OPAL_METH_TCPRRE;OPAL
_METH_TCSKIP;OPAL_METH_TCMTRE;',0,"Defaultoverview",)} Related Topics



nextRecord example
In the following example, the pushButton method for showNextCust uses nextRecord to move a TCursor 
through the Customer table. Each time the TCursor lands on a new record, the code uses copyToArray to copy 
the contents of the record to a dynamic array (DynArray) and displays field values in a dialog box. When 
nextRecord attempts to move past the last record in the table, eot returns True and the pushButton method 
terminates.
; showNextCust::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor  
  scratch DynArray[] AnyType
  tblName String
endVar 
tblName = "Customer.db"

if tc.open(tblName) then

  while NOT tc.eot()           ; True until nextRecord attempts to move
                               ; beyond the end the table
    tc.copyToArray(scratch)    ; copy the record to scratch DynArray
    scratch.view("Record " + String(tc.recNo()))
    if msgQuestion("",
       "Do you want to see the next record?") = "Yes" then
      tc.nextRecord()          ; move down one record
    else
      return
    endIf
  endWhile

  msgStop("That's it!", "No more records.")

else
  msgStop("Sorry", "Can't open " + tblName + " table.")
endIf
endMethod



nFields method
Returns the number of fields in a table.

Syntax
nFields ( ) LongInt

Description
nFields returns the number of fields in the table associated with a TCursor.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCNKFI;OPAL_METH_TCNREC;',0,"Defaultoverview",)} 
Related Topics



nFields example
In the following example, the pushButton method for thisButton displays the number of fields in the BioLife 
table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor 
endVar 
if tc.open("BioLife.db") then
  msgInfo("Number of BioLife fields", tc.nFields())
else
  msgStop("Sorry", "Can't open BioLife.db table")
endIf

endMethod



nKeyFields method
Returns the number of fields in the index of a table.

Syntax
nKeyFields ( ) LongInt

Description
nKeyFields returns the number of fields in the active index of the table associated with a TCursor. Use 
getIndexName to get the name of the current index.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCGETINDEXNAME;OPAL_METH_TCNFLD;OPAL_METH_TC
NREC;',0,"Defaultoverview",)} Related Topics



nKeyFields example
The following example reports the number of key fields in a Corel Paradox table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  pdoxTC   TCursor 
  nkf      LongInt 
  pdoxTbl  String
endVar 
pdoxTbl = "Orders.db"

if pdoxTC.open(pdoxTbl) then
  nkf = pdoxTC.nKeyFields() ; Key fields in the primary index
  msgInfo(pdoxTbl,
          pdoxTbl + " has " + String(nkf) + " key fields.")
else
  msgInfo("Sorry", "Can't open " + pdoxTbl + " table.")
endIf

endMethod



nRecords method
 Returns the number of records in a table.

Syntax
nRecords ( ) LongInt

Description
nRecords returns the number of records in the table associated with a TCursor. This operation can take a long 
time for dBASE tables and large Corel Paradox tables.
If working with a dBASE table, nRecords counts deleted records if showDeleted is turned on. Otherwise, 
deleted records are not counted.
 Notes

· When you call nRecords after setting a filter, the returned value does not represent the number of records in 
the filtered set. To get that information, use cCount. 

· When you call nRecords after setting a range, the returned value represents the number of records in the set 
defined by the range.

 Example
{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCNFLD;OPAL_METH_TCNKFI;',0,"Defaultoverview",)} 
Related Topics



nRecords example
In the following example, the pushButton method for thisButton runs a custom method. If there are more than 
10,000 records in ORDERS.DB; otherwise, this code displays the current number of records in Orders.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  ordTC TCursor
  nOrders LongInt
endVar
if ordTC.open("Orders.db") then
  nOrders = ordTC.nRecords()
  if nOrders > 10000 then   ; If Orders has more than 10,000 records
    archiveOldOrders()      ; run a custom method.
  else
    msgInfo("Status",
            "Orders table has " + String(nOrders) + " records.")
  endIf
else
  msgStop("Sorry", "Can't open Orders table.")
endIf
endMethod



open method
Opens a TCursor on a table.

Syntax
1. open ( const tableName String [ , const db DataBase ] [ , const indexName String ] ) Logical
2. open ( const tableVar Table ) Logical

Description
open associates a TCursor with the table named in tableName.
In Syntax 1, tableName is a String and you can use arguments db and indexName to specify a database and an 
index. If tableName does not specify a filename extension, Corel Paradox assumes the extension is .DB.
In Syntax 2, tableVar is the name of a Table variable. You can use the Table method setIndex to specify an 
index, and you can specify the database using the Table method attach.
 Examples

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCLOS;',0,"Defaultoverview",)} Related Topics



open examples
Example1         Using the first open syntax
Example2         Using the second open syntax



open example 1
The following example uses the Syntax 1 to open a TCursor on the Customer table in the SampleTables database.
This code uses the optional indexName clause, so the TCursor uses the NameAndState index. The following code 
is attached to the pushButton method for firstButton:
; firstButton::pushButton
method pushButton(var eventInfo Event)
var 
  tc1  TCursor 
  samp Database
endVar  

; Create the SampleTables alias for the default sample directory.
addAlias("SampleTables", "Standard", "c:\\Corel\\Suite8\\Paradox\\samples")

; Associate the samp Database var with SampleTables database.
samp.open("SampleTables")

; Associate tc1 to the Customer table in samp database,
; and use the NameAndState index.
if not tc1.open("Customer.db", samp, "NameAndState") then
   errorShow()
endIf

endMethod



open example 2
The following example uses Syntax 2 to open a TCursor. The following code is attached to the pushButton 
method for secondButton:
; secondButton::pushButton
method pushButton(var eventInfo Event)
var 
  tc1  TCursor 
  samp DataBase
  tbl  Table
endVar  

; Create the SampleTables alias for the default sample directory.
addAlias("SampleTables", "Standard", "c:\\Corel\\Suite8\\Paradox\\samples")

; Associate the samp DataBase var with SampleTables database.
samp.open("SampleTables")

; Attach the tbl Table handle to Customer in the samp database.
tbl.attach("Customer.db", samp)
; Set the tbl index to the NameAndState index.
tbl.setIndex("NameAndState")

; Now associate tc1 TCursor to Customer table in samp database.
if not tc1.open(tbl) then
   errorShow()
endIf

endMethod



postRecord method
Posts changes to a record.

Syntax
postRecord ( ) Logical

Description
postRecord posts changes to a record immediately. The record remains locked throughout the posting process. 
If a key value changes in an indexed table and the record flies away, the corresponding TCursor flies with it. This 
method returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCUNREC;',0,"Defaultoverview",)} Related Topics



postRecord example
In the following example, the pushButton method for the fixName button attempts to find a misspelled name in
the Customer table. If the erroneous name is found, the code corrects it and posts changes using postRecord.
; fixName::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  badName String
endVar
badName = "Usco"
goodName = "Unisco"

tc.open("Customer.db")
if tc.locate("Name", badName) then ; if the erroneous name is found
  tc.edit()                        ; put TCursor in Edit mode
  tc.Name = goodName               ; correct misspelled name
  if tc.postRecord() then          ; True if record is posted
    message("Changes posted.")
  else                             ; record is not posted (Key violation?)
    msgStop("PostRecord", "Can't post these changes.")
  endIf
  tc.endEdit()                     ; end Edit mode
  ; If the record was committed, endEdit simply ends Edit mode the Name
  ; field now stores "Unisco". If the record was not committed, the field
  ; retains its original value ("Usco").

else                               ; can't find "Usco" in Name field
   message("Can't find " + badName)
endIf
endMethod



priorRecord method
Moves to the previous record in a table.

Syntax
priorRecord ( ) Logical

Description
priorRecord sets the active record to the previous record in a table. If the table is in Edit mode, priorRecord 
commits changes to the active record before moving. This method returns False if the TCursor is already at the 
first record. Also, the first record of the table becomes the active record, and bot returns True.
priorRecord may not be appropriate in all databases, because some may not be bi-directional. This operation 
fails if the active record cannot be committed (e.g., because of a key violation).
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCHOME;OPAL_METH_TCEND;OPAL_METH_TCNERE;OPAL
_METH_TCSKIP;OPAL_METH_TCMTRE;',0,"Defaultoverview",)} Related Topics



priorRecord example
In the following example, the pushButton method for showPrevCust uses priorRecord to move a TCursor back 
through the Customer table. Each time the TCursor lands on a new record, this code uses copyToArray to copy 
the record's contents to a dynamic array (DynArray) and display field values in a dialog box. When priorRecord 
attempts to move beyond the beginning of the table, bot returns True and the pushButton method terminates.
; showPrevCust::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor  
  scratch DynArray[] AnyType
  tblName String
endVar 
tblName = "Customer.db"

if tc.open(tblName) then

  tc.end()                     ; move to end of table
  while NOT tc.bot()           ; True until priorRecord attempts to move
                               ; beyond the beginning of the table
    tc.copyToArray(scratch)    ; copy the record to scratch DynArray
    scratch.view("Record " + String(tc.recNo()))
    if msgQuestion("",
       "Do you want to see the next record?") = "Yes" then
      tc.priorRecord()         ; move up one record
    else
      return
    endIf
  endWhile

  msgStop("That's it!", "No more records.")

else
  msgStop("Sorry", "Can't open " + tblName + " table.")
endIf
endMethod



qLocate method
Searches an indexed table for a specified field value.

Syntax
qLocate ( const searchValue AnyType [ , const searchValue AnyType ] * ) Logical

Description
qLocate searches an indexed table for records which have key field values that exactly match the criteria 
specified in searchValue. qLocate searches for values in the active index (the first value corresponds to the 
index's first field, the second value corresponds to the index's second field, and so on).
The search always starts from the beginning of the table. If no match is found, the TCursor position is set to 
where it would be if there had been a match. If a match is found, the TCursor moves to that record. This method 
does not attempt to post the active record. The operation fails if the number of search values exceeds the 
number of fields in the current index.
qLocate does not clear existing record locks on the TCursor. If a lock is present, qLocate will fail. To prevent 
failure, issue an unLockRecord before the qLocate is called. This could be particularly helpful within a scan 
loop.
 Note

· qlocate can be used to simulate incremental searches. If qlocate finds a matching record for searchValue, 
the TCursor position is set to that record. If qlocate fails to find a match, the TCursor position is left where it 
would have been had there been a match.

 Example
{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLOCA;OPAL_METH_TCLNEX;OPAL_METH_TCLNPA;OPA
L_METH_TCLPAT;OPAL_METH_TCLOCATEPRIOR;OPAL_METH_TCLOCATEPRIORPATTERN;',0,"Defaultovervie
w",)} Related Topics



qLocate example
The following example uses qLocate to find a key value in the Lineitem table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endvar

if tc.open("Lineitem.db") then

  ; if qLocate can find 1002 in the first field of the
  ; index and 1316 in the second field of the index
  if tc.qLocate(1002, 1316) then

    ; make some changes to the record
    tc.edit()
    tc.Qty = 10
    tc.Total = tc."Selling Price" * tc.Qty
    tc.close()
  else
    msgStop("Sorry", "Can't find specified record.")
  endIf
else
  msgStop("Error", "Can't open Lineitem.db")
endIf

endMethod



recNo method
Returns the record number of the active record.

Syntax
recNo ( ) LongInt

Description
recNo returns an integer representing the active record's position in the table. For a dBASE table, recNo returns
the physical position of the record in the table; for an indexed Corel Paradox table, it returns the record's sorted 
position according to the current index.
 Note

· When you call recNo after setting a filter, the returned value is represented by the ObjectPAL constant 
peInvalidRecordNumber. 

 Example
{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCNREC;',0,"Defaultoverview",)} Related Topics



recNo example
In the following example, the pushButton method for thisButton searches the Customer table for customers 
that reside in Oregon. If Oregon residents are found, this code stores record numbers in an array and displays 
the array in a dialog box:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  ar Array[] SmallInt
  tblName String
endVar
tblName = "Customer.db"

tc.open(tblName)
if tc.locate("State/Prov", "OR") then
  ar.addLast(tc.recNo())                   ; add record number to array
  while tc.locateNext("State/Prov", "OR")  ; find the next "OR"
    ar.addLast(tc.recNo())                 ; add more array elements
  endWhile
  ar.view("Record Numbers")                ; display ar array
else
  msgInfo("Nothing to do!", "Can't find \"OR\" in \"State/Prov\" field")
endIf
endMethod



recordStatus method
Reports the status of a record.

Syntax
recordStatus ( const statusType String ) Logical

Description
recordStatus returns True or False answers to a question about the status of a record. Use the argument 
statusType to specify the status in question (i.e., is New, Locked, or Modified).
The New value means the record has just been added to the table. Locked means that an implicit or explicit lock 
has been placed on the record. Modified means at least one of the field values has been changed and is not yet 
posted to the table.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLREC;OPAL_METH_TCUNREC;',0,"Defaultoverview",)}
Related Topics



recordStatus example
The following example determines whether the active record is locked. If the record is not locked, this code uses 
lockRecord to lock the record; otherwise this code informs the user:
; lockThisRecord::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor
endVar
tc.open("orders.db")
tc.edit()

; if the active record is NOT locked
if tc.recordStatus("Locked") = False then
  ; lock the active record
  tc.lockRecord()

  ; if record is locked, this statement will display True
  msgInfo("Record Status", "recordStatus(\"Locked\") = " +
                        String(tc.recordStatus("Locked")))
else
  message("Active record is already locked.")
endIf

endMethod



reIndex method
Rebuilds an index or index tag that is not automatically maintained.

Syntax
reIndex ( const IndexName String [ , const TagName String ] ) Logical

Description
reIndex rebuilds an index or index tag that is not automatically maintained. In a Corel Paradox table, use 
indexName to specify an index. In a dBASE table, use indexName to specify an .NDX file, or indexName and 
tagName to specify an index tag in an .MDX file. reIndex requires exclusive access to the table.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCREINAL;',0,"Defaultoverview",)} Related Topics



reIndex example
The following example opens a TCursor for Customer (a Corel Paradox table), gains exclusive access to the table 
and uses reIndex to rebuild the Phone_Zip index:
; reindexCust::pushButton
method pushButton(var eventInfo Event)
var 
  tc      TCursor
  pdoxTbl String
  tb      Table
endVar
pdoxTbl = "Customer.db"

tb.attach(pdoxTbl)
tb.setExclusive(Yes)

if tc.open(tb) then
  tc.reIndex("Phone_Zip")          ; rebuild Phone_Zip index
  message("Phone_Zip reindexed.")
else
  msgStop("Sorry", "Can't open " + pdoxTbl + " table.")
endIf

endMethod



reIndexAll method
Rebuilds all index files for a table.

Syntax
reIndexAll ( ) Logical

Description
reIndexAll rebuilds all indexes for the table associated with a TCursor. This method requires exclusive rights to 
rebuild a maintained index and a write lock to rebuild a non-maintained index. reIndexAll works only with Corel 
Paradox tables, because any index opened for a dBASE table is maintained automatically.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCREIND;',0,"Defaultoverview",)} Related Topics



reIndexAll example
The following example rebuilds all indexes for the Customer table:
; reindexAllCust::pushButton
method pushButton(var eventInfo Event)
var 
  tc      TCursor
  pdoxTbl String
  tb      Table
endVar
pdoxTbl = "Customer.db"

tb.attach(pdoxTbl)
tb.setExclusive(Yes) ; Need exclusive rights for a  maintained index.

if tc.open(tb) then
  tc.reIndexAll()               ; Rebuild all Customer indexes.
  message("Indexes rebuilt.")
else
  msgStop("Sorry", "Can't open " + pdoxTbl + " table.")
endIf
endMethod



seqNo method
Returns the record number of the active record.

Syntax
seqNo ( ) LongInt

Description
seqNo returns an integer representing the active record's position in a table. For dBASE tables, seqNo returns 
the sequential position of a record as viewed by the current index. seqNo and recNo always return the same 
value for Corel Paradox tables.
 Note

· If you call seqNo after setting a filter, the return value is represented by the ObjectPAL constant named 
peInvalidRecordNumber. 

 Example
{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCMTRENO;OPAL_METH_TCMTRE;OPAL_METH_TCRECNO
;',0,"Defaultoverview",)} Related Topics



seqNo example
The following example assumes that SCORES.DBF has three records and that the second record has been 
deleted. This code attaches to the pushButton method for testSeqNo and demonstrates the difference between
seqNo and recNo methods:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar

  ; Scores.dbf has 3 records and the second record is deleted
tc.open("Scores.dbf")

  ; do not show deleted records
tc.showDeleted(No)

  ; this displays recNo() = 1
  ;               seqNo() = 1
msgInfo("tc Status", "recNo() = " + String(tc.recNo()) + "\n" +
                     "seqNo() = " + String(tc.seqNo()))

  ; move to the last record in the table
tc.end()

  ; this displays   recNo() = 3  
  ;                 seqNo() = 2   (record number 2 is deleted)
msgInfo("tc Status", "recNo() = " + String(tc.recNo()) + "\n" +
                     "seqNo() = " + String(tc.seqNo()))

endMethod



setBatchOff method
Ends the batch processing mode invoked by a call to setBatchOn.

Syntax
setBatchOff ( ) Logical

Description
setBatchOff ends the batch processing mode by removing the restrictions imposed by setBatchOn.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCSETBATCHON;',0,"Defaultoverview",)} Related 
Topics



setBatchOff example
See the setBatchOn example.



setBatchOn method
Groups multiple operations to improve the performance of table updates in a multi-user environment.

Syntax
setBatchOn ( ) Logical

Description
setBatchOn groups multiple operations to improve the performance of table updates in a multi-user 
environment. If update operations are performed after executing a setBatchOn statement, file I/O and 
concurrency control are minimized, resulting in improved performance. setBatchOn grants you exclusive access
to a table. After setBatchOn executes, no other user or session can access, open, modify, lock, or read from the 
table until setBatchOff executes. (Other TCursors in the same session can still access the table.) If setBatchOff
does not execute, the lock remains in effect for the life of the TCursor. Use setBatchOn when several short 
operations should occur sequentially. setBatchOn should be used by advanced developers for serializing 
operations and improving performance. Most developers will not need this command.
 Notes

· setBatchOn operates for less than two seconds. If another user attempts to update or access the current 
table, that user's system freezes. If setBatchOn is not followed by a setBatchOff statement, the other user's
system remains frozen for up to two minutes. After two minutes, the operation that caused the user's system 
to freeze fails (due to a timeout error) and the user's system resumes operation.

· Other users cannot determine whether setBatchOn has been called.  To minimize the chances of interfering 
with other users, call setBatchOff as soon as possible after calling setBatchOn.

 Examples
{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCSETBATCHOFF;',0,"Defaultoverview",)} Related 
Topics



setBatchOn method examples
Example1          Using setBatchOn to delete line items in a table
Example2         Serializing access to autosequence numbers



setBatchOn example 1
The following example assumes that a form's data model contains the Orders table and the Lineitem table linked 
1:M, with Orders as the master table. This code deletes the records in the current detail set (the line items for the 
current order). In this example, Lineitem is a tableframe or a multi-record object that is bound to the Lineitem table:
  method pushButton(var eventInfo Event)
     var
        ordersTC TCursor
     endVar

     ordersTC.attach(Lineitem) ; attach to the detail set
     ordersTC.edit()

     ordersTC.setBatchOn()
     while not ordersTC.eot()
        ordersTC.deleteRecord()
     endWhile
     ordersTC.setBatchOff()

  endMethod



setBatchOn example 2
Many applications require an autosequence number that must be incremented by each user who attempts to 
add a record to a table. This code serializes access to an autosequence number using setBatchOn and 
setBatchOff. The following example assumes that the NumTable table contains a single numeric field named 
Sequence Number.
In this example, each user who attempts an operation calls the custom method GetAutoSequence. The first 
user who calls the method gets the lowest sequence number. The call to setBatchOn holds every other user out
without locking the table. Every other user who has issued a GetAutoSequence call gains access to the table 
sequentially.
  method GetAutoSequence() LongInt
     var
        numTableTC   TCursor
        SequenceVar   LongInt
     endVar

     numTableTC.open("numtable.db")
     numTableTC.edit()

     numTableTC.setBatchOn()
     numTableTC."Sequence Number" = numTableTC."Sequence Number" + 1
     numTableTC.postRecord()
     SequenceVar = numTableTC."Sequence Number"
     numTableTC.setBatchOff()

     return SequenceVar
  endMethod



setFieldValue method
Assigns a value to a specified field.

Syntax
1. setFieldValue ( const fieldName String, const value AnyType ) Logical
2. setFieldValue ( const fieldNum SmallInt, const value AnyType ) Logical

Description
setFieldValue sets the value of the field specified byfieldName (or fieldNum) to value. This method returns True
if successful; otherwise, it returns False.
You can also set the value of this field using dot notation. For example, this statement uses dot notation to 
change the value in the Last Bid field:
tcVar."Last Bid" = 32.25

The following statement uses setFieldValue to change the value in the Last Bid field:
tcVar.setFieldValue("Last Bid", 32.25)
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCFVAL;',0,"Defaultoverview",)} Related Topics



setFieldValue example
In the following example, the pushButton method for correctName locates a misspelled name in the Name field
and uses setFieldValue to replace the original name:
; correctName::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
  badName, goodName String
endVar

badName = "Usco"
goodName = "Unisco"
tc.open("Customer.db")
if tc.locate("Name", badName) then
  tc.edit()
  tc.setFieldValue("Name", goodName)    ; correct misspelled name
  tc.postRecord()                       ; post record to the table
  tc.endEdit()                          ; end Edit mode
  message("Usco replaced with Unisco.")
else                                    ; can't find "Usco" in Name field
  message("Can't find " + badName)
endIf
endMethod



setFlyAwayControl method
Specifies whether flyaway information is available to the didFlyAway method.

Syntax
setFlyAwayControl ( [ const yesNo Logical ] )

Description
setFlyAwayControl specifies in yesNo whether flyaway information is available to the didFlyAway method.
If you're working with indexed tables, the didFlyAway, setFlyAwayControl, and unlockRecord methods are 
closely related. When you call unlockRecord, the record is posted to the table (if no key violation exists) and 
moved to its sorted position. Depending on whether the record moved to a new position, the TCursor may not 
continue to point to the posted record. This behavior is called record flyaway.
You can use didFlyAway to determine whether the record did, in fact, fly away.
If setFlyAwayControl is set to Yes, Corel Paradox performs extra record-level checking for many operations. To 
maintain an application's speed set setFlyAwayControl to Yes only when the application needs flyaway 
information. By default, setFlyAwayControl is set it to No.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCDIDFLYAWAY;OPAL_METH_TCPOSTRECORD;OPAL_MET
H_TCUNREC;',0,"Defaultoverview",)} Related Topics



setFlyAwayControl example
See the didFlyAway example.



setGenFilter method
Specifies conditions for including records in a TCursor.

Syntax
1. setGenFilter ( [ idxName String, [ tagName String, ] ] criteria DynArray[ ] AnyType ) 
Logical
2. setGenFilter ( [ idxName String, [ tagName String, ] ] criteria Array[ ] AnyType [ , fieldId
Array[ ] AnyType ] ) Logical

Description
setGenFilter specifies conditions for including records in a TCursor. Records that meet all the specified 
conditions are included, records that don't are filtered out. Unlike setRange, this method does not require an 
indexed table. setGenFilter must be executed before opening a table using a TCursor.
In Syntax 1, a dynamic array (DynArray) named criteria specifies fields and filtering conditions. The index is the 
field name or number, and the item is the filter expression.
The following code specifies criteria based on the values of three fields:
criteriaDA[1]      = "Widget"            ; The value of the first field
                                         ; in the table is Widget.

criteriaDA["Size"] = "> 4"               ; The value of the field named 
                                         ; Size is greater than 4.

criteriaDA["Cost"] = ">= 10.95, < 22.50" ; The value of the field named 
                                         ; Cost is greater than or 
                                         ; equal to 10.95  and less 
                                         ; than 22.50.

If the DynArray is empty, all existing filter criteria are removed.
In Syntax 2, an Array named criteria specifies filtering conditions, and an optional Array named fieldId specifies 
field names and numbers. If you omit fieldID, conditions are applied to fields in the order they appear in the 
criteria array (the first condition applies to the first field, the second condition applies to the second field, and so 
on). The following example specifies the same criteria as the example for Syntax 1.
criteriaAR[1] = "Widget"
criteriaAR[2] = "> 4"
criteriaAR[3] = ">= 10.95, < 22.50" 
fieldAR[1] = 1
fieldAR[2] = "Size"
fieldAR[3] = "Cost"

If the Array is empty, all existing filter criteria are removed.
For both syntaxes, idxName specifies an index name (Corel Paradox and dBASE tables) and tagName specifies a 
tag name (dBASE tables only). If you use these optional items, the index (and tag) are applied to the TCursor 
before the filtering criteria.
This method fails if the active record cannot be committed.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCGETGENFILTER;OPAL_METH_TCDROPGENFILTER;OPAL
_METH_TCSETRANGE;OPAL_METH_UISETGENFILTER;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Defaul
toverview",)} Related Topics



setGenFilter example
In this example, the built-in run method for a script opens a TCursor onto the Customer table and sets filter 
criteria on the State/Prov field to equal CA. Then a scan loop is used to fill a dynamic array (DynArray) named 
dynView with the customer name and phone number. Finally, a view dialog box displays the data. 
;Script :: run
method run(var eventInfo Event)
   var
      tc  TCursor
      dyn,
      dynView  DynArray[] AnyType
   endVar

   dyn["State/Prov"] = "CA"

   tc.open("CUSTOMER.DB")
   tc.setGenFilter(dyn)

   scan tc:
      dynView[tc."Name"] = tc."Phone"
   endScan

   dynView.view()
endMethod



setRange method
Specifies a range of records to associate with a Table variable. This method enhances the functionality of 
setFilter, which it replaces in this version. Code that calls setFilter continues to execute as before.

Syntax
1. setRange ( [ const exactMatchVal AnyType ] * [ , const minVal AnyType, const maxVal 
AnyType ] ) Logical
2. setRange ( rangeVals Array[ ] AnyType ) Logical

Description
setRange specifies conditions for including a range of records. Records that meet the conditions are included 
when the table is opened. setRange compares the criteria you specify with values in the corresponding fields of 
a table's index. If the table is not indexed, this method fails. If you call setRange without any arguments, the 
range criteria is reset to include the entire table.
Syntax 1 allows you to set a range based on the value of the first field of the index by specifying values in minVal
and maxVal. For example, the following statement examines values in the first field of the index of each record:
tableVar.setRange(14, 88)

If a value is less than 14 or greater than 88, that record is filtered out. To specify an exact match on the first field
of the index, assign the same value to minVal and maxVal. For example, the following statement filters out all 
values except 55:
tableVar.setRange(55, 55)

To set a range based on the values of more than one field, specify exact matches except for the last one in the 
list. For example, the following statement looks for exact matches on Corel and Corel Paradox (assuming they 
are the first fields in the index), and values ranging from 100 to 500 (inclusive) for the third field:
tableVar.setRange("Corel", "Corel Paradox", 100, 500)

In Syntax 2, you can pass an array of values to specify the range criteria, as listed in the following table.
Number of array items Range specification
No items (empty array) Resets range criteria to include the entire table
One item Specifies a value for an exact match on the first field of the index
Two items Specifies a range for the first field of the index
Three items The first item specifies an exact match for the first field of the index; items 2 and 3

specify a range for the second field of the index.
More than three items For an array of size n, specify exact matches on the first n-2 fields of the index. The

last two array items specify a range for the n-1 field of the index.
 Examples

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCGETRANGE;OPAL_METH_TCREIND;OPAL_METH_TCREI
NAL;OPAL_METH_TCSETGENFILTER;OPAL_METH_TCSWIT;OPAL_METH_TBSETRANGE;OPAL_METH_UISETRA
NGE;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Defaultoverview",)} Related Topics



setRange examples
Example1         Using setRange to specify fields for use in calculations
Example2          Using setRange with a criteria array containing more than three items



setRange example 1
The following example assumes that that the first field in Lineitem's key is Order No. and you want to know the 
total for order number 1005. When you press the getDetailSum button, the pushButton method opens a 
TCursor for Lineitem and limits the number of records included in the TCursor to those with 1005 in the first key 
field. After the call to setRange, this example uses cSum to display the sum of the Total field. Because the 
TCursor is pointing only to order number 1005, cSum reports summary information only for that order.
; getDetailSum::pushButton
method pushButton(var eventInfo Event)
var
  lineTC TCursor
  tblName String
endVar
tblName = "LineItem.db"
if lineTC.open(tblName) then

  ; this limits TCursor's view to records that have
  ; 1005 as their key value (Order No. 1005).
  lineTC.setRange(1005, 1005)     

  ; now display the total for Order No. 1005
  msgInfo("Total for Order 1005", lineTC.cSum("Total"))
else
  msgStop("Sorry", "Can't open " + tblName + " table.")
endIf
endMethod



setRange example 2
The following example calls setRange using a criteria array that contains more than three items. The following 
code sets a range to include orders from a person with a specific first name, middle initial, and last name, and an
order quantity ranging from 100 to 500 items. This code then counts the number of records in this range and 
displays the value in a dialog box. This example assumes that the PartsOrd table is indexed on the FirstName, 
MiddleInitial, LastName, and Qty fields.
; setQtyRange::pushButton
method pushButton(var eventInfo Event)
   var
      tcPartsOrd   TCursor
      arRangeInfo   Array[5] AnyType
      nuCount      Number
   endVar

   arRangeInfo[1] = "Frank"      ; FirstName (exact match)
   arRangeInfo[2] = "P."         ; MiddleInitial (exact match)
   arRangeInfo[3] = "Corel"    ; LastName (exact match)
   arRangeInfo[4] = 100          ; Minimum qty value
   arRangeInfo[5] = 500          ; Maximum qty value

   if tcPartsOrd.open("PartsOrd") then
         tcPartsOrd.setRange(arRangeInfo)
         nuCount = tcPartsOrd.cCount(1)
         nuCount.view("Number of big orders by Frank P. Corel:")
   else
         errorShow("Can't open the table.")
   endIf
endMethod



showDeleted method
Specifies whether to display deleted records in a dBASE table.

Syntax
showDeleted ( [ yesNo ] ) Logical

Description
showDeleted specifies whether to display deleted records in a dBASE table. You can use yesNo to specify Yes to
display deleted records, or No if you don't want to display them. If omitted, yesNo is Yes by default. 
showDeleted is valid only for dBASE tables because deleted records in a Corel Paradox table cannot be 
displayed.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCCOMP;OPAL_METH_TCISRECORDDELETED;OPAL_MET
H_TCISSHOWDELETEDON;OPAL_METH_TCSHDEL;',0,"Defaultoverview",)} Related Topics



showDeleted example
In the following example, the pushButton method attached to showDeletedRecs calls showDeleted to display 
deleted records in ORDERS.DBF:
; showDeletedRecs::pushButton
method pushButton(var eventInfo Event)
var
  dbfTC TCursor
endVar
if dbfTC.open("Orders.dbf") then
  dbfTC.showDeleted(Yes)
else
  msgStop("Sorry", "Can't open Orders.dbf table.")
endIf
endMethod



skip method
Moves forward or backward a specified number of records in a table.

Syntax
skip ( [ const nRecords LongInt ] ) Logical

Description
skip Moves forward or backward a specified number of records in a table. If skip attempts to move beyond the 
limits of the table, an error is produced, and the active record will be the first or last record of the table. This 
operation fails if the active record cannot be committed (e.g., because of a key violation).
Positive values for nRecords move forward through the table (skip(1) is the same as nextRecord). Negative 
values move backward (skip(-1) is the same as priorRecord). A value of 0 doesn't move (skip(0) is the same as
currRecord). If omitted, nRecords is 1 by default.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCHOME;OPAL_METH_TCEND;OPAL_METH_TCNERE;OPAL
_METH_TCPRRE;OPAL_METH_TCCURE;OPAL_METH_TCMTRE;',0,"Defaultoverview",)} Related Topics



skip example
The following example uses skip to change a TCursor's record position in a table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor
endVar 
tc.open("Orders.db")  

tc.skip(5)     ; ahead 5 records. tc.recNo() = 6
tc.skip(-3)    ; back 3 records. tc.recNo() = 3
tc.skip(-5)    ; fails--attempted to move beyond the
               ; beginning of the table.
               ; tc.recNo() = 1
               ; tc.bot() = True

endMethod



sortTo method
Sorts a table.

Syntax
1. sortTo ( const destTable String, const numFields SmallInt, const sortFields Array[ ] String,
const sortOrder Array[ ] SmallInt ) Logical
2. sortTo ( const destTable Table, const numFields SmallInt, const sortFields Array[ ] String, 
const sortOrder Array ) Logical

Description
sortTo sorts a table according to its field values, and saves the results in destTable.
sortFields is an array of strings or integers specifying which fields to sort. The size of the sortFields array is 
specified in numFields. sortOrder is an array of integers, where 0 specifies a sort in ascending order, and a value 
of 1 specifies descending order. The two arrays must be the same size, specified in numFields. Element 1 of 
sortOrder specifies how to sort the field named in element 1 of sortFields, and so on.
sortTo requires at least a read-only lock on the source table, and a full lock on the target table. If destTable 
already exists, it will be overwritten without asking for confirmation. If destTable is open, this method fails. You 
cannot use sortTo to sort a table onto itself; use a sort structure for that.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCADD;OPAL_METH_TCCOPY;OPAL_METH_TCSUB;',0,"De
faultoverview",)} Related Topics



sortTo example
The following example sorts the Customer table to the CUSTSORT.DB table and opens the sorted table. If the 
Customer table cannot be write-locked, this example informs the user and aborts the operation. If the CustSort 
target table already exists, the user is prompted to continue or abort.
The following code goes in the Const window for the sortCustButton button:
; sortCustButton::Const
const
   kAscending = 0
   kDescending = 1
endConst

The following code is placed in the Var window for the sortCustButton button:
; sortCustButton::var
var
  sortFlds Array[2]  String
  sortOrder Array[2] SmallInt
  tc                 TCursor
  srcTbl, destTbl    String
  noSort             Logical
  sortTbl            TableView
endVar

The following code is attached to the button's open method. This code assigns open a TCursor for the Customer
table and initializes the array elements. These assignments determine the sort criteria for sortTo:
; sortCustButton::pushButton
method open(var eventInfo Event)
srcTbl = "Customer.db"
destTbl = "CustSort.db"
if tc.open(srcTbl) then
  noSort = False                 ; flag for pushButton method
  sortFlds[1] = "First Contact"  ; sort by First Contact
  sortOrder[1] = kAscending      ; in ascending order

  sortFlds[2] = "Country"        ; then by Country
  sortOrder[2] = kDescending     ; in descending order
else
  noSort = True
endIf

endMethod

The following code is attached to the pushButton method for the sortCustButton button. When the button is 
pressed, this code attempts to place a write lock on the source table (CUSTOMER.DB), asks the user if the target 
table exists (CUSTSORT.DB) and sorts Customer to CustSort based on the values in the sortFlds and sortOrder 
arrays. When CUSTSORT.DB is created or updated, this example opens it as a TableView.
; sortCustButton::pushButton
method pushButton(var eventInfo Event)
if noSort = False then
  if tc.lock("Write") then
    if isTable(destTbl) then
      if msgQuestion("Overwrite?", 
           "Replace " + destTbl + " ?") <> "Yes" then
           msgInfo("Canceled", "Operation canceled.")
           return
      endIf
    endIf       
    tc.sortTo(destTbl, 2, sortFlds, sortOrder)
    sortTbl.open(destTbl)
  else
    msgStop("Stop!", "Can't write-lock " + srcTbl + " table.")
  endIf
else
  msgStop("Sorry", "Can't open " + srcTbl + " table.")
endIf
endMethod





subtract method
Subtracts the records in one table from another table.

Syntax
1. subtract ( const destTable String ) Logical
2. subtract ( const destTable Table ) Logical
3. subtract ( const destTable TCursor ) Logical

Description
subtract determines whether records that reside in the source table also reside in destTableName. If matching 
records are found, subtract deletes them from destTableName without asking for confirmation.
If destTableName is keyed, subtract deletes the records with keys that match the values of key fields in the 
source table. If destTableName is not keyed, subtract deletes the records that match any record in the source 
table. Whether tables are keyed or not, this method considers only fields that could be keyed (based on data 
type, not position). For example, numeric fields are considered, but formatted memos are not. This method 
requires read/write access to both tables.
Throughout the retry period, this method attempts to place a full lock on both tables. If locks cannot be placed, 
an error results.
 Note

· If the target table is not indexed, this operation can be time-consuming.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCADD;OPAL_METH_TCCOPY;',0,"Defaultoverview",)} 
Related Topics



subtract example
In the following example, the pushButton method for subtractCust deletes records from the Customer table 
that match those in the Answer table:
; subtractCust::pushButton
method pushButton(var eventInfo Event)
var
  ansTC, custTC TCursor
endVar

if ansTC.open(":PRIV:Answer.db") and
   custTC.open("Customer.db") then

  ansTC.subtract(custTC)              ; subtract Answer records from Customer

else
  msgStop("Stop!", "Can't open tables.")
endIf

endMethod



switchIndex method
Specifies an index to use to view a table's records.

Syntax
1. switchIndex ( [ const indexName String ] [ , const stayOnRecord Logical ] ) Logical
2. switchIndex ( [ const indexFileName String [ , const tagName String ] ] [ , const 
stayOnRecord Logical ] ) Logical

Description
switchIndex specifies in indexName an index file to use to view a table. In Syntax 1, indexName specifies an 
index to use with a Corel Paradox table. If you omit indexName, the table's primary index is used.
Syntax 2 is for dBASE tables. indexFileName can specify an .NDX file or an .MDX file. The optional argument 
named tagName specifies an index tag in a production index (.MDX) file.
If the optional argument stayOnRecord is set to Yes in either syntax, this method maintains the active record 
after the index switch. If stayOnRecord is set to No (the default), the first record in the table becomes the active 
record.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCREIND;OPAL_METH_TCREINAL;OPAL_METH_TBSIND;',
0,"Defaultoverview",)} Related Topics



switchIndex example
The following example assumes that Customer is a keyed Corel Paradox table that has a secondary index named 
NameAndState. This example opens a TCursor for Customer, calls switchIndex to switch from the primary index
to the NameAndState index and displays the first value in the Name field. Because the TCursor is sorted on 
Name and State fields in ascending order, the field value displayed is the first name in ascending sort order.
; thisButton::pushButton
method pushButton(var eventInfo Event)
   var
      tc TCursor
   endvar

   tc.open("Customer.db")            ; open TCursor for Customer
   tc.switchIndex("NameAndState")    ; switch to index NameAndState
   tc.home()                         ; move to the first record
   msgInfo("First Record", tc.Name)  ; display value in Name field
   tc.switchIndex( )                 ; to restore primary index
   { tc.switchIndex (" ", True) to stay on the same record. }
   msgInfo("First Record", tc.Name)  ; display value in Name field
endMethod



tableName method
Returns the name of the table associated with a TCursor.

Syntax
tableName ( ) String

Description
tableName returns the name of the table associated with a TCursor. This method is used to pass variables to 
the TCursor open method.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCTRIG;',0,"Defaultoverview",)} Related Topics



tableName example
In the following example, the pushButton method for thisButton uses the findFirst and findNext methods 
from the FileSystem type to locate Corel Paradox tables in the working directory. This code searches each table 
for a value in the Name field of the current table. This example opens all of the tables in the current directory 
that have Unisco in the Name field:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  fs FileSystem
  tc TCursor
  tb TableView
endVar
if fs.findFirst("*.db") then
  while fs.findNext()
    tc.open(fs.Name())                  ; open TCursor for a .db file
    if tc.locate("Name", "Unisco") then ; if we find Unisco in Name field
      tb.open(tc.tableName())           ; open table associated with TCursor
    endIf
    tc.close()
  endWhile
endIf

endMethod



tableRights method
Specifies whether the user has the right to perform table operations.

Syntax
tableRights ( const rights String ) Logical

Description
tableRights specifies whether the user has the right to perform table operations. The following table describes 
rights:
Value Description
ReadOnly Specifies the right to read from the table without making changes
Modify Specifies the right to enter or change data
Insert Specifies the right to add new records
InsDel Specifies the right to add and delete records
Full or All Specifies the right to perform all of the above operations
This method returns True if the user has the specified rights; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCFRIG;',0,"Defaultoverview",)} Related Topics



tableRights example
The following example reports whether the user has InsDel rights to the Orders table:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var 
   myRights Logical 
   ordersTC TCursor
endVar
ordersTC.open("orders.db")
ordersTC.edit()
myRights = ordersTC.tableRights("InsDel")

  ; this displays True if you have InsDel rights to Orders.db
msgInfo("Rights to Enter?", myRights)

endMethod



type method
Returns a table's type.

Syntax
type ( ) String

Description
type returns the string value COREL PARADOX or DBASE to specify the table's type.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCISASSIGNED;OPAL_METH_TCTNAM;',0,"Defaultovervi
ew",)} Related Topics



type example
The following example removes deleted records from the Orders table if type returns DBASE. If type returns 
Corel Paradox, a message is displayed:
; compact::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar

tc.open("Orders.db")

; if Orders.db is a dBASE table
if tc.type() = "dBASE" then
  ; remove deleted records
  tc.compact()
else
  ; otherwise, display the type of table
  msgStop("Stop!", "Orders.db is a " + tc.type() + " table.")
endIf

endMethod



unDeleteRecord method
 Undeletes the active record from a dBASE table.

Syntax
unDeleteRecord ( ) Logical

Description
unDeleteRecord undeletes the active record from a dBASE table. This operation is successful only if 
showDeleted is set to True, the active record is a deleted record, and the TCursor is in Edit mode.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCDREC;OPAL_METH_TCISRECORDDELETED;OPAL_METH
_TCISSHOWDELETEDON;OPAL_METH_TCSHDEL;',0,"Defaultoverview",)} Related Topics



unDeleteRecord example
The following example opens a TCursor for SCORES.DBF (a dBASE table) and uses showDeleted to display 
deleted records. This code then attempts to locate a specific record in the table. isRecordDeleted determines 
whether the record has been deleted; if it has, it is undeleted using unDeleteRecord. The following code is 
attached to the pushButton method for thisButton:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar
tc.open("Scores.dbf")                 ; open TCursor on a dBASE table
tc.showDeleted()                      ; show deleted records
if tc.locate("Name", "Jones") then    ; if locate finds Jones in Name field
  if tc.isRecordDeleted() then        ; if the record has been deleted
    tc.edit()                         ; begin Edit mode
    tc.undeleteRecord()               ; undelete the record
    message("Jones record undeleted")
  endIf
else
  msgStop("Error", "Can't find Jones.")
endIf
endMethod



unlock method
Unlocks a specified table that is pointed to by TCursor.

Syntax
unlock ( const lockType String ) Logical

Description
unlock attempts to remove locks explicitly placed on the table pointed to by a TCursor. lockType is one of the 
following String values, listed in order of decreasing strength and increasing concurrency:
String value Description
Full The current session has exclusive access to the table. No other session can open the table. 

Cannot be used with dBASE tables.
Write The current session can write to and read from the table. No other session can place a write lock

or a read lock on the table.
Read The current session can read from the table. No other session can place a write lock, full lock, or 

exclusive lock on the table.
unlock removes locks that have been explicitly placed by a particular user or application using lock. unlock has
no effect on locks placed automatically by Corel Paradox. To ensure maximum concurrent availability of tables 
unlock a table that has been explicitly locked as soon as the lock is no longer needed. If you lock a table twice, 
you must unlock it twice. You can use lockStatus (defined for the TCursor and UIObject types) to determine how
many explicit locks you have placed on a table. If you try to unlock a table that isn't locked or cannot be 
unlocked, unlock returns False .
If successful, this method returns True; otherwise, it returns False.

 Example
{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCLOCK;OPAL_METH_TCLSTA;OPAL_METH_UILOCKSTATU
S;',0,"Defaultoverview",)} Related Topics



unlock example
The following example opens a TCursor for Customer (a Corel Paradox table), places a full lock on the table and 
uses reIndex to rebuild the Phone_Zip index. Once the index is rebuilt, this code unlocks Customer so other 
users on a network can gain access to the table:
; reindexCust::pushButton
method pushButton(var eventInfo Event)
var 
  tc TCursor
  pdoxTbl String
endVar
pdoxTbl = "Customer.db"

if tc.open(pdoxTbl) then
  if tc.lock("Full") then    ; attempt to gain exclusive access
    tc.reIndex("Phone_Zip")  ; rebuild Phone_Zip index
    tc.unLock("Full")        ; unlock the table
  else
    msgStop("Sorry", "Can't lock " + pdoxTbl + " table.")
  endIf
else
  msgStop("Sorry", "Can't open " + pdoxTbl + " table.")
endIf
endMethod



unLockRecord method
 Unlocks the active record.

Syntax
unLockRecord ( ) Logical

Description
unLockRecord unlocks the active record. If you attempt to unlock a record that isn't locked, you'll get an error. 
This operation fails if the active record cannot be committed (e.g., because of a key violation).
If the table containing the record is indexed, the record is posted to the table and moved to its sorted position. 
Depending on whether the record moved to a new position, the TCursor may not continue to point to the posted 
record. This behavior is referred to as record fly away.
If a key value changes when the record is unlocked, the record may fly away to a new position in the table; 
however, the TCursor does not fly with it. You can also use didFlyAway to determine whether the record did fly 
away.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCDIDFLYAWAY;OPAL_METH_TCLREC;OPAL_METH_TCPOS
TRECORD;OPAL_METH_TCSETFLYAWAYCONTROL;',0,"Defaultoverview",)} Related Topics



unLockRecord example
In the following example, the pushButton method for thisButton attempts to locate a misspelled value in the 
Name field of the Customer table. If the value is found, this code locks the record, corrects the value in the field 
and unlocks the record using unLockRecord:
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tc TCursor
endVar
if tc.open("Customer.db") then
  if tc.locate("Name", "Usco") then
    tc.edit()
    tc.lockRecord()           ; lock active record
    tc.Name = "Unisco"        ; change field value
    tc.unlockRecord()         ; unlock active record
    message("Name changed to \"Unisco\"")
  else
    msgStop("Sorry", "Can't find \"Usco\" in \"Name\" field.")
  endIf
else
  msgStop("Sorry", "Can't open Customer.db table.")
endIf

endMethod



update method
Assigns values to fields in the active record of a TCursor.

Syntax
1. update ( const fieldName String, const fieldValue AnyType
    [ , const fieldName String, const fieldValue AnyType ] * ) Logical
2. update ( const fieldNum SmallInt, const fieldValue AnyType
    [ , const fieldNum SmallInt, const fieldValue AnyType ] * ) Logical

Description
update assigns values to one or more fields in the active record of a TCursor. update allows you to update an 
entire record using a single statement instead of assigning field values one at a time. Use fieldName (Syntax 1) 
or fieldNum (Syntax 2) to specify fields. Use fieldValue in Syntax 2 to specify the new field value.
You can also combine field names and field numbers in the same update statement. Performance improves if you
use field numbers instead of field names.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCSFVA;',0,"Defaultoverview",)} Related Topics



update example
The following example uses update to set the values of three fields using one statement. 
First, the following code assigns values to the PartNum, PartName, and Cost fields of the Parts table without using 
update:
  var
     partsTC   TCursor
     partNumID   SmallInt
  endVar

  partsTC.open("parts")
  partNumID = partsTC.fieldNo("PartNum")

  if partsTC.locate("PartName", "Widget") then
     partsTC.edit()

     partsTC.(partNumID) = "G01"
     partsTC.PartName    = "Gadget"
     partsTC.Cost        = 2.50

     partsTC.endEdit()
  endIf

The following code calls update to accomplish the same thing:
  var
     partsTC   TCursor
     partNumID   SmallInt
  endVar

  partsTC.open("parts")
  partNumID = partsTC.fieldNo("PartNum")

  if partsTC.locate("PartName", "Widget") then
     partsTC.edit()

     partsTC.update(partNumID, "G01", "PartName", "Gadget", "Cost", 2.50)

     partsTC.endEdit()
  endIf



updateRecord method
Updates an existing record with data from a new record when a key violation exists.

Syntax
updateRecord ( [ const moveTo Logical ] ) Logical

Description
updateRecord overwrites an existing record with values from an unposted, new record when a key violation 
exists. The record is posted to the table. If an optional argument moveTo is False, the TCursor points to the 
record after it is posted to the table; if True, the TCursor points to the record following the position of the original 
record.
If no key violation exists, this method behaves like unlockRecord.
 Example

{button ,AL(`OPAL_TYPE_TCURSOR;OPAL_METH_TCATTACHTOKEYVIOL;OPAL_METH_TCLREC;OPAL_METH
_TCPOSTRECORD;OPAL_METH_TCUNREC;',0,"Defaultoverview",)} Related Topics



updateRecord example
See the attachToKeyViol example.



TextStream type
A TextStream is a sequence of characters read from or written to a text file. TextStreams contain ANSI characters 
only formatting information such as font, alignment, and margins is not included. TextStreams also contains 
non-printing characters (e.g., carriage returns and line feeds (CR/LF)).

Corel Paradox maintains a file position cursor that behaves like an insertion point cursor in a word processor. The 
cursor tells you how far (how many characters) you are from the beginning of the file. Counting begins with 1 (not 
with 0, as in some other languages).

Methods for the TextStream type
advMatch
close
commit
create
end
eof
home
open
position
readChars
readLine
setPosition
size
writeLine
writeString

   Print related ObjectPAL methods and examples  



advMatch method
Searches for a pattern of characters in a text file.

Syntax
advMatch ( var startIndex LongInt, var endIndex LongInt, const pattern String ) Logical
Description
advMatch searches a text file for a pattern of characters specified by pattern. If startIndex is assigned a value, 
the search begins at the startIndex position; otherwise, the search begins at the beginning of the file. The 
position in endIndex does not indicate the end of the range to search. If the pattern is found, the position of the 
first matching character is stored in startIndex, and the position of the last matching character is stored in 
endIndex.
advMatch returns True if pattern is found in the file; otherwise, it returns False. By default, this method is case 
sensitive but you can use the String procedure ignoreCaseInStringCompares to change the case behavior.
If you supply pattern from within a method, you must use two backslashes when you want to tell advMatch to 
treat a special character as a literal; for example, \\( tells advMatch to treat the parenthesis as a literal 
character. Two backslashes are required in this situation because the compiler and advMatch understand 
backslashes differently. When the compiler sees a string with an embedded escape sequence (e.g., a \tstart), it 
interprets the \t as a tab, followed by the word start. The backslash character has a special meaning to the 
compiler, but it also has a special meaning to advMatch. For more information, see the entry for advMatch in 
the String type.
If you supply pattern from a field in a table or a TextStream, special advMatch symbols are recognized without a
backslash, and one backslash and plus symbol (\+) yields a literal character.
To specify pattern, use a string with the following optional symbols:
Symbol Matches
\ Includes special characters as regular characters (e.g., \t for Tab). Use two backslashes in quoted

strings.
[ ] Match the enclosed set. (e.g., [aeiou0-9] match a, e, i, o, u, and 0 through 9)
[^ ] Does not match the enclosed set. (e.g., [^aeiou0-9] matches anything except a, e, i, o, u, and 0 

through 9)
() Specifies grouping
^ Specifies the beginning of string
$ Specifies the end of string
.. Matches anything
@ Matches any single character
* Specifies zero or more of the preceding character or expression
+ Specifies one or more of the preceding character or expression
? Specifies none or one of the preceding character or expression
| Specifies OR operation

For examples, see Sample search strings with wildcards in the User's Guide help.
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSHOME;OPAL_METH_TSEND;OPAL_METH_TSSPOS;O
PAL_METH_TSPOSI;OPAL_METH_STAMAT;OPAL_METH_STIGN;',0,"Defaultoverview",)} Related Topics



advMatch example
The following example assumes that a file named PDXQUOTE.TXT exists in the working directory. The file 
contains the following text:
How wonderful that we have met with Corel Paradox. 
Now we have some hope of making progress.
Niels Bohr
The call to advMatch specifies @o@e as the pattern to search. This pattern matches any character, followed by 
an o followed by any character followed by an e. If the specified pattern is found, the variables firstChar and 
lastChar store the positions of the first and last matching characters. The calls to setPosition and readChars 
read the matching characters and store them in the variable theMatch.
; findSome::pushButton
method pushButton(var eventInfo Event)
var 
  pdq                 TextStream
  firstChar, lastChar LongInt
  theMatch            String
endvar
if pdq.open("pdxquote.txt", "R") then
  if pdq.advMatch(firstChar, lastChar, "@o@e") then
    msgInfo("The position found", firstChar)
    pdq.setPosition(firstChar)
    pdq.readChars(theMatch, lastChar - firstChar)
    message(theMatch)               ; displays "some"
  else
    msgInfo("Sorry", "Match not found.") 
  endIf
  pdq.close()
else
  msgInfo("Sorry", "Couldn't open the requested text file.")
endIf
endMethod



close method
Closes a text file.

Syntax
close ( ) Logical
Description
close closes a text file and writes the contents of all text buffers to a disk. close also ends the association 
between a TextStream variable and the underlying text file.
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSOPEN;OPAL_METH_TSCOMM;',0,"Defaultoverview
",)} Related Topics



close example
The following example declares a TextStream variable named ts, and calls open to associate ts with the text file 
named PDXQUOTE.TXT. The code then calls close to end the association.
; quoteALine::pushButton
method pushButton(var eventInfo Event)
var 
  ts        TextStream
  firstLine String
endvar
ts.open("pdxQuote.txt", "R")
ts.readLine(firstLine)
firstLine.view("Line 1 of PDXQUOTE.TXT")
ts.close()
endMethod



commit method
Writes the contents of the text buffer to a disk.

Syntax
commit ( )
Description
commit empties the text buffer and writes the contents to a disk. The file remains open and the cursor position 
does not change.
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSWRST;',0,"Defaultoverview",)} Related Topics



commit example
In the following example, the createText button creates a new file named MYTEXT.TXT, adds a line to it, commits 
the current version of the TextStream and closes the file:
; createText::pushButton
method pushButton(var eventInfo Event)
var 
  ts TextStream 
endVar 

ts.create("myText.txt") 
msgInfo("TextStream position is now", ts.position()) ; displays 1

ts.writeLine("This is some text.") 
msgInfo("TextStream position is now", ts.position()) ; displays 21

ts.commit()
msgInfo("TextStream position is now", ts.position()) ; still 21
ts.close()

endMethod



create method
Creates a text file for reading and writing.

Syntax
create ( const fileName String ) Logical
Description
create creates the text file specified by fileName and opens it for reading and writing. If fileName already exists,
create overwrites it without asking for confirmation. You can specify where to create the file using a full DOS 
path or an alias. If you don't specify a path or alias, Corel Paradox creates the file in the working directory.
This method returns True if successful; otherwise, it returns False. If the file is successfully created, it is opened 
for reading and writing.
 Note

· The following statements are equivalent:
ts.create("newText.txt")
ts.open("newText.txt, "NW")

 Example
{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSOPEN;OPAL_METH_TSCLOS;',0,"Defaultoverview",
)} Related Topics



create example
In the following example, code is attached to a button's pushButton method. It consists of a variable 
declaration block, a procedure declaration, and the body of the method. In the body of the method, the findFirst
determines whether a file named RICK.TXT exists. If it doesn't exist, a custom procedure named addLine creates
it and adds a line to it. If the file does exist, a dialog box confirms the decision to overwrite the file.
; createFile::pushButton
var 
  ts               TextStream
  firstLine        String
  allLines Array[] String
  fs               FileSystem
endvar

proc addLine()
; Create a file, open for writing and reading
  ts.create(":PRIV:rick.txt")  
  ts.writeLine("Here's looking at you, kid.")
  ts.home()
  ts.readLine(allLines)
  allLines.view("Rick says:")
endProc

method pushButton(var eventInfo Event)
if not fs.findFirst(":PRIV:rick.txt") then
  addLine()
else
  if msgYesNoCancel(":PRIV:RICK.TXT",
                    "Overwrite this file?") = "Yes" then
    addLine()
  endIf
endIf
endMethod



end method
Sets the cursor to the end in a text file.

Syntax
end ( )
Description
end sets the cursor to the last character in a text file.
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSHOME;OPAL_METH_TSSPOS;OPAL_METH_TSEOF;',
0,"Defaultoverview",)} Related Topics



end example
The following example assumes that a file named PDXQUOTE.TXT is stored in the private directory. The file 
contains the following text:
How wonderful that we have met with Corel Paradox. 
Now we have some hope of making progress.
Niels Bohr
The following code is attached to the built-in newValue method of a field object. The field object displays two 
radio buttons with the values Overwrite and Append. Choose one overwrite the file or append information to the 
end of the file. If you choose Overwrite, the call to home moves the cursor to position 1. If you choose Append, 
the call to end moves the cursor to the end of the file.
; insertAppendField::changeValue
method newValue(var eventInfo Event)
var
  ts TextStream
  allLines Array[] String
endVar
if eventInfo.reason() = EditValue then
  ts.open(":PRIV:pdxquote.txt", "W")
  switch
    case self.value = "Overwrite" :
      ts.home()
      ts.writeLine(DateTime())   ; time stamp the file at beginning
      ; file will read:
      ; DateTimeStamp (depends on date/time)
      ; have met with Corel Paradox.
      ; Now we have some hope of making progress.
      ; Niels Bohr
    case self.value = "Append" :
      ts.end()
      ts.writeLine(DateTime())   ; time stamp the file at end
      ; file will read:
      ; How wonderful that we have met with Corel Paradox.
      ; Now we have some hope of making progress.
      ; Niels Bohr
      ; DateTimeStamp (depends on date/time)
  endSwitch
  ts.home()
  ts.readLine(allLines)
  allLines.view()
  ts.close()
endIf
endMethod



eof method
Determines whether the cursor attempts to move past the end of a text file.

Syntax
eof ( ) Logical
Description
eof returns True if the cursor attempts to move past the end of a text file; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSEND;OPAL_METH_TSPOSI;OPAL_METH_TSSPOS;',0
,"Defaultoverview",)} Related Topics



eof example
The following example assumes that a file named PDXQUOTE.TXT resides in the private directory. The file 
contains the following text:
How wonderful that we have met with Corel Paradox. 
Now we have some hope of making progress.
Niels Bohr
The while loop reads each of the three lines from the file and displays them in a dialog box. eof displays a 
dialog box telling the user that there's no more text in the file.
; lineAtATime::pushButton
method pushButton(var eventInfo Event)
var  
  pdq      TextStream  
  textLine String  
endVar  

pdq.open(":PRIV:pdxquote.txt", "r")
while not pdq.eof()        ; quit loop when you hit the end of the file
  pdq.readLine(textLine)   ; read the next line
  msgInfo("Position " + String(pdq.position()), textLine)
endWhile
msgInfo("Finished", "No more text")
endMethod



home method
Sets the cursor to the beginning of a text file.

Syntax
home ( )
Description
home sets the cursor to the first character of a text file.
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSEND;OPAL_METH_TSEOF;OPAL_METH_TSSPOS;',0,
"Defaultoverview",)} Related Topics



home example
See the end example.



open method
Opens a text file in a specified mode.

Syntax
open ( const fileName String, const mode String ) Logical
Description
open opens a text file named fileName in the mode specified by mode. open then and associates a FileSystem 
variable with the underlying file. Mode specifications are case-insensitive. The following table displays mode 
specifications:
Mode specification Description
a Append and read
r Read only
w Write and read
nw New file (write and read)

If the file exists, the nw mode overwrites the file without asking for confirmation.
 Note

· The following statements are equivalent:
ts.open("new.txt", "NW")
ts.create("new.txt")

If you open a file in any r, w, or nw modes, the cursor moves to the beginning of the file.
You can specify a directory from which to open the file using a full DOS path or an alias. If you don't specify a 
path or an alias, Corel Paradox searches for the file in the working directory.
This method returns True if successful; otherwise, it returns False.
 Examples

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSCREA;OPAL_METH_TSCLOS;',0,"Defaultoverview",
)} Related Topics



open method examples
Example1          Using an alias with open
Example2         Using open with two TextStream variables



open example 1
The following example uses an alias with open to create a text file in the private directory, and write a line of 
text to it:
var
   ts TextStream
endVar
if ts.open(":PRIV:memo14.txt", "NW") then
   ts.writeLine("This is private!")
endIf



open example 2
The following example declares two TextStream variables (ts1 and ts2) and calls open to associate each of them
with a text file named NEWTEXT.TXT. Both variables have equal rights to the file, and Corel Paradox maintains 
separate cursors for each variable. As statements are written to the file, messages display the cursor position for
each variable.
; openStreams::pushButton
method pushButton(var eventInfo Event)
var 
  ts1, ts2  TextStream
  firstLine String
  allLines  Array[] String
endvar
ts1.open("newText.txt", "nw")      ; open a new file read/write
ts1.writeLine("Written by ts1.")
ts1.writeLine("This is line 2.")
msgInfo("Text stream one", ts1.position()) ; displays 35
ts1.commit()                       ; write it out to disk, so that
                                   ; ts2 will get most current version

ts2.open("newText.txt", "w")       ; open existing file read/write
msgInfo("Text stream one", ts1.position()) ; displays 35
msgInfo("Text stream two", ts2.position()) ; displays 1

ts2.writeLine("Written by ts2.")
msgInfo("Text stream one", ts1.position()) ; displays 35
msgInfo("Text stream two", ts2.position()) ; displays 18

ts1.home()
ts1.readLine(allLines)     ; reads all lines into an array
allLines.view("ts1")       ; displays:
                           ; Written by ts1.
                           ; This is line 2.
; ts1 does not reflect changes made by ts2
; unless ts1 is closed and reopened.
endMethod



position method
Returns the cursor's position in a text file.

Syntax
position ( ) LongInt
Description
position returns an integer representing the cursor's position in a text file. position counts both printing and 
non-printing characters, beginning with 1 (not with 0).
It may be helpful to think of position as returning the number of the next character in the file.
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSSPOS;OPAL_METH_TSSIZ;',0,"Defaultoverview",)}
Related Topics



position example
The following example creates a new text file and calls position. It returns 1. The call to writeLine adds 14 
characters to the file: 12 printing characters and the carriage return and line feed (CR/LF) pair. The next 
character will be 15, so position returns 15.
var newFile TextStream endVar  
newFile.open("newmemo.txt", "nw")  
message(newFile.position()) ; displays 1
sleep(1000)
newFile.writeLine("Don't panic.")  
message(newFile.position()) ; displays 15
                            ; 12 printing characters + CR/LF = 14
                            ; next character will be 15
sleep(1000)



readChars method
Reads a specified number of characters in a text file.

Syntax
readChars ( var string String, const nChars SmallInt ) Logical
Description
readChars reads the number of characters specified in nChars and stores them in string. readChars begins at 
the current cursor position and returns True if successful; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSRELN;OPAL_METH_TSSPOS;OPAL_EX_TSAMAT;',0,"
Defaultoverview",)} Related Topics



readChars example
The following example assumes that a file named PDXQUOTE.TXT resides in the working directory. The file 
contains the following text:
How wonderful that we have met with Corel Paradox. 
Now we have some hope of making progress.
Niels Bohr
The following code calls readChars to read the first 100 characters in the file:
; getLetters::pushButton
method pushButton(var eventInfo Event)
var 
  letter  TextStream 
  myChars String 
endVar  
letter.open("pdxquote.txt", "r") 
if letter.readChars(myChars, 100) then

  msgInfo("The first 100 characters are:", myChars)
endIf
endMethod



readLine method
Reads the characters in a line of text.

Syntax
1. readLine ( var value String ) Logical
2. readLine ( var stringArray Array[ ] String ) Logical
Description
readLine reads the characters in a line of text until it encounters a CR/LF pair (or 32,767 characters have been 
read). readLine then moves the cursor to the first position after the CR/LF pair (or after the 32,767th character).
readLine begins reading from the current cursor position. This method returns True if successful; otherwise, it 
returns False.
Syntax 1 stores a single line in value (the CR/LF pair is not stored).
Syntax 2 stores the entire file in stringArray. stringArray is a resizeable array of strings and each array item 
stores one line from the file (the CR/LF pair is not stored).
 Examples

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSREADCHARS;OPAL_METH_TSWRLN;',0,"Defaultov
erview",)} Related Topics



readLine method examples
Example1          Reading the first line of the file into a string variable
Example2          Reading the entire file into an array



readLine example 1
The following example creates a two-line text file and calls readLine to read the first line into a String variable. 
readLine reads four characters in the first line, skips over the CR/LF characters, and sets the cursor.
method pushButton(var eventInfo Event)
var
   ts TextStream
   oneLine String
endvar

ts.create("newtext.txt")
ts.writeLine("1234")
ts.writeLine("5678")
ts.home()

ts.readLine(oneLine)
message(oneLine.size()) ; displays 4 (doesn't include CR/LF)
sleep(1000)
message(ts.position()) ; displays 7 (skips over CR/LF)
sleep(1000)
endMethod



readLine example 2
The following example creates a three-line text file and calls readLine to read the entire file into an array. The 
array is displayed in a dialog box.
method pushButton(var eventInfo Event)
var 
   letter TextStream 
   allLines Array[] String
endVar  

letter.open("letter.txt", "nw")  
letter.writeLine("Dear Customer,")
letter.writeLine("Thank you for your interest in our new product.")
letter.writeLine("A representative will call you next week.")

letter.home() ; move the cursor to the beginning of the file

letter.readLine(allLines)
allLines.view("Entire letter")     ; displays the entire letter
letter.close()
endMethod



setPosition method
Sets the cursor position in a text file.

Syntax
setPosition ( const offset LongInt )
Description
setPosition sets the cursor position in a text file. offset specifies the cursor's position from the beginning of a 
text file. CR/LF characters are considered part of the file and can be overwritten.
 Examples

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSPOSI;OPAL_METH_TSSIZ;OPAL_METH_TSEOF;',0,"
Defaultoverview",)} Related Topics



setPosition method examples
Example1          Using setPosition to display specific lines
Example2         Moving the cursor outside a file



setPosition example 1
In the following example, the showPositions button writes a line to a new text file, MEMO.TXT. The code then 
moves back to the fourth character, overwrites that character with the number 4, and displays the line.
; showPositions::pushButton
method pushButton(var eventInfo Event)
var 
  myFile  TextStream 
  lineOne String
endVar 
myFile.open(":PRIV:memo.txt", "nw")        ; open new file as read/write
myFile.writeLine("1235")                   ; 4 characters plus CR/LF
msgInfo("Where am I?", myFile.position())  ; displays 7

myFile.setPosition(4)                ; move to character 4
myFile.writeString("4")              ; now, line is "1234" 
myFile.home()                        ; same as setPosition(1)
myFile.readLine(lineOne)
msgInfo("This is line one", lineOne) ; displays  "1234"
endMethod



setPosition example 2
The following example shows what happens when you attempt to move the cursor beyond the end of a file or 
before the beginning of a file.
; showPositions::pushButton
method pushButton(var eventInfo Event)
var 
  myFile  TextStream 
endVar 

myFile.open(":PRIV:memo.txt", "r")  ; open existing file for read
myFile.setPosition(100)             ; beyond end of file 
msgInfo("End", myFile.position())   ; displays 7 the real end
myFile.setPosition(-100)            ; before beginning of file
msgInfo("Home", myFile.position())  ; displays 1
the beginning

endMethod



size method
Returns the number of characters in a text file.

Syntax
size ( ) LongInt
Description
size returns the number of characters in a text file, including non-printing characters (e.g., carriage returns and 
line feeds).
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSPOSI;OPAL_METH_TSSPOS;OPAL_METH_TSEOF;',0,
"Defaultoverview",)} Related Topics



size example
The following example creates a TextStream, writes a line to it and displays the file's size.
; showSize::pushButton
method pushButton(var eventInfo Event)
var 
  myText TextStream 
endVar 
myText.create("short.txt")  
myText.writeLine("1234")  
msgInfo("What size am I?", myText.size()) ; displays 6
; 4 printing characters "1234", and 2 nonprinting characters CR/LF
myText.close()
endMethod



writeLine method
Writes a string to a text file.

Syntax
writeLine ( const value AnyType [ , const value AnyType ] * ) Logical
Description
writeLine writes a comma-separated list of values to a text file and appends a CR/LF character pair. Compare 
this method to writeString, which doesn't append a CR/LF pair.
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSRELN;OPAL_METH_TSWRST;',0,"Defaultoverview"
,)} Related Topics



writeLine example
See the create example.



writeString method
Writes a character string to a text file.

Syntax
writeString ( const value AnyType, [ , const value AnyType ] * ) Logical
Description
writeString writes a comma-separated list of values to a text file, but does not append a CR/LF pair. Compare 
this method to writeLine, which does append a CR/LF pair.
 Example

{button ,AL(`OPAL_TYPE_TEXTSTREAM;OPAL_METH_TSWRLN;',0,"Defaultoverview",)} Related Topics



writeString example
The following example assigns strings to the variables lo and hi and uses writeString to write them to an open 
TextStream.
; goodAdvice::pushButton
method pushButton(var eventInfo Event)
var 
   myText TextStream 
   lo, hi String 
endVar  
lo = "Buy low. " 
hi = "Sell high." 
myText.open(":PRIV:advice.txt", "nw")         ; open a new file
myText.writeString(lo, hi)  
msgInfo("File size:", string(myText.size()))  ; displays 19
; Buy low. = 9 characters, Sell High. = 10 characters. 10 + 9 = 19.
myText.close()
endMethod



Time type
Time variables store times in hour-minute-second-millisecond format. The following characters can be used as 
separators: blank, tab, space, comma (,), hyphen (-), slash (/), period (.), colon (:), and semicolon (;). Time values
must be enclosed in quotation marks.
Time values must be explicitly declared. For example, the following statements assign a time of 10 minutes and 
40 seconds past eleven o'clock in the morning to the Time variable ti :
var ti Time endVar
ti = Time("11:10:40 am")
Valid time values are determined by the current Corel Paradox time format. If the current time format is set to a 
12-hour format (e.g., hh:mm:ss), Time type methods consider hh:mm:ss to be a valid time format. Use 
formatSetTimeDefault procedure defined for the System type to set Corel Paradox time formats with 
ObjectPAL.
The Time type includes several derived methods from the DateTime and AnyType types.
Methods for the Time type

AnyType DateTime Time
blank hour time
dataType milliSec
isAssigned minute
isBlank second
isFixedType
view

 Print related ObjectPAL methods and examples



time procedure
Casts a value as a time or returns the current time.

Syntax
time ( [ const value AnyType ] ) Time
Description
time casts value as a time or returns the current time according to the system clock. value, if specified, must 
match the current Corel Paradox time format. For more information, see to the System type procedure 
formatSetTimeDefault.
 Examples

{button ,AL(`OPAL_TYPE_TIME;OPAL_METH_DTHOUR;OPAL_METH_DTMILLISEC;OPAL_METH_DTMINUTE;O
PAL_METH_DTSECOND;',0,"Defaultoverview",)} Related Topics



time procedure examples
Example1          Converting a string value into a time value
Example2         Using code attached to a button's pushButton method



time example 1
The following example calls time to convert a string value to a time value:
var
   st String
   ti Time
endVar

st = "12:21:33 am"
ti = time(st)



time example 2
The following example displays the current time in a dialog box. The display format varies according to the user's
current time format. This code is attached to a button's pushButton method:
; timeButton::pushButton
method pushButton(var eventInfo Event)

  ; displays the current time in a dialog box
   msgInfo("Current Time", time()) 

endMethod



UIObject type
UIObjects (user interface objects) create the user interface for an application. Anything you can place in a form 
or report is a UIObject. UIObjects include bands, bitmaps, boxes, buttons, cells, charts, crosstabs, ellipses, field 
objects, forms, groups, lines, lists, multi-record objects, OLE objects, pages, record objects, table frames, and 
text boxes.
Only UIObjects in forms have built-in event methods. You can attach code to those built-in event methods, and a 
form responds to events. For methods and procedures that work only with forms, use the Form type.
You can also use built-in object variables to refer to UIObjects. This technique is especially useful for creating 
generalized code.
Many UIObject methods duplicate TCursor methods. The UIObject methods that work with tables work on the 
underlying table through the visible object. Actions directed to the UIObject that affect the table are immediately
visible in the object to which the table is bound. TCursor methods work with a table behind the scenes. Actions 
that affect the table are not necessarily visible in any object, even if the TCursor is acting on the same table to 
which a visible object is bound. 
Some table operations require Corel Paradox to create temporary tables. Corel Paradox creates these tables in 
the private directory. 
Some table operations are considerably faster with TCursors than with UIObjects. For example, to perform a 
table-oriented operation that causes a high volume of screen refreshes, you can declare a TCursor, attach it to 
the object the table is already bound to (e.g., a table frame), perform the operation with the TCursor and 
resynchronize the display object to the TCursor. When you attach a TCursor to an object bound to a table, the 
TCursor's record pointer is set to the active record for the object. After you perform a TCursor operation (e.g., a 
locate), the TCursor might point to a different record. To have the object point to the same record as the 
TCursor, use the resync method; to make the TCursor point to the same record as the object, use the attach 
method. For more information, see the example for insertRecord. 

Methods for the UIObject type
action
atFirst
atLast
attach
bringToFront
broadcastAction
cancelEdit
convertPointWithRespectTo
copyFromArray
copyToArray
copyToToolbar
create
currRecord
delete
deleteRecord
dropGenFilter
edit
empty
end
endEdit
enumFieldNames
enumLocks
enumObjectNames
enumSource
enumSourceToFile
enumUIClasses
enumUIObjectNames



enumUIObjectProperties
execMethod
forceRefresh
getBoundingBox
getGenFilter
getHTMLTemplate
getPosition
getProperty
getPropertyAsString
getRange
getRGB
hasMouse
home
insertAfterRecord
insertBeforeRecord
insertRecord
isContainerValid
isEdit
isEmpty
isLastMouseClickedValid
isLastMouseRightClickedValid
isRecordDeleted
keyChar
keyPhysical
killTimer
locate
locateNext
locateNextPattern
locatePattern
locatePrior
locatePriorPattern
lockRecord
lockStatus
menuAction
methodEdit
methodGet
methodSet
methodDelete
mouseClick
mouseDouble
mouseDown
mouseEnter
mouseExit
mouseMove
mouseRightDouble
mouseRightDown
mouseRightUp
mouseUp
moveTo



moveToRecNo
moveToRecord
nextRecord
nFields
nKeyFields
nRecords
pixelsToTwips
postAction
postRecord
priorRecord
pushButton
recordStatus
resync
rgb
sendToBack
setGenFilter
setPosition
setProperty
setRange
setTimer
skip
switchIndex
twipsToPixels
unDeleteRecord
unlockRecord
view
wasLastClicked
wasLastRightClicked

 Print related ObjectPAL methods and examples



action method
Performs a specified action.

Syntax
action ( const actionId SmallInt ) Logical

Description
action specifies an actionId to perform in response to an event. actionId is a constant in one of the following 
action classes:
· ActionDataCommands
· ActionEditCommands
· ActionFieldCommands
· ActionMoveCommands
· ActionSelectCommands
You can also use action to send a user-defined action constant to a built-in action method. User-defined action 
constants are simply integers that don't interfere with ObjectPAL's constants. You can use them to signal other 
parts of an application.
This action method is distinct from the built-in action method for a form or for any other UIObject. The built-in 
action method for an object responds to an action event, while this method causes an ActionEvent.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMENUACTION;OPAL_METH_AEID;OPAL_METH_AESID;',
0,"Defaultoverview",)} Related Topics



action example
The following example is attached to a button's mouseUp method. If you click the button, the pointer moves to 
the next record. If you press and hold SHIFT and click the button, the pointer moves to the next set of records. 
The action constants DataFastForward and DataNextRecord behave like the Fast Forward and Next Record 
buttons on the Toolbar. Assume that CUSTOMER refers to a table frame on the form and that nextRecordOrFast is
a button on the form. Because the nextRecordOrFast button is not in the same containership hierarchy as 
CUSTOMER, the action doesn't bubble up to CUSTOMER automatically. Instead, the action must be sent to the 
CUSTOMER object explicitly.
; nextRecordOrFast::mouseUp
method mouseUp(var eventInfo MouseEvent)
; if the tableFrame isn't active, then move to it
if NOT CUSTOMER.focus then
  CUSTOMER.Name.moveTo()
endIf
; if SHIFT key is down, go to next set of records,
;  otherwise go to next record
if eventInfo.isShiftKeyDown() then
   CUSTOMER.action(DataFastForward)
else
   CUSTOMER.action(DataNextRecord)
endIf
endMethod



atFirst method
Reports if the pointer is positioned at the first record of a table.

Syntax
atFirst ( ) Logical

Description
atFirst returns True if the pointer is positioned at the first record of a table; otherwise, it returns False. atFirst 
respects the limits of restricted views displayed in a linked table frame or multi-record object.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIATLA;',0,"Defaultoverview",)} Related Topics



atFirst example
The following example assumes that CUSTOMER specifies a table frame on the form and that goToFirstButton is 
a button on the form. The code determines the pointer position and moves it to the first record of the CUSTOMER
table frame.
; goToFirstButton::pushButton
method pushButton(var eventInfo Event)
if NOT CUSTOMER.atFirst() then
  CUSTOMER.home()
  ; this has the same effect as:  CUSTOMER.action(DataBegin)
endIf
endMethod



atLast method
Reports if the pointer is positioned at the last record in a table.

Syntax
atLast ( ) Logical

Description
atLast returns True if the pointer is positioned at the last record of a table; otherwise, it returns False. atLast 
respects the limits of restricted views displayed in a linked table frame or multi-record object.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIATFI;',0,"Defaultoverview",)} Related Topics



atLast example
The following example assumes that CUSTOMER specifies a table frame on the form and that goToLastButton is a
button on the form. The code determines the pointer position and moves it to the last record of CUSTOMER table 
frame.
; goToLastButton::pushButton
method pushButton(var eventInfo Event)
if NOT CUSTOMER.atLast() then
  CUSTOMER.end()
  ;this has the same effect as:  CUSTOMER.action(DataEnd)
endIf
endMethod



attach
Binds a UIObject variable to a specified design object.

Syntax
1. attach ( ) Logical
2. attach ( const objectVar UIObject ) Logical
3. attach ( const objectName String ) Logical
4. attach ( const form Form [ , objectName String ] ) Logical
5. attach ( const report Report [ , objectName String ] ) Logical

Description
attach binds a UIObject variable to a specified design object. You can also use attach to assign a UIObject to an
item in an Array.
Syntax 1 binds the variable to the object that called attach (self).
Syntax 2 binds the variable to another UIObject which is specified by a UIObject variable (objectVar) in one of the
following ways:
Specification Example
UIObject variable var

u1, u2 UIObject
endVar
u1.attach()   ; Attach to self.
u2.attach(u1) ; Attach to a UIObject variable.

UIObject name var
u1 UIObject

endVar
; Attach to an object named nameFld.
u1.attach(nameFld)

Containership path var
u1       UIObject
aForm Form

endVar
aForm.open("aform.fsl")
; Attach to an object named aField.
u1.attach(aForm.aPage.aField)

Syntax 3 binds the variable to another UIObject specified by name in objectName. For example, if a form 
contains a box named theFrame, the following statement binds the UIObject variable ui to the box:
ui.attach("theFrame")

Syntax 4 binds the variable to the form which is specified by the Form variable form, or to a UIObject in that form
which is specified by objectName.
Syntax 5 binds the variable to the report which is specified by the Report variable report, or to a UIObject which 
is specified by objectName.
 Note

· Some of the methods in the UIObject class can be used for forms if you attach a UIObject variable to the form. 
Syntax 4 of the attach method allows you to attach a UIObject variable to a form so that you can access those 
methods. For example, to send a mouseUp event to another form's form-level mouseUp built-in event 
method, you must attach a UIObject variable to an open form.

 Examples
{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMOTO;',0,"Defaultoverview",)} Related Topics



attach method examples
Example1          Using the various syntax forms
Example2          Using attach to assign a UIObject to an item in an array



attach example 1
The following example displays various forms of the attach syntax. First, the code attaches a variable named 
objBox to the active object (self) and changes its color. Next, the code attaches objBox to another object and 
uses objBox to change that object's color. A second example for of the same syntax opens another form, 
attaches objBox to a box on the second form, and uses objBox to change the color of the other form's object.
You can attach to an object name on another form by including the form handle in the object name. Provide the 
handle to the form in the first argument and the object name on the specified form as a string in the string.
This example assumes the active form contains two boxes, thisBox and thatBox and the secondary form contains
one box, named otherBox. The code is attached to thisBox.
; thisBox::mouseUp
method mouseUp(var eventInfo MouseEvent)
var
  objBox, 
  objForm    UIObject
  otherForm  Form
endVar

objBox.attach()           ; binds objBox to thisBox
objBox.color = DarkMagenta

objBox.attach(thatBox)    ; binds objBox to thatBox
objBox.color = Magenta

; assume the form uiattch2.fsl exists and it has 
; one object named otherBox
if otherForm.open("uiattch2.fsl") then
  objBox.attach(otherForm.otherBox)
  objBox.color = DarkBlue
  sleep(2000)
  otherForm.close()
endIf

if otherForm.open("uiattch2.fsl") then
  ; notice that the object name is given as a string
  objBox.attach(otherForm, "otherBox")
  objBox.color = LightBlue
  sleep(2000)
  otherForm.close()
endIf

endMethod



attach example 2
The following example uses attach to assign a UIObject to an item in an array:
method pushButton(var eventInfo Event)
   const
      kOneInch = 1440 ; One inch = 1,440 twips.
      kShowHandles = Yes
   endConst

   var
      foForm      Form
      uiTempObj   UIObject
      arObjects   Array[2] UIObject
   endVar

   foForm.create()

   uiTempObj.create(BoxTool, 700, 700, kOneInch, kOneInch, foForm)
   arObjects[1].attach(uiTempObj)

   uiTempObj.create(BoxTool, 700, 2500, kOneInch, kOneInch, foForm)
   arObjects[2].attach(uiTempObj)

   foForm.setSelectedObjects(arObjects, kShowHandles)

endMethod



bringToFront method
Displays an object in front of other objects.

Syntax
bringToFront ( )

Description
bringToFront moves a UIObject to the front drawing layer of a window, displaying it in front of other objects. If 
UIObject is a form, this method displays the form window in front of all other windows.
This method works in both design and run mode, and you do not have to select the object. The effects of this 
method might not be noticeable unless the objects partially overlap. This method is also used if you want to 
rearrange the objects' tab order.
 Note

· When you change the front-to-back positions of objects, you also change their tab order. Objects always tab 
from back to front.

 Example
{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UISENDTOBACK;',0,"Defaultoverview",)} Related Topics



bringToFront example
In the following example, the pushButton method for a button displays an animated sequence of twelve 
bitmaps. This code uses two for loops and the bringToFront method to cycle through the bitmaps forward and 
backward.
;btn1 :: pushButton
method pushButton(var eventInfo Event)
   var
      siCounter SmallInt
   endVar

   ;Cycle through bitmaps.
   for siCounter from 1 to 12
      ; Assume the bitmap objects have names like bmp1, bmp2, etc.
      pge1.("bmp" + string(siCounter)).bringToFront()
      sleep(100)
   endFor

   ;Cycle through bitmaps in reverse order.
   for siCounter from 11 to 1 step -1
      pge1.("bmp" + string(siCounter)).bringToFront()
      sleep(100)
   endFor
endMethod



broadcastAction method
Broadcasts an action to an object and the objects it contains.

Syntax
broadcastAction (const actionID SmallInt)

Description
broadcastAction sends the ActionEvent specified in actionID to an object, and then sequentially to each object 
it contains. The action is sent depth-first through the containership hierarchy, not breadth-first. By default, 
contained objects bubble the action up through the hierarchy.
For example, suppose a page named thePage contains two boxes (boxOne and boxTwo) and boxOne contains a 
button btnOne. A call to thePage.broadcastAction(actionID) sends the action specified by actionID to the 
objects in the following order:
1. thePage (specified by dot notation)
2. boxOne (contained by thePage)
3. btnOne (contained by boxOne, at a lower level in the hierarchy)
4. boxTwo (also contained by thePage, at the same level as boxOne in the hierarchy)
The value of actionID can be a user-defined action constant or a constant from one of the following Action 
classes:
· ActionDataCommands
· ActionEditCommands
· ActionFieldCommands
· ActionMoveCommands
· ActionSelectCommands
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIACTI;OPAL_METH_UIMENUACTION;OPAL_METH_UIPOS
TACTION;OPAL_TYPE_ACTIONEVENT;OPAL_ACTIONEVENT_USERDEFINEDCONSTANTS;',0,"Defaultovervie
w",)} Related Topics



broadcastAction example
In the following example, the form's built-in action method uses broadcastAction to send all the objects in the 
page pge1 a user-defined action. When the form switches to edit mode, it sends UserAction + 1. When the form 
leaves edit mode, it sends UserAction + 2. Each field's label then uses the user-defined action to color each label
Red or Black.
The following code is attached to the form's built-in action method:
;frm1 :: action
method action(var eventInfo ActionEvent)

   if eventInfo.isPreFilter() then
      ;// This code executes for each object on the form:
      
   else
      ;// This code executes only for the form:
      
      switch
         case eventInfo.id() = DataBeginEdit :
               pge1.broadcastAction(UserAction + 1)

         case eventInfo.id() = DataEndEdit :
               pge1.broadcastAction(UserAction + 2)
      endSwitch

   endIf

endmethod

The following code is attached to each label's built-in action method:
;label :: action
method action(var eventInfo ActionEvent)
   ;Duplicate this code on each object (or create a prototype object)
   ;you wish toggle the font color from black to red when
   ;the form goes in and out of edit mode.

switch
   case eventInfo.id() = UserAction + 1 : self.font.color = Red
   case eventInfo.id() = UserAction + 2 : self.font.color = Black
endSwitch
endmethod



cancelEdit method
Cancels record changes without ending Edit mode.

Syntax
cancelEdit ( ) Logical

Description
cancelEdit cancels changes you've made to the active record. This method returns True if successful; otherwise,
it returns False. To cancel record changes, use cancelEdit before moving the pointer from the active record. If 
you move the pointer, changes to the record are committed.
cancelEdit has the same effect as the action constant DataCancelEdit. This means that the following 
statements are equivalent:
obj.cancelEdit() 
obj.action(DataCancelEdit)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICURR;OPAL_METH_UIEDIT;OPAL_METH_UIECED;',0,"De
faultoverview",)} Related Topics



cancelEdit example
The following example attaches a UIObject variable (noChange) to a table frame (CUSTOMER). (From then on 
noChange is used as a handle to the table frame.) The code searches for a value in the Customer table, and, if 
found, changes the value. Before leaving the record, the change is canceled using the cancelEdit method. This 
example assumes that you have one page on the form (pageOne), a table frame attached to the Customer table,
and a button (CancelEditButton).
; CancelEditButton::pushButton
method pushButton(var eventInfo Event)
var
  noChange UIObject
endVar

noChange.attach()
noChange.attach(pageOne.CUSTOMER)
noChange.edit()
if noChange.locate("Name", "Unisco") then
  noChange."Name" = "Jones"   ; prepare to change the record
  msgInfo("noChange.'Name'", noChange."Name".value)      
  noChange.cancelEdit()        ; belay that order!
                           ; record not changed, 
endIf
noChange.endEdit()         ; exit Edit mode

endMethod



convertPointWithRespectTo method
Changes the frame of reference for calculating the coordinates of a point.

Syntax
convertPointWithRespectTo ( const otherUIObject UIObject, const oldPoint Point, var 
convertedPoint Point )

Description
convertPointWithRespectTo changes the frame of reference for calculating the coordinates of a point. 
Coordinates are usually calculated relative to the upper-left corner of the object's container (or the container's 
frame, in the case of an ellipse). This method instead calculates a point's position relative to the upper-left 
corner of the object specified in otherUIObject.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_TYPE_POINT;',0,"Defaultoverview",)} Related Topics



convertPointWithRespectTo example
The following example retrieves and displays the position of an object named innerBox. innerBox is contained by
outerBox on a page named pageOne. First, the position of outerBox relative to the upper-left corner of the page 
is calculated. Next, the position of innerBox, relative to the upper-left corner of outerBox is calculated. Finally, 
the position of innerBox is converted with respect to the page, allowing you to determine the distance between 
innerBox and the top and left edges of the page.
; alignInnerBox::pushButton
method pushButton(var eventInfo Event)
var
  innerPos,
  outerPos, 
  convertedPos  Point
  x, y, w, h    LongInt
endVar

outerBox.getPosition(x, y, w, h)
outerPos = point(x, y) ; convert x and y from  
outerPos.view("Outer box position") ; outerBox to a point
innerBox.getPosition(x, y, w, h)
innerPos = point(x, y)
innerPos.view("Inner box position unconverted")
; how far is innerPos from the upper left corner of the page?
outerBox.convertPointWithRespectTo(pageOne, innerPos, convertedPos)
convertedPos.view("Inner box position converted")
endMethod



copyFromArray method
Copies data from an array to a table record.

Syntax
copyFromArray ( const ar Array[ ] AnyType) Logical

Description
copyFromArray copies data from an array ar to a UIObject (usually a table frame or multi-record object). The 
first element of the array is copied to the first field of the table, the second element to the second field, and so 
on until the array is exhausted or the record is full.
This method fails if you copy an unassigned array element or if the structures do not match. (This can never 
happen if the array was created by copyToArray, which assigns a blank value if a field is blank.) This method 
also fails if the form is not in Edit mode. If there are more elements in the array than fields in the record, the 
extra elements are ignored.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICTO;',0,"Defaultoverview",)} Related Topics



copyFromArray example
The following example assumes that a form contains a table frame named CUSTNAME. The CUSTNAME table has 
three fields: Last name, A20; First name, A20; and Middle Initial, A1. This code edits CUSTNAME, creates an array
with three elements, creates a new record in CUSTNAME and copies data from the array to the record.
; createRecord::pushButton
method pushButton(var eventInfo Event)
var
  nameArray Array[3] String
endvar
CUSTNAME.edit()            ; start Edit mode
nameArray[1] = "Hall"      ; fill the array with the record to insert
nameArray[2] = "Robert"
nameArray[3] = "A"
CUSTNAME.action(DataInsertRecord) ; insert a blank record first
CUSTNAME.copyFromArray(nameArray) ; copy the array to the new record
CUSTNAME.endEdit()
endMethod



copyToArray method
Copies data from a record to an array.

Syntax
copyToArray ( var ar Array [ ] AnyType ) Logical

Description
copyToArray copies fields from the record of a UIObject (usually a table frame or multi-record object) to an 
array. You must declare the array as AnyType, or as a type that matches each field in the table. If the array is 
resizeable, it expands to hold the number of fields in the record. If the array is not resizeable, it discards the 
fields it cannot hold.
The value of the first field is copied to the first element of the array, the value of the second field to the second 
element, and so on. The size of the array is equal to the number of fields in the record. The record number field 
and any display-only or calculated fields are not copied to the array.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICFROM;',0,"Defaultoverview",)} Related Topics



copyToArray example
The following example assumes that there are two table frames on a form, named CUSTOMER and CUSTARC, and
one button, named archiveButton. The form itself is renamed thisForm. When archiveButton is pushed, the 
active record in CUSTOMER is moved to CUSTARC.
This code looks at the Editing property of the form; if it's False, this code starts Edit mode. copyToArray then 
copies the active record in CUSTOMER to the arcRecord array and deletes the active record. If the active record 
can't be locked and deleted, it is not copied to the target table CUSTARC. If the record can be deleted, 
copyToArray writes the contents of the array to a new blank record in the target table.
; archiveButton::pushButton
method pushButton(var eventInfo Event)
var
  arcRecord Array[] String
endVar

; check to see if form is in edit mode
if thisForm.Editing = False then ; if not, then start
  CUSTOMER.action(DataBeginEdit)
endIf

; move the active record from CUSTOMER to archive in CUSTARC
CUSTOMER.copyToArray(arcRecord)
arcRecord.view()           ; take a look at the array
; if the record can't be locked, it won't be deleted
if CUSTOMER.deleteRecord() = True then
  ; if it is deleted, then copy it to the archive table
  CUSTARC.insertRecord()            ; insert blank record
  CUSTARC.copyFromArray(arcRecord)  ; copy array to blank record
endIf

endMethod



copyToToolbar method
Copies an object to the Toolbar where it can be used as a prototype object.

Syntax
copyToToolbar ( ) Logical

Description
copyToToolbar copies an object (including its properties and methods) to the Toolbar. New objects created 
using the corresponding Toolbar tool will have the new properties, and existing objects do not change.
For example, create a box (interactively or using ObjectPAL) and set its color to red, and add code to its built-in 
mouseClick method. If you copy this box to the Toolbar, all new boxes you create are red and have the same 
code attached to the mouseClick method.
copyToToolbar copies all component objects in a compound object. For example, when you copy a labeled field 
object, you copy the field object, the label, and the edit region. Tables include headers, labels, records, and 
fields. Multi-record objects include records only. Crosstabs include cells and fields. They can distinguish the three 
different cell types, so you can have three different types of fields which have different colors, and so on.
You can also use copyToToolbar to copy the component objects separately. However, if an object contains 
objects, but is not a compound object, the contained objects are not copied.
Changes you make using copyToToolbar apply only to the current Corel Paradox session. To save the tool's new 
properties to the next session, call saveStyleSheet. 
If an object does not have a corresponding tool on the Toolbar, Corel Paradox copies its properties and methods 
to a hidden tool. All new objects of that type will have those properties and methods. For example, the Toolbar 
does not have a tool for creating a page. However, you can set a page's properties and methods, and call 
copyToToolbar to apply the same properties and methods to a new page.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_FOGETPROTOPROPERTY;OPAL_METH_FOSAVESTYLESHE
ET;OPAL_METH_FOSELECTCURRENTTOOL;OPAL_METH_FOSETPROTOPROPERTY;OPAL_METH_SYGETDEFAU
LTPRINTERSTYLESHEET;OPAL_METH_SYGETDEFAULTSCREENSTYLESHEET;OPAL_METH_SYSETDEFAULTPRI
NTERSTYLESHEET;OPAL_METH_SYSETDEFAULTSCREENSTYLESHEET;',0,"Defaultoverview",)} Related 
Topics



copyToToolbar example
In the following example, a button named btnCreateStyleSheet uses enumObjectNames to fill an array 
arObjNames. A for loop cycles through the array and copies the object to the Toolbar using copyToToolbar. A 
call to saveStyleSheet creates (or overwrites) a style sheet with the name in the String variable stSheet. You 
can paste the following code into the pushButton method for a button on any form you want to use as a style 
sheet:
;btnCreateStyleSheet :: pushButton
method pushButton(var eventInfo Event)
   var
      f                  Form
      stSheet      String
      arObjNames   Array[] Anytype
      siCounter   SmallInt
   endVar

   f.attach()               ; Attach to this form.
   f.enumObjectNames(arObjNames)   ; Fill array with object names.

   ; Prompt user for name of new style sheet.
   stSheet = "Style sheet name"
   stSheet.view("Enter name of style sheet")

   if stSheet = "Style sheet name" then   ; If variable was not changed,
      return                  ; quit the operation.
   endIf

   for siCounter from 1 to arObjNames.size()   ; Cycle through array
      copyToToolbar(f.(arObjNames[siCounter]))   ; and copy objects to
   endFor                        ; the Toolbar.

   if not f.saveStyleSheet(stSheet, True) then
      errorShow("Error saving style sheet", "Check path & filename")
   endIf
endMethod



create method
 

Creates an object.

Syntax
1. create ( const objectType SmallInt, const x LongInt, const y LongInt, const w LongInt, const
h LongInt [, const container UIObject ] )
2. create ( const nativeObject Binary, const container UIObject ) Logical

Description
create creates the object specified in objectType (use one of the UIObjectTypes constants) at a position 
specified in x and y, with a width specified in w, and a height specified in h. x, y, w, and h are assumed to be in 
twips. The optional argument container specifies a container object for the new object.
Syntax 2, uses create to create the object specified by nativeObject. nativeObject is a binary object that can be 
generated by pasting a UIObject (Corel Form Object) from the Clipboard. create works only in form design mode.
create returns True if successful; otherwise it returns False.
 Note

· When you use create to create an object, the object is invisible. To make it visible, set its Visible property to 
True. To delete an objet at run time use the delete method.

 Example
{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIDELETE;OPAL_METH_UIMETHODSET;',0,"Defaultovervi
ew",)} Related Topics



create example
In the following example, code is attached to the mouseUp method for pageOne on a form. This example 
creates a box, names it Fred, colors it blue, and makes it visible. The code then creates an ellipse whose size 
position is specified in Fred, and whose container is set to Fred.
; pageOne::mouseUp
method mouseUp(var eventInfo MouseEvent)
const

kOneInch = 1440 ; One inch = 1,440 twips.
endConst
var
  ui UIObject
  fm Form
endvar

; create a Blue box, named Fred, and make it visible
ui.create(BoxTool, 144, 144, 2 * kOneInch, 2 * kOneInch)
ui.Name = "Fred"
ui.Color = Blue
ui.Visible = True
; create a Green ellipse inside Fred, named Bill
fm.attach()
ui.create (EllipseTool, 288, 288, kOneInch, kOneInch, fm.Fred)
ui.Name = "Bill"
ui.Color = Green
ui.Visible = True
endMethod



currRecord method
 Reads the active record into the record buffer.

Syntax
currRecord ( ) Logical

Description
currRecord cancels changes you've made to the active record, and displays a refreshed version from saved 
data. currRecord leaves a locks on locked records. This method returns True if successful; otherwise, it returns 
False.
currRecord has the same effect as the action constant DataRefresh. This means that the following statements 
are equivalent:
obj.currRecord()
obj.action(DataRefresh)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICANCELEDIT;',0,"Defaultoverview",)} Related Topics



currRecord example
The following examples assumes that a form contains a table frame bound to Orders;
;refreshRecord::pushButton
method pushButton(var eventInfo Event)
ORDERS.edit()            ; start edit
ORDERS.Amount_Paid = 321.45   ; make a change
message("Watch closely now.")
sleep(2000)
ORDERS.currRecord()      ; refreshes record from disk,
                         ; any changes are lost, record
                         ; is not locked
if ORDERS.recordStatus("Locked") then
  msgInfo("FYI", "The record is still locked.")
endIf
endMethod



delete method
 Deletes an object from a form.

Syntax
delete ( )

Description
delete deletes an object from a form at run time.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICREATE;OPAL_METH_UIMETHODSET;',0,"Defaultovervi
ew",)} Related Topics



delete example
The following examples assumes that a form contains a method that creates a box named Fred and an ellipse 
inside Fred named Bill. Because these objects are created at run time, they can't be referenced directly by this 
method. This code attaches to the object using a string evaluated at run time. See the example for create for 
details about the mouseUp method (on the form) that creates the objects to be deleted.
; pageOne::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)
var
  ui   UIObject
endVar

;  Fred and Bill are objects created by the mouseUp method
;  for pageOne of this form. Because they are created at
;  run time, you can't directly refer to them as objects in
;  code. Consequently, attach is used to attach the ui var
;  to the string "Fred.Bill", which is evaluated at run time.
;  As long as mouseUp is called before mouseRightUp, those 
;  objects will exist.
if ui.attach("Fred.Bill") then
  ui.delete()
  ui.attach("Fred")
  ui.delete()
  {This would do the same thing as previous four lines,
    because Fred contains Bill at run time: 
    ui.attach("Fred")
    ui.delete()
  }
endIf
endMethod



deleteRecord method
Deletes the active record from a table.

Syntax
deleteRecord ( ) Logical

Description
deleteRecord deletes the active record from a table without prompting for confirmation. This method returns 
True if successful; otherwise, it returns False. Deleted dBASE tables can be restored after deleteRecord, but 
Corel Paradox tables cannot.
deleteRecord has the same effect as the action constant DataDeleteRecord. This means that the following 
statements are equivalent:
obj.deleteRecord()
obj.action(DataDeleteRecord)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIEMP;OPAL_METH_UIIREC;OPAL_METH_UIIAFT;OPAL_ME
TH_UIIBEF;',0,"Defaultoverview",)} Related Topics



deleteRecord example
The following example assumes that there are two table frames on a form, CUSTOMER and CUSTARC, and one 
button, named archiveButton. The form is renamed thisForm. When archiveButton is pushed, the active record in
CUSTOMER is moved to CUSTARC.
To begin, this method determines the Editing property of the form; if it is False, this code starts Edit mode. This 
code then copies the active record in CUSTOMER to the arcRecord array and deletes the active record. If the 
active record can't be locked and deleted, it is not copied to the target table. If the record can be deleted, this 
code writes the contents of the array to the target table in a new blank record.
; archiveButton::pushButton
method pushButton(var eventInfo Event)
var
  arcRecord Array[] String
endVar

; check to see if form is in edit mode
if thisForm.editing = False then ; if not, then start
  CUSTOMER.action(DataBeginEdit)
endIf

; move the active record from CUSTOMER to archive in CUSTARC
CUSTOMER.copyToArray(arcRecord)
arcRecord.view()           ; take a look at the array
; if the record can't be locked, it won't be deleted
if CUSTOMER.deleteRecord() = True then
  ; if it is deleted, then copy it to the archive table
  CUSTARC.insertRecord()
  CUSTARC.copyFromArray(arcRecord)
endIf

endMethod



dropGenFilter method
Removes the filter criteria associated with a field, multi-record object, or table frame.

Syntax
dropGenFilter ( ) Logical

Description
dropGenFilter removes the filter criteria associated with a UIObject. All associated indexes and ranges remain.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIGETGENFILTER;OPAL_METH_UISETGENFILTER;OPAL_M
ETH_UISETRANGE;OPAL_METH_TCDROPGENFILTER;',0,"Defaultoverview",)} Related Topics



dropGenFilter example
In the following example, a form's data model contains the Orders and Lineitem tables linked 1:M. The form also 
contains a button named btnDropFilters. The pushButton method for btnDropFilters uses dropGenFilter on 
one UIObject connected to each table in the data model. This code allows you to remove filter criteria from 
complex forms.
;btnDropFilters :: pushButton
method pushButton(var eventInfo Event)
   ; Order_No is a field object bound to
   ; the Order No field in the Orders table.
   Order_No.dropGenFilter()

   ; LINEITEM is a table frame bound to the Lineitem table.
   LINEITEM.dropGenFilter()
endMethod



edit method
Puts a table in Edit mode.

Syntax
edit ( ) Logical

Description
edit puts all tables on a form in Edit mode, allowing you to make changes. If the form is already in Edit mode, 
edit is ignored.
In Edit mode, record changes are posted when the focus moves off the record, when the table receives a 
DataPostRecord or DataUnlockRecord action, or when endEdit is executed. Use cancelEdit to cancel changes to
the record before moving on.
edit has the same effect as the action constant DataBeginEdit. This means that the following statements are 
equivalent:
obj.edit()
obj.action(DataBeginEdit)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICANCELEDIT;OPAL_METH_UIECED;',0,"Defaultovervie
w",)} Related Topics



edit example
The following examples assumes that a form contains a table frame bound to the Orders table, and one button, 
named changeDate. The pushButton method for changeDate examines the Sale Date and Ship Date fields of 
the active record, and updates Sale Date if Ship Date is less than Sale Date. Once the transaction is complete, 
endEdit posts the record and ends Edit mode.
; changeDate::pushButton
method pushButton(var eventInfo Event)

; first, see if you want to change Ship Date
if ORDERS."Sale Date".value > ORDERS."Ship Date".value then
  ; start Edit mode for the form
  ORDERS.edit()
  ; if Sale Date is later than Ship Date, change Ship Date
  ORDERS."Ship Date".value = ORDERS."Sale Date".value + 5
  ORDERS.endEdit()      ; end editing changes to the record
                        ; can't be canceled
endIf

endMethod



empty method
 Deletes all records from a table.

Syntax
empty ( ) Logical

Description
empty deletes all records from a table without prompting for confirmation. The table does not have to be in Edit 
mode, but a write lock (at least) is required. This operation cannot be undone for Corel Paradox tables, and does 
not affect SQL tables.
empty removes information from the table, without deleting the table itself. Compare this method to delete  
(Table type), which does delete the table.
empty tries to place a write lock on the table. empty must delete each record one at a time. For dBASE tables, 
this method flags all records as deleted, without removing them from the table. Records can be undeleted from a
dBASE table using the unDeleteRecord method (unless they have been removed using the compact (TCursor 
type) method).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIDELE;OPAL_METH_TBDELETE;OPAL_METH_TBEMPT;OP
AL_METH_TCEMPT;',0,"Defaultoverview",)} Related Topics



empty example
The following example assumes that a form has three buttons: createTable, emptyTable, and deleteTable. 
createTable creates a copy of the Orders table named TmpOrder and places a table frame on the form, and binds
TmpOrder to it. emptyTable deletes all the records from TmpOrder. deleteTable removes the table frame, 
removes the table from the form's data model, and deletes the temporary table.
The following code attaches to the createTable button:
; createTable::pushButton
method pushButton(var eventInfo Event)
var
  tbl Table
  ui  UIObject
endVar

tbl.attach("Orders.db")
tbl.copy("TmpOrder.db")  ; Copy Orders to TmpOrder.

ui.create(TableFrameTool, 720, 720, 4320, 1440) ; Create a TableFrame.
ui.TableName = "TmpOrder.db" ; This also adds table to data model.
ui.Visible = True

endMethod

The following code attaches to the emptyTable button:
; emptyTable::pushButton
method pushButton(var eventInfo Event)
var
  ui  UIObject
endVar

if ui.attach("TMPORDER") then
  if msgYesNoCancel("Empty", 
    "Delete all records from this table?") = "Yes" then
    ui.empty()  ; Deletes all records from the TMPORDERS table.

  endIf
endIf

endMethod

The following code attaches to the deleteTable button:
; deleteTable::pushButton
method pushButton(var eventInfo Event)
var
  tbl Table
  ui  UIObject
endVar

; Clean up.
if ui.attach("TMPORDER") then
  ui.delete()                   ; Delete table frame.
  DMRemoveTable("TmpOrder.db")  ; Remove table from data model.
  tbl.attach("TmpOrder.db")
  tbl.delete()                  ; Delete table.
endIf
endMethod



end method
Moves to the last record in a table.

Syntax
end ( ) Logical

Description
end moves to the last record in a table.
end has the same effect as the action constant DataEnd. This means that the following statements are 
equivalent:
obj.end()
obj.action(DataEnd)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIHOME;OPAL_METH_UINEXTR;OPAL_METH_UIPRIO;OPA
L_METH_UICURR;OPAL_METH_UISKIP;OPAL_METH_UIMOTO;',0,"Defaultoverview",)} Related Topics



end example
The following example moves to the last record in the Customer table. Assume that Customer is bound to a table
frame on the form, and that moveToEnd is a button on the form.
; moveToEnd::pushButton
method pushButton(var eventInfo Event)
CUSTOMER.end()  ; move to the last record
                ; same as:  CUSTOMER.action(DataEnd)
msgInfo("At the last record?", CUSTOMER.atLast())
endMethod



endEdit method
Removes a table from Edit mode and posts changes to the active record

Syntax
endEdit ( ) Logical

Description
endEdit removes a table from Edit mode and posts changes to the active record.
endEdit has the same effect as the action constant DataEndEdit. This means that the following statements are 
equivalent:
obj.endEdit()
obj.action(DataEndEdit)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICANCELEDIT;OPAL_METH_UIEDIT;',0,"Defaultoverview
",)} Related Topics



endEdit example
See the edit example. 



enumFieldNames method
Fills an array with the names of fields in a table.

Syntax
enumFieldNames ( var fieldArray Array[ ] String ) Logical

Description
enumFieldNames fills fieldArray with the names of the fields in a table. fieldArray is a resizeable array that you
must declare and pass as an argument. If fieldArray already exists, this method overwrites it without asking for 
confirmation. enumFieldNames returns True if it succeeds; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIEONA;',0,"Defaultoverview",)} Related Topics



enumFieldNames example
The following example uses enumFieldNames to write the field names from the Orders table to an array 
named fieldNames. Assume that a form has a table frame bound to Orders and a button named getFieldNames.
; getFieldNames::pushButton
method pushButton(var eventInfo Event)
var
  fieldNames Array[] String
endVar
ORDERS.enumFieldNames(fieldNames)
fieldNames.view()
endMethod



enumLocks method
Creates a Corel Paradox table listing the locks currently applied to a UIObject, and returns the number of locks.

Syntax
enumLocks ( const tableName String ) LongInt

Description
enumLocks creates the Corel Paradox table specified in tableName. tableName lists the locks currently applied 
to the table object. If tableName exists, this method overwrites it without asking for confirmation. If tableName is
open, enumLocks fails. For dBASE tables, this method lists only the lock that you've placed (not all locks 
currently on the table).
You can specify an alias or path in tableName. If an alias or path is not specified, Corel Paradox creates 
tableName in the working directory.
The following table displays the structure of tableName:
Field name Field type Description
UserName A15 User name
LockType A32 Lock type (e.g., Table Write Lock)
NetSession N Net level session number
Session N BDE session number (for locks placed by BDE)
RecordNumber N Record number (for record locks or image locks; otherwise, 0)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UILOCKSTATUS;OPAL_METH_TCLOCK;OPAL_METH_TCLST
A;',0,"Defaultoverview",)} Related Topics



enumLocks example
In the following example, the built-in pushButton method for the showLocks button creates a table listing the 
locks specified for the Customer table:
; showLocks::pushButton
method pushButton(var eventInfo Event)
var
  obj       UIObject
  howMany   LongInt
  enumTable TableView 
endVar
obj.attach(CUSTOMER)            ; table frame on form
lock("Customer", "Write")       ; put a write lock on Customer
howMany = obj.enumLocks("lockenum.db")  ; enumerate locks
message("There are ", howMany, " locks on Customer table.")
enumTable.open("lockenum.db")   ; show the resulting table
enumTable.wait()
enumTable.close()
endMethod



enumObjectNames method/procedure
Fills an array with the names of the objects in a form.

Syntax
enumObjectNames ( var objectNames Array[ ] String )

Description
enumObjectNames fills an array with object names. arrayName is a resizeable array that you declare and pass 
as an argument. If arrayName already exists, this method overwrites it without asking for confirmation.
enumObjectNames returns the names of bound and unbound objects, beginning with the object that called the
method, including the paths to objects that object contains. To enumerate all objects in a form, start 
enumObjectNames with the form. To enumerate all objects in a page, start it with the page. To enumerate all 
objects in a box, start it with the box.
To list object names in a table use enumUIObjectNames. 
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIEONT;OPAL_METH_UIEOPT;OPAL_METH_UIECTT;',0,"De
faultoverview",)} Related Topics



enumObjectNames example
The following example demonstrates the difference between enumObjectNames (which lists object names in 
an array) and enumUIObjectNames (which lists object names in a table). In this example, the pushButton 
method for getObjectNames writes all object names on the form to an array and to a table.
; getObjectNames::pushButton
method pushButton(var eventInfo Event)
   var
      foThisForm   Form
      arObjNames   Array[] String
      stTbName   String
      tvObjNames   TableView
   endVar

   stTbName = "objTable.db"
   foThisForm.attach() ; Get a handle to the current form.

   foThisForm.enumObjectNames(arObjNames)
   arObjNames.view("Objects in this form:")

   foThisForm.enumUIObjectNames(stTbName)
   tvObjNames.open(stTbName)
endMethod



enumSource method
Fills a table with the source code of the methods on a form.

Syntax
enumSource ( const tableName String, [ const recurse Logical ] ) Logical

Description
enumSource fills a table with the source code of the methods on a form. If tableName already exists, this 
method overwrites it without asking for confirmation. You can specify an alias or path in tableName. If an alias or 
path is not specified, Corel Paradox creates tableName in the working directory.
The following table displays the structure of the table created by enumSource:
Field name Type Description
Object A128 Object name
MethodName A128 Method name
Source M64 ObjectPAL code

If recurse is False, enumSource returns the method definitions for overridden methods on the active object. To 
include the source code for overridden methods on objects contained by the active object, set recurse to True.
If recurse is True, enumSource returns the definitions for overridden methods, beginning with the object that 
called this method, and including paths to objects that object contains. To enumerate all objects in a form, start 
enumSource with the form. To enumerate all objects in a page, start it with the page. To enumerate all objects 
in a box, start it with the box.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIENUMSOURCETOFILE;OPAL_METH_UIEOPT;OPAL_MET
H_UIECTT;OPAL_METH_FOENUMSOURCE;',0,"Defaultoverview",)} Related Topics



enumSource example
The following example uses enumSource to retrieve the source code for the entire form and to retrieve only the
source code for a button named btnCancel:
; getObjectNames::pushButton
const
   kRecurse   = Yes
   kNoRecurse = No
endConst

method pushButton(var eventInfo Event)
   var
      foThisForm   Form
      stTbName   String
      tvSource   TableView
   endVar

   stTbName = "objSrc.db"
   foThisForm.attach() ; Get a handle to the current form.

   foThisForm.enumSource(stTbName, kRecurse)
   tvSource.open(stTbName)

   ; Suspend execution until you close the table view.
   tvSource.wait()

   btnCancel.enumSource(stTbName, kNoRecurse)
   tvSource.open(stTbName)
endMethod



enumSourceToFile method
Writes the source code for a form or an object to a text file.

Syntax
enumSourceToFile ( const fileName String [ , const recurse Logical ] ) Logical

Description
enumSourceToFile writes the source code of the methods on a form to a text file. If fileName already exists, 
this method overwrites it without asking for confirmation. You can specify an alias or path in fileName . If an alias
or path is not specified, Corel Paradox creates fileName in the working directory.

If recurse is False, enumSourceToFile returns the method definitions for overridden methods on the active 
object. To include the source code for overridden methods on objects contained by the active object, set recurse 
to True.
If recurse is True, enumSourceToFile returns the definitions for overridden methods, beginning with the object 
that called this method, and including paths to objects that object contains. To enumerate all objects in a form, 
start enumSourceToFile with the form. To enumerate all objects in a page, start it with the page. To enumerate 
all objects in a box, start it with the box.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIENUMSOURCE;OPAL_METH_UIEOPT;OPAL_METH_UIECT
T;OPAL_METH_UIENUMSOURCETOFILE;',0,"Defaultoverview",)} Related Topics



enumSourceToFile example
The following example uses enumSourceToFile to retrieve the source code for the entire form and to retrieve 
only the source code for a button named btnCancel:
; getObjectNames::pushButton
const
   kRecurse   = Yes
   kNoRecurse = No
endConst

method pushButton(var eventInfo Event)
   var
      foThisForm   Form
   endVar

   foThisForm.attach() ; Get a handle to the current form.
   foThisForm.enumSource("formSrc.txt", kRecurse)

   btnCancel.enumSource("btnSrc.txt", kNoRecurse)
endMethod



enumUIClasses procedure
Writes a list of UIObject classes to a table.

Syntax
enumUIClasses ( const tableName String ) Logical

Description
enumUIClasses creates a table named tableName that contains a list of all UIObject classes (e.g., bitmap, box, 
and field) and the names of their associated properties. You can specify an alias or path in tableName; if an alias 
or path is not specified, Corel Paradox creates tableName in the working directory.
The following table displays the structure of the table created by enumUIClasses:
Field name Type Description
ClassName A32 Name of object class
PropertyName A64 Name of property
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIEONT;OPAL_METH_UIEOPT;',0,"Defaultoverview",)} 
Related Topics



enumUIClasses example
The following example writes a list of UIObject classes, including their types and properties, to a table named 
Tmpclass:
; writeClasses::pushButton
method pushButton(var eventInfo Event)
enumUIClasses("TmpClass.db")
endMethod



enumUIObjectNames method/procedure
Writes the names of each object in a form to a table.

Syntax
enumUIObjectNames ( const tableName String ) Logical

Description
enumUIObjectNames writes the names of each object in a form to a table. You can specify an alias or path in 
tableName. If an alias or path is not specified, Corel Paradox creates tableName in the working directory.
The following table displays the structure of the table created by enumUIObjectNames :
Field name Type Description
ObjectName A128 Name of object
ObjectClass A32 Type of object (e.g., button)

enumUIObjectNames returns the names of bound objects and unbound objects, beginning with the object that 
called this method, and including paths to any objects that object contains. To enumerate all objects in a form, 
make enumUIObjectNames start with the form. To enumerate all objects in a page, make it start with the 
page. To enumerate all objects in a box, make it start with the box.
To write the form's object names to an array, use enumObjectNames. 
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIEONA;OPAL_METH_UIEOPT;OPAL_METH_UIECTT;OPAL_
METH_FOENNAM;',0,"Defaultoverview",)} Related Topics



enumUIObjectNames example
See the enumObjectNames example. 



enumUIObjectProperties method/procedure
Lists the properties of an object.

Syntax
1. enumUIObjectProperties ( const tableName String ) Logical
2. enumUIObjectProperties ( const properties DynArray[ ] String ) Logical

Description
enumUIObjectProperties lists the properties of an object in a table or a dynamic array (DynArray).
Syntax 1 writes the data to the Corel Paradox table specified in tableName. You can specify an alias or path in 
tableName. If an alias or path is not specified, Corel Paradox creates tableName in the working directory. If the 
table already exists, Corel Paradox overwrites it without asking for confirmation.
The table lists the properties of the specified object, and the properties of the objects it contains. The following 
table displays the structure of the table created by enumUIObjectProperties:
Field name Type Description
ObjectName A128 Name of the object
PropertyName A64 Name of the property
PropertyType A48 Data type of the corresponding property
PropertyValue A255 Value of the corresponding property

In Syntax 2, the properties of the object (but not the properties of objects it contains) are written to a DynArray 
named properties. The DynArray keys are the property names, and the items are the corresponding values. You 
must declare the DynArray before calling enumUIObjectProperties .
 Examples

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIEONT;OPAL_METH_UIECTT;',0,"Defaultoverview",)} 
Related Topics



enumUIObjectProperties method examples
Example1         Writing property values to a table
Example2          Writing property values to the dynamic array



enumUIObjectProperties example 1
The following example assumes that getProperties is a button on a form designed to display fields from the 
Customer table. The pushButton method for getProperties uses enumUIObjectProperties to write all of the 
property values for each object on the form to a table named CstProps.
; getProperties::pushButton
method pushButton(var eventInfo Event)
   enumUIObjectProperties("CstProps.db")
endMethod



enumUIObjectProperties example 2
The following example assumes that getProperties is a button on a form. The pushButton method for 
btnProperties uses enumUIObjectProperties to write all of its property values to a dynamic array named dyn 
and then display it.
; btnProperties::pushButton
method pushButton(var eventInfo Event)
   var
      dyn   DynArray[] String
   endVar

   self.enumUIObjectProperties(dyn)
   dyn.view("Properties of this button:")
endMethod



execMethod method/procedure
Calls a custom method that takes no arguments.

Syntax
execMethod ( const methodName String )

Description
execMethod calls the custom method specified by methodName. The method specified in methodName takes 
no arguments. Because execMethod allows you to call a method based on the contents of a variable, the 
compiler does not know which method to call until run time.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMETHODDELETE;OPAL_METH_UIMETHODGET;OPAL_ME
TH_UIMETHODSET;',0,"Defaultoverview",)} Related Topics



execMethod example
The following examples assumes that a form contains three fields: fieldOne, fieldTwo, and fieldThree. The form's 
Var window declares a dynamic array named objPreProc, and the form's custom method is named 
fieldOnePreProc. The form's open method (which appears in the isPreFilter=False clause) creates elements in 
the objPreProc array. An element is created for each object on the form that has a preprocessing custom method.
In the following example, fieldOne is assumed to require some preprocessing. An array element is created with 
the index pageOne.fieldOne, and the custom method name fieldOnePreProc. The isPreFilter=True clause is 
called for each object on the form to determine whether an array element in objPreProc corresponds to the 
active object. If so, the custom method for that object is called.
The following code attaches to the custom method fieldOnePreProc:
; form design::fieldOnePreProc  (custom method)
; This method is called during the form's preFilter clause,
; when the current object is fieldOne.
method fieldOnePreProc()
fieldOne.color = "Red"    ; change the color of the field
fieldOne.Value = "Initialized by the form's open method"
endMethod

The following code goes in the form's Var window:
; Var window for the form
Var
  ObjPreProc DynArray[] String  ; indexed by object name, will
                                ; hold names of methods to execute
                                ; when isPreFilter is true
endVar

The following code attaches to the form's open method:
method open(var eventInfo Event)
var
  targObj   UIObject   ; holds the target object
  targName  String     ; target object's name
  element   AnyType    ; index to dynamic array objPreProcs
endVar
if eventInfo.isPreFilter()
  then
    ; code here executes for each object in form
    eventInfo.getTarget(targObj)  ; identify the current target
    targName = targObj.name       ; retrieve the name of the target
    forEach element in objPreProc ; iterate through array
      if element = targName then  ; is the target name there?
                                  ; if so, execute the corresponding
                                  ; custom method
        execMethod(objPreProc[targName])  
      endIf
    endForEach
  else
    ; code here executes just for form itself

    ; assign elements to the objPreProc array to indicate
    ; objects for which there is a preprocess custom method
    objPreProc["fieldOne"] = "fieldOnePreProc"
endIf
endMethod



forceRefresh method
Instructs an object to display the specified data in the underlying table, and causes a calculated field to 
recalculate.

Syntax
forceRefresh ( ) Logical

Description
forceRefresh instructs an object to display the specified data in the underlying table, and causes a calculated 
field to recalculate. forceRefresh also causes a calculated field to recalculate its value, and causes a crosstab 
or chart to re-evaluate its components.
Calling active.forceRefresh( ) is the same as calling active.action(DataRecalc) or pressing SHIFT + F9. 
active.forceRefresh( ) is a UIObject counterpart to the forceRefresh method defined for the TCursor type.
A call to forceRefresh affects the target object, objects contained by the target object, and objects bound to 
the same table as the target object. This method does not affect objects in other windows. For example, calling 
forceRefresh in a form does not refresh data displayed in a table window. Refresh each object in a form by 
declaring a UIObject variable and calling attach to assign it a value. Do not use a variable declared as a Form 
variable.
forceRefresh behaves as follows:
· If a table frame or MRO is active when you call forceRefresh, only the underlying table refreshes. Child tables

repaint, but do not discard cached data.
· If a field object is active when you call forceRefresh, the table associated with that field refreshes, and all 

fields dependent on it are repainted.
· You will not lose your active record position, provided the record still exists in the table.
· On an SQL server, a call to forceRefresh forces a read from the server. This is the only way to get a refresh 

from the server. forceRefresh only works on an SQL table if the table has a unique index.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICURR;OPAL_METH_TCFORCEREFRESH;',0,"Defaultover
view",)} Related Topics



forceRefresh example
The following example uses forceRefresh in code attached to a button's built-in pushButton method, allowing 
the user to control when data is refreshed. This example assumes you have interactively chosen the Database 
page from the Preferences tabbed dialog box and entered a large value (at least 3,600 seconds) in the Refresh 
rate dialog box. This code uses forceRefresh to refresh the Parts table each time the user clicks the button. 
Other tables that are bound to this form are refreshed once every 3,600 seconds (one hour).
method pushButton(var eventInfo Event)
   Parts.forceRefresh()
endMethod



getBoundingBox method
Returns the coordinates of the frame that bounds an object.

Syntax
getBoundingBox ( var topLeft Point, var bottomRight Point )

Description
getBoundingBox returns the coordinates of the top left corner (topLeft) and the bottom right corner 
(bottomRight) of the frame that bounds an object. The coordinates are specified relative to the form. When you 
select an object in the design window, its bounding box is visible.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICONV;',0,"Defaultoverview",)} Related Topics



getBoundingBox example
The following example draws a box around an ellipse based on the ellipse's bounding box. Assume that a form 
contains an ellipse named redCircle.
; redCircle::mouseUp
method mouseUp(var eventInfo MouseEvent)
var
  TopLeft,
  BotRight Point      ; to hold the points returned by getBoundingBox
  ui       UIObject   ; to create a new object
endVar

self.getBoundingBox(TopLeft, BotRight)
ui.create(BoxTool, TopLeft.x(), 
                   TopLeft.y(), 
                   BotRight.x() - TopLeft.x(),
                   BotRight.y() - TopLeft.y())
ui.Color = Green
ui.Translucent = Yes
ui.Visible = Yes

endMethod



getGenFilter method
Retrieves the filter criteria associated with a field, table frame, or multi-record object.

Syntax
1. getGenFilter ( criteria DynArray[ ] AnyType ) Logical
2. getGenFilter ( criteria Array[ ] AnyType [ , fieldName Array[ ] AnyType ] ) Logical
3. getGenFilter ( criteria String ) Logical

Description
getGenFilter retrieves the filter criteria associated with a field, table frame, or multi-record object. 
getGenFilter assigns them to a DynArray variable (Syntax 1) or to two Array variables (Syntax 2) that you 
declare and include as arguments. Values are not returned directly.
In Syntax 1, a dynamic array (DynArray) named criteria lists fields and filtering conditions as follows: the index is
the field name, and the item is the corresponding filter expression.
In Syntax 2, an Array named criteria lists filtering conditions, and the optional Array fieldName lists 
corresponding field names. If you omit fieldName, conditions apply to fields in the order they appear in the 
criteria array. The first condition applies to the first field in the table, the second condition applies to the second 
field, and so on.
If the arrays used in Syntax 2 are resizeable, getGenFilter adjusts the array size to equal the number of fields in
the underlying table. If fixed-size arrays are used, this method stores as many criteria as it can, starting with 
criteria field 1. If there are more array items than fields, the remaining items are left empty. If there are more 
fields than items, this method fills the array and then stops.
In Syntax 3, the filter criteria is assigned to a String variable named criteria. You must declare and pass criteria 
as an argument.
 Examples

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UISETGENFILTER;OPAL_METH_UIDROPGENFILTER;OPAL_
METH_UISETRANGE;OPAL_METH_TCGETGENFILTER;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Default
overview",)} Related Topics



getGenFilter method examples
Example1         Populating a dynamic array  (DynArray) with a table frame's criteria
Example2          Tracking the current filter criteria without setting flags



getGenFilter example 1
In the following example, the pushButton method for a button named btnSetFilter uses getGenFilter to 
populate a dynamic array (DynArray) named dyn with a table frame's filter criteria. The code then it examines 
the DynArray to see if the current criteria filters the Balance Due field for values greater than 10,000 and the 
Total Invoice field for values less than 65,000 and resets the filter if necessary.
;btnSetFilter :: pushButton
method pushButton(var eventInfo Event)
   var
      currentDyn,
      filterDyn   DynArray[] AnyType
      keysAr      Array[] AnyType
   endVar

   filterDyn["Balance Due"]   = "> 10000"
   filterDyn["Total Invoice"] = "< 65000"

   ORDERS.getGenFilter(currentDyn)   ; ORDERS is a table frame on a form.

   if currentDyn = filterDyn then
         return                         ; Filter is OK.
   else
         ORDERS.setGenFilter(filterDyn) ; Reset filter.
   endIf
endMethod



getGenFilter example 2
In the following example, the pushButton method for a button named btnShowFilter uses getGenFilter to 
populate a dynamic array (DynArray) named dyn with the current filter criteria. The code then displays the 
DynArray in a view dialog box. Use this technique as an alternative to setting flags to track the current filter 
criteria.
;btnShowFilter :: pushButton
method pushButton(var eventInfo Event)
   var
      dyn   DynArray[] AnyType
   endVar

   ORDERS.getGenFilter(dyn)   ; ORDERS is a table frame on a form.
   dyn.view("Current filter criteria")
endMethod



getHTMLTemplate method
Returns the HTML string of the UIObject.

Syntax
getHTMLTemplate ( ) String

Description
getHTMLTemplate generates source HTML for a UIObject and returns it as a String.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;;',0,"Defaultoverview",)} Related Topics



getHTMLTemplate example
In the following example, code in a script window manipulates a customer form by associating a form variable 
with the form, attaching to a particular field object on the form and generating a string containing the HTML 
source for this field. The HTML source is displayed in a window. Assume that the customer form contains the 
customer table in its data model. Fields on the form (including Customer No) are bound to corresponding fields in
the table. 
method run(var eventInfo Event)
var
   fm      Form
   UIO     UIObject
   stHTML  String
endVar

fm.open("customer.fsl")
UIO.attach(fm.Customer_No)      ; attach the UIO variable to the 
                                ; Customer_No field of the customer 
                                ; table
stHTML=UIO.getHTMLTemplate()
stHTML.view()                   ; displays: <TABLE><TR><TD>Customer No: 
                                ; </TD><TD><INPUT TYPE="TEXT" 
                                ; NAME="Customer_No"></TD></TR></TABLE>
endMethod



getPosition method
Reports the position of an object on the screen.

Syntax
getPosition ( const x LongInt, const y LongInt, const w LongInt, const h LongInt)

Description
getPosition retrieves the position of an object on the screen, relative to its container. Variables x and y specify 
the coordinates (in twips) of the upper-left corner of the object. Variables w and h specify the object's width and 
height (in twips). If the object is not specified, self is implied.
To ObjectPAL, the screen is a two-dimensional grid, with the origin (0, 0) at the upper-left corner of an object's 
container, positive x-values extending to the right, and positive y-values extending down.
For dialog boxes and for the Corel Paradox desktop application, the object's position is specifed relative to the 
entire screen; for forms, reports, and table windows, the position is specified relative to the Corel Paradox 
desktop.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UISPOS;',0,"Defaultoverview",)} Related Topics



getPosition example
The following example moves a circle across the screen in response to timer events. The pushButton method 
for toggleButton uses setTimer and killTimer to start or stop a timer, depending on the button's position. When
the timer starts, it issues a timer event every 100 milliseconds. Each timer event causes toggleButton's timer 
method to execute. The timer method locates the current position of the circle using getPosition, and moves it 
100 twips to the right using setPosition.
The following code attaches to toggleButton's pushButton method:
; toggleButton::pushButton
method pushButton(var eventInfo Event)
if buttonLabel = "Start Timer" then  ; if stopped, then start
  buttonLabel = "Stop Timer"         ; change label
  self.setTimer(100)          ; tell timer to issue a timer
                              ; event every 100 milliseconds
else
  buttonLabel = "Start Timer"         ; change label
  self.killTimer()                    ; stop the timer
endIf

endMethod

The following code attaches to toggleButton's timer method:
; toggleButton::timer
;   this method is called once for every timer event
method timer(var eventInfo TimerEvent)
var
  ui          UIObject
  x, y, w, h  SmallInt
endVar

ui.attach(floatCircle)          ; attach to the circle
ui.getPosition(x, y, w, h)      ; assign coordinates to vars
if x < 4320 then                ; if not at right edge of area
  ui.setPosition(x + 100, y, w, h)  ; move to the right
else
  ui.setPosition(1440, y, w, h)     ; return to the left
endIf

endMethod



getProperty method
Returns the value of a specified property.

Syntax
getProperty ( const propertyName String ) AnyType

Description
getProperty returns the value of the property specified in propertyName. Not all properties take strings as 
values. For example, if a property value is a number, this method returns a number. To return a string in each 
case, use getPropertyAsString.
Use getProperty when propertyName is a variable as an alternative to retrieving a property directly. Otherwise,
access the property directly/ The following code displays the syntax for getting property directly:
thisColor = myBox.Color
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIGPROST;OPAL_METH_UISPRO;',0,"Defaultoverview",)
} Related Topics



getProperty example
The following example creates a dynamic array that is indexed by property names and contains property values. 
The array's index is used as the argument to the getProperty command.
; boxOne::mouseUp
method mouseUp(var eventInfo MouseEvent)
var
  propNames DynArray[] AnyType    ; to hold property names & values
  arrayIndex           String     ; index to dynamic array
endVar

propNames["Color"] = ""
propNames["Visible"] = ""
propNames["Name"] = ""

foreach arrayIndex in propNames   ; assign the properties to the array
  propNames[arrayIndex] = self.getProperty(arrayIndex)
endforeach

propNames["Color"] = "DarkBlue"

foreach arrayIndex in propNames   ; set properties from the array
  self.setProperty(arrayIndex, propNames[arrayIndex])
endforeach

endMethod



getPropertyAsString method
Returns the value of a specified property as a string.

Syntax
getPropertyAsString ( const propertyName String ) String

Description
getPropertyAsString returns a string containing the value of the property specified in propertyName.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIGPRO;OPAL_METH_UISPRO;',0,"Defaultoverview",)} 
Related Topics



getPropertyAsString example
The following example assigns the value of the Color property to an AnyType variable. The value returned is a 
LongInt, because colors are long integer constants. Next, the Color property is obtained using 
getPropertyAsString. The value returned is a String type (e.g. Blue).
; boxOne::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)
var
  myColor  AnyType
endVar

myColor = self.getProperty("Color")
myColor.view()                             ; shows as LongInt
myColor = self.getPropertyAsString("Color")
myColor.view()                             ; shows as String
endMethod



getRange method
Retrieves the values that specify a range for a field, table frame, or multi-record object.

Syntax
getRange ( var rangeVals Array[ ] String ) Logical

Description
getRange retrieves the values that specify a range for a field, table frame, or multi-record object. This method 
assigns values to an Array variable that you declare and include as an argument. The following table displays the
array values and their range criteria:
Number of array items Range specification
No items (empty array) No range criteria is associated with the UIObject
One item Specifies a value for an exact match on the index's first field
Two items Specifies a range for the index's first field
Three items The first item specifies an exact match for the index's first field; items 2 and 3 

specify a range for the index's second field
More than three items For an array of size n, specify exact matches on the index's n-2 fields. The last two 

array items specify a range for the index's n-1 fields.

If the array is resizeable, getRange sets the size to equal the number of fields in the underlying table. If fixed-
size arrays are used, this method stores as many criteria as it can, starting with criteria field 1. If there are more 
array items than fields, the remaining items are left empty; if there are more fields than items, this method fills 
the array and then stops.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UISETRANGE;OPAL_METH_UIGETGENFILTER;OPAL_METH
_TBGETRANGE;OPAL_METH_TCGETRANGE;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Defaultoverview
",)} Related Topics



getRange example
The following example uses ObjectPAL to link two unlinked tables in the data model. Assume that a form has the 
Orders and Lineitem tables in its data model and they are not linked. getRange is used on a table frame bound 
to the Lineitem table to retrieve the values that specify the current range.
The following code is attached to the record object's arrive method of a table frame that is bound to the Orders 
table:
;Record :: arrive
method arrive(var eventInfo MoveEvent)
   var
      arSet   Array[] AnyType
      arGet   Array[] AnyType
   endVar

   LINEITEM.getRange(arGet)      ;Retrieve values of range.

   arSet.setSize(2)         ;Specify size of array.
   arSet[1] = string(Order_No.value)
   arSet[2] = string(Order_No.value)

   if (arSet.size() = arGet.size()) and (arSet <> arGet) then
      LINEITEM.setRange(arSet)      ;Specify range of records.
   endIf
endMethod



getRGB procedure
Returns the red, green, and blue components of a color.

Syntax
getRGB ( const rgb LongInt, var red SmallInt, var green SmallInt, var blue SmallInt )

Description
getRGB returns the component red, green and blue components of the color specified in rgb. rgb is a Colors 
constant. getRGB assigns the component values to the variables red, green, and blue. You must declare and 
pass the red, green, and blue variables as arguments.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIRGB;',0,"Defaultoverview",)} Related Topics



getRGB example
The following example determines the red, green, and blue components of the constant Brown.
; decompBrown::pushButton
method pushButton(var eventInfo Event)
var
  thisRed, thisBlue, thisGreen SmallInt
endVar
getRGB(Brown, thisRed, thisGreen, thisBlue)
msgInfo("Brown is really", 
        String("Red ", thisRed, "  Green ", thisGreen, 
               "  Blue ", thisBlue))
endMethod



hasMouse method
Determines whether the pointer is positioned over an object.

Syntax
hasMouse ( ) Logical

Description
hasMouse returns True if the pointer is positioned within the boundaries of an object; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_TYPE_MOUSEEVENT;',0,"Defaultoverview",)} Related Topics



hasMouse example
The following example assumes that a form has a bitmap object named cat. The open method for cat sets a 
timer interval to 250 milliseconds. The timer method uses hasMouse to determine if the mouse is within cat's 
boundaries; if not, it moves cat to the mouse's position.
The following code attaches to cat's open method:
; cat::open
method open(var eventInfo Event)
; set the timer interval to 250 milliseconds
self.setTimer(250)
endMethod

The following code attaches to cat's timer method:
; cat::timer
method timer(var eventInfo TimerEvent)
var
  mousePt  Point                     ; to get mouse position
endVar
if NOT cat.hasMouse() then           ; am I on the mouse?
  mousePt = getMouseScreenPosition() ; find the mouse
  cat.setPosition(mousePt.x() - 350, 
                  mousePt.y() - 2880, 
                  4320, 1750)        ; chase the mouse
  ; moves cat above and slightly to the left of mouse
  ; assumes cat is a bitmap with width 4320, height 1750
  ; since getMouseScreenPosition returns position of mouse
  ; on desktop, these numbers assume form is maximized 
  ; offset (2880-1750) allows for height of menu and Toolbar
endIf
endMethod



home method
Moves to the first record in a table.

Syntax
home ( ) Logical

Description
home sets the active record to the first record in a table. home respects the limits of restricted views that are 
displayed in a linked table frame or multi-record object. home moves to the first record in a restricted view.
home has the same effect as the action constant DataBegin. This means that the following statements are 
equivalent:
obj.home()
obj.action(DataBegin)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIEND;OPAL_METH_UINEXTR;OPAL_METH_UIPRIO;',0,"D
efaultoverview",)} Related Topics



home example
The following example moves to the first record in the Customer table. Assume that Customer is bound to a table
frame on the form, and moveToHome is a button on the form.
; moveToHome::pushButton
method pushButton(var eventInfo Event)
CUSTOMER.home()  ; move to the first record
                 ; same as:  CUSTOMER.action(DataBegin)
msgInfo("At the first record?", CUSTOMER.atFirst())
endMethod



insertAfterRecord method
Inserts a record below the active record in a table.

Syntax
insertAfterRecord ( ) Logical

Description
insertAfterRecord inserts a record below the active record in a table. The table must be in Edit mode.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIIREC;OPAL_METH_UIIBEF;',0,"Defaultoverview",)} 
Related Topics



insertAfterRecord example
The following example assumes that CustSort is a copy of the Customer table that has been sorted by the Name 
field. The form in this example contains a table frame named CUSTSORT that is bound to the CustSort table, an 
undefined field named newField, and a button named insRecButton. To add a name to the table, type the name 
in newField and press insRecButton.
The following code is attached to the pushButton method for insRecButton. This method determines if a value 
has been added to newField and if the form is in Edit mode. The method attaches the TCursor custTC to 
CUSTSORT, and scans custTC for a value greater than the string given in newField. If it detects a name greater 
than the new name, the method uses insertRecord to add a blank record before the name found; otherwise, it 
uses insertAfterRecord to insert a new blank record to the end of the table.
; insRecButton::pushButton
method pushButton(var eventInfo Event)
var
  custTC  TCursor
  nameStr String
endvar

if newField.Value = "" then       ; Quit if the field is blank.
  RETURN
endIf

nameStr = newField.Value          ; Get the name to add.
CUSTSORT."Name".moveTo()

if CUSTSORT.isEdit() then          ; Check for edit mode first.
  custTC.attach(CUSTSORT)

  scan custTC for custTC."Name" >= nameStr:
    quitloop                      ; Stop when you find the name.
  endscan

  msgInfo("Active record no", custTC.recno())
  CUSTSORT.resync(custTC)         ; Resync CUSTSORT to custTC.

  if NOT CUSTSORT.atLast() then
    CUSTSORT.insertBeforeRecord()
  else
    CUSTSORT.insertAfterRecord()  ; Add blank record.
  endIf

  CUSTSORT.Name=newField.Value
  CustSort.postRecord()
  msgInfo("New name added", "Please enter remaining customer information")

else
  msgInfo("Sorry", "Form must be in Edit mode.")
endIf
endMethod



insertBeforeRecord method
Inserts a record above the active record in a table.

Syntax
insertBeforeRecord ( ) Logical

Description
insertBeforeRecord inserts a record above the active record in a table. The table must be in Edit mode.
insertBeforeRecord has the same effect as the action constant DataInsertRecord. This means the following 
statements are equivalent:
obj.insertBeforeRecord()
obj.action(DataInsertRecord)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIIREC;OPAL_METH_UIIAFT;',0,"Defaultoverview",)} 
Related Topics



insertBeforeRecord example
The following example assumes that CustSort is a copy of the Customer table that has been sorted by the Name 
field. The form contains a table frame named CUSTSORT that is bound to CustSort, an undefined field named 
newField, and a button named insRecButton. To add a name to the table, type the name in newField and press 
insRecButton.
The following method overrides the pushButton method for insRecButton. This method determines if a value 
has been added to newField and if the form is in Edit mode.    The method attaches a TCursor named custTC to 
CUSTSORT, and scans custTC for a value greater than the string given in newField. If the method detects a name
greater than the new name, the method uses insertBeforeRecord to insert a blank record before the name 
found; otherwise, it uses insertAfterRecord to insert a new blank record at the end of the table.
; insRecButton::pushButton
method pushButton(var eventInfo Event)
var
  custTC  TCursor
  nameStr String
endvar

if newField.Value = "" then       ; Quit if the field is blank.
  RETURN
endIf

nameStr = newField.Value          ; Get the name to add.
CUSTSORT."Name".moveTo()

if thisForm.Editing then          ; Check for edit mode first.
  custTC.attach(CUSTSORT)

  scan custTC for custTC."Name" >= nameStr:
    quitloop                      ; Stop when you find the name.
  endscan

  msgInfo("Active record no", custTC.recno())
  CUSTSORT.resync(custTC)         ; Resync CUSTSORT to custTC.

  if NOT CUSTSORT.atLast() then
    CUSTSORT.insertBeforeRecord()
  else
    CUSTSORT.insertAfterRecord()
  endIf

  ; ... fill the record with the rest of the customer information
; Put new name in the field of the tableframe and post. Inform user.
  CUSTSORT.Name=newField.Value
  CustSort.postRecord()
  msgInfo("New name added", "Please enter remaining customer information")

else
  msgInfo("Sorry", "Form must be in Edit mode.")
endIf
endMethod



insertRecord method
Inserts a record before the active record in a table.

Syntax
insertRecord ( ) Logical

Description
insertRecord inserts a record before the active record in a table.
insertRecord has the same effect as insertBeforeRecord and the action constant DataInsertRecord. This 
means the following three statements are equivalent:
obj.insertRecord()
obj.insertBeforeRecord()
obj.action(DataInsertRecord)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIIAFT;OPAL_METH_UIIBEF;',0,"Defaultoverview",)} 
Related Topics



insertRecord example
See the insertBeforeRecord example.



isContainerValid method
Reports whether an object's container is valid.

Syntax
isContainerValid ( ) Logical

Description
isContainerValid reports if the active object's container is valid. For example, if a form does not have a 
container the ContainerName property for a form is not valid.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIISLMC;',0,"Defaultoverview",)} Related Topics



isContainerValid example
In the following example, the arrive built-in event method for a form uses isContainerValid to search for a 
valid container:
; thisForm::arrive
method arrive(var eventInfo MoveEvent)
  if eventInfo.isPreFilter() then

     ;Code here executes before each object
  else
     ;Code here executes afterwards (or for form)
     if NOT isContainerValid() then
       msgInfo("Form",
               "This object does not have a valid container.")
     endIf
  endIf
endMethod



isEdit method
Reports whether an object is in Edit mode.

Syntax
isEdit ( ) Logical

Description
isEdit reports whether an object is in Edit mode.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIEDIT;OPAL_METH_UIECED;OPAL_METH_UILOCKRECOR
D;',0,"Defaultoverview",)} Related Topics



isEdit example
See the lockRecord example.



isEmpty method
Reports whether a table contains records.

Syntax
isEmpty ( ) Logical

Description
isEmpty returns True if none of the table's records are associated with the table frame. isEmpty respects the 
limits of restricted views displayed in a linked table frame or multi-record object.
You can also determine if a table is empty by determining the value returned by the nRecords method or the 
value of the object's NRecords property.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIEMP;OPAL_METH_UINREC;',0,"Defaultoverview",)} 
Related Topics



isEmpty example
The following example uses the cascadeDelete button to delete an order and all the linked detail records for that 
order. Assume that a form contains a single-record object that is bound to the Orders tables and a linked table 
frame that is bound to the Lineitem table. Orders has a one-to-many link to Lineitem.
; cascadeDelete::pushButton
method pushButton(var eventInfo Event)
var
  ui        UIObject
endVar

if thisForm.Editing then
  if msgQuestion("Confirm", "Delete this order?") = "Yes" then
    ui.attach(LINEITEM)
    while NOT ui.isEmpty()      ; check to see if linked table is
                                ; empty respects restricted view
      ui.deleteRecord()         ; delete the detail records
    endwhile
    ORDERS.action(DataDeleteRecord)   ; delete the master record
  endIf
else
  msgInfo("Status", "You must be editing to delete a record.")
endIf
endMethod



isLastMouseClickedValid method
Reports whether the last object clicked is valid.

Syntax
isLastMouseClickedValid ( ) Logical

Description
isLastMouseClickedValid reports whether the active form has been clicked since it opened.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIISLMR;',0,"Defaultoverview",)} Related Topics



isLastMouseClickedValid example
The following example determines whether a form has been clicked:
; thisForm::arrive
method arrive(var eventInfo MoveEvent)
   if eventInfo.isPreFilter() then
     ;Code here executes before each object
  else
     ;Code here executes afterwards (or for form)
     if NOT isLastMouseClickedValid() then
       msgInfo("FYI", "This form has not been clicked yet.")
     endIf
  endIf
endMethod



isLastMouseRightClickedValid method
Reports whether the last object right-clicked is valid.

Syntax
isLastMouseRightClickedValid ( ) Logical

Description
isLastMouseRightClickedValid reports whether the current form has been right-clicked since it opened.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIISLMC;',0,"Defaultoverview",)} Related Topics



isLastMouseRightClickedValid example
The following example determines whether a form has been right-clicked:
; thisForm::arrive
method arrive(var eventInfo MoveEvent)
  if eventInfo.isPreFilter() then

     ;Code here executes before each object
  else
     ;Code here executes afterwards (or for form)
     if NOT isLastMouseRightClickedValid() then
       msgInfo("FYI", "This form has not been right-clicked yet.")
     endIf
  endIf
endMethod



isRecordDeleted method
Reports whether the active record has been deleted (dBASE tables only).

Syntax
isRecordDeleted ( ) Logical

Description
isRecordDeleted reports whether the active record has been deleted. isRecordDeleted only works for dBASE 
tables. Deleted Corel Paradox records can't be displayed. This method returns True if the active record has been 
deleted; otherwise, it returns False.
For isRecordDeleted to work correctly, you must call showDeleted   (TCursor type)   to display deleted records in
the table; otherwise, deleted records are not visible to isRecordDeleted.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIUNDELETERECORD;OPAL_METH_TCISSHOWDELETEDO
N;OPAL_METH_TCSHDEL;',0,"Defaultoverview",)} Related Topics



isRecordDeleted example
See the isRecordDeleted   (Tcursor type)   example.



keyChar method
Sends an event to an object's keyChar method.

Syntax
1. keyChar ( const characters String [ , const state SmallInt ] ) Logical
2. keyChar ( const ansiKeyValue SmallInt ) Logical
3. keyChar ( const ansiKeyValue SmallInt, const vChar SmallInt, const state SmallInt ) Logical

Description
keyChar creates an event and to call the object's built-in keyChar event method. Specify one or more 
characters in characters (Syntax 1), in ansiKeyValue (Syntax 2), or in ansiKeyValue and vChar (Syntax 3). Specify
the keyboard state in state using KeyboardStates constants. You can add these constants together to create 
combined key states (e.g., ALT + CTRL).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIKEPH;OPAL_TYPE_KEYEVENT;',0,"Defaultoverview",)}
Related Topics



keyChar example
The following example overrides the pushButton method of a button named sendKeyChar. This method sends 
keystrokes fieldOne on the form.
; sendKeyChar::pushButton
method pushButton(var eventInfo Event)
var
  x  SmallInt
endVar
fieldOne.keyChar("Send me an ")    ; send a string
fieldOne.keyChar(65, 65, Shift)    ; send ANSI char, decimal
                                   ; equivalent of VK_Char,
                                   ; and keyboardstate
fieldOne.keyChar(" and a ", Shift) ; send a string with the keyboardstate
x = 98                             ; set the code
fieldOne.keyChar(x)                ; send ANSI char code
endMethod



keyPhysical method
Sends an event to an object's built-in keyPhysical method.

Syntax
keyPhysical ( const aChar SmallInt, const vChar SmallInt, const state SmallInt )

Description
keyPhysical sends an event to an object's built-in keyPhysical method. Specify the ANSI character code in 
aChar, the virtual key code in vChar, and the keyboard state in state using KeyboardStates constants.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIKECH;OPAL_TYPE_KEYEVENT;',0,"Defaultoverview",)}
Related Topics



keyPhysical example
In the following example, code is attached to the pushButton method of a button named sendKeyPhys. This 
method sends the character a to fieldOne.
; sendKeyPhys::pushButton
method pushButton(var eventInfo Event)
   fieldOne.keyPhysical(97, 97, Shift)   ; send an "a"
endMethod



killTimer method
Stops the timer associated with an object.

Syntax
killTimer ( )

Description
killTimer stops the timer associated with an object.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UISTIM;',0,"Defaultoverview",)} Related Topics



killTimer example
The following example moves a circle across the screen in response to TimerEvents. The pushButton method 
for toggleButton uses setTimer and killTimer to start or stop a timer respectively. When the timer starts, it 
issues a TimerEvent every 100 milliseconds. Each TimerEvent causes toggleButton's timer method to execute. 
The timer method uses getPosition to retrieve the current position of the ellipse and uses setPosition to 
move it 100 twips to the right.
The following code is attached to toggleButton's pushButton method:
; toggleButton::pushButton
method pushButton(var eventInfo Event)
if buttonLabel = "Start Timer" then  ; if stopped and start
  buttonLabel = "Stop Timer"         ; change label
  self.setTimer(100)          ; tell timer to issue a timer
                              ; event every 100 milliseconds
else
  buttonLabel = "Start Timer"         ; change label
  self.killTimer()                    ; stop the timer
endIf

endMethod

The following code is attached to toggleButton's timer method. FloatCircle is a circle UI Object on the form:
; toggleButton::timer
;   this method is called once for every timer event
method timer(var eventInfo TimerEvent)
var
  ui          UIObject
  x, y, w, h  SmallInt
endVar

ui.attach(floatCircle)          ; attach to the circle
ui.getPosition(x, y, w, h)      ; assign coordinates to vars
if x < 4320 then                ; if not at right edge of area
  ui.setPosition(x + 100, y, w, h)  ; move to the right
else
  ui.setPosition(1440, y, w, h)     ; return to the left
endIf

endMethod



locate method
Searches for a specified field value.

Syntax
1. locate ( const fieldName String, const exactMatch AnyType [ ,const fieldName String, const 
exactMatch AnyType ] * ) Logical
2. locate ( const fieldNum SmallInt, const exactMatch AnyType [ ,const fieldNum SmallInt, const
exactMatch AnyType ] * ) Logical

Description
locate searches a table frame, multi-record object, record object, or field object for record values that match 
one or more field/value pairs. Specify the search value in exactMatch and the search field in fieldName or 
fieldNum (use fieldNum for faster performance). When possible, locate uses active indexes to speed the search. 
This method respects the limits of restricted views in linked detail tables.
If a match is found, the cursor moves to that record. This operation fails if the active record cannot be posted 
and unlocked (e.g., due to a key violation). If no match is found, the cursor returns to the active record. The 
search always starts from the beginning of the table. 
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is enabled.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UILOCATENEXT;OPAL_METH_UILOCATEPATTERN;OPAL_M
ETH_UILOCATENEXTPATTERN;',0,"Defaultoverview",)} Related Topics



locate example
The following example assumes that a form contains a table frame bound to the Customer table and a button 
named locateButton. The pushButton method for locateButton searches for the customer named Sight Diver in 
the city named Kato Paphos. If a match is found, the customer's name is changed to Right Diver.
; locateButton::pushButton
method pushButton(var eventInfo Event)
var
  Cust UIObject
endVar
Cust.attach(CUSTOMER)
; find customer named "Sight Diver" in Kato Paphos
if Cust.locate("Name", "Sight Diver", "City", "Kato Paphos") then
   Cust.edit()
   Cust."Name" = "Right Diver"
   Cust.endEdit()
endIf
endMethod



locateNext method
Searches forward from the active record for a specified field value.

Syntax
1. locateNext ( const fieldName String, const exactMatch AnyType [ , const fieldName String, 
const exactMatch AnyType ] * ) Logical
2. locateNext ( const fieldNum SmallInt, const exactMatch AnyType [ , const fieldNum SmallInt, 
const exactMatch AnyType ] * ) Logical

Description
locateNext searches a table for record values that match one or more field/value pairs. Specify the search value
in exactMatch and the search field in fieldName or fieldNum (use fieldNum for faster performance). When 
possible, locateNext uses active indexes to speed the search. This method respects the limits of restricted 
views in linked detail tables.
The search begins with the record after the active record. If a match is found, the cursor moves to that record. 
This operation fails if the active record cannot be posted and unlocked (e.g., due to a key violation). If no match 
is found, the cursor returns to the active record. To start a search from the beginning of a table, use locate.
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is enabled.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UILOCATE;OPAL_METH_UILOCATENEXTPATTERN;',0,"Def
aultoverview",)} Related Topics



locateNext example
The following example assumes that a form contains a table frame bound to the Customer table and a button 
named locateButton. The pushButton method for locateButton searches for customers in the city of Freeport. If 
locate is successful, the code uses locateNext to find successive records.
; locateButton::pushButton
method pushButton(var eventInfo Event)
var
   Cust      UIObject
   searchFor String
   numFound  SmallInt
endVar
Cust.attach(CUSTOMER)
searchFor = "Freeport"
if Cust.locate("City", searchFor) then
   numFound = 1
   message("")
   while Cust.locateNext("City", searchFor)
      numFound = numFound + 1
   endWhile
   msgInfo("Found " + searchFor, strval(numFound) + " times.")
endIf
endmethod



locateNextPattern method
Locates the next record containing a field that has a specified pattern of characters.

Syntax
1. locateNextPattern ( [ const fieldName String,const exactMatch AnyType, ] * const fieldName 
String, const pattern String ) Logical
2. locateNextPattern ( [ const fieldNum SmallInt, const exactMatch AnyType, ] * const fieldNum 
SmallInt, const pattern String ) Logical

Description
locateNextPattern finds substrings (e.g., comp in computer). When possible, this method uses active indexes 
to speed the search. This method respects the limits of restricted views in linked detail tables.
The search begins with the record after the active record. If a match is found, the cursor moves to that record. 
This operation fails if the active record cannot be committed (e.g., due to a key violation). If no match is found, 
the cursor returns to the active record. To start a search from the beginning of a table, use locatePattern.
To search for records by the value of a single field, specify the field in fieldName or fieldNum (use fieldNum for 
faster performance) and specify a pattern of characters in pattern.
You can include the standard pattern operators @ and .. in the pattern argument. The .. operator specifies any 
string of characters (including no string). The @ operator specifies for any single character. Any combination of 
literal characters and wildcards can be used to construct a search. If advancedWildCardsInLocate (Session 
type) is enabled, you can use advanced match pattern operators. For more information, see the description of 
advMatch.
To search for records by the values of more than one field, specify exact matches on all fields except the last one
in the list. For example, the following code searches the Name field for exact matches on the word Corel, the 
Product field for Corel Paradox, and the Keywords field for words beginning with data (e.g., database).
tc.locateNextPattern("Name", "Corel"  "Product", "Corel Paradox" "Keywords", "data..")

For examples, see Sample search strings with wildcards in the User's Guide help.
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is enabled.
 Examples

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UILOCATE;OPAL_METH_UILOCATEPATTERN;OPAL_METH_
UILOCATENEXT;OPAL_METH_STAMAT;OPAL_METH_STMAT;',0,"Defaultoverview",)} Related Topics



locateNextPattern method examples
Example1       Simple searches
Example2        Searches based on multiple criteria



locateNextPattern example 1
The following example searches for multiple occurrences of the letter C in the Name field of the Customer table, 
and writes the matching names to an array. Assume that the CUSTOMER table frame is bound to Customer, and 
that locateButton is a button on the form.
; locateButton::pushButton
method pushButton(var eventInfo Event)
var
   Cust      UIObject           ; to attach to CUSTOMER table frame
   searchFor String             ; the pattern string to search for
   numFound  SmallInt           ; the number of matches located
   custNames Array[] String     ; the matches found
endVar

cust.attach(CUSTOMER)
searchFor = "C.."               ; find customers whose name
                                ; begins with C
if cust.locatePattern("Name", searchFor) then  ; if you can find one
  numFound = 1                                 ; post it to the array
  custNames.grow(1)                            ; then keep looking
  custNames[numFound] = cust."Name"
  while cust.locateNextPattern("Name", searchFor)
    numFound = numFound + 1
    custNames.grow(1)
    custNames[numFound] = cust."Name"
  endWhile
endIf
if custNames.size() > 0 then     ; if there's anything in the array
  custNames.view()               ; show the array
endIf
endMethod



locateNextPattern example 2
The following example searches for records by the value in the City field and the pattern in the Name field:
; locateButtonTwo::pushButton
method pushButton(var eventInfo Event)
var
   Cust      UIObject           ; to attach to CUSTOMER TableFrame
   searchFor String             ; the pattern string to search for
   numFound  SmallInt           ; the number of matches located
   custNames Array[] String     ; the matches found
endVar

cust.attach(CUSTOMER)
searchFor = "..C.."             ; find customers whose name
                                ; includes a C
if cust.locatePattern("City", "Marathon", "Name", searchFor) then  ; if you can find one
  numFound = 1                                 ; post it to the array
  custNames.grow(1)                            ; then keep looking
  custNames[numFound] = cust."Name"
  while cust.locateNextPattern("City", "Marathon", "Name", searchFor)
    numFound = numFound + 1
    custNames.grow(1)
    custNames[numFound] = cust."Name"
  endWhile
endIf
if custNames.size()  0 then     ; if there's anything in the array
  custNames.view()               ; show the array
endIf
endMethod



locatePattern method
Searches for a record containing a field that has a specified pattern of characters.

Syntax
1. locatePattern ( [ const fieldName String, const exactMatch AnyType, ] * const fieldName 
String, const pattern String ) Logical
2. locatePattern ( [ const fieldNum SmallInt, const exactMatch AnyType, ] * const fieldName 
SmallInt, const pattern String ) Logical

Description
locatePattern finds substrings (e.g., comp in computer). When possible, this method uses active indexes to 
speed the search. This method respects the limits of restricted views in linked detail tables.
The search begins with the record after the active record. If a match is found, the cursor moves to that record. 
This operation fails if the active record cannot be committed (e.g., due to a key violation). If no match is found, 
the cursor returns to the active record. To start a search from the beginning of a table, use locatePattern.
To search for records by the value of a single field, specify the field in fieldName or fieldNum (use fieldNum for 
faster performance) and specify a pattern of characters in pattern.
You can include the standard pattern operators @ and .. in the pattern argument. The .. operator specifies any 
string of characters (including no string). The @ operator specifies for any single character. Any combination of 
literal characters and wildcards can be used to construct a search. If advancedWildCardsInLocate (Session 
type) is enabled, you can use advanced match pattern operators. For more information, see the description of 
advMatch.
To search for records by the values of more than one field, specify exact matches on all fields except the last one
in the list. For example, the following code searches the Name field for exact matches on the word Corel, the 
Product field for Corel Paradox, and the Keywords field for words beginning with data (e.g., database).
To start a search from the beginning of a table, use locateNextPattern.
tc.locateNextPattern("Name", "Corel"  "Product", "Corel Paradox" "Keywords", "data..")

For examples, see Sample search strings with wildcards in the User's Guide help.
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is enabled.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UILOCATENEXTPATTERN;OPAL_METH_UILOCATE;OPAL_M
ETH_STAMAT;OPAL_METH_STMAT;',0,"Defaultoverview",)} Related Topics



locatePattern example
See the locateNextPattern example.



locatePrior method
Searches backward from the active record for a specified field value.

Syntax
1. locatePrior ( const fieldName String, const exactMatch AnyType [ , const fieldName String, 
const exactMatch AnyType ] * ) Logical
2. locatePrior ( const fieldNum SmallInt, const exactMatch AnyType [ , const fieldNum SmallInt,
const exactMatch AnyType ] * ) Logical

Description
locatePrior searches backwards from the active record in a table for record values that match one or more 
field/value pairs. Specify the search value in exactMatch and the search field in fieldName or fieldNum (use 
fieldNum for faster performance). When possible, locateNext uses active indexes to speed the search. This 
method respects the limits of restricted views in linked detail tables.
The search begins with the record before the active record and moves up through the table. If a match is found, 
the cursor moves to that record. This operation fails if the active record cannot be posted and unlocked (e.g., 
due to a key violation). If no match is found, the cursor returns to the active record. To start a search from the 
beginning of a table, use locate.
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is enabled.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UILOCATE;OPAL_METH_UILOCATEPRIORPATTERN;',0,"De
faultoverview",)} Related Topics



locatePrior example
The following example locates the last occurrence of a value in a table by searching up from the end of the table 
using locatePrior. Assume that the form contains a table frame that is bound to the Customer table, and a 
button named locateButton.
; locateButton::pushButton
method pushButton(var eventInfo Event)
var
   Cust      UIObject      ; to attach to CUSTOMER table frame
   searchFor String        ; the string to search for
endVar
Cust.attach(CUSTOMER)      ; attach to table frame
Cust.end()                 ; move to the end of the table
searchFor = "Freeport"
if Cust.locatePrior("City", searchFor) then   ; find record
   msgInfo("Status", "The last record with a City of " +
           searchFor + " is record " + Cust.recno + ".")
endIf

endMethod



locatePriorPattern method
Searches backward from the active record for a field that contains a specified pattern of characters.

Syntax
1. locatePriorPattern ( [ const fieldName String, const exactMatch AnyType, ] * const fieldName
String, const pattern String ) Logical
2. locatePriorPattern ( [ const fieldNum SmallInt, const exactMatch AnyType, ] * const fieldNum
SmallInt, const pattern String ) Logical

Description
locatePriorPattern finds substrings (e.g., comp in computer).    When possible, this method uses active indexes
to speed the search. This method respects the limits of restricted views in linked detail tables.
The search begins with the record after the active record. If a match is found, the cursor moves to that record. 
This operation fails if the active record cannot be committed (e.g., due to a key violation). If no match is found, 
the cursor returns to the active record. To start a search at the beginning of a table, use locatePattern.
To search for records by the value of a single field, specify the field in fieldName or fieldNum (use fieldNum for 
faster performance) and specify a pattern of characters in pattern.
You can include the standard pattern operators @ and .. in the pattern argument. The .. operator specifies any 
string of characters (including no string). The @ operator specifies for any single character. Any combination of 
literal characters and wildcards can be used to construct a search. If advancedWildCardsInLocate (Session 
type) is enabled, you can use advanced match pattern operators. For more information, see the description of 
advMatch.
To search for records by the values of more than one field, specify exact matches on all fields except the last one
in the list. For example, the following code searches the Name field for exact matches on the word Corel, the 
Product field for Corel Paradox, and the Keywords field for words beginning with data (e.g., database).
To start a search from the beginning of a table, use locateNextPattern.
tc.locateNextPattern("Name", "Corel"  "Product", "Corel Paradox" "Keywords", "data..")

For examples, see Sample search strings with wildcards in the User's Guide help.
 Note

· The search is case-sensitive unless ignoreCaseInLocate (Session type) is enabled.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UILOCATEPATTERN;OPAL_METH_UILOCATEPRIOR;OPAL_
METH_STAMAT;OPAL_METH_STMAT;',0,"Defaultoverview",)} Related Topics



locatePriorPattern example
The following example locates the last occurrence of a value in a table by searching up from the end of the table 
and using locatePriorPattern. Assume that the form contains a table frame that is bound to the Customer 
table, and a button named locateButton.
; locateButton::pushButton
method pushButton(var eventInfo Event)
var
   Cust      UIObject      ; to attach to CUSTOMER table frame
   searchFor String        ; the string to search for
endVar
Cust.attach(CUSTOMER)      ; attach to table frame
Cust.end()                 ; move to the end of the table
searchFor = "Freeport"
if Cust.locatePrior("City", searchFor, "Name", "..C..") then   ; find record
   msgInfo("Status", "The last record with a City of " + searchFor +
           "and a name with C is record " + Cust.recno + ".")
endIf

endMethod



lockRecord method
Puts a write lock on the active record.

Syntax
lockRecord ( ) Logical

Description
lockRecord returns True if it places a write lock on the active record; otherwise, it returns False.
 Note

· The Locked property is a read-only property. This means that you can't change the property setting to lock or 
unlock an object.

 Examples
{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIPOSTRECORD;OPAL_METH_UIRECORDSTATUS;OPAL_M
ETH_UIUNLOCKRECORD;',0,"Defaultoverview",)} Related Topics



lockRecord method examples
Example1          Locking a record
Example2         Determining whether a record is locked



lockRecord example 1
The following example determines whether the Customer table is in Edit mode. If it is, the method locates a 
record, attempts to lock it using lockRecord and determines the status of the lock using recordStatus. Assume
that a form contains a table frame that is bound to the Customer table, and a button named lockButton. The 
record inside the CUSTOMER table frame is named custRec.
; lockButton::pushButton
method pushButton(var eventInfo Event)
var
  obj  UIObject
endVar
obj.attach(CUSTOMER)
obj.locate("Name", "Sight Diver")
if thisForm.editing then
  if CUSTOMER.isEdit() then
    if NOT obj.lockRecord() then
       msgStop("Lock failed", "recordStatus(\"Locked\") is " +
             String(obj.recordStatus("Locked")))
    else
       msgStop("Lock succeeded", "recordStatus(\"Locked\") is " +
             String(obj.recordStatus("Locked")))
       obj.custRec."Name" = "Right Diver"  ; quotes on Name indicate
                                           ; field name instead of 
                                           ; property
       obj.unlockRecord()
    endIf
  else
    msgInfo("Status", "You must be in edit mode to lock and change records.")
  endIf
endIf
endMethod



lockRecord example 2
The following example examines a record object's Locked property:
; lockButtonTwo::pushButton
method pushButton(var eventInfo Event)
var
  obj,
  recObj  UIObject
endVar

obj.attach(CUSTOMER)
obj.locate("Name", "Sight Diver")

if thisForm.editing then
  obj.lockRecord()                 ; no write access to Locked property
                                   ; so use method to lock record
  recObj.attach(CUSTOMER.custRec)
  if NOT recObj.Locked then        ; check the property to see
                                   ; if the record is locked
     msgStop("Lock failed", "recObj.Locked is " +
             String(recObj.Locked))
  else
     msgStop("Lock succeeded", "recObj.Locked is " +
             String(recObj.Locked))
     recObj."Name" = "Right Diver" ; name is in quotes to indicate Name
                                   ; field instead of obj's Name property
     obj.unlockRecord()
  endIf
else
  msgInfo("Status", "You must be in edit mode to lock and change records.")
endIf
endMethod



lockStatus method
Returns the number of locks on a table.

Syntax
lockStatus (const lockType String ) SmallInt

Description
lockStatus returns the number of locks of type lockType on a table. lockType's value is Write, Read, or Any.
If you haven't placed any locks on the table lockStatus returns 0.
If you specify Any for lockType, lockStatus returns the total number of locks you've placed on the table. 
lockStatus does not include locks placed by Corel Paradox or by other users or applications.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIENUMLOCKS;OPAL_METH_UILOCKRECORD;',0,"Default
overview",)} Related Topics



lockStatus example
The following example assumes that a form has a table frame named CUSTOMER that is bound to the Customer 
table, and a button named lockButton. The pushButton method for lockButton removes all locks from 
CUSTOMER, searches for locks using lockStatus, places a lock and reports on the locks using lockStatus.
; lockButton::pushButton
method pushButton(var eventInfo Event)
var
  CustTC TCursor     ; to place a lock on the table
  Cust UIObject
  l    Logical
endVar
CustTC.attach(CUSTOMER)     ; attach the TCursor to CUSTOMER
l = unlock(CustTC, "ALL")   ; remove any locks
l.view("Unlock successful:")
Cust.attach(CUSTOMER)       ; attach the UIObject to CUSTOMER
if Cust.lockStatus("ANY") = 0 then   ; check for locks
   l = lock(CustTC, "WL")            ; place a write lock
   l.view("Lock successful:")        ; check up on it
endIf
msgInfo("Status", "Table " + Cust.Name + " has " +
         String(Cust.lockStatus("WL")) + " write lock(s).")
unlock(CustTC, "ALL")                ; remove any locks
endMethod



menuAction method/procedure
Sends an event to an object's menuAction method.

Syntax
menuAction ( const action SmallInt )

Description
menuAction constructs a MenuEvent and sends it to a specified UIObject's menuAction method. action is one 
of the MenuCommands constants, or a user-defined menu constant.
 Note

· You can't use menuAction to simulate a File menu command. To send a menu command constant that is 
equivalent to a File menu command, use one of the regular Action constants, manipulate a property, or use a 
System type method.

 Example
{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIACTI;',0,"Defaultoverview",)} Related Topics



menuAction example
The following example uses the sendATile button on the current form to send thisForm a MenuWindowTile action.
; sendATile::pushButton
method pushButton(var eventInfo Event)
thisForm.menuAction(MenuWindowTile)
endMethod



methodDelete method
Deletes a specified method.

Syntax
methodDelete ( const methodName String ) Logical

Description
methodDelete deletes the method specified by methodName. The form that contains the object must be in a 
Form Design window.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICREATE;OPAL_METH_UIMETHODGET;OPAL_METH_UIM
ETHODSET;',0,"Defaultoverview",)} Related Topics



methodDelete example
The following example uses methodGet, methodSet, and methodDelete to copy methods from one object to 
another. The code overrides the pushButton method for a button named copyMethods. The form contains four 
other objects. The targetForm field lets you specify the name of the form containing the objects to copy. The 
sourceObject field holds the name of the object containing the methods to copy. The destinationObject field 
contains the name of the object to copy the methods to. The final object is a radio button field named 
copyOrMove which specifies whether methods in the source are copied, or copied then deleted.
; copyMethods::pushButton
method pushButton(var eventInfo Event)
var
  otherForm            Form       ; a handle to a form
  sourceObj,                      ; object to copy from
  destObj              UIObject   ; object to copy to
  methodStr            String     ; stores the method definition
  methodArray Array[]  String     ; holds method names to copy
  i                    SmallInt   ; array index
endvar

; open the form and attach to the objects
if targetForm = "" OR sourceObject = "" OR destinationObject = "" then
  msgStop("Error", "Please fill in form, source, and destination.")
  return
endIf
if NOT otherForm.load(targetForm.value) then
  msgStop("Error", "Couldn't open named form.")
  return
endIf
if NOT sourceObj.attach(otherForm, sourceObject.value) then
  otherForm.close()
  msgStop("Error", "Couldn't find source object. Please specify entire path.")
  return
endIf
if NOT destObj.attach(otherForm, destinationObject.value) then
  otherForm.close()
  msgStop("Error", "Couldn't find destination object. Specify entire path.")
  return
endIf

; set up the array of method names to copy
methodArray.addLast("mouseUp")
methodArray.addLast("mouseDown")
methodArray.addLast("mouseDouble")
methodArray.addLast("mouseEnter")
methodArray.addLast("mouseExit")
methodArray.addLast("mouseRightUp")
methodArray.addLast("mouseRightDown")
methodArray.addLast("mouseRightDouble")
methodArray.addLast("mouseMove")
methodArray.addLast("open")
methodArray.addLast("close")
methodArray.addLast("canArrive")
methodArray.addLast("arrive")
methodArray.addLast("setFocus")
methodArray.addLast("canDepart")
methodArray.addLast("depart")
methodArray.addLast("removeFocus")
methodArray.addLast("depart")
methodArray.addLast("timer")
methodArray.addLast("keyPhysical")
methodArray.addLast("keyChar")
methodArray.addLast("action")
methodArray.addLast("menuAction")
methodArray.addLast("error")
methodArray.addLast("status")

; add the method names specific to fields and buttons



if sourceObj.class = "Field" AND destObj.class = "Field" then
  methodArray.addLast("changeValue")
  methodArray.addLast("newValue")
else
if sourceObj.class = "Button" AND destObj.class = "Button" then
  methodArray.addLast("pushButton")
endIf
if sourceObj.class <> "Button" AND destObj.class <> "Button" then
  methodArray.addLast("mouseClick")
endIf

; copy methods from sourceObj to destObj on form otherForm
for i from 1 to methodArray.size()
  ; write the method named in methodArray to the string
;  msgInfo("methodArray is", methodArray[i])
  try
    methodStr = sourceObj.methodGet(methodArray[i])
    msgInfo("FYI", "Retrieved " + methodArray[i] + " method.")
    ; write the string to the method named in methodArray
    destObj.methodSet(methodArray[i], methodStr)
    if copyOrMove.Value = "Move" then
      sourceObj.methodDelete(methodArray[i])
    endIf
  onfail
  ;  loop
  endTry
endfor

endMethod



methodEdit method
Opens an object's method in an Editor window.
Syntax

methodEdit (const methodName String) Logical

Description
methodEdit opens the method specified by methodName in an Editor window. If you specify a method that 
doesn't exist, methodEdit will create it for you. methodEdit fails if you try to open a method that is running.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMETHODGET;OPAL_METH_UIMETHODSET;OPAL_METH_
UIMETHODDELETE;;',0,"Defaultoverview",)} Related Topics



methodEdit example
The following example opens the object's testMethod method in an Editor window: 
method pushButton(var eventInfo Event)
var 

MyForm form
MyObject  uiobject

endvar

MyForm.load("vendors.fsl")
MyObject.attach(MyForm,"Preferred")

MyObject.methodEdit("testMethod")
endMethod



methodGet method
Returns the text of a specified method.

Syntax
methodGet ( const methodName String ) String

Description
methodGet returns the text of the method specified in methodName.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICREATE;OPAL_METH_UIMETHODDELETE;OPAL_METH_
UIMETHODSET;',0,"Defaultoverview",)} Related Topics



methodGet example
See the methodDelete example.



methodSet method
Sets the text of a specified method.

Syntax
methodSet ( const methodName String, const methodText String ) Logical

Description
methodSet specifies the source code for the method named in methodName. Open the form that contains the 
object in a Form Design window.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UICREATE;OPAL_METH_UIMETHODDELETE;OPAL_METH_
UIMETHODGET;',0,"Defaultoverview",)} Related Topics



methodSet example
See the methodDelete example.



mouseClick method
Sends an event to an object's mouseClick method.

Syntax
mouseClick ( ) Logical

Description
mouseClick constructs a mouseClick MouseEvent to call the object's built-in mouseClick event method.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMUP;',0,"Defaultoverview",)} Related Topics



mouseClick example
The following example sends a mouseClick MouseEvent to fieldTwo on the form:
; sendMouseClick::pushButton
method pushButton(var eventInfo Event)
; send a mouseClick to fieldTwo
fieldTwo.mouseClick()
endMethod



mouseDouble method
Sends an event to an object's mouseDouble method.

Syntax
mouseDouble ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseDouble constructs a double-click event to call the object's built-in mouseClick event method. The 
event's coordinates are specified in x and y (in twips). Specify the mouse and keyboard state in state using 
KeyboardStates constants. You can add these constants together to create combined key states (e.g., CTRL + 
Left Arrow key).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMRDOUB;OPAL_METH_UIMDOWN;OPAL_METH_UIMUP;'
,0,"Defaultoverview",)} Related Topics



mouseDouble example
The following example sends a double-click to fieldTwo on the form:
; sendMouseDouble::pushButton
method pushButton(var eventInfo Event)
; send a mouseDouble to fieldTwo
fieldTwo.mouseDouble(100, 100, LeftButton)
endMethod



mouseDown method
Sends an event to an object's mouseDown method.

Syntax
mouseDown ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseDown constructs an event to call the object's built-in mouseDown event method. The event's 
coordinates are specified in x and y (in twips). Specify the mouse and keyboard state in state using 
KeyboardStates constants. You can add these constants together to create combined key states (e.g., Left Arrow 
key + CTRL).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMUP;OPAL_METH_UIMDOUB;OPAL_METH_UIMRDOWN;
OPAL_METH_UIMRUO;',0,"Defaultoverview",)} Related Topics



mouseDown example
The following example sends a mouseDown and a mouseUp MouseEvent to the object fieldOne on the form:
method pushButton(var eventInfo Event)
var
  fPt  Point
endVar
fPt = fieldOne.Position
fieldOne.mouseDown(fPt.x(), fPt.y(), LeftButton)
sleep(500)
fieldOne.mouseUp(fPt.x(), fPt.y(), LeftButton)
endMethod



mouseEnter method
Sends an event to an object's mouseEnter method.

Syntax
mouseEnter ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseEnter constructs an event to call the object's built-in mouseEnter event method. The event's 
coordinates are specified in x and y (in twips). Specify the mouse and keyboard state in state using 
KeyboardStates constants. You can add these constants together to create combined key states (e.g., Left Arrow 
key + CTRL).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMEXIT;OPAL_METH_UIMMOVE;',0,"Defaultoverview",)
} Related Topics



mouseEnter example
The following example sends a mouseEnter MouseEvent to a field named fieldSix on the form:
; sendMouseEnter::pushButton
method pushButton(var eventInfo Event)
; send a mouseEnter to fieldSix
fieldSix.mouseEnter(100,100,LeftButton)
endMethod



mouseExit method
Sends an event to an object's mouseExit method.

Syntax
mouseExit ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseExit constructs an event to call the object's built-in mouseExit event method. The event's coordinates 
are specified in x and y (in twips). Specify the mouse and keyboard state in state using KeyboardStates 
constants. You can add these constants together to create combined key states (e.g., Left Arrow key + CTRL).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMENTER;OPAL_METH_UIMMOVE;',0,"Defaultoverview"
,)} Related Topics



mouseExit example
The following example sends a mouseExit MouseEvent to fieldSeven on the form:
; sendMouseExit::pushButton
method pushButton(var eventInfo Event)
; send a mouseExit to fieldSeven
fieldSeven.mouseExit(100, 100, LeftButton)
endMethod



mouseMove method
Sends an event to an object's mouseMove method.

Syntax
mouseMove ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseMove constructs an event to call the object's built-in mouseMove event method. The event's 
coordinates are specified in x and y (in twips). Specify the mouse and keyboard state in state using 
KeyboardStates constants. You can add these constants together to create combined key states (e.g., Left Arrow 
key + CTRL).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMENTER;OPAL_METH_UIMEXIT;',0,"Defaultoverview",)
} Related Topics



mouseMove example
The following example sends a mouseDown, a mouseUp, and a mouseMove MouseEvent to a field named 
fieldFive on the form:
; sendMouseMove::pushButton
method pushButton(var eventInfo Event)
fieldFive.mouseDown(100, 100, LeftButton)
fieldFive.mouseUp(100, 100, LeftButton)
; send a mouseMove to fieldFive
fieldFive.mouseMove(100, 100, LeftButton)
endMethod



mouseRightDouble method
Sends an event to an object's mouseRightDouble method.

Syntax
mouseRightDouble ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseRightDouble constructs an event to call the object's built-in mouseRightDouble event method. The 
event's coordinates are specified in x and y (in twips). Specify the mouse and keyboard state in state using 
KeyboardStates constants. You can add these constants together to create combined key states (e.g., Left Arrow 
key + CTRL).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMDOUB;OPAL_METH_UIMRUO;OPAL_METH_UIMRDOW
N;',0,"Defaultoverview",)} Related Topics



mouseRightDouble example
The following example sends a mouseRightDouble MouseEvent to a field named fieldTwo on the form:
; sendMouseDouble::pushButton
method pushButton(var eventInfo Event)
; send a mouseDouble to fieldTwo
fieldTwo.mouseDouble(100, 100, LeftButton)
endMethod



mouseRightDown method
Sends an event to an object's mouseRightDown method.

Syntax
mouseRightDown ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseRightDown constructs an event to call the object's built-in mouseRightDown event method. The 
event's coordinates are specified in x and y (in twips). Specify the mouse and keyboard state in state using 
KeyboardStates constants. You can add these constants together to create combined key states (e.g., Left Arrow 
key + CTRL).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMRUO;OPAL_METH_UIMRDOUB;OPAL_METH_UIMUP;OP
AL_METH_UIMDOWN;',0,"Defaultoverview",)} Related Topics



mouseRightDown example
The following example sends a mouseRightDown and a mouseRightUp MouseEvent to a field named 
fieldThree on the form:
; sendMouseRightUp::pushButton
method pushButton(var eventInfo Event)
var
  fPt Point
endVar
fP = fieldThree.position    ; get the position, send a mouseRightDown
fieldThree.mouseRightDown(fPt.x(), fPt.y(), LeftButton)
sleep(500)                  ; pause and send a mouseRightUp
fieldThree.mouseRightUp(fPt.x(), fPt.y(), LeftButton)
endMethod



mouseRightUp method
Sends an event to an object's mouseRightUp method.

Syntax
mouseRightUp ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseRightUp constructs an event to call the object's built-in mouseRightUp event method. The event's 
coordinates are specified in x and y (in twips). Specify the mouse and keyboard state in state using 
KeyboardStates constants. You can add these constants together to create combined key states (e.g., Left Arrow 
key + CTRL).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMRDOWN;OPAL_METH_UIMRDOUB;OPAL_METH_UIMD
OWN;OPAL_METH_UIMUP;',0,"Defaultoverview",)} Related Topics



mouseRightUp example
The following example sends a mouseRightDown and a mouseRightUp MouseEvent to a field named 
fieldThree on the form:
; sendMouseRightUp::pushButton
method pushButton(var eventInfo Event)
var
  fPt Point
endVar
fP = fieldThree.position    ; get the position, send a mouseRightDown
fieldThree.mouseRightDown(fPt.x(), fPt.y(), LeftButton)
sleep(500)                  ; pause and send a mouseRightUp
fieldThree.mouseRightUp(fPt.x(), fPt.y(), LeftButton)
endMethod



mouseUp method
Sends an event to an object's mouseUp method.

Syntax
mouseUp ( const x LongInt, const y LongInt, const state SmallInt ) Logical

Description
mouseUp constructs an event to call the object's built-in mouseUp event method. The event's coordinates are 
specified in x and y (in twips). Specify the mouse and keyboard state in state using KeyboardStates constants. 
You can add these constants together to create combined key states (e.g., Left Arrow key + CTRL).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMDOWN;OPAL_METH_UIMDOUB;OPAL_METH_UIMRDO
WN;OPAL_METH_UIMRUO;OPAL_METH_UIMRDOUB;',0,"Defaultoverview",)} Related Topics



mouseUp example
The following example sends a mouseDown and a mouseUp MouseEvent o the object fieldOne on the form:
method pushButton(var eventInfo Event)
var
  fPt  Point
endVar
fPt = fieldOne.Position
fieldOne.mouseDown(fPt.x(), fPt.y(), LeftButton)
sleep(500)
fieldOne.mouseUp(fPt.x(), fPt.y(), LeftButton)
endMethod



moveTo method
Sets the focus to a specified object.

Syntax
1. (Method) moveTo ( ) Logical
2. (Procedure) moveTo ( const objectName String ) Logical

Description
moveTo moves the focus to a specified object. When you call moveTo as a procedure (Syntax 2), objectName 
specifies the destination object (the object to which the focus is moved).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIATTA;',0,"Defaultoverview",)} Related Topics



moveTo example
The following example assumes that a form contains a table frame that is bound to Orders, and another table 
frame that is bound to LineItem. Orders has a one-to-many link to LineItem. The form also contains a button 
named findDetails . In this example, the pushButton method for findDetails searches the entire table for orders 
that include the current part number.
The following code is attached to the Var window for findDetails:
; findDetails::Var
Var
  lineTC TCursor  ; instance of LINEITEM for searching
endVar

; findDetails::open
method open(var eventInfo Event)
lineTC.open("LineItem.db")
endMethod

The following code is attached to findDetails' pushButton method:
; findDetails::pushButton
method pushButton(var eventInfo Event)
var
  stockNum  Number
  orderTC    TCursor
  OrderNum    Number
endVar

; get Stock No from current LineItem
stockNum = LINEITEM.lineRecord."Stock No"
; lineTC was declared in Var window and opened by open method
if NOT lineTC.locateNext("Stock No", stockNum) then
  lineTC.locate("Stock No", stockNum)
endIf
orderTC.attach(ORDERS)
orderTC.locate("Order No", lineTC."Order No")
ORDERS.moveToRecord(orderTC)       ; move to CUSTOMER and
                             ; resynchronize with TCursor
LINEITEM.lineRecord."Stock No".moveTo()   ; move cursor to LINEITEM detail
; move cursor to matching record
LINEITEM.locate("Stock No", stockNum)
endMethod

The following code is attached to findDetails' close method:
; findDetails::close
method close(var eventInfo Event)
lineTC.close()   ; close the TCursor to LineItem
endMethod



moveToRecNo method
Moves to a specific record in a dBASE table.

Syntax
moveToRecNo ( const recordNum LongInt ) Logical

Description
moveToRecNo sets the active record to recordNum. This method returns an error if recordNum is not in the 
table. Use nRecords or examine the NRecords property to determine the number of records in a table. Use 
moveToRecNo only for dBASE tables. Use moveToRecord for Corel Paradox tables.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UINREC;OPAL_METH_UIMOTOREC;OPAL_METH_UIRESYN
C;',0,"Defaultoverview",)} Related Topics



moveToRecNo example
The following example moves to the middle record in a table. Assume that a form contains a table frame that is 
bound to the LineItem table, and a button named MidWay.
; MidWay::pushButton
method pushButton(var eventInfo Event)
var
  halfWay  LongInt
endVar

halfWay = LongInt(LINEITEM.nRecords()/2)
LINEITEM.moveToRecNo(halfWay)

endMethod



moveToRecord method
Moves to a specific record in a table.

Syntax
1. moveToRecord ( const recordNum LongInt ) Logical
2. moveToRecord ( const tc TCursor ) Logical

Description
moveToRecord moves to a specific record in a table.
Syntax 1 moves to the record number specified in recordNum. This method returns an error if recordNum is 
greater than the number of records in the table. Use the method nRecords or examine the NRecords property to
determine the number of records in a table.
Syntax 2 moves to the record pointed to by the TCursor tc. Use moveToRecNo to accelerate performance in 
dBASE tables.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UINREC;OPAL_METH_UIMOTO;OPAL_METH_UIMOVETORE
CNO;OPAL_METH_UIRESYNC;',0,"Defaultoverview",)} Related Topics



moveToRecord example
The following example moves to the middle record of a table. Assume that the form contains a table frame that 
is bound to the LineItem table, and a button named MidWay. For an example of how to use moveToRecord 
using a TCursor, see the moveTo example.
; MidWay::pushButton
method pushButton(var eventInfo Event)
var
  halfWay  LongInt
endVar

halfWay = LongInt(LINEITEM.nRecords()/2)
LINEITEM.moveToRecord(halfWay)

endMethod



nextRecord method
Moves to the next record in a table.

Syntax
nextRecord ( ) Logical

Description
nextRecord moves to the next record in a table. This method returns an error if the cursor is already at the last 
record.
nextRecord has the same effect as the action constant DataNextRecord. This means that the following 
statements are equivalent:
obj.nextRecord()
obj.action(DataNextRecord)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIHOME;OPAL_METH_UIEND;OPAL_METH_UIPRIO;OPAL_
METH_UIMOTOREC;',0,"Defaultoverview",)} Related Topics



nextRecord example
The following example moves to the next record in the Customer table. Assume that Customer is bound to a 
table frame on the form and that moveToNext is a button on the form.
; moveToNext::pushButton
method pushButton(var eventInfo Event)
if NOT CUSTOMER.atLast() then
  CUSTOMER.nextRecord()  ; move to the next record
  ; same as:  CUSTOMER.action(DataNextRecord)
  msgInfo("What record?", CUSTOMER.recno)
else
  msgInfo("Status", "Already at the last record.")
endIf
endMethod



nFields method
Returns the number of fields in a table.

Syntax
nFields ( ) LongInt

Description
nFields returns the number of fields in a table. To determine the number of columns displayed in an object that 
is bound to a table, examine the value of the NCols property for that object.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UINKEY;OPAL_METH_UINREC;',0,"Defaultoverview",)} 
Related Topics



nFields example
The following example returns the number of fields and key fields in the LineItem table. Assume that a form has 
a table frame named LINEITEM that is bound to the LineItem table, and a button named tableStats.
; tableStats::pushButton
method pushButton(var eventInfo Event)
msgInfo("Status", "The LineItem table has " +
        String(LINEITEM.nFields()) + " fields and " +
        String(LINEITEM.nKeyFields()) + " key fields." +
        "\nThere are " + String(LINEITEM.NCols) +
        " columns in the table frame.")
endMethod



nKeyFields method
Returns the fields in the active index.

Syntax
nKeyFields ( ) LongInt

Description
nKeyFields returns the number of fields in the index associated with a UIObject.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UINFIE;OPAL_METH_UINREC;',0,"Defaultoverview",)} 
Related Topics



nKeyFields example
See the nFields example.



nRecords method
Returns the number of records in a table.

Syntax
nRecords ( ) LongInt

Description
nRecords returns the number of records in a table that is bound to a table frame, multi-record object, or field 
object. You can also examine an object's NRecords property to determine the number of records in the table 
bound to that object. Both operations are time consuming for dBASE tables and large Corel Paradox tables.
The nRecords method and the NRecords property respect the limits of restricted views. If a table-based object is
the detail table in a one-to-many relationship, nRecords reports the number of linked detail records not the 
total number of records in the table.
For a Corel Paradox table, nRecords returns the number of records in the underlying table not the number of 
records displayed in the object. For example, if the Customer table contains 100 records and a table frame that 
is bound to the Customer table displays 5 records, this method would return 100, not 5.

For a dBASE table, nRecords counts deleted records if they are displayed in the form. To make a form display 
deleted records, choose Form, Show Deleted, or call action(DataShowDeleted) or action(DataToggleDeleted).

 Note
· When you call nRecords after setting a filter, the returned value does not represent the number of records in 

the filtered set. To retrieve the number of records in the filtered set, attach a TCursor to the UIObject and call 
cCount.When you call nRecords after setting a range, the returned value represents the number of records in 
the set that are defined by the range.

 Example
{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMOTOREC;OPAL_METH_UINKEY;OPAL_METH_UINFIE;',0
,"Defaultoverview",)} Related Topics



nRecords example
The following example moves to the middle record in a table. Assume that a form contains a table frame named 
LINEITEM that is bound to the LineItem table, and a button named MidWay.
; MidWay::pushButton
method pushButton(var eventInfo Event)
var
  halfWay  LongInt
endVar

halfWay = LongInt(LINEITEM.nRecords()/2)
LINEITEM.moveToRecord(halfWay)

endMethod



pixelsToTwips method
Converts screen coordinates from pixels to twips.

Syntax
pixelsToTwips ( const pixels Point ) Point

Description
pixelsToTwips converts the screen coordinates from pixels to twips. A pixel is a dot on the screen, and a twip is 
a unit equal to 1/1440 of a logical inch (1/20 of a printer's point).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UITWIPSTOPIXELS;',0,"Defaultoverview",)} Related 
Topics



pixelsToTwips example
The following example assumes that a form contains a two-inch square box named twoSquare. The twoSquare 
box contains two text boxes: pixNum and twipNum. pixNum displays the width of the box in pixels and twipNum 
displays the width of the box in twips.
; twoSquare::mouseUp
method mouseUp(var eventInfo MouseEvent)
var
  twTopLeft,             ; top left point in twips
  twBottomRight,         ; bottom right point in twips
  pxTopLeft,             ; top left in pixels
  pxBottomRight,         ; bottom right in pixels
  selfPos      Point     ; current position property
endvar
self.getBoundingBox(twTopLeft, twBottomRight)    ; returns points in twips
twipNum.Text = twBottomRight.x() - twTopLeft.x() ; get the width in twips
pxTopLeft = TwipsToPixels(twTopLeft)             ; convert to pixels
pxBottomRight = TwipsToPixels(twBottomRight)
pixNum.Text = pxBottomRight.x() - pxTopLeft.x()  ; get the width in pixels
; cross check
twTopLeft = PixelsToTwips(pxTopLeft)      ; convert from pixels back to twips
twTopLeft.view("Top left in twips")       ; twTopLeft should match selfPos
selfPos = self.Position                   ; get selfPos, twips by default
selfPos.view("Position of box in twips")  ; show the result
endMethod



postAction method
Posts an action to an action queue for delayed execution.

Syntax
postAction ( const actionId SmallInt )

Description
postAction posts an action to an action queue for delayed execution. This method works like action, except 
that the action is not executed immediately. Instead, the action is posted to an action queue when the method is 
called. Corel Paradox waits until a yield occurs (e.g., the current method completes execution or calls sleep).
The value of actionID can be a user-defined action constant or a constant from one of the following Action 
classes:
ActionDataCommands
ActionEditCommands
ActionFieldCommands
ActionMoveCommands
ActionSelectCommands
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIACTI;OPAL_METH_FOPOSTACTION;OPAL_METH_UIACTI
;OPAL_METH_UIBROADCASTACTION;OPAL_METH_UIMENUACTION;OPAL_TYPE_ACTIONEVENT;OPAL_ACTIO
NEVENT_USERDEFINEDCONSTANTS;',0,"Defaultoverview",)} Related Topics



postAction example
The following example demonstrates how to store a value from a calculated field in a table. In this example, an 
unbound calculated field object named fldLineTotal calculates the line total. Whenever the calculation occurs, 
postAction sends a custom user action. This custom user action posts the value to a table frame that is bound 
to the Lineitem table.
The following code defines the calculation for the calculated field.
;fldLineTotal :: Calculation
[LINEITEM.SELLING PRICE]*[LINEITEM.QTY]   ;Calculated field.

The following code is attached to the field object's built-in newValue method.
;fldLineTotal :: newValue
method newValue(var eventInfo Event)
   if Qty.isEdit() then            ;If edit mode,
      Qty.postAction(UserAction + 1)      ;send a custom user
   endIf                        ;action to QTY.
endmethod

The following code is attached to the table frame's built-in action method.
;recTFrame :: action
method action(var eventInfo ActionEvent)
   if eventInfo.id() = UserAction + 1 then   ;If ID is user
      dmPut("LINEITEM", "Total", Total.value)   ;action and
      Qty.postRecord()               ;post changes.
   endIf
endmethod



postRecord method
Posts a pending record to a table.

Syntax
postRecord ( ) Logical

Description
postRecord returns True if the active record is successfully posted to the underlying table; otherwise, it returns 
False. postRecord does not unlock a locked record.
postRecord has the same effect as the action constant DataPostRecord. This means that the following 
statements are equivalent:
obj.postRecord()
obj.action(DataPostRecord)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIRECORDSTATUS;OPAL_METH_UILOCKRECORD;OPAL_M
ETH_TCATTACHTOKEYVIOL;',0,"Defaultoverview",)} Related Topics



postRecord example
The following example locates a record, uses lockRecord to lock it, and determines the status of the lock using 
recordStatus. The code changes the record and posts it using postRecord. Assume that a form contains a 
table frame that is bound to the Customer table, and a button named lockButton.
; lockButton::pushButton
method pushButton(var eventInfo Event)
var
  obj  UIObject
endVar
obj.attach(CUSTOMER)
obj.locate("Name", "Sight Diver")
if thisForm.Editing then
  if NOT obj.lockRecord() then
     msgStop("Lock failed", "recordStatus(\"Locked\") is " +
             String(obj.recordStatus("Locked")))
  else
     msgStop("Lock succeeded", "recordStatus(\"Locked\") is " +
             String(obj.recordStatus("Locked")))
     obj.custRec."Name" = "Right Diver"  ; quotes on Name indicates
                                         ; field name instead of property
     obj.postRecord()
     message("Record is locked: ", obj.custRec.locked)
  endIf
else
  msgInfo("Status", "You must be in edit mode to lock and change records.")
endIf
endMethod



priorRecord method
Moves to the previous record in a table.

Syntax
priorRecord ( ) Logical

Description
priorRecord moves to the previous record in a table. This method returns an error if the cursor is already at the 
first record.
priorRecord has the same effect as the action constant DataPriorRecord. This means that the following 
statements are equivalent:
obj.priorRecord()
obj.action(DataPriorRecord)
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIHOME;OPAL_METH_UIEND;OPAL_METH_UINEXTR;OPAL
_METH_UICURR;OPAL_METH_UISKIP;OPAL_METH_UIMOTOREC;',0,"Defaultoverview",)} Related Topics



priorRecord example
The following example moves to the previous record in the Customer table. Assume that Customer is bound to a 
table frame on the form and that moveToPrior is a button on the form.
; moveToPrior::pushButton
method pushButton(var eventInfo Event)
if NOT CUSTOMER.atFirst() then
  CUSTOMER.priorRecord()  ; move to the previous record
  ; same as CUSTOMER.action(DataPriorRecord)
  msgInfo("What record?", CUSTOMER.recno)
else
  msgInfo("Status", "Already at the first record.")
endIf
endMethod



pushButton method
Generates a pushButton event and sends it to an object.

Syntax
pushButton ( ) Logical

Description
pushButton creates a pushButton event to call the object's built-in pushButton method of an object with 
that event.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIMOUSECLICK;OPAL_METH_UIMUP;',0,"Defaultovervie
w",)} Related Topics



pushButton example
The following example sends a pushButton event to buttonTwo on the form:
; sendPushButton::pushButton
method pushButton(var eventInfo Event)
; send a pushButton to buttonTwo
buttonTwo.pushButton()
endMethod



recordStatus method
Reports the status of a record.

Syntax
recordStatus ( const statusType String ) Logical

Description
recordStatus returns True or False answers to a question about the status of a record. Use the argument 
statusType to specify the status in question (i.e., is New, Locked, or Modified).
The New value means the record has just been added to the table. Locked means that an implicit or explicit lock 
has been placed on the record. Modified means at least one of the field values has been changed. You can also 
obtain information about the active record by examining the Inserting, Locked, Focus, and Touched properties for
the record.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UILOCKRECORD;OPAL_METH_UIUNLOCKRECORD;',0,"Def
aultoverview",)} Related Topics



recordStatus example
The following example locates a record, attempts to lock it using lockRecord and determines the status of the 
lock using recordStatus. The method changes the record and unlocks it using unlockRecord. Assume that a 
form contains a table frame that is bound to the Customer table and a button named lockButton. The record 
object of the table frame is named custRec.
; lockButton::pushButton
method pushButton(var eventInfo Event)
var
  Cust   UIObject
  newKey Number
endVar
Cust.attach(CUSTOMER)               ; attach to CUSTOMER table frame
Cust.locate("Name", "Sight Diver")  ; find the record
if NOT isEdit() then        ; check if form is in Edit mode
  msgInfo("Status", "You must be in Edit mode for this operation.")
else
  if NOT Cust.lockRecord() then     ; try to lock the record
     msgStop("Status", "Lock Failed. recordStatus(\"Locked\") is " +
             String(Cust.recordStatus("Locked")))
  else
     msgInfo("Record locked?", Cust.recordStatus("Locked"))
     newKey = 1384
     Cust.custRec.Customer_No.value = newKey   ; change the key value
     Cust.custRec.Customer_No.action(EditCommitField)
     msgInfo("Record modified?", Cust.recordStatus("Modified"))
     Cust.unlockRecord()            ; try to unlock the recordif it
                                    ; causes a keyviol, Corel Paradox
                                    ; leaves record locked

  if Cust.recordStatus("Locked") then
       msgInfo("Status", "Record was a key violation. Changing key.")
       newKey = 1451
       Cust.custRec.Customer_No.value = newKey ; change to a new key
       Cust.postRecord()                   ; post it
       ; record will "fly away" to a new position based on key
     endIf
     Cust.locate("Customer No", newKey)   ; find the "fly away"
  endIf
endIf
endMethod



resync method
Resynchronizes an object to a TCursor.

Syntax
resync ( const tc TCursor ) Logical

Description
resync changes the active record pointer of a UIObject to the active record of a TCursor named tc. When you 
resynchronize a table object to a TCursor, the table's filters and indexes are changed to those of the TCursor. A 
dBASE table also takes the Show Deleted setting of the TCursor.
 Note

· resync only applies when the UIObject and the TCursor are associated with the same table.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIATTA;OPAL_METH_UIMOTOREC;OPAL_METH_UIIREC;op
al_meth_uiibef;',0,"Defaultoverview",)} Related Topics



resync example
See the insertBeforeRecord example.



rgb method
Defines a color.

Syntax
rgb ( const red SmallInt, const green SmallInt, const blue SmallInt ) LongInt

Description
rgb defines a color using red, green, and blue, which can be integers ranging from 0 to 255, or Colors constants.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIGPRO;OPAL_METH_UIGETRGB;OPAL_METH_UISPRO;',0
,"Defaultoverview",)} Related Topics



rgb example
The following example uses rgb to set the color of boxes as they're created. The code also creates a color 
palette. Assume that the titles exist on the form in the appropriate locations. The form has a button named 
showPalette.
; drawPalette::pushButton
method pushButton(var eventInfo Event)
var
  palAr Array[5] SmallInt   ; array to hold rgb values
  setBaseX       LongInt    ; base position
  setBaseY       LongInt    ; base position
  ui             UIObject   ; handle to create boxes
endVar
const
  horizInc = 720            ; amount to move horizontally (twips)
  vertInc =  540            ; amount to move vertically
endConst

palAr[1] = 0
palAr[2] = 64
palAr[3] = 128
palAr[4] = 192
palAr[5] = 255

for i from 1 to palAR.size()        ; reds(diagonal position)
  setBaseX = 720 + ((i - 1) * 150)  ; change base as i increases
  setBaseY = 720 + ((i - 1) * 150)
  for j from 1 to palAR.size()      ; greens (vertical positioning)
    for k from 1 to palAR.size()    ; blue   (horizontal positioning)
      ui.create(boxTool, setBaseX + (horizInc * (k - 1)),
                setBaseY + (vertInc * (j - 1)), 250, 250)
      ; set the color using rgb and values from array
      ui.Color = rgb(palAr[i], palAr[j], palAr[k])
      ui.Visible = Yes
    endfor                          ; k (blue, horizontal)
  endfor                            ; j (green, vertical)
endfor                              ; i (red, diagonal)

endMethod



sendToBack method
Displays an object behind other objects.

Syntax
sendToBack ( )

Description
sendToBack moves a UIObject to a window's back drawing layer, displaying it behind other objects. If the 
UIObject is a form, this method displays the form window behind other windows. sendToBack works in design 
mode and run mode and you do not have to select the object. Use sendToBack if
· you have objects that overlap each other
· you want to rearrange the tab order
When you change the position of an object, you also change its tab order. An object always tabs from back to 
front.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIBRINGTOFRONT;',0,"Defaultoverview",)} Related 
Topics



sendToBack example
The following example assumes that a form contains two multi-record objects that occupy the same location and
size. Two buttons toggle between each multi-record object: btnShowVendors and btnShowStock. 
btnShowVendors uses sendToBack to send the STOCK multi-record object to the background; the VENDORS 
multi-record object is in front. btnShowStock uses sendToBack to send the VENDORS multi-record object to the 
background; the STOCK multi-record object is in front.
The following code is attached to btnShowVendors.
;btnShowVendors :: pushButton
method pushButton(var eventInfo Event)
   STOCK.sendToBack()   ; Send the VENDORS MRO to the back
   Vendor_No.moveTo()   ; so the STOCK MRO may be seen.
endmethod

The following code is attached to btnShowStock.
;btnShowStock :: pushButton
method pushButton(var eventInfo Event)
   VENDORS.sendToBack()   ; Send the STOCK MRO to the back
   Stock_No.moveTo()   ; so the VENDORS MRO may be seen.
endmethod



setGenFilter method
Specifies conditions for including records in a field, table frame, or multi-record object.

Syntax
1. setGenFilter ( [ idxName String, [ tagName String, ] ] criteria DynArray [ ] AnyType ) 
Logical
2. setGenFilter ( [ idxName String, [ tagName String, ] ] criteria Array[ ] AnyType [ , fieldId
Array[ ] AnyType ] ) Logical

Description
setGenFilter specifies conditions for including records in a field, table frame, or multi-record object. Records 
that meet the specified conditions are included, and all remaining records are filtered out. Unlike setRange, this 
method does not require an indexed table. setGenFilter must be executed before opening a table using a 
TCursor.
In Syntax 1, a dynamic array (DynArray) named criteria specifies the index as the field name or number, and the 
item as the criteria expression. For example, the following code specifies criteria based on the values of three 
fields:
; The value of the first field in the table is Widget.
criteriaDA[1]      = "Widget" 
; The value of the field named Size is greater than 4.
criteriaDA["Size"] = "> 4"    
; The value of the field named Cost is greater than or equal to 10.95
; and less than 22.50.
criteriaDA["Cost"] = ">= 10.95, < 22.50" 

If the DynArray is empty or contains at least one empty item, any existing filter criteria are removed.
In Syntax 2, the array named criteria specifies conditions, and the optional Array fieldId specifies field names and
numbers. If you omit fieldID, conditions are applied to fields in the order that they appear in the criteria array 
(the first condition applies to the first field in the table, the second condition applies to the second field, etc.). 
The following example fills arrays for Syntax 2 to specify the criteria outlined in the Syntax 1 example.
criteriaAR[1] = "Widget"
criteriaAR[2] = "> 4"
criteriaAR[3] = ">= 10.95, < 22.50"
fieldAR[1] = 1
fieldAR[2] = "Size"
fieldAR[3] = "Cost"

If the Array is empty or contains at least one empty item, the existing filter criteria is removed.
For both syntaxes, idxName specifies an index name (Corel Paradox and dBASE tables) and tagName specifies a 
tag name (dBASE tables only). If you use these optional items, the index and tag are applied to the underlying 
table before the filtering criteria.
This method fails if the active record cannot be committed.
 Note

· If you use setGenFilter on a UIObject in a running report, the filter does not take effect until you run the 
report again. For example, the following code runs a report and sets a filter; however, the filter has no effect 
until the report switches to design mode and then back into run mode.
method pushButton(var eventInfo Event)
   var
      reOrders     Report
      daCriteria   DynArray[] AnyType
   endVar

   reOrders.open("orders")

   daCriteria["OrderNo"] = "> 1234"

; Assume the report contains a table frame bound to the Orders table.
; This statement has no effect because the report is in run mode.
   reOrders.ORDERS.setGenFilter(daCriteria)



   reOrders.design()
   reOrders.run() ; Now the filter takes effect.
endMethod

 Example
{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIGETGENFILTER;OPAL_METH_UIDROPGENFILTER;OPAL_
METH_UISETRANGE;OPAL_METH_TCSETGENFILTER;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Default
overview",)} Related Topics



setGenFilter example
The following example uses the pushButton method for a button named balanceDueBtn uses setGenFilter to 
filter a table frame on a form. This code filters the ORDERS table frame to display only those orders with a 
positive balance due.
;balanceDueBtn :: pushButton
method pushButton(var eventInfo Event)
   var
      dyn               DynArray[] String
      stField, stData   String
   endVar

   stField = "Balance Due"
   stData = "> 0"
   dyn[stField] = stData

   ORDERS.setGenFilter(dyn)   ; ORDERS is a detail table frame.
endmethod



setPosition method
Sets the position of an object.

Syntax
setPosition ( const x LongInt, const y LongInt, const w LongInt, const h LongInt)

Description
setPosition sets the position of an object on the screen. Variables x and y specify the coordinates of an object's 
upper-left corner (in twips). Variables w and h specify the object's width and height (in twips). If the object is not 
specified, self is implied.
This method does not work when the UIObjects are forms. To set the position of a form, use setPosition (Form 
type).
You can also set and examine an object's position and size using the Position and Size properties.
self.Position = Point(100, 150)
self.Size = Point(2000, 2500)

The following code performs that same function as the previous code:
self.setPosition(100, 150, 2000, 2500)

For ObjectPAL, the screen is a two-dimensional grid. The origin (0, 0) is located at the upper-left corner of an 
object's container, with positive x values extending to the right, and positive y values extending down.
For dialog boxes and for the Corel Paradox desktop application, the position is specified relative to the entire 
screen . For forms, reports, and table windows, the position is specified relative to the Corel Paradox desktop.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIGETPOSITION;OPAL_METH_FOSPOS;',0,"Defaultovervi
ew",)} Related Topics



setPosition example
The following example moves a circle across the screen in response to timer events. The pushButton method 
for toggleButton uses setTimer and killTimer to start or stop a timer, respectively, depending on the condition 
of the button. When the timer starts, it issues a timer event every 100 milliseconds. Each timer event causes 
toggleButton's timer method to execute. The timer method retrieves the current position of the ellipse using 
getPosition and moves it 100 twips to the right using setPosition.
The following code is attached to toggleButton's pushButton method:
; toggleButton::pushButton
method pushButton(var eventInfo Event)
; label for button was renamed to buttonLabel
if buttonLabel = "Start Timer" then   ; if stopped, then start
  buttonLabel = "Stop Timer"          ; change label
  self.setTimer(10)                   ; start the timer
else                                  ; if started, then stop
  buttonLabel = "Start Timer"         ; change label
  self.killTimer()                    ; stop the timer
endIf

endMethod

The following code is attached to toggleButton's timer method:
; toggleButton::timer
method timer(var eventInfo TimerEvent)
var
  ui          UIObject
  x, y, w, h  SmallInt
endVar
ui.attach(floatCircle)         ; attach to the circle
ui.getPosition(x, y, w, h)     ; assign coordinates to vars
if x  4320 then                ; if not at left edge of area
  ui.setPosition(x + 100, y, w, h)  ; move to the left
else
  ui.setPosition(1440, y, w, h)     ; return to the right
endIf
endMethod



setProperty method
Sets a property to a specified value.

Syntax
setProperty ( const propertyName String, const propertyValue AnyType )

Description
setProperty sets an object's propertyName property to propertyValue. If the object does not have a 
propertyName property, or if propertyValue is invalid, this method fails.
setProperty is especially useful when propertyName is a variable; otherwise, you can access the property 
directly using the following code:
aBox.Color = Red
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIGPRO;OPAL_METH_UIGPROST;',0,"Defaultoverview",)
} Related Topics



setProperty example
The following example creates a dynamic array that's indexed by property names and contains property values. 
The array is filled using the array's index as the argument to the getProperty command. The method changes 
one of the property values and resets the object's properties using the setProperty method.
; boxOne::mouseUp
method mouseUp(var eventInfo MouseEvent)
var
  propNames DynArray[] AnyType    ; to hold property names & values
  arrayIndex           String     ; index to dynamic array
endVar

propNames["Color"] = ""
propNames["Visible"] = ""
propNames["Name"] = ""

foreach arrayIndex in propNames
  propNames[arrayIndex] = self.getProperty(arrayIndex)
endforeach

propNames["Color"] = "DarkBlue"

foreach arrayIndex in propNames
  self.setProperty(arrayIndex, propNames[arrayIndex])
endforeach

endMethod



setRange method
Specifies a range of records to include in a field, table frame, or multi-record object. This method replaces 
setFilter that was included in earlier versions of Corel Paradox. Code that calls setFilter executes as before.

Syntax
1. setRange ( [ const exactMatchVal AnyType] * [ , const minVal AnyType, const maxVal AnyType ]
) Logical
2. setRange ( rangeVals Array[ ] AnyType ) Logical

Description
setRange specifies a range of records to include in a field, table frame, or multi-record object. setRange 
compares the criteria that you specify with values in the corresponding fields of a table's index. If the active 
record cannot be committed or if the table is not indexed, this method fails. If you call setRange without any 
arguments the range criteria is reset to include the entire table.
In Syntax 1, you must specify values in minVal and maxVal to set a range based on the value of the first field of 
the index. For example, the following code determines values in the first field of each record's index:
tblObj.setRange(14, 88)

If a value is less than 14 or greater than 88, its corresponding record is excluded from the range. To specify an 
exact match on the first field of the index, assign minVal and maxVal the same value. For example, the following 
code excludes all values except 55:
tblObj.setRange(55, 55)

To set a range based on the values of more than one field specify exact matches except for the last one in the 
list. For example, the following statement looks for exact matches on Corel and Corel Paradox, and on values 
ranging from 100 to 500, inclusive, for the third field:
tblObj.setRange("Corel", "Corel Paradox", 100, 500)

In Syntax 2, you can pass an array of values to specify the range criteria. The following table displays the 
number of array items and their corresponding range specifications:
Number of array items Range specification
No items (empty array) No items resets range criteria to include the entire table.
One item One item specifies a value for an exact match on the index's first field.
Two items Two items specifies a range for the index's first field.
Three items The first item specifies an exact match for the index's first field; items 2 and 3 

specify a range for the index's second field.
More than three items For an array of size n, specify exact matches on the index's first n-2 fields. The last 

two array items specify a range for the index's n-1 field.
 Examples

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UISWITCHINDEX;OPAL_METH_TBSETRANGE;OPAL_METH
_TCSETRANGE;OPAL_INFO_TBUSINGRANGESANDFILTERS;',0,"Defaultoverview",)} Related Topics



setRange method examples
Example1         Setting simple ranges
Example2          Setting ranges based on three or more criteria



setRange example 1
For the following example, assume that the first field in Lineitem's key is Order No. and you want to know the 
total for order number 1005. When you press the getDetailSum button, the pushButton method limits the 
number of records included in the LINEITEM object, including only those with 1005 in the first key field.
; getDetails::pushButton
method pushButton(var eventInfo Event)
var
  tblObj  UIObject
endVar
if tblObj.attach(LINEITEM) then

  ; this limits tblObj's view to records that have
  ; 1005 as their key value (Order No. 1005).
  tblObj.setRange(1005, 1005)
  ; now display the number of records for Order No. 1005
  msgInfo("Total records for order 1005", tblObj.nRecords())
else
  msgStop("Sorry", "Can't attach to table.")
endIf
endMethod



setRange example 2
The following example calls setRange with a criteria array that contains more than three items. The following 
code instructs a table frame to display orders from a person with a specific first name, middle initial, and last 
name. This table frame displays only those orders that range from 100 to 500 items. This example assumes that 
the PartsOrd table is indexed on the FirstName, MiddleInitial, LastName, and Qty fields.
; setQtyRange::pushButton
method pushButton(var eventInfo Event)
   var
      arRangeInfo   Array[5] AnyType
   endVar

   arRangeInfo[1] = "Frank"       ; FirstName (exact match)
   arRangeInfo[2] = "P."          ; MiddleInitial (exact match)
   arRangeInfo[3] = "Corel"     ; LastName (exact match)
   arRangeInfo[4] = 100           ; Minimum qty value
   arRangeInfo[5] = 500           ; Maximum qty value

   PartsOrd.setRange(arRangeInfo) ; PartsOrd is a table frame
endMethod



setTimer method
Starts an object's timer.

Syntax
setTimer ( const milliSeconds LongInt [ , const repeat Logical ] )

Description
setTimer starts an object's timer. The timer interval (in milliseconds) is specified using milliSeconds. The 
optional argument repeat specifies whether the timer automatically repeats. If repeat is set to True or omitted, 
the timer repeats; otherwise, the timer event is sent once. setTimer is attached to an object's open method, 
and the object's response is defined in its timer method.
 Note

· Although Windows allows a maximum of 16 timers for all applications, Corel Paradox has no timer limit. 
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIKITI;',0,"Defaultoverview",)} Related Topics



setTimer example
The following example moves a circle across the screen in response to timer events. The pushButton method 
for toggleButton uses setTimer and killTimer to start or stop a timer, respectively, depending on the condition 
of the button. When the timer starts, it issues a timer event every 100 milliseconds. Each timer event causes 
toggleButton's timer method to execute. The timer method retrieves the ellipse's position using getPosition 
and moves it 100 twips to the right using setPosition.
The following code is for toggleButton's pushButton method:
; toggleButton::pushButton
method pushButton(var eventInfo Event)
if buttonLabel = "Start Timer" then   ; if stopped, then start
  buttonLabel = "Stop Timer"          ; change label
  self.setTimer(10)                   ; start the timer
else
  buttonLabel = "Start Timer"         ; change label
  self.killTimer()                    ; stop the timer
endIf

endMethod

The following code is for toggleButton's timer method:
; toggleButton::timer
method timer(var eventInfo TimerEvent)
var
  ui          UIObject
  x, y, w, h  SmallInt
endVar
ui.attach(floatCircle)         ; attach to the circle
ui.getPosition(x, y, w, h)     ; assign coordinates to vars
if x  4320 then                ; if not at left edge of area
  ui.setPosition(x + 100, y, w, h)  ; move to the left
else
  ui.setPosition(1440, y, w, h)     ; return to the right
endIf
endMethod



skip method
Moves forward or backward through a specified number of records.

Syntax
skip ( const nRecords LongInt ) Logical

Description
skip moves forward or backward through a specified number of records. If you attempt to move beyond the 
limits of the table, skip fails.
Specifying a positive value for nRecords moves forward through the table, specifying a negative value moves 
backward, and setting nRecords to 0 leaves the table as it is.
 Note

· Setting nRecords = 0 is the same as currRecord
· Setting nRecords = -1 is the same as priorRecord
· Setting nRecords = 1 is the same as nextRecord
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIHOME;OPAL_METH_UIEND;OPAL_METH_UINEXTR;OPAL
_METH_UIPRIO;OPAL_METH_UICURR;OPAL_METH_UIMOTOREC;',0,"Defaultoverview",)} Related Topics



skip example
The following example fills a table with records from the Orders table. Assume that the table SampOrd already 
exists with the same structure as Orders. The createSampling button exists on a form along with a table frame 
that is bound to Orders. CreateSampling's pushButton method is shown below. The code moves the cursor 
through the Orders table, skips a random number of records, and copies the record it lands on to the sampling 
table.
; createSampling::pushButton
method pushButton(var eventInfo Event)
var
  ordSampleTC         TCursor       ; handle to sampling table
  copyRec Array[]     String        ; holds record copied from Orders
  randInt             SmallInt      ; random number to skip
  OrdObj              UIObject      ; handle to Orders
endVar

ordObj.attach(ORDERS)               ; attach to ORDERS table frame
ordObj.home()                       ; move to the first record
if ordSampleTC.open("OrdSamp.db")  then
  ordSampleTC.empty()               ; clear out sampling table
  ordSampleTC.edit()                ; start editing
  while NOT OrdObj.atLast()
    randInt = int(rand() * 20) + 1  ; create an integer between 1 and 20
    randInt.view()                  ; show the number
    OrdObj.skip(randInt)            ; skip a random number of records
    OrdObj.copyToArray(copyRec)     ; get the record
    ordSampleTC.insertRecord()      ; make a space for it
    ordSampleTC.copyFromArray(copyRec)  ; insert the record
  endwhile
  ordSampleTC.endEdit()             ; end editing
  msgInfo("Status", "OrdSamp table now has " +
           String(ordSampleTC.nRecords()) + " records.")
  ordSampleTC.close()               ; close it out
else
  msgStop("Oops", "Sorry. Couldn't find OrdSamp table.")
endIf
endMethod



switchIndex method
Specifies another index to use for viewing a table's records.

Syntax
1. switchIndex ( [ const indexName String ] [ , const stayOnRecord Logical ] ) Logical
2. switchIndex ( [const indexFileName String ] [ , const tagName String [ , const stayOnRecord 
Logical ] ] ) Logical

Description
switchIndex specifies an index file to use with a table. In Syntax 1, indexName specifies an index to use with a 
Corel Paradox table. If you omit indexName, the table's primary index is used.
Syntax 2 is for dBASE tables. indexFileName can specify an .NDX file or an .MDX file, and optional argument 
tagName specifies an index tag in a production index file (.MDX).
In both syntaxes, if optional argument stayOnRecord is set to Yes, this method maintains the active record after 
the index switch. If it is set to No, the first record in the table becomes the active record. If omitted, 
stayOnRecord is set to No by default.
For more information on indexes, see About keys and indexes in tables in the User's Guide help.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UISETGENFILTER;OPAL_METH_UISETRANGE;OPAL_METH_
TCREIND;OPAL_METH_TCREINAL;OPAL_METH_TBSIND;',0,"Defaultoverview",)} Related Topics



switchIndex example
The following example assumes that Customer is a keyed Corel Paradox table that has a secondary index named 
NameAndState. This example attaches to a table frame bound to Customer, and calls switchIndex to switch 
from the primary index to the NameAndState index.
; thisButton::pushButton
method pushButton(var eventInfo Event)
var
  tblObj UIObject
endvar

tblObj.attach(CUSTOMER)               ; attach to Customer
tblObj.switchindex("NameAndState")    ; switch to index NameAndState
tblObj.home()                         ; make sure we're on the first record
msgInfo("First Record", tblObj."Name")  ; display value in Name field
; quotes around "Name" distinguish field name from property name
endMethod



twipsToPixels method
Converts screen coordinates from twips to pixels.

Syntax
twipsToPixels ( const twips Point ) Point

Description
twipsToPixels converts the screen coordinates specified in twips from twips to pixels. A pixel is a dot on the 
screen, and a twip is a device-independent unit equal to 1/1440 of a logical inch (1/20 of a printer's point).
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIPIXELSTOTWIPS;',0,"Defaultoverview",)} Related 
Topics



twipsToPixels example
See the pixelsToTwips example.



unDeleteRecord method
Restores the current record in a dBASE table.

Syntax
unDeleteRecord ( ) Logical

Description
unDeleteRecord restores the current record of a dBASE table. This operation is successful if showDeleted has 
been set to True, if the record is deleted, and if the table object is in Edit mode.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIDELE;OPAL_METH_UIRECORDDELETED;OPAL_METH_TC
ISSHOWDELETEDON;OPAL_METH_TCSHDEL;',0,"Defaultoverview",)} Related Topics



unDeleteRecord example
See the unDeleteRecord   (Tcursor type)   example.



unlockRecord method
Removes a write lock from the active record.

Syntax
unlockRecord ( ) Logical

Description
unlockRecord returns True if it successfully removes an explicit write lock on the active record; otherwise, it 
returns False.
 Note

· The Locked property is a read-only property. You can determine whether an object is locked, but you cannot 
lock or unlock an object.

 Example
{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIRECORDSTATUS;OPAL_METH_UILOCKRECORD;OPAL_M
ETH_TCATTACHTOKEYVIOL;OPAL_METH_TCDIDFLYAWAY;OPAL_METH_TCSETFLYAWAYCONTROL;',0,"Defaul
toverview",)} Related Topics



unlockRecord example
See the recordStatus example.



view method
Displays the value of an object in a dialog box.

Syntax
view ( [ const title String ] )

Description
view displays the value of an object in a dialog box. Corel Paradox suspends method execution until you close 
the dialog box. You can specify, in title, a title for the dialog box in the title string. If you omit title, the dialog 
box's title becomes the value's data type.
This method works only with the following UIObjects:
· buttons as checkboxes or buttons
· unbound fields only as lists or buttons
· fields bound to a table (the field's data type can be any data type except Memo and Graphic)
Calling view with any other UIObject causes a run-time error.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIATTA;',0,"Defaultoverview",)} Related Topics



view example
The following example assumes that a form contains a table frame named CUSTOMER that is bound to the 
Customer table, and a button. The following code is attached to the button's pushButton method. This code 
creates an array of seven UIObjects and views each item in the array.
;  page::mouseUp
method mouseUp(var eventInfo MouseEvent)
var
   obj          UIObject
   arr Array[7] UIObject
   i            SmallInt
endVar
arr[1].attach(CUSTOMER.Phone) ; the Phone field (A15) in the table frame
                              ; shows the phone number
arr[2].attach(aGraphic)       ; a bitmap (invalid)
arr[3].attach(someText)       ; a text object (invalid)
arr[4].attach(someList)       ; an unbound list field
                              ; shows the list item selected
arr[5].attach(someUnField)    ; an unbound field (invalid)
arr[6].attach(someRadio)      ; an unbound field as a radio button
                              ; shows the value of the active radio button
arr[7].attach(someButton)     ; an unbound field as a checkbox
                              ; True if checked, otherwise False
for i from 1 to arr.size()
  arr[i].view(arr[1].Class + ": Item " + String(i))
endFor
endMethod



wasLastClicked method
Determines whether an object received the last mouse click.

Syntax
wasLastClicked ( ) Logical

Description
wasLastClicked returns True if an object received the last mouse click; otherwise, it returns False. This method 
is only used with objects in the active form.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIWLRC;OPAL_METH_UIHAMO;',0,"Defaultoverview",)} 
Related Topics



wasLastClicked example
The following example attaches code to the mouseUp method for an object named boxOne. If boxOne received 
the click, the message appears. If boxOne was sent a mouseUp event from another object, the method beeps.
The following code is attached to boxOne's mouseUp method:
; boxOne::mouseUp
method mouseUp(var eventInfo MouseEvent)
if self.wasLastClicked() then
  msgInfo("Hey!", "Quit clicking me.")  ; method invoked by clicking
else
  beep()                                ; method invoked indirectly
endIf
endMethod

The following code is attached to sendAClick's mouseUp method:
; sendAClick::mouseUp
method mouseUp(var eventInfo MouseEvent)
boxOne.mouseUp(eventInfo)  ; when boxOne's mouseUp gets this,
                           ; it will beep
endMethod



wasLastRightClicked method
Determines whether an object received the last right-mouse click.

Syntax
wasLastRightClicked ( ) Logical

Description
wasLastRightClicked returns True if an object received the last right-mouse click; otherwise, it returns False. 
This method is only used with objects in the active form.
 Example

{button ,AL(`OPAL_TYPE_UIOBJECT;OPAL_METH_UIWLCL;OPAL_METH_UIHAMO;',0,"Defaultoverview",)} 
Related Topics



wasLastRightClicked example
The following example is attached to the mouseRightUp method for an object named circleOne. If the ellipse 
received a right-click, the specified message displays. If the ellipse was sent a mouseRightUp event from 
another object, the code displays an alternate message.
The following code is attached to circleOne's mouseRightUp method:
; circleOne::mouseRightUp
method mouseRightUp(var eventInfo MouseEvent)
if self.wasLastRightClicked() then
  ; method invoked by right-click
  msgInfo("Right-click", "Go click on someone your own size.")
else
  msginfo("Sent Right-click", "Invoked indirectly") ; method invoked indirectly
endIf
endMethod

The following is attached to the mouseRightUp method for an object named sendARightClick. When this object 
receives a right-click, it will send the event to circleOne.
The following code is attached to sendARightClick's mouseRightUp method:
;sendARightClick::MouseRightUp
Method mouseRightUp(var eventInfo MouseEvent)
circleOne.mouseRightUp(eventInfo) ; when circleOne 
;gets this it will trigger the second message box
endMethod



ValueEvent type
ValueEvent methods control field value changes. In fact, the changeValue built-in event method is the only 
method triggered by a ValueEvent. This means that the built-in newValue method is not called with a 
ValueEvent; instead, newValue takes an Event.
The built-in changeValue method is called when the a field value is about to change. changeValue allows you 
to determine whether you want to post the value. The built-in newValue method reports when a field has 
already received a new value. Fields defined as buttons or lists behave differently. The built-in newValue 
method differs from the newValue method for the ValueEvent type.
The ValueEvent type includes several derived methods from the Event type.
Methods for the ValueEvent type

Event ValueEvent
errorCode newValue
getTarget setNewValue
isFirstTime
isPreFilter
isTargetSelf
reason
setErrorCod

setReason

   Print related ObjectPAL methods and examples  



newValue method
Returns a new, unposted value for a ValueEvent.

Syntax
newValue ( ) AnyType
Description
newValue returns the new, unposted value for a ValueEvent. Because the new value is not yet assigned to a 
field, the following two statements might return different values:
field.Value
eventInfo.newValue()
 Note

· newValue differs from the built-in newValue method.
 Example

{button ,AL(`OPAL_TYPE_VALUEEVENT;OPAL_METH_VESNVAL;',0,"Defaultoverview",)} Related Topics



newValue example
In the following example, the changeValue method for the creditLimit field compares the old value with the new
value. If the difference between the old and new values is greater than 25 per cent, changeValue blocks the 
change. Assume that creditLimit is an unbound field on a form, and that the form has at least one other field.
; creditLimit::changeValue
method changeValue(var eventInfo ValueEvent)
var
  oldVal,
  newVal   Number
endVar
oldVal = self.Value              ; the property may be different
newVal = eventInfo.newValue()    ; than the new value
if (newVal > oldVal) AND (oldVal <> 0) then
  if (newVal - oldVal)/oldVal > 0.25 then
    msgStop("Stop", "You are not allowed to increase the " +
                    "credit limit more than 25%.")
    self.action(EditUndoField)  ; use this to restore old value
    eventInfo.setErrorCode(CanNotDepart)   ; block departure
  endIf
endIf
endMethod



setNewValue method
Specifies a value to set for a ValueEvent.

Syntax
setNewValue ( const newValue AnyType )
Description
setNewValue specifies a value to set for a ValueEvent. Ensure that the data type of the value is consistent with 
the field's type.
 Example

{button ,AL(`OPAL_TYPE_VALUEEVENT;OPAL_METH_VENVAL;',0,"Defaultoverview",)} Related Topics



setNewValue example
The following example assumes that a form contains a field named authorAbbrToName, and at least one other 
field. When the user types an author abbreviation and moves off the field, changeValue fills in the full author 
name.
; authorAbbrToName::changeValue
method changeValue(var eventInfo ValueEvent)
var
  abbrValue,
  fullValue String
endVar

abbrValue = upper(eventInfo.newValue())  ; get the value and convert
                                         ; to uppercase
; user enters an abbreviation--change to full name
switch
  case abbrValue = "AC" : fullValue = "Agatha Christie"
  case abbrValue = "SP" : fullValue = "Sara Paretsky"
  case abbrValue = "MHC": fullValue = "Mary Higgins Clark"
  case abbrValue = "FK" : fullValue = "Faye Kellerman"
  case abbrValue = "SG" : fullValue = "Susan Grafton"
  case abbrValue = "AF" : fullValue = "Antonia Fraser"
  otherwise : fullValue = "Author Unknown"
endswitch

eventInfo.setNewValue(fullValue)
endMethod



Alphabetical list of ObjectPAL methods
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A
abs
accessRights
acos
actionClass
action (Form Type)
action (TableView Type)
action (UIObject Type)
addAddress
addAlias
addArray (Menu Type)
addArray (PopUpMenu Type)
AddAttachment
addBar
addBreak (Menu Type)
addBreak (PopUpMenu Type)
addButton
addLast
add (Table Type)
add (TCursor Type)
addPassword
addPopUp (Menu Type)
addPopUp (PopUpMenu Type)
addProjectAlias
addressBook
addressBookTo
addSeparator



addStaticText (Menu Type)
addStaticText (PopUpMenu Type)
addText (Menu Type)
addText (PopUpMenu Type)
advancedWildcardsInLocate
advMatch (String Type)
advMatch (TextStream Type)
aliasName
ansiCode
appendASCIIFix
appendASCIIVar
append
appendRow
appendTable
asin
atan2
atan
atFirst (TCursor Type)
atFirst (UIObject Type)
atLast (TCursor Type)
atLast (UIObject Type)
attach (AddinForm Type)
attach (Form Type)
attach (OLEAuto Type)
attach (Report Type)
attach (Script Type)
attach (Table Type)
attach (TCursor Type)
attach (Toolbar Type)
attach (UIObject Type)
attachToKeyViol

B
beep
beginTransaction
bitAND (LongInt Type)
bitAND (SmallInt Type)
bitIsSet (LongInt Type)
bitIsSet (SmallInt Type)
bitOR (LongInt Type)
bitOR (SmallInt Type)
bitXOR (LongInt Type)
bitXOR (SmallInt Type)
blank
blankAsZero
bot
breakApart
bringToFront
bringToTop (Form Type)
bringToTop (AddinForm Type)
broadcastAction

C
cancelEdit (TCursor Type)
cancelEdit (UIObject Type)
canLinkFromClipboard
canReadFromClipboard



cAverage (Table Type)
cAverage (TCursor Type)
cCount (Table Type)
cCount (TCursor Type)
ceil
charAnsiCode
char
checkField
checkRow
chrOEM
chr
chrToKeyName
clearCheck
clipboardErase
clipboardHasFormat
close (AddinForm Type)
close (Database Type)
close (DDE Type)
close (Form Type)
close (Library Type)
close (OleAuto Type)
close (Report Type)
close (Session Type)
close (System Type)
close (TCursor Type)
close (TextStream Type)
close (TableView Type)
closeQuery
cMax (Table Type)
cMax (TCursor Type)
cMin (Table Type)
cMin (TCursor Type)
cNpv (Table Type)
cNpv (TCursor Type)
commit
commitTransaction
compact (Table Type)
compact (TCursor Type)
compileInformation
constantNameToValue
constantValueToName
contains (Array Type)
contains (DynArray Type)
contains (Menu Type)
convertPointWithRespectTo
copyFromArray (TCursor Type)
copyFromArray (UIObject Type)
copy (FileSystem Type)
copy (Table Type)
copy (TCursor Type)
copyRecord
copyToArray (TCursor Type)
copyToArray (UIObject Type)
copyToToolbar
cosh
cos



countOf
count
cpuClockTime
createIndex
create (Form Type)
create (Library Type)
create (Script Type)
create (Table Type)
create (Toolbar Type)
create (TextStream Type)
create (UIObject Type)
createAuxTables
createIndex(Table type)
createIndex(TCursor type)
createQBEString
createTabbed
cSamStd (Table Type)
cSamStd (TCursor Type)
cSamVar (Table Type)
cSamVar (TCursor Type)
cStd (Table Type)
cStd (TCursor Type)
cSum (Table Type)
cSum (TCursor Type)
currency
currentPage
currRecord (TCursor Type)
currRecord (UIObject Type)
cVar (Table Type)
cVar (TCursor Type)

D
data
dataType
date
dateTime
dateVal
day
daysInMonth
debug
delayScreenUpdates
deleteDir
delete (Database Type)
delete (FileSystem Type)
delete (Table Type)
delete (UIObject Type)
deleteRecord (TCursor Type)
deleteRecord (UIObject Type)
deleteRegistryKey
deliver (Form Type)
design (Form Type)
design (Report Type)
desktopMenu
didFlyAway
disableBreakMessage
disablePreviousError



distance
dlgAdd
dlgCopy
dlgCreate
dlgDelete
dlgEmpty
dlgExport
dlgImportAsciiFix
dlgImportAsciiVar
dlgImport
dlgImportSpreadSheet
dlgImportTable
dlgNetDrivers
dlgNetLocks
dlgNetRefresh
dlgNetRetry
dlgNetSetLocks
dlgNetSystem
dlgNetUserName
dlgNetWho
dlgRename
dlgRestructure
dlgSort
dlgSubtract
dlgTableInfo
dmAddTable
dmAttach (Form Type)
dmAttach (TCursor Type)
dmBuildQueryString
dmEnumLinkFields
dmGet
dmGetProperty
dmHasTable
dmLinkToFields
dmLinkToIndex
dmPut
dmRemoveTable
dmResync
dmSetProperty
dmUnlink
dow
dowOrd
doy
drives
dropGenFilter (Table Type)
dropGenFilter (TCursor Type)
dropGenFilter (UIObject Type)
dropIndex (Table Type)
dropIndex (TCursor Type)

E
edit (OLE Type)
edit (TCursor Type)
edit (UIObject Type)
emptyAddresses
emptyAttachments



empty (Array Type)
empty (Data Transfer Type)
empty (DynArray Type)
empty (Mail Type)
empty (Menu Type)
empty (Table Type)
empty (TCursor Type)
empty (Toolbar type)
empty (UIObject Type)
enableExtendedCharacters
endEdit (TCursor Type)
endEdit (UIObject Type)
end (TCursor Type)
end (TextStream Type)
end (UIObject Type)
enumAliasLoginInfo
enumAliasNames
enumAutomationServers
enumClipboardFormats
enumConstants
enumConstantValues
enumControls
enumDataBaseTables
enumDataModel
enumDesktopWindowHandles
enumDesktopWindowNames
enumDriverCapabilities
enumDriverInfo
enumDriverNames
enumDriverTopics
enumEngineInfo
enumEnvironmentStrings
enumEvents
enumExperts
enumFamily
enumFieldNamesInIndex (Table Type)
enumFieldNamesInIndex (TCursor Type)
enumFieldNames (Table Type)
enumFieldNames (TCursor Type)
enumFieldNames (UIObject Type)
enumFieldStruct (Query Type)
enumFieldStruct (Table Type)
enumFieldStruct (TCursor Type)
enumFileList
enumFolder
enumFonts
enumFormats
enumFormNames
enumForms
enumInbox
enumIndexStruct (Table Type)
enumIndexStruct (TCursor Type)
enumLocks (TCursor Type)
enumLocks (UIObject Type)
enumMethods
enumObjectNames



enumObjects
enumOpenDatabases
enumPrinters
enumProperties
enumRefIntStruct (Table Type)
enumRefIntStruct (TCursor Type)
enumRegistryKeys
enumRegistryValueNames
enumReportNames
enumRTLClassNames
enumRTLConstants
enumRTLErrors
enumRTLMethods
enumSecStruct (Table Type)
enumSecStruct (TCursor Type)
enumServerClassNames
enumServerInfo
enumSource (Form Type)
enumSource (Library Type)
enumSource (UIObject Type)
enumSourcePageList
enumSourceRangeList
enumSourceToFile (Form Type)
enumSourceToFile (Library Type)
enumSourceToFile (UIObject Type)
enumTableLinks
enumTableProperties
enumUIClasses
enumUIObjectNames (Form Type)
enumUIObjectNames (Report Type)
enumUIObjectNames (UIObject Type)
enumUIObjectProperties (Form Type)
enumUIObjectProperties (Report Type)
enumUIObjectProperties (UIObject Type)
enumUsers
enumVerbs
enumWindowHandles
enumWindowNames
eof
eot
errorClear
errorCode (Event Type)
errorCode (System Type)
errorHasErrorCode
errorHasNativeErrorCode
errorLog
errorMessage
errorNativeCode
errorPop
errorShow
errorTrapOnWarnings
exchange
execMethod (Library Type)
execMethod (UIObject Type)
execute (DDE Type)
execute (System Type)



executeQBE
executeSQL
executeString
existDrive
exit
exp
exportASCIIFix
exportASCIIVar
export ParadoxDOS
exportSpreadsheet

F
fail
familyRights (Table Type)
familyRights (TCursor Type)
fieldName
fieldNo (Table Type)
fieldNo (TCursor Type)
fieldRights
fieldSize
fieldType (Table Type)
fieldType (TCursor Type)
fieldUnits2
fieldValue
fileBrowser
fill (Array Type)
fill (String Type)
findFirst
findNext
first
floor
forceRefresh (TCursor type)
forceRefresh (UIObject type)
formatAdd
formatDelete
formatExist
formatGetSpec
format
formatSetCurrencyDefault
formatSetDateDefault
formatSetDateTimeDefault
formatSetLogicalDefault
formatSetLongIntDefault
formatSetNumberDefault
formatSetSmallIntDefault
formatSetTimeDefault
formatStringToDate
formatStringToDateTime
formatStringToNumber
formatStringToTime
formCaller
formReturn
fraction
freeDiskSpace
fromHex
fullName



fv

G
getAddressCount
getAddress
getAliasPath
getAliasProperty
getAnswerFieldOrder
getAnswerName
getAnswerSortOrder
getAppend
getAttachmentCount
getAttachment
getBoundingBox
getCheck
getCriteria
getDefaultPrinterStyleSheet
getDefaultScreenStyleSheet
getDesktopPreference
getDestCharSet
getDestDelimitedFields
getDestDelimiter
getDestFieldNamesFromFirst
getDestination
getDestName
getDestSeparator
getDestType
getDir
getDrive
getFileAccessRights
getFileName
getGenFilter (Table Type)
getGenFilter (TCursor Type)
getGenFilter (UIObject Type)
getHTMLTemplate
getIndexName
getKeys
getKeyviol
getLanguageDriverDesc
getLanguageDriver (System Type)
getLanguageDriver (TCursor Type)
getMaxRows
getMenuChoiceAttributeById
getMenuChoiceAttribute
getMessage
getMessageType
getMousePosition
getMouseScreenPosition
getNetUserName
getObjectHit
getPosition (AddinForm Type)
getPosition (Form Type)
getPosition (Toolbar Type)
getPosition (UIObject Type)
getProblems
getPropertyAsInteger



getPropertyAsNumber
getPropertyAsString (AddinForm Type)
getPropertyAsString (UIObject Type)
getProperty
getProtoProperty
getQueryRestartOptions
getRange (Table Type)
getRange (TCursor Type)
getRange (UIObject Type)
getRegistryValue
getRGB
getRowID
getRowNo
getRowOp
getSelectedObjects
getSender
getServerName
getSourceCharSet
getSourceDelimitedFields
getSourceDelimiter
getSourceFieldNamesFromFirst
getSourceRange (Data Transfer Type)
getSourceSeparator
getStyleSheet
getSubject
getTableID
getTableNo
getTarget
getTitle (AddinForm Type)
getTitle (Form Type)
getUserLevel
getValidFileExtensions
grow

H
handle
hasCriteria
hasMenuChoiceAttribute
hasMouse
helpOnHelp
helpQuit
helpSetIndex
helpShowContext
helpShowIndex
helpShowTopic
helpShowTopicInKeywordTable
hide (AddinForm Type)
hide (Form Type)
hide (Toolbar Type)
hideToolbar
home (TCursor Type)
home (TextStream Type)
home (UIObject Type)
hour

I
id (ActionEvent Type)



id (MenuEvent Type)
ignoreCaseInLocate
ignoreCaseInStringCompares
importASCIIFix
importASCIIVar
importSpreadsheet
indexOf
index
initRecord
insert
insertAfter
insertAfterRecord (TCursor Type)
insertAfterRecord (UIObject Type)
insertBefore
insertBeforeRecord (TCursor Type)
insertBeforeRecord (UIObject Type)
insertFirst
insertObject
insertRecord (TCursor Type)
insertRecord (UIObject Type)
insertRow
insertTable
instantiateView
int
invoke
isAbove
isAdvancedWildcardsInLocate
isAltKeyDown
isAppBarVisible
isAssigned (AddinForm Type)
isAssigned (AnyType Type)
isAssigned (Database Type)
isAssigned (Query Type)
isAssigned (SQL Type)
isAssigned (Session Type)
isAssigned (Table Type)
isAssigned (TCursor Type)
isBelow
isBlank
isBlankZero
isCompileWithDebug (Form Type)
isContainerValid
isControlKeyDown (KeyEvent Type)
isControlKeyDown (MouseEvent Type)
isCreateAuxTables
isDesign
isDir
isEdit (TCursor Type)
isEdit (UIObject Type)
isEmpty (Query Type)
isEmpty (String type)
isEmpty (Table Type)
isEmpty (TCursor Type)
isEmpty (UIObject Type)
isEncrypted (Table Type)
isEncrypted (TCursor Type)



isErrorTrapOnWarnings
isExecuteQBELocal
isFile
isFirstTime
isFixed
isFixedType
isFromUI (KeyEvent Type)
isFromUI (MouseEvent Type)
isFromUI (MenuEvent Type)
isIgnoreCaseInLocate
isIgnoreCaseInStringCompares
isInside
isLastMouseClickedValid
isLastMouseRightClickedValid
isLeapYear
isLeftDown
isLeft
isLinked
isMaximized (AddinType)
isMaximized (Form Type)
isMiddleDown
isMinimized (AddinType)
isMinimized (Form Type)
isMousePersistent
isPreFilter
isQueryValid
isRecordDeleted (TCursor Type)
isRecordDeleted (UIObject Type)
isRemote
isRemovable
isResizeable
isRightDown
isRight
isShared (Table Type)
isShared (TCursor Type)
isShiftKeyDown (KeyEvent Type)
isShiftKeyDown (MouseEvent Type)
isShowDeletedOn
isSpace
isSQLServer
isTable (Database Type)
isTable (Table Type)
isTargetSelf
isToolbarShowing
isValid
isValidDir
isValidFile
isView
isVisible (AddinFormType)
isVisible (Form Type)
isVisible (Toolbar Type)

J-K
keyChar (Form Type)
keyChar (UIObject Type)
keyNameToChr



keyNameToVKCode
keyPhysical (Form Type)
keyPhysical (UIObject Type)
killTimer

L
linkFromClipboard
ln
load (Form Type)
load (Report Type)
load (Script Type)
loadDestSpec
loadProjectAliases
loadSourceSpec
locateNext (TCursor Type)
locateNext (UIObject Type)
locateNextPattern (TCursor Type)
locateNextPattern (UIObject Type)
locate (TCursor Type)
locate (UIObject Type)
locatePattern (TCursor Type)
locatePattern (UIObject Type)
locatePrior (TCursor Type)
locatePrior (UIObject Type)
locatePriorPattern (TCursor Type)
locatePriorPattern (UIObject Type)
lock (Session Type)
lock (Table Type)
lock (TCursor Type)
lockRecord (TCursor Type)
lockRecord (UIObject Type)
lockStatus (TCursor Type)
lockStatus (UIObject Type)
logical
logoffDlg
logoff
logonDlg
logon
log
LongInt
lower
lTrim

M
makeDir
match
max
maximize (AddinForm Type)
maximize (Form Type)
memo
menuAction (AddinForm Type)
menuAction (Form Type)
menuAction (UIObject Type)
menuChoice
message
methodEdit (Form type)
methodEdit (Library type)



methodEdit (Script type)
methodEdit (UIObject type)
methodDelete (Form Type)
methodDelete (UIObject Type)
methodGet (Form Type)
methodGet (UIObject Type)
methodSet (Form Type)
methodSet (UIObject Type)
milliSec
min
minimize (AddinForm Type)
minimize (Form Type)
minute
mod
month
mouseClick
mouseDouble (Form Type)
mouseDouble (UIObject Type)
mouseDown (Form Type)
mouseDown (UIObject Type)
mouseEnter (Form Type)
mouseEnter (UIObject Type)
mouseExit (Form Type)
mouseExit (UIObject Type)
mouseMove (Form Type)
mouseMove (UIObject Type)
mouseRightDouble (Form Type)
mouseRightDouble (UIObject Type)
mouseRightDown (Form Type)
mouseRightDown (UIObject Type)
mouseRightUp (Form Type)
mouseRightUp (UIObject Type)
mouseUp (Form Type)
mouseUp (UIObject Type)
moveTo
moveToPage (Form Type)
moveToPage (Report Type)
moveToRecNo (TCursor Type)
moveToRecNo (UIObject Type)
moveToRecord (TCursor Type)
moveToRecord (TableView Type)
moveToRecord (UIObject Type)
moy
msgAbortRetryIgnore
msgInfo
msgQuestion
msgRetryCancel
msgStop
msgYesNoCancel

N
name
newValue
next
nextRecord (TCursor Type)
nextRecord (UIObject Type)



nFields (Table Type)
nFields (TCursor Type)
nFields (UIObject Type)
nKeyFields (Table Type)
nKeyFields (TCursor Type)
nKeyFields (UIObject Type)
nRecords (Table Type)
nRecords (TCursor Type)
nRecords (UIObject Type)
number
numVal

O
oemCode
open (AddinForm Type)
open (Database Type)
open (DDE Type)
open (Form Type)
open (Library Type)
open (OLEAuto Type)
open (Report Type)
open (Session Type)
open (TCursor Type)
open (TextStream Type)
open (TableView Type)
openAsDialog
openObjectTypeInfo
openTypeInfo

P
pixelsToTwips (System Type)
pixelsToTwips (UIObject Type)
play
pmt
point
position
postAction (Form Type)
postAction (UIObject Type)
postMessage(AddinForm Type)
postRecord (TCursor Type)
postRecord (UIObject Type)
pow
pow10
print
printerGetInfo
printerGetOptions
printerSetCurrent
printerSetOptions
priorRecord (TCursor Type)
priorRecord (UIObject Type)
privDir
projectViewerClose
projectViewerIsOpen
projectViewerOpen
protect
pushButton
pv



Q
qLocate
query

R
rand
readChars
readEnvironmentString
readFromClipboard (Binary Type)
readFromClipboard (Graphic Type)
readFromClipboard (Memo Type)
readFromClipboard (OLE Type)
readFromClipboard (String Type)
readFromFile (Binary Type)
readFromFile (Graphic Type)
readFromFile (Memo Type)
readFromFile (Query Type)
readFromFile (SQL Type)
readFromRTFFile (Memo Type)
readFromString (Query Type)
readFromString (SQL Type)
readLine
readMessage
readProfileString
reason (ErrorEvent Type)
reason (Event Type)
reason (MenuEvent Type)
reason (MoveEvent Type)
reason (StatusEvent Type)
recNo
recordStatus (TCursor Type)
recordStatus (UIObject Type)
registerControl
reIndexAll (Table Type)
reIndexAll (TCursor Type)
reIndex (Table Type)
reIndex (TCursor Type)
remove (Array Type)
remove (Menu Type)
remove (Toolbar Type)
removeAlias
removeAllItems
removeAllPasswords
removeButton
removeCriteria
removeItem (Array Type)
removeItem (DynArray Type)
removeMenu
removePassword
removeProjectAlias
removeRow
removeTable
rename (FileSystem Type)
rename (Table Type)
replaceItem
resourceInfo



restructure
resync
retryPeriod
rgb
rollBackTransaction
round
rTrim
run (Form Type)
run (Report Type)
run (Script Type)
runExpert

S
saveCFG
save
saveProjectAliases
saveStyleSheet
search
searchEx
searchRegistry
second
selectCurrentTool
senddlg
sendKeysActionID
sendKeys
send
sendMessage
sendToBack
seqNo
setAliasPassword
setAliasPath
setAliasProperty
setAltKeyDown
setAnswerFieldOrder
setAnswerName
setAnswerSortOrder
setAppend
setChar
setCompileWithDebug (Form Type)
setControlKeyDown (KeyEvent Type)
setControlKeyDown (MouseEvent Type)
setCriteria
setData
setDefaultPrinterStyleSheet
setDefaultScreenStyleSheet
setDesktopPreference
setDest
setDestCharSet
setDestDelimitedFields
setDestDelimiter
setDestFieldNamesFromFirst
setDestSeparator
setDir
setDrive
setErrorCode
setExclusive



setFieldValue
setFileAccessRights
setFlyAwayControl
setGenFilter (Table Type)
setGenFilter (TCursor Type)
setGenFilter (UIObject Type)
setIcon
setId (ActionEvent Type)
setId (MenuEvent Type)
setIndex (Table Type)
setInside
setItem
setKeyviol
setLeftDown
setMaxRows
setMenuChoiceAttributeById
setMenu (Form Type)
setMenu (Report Type)
setMessage
setMessageType
setMiddleDown
setMousePosition
setMouseScreenPosition
setMouseShapeFromFile
setMouseShape
setNewValue
setPosition (AddinForm Type)
setPosition (Form Type)
setPosition (Toolbar Type)
setPosition (TextStream Type)
setPosition (UIObject Type)
setPrivDir
setProblems
setProperty (AddinForm Type)
setProperty (UIObject Type)
setProtoProperty
setQueryRestartOptions
setRange (Table Type)
setRange (TCursor Type)
setRange (UIObject Type)
setReadOnly
setReason (ErrorEvent Type)
setReason (Event Type)
setReason (MenuEvent Type)
setReason (MoveEvent Type)
setReason (StatusEvent Type)
setRegistryValue
setRetryPeriod
setRightDown
setRowOp
setSelectedObjects
setShiftKeyDown (KeyEvent Type)
setShiftKeyDown (MouseEvent Type)
setSize
setSource
setSourceCharSet



setSourceDelimitedFields
setSourceFieldNamesFromFirst
setSourceRange (Data Transfer Type)
setSourceSeparator
setState
setStatusValue
setStyleSheet
setSubject
setTimer
setTitle (AddinForm Type)
setTitle (Form Type)
setUserLevel
setVCharCode
setVChar
setWorkingDir
setX (MouseEvent Type)
setX (Point Type)
setXY
setY (MouseEvent Type)
setY (Point Type)
shortName
showDeleted (Table Type)
showDeleted (TCursor Type)
show (AddinForm Type)
show (Form Type)
show (Menu Type)
show (PopUpMenu Type)
show (Toolbar Type)
showApplicationBar
showToolbar
sinh
sin
size (Array Type)
size (Binary Type)
size (DynArray Type)
size (FileSystem Type)
size (String Type)
size (TextStream Type)
sizeEx (String Type)
skip (TCursor Type)
skip (UIObject Type)
sleep
smallInt
sort
sortTo
sound
space
splitFullFileName
sqrt
startUpDir
statusValue
string
strVal
substr
subtract (Table Type)
subtract (TCursor Type)



switchIndex (TCursor Type)
switchIndex (UIObject Type)
switchMenu
sysInfo

T
tableName
tableRights (Table Type)
tableRights (TCursor Type)
tanh
tan
time (FileSystem Type)
time (Time Type)
toANSI
today
toHex
toOEM
totalDiskSpace
tracerClear
tracerHide
tracerOff
tracerOn
tracerSave
tracerShow
tracerToTop
tracerWrite
transactionActive
transferData
truncate
twipsToPixels (System Type)
twipsToPixels (UIObject Type)
type (Table Type)
type (TCursor Type)

U
unAssign
unAttach (Table Type)
unAttach (Toolbar Type)
unDeleteRecord (TCursor Type)
unDeleteRecord (UIObject Type)
unLock (Session Type)
unlock (Table Type)
unlock (TCursor Type)
unlockRecord (TCursor Type)
unlockRecord (UIObject Type)
unProtect
unregisterControl
updateLinkNow
updateRecord
upper
usesIndexes

V
vChar
vCharCode
version (OLEAuto Type)
version (System Type)



view (Array Type)
view (AnyType Type)
view (DynArray Type)
view (Record Type)
view (UIObject Type)
vkCodeToKeyName

W
wait (AddinForm Type)
wait (Form Type)
wait (TableView Type)
wantInMemoryTCursor (Query Type)
wantInMemoryTCursor (SQL Type)
wasLastClicked
wasLastRightClicked
windowClientHandle
windowHandle (AddinForm Type)
windowHandle (Form Type)
windowsDir
windowsSystemDir
winGetMessageID
winPostMessage
winSendMessage
workingDir
writeEnvironmentString
writeLine
writeProfileString
writeQBE
writeSQL
writeString
writeToClipboard (Binary Type)
writeToClipboard (Graphic Type)
writeToClipboard (Memo Type)
writeToClipboard (OLE Type)
writeToClipboard (String Type)
writeToFile (Binary Type)
writeToFile (Graphic Type)
writeToFile (Memo Type)
writeToRTFFile (Memo Type)

X
x (MouseEvent Type)
x (Point Type)

Y-Z
y (MouseEvent Type)
y (Point Type)
year

{button ,AL(`LISTS;',0,"Defaultoverview",)}      Related Topics



ObjectPAL glossary
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A
active
alias
alpha operator
ANSI
application
argument
array
array element
ASCII

B
BDE
blank
braces
branching commands
breakpoint
bubbling
built-in event method

C
cast
column
comparison operator
compound object
constant
container
containership



control structure
CTRL + Break

D
data
Database
data type
Date, Time and DateTime operator
DDE
deadlock
Debugger
desktop
dialog box
Display manager
DLL
dynamic array

E
Editor
encrypt
error stack
event
event-driven application
event model
event packet
example element
expression

F
field
field assignment
field object
field type
field value
field view
file
FileSystem
focus
format specification
form
function keys

G
global variable

H
handle
Help
hierarchy

I
IBM extended codes
identifier
incremental development
index
insertion point
inspect

J-K



key
keycode
key field
keyword

L
lastMouseClicked
lastMouseRightClicked
library
lifetime
link key
local variable
logical operator
logical type
logical value
looping commands

M
menu
menu choice
message
method
modal

N
normalized data structure
numeric operator

O
object
Object Tree
OEM
OLE
P
parameter
picture
pixel
point
pointer
post
primary index
procedure
prompt
property

Q
QBE
query
query by example (QBE)
quoted string

R
raster operation
record
record number
relational database
reserved words
restricted view



row
run-time error
run-time library

S
scope
script
secondary index
Self
session
slash sequence
standalone script
Status Bar
string
structure
subject
substring
syntax error

T
table
table alias
Tableview
target
TCursor
tilde variable
toolbar
transaction
trapping
twip
type

U-Z
validity check
variable



Active
A built-in object variable that represents the currently active object the last object to receive focus from a 
moveTo method. Typically, the active object is highlighted. Even when focus is removed from an object (e.g., to 
activate another form), Active still refers to that object. Active is only resent when you move off that object.

General routines can be written to operate on an active object without specifying the particular object. For example,
if a form contains two table frames, each bound to a different table, the following statement automatically operates 
on the active table frame:
active.action(DataNextRecord)



alias
A name you assign to a full path name to simplify access. For example, if you assign the alias MYDIR to C:\DATA\
DEMOAPP\, then you refer to MYDIR to access the folder, instead of typing the whole path.



alpha operator (+)
Used to concatenate two alpha or memo fields.



ANSI
(American National Standards Institute) A sequence of 8-bit codes that defines 256 standard characters, letters, 
numbers, and symbols. The ASCII character set includes the first 128 ANSI characters.



application
An ObjectPAL type you use to get a handle for a Corel Paradox application. A handle is a unique variable 
identifier.
OR
A group of forms, methods, queries, and procedures that form a single unit, where users can enter, view, 
maintain, and report their data.



argument
A variable, constant, or expression that you pass to a method or procedure (also called a formal parameter).



array
An ordered set of data elements of the same data type. Array elements (also called items) are specified by a 
subscript that is enclosed in square brackets. For example, such that ar[1] and ar[2] are the first two elements of
an array named ar. Subscripts are also called indexes.
Array is an ObjectPAL data type.
 Note

· Array subscripts begin with 1 in ObjectPAL.



array element
One item in an array, specified by the array name and a subscript enclosed in square brackets. For example, the 
array Ar created with the following declaration has seven string elements, ar[1] through ar[7]:
ar Array [7] String

The following reference refers to the third element in Ar:
Ar[3]
 Note

· Array subscripts begin with 1 in ObjectPAL.



ASCII
(American Standard Code for Information Interchange) A sequence of 7-bit codes that define 128 standard 
characters, letters, numbers, and symbols. ASCII codes have been extended to 8-bit ANSI codes that include 
special graphic characters. ANSI codes are used by Windows products.



BDE
(Borland Database Engine) A database engine that Corel Paradox and other Corel Windows products are based 
on. BDE allows you to share external database tables and other files directly with other Corel Windows products. 
Information about your PC's environment is maintained in the BDE configuration file (IDAPI.CFG).



blank
A field or variable that has no value.



braces
The symbols { and }. Braces enclose comments in ObjectPAL code.



branching commands
Commands that determine which ObjectPAL statements are executed or whether they are executed at all, 
depending on whether the conditions that they specify are met. if, iif, and switch are branching commands.



breakpoint
A flag you set in source code that is used in debugging to suspend execution.
When code that is executing reaches a breakpoint, execution is suspended. Breakpoints allow you to inspect the 
values of selected variables and trace the code statements that have already executed.



bubbling
A process by which events pass from the target object up through the containership hierarchy.
When bubbling occurs, an external event, directed at a target object that does not have a method to process it, 
passes up through the containership hierarchy until it reaches an object that can process it, or the form level. If 
the event can't be processed at the form level, it dies.



built-in event method
Predefined code attached to every object you place in a form. Built-in event methods define an object's default 
response to events.



cast

To convert a value to a specified ObjectPAL data type. For example, you can cast a value as either a Number or a
SmallInt type in ObjectPAL code.



column
A vertical component that contains one field in Corel Paradox tables. In Corel Paradox reports, columns are 
vertical areas containing one or more fields.



comparison operator
Typographic symbols that compare the values of two fields of the same data type, and returns a True or False 
(logical) value. The six comparison operators include: = (equal to), <> (not equal to), < (less than), > (greater 
than), <= (less than or equal to), and >= (greater than or equal to). = (equal to) is a comparison operator in 
expressions; otherwise it is an assignment operator.



compound object
An object made up of two or more other objects. For example, a table frame is a compound object composed of 
field objects and record objects.



constant
A value that cannot be changed. Corel Paradox also contains many predefined constants. For example, 
DataNextRecord is an ObjectPAL constant that specifies a move to the next record in a table. You can also create 
constants that are used much like variables in ObjectPAL code in a const...endConst block. 



container
An object that completely surrounds other objects on a form. All objects on a form coexist in a hierarchy of 
containers. For an object to be a container, its Contain Objects property must be checked in its Design menu. A 
container can itself be contained by another object.
OR
A built-in object variable that represents the object that contains Self. The following code specifies the 
pushButton method for a button contained within a box:

container.color = Red

Because the box contains the button, and the button is executing the code, the box turns red when the code 
executes.



containership
The term for an object that resides completely within the borders of another object. Containership affects the 
availability of variables, methods, and procedures.



control structure
One of three structures that control the execution of ObjectPAL code:
· branching control structure (e.g., if...then...endIf)
· looping structure (e.g., while ...endWhile)
· terminating structure (e.g., quitLoop)
ObjectPAL uses the following methods as control structures: for, return, forEach, scan, if, switch, iif, try, 
loop, while, and quitLoop.



CTRL + Break
A key sequence that halts program execution. You can configure Corel Paradox to respond to CTRL + Break by 
clicking Tools, Settings, Developer Preferences and enabling the Enable CTRL + Break check box.



data
The information that Corel Paradox stores in a table.



data type
The type of data that a field, variable, or array element contains. Data types are also called classes in other 
languages.



Database
Related data and objects that are organized logically into Corel Paradox tables. 
OR
An ObjectPAL variable that contains information about relationships between tables or access to the tables.



Date, Time and DateTime operator
Used to add (+) or subtract (-) values from Date, Time, and DateTime fields.



DDE
(Dynamic Data Exchange) A method of sharing data between Windows applications.



deadlock
A situation created in a multi-user environment when two incompatible lock commands are issued 
simultaneously.



Debugger
A component of the ObjectPAL Integrated Development Environment (IDE). The Debugger allows you to 
interactively find and correct errors in code by testing and tracing the execution of commands.
You can use the Debugger to inspect the values of variables at the breakpoints in your code and to trace the 
execution of code.



desktop
The main window in Corel Paradox.



dialog box
A form that is displayed when additional information is needed to complete an action or command. A dialog box 
is displayed on top of other windows and can be moved on top of the Menu Bar. A form's Form Window Properties
specify that the form is a dialog box.



Display manager
A category of object types that includes Application, Form, Report, and Table View.



DLL
(Dynamic Link Library) A library of external routines that perform common tasks that Windows programs can 
share. DLL routines are loaded and linked to ObjectPAL methods and procedures at run time. DLLs handle user 
input, manage memory, and allow you to create custom routines which perform tasks that exceed ObjectPAL's 
functionality.



dynamic array
An array in which each item has a string for an index. For example, ["Product"], ["Corel Paradox"], ["Type"] 
["Relational database"], ["Version"] [1.0]. These arrays are dynamic because their size changes as items are 
added and removed. The dynamic array's size is limited only by system memory. 
The DynArray data type in ObjectPAL allows you to retrieve values in a large dynamic array quickly and easily.



Editor
A component of the ObjectPAL Integrated Development Environment (IDE), used to create and edit ObjectPAL 
methods.



encrypt
To translate a table or script into password-protected code.



error stack
An ObjectPAL mechanism that stores information about the most recently detected run-time error. When a 
method or procedure executes successfully, the error stack is cleared.
If a run-time error occurs, error information records are pushed onto the stack in a last-in-first-out arrangement. 
Error information records contain error code and error messages. The following methods allow you to control and
access records on the error stack: errorCode, errorMessage, errorPop, errorClear, errorHasErrorCode, 
errorHasNativeErrorCode, errorLog, and errorShow.



event
An action or condition that triggers the execution of a method. Internal events are triggered by Corel Paradox. 
External events are triggered by the user or by an ObjectPAL method that simulates a user action.
OR
An ObjectPAL type that contains information about an event.



event model
The rules that specify how events are processed by objects in a form.



event packet
An ObjectPAL structure that contains detailed information about events (e.g., target objects and the reasons the 
event occurred). The event packet is passed into built-in event methods through the variable eventInfo, and 
accompanies the event as it moves up the containership hierarchy. You can use Run-Time Library (RTL) methods 
to examine the contents of the event packet.



event-driven application
An application whose code executes in response to events. In procedural applications, code executes in a linear 
sequence.



example element
An arbitrary sequence of characters in a sequence that represents any value in a field. In Corel Paradox you 
create an example element by clicking Example and typing the characters in the query image. In methods, you 
create example elements by inserting an underscore before the characters.



expression
A group of characters (e.g., data values, variables, arrays, operators, and functions) that evaluate to a single a 
quantity or value. An expression can evaluate to a specific data type or can be converted to string values before 
it is evaluated.



field
An item in a table that contains a specific category of information. Fields are displayed in tables as vertical 
columns. A horizontal row of fields in a table is a record.



field assignment
Refers to the assignment that links a variable to a field. When the variable changes, the value in the field 
changes.



field object
A UIObject. When bound to a field in a table, a field object is used to display or change field data. You can use an 
unbound field object to get input from the user.



field type
The representation of data in a table that is specific to the table's driver. For example, alphanumeric is a Corel 
Paradox field type and character is the corresponding dBASE field type.



field value
The data contained in one field of a record. If no data is present, the field is blank. Field objects have a Value 
property.



Field View
A display option that allows you to move the cursor through a field, character by character. Use Field View to 
view values that are too large to be displayed in the current field width, or to edit a field value.



file
A collection of information stored under one name on a disk. Corel Paradox tables are stored in files.



FileSystem type
An ObjectPAL variable that contains information about disk files, drives, directories and folders. A FileSystem 
variable provides a handle to a file or directory that you can work with in ObjectPAL statements.



focus
An object that has focus (the active object) can accept keyboard or mouse input and is usually highlighted. Only 
one object can have focus at a time.



form
A window that displays data and objects.
OR
An ObjectPAL data type. The form is the highest-level container object.



format specification
The way in which a field value is displayed on screen or output to a printer. Format specifications include 
alignment (left, right, or center), font style and size, upper or lower-case, and date and time formats. Format 
specifications also control the way in which input data is read, or validated.



function keys
The 12 keys across the top of the keyboard, labeled F1 through F12. Some keyboards have 10 keys at the far left
of the keyboard, labeled F1 through F10.



global variable
A variable that is available to all objects in a form.



handle
A variable that uniquely identifies an object you want to manipulate in ObjectPAL.



Help
The Corel Paradox online Help system. You can press F1 at any point in Corel Paradox to display information 
about the current operation.



hierarchy
The relationship of objects in a form, derived from their visual, spatial relationship.



IBM extended codes
Keys or combinations of keys on the keyboard that are given extended code numbers between -1 and -132. 
These keyboard keys do not correspond to any of the standard ASCII character codes.



identifier
A label that refers to an object, variable, property, or value. For example, the value returned by a function is an 
identifier.



incremental development
An application development process in which small parts of the application, or its overall structure, are designed 
and tested interactively.



index
A file that determines the order in which Corel Paradox accesses the records in a table. The key field of a Corel 
Paradox table establishes its primary index. In some languages, an array subscript is an index.



insertion point
The place where text is inserted when you type. The insertion point is usually indicated by a flashing vertical bar,
the cursor.



inspect
To right-click an object and view the corresponding pop-up menu.



key
A field or group of fields that uniquely identify each record in a Corel Paradox table. A key prevents the table 
from containing duplicate records, maintains the records' sorted order, and creates a primary index. A composite
primary key is contains more than one field.



key field
The index key for organizing and sorting a table.



keycode
A code that represents a keyboard character in ObjectPAL methods. The keycode may be an ANSI number or a 
string that represents a key name in Corel Paradox.



keyword
A word reserved by ObjectPAL. A keyword cannot be used as the name of a variable, array, method, or 
procedure.



lastMouseClicked
A built-in object variable that represents the last object to receive a mouseDown. lastMouseClicked is reset 
when the mouse button is released, but only after the object has completed its mouseUp.



lastMouseRightClicked
A built-in object variable that represents the last object to receive a mouseRightDown. 
lastMouseRightClicked is reset when the mouse button is released, but only after the object has completed its
mouseRightUp.



library
ObjectPAL code that can be used by objects in one or more forms.
OR
An ObjectPAL data type that stores custom methods and procedures, variables, constants, and user-defined data 
types. Libraries store and maintain frequently used routines, and allow you to share custom methods and 
variables among several forms.



lifetime
The time that a local variable, proc, or method is active or available.



link key
The part of the subordinate table's key that is linked or matched to fields in the master table, in a linked multi-
table form.



local variable
A variable that is available only to the method or procedure in which it is declared.



logical operator
One of three operators (AND, OR, or NOT) that can be used on logical data. For example, an AND between two 
logical values results in a logical value of True if the original values are also True. Logical operators are also 
known as Boolean operators.



logical type
An ObjectPAL data type that can contain one of two values: True or False. The logical type is also known as 
Boolean type.



logical value
A True or False value that is assigned to an expression when it is evaluated. Logical values are also known as 
Boolean values.



looping commands
Commands that repeat a series of actions while or until a condition is met. (e.g., for, loop, while).



menu
A display of the commands or options available. You can use ObjectPAL to create and edit application menus and 
pop-up menus.
The Menu Bar is a special menu at the top of the desktop. Click an item on the Menu Bar to view a list of 
available commands.
OR
An ObjectPAL type that stores information about an application's Menu Bar.



menu choice
A command or option selected from the Corel Paradox menus.



message
A string expression displayed in the Status Bar.



method
ObjectPAL code that is attached to an object to define the object's response to an event.
There are three types of methods:
· built-in event methods, which are attached to UIObjects and respond to events
· RTL (run-time library) methods which are part of the ObjectPAL language
· custom methods which you create when a built-in event method or RTL method does not provide adequate 

functionality
The syntax for a method is object.method(arguments).



modal
A dialog box that retains focus until you close it. A modal dialog box cannot be resized.



normalized database structure
A logical arrangement of database information in small tables. Normalized databases structures minimize 
redundancy, allow efficient access to data, provide logical and coherent views of data categories, promote data 
integrity, and allow easy insertion and deletion. Normalization involves decomposing a single large table into 
smaller tables that are linked by key fields.



numeric operator
A numeric operator that performs arithmetic operations on the surrounding operands. There are four numeric 
operators: + (addition), - (subtraction), * (multiplication), and / (division). Numeric operators are valid with date, 
time and number fields only.



object
Items such as forms, reports, tables, queries, scripts, SQL files, and libraries.
Form and report objects can contain UI objects such as boxes, lines, ellipses, text, graphics, OLE objects, buttons,
fields, table frames, and multi-record objects.
ObjectPAL recognizes the following object type categories:
Data model objects Display managers
Data types Events
Design objects System data objects



Object Tree
A diagram that illustrates the containership relations that exist between objets in a form.



OEM
(Original Equipment Manufacturer) Your computer's manufacturer.



OLE
(Object Linking and Embedding) A method by which an object, such as a graphic image, a spreadsheet, or a 
word processing document, can be linked or embedded in a Corel Paradox table or form.
OR
An ObjectPAL data type that is used with OLE objects.



parameter
The variable through which an argument is passed at run time. Parameters (also called formal parameters) are 
defined in a procedure declaration..



picture
A pattern of characters that defines what a user can type into a field during editing, data entry, or in response to 
a prompt.



pixel
A single point on the screen. The name pixel is derived from the term picture element.



point
An ordered pair of numbers that represents a location on screen.
OR
An ObjectPAL data type that contains information about a point on screen.



pointer
A visual marker that specifies the mouse position on screen.



post
To accept or commit changes to a record and update the table.



primary index
An index that is based on the key field(s) of a Corel Paradox table. A primary index determines the location of 
records; allows you to use the table as the detail in a link; maintains the records in sorted order; and accelerates 
table operations.



procedure
Code that is bracketed by the keywords proc and endProc. Unlike a method, procedures are global not bound 
to an object that gives it context.

There are two types of procedures:
· RTL (run-time library) procedures which are part of the ObjectPAL language
· custom procedures, which you create when an RTL procedure does not provide adequate functionality
A procedure's syntax is procedure(arguments).



prompt
Instructions displayed on the screen, usually in the Status Bar. Prompts request information or guide you through
an operation.



property
A named attribute that determines one aspect of an object's behavior or characteristics. You can edit an object's 
properties with the Object Explorer.



QBE
(Query By Example) A method of creating a query by selecting its fields and selection criteria visually. QBE does 
not require formal SQL statements.



query
An inquiry about the data in a table; or an instruction to update the data, through the INSERT, DELETE or 
CHANGETO operators.
OR
An ObjectPAL variable that represents a QBE query.



query by example (QBE)
A method of creating a query by selecting its fields and selection criteria visually. QBE does not require formal 
SQL statements.



quoted string
Text that is enclosed in double quotation marks.



raster operation
An operation that specifies how colors are blended on the screen.



record
A horizontal row in a Corel Paradox table that contains a group of related fields of data.
OR
An ObjectPAL data type: a programmatic, user-defined collection of information, similar to a record in Pascal or a
struct in C. Separate and distinct from records associated with a table.



record number
A unique number that identifies each record in a table.



relational database
A database modeled after a set of principles called the relational model. Data in a relational database must be 
organized into tables.



reserved words
The names of commands, keywords, functions, system variables, and operators in Corel Paradox or ObjectPAL 
language. Reserved words may not be used as ObjectPAL variables or array names.



restricted view
A detail table on a multi-table form. A restricted view is linked to the master table on a one-to-one or one-to-
many basis and shows only those records that match the current master record.



row
A horizontal component of a Corel Paradox table that contains a record.



run-time error
An error that occurs when a syntactically valid statement cannot be executed.



run-time library (RTL)
Predefined methods and procedures that operate on specific objects.



scope
The availability of a variable, method, or procedure to other objects, methods. or procedures. 
Variables, methods, and procedures are attached to objects. When an object becomes inactive (e.g., execution is
complete) the attached variables, methods, and procedures also become inactive. A variable that is declared 
inside a method is said to go out of scope when that method completes. The variable has no existence outside 
the method's operation. 



script
A collection of ObjectPAL statements that you use to perform operations automatically. Scripts are usually 
attached to an object on a form and are also called macros.



secondary index
An index used for linking, querying, and changing the view order of tables.



Self
A built-in object variable that represents the UIObject to which the currently executing code is attached. For 
example, when the following statement executes in the mouseEnter method attached to theBox, Self specifies 
the UIObject called theBox.
self.color = Red

Suppose that a method that is attached to theBox calls a custom method named changeColor, that is itself 
attached to the page. The code for changeColor is
method changeColor()
self.color = Blue
endMethod

When the method attached to theBox calls changeColor, the page turns blue, not theBox. In this case, Self 
refers to the object to which the code is attached regardless of which object called the code. However, when 
Self appears in a statement in a library, Self refers to the object that called the library routine.

When an event occurs, Self and eventInfo.getTarget can refer to the same object; however, as events bubble up 
the containership chain, the target remains fixed while Self changes to refer to the object that executes the method.

Self does not refer to the object's value or name.



session
A channel to the database engine. A session occurs whenever you open Corel Paradox, either interactively or 
using ObjectPAL. You can have multiple sessions running simultaneously.
OR
An ObjectPAL object type which opens additional sessions.



slash sequence
A backslash followed by one or more characters that is used to represent an ASCII character. Examples are \" or \
018. You can use slash sequences to place quotation marks within strings and to include other characters that 
have special meaning to Corel Paradox.



standalone script
A script that is not attached to an object in a form and is run directly from the desktop. 



Status Bar
A row of four windows displayed across the bottom of the desktop. Use the reason or setReason methods and 
the StatusReasons constants to determine where a message is displayed.



string
An alphanumeric value or an expression consisting of alphanumeric characters.
OR
An ObjectPAL data type.



structure
The arrangement of fields in a table.



subject
A built-in object variable that specifies which object a custom method should operate on. Suppose that a page in 
a form has a custom method setColor. The code for setColor is:
method setColor()
   subject.color = red
endMethod

If an object on the page makes the following call, the object named someObject will turn red: 
someObject.setColor()

When setColor executes, it replaces Subject with someObject.



substring
Any part of a string.



syntax error
An error that occurs due to an incorrectly expressed statement.



table
A structure composed of horizontal rows (records) and vertical columns (fields). Tables contain stored 
information.



table alias
Another name for a table in a data model.



TableView
An ObjectPAL data type. Use TableView to get a handle to a table view, the representation of a table in rows and 
columns.



target
The object for which an event is intended. For example, when you click a button, the button is the target.



TCursor
An ObjectPAL type that points to the data in a table. Using TCursors, you can manipulate the data without 
displaying the corresponding table.



tilde variable
A variable that is preceded by a tilde (~). Tilde variables are used in queries.



Toolbar
A collection of buttons and design tools displayed below the Menu Bar. The buttons available in the Toolbar 
correspond to the active object.



transaction
A group of related changes to a database.



trapping

ObjectPAL watches for a specified event as it executes code. If the event occurs, ObjectPAL handles it with a 
custom code routine. Trapping is especially useful for errors. You can specify your own code to deal with the 
error, so it won't interfere with the execution of the rest of your code.



twip
A unit of measurement equal to 1/1440 of a logical inch (or 1/20 of a printer's point). There are 567 twips in one 
centimeter.



type
A method of classifying objects with similar attributes. For example, all tables have common attributes, as do all 
forms, but the attributes of tables and forms are different, tables and forms belong to different types.



validity check
A constraint on the values that you can enter in a field. Validity checks are also called val checks.



variable
A placeholder in memory where data is temporarily stored and manipulated while ObjectPAL code is running. 
Variables must have names that are unique within their scope.
Variables that are declared by a var statement run faster (and often use less space) than undeclared variables. 
Declaring variables also enables compiler-type verification, which helps detect bugs before run time.



OleAuto type
OLE Automation allows you to manipulate an application's objects from outside that its application. OLE 
Automation uses OLE's component object model, but can be implemented independently from the rest of OLE. 
You can use OleAuto methods to create and manipulate objects from an application that exposes objects to OLE.

Methods for the OleAuto type
attach
close
enumAutomationServers
enumConstants
enumConstantValues
enumControls
enumEvents
enumMethods
enumObjects
enumProperties
enumServerInfo
first
invoke
next
open
openObjectTypeInfo
openTypeInfo
registerControl
unregisterControl
version

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_Pdox_OLEAuto_server;',0,"Defaultoverview",)}        Related 
Topics
 Print related ObjectPAL methods and examples



Using Corel Paradox 8 as an OLE Automation server
When working in another application, you can use the following OleAuto commands with Corel Paradox as the 
OLE Automation server. Most of these commands also have an equivalent ObjectPAL method.

Commands for using Corel Paradox as an OLE Automation server
Copy(filename String) LongInt
DataModelDesign(filename String) LongInt
Delete(filename String) LongInt
executeString (scriptStr String, usesStr String) String
FormDesign(filename String) String
FormNew() LongInt
FormOpen(filename String) LongInt
GetLastError() LongInt
GetLAstErrorAsString()String
GetLastErrorAtDepth(depth LongInt) LongInt
GetLastErrorStackedDepth() LongInt
LibraryDesign(filename String) LongInt
LibraryNew() LongInt
LibraryOpen(filename String) LongInt
MsgBox(strTitle String, strMsg String) LongInt
PrinterSheetDesign(filename String) LongInt
QueryDesign(filename String) LongInt
QueryNew() LongInt
QueryOpen(filename String) LongInt
Quit()
Rename(filename String) LongInt
ReportDesign(filename String) LongInt
ReportNew() LongInt
ReportOpen(filename String) LongInt
ReportPrint(filename String) LongInt
ScreenSheetDesign(filename String) LongInt
ScriptDesign(filename String) LongInt
ScriptNew() LongInt
ScriptOpen(filename String) LongInt
ShowLastErrorStack() LongInt
SQLQueryDesign(filename String) LongInt
SQLQueryNew() LongInt
SQLQueryOpen(filename String) LongInt
TableAdd(filename String) LongInt
TableEmpty(filename String) LongInt
TableExport(filename String) LongInt
TableInfoStructure(filename String) LongInt
TableOpen(filename String) LongInt
TableRestructure(filename String) LongInt
TableSort(filename String) LongInt
TableSubtract(filename String) LongInt



attach method
Attaches an OLE Automation variable to a UIObject.

Syntax
attach ( const object UIObject ) Logical

Description
attach attaches an OLE Automation variable to the UIObject specified by object. attach succeeds if the UIObject
denotes an ActiveX control. When attach succeeds, the objects methods and properties are accessible from the 
OLE Automation variable.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OACLOSE;OPAL_METH_OAOPEN;OPAL_METH_OAREGISTE
RCONTROL;OPAL_METH_OAVERSION;',0,"Defaultoverview",)} Related Topics



attach example
The following example attaches to an OLE custom control called MyCtrl that is embedded on the form:
method pushButton ( var eventInfo Event ) 
var
   oa   oleauto
endvar
   oa.attach(MyCtrl)
endMethod



close method
Closes the OLE Automation variable.

Syntax
close ( ) Logical

Description
close releases the reference from an OLE Automation variable to an automation server; however, some servers 
remain open when all references are removed. close is especially useful for global variables, because it is called 
automatically when an OLE Automation variable goes out of scope.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAOPEN;',0,"Defaultoverview",)} Related Topics



close example
The following example closes the OLE Automation server application:
var
   pdx oleauto
endvar
method pushButton ( var eventInfo Event ) 
   pdx.close()
endMethod



enumAutomationServers procedure
Reads the registry on the current machine and lists the available OLE Automation servers.

Syntax
enumAutomationServers ( var servers DynArray[ ] String ) Logical

Description
enumAutomationServers lists the OLE Automation servers and OLE custom controls in the registry.
The information is assigned to servers, a dynamic array that you must declare and pass as an argument. The 
indexes of the DynArray are the end user OLE Automation server names. The corresponding index values are the
internal OLE names (e.g., Paradox.Application).
enumAutomationServers returns True if successful; otherwise, it returns False.
Use enumAutomationservers to retrieve the internal server name to pass to open and openTypeInfo.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMSERVERINFO;OPAL_METH_OAOPEN;OPAL_METH
_OAOPENOBJECTTYPEINFO;OPAL_METH_OAOPENTYPEINFO;',0,"Defaultoverview",)} Related Topics



enumAutomationServers example
The following example demonstrates how enumAutomationServers compiles a list of OLE Automation servers:
method pushButton ( var eventInfo Event ) 
var 
   da DynArray[] String
endVar
enumautomationservers(da)
da.view()
endMethod



enumConstants method
Enumerates the constants defined by an OLE Automation server.

Syntax
enumConstants ( var types DynArray[ ] String ) Logical

Description
enumConstants enumerates the constant type names in a type library of an OLE Automation server. The 
information is assigned to the dynamic array (DynArray) types. The indexes hold the OLE type name and the 
corresponding items are the equivalent ObjectPAL type. You can use the constant type name as input for the 
enumConstantValues to retrieve the constant values of this type. These constants are only available through 
this method.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMCONSTANTVALUES;OPAL_METH_OAENUMCONT
ROLS;OPAL_METH_OAENUMEVENTS;OPAL_METH_OAENUMMETHODS;OPAL_METH_OAENUMOBJECTS;OPAL
_METH_OAENUMPROPERTIES;',0,"Defaultoverview",)} Related Topics



enumConstants example
The following example enumerates the constants from Excel:
method pushButton ( var eventInfo Event ) 
   var
      oa oleauto
      da DynArray[] String
   endvar
   oa.open("Excel.application.5")
   oa.enumConstants(da)
   da.view("Excel constant types")
endmethod



enumConstantValues method
Enumerates the constants that are accessible from an OLE Automation server.

Syntax
enumConstantValues ( const constantType String, var values DynArray[ ] AnyType ) Logical

Description
enumConstantValues enumerates the constants in a type library of an OLE Automation object. constantType is
the type returned by enumConstants.
The enumerated information is assigned to the dynamic array (DynArray) values. The indexes are the OLE 
constant names and the corresponding items are the constant’s values.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMCONSTANTS;OPAL_METH_OAENUMCONSTANTV
ALUES;OPAL_METH_OAENUMCONTROLS;OPAL_METH_OAENUMEVENTS;OPAL_METH_OAENUMMETHODS;O
PAL_METH_OAENUMOBJECTS;OPAL_METH_OAENUMPROPERTIES;',0,"Defaultoverview",)} Related Topics



enumConstantValues example
The following example enumerates the values of constants available in Excel:
method pushButton ( var eventInfo Event ) 
var
   oa oleauto
   da DynArray[] AnyType
endvar
   oa.open("Excel.Application.5")
   oa.enumConstantValues("Constants",da)
   da.view()
endmethod



enumControls procedure
enumControls enumerates the registered OLE custom controls.

Syntax
enumControls ( var controls DynArray[ ] String ) Logical

Description
enumControls enumerates the OLE custom controls listed in the registry. The information is assigned to the 
dynamic array (DynArray) controls. The DynArray indexes are the end user OLE Automation control names (e.g., 
"My Own Control"), and the corresponding values are the internal OLE names (e.g., MyCtrl.Ctrl1).
Use enumControls to retrieve internal ActiveX names, as input for the open and openTypeInfo methods. You 
can also use enumControls for the progid property for the OLE object.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMCONSTANTS;OPAL_METH_OAENUMCONSTANTV
ALUES;OPAL_METH_OAENUMEVENTS;OPAL_METH_OAENUMMETHODS;OPAL_METH_OAENUMOBJECTS;OPA
L_METH_OAENUMPROPERTIES;',0,"Defaultoverview",)} Related Topics



enumControls example
The following example builds and displays the Controls dynamic array (DynArray):
method pushbutton ( var eventInfo Event ) 
var
   da DynArray[] String
endvar
   enumControls(da)
   da.view()
endmethod

The following example creates a form using an ActiveX control object. MyCtrl.Ctrl1 is an internal ActiveX control 
name listed by enumControls in the previous example.
method pushButton ( var eventInfo Event ) 
var
   f form
   o uiobject
endvar
   f.create()
   o.create(OLETool, 200, 300, 1000, 500, f)
   o.ProgId = "MyCtrl.Ctrl1"
endMethod



enumEvents method
Enumerates the events that are accessible from an OLE Automation server.

Syntax
enumEvents ( var events DynArray[ ] String ) Logical

Description
enumEvents enumerates a controls events. The information is assigned to the dynamic array (DynArray) 
events. The DynArray is empty if the OLE Automation variable is bound to an object that is not an OLE 
Automation control.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMCONSTANTS;OPAL_METH_OAENUMCONSTANTV
ALUES;OPAL_METH_OAENUMCONTROLS;OPAL_METH_OAENUMMETHODS;OPAL_METH_OAENUMOBJECTS;
OPAL_METH_OAENUMPROPERTIES;',0,"Defaultoverview",)} Related Topics



enumEvents example
The following example opens the type library of MyCtrl.Ctrl1, and builds and displays the dynamic array 
(DynArray) of the enumerated events:
method pushButton ( var eventInfo Event ) 
var 
   oa oleauto
   dy DynArray[] String
endvar
   oa.openTypeInfo("MyCtrl.Ctrl1")
   oa.enumEvents(dy)
   dy.view()
endMethod



enumMethods method
Enumerates the methods that are accessible from an OLE Automation server.

Syntax
enumMethods ( var methods DynArray[ ] String ) Logical

Description
enumMethods enumerates the methods that can be accessed from an OLE Automation server. The information 
is assigned to the dynamic array (DynArray) methods. The index of the DynArray is the method name, and its 
value is the ObjectPAL prototype. Some of these methods might not be accessible by ObjectPAL because their 
types are not supported, in which case the prototype displays an asterisk character (*).
You can specify argument types with commentary information. For example, MoveCursorToPos(x LongInt 
{OLE_XPOS_PIXELS}, y LongInt {OLE_YPOS_PIXELS}), where OLE_XPOS_PIXELS is the OLE type of the argument. 
The OLE type name often indicates the nature of the argument.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMCONSTANTS;OPAL_METH_OAENUMCONSTANTV
ALUES;OPAL_METH_OAENUMEVENTS;OPAL_METH_OAENUMOBJECTS;OPAL_METH_OAENUMPROPERTIES;',
0,"Defaultoverview",)} Related Topics



enumMethods example
The following example builds and displays the dynamic array (DynArray) of the enumerated methods:
method viewMethods(var oa oleauto)
var
   dy DynArray[] String
endvar
   oa.enumMethods(dy)
   dy.view()
endMethod



enumObjects method
Enumerates the events accessible from an OLE Automation server.

Syntax
enumObjects ( var objects DynArray[ ] String ) Logical

Description
enumObjects lists the names of objects in a type library of a server. The object names are sub-objects in that 
particular OLE server. The sub-objects are often retrieved through methods and properties of the Application 
server object retrieved with the open method. This method lists the object names, which can be passed into 
openObjectTypeInfo, from which the methods and properties of the sub-object can be enumerated.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMSERVERINFO;OPAL_METH_OAOPENOBJECTTYPE
INFO;OPAL_METH_OAOPENTYPEINFO;',0,"Defaultoverview",)} Related Topics



enumObjects example
The following example builds and displays the dynamic array (DynArray) of the enumerated objects.
method viewObjects ( oa oleauto )
var
   dy DynArray[] String
endvar
   oa.enumObjects(dy)
   dy.view()
endmethod



enumProperties method
Enumerates the properties accessible from an OLE Automation server.

Syntax
enumProperties ( var properties DynArray[ ] String ) Logical

Description
enumProperties enumerates the properties that can be accessed from an OLE Automation server. The 
information is assigned to the dynamic array (DynArray) properties. The index of the DynArray is the property 
name, and the corresponding item is the ObjectPAL type. Some properties aren't accessible by ObjectPAL 
because their types are not supported. Unsupported ObjectPAL types display an asterisk (*).
Property types might be specified with commentary information. For example, ForeColor LongInt {OLE_COLOR}, 
BackColor LongInt {OLE_COLOR}, where OLE_COLOR is the OLE type of the argument. The OLE type name often 
indicates the nature of the argument.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMCONSTANTS;OPAL_METH_OAENUMCONSTANTV
ALUES;OPAL_METH_OAENUMEVENTS;OPAL_METH_OAENUMMETHODS;OPAL_METH_OAOPENOBJECTTYPEI
NFO;OPAL_METH_OAOPENTYPEINFO;',0,"Defaultoverview",)} Related Topics



enumProperties example
The following example builds and displays a dynamic array (DynArray) of the enumerated properties:
method viewProperties(oa oleauto)
var 
   dy DynArray[] String
endvar
   oa.enumProperties(dy)
   dy.view()
endMethod



enumServerInfo procedure
Enumerates information about the OLE Automation server.

Syntax
enumServerInfo ( const serverName String, var info DynArray[ ] AnyType ) Logical

Description
enumServerInfo enumerates information about the server from the registry. The serverName is one of the 
internal OLE server names returned from either enumAutomationServers or enumControls.
The following table displays the information enumerated by enumServerInfo:
Key Type Comment
CLSID String The ClassID used internally by OLE. If CLSID exisits the server is an 

ActiveX control.
ProgID String The internal OLE server name (e.g., Paradox.Application).
TypeLib String The ClassID of the type library. If TypeLib exists, openTypeInfo can be 

used with this server.
ToolboxBitmap32 Graphic Toolbar bitmap for the control
Version String The internal version of this server

Because the info dynamic array (DynArray) only holds information retrieved from the registry, numServerInfo's
results depend the server's registry.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMAUTOMATIONSERVERS;OPAL_METH_OAOPENOB
JECTTYPEINFO;OPAL_METH_OAOPENTYPEINFO;',0,"Defaultoverview",)} Related Topics



enumServerInfo example
The following example builds and displays a dynamic array (DynArray) of the server information:
method pushButton ( var eventInfo Event ) 
var
   da DynArray[] anytype
endvar
   enumServerInfo("MyCtrl.Ctrl1", da)
   da.view()
endMethod



first method
Returns the first object in a collection.

Syntax
first ( var AnyType )

Description
first returns the first object in a collection when an OLE Automation variable denotes a sub-object in a server 
that is itself a collection of other sub-objects. The items in a collection are primarily OleAuto type a reference to
another OLE automation object. If the collection is empty, first returns a blank value. You can determine is an 
object is a collection object using isBlank. If the object is a collection, isBlank succeeds; otherwise, it fails. 
Some servers do not support isBlank. 
A collection object behaves like any other OleAuto object. It always has a Count property and an Item method, 
and most of the time they have an Add and a Remove method. Specific implementations can have other 
methods and properties available.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OANEXT;OPAL_METH_OAOPEN;OPAL_METH_OAVERSION;
',0,"Defaultoverview",)} Related Topics



first example
The following example uses first and next to return individual elements of an OleAuto collection object 
collectnObj. collectnObj is passed as a parameter to first. This example assumes that collectnObj is attached to 
an OleAuto collection object and is declared at the form level. 

method GetContents ( var collectnObj oleAuto )
Var 
   anElement  LongInt
   i          SmallInt
endVar

collectnObj = OA.first(anElement)
processObject(anElement)            ; call a custom method which
                                    ; processes the current element
                                    ; and pass the element reference
for i = 1 to collectnObj^count()    ; call the OleAuto object's count
                                    ; method to determine loop max
  collectnObj = OA.next(anElement)  ; get the next item in the
                                    ; collection object
  processObject(anElement)

endFor
endMethod



invoke procedure
Invokes a method or property in an OLE Automation server.

Syntax
invoke ( const methodName String [, var arg]* ) AnyType

Description
invoke allows you to access methods and properties in an OLE Automation server. The methodName argument 
specifies the OLE Automation server's internal method and the optional arg arguments are the parameters of the
method specified by methodName. 
invoke is especially useful when the OLE Automation server has a method or property name that conflicts with 
an ObjectPAL keyword.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAATTACH;OPAL_METH_OAOPEN;',0,"Defaultoverview",
)} Related Topics



invoke example
The following example demonstrates three ways to call the msgbox method of the passed automation server:
method callMsgBox (oa oleauto)
var 
   ret LongInt
endvar
   ret = oa.msgbox("Hello", 5)
   ret = oa^msgbox("Hello", 5)

   ret = oa.invoke("msgbox", "Hello", 5)
endMethod



next method
Returns the next object in a collection.

Syntax
next ( var AnyType )

Description
next returns the next object in a collection when an OLE Automation variable denotes a sub-object in a server 
that is itself a collection of other sub-objects. When there are no more items in the collection, the result will be a 
blank value. The items in a collection are primarily OleAuto type a reference to another OLE automation object.
If the collection is empty, next returns a blank value. You can determine is an object is a collection object using 
isBlank. If the object is a collection, isBlank succeeds; otherwise, it fails. Some servers do not support isBlank.
A collection object behaves like any other OleAuto object. It always has a Count property and an Item method, 
and most of the time they have an Add and a Remove method. Specific implementations can have other 
methods and properties available.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAFIRST;OPAL_METH_OAOPEN;OPAL_METH_OAVERSION;
',0,"Defaultoverview",)} Related Topics



next example
See the first example.



open method
Opens a server.

Syntax
open ( const serverName String ) Logical

Description
open opens the server specified by serverName. If the specified server is an automation server, open succeeds; 
otherwise, it fails.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAATTACH;OPAL_METH_OACLOSE;OPAL_METH_OAENUM
AUTOMATIONSERVERS;OPAL_METH_OAVERSION;',0,"Defaultoverview",)} Related Topics



open example
The following example opens Corel Paradox as an OLE Automation server;
var
   pdx oleauto
endvar
method pushbutton ( var eventInfo Event ) 
   pdx.open("Paradox.Application")
endMethod



openObjectTypeInfo method
Enumerates the events that are accessible from an OLE Automation server.

Syntax
openObjectTypeInfo ( const server OleAuto, const objectName String ) Logical

Description
openObjectTypeInfo connects to the type library of the specified sub-object in a server. Unlike openTypeInfo, 
openObjectTypeInfo allows you to use enumMethods and enumProperties to retrieve the methods and 
properties of the sub-object specified in objectName. The object names can be enumerated by enumObjects.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMMETHODS;OPAL_METH_OAENUMOBJECTS;OPAL
_METH_OAENUMPROPERTIES;OPAL_METH_OAENUMSERVERINFO;OPAL_METH_OAOPENTYPEINFO;',0,"Def
aultoverview",)} Related Topics



openObjectTypeInfo example
The following example connects to the type library of the sub-object, chart, in Excel. The code then builds and 
displays a dynamic array (DynArray) of the chart’s properties.
method pushButton ( var eventInfo Event ) 
var
   oa oleauto
   excel oleauto
   chart oleauto
   da DynArray[] String
endvar
   excel.openTypeInfo("Excel.application.5")
   chart.openObjectTypeInfo(excel, "chart")
   chart.enumProperties(da)
   da.view()
endMethod



openTypeInfo method
Opens the type library of an OLE Automation server.

Syntax
openTypeInfo ( var serverName String ) Logical

Description
openTypeInfo connects to the type library of the server specified by serverName. Once connected, you can call
the type enumeration methods to retrieve information about the server. The openTypeInfo method creates an 
instance of the server and gives you access to the server methods and properties. If a server doesn’t provide a 
type library, this method will return False.
This method is designed for type browsing only.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMCONSTANTS;OPAL_METH_OAENUMCONSTANTV
ALUES;OPAL_METH_OAENUMEVENTS;OPAL_METH_OAENUMMETHODS;OPAL_METH_OAENUMOBJECTS;OPA
L_METH_OAENUMPROPERTIES;OPAL_METH_OAENUMSERVERINFO;OPAL_METH_OAOPENOBJECTTYPEINFO
;',0,"Defaultoverview",)} Related Topics



openTypeInfo example
The following example connects to the Corel Paradox type library and then builds and displays the dynamic array
(DynArray) of Corel Paradox’s properties:
method pushButton ( var eventInfo Event ) 
var
   oa oleauto
   dy DynArray[] String
endvar
   oa.openTypeInfo("Paradox.application")
   oa.enumProperties(dy)
   dy.view()
endMethod



registerControl procedure
Registers an OLE Automation control.

Syntax
registerControl ( const fileName String ) String

Description
registerControl auto-registers the OLE Automation control specified in fileName.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAENUMAUTOMATIONSERVERS;OPAL_METH_OAENUMC
ONTROLS;OPAL_METH_OAOPEN;OPAL_METH_OAUNREGISTERCONTROL;',0,"Defaultoverview",)} Related 
Topics



registerControl example
The following example registers the MyCntl.cntl1 control. The control's registered name is the complete 
pathname of the file containing the control.
method pushButton ( var eventInfo Event ) 
registerControl("C:\\OCXLIB\\MYCNTL1.OCX")
endMethod



unregisterControl method
Unregisters an ActiveX control.

Syntax
unregisterControl ( const fileName String ) Logical

Description
unregisterControl unregisters an ActiveX control. The argument fileName specifies the name of the ActiveX 
control you want to unregister. This method returns True if the file is a valid ActiveX control; otherwise, it returns 
False. The ActiveX control must support the ability to unregister itself.
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAREGISTERCONTROL;',0,"Defaultoverview",)} Related
Topics



unregisterControl example
See the registerControl example.



version method
Returns the version number of the current OLE2 server.

Syntax
version ( ) String

Description
version returns a string containing the version number of the currently attached OLE2 server (e.g., "2.0").
 Example

{button ,AL(`OPAL_TYPE_OLEAUTO;OPAL_METH_OAATTACH;OPAL_METH_OACLOSE;OPAL_METH_OAENUM
AUTOMATIONSERVERS;OPAL_METH_OAREGISTERCONTROL;OPAL_METH_OAVERSION;;',0,"Defaultovervie
w",)} Related Topics



version example
The following example opens the Corel Paradox OLE Automation server and retrieves its version number.
method pushButton ( var eventInfo Event ) 
var
   oa oleauto
   v string
endvar
   oa.open("Paradox.Application")
   v = oa.version()
endMethod



DataTransfer type
The DataTransfer type contains methods and procedures that create, delete, import, and export data.

Methods for the DataTransfer type
appendASCIIFix
appendASCIIVar
dlgExport
dlgImport
dlgImportASCIIFix
dlgImportASCIIVar
dlgImportSpreadsheet
dlgImportTable
empty
enumSourcePageList
enumSourceRangeList
exportASCIIFix
exportASCIIVar
exportParadoxDOS
exportSpreadsheet
getAppend
getDestCharSet
getDestDelimitedFields
getDestDelimiter
getDestFieldNamesFromFirst
getDestName
getDestSeparator
getDestType
getKeyviol
getProblems
getSourceCharSet
getSourceDelimitedFields
getSourceDelimiter
getSourceFieldNamesFromFirst
getSourceName
getSourceRange
getSourceSeparator
getSourceType
importASCIIFix
importASCIIVar
importSpreadsheet
loadDestSpec
loadSourceSpec
setAppend
setDest
setDestCharSet
setDestDelimitedFields
setDestDelimiter
setDestFieldNamesFromFirst
setDestSeparator
setKeyviol
setProblems
setSource
setSourceCharSet
setSourceDelimitedFields
setSourceDelimiter



setSourceFieldNamesFromFirst
setSourceRange
setSourceSeparator
transferData

   Print related ObjectPAL methods and examples   



appendASCIIFix procedure
Adds fixed format ASCII data from a file to a table.

Syntax
appendASCIIFix ( const fileName String, const tableName String, const specTableName String [ , 
const ANSI Logical ] ) Logical

Description
appendASCIIFix adds data from the fixed format ASCII file specified by fileName to the table specified by 
tableName. This method uses the layout specified in specTableName.
The following table illustrates the structure of the file specified with specTableName :
Field name Type & size Description
Field Name A      25 Name of the field to import
Type A          4 Field type to import. The Type must be a valid Corel Paradox or dBASE 

field specification. 
Start S Column number where the field value begins
Length S Field size
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXAPPENDASCIIVAR;OPAL_METH_DXEXPORTASCII
FIX;OPAL_METH_DXEXPORTASCIIVAR;OPAL_METH_DXIMPORTASCIIFIX;OPAL_METH_DXIMPORTASCIIVAR;',
0,"Defaultoverview",)} Related Topics



appendASCIIFix example
The following example imports ASCII fixed text to Corel Paradox (short form): 
ImportASCIIFix("NewRecords.txt", "TimeCards.db", "ImpSpec.db")



appendASCIIVar procedure
Adds delimited ASCII data from a file to a table.

Syntax
appendASCIIVar ( const fileName String, const tableName String [ , const separator String, 
const delimiter String, const allFieldsDelimited Logical, const ANSI Logical ] ) Logical

Description
appendASCIIVar appends data from the delimited ASCII file specified by fileName to the table specified by 
tableName. appendASCIIVar uses the options specified by separator, delimiter, allFieldsDelimited, and ANSI.
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXAPPENDASCIIFIX;OPAL_METH_DXIMPORTASCII
VAR;OPAL_METH_DXEXPORTASCIIVAR;OPAL_METH_DXIMPORTASCIIFIX;OPAL_METH_DXEXPORTASCIIFIX;',
0,"Defaultoverview",)} Related Topics



appendASCIIVar example
The following example imports ASCII Delimited Text to Corel Paradox:
ImportASCIIVar("NewRecords.txt", "TimeCards.db")



dlgExport procedure
Displays the Export <tableName> As dialog box.

Syntax
dlgExport ( const tableName String [ , const fileName String ] )

Description
dlgExport displays the Export <tableName> As dialog box with the specified tableName displayed as the 
default. tableName represents the name of the table you want to export and fileName specifies the name and 
type of the file created by the export. 
ObjectPAL code suspends execution until the user closes the Export <tableName> As dialog box. ObjectPAL has 
no control over this dialog box once it is displayed; it is up to the user to close the dialog box.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGIMPORTASCIIFIX;OPAL_METH_DXDLGIMPO
RTASCIIVAR;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXEXPORTASCIIFIX;OPAL_METH_DXE
XPORTASCIIVAR;OPAL_METH_DXEXPORTSPREADSHEET;',0,"Defaultoverview",)} Related Topics



dlgExport example
The following example displays the Export As dialog box for the ORDERS.DB table.
method pushButton ( var eventInfo Event ) 
   var
      tableName String
   endVar

   tableName = "orders.db"
   ; invoke the Export <tablename> As dialog box
   dlgExport ( tableName ) 
endMethod



dlgImport procedure
Displays the Import Data dialog box.

Syntax
dlgImport ( const fileName String [ , const tableName String ] ) 

Description
dlgImport displays the Import Data dialog box with the specified file and table names displayed as the default. 
Corel Paradox opens text files and reads first few lines to determine whether the file contains delimited or fixed-
length text. Text files are files with the *.TXT extension or with unknown extensions.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGEXPORT;OPAL_METH_DXDLGIMPORTASCIIF
IX;OPAL_METH_DXDLGIMPORTASCIIVAR;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXDLGI
MPORTTABLE;',0,"Defaultoverview",)} Related Topics



dlgImport example
The following example displays the Import Data dialog box. The target table name defaults to the name of the 
source file, with a .DB extension. The target file type is Corel Paradox, unless another type has been specified for
the table.
method pushButton(var eventInfo Event)
   ;the following line displays the Import Data dialog box
   dlgImport("Customer.txt")
endmethod



dlgImportASCIIFix procedure
Displays the Import Data dialog box.

Syntax
dlgImportASCIIFix ( const fileName String )

Description
dlbImportASCIIFix displays the Import Data dialog box with the specified fileName displayed as the default, 
and the import file type set to fixed-length ASCII. fileName specifies the name of the source file and the target 
table for the imported data. If you specify a file extension, Corel Paradox uses it to locate the appropriate file.
The target table's extension depends on its table type. The default type for Corel Paradox is .DB; for dBASE 
tables the default type is .DBF. Dates and numbers are formatted according to your settings in the Windows 
Control Panel. 
ObjectPAL code suspends execution until the user closes the Import Data dialog box. 
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGEXPORT;OPAL_METH_DXDLGIMPORTASCIIV
AR;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXIMPORTASCIIFIX;',0,"Defaultoverview",)} 
Related Topics



dlgImportASCIIFix example
The following example displays the Import Data dialog box and imports data from the ORDERS.TXT text file to 
the ORDERS.DB table:
method pushButton ( var eventInfo Event ) 
   var
      fileName String
   endVar

   fileName = "orders.txt"

   ; invoke the Import Data dialog box
   ; by default, Corel Paradox will use ORDERS.TXT as the source file
   ; and ORDERS.DB as the target table
   dlgImportASCIIFix ( fileName ) 
endMethod



dlgImportASCIIVar procedure
Displays the Import Data dialog box.

Syntax
dlgImportASCIIVar ( const fileName String )

Description
dlgImportASCIIVar displays the Import Data dialog box with the specified fileName displayed as the default, 
and the import file type set to delimited ASCII text. fileName specifies the name of the source file and the target 
table for the imported data. 
The target table's extension depends on its table type. The default type for Corel Paradox is .DB; for dBASE 
tables the default type is .DBF. Dates and numbers are formatted according to your settings in the Windows 
Control Panel. 
ObjectPAL code suspends execution until the user closes the Import Data dialog box. 
The default settings include: fields separated by commas; fields delimited by quotes; only text fields delimited; 

and the OEM character set used.
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGEXPORT;OPAL_METH_DXDLGIMPORTASCIIF
IX;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXIMPORTASCIIVAR;',0,"Defaultoverview",)} 
Related Topics



dlgImportASCIIVar example
The following example displays the Import Data dialog box and imports data from the ORDERS.TXT text file to 
the ORDERS.DB table:
method pushButton ( var eventInfo Event ) 
   var
      fileName String
   endVar

   fileName = "orders.txt"

   ; invoke the Import Data dialog box.
   ; by default, Corel Paradox will use ORDERS.TXT as the source file
   ; and ORDERS.DB as the target table.
   dlgImportASCIIVar ( fileName ) 
endMethod



dlgImportSpreadsheet procedure
Displays the Import Data dialog box.

Syntax
dlgImportSpreadsheet ( const fileName String )

Description
dlgImportSpreadsheet displays the Import Data dialog box with the specified fileName displayed as the 
default. fileName specifies the name of the source file, its spreadsheet type, and the name of the target table.
The target table's file extension depends on its table type. The default type for Corel Paradox is .DB; for dBASE 
tables the default type is .DBF. Dates and numbers are formatted according to your settings in the Windows 
Control Panel. 
Corel Paradox uses the file extensions that you specify to identify the spreadsheet type of the source file. The 
following table displays the file extensions and their spreadsheet types:
Extension Format
WB1, WB2, WB3 Quattro Pro Win
WQ1 Quattro Pro DOS
WKQ Quattro
WK1 Lotus 2.x
WKS Lotus 1.A
XLS Excel 3.0/4.0/5.0
ObjectPAL code suspends execution until the user closes the Import Data dialog box. 
The default settings specify that the From cell is the first cell of the spreadsheet's first page. The To cell is the 
last cell of the spreadsheet's last page, and the Use First Row Of Data As Field Names check box is enabled.
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGEXPORT;OPAL_METH_DXDLGIMPORTASCIIF
IX;OPAL_METH_DXDLGIMPORTASCIIVAR;OPAL_METH_DXIMPORTSPREADSHEET;',0,"Defaultoverview",)} 
Related Topics



dlgImportSpreadsheet example
The following example instructs the Import Data dialog box to import data from a Quattro Pro for Windows 
spreadsheet (ORDERS.WB1) to a Corel Paradox table (ORDERS.DB):
method pushButton ( var eventInfo Event ) 
   var
      fileName String
   endVar

   fileName = "orders.wb1"

   ; invoke the Import Data dialog box
   ; by default, Corel Paradox will use ORDERS.WB1 as the source file
   ; and ORDERS.DB as the target table
   dlgImportSpreadsheet ( fileName ) 
endMethod



dlgImportTable procedure
Displays the Import Data dialog box.

Syntax
dlgImportTable ( const tableName String )

Description
dlgImportTable displays the Import Data dialog box with the specified tableName displayed as the import 
source.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGEXPORT;OPAL_METH_DXDLGIMPORTASCIIF
IX;OPAL_METH_DXDLGIMPORTASCIIVAR;OPAL_METH_DXDLGIMPORT;OPAL_METH_DXDLGIMPORTSPREAD
SHEET;',0,"Defaultoverview",)} Related Topics



dlgImportTable example
The following example displays the Import Data dialog box and imports data from the dBASE table ORDERS.DBF 
to the Corel Paradox table ORDERS.DB.
method pushButton ( var eventInfo Event ) 
   var
      tblName String
   endVar

   tblName = "orders.dbf"

   ; invoke the Import Data dialog box
   ; by default, Corel Paradox will use ORDERS.DBF as the source file
   ; and ORDERS.DB as the target table
   dlgImportTable ( tblName )
EndMethod



empty method
Deletes the data from a structure.

Syntax
empty ( )

Description
empty re-initializes a structure by deleting its data while leaving its form intact. empty can initialize Mail 
variable structures and tables but cannot initialize forms, databases, or reports.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXIMP
ORTSPREADSHEET;OPAL_METH_DXIMPORTASCIIFIX;OPAL_METH_DXIMPORTASCIIVAR;',0,"Defaultovervie
w",)} Related Topics



empty example
The following example specifies a DataTransfer data type. This structure is used with the transferData method. 
This example assumes that the DataTransfer variable, dt, is declared within a Var ... EndVar statement. The 
custom method cmTransfer() is within the scope of the variable (dt).
method cmTransfer()   ;this example completes a DataTransfer

   dt.setSource("CUSTOMER.TXT", DTASCIIVar)  ; sets the datatransfer source
                                             ; to CUSTOMER.TXT 
   dt.setSourceSeparator("/")   ; specifies the forward slash "/" character
                                ; to separate each field
   dt.setSourceDelimiter("'")   ; specifies the single quote to surround
                                ; the fields
   dt.setSourceDelimitedFields(DTDelimJustText)  ; specifies that the single 
                                                 ; quote (delimiter) surrounds
                                                 ; only text fields of the 
                                                 ; source file
   dt.setSourceCharSet(DTANSI)   ; specifies that the character set used
                                 ; when creating the source file 
                                 ; was the ANSI character set

   dt.setSourceFieldNamesFromFirst(False)   ; specifies to use the first
                                            ; row of the source file as 
                                            ; field names
   dt.setDest("NEWCUST.DB")   ; sets the destination file to NEWCUST.DB
   dt.setProblems(True)   ; specifies to create a PROBLEMS.DB if there are
                          ; any problems importing the source file
   dt.transferData()   ; executes the data transfer. In this case it
                       ; imports the CUSTOMER.TXT file as NEWCUST.DB.
   dt.empty()   ; empties the dt variable structure to set it up for
                ; a new transfer.

endmethod



enumSourcePageList method
Copies the list of spreadsheet pages in a string array.

Syntax
enumSourcePageList ( var pages Array[] String )

Description
enumSourcePageList compiles a list of pages and copies it into a string array called pages. This method 
requires you to set filenames and types to an existing spreadsheet. enumSourcePageList only applies when 
the source file is a spreadsheet.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXIMP
ORTSPREADSHEET;',0,"Defaultoverview",)} Related Topics



enumSourcePageList example
The following example copies the pages of the LEDGER.WB3 spreadsheet into an array and displays the results: 
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
      arPage  Array[]  String
   endVar
   dt.setSource("ledger.wb3")
   dt.enumSourcePageList(arPage)
   arPage.view()
endMethod



enumSourceRangeList method
Compiles a list of named ranges into a string array.

Syntax
enumSourceRangeList ( var ranges Array[] String )

Description
enumSourceRangeList copies the list of named ranges into a string array named ranges. This method requires
you to set filenames and types to an existing spreadsheet. enumSourceRangeList only applies when the 
source file is a spreadsheet.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTCHARSET;OPAL_METH_DXGETSOURCE
RANGE;OPAL_METH_DXSETDESTCHARSET;OPAL_METH_DXSETSOURCERANGE;',0,"Defaultoverview",)}    
Related Topics



enumSourceRangeList example
The following example compiles a list of the pages of the LEDGER.WB3 spreadsheet, and displays the list.
method pushButton(var eventInfo Event)
   var
      dt       DataTransfer
      arRange  Array[]  String
   endVar
   dt.setSource("ledger.wb3")
   dt.enumSourceRangeList(arRange)
   arRange.view()
endMethod



exportASCIIFix procedure
Exports data from the specified table to an ASCII file in which all of the fields are the same length.

Syntax
exportASCIIFix ( const tableName String, const fileName String, const specTableName String [ , 
const ANSI Logical ] ) Logical

Description
exportASCIIFix exports data from the specified table to an ASCII file in which all of the record's fields are the 
same length. This method duplicates the function of the Export Data dialog box. 
tableName specifies the source table and fileName specifies the target file. If the target file does not exist, this 
procedure creates it using the layout specified specTableName. specTableName is the name of a table that 
specifies the layout for the imported data. The following table illustrates the structure of the file specified with 
specTableName :
Field name Type & size Description
Field Name A      25 Name of the field to import
Type A          4 Field type to import. The Type must be a valid Corel Paradox or dBASE 

field specification. 
Start S Column number where the field value begins
Length S Field size
exportASCIIFix can use the same specTableName as importASCIIFix. For export operations, the table type 
determines the field type. More recent versions of Corel Paradox will recognize tables made with versions 5.0 
and earlier, but the reverse is not true.
For each field you export, specTableName contains a Start position (the column where the field value begins) and
a Length (the number of characters in the field). specTableName operates like EXPORT.DB, which is created when
you use the Export Data dialog box to export a table interactively.
ANSI (optional) specifies whether to use the ANSI or OEM character set. Set ANSI to True to use the ANSI 
character set, or to False to use the OEM character set.
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGEXPORT;OPAL_METH_DXIMPORTASCIIFIX;O
PAL_METH_DXEXPORTASCIIVAR;OPAL_METH_DXEXPORTSPREADSHEET;',0,"Defaultoverview",)} Related 
Topics



exportASCIIFix example
The following example exports data from the ORDERS.DB table to the ORDERS.TXT text file. The code then reads
the export format from the ORDEREXP.DB table and exports the data using the ANSI character set.
method pushButton ( var eventInfo Event ) 
   exportASCIIFix ( "orders.db", "orders.txt", "orderexp.db", True ) 
endMethod



exportASCIIVar procedure
Exports data from a specified table to a delimited ASCII file. A delimited ASCII text files is one of variable fixed 
length.

Syntax
exportASCIIVar ( const tableName String, const fileName String [ , const separator String, 
const delimiter String, const allFieldsDelimited Logical, const ANSI Logical ] ) Logical

Description
exportASCIIVar exports data from a table to a delimited ASCII file. If the file does not exist, exportASCIIVar 
creates it. This method duplicates the function of the Export Data dialog box.
tableName specifies the source table, and fileName specifies the target file. separator (optional) specifies the 
character that surrounds field values in the target file. You can choose a comma or any other single character, 
including special characters. delimiter (optional) specifies the character that defines the limits of field values in 
the target. Leave the delimiter string empty if you do not want to define limits. The allFieldsDelimited (optional) 
string is marked True if data from all field types is delimited, and False if data from only text, alphanumeric, or 
character field types is delimited.
Corel Paradox cannot export memo (Corel Paradox or dBASE), formatted memo, graphic, OLE, or binary fields to 
delimited text.
ANSI (optional) specifies whether to use the ANSI or OEM character set. Set ANSI to True to use the ANSI 
character set, or to False to use the OEM character set.
The following table displays the default settings for optional arguments:
separator  "," (comma)
delimiter  "\"" (double quote)
allFieldsDelimited  False
ANSI  False
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGEXPORT;OPAL_METH_DXEXPORTASCIIFIX;O
PAL_METH_DXEXPORTSPREADSHEET;',0,"Defaultoverview",)} Related Topics



exportASCIIVar example
The following example exports data from the ORDERS.DB table to the ORDERS.TXT text file. In this example, tabs
delimit field values, percent signs enclose each value, only text fields are delimited, and the ANSI character set is
used.
method pushButton ( var eventInfo Event ) 
   exportASCIIVar ( "orders.db", "orders.txt", "\t", "%", False, True ) 
endMethod

The following code exports Corel Paradox to ASCII Delimited Text (medium form):
var
   dt DataTransfer
endVar

dt.setSource("TimeCards.db")
dt.setDest("Records.txt", DTAsciiVar)
dt.TransferData()

The following code exports Corel Paradox to ASCII Delimited Text (short form):
ExportASCIIVar("TimeCards.db", "NewRecords.txt")



exportParadoxDOS procedure
Exports data from a Corel Paradox for Windows or a dBASE table to a Level 4 Corel Paradox for DOS table.

Syntax
exportParadoxDOS ( const tableName String, const fileName String ) Logical

Description
exportParadoxDOS exports data from a Corel Paradox for Windows or a dBASE table to a Level 4 Corel Paradox
for DOS table. This method duplicates the function of the Table Export dialog box.
exportParadoxDOS cannot export Bytes (type Y) fields because they are excluded from the destination file. 
This method does not export OLE and Binary fields when you export a dBASE table to Corel Paradox for DOS 
format.
tableName specifies the source table and fileName specifies the target file. If you include a file extension with 

the filename, it must be *.DB.
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGEXPORT;OPAL_METH_DXEXPORTASCIIFIX;O
PAL_METH_DXEXPORTASCIIVAR;OPAL_METH_DXEXPORTSPREADSHEET;',0,"Defaultoverview",)} Related 
Topics



exportParadoxDOS example
The following example exports data from a dBASE table named ORDERS.DBF to a Corel Paradox for DOS table 
named ORDERS.DB:
method pushButton ( var eventInfo Event ) 
   if not exportParadoxDOS ( "orders.dbf", "orders" ) then
      errorShow ( "Export to Corel Paradox DOS failed." ) 
   endIf
endMethod



exportSpreadsheet procedure
Exports data from a table to a spreadsheet file.

Syntax
exportSpreadsheet ( const tableName String, const fileName String [ , const makeRowHeaders 
Logical ] ) Logical

Description
exportSpreadsheet exports the data from a table to a spreadsheet file, duplicating the function of the Export 
Data dialog box. If the spreadsheet file does not exist, this method creates it. The spreadsheet type is 
determined by the file extension. When you export data to a spreadsheet, Corel Paradox converts each record to 
a row and each field to a column. If a value is wider than the column, the full value is partially hidden.
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
If a date in the original table is beyond the acceptable range in the spreadsheet, the date is exported as an 
ERROR.
tableName specifies the source table and fileName specifies the target file. makeRowHeaders (optional) specifies
whether the table's column headers correspond to the spreadsheet's rows The makeRowHeaders string returns 
True (default) if column headers are used as labels, and False if they are not.
The file extension in fileName specifies the format of the spreadsheet file. The following table displays file 
extensions and their spreadsheet formats:
Extension Format
WB1, WB2, WB3 Quattro Pro Win
WQ1 Quattro Pro DOS
WKQ Quattro
WK1 Lotus 2.x
WKS Lotus 1.A
XLS Excel 3.0/4.0/5.0
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGEXPORT;OPAL_METH_DXEXPORTASCIIFIX;O
PAL_METH_DXEXPORTASCIIVAR;',0,"Defaultoverview",)} Related Topics



exportSpreadsheet example
The following example exports data from the ORDERS.DB table to a Quattro Pro for Windows file. The table's field
names are used as labels in the spreadsheet file.
method pushButton ( var eventInfo Event ) 
   exportSpreadsheet ( "orders.db", "orders.wb1", True ) 
endMethod



getAppend method
Retrieves the True or False value set by setAppend.

Syntax
getAppend ( ) Logical

Description
getAppend retrieves the True or False value set by setAppend. getAppend applies only when the destination 
is a table. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXAPPENDASCIIFIX;OPAL_METH_DXAPPENDASCII
VAR;OPAL_METH_DXDLGIMPORTASCIIFIX;OPAL_METH_DXDLGIMPORTASCIIVAR;OPAL_METH_DXDLGIMPO
RT;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXDLGIMPORTTABLE;OPAL_METH_DXIMPORT
ASCIIFIX;OPAL_METH_DXIMPORTASCIIVAR;OPAL_METH_DXIMPORTSPREADSHEET;OPAL_METH_DXSETAPP
END;',0,"Defaultoverview",)} Related Topics



getAppend example
The following example specifies a DataTransfer data type. Use this code to build an Import or Export 
specification, and then call the transferData method.
var
   dt DataTransfer
endVar
dt.SetSource ( "MYFILE.TXT" )
if dt.getSourceType ( ) = DTASCIIFixed Then
   dt.loadDestSpec ( "SpecTable" )
EndIf
dt.setDest ( "Existing Data.db" )
if not dt.getAppend () then
   dt.setAppend ( True )
endif
dt.transferData ( )



getDestCharSet method
Retrieves the value set by setDestCharSet.

Syntax
getDestCharSet ( ) SmallInt

Description
getSourceCharSet retrieves the value set by setDestCharSet. The value is one of the two 
DataTransferCharset constants: dtOEM or dtANSI. getSourceCharSet applies only when the source or 
destination is a fixed or delimited ASCII text file. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXENUMSOURCERANGELIST;OPAL_METH_DXGETD
ESTDELIMITEDFIELDS;OPAL_METH_DXGETDESTDELIMITER;OPAL_METH_DXGETDESTFIELDNAMESFROMFI
RST;OPAL_METH_DXGETDESTNAME;OPAL_METH_DXGETDESTSEPARATOR;OPAL_METH_DXGETDESTTYPE;
OPAL_METH_DXGETSOURCERANGE;OPAL_METH_DXSETDESTCHARSET;OPAL_METH_DXSETSOURCERANGE
;',0,"Defaultoverview",)} Related Topics



getDestCharSet example
The following example uses the transferData method to export ORDERS.DB to ORDINFO.TXT. It uses 
setDestCharSet to specify the use of the ANSI character set. To specify the use of the OEM character set, use 
the DTOEM constant with setDestCharSet.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setDest("ordinfo.txt", DTASCIIVar)
   dt.setSource("orders.db")

   ;Specify the single quote (') to surround the fields.
   ;The delimited fields will be text fields only.
   dt.setDestDelimiter("'")
   dt.setDestDelimitedFields(DTDelimJustText)

   ;Specify the tab character to separate the fields.
   dt.setDestSeparator("\t")

   ;Set the first row of the ORDINFO.TXT to be the field names
   dt.setDestFieldNamesFromFirst(True)

   ;Set the character set of the destination file ORDINFO.TXT to be the ANSI
   ;character set.
   if dt.getDestCharSet()= dtOEM then
      dt.setDestCharSet(DTAnsi)
   endif
   ;run Export
   dt.transferData()
endMethod



getDestDelimitedFields method
Retrieves the value set by setDestDelimitedFields.

Syntax
getDestDelimitedFields ( ) SmallInt

Description
getDestDelimitedFields retrieves the value set by the setDestDelimitedFields method. The value is one of 
the two DataTransferDelimitCode constants: DtDelimAllFields or DtDelimJustText. getDestDelimitedFields only 
applies when the source or the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTCHARSET;OPAL_METH_DXGETDESTDE
LIMITER;OPAL_METH_DXGETDESTFIELDNAMESFROMFIRST;OPAL_METH_DXGETDESTNAME;OPAL_METH_D
XGETDESTSEPARATOR;OPAL_METH_DXGETDESTTYPE;OPAL_METH_DXSETDESTDELIMITEDFIELDS;OPAL_M
ETH_DXSETDESTDELIMITER;OPAL_METH_DXSETDESTSEPARATOR;',0,"Defaultoverview",)} Related 
Topics



getDestDelimitedFields example
The following example uses the transferData method to export ORDERS.DB to ORDINFO.TXT. It uses 
setDestDelimitedFields to delimit surrounding text fields only. To delimit all fields, use the DTDelimAllFields 
constant with setDestDelimitedFields.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setDest("ordinfo.txt", DTASCIIVar)
   dt.setSource("orders.db")

   ;Specify the single quote (') to surround the fields.
   ;The delimited fields will be text fields only.
   dt.setDestDelimiter("'")
   dt.setDestDelimitedFields(DTDelimJustText)

   ;Specify the tab character to separate the fields.
   dt.setDestSeparator("\t")

   ;Set the first row of the ORDINFO.TXT to be the field names
   dt.setDestFieldNamesFromFirst(True)

   ;Set the character set of the destination file ORDINFO.TXT to be the ANSI
   ;character set.
   dt.setDestCharSet(DTAnsi)

   ;run Export
   dt.transferData()
endMethod



getDestDelimiter method
Retrieves the value set by setDestDelimiter.

Syntax
getDestDelimiter ( ) String

Description
getDestDelimiter retrieves the value set by the setDestDelimiter method. getDestDelimiter only applies 
when the source or the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTCHARSET;OPAL_METH_DXGETDESTDE
LIMITEDFIELDS;OPAL_METH_DXGETDESTFIELDNAMESFROMFIRST;OPAL_METH_DXGETDESTNAME;OPAL_
METH_DXGETDESTSEPARATOR;OPAL_METH_DXGETDESTTYPE;OPAL_METH_DXSETDESTDELIMITEDFIELDS
;OPAL_METH_DXSETDESTDELIMITER;OPAL_METH_DXSETDESTSEPARATOR;',0,"Defaultoverview",)} 
Related Topics



getDestDelimiter example
The following example exports the ORDERS.DB table into an ASCII delimited text file. The single quote character 
is specified as a delimiter.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setDest("ordinfo.txt", DTASCIIVar)
   dt.setSource("orders.db")

   ;Specify the single quote (') to surround the fields.
   ;The delimited fields will be text fields only.
   msgInfo("Info", "current delimiter is "+dt.getDestDelimiter())
   dt.setDestDelimiter("'")
   dt.setDestDelimitedFields(DTDelimJustText)

   ;Specify the tab character to separate the fields.
   dt.setDestSeparator("\t")

   ;Set the first row of the ORDINFO.TXT to be the field names
   dt.setDestFieldNamesFromFirst(True)

   ;Set the character set of the destination file ORDINFO.TXT to be the ANSI
   ;character set.
   dt.setDestCharSet(DTAnsi)

   ;run Export
   dt.transferData()
endMethod



getDestFieldNamesFromFirst method
Retrieves the True or False value set by setDestFieldNamesFromFirst.

Syntax
getDestFieldNamesFromFirst ( ) Logical

Description
getDestFieldNamesFromFirst retrieves the True or False value set by setDestFieldNamesFromFirst. 
getDestFieldNamesFromFirst only applies when the source file is a spreadsheet.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTCHARSET;OPAL_METH_DXGETDESTDE
LIMITEDFIELDS;OPAL_METH_DXGETDESTDELIMITER;OPAL_METH_DXGETDESTNAME;OPAL_METH_DXGETD
ESTSEPARATOR;OPAL_METH_DXGETDESTTYPE;OPAL_METH_DXSETDESTFIELDNAMESFROMFIRST;',0,"Def
aultoverview",)} Related Topics



getDestFieldNamesFromFirst example
The following example uses the transferData method to export ORDERS.DB to ORDINFO.TXT. The 
setDestFieldNamesFromFirst is used to create the first row of the text file with field names.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setDest("ordinfo.txt", DTASCIIVar)
   dt.setSource("orders.db")

   ;Specify the single quote (') to surround the fields.
   ;The delimited fields will be text fields only.
   dt.setDestDelimiter("'")
   dt.setDestDelimitedFields(DTDelimJustText)

   ;Specify the tab character to separate the fields.
   dt.setDestSeparator("\t")

   If dt.getDestFieldNamesFromFirst() Then
      msgInfo("Info", "SetDestFieldNamesFromFirst is On")   
   else
      msgInfo("Info", "Setting DestFieldNamesFrom First to On")
   endIf
;Set the first row of the ORDINFO.TXT to be the field names
   dt.setDestFieldNamesFromFirst(True)

   ;Set the character set of the destination file ORDINFO.TXT to be the ANSI
   ;character set.
   dt.setDestCharSet(DTAnsi)

   ;run Export
   dt.transferData()
endMethod



getDestName method
Retrieves the destination filename.

Syntax
getDestName ( ) String

Description
getDestName retrieves the destination filename.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTCHARSET;OPAL_METH_DXGETDESTDE
LIMITEDFIELDS;OPAL_METH_DXGETDESTDELIMITER;OPAL_METH_DXGETDESTFIELDNAMESFROMFIRST;O
PAL_METH_DXGETDESTSEPARATOR;OPAL_METH_DXGETDESTTYPE;OPAL_METH_DXGETSOURCENAME;OPA
L_METH_DXGETSOURCETYPE;OPAL_METH_DXSETDEST;OPAL_METH_DXSETSOURCE;',0,"Defaultoverview"
,)} Related Topics



getDestName example
The following example specifies a DataTransfer data type. Use this code to build an Import or Export specification
and then call the transferData method.

Export to text
var
   dt DataTransfer
endVar
dt.setSource ( "ANSWER.db" )
msgInfo("Info", "The current source is " + dt.getSourceName())
dt.SetDest ( "NEWFILE.TXT",dtASCIIVar)
msgInfo("Info", "The current destination is " + dt.getDestName())
dt.setDestSeparator ( ";" )
dt.transferData ( )



getDestSeparator method
Retrieves the value set by setDestSeparator.

Syntax
getDestSeparator ( ) String

Description
getDestSeparator retrieves the value set by the setDestSeparator method. getDestSeparator only applies 
when the source or the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTCHARSET;OPAL_METH_DXGETDESTDE
LIMITEDFIELDS;OPAL_METH_DXGETDESTDELIMITER;OPAL_METH_DXGETDESTFIELDNAMESFROMFIRST;O
PAL_METH_DXGETDESTNAME;OPAL_METH_DXGETDESTSEPARATOR;OPAL_METH_DXGETDESTTYPE;OPAL_
METH_DXSETDESTDELIMITEDFIELDS;OPAL_METH_DXSETDESTDELIMITER;',0,"Defaultoverview",)} 
Related Topics



getDestSeparator example
The following examples specify a DataTransfer data type. Use this code to build an Import or Export specification 
and then call the transferData method.

Import from spreadsheet
var
   dt DataTransfer
endVar
; Source file MYFILE.WB2 is a Quattro Pro Windows spreadsheet
dt.setSource ( "MYFILE.WB2" )
msgInfo("Info", "The current source separator is " + dt.getSourceSeparator())
; Destination file is a Corel Paradox table NEWFILE.DB
dt.SetDest ( "NEWFILE.DB" )
msgInfo("Info", "The current destination separator is " + dt.getDestSeparator())
dt.setProblems ( True )
dt.transferData ( )

Import from text
var
   dt DataTransfer
endVar
msgInfo("Info", "The current source separator is " + dt.getSourceSeparator())
dt.setSource ( "SRCFILE.TXT")
MsgInfo("Info", "The current destination separator is " + dt.getDestSeparator())
dt.SetDest ( "NEWFILE.db" )
if dt.getSourceType ( ) = DTASCIIFixed Then
   dt.loadDestSpec ( "SpecTable" )
EndIf
dt.setAppend ( True )
dt.transferData ( )

Export to text
var
   dt DataTransfer
endVar
msgInfo("Info", "The current source separator is " + dt.getSourceSeparator())
dt.setSource ( "CUSTOMER.db" )
msgInfo("Info", "The current destination separator is " + dt.getDestSeparator())
dt.SetDest ( "NEWFILE.TXT",dtASCIIVar )
dt.setDestSeparator ( ";" )
dt.transferData ( )



getDestType method
Retrieves the destination file type constant.

Syntax
getDestType ( ) SmallInt

Description
getDestType retrieves the destination file type constant. The file type constant is one of the 
DataTransferFileType constants. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTCHARSET;OPAL_METH_DXGETDESTDE
LIMITEDFIELDS;OPAL_METH_DXGETDESTDELIMITER;OPAL_METH_DXGETDESTFIELDNAMESFROMFIRST;O
PAL_METH_DXGETDESTNAME;OPAL_METH_DXGETDESTSEPARATOR;OPAL_METH_DXGETSOURCENAME;OP
AL_METH_DXGETSOURCETYPE;OPAL_METH_DXSETDEST;OPAL_METH_DXSETSOURCE;',0,"Defaultovervie
w",)} Related Topics



getDestType example
The following example specifies a DataTransfer data type. Use this code to build an Import or Export specification
and then call the transferData method.

Import from spreadsheet
var
   dt DataTransfer
endVar
msgInfo("Info", "the current dest type is " + string(dt.getDestType()))
dt.setSource ( "MYFILE.WKS" )
dt.setDest ( "New Data.db" )
dt.setProblems ( True )
dt.transferData ( )

Import from text
var
   dt DataTransfer
endVar
dt.SetSource ( "MYFILE.TXT" )
if dt.getSourceType ( ) = DTASCIIFixed Then
   dt.loadDestSpec ( "SpecTable" )
EndIf
msgInfo("Info", "the current dest type is " + string(dt.getDestType()))
dt.setDest ( "Existing Data.db" )
dt.setAppend ( True )
dt.transferData ( )

Export to text
var
   dt DataTransfer
endVar
dt.setSource ( "ANSWER.db" )
msgInfo("Info", "the current dest type is " + string(dt.getDestType()))
dt.SetDest ( "NEWFILE.TXT" )
dt.setDestSeparator ( ";" )
dt.transferData ( )



getKeyviol method
Retrieves the True or False value set by setKeyviol.

Syntax
getKeyviol ( [ const tableName String, var count LongInt ] ) Logical

Description
getKeyviol retrieves the True or False value set by the setKeyviol method. The argument tableName is the 
name of the Key Violations table, and count is the number of key violations in the table. getKeyviol method 
applies only when the destination is a table. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXSETKEYVIOL;OPAL_METH_DXSETPROBLEMS;OP
AL_METH_DXGETPROBLEMS;',0,"Defaultoverview",)} Related Topics



getKeyviol example
The following example retrieves the key violations from the kvTbl file. 
method pushButton(var eventInfo Event)
   var
      dt                  DataTransfer
      kvTbl, probTbl      String
      kvNum, probNum      Longint
   endVar
   dt.setSource("MYFILE.TXT")
   dt.LoadSourceSpec("SPECFILE.DB")
   dt.setDest("MYFILE.DB")
   if isTable("MYFILE.DB ") then
      dt.setAppend(True)
   endIf
   if msgQuestion("Import Option",
                 "Would you like to produce auxilliary tables?") = "Yes" then
      dt.setKeyviol(True)
      dt.setProblems(True)
   endIF
   dt.transferData()
   if dt.getKeyviol(kvTbl, kvNum) then
      msgInfo("Import Status",
            "# Key violations = "+string(kvNum)+
            "\nKeyviol table name = " + kvTbl)
   endIf
   if dt.getProblems(probTbl, probNum) then
         msgInfo("Import Status",
               "# Record errors = "+string(probNum) +
               "\nProblem table name = " + probTbl)
   endIf
endMethod



getProblems method
Retrieves the True or False value set by setProblems.

Syntax
getProblems ( [ var tableName String, var count LongInt ] ) Logical

Description
getProblems retrieves the True or False value set by the setProblems method. The tableName argument 
specifies the name of the problems table, and count specifies number of problems. getProblems applies only 
when the destination is a table. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXSETKEYVIOL;OPAL_METH_DXSETPROBLEMS;OP
AL_METH_DXGETKEYVIOL;',0,"Defaultoverview",)} Related Topics



getProblems example
The following example retrieves the problems from the probTbl file. 
method pushButton(var eventInfo Event)
   var
      dt                  DataTransfer
      kvTbl, probTbl      String
      kvNum, probNum      Longint
   endVar
   dt.setSource("MYFILE.TXT")
   dt.LoadSourceSpec("SPECFILE.DB")
   dt.setDest("MYFILE.DB")
   if isTable("MYFILE.DB ") then
      dt.setAppend(True)
   endIf
   if msgQuestion("Import Option",
                 "Would you like to produce auxilliary tables?") = "Yes" then
      dt.setKeyviol(True)
      dt.setProblems(True)
   endIF
   dt.transferData()
   if dt.getKeyviol(kvTbl, kvNum) then
      msgInfo("Import Status",
            "# Key violations = "+string(kvNum)+
            "\nKeyviol table name = " + kvTbl)
   endIf
   if dt.getProblems(probTbl, probNum) then
         msgInfo("Import Status",
               "# Record errors = "+string(probNum) +
               "\nProblem table name = " + probTbl)
   endIf
endMethod



getSourceCharSet method
Retrieves the value set by setSourceCharSet.

Syntax
getSourceCharSet ( ) SmallInt

Description
getSourceCharSet retrieves the value set by setSourceCharSet. The value is one of the two 
DataTransferCharset constants: dtOEM or dtANSI. getSourceCharSet applies only when the source or 
destination is a fixed or delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXENUMSOURCERANGELIST;OPAL_METH_DXGETS
OURCEDELIMITEDFIELDS;OPAL_METH_DXGETSOURCEDELIMITER;OPAL_METH_DXGETSOURCEFIELDNAME
SFROMFIRST;OPAL_METH_DXGETSOURCENAME;OPAL_METH_DXGETSOURCERANGE;OPAL_METH_DXGETS
OURCESEPARATOR;OPAL_METH_DXGETSOURCETYPE;OPAL_METH_DXSETSOURCECHARSET;OPAL_METH_D
XSETSOURCERANGE;',0,"Defaultoverview",)} Related Topics



getSourceCharSet example
The following example uses the transferData method to export ORDERS.DB to ORDINFO.TXT. It uses 
getSourceCharSet to determine the source file's character set and setDestCharSet to set the destination file 
to the same character set. To specify the OEM character set, use the DTOEM constant with setDestCharSet. 
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
      stChrSt String
   endVar
   dt.setDest("ordinfo.txt", DTASCIIVar)
   dt.setSource("orders.db")

   ;Specify the single quote (') to surround the fields.
   ;The delimited fields will be text fields only.
   dt.setDestDelimiter("'")
   dt.setDestDelimitedFields(DTDelimJustText)

   ;Specify the tab character to separate the fields.
   dt.setDestSeparator("\t")

   ;Set the first row of the ORDINFO.TXT to be the field names
   dt.setDestFieldNamesFromFirst(True)

   ; set the destination character set to be the same as the source.
   if dt.getSourceCharSet() = dtAnsi then 
        dt.setDestCharSet(DTAnsi)
        stChrSt = "ANSI"
   else
        dt.setDestCharSet(DTOEM)
        stChrSt = "OEM"
   endif

   ; since the result of getSourceCharSet is a SmallInt, convert the result
   ; to a string which represents ANSI or OEM     
   msgInfo("Info", "the character set is: " + stChrSt)
   ;run Export
   dt.transferData()
endMethod



getSourceDelimitedFields method
Retrieves the value set by setSourceDelimitedFields.

Syntax
getSourceDelimitedFields ( ) SmallInt

Description
getSourceDelimitedFields retrieves the value set by the setSourceDelimitedFields method. The value is 
one of the two DataTransferDelimitCode constants: DtDelimAllFields or DtDelimJustText. 
getSourceDelimitedFields only applies when the source or the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTDELIMITER;OPAL_METH_DXGETDESTS
EPARATOR;OPAL_METH_DXGETSOURCECHARSET;OPAL_METH_DXGETSOURCEDELIMITER;OPAL_METH_DX
GETSOURCEFIELDNAMESFROMFIRST;OPAL_METH_DXGETSOURCENAME;OPAL_METH_DXGETSOURCERAN
GE;OPAL_METH_DXGETSOURCESEPARATOR;OPAL_METH_DXGETSOURCETYPE;OPAL_METH_DXSETDESTDE
LIMITEDFIELDS;OPAL_METH_DXSETDESTDELIMITER;OPAL_METH_DXSETDESTSEPARATOR;',0,"Defaultove
rview",)} Related Topics



getSourceDelimitedFields example
The following example uses getSourceDelimitedFields to determine which fields are delimited.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setSource("iesimpld.txt")

;The following lines check to see what Corel Paradox determined as the type of
;of the source file. If it is delimited, Corel Paradox determines the separator,
;delimiter and which fields are delimited.
   switch
      case dt.getSourceType() = DTASCIIVar :
         fldType = "Delimited"
         fldDelimiter = dt.getSourceDelimiter()
         if dt.getSourceDelimitedFields() = DTDelimAllFields then
            fldDelimitedFields = "All"
         else
            fldDelimitedFields = "Text"
         endIF
         fldSeparator = dt.getSourceSeparator()
      case dt.getSourceType() = DTASCIIFixed :
         fldType = "Fixed"
      otherwise :
         msgInfo("Hello","File missing or not text.")
   endSwitch
endMethod



getSourceDelimiter method
Retrieves the value set by setSourceDelimiter.

Syntax
getSourceDelimiter ( ) String

Description
getSourceDelimiter retrieves the value set by the setSourceDelimiter method. getSourceDelimiter only 
applies when the source or the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTDELIMITEDFIELDS;OPAL_METH_DXGE
TDESTSEPARATOR;OPAL_METH_DXGETSOURCECHARSET;OPAL_METH_DXGETSOURCEDELIMITEDFIELDS;O
PAL_METH_DXGETSOURCEFIELDNAMESFROMFIRST;OPAL_METH_DXGETSOURCENAME;OPAL_METH_DXGE
TSOURCERANGE;OPAL_METH_DXGETSOURCESEPARATOR;OPAL_METH_DXGETSOURCETYPE;OPAL_METH_
DXSETDESTDELIMITEDFIELDS;OPAL_METH_DXSETDESTDELIMITER;OPAL_METH_DXSETDESTSEPARATOR;'
,0,"Defaultoverview",)} Related Topics



getSourceDelimiter example
The following example uses getSourceDelimiter to display the delimiter used in the source file. This confirms 
that the delimiter is set correctly and allows you to specify a new delimiter if necessary.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setSource("iesimpld.txt")

;The following lines check to see what Corel Paradox determined as the type of
;of the source file. If it is delimited, Corel Paradox determines the separator,
;delimiter and which fields are delimited.
   switch
      case dt.getSourceType() = DTASCIIVar :
         fldType = "Delimited"
         fldDelimiter = dt.getSourceDelimiter()
         if dt.getSourceDelimitedFields() = DTDelimAllFields then
            fldDelimitedFields = "All"
         else
            fldDelimitedFields = "Text"
         endIF
         fldSeparator = dt.getSourceSeparator()
      case dt.getSourceType() = DTASCIIFixed :
         fldType = "Fixed"
      otherwise :
         msgInfo("Hello","File missing or not text.")
   endSwitch
endMethod



getSourceFieldNamesFromFirst method
Retrieves the True or False value set by setSourceFieldNamesFromFirst.

Syntax
getSourceFieldNamesFromFirst ( ) Logical

Description
getSourceFieldNamesFromFirst retrieves the True or False value set by setSourceFieldNamesFromFirst. 
getSourceFieldNamesFromFirst only applies when the source is a spreadsheet.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXEXP
ORTSPREADSHEET;OPAL_METH_DXGETSOURCECHARSET;OPAL_METH_DXGETSOURCEDELIMITEDFIELDS;O
PAL_METH_DXGETSOURCEDELIMITER;OPAL_METH_DXGETSOURCENAME;OPAL_METH_DXGETSOURCERAN
GE;OPAL_METH_DXGETSOURCESEPARATOR;OPAL_METH_DXGETSOURCETYPE;OPAL_METH_DXIMPORTSPR
EADSHEET;OPAL_METH_DXSETDESTFIELDNAMESFROMFIRST;',0,"Defaultoverview",)} Related Topics



getSourceFieldNamesFromFirst example
The following example specifies a DataTransfer data type. This structure is used with the transferData method. 
This example assumes that the DataTransfer variable (dt) is declared within a Var ... EndVar statement. The 
custom method cmTransfer( ) is within the scope of the variable (dt).
method cmTransfer()   ;this example completes a DataTransfer

   dt.setSource("CUSTOMER.TXT", DTASCIIVar)  ; sets the datatransfer source
                                             ; to CUSTOMER.TXT 
   dt.setSourceSeparator("/")   ; specifies the forward slash "/" character
                                ; to separate each field
   dt.setSourceDelimiter("'")   ; specifies the single quote to surround
                                ; the fields
   dt.setSourceDelimitedFields(DTDelimJustText)  ; specifies that the single 
                                              ; quote (delimiter) surrounds
                                              ; only text fields of the 
                                              ; source file
   dt.setSourceCharSet(DTANSI)   ; specifies that the character set used
                                 ; when creating the source file 
                                 ; was the ANSI character set
   msgInfo("Info", "the current setting is " + string(dt.getSourceFieldNamesFromFirst()))
   dt.setSourceFieldNamesFromFirst(False)   ; specifies to use the first
                                            ; row of the source file as 
                                            ; field names
   dt.setDest("NEWCUST.DB")   ; sets the destination file to NEWCUST.DB
   dt.setProblems(True)   ; specifies to create a PROBLEMS.DB if there are
                          ; any problems importing the source file
   dt.transferData()   ; executes the data transfer. In this case it
                       ; imports the CUSTOMER.TXT file as NEWCUST.DB.
   dt.empty()   ; empties the dt variable structure to set it up for
                ; a new transfer.

endmethod



getSourceName method
Retrieves the source filename.

Syntax
getSourceName ( ) String

Description
getSourceName retrieves the source filename.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTNAME;OPAL_METH_DXGETDESTTYPE;
OPAL_METH_DXGETSOURCECHARSET;OPAL_METH_DXGETSOURCEDELIMITEDFIELDS;OPAL_METH_DXGETS
OURCEDELIMITER;OPAL_METH_DXGETSOURCEFIELDNAMESFROMFIRST;OPAL_METH_DXGETSOURCERANG
E;OPAL_METH_DXGETSOURCESEPARATOR;OPAL_METH_DXGETSOURCETYPE;OPAL_METH_DXSETDEST;OP
AL_METH_DXSETSOURCE;',0,"Defaultoverview",)} Related Topics



getSourceName example
The following example determines if the user has attempted to import data from the SYSTEM.INI file.
method gtSrcName()
var
   dt DataTransfer
   importSourceFile String
endVar

importSourceFile = "Your sourcename here"
importsourcefile.view("Import what file?")

dt.setSource(importSourceFile, dtAuto)  ;// allow Corel Paradox to determine filetype
if dt.getSourceName() = "system.ini" then
   msgStop("No!", "This source file won't create useable data.")
   return
else
   dt.setDest("importSample", dtParadox8)  ;// import into Corel Paradox 7 table
   dt.transferData ( )
endif
endMethod



getSourceRange method
Retrieves the range set by setSourceRange.

Syntax
getSourceRange ( ) String

Description
getSourceRange retrieves the range set by the setSourceRange method. getSourceRange only applies 
when the source is a spreadsheet.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXENUMSOURCERANGELIST;OPAL_METH_DXGETD
ESTCHARSET;OPAL_METH_DXGETSOURCECHARSET;OPAL_METH_DXGETSOURCEDELIMITEDFIELDS;OPAL_
METH_DXGETSOURCEDELIMITER;OPAL_METH_DXGETSOURCEFIELDNAMESFROMFIRST;OPAL_METH_DXGE
TSOURCENAME;OPAL_METH_DXGETSOURCESEPARATOR;OPAL_METH_DXGETSOURCETYPE;OPAL_METH_D
XSETDESTCHARSET;OPAL_METH_DXSETSOURCERANGE;',0,"Defaultoverview",)} Related Topics



getSourceRange example
The following demonstrates the setSourceRange method. You can use this method to specify the range in a 
spreadsheet to import. getSourceRange accepts both named ranges and standard ranges.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setSource("092595.wb2")

   ;Set the range to import from the spreadsheet.
   ;Either named range or specified range (ie. Page1:A1..Page3:AB10)
   msgInfo("Info", "The Current range is " + dt.getSourceRange())
   dt.setSourceRange("myRange")
   dt.setSourceFieldNamesFromFirst(True)
   dt.setDest("delme09.db")

   ;Prompt the user to verify range to import. getSourceRange returns the
   ;actual range notation.
   view(dt.getSourceRange(),"Import Range")
   dt.transferData()
endMethod



getSourceSeparator method
Retrieves the value set by setSourceSeparator.

Syntax
getSourceSeparator ( ) String

Description
getSourceSeparator retrieves the value set by the setSourceSeparator method. getSourceSeparator only 
applies when the source or the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTDELIMITEDFIELDS;OPAL_METH_DXGE
TDESTDELIMITER;OPAL_METH_DXGETSOURCECHARSET;OPAL_METH_DXGETSOURCEDELIMITEDFIELDS;OP
AL_METH_DXGETSOURCEDELIMITER;OPAL_METH_DXGETSOURCEFIELDNAMESFROMFIRST;OPAL_METH_D
XGETSOURCENAME;OPAL_METH_DXGETSOURCERANGE;OPAL_METH_DXGETSOURCETYPE;OPAL_METH_DX
SETDESTDELIMITEDFIELDS;OPAL_METH_DXSETDESTDELIMITER;OPAL_METH_DXSETDESTSEPARATOR;',0,
"Defaultoverview",)} Related Topics



getSourceSeparator example
The following example uses getSourceSeparator to display the separator used in a field on the specified form. 
This confirms that the separator is set correctly and allows you to specify a new separator if necessary.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setSource("iesimpld.txt")

;The following lines check to see what Corel Paradox determined as the type of
;of the source file. If it is delimited, Corel Paradox determines the separator,
;delimiter and which fields are delimited.
   switch
      case dt.getSourceType() = DTASCIIVar :
         fldType = "Delimited"
         fldDelimiter = dt.getSourceDelimiter()
         if dt.getSourceDelimitedFields() = DTDelimAllFields then
            fldDelimitedFields = "All"
         else
            fldDelimitedFields = "Text"
         endIF
         fldSeparator = dt.getSourceSeparator()
      case dt.getSourceType() = DTASCIIFixed :
         fldType = "Fixed"
      otherwise :
         msgInfo("Hello","File missing or not text.")
   endSwitch
endMethod



getSourceType method
Retrieves the source file type constant.

Syntax
getSourceType ( ) SmallInt

Description
getSourceType retrieves the source file type constant. The file type constant is one of the DataTransferFileType 
constants. The version part of the file type is irrelevant to the source and can be ignored. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTNAME;OPAL_METH_DXGETDESTTYPE;
OPAL_METH_DXGETSOURCECHARSET;OPAL_METH_DXGETSOURCEDELIMITEDFIELDS;OPAL_METH_DXGETS
OURCEDELIMITER;OPAL_METH_DXGETSOURCEFIELDNAMESFROMFIRST;OPAL_METH_DXGETSOURCENAM
E;OPAL_METH_DXGETSOURCERANGE;OPAL_METH_DXGETSOURCESEPARATOR;OPAL_METH_DXSETDEST;O
PAL_METH_DXSETSOURCE;',0,"Defaultoverview",)} Related Topics



getSourceType example
The following example uses getSourceType to determine the file type of the source file:
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setSource("iesimpld.txt")

;The following lines check to see what Corel Paradox determined as the type of
;of the source file. If it is delimited, Corel Paradox determines the separator,
;delimiter and which fields are delimited.
   switch
      case dt.getSourceType() = DTASCIIVar :
         fldType = "Delimited"
         fldDelimiter = dt.getSourceDelimiter()
         if dt.getSourceDelimitedFields() = DTDelimAllFields then
            fldDelimitedFields = "All"
         else
            fldDelimitedFields = "Text"
         endIF
         fldSeparator = dt.getSourceSeparator()
      case dt.getSourceType() = DTASCIIFixed :
         fldType = "Fixed"
      otherwise :
         msgInfo("Hello","File missing or not text.")
   endSwitch
endMethod



importASCIIFix procedure
Imports data from a fixed record length ASCII text file to a table.

Syntax
importASCIIFix ( const fileName String, const tableName String, const specTableName String [ , 
const ANSI Logical ] ) Logical

Description
importASCIIFix imports data from an ASCII file in which each record's fields are the same length to a table. If 
the target table exists, its contents are replaced with the imported data. If the table does not exist, this method 
creates it. importASCIIFix duplicates the function of the Import Data dialog box.
The argument fileName specifies the source file and tableName specifies the target table. Dates and numbers 
are formatted according to your settings in the Windows Control Panel. The file extension specified in tableName 
identifies the table type of the target table. .DB specifies a Corel Paradox table and .DBF specifies a dBASE table.
If you omit the extension, the data is imported to a Corel Paradox table by default.
 The argument specTableName is the name of a table that specifies the layout for the imported data. The 
following table illustrates the structure specified in specTableName :
Field name Type & size Description
Field Name A      25 Name of the field to import
Type A          4 Field type to import. The Type must be a valid Corel Paradox or dBASE 

field specification. 
Start S Column number where the field value begins
Length S Field size
ANSI (optional) specifies whether to use the ANSI or OEM character set. Set ANSI to True to specify the ANSI 
character set, and to False to specify the OEM (default) character set.
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXAPPENDASCIIFIX;OPAL_METH_DXDLGIMPORTA
SCIIFIX;OPAL_METH_DXEXPORTASCIIFIX;OPAL_METH_DXIMPORTASCIIVAR;OPAL_METH_DXIMPORTSPREA
DSHEET;',0,"Defaultoverview",)} Related Topics



importASCIIFix example
The following example imports data from the ORDERS.TXT text file to the ORDERS.DB table. The ORDERS.DB 
table structure is read from the ORDERIMP.DB table and the OEM character set is used.
method pushButton ( var eventInfo Event ) 
   importASCIIFix ( "orders.txt", "orders.db", "orderimp.db", False ) 
endMethod



importASCIIVar procedure
Imports data from an ASCII text file with variable field length values to a table.

Syntax
importASCIIVar ( const fileName String, const tableName String [ , const separator String, 
const delimiter String, const allFieldsDelimited Logical, const ANSI Logical ] ) Logical

Description
importASCIIVar imports data from an ASCII file to a table. The source file's variable length field values in each 
record may be delimited by an optionally specified character. If the target table exists, its contents are replaced 
with the imported data. If the table does not exist, this method creates it. importASCIIVar duplicates the 
function of the Import Data dialog box.
The argument fileName specifies the source file and tableName specifies the target table. Dates and numbers 
are formatted according to your settings in the Windows Control Panel. The file extension specified in tableName 
identifies the table type of the target table. .DB specifies a Corel Paradox table and .DBF specifies a dBASE table.
If you omit the extension, the data is imported to a Corel Paradox table by default.
 delimiter (optional) specifies the character that defines the limits of field values in the target. Leave the 
delimiter string empty if you do not want to define limits. The allFieldsDelimited (optional) string is marked True 
if data from all field types is delimited, and False if data from only text, alphanumeric, or character field types is 
delimited. Corel Paradox truncates strings longer than 255 characters when it imports them.
ANSI (optional) specifies whether to use the ANSI or OEM character set. Set ANSI to True to use the ANSI 
character set, or to False to use the OEM character set.
The following table displays the default settings for optional arguments:
separator , (comma)
delimiter " (double quote) text fields only
ANSI False
This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXIMPORTASCIIFIX;OPAL_METH_DXIMPORTSPREA
DSHEET;',0,"Defaultoverview",)} Related Topics



importASCIIVar example
The following example imports data from the ORDERS.TXT text file to the ORDERS.DB table. In this example, 
commas delimit field values, values are not enclosed, and the ANSI character set is used.
method pushButton ( var eventInfo Event ) 
   importASCIIVar ( "orders.txt", "orders.db", ",", "", True, True ) 
endMethod

The following example imports ASCII delimited text to Corel Paradox (long form):
method pushButton ( var eventInfo Event ) 
var
   dt DataTransfer
endVar

dt.setSource("orders.txt", DTAsciiVar)
dt.setDest("orders.db")
dt.setSourceDelimiter("")
dt.setSourceSeparator(",")
dt.setSourceCharSet(dtANSI)
dt.setSourceDelimitedFields(dtDelimAllFields)

dt.TransferData()
endMethod

The following example imports ASCII delimited text to Corel Paradox (medium form):
method pushButton ( var eventInfo Event ) 
var
   dt DataTransfer
endVar

dt.setSource("NewRecords.txt", DTAsciiVar)
dt.setDest("TimeCards.db")
dt.TransferData()
endMethod

The following example imports ASCII Delimited Text to Corel Paradox (short form):
method pushButton ( var eventInfo Event ) 
ImportASCIIVar("NewRecords.txt", "TimeCards.db")
endMethod



importSpreadsheet procedure
Imports data from a spreadsheet file to a table.

Syntax
importSpreadsheet ( const fileName String, const tableName String, const fromCell String, const
toCell String [ , const getFieldNames Logical ] ) Logical

Description
importSpreadsheet imports the data from a spreadsheet file to a table. Corel Paradox converts rows to records
and columns to fields. If the table does not exist prior to importing, this method creates it. importSpreadsheet 
duplicates the function of the Import Data dialog box. 
fileName specifies the spreadsheet or source file, and tableName specifies the table that displays the imported 
data. fromCell specifies the upper-left cell and toCell specifies the lower-right cell of the imported block. 
getFieldNames specifies whether to format the top row of the spreadsheet as column headers for the table. If 
you set getFieldNames to True Corel Paradox creates column headers (default); If you set getFieldNames to 
False, Corel Paradox does not.
The file extension specified in fileName identifies the format of the spreadsheet file. The following table 
illustrates the file extensions and their spreadsheet formats:
Extension Format
WB1, WB2, WB3 Quattro Pro Win
WQ1 Quattro Pro DOS
WKQ Quattro
WK1 Lotus 2.x
WKS Lotus 1.A
XLS Excel 3.0/4.0/5.0
The file extension specified in tableName identifies the target table's type. .DB specifies a Corel Paradox table 
(default) and .DBF specifies a dBASE table.
Corel Paradox automatically assigns a field type to each column of data. The following table shows how Corel 
Paradox determines a field's type:
Spreadsheet value Corel Paradox field type dBASE field type
Label Alpha Character
Integer Short Float number (5,0)
Number Number Float number (20,4)
Currency Money Float number (20,4)
Date Date Date
The following rules determine which category a column falls into:
· A column containing a label (text) is converted to an alpha field (or character field for a dBASE table).
· A column containing both dates and numbers is converted to an alpha field (or character field for a dBASE 

table).
· A column containing only values formatted as currency is converted to a money field in a Corel Paradox table.
· A column containing both currency and number (or integer) values is converted to a number field.
Corel Paradox often imports dates and numbers from unedited spreadsheets as alpha fields. For example, 
spreadsheets often have rows of hyphens separating sections of numbers. Since only an alphanumeric field can 
have both numbers and hyphens, Corel Paradox converts each spreadsheet column to an alpha field even 
though it contains mostly numbers.
To avoid conversion problems, edit the spreadsheet before importing it. Follow these steps:
1. Remove extraneous entries such as hyphens, asterisks, and exclamation points.
2. Ensure each column contains one type of data and uses one formatting option.
3. Place the titles you want to format as table column headings in the top row of the selected range. Corel 

Paradox uses the first row that contains text to generate field names. If the spreadsheet does not contain 
column titles, set the getFieldNames parameter to False.

If the table does not have the format you want after you import it, restructure it in Corel Paradox.



This method is part of the Data Transfer type, but in previous versions it was included in the System type.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXIMPORTASCIIFIX;OPAL_METH_DXIMPORTASCIIV
AR;',0,"Defaultoverview",)} Related Topics



importSpreadsheet example
The following example imports data from a Quattro Pro for Windows file to the ORDERS.DB table. This example 
converts the first row of the spreadsheet file to column headers in the table.
method pushButton ( var eventInfo Event ) 
   importSpreadsheet ( "orders.wb1", "orders.db","A:A1", "A:H25", True ) 
endMethod



loadDestSpec method
Loads a fixed-length import file specification.

Syntax
loadDestSpec ( const tableName String )

Description
loadDestSpec loads a fixed-length import file specification. The argument tableName specifies the table to use 
as the pattern for the destination specification. loadDestSpec applies only when the destination is a fixed-
length ASCII text file. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXLOADSOURCESPEC;OPAL_METH_DXTRANSFERD
ATA;',0,"Defaultoverview",)} Related Topics



loadDestSpec example
The following examples specify a DataTransfer data type. Use this code to build an Import or Export specification 
and then call the transferData method.

Import from text
var
   dt DataTransfer
endVar
dt.SetSource ( "MYFILE.TXT" )
if dt.getSourceType ( ) = DTASCIIFixed Then
   dt.loadDestSpec ( "SpecTable" )
EndIf
dt.setDest ( "Existing Data.db" )
dt.setAppend ( True )
dt.transferData ( )



loadSourceSpec method
Loads a fixed-length import file specification.

Syntax
loadSourceSpec ( const tableName String )

Description
loadSourceSpec loads a fixed-length import file specification. The argument tableName specifies the table to 
use as the pattern for the source specification. loadSourceSpec applies only when the source is a fixed-length 
ASCII text file. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXLOADDESTSPEC;OPAL_METH_DXTRANSFERDAT
A;',0,"Defaultoverview",)} Related Topics



loadSourceSpec example
The following examples specify a DataTransfer data type. Use this code to build an Import or Export specification,
and then call the transferData method.

Import from text
var
   dt DataTransfer
endVar
dt.SetSource ( "MYFILE.TXT" )
if dt.getSourceType ( ) = DTASCIIFixed Then
   dt.loadSourceSpec ( "SpecTable" )
EndIf
dt.setSource ( "Existing Data.db" )
dt.setAppend ( True )
dt.transferData ( )



setAppend method
Appends data to the existing table.

Syntax
setAppend ( const AppendToTable Logical )

Description
setAppend appends data to the existing table when set to True, and overwrites the table when set to False. This
method is ignored for new tables, and applies only when the destination is a table. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXAPPENDASCIIFIX;OPAL_METH_DXAPPENDASCII
VAR;OPAL_METH_DXDLGIMPORT;OPAL_METH_DXDLGIMPORTASCIIFIX;OPAL_METH_DXDLGIMPORTASCIIV
AR;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXDLGIMPORTTABLE;OPAL_METH_DXGETAPP
END;OPAL_METH_DXIMPORTASCIIFIX;OPAL_METH_DXIMPORTASCIIVAR;OPAL_METH_DXIMPORTSPREADS
HEET;',0,"Defaultoverview",)} Related Topics



setAppend example
The following example specifies a DataTransfer data type. Use this code to build an Import or Export specification
and then call the transferData method.

Import from text
var
   dt DataTransfer
endVar
dt.SetSource ( "MYFILE.TXT" )
if dt.getSourceType ( ) = DTASCIIFixed Then
   dt.loadDestSpec ( "SpecTable" )
EndIf
dt.setDest ( "Existing Data.db" )
dt.setAppend ( True )
dt.transferData ( )



setDest method
Specifies the file or table to receive imported data.

Syntax
setDest ( const destName String, [ const destType SmallInt ] )

Description
setDest specifies the name and type of the file or table that receives data. If no file type is specified, the file 
extension determines its type. The file type constant destType specifies one of the DataTransferFileType 
constants. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTNAME;OPAL_METH_DXGETDESTTYPE;
OPAL_METH_DXGETSOURCENAME;OPAL_METH_DXGETSOURCETYPE;OPAL_METH_DXSETDESTCHARSET;O
PAL_METH_DXSETDESTDELIMITEDFIELDS;OPAL_METH_DXSETDESTDELIMITER;OPAL_METH_DXSETDESTFI
ELDNAMESFROMFIRST;OPAL_METH_DXSETDESTSEPARATOR;OPAL_METH_DXSETSOURCE;',0,"Defaultover
view",)} Related Topics



setDest example
The following example specifies a DataTransfer data type. Use this code to build an Import or Export 
specification, and then call the transferData method.

Import from spreadsheet
var
   dt DataTransfer
endVar
dt.setSource ( "MYFILE.WKS" )
dt.setDest ( "New Data.db" )
dt.setProblems ( True )
dt.transferData ( )



setDestCharSet method
Sets the file character set to dtOEM or dtANSI.

Syntax
setDestCharSet ( const CharSetCode SmallInt )

Description
setDestCharSet sets the file character set to one of the two DataTransferCharset constants: dtOEM or dtANSI. 
This method applies only when the destination is a fixed or delimited ASCII text file. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXENUMSOURCERANGELIST;OPAL_METH_DXGETD
ESTCHARSET;OPAL_METH_DXGETSOURCERANGE;OPAL_METH_DXSETDEST;OPAL_METH_DXSETDESTDELI
MITEDFIELDS;OPAL_METH_DXSETDESTDELIMITER;OPAL_METH_DXSETDESTFIELDNAMESFROMFIRST;OPA
L_METH_DXSETDESTSEPARATOR;OPAL_METH_DXSETSOURCERANGE;',0,"Defaultoverview",)} Related 
Topics



setDestCharSet example
The following example uses the transferData method to export ORDERS.DB to ORDINFO.TXT. This example 
uses setDestCharSet to set the file character set to ANSI. To set the file character set to OEM, use the DTOEM 
constant with setDestCharSet.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setDest("ordinfo.txt", DTASCIIVar)
   dt.setSource("orders.db")

   ;Specify the single quote (') to surround the fields.
   ;The delimited fields will be text fields only.
   dt.setDestDelimiter("'")
   dt.setDestDelimitedFields(DTDelimJustText)

   ;Specify the tab character to separate the fields.
   dt.setDestSeparator("\t")

   ;Set the first row of the ORDINFO.TXT to be the field names
   dt.setDestFieldNamesFromFirst(True)

   ;Set the character set of the destination file ORDINFO.TXT to be the ANSI
   ;character set.
   dt.setDestCharSet(DTAnsi)

   ;run Export
   dt.transferData()
endMethod



setDestDelimitedFields method
Sets the Delimited Fields setting to DtDelimAllFields or DtDelimJustText.

Syntax
setDestDelimitedFields ( const delimitCode SmallInt )

Description
setDestDelimitedFields sets the Delimited Fields setting. The argument delimitCode specifies one of the two 
DataTransferDelimitCode constants: DtDelimAllFields or DtDelimJustText. setDestDelimitedFields only applies 
when the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTDELIMITEDFIELDS;OPAL_METH_DXGE
TDESTDELIMITER;OPAL_METH_DXGETDESTSEPARATOR;OPAL_METH_DXSETDEST;OPAL_METH_DXSETDES
TCHARSET;OPAL_METH_DXSETDESTDELIMITER;OPAL_METH_DXSETDESTFIELDNAMESFROMFIRST;OPAL_
METH_DXSETDESTSEPARATOR;',0,"Defaultoverview",)} Related Topics



setDestDelimitedFields example
The following example uses the transferData method to export ORDERS.DB to ORDINFO.TXT. It uses 
setDestDelimitedFields to delimit surrounding text fields only. To delimit all fields, use the DTDelimAllFields 
constant with setDestDelimitedFields.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setDest("ordinfo.txt", DTASCIIVar)
   dt.setSource("orders.db")

   ;Specify the single quote (') to surround the fields.
   ;The delimited fields will be text fields only.
   dt.setDestDelimiter("'")
   dt.setDestDelimitedFields(DTDelimJustText)

   ;Specify the tab character to separate the fields.
   dt.setDestSeparator("\t")

   ;Set the first row of the ORDINFO.TXT to be the field names
   dt.setDestFieldNamesFromFirst(True)

   ;Set the character set of the destination file ORDINFO.TXT to be the ANSI
   ;character set.
   dt.setDestCharSet(DTAnsi)

   ;run Export
   dt.transferData()
endMethod



setDestDelimiter method
Specifies a character as the delimiter.

Syntax
setDestDelimiter ( const delimiterChar String )

Description
setDestDelimiter sets the delimiter to the character specified by delimiterChar. The default delimiter is a 
comma. setDestDelimiter only applies when the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTDELIMITEDFIELDS;OPAL_METH_DXGE
TDESTDELIMITER;OPAL_METH_DXGETDESTSEPARATOR;OPAL_METH_DXSETDEST;OPAL_METH_DXSETDES
TCHARSET;OPAL_METH_DXSETDESTDELIMITEDFIELDS;OPAL_METH_DXSETDESTFIELDNAMESFROMFIRST;
OPAL_METH_DXSETDESTSEPARATOR;',0,"Defaultoverview",)} Related Topics



setDestDelimiter example
The following example exports the ORDERS.DB table into an ASCII delimited text file. The delimiter single quote 
character is the specified delimiter.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setDest("ordinfo.txt", DTASCIIVar)
   dt.setSource("orders.db")

   ;Specify the single quote (') to surround the fields.
   ;The delimited fields will be text fields only.
   dt.setDestDelimiter("'")
   dt.setDestDelimitedFields(DTDelimJustText)

   ;Specify the tab character to separate the fields.
   dt.setDestSeparator("\t")

   ;Set the first row of the ORDINFO.TXT to be the field names
   dt.setDestFieldNamesFromFirst(True)

   ;Set the character set of the destination file ORDINFO.TXT to be the ANSI
   ;character set.
   dt.setDestCharSet(DTAnsi)

   ;run Export
   dt.transferData()
endMethod



setDestFieldNamesFromFirst method
Sets field names using the data in the first row of input.

Syntax
setDestFieldNamesFromFirst ( const namesFirst Logical )

Description
setDestFieldNamesFromFirst sets the first row of the destination file to be the field names of the table. 
Setting namesFirst to True creates the first row as field names and data will begin on the second row.
setDestFieldNamesFromFirst applies to both spreadsheets and delimited text files.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXEXP
ORTSPREADSHEET;OPAL_METH_DXGETDESTFIELDNAMESFROMFIRST;OPAL_METH_DXIMPORTSPREADSHE
ET;OPAL_METH_DXSETDEST;OPAL_METH_DXSETDESTCHARSET;OPAL_METH_DXSETDESTDELIMITEDFIELD
S;OPAL_METH_DXSETDESTDELIMITER;OPAL_METH_DXSETDESTSEPARATOR;',0,"Defaultoverview",)} 
Related Topics



setDestFieldNamesFromFirst example
The following example uses the transferData method to export ORDERS.DB to ORDINFO.TXT. The 
setDestFieldNamesFromFirst is used to set the field names using the data in the first row of the text file.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setDest("ordinfo.txt", DTASCIIVar)
   dt.setSource("orders.db")

   ;Specify the single quote (') to surround the fields.
   ;The delimited fields will be text fields only.
   dt.setDestDelimiter("'")
   dt.setDestDelimitedFields(DTDelimJustText)

   ;Specify the tab character to separate the fields.
   dt.setDestSeparator("\t")

   ;Set the first row of the ORDINFO.TXT to be the field names
   dt.setDestFieldNamesFromFirst(True)

   ;Set the character set of the destination file ORDINFO.TXT to be the ANSI
   ;character set.
   dt.setDestCharSet(DTAnsi)

   ;run Export
   dt.transferData()
endMethod



setDestSeparator method
Sets the separator character for delimited ASCII text.

Syntax
setDestSeparator ( const separatorChar String )

Description
setDestSeparator sets the separator to the character specified by separatorChar. The default separator is the 
comma character. setDestSeparator only applies when the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTDELIMITEDFIELDS;OPAL_METH_DXGE
TDESTDELIMITER;OPAL_METH_DXGETDESTSEPARATOR;OPAL_METH_DXSETDEST;OPAL_METH_DXSETDES
TCHARSET;OPAL_METH_DXSETDESTDELIMITEDFIELDS;OPAL_METH_DXSETDESTDELIMITER;OPAL_METH_D
XSETDESTFIELDNAMESFROMFIRST;',0,"Defaultoverview",)} Related Topics



setDestSeparator example
The following example specifies a DataTransfer data type. Use this code to build an Import or Export 
specification, and then call the transferData method.

Export to text
var
   dt DataTransfer
endVar
msgInfo("Info", "The current source separator is " + dt.getSourceSeparator())
dt.setSource ( "ANSWER.DB" )
msgInfo("Info", "The current destination separator is " + dt.getDestSeparator())
dt.SetDest ( "NEWFILE.TXT",dtASCIIVar )
dt.setDestSeparator ( ";" )
dt.transferData ( )



setKeyviol method
Writes violations to the Keyviol table.

Syntax
setKeyviol ( const GenerateKeyviol Logical )

Description
setKeyviol writes violations to the Keyviol table. The argument generateKeyviol is a logical that is set to True to 
write violations to the Keyviol table. generateKeyviol is ignored for tables without keys. setKeyviol applies only 
when the destination is a table. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXSETPROBLEMS;OPAL_METH_DXGETKEYVIOL;OP
AL_METH_DXGETPROBLEMS;',0,"Defaultoverview",)} Related Topics



setKeyviol example
The following example specifies a DataTransfer data type. Use this code to build an Import or Export specification
and then call the transferData method.
Imports ASCII delimited text to Corel Paradox (long form):
var
   dt DataTransfer
endVar

; Fields Quoted even if numeric
dt.setAppend(True)      ; Append to an existing Table
dt.setProblems(True)    ; Generate a Problems Table (if Any)
dt.setKeyviol(True)     ; Generate a Keyviol Table (if any)

dt.setSource("NewRecords.txt", DTAsciiVar)
dt.setDest("TimeCards.db")
dt.TransferData()



setProblems method
Writes problems to a specified table.

Syntax
setProblems ( const generateProblems Logical )

Description
setProblems writes problems to the Problems table. This method applies only when the destination is a table. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXSETKEYVIOL;OPAL_METH_DXGETKEYVIOL;OPAL
_METH_DXGETPROBLEMS;',0,"Defaultoverview",)} Related Topics



setProblems example
The following example specifies a DataTransfer data type. Use this code to build an Import or Export specification
and then call the transferData method.
Imports ASCII Delimited Text to Corel Paradox (long form):
var
   dt DataTransfer
endVar

; Fields Quoted even if numeric
dt.setAppend(True)      ; Append to an existing Table
dt.setProblems(True)    ; Generate a Problems Table (if Any)
dt.setKeyviol(True)     ; Generate a Keyviol Table (if any)

dt.setSource("NewRecords.txt", DTAsciiVar)
dt.setDest("TimeCards.DB")
dt.TransferData()



setSource method
Specifies the file or table that acts as the data source and its type.

Syntax
setSource ( const sourceName String, [ const sourceType SmallInt ] )

Description
setSource specifies the file or table to use as the data source. SourceType specifies the field type according to 
the application that generated the file. If no file type is specified, the sourceName file extension is used to 
determine the file's type. The file type constant destType specifies one of the DataTransferFileType constants. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETDESTNAME;OPAL_METH_DXGETDESTTYPE;
OPAL_METH_DXGETSOURCENAME;OPAL_METH_DXGETSOURCETYPE;OPAL_METH_DXSETSOURCECHARSET
;OPAL_METH_DXSETSOURCEDELIMITEDFIELDS;OPAL_METH_DXSETSOURCEDELIMITER;OPAL_METH_DXSE
TSOURCEFIELDNAMESFROMFIRST;OPAL_METH_DXSETSOURCERANGE;OPAL_METH_DXSETSOURCESEPAR
ATOR;',0,"Defaultoverview",)} Related Topics



setSource example
The following example specifies a DataTransfer data type. Use this code to build an Import or Export specification
and then call the transferData method.

Import from spreadsheet
var
   dt DataTransfer
endVar
dt.setSource ( "MYFILE.WKS" )
dt.setDest ( "New Data.db" )
dt.setProblems ( True )
dt.transferData ( )



setSourceCharSet method
Sets the file character set to dtOEM or dtANSI.

Syntax
setSourceCharSet ( const charSetCode SmallInt )

Description
setSourceCharSet sets the file character set. The argument charSetCode specifies one of the two 
DataTransferCharset constants: dtOEM or dtANSI. setSourceCharSet applies only when the source is a fixed or 
delimited ASCII text file. 
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXENUMSOURCERANGELIST;OPAL_METH_DXGETS
OURCECHARSET;OPAL_METH_DXGETSOURCERANGE;OPAL_METH_DXSETSOURCE;OPAL_METH_DXSETSOU
RCEDELIMITEDFIELDS;OPAL_METH_DXSETSOURCEDELIMITER;OPAL_METH_DXSETSOURCEFIELDNAMESFR
OMFIRST;OPAL_METH_DXSETSOURCERANGE;OPAL_METH_DXSETSOURCESEPARATOR;',0,"Defaultovervie
w",)} Related Topics



setSourceCharSet example
The following example specifies a DataTransfer data type. This structure is used with the transferData method. 
This example assumes that the DataTransfer variable, dt, is declared within a Var ... EndVar statement. The 
custom method cmTransfer() is within the scope of the variable (dt).
method cmTransfer()   ;this example completes a DataTransfer

   dt.setSource("CUSTOMER.TXT", DTASCIIVar)  ; sets the datatransfer source
                                             ; to CUSTOMER.TXT 
   dt.setSourceSeparator("/")   ; specifies the forward slash "/" character
                                ; to separate each field
   dt.setSourceDelimiter("'")   ; specifies the single quote to surround
                                ; the fields
   dt.setSourceDelimitedFields(DTDelimJustText)  ; specifies that the single 
                                              ; quote (delimiter) surrounds
                                              ; only text fields of the 
                                              ; source file
   dt.setSourceCharSet(DTANSI)   ; specifies that the character set used
                                 ; when creating the source file 
                                 ; was the ANSI character set

   dt.setSourceFieldNamesFromFirst(False)   ; specifies to use the first
                                            ; row of the source file as 
                                            ; field names
   dt.setDest("NEWCUST.DB")   ; sets the destination file to NEWCUST.DB
   dt.setProblems(True)   ; specifies to create a PROBLEMS.DB if there are
                          ; any problems importing the source file
   dt.transferData()   ; executes the data transfer. In this case it
                       ; imports the CUSTOMER.TXT file as NEWCUST.DB.
   dt.empty()   ; empties the dt variable structure to set it up for
                ; a new transfer.

endmethod



setSourceDelimitedFields method
Sets the Delimited Fields setting to DtDelimAllFields or DtDelimJustText.

Syntax
setSourceDelimitedFields ( const delimitCode SmallInt )

Description
setSourceDelimitedFields sets the delimited fields value. The argument delimitCode specifies one of the two 
DataTransferDelimitCode constants: DtDelimAllFields or DtDelimJustText. setSourceDelimitedFields only 
applies when the source or the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETSOURCEDELIMITEDFIELDS;OPAL_METH_DX
GETSOURCEDELIMITER;OPAL_METH_DXGETSOURCESEPARATOR;OPAL_METH_DXSETSOURCE;OPAL_METH_
DXSETSOURCECHARSET;OPAL_METH_DXSETSOURCEDELIMITER;OPAL_METH_DXSETSOURCEFIELDNAMES
FROMFIRST;OPAL_METH_DXSETSOURCERANGE;OPAL_METH_DXSETSOURCESEPARATOR;',0,"Defaultoverv
iew",)} Related Topics



setSourceDelimitedFields example
The following example specifies a DataTransfer data type. This structure is used with the transferData method. 
This example assumes that the DataTransfer variable, dt, is declared within a Var ... EndVar statement. The 
custom method cmTransfer() is within the scope of the variable (dt).
method cmTransfer()   ;this example completes a DataTransfer

   dt.setSource("CUSTOMER.TXT", DTASCIIVar)  ; sets the datatransfer source
                                             ; to CUSTOMER.TXT 
   dt.setSourceSeparator("/")   ; specifies the forward slash "/" character
                                ; to separate each field
   dt.setSourceDelimiter("'")   ; specifies the single quote to surround
                                ; the fields
   dt.setSourceDelimitedFields(DTDelimJustText)  ; specifies that the single 
                                              ; quote (delimiter) surrounds
                                              ; only text fields of the 
                                              ; source file
   dt.setSourceCharSet(DTANSI)   ; specifies that the character set used
                                 ; when creating the source file 
                                 ; was the ANSI character set

   dt.setSourceFieldNamesFromFirst(False)   ; specifies to use the first
                                            ; row of the source file as 
                                            ; field names
   dt.setDest("NEWCUST.DB")   ; sets the destination file to NEWCUST.DB
   dt.setProblems(True)   ; specifies to create a PROBLEMS.DB if there are
                          ; any problems importing the source file
   dt.transferData()   ; executes the data transfer. In this case it
                       ; imports the CUSTOMER.TXT file as NEWCUST.DB.
   dt.empty()   ; empties the dt variable structure to set it up for
                ; a new transfer.

endmethod



setSourceDelimiter method
Specifies a character as the delimiter.

Syntax
setSourceDelimiter ( const delimiterChar String )

Description
setSourceDelimiter sets the delimiter to the character specified by delimiterChar. The default delimiter is a 
comma. setSourceDelimiter only applies when the source or the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETSOURCEDELIMITEDFIELDS;OPAL_METH_DX
GETSOURCEDELIMITER;OPAL_METH_DXGETSOURCESEPARATOR;OPAL_METH_DXSETSOURCE;OPAL_METH_
DXSETSOURCECHARSET;OPAL_METH_DXSETSOURCEDELIMITEDFIELDS;OPAL_METH_DXSETSOURCEFIELD
NAMESFROMFIRST;OPAL_METH_DXSETSOURCERANGE;OPAL_METH_DXSETSOURCESEPARATOR;',0,"Defau
ltoverview",)} Related Topics



setSourceDelimiter example
The following example specifies a DataTransfer data type. This structure is used with the transferData method. 
This example assumes that the DataTransfer variable, dt, is declared within a Var ... EndVar statement. The 
custom method cmTransfer() is within the scope of the variable (dt).
method cmTransfer()   ;this example completes a DataTransfer

   dt.setSource("CUSTOMER.TXT", DTASCIIVar)  ; sets the datatransfer source
                                             ; to CUSTOMER.TXT 
   dt.setSourceSeparator("/")   ; specifies the forward slash "/" character
                                ; to separate each field
   dt.setSourceDelimiter("'")   ; specifies the single quote to surround
                                ; the fields
   dt.setSourceDelimitedFields(DTDelimJustText)  ; specifies that the single 
                                              ; quote (delimiter) surrounds
                                              ; only text fields of the 
                                              ; source file
   dt.setSourceCharSet(DTANSI)   ; specifies that the character set used
                                 ; when creating the source file 
                                 ; was the ANSI character set

   dt.setSourceFieldNamesFromFirst(False)   ; specifies to use the first
                                            ; row of the source file as 
                                            ; field names
   dt.setDest("NEWCUST.DB")   ; sets the destination file to NEWCUST.DB
   dt.setProblems(True)   ; specifies to create a PROBLEMS.DB if there are
                          ; any problems importing the source file
   dt.transferData()   ; executes the data transfer. In this case it
                       ; imports the CUSTOMER.TXT file as NEWCUST.DB.
   dt.empty()   ; empties the dt variable structure to set it up for
                ; a new transfer.

endmethod



setSourceFieldNamesFromFirst method
Sets field names using the data in the first row of input.

Syntax
setSourceFieldNamesFromFirst ( const namesFirst Logical)

Description
setSourceFieldNamesFromFirst sets field names using the first row of the input data. Setting namesFirst to 
True always skips the first row. However, the field names only apply to newly created tables that do not already 
have field names. setSourceFieldNamesFromFirst only applies when the source is a spreadsheet.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXEXP
ORTSPREADSHEET;OPAL_METH_DXGETSOURCEFIELDNAMESFROMFIRST;OPAL_METH_DXIMPORTSPREAD
SHEET;OPAL_METH_DXSETSOURCE;OPAL_METH_DXSETSOURCECHARSET;OPAL_METH_DXSETSOURCEDELI
MITEDFIELDS;OPAL_METH_DXSETSOURCEDELIMITER;OPAL_METH_DXSETSOURCERANGE;OPAL_METH_DX
SETSOURCESEPARATOR;',0,"Defaultoverview",)} Related Topics



setSourceFieldNamesFromFirst example
The following example specifies a DataTransfer data type. This structure is used with the transferData method. 
This example assumes that the DataTransfer variable, dt, is declared within a Var ... EndVar statement. The 
custom method cmTransfer() is within the scope of the variable (dt).
method cmTransfer()   ;this example completes a DataTransfer

   dt.setSource("CUSTOMER.TXT", DTASCIIVar)  ; sets the datatransfer source
                                             ; to CUSTOMER.TXT 
   dt.setSourceSeparator("/")   ; specifies the forward slash "/" character
                                ; to separate each field
   dt.setSourceDelimiter("'")   ; specifies the single quote to surround
                                ; the fields
   dt.setSourceDelimitedFields(DTDelimJustText)  ; specifies that the single 
                                              ; quote (delimiter) surrounds
                                              ; only text fields of the 
                                              ; source file
   dt.setSourceCharSet(DTANSI)   ; specifies that the character set used
                                 ; when creating the source file 
                                 ; was the ANSI character set

   dt.setSourceFieldNamesFromFirst(False)   ; specifies to use the first
                                            ; row of the source file as 
                                            ; field names
   dt.setDest("NEWCUST.DB")   ; sets the destination file to NEWCUST.DB
   dt.setProblems(True)   ; specifies to create a PROBLEMS.DB if there are
                          ; any problems importing the source file
   dt.transferData()   ; executes the data transfer. In this case it
                       ; imports the CUSTOMER.TXT file as NEWCUST.DB.
   dt.empty()   ; empties the dt variable structure to set it up for
                ; a new transfer.

endmethod



setSourceRange method
Specifies a sub range of the spreadsheet to import.

Syntax
setSourceRange ( const range String )

Description
setSourceRange specifies a sub range of the spreadsheet to import. The value specified by setSourceRange 
can be a named range, a page name, or an explicit range in QPW or Excel format. setSourceRange only applies
when the source is a spreadsheet.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXENUMSOURCERANGELIST;OPAL_METH_DXGETD
ESTCHARSET;OPAL_METH_DXGETSOURCERANGE;OPAL_METH_DXSETDESTCHARSET;OPAL_METH_DXSETS
OURCE;OPAL_METH_DXSETSOURCECHARSET;OPAL_METH_DXSETSOURCEDELIMITEDFIELDS;OPAL_METH_
DXSETSOURCEDELIMITER;OPAL_METH_DXSETSOURCEFIELDNAMESFROMFIRST;OPAL_METH_DXSETSOUR
CESEPARATOR;',0,"Defaultoverview",)} Related Topics



setSourceRange example
The following example uses the setSourceRange method to specify a range in a spreadsheet to import. You can
specify named ranges and standard ranges.
method pushButton(var eventInfo Event)
   var
      dt      DataTransfer
   endVar
   dt.setSource("092595.wb2")

   ;Set the range to import from the spreadsheet.
   ;Either named range or specified range (ie. Page1:A1..Page3:AB10)
   dt.setSourceRange("myRange")
   dt.setSourceFieldNamesFromFirst(True)
   dt.setDest("delme09.db")

   ;Prompt the user to verify range to import. getSourceRange returns the
   ;actual range notation.
   view(dt.getSourceRange(),"Import Range")
   dt.transferData()
endMethod



setSourceSeparator method
Sets the separator character for delimited ASCII text.

Syntax
setSourceSeparator ( const separatorChar String )

Description
setSourceSeparator sets the separator to the character specified by separatorChar. The default separator is a 
comma. setSourceSeparator only applies when the source or the destination is a delimited ASCII text file.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXGETSOURCEDELIMITEDFIELDS;OPAL_METH_DX
GETSOURCEDELIMITER;OPAL_METH_DXGETSOURCESEPARATOR;OPAL_METH_DXSETSOURCE;OPAL_METH_
DXSETSOURCECHARSET;OPAL_METH_DXSETSOURCEDELIMITEDFIELDS;OPAL_METH_DXSETSOURCEDELIM
ITER;OPAL_METH_DXSETSOURCEFIELDNAMESFROMFIRST;OPAL_METH_DXSETSOURCERANGE;',0,"Default
overview",)} Related Topics



setSourceSeparator example
The following example specifies a DataTransfer data type. This structure is used with the transferData method. 
This example assumes that the DataTransfer variable, dt, is declared within a Var ... EndVar statement. The 
custom method cmTransfer() is within the scope of the variable (dt).
method cmTransfer()   ;this example completes a DataTransfer

   dt.setSource("CUSTOMER.TXT", DTASCIIVar)  ; sets the datatransfer source
                                             ; to CUSTOMER.TXT 
   dt.setSourceSeparator("/")   ; specifies the forward slash "/" character
                                ; to separate each field
   dt.setSourceDelimiter("'")   ; specifies the single quote to surround
                                ; the fields
   dt.setSourceDelimitedFields(DTDelimJustText)  ; specifies that the single 
                                              ; quote (delimiter) surrounds
                                              ; only text fields of the 
                                              ; source file
   dt.setSourceCharSet(DTANSI)   ; specifies that the character set used
                                 ; when creating the source file 
                                 ; was the ANSI character set

   dt.setSourceFieldNamesFromFirst(False)   ; specifies to use the first
                                            ; row of the source file as 
                                            ; field names
   dt.setDest("NEWCUST.DB")   ; sets the destination file to NEWCUST.DB
   dt.setProblems(True)   ; specifies to create a PROBLEMS.DB if there are
                          ; any problems importing the source file
   dt.transferData()   ; executes the data transfer. In this case it
                       ; imports the CUSTOMER.TXT file as NEWCUST.DB.
   dt.empty()   ; empties the dt variable structure to set it up for
                ; a new transfer.

endmethod



transferData method
Copies data from the source to the target.

Syntax
transferData ( )

Description
transferData copies data from the source to the destination. This method applies only if the source, the 
destination, or both the source and the destination are tables.
 Example

{button ,AL(`OPAL_TYPE_DATATRANSFER;OPAL_METH_DXAPPENDASCIIFIX;OPAL_METH_DXAPPENDASCII
VAR;OPAL_METH_DXDLGEXPORT;OPAL_METH_DXDLGIMPORTASCIIFIX;OPAL_METH_DXDLGIMPORTASCIIV
AR;OPAL_METH_DXDLGIMPORT;OPAL_METH_DXDLGIMPORTSPREADSHEET;OPAL_METH_DXDLGIMPORTTA
BLE;OPAL_METH_DXIMPORTASCIIFIX;OPAL_METH_DXIMPORTASCIIVAR;OPAL_METH_DXIMPORTSPREADSH
EET;OPAL_METH_DXLOADDESTSPEC;',0,"Defaultoverview",)} Related Topics



transferData example
The following examples specify a DataTransfer data type. Use this code to build an Import or Export specification 
and then call the transferData method.

Import from spreadsheet
var
   dt DataTransfer
endVar
dt.setSource ( "MYFILE.WKS" )
dt.setDest ( "New Data.db" )
dt.setProblems ( True )
dt.transferData ( )

Import from text
var
   dt DataTransfer
endVar
dt.SetSource ( "MYFILE.TXT" )
if dt.getSourceType ( ) = DTASCIIFixed Then
   dt.loadDestSpec ( "SpecTable" )
EndIf
dt.setDest ( "Existing Data.db" )
dt.setAppend ( True )
dt.transferData ( )

Export to text
var
   dt DataTransfer
endVar
dt.setSource ( "ANSWER.DB" )
dt.SetDest ( "NEWFILE.TXT" )
dt.setDestSeparator ( ";" )
dt.transferData ( )



Toolbar type
The Toolbar type contains methods that create, delete, manipulate, and modify Toolbars.
The Toolbar type includes several derived methods from the AnyType type.
Methods for the Toolbar type

AnyType Toolbar
blank addButton
dataType attach
isAssigned create
isBlank createTabbed
isFixedType empty
unAssign getPosition

getState
hide
isAppBarVisible
isVisible
remove
removeButton
setPosition
setState
show
showApplicationBar

     unAttach

 Print related ObjectPAL methods and examples



addButton method
Adds a button to a Toolbar.

Syntax
1. addButton ( const idCluster SmallInt, const buttonType SmallInt, const idCommand SmallInt, 
const grBmp Graphic, const buttonHelp String [ , const status String ] ) Logical
2. addButton ( const idCluster SmallInt, const buttonType SmallInt, const idCommand SmallInt, 
const idBmp SmallInt, const buttonHelp String [ , const status String ] ) Logical

Description
addButton adds a button to a Toolbar. The new button's position is specified by a Cluster Identifier named 
idCluster . idCluster is an integer that ranges from 0 to 12. The type of button added is specified by buttonType. 
Button types include pushbutton, radio button, toggle button, and repeat button. When the button is pressed, 
the menu command that is sent is specified by idCommand. The contents of the small popup window that 
appears when the cursor is placed on the new button is specified bybuttonHelp.
An optional parameter status (added in version 8) allows you to specify a different message to display on the 
status line. If status is omitted, the status line displays the text indicated for buttonHelp.
Syntax 1 adds a button to the Toolbar using a graphic bitmap (grBmp) to specify the button’s image on the 
Toolbar. This allows you to use a user-defined bitmap file or a bitmap object of a graphic type stored in a table.
Syntax 2 adds a button to the Toolbar using a bitmap constant. The bitmap constant specifies the button’s image
on the Toolbar. This method allows you to create a button using any of the defined Toolbar button bitmaps in the 
system resource.
The only item that can be added to a Toolbar is a button.
addButton returns True if the button is successfully created.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOEMPTY;OPAL_METH_TOREMOVEBUTTON;',0,"Defaulto
verview",)} Related Topics



addButton example
The following example creates a Toolbar named Edit and adds three buttons to the Toolbar using defined Corel 
Paradox bitmap constants:
method pushButton (var eventInfo Event)
var
   tb  Toolbar
endvar

   ;// Create a Toolbar named "Edit" with 3 buttons: Cut, Copy, Paste
if tb.create("Edit") then
   tb.addButton(ToolbarEditCluster, ToolbarButtonPush,
                MenuEditCut, BitmapEditCut, "Cut")

   tb.addButton(ToolbarEditCluster, ToolbarButtonPush,
                MenuEditCopy, BitmapEditCopy, "Copy")

   tb.addButton(ToolbarEditCluster, ToolbarButtonPush,
                MenuEditPaste, BitmapEditPaste, "Paste")

endif
endMethod

The following example creates a Toolbar named File and adds three buttons using Corel Paradox constants. A 
fourth button is added using a custom graphic object.
method pushButton (var eventInfo Event)
var
   tb  Toolbar
   gr  graphic
endvar

if tb.create("File") then
   tb.addButton(ToolbarFileCluster, ToolbarButtonPush,
                MenuTableOpen, BitmapOpenTable, "Open Table")

   tb.addButton(ToolbarFileCluster, ToolbarButtonPush,
                MenuFormOpen, BitmapOpenForm, "Open Form")

   tb.addButton(ToolbarFileCluster, ToolbarButtonPush,
                MenuReportOpen, BitmapOpenReport, "Open Report")

   ;// Add a button with a custom bitmap (pick a valid name)
   gr.readFromFile("Alias.bmp")
   tb.addButton(ToolbarModeCluster, ToolbarButtonPush,
                MenuFileAliases, gr, "Alias")
endif
endMethod



attach method
Binds a Toolbar type to an existing Toolbar.

Syntax
attach ( const toolbarName String ) Logical

Description
attach binds a Toolbar type to an existing Toolbar using the name specified in toolbarName. The reserved name 
Standard can be used to attach to the Corel Paradox Toolbar.
You can access a Toolbar by attaching to an existing toolbar or creating a new one.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOUNATTACH;OPAL_METH_TOCREATE;OPAL_METH_TOCR
EATETABBED;',0,"Defaultoverview",)} Related Topics



attach example
The following example attaches a Toolbar named MyToolbar. This code assumes that the Toolbar already exists: 
method pushbutton (var eventInfo Event)
var
   tbar      Toolbar
endvar

   if tbar.attach("Standard") then
      msginfo("Attach", "Successful")
   else
      msginfo("Attach", "Failed")
   endif
endMethod



create method
Creates a Toolbar.

Syntax
create ( const toolbarName String [, const parentToolbarName String ]) Logical

Description
create creates a Toolbar specified by toolbarName. toolbarName is used in the caption when the Toolbar is 
floating. The name cannot be Standard, which is reserved for the Corel Paradox Toolbar.
 parentToolbarName is the name of the tabbed parent Toolbar of the new Toolbar.
You can access a Toolbar by attaching to an existing toolbar or creating a new one.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOATTACH;OPAL_METH_TOUNATTACH;OPAL_METH_TOC
REATETABBED;',0,"Defaultoverview",)} Related Topics



create example
The following example uses createTabbed to create a tabbed Toolbar named Test. Test is created using two 
Toolbars created with the create method (the Edit and File Toolbars).
method pushButton (var eventInfo Event)
var
   tbTabbed  Toolbar
   tbEdit    Toolbar
   tbFile    Toolbar
endvar

;// Create a tabbed Toolbar named "Test" 
;// that will be composed of two Toolbars:
;// "Edit" and "File"
if tbTabbed.createTabbed("Test") then
   ; Create a Toolbar named "Edit" with 3 buttons: Cut, Copy, Paste
   if tbEdit.create("Edit", "Test") then
      tbEdit.addButton(ToolbarEditCluster, ToolbarButtonPush,
                       MenuEditCut, BitmapEditCut, "Cut")

      tbEdit.addButton(ToolbarEditCluster, ToolbarButtonPush,
                       MenuEditCopy, BitmapEditCopy, "Copy")

      tbEdit.addButton(ToolbarEditCluster, ToolbarButtonPush,
                       MenuEditPaste, BitmapEditPaste, "Paste")
   endif

   if tbFile.create("File", "Test") then
      tbFile.addButton(ToolbarFileCluster, ToolbarButtonPush,
                       MenuTableOpen, BitmapOpenTable, "Open Table")

      tbFile.addButton(ToolbarFileCluster, ToolbarButtonPush,
                       MenuFormOpen, BitmapOpenForm, "Open Form")

      tbFile.addButton(ToolbarFileCluster, ToolbarButtonPush,
                       MenuReportOpen, BitmapOpenReport, "Open Report")
   endif
endif
endMethod



createTabbed method
Creates a tabbed Toolbar.

Syntax
createTabbed ( const toolbarName String ) Logical

Description
createTabbed creates a tabbed Toolbar named toolbarName. toolbarName is used in the caption when the 
Toolbar is floating. The name cannot be Standard, which is reserved for the Corel Paradox Toolbar.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOATTACH;OPAL_METH_TOUNATTACH;OPAL_METH_TOC
REATE;',0,"Defaultoverview",)} Related Topics



createTabbed example
The following example uses createTabbed to create a tabbed Toolbar named Test. Test is created using two 
Toolbars created with the create method (the Edit and File Toolbars).
method pushButton (var eventInfo Event)
var
   tbTabbed  Toolbar
   tbEdit    Toolbar
   tbFile    Toolbar
endvar

;// Create a tabbed Toolbar named "Test" 
;// that will be composed of two Toolbars:
;// "Edit" and "File"
if tbTabbed.createTabbed("Test") then
   ; Create a Toolbar named "Edit" with 3 buttons: Cut, Copy, Paste
   if tbEdit.create("Edit", "Test") then
      tbEdit.addButton(ToolbarEditCluster, ToolbarButtonPush,
                       MenuEditCut,BitmapEditCut, "Cut")

      tbEdit.addButton(ToolbarEditCluster, ToolbarButtonPush,
                       MenuEditCopy,BitmapEditCopy, "Copy")

      tbEdit.addButton(ToolbarEditCluster, ToolbarButtonPush,
                       MenuEditPaste,BitmapEditPaste, "Paste")
   endif

   if tbFile.create("File", "Test") then
      tbFile.addButton(ToolbarFileCluster, ToolbarButtonPush,
                       MenuTableOpen, BitmapOpenTable, "Open Table")

      tbFile.addButton(ToolbarFileCluster, ToolbarButtonPush,
                       MenuFormOpen, BitmapOpenForm, "Open Form")

      tbFile.addButton(ToolbarFileCluster, ToolbarButtonPush,
                       MenuReportOpen, BitmapOpenReport, "Open Report")
   endif
endif
endMethod



empty method
Removes the existing buttons from the Toolbar.

Syntax
empty ( ) Logical

Description
empty removes the existing buttons from the attached Toolbar. empty returns True if the Toolbar is successfully 
emptied.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOADDBUTTON;OPAL_METH_TOHIDE;',0,"Defaultovervie
w",)} Related Topics



empty example
The following example attaches a Toolbar named MyToolbar and removes the Toolbar's buttons using empty. If 
the attach fails, an "Unable to attach" message appears.
method pushbutton (var eventInfo Event)
var
   tbar      Toolbar
endvar

if tbar.attach("MyToolbar") then
   tbar.empty()
else
   msgInfo("Toolbar error", "Unable to attach.")
endif

endMethod



getPosition method
Returns the position of a floating Toolbar.

Syntax
getPosition ( var x LongInt, var y LongInt ) Logical

Description
getPosition returns the position of a floating Toolbar. The Toolbar's coordinates are specified in pixels, relative 
to the top-left corner of the screen.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOGETSTATE;OPAL_METH_TOSETPOSITION;OPAL_METH_
TOSETSTATE;',0,"Defaultoverview",)} Related Topics



getPosition example
The following example displays the X and Y coordinates of the attached Toolbar named MyToolbar:
method pushbutton (var eventInfo Event)
var
   liX, liY  LongInt
   tbar      Toolbar
endvar

if tbar.attach("MyToolbar") then
   tbar.getPosition(liX, liY)
   liX.view("X coordinate")
   liY.view("Y coordinate")
endif
endMethod



getState method
Retrieves the Toolbar's current state.

Syntax
getState ( ) smallInt

Description
getState retrieves the Toolbar's current state. getState returns True if the Toolbar state is successfully 
retrieved.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOGETPOSITION;OPAL_METH_TOSETPOSITION;OPAL_ME
TH_TOSETSTATE;',0,"Defaultoverview",)} Related Topics



getState example
The following example displays the current state of a Toolbar named MyToolbar. If this code cannot attach to 
MyToolbar, an "Unable to attach" message appears.
method pushbutton (var eventInfo Event)
var
   tbar      Toolbar
endvar

if tbar.attach("MyToolbar") then
   msgInfo("MyToolbar", "Current State: " + String(tbar.getState()))
else
   msgInfo("Toolbar error", "Unable to attach.")
endif

endMethod



hide method
Hides a Toolbar. 

Syntax
hide ( ) Logical

Description
hide hides a Toolbar. hide returns True if the Toolbar is successfully hidden. hide performs the same function as 
the procedure hideToolbar. 
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOEMPTY;OPAL_METH_TOISVISIBLE;',0,"Defaultovervie
w",)} Related Topics



hide example
The following example hides a Toolbar named MyToolbar. If the Toolbar is not visible, this method displays it:
method pushbutton (var eventInfo Event)
var
   tbar  Toolbar
endvar

if tbar.attach("MyToolbar") then
   if tbar.isVisible() then
      tbar.hide()
   else
      tbar.show()
   endif
endif

endMethod



isVisible method
Determines whether the specified Toolbar is visible.

Syntax
isVisible ( ) Logical

Description
isVisible determines whether the specified Toolbar is visible. isVisible returns True if the Toolbar is visible and 
False if the Toolbar is hidden. This method performs the same function as the isToolbarShowing procedure.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOHIDE;OPAL_METH_TOSHOW;',0,"Defaultoverview",)} 
Related Topics



isVisible example
The following example prints a message stating whether a Toolbar named MyToolbar is visible. If this code can 
not attach to MyToolbar, an "Unable to attach" message appears.
method pushbutton (var eventInfo Event)
var
   tbar  Toolbar
endvar

   if tbar.attach("MyToolbar") then
      if tbar.isVisible() then
         msgInfo("MyToolbar" , "Toolbar is Visible")
      else
         msgInfo("MyToolbar" , "Toolbar is not Visible")
      endif
   else
      msgInfo("Toolbar error", "Unable to attach.")
   endif
endMethod



remove method
Removes the specified Toolbar from the screen.

Syntax
remove ( ) Logical

Description
remove removes the specified Toolbar from the screen. remove returns True if the Toolbar was successfully 
removed; otherwise it returns False.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOEMPTY;OPAL_METH_TOHIDE;',0,"Defaultoverview",)}
Related Topics



remove example
The following example removes a Toolbar named MyToolbar from the screen. If this code can not attach to 
MyToolbar, an "Unable to attach" message appears.
method pushbutton (var eventInfo Event)
var
   tbar  Toolbar
endvar

if tbar.attach("MyToolbar") then
   tbar.remove()
else
   msgInfo("Toolbar error", "Unable to attach.")
endif

endMethod



removeButton method
Removes a button from the Toolbar.

Syntax
removeButton ( const idCluster SmallInt, const idNum SmallInt ) Logical

Description
removeButton removes a button from the Toolbar using the host cluster and the position in the cluster. The 
cluster is specified with idCluster and the position of the button in the cluster (from left to right starting at 0) is 
specified by idNum. removeButton returns True if the button is successfully removed.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOADDBUTTON;OPAL_METH_TOEMPTY;',0,"Defaultoverv
iew",)} Related Topics



removeButton example
The following example removes the a button from a Toolbar named MyToolbar. Because idCluster and idNum 
start with zero, this example removes the third button from the second cluster. If this code can not attach to 
MyToolbar, an "Unable to attach" message appears.
method pushbutton (var eventInfo Event)
var
   tbar  Toolbar
endvar

if tbar.attach("MyToolbar") then
   tbar.removebutton(1,2)       ;//idcluster=1, the 2nd from left
                                ;//idnum=2, the 3rd from left
else
   msgInfo("Toolbar error", "Unable to attach.")
endif

endMethod



setPosition method
Changes the position of a floating Toolbar. 

Syntax
setPosition ( const x LongInt, const y LongInt ) Logical

Description
setPosition changes the position of a floating Toolbar to the coordinates specified in x and y. The x and y 
coordinates are specified in pixels and relative to the upper-left corner of the screen. setPosition returns True if 
the position of the Toolbar is successfully changed.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOGETPOSITION;OPAL_METH_TOGETSTATE;OPAL_METH_
TOSETSTATE;',0,"Defaultoverview",)} Related Topics



setPosition example
The following example changes the position of a Toolbar named MyToolbar 500 pixels to the right and 400 pixels 
up from its current position.
method pushbutton (var eventInfo Event)
var
   liX, liY  LongInt
   tbar      Toolbar
endvar

if tbar.attach("MyToolbar") then
   tbar.getPosition(liX, liY)
   view("From: " + string(liX) + ", " 
                 + string(liY) + 
          "To: " + string(liX + 2800) + " , " 
                 + string(liY + 2800))
   tbar.setPosition(liX + 500, liY + 400)
endif

endMethod



setState method
Sets the state of the Toolbar.

Syntax
setState ( const state SmallInt ) Logical

Description
setState sets the Toolbar to the specified state. There are six Toolbar states:
· ToolbarStateTop: docked at the top of the window
· ToolbarStateLeft: docked at the left of the window
· ToolbarStateRight: docked on the right side of the window
· ToolbarStateBottom: docked at the bottom of the window
· ToolbarStateFloatHorizontal: floating horizontally
· ToolbarStateFloatVertical: floating vertically
setState returns True if the Toolbar state is successfully set.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOGETPOSITION;OPAL_METH_TOGETSTATE;OPAL_METH_
TOSETPOSITION;',0,"Defaultoverview",)} Related Topics



setState example
The following example displays a dialog that allows the user to set the state of the Toolbar named MyToolbar. If 
this code can not attach to MyToolbar, an "Unable to attach" message appears.
method pushbutton (var eventInfo Event)
var
   siState  SmallInt
   tbar     Toolbar
endvar

if tbar.attach("MyToolbar") then
   siState = tbar.getState()
   siState.view("Enter State: (0-7)")
   tbar.setState(siState)
else
   msgInfo("Toolbar error", "Unable to attach.")
endif

endMethod



show method
Shows a Toolbar.

Syntax
show ( ) Logical

Description
show shows a Toolbar. 
There are five toolbars available on the Corel Paradox desktop: Standard, Global, Object, Align, and Format. The 
Standard toolbar is available by default and can be displayed or hidden using the show and hide methods. 
This method performs the same function as the showToolbar procedure.
The Object and Align toolbars are used in the design environment only and are not available through ObjectPAL. 
To display the Global and Format toolbars using the show method, you must first issue the following PAL 
statements:
   ;// to display the Global toolbar
winPostMessage(ap.windowHandle(),winGetMessageID("WM_COMMAND"),30831,0)

   ;// to display the Format toolbar
winPostMessage(ap.windowHandle(),winGetMessageID("WM_COMMAND"),7903,0)
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOEMPTY;OPAL_METH_TOHIDE;OPAL_METH_TOISVISIBL
E;',0,"Defaultoverview",)} Related Topics



show example
The following example hides a Toolbar named MyToolbar. If the Toolbar is already hidden, this method displays it.
method pushbutton (var eventInfo Event)
var
   tbar      Toolbar
endvar

if tbar.attach("MyToolbar") then
   if tbar.isVisible() then
      tbar.hide()
   else
      tbar.show()
   endif
endif

endMethod



unAttach method
Removes the attachment from the Toolbar.

Syntax
unAttach ( ) Logical

Description
unAttach removes the attachment from the Toolbar.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOATTACH;OPAL_METH_TOCREATE;OPAL_METH_TOCREA
TETABBED;;',0,"Defaultoverview",)} Related Topics



unAttach example
The following example attaches a Toolbar named MyToolbar, sets its state, and then unattaches.

method pushbutton (var eventInfo Event)
var
   tbar      Toolbar
endvar

   if tbar.attach("MyToolbar") then
      tbar.setState(ToolbarStateTop)
           tbar.unattach()
   endif

endMethod



showApplicationBar method
Toggles the visible property of the Application Bar.

Syntax
showApplicationBar ( Show Logical ) Logical
Show=True If the Application bar is not already visible, it will appear
Show=False If the Application bar is visible, it will be hidden

Description
showApplicationBar toggles the visible property of the Application Bar.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOEMPTY;OPAL_METH_TOHIDE;OPAL_METH_TOISVISIBL
E;',0,"Defaultoverview",)} Related Topics



showApplicationBar example
This example uses the isAppBarVisible method to check the state of the Application bar, then uses 
showApplcation bar to either show or hide the Applcation bar depending on its state.

method pushButton(var eventInfo Event)
if isappbarvisible()=True then    ;//checks current state of application bar

msginfo("stop","application bar is being hidden")
Showapplicationbar(False)     ;// hides application bar

else 
msginfo("Stop","application bar is being shown")
showapplicationbar(True)       ;//shows application bar

endif
endMethod



isAppBarVisible example
See the example for showApplicationBar.



isAppBarVisible method
Checks the state of the Application Bar.

Syntax
isAppBarVisible ( ) Logical
Description
isAppBarVisible checks the state of the Application bar and returns a logical.
 Example

{button ,AL(`OPAL_TYPE_TOOLBAR;OPAL_METH_TOEMPTY;OPAL_METH_TOHIDE;OPAL_METH_TOISVISIBL
E;',0,"Defaultoverview",)} Related Topics



Mail type
The Mail type allows you to compose electronic mail messages and transmit them using a MAPI-compliant mail 
system (e.g., Microsoft Mail). A Mail type variable holds a single mail message. It also holds current mail session 
status (set by logon), so that multiple mail messages can be sent (sequentially) in a single session. Declare 
variables of type Mail to facilitate the manipulation of mail messages, and then use the Mail methods to set (and 
retrieve) information about the message (such as the message subject and the recipients).

Methods for the Mail type
addAddress
addAttachment
addressBook
addressBookTo
empty
emptyAddresses
emptyAttachments
enumInbox
getAddress
getAddressCount
getAttachment
getAttachmentCount
getMessage
getMessageType
getSender
getSubject
logoff
logoffDlg
logon
logonDlg
readMessage
send
sendDlg
setMessage
setMessageType
setSubject

 Print related ObjectPAL methods and examples



addAddress method
Adds an addressee to a message.

Syntax
1. addAddress ( const address String )
2. addAddress ( const address String, const addressType SmallInt )

Description
addAddress adds an addressee to the message. Syntax 1 defaults to a To type addressee, Syntax 2 allows you 
to specify one of the MailAddressTypes Constants: MailAddrTo, MailAddrCC, or MailAddrBC. Addressees are not 
checked for validity until the message is sent.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLADDRESSBOOK;OPAL_METH_MLADDRESSBOOKTO;OPAL_
METH_MLEMPTYADDRESSES;OPAL_METH_MLGETADDRESS;OPAL_METH_MLGETADDRESSCOUNT;',0,"Defa
ultoverview",)} Related Topics



addAddress example
The following example sends a message (about sales results) to John Doe and copies the message to Susan 
Smith. It assumes the user is logged on.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.send()  ; Send the message
endMethod



addAttachment method
Adds an attachment to the message.

Syntax
1. addAttachment ( const fileName String )
2. addAttachment ( const fileName String, const moniker String )
3. addAttachment ( const fileName String, const moniker String, const displayPos LongInt )

Description
addAttachment adds an attachment to the message. Syntax 1 sends the specified fileName. Syntax 2 sends 
the specified fileName, but displays the name specified in moniker. Some mail systems (for example, Microsoft 
Mail) allow the attachment icon to be displayed in the message text; in this case, you can use Syntax 3 to specify
the position in the text that the file should appear. (With Microsoft mail, if you specify one, the first character of 
the message to be displaced by the icon for the specified attachment).
Some mail systems place limits on the number, size, and/or type of attachments you can use (a few mail 
systems still don't support binary attachments). No attempt is made to verify the existence of the files until the 
message is sent. Aliases can be used to specify attachment names.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLEMPTYATTACHMENTS;OPAL_METH_MLGETATTACHMENT;O
PAL_METH_MLGETATTACHMENTCOUNT;',0,"Defaultoverview",)} Related Topics



addAttachment example
The following example sends a message (about sales results) to John Doe and copies the message to Susan 
Smith. It assumes the user is logged on.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.send()  ; Send the message
endMethod



addressBook method
Displays the address book.

Syntax
1. addressBook ( )
2. addressBook ( const numberOfLists SmallInt )

Description
addressBook displays the address book and allows the user to modify the list of addressees. Syntax 1 allows all
types of addressees (To, CC, BC) to be updated. Syntax 2 allows you to limit the number of address lists to be 
updated: numberOfLists = 1 shows only the To addressees, numberOfLists = 2 shows the To and CC addressees, 
numberOfLists = 3 shows the To, CC, and BC addressees.
If an existing mail session is not active, the user may be prompted with a logon dialog box. Use the logon 
method to create a mail session.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLADDADDRESS;OPAL_METH_MLADDRESSBOOKTO;OPAL_M
ETH_MLEMPTYADDRESSES;OPAL_METH_MLGETADDRESS;OPAL_METH_MLGETADDRESSCOUNT;',0,"Default
overview",)} Related Topics



addressBook example
The following example updates a distribution list kept in a table:
method pushButton ( var eventInfo Event ) 
   var m MAIL tc TCURSOR idx LONGINT address STRING addrtype SMALLINT endVar
   tc.open("distribution list.db")
   scan tc:  ; read the address list
      m.addAddress( tc."Addressee" )
   endscan
   m.addressBook( 1 ) ; Display the list for editing
   tc.edit( ) 
   tc.empty( ) ; clear the old list
   for idx from 1 to m.getAddressCount( ) ; write out the new list
       tc.insertRecord( )
       m.getAddress( idx, address, addrtype )
       tc."Addressee" = address
       tc.unlockRecord( )
   endfor
   tc.close( )
endMethod



addressBookTo method
Displays the To list from the address book.

Syntax
addressBookTo ( const prompt String )

Description
addressBookTo displays the To list from the address book and allows the user to modify the list of addressees. 
addressBookTo displays only the To list, but allows you to override what the list is called (e.g., Routing).
If an existing mail session is not active, the user may be prompted with a logon dialog box. Use the logon 
method to create a mail session.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLADDADDRESS;OPAL_METH_MLADDRESSBOOK;OPAL_MET
H_MLEMPTYADDRESSES;OPAL_METH_MLGETADDRESS;OPAL_METH_MLGETADDRESSCOUNT;',0,"Defaultov
erview",)} Related Topics



addressBookTo example
The following example allows the user to update a distribution list kept in a table:
method pushButton ( var eventInfo Event ) 
   var m MAIL tc TCURSOR idx LONGINT address STRING addrtype SMALLINT endVar
   tc.open("distribution list.db")
   scan tc:  ; read the address list
      m.addAddress( tc."Addressee" )
   endscan
   m.addressBookTo( "Fundraiser Mail List" )
   tc.edit( ) 
   tc.empty( ) ; clear the old list
   for idx from 1 to m.getAddressCount( ) ; write out the new list
       tc.insertRecord( )
       m.getAddress( idx, address, addrtype )
       tc."Addressee" = address
       tc.unlockRecord( )
   endfor
   tc.close( )
endMethod



empty method
Empties the contents of the mail variable.

Syntax
empty ( )

Description
empty empties the contents of the mail variable (clears the message). The session (which is set by the logon 
method), if any, is unaffected.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLEMPTYADDRESSES;OPAL_METH_MLEMPTYATTACHMENTS;'
,0,"Defaultoverview",)} Related Topics



empty example
The following example sends a message (about sales results) to John Doe, copies the message to Susan Smith 
and then sends a different message to Bill Brown. It assumes the user is logged on.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.send()  ; Send the message

   m.empty()  ; Clear out the old message

   m.addAddress("BBROWN")
   m.setSubject("Final sales numbers sent")
   m.setMessage("Bill, John and Susan have the final sales now")
   m.send()  ; Send the message
endMethod



emptyAddresses method
Deletes all the addresses attached to a message.

Syntax
emptyAddresses ( )

Description
emptyAddresses sets the number of addresses attached to the message to zero.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLADDADDRESS;OPAL_METH_MLADDRESSBOOK;OPAL_MET
H_MLADDRESSBOOKTO;OPAL_METH_MLEMPTY;OPAL_METH_MLEMPTYADDRESSES;OPAL_METH_MLGETAD
DRESS;OPAL_METH_MLGETADDRESSCOUNT;',0,"Defaultoverview",)} Related Topics



emptyAddresses example
The following example sends a message (about sales results) to John Doe, copies the message to Susan Smith, 
and sends a different message to Bill Brown. It assumes the user is logged on.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.send()  ; Send the message

   m.emptyAddresses()  ; Clear out the old Addresses

   m.addAddress("BBROWN")
   m.setMessage("Bill, John and Susan have the final sales now")
   m.send()  ; Send with subject & attachment specified earlier
endMethod



emptyAttachments method
Deletes all the attachments to a message.

Syntax
emptyAttachments ( )

Description
emptyAttachments sets the number of attachments to the message to zero.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLADDATTACHMENT;OPAL_METH_MLEMPTY;OPAL_METH_ML
EMPTYATTACHMENTS;OPAL_METH_MLGETATTACHMENT;OPAL_METH_MLGETATTACHMENTCOUNT;',0,"Def
aultoverview",)} Related Topics



emptyAttachments example
The following example sends a message (about sales results) to John Doe, copies the message to Susan Smith, 
and sends a different message to Bill Brown. It assumes the user is logged on.
method pushButton ( var eventInfo Event ) 
var
  m  MAIL
endVar
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.send()  ; Send the message

   m.emptyAddresses()  ; Clear out the old Addressee’s
   m.emptyAttachments()  ; Clear out the old Attachment

   m.addAddress("BBROWN")
   m.setMessage("Bill, John and Susan have the final sales now")
   m.send()  ; Send with subject specified earlier
endMethod



enumInbox method
Fills an array with the list of messages in the in box.

Syntax
enumInbox ( var ids Array [] String, const unreadOnly Logical, [ const seedId String, const 
maxCount LongInt, [ const msgType String ] ] )

Description
enumInbox fills the array specified by ids with the IDs of messages in the in box. unreadonly is a True or False 
value that indicates whether to include only unread messages. 
The optional value seedId lets you control the starting point from which messages are listed in the array. To 
retrieve the first set of messages, use a blank string (""). To retrieve subsequent sets of messages, use the last 
ID read from the previous set. If you specify a value for seedId, you must also specify a value for maxCount. 
maxCount lets you control the maximum number of messages retrieved in a set.
msgType lets you specify the type of message. Message types are mail system dependent consult your mail 
system documentation for information on the message types it supports.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLADDRESSBOOK;opal_meth_mlreadMessage;',0,"Defaulto
verview",)} Related Topics



enumInbox example
The following example gets the list of message IDs for unread messages in the in box. The example reads the 
first set of messages and stops after listing a maximum of 100 messages. A custom method ProcessMessage is 
called to process each message until there are no messages left in the set. If additional messages remain unread
and need processing, the loop repeats. When there are no more messages to process, the method ends. This 
example assumes the user is logged on.

method pushButton ( var eventInfo Event ) 
var
   msg         Mail
   inboxIds    Array [] String
   seedId      String
   i           LongInt
endVar
  seedId = ""                              ; set to retrieve first message
  while True                               ; Process all unread messages
      msg.enumInbox( inboxIds, True, seedId, 100)
      for i from 1 to inboxIds.size()
          processMessage(inboxIds[i])      ; run a custom method to process
                                           ; each message
      endFor
      if inboxIds.size() < 100 then 
          quitloop
      endIf
      seedId = inboxIds[100]               ; set seed to last message read
  endWhile
endMethod



getAddress method
Retrieves the specified addressee information.

Syntax
1. getAddress ( const index LongInt, var address String, var addressType SmallInt )
2. getAddress ( const index LongInt, var address String, var fullAddress String, var 
addressType SmallInt )

Description
getAddress retrieves the specified addressee information, where index is between 1 and getAddressCount, 
inclusive. addressType is one of the MailAddressTypes Constants: MailAddrTo, MailAddrCC, or MailAddrBC.
In addition to the above information, Syntax 2 retrieves the full address name of the addressee and stores this 
value in fullAddress. Full address information is available only after a MAPI-compliant mail system has made this 
information available to Corel Paradox. A blank value for fullAddress indicates that the MAPI-compliant mail 
system has not yet provided this information.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLADDADDRESS;OPAL_METH_MLADDRESSBOOK;OPAL_MET
H_MLADDRESSBOOKTO;OPAL_METH_MLEMPTYADDRESSES;OPAL_METH_MLGETADDRESSCOUNT;',0,"Defa
ultoverview",)} Related Topics



getAddress example
The following example allows the user to update a distribution list kept in a table:
method pushButton ( var eventInfo Event ) 
   var m MAIL tc TCURSOR idx LONGINT address STRING addrtype SMALLINT endVar
   tc.open("distribution list.db")
   scan tc:  ; read the address list
      m.addAddress( tc."Addressee" )
   endscan
   m.addressBookTo( "Fundraiser Mail List" )
   tc.edit( ) 
   tc.empty( ) ; clear the old list
   for idx from 1 to m.getAddressCount( ) ; write out the new list
       tc.insertRecord( )
       m.getAddress( idx, address, addrtype )
       tc."Addressee" = address
       tc.unlockRecord( )
   endfor
   tc.close( )
endMethod



getAddressCount method
Returns the number of addressees attached to the current message.

Syntax
getAddressCount ( ) LongInt

Description
getAddressCount returns the number of addressees attached to the current message.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLADDADDRESS;OPAL_METH_MLADDRESSBOOK;OPAL_MET
H_MLADDRESSBOOKTO;OPAL_METH_MLEMPTYADDRESSES;OPAL_METH_MLGETADDRESS;',0,"Defaultover
view",)} Related Topics



getAddressCount example
The following example allows the user to update a distribution list kept in a table:
method pushButton ( var eventInfo Event ) 
   var m MAIL tc TCURSOR idx LONGINT address STRING addrtype SMALLINT endVar
   tc.open("distribution list.db")
   scan tc:  ; read the address list
      m.addAddress( tc."Addressee" )
   endscan
   m.addressBookTo( "Fundraiser Mail List" )
   tc.edit( ) 
   tc.empty( ) ; clear the old list
   for idx from 1 to m.getAddressCount( ) ; write out the new list
       tc.insertRecord( )
       m.getAddress( idx, address, addrtype )
       tc."Addressee" = address
       tc.unlockRecord( )
   endfor
   tc.close( )
endMethod



getAttachment method
Retrieves specific attachment information.

Syntax
getAttachment ( const index LongInt, var fileName String, var moniker String, var displayPos 
LongInt )

Description
getAttachment retrieves the attachment information for the attachment specified by index. index is a number 
between 1 and getAttachmentCount, inclusive. filename, moniker, and displayPos are variables whose values 
are filled in by this method. filename represents the name of the attachment file. moniker is the name displayed 
in the MAPI mail dialog (defaults to the filename). displayPos is the display position of the attachment's icon in 
the MAPI mail dialog.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLADDATTACHMENT;OPAL_METH_MLEMPTYATTACHMENTS;
OPAL_METH_MLGETATTACHMENTCOUNT;',0,"Defaultoverview",)} Related Topics



getAttachment example
The following example gets the list of attachments from a mail variable. The mail variable m and its attachments
are presumed to have been defined and added elsewhere. The example assumes the user is logged on.

method pushButton ( var eventInfo Event ) 
   var 
       list DYNARRAY [] STRING
       indx LONGINT 
       filename STRING 
       moniker STRING
       pos LONGINT
   endVar
   for indx from 1 to m.getAttachmentCount()
       m.getAttachment(indx, filename, moniker, pos)
       list[indx]=filename
   endfor
   list.view("attachments:")
endMethod



getAttachmentCount method
Returns the number of attachments to the current message. 

Syntax
getAttachmentCount ( ) LongInt

Description
getAttachmentCount returns the number of attachments to the current message.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLADDATTACHMENT;OPAL_METH_MLEMPTYATTACHMENTS;
OPAL_METH_MLGETATTACHMENT;',0,"Defaultoverview",)} Related Topics



getAttachmentCount example
The following example displays the number of attachments. The mail variable m and its attachments are 
presumed to have been defined and added elsewhere. The message assumes the user is logged on.
method pushButton ( var eventInfo Event ) 
   var
      cnt longint 
   endVar
   m.addAttachment( "SALES.TXT" ) 
   cnt = m.getAttachmentCount( )
   cnt.view( "Number of attachments" )
endMethod



getMessage method
Returns the current text of the message.

Syntax
getMessage ( ) String

Description
getMessage returns the current text of the message.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLEMPTY;OPAL_METH_MLGETMESSAGETYPE;OPAL_METH_M
LSETMESSAGE;OPAL_METH_MLSETMESSAGETYPE;',0,"Defaultoverview",)} Related Topics



getMessage example
The following example displays the (previously set) message text. It assumes the user is logged on.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   var msgtext string endVar
   msgtext = m.getMessage( )
   msgtext.view( "Message text" )
endMethod



getMessageType method
Returns the current message type.

Syntax
getMessageType ( ) String

Description
getMessageType returns the current message type. Message types are mail system dependent consult your 
mail system documentation for information on the message types it supports.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLEMPTY;OPAL_METH_MLGETMESSAGE;OPAL_METH_MLSET
MESSAGE;OPAL_METH_MLSETMESSAGETYPE;',0,"Defaultoverview",)} Related Topics



getMessageType example
The following example displays the (previously set) message type. It assumes the user is logged on.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   var msgtype string endVar
   msgtype = m.getMessageType( )
   msgtype.view( "Message type" )
endMethod



getSender method
Returns the sender for the current message.

Syntax
1. getSender ( var address String ) 
2. getSender ( var address String, var fullAddress String ) 

Description
getSender returns the sender of the current mail message as address. In Syntax 2, getSender returns the full 
address of the sender as fullAddress. (Many mail systems differentiate between nickname addresses and the full 
email address. If the mail system that you use does not differentiate, address and fullAddress will return the 
same value.)
The sender's address (and full address) is available only when messages are read. The values will be blank for 
messages you are composing.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLGETMESSAGE;OPAL_METH_MLGETSUBJECT;',0,"Defaultov
erview",)} Related Topics



getSender example
The following example displays the sender information for the mail message msg. getSender and getSubject 
are called to get the subject title and sender name to create the reply mail. The message assumes the user is 
logged on.

method pushButton ( var eventInfo Event ) 
var
   msg,
   replyMsg       Mail
   sender,
   fullAddress    String  
endVar

msg.readMessage("1234")                           ; 1234 is a valid message ID
msg.getSender(sender,fullAddress)                 ; supplies sender info

replyMsg.addAddress(fullAddress)                  ; add sender to reply
replyMsg.setSubject(msg.getSubject()+" - Reply")  ; set reply message 
                                                  ; subject to original
                                                  ; subject plus "reply"
replyMsg.sendDlg()                                ; open the send dialog to
                                                  ; let user type contents 
                                                  ; for the reply message
endMethod



getSubject method
Returns the current subject of the message.

Syntax
getSubject ( ) String

Description
getSubject returns the current subject of the message.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLSETMESSAGE;OPAL_METH_MLSETSUBJECT;',0,"Defaultove
rview",)} Related Topics



getSubject example
The following example displays the (previously set) subject for the mail variable m (assigned elsewhere). It 
assumes the user is logged on.
method pushButton ( var eventInfo Event ) 
   var 
      subject string 
   endVar
   subject = m.getsubject( )
   subject.view( "Subject" )
endMethod



logoff method
Attempts to logoff the mail system.

Syntax
logoff ( )

Description
logoff attempts to logoff the mail system without user intervention and to terminate the mail session created by
logon. Any errors will trigger an exception.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLLOGOFFDLG;OPAL_METH_MLLOGON;OPAL_METH_MLLOGO
NDLG;',0,"Defaultoverview",)} Related Topics



logoff example
The following example logs on, displays the send dialog box and then logs off:
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.logon("mypassword", "special" )
   m.sendDlg( )
   m.logoff( )
endMethod



logoffDlg method
Attempts to logoff the mail system with user interaction.

Syntax
logoffDlg ( ) Logical

Description
logoffDlg attempts to logoff the mail system and to terminate the mail session created by logon. If supported 
by the mail system, the user is prompted to enter logoff information, otherwise a straight logoff is done.
logoffDlg returns True if the user logs off, and False if the user cancels. Any errors will trigger an exception.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLLOGOFF;OPAL_METH_MLLOGON;OPAL_METH_MLLOGONDL
G;',0,"Defaultoverview",)} Related Topics



logoffDlg example
The following example logs on, displays the send dialog box, logs off and displays a logoff dialog box if 
appropriate:
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.logon("mypassword", "special" )
   m.sendDlg( )
   m.logoffDlg( )
endMethod



logon method
Attempts to logon to the mail system.

Syntax
logon ( const password String, const profileName String )

Description
logon attempts to logon to the mail system without user intervention. Any errors will trigger an exception.
The password argument is an input parameter that specifies a credential string (maximum 256 characters). If 
the messaging system does not require password credentials, or if it requires that the user actively enter them, 
password should be blank. When the user must enter credentials, use logonDlg.
The argument profileName is an input parameter that specifies a named profile string (maximum of 256 
characters). This is the profile to use when logging on. Some mail providers accept a null profileName as 
specifying the default profile. If you don't know the profileName, use LogonDlg.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLLOGOFF;OPAL_METH_MLLOGOFFDLG;OPAL_METH_MLLOG
ONDLG;',0,"Defaultoverview",)} Related Topics



logon example
The following example sends a message (about sales results) to John Doe, copies the message to Susan Smith, 
and sends a different message to Bill Brown. It uses logon to specify a special mail session and to group 
everything together.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.logon("mypassword", "special" )
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.send()  ; Send the message

   m.empty()  ; Clear out the old message

   m.addAddress("BBROWN")
   m.setSubject("Final sales numbers sent")
   m.setMessage("Bill, John and Susan have the final sales now")
   m.send()  ; Send the message
   m.logoff()
endMethod



logonDlg method
Attempts to logon to the mail system with user interaction.

Syntax
1. logonDlg ( ) Logical
2. logonDlg ( const password String, const profile String ) Logical

Description
logonDlg attempts to logon to the mail system with user interaction. If necessary, the user is prompted to enter
logon information. If successful, a mail session is created. The session stays active until the logoff method is 
called, or the mail variable goes out of scope.
logonDlg returns True if the user logs on, and False if the user cancels. Any errors will trigger an exception.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLLOGOFF;OPAL_METH_MLLOGOFFDLG;OPAL_METH_MLLOG
ON;',0,"Defaultoverview",)} Related Topics



logonDlg example
The following example sends a message (about sales results) to John Doe, copies the message to Susan Smith, 
and sends a different message to Bill Brown. It uses logonDlg so that the user will only have to specify a mail 
password once.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.logonDlg( )
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.send()  ; Send the message

   m.empty()  ; Clear out the old message

   m.addAddress("BBROWN")
   m.setSubject("Final sales numbers sent")
   m.setMessage("Bill, John and Susan have the final sales now")
   m.send()  ; Send the message
   m.logoff()
endMethod



readMessage method
Reads a mail message.

Syntax
readMessage ( var messageId AnyType, [ const readOpts Anytype ] )

Description
readMessage reads a mail message into a Mail variable. Use MailReadOptions constants to specify reading 
options (multiple MailReadOptions constants may be used at the same time by adding them together.)
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLSENDDLG;',0,"Defaultoverview",)} Related Topics



readMessage example
In the following example, the in box of the MAPI-compliant mail system is enumerated to the array InboxIds. 
Each message in InboxIds is read and calls a custom method that contains a message processing routine. The 
loop repeats as many times as there are messages to process. The example assumes the user is logged on.

method pushButton ( var eventInfo Event ) 
var
   msg         Mail
   inboxIds    Array [] String
   i           LongInt
endVar
msg.enumInbox( inboxIds, True)
for i from 1 to inboxIds.size()
  msg.readMessage(inboxIds[i])
  doProcess()                        ; calls a custom method for processing
endFor
endMethod



send method
Sends a mail message.

Syntax
send ( )

Description
send sends a mail message without user interaction. At least one addressee must have been defined. Most mail 
systems require that some additional information is defined (for example, the subject). 
If an existing mail session is not active, the user may be prompted with a logon dialog box. Use the logon 
method to create a mail session. Some mail provider systems may require an explicit logon call before a send, 
others may not.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLSENDDLG;',0,"Defaultoverview",)} Related Topics



send example
The following example sends a message (about sales results) to John Doe and copies the message to Susan 
Smith. It assumes the user is logged on.
method pushButton ( var eventInfo Event ) 
var
   m  MAIL
endVar
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.send()  ; Send the message
endMethod



sendDlg method
Sends a mail message with user interaction.

Syntax
sendDlg ( ) Logical

Description
sendDlg sends a mail message with user interaction. The user will be shown the message as it currently exists 
(using the user's default MAPI mail system provider). They can then modify it before sending it.
If an existing mail session is not active, the user may be prompted with a logon dialog box. Use the logon 
method to create a mail session.
sendDlg returns True if the user sends the message, and False if they cancel. Any errors will trigger an 
exception. 
sendDlg returns True if the user cancels the logon dialog box.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLSEND;',0,"Defaultoverview",)} Related Topics



sendDlg example
The following example simply displays a mail dialog box for the user to enter a message. It assumes the user is 
logged on.

method pushButton ( var eventInfo Event ) 
var
   m    MAIL
endVar
   m.sendDlg()
endMethod

The following example sends a message (about sales results) to John Doe and copies the message to Susan 
Smith:

method pushButton ( var eventInfo Event ) 
var
   m  MAIL
endVar
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.sendDlg()  ; Display the message so the user can edit before sending
endMethod



setMessage method
Sets the text of the message.

Syntax
setMessage ( const message String )

Description
setMessage sets the text of the message to message. The maximum length of message is limited by the 
shorter of the mail system and ObjectPAL's maximum string length. This is typically at least 32,000 characters.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLEMPTY;OPAL_METH_MLGETMESSAGE;OPAL_METH_MLGET
MESSAGETYPE;OPAL_METH_MLSETMESSAGETYPE;OPAL_METH_MLSETSUBJECT;',0,"Defaultoverview",)} 
Related Topics



setMessage example
The following example sends a message (about sales results) to John Doe and copies the message to Susan 
Smith. It assumes the user is logged on.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.sendDlg()  ; Display the message so the user can edit before sending
endMethod



setMessageType method
Sets the type of the message.

Syntax
setMessageType ( const messageType String )

Description
setMessageType sets the type of the message. Some mail systems support a messageType. Typically, message
without a specified type is assumed to be an Inter-Personal Message; whereas, typed messages can only be read
by a program asking for that particular message type.
Using message types typically requires special support from your mail system. Consult your mail vendor for 
more information.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLEMPTY;OPAL_METH_MLGETMESSAGE;OPAL_METH_MLGET
MESSAGETYPE;OPAL_METH_MLGETSUBJECT;OPAL_METH_MLSETMESSAGE;OPAL_METH_MLSETSUBJECT;',0
,"Defaultoverview",)} Related Topics



setMessageType example
The following example sends a message (about sales results) to John Doe and copies the message to Susan 
Smith. It uses a special message type IPM.URGENT that was previously set up on this mail system. It assumes 
the user is logged on.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.setMessageType("IPM.URGENT")
   m.sendDlg()  ; Display the message so the user can edit before sending
endMethod



setSubject method
Sets the subject of the message.

Syntax
setSubject ( const subject String )

Description
setSubject sets the subject of the message to subject. The maximum length of subject is limited by the mail 
system. This is typically at least 80 characters.
 Example

{button ,AL(`OPAL_TYPE_MAIL;OPAL_METH_MLGETSUBJECT;OPAL_METH_MLSETMESSAG;',0,"Defaultover
view",)} Related Topics



setSubject example
The following example sends a message (about sales results) to John Doe and copies the message to Susan 
Smith. It assumes the user is logged on.
var
   m  MAIL
endVar
method pushButton ( var eventInfo Event ) 
   m.addAddress("JDOE")
   m.addAddress("SSMITH", MailAddrCC)
   m.setSubject("Final sales numbers")
   m.setMessage("The final sales numbers are attached")
   m.addAttachment("SALES.TXT")
   m.sendDlg()  ; Display the message so the user can edit before sending
endMethod



Native Windows controls
Native Windows controls (NWCs) are elements of the Windows operating system that can be used in Corel 
Paradox. Corel Paradox uses the following NWCs:
· Combobox
· Listbox
· Progressbar
· Spinbox
· TrackBar

Accessing NWCs
NWCs are placed on a Corel Paradox form the same way as any other UIObject. The properties, methods, and 
events of NWCs are accessed in the same way as the properties, methods, and events of UIObjects and ActiveX 
controls. 
The following example displays the code for a control called #spinbox3:
#spinbox3.propertyname = value              ; property set
value = #spinbox3.propertyname              ; property get
#spinbox3.methodname (arg, arg,...)    ;method invocation

NWC event handlers are written as custom methods and must exactly match the name and parameter signature 
of the event exposed by the control. Create and edit event handlers using Object Explorer to prevent the 
possibility of creating a custom method whose parameter signature does not match the event specification. If 
the name and parameter signature do not match exactly, the method is not an event handler.
Many methods and properties take LongInt type numeric arguments or values. To prevent the method invocation 
or property set from failing, cast numeric constants to type LongInt.
The following example demonstrates how to cast to the LongInt type.
spinbox.range (LongInt (1), LongInt (10))
spinbox.value = LongInt (1)

{button ,AL(`NWC_ELEMENTS;OPAL_TYPE_OLE;',0,"Defaultoverview",)}      Related Topics
 Print related ObjectPAL methods and examples 



NWCs and the Value property
NWCs require the UIObject Value property. The following table lists the NWCs and their support for setting and/or 
getting the Value property:
NWC Get Value ? Set Value ?
Combobox Yes No
Listbox No Yes
Progressbar Yes Yes
Spinbox Yes Yes
TrackBar Yes Yes

Tips
· To get a property use the UIObject type getProperty. 
· To set a property use the UIObject type setProperty. 

{button ,AL(`NWC_INTRO;',0,"Defaultoverview",)} Related Topics



Combobox
Properties
Values for the Combobox properties can be specified with the Value property.
Count
Returns the number of items in the combobox (read-only).
      LongInt = combobox.count

ItemIndex
Returns the index (starting at 0) of the active selection in the combobox (read-only)
      LongInt = combobox.ItemIndex

Methods
addString
Adds a string to the combobox
      addString (str String)

deleteString
Deletes the string that resides at the specified index (starting at 0)
      deleteString (index LongInt)

findString
Returns the index (starting at 0) of the string in the combobox
      LongInt findString (str String)

getText
Returns the string that resides at the specified index
      string getText (index LongInt)

reset
Empties the combobox
      reset ( )

Events
onSelChange
Fires when the user changes the active selection in the combobox using keyboard moves (arrow keys) or mouse 
actions (single click) 
      void onSelChange ( )

{button ,AL(`NWC_INTRO;NWC_Valueprop;',0,"Defaultoverview",)} Related Topics



Listbox
Properties
Values for the Listbox properties can be specified with the Value property.
MultiSelect
Determines whether the list box is multi-select (TRUE) or single select (FALSE) (setting this property 
automatically empties the contents of the list box).
Count
Returns the number of items in the list box (read-only)
      LongInt = listbox.count

ItemIndex
Gets or sets the index (starting at 0) of the active selection in a single select box (undefined if the list box is a 
multiselect list box)
      LongInt = listbox.ItemIndex

SelCount
Returns the number of items selected in a multiselect list box
      LongInt = listbox.SelCount

Methods
addString
Adds a string to the list box
      addString (str String)

deleteString
Deletes the string that resides at the specified index (starting at 0)
      deleteString (index LongInt)

findString
Returns the index (starting at 0) of the string in the list box
      LongInt findString (str String)

getText
Returns the string that resides at the specified index
      string getText (index LongInt)

reset
Empties the list box (single or multi-select)
      reset ( )

selRange
Highlights the specified range in a multi-select list box
      selRange (lowIndex LongInt, highIndex LongInt)

getMultiSelAsCDL
Returns the indexes (in a comma-delimited string) of the items selected in a multi-select list box (This string can 
be fed to breakApart( ))
      String getMultiSelAsCDL ( )

Events
onDblClick
Fires when the user double-clicks a selection in the list box. The active selection can be read using the getCurSel(
) method. If a user double-clicks the an immediate response is requested. 
      void onDoubleClick ( )

onSelChange
Fires when the user changes the active selection in the list box using keyboard moves (arrow keys) or mouse 
actions (single left click).



      void onSelChange ( )

onKeyDown
Fires when the list box has focus and a key is pressed. Certain keys can be trapped using this event (e.g., 
ESCAPE and ENTER). The event passes in the virtual key code of the key that was pressed. This event fires 
before onSelChange( ) when arrow keys are used to change the selection in a list box. Because Windows 
generates this event on virtual key codes, it fires when you press the SHIFT, ALT, and CTRL keys as well as 
regular keys. 
      void onKeyDown (LongInt vkey)

{button ,AL(`NWC_INTRO;NWC_Valueprop;',0,"Defaultoverview",)} Related Topics



Progressbar
Properties
Values for the Progressbar properties can be specified with the Value property.
Pos
Gets or sets the position of the progressbar to an absolute value. Must be between the min and max value 
specified in setRangeAndStep ( ).
      pos = LongInt      (set)
      LongInt = pos      (get)

Methods
setRangeAndStep
Sets the minimum and maximum values for the progressbar and the step value (increment)
setRangeAndStep (minRange LongInt, maxRange LongInt, step LongInt)

stepIt
Steps the progressbar by the step value
      stepIt ( )
 Note

· The range and step value of the progressbar must be specified prior to use.

{button ,AL(`NWC_INTRO;NWC_Valueprop;',0,"Defaultoverview",)} Related Topics



Spinbox
Properties
Values for the Spinbox properties can be specified with the Value property.
min
Specifies the minimum (lower) value of the spinbox range (read-only)
max
Specifies the maximum (upper) value of the spinbox range (read-only)

Methods
Range
Sets the minimum and maximum values for the spinbox (If the range of a spinbox is not specified, the UIObject 
Value Property will return 0.)
      range (minRange LongInt, maxRange LongInt)

Events
onChanged
Fired when the user changes the value in the spinbox (spinbox range must be specified prior to use).

Example
      #spinbox3.range (LongInt (1), LongInt (10))
      #spinbox3.value = LongInt (5)
      message (“value = “, string (#spinbox3.value))
 Note

· The Value property of a Spinbox native Windows control fails if you haven't defined its minimum and maximum
range.

{button ,AL(`NWC_INTRO;NWC_Valueprop;',0,"Defaultoverview",)} Related Topics



TrackBar
Properties
Values for the TrackBar properties can be specified with the Value property.
Orientation
Determines whether the trackbar is vertical or horizontal (Set the property using the value of the enumerated 
constants).
      tbHorizontal = 0
      tbVertical = 2

TickMarks
Determines if the trackbar has tickmarks (Set the property using the value of the enumerated constants).
      tsNoTicks = 0
      tsAutoTicks = 1

TickStyle
Determines the style of the tickmarks on the trackbar (Set the property using the value of the enumerated 
constants).
      tmBottomRight = 0
      tmTopLeft = 4
      tmBoth = 8

EnableSelRange
Determines whether the trackbar has a selectable range. If this is set to true, the properties SelStart and SelEnd 
are used to set the selected range; otherwise SelStart and SelEnd have no effect.
SelStart
Marks the beginning of the selected range if EnableSetRange is True
SelEnd
Marks the end of the selected range if EnableSetRange is False.
Min
Specifies the minimum value of the trackbar range
Max
Specifies the maximum value of the trackbar range
Pos
Specifies the position of the slider (thumb). Values must fall between the low and high range of the trackbar.
Style
Determines the style of the trackbar. The style property can be any of the TrackBarStyles Constants. You can set 
TickMarks, TickStyle, Orientation, and EnableSelRange simultaneously using the Style property.

Methods
None

Events
endTrack
The user changed the track (thumb) position or clicked thumb without changing position. The endTrack event is 
always sent last and can be used as a generic onChanged event.
Sent when the user interacts with a trackbar using the mouse or the keyboard.
pageDown
The user pressed the PAGEDOWN key or clicked the channel below or to the right of the slider.
Sent when the user interacts with a trackbar by using the mouse or the keyboard
pageUp
The user pressed the PAGEUP key or clicked the channel above or to the left of the slider.
Sent when the user interacts with a trackbar using the mouse or the keyboard



moveBottom
The user pressed the END key.
Sent when the user interacts with a trackbar using the keyboard
lineDown
The user pressed the Right or Down arrow key.
Sent when the user interacts with a trackbar using the keyboard
lineUp
The user pressed the Left or Up arrow key. 
Sent when the user interacts with a trackbar using the keyboard
moveTop
The user pressed the HOME key.
Sent when the user interacts with a trackbar using the keyboard
thumbPosition
The user released the Left mouse button following a ThumbTrack event.
Sent when the user interacts with a trackbar using the mouse
thumbTrack
The user dragged the slider with the mouse.
Sent when the user interacts with a trackbar using the mouse
Event
Reason sent

{button ,AL(`NWC_INTRO;NWC_Valueprop;',0,"Defaultoverview",)} Related Topics



AddinForm type
An add-in form is an external dynamic link library (DLL) that a third-party developer has provided. Not all DLLs 
can be used in Corel Paradox. To use a DLL in Corel Paradox, it must be designed so that it permits proper 
communication between it and Corel Paradox. For more information on a specific add-in and whether it can be 
used in Corel Paradox, contact the third-party developer who created it. For information on developing an add-in 
for Corel Paradox, refer to the Corel Paradox Developer Help for Corel Paradox Add-Ins.
If an add-in DLL has been designed for use in Corel Paradox, you can use the ObjectPAL AddinForm type methods
to open and close the forms that the DLL contains and to obtain and set published form properties. An add-in 
DLL can also add menu options to the Corel Paradox menus.
Before an add-in form can be used in Corel Paradox, it must be registered. 
Methods of the AddinForm type are similar to methods of the Form type.

Methods in the AddinForm type
attach
bringToTop
close
closeQuery
enumForms
getPosition
getPropertyAsInteger
getPropertyAsNumber
getPropertyAsString
getTitle
hide
isAssigned
isMaximized
isMinimized
isVisible
maximize
menuAction
minimize
open
postMessage
sendMessage
setPosition
setProperty
setTitle
show
wait
windowHandle

   Print related ObjectPAL methods and examples  



attach method
Associates an AddinForm variable with an open add-in form.

Syntax
1. attach ( const formTitle String ) Logical
2. attach ( const windowHandle Longint ) Logical

Description
attach associates an AddinForm variable with an open add-in form. This method returns True if it succeeds; 
otherwise, it returns False. 
Syntax 1 associates the AddinForm variable to the form whose title is indicated by formTitle. The argument 
formTitle specifies a form's title as displayed in the Title Bar, not the add-in form's name. You can obtain an add-
in form's title by calling the ObjectPAL method getTitle.
Syntax 2 attaches the AddinForm variable to the add-in form window indicated by windowHandle.
 Note

· Attach can successfully associate the AddinForm variable regardless of whether the add-in form is hidden or 
visible.

 Example 
{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFOPEN;OPAL_METH_AFSHOW;OPAL_METH_AFSETTI
TLE;OPAL_METH_AFWINDOWHANDLE;',0,"Defaultoverview",)} Related Topics



attach example
The following example shows code which should be attached to the pushButton method of a form. A String 
value is used to prompt the user for the form title and then the AddinForm variable is attached to the specified 
form. Assume that the add-in form window is already open on the Corel Paradox desktop.

; AttachToAddin::pushButton
method pushButton(var eventInfo Event)
var
    AF         AddinForm
    formTitle  String
endVar

Try
   formTitle.view("Enter add-in form window title")
   AF.Attach(formTitle)
   msgInfo("Attach...", "succeeded")
onFail
   msgInfo("Attach failed", formTitle+" add-in form not found") 
   errorClear()
endTry
endMethod



bringToTop method
Brings the add-in form window to the forefront and makes it active.

Syntax
bringToTop ( )

Description
When several windows are displayed, they seem to overlap, giving an appearance of layers. Use bringToTop to 
display an add-in form's window on the top of the stack. bringToTop makes the add-in form the active window.
If a hide statement has made an add-in form invisible, bringToTop makes it visible again.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFISVISIBLE;OPAL_METH_AFHIDE;OPAL_METH_AFSH
OW;',0,"Defaultoverview",)} Related Topics



bringToTop example
In this example, the pushButton method for a button named ShowItemsList makes the Items add-in form 
window the topmost layer. If the Items add-in form window is hidden, it is automatically made visible when it is 
brought to the top. Assume that Items is open on the desktop and has the window title ItemList.

; ShowItemsList::pushButton
method pushButton(var eventInfo Event)
var 
   AF        AddinForm
endVar
AF.attach("ItemList")   ; attaches to Items by title
AF.bringToTop()         ; makes the Items window the topmost layer
                        ; and unhides it (if hidden)
endMethod



close method
Closes an add-in form window.

Syntax
close ( ) Logical

Description
close closes an add-in form window.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFOPEN;OPAL_METH_AFATTACH;',0,"Defaultoverview
",)} Related Topics



close example
In this example, the AddinForm variable AF is declared in the Var window at the form level. The form has various 
pushButtons that open the add-in form, obtain specific properties, change specific properties, and manipulate 
the add-in form window. The following code appears on the pushbutton labeled Close, and when selected, closes 
the add-in form.

;Close::pushButton
method pushButton(var eventInfo Event)
    AF.Close()
endMethod



closeQuery method
Closes a query.

Syntax
closeQuery ( ) Logical

Description
closeQuery asks (queries) an add-in form whether it is willing to close.
This method returns True if the add-in form is willing to close and False if the add-in form is not willing to close.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_ 
AFCLOSE;OPAL_METH_AFHIDE;',0,"Defaultoverview",)} Related Topics



closeQuery example
In this example, the custom procedure CloseSubForm is defined in the Proc window at the form level. The 
procedure attempts to close the add-in form after asking the add-in form if it is willing to be closed. If 
closeQuery returns True, the add-in form is closed. If closeQuery returns False, a message is displayed to the 
user indicating a course of action to follow that corrects the situation. Assume the AddinForm variable AF is 
defined in the Var window at the form level and that the add-in form is already open and assigned.

; #Form1::proc
Proc CloseSubForm() Logical
   if AF.closeQuery() then       ; add-in form is willing to close
      AF.close()
      return True
   else                          ; add-in form is not willing to close
      msgStop("error","Please fill out the entire form")
      AF.bringToTop()
      Return False
   endIf
endProc



enumForms method
Creates an array listing registered add-in forms.

Syntax
enumForms ( var formNames Array[ ] String ) Logical

Description
enumForms fills the array formNames with a list of add-in forms that have been registered in Corel Paradox. You
declare formNames as a resizeable array before calling this method.
An add-in form must be registered before it can be used in Corel Paradox. 
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFOPEN;idh_pals_edregaddin;',0,"Defaultoverview",
)} Related Topics



enumForms Examples
Example 1 Listing the names of add-in forms to an array
Example 2 Using enumForms to populate a list object on a form, with the names of add-in forms from Corel 

Paradox



enumForms example 1
This example lists the names of add-in forms in the array openForms and then displays openForms.

; getForms::pushButton
method pushButton(var eventInfo Event)
var
  AF          AddinForm
  availForms  Array[] String
endVar

AF.enumForms(availForms)
availForms.view()            ; Lists names of registered add-in forms.
endMethod



enumForms example 2
This example uses enumForms to populate a list object on a form with the names of add-in forms registered in 
Corel Paradox. enumForms generates the array ArList, which is used as input for the list field. Assume that the 
list field is named FormList and the list object within FormList is called List.

method pushButton(var eventInfo Event)
var
   AF       AddinForm
   ArList   Array [] String
   i        LongInt
endVar
AF.enumForms( ArList )
FormList.List.List.Count = ArList.size()
For i from 1 to ArList.size()
  FormList.List.List.Selection = i
  FormList.List.List.Value = ArList[i]
EndFor
endMethod



getPosition method
Returns the position (in twips) of an add-in window.

Syntax
getPosition ( var x LongInt, var y LongInt, var w LongInt, var h LongInt )
Description
getPosition finds the position of the add-in form’s window. The arguments x and y contain the horizontal and 
vertical coordinates of the upper-left corner of the form (in twips), and w and h contain the width and height (in 
twips) of the form.
To ObjectPAL, the screen is a two-dimensional grid with the origin (0, 0) at the upper-left corner of an object's 
container, positive x values extending to the right, and positive y values extending down.
For dialog boxes and pop-up forms, the position is given relative to the entire screen. For multiple document 
interface (MDI) child forms (default), the position is given relative to the Corel Paradox desktop.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFSETPOSITION;OPAL_METH_AFSETPROPERTY;OPAL_
METH_AFGETPROPERTYASNUMBER;OPAL_METH_AFGETPROPERTYASINTEGER 
OPAL_METH_AFGETPROPERTYASSTRING;',0,"Defaultoverview",)} Related Topics



getPosition example
The following example shows code which appears in the pushButton method on a form. The coordinates of the 
add-in form window are displayed by calling the method msgInfo.

method pushButton(var eventInfo Event)
var
     AF         AddinForm
     x,y,h,w    LongInt
endVar

     AF.open( "add-in" )   ; where add-in is the add-in form
     AF.show()
     AF.getPosition( x, y, w, h )
     msgInfo("Add-in position:",string( x, ",", y, "   ", w ," x ", h))
endMethod



getPropertyAsInteger method
Returns the value of the specified property of an add-in form as a LongInt.

Syntax
getPropertyAsInteger ( const propertyName String ) LongInt

Description
getPropertyAsInteger returns the value of the add-in’s property specified by propertyName. The value of the 
property is returned as a long integer.
Use getPropertyAsNumber for properties that return a floating-point number, and getPropertyAsString for 
properties that return a String value.
 Note

· The add-in form is responsible for performing type conversions as necessary to return a LongInt value.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFSETPROPERTY;OPAL_METH_AFSETTITLE;',0,"Defau
ltoverview",)} Related Topics



getPropertyAsInteger example
In this example, the user is prompted to enter the name of a property of the add-in form which returns an Integer
value. The current value of the specified property is displayed in a msgInfo window if the method is successful.

method pushButton(var eventInfo Event)
var
   AF         AddinForm
   propName   String
endVar

try
   AF.open( "add-in" )   ; where add-in is the name of the 
                         ; add-in form
   AF.show()
   propName.view("Property that returns an integer:")
   msgInfo(propName+" is:",AF.getPropertyAsInteger(propName))
onFail
   msgInfo("getPropertyAsInteger("+propName+") failed.","Property
            unknown or could not return an integer value")
   errorClear()
endTry
endMethod



getPropertyAsNumber method
Returns the value of the specified property of an add-in form as a floating-point number.

Syntax
getPropertyAsNumber ( const propertyName String ) Number

Description
getPropertyAsNumber returns the value of the add-in’s property specified by propertyName. The value of the 
property is returned as a number.
Use getPropertyAsInteger for properties that return an integer, and getPropertyAsString for properties that
return a String value.
 Note

· The add-in form should perform type conversions as necessary to return a floating-point Number value.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFSETPROPERTY;OPAL_METH_AFSETTITLE;',0,"Defau
ltoverview",)} Related Topics



getPropertyAsNumber example
In this example, the user is prompted to enter the name of a property of the add-in form that returns a floating-
point numeric value. The current value of the specified property is displayed in a msgInfo window if the method 
is successful.

method pushButton(var eventInfo Event)
var
     AF         AddinForm
     propName   String
endVar
try
   AF.open( "add-in" )   ; where add-in is the name of the 
                         ; add-in form
   AF.show()
   propName.view("Property that returns a number:")
   msgInfo(propName+" is:",AF.getPropertyAsNumber(propName))
onFail
   msgInfo("getPropertyAsNumber("+propName+") failed.","Property 
            unknown or could not return a float number")
   errorClear()
endTry
endMethod



getPropertyAsString method
Returns the value of the specified property of an add-in form as a String.

Syntax
getPropertyAsString ( const propertyName String ) String

Description
getPropertyAsString returns the value of the add-in’s property specified by propertyName. The value of the 
property is returned as a String value.
Use getPropertyAsInteger for properties that return an integer, and getPropertyAsNumber for properties 
that return a floating-point number.
 Note

· The add-in form should perform type conversions as necessary in order to return a String value.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFSETPROPERTY;OPAL_METH_AFSETTITLE;',0,"Defau
ltoverview",)} Related Topics



getPropertyAsString example
In this example, the user is prompted to enter the name of a property of the add-in form that returns a String 
value. The current value of the specified property is displayed in a msgInfo window if the method is successful.

method pushButton(var eventInfo Event)
var
     AF         AddinForm
     propName   String
endVar
try
   AF.open( "add-in" )   ; where add-in is the name of the 
                         ; add-in form
   AF.show()
   propName.view("Property that returns a string:")
   msgInfo(propName+" is:",AF.getPropertyAsString(propName))
onFail
   msgInfo("getPropertyAsString("+propName+") failed.","Property
            unknown or could not return a String")
   errorClear()
endTry
endMethod



getTitle method
Returns the text on the window Title Bar of the add-in form's window.

Syntax
getTitle ( ) String

Description
getTitle returns the text on the Title Bar of the add-in form's window.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFSETTITLE;OPAL_METH_AFWINDOWHANDLE;OPAL_
METH_AFATTACH;OPAL_METH_AFOPEN;',0,"Defaultoverview",)} Related Topics



getTitle example
In this example, the pushButton method for the showTitle button opens a Calculator add-in form and returns 
the add-in's title. A dialog box opens where you can make changes to the title. It then checks to see if the title 
has been modified by the user and if so, calls the setTitle method to change the add-in's window title as 
specified.

; showTitle::pushButton
method pushButton(var eventInfo Event)
var
   AF         AddinForm
   origTitle,
   newTitle   String
endVar

AF.open("Calculator")          ; open add-in form but do not 
                               ; make it visible
origTitle=af.getTitle()
newTitle=origTitle             ; comparison value 
newTitle.view("Enter new title for add-in")
if origTitle<>newTitle then
   AF.setTitle(newTitle)       ; call setTitle only if changes made
endIf
AF.show()                      ; display the add-in with its new title
endMethod



hide method
Makes an add-in form window invisible.

Syntax
hide ( )

Description
hide makes an add-in form window invisible but doesn't close it.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFSHOW;OPAL_METH_AFOPEN;OPAL_METH_AFISVISI
BLE;',0,"Defaultoverview",)} Related Topics



hide example
In this example, the pushButton method for the hideForm button attaches to an add-in form which is open on 
the Corel Paradox desktop. The method hides the add-in form and then shows it again. Assume that the open 
add-in form is named Calculator.

; hideForm::pushButton
method pushButton(var eventInfo Event)
var
   AF     AddinForm
endVar
AF.attach("Calculator")                 ; attaches to open add-in form
AF.hide()                               ; makes form invisible
msgInfo("Status:","Add-in form has been hidden")
AF.show()                               ; make form visible again
if AF.isVisible() then
   msgInfo("Status", "It's visible.")
endIf
endMethod



isAssigned method
Returns whether an AddinForm variable has been assigned a value.

Syntax
isAssigned ( ) Logical

Description
isAssigned returns True if the AddinForm variable has been assigned a value; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFOpen;OPAL_METH_AFCLOSE;OPAL_METH_AFATTAC
H;',0,"Defaultoverview",)} Related Topics



isAssigned example
In this example, isAssigned is used to determine if an add-in form is open before attempting to set the add-in 
form's QueryCustId property. If isAssigned returns False, a message is displayed onscreen and the code that 
manipulates the add-in form is not executed. Assume that the variable AF is declared in the Var window at the 
form level and that the QueryCustId property of the add-in form requires a numeric value representing the 
Customer ID to use for the query.

method pushButton(var eventInfo Event)
var
   custId   Number
endVar
if NOT AF.isAssigned() then
   ; querying of the customer information can't happen because the
   ; customer information application isn't running
   msgInfo("Sorry","You must first open the QueryCust application")
else
   ; The following code asks the user for a customer ID number and sets
   ; the QueryCustId property of the add-in form to that value.
   ; Assume the add-in form automatically recalculates the displayed
   ; information when the QueryCustId value is changed.
   custId.view("Enter customer ID to view")
   AF.setProperty("QueryCustId",custId)
endIf
endMethod



isMaximized method
Reports whether an add-in form window is displayed at its maximum size.

Syntax
isMaximized ( ) Logical

Description
isMaximized returns True if an add-in form is displayed full screen; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFMAXIMIZE;OPAL_METH_AFMINIMIZE;OPAL_METH_A
FISMINIMIZED;',0,"Defaultoverview",)} Related Topics



isMaximized example
The following example shows code which is placed in the custom method displayAsOpposite at the form level. 
It attaches to an open add-in form, tests the add-in's current display state and then changes the form's state to 
it's opposite setting. For example, if the add-in form is maximized, its state is changed to minimized. Assume 
that the add-in form has the window title Postage App and is already open on the Corel Paradox desktop. The 
AddinForm variable AF is declared in the Var window at the form level.

method displayAsOpposite()
AF.attach("Postage App")
if AF.isMaximized() then
   AF.minimize()             ; displayed maximized so minimize it.
else
   if AF.isMinimized() then
      AF.maximize()          ; displayed minimized so maximize it
   else
      if AF.isVisible() then
         AF.hide()           ; displayed in a normal window so hide it
      else
         AF.show()           ; it's hidden so show it
      endIf
   endIf
endIf
endMethod



isMinimized method
Reports whether a window is displayed as an icon.

Syntax
isMinimized ( ) Logical

Description
isMinimized returns True if a form is displayed as an icon; otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFISMAXIMIZED;OPAL_METH_AFMINIMIZE;OPAL_MET
H_AFISMAXIMIZED;OPAL_METH_AFSHOW;OPAL_METH_AFHIDE;',0,"Defaultoverview",)} Related Topics



isMinimized example
This example attaches to an open add-in form, tests its current state, and then changes the state of the form. If 
the add-in form is displayed minimized, the application is set to display as a window. If the add-in form is 
displayed as a window, it is minimized to display as an icon. If the add-in form is hidden, this method does not 
alter its display. Assume that the add-in form has the window title Calculator and is already open on the Corel 
Paradox desktop.

method pushButton(var eventInfo Event)
var
     AF     AddinForm
endVar

AF.attach("Calculator")    
if AF.isVisible() then
   if AF.isMinimized() then
      AF.show()
   else
      AF.minimize()
      msgInfo("Is window minimized?",AF.isMinimized())
   endIf
else
   msgInfo("Status:","Add-in is hidden")
endIf
endMethod



isVisible method
Reports whether an add-in window is displayed.

Syntax
isVisible ( ) Logical

Description
isVisible returns True if any part of a window is displayed (not hidden); otherwise, it returns False.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFHIDE;OPAL_METH_AFSHOW;',0,"Defaultoverview",
)} Related Topics



isVisible example
See the example for isMaximized.



maximize method
Maximizes an add-in form's window.

Syntax
maximize ( )

Description
maximize displays an add-in window at its full size. Calling this method is equivalent to choosing Maximize from
the Control menu.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFMINIMIZE;OPAL_METH_AFISMINIMIZED;OPAL_MET
H_AFISMAXIMIZED;OPAL_METH_AFSHOW;',0,"Defaultoverview",)} Related Topics



maximize example
See the example for isMaximized.



menuAction method
Sends an event to an add-in form's menuAction event handler.

Syntax
menuAction ( const menuID LongInt ) Logical

Description
menuAction constructs a MenuEvent and calls the add-in form's menuAction event handler. The action taken 
as a result of this method is determined solely by the developer of the add-in form. There is no default behavior.
Because the menuAction event is handled by the add-in form and not by Corel Paradox, use of ObjectPAL’s 
MenuCommands constants may generate unexpected results.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFSENDMESSAGE;',0,"Defaultoverview",)} Related 
Topics



menuAction example
In this example, the menu ID value of 17 is sent to the menu event handler for the add-in form AF. Assume that 
the menu ID17 causes the add-in form to execute the custom code stored within it.

method pushButton(var eventInfo Event)
var
  AF     AddinForm
endVar

AF.open("My Form")
AF.menuAction(17)
endMethod



minimize method
Minimizes an add-in form's window.

Syntax
minimize ( )

Description
minimize displays an add-in form's window as an icon. Calling this method is equivalent to choosing Minimize 
from the Control menu.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFMAXIMIZE;OPAL_METH_AFISMINIMIZED;OPAL_MET
H_AFISMINIMIZED;OPAL_METH_AFSHOW;',0,"Defaultoverview",)} Related Topics



minimize example
See the example for isMaximized.



open method
Opens an add-in form window.

Syntax
open (const formName String [ , const dialog Logical, const visible Logical ] )

Description
open displays the add-in form specified in formName. The optional argument dialog specifies whether the add-in
form should be opened as a dialog box. The optional argument visible specifies whether the form should be 
opened and visible.
An add-in form cannot be opened in design window. You must design a form in the application in which it was 
created.
An add-in form must be registered before it can be used in Corel Paradox. 
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFCLOSE;OPAL_METH_AFSHOW;OPAL_METH_AFATTA
CH;idh_pals_edregaddin;',0,"Defaultoverview",)} Related Topics



open example
In this example, the pushButton method of a form contains code that attaches an AddinForm variable to an 
add-in form. If the add-in form is open on the Corel Paradox desktop, the method attaches to the open window. If 
the add-in is not already open, the method opens it. Once the AddinForm variable is assigned, the add-in form is 
made visible. Assume that the add-in form is called Calculator and has been registered in Corel Paradox.

method pushButton(var eventInfo Event)
var
   AF    AddinForm
endVar

; attach to open Calculator window if there is one
if NOT AF.attach("Corel Paradox Calculator") then ;use add-in window title
    AF.open("Calculator")                   ;use registered name
endIf
if AF.isAssigned() then
    AF.show()                      ; display the add-in 
else
    msgInfo("Problem(?)","AddinForm variable not assigned")
endIf
endMethod



postMessage method
Posts a message to Windows.

Syntax
postMessage ( const command LongInt, const wParam LongInt, const lParam LongInt ) 

Description
postMessage posts a message to Windows. Unlike sendMessage, which dispatches its message immediately, 
this method adds its message to the end of the Windows message queue and dispatches it after the messages 
(if any) ahead of it.
Valid arguments to this method are determined by Windows, not by Corel Paradox. For more information, see 
your Windows programming documentation.
 Note

· postMessage should only be used by Windows programmers.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFSENDMESSAGE;OPAL_METH_SYWINGETMESSAGEI
D;OPAL_METH_SYWINSENDMESSAGE;OPAL_METH_MNDATA;OPAL_METH_MNID;OPAL_METH_FOWINDOWC
LIENTHANDLE;OPAL_METH_FOWINDOWHANDLE;',0,"Defaultoverview",)} Related Topics



postMessage example
See the example for sendMessage.



sendMessage method
Sends a message to Windows.

Syntax
sendMessage ( const command LongInt, const wParam LongInt, const lParam LongInt ) LongInt

Description
sendMessage sends a message to Windows. Valid arguments to this method are determined by Windows, not 
by Corel Paradox. For more information, see your Windows programming documentation.
 Note

·  sendMessage should only be used by Windows programmers.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFPOSTMESSAGE;OPAL_METH_SYWINGETMESSAGEI
D;OPAL_METH_SYWINPOSTMESSAGE;OPAL_METH_MNDATA;OPAL_METH_MNID;OPAL_METH_FOWINDOWC
LIENTHANDLE;OPAL_METH_FOWINDOWHANDLE;',0,"Defaultoverview",)} Related Topics



sendMessage example
In this example, two messages are defined in the constants section of a script window and are sent with different
results. The add-in form processes the message WM_UserMSG1 immediately. However, the message 
WM_UserMSG2 isn't processed until there is a pause for message processing. (The pause can occur as a result of 
an explicit call to SLEEP() or any other action that causes a wait). The effect is that WM_UserMSG1 will be 
processed before WM_UserMSG2.
 Note

· The author of the add-in form must provide code on the add-in side to handle these messages because they 
are not standard Windows messages.

method run(var eventInfo Event)
const
  WM_UserMSG1 = WM_USER+1
  WM_UserMSG2 = WM_USER+2
endConst
var
  AF       AddinForm
  result   LongInt
endVar

  AF.open("Test Form")
  AF.postMessage( WM_UserMSG2, 0, 0 )
  result = AF.sendMessage( WM_UserMSG1, 0, 0 )
endMethod



setPosition method
Positions an add-in window on screen.

Syntax
setPosition ( const x LongInt, const y LongInt, const w LongInt, const h LongInt )

Description
setPosition positions an add-in form's window onscreen. The arguments x and y specify the coordinates of the 
upper-left corner of the form (in twips), and w and h specify the width and height (in twips) of the form.
To ObjectPAL, the screen is a two-dimensional grid with the origin (0, 0) at the upper-left corner of an object's 
container, positive x values extending to the right, and positive y values extending down.
For dialog boxes and pop-up forms, the position is given relative to the entire screen. For multiple document 
interface (MDI) child forms (default), the position is given relative to the Corel Paradox desktop.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFGETPOSITION;OPAL_METH_AFSETPROPERTY;OPAL_
METH_AFGETPROPERTYASNUMBER;OPAL_METH_AFGETPROPERTYASINTEGER;OPAL_METH_AFGETPROPER
TYASSTRING;OPAL_METH_AFOPEN;;',0,"Defaultoverview",)} Related Topics



setPosition example
In this example, the add-in form Calculator is opened and its current position displayed on the message line. The 
method then prompts the user to enter new position coordinates for the Calculator.

method run(var eventInfo Event)
var
   AF            AddinForm
   choice,
   position      String
   x,y,w,h       LongInt
endVar

AF.open("Calculator")
AF.show()
AF.getposition(x,y,w,h)
position= string(x)+", "+string(y)+"    "+string(w)+" x "+string(h)
message("Current position: "+position)
choice=msgQuestion("Do you want to move the add-in to a new
       position","")
if choice="Yes" then
   x.view("Enter upper-left X coordinate")
   y.view("Enter upper-left Y coordinate")
   w.view("Enter width of window")
   h.view("Enter height of window")
   AF.setPosition( X, Y, W, H )
endIf
endMethod



setProperty method
Lets you change the value of a property of an add-in form.

Syntax
setProperty ( const propertyName String, const propertyValue AnyType ) 

Description
setProperty lets you change the value of a property of an add-in form. The property to change is specified in 
propertyName and can be any property recognized by the add-in form. The value of the property is specified in 
propertyValue.
Based on the data type of propertyValue, Corel Paradox calls the add-in form’s appropriate setProperty method 
as String, Integer, or floating-point number.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFSETPROPERTY;OPAL_METH_AFGETPROPERTYASNU
MBER;OPAL_METH_AFGETPROPERTYASINTEGER;OPAL_METH_AFGETPROPERTYASSTRING;OPAL_METH_SE
TTITLE;OPAL_METH_GETTITLE;',0,"Defaultoverview",)} Related Topics



setProperty example
See example for isAssigned.



setTitle method
Sets the text on the Title Bar.

Syntax
setTitle ( const text String )

Description
setTitle changes the text on the Title Bar to the text specified in text. The maximum length of text is 78 
characters. If you change a form's title, remember that you must use the new title when you want to attach to 
that form. For more information, see the description of attach.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_GETTITLE;OPAL_METH_AFSETPROPERTY;OPAL_METH_
AFGETPROPERTYASNUMBER;OPAL_METH_AFGETPROPERTYASINTEGER;OPAL_METH_AFGETPROPERTYASS
TRING;',0,"Defaultoverview",)} Related Topics



setTitle example
See the getTitle example.



show method
Displays a minimized window at its previous size. Makes a hidden form visible.

Syntax
show ( )

Description
show restores a minimized window to the size it was before it was minimized. show also makes a hidden form 
visible. This method is similar to the Restore command on the Control menu.
show doesn't make an add-in form the topmost window; use bringToTop to make an add-in form the top layer.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFHIDE;OPAL_METH_AFISVISIBLE;',0,"Defaultovervie
w",)} Related Topics



show example
See the getTitle example.



wait method
Suspends execution of a method.

Syntax
wait ( ) AnyType

Description
wait suspends execution of the current method until the add-in form you're waiting for closes. This method is 
useful when you open an add-in form as a dialog box. Execution resumes in the calling form when the add-in 
form you're waiting for (the called form) closes.
The return value for wait depends on what you specify when creating the add-in form. Typically, 1 is returned 
when you close the add-in form by clicking OK, 2 is returned when you close the add-in form by clicking Cancel.
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_ 
AFOPEN;OPAL_METH_AFHIDE;OPAL_METH_AFSHOW;',0,"Defaultoverview",)} Related Topics



wait example
In this example, the add-in form is opened from a pushButton method on a form. A wait is called and the return
value is tested. If the return value is 1, a msgInfo dialog box is displayed and the add-in form is closed.

method pushButton(var eventInfo Event)
var
  AF    AddinForm
endVar
AF.open("Data")
if AF.wait()=1 then
   msgInfo("Data Entered",AF.getPropertyAsString("User Data"))
endIf
AF.close()
endMethod



windowHandle method
Returns the handle of an add-in form's window.

Syntax
windowHandle ( ) LongInt

Description
A window handle is a unique integer identifier assigned to a window by Windows. windowHandle returns an 
integer value representing the window handle of an add-in form. 
This method should be used only by advanced programmers.
This information is useful only if you're using functions from a dynamic link library (DLL).
 Example

{button ,AL(`OPAL_TYPE_ADDINFORM;OPAL_METH_AFATTACH;OPAL_METH_TCATTACH;',0,"Defaultovervi
ew",)} Related Topics



windowHandle example
In this example, the pushButton method of a form's WndwHndle button calls an external routine EnableWindow.
EnableWindow is defined in the Uses window at the form level and takes the window handle of the add-in form 
as its parameter.
The following code appears in the Uses window at the form level:

uses USER32
  EnableWindow( hWnd CLONG, bEnable CLONG) CLONG
endUses

The following code appears in the WndwHndle pushButton method on the form:
; WndwHndle::pushButton

method pushButton(var eventInfo Event)
var
  AF    AddinForm
endVar
  AF.open("myForm")                   ; open the add-in form
  EnableWindow( AF.windowHandle(), 1) ; call the external routine and
                                      ; pass the add-in's window handle
  AF.close()
endMethod



Configuration settings in the system registry
Corel Paradox reads the system registry for settings that configure the session. Most settings that are supported 
in .INI files can also be set in the system registry.
Use the registry editor supplied with Windows to view or modify the system registry file. In Windows 95, the 
registry editor is REGEDIT.EXE; in Windows NT, it is REGEDT32.EXE. Check your Windows documentation for 
information on how to use these editors.
The registry keys which are specific to Corel Paradox are found at
· HKEY_CURENT_USER\SOFTWARE\COREL\PARADOX\8.0
In addition, the following registry keys are required for the Borland Database Engine (BDE):
· HKEY_LOCAL_MACHINE\SOFTWARE\BORLAND\BLW32
· HKEY_LOCAL_MACHINE\SOFTWARE\BORLAND\DATABASE ENGINE
 Note

· Only advanced developers should modify of the system registry. Changes you make using the registry editor 
can't be undone.

{button ,AL(`commandline;iniFiles;systemRegistryWININI;',0,"Defaultoverview",)} Related Topics



WIN.INI settings in the system registry
Earlier versions of Corel Paradox stored configuration settings in the [PDOXWIN] and [IDAPI] sections of WIN.INI. 
These settings now reside in the system registry. Unless otherwise stated, the system registry is the only location
where these values can be set.

UserName
The user name is specified by the value of the UserName string at HKEY_CURRENT_USER\SOFTWARE\COREL\
PARADOX\8.0\CONFIGURATION KEY.

Company
The company name is specified by the value of the Company string at the HKEY_CURRENT_USER\SOFTWARE\
COREL\PARADOX\8.0\CONFIGURATION KEY.

HomeDir
The home directory location is specified by the value of the <Default> string at HKEY_CURRENT_USER\
SOFTWARE\COREL\PARADOX\8.0\HOMEDIR.

PrivDir
The private directory location is specified by the value of the <Default> key at HKEY_CURRENT_USER\
SOFTWARE\COREL\PARADOX\8.0\PRIVDIR.
The private directory may be specified by the -p command-line option. 

WorkDir
The working directory location is specified by the value of the <Default> key at HKEY_CURRENT_USER\
SOFTWARE\COREL\PARADOX\8.0\WORKDIR.
The working directory may be specified by the -w command-line option.

CONFIGFILE01
The location (full path name) and, optionally, the name of the Borland Database Engine (BDE) configuration file 
is specified by the value of the CONFIGFILE01 string located at HKEY_LOCAL_MACHINE\SOFTWARE\BORLAND\
DATABASE ENGINE.
The BDE configuration file can be specified using the -o command-line option. 

DLLPATH
The location where the BDE files can be found is specified by the value of the DLLPATH string located at 
HKEY_LOCAL_MACHINE\SOFTWARE\BORLAND\DATABASE ENGINE.
 Note

· For more information about the -p,-w, and -o command line options, see Command-line options.

{button ,AL(`commandline;iniFiles;systemRegistry;',0,"Defaultoverview",)} Related Topics



Using .INI Files
Corel Paradox reads .INI files for settings that override the system registry settings. Corel Paradox uses the 
following .INI files:
· PDOXWIN.INI file. You can call PDOXWIN.INI by using the -i command-line option. 
· PDOXWORK.INI, located in working directories. You can call PDOXWORK.INI or an alternate file using the -d 

command-line option. 
To customize menus, you enter keys and values in the system registry. For instructions, see PXDLITE.INI settings 
in the system registry.

{button ,AL(`commandline;systemRegistry;systemRegistryWININI;',0,"Defaultoverview",)} Related 
Topics



Using command-line options
To start Corel Paradox with one or more command-line options

1. Do one of the following:
· In Windows 95, choose Run from the Windows Start menu.
· In Windows NT, click File, Run in the Program Manager.
2. Type pdxwin32, and add the option(s) you want to use.
If you use more than one option, separate each with a space.
For a list of available command-line options, see Command-line options.
To start Corel Paradox with the same command-line options 

Do one of the following:
· In Windows 95, right-click and use the Windows Properties dialog box to change the properties of the Corel 

Paradox 8 icon.
· In Windows 95, create a new link containing the command-line options in its Shortcut settings.
· Use the registry editor to add the FLAGS string name to your system registry. The FLAGS string name is found 

at HKEY_CURRENT_USER\SOFTWARE\COREL\PARADOX\8.0\CONFIGURATION. You may need to create the FLAGS
string name if you do not already have an entry at this location. Check your Windows documentation for 
information about the registry editor.

{button ,AL(`systemRegistry;iniFiles;toUseCommandlineOptions;systemRegistryWININI;idh_t_config
_pdoxworkini;idh_t_config_pfwwinini;',0,"Defaultoverview",)} Related Topics



PXDLITE.INI settings in the system registry
PDXLITE.INI contains developer menu settings which are now stored in the system registry at 
HKEY_CURRENT_USER\SOFTWARE\COREL\PARADOX\8.0\PXDLITE.
You can add menu commands to the File, Tools, and Help menus and the File, Open submenu using the 
corresponding keys within PXDLITE. Inside a key, you place values corresponding to the menu command you 
want to add. 
The strings placed in PXDLITE are specified using the following syntax:
String name Data value
MenuChoice drive:\path\filename [function]

where [function] is the name of a function within a .DLL.

Adding an ampersand before a letter in the menu command makes that menu command identifiable by that 
letter.
The filename can be any Corel Paradox form (.FSL, .FDL), script (.SSL, .SDL), or program file (.EXE, .COM, .BAT, 
and .PIF), or .DLL. All other filenames are ignored.
The key for the File menu is File, the Tools menu is Tools, and the Help menu is Help. The key for the File, New 
submenu is New and the key for the File, Open submenu is Open. 

Example
To add the Paint Brush command to the Tools menu, with accelerator key B:
1. Using the registry editor, add PXDLITE key under HKEY_CURRENT_USER\SOFTWARE\COREL\PARADOX\8.0.
2. Under PXDLITE, add the new key Tools.
3. Under Tools, add a new string value, Paint&Brush, with the value "C:\WINDOWS\PBRUSH.EXE".
To specify a particular order for your custom menu options, precede the menu's value with an integer value 
(starting with 0), followed by a comma.
When you close the registry editor and start Corel Paradox, the new command appears on the Tools menu and 
runs Windows Paintbrush when you click it or press ALT + TAB.
 Note

· Only advanced developers should modify of the system registry. Changes you make using the registry editor 
can't be undone.

{button ,AL(`commandline;iniFiles;systemRegistry;systemRegistryWININI;',0,"Defaultoverview",)} 
Related Topics



PDOXWORK.INI
PDOXWORK.INI describes additional entries to the working directory's Viewer. Corel Paradox creates this file in 
the directory you set as your working directory. The [Folder] section lists the name of the file and the position of 
the icon for each reference you have created.
You can use PDOXWORK.INI to override settings in PDOXWIN.INI and the system registry. To do so, start Corel 
Paradox with the command-line setting -d PDOXWORK.INI.

{button ,AL(`commandline;inifiles;systemRegistry;systemRegistryWININI;idh_t_config_pxdliteini;',0,
"Defaultoverview",)} Related Topics



PDOXWIN.INI and the system registry
Settings that control default properties and application behaviors are now stored in the system registry for Corel 
Paradox 8.
Previous versions of Corel Paradox allowed users to save these settings in PDOXWIN.INI. Corel Paradox can still 
use settings from PDOXWIN.INI if Corel Paradox is started with the following command-line setting: -i 
PDOXWIN.INI
When used in this way, the settings in PDOXWIN.INI override those in the system registry.
You can also create a PDOXWIN.INI file using the registry entries as examples. The following table shows 
corresponding entries in the registry and the .INI file. The registry keys listed below are found at 
HKEY_CURRENT_USER\SOFTWARE\COREL\PARADOX\8.0.
Key PFWWIN.INI sectionDescription
Designer [Designer] Specifies designer options
Desktop [Desktop] Determines the size and location of the Corel Paradox desktop
Form [Form] Specifies ruler and zoom display options in Form windows
History [History] Lists the history of directories used in the Project Viewer
ProjectViewer [Project Viewer] Determines if the Project Viewer is displayed automatically on startup 

and whether to display all files, or only specified references        
(References are specified in the PDOXWORK.INI file. For more 
information, see PDOXWORK.INI)

Properties [Properties] Changes default property settings and application behaviors
Report [Report] Specifies the zoom level for reports
Query [Query] Specifies options for queries

 Note
The following PFWIN.INI settings have changed since version 5.0:
[Editor Kernel]Tab size was [IDE]Tabinc
[Editor Window]Save prompt was [IDE]Save prompt
[Editor Window]Custom size was [IDE]UsrDefaultSize
[Editor Window]Font name and Font size were [IDE]Font, with parameters

{button ,AL(`commandline;iniFiles;systemRegistry;systemRegistryWININI;idh_t_config_pxdliteini;',0,
"Defaultoverview",)} Related Topics



Command-line options
Corel Paradox supports the following command-line options:
Option Behavior
-b Prevents multiple instances of Corel Paradox from being loaded. If it is already running, 

the Corel Paradox window is brought to the front. If you try to load Corel Paradox more 
than once without changing the private directory, an error message tells you that the 
Borland Database Engine (BDE) could not be initialized.

-c Starts Corel Paradox with a clear desktop
-d Filename Specifies an alternate PDOXWORK.INI, which contains folder definitions for use with the 

Project Viewer. By default, Corel Paradox does not use an .INI file to store settings, but 
you can create a file named PDOXWORK.INI in your working directory, and Corel Paradox
will read settings from it automatically.
If you specify a full directory path (one that includes a drive letter and directory) with 
filename, Corel Paradox uses that file for every working directory you use. However, if 
you do not include a directory reference and you change your working directory after 
startup, Corel Paradox then looks for the filename in the new directory. If the file cannot 
be found, Corel Paradox uses the new directory's PDOXWORK.INI.

-e Prevents writes to the system registry
-f Forces writes to the system registry
-i Filename Specifies an alternate PDOXWIN.INI file, which contains desktop settings. By default, 

Corel Paradox does not use an .INI file to store settings, but you can create a file named 
PDOXWIN.INI and Corel Paradox will read settings from it automatically.

-m Loads Corel Paradox as a minimized application. This is useful if you want to load Corel 
Paradox but not work with it immediately.

-n Prevents saving work and private directories on exit
-o Filename Alternates the BDE configuration file. All BDE-based applications must use the same BDE

configuration file when running concurrently.
-p Directory Starts with a different private directory than the one set in the system registry. Corel 

Paradox stores its temporary tables in the directory you indicate with this parameter.
If you do not indicate a full directory path (one with a drive letter), Corel Paradox looks 
for the new directory with respect to the Corel Paradox system directory.

-q Suppresses the Corel Paradox title screen while it is loading
-s Prevents resizing of the Corel Paradox window
-t Allows resizing of the Corel Paradox window
-w Directory Starts Corel Paradox with the specified working directory instead of the one saved in the 

system registry.
-y Forces saving work and private directories on exit
StartFile Opens the specified document and performs its default action. Corel Paradox looks in the

current working directory for the specified file unless you include the full directory 
reference to that file.
You can tell Corel Paradox to open a file on startup (for example, a form or report) by 
typing the name of the file, along with any necessary directory information. This method 
does not require a special option, but does require the file extension. After loading, Corel
Paradox opens the file and performs its default action. For example, forms are displayed 
in a Form window, scripts are run, and so on.

{button ,AL(`systemRegistry;iniFiles;toUseCommandlineOptions;systemRegistryWININI;idh_t_config
_pdoxworkini;idh_t_config_pfwwinini;',0,"Defaultoverview",)} Related Topics




