
Local SQL
The Borland Database Engine (BDE) enables access to both local and remote database
tables through local SQL (Structure Query Language). Local SQL (sometimes called "client-
based SQL") is a subset of ANSI-92 SQL enhanced to support Paradox and dBASE (standard)
naming conventions for tables and fields (called "columns" in SQL).
Local SQL lets you use SQL to query "local" standard database tables that do not reside on
a database server (specifically Paradox or dBASE tables) as well as "remote" SQL servers.
Local SQL is also essential to make multi-table queries across both local standard tables
and those on remote SQL servers.
Naming conventions
This section describes naming conventions for tables and columns, syntax enhancements,
and syntax limitations for local SQL.
The SQL statements are broken down into two different categories, DDL (Data Definition
Language) and DML (Data Manipulation Language):
Data Manipulation
SQL statements in Data Manipulation Language (DML) used for selecting, inserting,
updating, and deleting table data. Syntax and usage examples are included.
Data Definition
SQL statements in Data Definition Language (DDL) used for creating, altering, and dropping
tables, and for creating and dropping indexes. The DDL transforms directly into BDE
function calls. Syntax and usage examples are included.
For a complete introduction to ANSI-standard SQL, see one of the many third-party books.

{button ,AL(`bdedocs')} Other BDE online documentation

Naming conventions
ANSI-standard SQL confines each table or column name to a single word comprised of
alphanumeric characters and the underscore symbol (_). Local SQL, however, is enhanced
to support more comprehensive names.
Tables
Local SQL supports full file and path specifications for table names. Table names with path
or file-name extensions must be enclosed in single or double quotation marks. For
example,
SELECT * FROM 'PARTS.DBF'
SELECT * FROM "C:\SAMPLE\PARTS.DBF"

Local SQL also supports BDE aliases for table names. For example,
SELECT * FROM ":PDOX:TABLE1"

If you omit the file extension for a local table name, the table is assumed to be the table
type specified the BDE Configuration Utility, either in the Default Driver setting in the
System page or in    the default drive type for the standard alias associated with the query
or table.
Finally, local SQL permits table names to duplicate SQL keywords as long as those table
names are enclosed in single or double quotation marks. For example,
SELECT PASSID FROM "PASSWORD"

Columns
Local SQL supports Paradox multi-word column names and column names that duplicate
SQL keywords as long as those column names are

Enclosed in single or double quotation marks
Prefaced with an SQL table name or table correlation name

For example, the following column name is two words:
SELECT E."Emp Id" FROM EMPLOYEE E

In the next example, the column name duplicates the SQL DATE keyword:
SELECT DATELOG."DATE" FROM DATELOG

Dates
Local SQL expects dates to be in a U.S. date format, such as MM/DD/YY. International date
formats aren't supported.
See also: Reserved words

Reserved words
Here is an alphabetical list of words reserved by Local SQL:
ACTIVE, ADD, ALL, AFTER, ALTER, AND, ANY, AS, ASC, ASCENDING, AT, AUTO, AUTOINC,
AVG
BASE_NAME, BEFORE, BEGIN, BETWEEN, BLOB, BOOLEAN, BOTH, BY, BYTES
CACHE, CAST, CHAR, CHARACTER, CHECK, CHECK_POINT_LENGTH, COLLATE, COLUMN,
COMMIT, COMMITTED, COMPUTED, CONDITIONAL, CONSTRAINT, CONTAINING, COUNT,
CREATE, CSTRING, CURRENT, CURSOR   
DATABASE, DATE, DAY, DEBUG, DEC, DECIMAL, DECLARE, DEFAULT, DELETE, DESC,
DESCENDING, DISTINCT, DO, DOMAIN, DOUBLE, DROP   
ELSE, END, ENTRY_POINT, ESCAPE, EXCEPTION, EXECUTE, EXISTS, EXIT, EXTERNAL,
EXTRACT   
FILE, FILTER, FLOAT, FOR, FOREIGN, FROM, FULL, FUNCTION   
GDSCODE, GENERATOR, GEN_ID, GRANT, GROUP, GROUP_COMMIT_WAIT_TIME   
HAVING, HOUR   
IF, IN, INT, INACTIVE, INDEX, INNER, INPUT_TYPE, INSERT, INTEGER, INTO, IS, ISOLATION   
JOIN   
KEY   
LONG, LENGTH, LOGFILE, LOWER, LEADING, LEFT, LEVEL, LIKE, LOG_BUFFER_SIZE
MANUAL, MAX, MAXIMUM_SEGMENT, MERGE, MESSAGE, MIN, MINUTE, MODULE_NAME,
MONEY, MONTH   
NAMES, NATIONAL, NATURAL, NCHAR, NO, NOT, NULL, NUM_LOG_BUFFERS, NUMERIC   
OF, ON, ONLY, OPTION, OR, ORDER, OUTER, OUTPUT_TYPE, OVERFLOW   
PAGE_SIZE, PAGE, PAGES, PARAMETER, PASSWORD, PLAN, POSITION, POST_EVENT,
PRECISION, PROCEDURE, PROTECTED, PRIMARY, PRIVILEGES   
RAW_PARTITIONS, RDB$DB_KEY, READ, REAL, RECORD_VERSION, REFERENCES, RESERV,
RESERVING, RETAIN, RETURNING_VALUES, RETURNS, REVOKE, RIGHT, ROLLBACK   
SECOND, SEGMENT, SELECT, SET, SHARED, SHADOW, SCHEMA, SINGULAR, SIZE,
SMALLINT, SNAPSHOT, SOME, SORT, SQLCODE, STABILITY, STARTING, STARTS, STATISTICS,
SUB_TYPE, SUBSTRING, SUM, SUSPEND   
TABLE, THEN, TIME, TIMESTAMP, TIMEZONE_HOUR, TIMEZONE_MINUTE, TO, TRAILING,
TRANSACTION, TRIGGER, TRIM   
UNCOMMITTED, UNION, UNIQUE, UPDATE, UPPER, USER   
VALUE, VALUES, VARCHAR, VARIABLE, VARYING, VIEW   
WAIT, WHEN, WHERE, WHILE, WITH, WORK, WRITE   
YEAR       

OPERATORS:   
||, -, *, /, <>, <, >, ,(comma), =, <=, >=, ~=, !=, ^=, (,)

Data manipulation
With some restrictions, local SQL supports the following statements for data manipulation:

SELECT, for retrieving existing data
INSERT, for adding new data to a table
UPDATE, for modifying existing data
DELETE, for removing existing data from a table

The following sections describe functions available to DML statements in local SQL.
Parameter substitutions in DML statements
Aggregate functions
String functions
Date function
Operators
Updateable queries

For additional illustrative examples, see:
DML examples

SELECT
The SELECT statement is used to retrieve data from one or more tables. A SELECT that
retrieves data from multiple tables is called a "join."    Local SQL supports the following form
of the SELECT statement:
SELECT [DISTINCT] column_list
FROM table_reference
[WHERE search_condition]
[ORDER BY order_list]
[GROUP BY group_list]
[HAVING having_condition]
[UNION select_expr]

Except as noted below, all clauses are handled as in ANSI-standard SQL. Clauses in square
brackets are optional.
The column_list indicates the columns from which to retrieve data. For example, the
following statement retrieves data from two columns:
SELECT PART_NO, PART_NAME
FROM PARTS

Choose one of the following topics for more information on using SELECT:
FROM Clause
WHERE Clause
ORDER BY Clause
GROUP BY Clause
HAVING Clause
UNION Clause
Heterogeneous Joins

FROM clause
The FROM clause specifies the table or tables from which to retrieve data. Table_reference
can be a single table, a comma-delimited list of tables, or can be an inner or outer join as
specified in the SQL-92 standard. For example, the following statement specifies a single
table:
SELECT PART_NO
FROM "PARTS.DBF"

The next statement specifies a left outer join for table_reference:
SELECT * FROM PARTS LEFT OUTER JOIN INVENTORY
ON PARTS.PART_NO = INVENTORY.PART_NO

WHERE clause
The optional WHERE clause reduces the number of rows returned by a query to those that
match the criteria specified in search_condition. For example, the following statement
retrieves only those rows with PART_NO greater than 543:
SELECT * FROM PARTS
WHERE PART_NO > 543

The WHERE clause can include the IN predicate, followed by a parenthesized list of values.
For example, the next statement retrieves only those rows where a part number matches
an item in the IN predicate list:
SELECT * FROM PARTS
WHERE PART_NO IN (543, 544, 546, 547)

In addition to scalar comparison operators (=, <, > ...) additional predicates using IN,
ANY, ALL, EXISTS are supported.

ORDER BY clause
The ORDER BY clause specifies the order of retrieved rows. For example, the following
query retrieves a list of all parts listed in alphabetical order by part name:
SELECT * FROM PARTS
ORDER BY PART_NAME ASC

The next query retrieves all part information ordered in descending numeric order by part
number:
SELECT * FROM PARTS
ORDER BY PART_NO DESC

Calculated fields can be ordered by correlation name or ordinal position. For example, the
following query orders rows by FULL_NAME, a calculated field:
SELECT LAST_NAME || ', ' || FIRST_NAME AS FULL_NAME, PHONE,
FROM CUSTOMER
ORDER BY FULL_NAME

Projection of all grouping or ordering columns is not required.

GROUP BY clause
The GROUP BY clause specifies how retrieved rows are grouped for aggregate functions.

HAVING clause
The HAVING clause specifies conditions records must meet to be included in the return
from a query. It is a conditional expression used in conjunction with the GROUP BY clause.
Groups that do not meet the expression in the HAVING clause are ommitted from the result
set.
Subqueries are supported in the HAVING clause. A subquery works like a search condition
to restrict the number of rows returned by the outer, or "parent" query. See WHERE Clause
In addition to scalar comparison operators (=, <, > ...) additional predicates using IN,
ANY, ALL, EXISTS are supported.

UNION clause
The UNION clause combines the results of two or more SELECT statements to produce a
single table.

Heterogeneous joins
Local SQL supports joins of tables in different database formats; such a join is called a
"heterogeneous join."
When you perform a heterogeneous join, you may select a local alias. To select an alias,
choose SQL|Select Alias. If you have not selected an alias, Local SQL will attempt to find
the table in the current directory of the database which is being used. For example, the
alias :WORK: might be the database handle passed into the function.
When you specify a table name after selecting a local alias:

For local tables, specify either the alias or the path.
For remote tables, specify the alias.

The following statement retrieves data from a Paradox table and a dBASE table:
SELECT DISTINCT C.CUST_NO, C.STATE, O.ORDER_NO
FROM "CUSTOMER.DB" C, "ORDER.DBF" O
WHERE C.CUST_NO = O.CUST_NO

You can also use BDE aliases in conjunction with table names.

INSERT
In local SQL, INSERT is of two forms:
INSERT INTO CUSTOMER (FIRST_NAME, LAST_NAME, PHONE)
VALUES(:fname, :lname, :phone_no)

Insertion from one table to another through a subquery is not allowed.

Examples
The following statement adds a row to a table, assigning values to two columns:
INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID) VALUES (52, “DGPII”);
The next statement specifies values to insert into a table with a SELECT statement:
INSERT INTO PROJECTS
 SELECT * FROM NEW_PROJECTS
 WHERE NEW_PROJECTS.START_DATE > “6-JUN-1994”;

UPDATE
There are no restrictions on or extensions to the ANSI-standard UPDATE statement.

DELETE
There are no restrictions on or extensions to the ANSI-standard DELETE statement.

Parameter substitutions in DML statements
Variables or parameter markers (?) can be used in DML statements in place of values.
Variables must always be preceded by a colon (:). For example:
SELECT LAST_NAME, FIRST_NAME
FROM "CUSTOMER.DB"
WHERE LAST_NAME > :var1 AND FIRST_NAME < :var2

Aggregate functions
The following ANSI-standard SQL aggregate functions are available to local SQL for use with
data retrieval:

SUM(), for totaling all numeric values in a column
AVG(), for averaging all non-NULL numeric values in a column
MIN(), for determining the minimum value in a column
MAX(), for determining the maximum value in a column
COUNT(), for counting the number of values in a column that match specified criteria

Complex aggregate expressions are supported, such as:
 SUM(Field * 10)
 SUM(Field) * 10
 SUM(Field1 + Field2)

String functions
Local SQL supports the following ANSI-standard SQL string manipulation functions for
retrieval, insertion, and updating:

UPPER(), to force a string to uppercase
LOWER(), to force a string to lowercase
TRIM(), to remove repetitions of a specified character from the left, right, or both

sides of a string
SUBSTRING() to create a substring from a string

Substring
SUBSTRING() takes a string and creates a substring of that string.
 SELECT SUBSTRING(CUSTNAME FROM 1 FOR 10) FROM CUSTOMER
This query return the first 10 characters of the CUSTNAME column.

Date function
Local SQL supports the EXTRACT() function for isolating a single numeric field from a
date/time field on retrieval using the following syntax:
EXTRACT (extract_field FROM field_name)

For example, the following statement extracts the year value from a DATE field:
SELECT EXTRACT(YEAR FROM HIRE_DATE)
FROM EMPLOYEE

You can also extract MONTH, DAY, HOUR, MINUTE, and SECOND using this function.
Note: EXTRACT does not support the TIMEZONE_HOUR or TIMEZONE_MINUTE clauses.

Operators
Local SQL supports the following operators:
Type Operator
Arithmetic +          –            *          /
Comparison <          >          =        <>          >=            =<

IS NULL      IS NOTNULL
Logical AND          OR            NOT
String concatenation ||

Updateable queries
SQL Links offers expanded support for both single table and multi-table updateable
queries.
These restrictions apply to updates:

Linking fields cannot be updated
Index switching will cause an error

Restrictions on live queries
The semantics of live queries, for all data manipulation methods, return cursors that are
functionally and semantically similar to cursors returned from the BDE function
DbiOpenTable.
Single table queries or views are updateable provided that:

There are no JOINs, UNIONs, INTERSECTs, or MINUS operations.
There is no DISTINCT key word in the SELECT. (This restriction may be relaxed if all

the fields of a unique index are projected.)
Everything in the SELECT clause is a simple column reference or a calculated field, no

aggregation is allowed.
The table referenced in the FROM clause is either an updateable base table or an

updateable view.
There is no GROUP BY or HAVING clause.
There are no subqueries that reference the table in the FROM clause and no

correlated subqueries.
Any ORDER BY clause can be satisfied with an index.

Additional restrictions may apply for fields or cursor methods. If an index is used to satisfy
an order clause, the BDE function DbiSwitchToIndex returns an error.

Restrictions on live joins
Live joins depend upon composite cursors. Live joins may be used only if:

All joins are left-to-right outer joins.
All join are equi-joins.
All join conditions are satisfied by indexes (for Paradox and dBASE)
Output ordering is not defined.
Each table in the join is a base table.
The query contains no elements listed above that would prevent single-table

updatability.
Constraints
You can constrain any updateable query by setting the query statement property
stmtCONSTRAINED to TRUE before execution. A error will then be returned whenever a
modify or insert would cause the new record to disappear from the result set.
Calculated fields
For updateable queries with calculated fields, an additional field property identifies a result
field as both read only and calculated. Every call to the BDE function DbiPutField causes
recalculation of any dependent fields.

BDE function calls on query results
If a query returns a cursor, that cursor will fully support the low-level query capabilities of a
cursor returned from the BDE function DbiOpenTable. Thus filters and field maps may be
applied to further refine the result set. Unlike cursors from open table, some operations
such as DbiAddIndex or DbiSwitchToIndex are not be supported.

DML examples
The following clauses are supported:
 SELECT FROM, WHERE, ORDER BY, GROUP BY, and HAVING
The following aggregates are supported:
 SUM, AVG, MIN, MAX, COUNT
The following operators are supported:
 , -, *, /, =, < >, IS NULL
UPDATE, INSERT, DELETE operations are fully supported.
The following examples show DML statements used with standard databases:

Example 1: UPDATE
update goods
set city = 'Santa Cruz'
where goods.city = 'Scotts Valley'

Example 2: INSERT
insert
into goods (part_no, city)
values ('aa0094', 'San Jose')

Example 3: DELETE
delete
from goods
where part_no = 'aa0093'

Example 4: SELECT used to join
The following example illustrates how the SELECT statement is supported as an equivalent
to a JOIN:

select distinct p.part_no, p.quantity, g.city
from parts p, goods g
where p.part_no = g.part_no
and p.quantity > 20
order by p.quantity, g.city, p.part_no

A SELECT statement that contains a join must have a WHERE clause in which at least one
field from each table is involved in an equality check.
Example 5: Sub-selects
Sub-select queries are supported. The following example illustrates this syntax:

select p.part_no
from parts p
where p.quantity in
(select i.quantity

from inventory i
where i.part_no = 'aa9393')

Example 6: GROUP BY
The following examples illustrate the GROUP BY clause:

select part_no, sum(quantity) as PQTY
from parts
group by part_no

Note: Aggregates in the SELECT clause must have GROUP BY clause if a projected field is
used, as shown in the first example above.

Example 7: ORDER BY
The following example illustrates the ORDER BY with a DESCENDING clause:

select distinct customer_no
from c:\data\customer
order by customer_no descending

Data Definition
Local SQL supports data definition language (DDL) for creating, altering, and dropping
tables, and for creating and dropping indexes.
Views are supported.
Local SQL does not permit the substitution of variables for values in DDL statements.
The following DDL statements are supported:

CREATE TABLE
ALTER TABLE
DROP TABLE
CREATE INDEX
DROP INDEX
CREATE VIEW

For additional illustrative examples see:
DDL Examples

CREATE TABLE
CREATE TABLE is supported with the following limitations:

Column definitions based on domains are not supported.
Constraints are limited to PRIMARY KEY for Paradox. Constraints are unsupported in

dBASE.
For example, the following statement creates a Paradox table with a PRIMARY KEY
constraint on the LAST_NAME and FIRST_NAME columns:
CREATE TABLE "employee.db"
(
LAST_NAME CHAR(20),
FIRST_NAME CHAR(15),
SALARY NUMERIC(10,2),
DEPT_NO SMALLINT,
PRIMARY KEY(LAST_NAME, FIRST_NAME)
)

The same statement for a dBASE table should omit the PRIMARY KEY definition:
CREATE TABLE "employee.dbf"
(
LAST_NAME CHAR(20),
FIRST_NAME CHAR(15),
SALARY NUMERIC(10,2),
DEPT_NO SMALLINT
)

Creating Paradox and dBASE tables
You create a Paradox or dBASE table using local SQL by specifying the file extension when
naming the table:

".DB" for Paradox tables
".DBF" for dBASE tables

If you omit the file extension for a local table name, the table created is the table type
specified in the Default Driver setting in the System page of the BDE Configuration Utility.

Data type mappings for CREATE TABLE
The following table lists SQL syntax for data types used with CREATE TABLE, and describes
how those types are mapped to Paradox and dBASE types by the BDE:
SQL Syntax BDE Logical Paradox dBASE
SMALLINT fldINT16 Short Number

(6,10)
INTEGER fldINT32 Long Integer Number

(20,4)
DECIMAL(x,y) fldBCD BCD N/A
NUMERIC(x,y) fldFLOAT Number Number (x,y)
FLOAT(x,y) fldFLOAT Number Float (x,y)
CHARACTER(n
)

fldZSTRING Alpha Character

VARCHAR(n) fldZSTRING Alpha Character
DATE fldDATE Date Date
BOOLEAN fldBOOL Logical Logical
BLOB(n,1) fldstMEMO Memo Memo
BLOB(n,2) fldstBINARY Binary Binary

BLOB(n,3) fldstFMTMEMO Formatted memo N/A
BLOB(n,4) fldstOLEOBJ OLE OLE
BLOB(n,5) fldstGRAPHIC Graphic N/A
TIME fldTIME Time N/A
TIMESTAMP fldTIMESTAMP Timestamp N/A
MONEY fldFLOAT,

fldstMONEY
Money Number

(20,4)
AUTOINC fldINT32,

fldstAUTOINC
Autoincrement N/A

BYTES(n) fldBYTES(n) Bytes N/A
x = precision (default: specific to driver)
y = scale (default: 0)
n = length in bytes (default: 0)
1-5 = BLOB subtype (default: 1)

ALTER TABLE
Local SQL supports the following subset of the ANSI-standard ALTER TABLE statement. You
can add new columns to an existing table using this ALTER TABLE syntax:
ALTER TABLE table ADD column_name data_type [, ADD column_name
data_type ...]

For example, the following statement adds a column to a dBASE table:
ALTER TABLE "employee.dbf" ADD BUILDING_NO SMALLINT

You can delete existing columns from a table using the following ALTER TABLE syntax:
ALTER TABLE table DROP column_name [, DROP column_name ...]

For example, the next statement drops two columns from a Paradox table:
ALTER TABLE "employee.db" DROP LAST_NAME, DROP FIRST_NAME

ADD and DROP operations can be combined in a single statement. For example, the
following statement drops two columns and adds one:
ALTER TABLE "employee.dbf" DROP LAST_NAME, DROP FIRST_NAME, ADD FULL_NAME
CHAR[30]

DROP TABLE
DROP TABLE deletes a Paradox or dBASE table. For example, the following statement drops
a Paradox table:
DROP TABLE "employee.db"

CREATE INDEX
CREATE INDEX enables users to create indexes on tables using the following syntax:
CREATE INDEX index_name ON table_name (column [, column ...])

Using CREATE INDEX is the only way to create indexes for dBASE tables. For example, the
following statement creates an index on a dBASE table:
CREATE INDEX NAMEX ON "employee.dbf" (LAST_NAME)

Paradox users can create only secondary indexes with CREATE INDEX. Primary Paradox
indexes can be created only by specifying a PRIMARY KEY constraint when creating a new
table with CREATE TABLE.

DROP INDEX
Local SQL provides the following variation of the ANSI-standard DROP INDEX statement for
deleting an index. It is modified to support dBASE and Paradox file names.
DROP INDEX table_name.index_name | PRIMARY

The PRIMARY keyword is used to delete a primary Paradox index. For example, the following
statement drops the primary index on EMPLOYEE.DB:
DROP INDEX "employee.db".PRIMARY

To drop any dBASE index, or to drop secondary Paradox indexes, provide the index name.
For example, the next statement drops a secondary index on a Paradox table:
DROP INDEX "employee.db".NAMEX

CREATE VIEW
A view creates a virtual table from a SELECT statement. You can look at just the data you
need within this movable frame or window on the table, while the technical underpinnings
are hidden. Instead of entering a complex qualified SELECT statement, the user simply
selects a view.
CREATE VIEW describes a view of data based on one or more underlying tables in the
database. The rows to return are defined by a SELECT statement that lists columns from
the source tables. A view does not directly represent physically stored data. It is possible to
perform select, project, join, and union operations on views as if they were tables.
CREATE VIEW enables users to create views on tables by using the following syntax:
CREATE VIEW view_name [(column_name [, column_name]...)]

CREATE VIEW is supported in conjunction with the Client Data Repository (CDR). The CDR
stores the SELECT statement that defines the view.
The "WITH CHECK OPTION" is supported to create a constrained view.
Views of Views are supported. However, the CASCADE/LOCAL view attribute is not
supported, because all updateable views CASCADE the constraints.

DDL examples
The following examples show the use of DDL statements with standard databases.
Example 1a: DDL (DROP TABLE)
When the table name contains a period "." character, enclose the name in quotation
marks:

drop table "c:\data\customer.db"
Example 1b: DDL (DROP TABLE)
No quotation marks are used if the table name does not contain the "." character:

drop table clients
Example 2: DDL (CREATE INDEX)

create index part on parts (part_no)
Paradox: Paradox primary indexes can be created only when creating the table.
Secondary indexes are created as case insensitive and maintained, when possible.
dBASE: dBASE indexes are created as maintained. The Index name specified is the tag
name.

For more information about different types of indexes, see DbiAddIndex in the Borland
Database Engine Online Reference.
Example 3: DDL (DROP INDEX)
The syntax for drop index is tablename.indexname:

drop index parts.part_no
Paradox: For Paradox only, the syntax tablename.primary indicates the primary index:
drop index parts.primary

