
Welcome to ABC OLE Automation
Welcome to ABC OLE Automation!
ABC OLE Automation  is a powerful tool you can use to customize ABC FlowCharter
 to meet your own specific needs. The extensive power and flexibility of Automation give you endless control over

ABC FlowCharter.
ABC OLE Automation can provide seamless integration with outside applications. You can write automation 
programs that use ABC information to perform tasks in other applications or use data from other applications to 
create and manipulate ABC charts.

ABC OLE Automation is one of the programs in the ABC Graphics Suite package. Together, they provide you with 
easy, efficient, and powerful Office-compatible tools.
The Help system is designed to let you move back and forth between ABC OLE Automation Help and ABC 
FlowCharter Help.

{button Related Topics,PI(`',`IDH_RT_Welcome')}



Help on Help
Accessing ABC OLE Automation Help from ABC FlowCharter Help
ABC Graphics Suite



Objects Collection
Description The Objects collection is below the Chart object. Below the Objects collection are the Object 

objects. You can have multiple Object objects in the collection.

Properties Methods

Application Item
Count ItemFromAll
Parent ItemFromAttachments

ItemFromLines
ItemFromFieldValue
ItemFromNumber
ItemFromShapes
ItemFromSelection
ItemFromText
ItemFromUniqueID
ResetSearch

{button Related Topics,PI(`',`IDH_RT_ABC_Objects_Collection')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



Count Property 
Usage Collection.Count
Description The Count property returns the number of items in a collection. The collections in ABC OLE 

Automation are the Objects collection, Charts collection, FieldTemplates collection, 
FieldValues collection, and Menu collection. You often use the Count property in a loop along
with the Item method and one of the ItemFrom methods to search through a collection. The 
Count property is read only.

Data Type Long
Value The number of items in a collection
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Count_Property')}



Activating a Chart
Finding the Total Number of Objects
Example

Item Method (Charts Collection)
Item Method (FieldTemplates Collection)
Item Method (FieldValues Collection)
Item Method (Menu Collection)
Item Method (Objects Collection)

ItemFromAll Method
ItemFromAttachments Method
ItemFromFieldValue Method
ItemFromLines Method
ItemFromNumber Method
ItemFromSelection Method
ItemFromShapes Method
ItemFromText Method
ItemFromUniqueID Method
ResetSearch Method

Valid Property

Charts Collection
FieldTemplates Collection
FieldValues Collection
Menu Collection
Objects Collection



Count Property Example
This example uses the Count property of the Objects collection to find how many objects are in the chart. 

Dim ABC As Object, Chart As Object
Dim Everything As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Everything = Chart.Objects ' Get all objects in the chart
MsgBox "The current chart contains " + Everything.Count + " objects."

{button Other examples,PI(`',`IDH_RT_Count_Property_Example')}



Example 1
Example 2



Item Method (Objects Collection) 
Usage ObjectsCollection.Item (Count)

The Count element is the index of the item within the collection.
Description Use the Item method of the Objects collection to access Object objects within the Objects 

collection.
Data Type Object
Value The next valid Object object in the collection. If that object does not exist, the method 

returns Null.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Item_Method_ABC_Collection')}



Finding the Total Number of Objects
Example

Item Method (Charts Collection)
Item Method (FieldTemplates Collection)
Item Method (FieldValues Collection)
Item Method (Menu Collection)

Objects Collection



Item Method (Objects Collection) Example
This example uses the Item method of the Objects collection to turn all shapes in a chart red.

Dim ABC As Object, Chart As Object
Dim Everything As Object
Dim CurrentShape As Object, CurrentItem As Object
Dim X, Y

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

For X = 1 To 5
Set CurrentShape = Chart.DrawShape ' Draw a shape

Next X

MsgBox "Click OK to turn all items in the chart red."
Set Everything = Chart.Objects
For Y = 1 To Everything.Count ' For all objects in the chart

Set CurrentItem = Everything.Item(Y) ' Get the next item
CurrentItem.Color = ABC.RED ' Make the item red

Next Y



ItemFromAll Method 
Usage ObjectsCollection.ItemFromAll
Description You use the ItemFromAll method and the other ItemFrom methods to find objects in a 

chart. You use them in a loop, most often a Do While loop. In the While part of the loop, you 
use the Valid property to check only valid objects. Each time the loop executes, the method 
returns the next object so you can test the objects for a property value and act on the 
objects that meet that value.

Value The ItemFromAll method returns successive objects from the Objects collection.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ItemFromAll_Method')}



Finding Objects in a Chart
Example

Item Method (Objects Collection)
ItemFromAttachments Method
ItemFromFieldValue Method
ItemFromLines Method
ItemFromNumber Method
ItemFromSelection Method
ItemFromShapes Method
ItemFromText Method
ItemFromUniqueID Method
ResetSearch Method

Valid Property

Objects Collection



ItemFromAll Method and Type Property (Object Object) Example
This example uses the ItemFromAll method of the Objects collection and the Type property of the Object object
to identify the types of the items in a chart.

Dim ABC As Object, Chart As Object
Dim Everything As Object, Current As Object
Dim OriginalColor As Long

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Everything = Chart.Objects ' Get all objects in the chart
Do

Set Current = Everything.ItemFromAll ' Check each item
OriginalColor = Current.Color ' Remember the object's original color
Current.Color = ABC.MakeRGB(255, 64, 0) ' Make the current object orange
Select Case Current.Type ' Determine the item's type

Case 0
MsgBox "The orange object is a shape."

Case 1
MsgBox "The orange object is a line."

Case 2
MsgBox "The orange object is text."

Case 3
MsgBox "The current object is a bitmap."

Case 4
MsgBox "The current object is an OLE client object."

Case 5
MsgBox "The orange object is a master item."

End Select
Current.Color = OriginalColor ' Restore the original color

Loop While Current.Valid



ItemFromAttachments Method 
Usage ObjectsCollection.ItemFromAttachments (ObjectWithAttachment1 [, 

ObjectWithAttachment2])
The ObjectWithAttachment1 element is any object that you want to include in the search.
The ObjectWithAttachment2 element, which is optional, is any object that you want to 
include in the search.

Description You use the ItemFromAttachments method and the other ItemFrom methods to find 
objects in a chart. You use them in a loop, most often a Do While loop. In the While part of 
the loop, you use the Valid property to check only valid objects. Each time the loop 
executes, the method returns the next object so you can test the objects for a property value
and act on the objects that meet that value.

Value The ItemFromAttachments method returns (from the Objects collection) successive shape,
text, or line objects that are attached to the one or two objects you specify.

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ItemFromAttachments_Method')}



Finding Objects in a Chart
Example

Item Method (Objects Collection)
ItemFromAll Method
ItemFromFieldValue Method
ItemFromLines Method
ItemFromNumber Method
ItemFromSelection Method
ItemFromShapes Method
ItemFromText Method
ItemFromUniqueID Method
ResetSearch Method

Valid Property

Objects Collection



ItemFromAttachments Method Example
This example uses the ItemFromAttachments method of the Objects collection to find a line that has text 
attached to it.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object
Dim Line1 As Object, Text1 As Object
Dim Count As Long
Dim Everything As Object, Current As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
Set Chart = ABC.ActiveChart ' Get the active chart
ABC.Visible = True ' Make ABC visible

Set Shape1 = Chart.DrawShape("Connector") ' Draw shapes
Set Shape2 = Chart.DrawShape("Connector")
Set Line1 = Chart.DrawLine(Shape1, Shape2) ' Draw a line connecting the shapes
Line1.Repaint ' Refresh the screen
Set Text1 = Chart.DrawTextBlock("Going my way?") ' Create a text object
Text1.Font.Opaque = True ' Make the text background opaque
Line1.Line_.AttachText Text1 ' Attach the text to the line

Set Everything = Chart.Objects ' Get all objects in the chart
Set Current = Everything.ItemFromAttachments(Text1)' Find item with text attached
Current.Color = ABC.Red ' Make the item red
ABC.MsgBox ("The red object has text attached.")



ItemFromLines Method 
Usage ObjectsCollection.ItemFromLines
Description You use the ItemFromLines method and the other ItemFrom methods to find objects in a 

chart. You use them in a loop, most often a Do While loop. In the While part of the loop, you 
use the Valid property to check only valid objects. Each time the loop executes, the method 
returns the next object so you can test the objects for a property value and act on the 
objects that meet that value.

Value The ItemFromLines method returns, from the Objects collection, successive lines.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ItemFromLines_Method')}



Finding Objects in a Chart
Example

Item Method (Objects Collection)
ItemFromAll Method
ItemFromAttachments Method
ItemFromFieldValue Method
ItemFromNumber Method
ItemFromSelection Method
ItemFromShapes Method
ItemFromText Method
ItemFromUniqueID Method
ResetSearch Method

Valid Property

Objects Collection



ItemFromLines Method, Source Property, and Destination Property Example
This example uses the ItemFromLines method of the Objects collection and the Source property and 
Destination property of the Line_ object to find a line, its source shape, and its destination shape. This example 
assumes that two shapes connected by a line already exist on the current chart.

Dim ABC As Object, Chart As Object
Dim Line1 As Object
Dim StartShape As Object, EndShape As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.Select (1) ' Select the lines in the chart
Set Line1 = Chart.Objects.ItemFromLines ' Assign the line to the variable Line1
Set StartShape = Line1.Line_.Source ' Find the line's source shape
Set EndShape = Line1.Line_.Destination ' Find the line's destination shape

StartShape.Text = "Source" ' "Source" in source shape
EndShape.Text = "Destination" ' "Destination" in destination shape



ItemFromFieldValue Method 
Usage ObjectsCollection.ItemFromFieldValue (FieldTemplateObject, Value)

The FieldTemplateObject element is any FieldTemplate object that you want to examine.
The Value element is the value of the FieldTemplate object that you are searching for. The 
Value element is a double or a string, as appropriate for the FieldTemplate object.

Description You use the ItemFromFieldValue method and the other ItemFrom methods to find objects 
in a chart. You use them in a loop, most often a Do While loop. In the While part of the loop, 
you use the Valid property to check only valid objects. Each time the loop executes, the 
method returns the next object so you can test the objects for a property value and act on 
the objects that meet that value.

Value The ItemFromFieldValue method returns, from the Objects collection, successive objects 
that contain a field with the value you specify.

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ItemFromFieldValue_Method')}



Finding Objects in a Chart
Knowing When Data Fields Change
Example

Item Method (Objects Collection)
ItemFromAll Method
ItemFromAttachments Method
ItemFromLines Method
ItemFromNumber Method
ItemFromSelection Method
ItemFromShapes Method
ItemFromText Method
ItemFromUniqueID Method
ResetSearch Method

Valid Property

Objects Collection



ItemFromFieldValue Method and MsgBox Method Example
This example uses the ItemFromFieldValue method of the Objects collection to find the correct answer to a 
guessing game. It uses the MsgBox method of the Application object to give the answer.

Dim ABC As Object, Chart As Object
Dim Field1 As Object, NewShape As Object
Dim Count As Single, Answer As Single
Dim NumberIn As Long
Dim Everything As Object, Current As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

Set Field1 = Chart.FieldTemplates.Add("Magic Number") ' Create a field
Field1.Type = 5 ' Make the field's type number

For Count = 1 To 3
Set NewShape = Chart.DrawShape("Operation") ' Draw a shape
NumberIn = Int(InputBox("Enter a number between 1 and 10.")) ' Accept user input
NewShape.FieldValues.Item("Magic Number").Value = NumberIn ' Assign to field

Next Count

Randomize
Answer = Int(10 * Rnd + 1) ' Randomly generate an integer
Set Everything = Chart.Objects ' Get all objects in the chart
Do
' Find field value equal to Answer

Set Current = Everything.ItemFromFieldValue(Field1, "Answer")
Current.Text = "You win!" ' Enter text into the shape
Current.Color = ABC.Red ' Make the shape red

Loop While Current.Valid
ABC.MsgBox ("Thanks for playing! The correct answer was " + CStr(Answer) + ".")



ItemFromNumber Method 
Usage ObjectsCollection.ItemFromNumber (Value)

The Value element is a string or double that is the number or identifier of the shape you are 
searching for.

Description You use the ItemFromNumber method and the other ItemFrom methods to find objects in a
chart. You use them in a loop, most often a Do While loop. In the While part of the loop, you 
use the Valid property to check only valid objects. Each time the loop executes, the method 
returns the next object so you can test the objects for a property value and act on the 
objects that meet that value.

Value The ItemFromNumber method returns, from the Objects collection, successive shapes with
the number you specify.

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ItemFromNumber_Method')}



Finding Objects in a Chart
Example

Item Method (Objects Collection)
ItemFromAll Method
ItemFromAttachments Method
ItemFromFieldValue Method
ItemFromLines Method
ItemFromSelection Method
ItemFromShapes Method
ItemFromText Method
ItemFromUniqueID Method
ResetSearch Method

Valid Property

Objects Collection



ItemFromNumber Method Example
This example uses the ItemFromNumber method of the Objects collection to find a specific shape by its 
number.

Dim ABC As Object, Chart As Object
Dim NewShape As Object
Dim Count As Long
Dim Everything As Object, Current As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
Set Chart = ABC.ActiveChart ' Get the active chart
ABC.Visible = True ' Make ABC visible

Chart.NextNumber = 100 ' Set the next shape number used
For Count = 1 To 4 ' Draw four operation shapes

Set NewShape = Chart.DrawShape("Operation")
Next Count

Set Everything = Chart.Objects ' Get all objects in the chart
Set Current = Everything.ItemFromNumber(102) ' Get shape 102
Current.Shape.FillPattern = 22 ' Fill the shape with a pattern



ItemFromShapes Method 
Usage ObjectsCollection.ItemFromShapes
Description You use the ItemFromShapes method and the other ItemFrom methods to find objects in a 

chart. You use them in a loop, most often a Do While loop. In the While part of the loop, you 
use the Valid property to check only valid objects. Each time the loop executes, the method 
returns the next object so you can test the objects for a property value and act on the 
objects that meet that value.

Value The ItemFromShapes method returns successive shapes from the Objects collection.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ItemFromShapes_Method')}



Finding Objects in a Chart
Selecting Shapes
Example

Item Method (Objects Collection)
ItemFromAll Method
ItemFromAttachments Method
ItemFromFieldValue Method
ItemFromLines Method
ItemFromNumber Method
ItemFromSelection Method
ItemFromText Method
ItemFromUniqueID Method
ResetSearch Method

Valid Property

Objects Collection



ItemFromShapes Method, IsLinked Property, Number Property, and 
LinkedChartName Property Example
This example uses the ItemFromShapes method of the Objects collection, the IsLinked property, Number 
property, and LinkedChartName property of the Shape object to select shapes, find the shapes that are linked, 
and describe them in a message box. For the program to work usefully, the chart must contain shapes, with at 
least one of the shapes linked.

Dim ABC As Object, Chart As Object, Shape As Object
Dim CurrentShape As Object
Dim SelectedShapes As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set SelectedShapes = Chart.Objects

Do
Set CurrentShape = SelectedShapes.ItemFromShapes ' Check all shapes in the chart
If CurrentShape.Shape.IsLinked Then ' If shape is linked, display a message

MsgBox "Shape #" + CurrentShape.Shape.Number + " is linked to " + 
CurrentShape.Shape.LinkedChartName

End If
Loop While CurrentShape.Valid



ItemFromSelection Method 
Usage ObjectsCollection.ItemFromSelection
Description You use the ItemFromSelection method and the other ItemFrom methods to find objects in 

a chart. You use them in a loop, most often a Do While loop. In the While part of the loop, 
you use the Valid property to check only valid objects. Each time the loop executes, the 
method returns the next object so you can test the objects for a property value and act on 
the objects that meet that value.

Value The ItemFromSelection method returns, from the Objects collection, successive selected 
objects.

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ItemFromSelection_Method')}



Finding Objects in a Chart
Example 1
Example 2

Item Method (Objects Collection)
ItemFromAll Method
ItemFromAttachments Method
ItemFromFieldValue Method
ItemFromLines Method
ItemFromNumber Method
ItemFromShapes Method
ItemFromText Method
ItemFromUniqueID Method
ResetSearch Method

Valid Property

Objects Collection



ItemFromSelection Method, Top Property, Left Property, Right Property, and 
Bottom Property Example 1
This example uses the ItemFromSelection method of the Objects collection and the Top property of the Object 
object to find objects and put all their upper edges in the same place. If you wish, you can substitute the Left 
property, Right property, or Bottom property for the Top property to achieve a similar effect. For this program 
to work, the chart must contain two or more shapes.

Dim ABC As Object, Chart As Object
Dim SelectedItems As Object ' Everything in the chart
Dim CurrentItem As Object ' Currently selected shape

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set SelectedItems = Chart.Objects ' Use all shapes in the current chart

Chart.Select (0) ' Select all shapes in the chart

Do
Set CurrentItem = SelectedItems.ItemFromSelection
CurrentItem.Top = 1 ' Place top edge of items at 1 inch

Loop While CurrentItem.Valid



ItemFromSelection Method, Valid Method, CenterX Property, and CenterY 
Property Example 2
This example uses the ItemFromSelection method of the Objects collection and the Valid property, CenterX 
property, and CenterY property of the Object object to find selected objects, ensure that only valid objects are 
acted on, and find and report the center of the objects both horizontally and vertically.

Dim ABC As Object, Chart As Object
Dim CurrentItem As Object
Dim Center_X, Center_Y As String
Dim SelectedItems As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set SelectedItems = Chart.Objects ' Get all objects in the chart

Set CurrentItem = SelectedItems.ItemFromSelection ' Get the first selected object
Do While CurrentItem.Valid ' Loop through all selected objects

Center_X = CStr(CurrentItem.CenterX) ' Horizontal center of object
Center_Y = CStr(CurrentItem.CenterY) ' Vertical center of object
MsgBox "X Value = " + Center_X ' Display the X coordinate
MsgBox "Y Value = " + Center_Y ' Display the Y coordinate
Set CurrentItem = SelectedItems.ItemFromSelection ' Loop through all objects

Loop



ItemFromText Method 
Usage ObjectsCollection.ItemFromText (Text)

The Text element is the text string you are searching for.
Description You use the ItemFromText method and the other ItemFrom methods to find objects in a 

chart. You use them in a loop, most often a Do While loop. In the While part of the loop, you 
use the Valid property to check only valid objects. Each time the loop executes, the method 
returns the next object so you can test the objects for a property value and act on the 
objects that meet that value.

Value The ItemFromText method returns, from the Objects collection, successive objects that 
contain the text you specify.

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ItemFromText_Method')}



Finding Objects in a Chart
Example

Item Method (Objects Collection)
ItemFromAll Method
ItemFromAttachments Method
ItemFromFieldValue Method
ItemFromLines Method
ItemFromNumber Method
ItemFromSelection Method
ItemFromShapes Method
ItemFromUniqueID Method
ResetSearch Method

Valid Property

Objects Collection



ItemFromText Method Example
This example uses the ItemFromText method of the Objects collection to find a specific shape by its text.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object
Dim Everything As Object, Current As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
Set Chart = ABC.ActiveChart ' Get the active chart
ABC.Visible = True ' Make ABC visible

Set Shape1 = Chart.DrawShape ' Draw a shape
Shape1.Text = "Roses are red" ' Enter text in the shape
Set Shape2 = Chart.DrawShape ' Draw a shape
Shape2.Text = "Violets are blue" ' Enter text in the shape
Shape2.Font.Color = ABC.White ' Set the text color

Set Everything = Chart.Objects ' Get all objects in the chart
Set Current = Everything.ItemFromText("Violets") ' Get the shape containing "Violets"
Current.Shape.FillColor = ABC.MakeRGB(64, 0, 127) ' Fill the shape with purple



ItemFromUniqueID Method 
Usage ObjectsCollection.ItemFromUniqueID (UniqueID)

The UniqueID element is the unique identification number of the object you are searching 
for.

Description You use the ItemFromUniqueID method and the other ItemFrom methods to find objects in 
a chart. You use them in a loop, most often a Do While loop. In the While part of the loop, 
you use the Valid property to check only valid objects. Each time the loop executes, the 
method returns the next object so you can test the objects for a property value and act on 
the objects that meet that value.

Value The ItemFromUniqueID method returns, from the Objects collection, the object with the 
unique identification number you specify.

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ItemFromUniqueID_Method')}



Finding Objects in a Chart
Example

ItemFromAll Method
ItemFromShapes Method
ItemFromLines Method
ItemFromSelection Method
ItemFromFieldValue Method
ItemFromAttachments Method
ItemFromNumber Method
Item Method (Objects Collection)
ItemFromText Method
ResetSearch Method

Valid Property

Objects Collection



ItemFromUniqueID Method Example
This example uses the ItemFromUniqueID method of the Objects collection to identify a specific object.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, FirstYellow As Object
Dim Shape3 As Object, SecondYellow As Object
Dim Everything As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawSpacingX = .5 ' Draw shapes 0.5" apart horizontally
Set Shape1 = Chart.DrawShape("Decision") ' Draw a Decision shape
Shape1.Color = ABC.Red ' Make the shape red
Set FirstYellow = Chart.DrawShape("Decision") ' Draw a Decision shape
FirstYellow.Color = ABC.Yellow ' Make the shape yellow
Set Shape3 = Chart.DrawShape("Decision") ' Draw a Decision shape
Shape3.Color = ABC.Blue ' Make the shape blue

Chart.Select (0) ' Select all shapes
Chart.Duplicate ' Make a copy of all shapes
Chart.Clear_ ' Deselect all shapes

Set Everything = Chart.Objects ' Get all objects in the chart
' Get the yellow shape from the duplicate set
Set SecondYellow = Everything.ItemFromUniqueID(FirstYellow.UniqueID + 3)
FirstYellow.ToBack ' Move the shape behind other shapes
SecondYellow.ToFront ' Move the shape in front of others
SecondYellow.Text = "UniqueID #" + CStr(SecondYellow.UniqueID) ' Display the ID
SecondYellow.Shape.FitShapeToText ' Enlarge the shape so the text fits



ResetSearch Method 
Usage ObjectsCollection.ResetSearch
Description You use the ResetSearch method to reset all searches that use the ItemFrom methods to 

the beginning of the items in the chart.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ResetSearch_Method')}



Finding Objects in a Chart
Example

ItemFromAll Method
ItemFromAttachments Method
ItemFromFieldValue Method
ItemFromLines Method
ItemFromNumber Method
ItemFromSelection Method
ItemFromShapes Method
ItemFromText Method
ItemFromUniqueID Method

Valid Property

Objects Collection



ResetSearch Method Example
This example uses the ResetSearch method of the Objects collection to start a subsequent search through 
shapes from the beginning.

Dim ABC As Object, Chart As Object
Dim NewShape As Object
Dim Count As Long
Dim Everything As Object, Current As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart
ABC.Visible = True ' Make ABC visible
Chart.View = 2 ' Set the view to Used Pages

Chart.NextNumber = 100 ' Set the next shape number used
For Count = 1 To 10

Set NewShape = Chart.DrawShape ' Draw a shape
NewShape.Shape.FillPattern = Count ' Fill the shape with a pattern

Next Count

Set Everything = Chart.Objects ' Get all objects in the chart
Do

Set Current = Everything.ItemFromShapes ' Get the next shape
Current.Shape.FillColor = ABC.Red ' Make the shape's fill red

Loop Until Current.Shape.FillPattern = 5 ' Search until you find pattern 5
MsgBox ("The first search reached fill pattern 5.")

Everything.ResetSearch ' Start next search from beginning
Do

Set Current = Everything.ItemFromShapes ' Get the next shape
Current.Shape.BorderColor = ABC.Blue ' Make the shape's border blue

Loop Until Current.Shape.Number = "108" ' Search until you find shape 108
MsgBox ("The second search started over in order to find shape 108.")



Object Object
Description The Object object is contained in the Object collection. You can have multiple Object objects 

in the collection. Below the Object object are the Shape, Line_, TextBlock, OLE, Font, and 
FieldValues objects. Each Object object can have multiple FieldValue objects, but only one 
Shape, Line_, TextBlock, OLE, and Font object for each Object object. Note that the Shape 
object and Line_ object are mutually exclusive. If the Object object is a shape, the Line_ 
object is a meaningless placeholder.

Properties Methods

Application ApplyDefaults 
Bottom Clear_
CenterX Duplicate
CenterY Repaint
Color RestorePicture
FieldValues ToBack
FlippedHorizontal ToFront
FlippedVertical 
Font
Height
Left
Line_
OLE
Parent
Right
Rotation 
Selected
Shape
StretchType
Text
TextAlignment
TextBlock
TextLF
Top
Type
UniqueID
Valid
Width
 

{button Related Topics,PI(`',`IDH_RT_ABC_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical
VBX Event Variables



Application Property 
Usage ObjectObject.Application
Description You use the Application property to find the running Application object. You can find the 

object to which the master items apply and which master items to display. The Application 
property is read only.

Data Type Object
Value The running application
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Application_Property')}



Displaying Master Items
Example

ChartName Property
ChartNameShown Property
Parent Property

Application Object
Chart Object
FieldTemplate Object
FieldValue Object
Font Object
Line_ Object
MasterItems Object
MenuItem Object
Object Object
OLE Object
PageLayout Object
Preferences Object
Shape Object
TextBlock Object

Charts Collection
FieldTemplates Collection
FieldValues Collection
Menu Collection
Objects Collection



Application Property Example
This example finds the Application property value of the Object object. The other Application property values 
are found in similar ways.

Dim ABC As Object
Dim Objects_Parent As Object
Dim Chart As Object
Dim Objects As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Chart = ABC.ActiveChart
Set Objects = Chart.Objects

Set Objects_Parent = Objects.Application ' Set the Objects Object
MsgBox "The running application is " + Objects_Parent



Bottom Property (Object Object) 
Usage ObjectObject.Bottom = Distance

Description The Bottom property lets you find or set the location of the bottom of the object based on 
the top left of the chart, which is at (0,0). The property does not affect the size of the object. 
You set the units for measuring the distance using the Units property. The Bottom property 
is read/write.

Data Type Double
Value The location of the bottom of the object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Bottom_Property_ABC_Object')}



Moving Objects
Example

Bottom Property (Application Object)
CenterX Property
CenterY Property
Left Property (Object Object)
Right Property (Object Object)
Top Property (Object Object)
Units Property (Chart Object)
Units Property (Preferences Object)

Object Object



CenterX Property 
Usage ObjectObject.CenterX = Distance

Description The CenterX property lets you find or set the center of the object. The property does not 
affect the size of the object. You set the units used to measure the distance using the Units 
property. The CenterX property is read/write.

Data Type Double
Value The center of the object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_CenterX_Property')}



Moving Objects
Example

Bottom Property (Application Object)
CenterY Property
Left Property (Object Object)
Right Property (Object Object)
Top Property (Object Object)
Units Property (Chart Object)
Units Property (Preferences Object)

Object Object



CenterY Property 
Usage ObjectObject.CenterY = Distance

Description The CenterY property lets you find or set the center of the object. The property does not 
affect the size of the object. You set the units used to measure the distance using the Units 
property. The CenterY property is read/write.

Data Type Double
Value The center of the object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_CenterY_Property')}



Moving Objects
Example

Bottom Property (Application Object)
CenterX Property
Left Property (Object Object)
Right Property (Object Object)
Top Property (Object Object)
Units Property (Chart Object)
Units Property (Preferences Object)

Object Object



Color Property (Object Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}

Usage ObjectObject.Color = Color

Description The Color property of the Object object lets you find or set the fill color for shapes, the color 
of lines, or the color of text (see the MakeRGB method). Using the Color property for 
shapes is the same as using the FillColor property. Using the Color property for lines finds 
the stem color and sets the color of the stem and both ends. The Color property is 
read/write.

Data Type Long
Value The color for a shape, line, or text object
ABC Equivalent The Color property of the Object object is equivalent to selecting a shape, a line, or text, 

clicking the Fill Color button on the formatting toolbar, and clicking the color you want.

{button Related Topics,PI(`',`IDH_RT_Color_Property_ABC_Object_Method')}



Setting Shape Colors
Setting Line Colors
Setting Text Colors
Formatting Shape Numbers
Fill, Border, and Shadow Colors
Text Color
Example

BasicColor Method
BorderColor Property
Color Property (Font Object)
Color Property (Line Object)
FillColor Property
MakeRGB Method
ShadowColor Property

Object Object



Color Property, Height Property, Width Property (Object Object), and FillColor 
Property Example
This example uses the Color property, the Height property, and the Width property of the Object object and 
the FillColor property of the Shape object to set the color, width, and height of shapes.

Dim ABC As Object, Chart As Object, Shape As Object
Dim NewShape1 As Object, NewShape2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set NewShape1 = Chart.DrawShape("Decision") ' Draw a Decision shape
NewShape1.Color = ABC.RED ' Make the shape red
NewShape1.Height = 1 ' Make the shape 1 inch high
NewShape1.Width = 2 ' Make the shape 2 inches wide

Set NewShape2 = Chart.DrawShape("Operation") ' Draw an Operation shape
NewShape2.Shape.FillColor = ABC.MakeRGB(0, 0, 255) ' Make the shape blue
NewShape2.Height = .5 ' Make the shape 1/2 inch high
NewShape2.Width = 1 ' Make the shape 1 inch wide



FieldValues Property 
Usage ObjectObject.FieldValues
Description The FieldValues property lets you find the data fields included in the FieldValues collection. 

The FieldValues property is read only, but all the properties from the object it returns are 
read/write.

Data Type Collection object
Value The fields included in the FieldValues collection
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_FieldValues_Property')}



Working with Data Field Values
Example

Object Object



FieldValues Property Example
This example uses the FieldValues property of the Object object to enter text in a data field.

Dim ABC As Object, Chart As Object
Dim Field1 As Object, Shape1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Field1 = Chart.FieldTemplates.Add("Client") ' Create a field
Field1.Type = 0 ' Make the field's type text
Set Shape1 = Chart.DrawShape ' Draw a shape
Shape1.FieldValues.Item("Client").Value = "John P. Cliché" ' Enter text in the field



Font Property 
Usage ObjectObject.Font
Description The Font property lets you find the font object for text. The Font property is read only, but 

all the properties from the object it returns are read/write.
Data Type Object
Value The Font object for text
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Font_Property')}



Text Typeface and Size
Example

Object Object



Font Property Example
This example uses the Font property of the Object object to change text attributes.

Dim ABC As Object, Chart As Object
Dim Text1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Text1 = Chart.DrawTextBlock("OLE Automation is fun!") ' Create a line of text
Text1.Font.Italic = True ' Make the text italic



Height Property (Object Object) 
Usage ObjectObject.Height = Height

Description The Height property lets you find or set the height of the object. You set the units used to 
measure the height using the Units property. The Height property is read/write.

Data Type Double
Value The height of the object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Height_Property_ABC_Object')}



Resizing Objects
Example

Height Property (Application Object)
Height Property (PageLayout Object)
StretchType Property
Units Property (Chart Object)
Units Property (Preferences Object)
Width Property (Object Object)

Object Object



Left Property (Object Object)  
Usage ObjectObject.Left = Distance

Description The Left property lets you find or set the location of the left side of the object based on the 
top left of the chart, which is at (0,0). The property does not affect the size of the object. You 
set the units for measuring the distance using the Units property. The Left property is 
read/write.

Data Type Double
Value The location of the left side of the object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Left_Property_ABC_Object')}



Moving Objects
Example

Bottom Property (Object Object)
CenterX Property
CenterY Property
Left Property (Application Object)
Right Property (Object Object)
Top Property (Object Object)
Units Property (Chart Object)
Units Property (Preferences Object)

Object Object



Line_ Property 
Usage ObjectObject.Line_
Description The Line_ property lets you find the line objects. The Line_ property is read only, but all the 

properties from the object it returns are read/write.
Data Type Object
Value The Line_ object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Line_Property')}



Drawing Lines
Example

Object Object



Line Property Example
This example uses the Line_ property of the Object object to change the style of a line stem.

Dim ABC As Object, Chart As Object
Dim Line1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Line1 = Chart.DrawFreeLine(5, 2) ' Draw a plain line
Line1.Line_.StemStyle = 4 ' Change the stem style



Parent Property 
Usage Object.Parent
Description You use the Parent property to find the parent object of an object. For example, the parent 

of the Application object is the running ABC application. The parent of the Objects collection 
is the chart object in which the objects reside. The Parent property is read only.

Data Type Object
Value The parent of the object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Parent_Property')}



Adjusting the Page Layout
Example

Application Property

Application Object
Chart Object
FieldTemplate Object
FieldValue Object
Font Object
Line_ Object
MasterItems Object
MenuItem Object
Object Object
OLE Object
PageLayout Object
Preferences Object
Shape Object
TextBlock Object

Charts Collection
FieldTemplates Collection
FieldValues Collection
Menu Collection
Objects Collection



Parent Property Example
This example uses the Parent property of the Application object to put the parent of the application into a 
variable. The Parent properties of the other objects and collections work the same way.

Dim ABC As Object
Dim App_Parent As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set App_Parent = ABC.Parent ' Set the collection of open ABC charts



Right Property (Object Object) 
Usage ObjectObject.Right = Distance

Description The Right property lets you find or set the location of the right side of the object based on 
the top left of the chart, which is at (0,0). The property does not affect the size of the object. 
You set the units used for measuring the distance using the Units property. The Right 
property is read/write.

Data Type Double
Value The location of the right side of the object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Right_Property_ABC_Object')}



Moving Objects
Example

Bottom Property (Application Object)
CenterX Property
CenterY Property
Left Property (Object Object)
Right Property (Application Object)
Top Property (Object Object)
Units Property (Chart Object)
Units Property (Preferences Object)

Object Object



StretchType Property 
Usage ObjectObject.StretchType = Value

Description The StretchType property lets you find or set the type of stretching for the object. You can 
set it to normal (opposite sides both move as when you stretch in ABC) or so that one side is 
fixed. If the user stretches with one side fixed, it is the same as if he or she pressed CTRL 
while stretching. If you resize using ABC OLE Automation, then the top and left sides are held
fixed as if you were stretching from the right or bottom center handle and holding the CTRL 
key. The StretchType property is read/write.

Data Type Integer
Value The values for the stretch types are in the following table.

Value Meaning
0 Normal
1 Fixed sides

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_StretchType_Property')}



Resizing Objects
Example

Height Property (Object Object)
Width Property (Object Object)

Object Object



StretchType Property and DrawDirection Property Example
This example uses the StretchType property of the Object object and the DrawDirection property of the Chart 
object to set the type of stretching for an object.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawDirection = 2 ' Draw new shapes down the page
Set Shape1 = Chart.DrawShape ' Draw the first shape
Set Shape2 = Chart.DrawShape ' Draw the second shape

Shape1.StretchType = 0 ' Use Normal stretch type
Shape1.Text = "Normal" ' Enter text in the shape
Shape1.Color = ABC.Cyan ' Apply a color to the shape
MsgBox "You can resize the cyan object normally."
Shape2.StretchType = 1 ' Use OppositeSideFixed stretch type
Shape2.Text = "Opposite Side Fixed" ' Enter text in the shape
Shape2.Color = ABC.Yellow ' Apply a color to the shape
MsgBox "You can resize each side of the yellow object independently."



Selected Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Working_with_Objects');CW(`concfull')}

Usage ObjectObject.Selected = {True | False}
Description You use the Selected property to find or set whether an object is selected. The Selected 

property is read/write.
Data Type Integer (Boolean)
Value True means the object is selected; False means the object is not selected.
ABC Equivalent The Selected property is equivalent to clicking an object to select it.

{button Related Topics,PI(`',`IDH_RT_Selected_Property')}



Selecting Objects in a Chart
Selecting Shapes
Example

DeselectAll Method
Select Method
SelectShapeType Method

Object Object



Selected Property Example
This example uses the Selected property of the Object object to select a shape.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object
Dim Everything As Object, Current As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
Set Chart = ABC.ActiveChart ' Get the active chart
ABC.Visible = True ' Make ABC Visible

Set Shape1 = Chart.DrawShape ' Draw a shape
Shape1.Shape.FillColor = ABC.MakeRGB(255, 0, 0) ' Make the shape red
Set Shape2 = Chart.DrawShape ' Draw a shape

Set Everything = Chart.Objects ' Get all items in the chart
Do

Set Current = Everything.ItemFromShapes ' Get the next shape in the chart
If Current.Shape.FillColor = ABC.MakeRGB(255, 0, 0) Then

Current.Selected = True ' Select the red shape
End If

Loop While Current.Valid ' Continue for all shapes



Shape Property 
Usage ObjectObject.Shape
Description You use the Shape property to find the shape object. The Shape property is read only, but 

the properties from the object it returns are read/write.
Data Type Object
Value The Shape object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Shape_Property')}



Example

Object Object



Shape Property Example
This example uses the Shape property of the Object object to set the color of a shape.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape ' Draw a shape
Shape1.Shape.FillColor = ABC.MakeRGB(0, 127, 127) ' Access the Shape Object property 
FillColor



Text Property (Object Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}
Usage ObjectObject.Text = TextString

Description You use the Text property of the Object object to add or read text inside any shape or text 
block. If you wish to preserve Returns when reading the text, you should use the TextLF 
property. The Text property is read/write.

Data Type String
Value The text inside a shape
ABC Equivalent The Text property of the Object object is equivalent to typing while a shape is selected.

{button Related Topics,PI(`',`IDH_RT_Text_Property_ABC_Object')}



Adding Text to Shapes
Adding Text to a Shape
Example

FitShapeToText Method
Text Property (Menu Collection)
Text Property (MenuItem Object)
TextLF Property

Object Object



Text Property (Object Object) Example
This example uses the Text property of the Object object to add text to a shape.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Document") ' Draw a Document shape
Shape1.Text = "I love chocolate!" ' Add text to the shape



TextAlignment Property 
Usage ObjectObject.TextAlignment = AlignmentChoice

Description You use the TextAlignment property to align the text inside shapes and in text blocks or to 
find the alignment. The TextAlignment property is read/write.

Data Type Integer
Value The TextAlignment property uses the following values to represent combinations of vertical 

and horizontal alignment.
Value Vertical Horizontal
0 Top Left
1 Top Center
2 Top Right
3 Middle Left
4 Middle Center
5 Middle Right
6 Bottom Left
7 Bottom Center
8 Bottom Right

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_TextAlignment_Property')}



Text Alignment
Example

Bold Property
Color Property (Font Object)
Italic Property
Opaque Property
Size Property
Underline Property

Object Object



TextAlignment Property Example
This example uses the TextAlignment property of the Object object to set the text alignment in a shape.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Operation") ' Draw an Operation shape
Shape1.Text = "This text belongs in the upper right corner" ' Add text to the shape
Shape1.Shape.FitShapeToText ' Enlarge the shape so the text fits
Shape1.TextAlignment = 2 ' Align the text within the shape



Top Property (Object Object) 
Usage ObjectObject.Top = Distance

Description The Top property lets you find or set the location of the top of the object based on the top 
left of the chart, which is at (0,0). The property does not affect the size of the object. You set 
the units to measure the distance using the Units property. The Top property is read/write.

Data Type Double
Value The location of the top of the object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Top_Property_ABC_Object')}



Moving Objects
Example

Bottom Property (Object Object)
CenterX Property
CenterY Property
Left Property (Object Object)
Right Property (Object Object)
Top Property (Application Object)
Units Property (Chart Object)
Units Property (Preferences Object)

Object Object



Type Property (Object Object)
Usage ObjectObject.Type
Description The Type property lets you find the type of object. The Type property is read only.
Data Type Integer
Value The values for the types are in the following table.

Object Type Description
0 Shape
1 Line
2 Text
3 Bitmap
4 OLE client object
5 Master

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Type_Property_ABC_Object')}



Identifying an Object
Example

ShapeName Property
Type Property (Chart Object)
Type Property (FieldTemplate Object)
Type Property (FieldValue Object)
Type Property (Line Object)
UniqueID Property

Object Object



UniqueID Property 
Usage ObjectObject.UniqueID
Description The UniqueID property lets you find the ID for an object. You can use the ID to choose an 

object in the Objects collection using, for example, the ItemFromUniqueID method. The 
identifier is unique for each object in each chart. If you wish, you could create a database 
containing the UniqueID property values for all the objects in a chart to make it easy to 
identify and act on each of them. A UniqueID is never reused in a chart even if you delete 
the object. The UniqueID property is read only.

Data Type Double
Value The unique ID of the object
ABC Equivalent None

{button Related Topics,PI(`',`RT_UniqueID_Property')}



Identifying an Object
Example

ItemFromUniqueID Method
ShapeName Property
Type Property (Object object)

Object Object



UniqueID Property Example
This example uses the UniqueID property of the Object object to find the unique identifier for an object.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape ' Draw a shape
MsgBox "The shape's unique ID is " + Shape1.UniqueID + "." ' Display the shape's ID



Valid Property 
Usage ChartObject.Valid

ObjectObject.Valid
Description You use the Valid property in the While part of a Do While loop to check that the ItemFrom 

methods are returning valid objects. The Valid property is read only.
Data Type Integer (Boolean)
Value True means the object is valid; False means the object is not valid.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Valid_Property')}



Finding Objects in a Chart
Example

ItemFromAll Method
ItemFromAttachments Method
ItemFromFieldValue Method
ItemFromLines Method
ItemFromNumber Method
ItemFromSelection Method
ItemFromShapes Method
ItemFromText Method
ItemFromUniqueID Method
ResetSearch Method

Object Object
Chart Object



Valid Property and Type Property (Chart Object) Example
This example uses the Valid property and the Type property of the Chart object to find valid charts and display 
their types. 

Dim ABC As Object, Chart As Object
Dim Path1 As String
Dim File1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.CloseAll ' Close all open charts

Path1 = ABC.Path + "\Samples\Quality.abc" ' Path of file to be opened
Set File1 = ABC.Open(Path1) ' Open chart
Set Chart = ABC.ActiveChart ' Get the active chart

If Chart.Valid Then ' If the current chart is valid 
Chart.Minimize ' minimize its window and 
MsgBox Path1 + " is a " + Chart.Type + " type of chart."' post message with type
ABC.MsgBox "The minimized chart is a valid chart."

Else
MSG1 = " was not found. Please enter a valid sample file name in the code and try again."
MsgBox (Path1 + MSG1)

End If

{button Other Example,JI(`>example',`IDH_ItemFromSelection_Method_Example2')}



Width Property (Object Object) 
Usage ObjectObject.Width = Width

Description The Width property lets you find or set the width of the object. You set the units used to 
measure the width using the Units property. The Width property is read/write.

Data Type Double
Value The width of the object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Width_Property_ABC_Object')}



Resizing Objects
Example

Height Property (Object Object)
StretchType Property
Units Property (Chart Object)
Units Property (Preferences Object)
Width Property (Application Object)
Width Property (PageLayout Object)

Object Object



Duplicate Method (Object Object) 
Usage ObjectObject.Duplicate
Description The Duplicate method of the Object object makes a duplicate of the selected object and 

returns the duplicate object.
Data Type Object
Value The duplicate object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Duplicate_Method_ABC_Object')}



Duplicating Objects
Speeding Actions
Example

Copy Method
Duplicate Method (Chart Object)
Paste Method

Object Object



Duplicate Method (Object Object), NumberShown Property, and Renumber 
Method Example
This example uses the Duplicate method of the Object object and the NumberShown property and Renumber
method of the Shape object to duplicate a shape, show the number on the shape, and increment the number of 
the shape.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, NewShape As Object
Dim Count As Double

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.NextNumber = 100
Set Shape1 = Chart.DrawShape("Terminal") ' Draw a Terminal shape
For Count = 1 To 10 ' To make 10 copies of the shape

Set NewShape = Shape1.Duplicate ' Duplicate the last shape
NewShape.CenterY = Count / 2 ' Move the new shape down
NewShape.Shape.NumberShown = True ' Show the shape number
NewShape.Shape.Renumber ' Increment the shape number

Next Count



Repaint Method 
Usage ChartObject.Repaint

ObjectObject.Repaint
Description You use the Repaint method to repaint the entire chart after a series of actions with the 

NoRepaint property set to True.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Repaint_Method')}



Speeding Actions
Example

NoRepaint Property

Chart Object
Object Object



Repaint Method and NoRepaint Property Example
This example uses the NoRepaint property and Repaint method of the Chart object to turn off repainting the 
screen with each change and then repaint the screen after the operations are finished.

Dim ABC As Object, Chart As Object, Obj1 As Object
Dim X As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.NoRepaint = True ' Do not repaint screen
Set Obj1 = Chart.DrawShape("Operation") ' Draw Operation shape
Obj1.Text = "Unit 1" ' Add text to shape

Chart.Select (0) ' Select Shape

For X = 1 To 3
Chart.Duplicate ' Duplicate shape three times

Next X

Chart.Repaint ' Repaint screen
Chart.NoRepaint = False ' Restore repainting screen

{button Other example,JI(`>example',`IDH_DeleteLines_Method_Example')}



RestorePicture Method (Object Object) 
Usage ObjectObject.RestorePicture
Description The RestorePicture method of the Object object lets you restore bitmap and OLE client 

objects to their original size.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_RestorePicture_Method_ABC_Object')}



Resizing Objects
Example

Object Object



RestorePicture Method (Object Object) Example
This example uses the RestorePicture method of the Object object to restore bitmaps and OLE objects to their 
original sizes. For the program to have any effect, you must have a resized bitmap or OLE client object in the 
chart.

Dim ABC As Object, Chart As Object
Dim Everything As Object, Current As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Everything = Chart.Objects ' Get all items in the chart
Do

Set Current = Everything.ItemFromAll ' Choose the next item
Current.RestorePicture ' Return bitmaps and OLE objects to their 

original size
Loop While Current.Valid



ToBack Method (Object Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_Send_to_Back_Command');CW(`concfull')}

Usage ObjectObject.ToBack
Description You use the ToBack method of the Object object to move the object to the back.
ABC Equivalent The ToBack method is equivalent to clicking Send to Back on the Arrange menu.

{button Related Topics,PI(`',`IDH_RT_ToBack_Method_ABC_Object')}



Changing the Display Order of Objects
Example

ToBack Method (Chart Object)
ToFront Method (Chart Object)
ToFront Method (Object Object)

Object Object



ToBack Method and ToFront Method (Object Object) Example
This example uses the ToBack method and ToFront method of the Object object to move the shape in front of 
and behind other shapes.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object, Shape3 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawSpacingX = .5 ' Draw shapes 0.5" apart horizontally
Set Shape1 = Chart.DrawShape ' Draw a shape
Shape1.Color = ABC.Red ' Make the shape red
Set Shape2 = Chart.DrawShape ' Draw a shape
Shape2.Color = ABC.Yellow ' Make the shape yellow
Set Shape3 = Chart.DrawShape ' Draw a shape
Shape3.Color = ABC.Blue ' Make the shape blue
MsgBox "The yellow shape will move to the back when you click OK."
Shape2.ToBack ' Move shape behind other shapes
MsgBox "This time the yellow shape will move to the front when you click OK."
Shape2.ToFront ' Move shape in front of other shapes



ToFront Method (Object Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_Bring_to_Front');CW(`concfull')}

Usage ObjectObject.ToFront
Description You use the ToFront method of the Object object to move the object to the front.
ABC Equivalent The ToFront method is equivalent to to clicking Bring to Front on the Arrange menu.

{button Related Topics,PI(`',`IDH_RT_ToFront_Method_ABC_Object')}



Changing the Display Order of Objects
Example

ToBack Method (Chart Object)
ToBack Method (Object Object)
ToFront Method (Chart Object)

Object Object



OLE Property 
Usage ObjectObject.OLE
Description The OLE property lets you find or set the properties and methods associated with OLE 

objects. The OLE property is read only, but the properties from the object it returns are 
read/write.

Data Type Object
Value An OLE object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_OLE_Property')}



Using OLE Client Objects
Example

DoVerb Method
ObjectType Property

Object Object



OLE Property and DoVerb Method Example
This example uses the OLE property of the Object object and the DoVerb method of the OLE object to execute 
an OLE verb.

Dim ABC As Object, Chart As Object
Dim Everything As Object, Current As Object
Dim PaintHandle
Dim Pasted

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart
ABC.Visible = True ' Make ABC visible

Clipboard.Clear ' Empty the Clipboard
PaintHandle = Shell("PBRUSH.EXE", 1) ' Run Paintbrush
SendKeys "%FO", 1 ' Send File/Open to Paintbrush
SendKeys "c:\abc\samples\mgxlogo.bmp{ENTER}", 1
SendKeys "%EF", 1 ' Edit/Paste From
SendKeys "c:\abc\samples\mgxlogo.bmp{ENTER}", 1
SendKeys "%EC", 1 ' Copy to the Clipboard
Pasted = Chart.Paste ' Paste the OLE object into ABC
If Not Pasted Then ' If nothing was pasted, post an error 
message and stop the code

MsgBox "Either Paintbrush or the MGXLOGO.BMP file was not found. Please edit the code and 
try again."

Exit Sub
End If

ABC.Visible = True ' Bring ABC to the front
Chart.View = 1 ' View the current page in ABC
Set Everything = Chart.Objects ' Get all items in the chart
Do

Set Current = Everything.ItemFromAll ' Choose the next item
If Current.Type = 4 Then ' If an OLE object is found

MsgBox "An OLE object exists on the chart. Click OK to execute the OLE verb."
Current.OLE.DoVerb ' execute its default verb
Exit Sub ' and stop the code

End If
Loop While Current.Valid



TextBlock Property 
Usage ObjectObject.TextBlock
Description The TextBlock property lets you find the properties of a block of text. The TextBlock 

property is read only, but all the properties from the object it returns are read/write.
Data Type Object
Value The properties of a block of text
ABC Equivalent None

{button Related Topics,PI(`',`RT_TextBlock_Property')}



Creating Text Blocks
Example

DrawTextBlock Method

Object Object



TextBlock Property and AttachedToLine Property Example
This example uses the TextBlock property of the Object object and the AttachedToLine property of the 
TextBlock object to find a line that has text attached to it and turn the line red.

Dim ABC As Object, Chart As Object
Dim NewLine1 As Object, NewLine2 As Object
Dim NewText1 As Object, NewText2 As Object
Dim LineWithText As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set NewLine1 = Chart.DrawFreeLine(1, 4) ' Draw a line
Chart.DrawPositionX = 2 ' Set a horizontal drawing position
Set NewLine2 = Chart.DrawFreeLine(2, 4) ' Draw a line
Set NewText1 = Chart.DrawTextBlock("Attached text")' Draw text objects
Set NewText2 = Chart.DrawTextBlock("Unattached text")
NewLine2.Line_.AttachText NewText1 ' Attach a text object to a line
Chart.View = 2 ' View used pages

Set LineWithText = NewText1.TextBlock.AttachedToLine ' Get the line with text attached
LineWithText.Line_.StemColor = ABC.RED ' Make the line red
MsgBox "The red line has text attached to it."



TextLF Property 
Usage ObjectObject.TextLF = TextString

Description You use the TextLF property of the Object object to add or read text inside any shape or text 
block. When adding text, the property is identical to the Text property. When reading text, 
the property does not substitute spaces for Returns as the Text property does. If you do not 
wish to preserve Returns, you should use the Text property. The TextLF property is read/write.

Data Type String
Value The text inside a shape with the Returns preserved
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_TextLF_Property')}



Adding Text to Shapes
Adding Text to a Shape
Example

FitShapeToText Method
Paste Method
Text Property
Text Property (Menu Collection)
Text Property (MenuItem Object)

Object Object



TextLF Property Example
This example uses the TextLF property of the Object object to read text from a shape, preserving the Returns in 
it.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, ShapeText As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Document") ' Draw a Document shape
Shape1.Text = "I love chocolate " + CHR$(13) + "a whole lot!" ' Add text to the shape
ShapeText = Shape1.TextLF ' Read text, preserving Returns



Application Object
Description The Application object is at the top of the ABC OLE Automation hierarchy. It is the interface 

to ABC OLE Automation. There can be only one Application object at a time running in your 
system. Below the ABC Application object are the Charts collection, Preferences object, and 
Menus collection. You can have multiple Charts collections and Menus collections, but only 
one Preferences object.

Properties Methods

ActiveChart Activate
Application AddMenu
Bottom ArrangeIcons
Caption BasicColor
Charts CascadeCharts
DefaultFilePath ChartTypeShutdown
FieldViewerVisible CloseAll
FieldViewerWindowHan
dle

CreateAddOn

FullName Help
Height HidePercentGauge
Hourglass Hint
Left MakeRGB
Name Maximize
NoteViewerVisible Minimize
NoteViewerWindowHan
dle

MsgBox

OperatingSystem New
Parent NewFromTemplate
Path Open
PercentGaugeValue Quit
Preferences PercentGauge
Printer PercentGaugeCancelle

d
Right RegisterEvent
ShapePaletteVisible RemoveAddOn
ShapePaletteWindowHa
ndle

RemoveMenu

StatusBar Restore
StatusBarVisible TileCharts
Top Undo
UndoAvailable UnRegisterEvent
Version
Visible
Width



WindowHandle
ZoomWindowVisible

{button Related Topics,PI(`',`IDH_RT_Application_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical
VBX Event Variables



ActiveChart Property
Usage ApplicationObject.ActiveChart
Description You use the ActiveChart property to find the active Chart object in the Application. This is 

the simplest way to be sure that you are operating on the current chart. The ActiveChart 
property is read only.

Data Type Object
Value The currently active chart
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ActiveChart_Property')}



Activating a Chart
Example

Activate Method (Application Object)
Name Property (Application Object)
Application Object



Bottom Property (Application Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_RESIZEWDW');CW(`concfull')}

Usage ApplicationObject.Bottom = PositionInPixels

Description The Bottom property lets you specify the position of the bottom of the ABC window in 
pixels. The number of pixels available depends on your screen resolution. For example, if you
are running standard VGA, your screen is 640 pixels wide and 480 pixels high. The Bottom 
property is read/write.

Data Type Long
Value The number of pixels from the bottom of the screen to the bottom of the ABC window
ABC Equivalent The Bottom property is equivalent to resizing the ABC window.

{button Related Topics,PI(`',`IDH_RT_Bottom_Property_Application_Object')}



Displaying the Field Viewer, Notes Viewer, and Shape Palette
Example

Bottom Property (Object Object)
Height Property (Application Object)
Left Property (Application Object)
Right Property (Application Object)
Top Property (Application Object)
Width Property (Application Object)

Application Object



Caption Property
Usage ApplicationObject.Caption = Title

Description The Caption property lets you customize ABC by changing what it says in the title bar. Set 
the Caption property to "" to restore the standard ABC caption ("Micrografx ABC 
FlowCharter 6.0"). The Caption property is read/write.

Data Type String
Value The text in the title bar of ABC
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Caption_Property')}



Changing the ABC Title Bar
Example

Application Object



Charts Property
Usage ApplicationObject.Charts
Description The Charts property lets you find the charts included in the Charts collection. The Charts 

property is read only, but all the properties from the object it returns are read/write.
Data Type Collection object
Value The Charts property returns the charts included in the Charts collection.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Charts_Property')}



Identifying a Chart's Filename
Example

Application Object



Charts Property Example
This example uses the Charts property of the Application object to put the chart collection into a variable.

Dim ABC As Object
Dim Application_Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Application_Chart = ABC.Charts ' Set the collection of open ABC charts



DefaultFilePath Property
Usage ApplicationObject.DefaultFilePath = Path

The Path element is the default file path.
Description You use the DefaultFilePath property to find or set the default path for all files that are 

opened or saved. The DefaultFilePath property is read/write.
Data Type String
Value The default file path
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DefaultFilePath_Property')}



Setting a Default Path for Charts
Example

Application Object



Assorted Application Object Properties Example 1
This example uses properties of the Application object to find and display the default file path, path, operating 
system, current printer, and whether Undo is available.

Dim ABC As Object
Dim Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Dim App_File_Path As String
App_File_Path = ABC.DefaultFilePath ' Get application default path
MsgBox "Application Default File Path is " + App_File_Path ' Display

Dim EXE_Path As String
EXE_Path = ABC.Path ' Get path to ABC.EXE (executable file)
MsgBox "The ABC.EXE path is " + EXE_Path ' Display

Dim Operating_System As String
Operating_System = ABC.OperatingSystem ' Get operating system
MsgBox "ABC is running on " + Operating_System ' Display

Dim ABC_Printer As String
ABC_Printer = ABC.Printer ' Get current printer
MsgBox "Current Printer is " + ABC_Printer ' Display

Dim Undo_Status As Integer
Undo_Status = ABC.UndoAvailable ' Get undo status
Select Case Undo_Status ' Display

Case True
MsgBox "Undo is available."

Case Else
MsgBox "Undo is unavailable."

End Select



FieldViewerVisible Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>procedur',`IDH_SHOW_Field_ViewerP');CW(`concfull')}

Usage ApplicationObject.FieldViewerVisible = {True | False}
Description The FieldViewerVisible property lets you show or hide the ABC Field Viewer. The 

FieldViewerVisible property is read/write.
Data Type Integer (Boolean)
Value True makes the Field Viewer visible; False makes it invisible.
ABC Equivalent The FieldViewerVisible property is equivalent to clicking Viewer on the ABC Data menu.

{button Related Topics,PI(`',`IDH_RT_FieldViewerVisible_Property')}



Displaying the Field Viewer, Notes Viewer, and Shape Palette
Opening the Field Viewer
Example

NoteViewerVisible Property
ShapePaletteVisible Property
Visible Property (Menu Collection)

Application Object



Assorted Application Object Properties Example 2
This example uses properties of the Application object to see windows belonging to ABC and find their window 
handles.

Dim ABC As Object
Dim Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawPositionX = 2 ' Set drawing position
Chart.DrawPositionY = 2 ' (Default is inches)

Chart.DrawShape ("delay") ' Create a shape

Chart.FieldTemplates.Add("Inventory") ' Create a field for the shape

ABC.FieldViewerVisible = True ' Make field viewer visible
Dim Field_Viewer_Window_Handle As Long
Field_Viewer_Window_Handle = ABC.FieldViewerWindowHandle ' Get Window Handle
MsgBox "Field Viewer Window Handle = " + CStr(Field_Viewer_Window_Handle)
ABC.FieldViewerVisible = False ' Make field viewer invisible

ABC.NoteViewerVisible = True ' Make note viewer visible
Dim Note_Viewer_Window_Handle As Long
Note_Viewer_Window_Handle = ABC.NoteViewerWindowHandle ' Get Window Handle
MsgBox "Note Viewer Window Handle = " + CStr(Note_Viewer_Window_Handle)
ABC.NoteViewerVisible = False ' Make note viewer invisible

ABC.ShapePaletteVisible = True ' Make shape palette visible
Dim Shape_Palette_Window_Handle As Long
Shape_Palette_Window_Handle = ABC.ShapePaletteWindowHandle ' Get Window Handle
MsgBox "Shape Palette Window Handle = " + CStr(Shape_Palette_Window_Handle)
ABC.ShapePaletteVisible = False ' Make shape palette invisible



FieldViewerWindowHandle Property
Usage ApplicationObject.FieldViewerWindowHandle
Description The FieldViewerWindowHandle property lets you find the handle to the window of the 

Field Viewer. If the window is not visible, its value is Null. The FieldViewerWindowHandle 
property is read only.

Data Type Long
Value The handle to the Field Viewer window. If the window is not visible, the value is Null.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_FieldViewerWindowHandle_Property')}



Window Handles
Example

NoteViewerWindowHandle Property
ShapePaletteWindowHandle Property
WindowHandle Property

Application Object



FullName Property (Application Object)
Usage ApplicationObject.FullName
Description The FullName property of the Application object lets you find the ABC path, including the 

executable filename. To get the path without the executable file name, use the Path 
property. The FullName property is read only.

Data Type String
Value The fully qualified path of the ABC program that is running, including the name of the 

executable file
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_FullName_Property_Application_Object')}



Getting ABC System Information
Example

FullName Property (Chart Object)
Name Property (Application Object)
OperatingSystem Property
Path Property
Version Property

Application Object



FullName Property and Name Property (Application Object) Example
This example uses the FullName property and Name property of the Application object to find and display the 
full name and name of the running application.

Dim ABC As Object
Dim Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC

MsgBox "Application Full Name = " + ABC.FullName ' Display

MsgBox "Default Application Name = " + ABC.Name ' Display



Height Property (Application Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_RESIZEWDW');CW(`concfull')}

Usage ApplicationObject.Height = HeightInPixels

Description The Height property lets you specify the position of the height of the ABC window in pixels. 
The number of pixels available depends on your screen resolution. For example, if you are 
running standard VGA, your screen is 640 pixels wide and 480 pixels high. The Height 
property is read/write.

Data Type Long
Value The height of the ABC window in pixels
ABC Equivalent The Height property is equivalent to resizing the ABC window.

{button Related Topics,PI(`',`IDH_RT_Height_Property_Application_Object')}



Positioning and Resizing the ABC Window
Example

Bottom Property (Object Object)
Height Property (Object Object)
Height Property (PageLayout Object)
Left Property (Application Object)
Right Property (Application Object)
Top Property (Application Object)
Width Property (Application Object)

Application Object



Height, Width Property (Application Object) Example
This example uses the Height property and Width property of the Application object to find and display the 
height and width of the ABC window.

Dim ABC As Object
Dim Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
Set Chart = ABC.ActiveChart ' Get the active chart

MsgBox "Application Height = " + ABC.Height ' Display

MsgBox "Application Width = " + ABC.Width ' Display



Left Property (Application Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_RESIZEWDW');CW(`concfull')}

Usage ApplicationObject.Left = PositionInPixels

Description The Left property lets you specify the position of the left side of the ABC window in pixels. 
The number of pixels available depends on your screen resolution. For example, if you are 
running standard VGA, your screen is 640 pixels wide and 480 pixels high. The Left property
is read/write.

Data Type Long
Value The number of pixels from the left of the screen to the left side of the ABC window
ABC Equivalent The Left property is equivalent to resizing the ABC window.

{button Related Topics,PI(`',`IDH_RT_Left_Property_Application_Object')}



Positioning and Resizing the ABC Window
Example

Bottom Property (Application Object)
Height Property (Application Object)
Left Property (Object Object)
Right Property (Application Object)
Top Property (Application Object)
Width Property (Application Object)

Application Object



Name Property (Application Object)
Usage ApplicationObject.Name
Description The Name property always equals "ABC FlowCharter" for compatibility with all ABC products.

The Name property is read only.
Data Type String
Value Always equals "ABC FlowCharter"
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Name_Property_Application_Object')}



Getting ABC System Information
Example

FullName Property (Application Object)
Name Property (Chart Object)
Name Property (FieldTemplate Object)
Name Property (FieldValue Object)
Name Property (Font Object)
OperatingSystem Property
Path Property
Version Property

Application Object



NoteViewerVisible Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_NOTES');CW(`concfull')}

Usage ApplicationObject.NoteViewerVisible = {True | False}
Description You use the NoteViewerVisible property to find or set whether the Note window is open or 

closed. The NoteViewerVisible property is read/write.
Data Type Integer (Boolean)
Value True makes the Note Viewer visible; False makes it invisible.
ABC Equivalent The NoteViewerVisible property is equivalent to clicking Note on the View menu.

{button Related Topics,PI(`',`IDH_RT_NoteViewerVisible_Property')}



Opening the Note Window
Displaying the Field Viewer, Notes Viewer, and Shape Palette
Example

NoteIndicator Property
NoteShadow Property
NoteText Property

Application Object



NoteViewerWindowHandle Property
Usage ApplicationObject.NoteViewerWindowHandle
Description The NoteViewerWindowHandle property lets you find the handle to the window of the 

Note Viewer. If the window is not visible, its value is Null. The NoteViewerWindowHandle 
property is read only.

Data Type Long
Value The handle to the Note Viewer window. If the window is not visible, the value is Null.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_NoteViewerWindowHandle_Property')}



Window Handles
Example

FieldViewerWindowHandle Property
ShapePaletteWindowHandle Property
WindowHandle Property

Application Object



OperatingSystem Property
Usage ApplicationObject.OperatingSystem
Description The OperatingSystem property lets you find the operating system under which ABC is 

running. The OperatingSystem property is read only.
Data Type String
Value The operating system under which the ABC program is running. For example, it equals "DOS 

6.21;Windows 3.11" if you are running those versions.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_OperatingSystem_Property')}



Getting ABC System Information
Example

FullName Property (Application Object)
Name Property (Application Object)
Path Property
Version Property

Application Object



Path Property
Usage ApplicationObject.Path
Description The Path property lets you find the ABC application path, excluding the executable filename.

The path does not include a final back slash (\). To get the path with the executable file 
name, use the FullName property. The Path property is read only.

Data Type String
Value The fully qualified path of the ABC program that is running, excluding the name of the 

executable file
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Path_Property')}



Getting ABC System Information
Example

FullName Property (Application Object)
Name Property (Application Object)
OperatingSystem Property
Version Property

Application Object



PercentGaugeValue Property
Usage ApplicationObject.PercentGaugeValue = PercentageDone

Description The PercentGaugeValue property lets you set the value in the Percent Gauge dialog box 
you created using the PercentGauge method. The PercentGaugeValue property is 
read/write.

Data Type Integer
Value The value of the percent gauge
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_PercentGaugeValue_Property')}



Providing Feedback
Example

HidePercentGauge Method
Hint Method
MsgBox Method
PercentGauge Method
PercentGaugeCancelled Method

Hourglass Property
StatusBar Property

Application Object



Preferences Property
Usage ApplicationObject.Preferences
Description The Preferences property lets you find the Preferences object. The Preferences property 

is read only, but all the properties from the object it returns are read/write.
Data Type Object
Value The Preferences object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Preferences_Property')}



Setting Preferences
Example

Application Object



Preferences Property Example
This example uses the Preferences property of the Application object to put the preferences collection into a 
variable.

Dim ABC As Object
Dim App_Preferences As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set App_Preferences = ABC.Preferences ' Set the collection of open ABC Charts



Printer Property
Usage ApplicationObject.Printer = {PrinterName | PrinterPort}
Description The Printer property lets you find or set the current printer. When you read the value of the 

Printer property, it returns the current printer and port. For example, it might return "HP 
LaserJet III on LPT2:." When you set the value, the program uses a "loose matching" routine 
that starts at the beginning of the string. For example, setting the Printer property to "HP 
Laser" or "LPT2" chooses "HP LaserJet III on LPT2:" if that is the printer on LPT2:. If more than
one printer matches the value you set, the first one alphabetically is used.

Data Type String
Value The current printer
ABC Equivalent The Printer property is equivalent to clicking Printer Setup on the File menu and clicking the

printer you want to use.

{button Related Topics,PI(`',`IDH_RT_Printer_Property')}



Printing Charts
Example

PrintOut Method
PrintSelected Method

Application Object



Right Property (Application Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_RESIZEWDW');CW(`concfull')}

Usage ApplicationObject.Right = PositionInPixels

Description The Right property lets you specify the position of the right side of the ABC window in 
pixels. The number of pixels available depends on your screen resolution. For example, if you
are running standard VGA, your screen is 640 pixels wide and 480 pixels high. The Right 
property is read/write.

Data Type Long
Value The number of pixels from the right of the screen to the right side of the ABC window
ABC Equivalent The Right property is equivalent to resizing the ABC window.

{button Related Topics,PI(`',`IDH_RT_Right_Property_Application_Object')}



Positioning and Resizing the ABC Window
Example

Bottom Property (Application Object)
Height Property (Application Object)
Left Property (Application Object)
Right Property (Object Object)
Top Property (Application Object)
Width Property (Application Object)

Application Object



ShapePaletteVisible Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Shape_Palette_Button');CW(`concfull')}

Usage ApplicationObject.ShapePaletteVisible = {True | False}
Description You use the ShapePaletteVisible property to find or set whether the Shape Palette window is 

open or closed. The ShapePaletteVisible property is read/write.
Data Type Integer (Boolean)
Value True makes the Shape Palette visible; False makes it invisible.
ABC Equivalent The ShapePaletteVisible property is equivalent to clicking the Shape Palette on the View 

menu.

{button Related Topics,PI(`',`IDH_RT_ShapePaletteVisible_Property')}



Displaying the Field Viewer, Notes Viewer, and Shape Palette
Using the Shape Palette
Example

FieldViewerVisible Property
NoteViewerVisible Property

Application Object



ShapePaletteWindowHandle Property
Usage ApplicationObject.ShapePaletteWindowHandle
Description The ShapePaletteWindowHandle property lets you find the handle to the window of the 

Shape Palette. If the window is not visible, its value is Null. The 
ShapePaletteWindowHandle property is read only.

Data Type Long
Value The handle to the Shape Palette window. If the window is not visible, the value is Null.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ShapePaletteWindowHandle_Property')}



Window Handles
Example

FieldViewerWindowHandle Property
NoteViewerWindowHandle Property
WindowHandle Property

Application Object



StatusBar Property
Usage ApplicationObject.StatusBar = StatusBarText

Description The StatusBar property lets you customize ABC by changing what it says in the status bar. 
You can restore the normal status bar hints by setting the StatusBar property to "". To set a 
temporary message in the hint line, use the Hint method. The StatusBar property is 
read/write.

Data Type String
Value The text in the status bar
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_StatusBar_Property')}



Changing the ABC Status Bar
Example

Hint Method

Application Object



Top Property (Application Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_RESIZEWDW');CW(`concfull')}

Usage ApplicationObject.Top = PositionInPixels

Description The Top property lets you specify the position of the top of the ABC window in pixels. The 
number of pixels available depends on your screen resolution. For example, if you are 
running standard VGA, your screen is 640 pixels wide and 480 pixels high. The Top property 
is read/write.

Data Type Long
Value The number of pixels from the top of the screen to the top of the ABC window
ABC Equivalent The Top property is equivalent to resizing the ABC window.

{button Related Topics,PI(`',`IDH_RT_Top_Property_Application_Object')}



Positioning and Resizing the ABC Window
Example

Bottom Property (Application Object)
Height Property (Application Object)
Left Property (Application Object)
Right Property (Application Object)
Top Property (Object Object)
Width Property (Application Object)

Application Object



Top Property (Application Object) Example
This example uses the Top property, Bottom property, Left property, and Right property of the Application 
object to find and display the location of the ABC window.

Dim ABC As Object
Dim Chart As Object
Dim App_Top As Long, App_Bottom As Long, App_Left As Long, App_Right As Long

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

App_Top = ABC.application.Top
App_Bottom = ABC.application.Bottom
App_Left = ABC.application.Left
App_Right = ABC.application.Right

MsgBox "ABC's window border location is: Top = " + CStr(App_Top) + ", Bottom = " + 
CStr(App_Bottom) + ", Left = " + CStr(App_Left) + ", and Right = " + CStr(App_Right)



UndoAvailable Property
Usage ApplicationObject.UndoAvailable
Description The UndoAvailable property lets you find if there is anything to undo. The UndoAvailable 

property is read only.
Data Type Integer (Boolean)
Value True means something is available to undo; False means nothing is available to undo.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ItemFromSelection_Method')}



Undoing Actions
Example 1
Example 2

Undo Method
Application Object



Version Property
Usage ApplicationObject.Version
Description The Version property lets you find the version of the ABC OLE automation application object

that is running. Note that this is not the version number of the ABC application, but rather 
the version number of the ABC OLE Automation API set. For example, for ABC FlowCharter 
4.0, the Version property returns 1.0. The Version property is read only.

Data Type String
Value The version of the ABC OLE Automation application object that is running. For example, it 

equals "2.0" if you are running ABC FlowCharter 6.0.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Version_Property')}



Getting ABC System Information
Example

FullName Property (Application Object)
Name Property (Application Object)
OperatingSystem Property
Path Property

Application Object



Object Object Properties Example
This example uses properties of the Object object to determine the application's version, if the application is 
visible, what the application's window handle is, the message in the application's status bar, and the 
application's caption in the title bar.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
Set Chart = ABC.ActiveChart ' Get the active chart

Dim App_Version As String ' Get application version
App_Version = ABC.Version
MsgBox "Application version = " + App_Version ' Display

Dim App_Visible As Integer ' Get application visibility state
App_Visible = ABC.Visible
Select Case App_Visible ' Display

Case True
MsgBox "Application is visible."

Case Else
MsgBox "Application is not visible."

End Select

Dim App_Window_Handle As Long ' Get application window handle
App_Window_Handle = ABC.WindowHandle
MsgBox "Application window handle = " + Hex$(App_Window_Handle) ' Display

Dim App_Status_Bar As String ' Get application status bar message
App_Status_Bar = ABC.StatusBar
MsgBox "Application status bar = " + App_Status_Bar' Display

Dim App_Caption As String ' Get application caption
App_Caption = ABC.Caption
MsgBox "Application caption = " + App_Caption ' Display



Visible Property (Application Object)
Usage ApplicationObject.Visible = {True | False}
Description If you set the Visible property to True, the application is visible. If you set the Visible 

property to False, the application is still running, but it is not visible. You cannot switch to it 
using Alt+Tab, and it is not shown in the Task List dialog box that appears when you press 
Ctrl+Esc. The value False is the default, so you must begin all your programs by setting it 
to True. The Visible property is read/write.

Data Type Integer (Boolean)
Value True makes ABC visible. False makes ABC not visible; you cannot switch to it using Alt+Tab, 

and it is not shown in the Task List dialog box that appears when you press Ctrl+Esc.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Visible_Property_Application_Object')}



Starting ABC
Example

Activate Method (Application Object)
Activate Method (Chart Object)

Application Object



Width Property (Application Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_RESIZEWDW');CW(`concfull')}

Usage ApplicationObject.Width = WidthInPixels

Description The Width property lets you specify the position of the width of the ABC window in pixels. 
The number of pixels available depends on your screen resolution. For example, if you are 
running standard VGA, your screen is 640 pixels wide and 480 pixels high. The Width 
property is read/write.

Data Type Long
Value The width of the ABC window in pixels
ABC Equivalent The Width property is equivalent to resizing the ABC window.

{button Related Topics,PI(`',`IDH_RT_Width_Property_Application_Object')}



Positioning and Resizing the ABC Window
Example

Bottom Property (Application Object)
Height Property (Application Object)
Left Property (Application Object)
Right Property (Application Object)
Top Property (Application Object)
Width Property (Object Object)
Width Property (PageLayout Object)

Application Object



WindowHandle Property 
Usage ApplicationObject.WindowHandle

ChartObject.WindowHandle
Description The WindowHandle property lets you find the handle to the window of ABC or of a chart. If 

the window is not visible, its value is Null. The WindowHandle property is read only.
Data Type Long
Value The handle to the window of ABC or the chart. If the window is not visible, the value is Null.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_WindowHandle_Property')}



Window Handles
Example

FieldViewerWindowHandle Property
NoteViewerWindowHandle Property
ShapePaletteWindowHandle Property

Application Object



WindowHandle Property Example
This example uses the WindowHandle property of the Chart object to find a chart's window handle.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

MsgBox "The window handle for this chart is " + Chart.WindowHandle + "."

{button Other Example,JI(`',`IDH_Version_Property_Example')}



Activate Method (Application Object){button ABC 
Equivalent,JI(`ABCFLOW.HLP>procedur',`IDH_SWITCHP');CW(`concfull')}

Usage ApplicationObject.Activate
Description You bring ABC to the front using the Activate method of the Application object. You usually 

have to do this only after the user has done something that moves ABC to the back, such as 
clicking another application that is visible on the screen or switching to another application 
using ALT+TAB or CTRL+ESC.

ABC Equivalent The Activate method is equivalent to clicking the ABC window, pressing ALT+TAB, or clicking
ABC in the Start bar to bring ABC to the front.

{button Related Topics,PI(`',`IDH_RT_Activate_Method_Application_Object')}



Bringing ABC or a Chart to the Front
Example

Activate Method (Chart Object)
Visible Property (Application Object)

Application Object



Activate Method (Application Object) Example
This example uses the Activate method of the Application object to activate ABC.

Dim ABC As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

ABC.Activate ' Activate ABC



ArrangeIcons Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_ARRANGEICONS');CW(`concfull')}

Usage ApplicationObject.ArrangeIcons
Description When you have several ABC chart windows minimized to icons, you can arrange them at the 

bottom of the ABC window using the ArrangeIcons method.
ABC Equivalent The ArrangeIcons method is equivalent to clicking Arrange All on the Window menu for a 

chart that is minimized.

{button Related Topics,PI(`',`IDH_RT_ArrangeIcons_Method')}



Arranging ABC Icons
Example

Application Object



ArrangeIcons Method Example
This example uses the ArrangeIcons method of the Application object to arrange ABC icons. For this call to 
have any visible effect, one or more chart windows must be minimized and be moved from their original 
positions.

Dim ABC As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

ABC.ArrangeIcons ' Arrange icons



BasicColor Method
Usage ApplicationObject.BasicColor (Color)

The Color element is an integer representing one of the sixteen standard VGA colors.
Description The BasicColor method lets you set colors from the sixteen VGA colors. The method returns

the color as a long decimal value. You cannot change the values in the BasicColor method. 
For example, you cannot make BasicColor(10) yield the color purple.

Data Type Long
Value The BasicColor method returns one of the following values, based on the Color element.

Color BasicColor
Element Value Result
0 16777215 White
1 0 Black
2 255 Red
3 65280 Green
4 16711680 Blue
5 65535 Yellow
6 16711935 Magenta
7 16776960 Cyan
8 12632256 Gray
9 127 Dark Red
10 32512 Dark Green
11 8323072 Dark Blue
12 326397 Dark Yellow
13 8323199 Dark Magenta
14 8355584 Dark Cyan
15 8355711 Dark Gray

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_BasicColor_Method')}



Color Constants
Example

BasicColor Method
MakeRGB Method

Application Object



BasicColor Method Example
This example uses the BasicColor method of the Application object to arrange ABC icons. For this call to 
function, ABC must be active and chart windows must be minimized.

Dim ABC As Object
Dim Basic_Color As Long
Dim User_Input As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

' Get Basic Color for input value from 0 - 15
a:
User_Input = InputBox$("Please Enter a Windows color with a value from 0 - 15", "Basic Color")

Select Case User_Input
Case "0"

MsgBox "Entered color is WHITE."
Case "1"

MsgBox "Entered color is BLACK."
Case "2"

MsgBox "Entered color is RED."
Case "3"

MsgBox "Entered color is GREEN."
Case "4"

MsgBox "Entered color is BLUE."
Case "5"

MsgBox "Entered color is YELLOW."
Case "6"

MsgBox "Entered color is MAGENTA."
Case "7"

MsgBox "Entered color is CYAN."
Case "8"

MsgBox "Entered color is GRAY."
Case "9"

MsgBox "Entered color is DK_RED."
Case "10"

MsgBox "Entered color is DK_GREEN."
Case "11"

MsgBox "Entered color is DK_BLUE."
Case "12"

MsgBox "Entered color is DK_YELLOW."
Case "13"

MsgBox "Entered color is DK_MAGENTA."
Case "14"

MsgBox "Entered color is DK_CYAN."
Case "15"

MsgBox "Entered color is DK_GRAY."
Case Else

MsgBox "Unrecognized entry. Please try again."
GoTo a:

End Select

Basic_Color = ABC.BasicColor(User_Input)



MsgBox "Long conversion of color is " + CStr(Basic_Color) ' Display return value



CascadeCharts Method
Usage ApplicationObject.CascadeCharts
Description When you have several ABC chart windows open, you can arrange them in the ABC window 

using the CascadeCharts method. The charts are arranged so the title bar of each one is 
visible.

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_CascadeCharts_Method')}



Arranging ABC Charts
Example

TileCharts Method

Application Object



CascadeCharts Method Example
This example uses the CascadeCharts method of the Application object to cascade all open charts.

Dim ABC As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

For I = 1 To 5 ' Create a series of new charts
ABC.New

Next I

ABC.CascadeCharts ' Cascade all open charts



CloseAll Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_CLOSE');CW(`concfull')}

Usage ApplicationObject.CloseAll
ChartsCollection.CloseAll

Description You use the CloseAll method to close all charts in the ABC workspace. If changes have been 
made, the user is not prompted to save changed charts.

ABC Equivalent The CloseAll method is equivalent to clicking Close on the File menu while holding down 
SHIFT, except that the user is not prompted to save changes to changed charts.

{button Related Topics,PI(`',`IDH_RT_CloseAll_Method')}



Closing Charts
Example

CloseChart Method
Save Method

Application Object



CloseAll Method Example
This example uses the CloseAll method of the Application object to close all charts.

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

For I = 1 To 5 ' Create a series of new charts
ABC.New

Next I

ABC.CloseAll ' Close all charts

{button Other Example,JI(`',`IDH_RT_CloseAll_Method_Example')}



Help Method
Usage ApplicationObject.Help [HelpFileName] {, [ContextID] | [HelpContext]}

The HelpFileName element, an optional string, is the name of a Windows help file. Quotation 
marks should be used whenever long filenames or long pathnames are used.
The ContextID element, an optional integer, is a context ID.
The HelpContext element, an optional string, specifies the help context to display. In Help, 
you see the HelpContext elements in the top list box when you click the Search button.

Description The Help method lets you run a help file. The first element specifies the help file to run. If 
you omit the first element, the help file shipped with ABC runs. The second element is either 
a context ID (an integer) or a help context (a string) to call a particular topic in the help file. 
If you omit the element, the Contents of the help file appears.

ABC Equivalent If you use the Help method to run the help file that ships with ABC, the method is equivalent
to pressing F1 in the proper context clicking Current Topic on the Help menu. If you are 
running a help file that you created, there is no ABC equivalent.

{button Related Topics,PI(`',`IDH_RT_Help_Method')}



Displaying Help
Example

Application Object



Help Method Example
This example uses the Help method of the Application object to run the ABC help at a specific help topic.

Dim ABC As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC

ABC.Help , 57345 ' Run ABC Help at Glossary topic



HidePercentGauge Method
Usage ApplicationObject.HidePercentGauge
Description The HidePercentGauge method lets you close the Percent Gauge dialog box you created 

using the PercentGauge method.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_HidePercentGauge_Method')}



Providing Feedback
Example

Hint Method
MsgBox Method
PercentGauge Method
PercentGaugeCancelled Method

PercentGaugeValue Property
StatusBar Property

Application Object



HidePercentGauge Method Example
This example uses the HidePercentGauge method of the Application object to remove a Percent Gauge dialog 
box.

Dim ABC As Object
Dim ABCGauge As Single

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

ABC.PercentGauge ' Create gauge

ABC.HidePercentGauge ' Remove gauge

MsgBox "Percentage Gauge Hidden"



New Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_New_Command');CW(`concfull')}

Usage ApplicationObject.New
Description You use the New method to create a new chart with default attributes. This opens a new 

chart window.
Data Type Object
Value The chart object
ABC Equivalent The New method is equivalent to clicking New on the File menu.

{button Related Topics,PI(`',`IDH_RT_New_Method')}



Creating New Charts
Example

NewFromTemplate Method

Application Object



New Method Example
This example uses the New method of the Application object to create a new chart.

Dim ABC As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

ABC.New ' Create a new chart



NewFromTemplate Method
Usage ApplicationObject.NewFromTemplate (TemplateName)

The TemplateName element is the path and name of the template to use to create the chart.
Quotation marks should be used whenever long filenames or long pathnames are used.

Description You use the NewFromTemplate method to create a new chart based on the specified chart 
template name. If TemplateName file cannot be loaded for any reason, the returned 
Chart.Valid is False.

Data Type Object
Value The chart that is created
ABC Equivalent The NewFromTemplate method is equivalent to clicking Open on the File menu, choosing 

file type AFT, then saving the chart as file type ABC.

{button Related Topics,PI(`',`IDH_RT_NewFromTemplate_Method')}



Creating New Charts
Example

New Method

Application Object



NewFromTemplate Method Example
This example uses the NewFromTemplate method of the Application object to create a new file using a 
template.

Dim ABC As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

ABC.NewFromTemplate (ABC.Path + "\Samples\Portmono.abc") ' Open ABC template file



Open Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_OPEN');CW(`concfull')}

Usage ChartsCollection.Open (PathName [, AsReadOnly])
ApplicationObject.Open (PathName [, AsReadOnly])
The PathName element is the path and name of the chart to open. Quotation marks should be 
used whenever long filenames or long pathnames are used.
The AsReadOnly element opens the chart as read only.

Description The Open method in the Charts collection and Application object work the same way and 
have the same effect. You use the Open method to open a chart. If the chart is already 
open, the Open method moves the chart to the front. You can optionally specify that the 
chart is to be opened read only.
You can open the following file types.

Charts (filenames ending with an AF3, AF2, or ABC extension; files that contain the shapes, lines, and text 
that comprise your charts)

Templates (filenames ending with an AFT extension; files that hold object attributes and page layouts used 
by your charts)
Data Type Object. The AsReadOnly element is an integer (Boolean)
Value The Chart object
ABC Equivalent The Open method is equivalent to clicking Open on the File menu, clicking the drive and 

directory that contain the file you want to open, clicking the file you want to open, and 
clicking OK.

{button Related Topics,PI(`',`IDH_RT_Open_Method')}



Opening Charts
Example

DefaultFilePath Property

Application Object
Charts Collection



Open Method Example
This example uses the Open method of the Application object to open a file read/write and then open a file read 
only.

Dim ABC As Object
Dim ABC_Read_Only As Single

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

ABC_Read_Only = False ' Set parameter to read/write access

ABC.Open ABC.Path + "\Samples\Dataflow.abc", ABC_Read_Only ' Open file read/write

ABC_Read_Only = True ' Set parameter to read only access

ABC.Open ABC.Path + "\Samples\Orglink.abc", ABC_Read_Only ' Open file read only

{button Other Example,JI(`',`IDH_Open_Method_Example2')}



Open Method, Item Method, and Count Property Example
This example uses the Open method, Count property, and Item method of the Charts collection to open and 
print charts.

Dim ABC As Object, Charts As Object, Chart As Object
Dim X As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Charts.Open (ABC.Path + "\Samples\Linesamp.abc") ' Open charts to add to collection
Charts.Open (ABC.Path + "\Samples\Network.abc")
Charts.Open (ABC.Path + "\Samples\Famltree.abc")

For X = 1 To Charts.Count ' Iterate through all charts
Set Chart = Charts.Item(X) ' Get a chart
Chart.PrintOut ' Print the chart

Next X



Quit Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_EXIT');CW(`concfull')}

Usage ApplicationObject.Quit
Description The Quit method closes ABC. It does not prompt the user to save changes to open files. 

Before you close ABC, you should save the files you want to be saved.
ABC Equivalent The Quit method is equivalent to clicking Exit in the ABC File menu.

{button Related Topics,PI(`',`IDH_RT_Quit_Method')}



Closing ABC
Example

CloseAll Method

Application Object



Quit Method Example
This example uses the Quit method of the Application object to close ABC.

Dim ABC As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

For I = 1 To 3 ' Create a series of new charts
ABC.New

Next I

ABC.Quit ' Close ABC



MakeRGB Method
Usage ApplicationObject.MakeRGB (Red, Green, Blue)

The Red, Green, and Blue elements are integers that define the RGB components of color.
Description The MakeRGB method lets you set colors from a palette of over sixteen million colors. You 

specify the color as quantities of red, green, and blue, with each color a number from 0 (no 
color) through 255 (solid color).

Data Type Long
Value Returns the decimal equivalent of a six-digit, hexadecimal value. The following table shows 

some of the values of the red, green, and blue components and their equivalent in decimal 
and hexadecimal.
Color MakeRGB Decimal Hex
White (255,255,255) 16777215 FFFFFF
Black (0,0,0)0 0
Red (255,0,0) 255 FF
Green (0,255,0) 65280 FF00
Blue (0,0,255) 16711680 FF0000
Yellow (255,255,0) 65535 FFFF
Magenta (255,0,255) 16711935 FF00FF
Cyan (0,255,255) 16776960 FFFF00
Gray (192,192,192) 12632256 C0C0C0
Dark Red (127,0,0) 127 7F
Dark Green (0,127,0) 32512 7F00
Dark Blue (0,0,127) 8323072 7F0000
Dark Yellow (127,127,0) 326397 7F7F
Dark Magenta (127,0,127) 8323199 7F007F
Dark Cyan (0,127,127) 8355584 7F7F00
Dark Gray (127,127,127) 8355711 7F7F7F

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_MakeRGB_Method')}



RGB Values
Text Color
Example

BasicColor Method

Application Object



MakeRGB Method Example
This example uses the MakeRGB method of the Application object to find a color value.

Dim ABC As Object
Dim Red_Green_Blue As Long

Set ABC = CreateObject("ABCFlow.application") ' Start ABC

Red_Green_Blue = ABC.MakeRGB(255, 255, 255) ' Find color value
MsgBox CStr(Red_Green_Blue)



PercentGauge Method
Usage ApplicationObject.PercentGauge [TitleBar] [, TextLine1] [, TextLine2]

The optional TitleBar element is the name that goes in the title bar.
The optional TextLine1 element is the first line of text above the gauge.
The optional TextLine2 element is the second line of text above the title bar.

Description The PercentGauge method lets you create a percent gauge, with its value set to 0.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_PercentGauge_Method')}



Providing Feedback
Example

HidePercentGauge Method
Hint Method
MsgBox Method
PercentGaugeCancelled Method

Hourglass Property
PercentGaugeValue Property
StatusBar Property

Application Object



PercentGauge Method, PercentGaugeValue Property Example
This example uses the PercentGauge method and PercentGaugeValue property of the Application object to 
create and increment a gauge.

Dim ABC As Object
Dim ABCGauge As Single

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

ABC.PercentGauge ' Make gauge visible

For I = 1 To 100 ' Incrementally increase gauge value
ABC.PercentGaugeValue = ABC.PercentGaugeValue + 1

Next I



PercentGaugeCancelled Method
Usage ApplicationObject.PercentGaugeCancelled
Description The PercentGaugeCancelled method lets you determine whether the user has clicked the 

Cancel button in the Percent Gauge dialog box you created using the PercentGauge method.
Data Type Integer (Boolean)
Value True means the user clicked the Cancel button; False means the user did not click the Cancel

button.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_PercentGaugeCancelled_Method')}



Providing Feedback
Example

HidePercentGauge Method
Hint Method
MsgBox Method
PercentGauge Method

PercentGaugeValue Property
StatusBar Property

Application Object



PercentGaugeCancelled Method Example
This example uses the PercentGaugeCancelled method of the Application object to detect if the user has 
clicked the Cancel button on the Percent Gauge dialog box.

Dim ABC As Object, Chart As Object
Dim NewShape As Object
Dim X

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawSpacingX = .25 ' Set horizontal draw spacing
ABC.PercentGauge "My Percent Gauge"; "Draws Decision shapes"; "and changes their colors."

' Create a percent gauge

For X = 1 To 25
Set NewShape = Chart.DrawShape("Decision") ' Draw a shape
NewShape.Shape.FillColor = ABC.MakeRGB(127, 0, X * 10) ' Set the shape color
ABC.PercentGaugeValue = X * 4 ' Increment the percent gauge
If ABC.PercentGaugeCancelled Then GoTo StopItNow ' If the Cancel button

' is pressed, stop
Next X

ABC.HidePercentGauge ' Remove the percent gauge
Exit Sub ' Stop the subroutine

StopItNow:
ABC.HidePercentGauge ' Remove the percent gauge
NewShape.Text = "Cancel pressed!" ' Place text in the last shape drawn
Exit Sub ' Stop the subroutine



TileCharts Method
Usage ApplicationObject.TileCharts
Description When you have several ABC chart windows open, you can arrange them in the ABC window 

using the TileCharts method. The charts are arranged so that a portion of each is visible.
ABC Equivalent The TileCharts method is equivalent to clicking Arrange All in the ABC Window menu for a 

chart that is restored.

{button Related Topics,PI(`',`IDH_RT_TileCharts_Method')}



Arranging ABC Charts
Example

CascadeCharts Method

Application Object



TileCharts Method Example
This example uses the TileCharts method of the Application object to tile the open charts.

Dim ABC As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

For I = 1 To 5 ' Create a series of new charts
ABC.New

Next I

ABC.TileCharts ' Tile all open charts



Undo Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_Undo_Command');CW(`concfull')}

Usage ApplicationObject.Undo
Description You use the Undo method to undo the last ABC action. You can find out if there is anything 

to undo using the UndoAvailable property.
ABC Equivalent The Undo method is equivalent to clicking Undo in the ABC Edit menu.

{button Related Topics,PI(`',`IDH_RT_Undo_Method')}



Undoing Actions
Example

UndoAvailable Property

Application Object



Undo Method Example
This example uses the Undo method of the Application object to undo a user action.

Dim ABC As Object, Chart As Object
Dim NewShape As Object
Dim Msg1 As String, Msg2 As String, Msg3 As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set NewShape = Chart.DrawShape("Operation") ' Draw a shape
NewShape.Color = ABC.MakeRGB(0, 0, 255) ' Make the shape blue
Msg1 = "A blue shape has just been drawn. "
Msg2 = "Please move this message out of the way and move or delete the shape. "
Msg3 = "Then click OK in this message. The code will undo whatever you just did."
MsgBox Msg1 + Msg2 + Msg3

If ABC.UndoAvailable Then ' If undo is available
ABC.Undo ' Undo the last action

Else
MsgBox "There is nothing to undo!"

End If



MsgBox Method
Usage ApplicationObject.MsgBox MessageText [,BoxType] [,BoxTitle]

The MessageText element is the message that goes in the dialog box.
The optional BoxType element defines the type of dialog box. If you omit this element, the 
value is 0.
The optional BoxTitle element sets the title bar text of the dialog box. If you omit this 
element, the title of the dialog box is "Micrografx ABC FlowCharter 6.0."

Description The MsgBox method lets you post a dialog box. The method is similar to the MsgBox 
function used in the Visual Basic programming language

Data Type Integer
Value The following table shows the value returned according to the button that the user selected. 

Note: In Visual Basic, these values have constants associated with them, such as IDOK. 
Those constants are not available for ABC OLE Automation.
Button Selected Value
OK 1
Cancel 2
Abort 3
Retry 4
Ignore 5
Yes 6
No 7
The following table shows the values available for the BoxType element, which is optional. 
The value of the second element can be the sum of values from the table. Note: In Visual 
Basic, these values have constants associated with them, such as MB_OK. Those constants 
are not available for ABC OLE Automation.
Value Effect
0 Display OK button only
1 Display OK and Cancel buttons
2 Display Abort, Retry, and Ignore buttons
3 Display Yes, No, and Cancel buttons
4 Display Yes and No buttons
5 Display Retry and Cancel buttons

16 Display stop icon 

32 Display question mark icon 

48 Display exclamation point icon 

64 Display information icon 
0 First button is the default
256 Second button is the default
512 Third button is the default
0 The dialog box is application modal, so ABC is suspended until the user responds

to the dialog box
4096 The dialog box is system modal, so all applications are suspended until the user 

responds to the dialog box
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_MsgBox_Method')}





Providing Feedback
Example

Application Object



RegisterEvent Method
Usage ApplicationObject.RegisterEvent VBXName.VBX, IdString, EventName [, ChartType]

The VBXName.VBX element identifies the ABC OLE Automation control to which the 
registered events apply. Unless you have changed the ABC OLE Automation control's Name 
property from its default setting, VBXName is ABC1.
The IdString element identifies the Visual Basic form on which the ABC OLE Automation 
control is located. IdString identifies the Visual Basic form on which the ABC control is 
located. It is normally the Caption property setting of the form.
The EventName element is the name of the event being registered. This name must be 
enclosed in quotes.
The ChartType element, which is optional, lets you register the event for only a particular 
type of chart. You set a chart's type with the Type method of the Chart object. If you omit 
the ChartType, the registered events apply to all charts.

Description The RegisterEvent method lets you register an event procedure. If you do not register an 
event, ABC OLE Automation does not respond when the user of your program performs the 
event.

Data Type Integer (Boolean)
Value True means the event was successfully registered; False means it was not.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_RegisterEvent_Method')}



Registering Event Procedures
Example

Type Property (Chart Object)
TypeRequiresEXE Property
TypeUsesEXE Property
UnRegisterEvent Method

Application Object



RegisterEvent, UnRegisterEvent Method Example
This example uses the RegisterEvent method and UnRegisterEvent method of the Application object to 
register an event. The code must be in three different places in Visual Basic.

The first section of code goes in Form_Load or in a Command button.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object
Dim Msg1 As String, Msg2 As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

' Begin accepting user actions
ABC.RegisterEvent ABC1.VBX, Form1.Caption, "ObjectMovedNOTIFY"
ABC.RegisterEvent ABC1.VBX, Form1.Caption, "ObjectLineAttachNOTIFY"

Msg1 = "After you click OK, two shapes will appear. Please move either shape once. "
Msg2 = "This application will know when you have moved one, and you will see it change."
MsgBox Msg1 + Msg2
Set Shape1 = Chart.DrawShape("Operation") ' Draw shapes
Set Shape2 = Chart.DrawShape("Decision")
Shape1.Text = "Move me!" ' Place text in the shapes
Shape2.Text = "No! Move me!"
Shape2.Shape.FitShapeToText ' Resize the shape so its text fits

End Sub

The second section of code goes in ABC1_ObjectMovedNOTIFY.

Dim ABC As Object
Dim ABCObj As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
Set ABCObj = ABC1.Object ' Get the object that was moved

ABCObj.Color = ABC.MakeRGB(255, 0, 0) ' Draw a shape
' Place text in the shape
ABCObj.Text = "Eeek! I've been moved! Please draw a line from me to the other shape."
ABCObj.Shape.FitShapeToText ' Resize the shape so its text fits

The third section of code goes in ABC1_ObjectLineAttachedNOTIFY.

Dim ABC As Object
Set ABC = CreateObject("ABCFlow.application") ' Start ABC

MsgBox "This application will now stop receiving ABC events."

' Stop accepting user actions
ABC.UnRegisterEvent ABC1.VBX, "ObjectMovedNOTIFY"
ABC.UnRegisterEvent ABC1.VBX, "ObjectLineAttachNOTIFY"





UnRegisterEvent Method
Usage ApplicationObject.UnRegisterEvent VBXName.VBX, EventName [, ChartType]

The VBXName.VBX element identifies the ABC OLE Automation control to which the 
registered events apply. Unless you have changed the ABC OLE Automation control's Name 
property from its default setting, VBXName is ABC1.
The EventName element is the name of the event being unregistered. This name must be 
enclosed in quotes.
The ChartType element, which is optional, lets you unregister the event for only a particular 
type of chart. You set a chart's type with the Type method of the Chart object. If you omit 
the ChartType, the unregister applies to all charts.

Description The UnRegisterEvent method lets you unregister an event procedure. If you do not 
unregister an event, ABC OLE Automation continues to respond when the user of your 
program performs the event.

Data Type Integer (Boolean)
Value True means the event was successfully unregistered; False means it was not.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_UnRegisterEvent_Method')}



Registering Event Procedures
Example

RegisterEvent Method
Type Property (Chart Object)
TypeRequiresEXE Property
TypeUsesEXE Property

Application Object



CreateAddOn Method
Usage ApplicationObject.CreateAddOn Position, HintName, ProgramFileName , , [MenuItem]

The Position element specifies the position of the menu item. Use -1 for the first available 
position.
The HintName element is the name of the button. The text you enter is used in the hint line.
The ProgramFileName element is the name of the program to run, including the fully 
qualified path. If the path contains a long filename, the string must be contained within 
quote marks. 
The fourth parameter is unused.
MenuItem is the name you want for the menu item. If no title is specified for the menu item, 
the hintline text is used. If there is no hint name, the name of the executable file is used 
(including extension.

Description The CreateAddOn method of the Menu collection lets you add menu items to the Add Ons 
submenu of the Tools menu.

Data Type Integer (Boolean)
Value True means the item was created successfully; False means it was not.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_CreateAddOn_Method')}



Adding Buttons
Example

AddMenu Method
RemoveAddOn Method

Application Object



CreateAddOn, RemoveAddOn Method Example
This example uses the CreateAddOn method and RemoveAddOn method of the Application object to add a 
button to the toolbox and then remove it.

Dim ABC As Object, Menu As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

AppPath = ABC.Path ' Set path to ABC
SPath = AppPath + "\Samples\Billing.exe" ' Set path to chart file
BPath = AppPath + "\Samples\Toolbar.ico" ' Set path to icon file

Z = ABC.CreateAddOn(3, "Weekly Billing", , Bpath, "WkBilling") ' Add an item

MsgBox "Notice that a menu item WkBilling, has been added to the Add Ons menu. Clicking OK will
remove the item."
Z = ABC.RemoveAddOn(3) ' Remove the item at position 3



RemoveAddOn Method
Usage ApplicationObject.RemoveAddOn {Position | ProgramFileName}

The Position element specifies the position of the menu item
The ProgramFileName element is the name of the menu item.

Description The RemoveAddOn method lets you remove a button that you have added to the ABC 
toolbox.

Data Type Integer (Boolean)
Value True means the menu item was removed successfully; False means it was not.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_RemoveAddOn_Method')}



Adding Buttons
Example

CreateAddOn Method
RemoveMenu Method

Application Object



Restore Method (Application Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_RESTORE');CW(`concfull')}

Usage ApplicationObject.Restore
Description The Restore method of the Application object lets you change the ABC window to its 

previous size.
ABC Equivalent The Restore method is equivalent to clicking the ABC restore arrow in the upper right of the 

window.

{button Related Topics,PI(`',`IDH_RT_Restore_Method_Application_Object')}



Minimizing, Maximizing, and Restoring a Window
Example

Maximize Method (Application Object)
Minimize Method (Application Object)
Restore Method (Chart Object)

Application Object



Minimize Method (Application Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_MINIMIZE');CW(`concfull')}

Usage ApplicationObject.Minimize
Description The Minimize method of the Application object lets you change the ABC window to an icon.
ABC Equivalent The Minimize method is equivalent to clicking the ABC minimize arrow in the upper right of 

the window.

{button Related Topics,PI(`',`IDH_RT_Minimize_Method_Application_Object')}



Minimizing, Maximizing, and Restoring a Window
Example

Maximize Method (Application Object)
Minimize Method (Chart Object)
Restore Method (Application Object)

Application Object



Maximize Method (Application Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_MAXIMIZE');CW(`concfull')}

Usage ApplicationObject.Maximize
Description The Maximize method of the Application object lets you change the ABC window to its 

maximum size.
ABC Equivalent The Maximize method is equivalent to clicking the ABC maximize arrow in the upper right of

the window.

{button Related Topics,PI(`',`IDH_RT_Maximize_Method_Application_Object')}



Minimizing, Maximizing, and Restoring a Window
Example

Maximize Method (Chart Object)
Minimize Method (Application Object)
Restore Method (Application Object)

Application Object



Maximize, Minimize, Restore Method (Application Object) Example
This example uses the Maximize method, Minimize method, and Restore method of the Application object to 
minimize, restore, and maximize the ABC window.

Dim ABC As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

MsgBox "Click OK to minimize ABC FlowCharter."
ABC.Minimize ' Minimize ABC

MsgBox "Click OK to maximize ABC FlowCharter."
ABC.Maximize ' Maximize ABC

MsgBox "Click OK to restore ABC FlowCharter to normal size."
ABC.Restore ' Restore ABC



Hourglass Property
Usage ApplicationObject.Hourglass = {True | False}
Description The Hourglass property lets you change the pointer to a wait cursor or back to the ABC 

pointer. The Hourglass property is read/write.
Data Type Integer (Boolean)
Value True makes the pointer a wait cursor; False makes the cursor the ABC pointer.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Hourglass_Property')}



Providing Feedback
Example

Hint Method
PercentGauge Method
StatusBar Property

Application Object



Hourglass Property Example
This example uses the Hourglass property of the Application object to indicate that ABC is busy while shapes 
are drawing.

Dim ABC As Object, Chart As Object
Dim NewShape As Object
Dim x

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

MsgBox "When you click OK an Hour Glass pointer will appear while shapes are drawn."
Chart.View = 1 ' View the current page
Chart.DrawSpacingX = .25 ' Set horizontal draw spacing
ABC.Hourglass = True ' Display wait cursor
For x = 1 To 25

Set NewShape = Chart.DrawShape("Operation") ' Draw a shape
NewShape.Shape.FillColor = ABC.Make.RGB(200, (x * 4), x)' Set shape color

Next x
ABC.Hourglass = False ' Do not display wait cursor



AddMenu Method
Usage ApplicationObject.AddMenu (MenuName, VBXName.VBX, ProgramName [, ChartType])

The MenuName element is the title of the menu.
The VBXName.VBX element identifies the VBX used to send notification events to when the 
menu is used. Normally you use ABC1.VBX, which registers menus for the 
AppMenuSUBCLASS event.
The ProgramName element is the name of the program adding the menu to ABC. The easiest
way to identify the program is using Form1.Caption.
The ChartType element, which is optional, lets you specify a chart type for the menu. A chart
type is a hidden string field up to eight characters in length indicating the chart type. This 
field is never used within ABC, but it is useful within an ABC events VBX. For example, if two 
OLE Automation programs are running, you could change the fourth element to avoid 
conflicts.

Description The AddMenu method lets you add a menu to ABC. The menu is added to ABC at the left of 
the Window menu, so you set the order of the menus by the order in which you create them.
When the VBX shuts down (when the program ends), the menu is removed from ABC.

Data Type Object
Value The Menu object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_AddMenu_Method')}



Adding Menus
Example

AppendItem Method
DeleteAll Method
DeleteItem Method
InsertItem Method
RemoveMenu Method

Text Property (Menu Collection)
Visible Property (Menu Collection)

Application Object



AddMenu Method, AppendItem Method Example
This example uses the AddMenu method of the Application object and the AppendItem method of the Menu 
collection to create a menu and add two items to it.

Dim ABC As Object, Menu As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Menu = ABC.AddMenu("Test", ABC1.VBX, Form1.Caption) ' Add a new menu item

Menu.AppendItem ("First Item") ' Append items to the new menu
Menu.AppendItem ("Second Item")



RemoveMenu Method
Usage ApplicationObject.RemoveMenu MenuName

The MenuName element is the title of the menu.
Description The RemoveMenu method lets you remove a menu you have added. You cannot remove 

the menus that ABC starts with.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_RemoveMenu_Method')}



Adding Menus
Example

AddMenu Method
AppendItem Method
DeleteAll Method
DeleteItem Method
InsertItem Method

Text Property (Menu Collection)
Visible Property (Menu Collection)

Application Object



RemoveMenu Method Example
This example uses the RemoveMenu method of the Application object to remove a menu you have added.

Dim ABC As Object, Menu As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Menu = ABC.AddMenu("New Menu", ABC1.VBX, Form1.Caption) ' Add a new menu

MsgBox "Notice a menu titled 'New Menu' has been added to your menu-bar. Clicking OK will 
remove the menu."
ABC.RemoveMenu ("New Menu") ' Remove the newly added menu



Hint Method
Usage ApplicationObject.Hint HintText

The HintText element is the text of the message you are placing in the hint line.
Description The Hint method lets you set a temporary status bar message. It stays in the hint line until 

the cursor moves over another item in ABC that causes the hint line to change. To set a 
permanent message in the hint line, use the StatusBar property.

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Hint_Method')}



Providing Feedback
Example

AddMenu Method
CreateAddOn Method
MsgBox Method
PercentGauge Method
StatusBar Property

Application Object



Hint Method Example
This example uses the Hint method of the Application object to display a hint message.

Dim ABC As Object, Chart As Object
Dim NewShape As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set NewShape = Chart.DrawShape("Operation") ' Draw a shape
NewShape.Text = "Look at the hint line!" ' Place text in the shape
NewShape.Shape.ShadowStyle = 3 ' Give the shape a shadow
' Display a hint line
ABC.Hint "Poltergeists are the principal form of supernatural manifestation."



ChartTypeShutdown Method
Usage ApplicationObject.ChartTypeShutdown ChartType, ApplicationName

The ChartType element is the type of chart that you want to close.
The ApplicationName element is the name of the application.

Description The ChartTypeShutdown method lets you have an external program (EXE) alert ABC OLE 
Automation that it is shutting down for some reason, usually because a RegisterEvent call 
failed. You usually call the ChartTypeShutdown method during the loading of an AddOn 
menu if a RegisterEvent call failed. You can also call it from the Form.QueryUnload event 
indicating that the external program with SUBCLASSing behavior is shutting down. If you set 
either TypeRequiresEXE or TypeUsesEXE to True in a program, then you also must ensure 
that you close all charts of that Type when your program closes. You use the 
ChartTypeShutdown method of the Application object to close the charts.

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ChartTypeShutdown_Method')}



Linking EXEs to Charts
Example

CreateAddOn Method
RegisterEvent Method
TypeRequiresEXE Property
TypeUsesEXE Property

Application Object



ChartTypeShutdown Method Example
This example uses the ChartTypeShutdown method of the Application object in two places. When the form 
loads, ChartTypeShutdown is activated if the Events being registered do not register (if an error occurs). Then 
the ChartTypeShutdown method completely unloads all events. When the form unloads, the 
ChartTypeShutdown method is used to completely unregister all events. For this to work, the user must have a
form already created that contains this code.
The following code needs to be in the general declarations section of the Form.

Const APPNAME = "Sample Application" ' Sets the APPNAME constant
Const CHARTTYPE = "TEST" ' Sets the CHARTTYPE constant
Dim ABC As Object

The following code needs to be in the [Form_Load] routine.

Form1.Caption = "Sample Application" ' Set title bar of sample application

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

ABC.Caption = "Sample application is now running." ' Change ABC title bar

ItFailed = False ' Set ItFailed variable to False

' Register Events with ABC FlowCharter 4.0
If (Not ABC.RegisterEvent(ABC1.VBX, APPNAME, "ChartActivateNOTIFY")) Then ItFailed = True
If (Not ABC.RegisterEvent(ABC1.VBX, APPNAME, "ObjectMovedNOTIFY", CHARTTYPE)) Then ItFailed = 
True
If (Not ABC.RegisterEvent(ABC1.VBX, APPNAME, "ObjectMoveSUBCLASS", CHARTTYPE)) Then ItFailed = 
True

' Check to see if ItFailed was set to True after registering the Events above
If (ItFailed) Then

ABC.ChartTypeShutdown CHARTTYPE, APPNAME ' Unregister all registered Events with ABC 
FlowCharter 4.0

MsgBox "Could not register events. Closing application."
ABC.Caption = "" ' Change title bar to default
End ' Close application

End If

The following code needs to in the [Form_QueryUnload] routine.

ABC.ChartTypeShutdown CHARTTYPE, APPNAME ' Unregister all registered Events with ABC 
FlowCharter 4.0

MsgBox "Unregistering events. Closing application."
ABC.Caption = "" ' Change ABC title bar
End ' Close application



Properties and Methods by Task
Click the task to display the associated properies and methods:
Tasks: Setting up the Application 
Tasks: Working with Chart Files 
Tasks: Working with Objects 
Tasks: Working with Shapes 
Tasks: Working with Lines 
Tasks: Working with Text 
Tasks: Working with Data Fields 
Tasks: Using Color 
Tasks: Customizing Menus 
Tasks: Special Programming Features 



Tasks: Setting up the Application
Task Properties/Methods
Displaying the ABC window

Visible, Activate, ArrangeIcons, CascadeCharts, TileCharts, Maximize, Minimize
Resizing and positioning the window

Bottom, Height, Left, Right, Top, Width, Restore
Changing and reading the title bar

Caption
Changing and reading the status bar

StatusBar, Hint, StatusBarVisible Property 
Displaying the field viewer, notes viewer, and shape palette

FieldViewerVisible, NoteViewerVisible, ShapePaletteVisible
Getting ABC system information

FullName, Name, Path, Version, OperatingSystem
Customizing preferences

AlignToRulers, ChannelAlignment, LineSpacingX, LineSpacingY, ShowRulers, SSSHorizontal, SSSVertical, 
SmartShapeSpacing, TouchAlignment, Preferences, LinkIndicator, LinkShadow, NoteIndicator, 
NoteShadow, ShowNodesOnLines, NumberFont, SetDefaults

Displaying help
Help

Closing ABC
Quit

Choosing the target printer
Printer

Customizing the menu
AddMenu, RemoveMenu

Customizing the toolbox
CreateAddOn, RemoveAddOn

Setting the default path
DefaultFilePath



Tasks: Working with Chart Files
Task Properties/Methods
Creating new charts

New, NewFromTemplate, Add, AddFromTemplate
Opening charts

Open, DefaultFilePath
Saving charts

HasDiskFile, ReadOnly, Saved, RevertToSaved, Save, DefaultFilePath, Export Method 
Closing charts

CloseChart, CloseAll
Activating a chart

Item, Count, ActiveChart, Name, Activate, Charts, FullName
Protecting charts

Protected, SetProtection
Linking charts

LinkedChartName, IsLinked, LinkFields, Link, LinkIndicator, LinkShadow
Launching applications

LaunchCommand, IsLaunched
Printing charts

PrintOut, PrintSelected, Printer, PrintBlankPages, PrintPreview Method 
Redrawing a chart

NoRepaint, Repaint
Adjusting the page layout

Height, MarginBottom, MarginLeft, MarginRight, MarginTop, Orientation, PageHeight, PageLayout, 
PageOrder, PageWidth, PaperSize, PrintBlankPages, Width

Displaying Master Items
UpdateDateAndTime, ChartName, Date, DateStyle, Logo, LogoPathname, MasterItems, PageNumber, 
Range, Text1, Text2, Time, PageNumberShown, Text1Shown, Text2Shown, TimeShown, LogoShown, 
ChartNameShown, DateShown, HideAll, ShowAll

Viewing a chart
PageCount, ScrollLeft, ScrollTop, ScrollPage, ScrollPosition, ZoomPercentage, FullScreen, CancelFullScreen,
ZoomWindowVisible Property 

Using guidelines
GuidelinesOn, AddHorizontalGuideline, AddVerticalGuideline, ClearGuidelines

Sizing a chart window
Maximize, Minimize, Restore, View

Changing the view magnification
View, ZoomPercentage

Setting units of measure
Units

Doing a presentation
FullScreen, CancelFullScreen

Managing objects within a chart
Align Method, ImportShape Method, MakeSameSize Method, SpaceEvenly Method 



Tasks: Working with Objects    
Task Properties/Methods
Getting an object in a chart

Count, Item, ItemFromAll, ItemFromAttachments, ItemFromLines, ItemFromFieldValue, ItemFromNumber, 
ItemFromShapes, ItemFromSelection, ItemFromText, ItemFromUniqueID, ResetSearch, Valid

Selecting objects in a chart
Selected, Select, SelectShapeType

Deselecting objects in a chart
DeselectAll

Finding the number of selected objects
SelectedLineCount, SelectedObjectCount, SelectedOtherCount, SelectedShapeCount

Identifying an object
Type, UniqueID, ShapeName

Cutting, copying, and pasting objects
Copy, Cut, Paste, PasteLink, Duplicate, Clear_, PasteSpecial, ClipboardFormatAvailable

Executing an embedded or linked object
OLE, ObjectType, DoVerb

Inserting objects from a file
InsertObjectFromFile

Moving objects
Bottom, CenterX, CenterY, Left, Top, Right, FlippedHorizontal Property, FlippedVertical Property, Rotation 
Property 

Resizing objects
Height, StretchType, Width

Restoring a bitmap
RestorePicture

Changing the display order of objects
ToBack, ToFront

Setting the current drawing position
DrawDirection, DrawPositionX, DrawPositionY

Redrawing an object
Repaint

Undoing a change
Undo, UndoAvailable

Formatting objects
ApplyDefaults Method 



Tasks: Working with Shapes    
Task Properties/Methods
Using the shape palette

CurrentShapePalette, ShapePaletteVisible, CurrentShape
Drawing shapes

DrawShape, DrawDirection, DrawPositionX, DrawPositionY, DrawSpacingX, DrawSpacingY, ShapeName, 
CurrentShape, SetDefaults

Connecting shapes with lines
DrawLine, Source, Destination, ReconnectSource, ReconnectDest, CurrentLineRouting

Moving shapes
Bottom, Left, Right, Top

Selecting shapes
SelectedShapeCount, DeselectAll, ItemFromShapes, Selected, SelectShapeType

Formatting shapes
Color, BorderColor, BorderStyle, BorderWidth, FillColor, FillPattern, ShadowColor, ShadowOffset, 
ShadowStyle, Shape, SetDefaults

Numbering shapes
NextNumber, NumberFont, Number, NumberShown, Renumber

Replacing shapes
ReplaceShape

Adding notes to shape
NoteIndicator, NoteShadow, NoteFont, NoteText, NoteTextLF

Adding text to shapes
TextAlignment, FitShapeToText, Text, TextLF, Font

Resizing shapes
Height, Width, StretchType



Tasks: Working with Lines    
Task Properties/Methods
Drawing lines

DrawFreeLine, DrawLineToOneObject, DrawLine
Connecting existing lines to shape

Source, Destination, ReconnectSource, ReconnectDest, Line_
Setting line routing

CurrentLineRouting, Type
Formatting lines

Color, SourceArrowColor, StemColor, DestArrowColor, SourceArrowSize, StemWidth, DestArrowSize, 
StemStyle, SourceArrowStyle, DestArrowStyle, Line_, LineCrossoverStyle, LineCrossoverSize, SetDefaults, 
r

Displaying nodes on connecting lines
ShowNodesOnLines, LineCrossoverStyle, LineCrossoverSize, CrossoverSize Property, CrossoverStyle 
Property 

Attaching text to lines
Line_, AttachText, AttachedToLine, UnattachFromLine, TextBlock

Deleting lines
DeleteLines, Clear_



Tasks: Working with Text    
Task Properties/Methods
Creating text blocks

DrawTextBlock, DrawPositionX, DrawPositionY
Adding text to a shape

Text, TextLF, FitShapeToText
Adding notes to a shape

NoteText, NoteTextLF, NoteFont, NoteIndicator, NoteShadow
Adding text to a line

DrawTextBlock, AttachText, AttachedToLine, UnattachFromLine
Formatting text

Size, Name, Bold, Italic, Underline, Strikethrough, Color, Opaque, TextAlignment, SetDefaults
Spell checking

Spelling
Replacing text

ReplaceText Method, 



Tasks: Working with Data Fields    
Task Properties/Methods
Adding data fields to a chart

Add, Name, Format, AccumulationMethod, Hidden, Type, FieldTemplates
Deleting data fields from a chart

DeleteField
Setting data field preference

FieldNamesHidden, FieldPlacement, FieldsOpaque, FieldsHoursPerDay, FieldsDaysPerWeek, FieldFont
Working with data field values

Value, Item, Accumulation, ItemFromFieldValue, Empty, FieldViewerVisible, FieldValues, Count, IsEmpty, 
FormattedValue

Viewing the legend
ShowLegend, Accumulation

Using linked field data
LinkFields, UpdateFields, LinkIndicator, LinkShadow, IsLinked, LinkedChartName, Link

Getting a data field
Count, Item, FieldTemplates



Tasks: Using Color    
Task Properties/Methods
Color representation

BasicColor, MakeRGB
Setting shape colors

FillColor, Color, BorderColor, ShadowColor, SetDefaults
Setting line colors

Color, SourceArrowColor, DestArrowColor, StemColor, SetDefaults
Setting text color

Color, SetDefaults



Tasks: Customizing Menus    
Task Properties/Methods
Adding a new menu

AddMenu
Getting a menu item

Count, Item
Adding a menu item

AppendItem
Deleting a menu item

DeleteItem, DeleteAll, Visible
Hiding a menu item

Visible
Changing menu text

Text
Disabling a menu item

Enabled
Checking a menu item

Checked



Tasks: Special Programming Features    
Task Properties/Methods
Displaying a wait hourglass

Hourglass
Displaying a percent gauge

PercentGaugeValue, PercentGauge, PercentGaugeCancelled, HidePercentGauge
Displaying a message

MsgBox
Using ABC Events

RegisterEvent, UnRegisterEvent, ChartTypeShutdown
Sending mail

SendMail



Chart Object
Description The Chart object is below the Chart collection. You can have multiple Chart objects. Each 

Chart object is restricted to a single PageLayout and MasterItems object, but can have 
multiple FieldTemplate and Object objects.
Properties Methods

Application Activate
ClipboardFormatAvailab
le

AddHorizontalGuideli
ne

CurrentLineRouting AddVerticalGuideline
CurrentShape Align 
CurrentShapePalette CancelFullScreen
DrawDirection Clear_
DrawPositionX ClearGuidelines
DrawPositionY CloseChart
DrawSpacingX Copy
DrawSpacingY Cut
FieldFont DeselectAll
FieldNamesHidden DrawFreeLine
FieldPlacement DrawLine
FieldsDaysPerWeek DrawLineToOneObjec

t
FieldsHoursPerDay DrawShape
FieldsOpaque DrawTextBlock
FieldTemplates Duplicate
FullName Export 
GuidelinesOn FullScreen
HasDiskFile GroupAndLink
LineCrossoverSize ImportShape 
LineCrossoverStyle InsertObjectFromFile
LinkIndicator MakeSameSize 
LinkShadow Minimize
MasterItems Maximize
Name Paste
NextNumber PasteLink
NextShapeHeight PasteSpecial
NextShapeWidth PrintOut
NoRepaint PrintPreview 
NoteIndicator PrintSelected
NoteShadow Repaint
NumberFont ReplaceText 
Objects Restore
PageCount RevertToSaved



PageLayout Save
Parent ScrollPage
Protected ScrollPosition
ReadOnly Select
Saved SelectShapeType
ScrollLeft SendMail
ScrollTop SetDefaults
SelectedLineCount SetProtection
SelectedObjectCount SpaceEvenly 
SelectedOtherCount Spelling
SelectedShapeCount ToBack
ShowLegend ToFront
ShowNodesOnLines UpdateFields
Type
TypeRequiresEXE
TypeUsesEXE
Units
Valid
View
WindowHandle
ZoomPercentage

{button Related Topics,PI(`',`IDH_RT_Chart_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical
VBX Event Variables



ClipboardFormatAvailable Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_PASTESPECIALDB');CW(`concfull')}
Usage ChartObject.ClipboardFormatAvailable (Format)
Description The ClipboardFormatAvailable property lets you find if a format is available to be pasted 

from the Windows Clipboard. The ClipboardFormatAvailable property is read only.
Data Type Integer (Boolean)
Value True means the format is available; False means the format is not available.

The values for the formats are in the following table.
Format Description
0 ABC Native
1 OLE Client Embed
2 ABC Rich Text
3 Rich Text Format (RTF)
4 Unformatted Text
5 Metafile
6 Device-Independent Bitmap
7 Bitmap
8 OLE Client Link

ABC Equivalent The ClipboardFormatAvailable property is equivalent to clicking Paste Special on the Edit 
menu and checking if a format is available.

{button Related Topics,PI(`',`IDH_RT_ClipboardFormatAvailable_Property')}



Using Special Clipboard Formats
Example

Copy Method
Cut Method
Paste Method
PasteSpecial Method

Chart Object



CurrentLineRouting Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage ChartObject.CurrentLineRouting = LineRoutingValue

Description You use the CurrentLineRouting property to find or set the type of routing for new lines. 
The CurrentLineRouting property is read/write.

Data Type Integer
Value The following table describes the values for the CurrentLineRouting property.

Value Type of Line
0 Direct
1 Right angle
2 Curved
3 Organization chart
4 Cause-and-effect

ABC Equivalent The CurrentLineRouting property is equivalent to clicking the Direct Line, Right Angle Line,
Curved Line Org Chart Line, or Cause and Effect Line tool in the Toolbox with no lines 
selected. You cannot change the type of routing for lines that have already been drawn.

{button Related Topics,PI(`',`IDH_RT_CurrentLineRouting_Property')}



Setting Line Routing
Example

Type Property (Line_ Object)

Chart Object



CurrentShape Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Shape_Palette_Overview');CW(`concfull')}

Usage ChartObject.CurrentShape = Name

Description The CurrentShape property lets you find or set the current shape so that it is the next 
shape drawn when you draw a shape. When you are setting the value, you can define it 
loosely. For example, setting its value to "dec" chooses "Decision." The CurrentShape 
property is read/write.

Data Type String
Value The name of the next shape to be drawn
ABC Equivalent The CurrentShape property is equivalent to clicking the shape you want in the Shape 

palette.

{button Related Topics,PI(`',`IDH_RT_CurrentShape_Property')}



Choosing a Shape in the Palette
Example

CurrentShape Property
DrawShape Method

Chart Object



CurrentShape Property and DrawShape Method Example
This example uses the CurrentShape property and DrawShape method of the Chart object to set the type of 
shape to be created.

Dim ABC As Object, Chart As Object, Obj1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.CurrentShape = "Decision" ' Set shape to Decision diamond
Set Obj1 = Chart.DrawShape() ' Draw Decision shape



CurrentShapePalette Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_SHAPEOPEN');CW(`concfull')}

Usage ChartObject.CurrentShapePalette = ShapePaletteName

Description You use the CurrentShapePalette property to open a Shape Palette or determine the name of 
the current Shape Palette. The name of the Shape Palette appears in the title bar of the 
palette and is not related to the filename of the palette. The CurrentShapePalette property is
read/write.

Data Type String
Value The name of the current shape palette
ABC Equivalent The CurrentShapePalette property is equivalent to clicking Subject on the Shape Palette 

Options menu and clicking the palette you want.

{button Related Topics,PI(`',`IDH_RT_CurrentShapePalette_Property')}



Using the Shape Palette
Example

CurrentShape Property
DrawShape Method

Chart Object



CurrentShapePalette Property Example
This example uses the CurrentShapePalette property of the Chart object to set the current shape palette.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.CurrentShapePalette = "Net - PC" ' Change current shape palette



DrawDirection Property
Usage ChartObject.DrawDirection = Direction

Description The DrawDirection property lets you find or set the direction for placing new shapes. The 
DrawDirection property is read/write.

Data Type Integer
Value The DrawDirection property uses the values shown in the following table.

Value Description
0 North
1 East
2 South
3 West
10 Stacked

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DrawDirection_Property')}



Drawing Shapes
Example

DrawShape Method
StretchType Property

Chart Object



DrawPositionX Property
Usage ChartObject.DrawPositionX = HorizontalDistance

Description The DrawPositionX property lets you find or set the horizontal drawing position where you 
want to place the next object, text, or line. The position you specify is used for the next 
object drawn, or the next object pasted or pasted special (if those methods do not specify a 
different position). You set the units used to measure the distance using the Units property. 
The DrawPositionX property is read/write.

Data Type Double
Value The horizontal location for the next drawing position
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DrawPositionX_Property')}



Setting the Current Drawing Position
Creating Text Blocks
Example

DrawPositionY Property
DrawSpacingX Property
DrawSpacingY Property
Units Property (Chart Object)
Units Property (Preferences Object)

Chart Object



DrawPositionX Property, DrawPositionY Property, DrawSpacingX Property, and 
DrawSpacingY Property Example
This example uses the DrawPositionX property, DrawPositionY property, DrawSpacingX property, and 
DrawSpacingY property of the Chart object to set the position and spacing for drawing shapes.

Dim ABC As Object, Chart As Object
Dim Shapes

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawPositionX = 1 ' Set X coordinate for drawing
Chart.DrawPositionY = 2 ' Set Y coordinate for drawing
Chart.DrawSpacingX = 1.5 ' Set X coordinate spacing
Chart.DrawSpacingY = 1.5 ' Set Y coordinate spacing

For Shapes = 1 To 4 ' Draw shapes
Chart.DrawShape ("Storage")

Next Shapes



DrawPositionY Property
Usage ChartObject.DrawPositionY = VerticalDistance

Description The DrawPositionY property lets you find or set the vertical drawing position where you 
want to place the next object, text, or line. The position you specify is used for the next 
object drawn, or the next object pasted or pasted special (if those methods do not specify a 
different position). You set the units used to measure the distance using the Units property. 
The DrawPositionY property is read/write.

Data Type Double
Value The vertical location for the next drawing position
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DrawPositionY_Property')}



Setting the Current Drawing Position
Creating Text Blocks
Example

DrawPositionX Property
DrawSpacingX Property
DrawSpacingY Property
Units Property (Chart Object)
Units Property (Preferences Object)

Chart Object



DrawSpacingX Property
Usage ChartObject.DrawSpacingX = Spacing

Description The DrawSpacingX property lets you find or set the horizontal spacing for the next shape 
placed. The DrawSpacingX property is read/write.

Data Type Double
Value The horizontal spacing for the next shape placed
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DrawSpacingX_Property')}



Drawing Shapes
Example

DrawPositionX Property
DrawPositionY Property
DrawSpacingY Property
Units Property (Chart Object)
Units Property (Preferences Object)

Chart Object



DrawSpacingY Property
Usage ChartObject.DrawSpacingY = Spacing

Description The DrawSpacingY property lets you find or set the vertical spacing for the next shape 
placed. The DrawSpacingY property is read/write.

Data Type Double
Value The vertical spacing for the next shape placed
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DrawSpacingY_Property')}



Drawing Shapes
Example 1
Example 2

DrawPositionX Property
DrawPositionY Property
DrawSpacingX Property
Units Property (Chart Object)
Units Property (Preferences Object)

Chart Object



FieldFont Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>procedur',`IDH_Formatting_data_fields');CW(`concfull')}

Usage ChartObject.FieldFont
Description The FieldFont property lets you find or set properties for the Font object for field text in a 

chart. All the properties of the Font object, such as bold and italic, are available through the 
FieldFont property. The FieldFont property is read only, but all the properties from the 
object it returns are read/write.

Data Type Object
Value A Font object
ABC Equivalent The FieldFont property is equivalent to clicking the Data Fields Toolbar button on the 

standard toolbar, clicking the Field Display button, and setting the font attributes in the field 
font area.

{button Related Topics,PI(`',`IDH_RT_FieldFont_Property')}



Field Options
Setting Data Field Preferences
Example

Bold Property
Color Property (Font Object)
FieldNamesHidden Property
FieldPlacement Property
FieldsDaysPerWeek Property
FieldsHoursPerDay Property
FieldsOpaque Property
Italic Property
Name Property (Font Object)
Opaque Property
Size Property
Strikethrough Property
Underline Property

Chart Object



FieldFont Property Example
This example uses the FieldFont property of the Chart object to set the style of the font used for data fields.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object
Dim Field1 As Object, Field2 As Object, FieldFontStyle As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw shapes
Set Obj2 = Chart.DrawShape("Decision")

Chart.FieldPlacement = 3 ' Position fields below shapes
Set Field1 = Chart.FieldTemplates.Add("Name") ' Add a field
Field1.Format = 0 ' Format field as text
Field1.AccumulationMethod = 0 ' No accumulation
Set Field2 = Chart.FieldTemplates.Add("Phone") ' Add a field
Field2.Format = 0 ' Format field as text
Field2.AccumulationMethod = 0 ' No accumulation

Set FieldFontStyle = Chart.FieldFont ' Set the FieldFont object
FieldFontStyle.Name = "Roman" ' Change the font
FieldFontStyle.Italic = True ' Make it italic

Obj1.FieldValues.Item("Name").Value = "Joe Smith" ' Enter field values
Obj1.FieldValues.Item("Phone").Value = "555-1212"
Obj2.FieldValues.Item("Name").Value = "Jane Doe"
Obj2.FieldValues.Item("Phone").Value = "555-1234"



FieldNamesHidden Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_FIELDPREFSDB');CW(`concfull')}

Usage ChartObject.FieldNamesHidden = {True | False}
Description The FieldNamesHidden property lets you find or set whether field names are shown. The 

FieldNamesHidden property is read/write.
Data Type Integer (Boolean)
Value True hides field names; False shows them.
ABC Equivalent The FieldNamesHidden property is equivalent to clicking the Data Fields Toolbar button on 

the standard toolbar, and selecting the Hide Field Names option (True) or deselecting the 
option (False).

{button Related Topics,PI(`',`IDH_RT_FieldNamesHidden_Property')}



Field Options
Setting Data Field Preferences
Example

FieldFont Property
FieldPlacement Property
FieldsDaysPerWeek Property
FieldsHoursPerDay Property
FieldsOpaque Property
Hidden Property

Chart Object



FieldNamesHidden Property Example
This example uses the FieldNamesHidden property of the Chart object to hide data field names.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object
Dim Field1 As Object, Field2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw shapes
Set Obj2 = Chart.DrawShape("Decision")

Chart.FieldPlacement = 3 ' Position fields below shapes
Set Field1 = Chart.FieldTemplates.Add("Name") ' Add a field
Field1.Format = 0 ' Format field as text
Field1.AccumulationMethod = 0 ' No accumulation
Set Field2 = Chart.FieldTemplates.Add("Phone") ' Add a field
Field2.Format = 0 ' Format field as text
Field2.AccumulationMethod = 0 ' No accumulation

Obj1.FieldValues.Item("Name").Value = "Joe Smith" ' Enter field values
Obj1.FieldValues.Item("Phone").Value = "555-1212"
Obj2.FieldValues.Item("Name").Value = "Jane Doe"
Obj2.FieldValues.Item("Phone").Value = "555-1234"

Chart.FieldNamesHidden = True ' Hide the field labels



FieldPlacement Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_FIELDPREFSDB');CW(`concfull')}

Usage ChartObject.FieldPlacement = Value

Description The FieldPlacement property lets you specify the field placement in relation to shapes. The
FieldPlacement property is read/write.

Data Type Integer
Value The values for the field placements are in the following table.

Value Description
0 Left
1 Right
2 Above
3 Below
4 Inside Top
5 Inside Middle

ABC Equivalent The FieldPlacement property is equivalent to clicking the Data Fields Toolbar button on the 
standard toolbar and clicking a placement location in the Field Placement area.

{button Related Topics,PI(`',`IDH_RT_FieldPlacement_Property')}



Field Options
Setting Data Field Preferences
Example

FieldFont Property
FieldNamesHidden Property
FieldsDaysPerWeek Property
FieldsHoursPerDay Property
FieldsOpaque Property

Chart Object



FieldPlacement Property Example
This example uses the FieldPlacement property of the Chart object to put data fields below shapes.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object
Dim Field1 As Object, Field2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw shapes
Set Obj2 = Chart.DrawShape("Decision")

Chart.FieldPlacement = 3 ' Position fields below shapes

Set Field1 = Chart.FieldTemplates.Add("Name") ' Add a field
Field1.Format = 0 ' Format field as text
Field1.AccumulationMethod = 0 ' No accumulation
Set Field2 = Chart.FieldTemplates.Add("Phone") ' Add a field
Field2.Format = 0 ' Format field as text
Field2.AccumulationMethod = 0 ' No accumulation

Obj1.FieldValues.Item("Name").Value = "Joe Smith" ' Enter field values
Obj1.FieldValues.Item("Phone").Value = "555-1212"
Obj2.FieldValues.Item("Name").Value = "Jane Doe"
Obj2.FieldValues.Item("Phone").Value = "555-1234"



FieldTemplates Property
Usage ChartObject.FieldTemplates
Description You use the FieldTemplates property to find the FieldTemplates collection. The 

FieldTemplates property is read only, but the properties from the collection it returns are 
read/write.

Data Type Collection object
Value The FieldTemplates collection
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_FieldTemplates_Property')}



Adding Data Fields to a Chart
Example

Chart Object



FieldsHoursPerDay Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_FIELDPREFSDB');CW(`concfull')}

Usage ChartObject.FieldsHoursPerDay = HoursPerDay

Description The FieldsHoursPerDay property lets you find or set the number of hours in a workday. 
This value is used when a field is converted between hours and days. The value can range 
from 1 to 24. For example, the value is used if you change the data field's format from hours 
to days or you link to a chart that displays data fields in a different format. The 
FieldsHoursPerDay property is read/write.

Data Type Integer
Value The number of hours in a day for fields
ABC Equivalent The FieldsHoursPerDay property is equivalent to clicking the Data Fields Toolbar button on 

the standard toolbar and entering a number in the Hours Per Day area.

{button Related Topics,PI(`',`IDH_RT_FieldsHoursPerDay_Property')}



Field Options
Setting Data Field Preferences
Example

FieldFont Property
FieldNamesHidden Property
FieldPlacement Property
FieldsDaysPerWeek Property
FieldsOpaque Property

Chart Object



FieldsHoursPerDay, FieldsDaysPerWeek Properties Example
This example uses the FieldsHoursPerDay property and FieldsDaysPerWeek property of the Chart object to 
find and change the hours per day and days per week.

Dim ABC As Object, Chart As Object
Dim Text1 As Object
Dim Shape1 As Object, Shape2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

Set Text1 = Chart.DrawTextBlock("Current Field Options") ' Place a text block

Chart.DrawPositionX = 1 ' Set horizontal position
Chart.DrawPositionY = 2.5 ' Set vertical position
Set Shape1 = Chart.DrawShape("Operation") ' Place shapes on the chart
Set Shape2 = Chart.DrawShape("Operation")
Shape1.Text = "Hours per day = " + Chart.FieldsHoursPerDay ' Display hours per day
Shape2.Text = "Days per week = " + Chart.FieldsDaysPerWeek ' Display days per week

MsgBox "Click OK to change the number of " + Chr$(13) + "hours per day and the days per week."
' Chr$(13) is Carriage Return

Chart.FieldsHoursPerDay = 24 ' Change hours per day
Chart.FieldsDaysPerWeek = 7 ' Change days per week
Shape1.Text = "Hours per day = " + Chart.FieldsHoursPerDay ' Display hours per day
Shape2.Text = "Days per week = " + Chart.FieldsDaysPerWeek ' Display days per week



FieldsDaysPerWeek Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_FIELDPREFSDB');CW(`concfull')}

Usage ChartObject.FieldsDaysPerWeek = DaysPerWeek

Description The FieldsDaysPerWeek property lets you find or set the number of days in a workweek. 
This value is used when a field is converted between days and weeks. The value can range 
from 1 to 7. For example, the value is used if you change the data field's format from days to
weeks or you link to a chart that displays data fields in a different format. The 
FieldsDaysPerWeek property is read/write.

Data Type Integer
Value The number of days in a week for fields
ABC Equivalent The FieldsDaysPerWeek property is equivalent to clicking the Data Fields Toolbar button 

on the standard toolbar and entering a number in the Days Per Week area.

{button Related Topics,PI(`',`IDH_RT_FieldsDaysPerWeek_Property')}



Field Options
Setting Data Field Preferences
Example

FieldFont Property
FieldNamesHidden Property
FieldPlacement Property
FieldsHoursPerDay Property
FieldsOpaque Property

Chart Object



FieldsOpaque Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_FIELDPREFSDB');CW(`concfull')}

Usage ChartObject.FieldsOpaque = {True | False}
Description The FieldsOpaque property lets you find or set whether fields are opaque. The 

FieldsOpaque property is read/write.
Data Type Integer (Boolean)
Value True makes the background opaque; False makes the background transparent.
ABC Equivalent The FieldsOpaque property is equivalent to clicking the Data Fields Toolbar button on the 

standard toolbar and selecting or deselecting the Opaque Fields option.

{button Related Topics,PI(`',`IDH_RT_FieldsOpaque_Property')}



Field Options
Setting Data Field Preferences
Example

FieldFont Property
FieldNamesHidden Property
FieldPlacement Property
FieldsDaysPerWeek Property
FieldsHoursPerDay Property

Chart Object



FieldsOpaque Property Example
This example uses the FieldsOpaque property of the Chart object to make data fields opaque.

Dim ABC As Object, Chart As Object
Dim Obj1 As Object, Obj2 As Object, Obj3 As Object, Obj4 As Object
Dim Field1 As Object, Field2 As Object, A As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Decision") ' Draw shapes
Set Obj2 = Chart.DrawShape("Decision")

Chart.FieldPlacement = 3 ' Position fields below shapes
Set Field1 = Chart.FieldTemplates.Add("Name") ' Add field
Field1.Format = 0 ' Format field as text
Field1.AccumulationMethod = 0 ' No accumulation
Set Field2 = Chart.FieldTemplates.Add("Phone") ' Add field
Field2.Format = 0 ' Format field as text
Field2.AccumulationMethod = 0 ' No accumulation

Obj1.FieldValues.Item("Name").Value = "Joe Smith" ' Set Field Values
Obj1.FieldValues.Item("Phone").Value = "555-1212"
Obj2.FieldValues.Item("Name").Value = "Jane Doe"
Obj2.FieldValues.Item("Phone").Value = "555-1234"

Chart.DrawPositionX = 1 ' Set draw position
Chart.DrawPositionY = 2
Set Obj3 = Chart.DrawShape("Operation") ' Draw shapes
Set Obj4 = Chart.DrawShape("Operation")
Obj3.Shape.FillColor = ABC.BLUE ' Color the shapes
Obj4.Shape.FillColor = ABC.RED

Chart.SelectShapeType ("Operation") ' Select shapes
Chart.ToBack ' Move to back

Chart.FieldsOpaque = True ' Make field text opaque



FullName Property (Chart Object)
Usage ChartObject.FullName
Description You can identify a chart's filename with or without its pathname. The FullName property of 

the Chart object returns the fully qualified pathname of the chart. (If the chart has not been 
saved, it returns the temporary name of the chart.) The FullName property is read only.

Data Type String
Value The fully qualified pathname of the chart
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_FullName_Property_Chart_Object')}



Identifying a Chart's Filename
Example

FullName Property (Application Object)
Name Property (Chart Object)

Chart Object



FullName Property (Chart Object) Example
This example uses the FullName property of the Chart object to display the name and path of a chart.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.Save ("tst_chrt") ' Save the chart
Set Chart = ABC.ActiveChart ' Reset as active chart after save
MsgBox "Path name for this chart is " + Chart.FullName ' Display full path of file



GuidelinesOn Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_GUIDELINESP');CW(`concfull')}

Usage ChartObject.GuidelinesOn = {True | False}
Description You can use guidelines to align objects. When you drag a shape near a guideline, the shape's

sides or center snap into alignment with the guideline if the Align to Rulers option is selected
in the Preferences dialog box. Guidelines let you align shapes of different sizes for an 
attractive, organized look. The guidelines do not appear in the printed chart. You use the 
GuidelinesOn property to turn showing guidelines on and off. The GuidelinesOn property 
is read/write.

Data Type Integer (Boolean)
Value True shows guidelines; False does not.
ABC Equivalent The GuidelinesOn property is equivalent to clicking Guidelines on the View menu. 

Guidelines in the chart are displayed when the menu item is selected.

{button Related Topics,PI(`',`IDH_RT_GuidelinesOn_Property')}



Identifying a Chart's Filename
Example

AddHorizontalGuideline Method
AddVerticalGuideline Method
ClearGuidelines Method

Chart Object



HasDiskFile Property
Usage ChartObject.HasDiskFile
Description You use the HasDiskFile property to find if the chart has ever been saved to disk. The 

HasDiskFile property is read only.
Data Type Integer (Boolean)
Value True means the chart has been saved to disk; False means the chart is a new chart that has 

never been saved to disk.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_HasDiskFile_Property')}



Saving Charts
Example

FullName Property (Chart Object)
Save Method
Saved Property

Chart Object



HasDiskFile Property, Save Method Example
This example uses the HasDiskFile property and the Save method of the Chart object to check if a file has ever
been saved, and save it if it has not.

Dim ABC As Object, Chart As Object, Obj1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw shape
Obj1.Text = "Unit 1" ' Add text to shape

If Not Chart.HasDiskFile Then ' Has this file been saved?
' If not, save the file
Chart.Save (InputBox$("Enter the file name"; "Save File"; ".abc"))
' If saved, display reminder
Else MsgBox "Save your work often!", 48; "Don't Forget."

End If



LinkIndicator Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Indicators');CW(`concfull')}

Usage ChartObject.LinkIndicator = Indicator

Description The link indicator (up to three characters) appears on shapes with attached links. You use 
the LinkIndicator property to find or set the indicator used for linked shapes. The 
LinkIndicator property is read/write.

Data Type String
Value Text, up to three characters, that indicates that a shape in ABC is linked
ABC Equivalent The LinkIndicator property is equivalent to clicking Options in the Tools menu, clicking the 

Indicator Options button, and entering text in the Link Indicator area.

{button Related Topics,PI(`',`IDH_RT_LinkIndicator_Property')}



Choosing Link Indicators
Indicator Options
Example

IsLinked Property
Link Method
LinkedChartName Property
LinkFields Property
LinkShadow Property

Chart Object



LinkIndicator Property Example
This example uses the LinkIndicator property of the Chart object to set the link indicator for a chart.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Link1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.CloseAll ' Close all charts
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.LinkIndicator = "*L*" ' Set the link indicator to *L*
Set Shape1 = Chart.DrawShape("Decision") ' Draw a shape
Set Link1 = Shape1.Shape.Link ' Link the shape to a new chart

MsgBox "Using the Window menu, switch to [CHART1] and notice that the shape is marked with 
'*L*'."



LinkShadow Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Indicators');CW(`concfull')}

Usage ChartObject.LinkShadow = {True | False}
Description The LinkShadow property lets you find or set whether shapes that have linked files show a 

shadow. The LinkShadow property is read/write.
Data Type Integer (Boolean)
Value True shows a shadow on shapes that have a linked file; False does not.
ABC Equivalent The LinkShadow property is equivalent to clicking Options in the Tools menu, clicking the 

Indicator Options button, and selecting or deselecting the Link Shadow option.

{button Related Topics,PI(`',`IDH_RT_LinkShadow_Property')}



Choosing Link Indicators
Line Options
Example

IsLinked Property
Link Method
LinkedChartName Property
LinkFields Property
LinkIndicator Property

Chart Object



MasterItems Property
Usage ChartObject.MasterItems
Description The MasterItems property lets you find the MasterItems objects. The MasterItems 

property is read only, but all the properties from the object it returns are read/write.
Data Type Object
Value The MasterItems objects
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_MasterItems_Property')}



Displaying Master Items
Example

ChartNameShown Property

Chart Object



Name Property (Chart Object)
Usage ChartObject.Name
Description You use the Name property to return the name of the Chart object without the path. The 

Name property is read only.
Data Type String
Value The name of the Chart object without the path
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Name_Property_Chart_Object')}



Identifying a Chart's Filename
Example

Activate Method (Chart Object)
Item Method (Charts Collection)

ActiveChart Property
Application Property
Count Property
Name Property (Application Object)
Name Property (FieldTemplate Object)
Name Property (FieldValue Object)
Name Property (Font Object)

Chart Object



Name Property (Chart Object) Example
This example uses the Name property of the Chart object to display the name of a chart.

Sub Command1_Click ()
Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.Save ("tst_chrt") ' Save the chart

MsgBox "File name for this chart is " + Chart.Name ' Display file name
End Sub



NextNumber Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_RENUMBER');CW(`concfull')}

Usage ChartObject.NextNumber = NextChartNumber

Description You use the NextNumber property to find or set the number for the next shape that is 
drawn. You can use various numbering systems, such as 1, 2, 3, or 1.1, 1.2, 1.3, or even text
strings. The number is kept in the NextNumber property as a text string, because the 
number can contain text as well as numbers. The NextNumber property is incremented 
automatically each time you draw a shape. If NextNumber contains text with a number, the 
text remains and the number is incremented. For example; "Step 5" becomes "Step 6" when 
a new shape is drawn. If NextNumber contains only text, the text remains without 
incrementing.
The Number property of the Shape object contains the actual shape number for a particular 
shape. When you draw a shape, the value in the chart's NextNumber property is stored in 
the Number property, and the NextNumber property is incremented. You can change a 
shape's number by changing the value of the shape's Number property. The NextNumber 
property is read/write.

Data Type String
Value The number for the next shape drawn
ABC Equivalent The NextNumber property is equivalent to clicking the Renumber tool in the toolbox and 

entering the number for the next shape in the Next Number text box.

{button Related Topics,PI(`',`IDH_RT_NextNumber_Property')}



Numbering Shapes
Example

Number Property
NumberShown Property
Renumber Method

Chart Object



NextNumber Property Example
This example uses the NextNumber property of the Chart object to set the number to be used by the next 
shape.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw shapes
Set Obj2 = Chart.DrawShape("Decision")

Chart.NextNumber = "100" ' Set number for next shape drawn

Set Obj1 = Chart.DrawShape("Operation") ' Draw shapes
Set Obj2 = Chart.DrawShape("Decision")



NoRepaint Property
Usage ChartObject.NoRepaint = {True | False}
Description The NoRepaint property lets you omit drawing each action. With the NoRepaint property 

set to True, you can have a 15% to 20% increase in speed. After the actions are complete, 
you update the screen using the Repaint method. Be sure to set the NoRepaint property to
False when the program finishes drawing. The NoRepaint property is read/write.

Data Type Integer (Boolean)
Value True means to omit drawing each action; False means to draw each action.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_NoRepaint_Property')}



Speeding Actions
Example

Repaint Method

Chart Object



NoteIndicator Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Indicators');CW(`concfull')}

Usage ChartObject.NoteIndicator = IndicatorText

Description The NoteIndicator property lets you find or set the text, up to three characters, that 
indicates that a shape in ABC has a note attached to it. The NoteIndicator property is 
read/write.

Data Type String
Value Text, up to three characters, that indicates that a shape in ABC has a note attached to it
ABC Equivalent The NoteIndicator property is equivalent to clicking Options in the Tools menu, clicking the 

Indicator Options button, and entering text in the Note Symbol text box.

{button Related Topics,PI(`',`IDH_RT_NoteIndicator_Property')}



Choosing Note Indicators
Indicator Options
Example

NoteShadow Property
NoteText Property
NoteViewerVisible Property
NumberFont Property

Chart Object



NoteShadow Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Indicators');CW(`concfull')}

Usage ChartObject.NoteShadow = {True | False}
Description You use the NoteShadow property to find or set whether shapes that have notes have a 

shadow. The NoteShadow property is read/write.
Data Type Integer (Boolean)
Value True means shapes with notes have a shadow; False means they do not.
ABC Equivalent The NoteShadow property is equivalent to clicking Options in the Tools menu, clicking the 

Alignment button, and selecting the Note Shadow option (True) or deselecting the option 
(False).

{button Related Topics,PI(`',`IDH_RT_NoteShadow_Property')}



Choosing Note Indicators
Indicator Options
Example

NoteIndicator Property
NoteText Property
NoteViewerVisible Property
NumberFont Property

Chart Object



NoteShadow, NoteIndicator Properties Example
This example uses the NoteShadow property and NoteIndicator property of the Chart object to add a shadow 
to shapes with a note and set the text indicator for shapes with a note.

Dim ABC As Object, Chart As Object, Shape1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.NoteShadow = True ' Apply shadow to shapes with notes
Chart.NoteIndicator = "*N*" ' Change note indicator string

Set Shape1 = Chart.DrawShape("Operation") ' Draw a shape
Shape1.Shape.NoteText = "Check with Production" ' Set note text for shape



NumberFont Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Indicators');CW(`concfull')}

Usage ChartObject.NumberFont
Description The NumberFont property lets you find or set properties for the Font object for shape 

numbers in a chart. All the properties of the Font object, such as bold and italic, are available
through the NumberFont property. The NumberFont property is read only, but all the 
properties from the object it returns are read/write.

Data Type Object
Value A Font object
ABC Equivalent The NumberFont property does not have an ABC equivalent. The style for numbers is 

determined by the style for link and note indicators.

{button Related Topics,PI(`',`IDH_RT_NumberFont_Property')}



Formatting Shape Numbers
Indicator Options
Example

Bold Property
Color Property (Font Object)
Italic Property
LinkIndicator Property
LinkShadow Property
Name Property (Font Object)
NoteIndicator Property
NoteShadow Property
ShowNodesOnLines Property
Size Property
Strikethrough Property
Underline Property

Chart Object



NumberFont Property Example
This example uses the NumberFont property of the Chart object to set the attributes for the font used for 
numbers.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object
Dim ChartNumberFont As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set ChartNumberFont = Chart.NumberFont ' Set number font object

ChartNumberFont.Name = "Roman" ' Set font attributes
ChartNumberFont.Bold = True
ChartNumberFont.Italic = True

Set Obj1 = Chart.DrawShape("Operation") ' Draw shapes
Set Obj2 = Chart.DrawShape("Decision")



Objects Property
Usage ChartObject.Objects
Description The Objects property lets you find the objects included in the Objects collection. The 

Objects property is read only, but all the properties from the object it returns are read/write.
Data Type Collection object
Value The objects included in the Objects collection
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Objects_Property')}



Identifying an Object
Formatting Shape Numbers
Example

ObjectType Property

Chart Object



PageCount Property
Usage ChartObject.PageCount = Number

Description You use the PageCount property to find the number of pages in the chart, including pages 
with no objects on them. The PageCount property is read only.

Data Type Integer
Value The number of pages in the chart
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_PageCount_Property')}



Adjusting the Page Layout
Example

ScrollLeft Property
ScrollPage Method
ScrollPosition Method
ScrollTop Property
View Property

Chart Object



PageCount Property Example
This example uses the PageCount property of the Chart object to show the number of used pages in a chart.

Dim ABC As Object, Chart As Object, Shape As Object
Dim X As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

For X = 1 To 10 ' Draw shapes
Set Shape = Chart.DrawShape("Decision")

Next X

Chart.View = 2 ' View used pages

MsgBox "Chart pages: " + Chart.PageCount + "." ' Number of pages in the chart



PageLayout Property
Usage ChartObject.PageLayout
Description You use the PageLayout property to find the PageLayout object. The PageLayout property 

is read only, but the properties from the object it returns are read/write.
Data Type Collection object
Value The PageLayout object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_PageLayout_Property')}



Adjusting the Page Layout
Example 1
Example 2

Chart Object



Protected Property
Usage ChartObject.Protected
Description You use the Protected property to find whether a chart is protected. The Protected 

property is read only.
Data Type Integer (Boolean)
Value True means that the chart is password protected; False means that the chart is not password 

protected.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ Protected_Property')}



Protecting Charts
Example

SetProtection Method

Chart Object



Protected Property Example
This example uses the Protected property of the Chart object to give a chart a password.

Dim ABC As Object, Chart As Object, Shape As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

If NOT Chart.Protected Then
Chart.SetProtection 1,"gipper" ' Set password

End If



ReadOnly Property
Usage ChartObject.ReadOnly
Description You can determine whether a chart is read only by using the ReadOnly property of the Chart

object. Read-only charts cannot be saved under the same filename. The ReadOnly property 
is read only.

Data Type Integer (Boolean)
Value True means that the chart is read only; False means that the chart is read/write.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ReadOnly_Property')}



Read Only Charts
Example

Chart Object



ReadOnly Property Example
This example uses the ReadOnly property of the Chart object to determine if a chart was opened as read only.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Chart = ABC.Open(ABC.Path + "\Samples\Famltree.abc", 1) ' Open file read only

If Chart.ReadOnly Then ' Is chart read only?
MsgBox "This file has the read-only attribute."

End If



Saved Property
Usage ChartObject.Saved
Description The Saved property determines if the Chart object in memory is the same as on disk. The 

Saved property is read only.
Data Type Integer (Boolean)
Value True means that the chart in memory is the same as the chart file on disk; False means that 

the chart in memory is not the same as the chart file on disk.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Saved_Property')}



Saving Charts
Example

Save Method

Chart Object



ScrollLeft Property
Usage ChartObject.ScrollLeft = Distance

Description You use the ScrollLeft property to find or set the left point visible in the chart. The 
ScrollLeft property is read/write.

Data Type Double
Value The left point visible in the chart
ABC Equivalent The ScrollLeft property is equivalent to clicking the horizontal scroll bar.

{button Related Topics,PI(`',`IDH_RT_ScrollLeft_Property')}



Viewing a Chart
Example

PageCount Property
ScrollPage Method
ScrollPosition Method
ScrollTop Property
View Property

Chart Object



ScrollTop Property
Usage ChartObject.ScrollTop = Distance

Description You use the ScrollTop property to find or set the top point visible in the chart. The 
ScrollTop property is read/write.

Data Type Double
Value The top point visible in the chart
ABC Equivalent The ScrollTop property is equivalent to clicking the vertical scroll bar.

{button Related Topics,PI(`',`IDH_RT_ScrollTop_Property')}



Viewing a Chart
Example

PageCount Property
ScrollPage Method
ScrollPosition Method
ScrollLeft Property
View Property

Chart Object



SelectedLineCount Property
Usage ChartObject.SelectedLineCount
Description The SelectedLineCount property lets you find the number of lines in the Chart object. The 

SelectedLineCount property contains the number of selected lines, not the number of 
selected line segments, so the routing of the lines does not affect the count. The 
SelectedLineCount property is read only.

Data Type Integer
Value The number of lines in the Chart object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_SelectedLineCount_Property')}



Finding the Total Number of Objects
Example

Count Property
SelectedObjectCount Property
SelectedOtherCount Property
SelectedShapeCount Property

Chart Object



SelectedLineCount Property Example
This example uses the SelectedLineCount property of the Chart object to find the number of lines that are 
selected in a chart.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object
Dim Obj3 As Object, Line1 As Object, Line2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Terminal") ' Draw shapes
Set Obj2 = Chart.DrawShape("Operation")
Set Obj3 = Chart.DrawShape("Decision")

Set Line1 = Chart.DrawLine(Obj1, Obj2) ' Draw lines
Set Line2 = Chart.DrawLine(Obj2, Obj3)
Chart.Select (2) ' Select all objects

MsgBox "There are " + Chart.SelectedLineCount + " line(s) selected in the chart."



SelectedObjectCount Property
Usage ChartObject.SelectedObjectCount
Description The SelectedObjectCount property lets you find the number of selected objects in the 

Chart object. It equals the sum of the values of the SelectedShapeCount, 
SelectedLineCount, and SelectedOtherCount properties. The SelectedObjectCount 
property is read only.

Data Type Integer
Value The number of selected objects in the Chart object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_SelectedObjectCount_Property')}



Finding the Total Number of Objects
Example

Count Property
SelectedLineCount Property
SelectedOtherCount Property
SelectedShapeCount Property

Chart Object



SelectedObjectCount Property Example
This example uses the SelectedObjectCount property of the Chart object to display the number of selected 
objects in a chart.

Sub Command1_Click ()
Dim ABC As Object, Chart As Object, Obj1 As Object
Dim X As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw Operation shape

For X = 1 To 3 ' Duplicate shape three times
Chart.Duplicate

Next X

Chart.Select (2) ' Select all objects

MsgBox "There are " + Chart.SelectedObjectCount + " objects selected"
End Sub



SelectedOtherCount Property
Usage ChartObject.SelectedOtherCount
Description The SelectedOtherCount property lets you find the number of objects in the Chart object 

that are not shapes or lines. It includes master item objects such as the date and headers, 
OLE objects, bitmaps, and other objects pasted into ABC. The SelectedOtherCount 
property is read only.

Data Type Integer
Value The number of objects in the Chart object that are not shapes or lines
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_SelectedOtherCount_Property')}



Finding the Total Number of Objects
Example

Count Property
SelectedLineCount Property
SelectedObjectCount Property
SelectedShapeCount Property

Chart Object



SelectedOtherCount Property Example
This example uses the SelectedOtherCount property of the Chart object to find the number objects other than 
shapes and lines that are selected in a chart.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object
Dim Obj3 As Object, Line1 As Object, Line2 As Object
Dim Text1 As Object, Text2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Terminal") ' Draw shapes
Set Obj2 = Chart.DrawShape("Operation")
Set Obj3 = Chart.DrawShape("Decision")

Set Line1 = Chart.DrawLine(Obj1, Obj2) ' Draw lines
Set Line2 = Chart.DrawLine(Obj2, Obj3)

Chart.DrawPositionX = 2 ' Set draw position
Chart.DrawPositionY = 2.5

Set Text1 = Chart.DrawTextBlock("ABC FlowCharter") ' Draw text objects
Set Text2 = Chart.DrawTextBlock("OLE2 Automation")

Chart.Select (2) ' Select all objects

MsgBox "There are " + Chart.SelectedOtherCount + " items(s) selected in the chart other than 
lines or shapes"



SelectedShapeCount Property
Usage ChartObject.SelectedShapeCount
Description The SelectedShapeCount property lets you find the number of selected shapes in the 

Chart object. The SelectedShapeCount property is read only.
Data Type Integer
Value The number of selected shapes in the Chart object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_SelectedShapeCount_Property')}



Finding the Total Number of Objects
Selecting Shapes
Example

DeselectAll Method
Select Method

Count Property
Selected Property
SelectedLineCount Property
SelectedObjectCount Property
SelectedOtherCount Property

Chart Object



SelectedShapeCount Property Example
This example uses the SelectedShapeCount property of the Chart object to find the number of shapes that are
selected in a chart.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object
Dim Obj3 As Object, Line1 As Object, Line2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Terminal") ' Draw shapes
Set Obj2 = Chart.DrawShape("Operation")
Set Obj3 = Chart.DrawShape("Decision")

Set Line1 = Chart.DrawLine(Obj1, Obj2) ' Draw lines
Set Line2 = Chart.DrawLine(Obj2, Obj3)
Chart.Select (2) ' Select all objects

MsgBox "There are " + Chart.SelectedShapeCount + " shape(s) selected in the chart."



ShowLegend Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_SHOWHIDELEGEND');CW(`concfull')}

Usage ChartObject.ShowLegend = {True | False}
Description The ShowLegend property lets you choose to show or hide the Legend. The Legend in the 

shows the accumulation of the data fields in a chart. The ShowLegend property is 
read/write.

Data Type Integer (Boolean)
Value True shows the Legend; False hides the Legend.
ABC Equivalent The ShowLegend property is equivalent to clicking Legend on the Data menu.

{button Related Topics,PI(`',`IDH_RT_ShowLegend_Property')}



Viewing the Legend
Example

Accumulation Property
AccumulationMethod Property

Chart Object



ShowLegend Property Example
This example uses the ShowLegend property of the Chart object to display the Legend.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object
Dim Field1 As Object, Field2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw shapes
Set Obj2 = Chart.DrawShape("Decision")

Chart.FieldPlacement = 3 ' Position fields below shapes
Set Field1 = Chart.FieldTemplates.Add("Name") ' Add a field
Field1.Format = 0 ' Format field as text
Field1.AccumulationMethod = False ' No accumulation
Set Field2 = Chart.FieldTemplates.Add("Phone") ' Add a field
Field2.Format = 0 ' Format field as text
Field2.AccumulationMethod = False ' No accumulation

Obj1.FieldValues.Item("Name").Value = "Joe Smith" ' Enter field values
Obj1.FieldValues.Item("Phone").Value = "555-1212"
Obj2.FieldValues.Item("Name").Value = "Jane Doe"
Obj2.FieldValues.Item("Phone").Value = "555-1234"

Chart.ShowLegend = True ' Make field legend visible



ShowNodesOnLines Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage ChartObject.ShowNodesOnLines = {True | False}
Description The ShowNodesOnLines property lets you find or set whether lines show connection 

nodes. Nodes appear where lines connect to each other. They help you distinguish between 
connected lines and lines that merely overlap. Nodes are represented by small solid circles. 
The ShowNodesOnLines property is read/write.

Data Type Integer (Boolean)
Value True means nodes are shown on lines; False means nodes are not shown on lines.
ABC Equivalent The ShowNodesOnLines property is equivalent to clicking Chart on the Format menu, 

clicking the Indicator tab, and selecting the Show Nodes On Lines option (True) or 
deselecting the option (False).

{button Related Topics,PI(`',`IDH_RT_ShowNodesOnLines_Property')}



Displaying Nodes on Connecting Lines
Example

LineCrossoverSize Property
LineCrossoverStyle Property
LinkIndicator Property
LinkShadow Property
NoteIndicator Property
NoteShadow Property
NumberFont Property

Chart Object



ShowNodesOnLines Property Example
This example uses the ShowNodesOnLines property of the Chart object to show connection nodes on lines.

Dim ABC As Object, Charts As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New
Set Chart = ABC.ActiveChart

Charts.AddFromTemplate ("causeff.aft") ' Add chart from template
Set Chart = ABC.ActiveChart ' Get the active chart

MsgBox "Click OK to view nodes on lines."

Chart.ShowNodesOnLines = True ' Show connection nodes on lines



Type Property (Chart Object)
Usage ChartObject.Type = ChartType

Description The Type property of the Chart object lets you find or set a hidden string field up to eight 
characters in length indicating the chart type. This field is never used within ABC, but is 
useful within an ABC events VBX. The Type property is read/write.

Data Type String
Value The type of a chart. The default is "" (an empty string).
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Type_Property_Chart_Object')}



Linking EXEs to Charts
Event Variables
Example

Type Property (FieldTemplate Object)
Type Property (FieldValue Object)
Type Property (Line Object)
Type Property (Object Object)

Chart Object



Units Property (Chart Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_Measure_option');CW(`concfull')}

Usage ChartObject.Units = UnitsIndicator

Description You use the Units property of the Chart object to find or set the units for measurement in 
the Chart object and all its child chart objects. In addition, the Units property specifies the 
size and distance values passed in the Preferences object. Default unit value is 0 (inches) for
each new Preferences object.

Data Type None
Value The units used for measurements are listed in the table below.

UnitsIndicator Description
0 Inches
1 Centimeters

ABC Equivalent The Units property is equivalent to dragging the inches or centimeters button from the View
category in the Customize dialog box to a toolbar, and then clicking it.

{button Related Topics,PI(`',`IDH_RT_Units_Property_Chart_Object')}



Defining Measurement Units for a Chart
Example

Units Property (Preferences Object)

Chart Object



Units Property (Chart Object) Example
This example uses the Units property of the Chart object to set the units for a chart.

Dim ABC As Object, Chart As Object
Dim ChartUnits As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

ChartUnits = Val(InputBox$("Enter 0 for inches" + Chr$(13) + "Enter 1 for centimeters",  "Chart
Units")) ' Get input;  Chr$(13) is Carriage Return

Chart.Units = ChartUnits ' Set units



View Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_VIEWTOOL');CW(`concfull')}

Usage ChartObject.View = View

Description You use the View property to find or set the view of the chart. The View property is 
read/write.

Data Type Integer
Value The value in the View property indicates the display page.

View Description
0 One to one
1 Current page
2 Used pages
3 Percentage zoom

ABC Equivalent The View property is equivalent to clicking Normal, Current Page, or Used Pages on the View
menu, or entering a value in the Zoom Percentage box on the standard toolbar.

{button Related Topics,PI(`',`IDH_RT_View_Property')}



Viewing a Chart

PageCount Property
ScrollLeft Property
ScrollPage Method
ScrollPosition Method
ScrollTop Property
ZoomPercentage Property

Chart Object

Example



View Property Example
This example uses the View property of the Chart object to set the view of a chart.

Dim ABC As Object, Chart As Object
Dim String1 As String, String2 As String, String3 As String
Dim String4 As String, String5 As String
Dim ChartView As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Set Chart object

String1 = "Choose a View type:" + Chr$(13) ' Create text for input
String2 = "0" + Chr$(9) + "OneToOne" ' Chr$(13) is Carriage Return
String3 = "1" + Chr$(9) + "CurrentPage" ' Chr$(9) is Tab
String4 = "2" + Chr$(9) + "UsedPages"
String5 = String1 + Chr$(13) + String2 + Chr$(13) + String3 + Chr$(13) + String4

ChartView = Val(InputBox$(String5; "Chart View")) ' Get input

Chart.View = ChartView ' Set view



Activate Method (Chart Object)
Usage ChartObject.Activate
Description You use the Activate method of the Chart object to pull the chart to the front of the ABC 

workspace. When multiple charts are open, this brings one to the front, or activates it.
ABC Equivalent The Activate method is equivalent to clicking the chart from the numbered list of open 

charts on the Window menu.

{button Related Topics,PI(`',`IDH_RT_Activate_Method_Chart_Object')}



Activating a Chart
Example

Activate Method (Application Object)
Item Method (Charts Collection)

ActiveChart Property
Application Property
Count Property
Name Property (Chart Object)
Visible Property (Application Object)

Chart Object



Activate Method (Chart Object) Example
This example uses the Activate method of the Chart object to bring a chart to the front of other charts.

Dim ABC As Object, Chart1 As Object, Chart2 As Object
Dim Obj1 As Object, Obj2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart1 = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart1.DrawShape("Operation") ' Draw shapes
Set Obj2 = Chart1.DrawShape("Operation")

Set Chart2 = ABC.New ' Create a new chart
Set Obj1 = Chart2.DrawShape("Decision") ' Draw shapes
Set Obj2 = Chart2.DrawShape("Decision")

Chart1.Activate ' Bring Chart1 to the front



AddHorizontalGuideline Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_GUIDELINESP');CW(`concfull')}

Usage ChartObject.AddHorizontalGuideline Position
The Position element specifies the vertical location of the guideline.

Description The ABC user can use guidelines to align objects. When dragging a shape near a guideline, 
the shape's sides or center snap into alignment with the guideline if the Align to Rulers 
option is selected in the Preferences dialog box. Guidelines let the user align shapes of 
different sizes for an attractive, organized look. The guidelines do not appear in the printed 
chart. You use the AddHorizontalGuideline method to add a horizontal guideline at the 
vertical position passed.

Data Type Double
Value None
ABC Equivalent The AddHorizontalGuideline method is equivalent to dragging a guideline from the rulers.

{button Related Topics,PI(`',`IDH_RT_AddHorizontalGuideline_Method')}



Using Guidelines
Example

AddVerticalGuideline Method
ClearGuidelines Method
GuidelinesOn Property

Chart Object



AddHorizontalGuideline Method, AddVerticalGuideline Method, and 
GuidelinesOn Property Example
This example uses the AddHorizontalGuideline method, AddVerticalGuideline method, and GuidelinesOn 
property of the Chart object to position and show guidelines.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.AddHorizontalGuideline (3) ' Place horizontal guideline at 3 units
Chart.AddVerticalGuideline (3) ' Place vertical guideline at 3 units
Chart.GuidelinesOn = True ' Show guidelines



AddVerticalGuideline Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_GUIDELINESP');CW(`concfull')}

Usage ChartObject.AddVerticalGuideline Position
The Position element specifies the horizontal location of the guideline.

Description You can use guidelines to align objects. When you drag a shape near a guideline, the shape's
sides or center snap into alignment with the guideline if the Align to Rulers option is selected
in the Preferences dialog box. Guidelines let you align shapes of different sizes for an 
attractive, organized look. The guidelines do not appear in the printed chart. You use the 
AddVerticalGuideline method to add a vertical guideline at the horizontal position passed.

Data Type Double
Value None
ABC Equivalent The AddVerticalGuideline method is equivalent to dragging a guideline from the rulers.

{button Related Topics,PI(`',`IDH_RT_AddVerticalGuideline_Method')}



Using Guidelines
Example

AddHorizontalGuideline Method
ClearGuidelines Method
GuidelinesOn Property

Chart Object



Clear_ Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_CLEAR');CW(`concfull')}

Usage ChartObject.Clear_
ObjectObject.Clear_

Description You use the Clear_ method of the Chart object to clear (delete) all selected objects. You use 
the Clear_ method of the Object object to delete the object object. This is useful in removing
a temporary object created as part of a routine using the SetDefaults method.

Data Type Integer (Boolean)
Value True means the deletion was successful; False means the deletion was not successful.
ABC Equivalent The Clear_ method is equivalent to pressing the DEL key or clicking Clear on the Edit menu.

{button Related Topics,PI(`',`IDH_RT_Clear_Method')}



Clearing Selected Objects
Speeding Actions
Example 1
Example 2

DeselectAll Method
Select Method
Selected Property
SelectShapeType Method
SetDefaults Method

Chart Object



Clear_ Method Example
This example uses the Clear_ method of the Chart object to find and delete the selected objects.

Dim ABC As Object, Chart As Object
Dim Obj1 As Object, Obj2 As Object
Dim X As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

For X = 1 To 3 ' Draw shapes
Set Obj1 = Chart.DrawShape("Document")
Set Obj2 = Chart.DrawShape("Decision")

Next X

Chart.SelectShapeType "Decision" ' Select all Decision shapes

Chart.Clear_ ' Delete selected objects



ClearGuidelines Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_GUIDELINESP');CW(`concfull')}

Usage ChartObject.ClearGuidelines
Description You can use guidelines to align objects. When you drag a shape near a guideline, the shape's

sides or center snap into alignment with the guideline if the Align to Rulers option is selected
in the Preferences dialog box. Guidelines let you align shapes of different sizes for an 
attractive, organized look. The guidelines do not appear in the printed chart. You use the 
ClearGuidelines property to delete all guidelines from the chart. There is currently no way 
to remove a single guideline.

ABC Equivalent The ClearGuidelines method is equivalent to dragging all guidelines from the chart back 
into the rulers.

{button Related Topics,PI(`',`IDH_RT_ClearGuidelines_Method')}



Using Guidelines
Example

AddHorizontalGuideline Method
AddVerticalGuideline Method
GuidelinesOn Property

Chart Object



ClearGuidelines Method Example
This example uses the ClearGuidelines method of the Chart object to clear guidelines from a chart.

Dim ABC As Object, Chart As Object, Obj1 As Object, xTime As Long

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.AddHorizontalGuideline (3) ' Place horizontal guideline at 3 units
Chart.AddVerticalGuideline (3) ' Place vertical guideline at 3 units
Chart.GuidelinesOn = True ' Show guidelines

For xTime = 1 to 100000 ' Wait a couple of seconds
Next xTime

Chart.ClearGuidelines ' Clear all guidelines



DeselectAll Method
Usage ChartObject.DeselectAll
Description You use the DeselectAll method to deselect all objects. The DeselectAll method has the 

same effect as the Select method with a value of 3.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DeselectAll_Method')}



Selecting Objects in a Chart
Selecting Shapes
Example

Clear_ Method
Select Method
Selected Property
SelectShapeType Method

Chart Object



DeselectAll Method Example
This example uses the DeselectAll property of the Chart object to deselect all selected objects in a chart.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

For X = 1 To 3 ' Draw shapes
Set Obj1 = Chart.DrawShape("Document")
Set Obj2 = Chart.DrawShape("Decision")

Next X

Chart.SelectShapeType "Decision" ' Select all Decision shapes
Chart.Cut ' Cut to Clipboard
Chart.PasteSpecial 0, , .5, 2 ' PasteSpecial with parameters

Chart.DeselectAll ' Deselect all objects



CloseChart Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_CLOSE');CW(`concfull')}

Usage ChartObject.CloseChart
Description You use the CloseChart method to close the Chart object without any prompt to save the 

chart.
ABC Equivalent The CloseChart method is equivalent to clicking Close on the File menu, except that there is

not a prompt to change a saved chart.

{button Related Topics,PI(`',`IDH_RT_CloseChart_Method')}



Closing Charts
Example

CloseAll Method
Save Method

Chart Object



Copy Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_COPY');CW(`concfull')}

Usage ChartObject.Copy
Description You use the Copy method to copy selected objects to the Windows Clipboard.
Data Type Integer (Boolean)
Value True means the copy was successful; False means the copy was not successful.
ABC Equivalent The Copy method is equivalent to clicking Copy on the Edit menu.

{button Related Topics,PI(`',`IDH_RT_Copy_Method')}



Cutting, Copying, and Pasting Objects
Example

Cut Method
Duplicate Method (Chart Object)
Paste Method
PasteSpecial Method

Chart Object



Cut Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_CUT');CW(`concfull')}

Usage ChartObject.Cut
Description You use the Cut method to cut selected objects to the Windows Clipboard.
Data Type Integer (Boolean)
Value True means the cut was successful; False means the cut was not successful.
ABC Equivalent The Cut method is equivalent to clicking Cut on the Edit menu.

{button Related Topics,PI(`',`IDH_RT_Cut_Method')}



Cutting, Copying, and Pasting Objects
Example

Copy Method
Paste Method
PasteSpecial Method

Chart Object



Cut, PasteSpecial Methods Example
This example uses the Cut method and PasteSpecial method of the Chart object to cut selected shapes to the 
Clipboard and then paste them back into the chart.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

For X = 1 To 3 ' Draw shapes
Set Obj1 = Chart.DrawShape("Process")
Set Obj2 = Chart.DrawShape("Decision")

Next X

Chart.SelectShapeType "Decision" ' Select all Decision shapes
Chart.Cut ' Cut selected shapes to the Clipboard
Chart.PasteSpecial 0, , .5, 2 ' PasteSpecial with parameters



DrawFreeLine Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_CONNECTSHAPES');CW(`concfull')}

Usage ChartObject.DrawFreeLine (HorizontalLocation, VerticalLocation)
The HorizontalLocation element is the X location of the end point of the line.
The VerticalLocation element is the Y location of the end point of the line.

Description You use the DrawFreeLine method to draw an unconnected line from the current chart 
position to a specified end point. The X and Y positions are measured from the top left corner
of the chart page. The line is not selected.

Data Type Object
Value The method returns the line object that is drawn. Both elements are doubles.
ABC Equivalent The DrawFreeLine method is equivalent to drawing a line not connected to any shapes.

{button Related Topics,PI(`',`IDH_RT_DrawFreeLine_Method')}



Setting the Current Drawing Position
Drawing Unconnected Lines
Example

DrawLine Method
DrawLineToOneObject Method

DrawPositionX Property
DrawPositionY Property
Units Property (Chart Object)
Units Property (Preferences Object)

Chart Object



DrawFreeLine Method, CurrentLineRouting Property Example
This example uses the CurrentLineRouting property and DrawFreeLine method of the Chart object to set the 
line routing and draw a line.

Dim ABC As Object, Chart As Object, Obj1 As Object
Dim Line1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw a shape

Chart.CurrentLineRouting = 2 ' Set routing to curve
Set Line1 = Chart.DrawFreeLine(4, 3) ' Draw a line from the current position



DrawLine Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_CONNECTSHAPES');CW(`concfull')}

Usage ChartObject.DrawLine (ShapeObject1, ShapeObject2 [, ExitDirection] [, EnterDirection])
The ShapeObject1 element is the first shape that the line is connected to.
The ShapeObject2 element is the second shape that the line is connected to.
The ExitDirection element, which is optional, specifies the side where the line exits the first 
shape.
The EnterDirection element, which is optional, specifies the side where the line enters the 
second shape.

Description You use the DrawLine method to draw lines that connect two shapes. You specify the two 
shapes you want to connect and, optionally, the sides of the shapes that the line connects 
to. The line is not selected.

Data Type Object. The ShapeObject1 element and ShapeObject2 element are Shape objects. The 
ExitDirection element and EnterDirection element, which are optional, are integers.

Value The new Line_ object. The following chart describes the direction values.
Value Direction
0 North
1 East
2 South
3 West

ABC Equivalent The DrawLine property is equivalent to drawing a line from one shape to another.

{button Related Topics,PI(`',`IDH_RT_DrawLine_Method')}



Drawing Lines that Connect Shapes
Example

DrawFreeLine Method
DrawLineToOneObject Method

Chart Object



DrawLine Method Example
This example uses the DrawLine method of the Chart object to draw a line between two shapes.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object, Line1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw shape
Obj1.Text = "Unit 1" ' Add text to shape
Set Obj2 = Chart.DrawShape("Decision") ' Draw shape
Obj2.Text = "Unit 2" ' Add text to shape

Set Line1 = Chart.DrawLine(Obj1, Obj2, 0, 2) ' Draw a line between two shapes

Chart.Repaint ' May be needed for some video modes



DrawLineToOneObject Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_CONNECTSHAPES');CW(`concfull')}

Usage ChartObject.DrawLineToOneObject (ShapeObject [, EnterDirection])
The ShapeObject element is the shape that the line is connected to.
The EnterDirection element, which is optional, specifies the side where the line enters the 
shape.

Description You use the DrawLineToOneObject method to draw a line from the current chart position 
to a specified shape. The line starts at the chart's current drawing position and ends at the 
shape you specify with ShapeObject. You can optionally specify the side of the shape that 
the line connects to. The line is not selected.

Data Type Object. The ShapeObject element is a Shape object. The EnterDirection element, which is 
optional, is an integer.

Value The method returns the line object that is drawn. The following table shows the values of the
EnterDirection element and their meanings.
Value Direction
0 North
1 East
2 South
3 West

ABC Equivalent The DrawLineToOneObject property is equivalent to drawing a line to a shape.

{button Related Topics,PI(`',`IDH_RT_DrawLineToOneObject_Method')}



Setting the Current Drawing Position
Drawing Lines to One Shape
Example

DrawFreeLine Method
DrawLine Method

Chart Object



DrawLineToOneObject Method Example
This example uses the DrawLineToOneObject method of the Chart object to draw a line into a shape, entering 
on the east side of the shape.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object, Line1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Decision") ' Draw a shape
Obj1.Text = "Unit 1" ' Add text to shape

Chart.DrawPositionX = 2 ' Set drawing position
Chart.DrawPositionY = 0

Set Line1 = Chart.DrawLineToOneObject(Obj1, 3) ' Draw line to Obj1, enter east

Chart.Repaint ' May be needed for some video modes



DrawShape Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_PLACESHAPES');CW(`concfull')}

Usage ChartObject.DrawShape ([ShapeName])
The ShapeName element is the optional name of the shape.

Description You use the DrawShape method to draw shapes. The line is not selected. By default, the 
DrawShape method uses the current shape in the Shape Palette. You can optionally specify 
the name of the shape you want to draw. All of the shape palettes that ship with ABC have 
names that appear in the hint line or in the bubble help when the mouse pauses over them. 
In ABC, the shape's name is defined in the Shape Properties dialog box. (See the 
documentation that ships with ABC for more information on the available palettes and 
shapes.) You can open the Shape Properties dialog box by clicking Shape Properties in the 
Palette menu of the Shape Palette. Shapes are automatically placed at the chart's current 
drawing position.

Data Type Object. The ShapeName element is a string.
Value The new object or Null if the creation failed
ABC Equivalent The DrawShape method is equivalent to clicking the Shape Tool in the toolbox, clicking the 

shape you want in the Shape Palette, and clicking in the drawing area.

{button Related Topics,PI(`',`IDH_RT_DrawShape_Method')}



Drawing Shapes
Example

CurrentShape Property
DrawPositionX Property
DrawPositionY Property
DrawSpacingX Property
DrawSpacingY Property

Chart Object



DrawTextBlock Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_TEXTBLOCKS');CW(`concfull')}

Usage ChartObject.DrawTextBlock (TextString)
The TextString element is the text you want to create.

Description You use the DrawTextBlock method to create a text block. The text appears at the current 
drawing position. The text is not selected.

Data Type Object
Value The text block that is drawn
ABC Equivalent The DrawTextBlock method is equivalent to clicking the Text Tool in the toolbox, positioning

the cursor, and typing text.

{button Related Topics,PI(`',`IDH_RT_DrawTextBlock_Method')}



Setting the Current Drawing Position
Moving Objects
Creating Text Blocks
Example

DrawPositionX Property
DrawPositionY Property

Chart Object



DrawTextBlock Method Example
This example uses the DrawTextBlock method of the Chart object to create text objects.

Dim ABC As Object, Chart As Object
Dim Text1 As Object, Text2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawPositionX = 2 ' Set draw position
Chart.DrawPositionY = 2.5

Set Text1 = Chart.DrawTextBlock("ABC FlowCharter") ' Draw text objects
Set Text2 = Chart.DrawTextBlock("OLE2 Automation")



Duplicate Method (Chart Object)
Usage ChartObject.Duplicate
Description You use the Duplicate method of the Chart object to create a duplicate of the selected 

objects. The newly created objects will be the only selected objects in the Chart after you 
call this method.

Data Type Integer (Boolean)
Value True means the duplication was successful; False means the duplication was not successful
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Duplicate_Method_Chart_Object')}



Duplicating Objects
Example

Copy Method
Duplicate Method (Object Object)
Paste Method

Chart Object



Duplicate Method (Chart Object) Example
This example uses the Duplicate method of the Chart object to create duplicates of selected shapes.

Dim ABC As Object, Chart As Object, Obj1 As Object
Dim X As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw Operation shape
Obj1.Text = "Unit 1" ' Add text to shape

Chart.Select (0) ' Select all shapes

For X = 1 To 3 ' Duplicate shape three times
Chart.Duplicate

Next X



InsertObjectFromFile Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_INSERTOBJECT');CW(`concfull')}

Usage ChartObject.InsertObjectFromFile (Filename [, AsIcon] [, AsLink])
The Filename element lets you specify the file to insert. Quotation marks should be used 
whenever long filenames or long pathnames are used.
The AsIcon element lets you paste the file as an icon.
The AsLink element lets you paste the file linked.

Description You use the InsertObjectFromFile method to insert a new OLE client object from a file into 
your chart. You can optionally add the element AsIcon to paste the file as an icon or the 
element AsLink to paste the file linked. The method returns the file that is inserted as an 
object.

Data Type Object. The Filename element is a string. The AsIcon element and AsLink element are 
integers (Boolean).

Value The object that was inserted
ABC Equivalent The InsertObjectFromFile method is equivalent to clicking Insert New Object on the Edit 

menu, clicking Create from File, selecting the file you want to insert, and clicking OK. The 
AsIcon element is equivalent to selecting the Display As Icon option. The AsLink element is 
equivalent to selecting the Link to File option.

{button Related Topics,PI(`',`IDH_RT_InsertObjectFromFile_Method')}



Using OLE Client Objects
Example

DoVerb Method
ObjectType Property
PasteLink Method
UpdateFields Method

Chart Object



InsertObjectFromFile Method Example
This example uses the InsertObjectFromFile method of the Chart object to insert a sound from a file.

Dim ABC As Object, Chart As Object
Dim objOLE As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

' Insert OLE object
Set objOLE = Chart.InsertObjectFromFile("C:\WINDOWS\TADA.WAV", True, True)



Paste Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_PASTE');CW(`concfull')}

Usage ChartObject.Paste ([HorizontalLocation] [, VerticalLocation])
The HorizontalLocation element is the horizontal location of the paste.
The VerticalLocation element is the vertical location of the paste.

Description You use the Paste method to paste selected objects from the Windows Clipboard. You can 
optionally specify a horizontal and vertical location for the paste. You set the units used for 
the location using the Units property.

Data Type Integer (Boolean)
Value True means the paste was successful; False means the paste was not successful.
ABC Equivalent The Paste method is equivalent to clicking Paste on the Edit menu.

{button Related Topics,PI(`',`IDH_RT_Paste_Method')}



Cutting, Copying, and Pasting Objects
Example

Copy Method
Cut Method
Duplicate Method (Chart Object)
PasteSpecial Method

Units Property (Chart Object)
Units Property (Preferences Object)

Chart Object



PasteSpecial Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_PASTESPECIAL');CW(`concfull')}

Usage ChartObject.PasteSpecial (Format [, AsIcon] [, HorizontalLocation] [, VerticalLocation])
The Format element lets you specify the format to use for the paste.
The optional AsIcon element lets you paste the Clipboard contents as an icon.
The optional HorizontalLocation element is the horizontal location of the paste.
The optional VerticalLocation element is the vertical location of the paste.

Description You use the PasteSpecial method to paste selected objects from the Windows Clipboard 
specifying a format. You can optionally specify that the object be pasted as an icon. You can 
optionally specify a horizontal and vertical location for the paste. You set the units for the 
location using the Units property.

Data Type Integer (Boolean)
Value True means the paste was successful; False means the paste was not successful.

The values for the formats are in the following table.
Value Format
0 ABC Native
1 OLE Client Embed
2 ABC Rich Text
3 Rich Text Format (RTF)
4 Unformatted Text
5 Metafile
6 Device-Independent Bitmap
7 Bitmap
8 OLE Client Link

ABC Equivalent The PasteSpecial method is equivalent to clicking Paste Special on the Edit menu and then 
specifying the format to use for the paste. Specifying that the object on the Clipboard be 
pasted as an icon is equivalent to selecting the Display As Icon option in the Paste Special 
dialog box.

{button Related Topics,PI(`',`IDH_RT_PasteSpecial_Method')}



Using Special Clipboard Formats
Example

Copy Method
Cut Method
Duplicate Method (Chart Object)
Paste Method

ClipboardFormatAvailable Property
Units Property (Chart Object)
Units Property (Preferences Object)

Chart Object



PasteLink Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_PASTELINK');CW(`concfull')}

Usage ChartObject.PasteLink [HorizontalLocation] [, VerticalLocation]
The optional HorizontalLocation element is the horizontal location of the paste.
The optional VerticalLocation element is the vertical location of the paste.

Description You use the PasteLink method to paste the contents of the Clipboard into the chart and link 
the file that is the source of the contents of the chart. You can optionally specify a horizontal 
and vertical location for the paste. You set the units used for the location using the Units 
property.

Data Type Integer (Boolean)
Value True means the paste link was successful; False means the paste link was not successful.
ABC Equivalent The PasteLink method is equivalent to clicking Paste Link on the Edit menu.

{button Related Topics,PI(`',`IDH_RT_PasteLink_Method')}



Using OLE Client Objects
Example

DoVerb Method
InsertObjectFromFile Method
UpdateFields Method

ObjectType Property
Units Property (Chart Object)
Units Property (Preferences Object)

Chart Object



PasteLink Method Example
This example uses the PasteLink method of the Chart object to paste link an object on the Clipboard into a 
chart. For the paste to work, there must something with an OLE Link format available in the Clipboard. For 
example, you can put an appropriate item in the Clipboard by opening a .BMP file in Paintbrush, selecting a 
section of it using the dotted rectangle tool, and clicking Copy in the Edit menu.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

If Chart.ClipboardFormatAvailable(8) Then ' Is OLE Link available in Clipboard?
Chart.PasteLink 2, 2 ' Paste Link at chart coordinates

End If



PrintOut Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_PRINT');CW(`concfull')}

Usage ChartObject.PrintOut [FromPage] [, ToPage] [, Copies] [, FitToPage] [, PrintNotes]
The FromPage element, which is optional, specifies the starting page. The default is the first 
page.
The ToPage element specifies the ending page. The default is the last page.
The Copies element, which is optional, specifies the number of copies. The default is 1.
The FitToPage element, which is optional, specifies whether to fit the entire chart to one 
page. The default is False.
The PrintNotes element, which is optional, specifies whether to print notes attached to the 
chart. The default is False.

Description You use the PrintOut method to print the Chart object.
Data Type Integer (Boolean)
Value True means that the chart was printed successfully; False means that the chart did not print 

successfully.
The elements in the PrintOut method indicate the options to use when printing.
Element Description
FromPage Integer (default is page 1)
ToPage Integer (default is last page)
Copies Integer (default is 1)
FitToPage Integer (Boolean) (default is False)
PrintNotes Integer (Boolean) (default is False)

ABC Equivalent The PrintOut method is equivalent to clicking Print on the File menu and clicking printing 
options.

{button Related Topics,PI(`',`IDH_RT_PrintOut_Method')}



Printing Charts
Printing Notes
Example

PrintSelected Method
Printer Property

Chart Object



PrintOut Method Example
This example uses the PrintOut method of the Chart object to print a chart from page 1 through page 2, with 
two copies. The chart is not made to fit to the page and notes are not printed.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Chart = ABC.Open(ABC.Path + "\Samples\Quality.abc") ' Open a chart

Chart.PrintOut 1, 2, 2, 0, 0 ' Print chart with these parameters



PrintSelected Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_PRINTDB');CW(`concfull')}

Usage ChartObject.PrintSelected [Copies] [, FitToPage] [, PrintNotes]
The Copies element, which is optional, specifies the number of copies. The default is 1.
The FitToPage element, which is optional, specifies whether to fit the entire chart to one 
page. The default is False.
The PrintNotes element, which is optional, specifies whether to print notes attached to the 
chart. The default is False.

Description You use the PrintSelected method to print the selected objects in the chart.
Data Type Integer (Boolean)
Value True means that the chart was printed successfully; False means that the chart did not print 

successfully.
The elements in the PrintSelected method indicate the options to use when printing.
Element Description
Copies Integer (default is 1)
FitToPage Integer (Boolean) (default is False)
PrintNotes Integer (Boolean) (default is False)

ABC Equivalent The PrintSelected method is equivalent to clicking Print on the File menu and clicking Print 
Range Selected.

{button Related Topics,PI(`',`IDH_RT_PrintSelected_Method')}



Printing Charts
Printing Notes
Example

PrintOut Method
Printer Property

Chart Object



PrintSelected Method Example
This example uses the PrintSelected method of the Chart object to print only the selected shapes in a chart.

Dim ABC As Object, Chart As Object
Dim Obj1 As Object
Dim Msg

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw a shape
Set Obj1 = Chart.DrawFreeLine(5, 5) ' Draw a line
Set Obj1 = Chart.DrawTextBlock("Anthropology") ' Draw a text block
Chart.Select (0) ' Select only shapes in the chart

Msg = ABC.MsgBox("When you click OK, only the shapes on the chart will print.", 64; "Printing 
soon.")
Chart.PrintSelected 1, 1, 0 ' Print 1 copy, fit to page



RevertToSaved Method
Usage ChartObject.RevertToSaved
Description Use the RevertToSaved method to revert to the last saved copy of the document, 

discarding any changes.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_RevertToSaved_Method')}



Reverting to the Last Saved Version
Example

Save Method

Chart Object



RevertToSaved Method Example
This example uses the RevertToSaved method of the Chart object to revert to the saved version of a chart.

Dim ABC As Object, Chart As Object
Const MB_YesNo = 4, IDYes = 6, IDNo = 7

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

If Chart.HasDiskFile Then ' Has the chart been saved to disk?
If MsgBox("Chart is saved. Revert to last saved?", MB_YesNo; "Revert to Saved") = IDYes Then

Chart.RevertToSaved ' Revert to last saved copy of chart
End If

End If



Save Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_SAVE');CW(`concfull')}

Usage ChartObject.Save [Path] [, FileType]
The Path element, which is optional, is a full or partial pathname and filename for the save.
The FileType element, which is optional, specifies the type of file to save.

Description You use the Save method to save the current chart to disk. If the chart name ends in .AF2 
and you do not specify a name, the chart is saved to a new file with an .AF3 extension. If you
specify a partial pathname and filename in the optional first element, the value of 
DefaultFilePath determines the path. You use the second element to specify whether to save 
the file as a chart or a template, and whether to save as a version 3.0 or 2.0 file. The default 
is to save the file as a version 3.0 chart.

Data Type Integer (Boolean)
Value True means that the chart was saved successfully; False means that the chart was not saved 

successfully.
The following table shows the possible values for the second element and their meanings.
FileType Save File As
0 Chart, version 3.0
1 Template, version 3.0
2 Chart, version 2.0
3 Template, version 2.0

ABC Equivalent The Save method is equivalent to clicking Save on the File menu and specifying a path, 
name, and type for the file.

{button Related Topics,PI(`',`IDH_RT_Save_Method')}



Saving Charts
Example

HasDiskFile Property
Saved Property

Chart Object



Save Method, CloseChart Method, and Saved Property Example
This example uses the Saved property, Save method, and CloseChart method of the Chart object to find out if 
a chart is saved, save it, and close it.

Dim ABC As Object, Chart As Object
Dim Obj1 As Object, Obj2 As Object, Line1 As Object
Const MB_YesNo = 4, IDYes = 6, IDNo = 7

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw a shape
Obj1.Text = "Unit 1" ' Add text to the shape
Set Obj2 = Chart.DrawShape("Decision") ' Draw a shape
Obj2.Text = "Unit 2" ' Add text to the shape

Set Line1 = Chart.DrawLine(Obj1, Obj2, 0, 2) ' Draw a line between two shapes

Chart.Repaint ' May be needed for some video modes

If Not Chart.Saved Then ' Is this chart saved?
Chart.Save "C:\ABC\TUTORIAL\TEST2.AF3" ' Save the chart as TEST2

End If

If MsgBox("Chart is saved. Ready to close?", MB_YesNo; "ABC FlowCharter") = IDYes Then
Chart.CloseChart ' Close the chart

End If

{button Other Example,JI(`',`IDH_HasDiskFile_Property_Example')}



ScrollPage Method
Usage ChartObject.ScrollPage PageNumber

The PageNumber element is the page to which to scroll.
Description You use the ScrollPage method to scroll the chart to a particular page.
Data Type None
Value The page to which to scroll
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ScrollPage_Method')}



Viewing a Chart

PageCount Property
ScrollLeft Property
ScrollPosition Method
ScrollTop Property
View Property

Chart Object

Example



ScrollPage Method Example
This example uses the ScrollPage method of the Chart object to scroll to the last page of a chart.

Dim ABC As Object, Chart As Object, Shape As Object
Dim X As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

For X = 1 To 10 ' Draw shapes
Set Shape = Chart.DrawShape("Decision")

Next X

Chart.ScrollPage (Chart.PageCount) ' Scroll to the last page of chart



ScrollPosition Method
Usage ChartObject.ScrollPosition LeftDistance, TopDistance

The LeftDistance element specifies the left part of the chart area to show in the window.
The TopDistance element specifies the top part of the chart area to show in the window.

Description You use the ScrollPosition method to scroll to a location in the chart.
Value The LeftDistance and TopDistance elements are each doubles.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ScrollPosition_Method')}



Viewing a Chart
Example

PageCount Property
ScrollLeft Property
ScrollPage Method
ScrollTop Property
View Property

Chart Object



ScrollPosition Method, ScrollLeft Property, and ScrollTop Property Example
This example uses the ScrollPosition method, ScrollLeft property, and ScrollTop property of the Chart object 
to scroll a chart and report on its position.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.ScrollPosition 18, 18 ' Scroll to 18 X 18

' Display Scroll positions
MsgBox "Scroll Left position = " + Chart.ScrollLeft + "." + Chr$(13) + "Scroll Top position = "
+ Chart.ScrollTop + "." ' Chr$(13) is Carriage Return



Select Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_SELECT');CW(`concfull')}

Usage ChartObject.Select (Value)
The Value element specifies what to select.

Description You use the Select method to select specified types of objects or to deselect all objects. The 
Select method with a value of 3 has the same effect as the DeselectAll method.

Value The values for the types are in the following table.
Value Action
0 Selects all shapes
1 Selects all lines
2 Selects everything
3 Deselects everything

ABC Equivalent The Select method is equivalent to clicking Select on the Edit menu and clicking Shapes (0),
Lines (1), or All (2).

{button Related Topics,PI(`',`IDH_RT_Select_Method')}



Selecting Objects in a Chart
Selecting Shapes
Example

DeselectAll Method
Selected Property
SelectShapeType Method

Chart Object



Select Method, Copy Method, Paste Method, and ClipboardFormatAvailable 
Property Example
This example uses the Select method, Copy method, ClipboardFormatAvailable property, and Paste method
of the Chart object to select a shape, copy it to the Clipboard, check the type of data in the Clipboard, and paste 
from the Clipboard.

Dim ABC As Object, Chart As Object, Obj1 As Object
Dim PasteIt

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Obj1 = Chart.DrawShape("Operation") ' Draw Operation shape
Obj1.Text = "Unit 1" ' Add text to shape

Chart.Select (0) ' Select shapes
Chart.Copy ' Copy shape to Clipboard

If Chart.ClipboardFormatAvailable(0) Then ' Is Clipboard ABC Native data?
PasteIt = Chart.Paste(2, 2) ' Paste shape

End If



SelectShapeType Method
Usage ChartObject.SelectShapeType ShapeName

The ShapeName element is a string that specifies the type of shapes to select.
Description You use the SelectShapeType method to select all shapes of a specific type, such as 

Decision (diamond) shapes.
Value The ShapeName element is a string that specifies the type of shapes you want to select.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_SelectShapeType_Method')}



Selecting Objects in a Chart
Selecting Shapes
Example

DeselectAll Method
Select Method
Selected Property

Chart Object



SelectShapeType Method Example
This example uses the SelectShapeType method of the Chart object to select shapes of a particular type.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object
Dim X As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawSpacingX = 1.5 ' Set horizontal spacing for shapes

For X = 1 To 3 ' Draw shapes
Set Obj1 = Chart.DrawShape("Document")
Set Obj2 = Chart.DrawShape("Decision")

Next X

Chart.SelectShapeType "Decision" ' Select all Decision shapes



SetProtection Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Protecting_Charts');CW(`concfull')}

Usage ChartObject.SetProtection Switch, Password
The Switch element specifies whether protection is on or off.
The Password element specifies a password for the chart.

Description You use the SetProtection method to turn protection on and off by setting a protection 
value and a password.

Data Type None
Value The Switch element is an integer (Boolean). True means the chart is protected; False means 

the chart is not protected. The Password element is a string specifying the password for the 
chart.

ABC Equivalent The SetProtection method is equivalent to clicking Protect Chart on the Tools menu and 
entering a password.

{button Related Topics,PI(`',`IDH_RT_SetProtection_Method')}



Protecting Charts
Example

Protected Property

Chart Object



SetProtection Method Example
This example uses the SetProtection method of the Chart object to set a password for a chart. After the 
program runs, you must choose Unprotect Chart on the File menu and type the password "turtle" to unprotect 
the chart.

Dim ABC As Object, Chart As Object, Shape As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.SetProtection 1,"turtle" ' Set password



Spelling Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_Spelling_Command');CW(`concfull')}

Usage ChartObject.Spelling
Description The Spelling method lets you start spell checking the chart.
ABC Equivalent The Spelling method is equivalent to clicking the text you want to check and clicking 

Spelling on the Tools menu.

{button Related Topics,PI(`',`IDH_RT_Spelling_Method')}



Checking Spelling
Example

Chart Object



Spelling Method Example
This example uses the Spelling method of the Chart object to run the Spell Checker.

Dim ABC As Object, Chart As Object
Dim Text1 As Object, Text2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawPositionX = 2 ' Set draw position
Chart.DrawPositionY = 2.5

Set Text1 = Chart.DrawTextBlock("Run the Spelll Checker") ' Draw text objects
Set Text2 = Chart.DrawTextBlock("Is this correkt?")

Chart.Spelling ' Run the Spell Checker



ToBack Method (Chart Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_Send_to_Back_Command');CW(`concfull')}

Usage ChartObject.ToBack
Description You use the ToBack method of the Chart object to move all selected objects in the chart to 

the back.
ABC Equivalent The ToBack method is equivalent to selecting objects and clicking Send To Back on the 

Arrange menu.

{button Related Topics,PI(`',`IDH_RT_ToBack_Method_Chart_Object')}



Changing the Display Order of Objects
Example

ToBack Method (Object Object)
ToFront Method (Chart Object)
ToFront Method (Object Object)

Chart Object



ToBack, ToFront Methods (Chart Object) Example
This example uses the ToBack method and ToFront method of the Chart object to move shapes to the back.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object
Dim Line1 As Object, X As Integer, A As Integer, ObjText As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.CurrentShapePalette = "BASIC - COLOR" ' Get Shape palette

Chart.DrawPositionX = 1 ' Set horizontal drawing position
Set ObjText = Chart.DrawTextBlock("TEXT") ' Draw text
ObjText.Font.Size = 72 ' Set font size
ObjText.Font.Color = ABC.RED ' Set font color

Chart.DrawSpacingX = 2 ' Set horizontal draw spacing

Chart.DrawPositionX = 1 ' Set horizontal drawing position
For A = 1 To 3

Chart.DrawPositionY = A ' Set vertical drawing position
Set Obj1 = Chart.DrawShape("Process") ' Draw shapes
Set Obj2 = Chart.DrawShape("Decision")

Next A

Chart.Select (0) ' Select shapes

Chart.ToBack ' Send to back
MsgBox "Notice your Chart has been moved to the back of the previous chart. Clicking OK will 
bring it to the front."
Chart.ToFront ' Send to front



ToFront Method (Chart Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_Bring_to_Front_Command');CW(`concfull')}

Usage ChartObject.ToFront
Description You use the ToFront method of the Chart object to move all selected objects to the front.
ABC Equivalent The ToFront method is equivalent to selecting objects and clicking To Front on the Arrange 

menu.

{button Related Topics,PI(`',`IDH_RT_ToFront_Method_Chart_Object')}



Changing the Display Order of Objects
Example

ToBack Method (Chart Object)
ToBack Method (Object Object)
ToFront Method (Object Object)

Chart Object



UpdateFields Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_FIELDUPDATE');CW(`concfull')}

Usage ChartObject.UpdateFields
Description The UpdateFields method updates all the fields for all the linked shapes in a chart so they 

reflect the values in the linked charts.
ABC Equivalent The UpdateFields method is equivalent to clicking the Data Fields Toolbar button on the 

standard toolbar and then clicking Update.

{button Related Topics,PI(`',`IDH_RT_UpdateFields_Method')}



Using OLE Client Objects
Using Linked Field Data
Example

DoVerb Method
InsertObjectFromFile Method
PasteLink Method

IsLinked Property
LinkedChartName Property
LinkFields Property
LinkIndicator Property
LinkShadow Property
ObjectType Property

LinkNOTIFY Event

Chart Object



UpdateFields Method Example
This example uses the UpdateFields method of the Chart object to update linked data fields.

Dim ABC As Object, Chart1 As Object, Chart2 As Object
Dim Obj1 As Object, Obj2 As Object, Obj3 As Object, Obj4 As Object
Dim Field1 As Object, Field2 As Object, A As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart1 = ABC.ActiveChart ' Get the active chart

Chart1.DrawSpacingX = 2 ' Set horizontal draw spacing
Set Obj1 = Chart1.DrawShape("Decision") ' Draw shapes
Set Obj2 = Chart1.DrawShape("Decision")

Chart1.FieldPlacement = 3 ' Position fields below shapes
Set Field1 = Chart1.FieldTemplates.Add("Name") ' Add a field
Field1.Format = 0 ' Format field as text

Obj1.FieldValues.Item("Name").Value = "Joe Smith" ' Set Field Values
Obj2.FieldValues.Item("Name").Value = "Jane Doe"

Obj2.Shape.LinkedChartName = "CHART2"

ABC.New ' Open a new chart
Set Chart2 = ABC.ActiveChart ' Get the active chart

Chart2.DrawSpacingX = 2 ' Set horizontal draw spacing
Set Obj3 = Chart2.DrawShape("Decision") ' Draw shapes
Set Obj4 = Chart2.DrawShape("Decision")
Set Field1 = Chart2.FieldTemplates.Add("Name") ' Add a field
Field1.Format = 0 ' Format field as text
Set Field2 = Chart2.FieldTemplates.Add("Phone") ' Add a field
Field2.Format = 0 ' Format field as text

Obj3.FieldValues.Item("Name").Value = "Smiley Johnson" ' Set Field Values
Obj3.FieldValues.Item("Phone").Value = "555-6666"
Obj4.FieldValues.Item("Name").Value = "Wanda Freedman"
Obj4.FieldValues.Item("Phone").Value = "555-7777"

Chart1.UpdateFields ' Update linked fields in Chart1



Restore Method (Chart Object){button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_RESTORE');CW(`concfull')}

Usage ChartObject.Restore
Description The Restore method of the Chart object lets you change the chart window to its previous 

size
ABC Equivalent The Restore method is equivalent to clicking the restore arrow in the upper right of the 

chart window.

{button Related Topics,PI(`',`IDH_RT_Restore_Method_Chart_Object')}



Minimizing, Maximizing, and Restoring a Window
Example

Maximize Method (Chart Object)
Minimize Method (Chart Object)
Restore Method (Application Object)

Chart Object



Minimize Method (Chart Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_MINIMIZE');CW(`concfull')}

Usage ChartObject.Minimize
Description The Minimize method of the Chart object lets you change a chart window to an icon.
ABC Equivalent The Minimize method is equivalent to clicking the chart minimize arrow in the upper right of

the chart window.

{button Related Topics,PI(`',`IDH_RT_Minimize_Method_Chart_Object')}



Minimizing, Maximizing, and Restoring a Window
Example

Maximize Method (Chart Object)
Minimize Method (Application Object)
Restore Method (Chart Object)

Chart Object



Maximize Method (Chart Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_MAXIMIZE');CW(`concfull')}

Usage ChartObject.Maximize
Description The Maximize method of the Chart object lets you change a chart window to its maximum 

size.
ABC Equivalent The Maximize method is equivalent to clicking the chart maximize arrow in the upper right 

of the chart window.

{button Related Topics,PI(`',`IDH_RT_Maximize_Method_Chart_Object')}



Minimizing, Maximizing, and Restoring a Window
Example

Maximize Method (Application Object)
Minimize Method (Chart Object)
Restore Method (Chart Object)

Chart Object



Maximize Method, Minimize Method, Restore Method (Chart Object), and 
ActiveChart Property Example
This example uses the Maximize method, Minimize method, and Restore method of the Chart object and the 
ActiveChart property of the Application object to minimize, restore, and maximize a chart window.

Dim ABC As Object, Chart As Object
Dim x, y, z

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.CloseAll ' Close all open charts

For x = 1 To 3
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart
Chart.Minimize ' Minimize the new chart

Next x

MsgBox "Click OK to restore all charts to normal size."
For y = 1 To ABC.Charts.Count ' For all charts in the collection

ABC.Charts.Item(y).Restore ' Restore each chart's window
Next y

MsgBox "Click OK to maximize all charts."
For z = 1 To ABC.Charts.Count ' For all charts in the collection

ABC.Charts.Item(z).Maximize ' Maximize each chart's window
Next z



NextShapeHeight Property
Usage ChartObject.NextShapeHeight = Height

Description The NextShapeHeight property lets you find or set the height of the next shape to be 
drawn.

Data Type Double
Value The height of the next shape to be drawn
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_NextShapeHeight_Property')}



Drawing Shapes
Example

NextShapeWidth Property

Chart Object



NextShapeHeight, NextShapeWidth Properties Example
This example uses the NextShapeHeight property and NextShapeWidth property of the Chart object to set 
the height and width of the next shape drawn.

Dim ABC As Object, Chart As Object
Dim NewShape As Object
Dim X

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

For X = 1 To 3
Set NewShape = Chart.DrawShape("Operation") ' Draw a shape
Chart.NextShapeHeight = Chart.NextShapeHeight + .25 ' Set height of next shape
Chart.NextShapeWidth = Chart.NextShapeWidth + .25 ' Set width of next shape drawn
Next X



NextShapeWidth Property
Usage ChartObject.NextShapeWidth = Width

Description The NextShapeWidth property lets you find or set the width of the next shape to be drawn.
Data Type Double
Value The width of the next shape to be drawn
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_NextShapeWidth_Property')}



Drawing Shapes
Example

NextShapeHeight Property

Chart Object



GroupAndLink Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_LINKDB');CW(`concfull')}

Usage ChartObject.GroupAndLink ([NewChartPath] [, FieldsLinked])
The NewChartPath element specifies the full pathname of the new chart. If you omit the 
element, ABC generates a default chart pathname.
The FieldsLinked element specifies whether the new chart's fields are linked to the source 
chart. If you omit the second element, ABC does not link the fields.

Description The GroupAndLink method lets you move a group of selected objects to another chart and 
replace the moved group with a shape that is linked to the chart to which the group was 
moved. The GroupAndLink method returns the shape that replaced the moved group and 
has two optional elements. After executing GroupAndLink, you can obtain the newly 
created chart object with the ActiveChart property of the Application object.

Data Type Object
Value The chart that is created. The NewChartPath element is a string. The FieldsLinked element is

a Boolean.
ABC Equivalent The GroupAndLink method is equivalent to selecting two or more shapes, clicking the Link 

button on the standard toolbar, and then selecting Group And Link in the Link dialog box.

{button Related Topics,PI(`',`IDH_RT_GroupAndLink_Method')}



Creating Group Links
Example

ActiveChart Property
Link Method
LinkIndicator Property
LinkShadow Property

Chart Object



GroupAndLink Method Example
This example uses the GroupAndLink method of the Chart object to group and link selected shapes to a new 
file.

Dim ABC As Object, Chart As Object, Obj1 As Object, Obj2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
NewPath = ABC.Path + "\Samples\NewChart.abc"

Set Chart = ABC.ActiveChart ' Set chart object
Set Obj1 = Chart.DrawShape("Operation") ' Draw operation shape
Obj1.Text = "(Linked) Shape 1" ' Add text to shape

Chart.Select (0) ' Select shape
Chart.GroupAndLink (NewPath) ' Group and link shapes to new chart

Set Obj2 = Chart.DrawShape("Decision") ' Draw shape decision shape
Obj2.Text = "(Non Linked) Shape 2" ' Add text to shape



TypeRequiresEXE Property
Usage ChartObject.TypeRequiresEXE = {True | False}
Description You can link a compiled Visual Basic EXE program file to a chart so that the EXE program 

runs automatically when you open the chart. If you set the TypeRequiresEXE property to 
True, the chart requires the EXE to open. If the linked EXE cannot be run, then the chart does
not open. The name of the EXE that is linked to a chart is constructed by adding .EXE to the 
chart Type. Note: ABC only runs one instance of a linked EXE. When a second chart that is 
linked to an already running EXE is loaded, ABC refers to the currently running EXE. It does 
not load a second copy of the EXE.
If you set either TypeRequiresEXE or TypeUsesEXE to True in a program, then you must 
also ensure that you close all charts of that Type when your program closes. You can use the 
ChartTypeShutdown method to close the charts.

Data Type Integer (Boolean)
Value True means the chart type always runs an associated program (EXE); False means it does 

not.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_TypeRequiresEXE_Property')}



Linking EXEs to Charts
Example

ChartTypeShutdown Method
Type Property (Chart Object)
TypeUsesEXE Property

Chart Object



TypeRequiresEXE, TypeUsesEXE Properties Example
This example uses the TypeRequiresEXE property and the TypeUsesEXE property of the Chart object to 
require or permit use of an executable program.

The following code is placed in the declarations section.

Const CHARTTYPE = "PROJECT1"
Const APPNAME = "Form1"

The following code is placed in the form.

Dim ABC As Object, Chart As Object
Dim ChartUnits As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Chart = ABC.ActiveChart
Chart.DrawShape ("Decision") ' Draw a decision shape
Chart.DrawTextBlock "This chart requires that 'Form1' be loaded when this chart is opened."
Chart.Type = CHARTTYPE ' Sets the Chart Type to the constant
' Require that "PROJECT1" be loaded when this chart is opened
Chart.TypeRequiresEXE = True
' Load the CHARTTYPE when charts created with this application are opened
Chart.TypeUsesEXE = True
MsgBox "Save this chart. Close ABC. Switch to Visual Basic and stop the running application. 
Make the stopped application an .EXE. Close Visual Basic and load ABC FlowCharter. Open the 
chart you saved."

The following code is placed in the QueryUnload section of the form.

x = ABC.ChartTypeShutdown(CHARTTYPE, APPNAME)



TypeUsesEXE Property
Usage ChartObject.TypeUsesEXE = {True | False}
Description You can link a compiled Visual Basic EXE program file to a chart so that the EXE program 

attempts to run when you open the chart. If you set the TypeUsesEXE property to True, 
then the chart attempts to run the linked EXE when it opens. If the EXE cannot be run, the 
chart still opens. The name of the EXE that is linked to a chart is constructed by adding .EXE 
to the chart Type. Note: ABC only runs one instance of a linked EXE. When a second chart 
that is linked to an already running EXE is loaded, ABC refers to the currently running EXE. It 
does not load a second copy of the EXE.
If you set either TypeRequiresEXE or TypeUsesEXE to True in a program, then you must 
also ensure that you close all charts of that Type when your program closes. You can use the 
ChartTypeShutdown method to close the charts.

Data Type Integer (Boolean)
Value True means the chart type attempts to runs an associated program (EXE); False means it 

does not.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_TypeUsesEXE_Property')}



Linking EXEs to Charts
Example

ChartTypeShutdown Method
Type Property (Chart Object)
TypeRequiresEXE Property

Chart Object



LineCrossoverSize Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage ChartObject.LineCrossoverSize = RelativeSize

Description The LineCrossoverSize property lets you find or set the size of the crossover when one line
crosses of another. The setting applies to bunny hops and broken lines, but has no effect 
when the crossover style is solid lines. (See the LineCrossoverStyle property for information 
on the available styles.) The LineCrossoverSize property is read/write.

Data Type Integer
Value The values for the relative sizes for bunny hop crossovers are in the following table. The 

same relative sizes apply when the style is broken lines.
RelativeSize Description

0  Small

1  Medium

2  Large
Value The relative size of the crossover when one line crosses another
ABC Equivalent The LineCrossoverSize property is equivalent to clicking the Crossovers button on the 

Formatting bar, clicking the Line Options button, and dragging the slider in the Crossovers 
section to set the size of the crossover.

{button Related Topics,PI(`',`IDH_RT_LineCrossoverSize_Property')}



Line Options
Setting Line Crossovers
Example

LineCrossoverStyle Property
ShowNodesOnLines Property

Chart Object



LineCrossoverStyle Property and LineCrossoverSize Property Example
This example uses the LineCrossoverStyle property and LineCrossoverSize property of the Chart object to 
set the style and size used when one line crosses another.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.New ' Make a new chart

Chart.LineCrossoverStyle = 1 ' Set style to broken lines
Chart.LineCrossoverSize = 2 ' Set size to large
Chart.MasterItems.HideAll ' Get Master Items out of the way

Chart.DrawPositionX = 1 ' Draw 2 shapes and connect...
Chart.DrawPositionY = 2 ' ... them with a line
Set Shape1 = Chart.DrawShape
Chart.DrawPositionX = 4
Set Shape2 = Chart.DrawShape
Chart.DrawLine Shape1, Shape2

Chart.DrawPositionX = 1 ' Draw 2 more shapes and connect...
Chart.DrawPositionY = 1 ' ... them with an overlapping line
Set Shape1 = Chart.DrawShape
Chart.DrawPositionX = 3
Chart.DrawPositionY = 3
Set Shape2 = Chart.DrawShape
Chart.DrawLine Shape1, Shape2



LineCrossoverStyle Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage ChartObject.LineCrossoverStyle = Style

Description The LineCrossoverStyle property lets you find or set the style of the crossover when one 
line crosses another. The LineCrossoverStyle property is read/write.

Data Type Integer
Value The values for the styles are in the following table.

Style Description

0  Bunny hops

1  Broken lines

2  Solid lines
Value The style when one line crosses another
ABC Equivalent The LineCrossoverStyle property is equivalent to clicking the Crossovers button on the 

Formatting bar, clicking the Line Options button, and clicking a crossover style.

{button Related Topics,PI(`',`IDH_RT_LineCrossoverStyle_Property')}



Line Options
Setting Line Crossovers
Example

LineCrossoverSize Property
ShowNodesOnLines

Chart Object



ZoomPercentage Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_VIEWZOOMDB');CW(`concfull')}

Usage ChartObject.ZoomPercentage = Percentage

Description The ZoomPercentage property lets you find or set the view of the current chart as a 
percentage of actual size. The ZoomPercentage property is read/write.

Data Type Integer
Value The view of the current chart as a percentage of actual size. The ZoomPercentage property 

can be from 25 to 400 (25% to 400%).
ABC Equivalent The ZoomPercentage property is equivalent to entering a value in the Zoom Percentage 

box on the standard toolbar.

{button Related Topics,PI(`',`IDH_RT_ZoomPercentage_Property')}



Viewing a Chart
Example

View property

Chart Object



ZoomPercentage Properties Example
This example uses the ZoomPercentage property of the Chart object to change the view of the current chart.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Chart.ZoomPercentage = 50 ' Set zoom to 50%



SendMail Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_SENDMAIL');CW(`concfull')}

Usage ChartObject.SendMail
Description The SendMail method creates a new e-mail message with the chart object as an 

attachment. The user addresses the e-mail and creates a message as he or she usually does.
The SendMail method uses the MAPI e-mail system and is compatible with Microsoft Mail.

Data Type Integer (Boolean)
Value True means the e-mail message was created successfully; False means the creation was not 

successful.
ABC Equivalent The SendMail method is equivalent to clicking Send on the File menu.

{button Related Topics,PI(`',`IDH_RT_SendMail_Method')}



Sending Electronic Mail
Example

Chart Object



SendMail Method Example
This example uses the SendMail method of the Chart object to launch a new e-mail message with the chart 
attached. The user must address the e-mail and create a message as he or she usually does.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Chart.SendMail ' Launches a new e-mail with this chart attached



SetDefaults Method
Usage ChartObject.SetDefaults DefaultObject

The DefaultObject element is an object that has the properties that you want to be the new 
defaults.

Description The SetDefaults method sets the defaults for subsequent objects. The DefaultObject is a 
Shape, Line_, or TextBlock object. Subsequent objects of that type have the defaults you set.
The following table lists the defaults that you set when you use the SetDefaults method.
Object Type Defaults Set
Shape Border color, border style, border width, fill color, fill pattern, shadow offset, 

shadow color, numbers on or off, font properties, text alignment
Line_ Color, width, style, source arrow size, source arrow style, source arrow color, 

destination arrow size, destination arrow style, destination arrow color
TextBlock Font properties, text alignment

Data Type Integer (Boolean)
Value True means the defaults were created successfully; False means the defaults were not 

created successfully.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_SetDefaults_Method')}



Setting Defaults
Speeding Actions
Example

Chart Object



SetDefaults, Clear_ Methods Example
This example uses the SetDefaults method of the Chart object and the Clear_ method of the Object object to 
set the defaults for shapes using a dummy object and then delete the object.

Dim ABC As Object
Dim Chart As Object
Dim Obj As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

    Set Obj = Chart.DrawShape ' Create a dummy shape to hold the defaults

Obj.Shape.NumberShown = True ' Turn shape numbering on and set...
Obj.Shape.FillColor = ABC.GRAY ' ...all newly drawn shapes to gray...
Obj.Shape.ShadowColor = ABC.DK_Gray ' ...with dark gray shadows
Obj.Shape.ShadowStyle = 1

Chart.SetDefaults Obj.Shape ' Set the defaults for newly draw shapes
Obj.Clear_ ' Clear the dummy Object



FullScreen Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_Full_Screen');CW(`concfull')}

Usage ChartObject.FullScreen
Description The FullScreen method shows the chart on the full screen without menus or buttons. Use 

the CancelFullScreen method to return to the previous view.
Data Type Integer (Boolean)
Value True means the chart was shown successfully; False means the chart was not shown 

successfully.
ABC Equivalent The FullScreen method is equivalent to clicking Full Screen on the View menu.

{button Related Topics,PI(`',`IDH_RT_FullScreen_Method')}



Giving a presentation
Example

CancelFullScreen Method

Chart Object



FullScreen Method and CancelFullScreen Method Example
This example uses the FullScreen and CancelFullScreen methods of the Chart object to show two charts full 
screen without menus or buttons and then cancel the view and return to the previous view.

Dim ABC As Object, Chart1 As Object, Chart2 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart1 = ABC.New ' Create a new chart
Set Chart2 = ABC.Open (ABC.Path + "\Samples\Quality.abc") ' Open a chart file
Chart1.FullScreen ' Show the first chart full screen
Chart2.FullScreen ' Show the second chart full screen
Chart2.CancelFullScreen ' Return to the previous view



CancelFullScreen Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Full_Screen');CW(`concfull')}

Usage ChartObject.CancelFullScreen
Description The CancelFullScreen method returns a chart to its previous view after you have used the 

FullScreen method to show it on the full screen without menus or buttons.
Data Type Integer (Boolean)
Value True means the chart was shown successfully; False means the chart was not shown 

successfully.
ABC Equivalent The CancelFullScreen method is equivalent to pressing Esc to leave the full screen view.

{button Related Topics,PI(`',`IDH_RT_CancelFullScreen_Method')}



Giving a presentation
Example

FullScreen Method

Chart Object



Charts Collection
Description The Charts collection is below the Application object. Below the Charts collection are the 

Chart objects. You can have multiple Chart objects in the Chart collection.

Properties Methods

Application Add
Count AddFromTemplate
Parent CloseAll

Item
Open

{button Related Topics,PI(`',`IDH_RT_Charts_Collection')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



Add Method (Charts Collection) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_New_Command');CW(`concfull')}

Usage ChartsCollection.Add
Description You use the Add method of the Charts collection to create a new chart with default 

attributes and automatically add it to the collection.
Data Type Object
Value The chart that is created
ABC Equivalent The Add method is equivalent to choosing the New command in the File menu.

{button Related Topics,PI(`',`IDH_RT_Add_Method_Charts_Collection')}



Creating New Charts
Example

Add method (FieldTemplates Collection)
AddFromTemplate Method
New Method
NewFromTemplate Method

Charts Collection



Add, AddFromTemplate, CloseAll Methods (Charts Collection) Example
This example uses the Add method, AddFromTemplate method, and CloseAll method of the Charts collection 
to add charts, add charts using templates, and close all charts.

Dim ABC As Object, Charts As Object
Dim Shape As Object, X As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

For X = 1 To 3 ' Add charts to the collection
Charts.Add

Next X

Charts.AddFromTemplate ("causeff.aft") ' Add a chart using a template

MsgBox "There are " + Charts.Count + " charts open." ' Count the charts

Charts.CloseAll ' Close all charts in collection



AddFromTemplate Method
Usage ChartsCollection.AddFromTemplate (TemplateName)

The TemplateName element is the path and name of the template to use to create the chart.
Quotation marks should be used whenever long filenames or long pathnames are used.

Description You use the AddFromTemplate method to create a new chart based on the specified chart 
template name. If TemplateName file cannot be loaded for any reason, the returned 
Chart.Valid is False.

Data Type Object
Value The chart that is created
ABC Equivalent The AddFromTemplate method is equivalent to clicking Open on the File menu, choosing 

file type AFT, then saving the chart as file type ABC.

{button Related Topics,PI(`',`IDH_RT_AddFromTemplate_Method')}



Creating New Charts
Example

Add Method (Charts Collection)
New Method
NewFromTemplate Method

Charts Collection



Item Method (Chart Objects Collection)    
Usage ChartsCollection.Item ({PathName | Number})

The PathName element is a string indicating the full path and executable name of the chart. 
Quotation marks should be used whenever long filenames or long pathnames are used.
The Number element is the chart's ordering position within the collection.

Description The Item method of the Charts collection lets you retrieve a chart from the Charts collection.
The method returns a nonvalid chart object if the specified chart object does not exist.

Data Type Object
Value The Chart object
ABC Equivalent The Item method of the Charts collection is equivalent to opening the Window menu and 

choosing the chart from the numbered list of open charts.

{button Related Topics,PI(`',`IDH_RT_Item_Method_Charts_Collection')}



Activating a Chart
Example

Activate Method (Chart Object)
Item Method (FieldTemplates Collection)
Item Method (FieldValues Collection)
Item Method (Menu Collection)
Item Method (Objects Collection)

ActiveChart Property
Application Property
Count Property
Name Property (Chart Object)

Charts Collection



Item Method (Charts Collection) Example
This example uses the Item method of the Charts collection to retrieve all items in a chart.

Dim ABC As Object, Chart As Object
Dim Everything As Object
Dim CurrentShape As Object, CurrentItem As Object
Dim X, Y

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

For X = 1 To 5
Set CurrentShape = Chart.DrawShape ' Draw a shape

Next X

MsgBox "Click OK to turn all items in the chart red."
Set Everything = Chart.Objects
For Y = 1 To Everything.Count ' For all objects in the chart

Set CurrentItem = Everything.Item(Y) ' Get the next item
CurrentItem.Color = ABC.RED ' Make the item red

Next Y

{button Other Example,PI(`',`IDH_Open_Method_Example2')}



ABC Events
AppQuitNOTIFY
AppQuitSUBCLASS
AppMenuSUBCLASS
AppMenuHintSUBCLASS
AppMenuPopupSUBCLASS
ChartActivateNOTIFY
ChartChangeNOTIFY
ChartCloseSUBCLASS
ChartDeActivateNOTIFY 
ChartNewNOTIFY
ChartOpenNOTIFY
ChartPasteNOTIFY
DeleteSUBCLASS
DoubleClickSUBCLASS
ExclusiveSelectionNOTIFY
FieldValueChangedNOTIFY
LinkNOTIFY
NewLineNOTIFY
NewShapeNOTIFY
ObjectClickSUBCLASS
ObjectFontChangeNOTIFY
ObjectLineAttachNOTIFY
ObjectLineDeAttachNOTIFY Event 
ObjectMovedNOTIFY
ObjectMoveSUBCLASS
ObjectSizedNOTIFY
ObjectSizeSUBCLASS
ObjectTextChangedNOTIFY
ReplaceShapeNOTIFY
SpecialKeySUBCLASS

{button Related Topics,PI(`',`IDH_RT_ABC_Events')}



ChartTypeShutdown method
RegisterEvent method
UnRegisterEvent method



AppQuitNOTIFY Event
Description The AppQuitNOTIFY event occurs when ABC is closed. The AppQuitNOTIFY event 

procedure can be used for final actions that you want your program to perform before it 
closes. If you want the Visual Basic application to close when ABC does, put a Visual Basic 
End statement in this procedure.

{button Related Topics,PI(`',`IDH_RT_AppQuitNOTIFY_Event')}



When ABC Closes



AppQuitSUBCLASS Event
Description The AppQuitSUBCLASS event occurs when a request is made to close ABC. The user can 

request that ABC close by a choosing Exit in the ABC File menu, pressing ALT+F4, or double 
clicking the ABC window Control box. The AppQuitSUBCLASS event procedure is triggered 
before ABC closes. You can prevent ABC from closing by setting the ABC1 object Override 
property to True.

{button Related Topics,PI(`',`IDH_RT_AppQuitSUBCLASS_Event')}



When ABC Closes



AppMenuSUBCLASS Event
Description The AppMenuSUBCLASS event occurs when the user chooses an item on an add-on menu. 

The menu item object that was chosen is passed to the event procedure in the MenuItem 
variable.

{button Related Topics,PI(`',`IDH_RT_AppMenuSUBCLASS_Event')}



When MenuItems Are Chosen



AppMenuHintSUBCLASS Event
Description The AppMenuHintSUBCLASS event occurs when the user moves the menu cursor to an 

item on an add-on menu. The AppMenuHintSUBCLASS event procedure is triggered before
ABC highlights the menu item. The menu item object to be highlighted is passed to the 
event procedure in the MenuItem variable.

{button Related Topics,PI(`',`IDH_RT_AppMenuHintSUBCLASS_Event')}



When MenuItems Are Highlighted



AppMenuPopupSUBCLASS Event    
Description The AppMenuPopupSUBCLASS event occurs when the user opens an add-on menu by 

clicking the menu's name. Add-on menus are created with the AddMenu method of the 
Application object. The AppMenuPopupSUBCLASS event procedure is triggered before 
ABC displays the add-on menu. The Menu object about to open is passed to the event 
procedure in the Menu variable.
Because the AppMenuPopupSUBCLASS event is triggered before the add-on menu opens,
you can use this event procedure to determine whether any items on the add-on menu 
should be disabled (gray) or checked. A menu item is disabled by setting the Enabled 
property of the MenuItem object to False. A menu item is checked by setting the Checked 
property of the MenuItem object to True.

{button Related Topics,PI(`',`IDH_RT_AppMenuPopupSUBCLASS_Event')}



When Add-On Menus Open



ChartActivateNOTIFY Event
Description The ChartActivateNOTIFY event occurs when a chart is activated when a user clicks on it, 

chooses it from the Window menu or the Chart's System Menu Next, etc. The 
ChartActivateNOTIFY event procedure is triggered following the activation of the chart. 
The activated chart object is passed to the event procedure in the Chart object variable.

{button Related Topics,PI(`',`IDH_RT_ChartActivateNOTIFY_Event')}



When Charts Are Activated
ChartDeActivateNOTIFY Event 



ChartDeActivateNOTIFY Event
Description The ChartDeActivateNOTIFY event occurs when a chart loses focus because a different 

chart is activated. The ChartDeActivateNOTIFY event procedure is triggered following the 
loss of focus. (It is not triggered when the chart closes.) The chart object is passed to the 
event procedure in the Chart object variable.

{button Related Topics,PI(`',`IDH_RT_ChartDeActivateNOTIFY_Event')}



When Charts Are Activated
ChartActivateNOTIFY Event 



ChartChangeNOTIFY Event
Description The ChartChangeNOTIFY event occurs when a chart is changed in any way. The 

ChartChangeNOTIFY event procedure is triggered following the changing of the chart. The 
changed chart object is passed to the event procedure in the Chart object variable.



When Charts Change



ChartCloseSUBCLASS Event
Description The ChartCloseSUBCLASS event occurs when the user closes a chart by choosing Close in 

the ABC File menu. The ChartCloseSUBCLASS event procedure is triggered before the 
closing of the chart. The chart object that is about to close is passed to the event procedure 
in the Chart object variable.

{button Related Topics,PI(`',`IDH_RT_ChartCloseSUBCLASS_Event')}



When Charts Close



ChartNewNOTIFY Event
Description The ChartNewNOTIFY event occurs when the user creates a new chart by choosing New in 

the File menu of ABC. The ChartNewNOTIFY event procedure is triggered following the 
creation of the new chart. The new chart object is passed to the event procedure in the 
Chart object variable.

{button Related Topics,PI(`',`IDH_RT_ChartNewNOTIFY_Event')}



When New Charts Are Created



ChartOpenNOTIFY Event
Description The ChartOpenNOTIFY event occurs when the user opens a new chart file by choosing 

Open in the File menu of ABC. The ChartOpenNOTIFY event procedure is triggered 
following the successful opening of the chart file. The opened chart object is passed to the 
event procedure in the Chart object variable.

{button Related Topics,PI(`',`IDH_RT_ChartOpenNOTIFY_Event')}



When Charts Open



ChartPasteNOTIFY Event
Description The ChartPasteNOTIFY event occurs when a user pastes something into a chart by 

choosing Paste in the Edit menu of ABC. The ChartPasteNOTIFY event procedure is 
triggered following the paste. The chart object is passed to the event procedure in the Chart 
object variable.

{button Related Topics,PI(`',`IDH_RT_ChartPasteNOTIFY_Event')}



When Charts Are Pasted



DeleteSUBCLASS Event
Description The DeleteSUBCLASS event occurs when one or more Objects are deleted. The user 

deletes Objects by selecting the Objects and pressing DEL or choosing Clear from the Edit 
menu. The DeleteSUBCLASS event procedure is triggered before ABC performs the 
deletion. The Object to be deleted first is passed to the event procedure in the Object 
variable, and the chart in which the Object is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_DeleteSUBCLASS_Event')}



When Objects Are Deleted



DoubleClickSUBCLASS Event
Description The DoubleClickSUBCLASS event occurs when the user double clicks a Shape object. The 

DoubleClickSUBCLASS event procedure is triggered before ABC shows the Shape as 
selected. The clicked Shape is passed to the event procedure in the Object variable, and the 
chart in which the shape is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_DoubleClickSUBCLASS_Event')}



When Shapes Are Double Clicked



ExclusiveSelectionNOTIFY Event
Description The ExclusiveSelectionNOTIFY event occurs when the user selects a single Object object. 

The ExclusiveSelectionNOTIFY event procedure is triggered after ABC shows the Object as
selected. The selected Object is passed to the event procedure in the Object variable, and 
the chart in which the Object is located is passed in the Chart variable. Note: If the user 
selects more than one object, the ExclusiveSelectionNOTIFY event is not activated.

{button Related Topics,PI(`',`IDH_RT_ExclusiveSelectionNOTIFY_Event')}



When Objects Are Selected



FieldValueChangedNOTIFY Event
Description The FieldValueChangedNOTIFY event occurs when the user changes a FieldValue object. 

The FieldValueChangedNOTIFY event procedure is triggered after ABC changes the 
FieldValue. The FieldValue that was changed is passed to the event procedure in the 
FieldValue variable, the Object that owns the field is passed in the Object variable, and the 
chart in which the Object is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_FieldValueChangedNOTIFY_Event')}



When Field Values Change



LinkNOTIFY Event
Description The LinkNOTIFY event occurs when a chart file is opened by double clicking the object to 

which it is linked. The LinkNOTIFY event procedure is triggered following the successful 
opening of the chart file. The chart object from which the linked chart was opened (the 
source chart) is passed to the event procedure in the Chart object variable. The linked chart 
object (the chart just opened) can be obtained using the ActiveChart property of the 
Application object. The Object that was double clicked in the source chart to open the linked 
chart is passed to the event procedure in the Object object variable.

{button Related Topics,PI(`',`IDH_RT_LinkNOTIFY_Event')}



When Linked Charts Open

IsLinked Property
Link Method



NewLineNOTIFY Event
Description The NewLineNOTIFY event occurs when the user draws a new Line object. The 

NewLineNOTIFY event procedure is triggered after ABC draws the Line. The drawn Line is 
passed to the event procedure in the Object variable, and the chart in which the Line is 
located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_NewLineNOTIFY_Event')}



When Lines Are Drawn



NewShapeNOTIFY Event
Description The NewShapeNOTIFY event occurs when the user draws a new Shape object. The 

NewShapeNOTIFY event procedure is triggered after ABC draws the Shape. The drawn 
Shape is passed to the event procedure in the Object variable, and the chart in which the 
Shape is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_NewShapeNOTIFY_Event')}



When Shapes Are Drawn



ObjectClickSUBCLASS Event
Description The ObjectClickSUBCLASS event occurs when the user clicks an object. The 

ObjectClickSUBCLASS event procedure is triggered before ABC shows the Object as 
selected. The clicked Object is passed to the event procedure in the Object variable, and the 
chart in which the Object is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_ObjectClickSUBCLASS_Event')}



When Objects Are Clicked



ObjectFontChangeNOTIFY Event
Description The ObjectFontChangeNOTIFY event occurs when the user changes the font of one or 

more Text objects. The ObjectFontChangeNOTIFY event procedure is triggered after ABC 
displays the Text objects in the changed font. The Text object that was changed first is 
passed to the event procedure in the Object variable, and the chart in which the text is 
located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_ObjectFontChangeNOTIFY_Event')}



When Fonts Change



ObjectLineAttachNOTIFY Event
Description The ObjectLineAttachNOTIFY event occurs when the user attaches a line to an Object. 

The ObjectLineAttachNOTIFY event procedure is triggered after ABC attaches the Line. 
The Object to which the line is attached is passed to the event procedure in the Object 
variable, the line is passed in the Object2 variable, and the chart in which the Object is 
located is passed in the Chart variable.
The event is also triggered when a shape is dropped on a line creating new connections.
Object in this case only means shapes, not textblocks.

{button Related Topics,PI(`',`IDH_RT_ObjectLineDeAttachNOTIFY_Event')}



When Lines Attach



ObjectLineDeAttachNOTIFY Event
Description The ObjectLineDeAttachNOTIFY event occurs when the user detaches a line from an 

Object. The ObjectLineDeAttachNOTIFY event procedure is triggered after ABC detaches 
the Line. The Object to which the line is attached is passed to the event procedure in the 
Object variable, the line is passed in the Object2 variable, and the chart in which the Object 
is located is passed in the Chart variable.
The event is also triggered when a shape is deleted from a line connecting two other shapes.
Object in this case only means shapes, not textblocks.

{button Related Topics,PI(`',`IDH_RT_ObjectLineDeAttachNOTIFY_Event')}



 When Lines Attach
ObjectLineAttachNOTIFY event 



ObjectMovedNOTIFY Event
Description The ObjectMovedNOTIFY event occurs when an Object object is moved. The 

ObjectMovedNOTIFY event procedure is triggered after ABC has moved the Object. The 
Object that was moved is passed to the event procedure in the Object variable, and the 
chart in which the Object is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_ObjectMovedNOTIFY_Event')}



When Objects Move



ObjectMoveSUBCLASS Event
Description The ObjectMoveSUBCLASS event occurs when the user starts to move an Object object. 

The ObjectMoveSUBCLASS event procedure is triggered before ABC initiates any move 
behavior. The Object about to move is passed to the event procedure in the Object variable, 
and the chart in which the Object is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_ObjectMoveSUBCLASS_Event')}



When Objects Move



ObjectSizedNOTIFY Event
Description The ObjectSizedNOTIFY event occurs when an Object object is resized. The 

ObjectSizedNOTIFY event procedure is triggered after ABC has resized the Object. The 
Object that was resized is passed to the event procedure in the Object variable, and the 
chart in which the Object is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_ObjectSizedNOTIFY_Event')}



When Objects Are Resized



ObjectSizeSUBCLASS Event
Description The ObjectSizeSUBCLASS event occurs when the user starts to resize an Object object. 

The ObjectSizeSUBCLASS event procedure is triggered before ABC initiates any resizing 
behavior. The Object to be resized is passed to the event procedure in the Object variable, 
and the chart in which the Object is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_ObjectSizeSUBCLASS_Event')}



When Objects Are Resized



ReplaceShapeNOTIFY Event
Description The ReplaceShapeNOTIFY event occurs when the user replaces one or more Shape 

objects. The ReplaceShapeNOTIFY event procedure is triggered after ABC replaces the 
Shape objects. The Shape to be replaced first is passed to the event procedure in the Object 
variable, and the chart in which the Shape is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_ReplaceShapeNOTIFY_Event')}



When Shapes Are Replaced



SpecialKeySUBCLASS Event
Description The SpecialKeySUBCLASS event occurs when the user presses one of the special keys. The

SpecialKeySUBCLASS event procedure is triggered before ABC responds to the key press. 
A code representing the key is passed to the event procedure in the WParam variable. 
These codes are defined in the table below.
Key Code
F1 1
F2 2
F3 3
F4 4
F5 5
F6 6
F7 7
F8 8
F9 9
F10 10
F11 11
F12 12
Tab 13
Esc 27
PgUp 33
PgDn 34
End 35
Home 36
Left Arrow 37
Up Arrow 38
Right Arrow 39
Down Arrow 40
Ins 45
Del 46

{button Related Topics,PI(`',`IDH_RT_SpecialKeySUBCLASS_Event')}



When Special Keys Are Pressed



ObjectTextChangedNOTIFY Event
Description The ObjectTextChangedNOTIFY event occurs when the user changes a text block. The 

ObjectTextChangedNOTIFY event procedure is triggered after ABC changes the TextBlock.
The Object that owns the text is passed in the Object variable, and the chart in which the 
Object is located is passed in the Chart variable.

{button Related Topics,PI(`',`IDH_RT_ObjectTextChangedNOTIFY_Event')}



When Text Changes



FieldTemplate Object
Description The FieldTemplate object is below the FieldTemplates collection. You can have multiple 

FieldTemplate objects.

Properties Methods

Accumulation There are no methods for 
the

AccumulationMetho
d

FieldTemplate object.

Application
Format
Hidden
Name
Parent
Type

{button Related Topics,PI(`',`IDH_RT_FieldTemplate_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



Accumulation Property
Usage FieldTemplateObject.Accumulation
Description The Accumulation property lets you find the accumulated value of data fields, as the value 

will appear in the Legend. You set the type of accumulation using the 
AccumulationMethod property. The Accumulation property is read only.

Data Type Double
Value The value of the Accumulation property is the accumulated value of a FieldTemplate object.

The Field Template object can be any data field that is added to a chart.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Accumulation_Property')}



Working with Data Field Values
Example

AccumulationMethod Property
Item Method (FieldTemplates Collection)
ShowLegend Property
Value Property

FieldTemplate Object



Accumulation Property Example
This example uses the Accumulation property of the FieldTemplate object to find a data field's accumulation.

Dim ABC As Object, MasterItems As Object, Chart As Object
Dim Field_Template As Object
Dim Field_Accumulation As Double

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Set MasterItems = Chart.MasterItems
Set Field_Template = Chart.FieldTemplates.Add("Inventory") ' Add a data field

Field_Template.AccumulationMethod = 1 ' Set accumulation method to sum

Field_Accumulation = Field_Template.Accumulation ' Get field's accumulation
MsgBox CStr(Field_Accumulation)



AccumulationMethod Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_Field_SetupDB');CW(`concfull')}

Usage FieldTemplateObject.AccumulationMethod = Integer

Description The AccumulationMethod property lets you find or specify the type of accumulation for a 
data field. The accumulation is calculated for the Legend. The AccumulationMethod 
property is read/write.

Data Type Integer
Value The values for the accumulation methods are in the following table.

Value Accumulation Method
0 No Accumulation: Do not include this field in the Legend.
1 Sum: The total of all field values added together.
2 Mean: The average of all the values.
3 Median: The middle value in the entire range of values.
4 Min: The smallest value in the entire range of values.
5 Max: The largest value in the entire range of values.
6 Range: The difference between the largest and smallest values.
7 Count: The number of values.
8 Nonnull Count: The number of values that are not null.

ABC Equivalent The AccumulationMethod property is equivalent to clicking Setup Fields in the Data menu,
and then choosing an option in the Accumulation Method list box in the Setup Fields dialog 
box.

{button Related Topics,PI(`',`IDH_RT_AccumulationMethod_Property')}



Changing Data Field Attributes
Example

Add Method (FieldTemplates Collection)

Accumulation property
Format Property
Hidden Property
Name Property (FieldValue Object)
ShowLegend Property
Type Property (FieldValue Object)

ABC Object



AccumulationMethod Property Example
This example uses the AccumulationMethod property of the FieldTemplate object to set and find a data field's 
accumulation method.

Dim ABC As Object
Dim MasterItems As Object
Dim Chart As Object
Dim Field_Template As Object
Dim Field_Accumulation_Method As Single

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Set MasterItems = Chart.MasterItems
Set Field_Template = Chart.FieldTemplates.Add("Inventory") ' Add a data field

Field_Template.AccumulationMethod = 1 ' Set accumulation method to sum

Field_Accumulation_Method = Field_Template.AccumulationMethod ' Find method

Select Case Field_Accumulation_Method ' Report accumulation method
Case 0

MsgBox "No Accumulation"
Case 1

MsgBox "Sum"
Case 2

MsgBox "Mean"
Case 3

MsgBox "Median"
Case 4

MsgBox "Min"
Case 5

MsgBox "Max"
Case 6

MsgBox "Range"
Case 7

MsgBox "Total"
Case 8

MsgBox "Non Null Total"
End Select



Format Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Field_SetupDB');CW(`concfull')}

Usage FieldTemplateObject.Format = Format

Description The Format property lets you find or set the format for a data field. The Format property is 
read/write.

Data Type Integer
Value The values for the formats of data fields are in the following table.

Value Duration Format Value Date Format
100 # w. 200 M/D/YY
101 # weeks 201 MMMM-D-YY
102 # d. 202 MMMM DD, YYYY
103 # days 203 MMM-YY
104 # h. 204 MMMM YYYY
105 # hrs.
106 # hours Value Currency Format
107 # m. 300 $###0.00($###0.00)
108 # mins. 301 $#,##0.00($#,##0.00)
109 # minutes 302 $###0($###0)
110 # s. 303 $#,##0($#,##0)
111 # secs.
112 # seconds Value Number Format
113 # TMU 500 ###0
114 h:m 501 ###0.00
115 m:s 502 ###0.0000
116 h:m:s 503 #,##0

504 #,##0.00
Value Percent Format 505 #,##0.0000
400 ##%
401 #0.00%

ABC Equivalent The Format property is equivalent to clicking Setup Fields in the Data menu, selecting a 
data field, and then choosing a format for the field in the Setup Fields dialog box.

{button Related Topics,PI(`',`IDH_RT_Format_Property')}



Changing Data Field Attributes
Example

AccumulationMethod Property
Add Method (FieldTemplates Collection)
Hidden Property
Name Property (FieldValue Object)
Type Property (FieldValue Object)

FieldTemplate Object



Format Property Example
This example uses the Format property of the FieldTemplate object to find a data field's format.

Dim ABC As Object
Dim MasterItems As Object, Chart As Object
Dim Field_Template As Object
Dim Field_Accumulation As Double
Dim Field_Accumulation_Method As Single
Dim Field_Format As Single

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Set MasterItems = Chart.MasterItems
Set Field_Template = Chart.FieldTemplates.Add("Inventory") ' Add a data field

Field_Template.AccumulationMethod = 1 ' Set accumulation method to sum

Field_Format = Field_Template.Format ' Get field format

Select Case Field_Format ' Report field format
Case 100

MsgBox "# w."
Case 101

MsgBox "# weeks"
Case 102

MsgBox "# d."
Case 103

MsgBox "# days"
Case 104

MsgBox "# h."
Case 105

MsgBox "# hrs."
Case 106

MsgBox "# hours"
Case 107

MsgBox "# m."
Case 108

MsgBox "# mins."
Case 109

MsgBox "# minutes"
Case 110

MsgBox "# s."
Case 111

MsgBox "# secs."
Case 112

MsgBox "# seconds"
Case 113

MsgBox "# TMU"
Case 114

MsgBox "h:m"
Case 115

MsgBox "m:s"
Case 116



MsgBox "h:m:s"
Case 200

MsgBox "M/d/yy"
Case 201

MsgBox "mmm-d-yy"
Case 202

MsgBox "MMMMM dd, yyyy"
Case 203

MsgBox "mmm-yy"
Case 204

MsgBox "MMMMM yyy"
Case 300

MsgBox "$###0.00($###0.00)"
Case 301

MsgBox "$#,##0.00($#,##0.00)"
Case 302

MsgBox "$###0($#,##0.00)"
Case 303

MsgBox "$#,##0($#,##0)"
Case 400

MsgBox "##%"
Case 401

MsgBox "#0.00%"
Case 500

MsgBox "###0"
Case 501

MsgBox "###0.00"
Case 502

MsgBox "###0.0000"
Case 503

MsgBox "#,##0"
Case 504

MsgBox "#,##0.00"
Case 505

MsgBox "#,##0.0000"
End Select



Hidden Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Field_SetupDB');CW(`concfull')}

Usage FieldTemplateObject.Hidden = {True | False}
Description The Hidden property lets you find or set whether a data field and its value are displayed in 

the chart. The Hidden property is read/write.
Data Type Integer (Boolean)
Value True hides a field and its value; False displays a field and its value.
ABC Equivalent The Hidden property is equivalent to clicking Setup Fields in the Data menu, selecting a 

data field, and then selecting or deselecting the Hidden Field option in the Setup Fields 
dialog box.

{button Related Topics,PI(`',`IDH_RT_Hidden_Property')}



Changing Data Field Attributes
Example

Add Method (FieldTemplates Collection)

Accumulation Property
AccumulationMethod Property
FieldNamesHidden Property
Format Property
Name Property (FieldTemplate Object)
Type Property (FieldTemplate Object)

FieldTemplate Object



Hidden Property Example
This example uses the Hidden property of the FieldTemplate object to find a data field's format.

Dim ABC As Object
Dim MasterItems As Object
Dim Chart As Object
Dim Field_Template As Object
Dim Field_Hidden As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Set MasterItems = Chart.MasterItems
Set Field_Template = Chart.FieldTemplates.Add("Inventory") ' Add a data field

Field_Hidden = Field_Template.Hidden ' Find value of hidden attribute
Select Case Field_Hidden ' Report value of hidden attribute

Case True
MsgBox "Field is Hidden."

Case Else
MsgBox "Field is Visible."

End Select



Name Property (FieldTemplate Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Field_SetupDB');CW(`concfull')}

Usage FieldTemplateObject.Name = FieldName

Description The Name property lets you rename a data field or find the name of a data field. A data 
field's name appears in the chart next to the field's value. You name a field when you create 
it with the Add method of the FieldTemplates Collection. The Name property is read/write.

Data Type String
Value The name of the data field
ABC Equivalent The Name property is equivalent to clicking Setup Fields in the Data menu, selecting a data 

field, and then changing the name for the field in the Setup Fields dialog box.

{button Related Topics,PI(`',`IDH_RT_Name_Property_FieldTemplate_Object')}



Changing Data Field Attributes
Example

Add Method (FieldTemplates Collection)

Accumulation Property
Format Property
Hidden Property
Name Property (Application object)
Name Property (Chart object)
Name Property (FieldValue object)
Name Property (Font object)
Type Property (FieldTemplate Object)

FieldTemplate Object



Name Property (FieldTemplate Object) and FieldTemplates Property Example
This example uses the Name property of the FieldTemplate object and the FieldTemplates property of the 
Chart object to get the name of a data field.

Dim ABC As Object, MasterItems As Object, Chart As Object
Dim Field_Template As Object
Dim Field_Name As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Set MasterItems = Chart.MasterItems
Set Field_Template = Chart.FieldTemplates.Add("Inventory") ' Add a data field

Field_Name = Field_Template.Name ' Get the field name
MsgBox Field_Name



Type Property (FieldTemplate Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Field_SetupDB');CW(`concfull')}

Usage FieldTemplateObject.Type = FieldType

Description The Type property of the FieldTemplate object lets you find or set the type of a data field. It 
is identical with the Type property of the FieldValue object. The Type property is read/write.

Data Type Integer
Value The Type property uses the values shown in the following table.

Value Description
0 Text
1 Duration
2 Date
3 Currency
4 Percent
5 Number

ABC Equivalent The Type property is equivalent to clicking Setup Fields in the Data menu, clicking the arrow 
to the right of the Field Type text box, and then clicking the type you want for the field.

{button Related Topics,PI(`',`IDH_RT_Type_Property_FieldTemplate_Object')}



Changing Data Field Attributes
Example

Type Property (ABC Object)
Type Property (Chart Object)
Type Property (FieldValue Object)
Type Property (Line Object)

FieldTemplate Object



Type Property (FieldTemplate Object) Example
This example uses the Type property of the FieldTemplate object to get and display the type of a data field.

Dim ABC As Object, MasterItems As Object, Chart As Object
Dim Field_Template As Object
Dim Field_Name As String
Dim Field_Type As Single

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Set MasterItems = Chart.MasterItems
Set Field_Template = Chart.FieldTemplates.Add("Inventory") ' Add a data field

Field_Type = Field_Template.Type ' Get type

Select Case Field_Type ' Display type
Case 0

MsgBox "Field Type = Text"
Case 1

MsgBox "Field Type = Duration"
Case 2

MsgBox "Field Type = Date"
Case 3

MsgBox "Field Type = Currency"
Case 4

MsgBox "Field Type = Percent"
Case 5

MsgBox "Field Type = Number"
End Select



FieldTemplates Collection
Description The FieldTemplates collection is below the Chart object. Below the FieldTemplates collection 

are the FieldTemplate objects. You can have multiple FieldTemplate objects in the collection.

Properties Methods

Application Add
Count DeleteField
Parent Item

{button Related Topics,PI(`',`IDH_RT_FieldTemplates_Collection')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



Add Method (FieldTemplates Collection) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>procedur',`IDH_Adding_a_field_to_a_table');CW(`concfull')}

Usage FieldTemplatesCollection.Add (FieldName [, FieldType])
The FieldName element is the name of the data field you want to create.
The FieldType element is optional and defines the type of the data field.

Description The Add method of the FieldTemplates collection lets you create a data field. The field 
created is added to the FieldTemplates collection. You provide the name for the field and, 
optionally, the type of field to create. The method returns the data field created.

Data Type Object
Value The Add method returns the newly created FieldTemplate object.

The values for the FieldType element (the types of data field) are in the following table.
Value Type
0 Text
1 Duration
2 Date
3 Currency
4 Percent
5 Number (default if the element is omitted)

ABC Equivalent The Add method is equivalent to clicking Setup Fields in the Data menu, entering a name for
the field in the Setup Fields dialog box, and then selecting a type for the field.

{button Related Topics,PI(`',`IDH_RT_Add_Method_FieldTemplates_Collection')}



Adding Data Fields to a Chart
Example

Add Method (Charts Collection)

AccumulationMethod Property
Format Property
Hidden Property
Name Property (FieldTemplate Object)
Type Property (FieldTemplate Object)

FieldTemplates Collection



Add Method and Count Property (FieldTemplates Collection) Example
This example uses the Add method and Count property of the FieldTemplates collection to create and count 
data fields in a chart. The Count properties of other objects and collections work the same way.

Dim ABC As Object, Chart As Object
Dim Field_One As Object, Field_Two As Object, Field_Three As Object
Dim Field_Templates_Collection As Object
Dim ABC_Field_Count As Long

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New
Set Chart = ABC.ActiveChart
Set Field_Templates_Collection = Chart.FieldTemplates

Set Field_One = Field_Templates_Collection.Add("Fred", 1) ' Create fields with
Set Field_Two = Field_Templates_Collection.Add("Wilma", 2) ' ("Name", FieldType)
Set Field_Three = Field_Templates_Collection.Add("Barney", 3)

ABC_Field_Count = Field_Templates_Collection.Count ' Get count of fields in chart

MsgBox "There are " + CStr(ABC_Field_Count) + " data fields in the chart."



DeleteField Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>procedure',`IDH_Deleting_Fields');CW(`concfull')}

Usage FieldTemplatesCollection.DeleteField FieldTemplateObject
The FieldTemplateObject element is the data field that you want to delete.

Description The DeleteField method lets you delete a data field. This removes the data field from every
shape in the chart. Any values that were in the field are deleted.

ABC Equivalent The DeleteField method is equivalent to clicking Setup Fields in the Data menu, selecting a 
data field in the Field list box, and clicking Delete.

{button Related Topics,PI(`',`IDH_RT_DeleteField_Method')}



Deleting Data Fields from a Chart
Example

AccumulationMethod Property
Format Property
Hidden Property
Name Property (FieldTemplate Object)
Type Property (FieldTemplate Object)

FieldTemplates Collection



DeleteField, Item Methods Example
This example uses the DeleteField method and the Item method of the FieldTemplates collection to identify 
and delete a field.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object
Dim Field1 As Object, Field2 As Object, Field3 As Object
Dim UserInput As String, Msg1 As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Operation") ' Draw a shape
Shape1.Selected = True ' Select the shape

' Add fields to the field template ("Name", FieldType)
Set Field1 = Chart.FieldTemplates.Add("1: Fred", 5)
Set Field2 = Chart.FieldTemplates.Add("2: Wilma", 4)
Set Field3 = Chart.FieldTemplates.Add("3: Barney", 3)
ABC.FieldViewerVisible = True ' Show the field viewer

' Ask user to input the number of the field to be deleted
Msg1 = "Please Enter the number of the field to be deleted (1, 2, or 3)."
UserInput = InputBox$(Msg1; "Delete Field Box")

' Use Item(index) method to delete the correct field
Select Case UserInput

Case "1"
Chart.FieldTemplates.DeleteField Chart.FieldTemplates.Item(1)
MsgBox "Field 1 deleted."

Case "2"
Chart.FieldTemplates.DeleteField Chart.FieldTemplates.Item(2)
MsgBox "Field 2 deleted."

Case "3"
Chart.FieldTemplates.DeleteField Chart.FieldTemplates.Item(3)
MsgBox "Field 3 deleted."

End Select



Item Method (FieldTemplates Collection)    
Usage FieldTemplatesCollection.Item ({Count | FieldName} [, FieldType])

The first element is either a Count or a FieldName.
The Count element is the number of the item within the collection.
The FieldName element is the name of the field.
The second element, which is optional, is the type. The FieldType element lets you specify 
the type of element to be returned.

Description Use the Item method to access FieldTemplate objects, or data fields, within the 
FieldTemplates collection.

Data Type Object
Value Returns the next valid FieldTemplate object (data field), in the collection. If that object does 

not exist, the method returns Null.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Item_Method_FieldTemplates_Collection')}



Working with Data Field Values
Example

Item Method (Charts Collection)
Item Method (FieldValues Collection)
Item Method (Menu Collection)
Item Method (Objects Collection)

Accumulation Property
Value Property

FieldTemplates Collection



FieldValue Object
Description The FieldValue object is below the FieldValues collection. You can have multiple FieldValue 

objects.

Properties Methods

Application Empty
Day
FieldTemplate
FormattedValue
IsEmpty
Month
Name
Parent
Type
Value
Year

{button Related Topics,PI(`',`IDH_RT_FieldValue_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical
VBX Event Variables



FieldTemplate Property    
Usage FieldValueObject.FieldTemplate
Description You use the FieldTemplate property to find the FieldTemplate object that corresponds to 

the field value. The FieldTemplate property is read only, but the properties from the object 
it returns are read/write.

Data Type Object
Value The FieldTemplate object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_FieldTemplate_Property')}



Adding Data Fields to a Chart
Example

FieldValue Object



FieldTemplate Property Example
This example uses the FieldTemplate property of the FieldValue object to make data fields opaque.

Sub Command1_Click ()

Dim ABC As Object, Chart As Object
Dim Field1 As Object
Dim Shape1 As Object
Dim Field_Template As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
Set Chart = ABC.ActiveChart ' Get the active chart

Set Field1 = Chart.FieldTemplates.Add("Inventory", 5) ' Create a field

Set Shape1 = Chart.DrawShape("Delay") ' Draw a Delay shape

Shape1.FieldValues.Item("Inventory").Value = "300,000" ' Enter text in the field

' Get the FieldTemplate Object corresponding to this field.
Field_Template = Shape1.FieldValues.Item("Inventory").FieldTemplate
MsgBox Field_Template

End Sub



FormattedValue Property    
Usage FieldValueObject.FormattedValue
Description The FormattedValue property lets you find the text string that represents the contents of 

the field. The FormattedValue property is read only.
Data Type String
Value The text string that represents the contents of the field
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_FormattedValue_Property')}



Working with Data Field Values
Example

FieldValue Object



FormattedValue, FieldTemplates Properties Example
This example uses the FormattedValue property of the FieldValue object and the FieldTemplates property of the
Chart object to find the formatted value contained in a data field.

Dim ABC As Object, Chart As Object
Dim Field1 As Object, Shape1 As Object
Dim Field_Formatted_Value As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Field1 = Chart.FieldTemplates.Add("Inventory", 5) ' Create a field

Set Shape1 = Chart.DrawShape("Delay") ' Draw a Delay shape

Shape1.FieldValues.Item("Inventory").Value = "300,000" ' Enter text in the field

Field_Formatted_Value = Shape1.FieldValues.Item("Inventory").FormattedValue
MsgBox Field_Formatted_Value



IsEmpty Property    
Usage FieldValueObject.IsEmpty
Description The IsEmpty property lets you find whether a data field contains any values. The IsEmpty 

property is read only.
Data Type Integer (Boolean)
Value True means the data field is empty; False means it contains a value.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_IsEmpty_Property')}



Working with Data Field Values
Example

Empty Method
Item Method (FieldValues Collection)

FieldValue Object



Name Property (FieldValue Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Field_SetupDB');CW(`concfull')}

Usage FieldValueObject.Name = FieldName

Description The Name property of the FieldValue object lets you find the name of a data field. The field 
was named when you created it with the Add method of the FieldTemplates Collection. The 
Name property is read only.

Data Type String
Value The name of the data field
ABC Equivalent The Name property is equivalent to clicking Setup Fields in the Data menu, selecting a data 

field, and then changing the name for the field in the Setup Fields dialog box.

{button Related Topics,PI(`',`IDH_RT_ame_Property_FieldValue_Object')}



Changing Data Field Attributes
Example

Add Method (FieldTemplates Collection)

AccumulationMethod Property
Format Property
Hidden Property
Name Property (Application Object)
Name Property (Chart Object)
Name Property (FieldTemplate Object)
Name Property (FieldValue Object)
Name Property (Font Object)
Type Property (FieldValue Object)

FieldValue Object



Name Property (FieldValue Object) Example
This example uses the Name property of the FieldValue object to find the name of a data field.

Dim ABC As Object, Chart As Object
Dim Field1 As Object, Shape1 As Object
Dim Field_Name As String
Dim Field_Type

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Field1 = Chart.FieldTemplates.Add("Inventory") ' Create a field
Field1.Type = 0 ' Make the field's type text

Set Shape1 = Chart.DrawShape("Delay") ' Draw a Delay shape

Field_Name = Shape1.FieldValues.Item(1).Name ' Get the name of the field

MsgBox Field_Name



Type Property (FieldValue Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Field_SetUpDB');CW(`concfull')}

Usage FieldValueObject.Type = FieldType

Description The Type property of the FieldValue object lets you find or set the type of a data field. It is 
identical with the Type property of the FieldTemplate object. The Type property is 
read/write.

Data Type Integer
Value The Type property uses the values shown in the following table.

Value Description
0 Text
1 Duration
2 Date
3 Currency
4 Percent
5 Number

ABC Equivalent The Type method is equivalent to clicking Setup Fields in the Data menu, clicking the arrow 
to the right of the Field Type text box, and clicking the type you want for the field.

{button Related Topics,PI(`',`IDH_RT_Type_Property_FieldValue_Object')}



Changing Data Field Attributes
Example

Type Property (Chart Object)
Type Property (FieldTemplate Object)
Type Property (Line Object)
Type Property (Object Object)

FieldValue Object



Type Property (FieldValue Object) Example
This example uses the Type property of the FieldValue object to find the type of a data field.

Dim ABC As Object, Chart As Object
Dim Field1 As Object, Shape1 As Object
Dim Field_Type As Single

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Field1 = Chart.FieldTemplates.Add("Inventory", 4) ' Create a field
MsgBox "Field created with format 4."

Field1.Type = 0 ' Change the field's type to text

Set Shape1 = Chart.DrawShape("Delay") ' Draw a Delay shape

Field_Type = Shape1.FieldValues.Item(1).Type ' Get type of field just created
MsgBox "The field has changed to format " + CStr(Field_Type) + "."



Value Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_Field_ViewerDB');CW(`concfull')}

Usage FieldValueObject.Value = Value

Description The Value property lets you find or set the value of a data field item of a shape. The Value 
property is read/write.

Data Type Variant
Value The value of the data field item
ABC Equivalent The Value property is equivalent to selecting a shape, opening the Field Viewer, and 

entering a value for a data field.

{button Related Topics,PI(`',`IDH_RT_Value_Property')}



Working with Data Field Values
Example

AccumulationMethod Property
Item Method (FieldValues Collection)

FieldValue Object



Empty Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_Field_ViewerDB');CW(`concfull')}

Usage FieldValueObject.Empty
Description The Empty method lets you remove all values from a data field. After you use the method, 

the IsEmpty property of the FieldValue object is True.
ABC Equivalent The Empty method is equivalent to removing the value from a data field using the field 

viewer.

{button Related Topics,PI(`',`IDH_RT_Empty_Method')}



Working with Data Field Values
Example

IsEmpty Property
Value Property

FieldValue Object



Empty Method Example
This example uses the Empty method of the FieldValue object to remove the value from a data field.

Dim ABC As Object, Chart As Object
Dim Field1 As Object, Shape1 As Object
Dim Field_Formatted_Value As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Field1 = Chart.FieldTemplates.Add("Inventory", 5) ' Create a field

Set Shape1 = Chart.DrawShape("Delay") ' Draw a Delay shape

Shape1.FieldValues.Item("Inventory").Value = "300,000" ' Enter text in the field
MsgBox "Formatted field value is " + Shape1.FieldValues("Inventory").FormattedValue + "."

Shape1.FieldValues.Item("Inventory").Empty ' Empty the field
MsgBox "Empty field value is " + Shape1.FieldValues.Item("Inventory").FormattedValue



Day Property    
Usage FieldValueObject.Day = Number

Description You use the Day property to find or set the day of the month in a data field. If the data field 
does not contain a valid date (for example, if it is not a Date field), then the Day property is 
equal to 0. The Day property is read/write.

Data Type Integer
Value A number from 1 to 31
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Day_Property')}



Working with Data Field Values
Example

Month Property
Year Property

FieldValue Object



Day, Month, Year Properties Example
This example uses the Day, Month, and Year properties of the FieldValue object to find and display the dates in 
a data field.

Dim ABC As Object, Chart As Object
Dim Field1 As Object, Shape1 As Object

Dim Field_Day
Dim Field_Month
Dim Field_Year

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Field1 = Chart.FieldTemplates.Add("Closing Date", 2) ' Create a date field

Set Shape1 = Chart.DrawShape("Delay") ' Draw a Delay shape

Shape1.FieldValues.Item("Closing Date").Value = "6/28/95" ' Enter text in the field

Field_Day = Shape1.FieldValues.Item("Closing Date").Day ' Get the date values
Field_Month = Shape1.FieldValues.Item("Closing Date").Month
Field_Year = Shape1.FieldValues.Item("Closing Date").Year

MsgBox "The day listed in the Closing Date is " + Field_Day + " ."
MsgBox "The month listed in the Closing Date is " + Field_Month + " ."
MsgBox "The year listed in the Closing Date is " + Field_Year + " ."



Month Property    
Usage FieldValueObject.Month = Number

Description You use the Month property to find or set the month in a data field. If the data field does not
contain a valid date (for example, if it is not a Date field), then the Month property is equal 
to 0. The Month property is read/write.

Data Type Integer
Value A number from 1 to 31
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Month_Property')}



Working with Data Field Values
Example

Day Property
Year Property

FieldValue Object



Year Property    
Usage FieldValueObject.Year = Number

Description You use the Year property to find or set the month in a data field. If the data field does not 
contain a valid date (for example, if it is not a Date field), then the Year property is equal to 
0. The Year property is read/write.

Data Type Integer
Value A number 1900 or larger
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Year_Property')}



Working with Data Field Values
Example

Day Property
Month Property

FieldValue Object



FieldValues Collection
Description The FieldValues collection is below the Object object. Below the FieldValues collection are the

FieldValue objects. You can have multiple FieldValue objects in the FieldValues collection.

Properties Methods

Application Item
Count
Parent

{button Related Topics,PI(`',`IDH_RT_FieldValues_Collection')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



Item Method (FieldValues Collection)    
Usage FieldValuesCollection.Item ({Count | FieldName} [, FieldType])

The first element is either a Count or a FieldName.
The Count element is the number of the item within the collection.
The FieldName element is the name of the field.
The FieldType element, which is optional, lets you specify the type of element to be 
returned.

Description Use the Item method of the FieldValues collection to access FieldValue objects, or data 
fields, within the FieldValues collection.

Data Type Object
Value The next valid FieldValue object, or data field, in the collection. If that object does not exist, 

the method returns Null.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Item_Method_FieldValues_Collection')}



Working with Data Field Values
Example

Item method (Charts collection)
Item method (FieldTemplates collection)
Item method (Menu collection)
Item method (Objects collection)

IsEmpty Property
Value Property

FieldValues collection



Item Method (FieldValues Collection), Value Property, and IsEmpty Property 
Example
This example uses the Item method of the FieldValues collection and the Value property and IsEmpty property 
of the FieldValue object to find whether a data field contains a value.

Dim ABC As Object, Chart As Object
Dim Field1 As Object
Dim Shape1 As Object
Dim Field_Empty As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Field1 = Chart.FieldTemplates.Add("Inventory") ' Create a field

Field1.Type = 0 ' Make the field's type text

Set Shape1 = Chart.DrawShape("Delay") ' Draw a Delay shape

Shape1.FieldValues.Item("Inventory").Value = "300,000" ' Enter text in the field

Field_Empty = Shape1.FieldValues.Item("Inventory").IsEmpty
Select Case Field_Empty

Case True
MsgBox "Field is empty."

Case Else
MsgBox "Field is not empty."

End Select



Font Object
Description The Font object is below the Object object. You can have only one Font object for each Object

object.

Properties Methods

Application There are no methods for 
the

Bold Font object.
Color
Italic
Name
Opaque
Parent
Size
Strikethrough
Underline

{button Related Topics,PI(`',`IDH_RT_Font_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



Bold Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Text_Looks');CW(`concfull')}

Usage FontObject.Bold = {True | False}
Description You use the Bold property to change text to be bold, including text in shape numbers using 

the NumberFont property of the Chart object and note text using the NoteFont property of
the Shape object. The Bold property is read/write.

Data Type Integer (Boolean)
Value True means the text is bold; False means the text is not bold.
ABC Equivalent The Bold property is equivalent to selecting the text and clicking the Bold button on the 

Formatting toolbar.

{button Related Topics,PI(`',`IDH_RT_Bold_Property')}



Bold, Italic, Underline, and Strikethrough
Formatting Shape Numbers
Formatting Note Text
Example

NoteFont Property
NumberFont Property

Font Object



Color Property (Font Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Text_Looks');CW(`concfull')}

Usage FontObject.Color = Color

Description You use the Color property of the Font object to find or set the color of selected text or the 
text inside a shape object. The Color property affects only the foreground color of the text, 
not the background color. The Color property is read/write.

Data Type Long
Value The color for the text
ABC Equivalent The Color property of the Font object is equivalent to selecting text, clicking the Text Color 

button on the Formatting toolbar, and clicking the color you want.

{button Related Topics,PI(`',`IDH_RT_Color_Property_Font_Object')}



Setting Text Colors
Text Color
Example

BasicColor Method
MakeRGB Method

Bold Property
Color Property (Line_ Object)
Color Property (Object Object)
Italic Property
Opaque Property
Size Property
TextAlignment Property
Underline Property

Font Object



Italic Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Text_Looks');CW(`concfull')}

Usage FontObject.Italic = {True | False}
Description You use the Italic property to change text to be italic, including text in shape numbers using 

the NumberFont property of the Chart object and note text using the NoteFont property of
the Shape object. The Italic property is read/write.

Data Type Integer (Boolean)
Value True means the text is italic; False means the text is not italic.
ABC Equivalent The Italic property is equivalent to selecting the text and clicking the Italic button on the 

Formatting toolbar.

{button Related Topics,PI(`',`IDH_RT_Italic_Property')}



Bold, Italic, Underline, and Strikethrough
Formatting Shape Numbers
Formatting Note Text
Example

NoteFont Property
NumberFont Property

Font Object



Name Property (Font Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Text_Looks');CW(`concfull')}

Usage FontObject.Name = FontName

Description You use the Name property of the Font object to set the typeface name for the font, such as 
"Arial" or "Roman." The Name property is read/write.

Data Type String
Value The typeface name
ABC Equivalent The Name property is equivalent to selecting the text, clicking the down arrow to the right 

of the Font box on the Formatting toolbar, and clicking the font you want.

{button Related Topics,PI(`',`IDH_RT_Name_Property_Font_Object')}



Formatting Text
Formatting Shape Numbers
Formatting Note Text
Text Typeface and Size
Example

Name Property (Application Object)
Name Property (Chart Object)
Name Property (FieldTemplate Object)
Name Property (FieldValue Object)

Font Object



Font Properties (Font Object) Example
This example uses the Name property, Strikethrough property, Color property, Italic property, Bold property,
Underline property, and Size property of the Font object to set spacing. It uses the DrawSpacingY property of 
the Chart object to set the attributes of text objects.

Dim ABC As Object, Chart As Object
Dim Text1 As Object, Text2 As Object, Text3 As Object
Dim Text4 As Object, Text5 As Object, Text6 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawDirection = 2 ' Place new items downward
Chart.DrawSpacingY = .3 ' Place new items 0.3 apart

Set Text1 = Chart.DrawTextBlock("Imagine a chocolate elephant.")
Text1.Font.Name = "Roman" ' Make the font Roman
Set Text2 = Chart.DrawTextBlock("Imagine a chocolate mousse.")
Text2.Font.Strikethrough = True ' Strike through this text
Set Text3 = Chart.DrawTextBlock("Four thousand pounds of solid chocolate --")
Text3.Font.Color = ABC.MakeRGB(0, 127, 0) ' Make the next phrase dark green
Set Text4 = Chart.DrawTextBlock("ten feet high at the shoulder, fifteen feet long,")
Text4.Font.Italic = True ' Make the text italic
Set Text5 = Chart.DrawTextBlock("eight feet across -- and it is your job to eat it.")
Text5.Font.Bold = True ' Make the text bold
Set Text6 = Chart.DrawTextBlock("Eating the Chocolate Elephant")
Text6.Font.Underline = True ' Underline this text item
Text6.Font.Size = 8 ' and set the point size to 8



Opaque Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Text_Looks');CW(`concfull')}

Usage FontObject.Opaque = {True | False}
Description The Opaque property lets you set or find whether text background is opaque. The Opaque 

property is read/write.
Data Type Integer (Boolean)
Value True means the text background is opaque; False means it is transparent.
ABC Equivalent The Opaque property is equivalent to selecting the text, clicking Font on the Format menu, 

and then clicking the Opaque box.

{button Related Topics,PI(`',`IDH_RT_Opaque_Property')}



Formatting Text
Formatting Shape Numbers
Formatting Note Text
Text Background
Example

NoteFont Property
NumberFont Property

Font Object



Opaque Property and AttachText Method Example
This example uses the Opaque property of the Font object and the AttachText method of the Line_ object to 
make text opaque and attach text to a line.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object
Dim Line1 As Object, Text1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Decision") ' Draw a Decision shape
Set Shape2 = Chart.DrawShape("Operation") ' Draw an Operation shape
Set Line1 = Chart.DrawLine(Shape1, Shape2) ' Draw a line connecting the shapes

Set Text1 = Chart.DrawTextBlock("This way!") ' Create a freeform text object
Text1.Font.Opaque = True ' Make the text's background opaque
Line1.Line_.AttachText Text1 ' Attach the text object to the line



Size Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Text_Looks');CW(`concfull')}

Usage FontObject.Size = FontSize

Description You use the Size property of the Font object to set the typeface size in points. The Size 
property is read/write.

Data Type Long
Value The point size
ABC Equivalent The Size property is equivalent to selecting the text and entering the size on the Font size 

box on the Formatting toolbar.

{button Related Topics,PI(`',`IDH_RT_Size_Property')}



Formatting Text
Formatting Shape Numbers
Formatting Note Text
Text Typeface and Size
Example

Font Object



Strikethrough Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Text_Looks');CW(`concfull')}

Usage FontObject.Strikethrough = {True | False}
Description You use the Strikethrough property to change text to have a line through it, including text 

in shape numbers using the NumberFont property of the Chart object and note text using 
the NoteFont property of the Shape object. The Strikethrough property is read/write.

Data Type Integer (Boolean)
Value True means the text is strikethrough; False means the text is not strikethrough.
ABC Equivalent The Strikethrough property is equivalent to selecting the text you want to affect, clicking 

Font on the Format menu, and then clicking the Strikethrough box.

{button Related Topics,PI(`',`IDH_RT_Strikethrough_Property')}



Bold, Italic, Underline, and Strikethrough
Formatting Shape Numbers
Formatting Note Text
Example

NoteFont Property
NumberFont Property

Font Object



Underline Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Text_Looks');CW(`concfull')}

Usage FontObject.Underline = {True | False}
Description You use the Underline property to underline selected text, including text in shape numbers 

using the NumberFont property of the Chart object and note text using the NoteFont 
property of the Shape object. The Underline property is read/write.

Data Type Integer (Boolean)
Value True means the text is underlined; False means the text is not underlined.
ABC Equivalent The Underline property is equivalent to selecting the text, clicking Font on the Format 

menu, and then clicking the Underline box.

{button Related Topics,PI(`',`IDH_RT_Underline_Property')}



Bold, Italic, Underline, and Strikethrough
Formatting Shape Numbers
Formatting Note Text
Example

NoteFont Property
NumberFont Property

Font Object



Line_ Object
Description The Line_ object is below the Object object. You can have only one Line_ object for each 

Object object. If the Object object is a shape, this object is a meaningless placeholder.

Properties Methods

Application AttachText
Color ReconnectDest
CrossoverSize ReconnectSource
CrossoverStyle Routing 
DestArrowColor
DestArrowSize
DestArrowStyle
Destination
DestinationDirection
Parent
Source
SourceArrowColor
SourceArrowSize
SourceArrowStyle
SourceDirection
StemColor
StemStyle
StemWidth
Type

{button Related Topics,PI(`',`IDH_RT_Line_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



Color Property (Line_ Object) {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.Color = Color

Description You use the Color property of the Line_ object to set the color for lines, including the line 
ends and the stem, or find the stem color of lines. The Color property colors the entire line, 
including the ends. The Color property is read/write.

Data Type Long
Value The color for a line object
ABC Equivalent The Color property of the Line_ object is equivalent to selecting a line, clicking the Line 

Color button on the formatting toolbar, and then clicking the color you want.

{button Related Topics,PI(`',`IDH_RT_Color_Property_Line_Object')}



Setting Line Colors
Line Color
Example

BasicColor Method
MakeRGB Method

Color Property (Font Object)
Color Property (Object Object)
DestArrowColor Property
SourceArrowColor Property
StemColor Property

Line_ Object



Color, DestArrowStyle, SourceArrowStyle Properties (Line_ Object) Example
This example uses the Color property, the DestArrowStyle property, and the SourceArrowStyle property of 
the Line_ object to set the color, destination arrow style, and source arrow style for a line.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object
Dim Line1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Decision") ' Draw a Decision shape
Set Shape2 = Chart.DrawShape("Operation") ' Draw an Operation shape
Set Line1 = Chart.DrawLine(Shape1, Shape2) ' Draw a line connecting the shapes

Line1.Color = ABC.MakeRGB(255, 0, 0) ' Make the line red
Line1.Line_.DestArrowStyle = 12 ' Apply a double arrowhead
Line1.Line_.SourceArrowStyle = 4 ' Apply a source arrow style



DestArrowColor Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.DestArrowColor = Color

Description You use the DestArrowColor property to find or set the color of the destination arrow of a 
line. The DestArrowColor property is read/write.

Data Type Long
Value The color of the destination arrow of a line
ABC Equivalent The DestArrowColor property is equivalent to selecting a line, clicking Arrowheads on the 

Format menu, and then selecting the End Color you want.

{button Related Topics,PI(`',`IDH_RT_DestArrowColor_Property')}



Setting Line Colors
Line Color
Example

BasicColor Method
MakeRGB Method

Color Property (Line_ Object)
DestArrowSize Property
DestArrowStyle Property
SourceArrowColor Property
StemColor Property

Line_ Object



DestArrowSize Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.DestArrowSize = Size

Description You use the DestArrowSize property to find or set the destination arrow size. The 
DestArrowSize property is read/write.

Data Type Integer
Value Arrow size can vary from 1 (smallest) to 5 (largest).
ABC Equivalent The DestArrowSize property is equivalent to selecting a line, clicking Arrowheads on the 

Format menu, and then selecting the End Size you want.

{button Related Topics,PI(`',`IDH_RT_DestArrowSize_Property')}



Line Width
Example

DestArrowColor Property
DestArrowStyle Property
SourceArrowSize Property
StemWidth Property

Line_ Object



DestArrowStyle Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.DestArrowStyle = StyleNumber

Description You use the DestArrowStyle property to find or set styles or patterns for line ends, 
including arrows, circles, and lines. The DestArrowStyle property is read/write.

Data Type Integer
Value You set the DestArrowStyle property to 0 for no arrow. The following illustration shows the 

values of the DestArrowStyle property for each available style.

ABC Equivalent The DestArrowStyle property is equivalent to selecting a line, clicking Arrowheads on the 
Format menu, and then selecting the End Type you want.

{button Related Topics,PI(`',`IDH_RT_DestArrowStyle_Property')}



End Styles
Example 1
Example 2

DestArrowColor Property
DestArrowStyle Property
SourceArrowStyle Property
StemStyle Property

Line_ Object



Destination Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_CONNECTSHAPES');CW(`concfull')}

Usage Line_Object.Destination = Shape

Description You use the Destination property to connect lines to shapes. The shapes that lines connect 
to are stored in the Source property and Destination property. When lines are 
unconnected, those properties are empty. The Destination property is read/write.

Data Type Object
Value A shape object that a line is connected to
ABC Equivalent The Destination property is equivalent to dragging the end of a line into a shape.

{button Related Topics,PI(`',`IDH_RT_Destination_Property')}



Connecting Existing Lines to Shapes
Example

ReconnectDest Method
Source Property

Line_ Object



Source Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_CONNECTSHAPES');CW(`concfull')}

Usage Line_Object.Source = Shape

Description You use the Source property to connect lines to shapes. The shapes that lines connect to 
are stored in the Source property and Destination property. When lines are unconnected, 
those properties are empty. The Source property is read/write.

Data Type Object
Value A shape object that a line is connected to
ABC Equivalent The Source property is equivalent to dragging the end of a line into a shape.

{button Related Topics,PI(`',`IDH_RT_Source_Property')}



Connecting Existing Lines to Shapes
Example

ReconnectDest Method
Destination Property

Line_ Object



SourceArrowColor Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.SourceArrowColor = Color

Description You use the SourceArrowColor property to find or set the color of the source arrow of a 
line. The SourceArrowColor property is read/write.

Data Type Long
Value The color of the source arrow of a line
ABC Equivalent The SourceArrowColor property is equivalent to selecting a line, clicking Arrowheads on 

the Format menu, and then selecting the Start Color you want.

{button Related Topics,PI(`',`IDH_RT_SourceArrowColor_Property')}



Setting Line Colors
Line Color
Example

BasicColor Method
MakeRGB Method

Color Property (Line_ Object)
DestArrowColor Property
SourceArrowSize Property
SourceArrowStyle Property
StemColor Property

Line_ Object



SourceArrowSize Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.SourceArrowSize = Size

Description You use the SourceArrowSize property to find or set the line width. The SourceArrowSize 
property is read/write.

Data Type Integer
Value Arrow size can vary from 1 (smallest) to 5 (largest).
ABC Equivalent The SourceArrowSize property is equivalent to selecting a line, clicking Arrowheads on the 

Format menu, and then selecting the Start Size you want.

{button Related Topics,PI(`',`IDH_RT_SourceArrowSize_Property')}



Line Width
Example

DestArrowSize Property
SourceArrowColor Property
SourceArrowStyle Property
StemWidth Property

Line_ Object



SourceArrowStyle Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.SourceArrowStyle = StyleNumber

Description You use the SourceArrowStyle property to find or set styles or patterns for line ends, 
including arrows, circles, and lines. The SourceArrowStyle property is read/write.

Data Type Integer
Value You set the SourceArrowStyle property to 0 for no arrow. The following illustration shows 

the values of the SourceArrowStyle property for each available style.

ABC Equivalent The SourceArrowStyle property is equivalent to selecting a line, clicking Arrowheads on the 
Format menu, and then selecting the Start Type you want.

{button Related Topics,PI(`',`IDH_RT_SourceArrowStyle_Property')}



End Styles
Example 1
Example 2

DestArrowStyle Property
SourceArrowColor Property
SourceArrowSize Property
StemStyle Property

Line_ Object



StemColor Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.StemColor = Color

Description The StemColor property lets you find or set the color for the stem of a line (see the 
MakeRGB method). The stem is the part of the line between the source and destination 
arrows. The StemColor property is read/write.

Data Type Long
Value The color for the stem of a line
ABC Equivalent The StemColor property is equivalent to selecting a line, clicking the Line Color button on 

the formatting toolbar, and then clicking the color you want.

{button Related Topics,PI(`',`IDH_RT_StemColor_Property')}



Setting Line Colors
Line Color
Example

BasicColor Method
MakeRGB Method

Color Property (Line Object)
DestArrowColor Property
SourceArrowColor Property
StemStyle Property
StemWidth Property

Line_ Object



Line_ Object Properties Example
This example uses the properties of the Line_ object to set the color, size, and style of the destination arrow, 
source arrow, and stem of a line.

Dim ABC As Object, Chart As Object
Dim Line1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawPositionX = 1 ' The line's beginning X position
Chart.DrawPositionY = 2 ' The line's beginning Y position
Set Line1 = Chart.DrawFreeLine(4, 4) ' Draw an unconnected line to X=4,Y=4

Line1.Line_.StemColor = ABC.MakeRGB(0, 0, 255) ' Make line's stem blue
Line1.Line_.StemStyle = 3 ' Set stem style
Line1.Line_.SourceArrowStyle = 13 ' Set source arrow style
Line1.Line_.SourceArrowColor = ABC.MakeRGB(255, 0, 0) ' Make source arrow red
Line1.Line_.SourceArrowSize = 3 ' Make source arrow medium in size
Line1.Line_.DestArrowColor = ABC.MakeRGB(0, 255, 0)' Make destination arrow green
Line1.Line_.DestArrowSize = 5 ' Make destination arrow large
Line1.Line_.DestArrowStyle = 5 ' Set destination arrow style



StemStyle Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.StemStyle = StyleNumber

Description You use the StemStyle property to find or set styles or patterns for line stems. The 
StemStyle property is read/write.

Data Type Integer
Value Set the StemStyle property to 0 for an invisible line and 1 for a solid line. The following 

illustration shows the values of the StemStyle property for each available style.

ABC Equivalent The StemStyle property is equivalent to selecting a line, clicking the Line Thickness button on 
the formatting toolbar, and then clicking the line style you want.

{button Related Topics,PI(`',`IDH_RT_StemStyle_Property')}



Line Style
Example

DestArrowStyle Property
SourceArrowStyle Property
StemColor Property
StemWidth Property

Line_ Object



StemWidth Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.StemWidth = Width

Description You use the StemWidth property to find or set the width of the line stem, excluding the 
ends. The StemWidth property is read/write.

Data Type Integer
Value Line width can vary from 1 (hairline) to 5 (thickest).
ABC Equivalent The StemWidth property is equivalent to selecting a line, clicking the Line Thickness button

on the formatting toolbar, and then choosing a number in the Width box.

{button Related Topics,PI(`',`IDH_RT_StemWidth_Property')}



Line Width
Example

DestArrowStyle Property
SourceArrowStyle Property
StemColor Property
StemStyle Property

Line_ Object



StemWidth, Type Properties Example
This example uses the StemWidth property and Type property of the Line_ object to make a line wide and 
determine the type of line drawn.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object
Dim Line1 As Object
Dim RandomLine As Integer

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Decision") ' Draw a Decision shape
Set Shape2 = Chart.DrawShape("Operation") ' Draw an Operation shape

RandomNum = Int(10 * Rnd) ' Generate a random integer
If RandomNum > 4 Then RandomNum = RandomNum - 5 ' Eliminate numbers > 4
Chart.CurrentLineRouting = RandomNum ' Randomly set the line type

Set Line1 = Chart.DrawLine(Shape1, Shape2, 0, 1) ' Draw a line connecting the shapes
Line1.Line_.StemWidth = 5 ' Make the line's stem very wide

Select Case Line1.Line_.Type ' Display the type of line used
Case 0

MsgBox "This is a direct line."
Case 1

MsgBox "This is a right angle line."
Case 2

MsgBox "This is a curved line."
Case 3

MsgBox "This is an org-chart line."
Case 4

MsgBox "This is a cause/effect line."
End Select



Type Property (Line Object)
Usage Line_Object.Type
Description You use the Type property of the Line_ object to find or set which line routing was used to 

draw a line. The Type property is read/write.
Data Type Integer
Value The following table describes the values for the Type property.

Value Type of Line
0 Direct
1 Right angle
2 Curved
3 Organization chart
4 Cause-and-effect

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Type_Property_Line_Object')}



Setting Line Routing
Example

CurrentLineRouting Property
Type Property (Chart Object)
Type Property (FieldTemplate Object)
Type Property (FieldValue Object)
Type Property (Object Object)

Line_ Object



AttachText Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage Line_Object.AttachText TextObject [, LineSegment]
The TextObject element is a text block object that was created using the DrawTextBlock 
method. It is the text to attach to the line.
The LineSegment element optionally specifies the segment of the line to which to attach the 
text.

Description You use the AttachText method to attach text to a line. You specify the text object to attach 
and optionally indicate the segment to which the text should be attached.

Data Type Integer (Boolean)
Value The following table describes each possible value for LineSegment.

LineSegment Description
-2 End
-3 Start (default)
-1 First
0 Last
1 through n The sequential value of the line segment, where n is the number of 

segments in the line. For example, 1 is the first segment and 2 is the 
second segment.

ABC Equivalent The AttachText method is equivalent to selecting a text block, dragging it to a line, and 
snapping it to that line.

{button Related Topics,PI(`',`IDH_RT_AttachText_Method')}



Creating Text Blocks
Attaching Text to Lines
Attaching Text to a Line
Unattaching Text from a Line
Example

DrawTextBlock Method

Line_ Object



ReconnectDest Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_CONNECTSHAPES');CW(`concfull')}

Usage Line_Object.ReconnectDest ShapeObject [, EnterDirection]
The ShapeObject element is the shape that the line is to connect to.
The EnterDirection element, which is optional, specifies the side where the line should enter 
the shape.

Description You use the ReconnectDest method to connect an existing line to a shape or to change the 
side where a line enters a shape. You specify the shape that the line enters and, optionally, 
the side of the shape where the line enters.

Data Type Integer (Boolean)
Value True means the reconnection was successful; False means it was not successful. The 

following table shows the values of the EnterDirection element and their meanings.
Value Direction
0 North
1 East
2 South
3 West

ABC Equivalent The ReconnectDest method is equivalent to dragging a line end into a shape.

{button Related Topics,PI(`',`IDH_RT_ReconnectDest_Method')}



Connecting Existing Lines to Shapes
Example

ReconnectSource Method

Line_ Object



ReconnectDest, ReconnectSource Methods Example
This example uses the ReconnectDest method and ReconnectSource method of the Line_ object to connect 
the beginning and end of a line to objects.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object
Dim Line1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.DrawPositionX = 1 ' The line's beginning X position
Chart.DrawPositionY = 2 ' The line's beginning Y position
Set Line1 = Chart.DrawFreeLine(4, 4) ' Draw an unconnected line to X=4,Y=4

Set Shape1 = Chart.DrawShape("Terminal") ' Draw a Terminal shape as destination
Set Shape2 = Chart.DrawShape("Connector") ' Draw a Connector shape as the source
Line1.Line_.ReconnectDest Shape2, 1 ' Connect end of line to bottom of Terminal
Line1.Line_.ReconnectSource Shape1, 0 ' Connect beginning of line to top of 
Connector



ReconnectSource Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_CONNECTSHAPES');CW(`concfull')}

Usage Line_Object.ReconnectSource ShapeObject [, ExitDirection]
The ShapeObject element is the shape that the line is to connect to.
The ExitDirection element, which is optional, specifies the side where the line leaves the 
shape.

Description You use the ReconnectSource method to connect an existing line to a shape or to change 
the side where a line leaves a shape. You specify the shape that the line leaves and, 
optionally, the side of the shape where the line leaves.

Data Type Integer (Boolean)
Value True means the reconnection was successful; False means it was not successful. The 

following table shows the values of the ExitDirection element and their meanings.
Value Direction
0 North
1 East
2 South
3 West

ABC Equivalent The ReconnectSource method is equivalent to dragging a line end into a shape.

{button Related Topics,PI(`',`IDH_RT_ReconnectSource_Method')}



Connecting Existing Lines to Shapes
Example

ReconnectDest Method

Line_ Object



DestinationDirection Property
Usage Line_Object.DestinationDirection = EnterDirection

Description You use the DestinationDirection property of the Line_ object to set or find the side at 
which a line drawn between two shapes will enter the ending shape. The line enters at the 
center of the side. The DestinationDirection property is read/write.

Data Type Integer
Value The side of the ending shape into which a connecting line will enter. The following table 

shows the values of the EnterDirection element and their meanings.
Value Direction
0 North
1 East
2 South
3 West

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DestinationDirection_Property')}



Drawing Lines that Connect Shapes
Example

SourceDirection Property

Line_ Object



DestinationDirection, SourceDirection Properties Example
This example uses the DestinationDirection method and SourceDirection method of the Line_ object to 
display the destination and source directions of a line connecting two shapes.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Shape2 As Object
Dim NewLine As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.New ' Make a new chart

Chart.MasterItems.HideAll ' Get Master Items out of the way

Chart.DrawPositionX = 1 ' Draw 2 shapes and connect...
Chart.DrawPositionY = 2 ' ...them with a line
Set Shape1 = Chart.DrawShape
Chart.DrawPositionX = 4
Set Shape2 = Chart.DrawShape
Set NewLine = Chart.DrawLine(Shape1, Shape2)

MsgBox "Source Direction: " + NewLine.Line_.SourceDirection
MsgBox "Destination Direction: " + NewLine.Line_.DestinationDirection



SourceDirection Property
Usage Line_Object.SourceDirection = ExitDirection

Description You use the SourceDirection property of the Line_ object to set or find the side at which a 
line drawn between two shapes will leave the starting shape. The line leaves at the center of
the side. The SourceDirection property is read/write.

Data Type Integer
Value The side of the starting shape from which a connecting line will exit.The following table 

shows the values of the ExitDirection element and their meanings.
Value Direction
0 North
1 East
2 South
3 West

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_SourceDirection_Property')}



Drawing Lines that Connect Shapes
Example

DestinationDirection Property

Line_ Object



MasterItems Object
Description The MasterItems object is below the Chart object. You can have only one MasterItems object.

Properties Methods

Application ShowAll
ChartName UpdateDateAndTime
ChartNameShown
Date
DateShown
DateStyle
HideAll
Logo
LogoPathname
LogoShown
PageNumber
PageNumberShown
Parent
Range
Text1
Text1Shown
Text2
Text2Shown
Time
TimeShown

{button Related Topics,PI(`',`IDH_RT_MasterItems_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



ChartName Property
Usage MasterItemsObject.ChartName
Description You use the ChartName property to find the Chart Name master item object for the chart. 

The ChartName property is read only, but the properties from the object it returns are 
read/write.

Data Type Object
Value The chart object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ChartName_Property')}



Displaying Master Items
Example

ChartNameShown Property
HideAll Method
ShowAll Method
UpdateDateAndTime Method

MasterItems Object



Date Property
Usage MasterItemsObject.Date
Description You use the Date property to find or set the Date master item properties. The Date property

is read only, but the properties from the object it returns are read/write.
Data Type Object
Value The Date object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Date_Property')}



Displaying Master Items
Example

HideAll Method
ShowAll Method

DateShown Property
DateStyle Property
Range Property
UpdateDateAndTime Method

MasterItems Object



Logo Property
Usage MasterItemsObject.Logo
Description You use the Logo property to find the Logo master item. You use the LogoPathname 

property to make the logo appear. The Logo property is read only, but the properties from 
the object it returns are read/write.

Data Type Object
Value The logo object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Logo_Property')}



Displaying Master Items
Example

HideAll Method
LogoPathname Property
LogoShown Property
Range Property
ShowAll Method

MasterItems Object



PageNumber Property
Usage MasterItemsObject.PageNumber
Description The PageNumber property lets you find the page number included in the MasterItems 

object. The PageNumber property is read only, but all the properties from the object it 
returns are read/write.

Data Type Object
Value The page number included in the MasterItems object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_PageNumber_Property')}



Displaying Master Items
Example

MasterItems Property
PageNumberShown Property

MasterItems Object



Text1 Property
Usage MasterItemsObject.Text1
Description You use the Text1 property to find the Text1 master item. The Text1 property is read only, 

but the properties from the object it returns are read/write.
Data Type Object
Value The Text1 object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Text1_Property')}



Displaying Master Items
Example

HideAll Method
ShowAll Method

Range Property
Text1Shown Property
Text2 Property
Text2Shown Property

MasterItems Object



Text1, Text2 Properties Example
This example uses the Text1 method and Text2 method of the MasterItems object to put text into the text 1 and
text 2 master items.

Dim ABC As Object, Chart As Object, MasterItems As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Set MasterItems = Chart.MasterItems

MasterItems.Text1.Text = "This is the Text1 field" ' Put text in text fields
MasterItems.Text2.Text = "This is the Text2 field"



Text2 Property
Usage MasterItemsObject.Text2
Description You use the Text2 property to find the Text2 master item. The Text2 property is read only, 

but the properties from the object it returns are read/write.
Data Type Object
Value The Text2 object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Text2_Property')}



Displaying Master Items
Example

HideAll Method
ShowAll Method

Range Property
Text1 Property
Text1Shown Property
Text2Shown Property

MasterItems Object



Time Property
Usage MasterItemsObject.Time
Description You use the Time property to find the Time master item. The Time property is read only, but

the properties from the object it returns are read/write.
Data Type Object
Value The time object
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Time_Property')}



Displaying Master Items
Example

HideAll Method
Range Property
ShowAll Method
TimeShown Property
UpdateDateAndTime Method

MasterItems Object



DateStyle Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.DateStyle = Value

Description You use the DateStyle property to find or set the style of the Date master item. The 
DateStyle property is read/write.

Data Type Integer
Value The values for the DateStyle property are in the following table.

Value Style
0 MM/DD/YY
1 Short text (Jan. 1, 1995)
2 Long text (January 1, 1995)

ABC Equivalent The DateStyle property is equivalent to clicking Chart on the Format menu, clicking the 
Master Items tab, clicking Date in the list box, and then choosing a style for the Date master 
item.

{button Related Topics,PI(`',`IDH_RT_DateStyle_Property')}



Displaying Master Items
Example

HideAll Method
ShowAll Method

Date Property
DateShown Property
Range Property
UpdateDateAndTime Method

MasterItems Object



DateStyle Property Example
This example uses the DateStyle property of the MasterItems object to find and report the date style for the 
Date master item.

Dim ABC As Object, Chart As Object, MasterItems As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Set MasterItems = Chart.MasterItems

Dim Date_Style As Single
Date_Style = MasterItems.DateStyle ' Find date style

Select Case Date_Style ' Report date style
Case 0

MsgBox "Date Style is MM/DD/YY."
Case 1

MsgBox "Date Style is <short text>."
Case 2

MsgBox "Date Style is <long text>."
End Select



LogoPathname Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.LogoPathname = PathName

Description You use the LogoPathname property to find or set the pathname of the Logo master item. 
The LogoPathname property is read/write. Quotation marks should be used whenever long 
filenames or long pathnames are used.

Data Type String
Value The pathname of the Logo master item
ABC Equivalent The LogoPathname property is equivalent to Chart on the Format menu, clicking the 

Master Items tab, clicking the Logo item in the Master Items list box, and choosing a file to 
serve as the logo.

{button Related Topics,PI(`',`IDH_RT_LogoPathname_Property')}



Displaying Master Items
Example

HideAll Method
Logo Property
LogoShown Property
Range Property
ShowAll Method

MasterItems Object



LogoPathname, Range Properties Example
This example uses the LogoPathname property and Range property of the MasterItems object to find and 
report the date style for the master item date. The example assumes that there is a logo selection in the chart.

Dim ABC As Object, Chart As Object, MasterItems As Object
Dim Logo_Path_Name As String
Dim Range As Single

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Logo_Path_Name = MasterItems.LogoPathname ' Get path to master items logo

MsgBox Logo_Path_Name ' Display path to master items logo

Range = MasterItems.Range ' Get master item page range
Select Case Range

Case 0
MsgBox "Master items are only on first page."

Case 1
MsgBox "Master items are on all pages."

End Select



Range Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.Range = RangeIndicator

Description You use the Range property to find or set the range of pages that display the master items. 
The Range property is read/write.

Data Type Integer
Value The range of pages on which master items are shown, using the values in the following 

table.
RangeIndicator Pages
0 First page only
1 All pages

ABC Equivalent The Range method is equivalent to clicking Chart on the Format menu, clicking the Master 
Items tab, and then clicking All Pages or First Page Only.

{button Related Topics,PI(`',`IDH_RT_Range_Property')}



Displaying Master Items
Example

HideAll Method
ShowAll Method

MasterItems Object



ChartNameShown Property
Usage MasterItemsObject.ChartNameShown = {True | False}
Description You use the ChartNameShown property to find or set whether the ChartName master item 

is displayed. The ChartNameShown property is read/write.
Data Type Integer (Boolean)
Value True shows the chart name master item; False does not.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ChartNameShown_Property')}



Displaying Master Items
Example

ChartName Property

MasterItems Object



ChartNameShown, ChartName, MasterItems Properties Example
This example uses the ChartNameShown property and ChartName property of the MasterItems object and the
MasterItems property of the Chart object to determine if the chart name master item is shown.

Dim ABC As Object, Chart As Object
Dim Master_Items As Object
Dim Chart_Name_Visible As Integer ' For ChartNameShown property value

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New
Set Chart = ABC.ActiveChart
Set Master_Items = Chart.MasterItems

Chart_Name_Visible = Master_Items.ChartNameShown ' Get ChartNameShown property value

Select Case Chart_Name_Visible ' Display return results
Case True

MsgBox "Chart name is visible. It is " + Master_Items.ChartName.Text + "."
Case Else

MsgBox "Chart name is not visible."
End Select



DateShown Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.DateShown = {True | False}
Description You use the DateShown property to find or set whether the Date master item is displayed. 

The DateShown property is read/write.
Data Type Integer (Boolean)
Value True shows the date master item; False does not.
ABC Equivalent The DateShown property is equivalent to clicking Chart on the Format menu, clicking the 

Master Items tab, and then selecting or deselecting the Date option in the list box.

{button Related Topics,PI(`',`IDH_RT_DateShown_Property')}



Displaying Master Items
Example

HideAll Method
UpdateDateAndTime Method

Date Property
DateStyle Property
Range Property
ShowAll Method

MasterItems Object



DateShown, Date Properties Example
This example uses the DateShown property and the Date property of the MasterItems object to determine if 
the Date master item is shown and display it if it is.

Dim ABC As Object
Dim Chart As Object
Dim Master_Items As Object
Dim Date_Visible As Integer ' For DateShown property return value

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New
Set Chart = ABC.ActiveChart
Set Master_Items = Chart.MasterItems

Date_Visible = Master_Items.DateShown ' Get DateShown property

Select Case Date_Visible ' Display return results
Case True

MsgBox "Date is visible. It is " + Master_Items.Date.Text + "."
Case Else

MsgBox "Date is not visible."
End Select



LogoShown Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.LogoShown = {True | False}
Description You use the LogoShown property to find or set whether the Logo master item is displayed. 

The LogoShown property is read/write.
Data Type Integer (Boolean)
Value True shows the logo; False does not.
ABC Equivalent The LogoShown property is equivalent to clicking Chart on the Format menu, clicking the 

Master Items tab, and then selecting or deselecting the Show Logo option in the Master 
Items list box.

{button Related Topics,PI(`',`IDH_RT_LogoShown_Property')}



Displaying Master Items
Example

HideAll Method
Logo Property
LogoPathname Property
Range Property
ShowAll Method

MasterItems Object



LogoShown, Logo Properties Example
This example uses the LogoShown property and the Logo property of the MasterItems object to determine if 
the logo master item is shown and display its width. For the width of the logo to be shown, there must be a logo 
in the chart.

Dim ABC As Object
Dim Chart As Object
Dim Master_Items As Object
Dim Logo_Visible As Integer ' For LogoShown property return value

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New
Set Chart = ABC.ActiveChart
Set Master_Items = Chart.MasterItems

Logo_Visible = Master_Items.LogoShown ' Get LogoShown property

Select Case Logo_Visible ' Display return results
Case True

MsgBox "Logo is visible. Its width is " + Master_Items.Logo.Width + "."
Case Else

MsgBox "Logo is not visible."
End Select



PageNumberShown Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.PageNumberShown = {True | False}
Description You use the PageNumberShown property to find or set whether the PageNumber master 

item is displayed. The PageNumberShown property is read/write.
Data Type Integer (Boolean)
Value True shows the page number master item; False does not.
ABC Equivalent The PageNumberShown property is equivalent to clicking Chart on the Format menu, 

clicking the Master Items tab, and then selecting or deselecting the Page Number option.

{button Related Topics,PI(`',`IDH_RT_PageNumberShown_Property')}



Displaying Master Items
Example

HideAll Method
Range Property
ShowAll Method

MasterItems Object



PageNumberShown, PageNumber Properties Example
This example uses the PageNumberShown property and the PageNumber property of the MasterItems object 
to determine if the Page number master item is shown. It then shows the text of the page number.

Dim ABC As Object
Dim Chart As Object
Dim Master_Items As Object
Dim Page_Number_Visible As Integer ' For PageNumberShown property value

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New
Set Chart = ABC.ActiveChart
Set Master_Items = Chart.MasterItems

Page_Number_Visible = Master_Items.PageNumberShown ' Get PageNumberShown property

Select Case Page_Number_Visible ' Display return results
Case True

MsgBox "Page Number visible. Format is " + Master_Items.PageNumber.Text + "."
Case Else

MsgBox "Page Number is not visible."
End Select



TimeShown Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.TimeShown = {True | False}
Description You use the TimeShown property to find or set whether the Time master item is shown. The

TimeShown property is read/write.
Data Type Integer (Boolean)
Value True shows the Time master item; False does not show it.
ABC Equivalent The TimeShown property is equivalent to clicking Chart on the Format menu, clicking the 

Master Items tab, and then selecting or deselecting the Time option in the list box.

{button Related Topics,PI(`',`IDH_RT_TimeShown_Property')}



Displaying Master Items
Example

HideAll Method
Range Property
ShowAll Method
Time Property
UpdateDateAndTime Method

MasterItems Object



TimeShown, Time Properties Example
This example uses the TimeShown property and the Time property of the MasterItems object to determine if 
the time master item is shown. If it is shown, the program gives its value.

Dim ABC As Object
Dim Chart As Object
Dim Master_Items As Object
Dim Time_Visible As Integer ' For TimeShown property return value

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New
Set Chart = ABC.ActiveChart
Set Master_Items = Chart.MasterItems

Time_Visible = Master_Items.TimeShown ' Get TimeShown property

Select Case Time_Visible ' Display result
Case True

MsgBox "Time is visible. It is " + Master_Items.Time.Text + "."
Case Else

MsgBox "Time is not visible."
End Select



Text1Shown Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.Text1Shown = {True | False}
Description You use the Text1Shown property to find or set whether the Text1 master item is displayed. 

The Text1Shown property is read/write.
Data Type Integer (Boolean)
Value True shows the Text1 master item; False does not show it.
ABC Equivalent The Text1Shown property is equivalent to clicking Chart on the Format menu, clicking the 

Master Items tab, and then selecting or deselecting the Text 1 option in the list box.

{button Related Topics,PI(`',`IDH_RT_Text1Shown_Property')}



Displaying Master Items
Example

HideAll Method
ShowAll Method

Range Property
Text1 Property
Text2 Property
Text2Shown Property

MasterItems Object



Text1Shown, Text2Shown Properties Example
This example uses the Text1Shown property and Text2Shown property of the MasterItems object to determine
whether the text 1 and text 2 master items are shown.

Dim ABC As Object, Chart As Object
Dim Text1_Visible, Text2_Visible

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Text1_Visible = Chart.MasterItems.Text1Shown ' Determine whether Text1 is shown
Text2_Visible = Chart.MasterItems.Text2Shown ' Determine whether Text2 is shown

Select Case Text1_Visible ' Display results for Text1 field
Case True

MsgBox "Text1 field is visible."
Case Else

MsgBox "Text1 field is not visible."
End Select

Select Case Text2_Visible ' Display results for Text2 field
Case True

MsgBox "Text2 field is visible."
Case Else

MsgBox "Text2 field is not visible."
End Select



Text2Shown Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.Text2Shown = {True | False}
Description You use the Text2Shown property to find or set whether the Text2 master item is displayed. 

The Text2Shown property is read/write.
Data Type Integer (Boolean)
Value True shows the Text2 master item; False does not show it.
ABC Equivalent The Text2Shown property is equivalent to clicking Chart on the Format menu, clicking the 

Master Items tab, and then selecting or deselecting the Text 2 option in the list box.

{button Related Topics,PI(`',`IDH_RT_Text2Shown_Property')}



Displaying Master Items
Example

HideAll Method
Range Property
ShowAll Method
Text1 Property
Text2 Property

MasterItems Object



HideAll Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.HideAll
Description You use the HideAll method to hide the master items in the chart.
ABC Equivalent The HideAll method is equivalent to clicking Chart on the Format menu, clicking the Master 

Items tab, and then deselecting all the master items options.

{button Related Topics,PI(`',`IDH_RT_HideAll_Method')}



Displaying Master Items
Example

ShowAll Method
UpdateDateAndTime Method

ChartNameShown Property
DateShown Property
LogoShown Property
PageNumberShown Property
Range Property
Text1Shown Property
Text2Shown Property
TimeShown Property

MasterItems Object



HideAll Method Example
This example uses the HideAll method of the MasterItems object to hide all master items.

Dim ABC As Object, MasterItems As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Set MasterItems = Chart.MasterItems

MasterItems.HideAll ' Hide all master items in the chart



ShowAll Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.ShowAll
Description You use the ShowAll method to display the master items in the chart.
ABC Equivalent The ShowAll method is equivalent to clicking Chart on the Format menu, clicking the Master

Items tab, and then selecting all the master items options.

{button Related Topics,PI(`',`IDH_RT_ShowAll_Method')}



Displaying Master Items
Example

HideAll Method
UpdateDateAndTime Method

ChartNameShown Property
DateShown Property
LogoShown Property
PageNumberShown Property
Range Property
Text1Shown Property
Text2Shown Property
TimeShown Property

MasterItems Object



ShowAll Method Example
This example uses the ShowAll method of the MasterItems object to show all master items.

Dim ABC As Object, MasterItems As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart
Set MasterItems = Chart.MasterItems

MasterItems.ShowAll ' Show all master items in the chart



UpdateDateAndTime Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Master_Items');CW(`concfull')}

Usage MasterItemsObject.UpdateDateAndTime [Date] [, Time]
The Date element, which is optional, specifies a specific date.
The Time element, which is optional, specifies a specific time.

Description You use the UpdateDateAndTime method to update the master item time and date. If you 
omit the elements, the data and time are changed to the system date and time. You can 
optionally supply a date and a time.

Data Type The Date element and Time element are strings.
Value None
ABC Equivalent The UpdateDateAndTime method is equivalent to clicking Chart on the Format menu, 

clicking the Master Items tab, selecting the Date or Time option, and then clicking the 
Update Date and Time option.

{button Related Topics,PI(`',`IDH_RT_UpdateDateAndTime_Method')}



Displaying Master Items
Example

HideAll Method
ShowAll Method

Date Property
DateShown Property
DateStyle Property
Range Property
Time Property
TimeShown Property

MasterItems Object



UpdateDateAndTime Method Example
This example uses the UpdateDateAndTime method of the MasterItems object to update the date and time 
master items to the current system date and time.

Dim ABC As Object
Dim Chart As Object
Dim MasterItems As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set MasterItems = Chart.MasterItems

MasterItems.UpdateDateAndTime ' Update current Master Items date and time
settings

MsgBox "You've just updated your Master Item time and date settings."



Menu Collection
Description The Menu collection is below the Application object. Below the Menu collection are the 

MenuItem objects. You can have multiple MenuItem objects in the Menu collection.

Properties Methods

Application AppendItem
Count DeleteItem
Parent DeleteAll
Text InsertItem
Visible Item

{button Related Topics,PI(`',`IDH_RT_Menu_Collection')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical
VBX Event Variables



Text Property (Menu Collection)
Usage MenuCollection.Text = MenuName

Description The Text property of the Menu collection lets you change the name of a menu after you 
have created it. You may include the "&" character for keyboard shortcuts. The Text property
is read/write.

Data Type String
Value The text of the menu
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Text_Property_Menu_Collection')}



Adding Menus
Example

AddMenu Method
DeleteAll Method
DeleteItem Method
RemoveMenu Method

Text Property (MenuItem Object)
Text Property (Object Object)
Visible Property (Menu Collection)

Menu Collection



Text Property (Menu Collection) Example
This example uses the Text property of the Menu collection to change the name of a menu after it is created.

Dim ABC As Object, Menu As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Menu = ABC.AddMenu("Statistics", ABC1.VBX, Form1.Caption) ' Add a new menu item

ABC.MsgBox "Click OK to see the menu text change."

Menu.Text = "Organization" ' Change the new menu's text



Visible Property (Menu Collection)
Usage MenuCollection.Visible = {True | False}
Description The Visible property of the Menu collection lets you show or hide a menu. The Visible 

property is read/write.
Data Type Integer (Boolean)
Value True makes the menu visible; False hides it.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Visible_Property_Menu_Collection')}



Adding Menus
Example

AddMenu Method
DeleteAll Method
DeleteItem Method
RemoveMenu Method

Checked Property
Enabled Property
Text Property (MenuItem Object)
Visible Property (Application object)

Menu Collection



Visible Property (Menu Collection) Example
This example uses the Visible property of the Menu collection to hide and reshow a menu.

Dim ABC As Object, Menu As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Menu = ABC.AddMenu("Statistics", ABC1.VBX, Form1.Caption) ' Create a new menu

ABC.MsgBox "Click OK to hide the new menu."

Menu.Visible = False ' Hide the new menu

ABC.MsgBox "Click OK to see the new menu reappear"

Menu.Visible = True ' Unhide the new menu



AppendItem Method
Usage MenuCollection.AppendItem (ItemName)

The ItemName element is the name of the item you wish to add to the menu.
Description The AppendItem method lets you add a menu item to the next position, below any existing 

items, in a menu you created. It is customary to list items within groups in alphabetical 
order. If you use the name of an existing menu item, the method returns the existing 
MenuItem object. Otherwise it returns the new MenuItem object.

Data Type Object
Value The menu item you created
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_AppendItem_Method')}



Adding Menus
Example

AddMenu Method
DeleteAll Method
DeleteItem Method
InsertItem Method
Item Method (Charts Collection)
Item Method (FieldTemplates Collection)
Item Method (FieldValues Collection)
Item Method (Objects Collection)
RemoveMenu Method

Checked Property
Enabled Property

Menu Collection



DeleteItem Method
Usage MenuCollection.DeleteItem MenuItem

The MenuItem element is the MenuItem object to remove.
Description The DeleteItem method lets you delete a menu item from a menu.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DeleteItem_Method')}



Adding Menus
Example

AppendItem Method
DeleteAll Method
InsertItem Method
Item Method (Menu Collection)

Checked Property
Text Property (MenuItem Object)
Visible Property (Menu Collection)

Menu Collection



DeleteItem Method Example
This example uses the DeleteItem method of the Menu collection to delete a menu item.

Dim ABC As Object, Menu As Object, MenuItem As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Menu = ABC.AddMenu("Test", ABC1.VBX, Form1.Caption) ' Create the main menu

Set MenuItem = Menu.AppendItem("First Item") ' Add items to the new menu
Menu.AppendItem ("Second Item")

MsgBox "Click on the ABC application to see the new menu items."

MsgBox "Click OK to delete a menu item."

Menu.DeleteItem MenuItem ' Delete a menu item



DeleteAll Method
Usage MenuCollection.DeleteAll
Description The DeleteAll method lets you remove all items from a menu.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DeleteAll_Method')}



Adding Menus
Example

AddMenu Method
DeleteItem Method
RemoveMenu Method

Checked Property
Visible Property (Menu Collection)

Menu Collection



DeleteAll Method Example
This example uses the DeleteAll method of the Menu collection to remove all menu items in a menu.

Dim ABC As Object, Menu As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Menu = ABC.AddMenu("Test", ABC1.VBX, Form1.Caption) ' Create new menu

Menu.AppendItem ("First Item") ' Create first menu item
Menu.AppendItem ("Second Item") ' Create second menu item

MsgBox "Click OK to delete all of the new menu items."

Menu.DeleteAll ' Delete all menu items under new menu



InsertItem Method
Usage MenuCollection.InsertItem ItemName, ({PreviousItem | Position})

The ItemName element is the name of the item you wish to add to the menu.
The PreviousItem element is the item to position the new item after.
The Position element is the numeric position of the new item.

Description The InsertItem method lets you insert a menu item in a specified position in a menu you 
created. It is customary to list items within groups in alphabetical order. You provide the title 
of the item you wish to create, followed by the position of the item, specified either by giving
the name of the existing item that the new item should be placed after or by specifying the 
numerical position of the item.

Data Type Object
Value The menu item you created
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_InsertItem_Method')}



Adding Menus
Example

AddMenu Method
AppendItem Method
DeleteAll Method
DeleteItem Method
Item Method (Menu Collection)
RemoveMenu Method

Checked Property
Enabled Property

Menu Collection



InsertItem Method Example
This example uses the InsertItem method of the Menu collection to insert a menu item between two existing 
items.

Dim ABC As Object, Menu As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Menu = ABC.AddMenu("Test", ABC1.VBX, Form1.Caption) ' Create a new menu

Menu.AppendItem ("First Item") ' Create first menu item
Menu.AppendItem ("Second Item") ' Create second menu item

Menu.InsertItem ("Third Item", 2) ' Insert third item between first two



Item Method (Menu Collection)
Usage MenuCollection.Item ({ItemText | Position})

The ItemText element is the text of the item you want to find.
The Position element is the numeric position of the item in the menu.

Description The Item method of the Menu collection lets you find a menu item either by its text or by its 
location in a menu.

Data Type Object
Value A menu item
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Item_Method_Menu_Collection')}



Adding Menus
Example

AddMenu Method
AppendItem Method
DeleteAll Method
DeleteItem Method
InsertItem Method
RemoveMenu Method

Checked Property
Enabled Property
Text Property (MenuItem Object)
Visible Property (Menu Collection)

Menu Collection



Item Method (Menu Collection) Example
This example uses the Item method of the Menu collection to display the names of the items in a menu

Dim ABC As Object, Menu As Object, z As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Menu = ABC.AddMenu("Test", ABC1.VBX, Form1.Caption) ' Add a new menu

Menu.AppendItem ("First Item") ' Append items to the new menu
Menu.AppendItem ("Second Item")

If Menu.Count <> 0 Then ' Start a loop
For x = 1 To Menu.Count ' Get the Menu count

Set z = Menu.Item(x) ' Get the current menu item
MsgBox z ' Display the name of the menu item

Next x
End If ' End the loop



MenuItem Object
Description The MenuItem object is below the Menu collection. You can have multiple MenuItem objects.

Properties Methods

Application There are no methods for
the

Checked MenuItem object.
Enabled
Parent
Text

{button Related Topics,PI(`',`IDH_RT_MenuItem_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical
VBX Event Variables



Checked Property
Usage MenuItemObject.Checked = {True | False}
Description The Checked property lets you show or hide a check mark beside a menu item. The 

Checked property is read/write.
Data Type Integer (Boolean)
Value True shows a check mark beside the item; False hides it.
ABC Equivalent None

{button Related Topics,PI(`',`JDH_RT_Checked_Property')}



Adding Menus
Example

AddMenu Method
DeleteAll Method
DeleteItem Method
RemoveMenu Method

Enabled Property
Text Property (MenuItem Object)

MenuItem Object



Checked Property Example
This example uses the Checked method of the MenuItem object to put a check mark beside a menu item.

Dim ABC As Object, Menu As Object, MenuItem As Object, First As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Menu = ABC.AddMenu("Test", ABC1.VBX, Form1.Caption) ' Create a new menu

Set MenuItem = Menu.AppendItem("First Item") ' Create menu items
Menu.AppendItem ("Second Item")

MenuItem.Checked = True ' Place a check on the first menu item



Enabled Property
Usage MenuItemObject.Enabled = {True | False}
Description The Enabled property lets you show a menu item or make it gray. The Enabled property is 

read/write.
Data Type Integer (Boolean)
Value True enables the item; False grays it.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Enabled_Property')}



Adding Menus
Example

AddMenu Method
DeleteAll Method
DeleteItem Method
RemoveMenu Method

Checked Property
Text Property (MenuItem Object)

MenuItem Object



Enabled Property Example
This example uses the Enabled property of the MenuItem object to gray a menu item.

Dim ABC As Object, Menu As Object, MenuItem As Object, First As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set Menu = ABC.AddMenu("Test", ABC1.VBX, Form1.Caption) ' Create a new menu

Set MenuItem = Menu.AppendItem("First Item") ' Create first menu item
Menu.AppendItem ("Second Item") ' Create second menu item

MenuItem.Enabled = False ' Gray the first menu item



Text Property (MenuItem Object)
Usage MenuItemObject.Text = ItemName

Description The Text property of the MenuItem object lets you change the name of a menu item after 
you have added it to a menu. You may include the "&" character for keyboard shortcuts. The 
Text property is read/write.

Data Type String
Value The text of the menu item
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Text_Property_MenuItem_Object')}



Adding Menus
Example

AppendItem Method
DeleteAll Method
DeleteItem Method
InsertItem Method

Checked Property
Text Property (Menu Collection)
Text Property (Object Object)
Visible Property (Menu Collection)

MenuItem Object



Text Property (MenuItem Object) Example
This example uses the Text property of the MenuItem object to change the text in an item in a menu.

Dim ABC As Object, menu As Object, MenuItem As Object, First As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

Set menu = ABC.AddMenu("Test", ABC1.VBX, Form1.Caption) ' Create a new menu

Set MenuItem = menu.AppendItem("1st Item") ' Create menu items
menu.AppendItem ("Second Item")

MsgBox "Press ALT+TAB to switch to ABC. Click the Test menu. Notice that the first menu item is
named '1st Item'. ALT+TAB back to this dialog box and click OK. The first menu item will change
to 'First Item.'"

MenuItem.Text = "First Item" ' Change "1st Item" to "First Item"



Introducing ABC OLE Automation
Welcome to ABC OLE Automation!
ABC OLE Automation  is a powerful tool you can use to customize ABC FlowCharter
 to meet your own specific needs. The extensive power and flexibility of Automation give you endless control over

ABC FlowCharter.
ABC OLE Automation can provide seamless integration with outside applications. You can write automation 
programs that use ABC information to perform tasks in other applications or use data from other applications to 
create and manipulate ABC charts.
ABC OLE Automation is one of the programs in the ABC Graphics Suite package. Together, they provide you with 
easy, efficient, and powerful Office-compatible tools.
The Help system is designed to let you move back and forth between ABC OLE Automation Help and ABC 
FlowCharter Help.

{button Related Topics,PI(`',`IDH_RT_Introduction_Chapter')}



Running and Viewing the Sample Files
Jumping to Visual Basic Help
Conventions
Help on Help
Accessing ABC OLE Automation Help from ABC FlowCharter Help
ABC Graphics Suite



Using the Help System
There are several ways you can access the ABC OLE Automation help file. 

You can run the file from ABC FlowCharter Help.
You can run it from the Explorer.
You can run it from Excel (which also lets you browse through the language elements and see quick 

descriptions of them).

{button Related Topics,PI(`',`IDH_RT_Using_the_Help_System')}



Introducing ABC OLE Automation
Jumping to Visual Basic Help
Accessing ABC OLE Automation Help from ABC FlowCharter Help
Accessing ABC OLE Automation Help from Visual Basic

To access ABC OLE Automation help from ABC FlowCharter help
To access ABC OLE Automation Help from Excel
To access ABC OLE Automation Help from Explorer



Accessing ABC OLE Automation Help from ABC FlowCharter Help
{button OLE Automation,} This help for ABC OLE Automation is linked to the ABC 
FlowCharter help. To the right of selected buttons, commands, dialog boxes, and areas of dialog boxes are 
buttons labeled "Automation." If you click one of those buttons, you go to the ABC OLE Automation help for a 
related property or method. Be sure to check the Related Topics in the ABC OLE Automation help to find other 
properties or methods that are related to the ABC FlowCharter area you are working in.
{button ABC Equivalent,} When a property or method has an equivalent ABC 
FlowCharter command, a button labeled "ABC Equivalent" appears to the right of the topic title. You can click on 
the button to go to the ABC FlowCharter topic that includes a description of the related command, button, 
option, or other ABC FlowCharter element.

{button Related Topics,PI(`',`IDH_RT_Accessing_from_this_Help')}



Accessing ABC OLE Automation Help from Visual Basic
Jumping to Visual Basic Help
Using the Help System

To access ABC OLE Automation help from ABC FlowCharter help
To access ABC OLE Automation Help from Excel
To access ABC OLE Automation Help from Explorer



To access ABC OLE Automation Help from ABC FlowCharter help
1 Click the {button OLE Automation,} button immediately to the right of the command, option, or area that you 

want to know the ABC OLE Automation equivalent for. 
For example, if you want to know the equivalent for the changing the color of a shape border, go to the topic 
Determining How Shapes Look. Find the section about Border Color and click the {button OLE Automation,} 
button. The ABC OLE Automation help file runs, showing the topic on the equivalent ABC OLE Automation 
property or method.

2 To return to the ABC FlowCharter help from the ABC OLE Automation help, click the button {button ABC 
Equivalent,} that appears at the right of the topic title.

{button Related Topics,PI(`',`IDH_RT_To_access_ABC_OLE_Automation')}



To access ABC OLE Automation Help from Excel
To access ABC OLE Automation Help from Explorer



To access ABC OLE Automation Help from Explorer
1 Open Explorer.
2 Locate the folder where ABC FlowCharter is installed.
3 Double click the file AUTOMATE.HLP. The ABC OLE Automation help file runs.

{button Related Topics,PI(`',`IDH_RT_Accessing_Using_File_Manager')}



Accessing ABC OLE Automation Help from Visual Basic
Jumping to Visual Basic Help
Using the Help System

To access ABC OLE Automation help from ABC FlowCharter help
To access ABC OLE Automation Help from Excel
To access ABC OLE Automation Help from Explorer



To access ABC OLE Automation Help from Excel
1 Run Excel.
2 Open the Insert menu and choose the Macro command. A submenu opens.
3 Choose Module. The module interface displays.
4 Open the Tools menu and choose the References command. The References dialog box opens.
5 Click ABC OLE Automation 2.0 until an X appears in the box in front of it.
6 Click OK to close the dialog box.
7 Open the View menu and choose the Object Browser command. The Object Browser dialog box opens.
8 Click the down arrow to the right of the Libraries/Workbooks text box. A list of available libraries and 

workbooks appears.
9 Click ABC to select it. The Objects/Modules list box shows the objects available in ABC FlowCharter OLE 

Automation.
10 Click the object you want information about in the Objects/Modules list box. A short explanation appears 

at the bottom of the dialog box.
11 Click the button with a question mark in it, if you wish. ABC OLE Automation help appears showing the 

topic about that object.
12 Click the button with a question mark in it. ABC OLE Automation help appears showing the topic about 

that method or property.
Note

If the button with a question mark in it is gray, then the help file is not installed. You must install the help 
file using the Installation program.

{button Related Topics,PI(`',`IDH_RT_Accessing_Using_Excel_5_0')}



Accessing ABC OLE Automation Help from ABC FlowCharter Help
Accessing ABC OLE Automation Help from Visual Basic
Jumping to Visual Basic Help
Using the Help System

To access ABC OLE Automation help from ABC FlowCharter help
To access ABC OLE Automation Help from Explorer



Jumping to Visual Basic Help {button Visual Basic 
Help,JumpContents(`VB.HLP')}
You can jump to the Visual Basic help by clicking the button above. However, the jump will succeed only if Visual 
Basic Help is where Windows can find it.    You also can access Visual Basic help by clicking on VB.HLP.

{button Related Topics,PI(`',`IDH_RT_Jumping_to_Visual_Basic')}



Accessing ABC OLE Automation Help from ABC FlowCharter Help
Accessing ABC OLE Automation Help from Visual Basic
Introducing ABC OLE Automation
Using the Help System

To access ABC OLE Automation help from ABC FlowCharter help
To access ABC OLE Automation Help from Excel
To access ABC OLE Automation Help from Explorer



Running and Viewing the Sample Files
ABC provides automation samples for both Visual Basic and C++. You can use these samples to get creative 
ideas for uses of automation, and then examine the code to see how it was done. Each program contains 
explanatory comments and can be copied or edited to suit your own needs.
ABC OLE Automation includes the following samples.
Deployment Wizard
Double Click and Delete Events Demo
Double Click Line Draw
Excel Data Sample
Field Change Notify
Menus Sampler
Move Event Demo
Organizational Chart Generator
VC++/MFC Events Sample
Network Database
Text on Lines
To use ABC OLE Automation and to view the code in the samples, you must install Visual Basic 3.0 or later or 
Visual C++ 1.5 or later. To view the code for the Visual Basic examples, you must install the ABC VB event 
handler in Visual Basic.



To install the ABC VB event handler
1 If necessary, install Visual Basic®.
2 Run Visual Basic.
3 From the Visual Basic menu, on the File menu, click Add File. The Add File dialog box opens.
4 Switch to the Windows System Directory in the dialog box and select the file ABCAUTO.VBX (or ABCFLOW.OCX)

to install the ABC VB event handler.



To install the OCX event handler
1 If necessary, install Visual Basic® 4.0 or later.
2 Run Visual Basic.
3 From the Visual Basic menu, on the Tools menu, click Custom Controls. The Custom Controls dialog box opens.
4 Select ABCflow OLE Custom Control module and click OK. The ABC Event control icon is added to the controls 

toolbar.
5 To make the control available to your program, drag it onto the form.



To run an automation sample from Explorer
1 Click Run on the Start menu.
2 Type Program Files\Micrografx\ABC Graphics Suite\ABC FlowCharter\Samples\    and the name of one of the ABC

Automation samples: Deploy.exe, Events.exe, Excel.exe, Field.exe, Linedraw.exe, Menu.exe, Move.exe, 
Orgchart.exe, Network.exe, or T_Online.exe. 

Notes
OLE_VBX, the C++ sample is in Program Files\Micrografx\ABC Graphics Suite\ABC FlowCharter\Samples\

Ole_vbx.
You also can double click the icon in Explorer in the Program Files\Micrografx\ABC Graphics Suite\ABC 

FlowCharter\Samples folder.



To run an automation sample from Visual Basic
1 Run Visual Basic.
2 From the File menu, choose Open Project.
3 In the Open Project dialog box, switch to the Program Files\Micrografx\ABC Graphics Suite\ABC FlowCharter\

Samples directory and choose one of the ABC OLE Automation samples: DEPLOY.MAK, EVENTS.MAK, 
EXCEL.MAK, FIELD.MAK, LINEDRAW.MAK, MENU.MAK, MOVE.MAK, ORGCHART.MAK, NETWORK.MAK, or 
T_ONLINE.MAK. The project window will open.

4 From the Visual Basic Run menu, choose Start.



To view the code in one of the Visual Basic sample files
1 Run Visual Basic.
2 From the File menu, choose Open Project.
3 In the Open Project dialog box, switch to the Program Files\Micrografx\ABC Graphics Suite\ABC FlowCharter\

Samples directory and choose one of the ABC OLE Automation samples: DEPLOY.MAK, EVENTS.MAK, 
EXCEL.MAK, FIELD.MAK, LINEDRAW.MAK, MENU.MAK, MOVE.MAK, ORGCHART.MAK, NETWORK.MAK, or 
T_ONLINE.MAK. The project window will open.

4 From the Visual Basic View menu, choose Code.
or
Click the View Code button in the project window.
or
Double click on the .FRM name of project in the project window, and then double click on the button in the 
form that opens.

Note
If ABC is not running when you run one of the samples from Program Manager or the ABC FlowCharter 

Window, ABC will be started automatically. When you exit ABC, any samples that are not running will be closed 
automatically.

{button Related Topics,PI(`',`IDH_RT_Running_and_Viewing_the_Sample_Files')}



Introducing ABC OLE Automation
Jumping to Visual Basic Help

Deployment Wizard
Double Click and Delete Events Demo
Double Click Line Draw Sample
Excel Data Sample
Field Change Notify Sample

Menus Sampler
Move Event Demo
Organizational Chart Generator
VC++/MFC Events Sample
Network Database Sample
Text on Lines Sample



Deployment Wizard

The Deployment Wizard is a Visual Basic program that helps make deployment charts. Use the mouse to 
select the departments and phases you want on the chart. You can add and delete items from the Departments and
Phases lists. Any settings you make are saved in DEPLOY.INI and restored when the program is run again.

After the chart is generated, try moving and resizing the boxes that list the Departments and Phases. They have 
special snapping behavior that is driven by event handling in the Deployment Wizard. (The events 
ObjectSizedNOTIFY, ObjectSizeSUBCLASS, and so forth, trigger the Visual Basic snapping code.)

{button Related Topics,PI(`',`IDH_RT_Deployment_Wizard')}



Running and Viewing the Sample Files
ObjectSizedNOTIFYevent
ObjectSizeSUBCLASS event



Double Click and Delete Events Demo

The Double Click and Delete Events demo alters the double click and DEL key behavior. When you double 
click a shape, it turns red and the text "You double-clicked on me!" appears in the shape. When you select a shape 
and press the DEL key, it remains on the page and its fill color changes to gray, instead of being deleted.

{button Related Topics,PI(`',`IDH_RT_Double_Click_and_Delete_Events_Demo')}



Running and Viewing the Sample Files



Double Click Line Draw Sample

The Double Click Line Draw sample draws a line between two shapes after you double click each shape.

{button Related Topics,PI(`',`IDH_RT_Double_Click_Line_Draw')}



Running and Viewing the Sample Files



Excel Data Sample

The Excel Data sample reads an Excel data file and uses the data to generate field values in a flowchart.

{button Related Topics,PI(`',`IDH_RT_Excel_5_0_Data_Sample')}



Running and Viewing the Sample Files



Field Change Notify Sample

The Field Change Notify sample displays a message box when a field is changed in the field viewer. The 
message box displays the name of the changed field and its contents.

{button Related Topics,PI(`',`IDH_RT_Field_Change_Notify')}



Running and Viewing the Sample Files



Menus Sample

The Menus sample adds a menu to ABC called "Stats." This menu has two items that count the objects in the 
chart. When MENU.EXE shuts down, ABC automatically removes the "Stats" menu.

{button Related Topics,PI(`',`IDH_RT_Menus_Sampler')}



Running and Viewing the Sample Files



Move Event Demo

The Move Event demo causes a single shape to turn yellow if it is moved. If you move more than one object, 
the moved objects turn green. Additionally, fields for the X and Y positions are maintained below each moved 
shape.

{button Related Topics,PI(`',`IDH_RT_Move_Event_Demo')}



Running and Viewing the Sample Files



Organizational Chart Generator

The Organizational Chart Generator is a Visual Basic program that makes an ORG chart from a text file. The 
text file uses tabs to indicate the levels in the organization. Two TXT files (ORGCHRT1.TXT and ORGCHRT2.TXT) are 
installed in the Program Files\Micrografx\ABC Graphics Suite\ABC FlowCharter\Samples directory that you can edit 
and use to generate organizational charts.

{button Related Topics,PI(`',`IDH_RT_Organizational_Chart_Generator')}



Running and Viewing the Sample Files



VC++/MFC Events Sample

The VC++/MFC Events sample is written in C++. The sample alters the double click and DEL key behavior. It 
turns an object green when it is double clicked. If the object is a shape, the shape's text changes to "C++ is easy!" 
When you select objects and press the DEL key, they remain on the page and turn gray, instead of being deleted.

{button Related Topics,PI(`',`IDH_RT_VC_MFC_Events_Sample')}



Running and Viewing the Sample Files



Network Database Sample
Network Database is a Visual Basic program that creates a visual image of the connections of a computer network. 
After the chart is created, you can double click on a shape for information on that node.

{button Related Topics,PI(`',`IDH_RT_Network_Database')}



Running and Viewing the Sample Files



Text on Lines Sample
Text on Lines is a Visual Basic program that demonstrates how to work with text on lines. The program opens a 
chart that has three text objects on a line. The user can specify which of the text objects he or she wants to turn 
blue.

{button Related Topics,PI(`',`IDH_RT_Text_on_Lines')}



Running and Viewing the Sample Files



How to Use this Help
This Help gives you information about how to write ABC OLE Automation programs for ABC. Use this Help to learn
the highlights of Visual Basic, as well as how to automate the features of the ABC product.
We recommend you take a few minutes to become familiar with this Help and its contents before using ABC OLE 
Automation. You will find it provides information to help you understand the basic concepts of Visual Basic, 
detailed information for automating each feature of ABC, and a multitude of examples for each programming 
property and method.
Refer to Visual Basic Concepts and Writing a Program for information to familiarize yourself with Visual Basic. 
They describe the basic concepts that are used throughout the remainder of the Help and provide useful 
information on using Visual Basic to write an automation program. Detailed information about Visual Basic is 
provided in the Visual Basic manuals.
Refer to Running and Setting Up ABC, Handling ABC Events, Working with Chart Files, Working with Objects, 
Working with Shapes, Working with Lines, Working with Text, Working with Data Fields, and Using Color to see 
how to automate the features of ABC. Each topic provides detailed information and examples on how to perform 
each task using automation commands. Use these topics to learn the details associated with automation. These 
topics assume you are familiar with Visual Basic and ABC. To learn about ABC, see the Help for ABC FlowCharter.
The Language Reference is a complete reference for every property, method, and event used with ABC OLE 
Automation. After you know the basic concepts behind a property or method, use this as a quick reference for 
information on syntax and parameters, as well as a description of possible values. Topics below this one include 
ways to access the properties, methods, and events. Objects, alphabetical lists all the objects alphabetically. 
Objects, graphical provides a visual reference to the ABC objects and their relationships. Properties, alphabetical 
lists the properties in alphabetical order. Methods, alphabetical lists the methods in alphabetical order. Events, 
alphabetical lists the events in alphabetical order.    All Properties, Methods, Objects, and Events, alphabetical 
lists the properties, methods, and events in alphabetical order.
ABC Menu Command equivalents provides a listing of the ABC OLE Automation command that is equivalent to 
each ABC menu command.
In the Contents, ABC Features Not Automated describes the ABC features that cannot be automated. Using C++ 
with ABC OLE Automation contains information on accessing and using ABC OLE Automation with C++.

{button Related Topics,PI(`',`IDH_RT_Introduction_Chapter')}



Introducing ABC OLE Automation
ABC Menu Command equivalents
Objects, graphical

All Properties, Methods, Objects, and Events, alphabetical
Events, alphabetical
Methods, alphabetical
Objects, alphabetical
Properties, alphabetical



Conventions
This Help provides visual keys to special information with Notes and Tips.
Notes
Notes inform you of exceptions or special cases.
Tips
Tips offer ways to help you work more efficiently, and suggest shortcuts.
This manual also uses the conventions listed in the following table.
Example Description
Height, DrawLine Words in bold or green with an underline indicate properties, methods, and events. 

You can click on any item that is green with an underline to go to a related topic.
ShapeObject Words in italic indicate placeholders for information you supply.
[FieldType] Elements within square brackets are optional.
{Index | Filename} Elements within braces separated by a vertical bar represent a mandatory choice 

between the two elements. You may choose one element or the other.
' This is a comment An apostrophe (') in code introduces a comment. Comments are ignored by the 

system when the program runs, but provide helpful information to a person reading 
the code.

ABCObject.Height = 2.5 Text in this font represents actual Visual Basic or C++ code.
CONSTANT.ABC Words in all capital letters represent file names or constants.
ENTER, DEL Words in bold with an initial capital letter represent keys you can press on your 

keyboard.

{button Related Topics,PI(`',`IDH_RT_Conventions')}



Introducing ABC OLE Automation



Accessing ABC OLE Automation Help from Visual Basic
There are several ways you can access this help from Visual Basic. Each way brings up an appropriate topic.

Select the ABC Events custom control and press F1.
Highlight a procedure name in the Procedure box ("Proc:" combo box) and press F1.
Highlight a property from the Properties Window and press F1.

{button Related Topics,PI(`',`IDH_RT_Accessing_from_Visual_Basic')}



Accessing ABC OLE Automation Help from ABC FlowCharter Help
Jumping to Visual Basic Help
Using the Help System

To access ABC OLE Automation help from ABC FlowCharter help
To access ABC OLE Automation Help from Excel
To access ABC OLE Automation Help from Explorer



Introduction to Programming
Visual Basic is a variant of the BASIC programming language designed specifically for creating applications for 
Microsoft Windows . Visual Basic differs from earlier versions of BASIC in two important respects.

You program Visual Basic in a graphic environment in which many aspects of program development are 
accomplished by drawing on the screen using a mouse. It is this distinctive characteristic of Visual Basic 
programming that gives the language the "visual" part of its name and greatly simplifies the process of creating 
applications.

Visual Basic is an object-oriented language. Object-oriented programming (OOP) is a relatively new 
approach to software development.

This topic and the other topics referred to in the Objects in Visual Basic  topic explain the terms and concepts 
behind object-oriented programming as implemented in Visual Basic. The terms defined in these topics are used 
throughout this manual.

{button Related Topics,PI(`',`IDH_RT_Introduction_to_Programming')}



Objects in Visual Basic 



Objects in Visual Basic
In an object-oriented language such as Visual Basic, the emphasis of program development is on the definition 
and use of specialized software units called objects. This is in contrast to other developmental methodologies in 
which the major emphasis is on the flow of program execution and the actions performed by the parts of a 
program.
An object is a software structure that combines both data and the capability to act upon or process that data.
A Visual Basic object is defined by five characteristics.

It has a unique name.
It has data stored within it that defines its state at any given time. The data items of an object are called 

properties in Visual Basic.
It can perform operations. These operations are called methods.
It can recognize actions such as keystrokes or mouse clicks. The user or system actions that an object 

recognizes are called events. You determine the response of an object to an event through the program instructions 
that you place in the event procedure of the object.

It has relationships to other objects. The relationships between objects divide the objects into groups called
classes, which are arranged in a hierarchy.

In some object-oriented languages, you can create new types of objects. In Visual Basic, you are limited to the 
objects provided by Visual Basic plus any custom objects supplied by add-on products such as ABC.
ABC Objects
ABC exemplifies the power and capabilities of the object-oriented approach to programming. The objects 
provided by ABC make it easy for a Visual Basic application to create diagram and flowchart shapes, connect the 
shapes with lines illustrating relationships, and label components.
Object Hierarchy
For information about the hierarchy of objects in ABC, see Objects, graphical.

{button Related Topics,PI(`',`IDH_RT_Objects_in_Visual_Basic')}



Objects, graphical



Properties in Visual Basic
The data items stored within an object are called properties. Each object has specific properties that you can set 
and control. Some examples of properties are the BorderColor, BorderStyle, BorderWidth, FillColor, and 
FillPattern properties of the ABC Shape object.
You can set some properties to any value, while other properties are restricted to specific values. An example of 
a property with a restricted value is the BorderWidth property of the ABC Shape object. The BorderWidth 
property must be set to a whole number from 1 (thinnest) to 5 (thickest).

{button Related Topics,PI(`',`IDH_RT_Properties_in_Visual_Basic')}



ABC Shape object



Methods in Visual Basic
A method is an operation that an object can perform. Some examples of methods are the Activate, CloseChart,
Copy, Cut, DrawLine, DrawShape, and PrintOut methods of the ABC Shape object.
The methods available to an object are predefined and depend upon the object.

{button Related Topics,PI(`',`IDH_RT_Methods_in_Visual_Basic')}



ABC Shape object



Events in Visual Basic
An event is an action recognized by an object. Events can be triggered by the user (such as clicking an object 
with the mouse), by the computer system (such as a timer event), or by program code (such as an instruction to 
move an object).
An event is always specific to a particular object, which means that a given event can be detected by only one 
object. For example, a mouse click triggers an event only for the object actually clicked. Other objects beside or 
beneath the clicked object do not recognize that click event.
The events recognized by an object are predefined and depend upon the object. For example, the events that 
can be recognized by ABC OLE Automation are listed below.

AppQuitNOTIFY FieldValueChangedNOTIFY
AppQuitSUBCLASS LinkNOTIFY
AppMenuHintSUBCLASS NewLineNOTIFY
AppMenuPopupSUBCLASS NewShapeNOTIFY
AppMenuSUBCLASS ObjectClickSUBCLASS
ChartActivateNOTIFY ObjectFontChangeNOTIFY
ChartDeActivateNOTIFY ObjectLineAttachNOTIFY
ChartChangeNOTIFY ObjectLineDeAttachNOTIFY
ChartCloseSUBCLASS ObjectMovedNOTIFY
ChartNewNOTIFY ObjectMoveSUBCLASS
ChartOpenNOTIFY ObjectSizedNOTIFY
ChartPasteNOTIFY ObjectSizeSUBCLASS
DeleteSUBCLASS ObjectTextChangedNOTIFY
DoubleClickSUBCLASS ReplaceShapeNOTIFY
ExclusiveSelectionNOTIFY SpecialKeySUBCLASS

If you want an object to perform a task when an event occurs, you add program instructions to the event 
procedure for that event. When an object detects an event for which it has a defined event procedure, it 
executes the instructions in the procedure. At the conclusion of the event procedure, the object returns to a state
in which it waits for another event.
An example of an ABC event procedure is shown below. This procedure saves the left and top locations of the 
object before it is moved in the global variables GLeft and GTop.

Sub ABC1_ObjectMoveSUBCLASS ( )
GLeft = ABC1.Object.Left  ' Save left edge
GTop = ABC1.Object.Top  ' Save top edge

End Sub

Note
ABC requires that you identify the event procedures you want it to execute by registering them using the 

RegisterEvent method of the ABC Application object. Unregistered events are ignored by ABC, even though you 
may have written procedures for the events. For more information on registering events, see Registering Event 
Procedures.

Overriding Standard Behavior
Many events have standard actions that they perform when the event is triggered. For example, the standard 
action of the ObjectSizeSUBCLASS event is to resize the selected object or objects.
You can cancel the standard action of a SUBCLASS event by setting the Override property of ABC1 to True in the
object's event procedure.
The following statements provide an example of overriding an event's standard behavior. The standard action of 
the DeleteSUBCLASS event is to delete the selected object or objects. If Override is set to True in the 
DeleteSUBCLASS event procedure, then the delete action is not performed.

Sub ABC1_DeleteSUBCLASS ( )
Dim ABCObj As Object



Set ABCObj = ABC1.Object
ABC1.Override = True  ' Override standard action

End Sub

For more information on overriding standard behavior, see the section What Are ABC Events?

{button Related Topics,PI(`',`IDH_RT_Events_in_Visual_Basic')}



Registering Event Procedures
What Are ABC Events?

DeleteSUBCLASS event
ObjectSizeSUBCLASS event
Override property
RegisterEvent method



AddItem Method
See your Visual Basic manual for information on the AddItem method.



AutoSize Property
See your Visual Basic manual for information on the AutoSize property.



BackColor Property
See your Visual Basic manual for information on the BackColor method.



Cls Method
See your Visual Basic manual for information on the Cls method.



Cols Property
See your Visual Basic manual for information on the Cols property.



CreateObject Statement
See your Visual Basic manual for information on the CreateObject statement.



DatabaseName Property
See your Visual Basic manual for information on the DatabaseName property.



Default Property
See your Visual Basic manual for information on the Default property.



Dim Statement
See your Visual Basic manual for information on the Dim statement.



ForeColor Property
See your Visual Basic manual for information on the ForeColor method.



MultiLine Property
See your Visual Basic manual for information on the MultiLine property.



Name Property
See your Visual Basic manual for information on the Name property.



Override Property
See your Visual Basic manual for information on the Override property.



Pattern Property
See your Visual Basic manual for information on the Pattern property.



RemoveItem Method
See your Visual Basic manual for information on the RemoveItem method.



Rows Property
See your Visual Basic manual for information on the Rows property.



Set Statement
See your Visual Basic manual for information on the Set statement.



SetFocus Method
See your Visual Basic manual for information on the SetFocus method.



Stretch Property
See your Visual Basic manual for information on the Stretch property.



Visible Property
See your Visual Basic manual for information on the Visible property.



WordWrap Property
See your Visual Basic manual for information on the WordWrap property.



The Visual Basic Programming Environment    
Starting Visual Basic displays the Visual Basic programming environment. As you would expect in a programming
language designed to create Windows applications, the Visual Basic programming environment is organized into 
windows. It consists of five specialized windows. (Not all windows are visible when you start Visual Basic.)

Main window
Project window
Form window
Toolbox
Properties window

You can resize and reposition these windows as desired. A typical arrangement in which all of the windows are 
visible is shown below.

{button Related Topics,PI(`',`IDH_RT_The_Visual_Basic_Programming_Environment')}



The Visual Basic Tool Bar
The Visual Basic Toolbox

The Visual Basic Main WindowThe Visual Basic Project Window
The Visual Basic Form Window
The Visual Basic Properties Window



The Visual Basic Main Window    
In Visual Basic, the Main window contains the Visual Basic Control box, title bar, Minimize button, Maximize 
button, menu bar, and toolbar. The Main window is generally positioned at the top of the screen, but can be 
moved if desired.

{button Related Topics,PI(`',`IDH_RT_The_Visual_Basic_Main_Window')}



The Visual Basic Programming Environment



The Visual Basic Tool Bar    
The toolbar in the Main window contains buttons providing quick access to common Visual Basic commands. The 
toolbar also contains two fields giving information on the screen location and size of the selected form or object.

{button Related Topics,PI(`',`IDH_RT_The_Visual_Basic_Tool_Bar')}



The Visual Basic Programming Environment



The Visual Basic Project Window    
A project is the collection of files used to build a Visual Basic application. Visual Basic uses specialized files to 
store different types of program data. To make it clear that program development in Visual Basic involves a 
series of files, Visual Basic programs are called projects.
The Project window lists all the files associated with the current project.
The files in a project include the following.

A file for each form in the application. Form files have the FRM extension.
A file for each code module in the application. Code files have the BAS extension.
A file for each custom control used by the application. Custom control files have the VBX or OCX extension.

For example, the controls provided by ABC are stored in the file ABCAUTO.VBX or ABCFLOW.OCX.
The files and various settings used by a project are saved in the project file. Project files have the MAK extension.
The default project file that is loaded automatically when you start Visual Basic is called AUTOLOAD.MAK.
Commands are available in the File menu to add and remove files from the Project window.
To add the custom control file to a project
1 Open the File menu.
2 Click the Add File command. The Add File dialog box opens.
3 Change to the directory where you installed ABC.
4 Double click ABCAUTO.VBX or ABCFLOW.OCX. The dialog box closes and the file is added to the project.
Tip
If you installed all options of the Visual Basic 3.0 Professional Edition, there will be many VBX files in your default 
project. You can shorten the time it takes Visual Basic and your programs to load by removing any VBX files you 
are not using regularly from the default project file. To remove a VBX file from a project, select the file in the 
Project window, open the File menu, and choose Remove File. When finished, save the project as AUTOLOAD.MAK
using the Save Project As command of the File menu.
Besides the files in the project, the Project window contains the View Form and View Code buttons.
The View Form button lets you display the form saved in a form (FRM) file.
The View Code button lets you display the Visual Basic code saved in a form or code (BAS) file.
To display the form saved in a form file, select the form file and click View Form. To display the code saved in a 
form or code file, select the form or code file and click View Code.
Tip
Double click a form file to display its form, or double click a code file to display its code.

{button Related Topics,PI(`',`IDH_RT_The_Visual_Basic_Project_Window')}



The Visual Basic Programming Environment



The Visual Basic Form Window    
The first step in creating a Visual Basic application is designing the application's windows. In Visual Basic, during 
the development stage, windows are referred to as forms and are created using the Form window.
When you start a new project, Visual Basic creates an empty form that it titles Form1. Every Visual Basic project 
must have at least one form, although it is not necessary that the form contain anything or actually be displayed
by the completed application.

Notice that even a blank Form window looks like a standard Windows window. It can be resized, and contains a 
Control box, a title bar, and Minimize and Maximize buttons. The grid within the window is used to align the 
objects placed on the form. The grid does not appear in the completed application. The procedures for adding 
objects to the form are discussed in Drawing a Control.
The Form1 title given to the initial form is a default name that Visual Basic supplies automatically for a new 
project. You can change this name easily to suit the application you are developing.

{button Related Topics,PI(`',`IDH_RT_The_Visual_Basic_Form_Window')}



Drawing a Control
The Visual Basic Programming Environment



The Visual Basic Toolbox    
The objects placed on a form are called controls.
To create a control, you click the appropriate button in the Toolbox and then drag the mouse over the area in the 
Form window where you want the control. The creation of controls using graphic methods is perhaps the most 
spectacular aspect of Visual Basic programming.
After you create a control, you define its properties using the control's Properties window. You define the control's
operation or action in the completed application by writing Visual Basic code for the control.
Visual Basic comes with a set of standard controls that include labels, picture boxes, text boxes, check boxes, list
boxes, command buttons, and timers. The Toolbox also has an item for each custom control (VBX or OCX) that is 
added. If you have installed the Professional Edition of Visual Basic, the Toolbox contains many more controls 
than what is illustrated below. (See the Tip in The Visual Basic Project Window for instructions on removing these 
extra controls.) When you add a new control to a project, such as that supplied by ABC, the new control appears 
in the Toolbox. Therefore, if you are using more than the standard controls, your Toolbox will show the additional 
controls.
A description of the function of these controls is provided in Standard Controls.

{button Related Topics,PI(`',`IDH_RT_The_Visual_Basic_Toolbox')}



Standard Controls
The Visual Basic Project Window
The Visual Basic Programming Environment



The Visual Basic Properties Window    
The Properties window lets you view and set the properties of objects. An object's properties determine its 
appearance and behavior. The properties of an object include its name, size, screen location, color, and visibility 
in the completed application.
You can activate the Properties window in several ways.

Click an object such as a form or control.
or

Open the Windows menu in the Main window and choose Properties.
or

Press F4.
or

Click the Properties Window button in the Main window toolbar.      

The Properties window contains an Object box, a Settings box, and a two-column list of the properties and 
settings.

The Object box displays the name and type of the object whose properties are listed. The object's name is bold 
and listed first. In the example above, the object is named Form1 and is a Form object. To the right of the Object 
box is a down arrow. Click this arrow to display a list of all of the objects associated with the currently selected 
form, including the Form object itself. Click the appropriate entry in the Object list to display the properties of 
that object.
You use the Settings box to change the value of a property. The way you change a value depends on whether the
property is an enumerated or nonenumerated property.

An enumerated property is limited to a set of predefined values. An example of an enumerated property is 
the BorderStyle property of a Form object. BorderStyle must be set to None, Fixed Single, Sizable, or Fixed 
Double. When a selected property is enumerated, you can click the down arrow (or ellipsis for color properties) to 
the right of the Settings box to display the list of predefined values.

A nonenumerated property is not limited to a set of predefined values. An example of a nonenumerated 
property is the Name property of an object, which can be set to any text string. When a selected property is 
nonenumerated, the down arrow to the right of the Settings box is gray.

To change the value of an enumerated property
1 Select the property by clicking it. The selected property is highlighted and the current value of the property 



appears in the Settings box.
2 Click the down arrow to the right of the Settings box and select the desired value from the list that appears. (If 

the property is a color rather than a setting, click the ellipsis to the right of the Settings box and select the 
desired color from the color palette that appears.)

Tip
You can cycle through the predefined values of an enumerated property by double clicking the property in the 
Properties list. For example, to change the Visible property of a Form object from True to False, double click 
Visible in the Properties box.
To change the value of a nonenumerated property
1 Double click the property you want to change. The selected property is highlighted and the current value of 

the property is highlighted in the Settings box.
2 To replace the current property value, just type the new value. The characters that you type appear in the 

property list and the Settings box.
or

To edit the current property value, click the highlighted value in the Settings box and edit the value as you 
would any field.

3 To accept the new property value, click the checkmark box in the Settings box or press ENTER.

or

To reject the new property value, click the X box in the Settings box or press ESC.

{button Related Topics,PI(`',`IDH_RT_The_Visual_Basic_Properties_Window')}



The Visual Basic Programming Environment



Creating a Visual Basic Application    
The general steps to writing a Visual Basic application are:
1 Create a new project.
2 Design the application's forms (windows).
3 Add code to determine the application's response to desired events.
4 Run and test the application.
5 Create an executable (EXE) file.
These steps are discussed below.
Creating a New Project
The first step in creating a Visual Basic application is to create a new project. To perform this simple but 
important step, open the File menu in the Visual Basic Main window and choose New Project. When you create a 
new project, you ensure that your application begins with a "clean slate."
If you want to use controls in your application that are not part of the standard Visual Basic set, you must add 
the custom control (VBX or OCX) files that define the controls to your project. For example, to use the control 
provided by ABC, you must add ABCAUTO.VBX or ABCFLOW.OCX to your project. See The Visual Basic Project 
Window for instructions on adding ABCAUTO.VBX to a project.
Designing the Application's Forms
The actual programming of an application begins with the design of the forms for the application. This is the 
visual user interface of the application. The process of designing a form is explained in Designing a Form.
Adding Code
After you create the visual interface, you add code to specify how the program should respond to actions by a 
user. For example, you add code to a Command button control to determine what the program does when a user 
clicks the Command button. The process of adding code to an application is discussed in Adding Code to 
Controls, Adding Code to Forms, Writing Code in Event Procedures, Writing Code in General Procedures, and 
Writing Startup Code.
Running the Application
Running your application in the Visual Basic programming environment lets you test the application as you 
develop it.
To run an application

Click the Start button in the Main window toolbar.

or
Open the Run menu in the Main window and choose Start.

or
Press F5.

To stop a running application
Click the End button in the Main window toolbar.

or
Open the Run menu and choose End.

Creating an EXE Program
The final step in creating a Visual Basic application is to make an executable file. An executable file is a version 
of the application that does not require the Visual Basic programming environment to execute (it runs as a 
standard Windows application). To make an executable file for the application, open the File menu in the Visual 
Basic Main window and choose Make EXE File.
After you make an executable file for your application, you can create a button for it in ABC FlowCharter. For 
more information, see Adding Buttons.



{button Related Topics,PI(`',`IDH_RT_Creating_a_Visual_Basic_Application')}



 Adding Buttons
Adding Code to Controls
Adding Code to Forms
Designing a Form
The Visual Basic Project Window

Writing Code in Event Procedures
Writing Code in General Procedures
Writing Startup Code



Designing a Form    
Visual Basic programming begins with the creation of forms. The forms you create become windows in the 
completed application.
The process of designing a form involves setting the properties of the form, drawing the controls that appear on 
the form, and setting the properties of the controls.
If your application is a simple one, then you may not have more than one form. If you need additional forms, add
them with the New Form button in the toolbar or with the New Form command in the File menu.

{button Related Topics,PI(`',`IDH_RT_Designing_a_Form')}



Setting a Form's Properties
Standard Controls
Drawing a Control
Resizing a Control
Moving a Control
Deleting a Control
Copying or Cutting a Control
Aligning Controls
Setting Control Properties



Setting a Form's Properties    
When you start a new project, you are presented with a blank form titled Form1. The properties of this form (or 
any new form) are set to default values.
To change the form's appearance and behavior, you must customize its properties. You can customize the 
properties of a form by manually setting the properties using the Properties window, by setting the properties 
using code, or by using a combination of manual settings and code (the usual approach).
Generally, you set the properties controlling a form's overall appearance manually. These properties include the 
form's Caption, BackColor, ForeColor, and Borderstyle. If you intend to change the Name of a form, you 
should also set this property manually. (The Name of a form is used to reference the form in code, so changing a
form's Name after you have already written code requires replacing references to the old form Name in the 
code with the new form Name.)
The process of setting a form's properties manually is discussed in The Visual Basic Properties Window.
The process of setting a form's properties with code is discussed in Setting and Retrieving Properties with Code. 

{button Related Topics,PI(`',`IDH_RT_Setting_a_Form_s_Properties')}



Designing a Form
Setting and Retrieving Properties with Code
The Visual Basic Properties Window



Standard Controls    
The Visual Basic Toolbox provides standard controls that can be placed on a form. This section gives a brief 
description of the functions of these controls.

The picture box control displays graphic images from bitmaps, icons, or Windows metafiles. The size of the 
picture box determines how much of the graphic image is displayed. To make a picture box automatically resize 
itself so that it can display all of a graphic image, set the control's AutoSize property to True.

The label control displays text on a form that the user cannot change. To set a label control to display multiple 
lines, set the control's AutoSize and WordWrap properties to True.

The text box control provides an area on a form that can display text and accept user input. To set a text box 
so it can display and accept multiple lines, set the text box's MultiLine property to True.

The frame control provides a way to group controls. The grouping capability provided by a frame is visual and 
logical (functional).

A frame groups controls visually by surrounding the controls with a box and providing a title.
A frame groups controls logically by permitting an application to treat the controls in the Frame as a unit. 

For example, setting a frame's Visible property to False makes all of the controls in the frame invisible.
To place a control in a frame, you must either draw the control in the frame or Paste it into the frame. You cannot
move a control into a frame.

The command button control displays a button that can begin, interrupt, or end a process. The user executes a
command button by clicking it. To enable a command button to be executed by pressing enter, set the control's 
Default property to True. Examples of command buttons are the OK and Cancel buttons you see in Windows 
applications.

The check box control displays a box that can be selected or deselected, like an on/off switch. A check box 
control shows an X when selected. How the states of a check box are interpreted by an application depend on the 
code. Check boxes are commonly used for Yes/No and True/False options.

The option button control displays a button that can be selected or deselected. Option buttons, like check 
boxes, are on/off switches. Unlike check boxes, however, only one option button on a form can be selected at a 
time. Clicking one option button automatically deselects all other option buttons on the form.

If you want more than one set of option buttons on a form, then you must group them with a frame control.

The combo box control displays a box that combines the characteristics of a text box and a list box. A combo 
box lets a user select an item from a list by typing the desired item or by choosing the item from a drop-down list.

The list box control displays items that can be selected by clicking the item or by moving the cursor to the item
and pressing enter. Scroll bars are automatically added to a list box if it contains more items than can be listed at 
once. The control's Additem and Removeitem methods are used to add and delete list items.

The horizontal scroll bar control provides a method of scrolling horizontally through a list or graphically 
indicating settings such as quantity or volume.

The vertical scroll bar control provides a method of scrolling vertically through a list or graphically indicating 
settings.

The timer control executes events at specified time intervals. A timer control can be seen when you are 
designing a form, but is invisible when the application executes.

The drive list box control provides a method of selecting a disk drive when an application executes. This control
automatically lists all the valid drives in the user's system.

The directory list box control displays directories and paths when an application executes and provides a 
method of selecting a directory.

The file list box control displays files in a directory when an application executes, and provides a method of 
selecting a file. The control's Path property determines the directory displayed. The control's Pattern property 
determines the files displayed.



The shape control displays a rectangle, square, oval, circle, rounded rectangle, or rounded square. The 
control's Shape property determines its shape.

The line control displays a horizontal, vertical, or diagonal line. The line control's BorderStyle property 
determines the type of line (solid, dotted, dashed).

The image control displays bitmaps, icons, or Windows metafiles. An image control uses fewer system 
resources and displays faster than a picture control. It also offers fewer properties and methods than a picture 
control. Set the control's Stretch property to True if you want the image resized to fit the control's size and shape.

The data control provides access to data stored in databases. The data control's DatabaseName property 
determines the database source file.

The grid control displays a grid of cells that can contain text or pictures. The control's Cols and Rows 
properties determine the number of rows and columns. 
Note
The grid control is available only if you add the GRID.VBX control file to a project.

The OLE control provides a method of linking and embedding an OLE object into an application. 
Note
The OLE control is available only if you add the MSOLE2.VBX control file to a project.

The common dialog control provides standard dialog boxes for operations such as opening, saving, and printing
a file. A common dialog control is shown only as an icon when you are designing a form. It appears as a full-size 
dialog box when the application executes. 

Note
The common dialog control is available only if you add the CMDIALOG.VBX control file to a project.

The ABC control lets you add ABC OLE Automation capabilities to your Visual Basic applications. 
Note
The ABC control is available only if you add the ABCAUTO.VBX or ABCFLOW.OCX control file to a project. (See To 
install the ABC VB event handler or To install the OCX event handler.)

{button Related Topics,PI(`',`IDH_RT_Standard_Controls')}



Designing a Form



Drawing a Control    
There are two ways to draw a control on a form: the normal drawing method and a shortcut method.
To draw a control using the normal method
1 Click the appropriate control tool in the Toolbox. For example, to draw a command button, click the Command 

Button tool.
2 Position the mouse pointer on the form where you want the control to begin. The mouse pointer shows as a 

cross hair.
3 Press and hold the mouse button, and drag the pointer until the control's outline is the size you want. Release 

the mouse button. The control appears on the form in the size and shape you drew.
To draw a control using the shortcut method
1 Click the form to which you want to add the control. (If there is only one form in your project, you can skip this 

step.)
2 Double click the appropriate control tool in the Toolbox. The control appears in the center of the selected form.
3 Resize (and move) the control as desired.

{button Related Topics,PI(`',`IDH_RT_Drawing_a_Control')}



Designing a Form
Moving a Control
Resizing a Control



Resizing a Control    
Resizing a control is easy and can be performed at any time during the design process.
To resize a control
1 Select the control you want to resize by clicking it. Small, solid handles appear on the control.
2 Position the pointer over a handle. The pointer changes to a two-headed arrow.
3 Press and hold the mouse button, and drag the pointer in the appropriate direction to change the control's 

size. Release the mouse button.

{button Related Topics,PI(`',`IDH_RT_Resizing_a_Control')}



Designing a Form



Moving a Control    
You can move controls one at a time or in groups.
To move a single control
1 Select the control you want to move by clicking it. The control's handles appear.
2 Position the mouse pointer anywhere on the control other than on a handle.
3 Press and hold the mouse button, and drag the control to its new position. Release the mouse button.
By moving controls in a group, you can keep the relative position of the controls constant.
To move multiple controls
1 Select the first control by clicking it. The control's handles appear.
2 Select the additional controls by pressing CTRL while you click the control.
3 Position the mouse pointer on one of the selected controls.
4 Press and hold the mouse button, and drag the controls to their new positions. Release the mouse button.

{button Related Topics,PI(`',`IDH_RT_Moving_a_Control')}



Designing a Form



Deleting a Control    
To delete a control, select the control and press DEL. You also can delete a control by selecting the control and 
choosing the Delete command in the Edit menu.

{button Related Topics,PI(`',`IDH_RT_Deleting_a_Control')}



Designing a Form



Copying or Cutting a Control    
You can copy or cut a control, and then paste it back into your form or into other forms. Select the control and 
choose the Copy or Cut command in the Edit menu, or select the control and press the shortcut keys CTRL+C 
(Copy) or CTRL+X (Cut).

{button Related Topics,PI(`',`IDH_RT_Copying_or_Cutting_a_Control')}



Designing a Form



Aligning Controls    
The grid that displays on forms during the development process makes it easy to align controls. As you draw, 
position, and resize a control, the edges of the control snap to the nearest grid position.
The precision of the grid depends on Visual Basic's Grid Width and Grid Height settings. The default settings for 
Grid Width and Grid Height is 120 twips, which translates into a distance between grid positions of 1/12 inch. A 
twip is equivalent to 1/1440 inch (1 inch = 1440 twips).
To increase the alignment precision of the grid, use a larger Grid Width or Grid Height setting. To decrease the 
alignment precision, use a smaller Grid Width or Grid Height setting.
To change Visual Basic's grid settings
1 Open the Options menu in the Main window and choose Environment.
2 Click the Grid Width option (scroll through the list if necessary) and type a value in the Setting box.
3 Click the Grid Height option (scroll through the list if necessary) and type a value in the Setting box.
4 Click OK to accept the new settings and close the dialog box.
If you don't want to use the grid alignment feature, you can turn it off by opening the Environment Options 
dialog box and setting Align To Grid to No. If you want to hide the grid, open the Environment Options dialog box 
and set Show Grid to No.

{button Related Topics,PI(`',`IDH_RT_Aligning_Controls')}



Designing a Form



Setting Control Properties    
After you draw a control, you can customize its appearance and behavior by setting its properties.
As with forms, you probably want to set some control properties manually and some control properties with 
code. Generally, you set the appearance properties manually. For details on setting control properties with code, 
see Setting and Retrieving Properties with Code.
To change a control's properties manually
1 Select the control as the current object by clicking it. The control's handles appear.
2 The Object box of the Properties window should show the name of the control. If the Properties window is not 

visible, press F4 to display it.
3 Set the properties you want to change.

{button Related Topics,PI(`',`IDH_RT_Setting_Control_Properties')}



Designing a Form
Setting and Retrieving Properties with Code



Adding Code to Controls    
Drawing a control and setting its properties let you determine how the control appears in an application, but not 
what it does. To prescribe what the control does, you must add Visual Basic instructions to the control. These 
instructions are referred to as code.
You add code to a control using the Code window. To display the Code window for a control, double click the 
control. An example of the Code window for a Command Button appears below.

The title bar at the top of the Code window identifies the control's form. Below the title bar are the Object and 
Procedure boxes, and below these boxes is the code area.
The Object box gives the name of the object to which the code applies; such as Command1. To select other 
objects on the form, including the Form object, click the down arrow to the right of the box.
Note
Besides listing the objects associated with the form, the Object box list also shows a (general) entry. This section 
of the form is used to write general procedures for the form, as explained in Writing Code in General Procedures.
The Procedure box gives the name of the event to which the code applies, such as the Click event. To select 
other events defined for this object, click the down arrow to the right of the box.
The two statements shown in the code area are required at the beginning and end of the event code, and are 
supplied automatically by Visual Basic. Any code that you want to add to an event must be typed between these 
two statements.

{button Related Topics,PI(`',`IDH_RT_Adding_Code_to_Controls')}



Adding Code to Forms
Writing Code in Event Procedures
Writing Code in General Procedures
Writing Startup Code



Adding Code to Forms    
Forms, like controls, require code to determine how they respond to events. To add code to a form, double click 
the form to display the form's Code window (or select the form's name from the Object box list if the Code 
window is already open). The events recognized by the form are displayed in the Procedure box list.

{button Related Topics,PI(`',`IDH_RT_Adding_Code_to_Forms')}



Adding Code to Controls
Writing Code in Event Procedures
Writing Code in General Procedures
Writing Startup Code



Writing Code in Event Procedures    
Visual Basic forms and controls are event-driven objects. This means that forms and controls respond to specific 
user actions such as being clicked, double clicked, dragged, or scrolled. The events to which a form or control 
responds are predefined and depend on the type of object. For example, a Command button can be clicked, but 
not scrolled, while a Scroll bar can be scrolled, but not clicked.
Because controls and forms are event-driven, they can execute code only when an event recognized by the 
object occurs. Until such an event occurs, an object is inactive.
The code that is executed when an event occurs is called an event procedure. For details on the syntax required 
for procedures, see Using Procedures.
Events can occur only when an application is running, not during program development. Thus, clicking a 
command button that you have just drawn on a form does not cause a Click event for the control. You must click 
the command button when the program is executing to trigger the Click event.
Tip
You can quickly determine which event procedures have code added to them by checking the drop down list in 
the Procedure box. Event procedures with added code appear in bold in the list.

{button Related Topics,PI(`',`IDH_RT_Writing_Code_in_Event_Procedures')}



Using Procedures
Adding Code to Controls
Writing Code in General Procedures
Writing Startup Code



Writing Code in General Procedures    
In addition to the event procedures that are triggered by a form or control event, a Visual Basic application can 
have general procedures. A general procedure is any procedure that is not an event procedure.
General procedures let you write Visual Basic code that is not attached to specific events. Because general 
procedures are not attached to specific events, they can contain common code that is needed by several event 
procedures. Without a general procedure capability, you would have to write duplicate code for each event 
procedure that needed to perform a common action.
As an example of the benefits of general procedures, consider an application that has command buttons labeled 
First Record, Next Record, Previous Record, and Last Record. Rather than duplicating the code required to read a 
record in each command button's Click event procedure, you could write a general procedure that gets a record 
based on a parameter passed to the procedure. Then, the Click event procedure for each command button calls 
the general procedure with the appropriate parameter to read a record.
To ensure that a general procedure is not attached to a specific event, you must write the procedure either in the
(general) section of a form or in a code module.

If you want the general procedure to be available only to controls on a particular form, write the procedure 
in the (general) section of that form.

If you want the general procedure to be available to any control on any form in the application, write the 
procedure in a code module.

To access the (general) section of a form
1 Double click the form to display the Code window for the form. The Object box shows the name of the form.
2 Click the down arrow to the right of the Object box. The object list opens.
3 Click the (general) entry in the object list.
To access a code module

To create a code module use the New Module command in the File menu.
To add code to a code module or to view code already saved in a code module, double click the module's 

name in the Project window.

{button Related Topics,PI(`',`IDH_RT_Writing_Code_in_General_Procedures')}



Adding Code to Controls
Adding Code to Forms
Writing Code in Event Procedures
Writing Startup Code



Writing Startup Code    
A Visual Basic application must begin with some initial event or general procedure. The default setting for an 
application is to begin with the Load event of the first form of the application. The Load event of a form displays 
the form. The first form of an application is the form named Form1. Changing the name of this form does not 
change its status as the first form of the application.
If you want an application to begin with the Load event of another form or with a general procedure, you can 
change the startup setting. If it is necessary for an application to perform initialization code when it begins, the 
initialization code must be executed by the specified startup event or procedure.
To change the startup setting
1 Open the Options menu and choose Project. The Project Options dialog box displays.
2 Double click the Start Up Form option to open the list of startup settings.
3 Select the form that you want as the startup form.

or

Select Sub Main if you want the application to begin with a general procedure.
4 Click OK to accept your changes and close the dialog box.
Selecting Sub Main tells Visual Basic to start execution with a general procedure named Sub Main. This 
procedure must be located in one of the application's code modules.
For information on the startup code required for ABC, see Starting ABC.

{button Related Topics,PI(`',`IDH_RT_Writing_Startup_Code')}



Starting ABC
Adding Code to Controls
Adding Code to Forms
Writing Code in Event Procedures
Writing Code in General Procedures



Using Procedures    
All Visual Basic programming instructions must be written as procedures. Procedures are organizational 
structures designed to promote clear, orderly, and logical programs.
Visual Basic recognizes two types of procedures.

Sub procedures
Function procedures

Sub procedures are further divided into two categories, event procedures and general procedures.

{button Related Topics,PI(`',`IDH_RT_Using_Procedures')}



Sub ProceduresIDH_Sub_Procedures
Function Procedures



Sub Procedures    
Sub procedures begin with a Sub statement and end with an End Sub statement. These statements are located 
on separate lines. The instructions to be executed by the procedure are located between the Sub and End Sub 
statements.

Sub ProcedureName (ArgumentList)
Statements

End Sub
The name of the procedure follows the Sub statement. The argument list for the procedure follows the procedure
name. If the procedure has no argument list, it still includes an empty set of parentheses.
When a procedure is executed, or called, the statements in the procedure are executed.
The rules for naming a Sub procedure depend upon whether the procedure is an event procedure or a general 
procedure. The name of an event procedure follows the format object_event, where object is the name of a form 
or control and event is the name of the event that triggers the procedure. For example, the name of the 
procedure for the Click event of a command button control named Command1 is Command1_Click. A Sub 
statement with the appropriate name is automatically provided by Visual Basic when you open the Code window 
for an event.
The names of general procedures begin with a letter; can contain only letters, numbers, and underscore ( _ ) 
characters; and can be no longer than 40 characters. General procedure names have one other restriction: they 
cannot be words already used by Visual Basic, such as Beep, Loop, For, If, and Line.
The argument list of a procedure passes values to the procedure that can be used by the statements in the 
procedure. The syntax for each argument in the argument list is shown below.

[By Val] ArgumentName [( )] [As Type]
The By Val option determines whether the argument is passed by value or reference. If By Val is used, then the 
argument is passed by value, which means that a copy of the argument is passed to the procedure. 
Consequently, any change to the argument by the procedure does not change the original. If By Val is omitted, 
then the argument is passed by reference. When an argument is passed by reference, any change to the 
argument by the procedure changes the original.
The ( ) option specifies that the argument is an array.
The As Type option specifies the data type of the argument. If no data type is specified, the argument defaults to
the Variant type. See Understanding Data Types for details on data types.
An example of a general Sub procedure is shown below. This example reads a record from a file. The file is 
identified by the value passed to the procedure as FileNum. The record is identified by the value passed as Rec, 
and the data obtained from the record is stored in Rdata.

Sub GetRec (FileNum as Integer, Rec as Long, Rdata as String)
Get FileNum, Rec, Rdata

Sub End

An example of how this procedure can be called is shown below. It calls the GetRec procedure to read record 123
of file 2. The contents of the record is returned in TestResult.

GetRec 2,123,TestResult

{button Related Topics,PI(`',`IDH_RT_Sub_Procedures')}



Understanding Data Types
Using Procedures



Function Procedures    
Function procedures begin with a Function statement and end with an End Function statement. The instructions 
executed by the function are located between these two statements.

Function ProcedureName (ArgumentList) [As Type]
Statements
ProcedureName = FunctionResult

End Function
The rules for naming a Function procedure and defining its argument list are the same as for Sub procedures.
The essential difference between a Function and a Sub procedure is that a Function procedure assigns a value to 
its name. This action must be performed somewhere in the function, as indicated by the ProcedureName = 
FunctionResult line in the syntax format.
Look at the following example of a Function procedure, which converts a Fahrenheit temperature to Celsius.

Function Celsius (Fahrenheit as Double)
Celsius = (Fahrenheit - 32)  5/9

End Function

T = Celsius (22) + 100 / 2

{button Related Topics,PI(`',`IDH_RT_Function_Procedures')}



Using Procedures



Understanding Data Types    
Visual Basic supports seven data types. A data type is a standardized method of representing data. The following
table provides the names, a brief description, and the range of the Visual Basic data types.
Type Description Range
Integer 2-byte integer -32,768 to 32,767
Long 4-byte integer -2,147,483,648 to 2,147,483,647
Single 4-byte floating- -3.402823E38 to -1.401298E-45 for negative values

point number 1.401298E-45 to 3.402823E38 for positive values
Double 8-byte floating- -1.79769313486232E308 to

point number -4.94065645841247E-324 for negative values
4.94065645841247E-324 to
1.79769313486232E308 for positive values

Currency 8-byte fixed- -922,337,203,685,477.5808 to
decimal number 922,337,203,685,477.5807

String String of characters 0 to approximately 65,500 characters
Variant Variable Depends upon value stored
The default data type is Variant, so if no data type is declared, then Variant is assumed. If you want a variable or 
data value to be a different data type, then you must explicitly declare it as that data type.
You can declare a variable's data type in the argument list of a procedure or by using the As Type option with 
variable definition statements such Dim, Static, or Global.
Some examples of these date type declaration methods are shown below.

Dim Count As Integer
Dim Employee As String, State As String, JobNumber As Long
Global Total As Currency

{button Related Topics,PI(`',`IDH_RT_Understanding_Data_Types')}



Numeric Data Types
String Data Type
Variant Data Type



Numeric Data Types    
Although Integer, Long, Single, Double, and Currency are all numeric data types, they differ in important 
characteristics such as storage requirements, range, and accuracy.
If you know that a variable will always be a whole number, then consider defining the variable as an Integer or 
Long data type. Using these data types when possible reduces a program's memory requirements and speeds up
its execution.
If a variable can have a decimal value, then define the variable as a Single, Double, or Currency data type. The 
Single and Double data types have larger ranges than the Currency type, but may have small rounding errors.

{button Related Topics,PI(`',`IDH_RT_Numeric_Data_Types')}



Understanding Data Types



String Data Type    
Nonnumeric data, such as text, is referred to as string data. To enable a variable to store string data, declare it a 
string variable using the String data type.
Unless you specify otherwise, a string variable can store string data of any size up to approximately 65,500 
characters. If you want to limit a string variable to a predefined, fixed size, then use the following syntax to 
declare the string variable.

As String    Size

The example below uses this format to declare a string that is fixed at 35 characters in size. If the data stored in 
Company is less than 35 characters, it is padded with trailing spaces up to the 35-character length. If the data 
stored in Company is more than 35 characters, it is truncated from the end to the defined length.

Dim Company As String  35

{button Related Topics,PI(`',`IDH_RT_String_Data_Type')}



Understanding Data Types



Variant Data Type    
The default data type is Variant. Variables defined as Variant can store data in Integer, Long, Single, Double, 
Currency, and String formats, plus a Date/Time format.
When a Variant variable is assigned a value, Visual Basic stores the assigned data in the most efficient data 
format. For example, if the value assigned to a Variant variable is a whole number between -32,768 and 32,767, 
then the value is stored as a two-byte integer. If a decimal value is added to this variable, then Visual Basic 
automatically performs the conversion necessary to store the new value as a floating-point number. If the 
variable is later treated as a string variable, then Visual Basic converts and stores the variable's value as a 
string.
You can determine the current storage format of a Variant variable with the VarType function. VarType returns a 
value that indicates the current data format of a variable. The values returned by VarType are defined below.
Return Value Meaning
0 Empty
1 Null
2 Integer
3 Long
4 Single
5 Double
6 Currency
7 Date/Time
8 String
The Empty and Null return values indicate special states. The Empty value indicates that a Variant variable has 
never been assigned a value. The Null value indicates that a Variant variable does not contain a valid value. For 
a variable to return a Null value, it must have been explicitly assigned a Null value.

{button Related Topics,PI(`',`IDH_RT_Variant_Data_Type')}



Understanding Data Types



Declaring Object Variables    
A powerful feature of Visual Basic is its capability to assign objects to variables. Object variables let a Visual 
Basic application manipulate objects as easily as it manipulates string or numeric data.
Before you can use an object variable in your code, you must declare it using the Dim, Static, or Global 
statement. The general syntax for declaring an object variable is shown below.

Dim VariableName As [New] ObjectType

Static VariableName As [New] ObjectType

Global VariableName As [New] ObjectType

VariableName gives the name of the object variable. ObjectType determines whether the object variable is 
declared for a specific or generic object. Specific object variables are declared by giving the Name property of 
the object as ObjectType. Generic object variables are declared by giving the class (such as Form or Control) of 
the object as ObjectType.
Adding the New parameter to a declaration statement creates a new object that is identical to the object 
specified as ObjectType. When New is omitted, the declaration statement refers to an existing object.
Some examples of object variable declarations are shown below.

Dim InputForm As Form3
Dim NameBox As New Text1
Global AppForms As Form
Dim AppControls As Control

The first two examples declare specific object variables. The last two examples declare generic object variables.
An example of declaring an object variable as an ABC object is shown below.

Dim ObjectIn As Object



Setting and Retrieving Properties with Code    
The properties of forms and controls can be set and retrieved in code using assignment statements. This enables
a program to change properties based upon calculations or data input from users, files, and other sources.

{button Related Topics,PI(`',`IDH_RT_Setting_and_Retrieving_Properties_with_Code')}



Setting Form Properties
Setting Control Properties
Setting ABC Object Properties
Retrieving Properties



Setting Form Properties    
The general syntax for setting the property of a form with code is

Form.Property = Value

where Form is the name of the form and Property is the name of the property. Some examples of setting a form's
properties are shown below.

Form1.BorderStyle = 1
Form3.Width = 5000

If the code setting the property of a form is located on the form, then the form name can be omitted from the 
assignment statement, as illustrated below.

BorderStyle = 1
Width = 5000

{button Related Topics,PI(`',`IDH_RT_Setting_Form_Properties')}



Setting and Retrieving Properties with Code



Setting Control Properties    
The general syntax for setting the property of a control with code is

Form!Control.Property = Value

where Form is the name of the form, Control is the name of the control, and Property is the name of the property.
Some examples of setting a control's properties are shown below.

Form1!Command.Caption = "OK"
Form3!Label2.Visible = 1

If the code setting the property of a control is located on the same form as the control, then the name of the 
form can be omitted from the assignment statement, as illustrated below.

Command.Caption = "OK" 
Label2.Visible = 1

{button Related Topics,PI(`',`IDH_RT_Setting_Control_Properties2')}



Setting and Retrieving Properties with Code



Setting ABC Object Properties    
The general syntax for setting the property of an ABC object with code is

Object.Property = Value

where Object is the name of the ABC object and Property is the name of the property. Some examples of setting 
ABC object properties are shown below.

ABC.Visible = True
Object.Shape.FillColor = ABC.BLUE

{button Related Topics,PI(`',`IDH_RT_Setting_ABC_Object_Properties')}



Setting and Retrieving Properties with Code



Retrieving Properties    
You can retrieve a property setting by naming the property on the right side of an assignment statement. You 
can use this feature to save the property setting in a variable or to assign it to another property.
The rules for naming a property to be retrieved are the same as for setting a property.
The examples below illustrate various methods of retrieving properties. In the first three examples, the property 
settings are retrieved and saved in variables. In the last two examples, the setting retrieved from one property is
used to set another property. 

Temp = Form2.Width
Tstate3 = Form3!Timer1.Enabled
Command2.Visible = Command1.Visible
Form5.BackColor = Form1.BackColor

{button Related Topics,PI(`',`IDH_RT_Retrieving_Properties')}



Setting and Retrieving Properties with Code



Executing Methods    
Visual Basic objects can perform various actions such as moving and printing data. The actions that an object 
can perform are called methods. The methods available to an object are predefined and depend upon the object.
The general syntax for executing a method with code is shown below. Object is the name of a form or control and
Method is the name of the method to perform. If a method requires parameters, they must follow the 
Object.Method name.

Object.Method [Parameters]
The following example executes a form method. The Cls method clears a form of all graphics and text.
Form2.Cls
The following example executes a control method. The SetFocus method selects the specified text box as the 
current object and places the cursor in the text box.

Text1.SetFocus

The following example executes an ABC object method. The PrintOut method prints the Chart object to the 
current printer.

Chart.PrintOut

{button Related Topics,PI(`',`IDH_RT_Executing_Methods')}



Cls method
PrintOut method
SetFocus method



Converting to the 32-bit OCX
You can use the utility VB3to4.exe to convert files written using ABCAUTO.VBX so that they will use 
ABCFLOW.OCX. 
Make a backup copy of your files before beginning any conversion process.
To convert
1 Open the project in Visual Basic 3.0.
2 Load the form (.FRM file).
3 On the File menu, click Save File As.
4 Enter a filename with a txt extension.
5 Check the Save As Text box.
6 Repeat for all forms.
7 From Start Run, enter VB3to4.exe infile [outfile]. (For example, VB3to4.exe deploy.txt deploy95.txt)
8 Follow the on-screen instructions.
Note

Visual Basic 4.0 automatically recognizes and loads the .txt file as a text file.
Changes in the NOTIFY events
The NOTIFY and SUBCLASS events take parameters with OCX. The example below shows a typical change. The 
parameter list changes are done automatically by VB3to4.exe. It is recommended that you use the parameters 
of the NOTIFY and SUBCLASS events instead of the corresponding properties of the OCX.

Sub ABC1_LinkNOTIFY ( ) ' ABCAUTO.VBX syntax
SourceChart = ABC1.Chart ' Save source chart
SourceObject = ABC1.Object ' Save source object
CurrentChart = ABC1.ActiveChart ' Save linked chart

End Sub

Sub ABC1_LinkNOTIFY (ByVal LinkedToChart As Object, ByVal Object As Object, ByVal Chart  As 
Object) ' ABCFLOW.OCX syntax

SourceChart = Chart ' Save source chart
SourceObject = Object ' Save source object
CurrentChart = LinkedToChart ' Save linked chart

End Sub



Starting ABC
Starting ABC is the first step in writing an automation program. You define ABC as an object using the Visual 
Basic Dim statement. In Visual Basic, first, enter the following statement in the (declarations) Proc of the 
(general) Object to make ABC a global variable.

Dim ABC As Object

You run the application using the Visual Basic Set and CreateObject instructions. To make the application 
visible, you set the Visible property of the Application object to True.
Note

You use these statements, along with the Dim, at the beginning of all ABC OLE Automation programs.
Enter the following statements in the Load Proc of the Form Object.

Sub Form_Load ()
Set ABC = CreateObject("ABCFlow.application")
ABC.Visible = True
End

End Sub

Note
If you do not want the program to end after ABC runs, omit the End statement.

The statement Set ABC = CreateObject("ABCFlow.application") runs ABC. When you run the program, ABC 
runs invisibly, if it is not yet running. If it is already running, the statement has no effect, other than to establish 
a valid ABC application object for use.
The statement ABC.Visible = True makes ABC visible.
The statement End ends the program.
Tip
You might want to save this program as RUNABC so you can open it as the beginning of your other programs. Be 
sure to save it with a different name before you make changes to it.
Run the program you have written so far from within Visual Basic. You see ABC run. Then the Basic program 
comes back to the front. If you make the program into an EXE file and then run it, the program runs and stays in 
front.
Note

If ABC is already running, CreateObject does not run a new copy of ABC. Instead, it returns a valid ABC 
application object for the ABC application that is already running.

Showing and Hiding ABC
To show ABC, you use this statement.

ABC.Visible = True

To hide ABC, you use this statement.



ABC.Visible = False

If you set Visible to False, the application is still running, but it is not visible. You cannot switch to it using 
ALT+TAB, and it is not shown in the Task List dialog box that appears when you press CTRL+ESC. The default for 
Visible is False, so you should always set it to True immediately after you run ABC.
You can use Visible on the right side of a statement and in conditions. The following statement sets the Boolean 
variable ABCShown to True or False according to the value of ABC.Visible.

ABCShown = ABC.Visible

The following statements beep your computer's speaker if ABC is running but not visible.

If Not ABC.Visible Then
Beep

End If

{button Related Topics,PI(`',`IDH_RT_Starting_ABC')}



Visible property



Controlling the ABC Window
You can control the appearance of the ABC window using many different properties and methods. Here are the 
items you can control.

Display or hide the ABC window (Visible.
Make the ABC window the active window (Activate.
Change ABC to an icon, maximize the window, and restore it to its previous state (Minimize, Maximize, 

Restore.
Arrange minimized chart windows (ArrangeIcons).
Cascade or tile the chart windows (CascadeCharts and TileCharts).
Set the position and size of the ABC window (Top, Left, Right, Bottom, Height, and Width).
Set the title bar text of the ABC window (Caption).
Set the status bar visibility and text of the ABC window (StatusBar, StatusBarVisible Property ).
Control whether the Field viewer, Notes viewer, and Shape palette are visible in the ABC window 

(FieldViewerVisible, NoteViewerVisible, and ShapePaletteVisible).
Get information about ABC (FullName, Path, Name, Version, and OperatingSystem).
Set ABC preferences (SmartShapeSpacing, SSSHorizontal, SSSVertical, ChannelAlignment, TouchAlignment,

AlignToRulers, ShowRulers, LineSpacingX, LineSpacingY, LinkIndicator, LinkShadow, NoteIndicator, NoteShadow, 
NumberFont, ShowNodesOnLines, FieldPlacement, FieldNamesHidden, FieldsOpaque, FieldFont, FieldsHoursPerDay, 
and FieldsDaysPerWeek).

Display Windows Help files (Help).
Undo actions (UndoAvailable and Undo).
Close ABC (Quit).

{button Related Topics,PI(`',`IDH_RT_Controlling_the_ABC_Window')}



Arranging ABC Charts
Arranging ABC Icons
Bringing ABC or a Chart to the Front
Changing the ABC Title Bar
Changing the ABC Status Bar
Displaying the Field Viewer, Notes Viewer, and Shape Palette
Minimizing, Maximizing, and Restoring a Window
Positioning and Resizing the ABC Window



Bringing ABC or a Chart to the Front
You bring ABC to the front using the Activate method of the Application object. You usually have to do this only 
after the user has done something that moves ABC to the back, such as clicking another application that is 
visible on the screen or switching to another application using ALT+TAB or CTRL+ESC.

ABC.Activate

The Activate method of the Application object is equivalent to clicking the ABC window to bring it to the front, or
using ALT+TAB or CTRL+ESC to bring it to the front.
You bring a particular chart to the front using the Activate method of the Chart object.

Chart.Activate

The Activate method of the chart object is equivalent to clicking the chart to bring it to the front or choosing the
name of the chart from the Window menu.

{button Related Topics,PI(`',`IDH_RT_Bringing_ABC_or_a_Chart_to_the_Front')}



Controlling the ABC Window
Activate method (Application object)
Activate method (Chart object)



Minimizing, Maximizing, and Restoring a Window
You can minimize the ABC window and the chart windows to icons using the Minimize method of the Application
object and Chart object. For example, the following statement makes ABC into an icon at the bottom of the 
Windows screen.

ABC.Minimize

The following statement makes the chart into an icon at the bottom of the ABC window.

Chart.Minimize

After you minimize charts to icons, you can arrange them as described in Arranging ABC Icons.
You can use the Maximize method of the Application object and Chart object to maximize the ABC and chart 
windows. For example, the following statements maximize ABC and then maximize the chart in it.

ABC.Maximize
Chart.Maximize

After you change the size of the ABC window or a chart window, you can change it to its previous size using the 
Restore method of Application object and Chart object. For example, the following statements restore the chart 
and then the ABC windows to their previous sizes.

Chart.Restore
ABC.Restore

You can resize the ABC window as described in Positioning and Resizing the ABC Window. You can cascade and 
tile charts as described in Arranging ABC Charts.

{button Related Topics,PI(`',`IDH_RT_Minimizing_Maximizing_and_Restoring')}



Arranging ABC Charts
Arranging ABC Icons
Controlling the ABC Window
Positioning and Resizing the ABC Window

Maximize method
Minimize method
Restore method



Arranging ABC Icons
When you have several ABC chart windows minimized to icons, you can arrange them at the bottom of the ABC 
window using the ArrangeIcons method of the Application object.

ABC.ArrangeIcons

The ArrangeIcons method is equivalent to opening the ABC Window menu and choosing Arrange Icons.

{button Related Topics,PI(`',`IDH_RT_Arranging_ABC_Icons')}



Controlling the ABC Window
ArrangeIcons method



Arranging ABC Charts
You can cascade and tile ABC charts when more than one is open. You use the CascadeCharts method of the 
Application object to cascade the chart windows and the TileCharts method of the Application object to tile the 
chart windows.

ABC.CascadeCharts
ABC.TileCharts

These methods are equivalent to opening the ABC Window menu and choosing Cascade or Tile.

{button Related Topics,PI(`',`IDH_RT_Arranging_ABC_Charts')}



Controlling the ABC Window
CascadeCharts method
TileCharts method



Positioning and Resizing the ABC Window
You can specify the position and size of the ABC window at any time. You use the Top property to set the top 
edge of the ABC window, the Left property to set its left edge, the Right property to set its right edge, and the 
Bottom property to set its bottom edge. You can specify the height of the window using the Height property 
and the width of the window using the Width property. All these properties are in the Application object. See 
Minimizing, Maximizing, and Restoring Windows for more information on controlling the appearance of the ABC 
window.
When you apply these properties to the ABC window, you specify the position in pixels. The number of pixels 
available depends on your screen resolution. For example, if you are running standard VGA, your screen is 640 
pixels wide and 480 pixels high.
You also can specify the height and width of the ABC window. The following example places the ABC window 
flush with the top and left edges of the screen, and extends it 400 pixels to the right and 500 pixels down from 
the top.

ABC.Top = 0
ABC.Left = 0
ABC.Width = 400
ABC.Height = 500

You can use the current values of Top , Bottom , Left , Right , Height , and Width in statements. The following
example places the ABC window in the top half of the screen.

Sub Main()
Dim ABC As Object
Dim MaxHeight As Integer, MaxWidth As Integer

Set ABC = CreateObject("ABCFlow.application")

ABC.Visible = False

ABC.Maximize  ' Maximize ABC window
MaxHeight = ABC.Height  ' Find height when maximized
MaxWidth = ABC.Width  ' Find width when maximized
ABC.Restore

ABC.Top = -4  ' The -4 is for the window sizing border 
ABC.Left = -4  ' and can be different with other 
ABC.Width = MaxWidth + 4  '  resolutions and Windows setups
ABC.Height = MaxHeight / 2

ABC.Visible = True
End Sub

{button Related Topics,PI(`',`IDH_RT_Positioning_and_Resizing_the_ABC_Window')}



Controlling the ABC Window
Minimizing, Maximizing, and Restoring Windows

Bottom property 
Height property
Left property
Right property
Top property
Width property



Changing the ABC Title Bar
You can customize ABC by changing what it says in the title bar. You set the test of the title bar using the 
Caption property of the Application object.
The following statement changes the ABC title bar to Custom Application followed by a hyphen and the name of 
the active chart. ABC appends a hyphen and then the name of the active chart to the caption.

ABC.Caption = "Custom Application"

You can use the current value of Caption in statements. For example, the following statements set the text in 
the title bar to Second Window if its value is First Window.

If ABC.Caption = "First Window" Then
ABC.Caption = "Second Window"

End If

{button Related Topics,PI(`',`IDH_RT_Changing_the_ABC_Title_Bar')}



Controlling the ABC Window
Caption property



Changing the ABC Status Bar
You can use the text in the ABC status bar to give hints and feedback to your users. You set the text in the status 
bar using the StatusBar property of the Application object. You determine and set the status bar’s visibility 
using the StatusBarVisible property of the Application object.
Tip

The status bar can hold approximately 90 characters, including spaces. The exact number it can hold 
depends on the characters. (For example, "m" takes up more room than "i" does.)

After running the following statements, if you change the pointer to the selection pointer and double click on a 
shape, the ABC status bar text changes to "You double clicked!"
Note

You must put the ABC Events custom control in the Form window and put the following statement in the 
subroutine for double clicking.

Sub ABC1_DoubleClickSUBCLASS ()
ABC1.App.StatusBar = "You double clicked!"

End Sub

You also must add one of the statements below in the startup or initialization code of your program. See 
Registering Event Procedures.

If you are using ABCAUTO.VBX:
ABC.RegisterEvent ABC1.VBX, Caption, "DoubleClickSUBCLASS" 
If you are using ABCFLOW.OCX, note that there is no extension for the OCXName:
ABC.RegisterEvent ABC1, Caption, "DoubleClickSUBCLASS" 

Note
You can restore the normal status bar hints by setting the StatusBar property to "".

Enter the following statement after the StatusBar statement to specify that the action of double clicking will not
also cause the normal response, such opening the Link dialog box or opening a linked chart. For more 
information on Override, see What Are ABC Events?

ABC1.Override = True

You can use the current value of the StatusBar property in statements. For example, the following statements 
add text to the status bar if its value is First Window.

If ABC.StatusBar = "First Window" Then
ABC.StatusBar = "First Window" + " View"

End If

{button Related Topics,PI(`',`IDH_RT_Changing_the_ABC_Status_Bar')}



Controlling the ABC Window
Registering Event Procedures
What Are ABC Events?
StatusBar property
StatusBarVisible Property 
To install the ABC VB event handler 
To install the OCX event handler 



Displaying the Field Viewer, Notes Viewer, and Shape Palette
You can control whether the Field viewer, Notes viewer, QuickZoom window, and Shape palette are visible in the 
ABC window. The properties you use are FieldViewerVisible, NoteViewerVisible, ZoomWindowVisible, and 
ShapePaletteVisible. You set them to True or False to show or hide the windows.
Enter the following statement to make the Field viewer visible if fields are defined.

ABC.FieldViewerVisible = True

Enter the following statement to make the Field viewer invisible.

ABC.FieldViewerVisible = False

To make the other windows visible or invisible, substitute NoteViewerVisible, ZoomWindowVisible, or 
ShapePaletteVisible for FieldViewerVisible.
The FieldViewerVisible property is equivalent to Viewer on the Data menu.
The NoteViewerVisible property is equivalent to clicking Note on the View menu.
The ZoomWindowVisible property is equivalent to clicking QuickZoom on the View menu.
The ShapePaletteVisible property is equivalent to clicking Shape Palette on the View menu.
You can use the current value of the window properties in statements. For example, the following statements 
make the Shape palette invisible if the Note viewer is visible.

If ABC.NoteViewerVisible = True Then
ABC.ShapePaletteVisible = False

End If

{button Related Topics,PI(`',`IDH_RT_Displaying_the_Viewers')}



Controlling the ABC Window
FieldViewerVisible property
NoteViewerVisible property
ShapePaletteVisible property



Getting ABC System Information
You can get information about the ABC program that is running using the properties FullName, Path, Name, 
Version, and OperatingSystem of the Application object.
Note
You cannot change the values of the FullName, Path, Name, Version, or OperatingSystem properties.
The FullName property returns the fully qualified path of the ABC program that is running, including the name 
of the executable file.
For example, the following statement puts the fully qualified path of the running ABC in the status bar. The result
when you run the program might be a status bar entry of "Full path is C:\Program Files\Micrografx\ABC Graphics 
Suite\ABC FlowCharter\ABCFLOW.EXE."

ABC.StatusBar = "Full path is " + ABC.FullName + "."

The Path property returns the fully qualified path of the ABC application that is running, excluding the name of 
the executable file. For example, the following statement puts the fully qualified path of the running ABC in the 
status bar. The result when you run the program might be a status bar entry of "Path is C:\Program Files\
Micrografx\ABC Graphics Suite\ABC FlowCharter."

ABC.StatusBar = "Path is " + ABC.Path + "."

The Name property returns the name of the application running. It always equals "ABC FlowCharter" for 
compatibility with all ABC products. For example, the following statement puts "ABC FlowCharter" in the status 
bar.

ABC.StatusBar = ABC.Name

The Version property returns the version of the ABC OLE Automation application object that is running. For 
example, it equals "2.0" if you are running ABC FlowCharter 6.0. The following statement puts the version 
number in the status bar.

ABC.StatusBar = "ABC OLE Automation Version " + ABC.Version + "."

The OperatingSystem property returns a value according to the DOS and Windows version under which ABC is 
running. For example, it equals "DOS 6.21;Windows 3.11" if you are running those versions. The following 
statement puts the operating system description in the status bar. 

ABC.StatusBar = "OS: " + ABC.OperatingSystem + "."

{button Related Topics,PI(`',`IDH_RT_Getting_ABC_System_Information')}



Controlling the ABC Window

FullName property
Path property
Name property
Version property
OperatingSystem property



Customizing Preferences
You can use ABC OLE Automation to set many of the ABC preferences that you can set from the application. The 
object that contains the preferences is Preferences. You use all the preference properties in the same way. Using 
the preference properties is described at the end of this section.

{button Related Topics,PI(`',`IDH_RT_Customizing_Preferences')}



Controlling the ABC Window
Setting Preferences

Alignment Options
Field Options
Indicator Options
Line Options



Alignment Options
The alignment preference properties are SmartShapeSpacing, SSSHorizontal, SSSVertical, 
ChannelAlignment, TouchAlignment, AlignToRulers, and ShowRulers of the Preferences object.
The following table shows the possible values of the alignment preference properties.
Property Values
SmartShapeSpacing True = Selected; False = Not Selected
SSSHorizontal Number
SSSVertical Number
ChannelAlignment True = Selected; False = Not Selected
TouchAlignment True = Selected; False = Not Selected
AlignToRulers 0 = Not Selected; 1 = Coarse; 2 = Fine
ShowRulers True = Selected; False = Not Selected

{button Related Topics,PI(`',`IDH_RT_Alignment_Options')}



Customizing Preferences
Setting Preferences

AlignToRulers property
ChannelAlignment property
ShowRulers property
SmartShapeSpacing property
SSSHorizontal property
SSSVertical property
TouchAlignment property



Line Options
The line spacing options in the preference properties are LineSpacingX and LineSpacingY of the Preferences 
object, and LineCrossoverStyle and LineCrossoverSize of the Chart object.
The following table shows the possible values of the line spacing options preference properties.
Property Values
LineSpacingXValue
LineSpacingYValue
The following table shows the possible values of the LineCrossoverStyle property.
Style Description
0  Bunny hops

1  Broken lines
2  Solid lines

The following table shows the possible values of the LineCrossoverSize property.
RelativeSize Description
0  Small

1  Medium
2  Large

{button Related Topics,PI(`',`IDH_RT_Line_Options')}



Customizing Preferences
Setting Preferences

LineCrossoverSize property
LineCrossoverStyle property
LineSpacingX property
LineSpacingY property



Indicator Options
The indicator options are LinkIndicator, LinkShadow, NoteIndicator, NoteShadow, NumberFont, and 
ShowNodesOnLines. These options are part of the Shape object, not the Preferences object.
The following table shows the possible values of the indicator properties.
Property Values
LinkIndicator String ("" by default)
LinkShadow True = Selected; False = Not Selected
NoteIndicator String ("-N" by default)
NoteShadow True = Selected; False = Not Selected
NumberFont Font object
ShowNodesOnLines True = Selected; False = Not Selected

{button Related Topics,PI(`',`IDH_RT_Indicator_Options')}



Customizing Preferences
Setting Preferences

LinkIndicator property
LinkShadow property
NoteIndicator property
NoteShadow property
NumberFont property
ShowNodesOnLines property



Field Options
The field options are FieldPlacement, FieldNamesHidden, FieldsOpaque, FieldFont, FieldsHoursPerDay, 
and FieldsDaysPerWeek. These options are part of the Chart object, not the Preferences object.
The following table shows the possible values of the indicator properties.
Property Values
FieldPlacement 0 = Left, 1 = Right, 2 = Above, 3 = Below, 4 = Inside Top, 5 = Inside Middle
FieldFont Object
FieldNamesHidden True = Selected; False = Not Selected
FieldsOpaque True = Selected; False = Not Selected
FieldsHoursPerDay Number
FieldsDaysPerWeek Number
For more information on the data field preferences, see Setting Data Field Preferences.

{button Related Topics,PI(`',`IDH_RT_Field_Options')}



Customizing Preferences
Setting Data Field Preferences
Setting Preferences

FieldFont property
FieldNamesHidden property
FieldPlacement property
FieldsOpaque property
FieldsHoursPerDay property
FieldsDaysPerWeek property



Setting Preferences
You set all preferences in approximately the same way. You access the information about preferences using the 
Preferences property of the Application object. For example, you can set AlignToRulers to fine.

ABC.Preferences.AlignToRulers = 2

To turn aligning to rulers off, set the value to 0. To set the alignment to coarse, set the value to 1. You set the 
other preferences in the same way by changing AlignToRulers to the appropriate property and changing the 
value to what you want.
You set preferences that are part of the Chart object instead of the Preferences objects slightly differently. For 
example, you can turn on FieldNamesHidden.

ABC.Chart.FieldNamesHidden = True

You can use the current value of preferences in statements. For example, the following statements put the 
current setting of the alignment preference in the status bar.

If ABC.Preferences.AlignToRulers = 0 Then
ABC.StatusBar = "Alignment: Off"

ElseIf ABC.Preferences.AlignToRulers = 1 Then
ABC.StatusBar = "Alignment: Coarse"

Else
ABC.StatusBar = "Alignment: Fine"

End If

You use the other preferences in the same way by changing AlignToRulers to the appropriate property and 
changing the values as appropriate.

{button Related Topics,PI(`',`IDH_RT_Setting_Preferences')}



Customizing Preferences

Alignment Options
Field Options
Indicator Options
Line Options

AlignToRulers property
FieldNamesHidden property
Preferences property



Setting Defaults
You can set the defaults for objects that are in the Shape, Line_, and TextBlock objects. You use the SetDefaults 
method of the Chart object. You set the defaults by passing the method an object that has the defaults you want 
to set.
The following table lists the defaults that you set when you use the SetDefaults method.
Object Type Defaults Set
Shape Border color, border style, border width, fill color, fill pattern, shadow offset, shadow color, 

numbers on or off, font properties, text alignment
Line_ Color, width, style, source arrow size, source arrow style, source arrow color, destination arrow 

size, destination arrow style, destination arrow color
TextBlock Font properties, text alignment
For example, the following statements first create an object that has shape numbering turned on, has a dark 
gray fill, and has a dark gray shadow to its lower right. Then the statements set the Shape defaults using that 
statement. Finally the statements delete the object using the Clear_ method of the Object object.

Set DefaultObj = Chart.DrawShape  ' Create an object to have defaults
DefaultObj.NumberShown = True  ' Assign defaults
DefaultObj.FillColor = ABC.GRAY
DefaultObj.ShadowColor = ABC.DK_GRAY
DefaultObj.ShadowStyle = 1
Chart.SetDefaults DefaultObj  ' Set defaults
DefaultObj.Clear_  ' Delete the object

You set the defaults for Line_ and TextBlock objects similarly.

{button Related Topics,PI(`',`IDH_RT_Setting_Defaults')}



Speeding Actions
Clear_ method
SetDefaults method



Customizing ABC
You can customize ABC in several ways. You can add and remove menus using methods and properties of the 
Application object, the Menu collection, and the MenuItem object. To make it easy to run other programs, you 
can add and remove buttons in the toolbox using the methods of the Application object. To provide feedback to 
the user, you can display messages in dialog boxes, show a percent-complete gauge, and change the pointer to 
an hourglass using methods and properties of the Application object.
None of these methods and properties have equivalents in ABC.

{button Related Topics,PI(`',`IDH_RT_Customizing_ABC')}



Adding Menus
Adding Buttons
Providing Feedback



Adding Menus
You can add as many new menus to ABC as you wish. If you add more than fit on the menu bar, it wraps so all 
the menus fit. It is best not to have too many menus so the user can easily find the menu he or she wants to use.
Each menu should contain commands related to the same type of activity.
You add a menu to ABC using the AddMenu method of the Application object. The menu is added to ABC at the 
left of the Window menu, so you set the order of the menus by the order in which you create them. The menu is 
added to the Menu collection. The AddMenu method requires three parameters and allows a fourth parameter.
The first parameter is the title of the menu. For example, you might give it the title "&Costs" (the & underlines 
the next character and makes it the mnemonic).
The second parameter identifies the VBX that receives notification events to when the menu is used. Normally 
you use ABC1.VBX (ABC1 if you are using ABCFLOW.OCX), which registers menus for the AppMenuSUBCLASS 
event. When the VBX shuts down (when the program ends), the menu is removed from ABC.
The third parameter is the name of the program adding the menu to ABC. The easiest way to identify the 
program is using Form1.Caption.
The fourth parameter, which is optional, lets you specify a chart type for the menu. A chart type is a hidden 
string field up to eight characters in length indicating the chart type. This field is never used within ABC, but it is 
useful within an ABC events VBX. For example, if two OLE Automation programs are running, you could change 
the fourth parameter to avoid conflicts.
For example, the following statements create a menu named Costs with a mnemonic of C, register it with the 
AppMenuSUBCLASS event by specifying ABC1.VBX (ABC1 if you are using ABCFLOW.OCX), and specify the 
program using Form1.Caption. The menu object is placed in the variable Menu.

Set ABC = CreateObject("ABCFlow.application")
ABC.Visible = True

Dim CostMenu As Object

Set CostMenu = ABC.AddMenu("&Costs", ABC1.VBX, Form1.Caption)

It is generally best to add any menus that will be necessary at the beginning of a session and leave them until 
ABC closes. All added menus are automatically removed when ABC closes. Changing menus during a session can
be disconcerting to a user.
If you wish, you can change the name of the menu after you create it using the Text property of the Menu 
collection. For example, the following statement changes the name of a menu to Cost with a mnemonic of C.

CostMenu.Text = "&Cost"

You can temporarily make a menu invisible and then show it again using the Visible property of the Menu 
collection. For example, the following statement hides a menu.

CostMenu.Visible = False

If you need to remove a menu while ABC and your program are running, you can use the RemoveMenu method
of the Application object. For example, the following statement removes the menu that was created with the title
"&Costs" from ABC and from the Menu collection.

ABC.RemoveMenu "&Costs"

After you create a menu, you can add items to it. You add items below any existing items using the AppendItem
method and add items in specific places using the InsertItem method, both of the Menu collection.



If you use the name of an existing menu, the methods return the existing MenuItem object. Otherwise they 
return the new MenuItem object.
With the AppendItem method, you provide the title of the item you wish to create. For example, the following 
statements create the menu item "Overruns" with a mnemonic of O and place it in the OverrunItem object.

Dim OverrunItem As Object
Set OverrunItem = CostMenu.AppendItem("&Overruns")

With the InsertItem method, you provide the title of the item you wish to create, as with the AppendItem 
method, followed by the position of the item. You can specify the position by giving the name of the existing item
that the new item should be placed before or by specifying the numerical position of the item. All other items are
shifted down. For example, the following statements create the menu item "Explanation" with a mnemonic of E 
after the existing menu item "&Overruns."

Dim ExplanationItem As Object
Set ExplanationItem = CostMenu.InsertItem("&Explanation", "&Overruns")

The following statements create the menu item "Overtime" with a mnemonic of V in the second position in the 
menu.

Dim OvertimeItem As Object
Set OvertimeItem = CostMenu.InsertItem("O&vertime", 2)

With both methods, you can use the title "-" to create a separator (a solid horizontal line) to divide items into 
logical groups.
You indicate the status of some types of menu items with a check mark in front of the item. You use the 
Checked property of the MenuItem object to set and remove check marks. For example, the following statement
puts a check mark to the left of a menu item.

CostItem.OvertimeItem.Checked = True

When a menu item is not available because choosing it is inappropriate in the current situation, you make the 
item gray. You use the Enabled property of the MenuItem object to gray a menu item. The following statement 
turns an item gray.

OvertimeItem.Enabled = False

If you wish, you can change the name of a menu item after you create it using the Text property of the 
MenuItem object. For example, the following statement changes the name of a menu item to Overtime with a 
mnemonic of T.

OvertimeItem.Text = "Over&time"

You can remove an item from a menu using the DeleteItem method of the Menu collection. For example, the 
following statement removes an item from a menu.

CostMenu.DeleteItem OvertimeItem

If you wish, you can delete all the items from a menu using the DeleteAll method of the Menu collection.

CostMenu.DeleteAll



You can find the menu item that is in a specific position using the Item method of the Menu collection. You 
specify either the position of the item in the menu or the text in the item. For example, the second statement 
puts into CurrentItem the Menu object that is in the third position in the menu. The third statement puts into 
NextItem the Menu object that has the text Over&time.

Dim CurrentItem As Object, NextItem As Object
Set CurrentItem = CostMenu.Item (3)
Set NextItem = CostMenu.Item("Over&time")

{button Related Topics,PI(`',`IDH_RT_Adding_Menus')}



Customizing ABC

AppMenuSUBCLASS event

AddMenu method
AppendItem method
DeleteItem method
InsertItem method
Item method
RemoveMenu method

Checked property
Enabled property
Text property
Visible property



Adding Other Applications to the Menu
You can the names of other applications to the Add On submenu of the Tools menu so you can run other 
programs easily from ABC FlowCharter, both programs you have written and commercial programs, such as 
Microsoft Excel.
You create the menu items using the CreateAddOn method of the Application object. 
The first parameter is the position of the menu item. Use -1 for the first available position. 
The second parameter is the hintline text. For example, if you enter a second parameter of "Run Excel" (with no 
punctuation), the hint line is "Click to Run Excel." (with "Click to" before it and a period after it).
The third parameter is the name of the program to run, including the fully qualified path. If the path contains a 
long filename, the string must be contained within quote marks. 
The fourth parameter is no longer used.
A fifth parameter is the name you want for the menu item. If no title is specified for the menu item, the hintline 
text is used. If there is no hint name, the name of the executable file is used (including extension.
When you use the CreateAddOn method, an item is added to the submenu accessed from the Add Ons item on 
the Tools menu. Add-ons are stored in the Registry automatically and loaded automatically when the application 
is closed and opened. Add-ons can be created only through OLE automation. You can specify the text of the 
menu item. There is no limit to the number of add-ons. For example, the following command adds Excel to the 
Add Ons submenu. 

ABC.CreateAddOn(3,"Run Excel", "C:\OFFICE95\Excel\Excel.exe", "","Excel
The menu items you create using the CreateAddOn method appear each time ABC is run until you remove 
them using the RemoveAddOn method of the Application object.
With the RemoveAddOn method, you specify either the position on the menu or the name of the menu item. 
For example, the line below removes the menu item for Excel regardless of its position in the toolbox.

ABC.RemoveAddOn "Excel"

{button Related Topics,PI(`',`IDH_RT_Adding_Buttons')}



Customizing ABC

CreateAddOn method
RemoveAddOn method



Providing Feedback
You can provide feedback to your users in several ways, from as simple a thing as changing the cursor to 
indicate that the user should wait for a moment to more complex things such as posting a gauge that shows how
far an operation has progressed, showing a hint line, and posting a dialog box that the user must respond to.
When you have an operation that will take a long time (anything approaching a second) and the user cannot 
usefully click somewhere (such as on Cancel), it is customary to change the cursor. You can change the cursor to 
the wait cursor using the Hourglass property of the Application object.

ABC.Hourglass = True

Posting a gauge that shows the progress of an operation uses the PercentGauge method, the 
PercentGaugeValue property, the HidePercentGauge method, and the PercentGaugeCancelled method, 
all of the Application object.
You create a percent gauge, with its value set to 0, using the PercentGauge method. It takes three optional 
parameters. The first is the name that goes in the title bar. The second is the first line of text above the gauge. 
The third is the second line of text above the title bar. 
For example, the following statement creates the gauge shown.

ABC.PercentGauge "Object Creation", "Creating objects.", "Click Cancel to stop."

After you create a gauge, you set its value using the PercentGaugeValue property. Set it equal to a number from 
0 to 100 to have the gauge show the appropriate position. For example, if the operation is 53% complete, the 
following statement makes the gauge show that value.

ABC.PercentGaugeValue = 53

You check to see if the user has chosen the Cancel button in the gauge using the PercentGaugeCancelled 
method. For example, the following statement sets the value of CancelCreation to True or False depending on 
whether the user has chosen the Cancel button.

CancelCreation = ABC.PercentGaugeCancelled

After the operation is complete, or if the user clicks Cancel, you need to remove the gauge. You do that using the
HidePercentGauge method.

ABC.HidePercentGauge

Most often, the value for the PercentGaugeValue property is a variable that you compute immediately before 
changing the value of the gauge. For example, the following statements determine the completion value and 
change the gauge only if the percentage is different. To avoid slowing the loop, it only redraws the gauge when 
the percentage has changed by at least 1. This example also shows the use of the PercentGaugeCancelled 
method and the HidePercentGauge method.

ABC.PercentGauge "Object Creation", "Creating objects.", "Click Cancel to stop."



OldPercentDone = 0
CreateCount = 1000

For Creation = 1 to CreateCount

CancelCreation = ABC.PercentGaugeCancelled  ' Cancelled?
If CancelCreation Then

ABC.HidePercentGauge  ' Get rid of gauge
Exit For  ' Leave creation loop

End If

Chart.DrawShape  ' Create the shape

PercentDone = Int(Creation / CreateCount * 100)  ' Find percentage done
If PercentDone <> OldPercentDone Then  ' Has percentage changed?

ABC.PercentGaugeValue = PercentDone  ' Set gauge
OldPercentDone = PercentDone  ' Reset comparison value

End If

Next Creation

ABC.HidePercentGauge

You can show a hint line using the Hint method of the Application object. You usually use a hint line to describe a
menu, command, or button you have added, or to give information about a percentage gauge or dialog box you 
have posted. You most often use the events AppMenuHintSUBCLASS, AppMenuSUBCLASS, and 
AppMenuPopupSUBCLASS. For example, the following line puts the line "Click Cancel to stop creation." in the 
hint line.

ABC.Hint "Click Cancel to stop creation."

Note that the hint line you place only stays until the user moves the mouse so that a different hint line appears. 
If you want to make the hint line stay until you change it to "" you should use the StatusBar method.
You can post a dialog box using the MsgBox method of the Application object. The method is similar to the 
MsgBox function used in the Basic programming language, with three parameters. The first parameter is the 
message that goes in the dialog box.
The second parameter, which is optional, defines the type of dialog box. If you omit the second parameter, the 
value is 0.
The third parameter, which is optional, sets the title bar text of the dialog box. If you omit the third parameter, 
the title of the dialog box is "Micrografx ABC FlowCharter 6.0."
The value of the second parameter can be the sum of values from the table. For example, if you want to show a 
Stop icon along with Yes and No buttons, the value of the second parameter is 19. The easiest way to set the 
values is to use the constants and sum them into a variable. The following table shows the values available. 
Note

In Visual Basic, these values have constants associated with them, such as MB_OK. Those constants are 
not available for ABC OLE Automation.

Value Effect
0 Display the OK button only.
1 Display the OK and Cancel buttons.
2 Display the Abort, Retry, and Ignore buttons.
3 Display the Yes, No, and Cancel buttons.
4 Display the Yes and No buttons.



5 Display the Retry and Cancel buttons.
16 Display the stop icon. 

32 Display the question mark icon. 
48 Display the exclamation point icon. 
64 Display the information icon. 
0 The first button is the default.
256 The second button is the default.

512 The third button is the default.
0 The dialog box is application modal, so ABC is suspended until the user responds to the dialog box.
4096 The dialog box is system modal, so all applications are suspended until the user responds to the dialog 

box.
For example, the following statements set the type and then create the dialog box with a title of "Cancel 
Creation."

MessageBoxType = 4 + 16  ' Show Yes, No, and Stop icon
Response = ABC.MsgBox "You cancelled the creation. Are you sure?", MessageBoxType, "Cancel 
Creation"

The value put into the variable Response depends on the button that the user clicked. The following table shows 
the value of the MsgBox method according to the button that the user selected.
 Note

In Visual Basic, these values have constants associated with them, such as IDOK. Those constants are not 
available for ABC OLE Automation.

Button Selected Value
OK 1
Cancel 2
Abort 3
Retry 4
Ignore 5
Yes 6
No 7

{button Related Topics,PI(`',`IDH_RT_Providing_Feedback')}



Customizing ABC

AppMenuHintSUBCLASS
AppMenuPopupSUBCLASS
AppMenuSUBCLASS

HidePercentGauge method
MsgBox method
PercentGaugeCancelled method
PercentGauge method
StatusBar method

Hourglass property
PercentGaugeValue property



Displaying Help
You can display help at any time that you wish, based on the actions of your user. You use the Help method of 
the Application object to display the help topic of your choice.
There are two optional parameters you can use with the Help method. If you use the Help method with no 
parameters, the ABC help appears showing the default topic.
The first parameter, a text string, specifies a Windows help file. You can use it to specify a help file other than the
one shipped with ABC, so that you can direct your users to a help file that you prepared for your particular 
application.
The second parameter, a long or a text string, is a context ID or help context string to call a particular topic in 
the help file.
The following statement opens the Help window with the Shape Tool topic displayed because its context ID is 
71681.

ABC.Help, 71681

If you write your own help, then the statement is something like this.

ABC.Help "C:\Program Files\Micrografx\ABC Graphics Suite\ABC FlowCharter
\ABCFLOW.EXE\MYHELP.HLP", "Getting_Started"

Using the Help method is equivalent to positioning the pointer or opening a dialog box, and then pressing F1.

{button Related Topics,PI(`',`IDH_RT_Displaying_Help')}



Help method



Closing ABC
When you wish, you can close ABC using the Quit method of the Application object.
When you use the Quit method, ABC closes. It does not prompt the user to save changes on open files. Before 
you close ABC, you should save the files you want to be saved.
The following statement closes ABC.

ABC.Quit

Using the Quit method is equivalent to opening the File menu and choosing Exit, or using any of the other 
methods to close ABC, except that it does not prompt for saving changes.

{button Related Topics,PI(`',`IDH_RT_Closing_ABC')}



Quit method



Window Handles
Using window handles is an advanced feature of ABC OLE automation. Window handles are useful for calling the 
Windows API calls directly from ABC OLE Automation. For more information, open the Visual Basic 3.0 Help and 
search for "hWnd."
You can get the handle of the windows within ABC, including the handle for the main window, the Field viewer, 
the Note viewer, and the Shape palette. The properties associated with the windows are WindowHandle (of the
Application object for ABC and of the Chart object for a specific chart), FieldViewerWindowHandle, 
NoteViewerWindowHandle, and ShapePaletteWindowHandle of the Application object. These properties 
provide the handle to each of the windows. If the window is not visible, they are Null.

{button Related Topics,PI(`',`IDH_RT_Closing_ABC')}



FieldViewerWindowHandle property
NoteViewerWindowHandle property
ShapePaletteWindowHandle property
WindowHandle property



Creating New Charts
You can create a new chart using default attributes or attributes that were saved in a template.
In ABC, you create a new chart with default attributes by clicking New on the File menu. A new chart window 
opens. 
You can create a new chart using the attributes in a specific template by clicking Open on the File menu. The 
Open File dialog box opens. In the Files of type list box, select Micrografx ABC Template (*.aft), choose the drive, 
directory, and template file you want to open, and click Open. Click Save As on the File menu, enter a new name 
in the File name box, in the Files of type list box, select Micrografx ABC FlowCharter (*.abc), and then click OK.
To create a new chart using ABC OLE Automation, you use the New method or the NewFromTemplate method 
of the Application object or the Add method or the AddFromTemplate method of the Chart collection.
Use the New method or the Add method to create a new chart with default attributes. This opens a new chart 
window. For example, the following statements each create a new chart, resulting in two new charts.

ABC.New
Charts.Add

Use the NewFromTemplate method or AddFromTemplate method to create a new chart with attributes based
on the chart template's name. For example, the following statements each open a new chart based on the 
template PORTCOLR.AFT.

ABC.NewFromTemplate "C:\Program Files\Micrografx\ABC Graphics Suite\
ABC FlowCharter\Samples\Portcolr.aft"

Chart.AddFromTemplate "C:\Program Files\Micrografx\ABC Graphics Suite\
ABC FlowCharter\Samples\Portcolr.aft"

There is no practical difference in the effect of New and Add or in the effect of NewFromTemplate and 
AddFromTemplate.

{button Related Topics,PI(`',`IDH_RT_Creating_New_Charts')}



Add method
AddFromTemplate method
New method
NewFromTemplate method



Opening Charts
Each chart is stored in a separate file, which contains the shapes, lines, and text in your chart. Chart filenames 
end with an AF3, AF2, or ABC extension.
In ABC, you open a chart by opening the File menu and choosing Open. The Open dialog box appears, and you 
can choose the drive and directory that contain the file you want to open.
Using ABC OLE Automation, you open a chart using the Open method of the Charts collection or the Open 
method of the Application object. With each, you specify a fully qualified pathname or partial pathname. If you 
specify a partial pathname (just the name of the file, for example), the path is the current value of the 
DefaultFilePath property. If the chart is already open, the Open method moves the chart to the front. You can 
optionally specify that the chart is to be opened read only.
For example, the following statement opens the file MYCHART.ABC, located in the path specified in the 
DefaultFilePath property. The file is opened as read only.

ABC.Open "MYCHART.ABC", True

{button Related Topics,PI(`',`IDH_RT_Opening_Charts')}



Identifying a Chart's Filename
Setting a Default Path for Charts
DefaultFilePath property
Open method



Setting a Default Path for Charts
You use the DefaultFilePath property of the Application object to set the default path for all files that are 
opened or saved. For example, the following statement sets the default path for all files, and then opens a read-
only chart without specifying a pathname.

ABC.DefaultFilePath = "C:\Program Files\Micrografx\ABC Graphics Suite\ABC FlowCharter\Samples"
ABC.Open MYCHART.ABC, True

{button Related Topics,PI(`',`IDH_RT_Setting_a_Default_Path_for_Charts')}



Opening Charts
DefaultFilePath property



Identifying a Chart's Filename
You can find a chart's filename with or without its pathname. The FullName property of the Chart object returns 
the fully qualified pathname of the chart. (If the chart has not been saved, it returns the temporary name of the 
chart.) The Name property of the Chart object returns the name of the chart without the path. You access the 
information about charts using the Charts property of the Application object.
For example, the following statements return the fully qualified pathname and the name without the path of a 
chart.

FullyQualifiedPathname = Chart.FullName
NameOnly = Chart.Name

{button Related Topics,PI(`',`IDH_RT_Identifying_a_Chart_s_Filename')}



Opening Charts
Charts property
FullName property
Name property



 Saving Charts
In ABC, when you save a chart, ABC stores the chart in a file on disk. Each chart is saved in a separate file. When
you save a chart, you can assign it a name and choose where you want to store it on a disk.
In ABC OLE Automation, you can find if the chart has been saved to disk and if the file on disk is the same as the 
file in memory. You can save the current version of the chart to a specified or default pathname.
You use the HasDiskFile property of the Chart object to find out if the chart has ever been saved to disk. For 
example, the following statement puts into the variable EverSaved whether the current chart has a file on disk.

EverSaved = Chart.HasDiskFile

You can use the Saved property of the Chart object to find if the file saved on disk is the same chart as currently
resides in memory. If the value of the Saved property is True, there is no need to save the chart. For example, 
the following statement puts into the variable FileCurrent whether the current chart has been changed since it 
was last changed.

FileCurrent = Chart.Saved

You use the Save method of the Chart object to save a file. You can optionally specify a path and filename. If you
only specify a filename, the pathname is the value of the DefaultFilePath property.
You also can optionally specify the type of file to save it as. The following table shows the types of files possible.
File Type Save File As
0 Chart, version 3.0
1 Template, version 3.0
2 Chart, version 2.0
3 Template, version 2.0
For example, the following saves a file as a template with the name MYTEMPL.AFT.

Chart.Save "MYTEMPL.AFT", 1

You can use the HasDiskFile property, Saved property, and Save method together to save a file only when 
necessary. For example, the following statements save a file with a new name if it has never been saved, or save
it with its current name if it has been changed since it was last saved.

EverSaved = Chart.HasDiskFile  ' Is chart on disk?
If Not EverSaved Then  ' If not, save it

NextFile = "File" + ChartFileCount + ".ABC"  ' Create filename
ABC.Hint = "Saving chart as " + NextFile + "."
Chart.Save NextFile, 0
ChartFileCount = ChartFileCount + 1  ' Increment file counter

Else  ' Else, check if changed
FileCurrent = Chart.Saved
If Not FileCurrent Then  ' If changed, save it

ABC.Hint = "Saving chart."
Chart.Save

End If
End If

You can use the Export method of the Chart object to export the chart to a graphics file. The file extension you 
provide determines the type of file created. This is the equivalent of clicking Export Chart on the Tools menu in 
ABC. Quotation marks should be used whenever long filenames or long pathnames are used.

ChartObject.Export (FileName)



{button Related Topics,PI(`',`IDH_RT_Saving_Charts')}



Read-Only Charts
Reverting to the Last Saved Version

DefaultFilePath property
Export Method 
HasDiskFile property
Saved property
Save method



Reverting to the Last Saved Version
You use the RevertToSaved method of the Chart object to revert to the last saved copy of the document, 
discarding any changes. For example, the following statement removes the current version of the chart from 
memory and opens the version on the hard disk.

Chart.RevertToSaved

{button Related Topics,PI(`',`IDH_RT_Reverting_to_the_Last_Saved_Version')}



Saving Charts
RevertToSaved method



Read-Only Charts
Some charts are opened as read-only charts, either because they were opened that way using the Open method
or because the person does not have rights to save the chart under the same filename. You can determine 
whether a chart is read only using the ReadOnly property of the Chart object. For example, the following 
statement puts into the variable ReadOnlyFile whether the user can save the file under its current path and 
filename.

ReadOnlyFile = Chart.ReadOnly

The ReadOnly property is read only. You cannot change its value. To open a file as read only, use the optional 
AsReadOnly parameter of the Open method of the Charts collection or of the Application object.

{button Related Topics,PI(`',`IDH_RT_Read_Only_Charts')}



Saving Charts
Open method
ReadOnly property



Closing Charts
You can close just the active chart or close all of your charts at once. In ABC, you close the open charts in the 
order that they are arranged on the screen. If the open chart contains changes that you have not saved, ABC 
displays a message asking if you want to save the changes.
In ABC OLE Automation, you use the CloseChart method of the Chart object to close the chart. 
Note

When you use the CloseChart method, the user does not get a prompt to save the chart. For example, the
following statement closes a chart without any prompt to the user.

Chart.CloseChart

Closing All Charts at Once
In ABC, you close all the open charts by opening the File menu and choosing Close All. If any of the charts 
contain unsaved changes, ABC asks if you want to save the changes.
In ABC OLE Automation, you use the CloseAll method of the Application object or the CloseAll method of the 
Charts collection to close all charts in the ABC workspace. 
Note

If any of the charts contain unsaved changes, ABC does not ask if you want to save the changes. 
For example, the following two statements each close all the open charts.

ABC.CloseAll
ChartCollection.CloseAll

{button Related Topics,PI(`',`IDH_RT_Closing_Charts')}



CloseChart method



Activating a Chart
Activating a chart lets you return a previously created chart. In ABC, you activate a chart by clicking on it or by 
opening the Window menu and choosing the chart from the numbered list of open charts.
In ABC OLE Automation, you can activate a chart using the Activate method of the Application object and the 
Item method of the Charts collection. You can find the current active chart using the ActiveChart property of 
the Application object.
The Item method lets you identify the chart you want to bring to the front. It takes one parameter, which is 
either a string indicating the full path and executable name of the chart or a number that is the chart's ordering 
position within the collection. For example, the following statement brings the chart C:\ABC\MYCHART.ABC to the 
front and places the chart object in ActiveChart.

ActiveChart = ABC.Charts.Item("C:\ABC\MYCHART.ABC").Activate

If the chart is not open, the method returns a nonvalid chart object.
The Count property of the Charts collection contains the number of charts in the collection. (The Count property
exists in several collections. All of them work approximately the same way.) You can use the Count property to 
loop through the open charts. For example, the following statements search through the chart collection looking 
for the chart MYCHART.ABC and bring it to the front when it is found.

For ChartCount = 1 to ChartsCollection.Count  ' Search collection
Set CurrentChart = ABC.Item(ChartCount)
If CurrentChart.Name = "MYCHART.ABC" Then

Exit For  ' Exit when chart is found
End If

Next ChartCount
CurrentChart.Activate  ' Activate chart

{button Related Topics,PI(`',`IDH_RT_Activating_a_Chart')}



Activate method
ActiveChart property
Count property
Item method



Protecting Charts
At times, you may want to prevent other people from editing your chart. After you assign a password to protect 
the chart, no one is able to move, edit, add, or delete objects in the chart until they enter the password correctly.
In ABC, you can use password protection to manage linked files. By assigning each person in a work group a 
different password, you can ensure that each person has access to make changes only to his or her own charts.
In ABC OLE Automation, you use the SetProtection method of the Chart object to turn the protection on and 
off. The SetProtection method has two parameters. The first is a Boolean that turns protection on and off. The 
second is the password. For example, the following statements turn protection on, and then turn it back off.

Chart.SetProtection True, "Quint"
Chart.SetProtection False, "Quint"

You use the Protected property of the Chart object to identify whether a chart is protected. The Protected 
property is read only, so you cannot use it to change the protection of a chart.
For example, the following statements turn off password protection for a chart if the chart is protected.

If CurrentChart.Protected Then
CurrentChart.SetProtection False, CurrentChartPassword

End If

{button Related Topics,PI(`',`IDH_RT_Protecting_Charts')}



Protected property
SetProtection method



Linking Charts
You can link charts together. After the charts are linked, you can double click a designated shape in one chart to 
open the linked chart automatically.

{button Related Topics,PI(`',`IDH_RT_Linking_Charts')}



Choosing Link Indicators
Creating Group Links
Linking Shapes to Other Charts
Opening a Linked Chart



Linking Shapes to Other Charts
In ABC, you link an object, such as a shape, to an active chart by clicking the Selector tool in the toolbox, 
selecting the shape you want to link to another chart, then clicking the Link button in the Standard toolbar. In the
Link dialog box you identify the chart to which you want to link and choose an action.
In ABC OLE Automation, you can link shapes to other charts, determine if a shape is linked to another chart, and 
link to field data from another chart.
You use the LinkedChartName property of the Shape object to provide the full pathname of a chart linked to an
object and link the shape to the file. For example, the following statement links a shape to a chart.

MyShape.Shape.LinkedChartName = "C:\ABC\LINKCHT.ABC"

You use the IsLinked property of the Shape object to find if a shape is linked to another chart. The IsLinked 
property is read only. The property returns True if the object contains a link to another chart.

ShapeLinked = MyShape.Shape.IsLinked

You use the LinkFields property of the Shape object to accumulate the linked chart's field data into the shape's 
field information, if the shape is linked to another chart with field information. For example, the following 
statement turns on putting field data from the linked chart into the shape's field data.

MyShape.Shape.LinkFields = True

{button Related Topics,PI(`',`IDH_RT_Linking_Shapes_to_Other_Charts')}



Linking Charts
IsLinked property
LinkedChartName property
LinkFields property



Creating Group Links
The group and link function lets you move a group of selected objects to another chart, and replace the moved 
group with a shape that is linked to the chart to which the group was moved.
In ABC, you group and link by selecting the objects you want to move to another chart, and then clicking the Link
button in the Standard toolbar. In the Link dialog box you identify the chart to which you want to link, and choose
Group and Link. The moved group is replaced by the currently selected shape in the Shape Palette.
In ABC OLE Automation, you group and link with the GroupAndLink method of the Chart object.
The GroupAndLink method returns the shape that replaced the moved group and has two optional parameters.
The first parameter specifies the full pathname of the new chart. If the first parameter is omitted, ABC generates
a default chart pathname. The second parameter specifies whether the new chart's fields are linked to the 
source chart. If the second parameter is omitted, ABC does not link the fields. Use a variable with a True value 
for the second parameter to link the fields.
After executing GroupAndLink, you can obtain the newly created chart object with the ActiveChart property of
the Application object.
The example shown below moves the selected objects to a chart named LINKCHT.ABC. The LINKCHT.ABC fields 
are not linked to the source chart.

Set ShapeGroupLink = GroupAndLink("C:\ABC\LINKCHT.ABC")

{button Related Topics,PI(`',`IDH_RT_Creating_Group_Links')}



Linking Charts
ActiveChart property
GroupAndLink method



Opening a Linked Chart
You can use a linked shape to open a linked chart. In ABC, you open a linked chart by double clicking the linked 
shape. The linked chart opens and becomes the active chart.
In ABC OLE Automation, you use the Link method of the Shape object to open the linked chart. For example, the 
following statement opens the chart attached to a shape and puts the linked chart into LinkedChart.

Set LinkedChart = MyShape.Shape.Link
Note

If there is no value in the LinkedChartName property, using the Link method creates a new chart with an
automatically generated filename.

{button Related Topics,PI(`',`IDH_RT_Opening_a_Linked_Chart')}



Linking Charts
Link method
LinkedChartName property



Choosing Link Indicators
The link indicators appear in linked shapes. You can specify indicators for the linked shapes and place a shadow 
on objects with linked files.
In ABC OLE Automation, use the LinkIndicator property of the Chart object to specify the indicator, up to three 
characters, used for linked shapes. Use the LinkShadow property of the Chart object to show a shadow on shape 
objects that have linked files. For example, the following statements specify a link indicator of LNK and show a 
shadow.

Chart.LinkIndicator = "LNK"
Chart.LinkShadow = True

{button Related Topics,PI(`',`IDH_RT_Choosing_Link_Indicators')}



Linking Charts



Linking EXEs to Charts
You can link a compiled Visual Basic EXE program file to a chart so that the EXE program runs automatically 
when you open the chart. This feature is illustrated by the Deployment Wizard sample program shipped with ABC
OLE Automation. The Deployment Wizard automatically links DEPLOY.EXE to every new chart that you create with
the Deployment Wizard.
You use the TypeRequiresEXE and TypeUsesEXE properties of the Chart object to link an EXE to a chart.

If you set the TypeRequiresEXE property to True, the chart requires the EXE to open. If the linked EXE 
cannot be run, then the chart does not open.

If you set the TypeUsesEXE property to True, then the chart attempts to run the linked EXE when it opens.
If the EXE cannot be run, the chart still opens, after ABC displays a warning.

The name of the EXE that is linked to a chart by these properties is determined by the Type property of the 
chart. The EXE name is constructed by adding .EXE to the chart Type. In the case of the Deployment Wizard 
sample program, for example, the chart Type is DEPLOY. Therefore, the EXE linked to a new chart created by the 
Deployment Wizard is DEPLOY.EXE.
The following sample code specifies the chart Type and links an EXE to the chart. If the CHARTTYPE variable is 
set to "DEPLOY," then this code sample links the chart to DEPLOY.EXE.

Chart.Type = CHARTTYPE
Chart.TypeRequiresEXE = True

If you set either TypeRequiresEXE or TypeUsesEXE to True in a program, then you also must ensure that you 
close all charts of that Type when your program closes. You use the ChartTypeShutdown method of the 
Application object to close the charts. The following code sample, located in the Form.QueryUnload procedure of 
your program, closes all charts of the Type CHARTTYPE.

ABC.ChartTypeShutdown CHARTTYPE, APPNAME
Note

ABC only runs one instance of a linked EXE. When a second chart that is linked to an already running EXE 
is loaded, ABC refers to the currently running EXE. It does not load a second copy of the EXE.

{button Related Topics,PI(`',`IDH_RT_Linking_EXEs_to_Charts')}



ChartTypeShutdown method
Type property
TypeRequiresEXE property
TypeUsesEXE property



Launching Applications
You can launch other Windows applications from within ABC. Launching lets you open other applications without 
using the Program Manager. It also lets you easily send information about a chart and shape to an application, 
such as a database, that is prepared to receive it.

{button Related Topics,PI(`',`IDH_RT_Launching_Applications1')}



Launching Applications
Setting Shapes to Launch Applications



Setting Shapes to Launch Applications
To set a shape to have a launch, you enter the program it is to launch. To launch an application, you use shapes 
in the Chart object with attached launches.
In ABC, you set a shape to launch an application by selecting the shape you want to use and clicking the Link 
button in the Standard toolbar. In the Link dialog box, you specify the command line, directory, and flags.
In ABC OLE Automation, you use the LaunchCommand property of the Shape object to set a command to 
launch for the object.
For example, the following statement sets a shape to launch Excel.

CurrentChart.Shape.LaunchCommand = "C:\EXCEL\EXCEL.EXE"

{button Related Topics,PI(`',`IDH_RT_Setting_Shapes_to_Launch_Applications')}



Launching Applications
LaunchCommand property



Launching Applications
You use the shape you set for launching to launch the application.    An indicator appears on shapes set for 
linking or launching.
In ABC, to launch an application, you double click the shape you set for launching.
In ABC OLE Automation, you use the Launch method of the Shape object to execute the shape's launch. You 
identify whether a shape is set to launch an application using the IsLaunched property of the Shape object. For 
example, the following statements check to see if a shape has a launch and, if it does, they launch the 
application and put a Boolean value in LaunchSuccessful to indicate whether the launch succeeded.

If CurrentChart.Shape.IsLaunched Then
LaunchSuccessful = CurrentChart.Shape.Launch

End If

{button Related Topics,PI(`',`IDH_RT_Launching_Applications2')}



Launching Applications
IsLaunched property



Printing Charts
In ABC, when you open the File menu and choose the Print command, the Print dialog box opens. You can print 
all the pages, a range of pages, or the selected objects in the chart.
In ABC OLE Automation, you use the PrintOut method of the Chart object to print the chart object. The 
parameters for the PrintOut method specify the options to use when printing.
Parameter Description
FromPage Integer (default is page 1)
ToPage Integer (default is last page)
NumberOfCopies Integer (default is 1)
FitToPage Integer (Boolean) (default is False)
PrintNotes Integer (Boolean) (default is False)
For example, the following statement prints a chart using the default parameters.

Chart.PrintOut

You use the PrintSelected method of the Chart object to print the selected objects in the chart. The parameters
for the PrintSelected method indicate the options to use when printing.
Parameter Description
NumberOfCopies Integer (default is 1)
FitToPage Integer (Boolean) (default is False)
PrintNotes Integer (Boolean) (default is False)
For example, the following statement prints the selected objects in a chart using the default parameters.

Chart.PrintSelected

You use the Printer property of the Application Object to specify the current printer, the one to use when 
printing. When you read the value of the Printer property, it returns the current printer and port. For example, it
might return "HP LaserJet III on LPT2:."
When you set the value, the program uses a "loose matching" routine so, for example, setting the Printer 
property to "HP Laser" or "LPT2" chooses "HP LaserJet III on LPT2:" if that is the printer on LPT2:. If more than one
printer matches the value you set, the exact match is used first. If there is not exact match, the first one 
alphabetically is used. For example, the following statement sets the printer to the first printer available on 
LPT1:.

ABC.Printer = "LPT1:" 

You use the PrintBlankPages property of the PageLayout object to specify whether a blank page should be 
printed if there are no objects on the page. For example, the following statement will print pages even if they are
blank when you use the PrintOut method.

Chart.Layout.PrintBlankPages = True

In ABC, you can click Print Preview on the View menu to see a preview of the page. In ABC OLE Automation, you 
use the PrintPreview method of the Chart object to do this.

Chart.PrintPreview

{button Related Topics,PI(`',`IDH_RT_Printing_Charts')}





PrintBlankPages property
Printer property
PrintOut method
PrintPreview Method 
PrintSelected method



Adjusting the Page Layout
Page layout options affect the orientation and dimensions of the pages in a chart. To adjust the page layout, you 
specify the object, then specify the properties of the drawing area and page.
In ABC, you open the File menu and choose the Page Layout command. The Page Layout dialog box opens. You 
use this dialog box to choose paper size, orientation, page margins, units of measure, print order, and whether to
print blank pages.
In ABC OLE Automation, you can specify the object and various options. The following table shows the properties 
of the PageLayout object and their meanings. You use the PageLayout property of the Chart object to access 
the PageLayout object.
Property Meaning
Height Height of the drawing area
Width Width of the drawing area
MarginBottom Bottom margin of the page
MarginLeft Left margin of the page
MarginRight Right margin of the page
MarginTop Top margin of the page
Orientation Portrait (0) or landscape (1)
PageHeight Height of the page
PageWidth Width of the page

PageOrder Across, then down  (0) or down, then across 

 (1)
PaperSize Size of the paper to be printed
The PaperSize property uses a "loose matching" routine when you are setting the value. For example, setting 
the PaperSize property to "let" chooses "Letter 8 1/2 x 11 in."
You use the PageCount property of the Chart object to set the number of pages in a chart.
For example, the following statements set the drawing height to 8.5 inches, the drawing width to 11 inches, the 
margins to 0.5 inches on all sides, the orientation to landscape, the page height to 8.5 inches, the page width to 
11 inches, the page order to across-then-down, and the paper size to "Letter 8 1/2 x 11 in" and sets the chart to 
have four pages.

Chart.Layout.Height = 8.5
Chart.Layout.Width = 11
Chart.Layout.MarginBottom = .5
Chart.Layout.MarginLeft = .5
Chart.Layout.MarginRight = .5
Chart.Layout.MarginTop = .5
Chart.Layout.Orientation = 1
Chart.Layout.PageHeight = 8.5
Chart.Layout.PageWidth = 11
Chart.Layout.PageOrder = 0
Chart.Layout.PaperSize = "Letter"
Chart.PageCount = 4

{button Related Topics,PI(`',`IDH_RT_Adjusting_the_Page_Layout')}





PageLayout property
PaperSize property
Height property
Width property
MarginBottom property
MarginLeft property
MarginRight property
MarginTop property
Orientation property
PageHeight property
PageWidth property
PageOrder property



Displaying Master Items
You can define and display useful pieces of information in a chart by displaying Master Items.
In ABC, you click Chart in the Format menu and then click the Master Items tab. In this dialog box you choose 
whether to display the chart name, page numbers, the date and time, and a logo. You also can enter one or two 
text lines, possibly for use as header and footer text, can choose the format for the date, and can choose 
whether master items appear on the first page or on all pages.
In ABC OLE Automation, you can specify the same information using properties of the MasterItems object. You 
access the information about master items using the MasterItems property of the Chart object. The following 
table shows the properties of the MasterItems object and their meanings.
Property Meaning
ChartName Chart name master item object
ChartNameShown Whether the chart name master item is shown (Boolean)
Date Date master item object
DateShown Whether the date master item is shown (Boolean)
DateStyle MM/DD/YY (0), short text (1), long text (2)
Logo Logo master item (the Logo property is read only, but the properties from the object 

it returns are read/write)
LogoPathname Fully qualified pathname of the logo
LogoShown Whether the logo master item is shown (Boolean)
PageNumber Page number master item object
PageNumberShown Whether the page number master item is shown (Boolean)
Range First page only (0) or all pages (1)
Text1 Text1 master item (the Text1 property is read only, but the properties from the object 

it returns are read/write)
Text1Shown Whether the text1 number master item is shown (Boolean)
Text2 Text1 master item (the Text2 property is read only, but the properties from the object 

it returns are read/write)
Text2Shown Whether the text2 number master item is shown (Boolean)
Time Time master item object
TimeShown Whether the time master item is shown (Boolean)
The following table shows the methods of the MasterItems object and their meanings.
Method Meaning
HideAll Hide all master items
ShowAll Show all master items
UpdateDateAndTime Update the date and time to the system date and time or to a specified date and 

time
The following statements show the date and time, with the date in long text format, and show a first line of text 
in bold.

Chart.MasterItems.Date.DateShown = True
Chart.MasterItems.Date.DateStyle = 2
Chart.MasterItems.Time.TimeShown = True
Chart.MasterItems.Text1.Text = "First line of text."
Chart.MasterItems.Text1.Bold = True
Chart.MasterItems.Text1.Text2Shown = True



{button Related Topics,PI(`',`IDH_RT_Displaying_Master_Items')}



MasterItems property
ChartName property
ChartNameShown property
Date property
DateShown property
DateStyle property
HideAll method
Logo property
LogoPathname property
LogoShown property
PageNumber property
PageNumberShown property
Range property
ShowAll method
Text1 property
Text1Shown property
Text2 property
Text2Shown property
Time property
TimeShown property
UpdateDateAndTime method



 Viewing a Chart
Scrolling through a chart lets you display all areas of the chart. In ABC OLE Automation, you can scroll through a 
chart by specifying the left and top points in the chart. You can scroll to a specific page or location.
You use the ScrollLeft property of the Chart object to set the left point visible in the chart and the ScrollTop 
property of the Chart object to set the top point visible in the chart.
You use the ScrollPage method of the Chart object to scroll the chart to a particular page and the 
ScrollPosition method of the Chart object to scroll to a location in the chart by specifying a vertical and 
horizontal position.
You use the View property of the Chart object to view a particular page of the document. The following table 
shows the parameters for the View property and their meanings.
Value Description
0 One to one
1 Current page
2 Used pages
3 Percentage zoom
For example, the following statements change the view to show the current page and then go to the second 
page in the chart.

Chart.View = 1
Chart.ScrollPage 2

You use the ZoomPercentage property of the Chart object to change the magnification of the current 
document. You can set the view to any value from 25% to 400% of the actual size of the objects in the chart.
For example, the following statement changes the view to show the chart at 200% of its actual size

Chart.ZoomPercentage = 200

{button Related Topics,PI(`',`IDH_RT_Viewing_a_Chart')}



ScrollLeft property
ScrollPage method
ScrollPosition method
ScrollTop property
View property
ZoomPercentage property



Giving a Presentation
The Full Screen feature in ABC lets you show charts as "slides" in a presentation easily, without the distracting 
menus and buttons. The Full Screen command is in the View menu. With ABC OLE Automation, you use the 
FullScreen method of the chart object. Use the CancelFullScreen method of the chart object to return the 
chart to the previous view.
In ABC, you can use linked charts to move from one "slide" (chart) to another by double clicking the linked 
shape. With ABC OLE Automation, you can give a slide show by showing successive charts at the full screen 
view, delaying each one for a few seconds.
For example, the following statements show two charts on the full screen, with an appropriate delay routine 
between them, and then return to the previous view.

Chart1.FullScreen
[Delay routine]
Chart2.FullScreen
Chart2.CancelFullScreen

{button Related Topics,PI(`',`IDH_RT_Giving_a_Presentation')}



CancelFullScreen method
FullScreen method



Using Guidelines
You can use guidelines to align objects. When you drag a shape near a guideline, the shape's sides or center 
snap into alignment with the guideline. Guidelines let you align shapes of different sizes for an attractive, 
organized look.
In ABC, you drag guidelines from the rulers. If the Snap to Grid option is selected in the Tools Options Alignment 
dialog box, guidelines snap to ruler position. The guidelines do not appear in the printed chart.
In ABC OLE Automation, you can toggle the guidelines, add horizontal and vertical guidelines, and clear all 
guidelines.
You use the GuidelinesOn property of the Chart object to turn showing guidelines on and off. You use the 
AddHorizontalGuideline method of the Chart object to add a horizontal guideline at the vertical position 
passed. Use the AddVerticalGuideline method of the Chart object to add a vertical guideline at the horizontal 
position passed. Use the ClearGuidelines method of the Chart object to remove all guidelines from the chart.
For example, the following statements create a horizontal guideline four inches down from the top, create a 
vertical guideline three inches over from the left, turn showing guidelines on, and then remove all guidelines 
from the chart.

Chart.AddHorizontalGuideline 4
Chart.AddVerticalGuideline 3
Chart.GuidelinesOn = True
Chart.ClearGuidelines

{button Related Topics,PI(`',`IDH_RT_Using_Guidelines')}



AddHorizontalGuideline method
AddVerticalGuideline method
ClearGuidelines method
GuidelinesOn property



Defining Measurement Units for a Chart
The measurement units for a chart specify the size and distance values. In ABC, the units are determined by the 
paper size you select. However, you can explicitly set the measurement units in ABC by dragging the inches or 
centimeters button from the View category in the Customize dialog box to a toolbar, and then clicking it.
In ABC OLE Automation, you use the Units property of the Chart object to specify the units for measurement in 
the chart object and all its child chart objects. In addition, the Units property specifies the size and distance 
values passed in the Preferences object. The default unit value is 0 (inches) for each new Preferences object.
Value Description
0 Inches
1 Centimeters
For example, the following statement sets the measurement unit to centimeters.

Chart.Units = 1

{button Related Topics,PI(`',`IDH_RT_Defining_Measurement_Units_for_a_Chart')}



Units property



Sending Electronic Mail
In ABC you can attach the current chart to an e-mail message so you can send it using a MAPI e-mail system 
such as Microsoft Mail. You bring up the e-mail system by choosing Send in the ABC File menu.
In ABC OLE Automation, you use the SendMail method of the Chart object to create a new e-mail message with 
a Chart object attached. The user must then address the mail to the appropriate person and can add a message.
For example, the following statement creates a new e-mail message with the chart object as an attachment.

Chart.SendMail

{button Related Topics,PI(`',`IDH_RT_Sending_Electronic_Mail')}



SendMail method



Identifying an Object
You can identify objects using the Type and UniqueID properties of the Object object and the ShapeName 
property of the Shape object. You access the information about objects using the Objects property of the Chart 
object.
The Type property contains a value that specifies the type of the object. You cannot change the value of the Type
property. The following table shows the values and their meanings.
Value Meaning
0 Shape
1 Line
2 Text
3 Bitmap
4 OLE client object
5 Master item
By determining the type of object, you can limit the operations you perform on it. For example, if the value of the
Type property is 1 (line), then you would not set the font size.
The UniqueID property returns a unique identifier that you can use to choose an object in the Objects collection 
using, for example, the ItemFromUniqueID method. The identifier is unique for each object in each chart. If you
wish, you could create a database containing the UniqueID property values for all the objects in a chart to make
it easy to identify and act on each of them.
The ShapeName property contains the name of the shape, such as "Process" or "Decision." You cannot change 
the value of the ShapeName property.
After you find the type of shape for the shape you want, you could, for example, use the information to create 
another shape of the same type. The following statements find the name of the current shape and then create 
another shape of the same type using the DrawShape method.

CurrentShape = Shape.ShapeName
Set SameShape = Chart.DrawShape(CurrentShape)

{button Related Topics,PI(`',`IDH_RT_Identifying_an_Object')}



DrawShape method
ItemFromUniqueID method

Objects property
ShapeName property
Type property
UniqueID property



Finding the Number of Items
You can use ABC OLE Automation to find how many objects there are and how many objects of different types 
are selected.

{button Related Topics,PI(`',`IDH_RT_Finding_the_Number_of_Items')}



Finding the Number of Objects Selected
Finding the Total Number of Objects



Finding the Total Number of Objects
You can find how many objects there are using the Count property of the Objects collection. For example, you 
can use this property to post a message in the hint line telling how many objects are in a chart. You cannot 
change the value of the Count property.
The following statement sets ObjectCount to the number of objects in a chart.

ObjectCount = ABC.ActiveChart.Objects.Count

When you know how many objects are in a chart, you can specify them by number using the Item method in the
Objects collection. For example, the following statements turn all the objects in a chart green.

Dim ChartObjects As object
Set ABC = CreateObject("ABCFlow.application")
Set ChartObjects = ABC.ActiveChart.Objects
For ItemCount = 1 to ChartObjects.Count

ChartObjects.Item(ItemCount).Color = ABC.GREEN
Next ItemCount
Note

The statements above turn the objects, including TextBlocks, but not the text inside a shape, green. To turn
the text inside a shape green, use the Color property described in Setting Text Colors.

{button Related Topics,PI(`',`IDH_RT_Finding_the_Total_Number_of_Objects')}



Finding the Number of Items
Setting Text Colors

Color property
Count property
Item method



Finding the Number of Objects Selected
Sometimes it is useful to know the number of objects that are selected in a chart. You can use the 
SelectedObjectCount, SelectedShapeCount, SelectedLineCount, and SelectedOtherCount properties in 
the Chart object to find out how many objects in a chart are selected. You cannot change the values of any of 
these properties except by selecting or deselecting objects.
The SelectedObjectCount property contains the total number of selected objects in the chart. It equals the 
sum of the values of the SelectedShapeCount, SelectedLineCount, and SelectedOtherCount properties.
For example, the following statement sets TotalSelected to the number of objects in the chart.

TotalSelected = Chart.SelectedObjectCount

The SelectedLineCount property contains the number of selected lines, not the number of selected line 
segments, so the routing of the lines does not affect the count.
The SelectedShapeCount property contains the number of selected shapes.
The SelectedOtherCount property contains the number of objects selected that are not shapes or lines. It 
includes TextBlock objects, master item objects such as the date and headers, OLE objects, bitmaps, and other 
objects pasted into ABC.

{button Related Topics,PI(`',`IDH_RT_Finding_the_Number_of_Objects_Selected')}



Finding the Number of Items

SelectedLineCount property
SelectedObjectCount property
SelectedOtherCount property 
SelectedShapeCount property



Finding Objects in a Chart
You can use the ItemFrom methods to find one or more objects in a chart that meet a criterion.
You use the ItemFromAll, ItemFromShapes, ItemFromLines, ItemFromSelection, ItemFromText, 
ItemFromFieldValue, ItemFromAttachments, ItemFromNumber, and ItemFromUniqueID methods in the 
same way. These methods are all in the Object Collections object. The following table shows the parameters you 
specify with each of the methods, the object that it returns, and an example of the method.
Method Parameters Return Object Example
ItemFromAll None Object ItemFromAll()
ItemFromShapes None Shape object ItemFromShapes()
ItemFromLines None Line object ItemFromLines()
ItemFromSelection None Selected object ItemFromSelection()
ItemFromText Text Object containing text ItemFromText("Buy")
ItemFromFieldValue Field template Object with value ItemFromFieldValue

object and value in the field (Field1,1200)
ItemFromAttachments One or two objects Attached shape, text, ItemFromAttachments

or line object (NewObj1,NewObj2)
ItemFromNumber Shape number Shape with the number ItemFromNumber(3)
ItemFromUniqueID Unique ID Object with that ID ItemFromUniqueID (7)

The ItemFromAll, ItemFromShapes, ItemFromLines, and ItemFromSelection methods do not take any 
parameters. They return all objects, shape objects, line objects, and selected objects, respectively.
The ItemFromText method returns objects that contain the text you specify.
The ItemFromFieldValue method returns objects with the value in the specified field.
The ItemFromAttachments method returns the objects that are attached to the one or two objects you specify.
For example, if you specify two shapes, this method would return the line connecting them.
The ItemFromNumber method returns the shape with the number you specify.
The ItemFromUniqueID method returns the object with the unique identifier you specify. You can find the 
identifier using the UniqueID property of the Object object.
For example, the following statement sets the unique identifier of an object into the variable CurrentID.

CurrentID = NewObj1.UniqueID

The Valid property, found in the Chart object, contains a Boolean value based on whether the current object is 
valid or not. You normally use the Valid property in the While portion of a Do While loop to ensure that only valid
objects are used. 
Note

By default, the current object is valid unless set otherwise.
To use the ItemFrom methods, you use them in a loop, most often a Do While loop. Each time the loop executes, 
the method returns the next object, so you can test the objects for a property value and act on the objects that 
meet that value. For example, the following changes to red all shapes that have the word "Buy" in them.

Sub Form_Load ()
Dim ABC As object
Dim ChartObjects As object
Dim TestObject As object
Set ABC = CreateObject("ABCFlow.application")



Set ChartObjects = ABC.ActiveChart.Objects
Do

Set TestObject = ChartObjects.ItemFromText("Buy")
TestObject.Shape.FillColor = ABC.RED

Loop While TestObject.Valid
End

End Sub
Note

If you change the line TestObject.Shape.FillColor = ABC.RED to TestObject.Color = ABC.RED, this 
example also turns master item text to red if it contains the word "Buy."

If you wish, you can reset all searches to start at the beginning of the items in the chart using the ResetSearch 
method, found in the Objects collection.

ChartObjects.ResetSearch

{button Related Topics,PI(`',`IDH_RT_Finding_Objects_in_a_Chart')}



ItemFromAll method
ItemFromAttachments method
ItemFromFieldValue method
ItemFromLines method
ItemFromNumber method
ItemFromSelection method
ItemFromShapes method
ItemFromText method
ItemFromUniqueID method

ResetSearch method

Valid property



Selecting Objects in a Chart
The ItemFrom methods described in the previous section of this chapter let you identify objects in a chart so you 
can make changes to them, but they do not select them, and only the ItemFromSelection method makes any 
note of whether objects are selected.
You can use the Selected property in the Object object to determine if an object is selected. For example, the 
following statements turn an object black if it is selected.

If NewObj1.Selected Then
NewObj1.Color = ABC.BLACK

End If

You also can use the Selected property to select an object. For example, the following statement selects the 
specified object.

NewObj1.Selected = True

You can use the Select method of the Chart object to select and deselect a group of objects. The following table 
shows the action of the values.
Value Action
0 Selects all shapes in addition to anything already selected
1 Selects all lines in addition to anything already selected
2 Selects everything
3 Deselects everything
Values of 0, 1, and 2 in the Select method are the equivalent of opening the Select submenu in the ABC Edit 
menu and choosing Shapes, Lines, or All.
You can use the SelectShapeType method in the Chart object to select all shapes of a specific type. For 
example, the following statement selects all Decision (diamond) shapes in addition to any objects already 
selected.

Chart.SelectShapeType("Decision")

You can deselect all objects using the DeselectAll method of the Chart object. The DeslectAll method has the 
same effect as the Select method with a value of 3.

Chart.DeselectAll

{button Related Topics,PI(`',`IDH_RT_Selecting_Objects_in_a_Chart')}



DeselectAll method
ItemFromSelection method
Select method
SelectShapeType method

Selected property



Moving Objects
You move objects using the Top, Bottom, Left, Right, CenterX, and CenterY properties of the Object object. 
You also can use those properties to find the location of an object.
Note

These properties move objects, but do not resize them. Resize objects with Width and Height.
The Top, Bottom, Left, and Right properties describe the location of the specified side of the object. The 
CenterX and CenterY properties describe the horizontal and vertical positions of the center of the object. For 
example, the following statements set the top of the object to two inches from the top of the page and set the 
center of the object three inches from the left side of the page.

Object.Top = 2
Object.CenterX = 3

The following statements check to see if the center of the object is within one inch of the upper left corner of the 
page. If it is, the object is moved so its bottom and left sides are two inches from the top and left side of the 
page.

If Object.CenterX <= 1 and Object.CenterY <= 1 Then
Object.Bottom = 2
Object.Left = 2

End If 

You can use the FlippedVertical and FlippedHorizontal properties of the Object object to specify that selected
objects are flipped.

ObjectObject.FlippedVertical = {True | False}
You can use the Rotation property of the Object object to specify that the selected objects are rotated clockwise
in a 90 degree increment.

ObjectObject.Rotation = Value

Rotation values are defined in the following table.
Value Amount of Rotation
0 0
1 90
2 180
3 270

{button Related Topics,PI(`',`IDH_RT_Moving_Objects')}



Bottom property
CenterX property
CenterY property
FlippedHorizontal Property 
FlippedVertical Property 

Height property
Left property
Right property
Rotation Property 
Top property

Width property



Arranging Objects
You can arrange objects using the SpaceEvenly method or the Align method of the Chart object. These are the 
equivalent of using the Space Evenly or Align commands in the Arrange menu or buttons on the Arrange toolbar.
The SpaceEvenly method lets you space objects either across or down, based on their centers or edges.

ChartObject.SpaceEvenly (Direction)
Value Action
0 Space evenly across, centers
1 Space evenly down, centers
2 Space evenly across, edges
3 Space evenly down, edges
The Align method lets you align selected objects based on any edge, their vertical centers or their horizontal 
centers.

ChartObject.Align (By)
Value Action
0 Align, left
1 Align, centers
2 Align, right
3 Align, top
4 Align, middle
5 Align, bottom

{button Related Topics,PI(`',`IDH_RT_Arranging_Objects')}



Align Method 
SpaceEvenly Method 



Resizing Objects
You can resize objects using the StretchType, Height, and Width properties in the Object object. You use the 
StretchType property to specify the type of stretching behavior assigned to an object. Set the value to 0 for 
normal behavior (the anchor is the center of the object and opposite sides both move, as when you stretch 
normally in ABC). Set the value to 1 for fixed side behavior in ABC (the anchor is the opposite side from the 
handle grabbed, as when you hold down the Ctrl key and stretch in ABC). If you set the value to 1 and then 
resize the object with ABC OLE Automation statements, the top and left sides are fixed (as if you were stretching 
from the right or bottom center handle).
For example, the following statements set the StretchType property to fix the top and left sides and then set 
the height to 1.25 inches and the width to 2.5 inches.

Object.StretchType = 1
Object.Height = 1.25
Object.Width = 2.5

You also can use the MakeSameSize method of the Chart object to make all selected objects the same height 
according to width, height, both, or text. It is equivalent to choosing one of the MakeSameSize options on the 
Arrange menu or toolbar in ABC.

ChartObject.MakeSameSize (AccordingTo)
The following table describes the values for the MakeSameSize method.
Value According To
0 Width
1 Height
2 Both
3 Fit to Text

{button Related Topics,PI(`',`IDH_RT_Resizing_Objects')}



Height property
MakeSameSize Method 
StretchType property
Width property



Changing the Display Order of Objects
You can change the order in which objects display using the ToBack and ToFront methods. The methods are in 
both the Chart object and the Object object.
The ToBack method with an object is equivalent to clicking the Send To Back button in the Arrange toolbar with 
one or more objects selected.
The ToFront method with an object is equivalent to clicking the Bring To Front button in the Arrange toolbar with 
one or more objects selected.
The first statement below moves the selected objects to the back. The second statement moves the object to 
the back.

Chart.ToBack
Object.ToBack

The first statement below moves the selected objects to the front. The second statement moves the object to 
the front.

Chart.ToFront
Object.ToFront

{button Related Topics,PI(`',`IDH_RT_Changing_the_Display_Order_of_Objects')}



ToBack method
ToFront method



Setting the Current Drawing Position
When you draw using ABC, you click where you want to place the next object, text, or line. With ABC OLE 
Automation, the position is determined by the most recent draw position (plus DrawSpacingX and 
DrawSpacingY for shapes; see Drawing Shapes for more information). You can specify a location using the 
DrawPositionX and DrawPositionY properties in the Chart object. The position you specify is used for the next
object drawn or the next object pasted or pasted special (if those methods do not specify a different position).
For example, the following statements specify that the center of the next object is to be four inches from the left 
side of the page and five inches from the top of the page.

Chart.DrawPositionX = 4
Chart.DrawPositionY = 5

{button Related Topics,PI(`',`IDH_RT_Setting_the_Current_Drawing_Position')}



Drawing Shapes

DrawPositionX property
DrawPositionY property
DrawSpacingX property
DrawSpacingY property



Cutting, Copying, and Pasting Objects
You use the Cut, Copy, and Paste methods in the Chart object just as you would open the ABC Edit menu and 
choose the Cut, Copy, and Paste command. All three methods return a Boolean value equal to True if the 
operation was successful or False if the operation failed.
The Paste method has the additional ability to specify where to place the pasted object.

Paste([HorizontalLocation] [, VerticalLocation])
For example, the following statements cut whatever is currently selected and paste it so its upper left corner is 
two inches from the left margin and three inches from the top margin of the page.

Successful = Chart.Cut
If Successful Then

Successful = Chart.Paste(2,3) ' Paste if cut is successful
End If
If Not Successful Then ' Deal with cut or paste failure

MsgBox "Cut or Paste Failed", 48 ' 48 is the exclamation point
End If

If you omit the location for the Paste method, it places the object as described in Setting the Current Drawing 
Position.

{button Related Topics,PI(`',`IDH_RT_Cutting_Copying_and_Pasting_Objects')}



Setting the Current Drawing Position

Copy method
Cut method
Paste method



Using Special Clipboard Formats
The PasteSpecial method in the Chart object lets you paste from the Clipboard specifying a format. It is the 
same as choosing the Paste Special command in the ABC Edit menu and then specifying the format to use for 
the paste. The method returns a Boolean value equal to True if the operation was successful or False if the 
operation failed. 

PasteSpecial (Format [, AsIcon] [, HorizontalLocation] [, VerticalLocation])
You also can specify that the object on the Clipboard be pasted as an icon using the second parameter. This is 
equivalent to selecting the Display As Icon option in the ABC Paste Special dialog box. You can specify the 
location of the paste. If you omit the location for the PasteSpecial method, it places the object as described in 
Setting the Current Drawing Position.
The following table shows the formats for the PasteSpecial method and for the ClipboardFormatAvailable 
property, which is explained below.
Value Format
0 ABC Native
1 OLE Client Embed
2 ABC Rich Text
3 Rich Text Format (RTF)
4 Unformatted text
5 Metafile
6 Device Independent Bitmap
7 Bitmap
8 OLE Client Link
For example, the following statement pastes the Clipboard object as an OLE client link icon with its upper left 
corner two inches from the left margin and three inches from the top margin of the page.

Successful = Chart.PasteSpecial(8,True,2,3)

You use the ClipboardFormatAvailable property in the Chart object to find out whether the object in the 
Clipboard is in a format that you want. The property returns a Boolean value equal to True if the format is 
available or False if the format is not available.
The ClipboardFormatAvailable property uses the same values and formats as the PasteSpecial method 
described above.
For example, the following puts the Boolean value True or False in CanPaste depending on whether the object 
currently in the Clipboard can be pasted as a DIB.

CanPaste = Chart.ClipboardFormatAvailable(6)

{button Related Topics,PI(`',`IDH_RT_Using_Special_Clipboard_Formats')}



Setting the Current Drawing Position

ClipboardFormatAvailable property
PasteSpecial method



Duplicating Objects
The Duplicate method is in both the Chart object and the Object object. The method in the Chart object 
duplicates whatever is currently selected and returns a Boolean value equal to True if the operation was 
successful or False if the operation failed.
In the Object object, the Duplicate method makes a duplicate of that object and returns the duplicate object. 
For example, the following statements duplicate the selected chart objects, then make a duplicate of the object 
stored in the variable Object.

Successful = Chart.Duplicate
If Successful Then

DuplicatedObject = Object.Duplicate
End If

{button Related Topics,PI(`',`IDH_RT_Duplicating_Objects')}



Duplicate method



Clearing Selected Objects
The Clear_ method of the Chart object deletes the selected objects from the chart. It is the equivalent of 
pressing the DEL key or opening the ABC Edit menu and choosing Clear. The method deletes whatever is 
currently selected and returns a Boolean value equal to True if the operation was successful or False if the 
operation failed. For example, the following statement deletes the selected objects.

Successful = Chart.Clear_

The Clear_ method of the Object object deletes the object object. You usually use it as part of a routine using the
SetDefaults method. The Clear_ method deletes the indicated object and returns a Boolean value equal to True
if the operation was successful or False if the operation failed. For example, the following statement deletes the 
indicated object.

Successful = Chart.DefaultObject.Clear_

{button Related Topics,PI(`',`IDH_RT_Clearing_Selected_Objects')}



Clear_ method
SetDefaults method



Restoring Objects
The RestorePicture method of the Object object lets you restore bitmap and OLE client objects to their original 
size.
For example, the following statement restores an object.

PasteObject.RestorePicture

{button Related Topics,PI(`',`IDH_RT_Restoring_Objects')}



RestorePicture method



Using OLE Client Objects
You can use ABC OLE Automation to work with objects that are linked or embedded in a chart using OLE. To work 
with linked or imbedded objects, you use the InsertObjectFromFile method, the PasteLink method, the 
UpdateFields method, the OLE property, the ObjectType property, and the DoVerb method.
You use the InsertObjectFromFile method of the Chart object to insert a new OLE client object from a file. 
Quotation marks should be used whenever long filenames or long pathnames are used. You can optionally add parameters 
to specify that the file be inserted as an icon or linked. The method returns the file that is inserted as an object. 
The InsertObjectFromFile method is equivalent to opening the ABC Edit menu, choosing Insert Object, 
choosing the Create from File option, selecting the file you want to insert, and clicking OK. The AsIcon element is 
equivalent to selecting the Display As Icon option. The AsLink element is equivalent to selecting the Link to File 
option.

InsertObjectFromFile(FileName [, AsIcon] [, AsLink])
For example, the following statement inserts an Excel file into the chart and sets InsertedOleObject equal to the 
new object.

InsertedOleObject = Chart.InsertObjectFromFile(C:\EXCEL\DATA.XLS)

You use the PasteLink method of the Chart object to paste the contents of the Clipboard into the chart and link 
the file that is the source of the contents of the chart. The PasteLink method is equivalent to opening the ABC 
Edit menu and choosing Paste Link. For example, the following statement pastes and links the contents of the 
Clipboard 2 inches from the left side of the chart and 3 inches from the top of the chart.

Chart.PasteLink(2,3)

You use the UpdateFields method of the Chart object to update all the linked fields in the chart. For example, 
the following statement updates the linked fields in the chart.

Chart.UpdateFields

The UpdateFields method is equivalent to opening the ABC Edit menu, choosing Links, and choosing Update 
Now.
You use the OLE property of the Object object and the ObjectType property of the Object object to find the 
short object class name of an object that is embedded or linked.
For example, these statements append the name of the OLE object type to the end of the object's text for all 
linked objects.

Set ABCObjects = Chart.Objects
Do

Set Object = ABCObjects.ItemFromAll
If ObjectType = 4 Then

Object.Text = Object.Text + "OLE: " + Object.OLE.ObjectType
End If

Loop While Object.Valid
Note

You cannot change the value in the ObjectType property.
You use the DoVerb method of the OLE object to specify an OLE verb to execute if the object is a linked or 
embedded OLE object. If you do not specify a verb, the default verb is used.
For example, the following statements find the OLE objects in a chart and execute the default verb for each of 
them.



Set ABCObjects = Chart.Objects
Do

Set Object = ABCObjects.ItemFromAll
If Object.OLE.ObjectType = 4 Then

Object.OLE.DoVerb
End If

Loop While Object.Valid

{button Related Topics,PI(`',`IDH_RT_Using_OLE_Client_Objects')}



Restoring OLE Objects

DoVerb method
InsertObjectFromFile method
PasteLink method
UpdateFields method

ObjectType property
OLE property



Restoring OLE Objects

The RestorePicture method of the OLE object lets you restore OLE client objects to their original size. This 
method is nearly the same as the Object object's RestorePicture method. The difference is that this method 
only works on OLE objects, while the Object object's RestorePicture method handles bitmaps as well as OLE 
objects.
For example, the following statement restores an OLE object.

OLEObject.RestorePicture

{button Related Topics,PI(`',`IDH_RT_Restoring_OLE_Objects')}



Using OLE Client Objects

RestorePicture method



Speeding Up Actions
You can speed the actions of ABC OLE Automation as much as 400% to 1000% (4 to 10 times faster) when you 
want to perform a number of actions before returning control of the screen to the user. You can achieve this 
efficiency by preventing the screen from repainting until all objects have been created or changed.
You stop the objects from being painted using the NoRepaint property in the Chart object. You then update the 
screen using the Repaint method in the Chart object after you have specified all the changes to be performed.
For example, the following statements turn off painting, create 200 shapes, and then repaint the chart.

Chart.NoRepaint = True
For DrawFast = 1 to 200

Chart.DrawShape
Next DrawFast
Chart.NoRepaint = False
Chart.Repaint

You can also speed actions when you are creating many objects that all have the same characteristics. For 
example, suppose you are creating many shapes and want them all to have text that is red 17-point Futura with 
a green shadow. Create one object, set the style for it, and then use the Duplicate method of the Object object 
to make as many copies as you need.
You can also speed actions by setting the defaults for Line_, Shape, and TextBlock objects using the SetDefaults
method. With that method, you create an object with the defaults you want and then pass it to the method. For 
example, the following statement sets the defaults for lines to the defaults of the line object named LineObject.

Chart.SetDefaults LineObject

{button Related Topics,PI(`',`IDH_RT_Speeding_Actions')}



Setting Defaults

Duplicate method
Repaint method
SetDefaults method

NoRepaint property



What's New
The following commands are new in ABC FlowCharter 6.0.

ChartDeActivateNOTIFY event
ObjectLineDeAttachNOTIFY event
ObjectTextChangedNOTIFY event

StatusBarVisible property (Application object)
ZoomWindowVisible property (Application object)

Align method (Chart object)
Export method (Chart object)
ImportShape method (Chart object)
MakeSameSize method (Chart object)
PrintPreview method (Chart object)
ReplaceText method (Chart object)
SpaceEvenly method (Chart object)

FlippedHorizontal property (Object object)
FlippedVertical property (Object object)
Rotation property (Object object)
ApplyDefaults method (Object object)

CrossoverSize property(Line_ object)
CrossoverStyle property (Line_ object)
Routing property (Line_ object)

The following commands were in ABC FlowCharter 4.0, but are not appropriate in ABC FlowCharter 6.0. They are 
not invalid in ABC FlowCharter 6.0, but they are ignored.

IndexWindowHandle property (Application object)
IndexVisible property (Application object)
LaunchFlags property (Shape object)
LaunchStartDir property (Shape object)
RestorePicture method (OLE object)
ShapeSizing property (Preferences object)

The following commands were in ABC FlowCharter 4.0, but are not appropriate in ABC FlowCharter 6.0. They are 
handled as described.

LaunchIndicator property (Chart object) calls LinkIndicator property
LaunchShadow property (Chart object) calls LinkShadow property

The Line_ object is now equivalent to the Line object. The references may be used interchangeably.
If you are using the OCX, the NOTIFY and SUBCLASS commands now take parameters as shown below.

AppQuitNOTIFY ()
AppQuitSUBCLASS (Override As Boolean)
AppMenuHintSUBCLASS (ByVal MenuItem As Object, Override As Boolean)
AppMenuPopupSUBCLASS (ByVal Menu As Object, Override As Boolean)
AppMenuSUBCLASS (ByVal MenuItem As Object, Override As Boolean)
ChartActivateNOTIFY (ByVal Chart As Object)
ChartDeActivateNOTIFY (ByVal Chart As Object)
ChartChangeNOTIFY (ByVal Chart As Object)



ChartCloseSUBCLASS (ByVal Chart As Object, Override As Boolean)
ChartNewNOTIFY (ByVal Chart As Object)
ChartOpenNOTIFY (ByVal Chart As Object)
ChartPasteNOTIFY (ByVal Chart As Object)
DeleteSUBCLASS (ByVal Chart As Object, Override As Boolean)
DoubleClickSUBCLASS (ByVal Object As Object, ByVal Chart As Object, Override As Boolean)
ExclusiveSelectionNOTIFY (ByVal Object As Object, ByVal Chart As Object)
FieldValueChangedNOTIFY (ByVal FieldValue As Object, ByVal Object As Object, ByVal Chart As Object)
LinkNOTIFY (ByVal LinkedToChart As Object, ByVal Object As Object, ByVal Chart As Object)
NewLineNOTIFY (ByVal Object As Object, ByVal Chart As Object)
NewShapeNOTIFY (ByVal Object As Object, ByVal Chart As Object)
ObjectClickSUBCLASS (ByVal Object As Object, ByVal Chart As Object, Override As Boolean)
ObjectFontChangeNOTIFY (ByVal Object As Object, ByVal Chart As Object)
ObjectLineAttachNOTIFY (ByVal Line As Object, ByVal Object As Object, ByVal Chart As Object)
ObjectLineDeAttachNOTIFY (ByVal Line As Object, ByVal Object As Object, ByVal Chart As Object)
ObjectMovedNOTIFY (ByVal Object As Object, ByVal Chart As Object)
ObjectMoveSUBCLASS (ByVal Object As Object, ByVal Chart As Object, Override As Boolean)
ObjectSizedNOTIFY (ByVal Object As Object, ByVal Chart As Object)
ObjectSizeSUBCLASS (ByVal Object As Object, ByVal Chart As Object, Override As Boolean)
ObjectTextChangedNOTIFY (ByVal Object As Object, ByVal Chart As Object)
ReplaceShapeNOTIFY (ByVal Object As Object, ByVal Chart As Object)
SpecialKeySUBCLASS (ByVal KeyCode As Integer, Override As Boolean)

{button Related Topics,PI(`',`IDH_RT_Whats_New')}



Align Method 
ApplyDefaults Method 
ChartDeActivateNOTIFY Event 
CrossoverSize Property 
CrossoverStyle Property 
Export Method 
FlippedHorizontal Property 
FlippedVertical Property 
ImportShape Method 
MakeSameSize Method 
ObjectLineDeAttachNOTIFY Event 
ObjectTextChangedNOTIFY Event 
PrintPreview Method 
ReplaceText Method 
Rotation Property 
Routing Property 
SpaceEvenly Method 
StatusBarVisible Property 
ZoomWindowVisible Property 



Undoing Actions
You can choose ABC's Undo command using the Undo method of the Application object. You can find out if there 
is anything to undo using the UndoAvailable property of the Application object. Using the Undo method is 
equivalent to opening the ABC Edit menu and choosing Undo.
The following statements undo the last action if it is available. Whether the last action was undone is put in the 
status bar.

If ABC.UndoAvailable = True Then
ABC.Undo
ABC.StatusBar = "Last action undone."

Else
ABC.StatusBar = "Nothing available to undo."

End If

{button Related Topics,PI(`',`IDH_RT_Speeding_Actions')}



Undo method
UndoAvailable property



 Formatting Objects
In ABC, you can use the Format Painter to apply formats to objects.    In ABC OLE Automation, you use the 
ApplyDefaults property to apply the chart's default styling to an object.

ObjectObject.ApplyDefaults
You first use ChartObject.SetDefaults (ObjectObject) to define the default styling for shapes, lines, and 
textblocks. Then you use the ApplyDefaults property.

{button Related Topics,PI(`',`IDH_RT_Formatting_Objects')}



ApplyDefaults Method 
SetDefaults Method 



Drawing Shapes
You can draw any shape in the Shape Palette. Use the DrawShape method of the Chart object to draw shapes. 
By default, DrawShape uses the current shape in the Shape Palette. For information on specifying the shape, 
see the Choosing a Shape in the Palette.

Set ABCObject = Chart.DrawShape

All the shape palettes that ship with ABC have predefined names that appear in the hintline when the mouse 
pauses over them, and which are listed in the documentation that ships with ABC. In ABC the shape's name is 
defined in the Shape Palette Item Information dialog box. You can open the Shape Palette Item Information dialog
box by choosing Item Information in the Options menu of the Shape Palette. 
In ABC OLE Automation you can optionally specify the type of shape you want to draw by specifying the shape's 
name. The program uses a "loose matching" routine so, for example, setting the shape's name to "Proc" chooses
"Process." If more than one shape matches the value you set, the exact match is used first. If there is not exact 
match, the first one alphabetically is used.

Set ABCObject = Chart.DrawShape("Proc")

Shapes are automatically placed at the chart's current drawing position. (See Setting the Current Drawing 
Position for more information on the current drawing position.) Alternatively, you can use the DrawDirection 
property of the Chart object to specify the direction for placing new shapes. The following table shows the values
for the DrawDirection property.
0 North
1 East
2 South
3 West
10 Stacked
You specify the horizontal and vertical distance from a shape to the next one you create using the 
DrawSpacingX property and DrawSpacingY property of the Chart object. The DrawSpacingX property and 
DrawSpacingY property are equivalent to clicking Options in the Tool menu, clicking the Alignment tab, and 
entering horizontal and vertical spacing.
You can use the NextShapeHeight property and NextShapeWidth property of the Chart object to specify the 
height of the next shape to be drawn.
For example, the following statements set the horizontal spacing to two inches, the vertical spacing to three 
inches. They then specify the height for the next shape drawn and then that the next shape should be to the 
right of the current shape.

Chart.DrawSpacingX = 2 ' Horizontal spacing 2"
Chart.DrawSpacingY = 3 ' Vertical spacing 2"
Chart.NextShapeHeight = .5 ' Height of next shape .5
Chart.NextShapeWidth = .5 ' Width of next shape .5
Chart.DrawDirection = 1 ' Next shape toward right

You can import a graphics file into a shape using the ImportShape method. A shape is created and the graphics
file is inserted into it. This is the equivalent of clicking Import Shape on the Tools menu in ABC. Quotation marks 
should be used whenever long filenames or long pathnames are used. 

ChartObject.ImportShape (FileName)
See Moving Objects and Resizing Objects for information on changing the size and position of shapes.
See Drawing Lines that Connect Shapes for information on drawing lines to connect shapes.



{button Related Topics,PI(`',`IDH_RT_Drawing_Shapes')}



Choosing a Shape in the Palette
Drawing Lines that Connect Shapes
Moving Objects 
Resizing Objects
Setting the Current Drawing Position

DrawShape method
ImportShape Method 

DrawDirection property
DrawSpacingX property
DrawSpacingY property
NextShapeHeight property
NextShapeWidth property



Using the Shape Palette
ABC provides a wide variety of shape palettes you can use in drawing charts. Each palette contains several 
shapes that you can choose from. With ABC OLE Automation, you can display or hide the Shape Palette, open a 
different Shape Palette, and choose a shape from the palette.

{button Related Topics,PI(`',`IDH_RT_Using_the_Shape_Palette')}



Choosing a Shape in the Palette
Displaying and Hiding the Shape Palette
Opening a Different Shape Palette



Displaying and Hiding the Shape Palette
Use the ShapePaletteVisible property of the Application object to display or hide the Shape Palette or to 
determine whether the Shape Palette is visible. When this property is True, the Shape Palette is displayed; when 
False, it is hidden.

ABC.ShapePaletteVisible = True ' Displays the Shape Palette

{button Related Topics,PI(`',`IDH_RT_Displaying_and_Hiding_the_Shape_Palette')}



Using the Shape Palette

ShapePaletteVisible property



Opening a Different Shape Palette
You can open any of the Shape Palettes that ship with ABC. Use the CurrentShapePalette property of the Chart
object to open a different Shape Palette or determine the name of the current Shape Palette. The name of the 
Shape Palette appears in the title bar of the palette. The name is not related to the filename of the palette.
For example, the following statement opens the Auditing Shape Palette.

Chart.CurrentShapePalette = "Auditing"

{button Related Topics,PI(`',`IDH_RT_Opening_a_Different_Shape_Palette')}



Using the Shape Palette

CurrentShapePalette property



Choosing a Shape in the Palette
The DrawShape method of the Chart object draws the current shape in the Shape Palette, unless you specify a 
shape to draw with the method. In ABC you choose a shape to be the current shape by clicking it in the Shape 
Palette. The name of the shape appears in the hintline when you pass over the shape with the mouse.
With ABC OLE Automation you use the CurrentShape property of the Chart object to choose a shape as the 
current shape. The program uses a "loose matching" routine so, for example, setting the CurrentShape 
property to "Dec" chooses "Decision." If more than one shape matches the value you set, the exact match is 
used first. If there is not exact match, the first one alphabetically is used.
For example, the following statements choose the Decision shape as the next shape to be drawn, and then draw 
the shape.

Chart.CurrentShape = "Decision" ' Decision is current shape
Set ABCObject = Chart.DrawShape ' Draw the current shape

{button Related Topics,PI(`',`IDH_RT_Choosing_a_Shape_in_the_Palette')}



Using the Shape Palette

CurrentShape property
DrawShape method



Adding Text to Shapes
You can use ABC OLE Automation to add text inside any shape. The text appears inside the text area defined for 
the shape. Adding text to a shape is equivalent to typing while a shape is selected in ABC.
To add text to a shape, use the Text property of the Object object. The following example draws the shape 
shown above.

Dim ABCObject As Object

Set ABCObject = Chart.DrawShape("External Operation")
ABCObject.Text = "Text inside a shape"

If you are reading the text from a shape, you can use the TextLF property to preserve the Returns. If you use the
Text property, the Returns are changed to spaces.

ShapeText = Shape1.TextLF

{button Related Topics,PI(`',`IDH_RT_Adding_Text_to_Shapes')}



Fitting Shapes to Text

TextLF property
Text property



Fitting Shapes to Text
You can automatically fit shapes to the size of the text inside them. This is especially useful when the length of 
the text string may vary.
In ABC, you do this by clicking the Text tool and then the Fit Shape button in the Arrangement toolbar when the 
shape is selected. With ABC OLE Automation, you use the FitShapeToText method of the Shape object.
The following example draws a shape, adds text to the shape, then fits the shape to the text.

Dim ABCObject As Object

Set ABCObject = Chart.DrawShape("Document")
ABCObject.Text = "This is a sample of fitting shapes to text."
ABCObject.Shape.FitShapeToText

{button Related Topics,PI(`',`IDH_RT_Fitting_Shapes_to_Text')}



Adding Text to Shapes
FitShapeToText method



Numbering Shapes
You can use various numbering systems for shapes, such as 1, 2, 3; 1.1, 1.2, 1.3; or even text strings.
The number used for the next new shape you draw is stored in the NextNumber property of the Chart object. 
The number is kept as a text string, since the number can contain text as well as numbers. 
The NextNumber property is incremented automatically each time you draw a shape. If NextNumber contains 
text with a number, the text remains and the number is incremented. For example, "Step 5" will become "Step 6"
when a new shape is drawn. If NextNumber contains only text, the text remains without incrementing. For 
example, "Step Five" will stay as "Step Five" even after a new shape is drawn. This is especially useful when you 
want the shape number to be a placeholder for a company name or department name.
The Number property of the Shape object contains the shape number for a specific shape. When you draw a 
shape, the value in the chart's NextNumber is stored in Number, and NextNumber is incremented. You can 
change a shape's number by changing the value of the shape's Number property.
You also can use the Renumber method to change a shape's number. Renumber changes a shape's Number 
property to the chart's NextNumber value, and increments NextNumber.
The following example illustrates NextNumber and Renumber.

Sub ShapeNumbers()
Dim ShapeOne As Object, ShapeTwo As Object, ShapeThree As Object
Dim Chart As Object, ABC As Object
Set ABC = CreateObject("ABCFlow.Application")
Set Chart = ABC.ActiveChart

' NextNumber initially defined as 1
Set ShapeOne = Chart.DrawShape ' ShapeOne.Number=1; NextNumber=2
Set ShapeTwo = Chart.DrawShape ' ShapeTwo.Number=2; NextNumber=3

ShapeOne.Shape.Number = "Step 1" ' ShapeOne.Number=Step 1; NextNumber=3
Chart.NextNumber = "Step 2" ' NextNumber=Step 2
ShapeTwo.Shape.Renumber ' ShapeTwo.Number=Step 2; NextNumber=Step 3
Set ShapeThree = Chart.DrawShape ' ShapeThree.Number=Step 3; NextNumber=Step 4

End Sub

{button Related Topics,PI(`',`IDH_RT_Numbering_Shapes')}



NextNumber property
Number property
Renumber method



Formatting Shape Numbers
You can format shape numbers by choosing a typeface, size, color, and text attributes.
In ABC the format defined for Link and Note indicators is also used for shape numbers. Select the Indicator 
Options button at the side of the dialog box, and choose number formatting options in the Number Font area of 
the dialog box.
Using ABC OLE Automation, you can select the same options using the NumberFont object of the Chart object. 
Like other font objects, the NumberFont object has the following properties.
Bold True if text is bold; False if text is not bold.
Color The color used in shape numbers. This value can be one of the 16 color constants, such as 

ABC.Blue.
Italic True if text is italic; False if text is not italic.
Name The typeface name used for shape numbers, such as "Arial" or "Roman."
Size The point size of shape numbers.
Strikethrough True if text is strikethrough; False if text is not strikethrough. This attribute is not available to 

shape numbers in ABC.
Underline True if text is ; False if text is not underline.

See Formatting Text for more information on these properties.
The following statements change shape number text to Helvetica 12-point bold italic.

Chart.NumberFont.Name = Helvetica
Chart.NumberFont.Size = 12
Chart.NumberFont.Bold = True
Chart.NumberFont.Italic = True

The Opaque property is not available in the NumberFont object. Shape numbers are opaque when the other text
in the shape is opaque, and transparent when the other text is transparent. For example, the following statement
makes both shape text and shape numbers opaque.

ABCObject.Font.Opaque = True

{button Related Topics,PI(`',`IDH_RT_Formatting_Shape_Numbers')}



Formatting Text

Bold property
Color property
Italic property
Name property
Opaque property
Size property
Strikethrough property
Underline property



Hiding Shape Numbers
Shapes can be numbered automatically. If shapes are numbered, you can hide the shape numbers if you wish. 
This feature is useful when you do not want numbers to appear in certain shape types, such as documents or 
decisions.
In ABC you show or hide shape numbers in selected shapes by clicking Shape Numbering in the Format menu 
and selecting or deselecting the Show Number button.
With ABC OLE Automation, you use the NumberShown property of the Shape object to display or hide shape 
numbers. Make NumberShown equal to True to display numbers, as on the first statement below or False to 
hide numbers, as in the second statement below.

ABCObject.Shape.NumberShown = True
ABCObject.Shape.NumberShown = False

{button Related Topics,PI(`',`IDH_RT_Hiding_Shape_Numbers')}



NumberShown property



Fill, Border, and Shadow Colors
You can color a shape by setting its fill color, its border color, and its shadow color.
You set the fill color for shapes using the FillColor property of the Shape object or the Color property of the 
Object object. Both properties produce the same effect.
For example, the following statements draw a shape and then change its fill color to blue using the FillColor 
property. They then change its fill color to red using the Color property.

Dim NewObj1 As Object
Set NewObj1 = Chart.DrawShape
NewObj1.Shape.FillColor = ABC.BLUE
NewObj1.Color = ABC.RED

You set the border color for shapes using the BorderColor property of the Shape object. For example, the 
following statement makes the border of a shape blue.

NewObj1.Shape.BorderColor = ABC.BLUE

You set the shadow color for shapes using the ShadowColor property of the Shape object. For example, the 
following statement makes the shadow of a shape blue.

NewObj1.Shape.ShadowColor = ABC.BLUE

{button Related Topics,PI(`',`IDH_RT_Fill_Border_and_Shadow_Colors')}



BorderColor property
Color property
FillColor property
ShadowColor property



Fill Pattern
You can fill a shape with any of the patterns available in ABC.
In ABC you change a selected shape's fill pattern by clicking the Fill Pattern button on the Formatting toolbar, 
and then choosing a pattern from the list.
To set or read a shape's fill pattern with ABC OLE Automation, use the FillPattern property of the Shape object. 
Set FillPattern to 0 for a transparent fill or to 1 for a solid fill. See FillPattern for each available pattern.
The following statements draw a shape and then change its fill pattern to vertical stripes.

Set ABCObject = Chart.DrawShape("Process")
ABCObject.Shape.FillPattern = 4

{button Related Topics,PI(`',`IDH_RT_Fill_Pattern')}



FillPattern property



Border Style and Width
You can choose different line styles for shape borders. A shape border includes not only the outside edge of a 
shape, but also any interior lines used in the shape (for example, the concentric circles on the inside of a 5 1/2" 
floppy disk shape). ABC provides many useful border styles, including solid and dashed lines and an invisible 
border.
In ABC you change a selected shape's border style by clicking the Line Style button on the Formatting toolbar, 
and then choosing a style from the list. You set the width of the border by clicking the arrows next the the Line 
Weight box.
To set or read a shape's border style with ABC OLE Automation, use the BorderStyle property of the Shape 
object. Set BorderStyle to 0 for an invisible border and 1 for a solid line border. See BorderStyle for each 
available style.
Use the BorderWidth property of the Shape object to change or read the width of the border. BorderWidth can
have a value ranging from 1 (hairline) to 5 (thickest). 
Note

BorderWidth is applied only if BorderStyle is 1; it does not apply to dashed or dotted borders.
The following statements draw a Process shape and then change its border to a dotted line.

Set ABCObject = Chart.DrawShape("Process")
ABCObject.Shape.BorderStyle = 3

The following statements draw a decision shape and change its border to a very thick solid line.

Set ABCObject = Chart.DrawShape("Process")
ABCObject.Shape.BorderStyle = 1
ABCObject.Shape.BorderWidth = 5

{button Related Topics,PI(`',`IDH_RT_Border_Style_and_Width')}



BorderStyle property
BorderWidth property



Shadow Style and Width
You can add a drop shadow to shapes and choose the position and width of the shadow.
In ABC you add a shadow to a selected shape by clicking the Shadow button in the Formatting toolbar, and then 
choosing a shadow position from the list. To change the offset, click Shadow in the Format menu, and then 
choose a value in the Width box.
With ABC OLE Automation you add a shadow using the ShadowStyle property of the Shape object. 
ShadowStyle can have a value from 0 to 4, with 0 being no shadow and 1 through 4 being the positions shown 
in ShadowStyle.
The width of a shadow (the distance the shadow appears away from the shape) is determined by the 
ShadowOffset property of the Shape object. ShadowOffset can have a value ranging from 1 (hairline) to 5 
(thickest).
You also can use the ShadowStyle and ShadowOffset properties to read the values of the current shadow of a 
shape.
The following statements draw a shape, and then add a drop shadow with medium thickness.

Set ABCObject = Chart.DrawShape("Document")
ABCObject.Shape.ShadowStyle = 2
ABCObject.Shape.ShadowOffset = 3

{button Related Topics,PI(`',`IDH_RT_Shadow_Style_and_Width')}



ShadowOffset property
ShadowStyle property



Replacing Shapes
You can replace one or more shapes in a chart with a different type of shape. When you replace shapes, the new 
shapes connect to the lines of the old shapes.
In ABC you replace selected shapes by choosing the new shape in the Shape Palette, clicking the Shape tool in 
the toolbox, and clicking the Replace Shape button in the Arrange toolbar.
With ABC OLE Automation, use the ReplaceShape method of the Shape object to replace shapes. You can 
replace shapes with the chart's current shape or with any shape type you specify.

ShapeObject.ReplaceShape [ShapeType]
ShapeType is an optional parameter that specifies the shape type that will be used to replace the shape referred 
to in ShapeObject.

The following example replaces all Operation shapes in a chart with External Operation shapes.

Set Objs = ABC.ActiveChart.Objects
Do

Set ABCObject = Objs.ItemFromShapes
If ABCObject.Shape.ShapeName = "Operation" Then

ABCObject.Shape.ReplaceShape "External Operation"
End If

While ABCObject.Valid

{button Related Topics,PI(`',`IDH_RT_Replacing_Shapes')}



ReplaceShape method



Selecting Shapes
ABC OLE Automation provides several ways to select shapes. You can select a single shape, all shapes of a 
particular type, or all shapes in the chart.
To select a single shape, use the Selected property of the Object object. Set the Selected property to True to 
select the shape or False to deselect the shape. For example, the following statements draw a shape and then 
select it.

Dim ABCShape As Object
Set ABCShape = Chart.DrawShape
ABCShape.Selected = True

To select all shapes of a particular type, such as Process or Decision, use the SelectShapeType method of the 
Chart object. This method takes one parameter: a string indicating the type of shape. The statement below 
selects all Document shapes.

Chart.SelectShapeType "Document"

To select all the shapes in a chart, use the Select method of the Chart object. The Select method can select all 
shapes, all lines, or all objects in a chart. It can also be used to deselect all objects. The Select method takes 
one parameter, an integer indicating the selection.
0 Selects all shapes
1 Selects all lines
2 Selects all objects (shapes, lines, text blocks)
3 Deselects all objects
For example, the following statements deselect all objects in a chart and then select only the lines.

Chart.Select 3
Chart.Select 1

{button Related Topics,PI(`',`IDH_RT_Selecting_Shapes')}



Deselecting Shapes

Select method
Selected property
SelectShapeType method



Deselecting Shapes
ABC OLE Automation provides three ways to deselect shapes.
You can deselect a single object by using the selected property of the Object object. Set the Selected property 
to False to deselect the shape. 
You can deselect all the objects that are currently selected by using the DeselectAll method of the Chart object.
The DeselectAll method requires no extra parameters.
You can deselect all the objects that are currently selected by using the Select method of the Chart object, but 
the Select method must be followed by the number 3 to deselect objects.
In the statements below, the first line deselects only the selected object. The last two lines deselect all objects.

ABCObject.Selected = False
Chart.DeselectAll
AllChart.Select 3

{button Related Topics,PI(`',`IDH_RT_Deselecting_Shapes')}



Selecting Shapes

DeselectAll method
Select method
Selected property



Opening the Note Window
The Note window displays notes for the currently selected shape.
In ABC you open and close the Note window by clicking Note in the View menu.
Using ABC OLE Automation, you open and close the Note window using the NoteViewerVisible property of the 
Application object. Set this property to True to open the Note window or False to close the Note window. You also 
can use this property to check whether the window is already open.
The following example checks to see if the Note window is open, and then closes the Note window.

Dim ABC As Object
Set ABC = CreateObject("ABCFlow.Application")
If ABC.NoteViewerVisible Then ' If Note window is open

ABC.NoteViewerVisible = False ' Close the Note window
End If

{button Related Topics,PI(`',`IDH_RT_Opening_the_Note_Window')}



NoteViewerVisible property



Attaching a Note to a Shape
You can attach notes to any shape in a chart. In ABC, notes are added in the Note window while the shape is 
selected. With ABC OLE Automation, you do not need to open the Note window to attach notes to a shape.
Use the NoteText property of the Shape object to attach notes to shapes.
The following example draws a shape, then adds a note to the shape.

Dim ShapeObject As Object

Set ShapeObject = Chart.DrawShape("Document")
ShapeObject.Text = "Text inside a shape"
ShapeObject.Shape.NoteText = "This is note text attached to the shape"
If you are reading the note text from a shape, you can use the NoteTextLF property to preserve the Returns. If 
you use the NoteText property, the Returns are changed to spaces.

NoteText = Shape1.NoteTextLF

{button Related Topics,PI(`',`IDH_RT_Attaching_a_Note_to_a_Shape')}



NoteText property
NoteTextLF property



Choosing Note Indicators
You can use indicators to identify shapes that have attached notes. Indicators include shadows around the 
symbol and symbols next to the shape number. The default indicator for notes is -N. You can use up to three 
characters to create your own indicators.
The text settings used for indicator symbols are the same as for the shape number. See the Formatting Shape 
Numbers for more information on formatting shape numbers.
In ABC you choose note indicators in the Indicator tab of the Format Chart dialog box.
With ABC OLE Automation you use the NoteIndicator and NoteShadow properties of the Chart object. The 
NoteIndicator property identifies the three character symbol as a string. The NoteShadow property is a 
Boolean value that determines whether a shadow displays around shapes with attached notes. 

Chart.NoteIndicator = "*N*" ' Set *N* as the note symbol
Chart.NoteShadow = 1 ' Use shadow to indicate notes

{button Related Topics,PI(`',`IDH_RT_Choosing_Note_Indicators')}



Formatting Shape Numbers

NoteIndicator property
NoteShadow property



Formatting Note Text
You can format note text just as you can format other text objects. The formatting for note text appears in the 
Note window and in printed notes. Note text is formatted for each shape individually.
The NoteFont property of the Shape object returns a font object with properties that you can set. That object 
has the following properties.
Bold True if text is bold; False if text is not bold
Italic True if text is italic; False if text is not italic
Strikethrough True if text is strikethrough; False if text is not strikethrough
Underline True if text is ; False if text is not underline
Name The typeface name of the font
Size The point size of the font
See Formatting Text for more information on these properties.
As with other text objects, the NoteFont property of the shape object returns a font object that has the Opaque
property, but it is not useful for formatting notes. The following example formats the note text for all shapes in a 
chart.

Dim ABC As Object
Dim AllShapes As Object
Dim CurrentShape As Object

Set ABC = CreateObject("ABCFlow.Application")
Set AllShapes = ABC.ActiveChart.Objects

Do
Set CurrentShape = AllShapes.ItemFromShapes
CurrentShape.Shape.NoteFont.Name = "Arial"
CurrentShape.Shape.NoteFont.Size = 12
CurrentShape.Shape.NoteFont.Italic = True

Loop While CurrentShape.Valid

{button Related Topics,PI(`',`IDH_RT_Formatting_Note_Text')}



Formatting Text

Bold property
Italic property
Name property
NoteFont property
Opaque property
Size property
Strikethrough property
Underline property



Printing Notes
You can print the notes that are attached to shapes.
In ABC there are two ways to print notes. Choose the Print command directly from the Note window, or open the 
File menu in the main window and choose Print, and then select the Print Notes option in the Print dialog box.
Using ABC OLE Automation, you print notes in a way similar to using the Print dialog box. The PrintOut and 
PrintSelected methods print a chart, and can also print notes associated with the chart.

PrintOut [FromPage] [,ToPage] [,Copies] [,FitToPage] [,PrintNotes]
PrintSelected [Copies] [,FitToPage] [,PrintNotes]

All parameters in these methods are optional. To print notes, the PrintNotes parameter must be 1 (True). Look at 
the following examples.

PrintOut ( , , 2, , 1) ' Print 2 copies of chart and notes
PrintSelected ( , 1, 1) ' Print selected objects to fill the page with attached notes

{button Related Topics,PI(`',`IDH_RT_Printing_Notes')}



PrintOut method
PrintSelected method



Drawing Lines
You can draw lines by specifying the starting and ending points of a line in space, by drawing that is connected 
to one shape, or by connecting two shapes with a line. You access information about lines using the Line_ 
property of the Object object.

{button Related Topics,PI(`',`IDH_RT_Drawing_Lines')}



Drawing Unconnected Lines
Drawing Lines to One Shape
Drawing Lines that Connect Shapes

Line_ property



Drawing Unconnected Lines
Unconnected lines are lines that are drawn from one point to another and are not connected to any shapes or 
lines.
Use the DrawFreeLine method of the Chart object to draw an unconnected line.

DrawFreeLine (XPosition, YPosition)
The line starts at the chart's current drawing position and ends at the point you specify with XPosition and 
YPosition. The X and Y positions are measured from the top left corner of the ABC page. By default, the positions 
are measured in inches, but you can measure position in centimeters by changing the Units property of the 
Preferences object. See Setting the Current Drawing Position for more information.
For example, the following statement draws a line from (1,1) to (2,4).

Chart.DrawPositionX = 1
Chart.DrawPositionY = 1
Set NewLine = Chart.DrawFreeLine (2, 4)

The type of routing used for the line is determined by the chart's current line routing. See Setting Line Routing 
for more information.

{button Related Topics,PI(`',`IDH_RT_Drawing_Unconnected_Lines')}



Drawing Lines
Setting the Current Drawing Position
Setting Line Routing

DrawFreeLine method
Units property



Drawing Lines to One Shape
You can draw lines that are unconnected on one end, and connected to a shape on the other end. If you move 
the shape, the connected line follows.
Use the DrawLineToOneObject method of the Chart object to draw lines that connect to only one shape.

DrawLineToOneObject (ShapeObject [,EnterDirection])
The line starts at the chart's current drawing position and ends at the shape you specify with ShapeObject. See 
the Setting the Current Drawing Position for information on setting the chart's current drawing position.
You can optionally use a second parameter that specifies the direction that the line enters the shape. The 
following table describes each of the EnterDirection values.
0 North
1 East
2 South
3 West
For example, the following statement draws a line from the current position to the shape specified in 
ShapeObject.

Set NewLine = Chart.DrawLineToOneObject (ShapeObject, 0)

The type of routing used for the line is determined by the chart's current line routing. See Setting Line Routing 
for more information.

{button Related Topics,PI(`',`IDH_RT_Drawing_Lines_to_One_Shape')}



Drawing Lines
Setting the Current Drawing Position
Setting Line Routing

DrawLineToOneObject method



Drawing Lines that Connect Shapes
You can draw lines that connect two shapes. If you move either of the shapes, the connected line follows.
Use the DrawLine method of the Chart object to draw lines that connect two shapes.

DrawLine (ShapeObject1, ShapeObject2 [,ExitDirection] [,EnterDirection] )
The line starts at ShapeObject1 and ends at ShapeObject2. You can optionally use third and fourth parameters 
that specify which direction the line exits ShapeObject1 and enters ShapeObject2. The following chart describes 
each of the direction values.
0 North
1 East
2 South
3 West
For example, the following statement draws a line from the bottom of Shape1 to the top of Shape2.

Set NewLine = Chart.DrawLine (Shape1, Shape2, 2, 0)

The type of routing used for the line is determined by the chart's current line routing. See Setting Line Routing 
for more information.
You can find or set the side of the source shape that the line leaves using the SourceDirection property and can
find or set the side of the destination shape that the line enters using the DestinationDirection property. The 
chart above describes each of the direction values.

{button Related Topics,PI(`',`IDH_RT_Drawing_Lines_that_Connect_Shapes')}



Drawing Lines
Setting Line Routing

DestinationDirection property
DrawLine method
SourceDirection property



Connecting Existing Lines to Shapes
The shapes that lines connect to are stored in the Source and Destination properties of the Line_ object. When 
lines are unconnected, these properties are empty. You can use these properties to change which shapes the line
connects or to connect a line that was previously unconnected.
For example, the following statements connect LineObject to ShapeObject1 and ShapeObject2.

LineObject.Line_.Source = ShapeObject1
LineObject.Line_.Destination = ShapeObject2

You can optionally specify the directions that the line enters each shape with the ReconnectSource and 
ReconnectDest methods of the Line_ object.

ReconnectSource (ShapeObject [,ExitDirection] )
ReconnectDest (ShapeObject [,EnterDirection] )

These methods connect the line to a shape specified by ShapeObject. You can optionally specify the direction the
line enters and exits the shapes. The following chart describes each of the direction values.
0 North
1 East
2 South
3 West
For example, the following statements connect LineObject to the bottom of ShapeObject1 and the top of 
ShapeObject2.

LineObject.Line_.ReconnectSource ShapeObject1 0
LineObject.Line_.ReconnectDest ShapeObject2 2

{button Related Topics,PI(`',`IDH_RT_Connecting_Existing_Lines_to_Shapes')}



ReconnectDest method
ReconnectSource method
Source property
Destination property 



Setting Line Routing
ABC has several types of routing available for lines.
In ABC you set the routing for new lines to be drawn by clicking one of the line routing buttons with no lines 
selected. You also can change the type of routing for lines that have already been drawn.
With ABC OLE Automation, you can specify the type of routing for new lines with the CurrentLineRouting 
property of the Chart object. The following table describes the values for the CurrentLineRouting property.
0 Direct
1 Right Angle
2 Curved
3 Org Chart
4 Cause-and-Effect
You can use the Type property of the Line_ object to find or set the line routing for a line. The values of the Type 
property have the same meaning as CurrentLineRouting, which is described in the table above.
The following statements use Direct line routing to draw a line.

Dim NewLine As Object
Dim LineType As Short
Chart.CurrentLineRouting = 0 ' Current line routing is Direct
NewLine = Chart.DrawFreeLine (5, 4) ' Draw a new line
LineType = NewLine.Line_.Type ' The new line is Direct

You also can use the Routing property of the Line_ object to set the line routing type for existing lines. The 
parameters are the same. There is no equivalent function in ABC.

{button Related Topics,PI(`',`IDH_RT_Setting_Line_Routing')}



CurrentLineRouting property
Routing Property 
Type property



Formatting Lines
You format lines by changing the color, width, and style of the two ends and the main body (stem) of a line. All 
line formatting is based on the Line_ object.
Lines are composed of three parts: the arrow at the start of the line (SourceArrow), the main body of the line 
(Stem), and the arrow at the end of the line (DestArrow). The properties used to format lines deal with these 
three parts.
Line Color
Line Width
Line Style
End Styles



Line Color
You can color an entire line, including the ends, with one property, or you can color each piece of the line with a 
separate property. You can use the ABC constants to specify the color. For example, use ABC.Red for the color 
red.
The Color property colors the entire line, including the ends. The properties SourceArrowColor, StemColor, 
and DestArrowColor color individual parts of a line. These properties also can be used to find out the colors of 
a line.
The following example changes blue lines to red. All other lines are changed to blue stems and red ends.

If Line_.Color = ABC.Blue Then ' If the line stem is blue, ...
Line_.Color = ABC.Red ' ...change the entire line to red

Else ' If the line stem is not blue, ...
Line_.SourceArrowColor = ABC.Red ' ...change both ends to red...
Line_.DestArrowColor = ABC.Red
Line_.StemColor = ABC.Blue ' ...and change the stem to blue

End I

{button Related Topics,PI(`',`IDH_RT_Line_Color')}



Formatting Lines

Color property
DestArrowColor property
SourceArrowColor property
StemColor property



Line Width
You can vary the width of lines and the size of line ends. Varying line widths can distinguish data flows and draw 
attention to certain transitions or data transfers in a chart.
In ABC you change a selected line's width by choosing a number in the Width box on the Formatting menu.
With ABC OLE Automation, you use the SourceArrowSize, StemWidth, and DestArrowSize properties of the 
Line_ object to determine the line width. Line width can vary from 1 (hairline) to 5 (thickest).

ABCObject.Line_.SourceArrowSize = 2 ' Width of source arrow is 2
ABCObject.Line_.StemWidth = 2 ' Width of stem is 2
ABCObject.Line_.DestArrowSize = 1 ' Width of destination arrow is 1

{button Related Topics,PI(`',`IDH_RT_Line_Width')}



Formatting Lines

DestArrowSize
SourceArrowSize
StemWidth



Line Style
You can choose different styles or patterns for lines, including solid and dashed lines.
In ABC you change a selected line's style by clicking the Line Style button on the Formatting toolbar, and then 
choosing a style from the list. 
To set or read a line's style with ABC OLE Automation, use the StemStyle property of the Line_ object. Set 
StemStyle to 0 for an invisible line and 1 for a solid line. See StemStyle for each available style.
The following statements draw a line and then change its style to dotted.

Set ABCObject = DrawFreeLine (4, 5) 
ABCObject.Line_.StemStyle = 3

{button Related Topics,PI(`',`IDH_RT_Line_Style')}



Formatting Lines

StemStyle property



End Styles
You can choose different styles or patterns for line ends, including arrows, circles, and lines.
In ABC you change a selected line's end style by clicking the Arrowhead button on the Formatting toolbar and 
then choosing a style from the list. 
To set or read a line's source arrow style with ABC OLE Automation, use the SourceArrowStyle property of the 
Line_ object. Set SourceArrowStyle to 0 for no arrow. See SourceArrowStyle for each available style.
To set or read a line's destination arrow style with ABC OLE Automation, use the DestArrowStyle property of 
the Line_ object. Set DestArrowStyle to 0 for no arrow. See DestArrowStyle for each available style.
The following statements draw a line and then change its end styles.

Set ABCObject = Chart.DrawFreeLine (4, 5) 
ABCObject.Line_.SourceArrowStyle = 2
ABCObject.Line_.DestArrowStyle = 3

{button Related Topics,PI(`',`IDH_RT_End_Styles')}



Formatting Lines
DestArrowStyle property
SourceArrowStyle property



Displaying Nodes on Connecting Lines
You can display or hide nodes on lines. Nodes appear where lines connect to each other. They help you 
distinguish between connected lines and lines that merely overlap. Nodes are represented by small solid circles.
In ABC you display nodes by clicking Chart on the Format menu, clicking the Indicators tab, and then selecting 
the Show Nodes On Lines option.
With ABC OLE Automation you display or hide nodes using the ShowNodesOnLines property of the Chart 
object. Set ShowNodesOnLines to True to display nodes; False to hide nodes.

Chart.ShowNodesOnLines = True ' Display nodes
Chart.ShowNodesOnLines = False ' Hide nodes

{button Related Topics,PI(`',`IDH_RT_Displaying_Nodes_on_Connecting_Lines')}



ShowNodesOnLines property



Setting Line Crossovers
You can set the style and size when lines cross over each other. If you do not choose a crossover style, the lines 
cross with no indication, which may make it difficult to tell which lines connect which shapes.
In ABC you set the style and size of crossovers by clicking Crossovers in the Format menu, and then selecting the
Type and Size you want.
You use the LineCrossoverStyle property of the Chart object to specify the type of crossover. You can specify 
values for the crossovers as shown in the following table.
0  Bunny hops

1  Broken lines
2  Solid lines

You use the LineCrossoverSize property of the Chart object to specify the size of the crossover when one line 
crosses another. The setting applies to bunny hops and broken lines, but has no effect when the crossover style 
is solid lines. The possible values of the property are shown in the following table.
0  Small

1  Medium
2  Large

For example, the following statements set crossovers to be medium bunny hops.

Chart.LineCrossoverStyle = 0 ' Bunny hops
Chart.LineCrossoverSize = 1 ' Medium

You also can use the CrossoverSize and CrossoverStyle properties of the Line_ object to specify the size and 
style of crossovers for individual lines. The parameters are the same.

{button Related Topics,PI(`',`IDH_RT_Setting_Line_Crossovers')}



CrossoverSize Property 
CrossoverSize Property 
LineCrossoverSize property
LineCrossoverStyle property



Attaching Text to Lines
Text on lines can describe the flow of information and relationships between connected shapes. You can choose 
the typeface, size, style, and color of the attached text. When you move a line, the attached text moves with it.
In ABC you attach text to a selected line by typing.
To attach text to lines using ABC OLE Automation, you create a text block and then attach it to an existing line. 
See the Creating Text Blocks and Drawing Lines for more information on creating text blocks and lines.
Use the AttachText method of the Line_ object to attach text to a line. You can attach the text to the start or 
end of the line or to any segment of the line.

LineObject.AttachText TextObject [,SegmentNumber]
The LineObject specifies the line to which you are attaching the text. TextObject specifies the text block that you 
are attaching to the line. The SegmentNumber indicates the segment of the line to which the text is to be 
attached, as defined in the following table.
-3 Start
-2 End
-1 First
0 Last
1 through n The sequential value of the line segment, where n is the number of segments in the line. 

For example, 1 is the first segment, and 2 is the second segment.
The following illustrations show how the text is placed on a line.

The following example places text on new lines as they are drawn.

Sub ABC1_NewLineNOTIFY ()
Dim TextBlock As Object
Set TextBlock = ABC1.Chart.DrawTextBlock "Text on a Line"
ABC1.Object.Line_.AttachText TextBlock -1

End Sub

To format text on a line, see Formatting Text.

{button Related Topics,PI(`',`IDH_RT_Attaching_Text_to_Lines')}



Creating Text Blocks
Drawing Lines
Formatting Text

AttachText method



Deleting Lines
There are two ways to delete lines with ABC OLE Automation: delete all lines attached to a specific shape or 
select a line and clear it or cut it.
Use the DeleteLines method of the Shape object to delete all the lines attached to a specified shape. Deleting 
lines with this method does not place the lines in the Windows Clipboard.
For example, the following statement deletes the lines attached to the shape referred to as ABCObject.

ABCObject.Shape.DeleteLines

{button Related Topics,PI(`',`IDH_RT_Deleting_Lines')}



DeleteLines method



Creating Text Blocks
A text block is a freeform, independent object in a chart. Text blocks are not associated with any shape or line.
In ABC, you create text blocks by first clicking the Text tool in the toolbox. Then you can click anywhere in the 
chart and type, or you can drag the mouse to create the block and type.
To create a text block using ABC OLE Automation, you first specify the current drawing position, then draw the 
text block and specify the text string.You access the information about text blocks using the TextBlock property 
of the Object object.
You use the DrawPositionX and DrawPositionY properties to specify the X and Y coordinates of the upper left 
corner of the text block. This defines the current drawing position for the chart. The X and Y coordinates are 
measured from the top left corner of the page. By default, the positions are measured in inches, but you can 
measure position in centimeters by changing the Units property of the Preferences object. See Setting the 
Current Drawing Position for more information.
Specifying the drawing position is not required, but helps to control the appearance of the chart. Alternatively, 
you can draw the text block first, and then move the text block to the desired location. See Moving Objects for 
more information on moving text blocks.
You use the DrawTextBlock method with the Chart object to draw a text block at the current position with the 
specified text string.
Tip

Use Chr$(13) to add a new line to the text string in the DrawTextBlock method. For example, 
Chart.DrawTextBlock ("Line 1" + Chr$(13) + "Line 2")

The following example creates a text block two inches from the top of the page and one inch from the left of the 
page.

Dim ABCObject As Object

Chart.DrawPositionX = 1
Chart.DrawPositionY = 2
Set ABCObject = Chart.DrawTextBlock ("This is a text block") 

{button Related Topics,PI(`',`IDH_RT_Creating_Text_Blocks')}



Moving Objects
Setting the Current Drawing Position

DrawPositionX property
DrawPositionY property
DrawTextBlock method
TextBlock property
Units property



Adding Text to a Shape
You can use ABC OLE Automation to add text inside any shape. The text appears inside the text area defined for 
the shape. Adding text to a shape is equivalent to typing while a shape is selected in ABC.
To add text to a shape, use the Text property of the Object. The following example creates a shape with text.

Dim ABCObject As Object

Set ABCObject = Chart.DrawShape ("External Operation")
ABCObject.Text = "Text inside a shape"

If you are reading the text from a shape, you can use the TextLF property to preserve the Returns. If you use the
Text property, the Returns are changed to spaces.

ShapeText = Shape1.TextLF

{button Related Topics,PI(`',`IDH_RT_Adding_Text_to_a_Shape')}



Sizing Shapes to Text

Text property
TextLF property



Sizing Shapes to Text
You can automatically fit shapes to the size of the text inside them. This is especially useful when the length of 
the text string may be varied and you want to avoid hiding text that will not fit within the shape.
In ABC, you do this by selecting the shape, and then clicking Fit to Text in the Arrange menu. In ABC OLE 
Automation, you use the FitShapeToText method for the Shape object.
This example draws a shape, adds text to the shape, and then fits the shape to the text.

Dim ABCObject As Object

Set ABCObject = Chart.DrawShape ("Document") 
ABCObject.Text = "This is a sample of fitting shapes to text"
ABCObject.Shape.FitShapeToText

{button Related Topics,PI(`',`IDH_RT_Sizing_Shapes_to_Text')}



Adding Text to a Shape

FitShapeToText method



Adding Notes to a Shape
You can attach notes to any shape in a chart. In ABC notes are added in the Note window. With ABC OLE 
Automation, you do not need to open the Note window to attach notes to a shape.
You use the NoteText property of the Shape object to attach notes to shapes.
The following example draws a shape, then adds a note to the shape.

Dim ShapeObject As Object

Set ShapeObject = Chart.DrawShape ("Document")
ShapeObject.Text = "Text inside a shape"
ShapeObject.Shape.NoteText = "This is note text attached to the shape" 

See the Formatting Text for information on formatting note text.
If you are reading the note text from a shape, you can use the NoteTextLF property to preserve the Returns. If 
you use the NoteText property, the Returns are changed to spaces.

NoteText = Shape1.NoteTextLF

{button Related Topics,PI(`',`IDH_RT_Adding_Notes_to_a_Shape')}



Formatting Text

NoteTextLF property
NoteText property



Attaching Text to a Line
You can attach text to the start or end of a line or to any segment of a line. When text is attached to a line, the 
text is moved and positioned automatically with the line.
In ABC you can attach text by dragging a text block onto a line or by selecting a line and then typing. To attach 
text to lines using ABC OLE Automation, you must first create a text block, then attach it to a line.
You use the DrawTextBlock method to create the text block. See Creating Text Blocks for information about 
creating text blocks.
Use the AttachText method of the Line_ object to attach a text block to a line. The AttachText method has two 
parameters.

LineObject.AttachText TextBlock [,SegmentNumber]
The TextBlock parameter is the text block object you are attaching to the line in LineObject. The 
SegmentNumber is an optional parameter that indicates which segment of the line will contain the text.
The following table describes each value of SegmentNumber.
SegmentNumber           Line Segment  
-3 Start
-2 End
-1 First
0 Last
1 through n The sequential value of the line segment, where n is the number of segments in the line.

For example, 1 is the first segment, and 2 is the second segment.
The default value of SegmentNumber is -1, which attaches a text block to the center of the first segment of the 
line.
The following illustrations show the segment on which text is placed based on the SegmentNumber.

The following statements draw a line, then create a text block and attach it to the line.

Dim LineObject As Object
Dim TextBlock As Object

DrawPositionX = 2
DrawPositionY = 1
Set LineObject = Chart.DrawFreeLine (4, 5)
Set TextBlock = Chart.DrawTextBlock ("Text on a line")
LineObject.Line_.AttachText (TextBlock, 1) 

{button Related Topics,PI(`',`IDH_RT_Attaching_Text_to_a_Line')}



Creating Text Blocks
Unattaching Text from a Line

AttachText method
DrawTextBlock method



Unattaching Text from a Line
You can separate text from a line without deleting the text. This is equivalent to dragging the text away from a 
line in ABC. Unattaching text from a line has no effect on the line.
To find if text is attached to a line, you use the AttachedToLine property of the TextBlock object. To unattach 
text, use the UnattachFromLine method and move the text to another position. For more information on 
moving text blocks, see Moving Objects.
The following example draws a line, creates a text block, then attaches the text block to the line. Then the 
example checks to see if the text is attached to the line, unattaches the text, and moves it to another location.

Dim LineObject As Object
Dim TextBlock As Object

DrawPositionX = 2
DrawPositionY = 1
Set LineObject = Chart.DrawFreeLine (4, 5)
Set TextBlock = Chart.DrawTextBlock ("Text on a line")
LineObject.Line_.AttachText (TextBlock, 1) = True

If TextBlock.AttachedToLine Then
TextBlock.UnattachFromLine
TextBlock.Left = 3
TextBlock.Top = 6

End If

{button Related Topics,PI(`',`IDH_RT_Unattaching_Text_from_a_Line')}



Attaching Text to a Line
Moving Objects

AttachedToLine property
UnattachFromLine method



Formatting Text
You can format a text object in ABC by changing its typeface, its size, its text attributes (such as bold or italic), 
its color, and its alignment.
All text formatting applies to the entire object. You cannot format a single word differently than the rest of the 
text in the object.

{button Related Topics,PI(`',`IDH_RT_Formatting_Text')}



Text Typeface and Size
Bold, Italic, Underline, and Strikethrough
Text Color
Text Background
Text Alignment



Text Typeface and Size
You can change the typeface and size of text, as well as determine the current typeface and size of the text.
Use the Size and Name properties of the Font object to specify the point size and typeface of the text, 
respectively. You access those properties using the Font property of the Object object or the NoteFont property 
of the Shape object.
The Font object contains most formatting properties of text. The way you access the Font object depends on the 
type of chart text. The following examples show each type of Font object.

ABCObject.Font.Size = 10 ' Text block or text on a line
ABCObject.Font.Size = 10 ' Shape text
ABCObject.Shape.NoteFont.Size = 10 ' Note text

The Size property uses a Long value to specify point sizes, such as 10 or 12.
The Name property uses a string to determine the typeface. When changing the typeface, ABC matches the 
highest quality typeface containing the string. For example, Font.Name = "Roman" sets the typeface to "Times 
New Roman" if both "Tms Roman" and "Times New Roman" are available, because "Times New Roman" is a 
TrueType typeface.
The following example checks to see if a shape's text is Arial 10 pt. If it is, the text changes to Times New 
Roman.

Dim ABCShape As Object

Set ShapeCollection = ABC.ActiveChart.Objects
Set ABCShape = ShapeCollection.ItemFromShapes

Do
If ABCShape.Font.Name = "Arial" and ABCShape.Font.Size = 10 Then

ABCShape.Font.Name = "Times New Roman"
End If
Set ABCShape = ShapeCollection.ItemFromShapes

Loop While ABCShape.Valid

{button Related Topics,PI(`',`IDH_RT_Text_Typeface_and_Size')}



Formatting Text

Font property
Name property
NoteFont property
Size property



Bold, Italic, Underline, and Strikethrough
You can change the attributes of text, such as bold, italic, underline, and strikethrough, as well as determine the 
current attributes of the text.
The Bold, Italic, Underline, and Strikethrough properties of the Font object take Boolean values that turn 
each attribute on or off. 
The Font object contains most formatting properties of text. The way you access the Font object depends on the 
type of chart text. The following examples show each type of Font object.

ABCObject.Font.Bold = True ' Text block or text on a line
ABCObject.Font.Bold = True ' Shape text
ABCObject.Shape.NoteFont.Bold = True ' Note text

The following example creates a text block and makes the text bold and italic.

Dim ABCObject As Object

Chart.DrawPositionX = 1
Chart.DrawPositionY = 2
Set ABCObject = Chart.DrawTextBlock ("This is a text block")
ABCObject.Font.Bold = True
ABCObject.Font.Italic = True

The following example changes all strikethrough text in shapes to underline.

Dim ABCShape As Object

Set ShapeCollection = ABC.ActiveChart.Objects
Set ABCShape = ShapeCollection.ItemFromShapes

Do
If ABCShape.Font.Strikethrough Then

ABCShape.Font.Strikethrough = False
ABCShape.Font.Underline = True

End If
Set ABCShape = ShapeCollection.ItemFromShapes

Loop While ABCShape.Valid

{button Related Topics,PI(`',`IDH_RT_Bold_Italic_Underline_and_Strikethrough')}



Formatting Text

Bold property
Italic property
Strikethrough property
Underline property



Text Color
You can change the color of text, as well as determine the current text color. The text color affects only the 
foreground color of the text; it does not affect the background color. See Text Background for information on the 
background of text.
You use the Color property of the Font object to specify the text color. You can use constants to specify one of 
the sixteen basic VGA colors, or you can specify the RGB values using the MakeRGB method.
The Font object contains most formatting properties of text. The way you access the Font object depends on the 
type of chart text. The following examples show each type of Font object.

ABCObject.Font.Color = ABC.BLUE ' Text block or text on a line
ABCObject.Font.Color = ABC.BLUE ' Shape text
ABCObject.Shape.NoteFont.Color = ABC.BLUE ' Note text
Chart.FieldFont.Color = ABC.BLUE ' Field text
Chart.NumberFont.Color = ABC.BLUE ' Shape numbers
Chart.MasterItems.Date.Font.Color = ABC.BLUE ' Text in the Date Master Item

The following example changes all blue text in shapes to red. The color Blue is specified by a constant, and the 
color Red is specified by its RGB value.

Dim ABCShape As Object

Set ShapeCollection = ABC.ActiveChart.Objects
Set ABCShape = ShapeCollection.ItemFromShapes

Do
If ABCShape.Font.Color = ABC.Blue Then

ABCShape.Font.Color = ABC.MakeRGB (255, 0, 0)
End If
Set ABCShape = ShapeCollection.ItemFromShapes

Loop While ABCShape.Valid

{button Related Topics,PI(`',`IDH_RT_Text_Color')}



Formatting Text
Text Background

Color property
MakeRGB method



Text Background
You can make the background behind text opaque or transparent. When a text background is opaque, you 
cannot see through the text to the objects beneath it. For example, when text is on a line, you can see the line 
through the text if the background is transparent; you cannot see the line if the background is opaque.
In ABC you make a text background opaque by selecting the text, clicking Font in the Format menu, and 
selecting the Opaque option. You deselect the Text Background button to make the background transparent.
With ABC OLE Automation, you use the Opaque property of the Font object to make a text background opaque 
or transparent.
The Font object contains most formatting properties of text. The way you access the Font object depends on the 
type of chart text. The following examples show each type of Font object.

ABCObject.Font.Opaque = True ' Text block or text on a line
ABCObject.Font.Opaque = True ' Shape text
ABCObject.Shape.NoteFont.Opaque = True ' Note text

{button Related Topics,PI(`',`IDH_RT_Text_Background')}



Formatting Text

Opaque property



Text Alignment
You can align the text inside shapes and in text blocks using the TextAlignment property of the object. The 
TextAlignment property uses the following Integer values to represent combinations of vertical and horizontal 
alignment.
Value Vertical Horizontal
0 Top Left
1 Top Center
2 Top Right
3 Middle Left
4 Middle Center
5 Middle Right
6 Bottom Left
7 Bottom Center
8 Bottom Right
For example, the following line centers the text at the top of the shape.

Dim ABCObject As Object

Set ABCObject = Chart.DrawShape ("Document")
ABCObject.Text = "This is a sample of aligning text"
ABCObject.TextAlignment = 1

The following example creates a text block and left-justifies the text in the text block's vertical center.

Dim ABCObject As Object

Set ABCObject = Chart.DrawTextBlock ("This is a sample of aligning text")
ABCObject.TextAlignment = 3

{button Related Topics,PI(`',`IDH_RT_Text_Alignment')}



Formatting Text

TextAlignment property



Checking Spelling
You can check the spelling of selected text in ABC by choosing the text you want to check and clicking Spelling in
the Tools menu. If you do not select text, all text in the chart is checked. With ABC OLE Automation, you use the 
Spelling method of the Chart object. For example, the following statement starts the Spelling Checker.

Chart.Spelling

{button Related Topics,PI(`',`IDH_RT_Checking_Spelling')}



Spelling method



Finding and Replacing Text
You can find text in ABC by clicking Find or Replace on the Edit menu and filling in the options in the dialog box.

In ABC OLE Automation, you can replace text using the ReplaceText method of the Chart object. There is no 
OLE equivalent to Find.

ChartObject.ReplaceText (FindText, ReplacementText [,MatchCase] [,WholeWord])

{button Related Topics,PI(`',`IDH_RT_Finding_Text')}



ReplaceText Method 



Adding Data Fields to a Chart
In ABC, you can attach a data field table to your chart's shapes. The data field table applies to all shapes in a 
chart, so any changes you make to the data field descriptions apply to all the shapes. You can store data field 
tables in templates for use in other charts. You use the FieldTemplate property to find the FieldTemplate object 
for a specified FieldValue object.
When you create a link from an existing chart to a new chart, the existing chart's field table is copied to the new 
chart and the values are accumulated according to the methods you specify. That means you do not have to 
recreate the data field descriptions in each new chart.
For example, a chart's data fields might be Assigned, Due, and Cost. A specific shape might have the value "Britt
Barnes" in the Assigned field, "01/09/95" in the Due field, and "$1,200" in the Cost field.

In ABC, you add data fields by choosing the Setup Fields command in the Data menu to open the Setup Fields dialog
box, entering a name for the field, and selecting a type for the field.
In ABC OLE Automation, data fields are stored in the FieldTemplates collection. You use the FieldTemplates 
property to find the FieldTemplates collection of the Chart object.

When you create a field using the Add method, it is added to that collection. The Add method has two 
parameters. The first is the name of the field. The second parameter, which is optional, sets the type of field. The
following table shows the values of the second parameter and their meanings.
0 Text
1 Duration
2 Date
3 Currency
4 Percent
5 Number (default if the parameter is omitted)
You set the name, type, format, accumulation method, and hidden options of a field using properties of the 
FieldTemplate object as described in Changing Data Field Attributes.
The last statement in the following subroutine adds the object Field1 to the FieldTemplates collection. The field 
has the field name "Assigned" and is text type because of the 0 value in the second parameter. (If you omit the 
second parameter, the default is 5, which specifies a number.) The field is created with the default attributes for 
a text object.

Sub Form_Load ()
Dim ABC As Object
Set ABC = CreateObject("ABCFlow.application")
ABC.Visible = True
Dim Chart As Object
Set Chart = ABC.New
Dim Field1 As Object
Set Field1 = Chart.Fields.Add("Assigned", 0)

End Sub

{button Related Topics,PI(`',`IDH_RT_Adding_Data_Fields_to_a_Chart')}



Changing Data Field Attributes

Add method
FieldTemplate property
FieldTemplates property



Changing Data Field Attributes
After you create a field, you can describe its attributes using the Name, Type, Format, AccumulationMethod, 
and Hidden properties of the FieldTemplate object. These properties correspond to the options in the Setup 
Fields dialog box.
The name of a field appears in the chart next to the field value. The Name property lets you rename a field, such
as "Task 1" You name a field at the time you create it using the Add method, so you only use this property to 
change the name of a field.
Data fields can have one of six major types.
0 Text
1 Duration
2 Date
3 Currency
4 Percent
5 Number (default if the parameter is omitted)
Most of the major types have choices within them. For example, dates can be M/D/YY (8/1/94), MMM-D-YY (Aug-1-
94), MMMM DD, YYYY (August 01, 1994), and so forth. The Format property lets you specify the format of the 
field.
100 # w. 200 M/D/YY
101 # weeks 201 MMMM-D-YY
102 # d. 202 MMMM DD, YYYY
103 # days 203 MMM-YY
104 # h. 204 MMMM YYYY
105 # hrs.
106 # hours
107 # m. 300 $###0.00($###0.00)
108 # mins. 301 $#,##0.00($#,##0.00)
109 # minutes 302 $###0($###0)
110 # s. 303 $#,##0($#,##0)
111 # secs.
112 # seconds
113 # TMU 500 ###0
114 h:m 501 ###0.00
115 m:s 502 ###0.0000
116 h:m:s 503 #,##0

504 #,##0.00
505 #,##0.0000

400 ##%
401 #0.00%
The AccumulationMethod property lets you specify the type of accumulation used to calculate the Legend 
values and the Linked Fields values in any linked shapes.
0 No Accumulation
1 Sum
2 Mean
3 Median
4 Min
5 Max
6 Range
7 Total
8 Non-Null Total
The Hidden property lets you specify whether a field and its value are displayed in the chart. Set the Hidden 
property to True to hide the field or to False to display the field.



For example, the following subroutine, which assumes that there is a field named Cost, changes the field's 
attributes so that it is named Expense, changes the type and format to text, sets the accumulation method to No
Accumulation, and makes it hidden.

Sub ABC1_ChartChangeNOTIFY ()
Dim Chart As Object
Set Chart = ABC.ActiveChart

Dim CurrentField As Object
Set CurrentField = Chart.FieldTemplates.Item("Cost")
CurrentField.Name = "Expense"
CurrentField.Type = 0
CurrentField.Format = 0
CurrentField.AccumulationMethod = 0
CurrentField.Hidden = True

End Sub

{button Related Topics,PI(`',`IDH_RT_Changing_Data_Field_Attributes')}



Adding Data Fields to a Chart

AccumulationMethod property
Add method
Format property
Hidden property
Name property
Type property



Deleting Data Fields from a Chart
Deleting a data field removes it from every shape in the chart and deletes its values. You delete data fields using
the DeleteField method in the FieldTemplates collection.

FieldTemplatesCollection.DeleteField    FieldTemplateObject

With the DeleteField method, you provide the FieldTemplate object as a parameter. For example, the following 
statement deletes the field object contained in CurrentField.

Chart.FieldTemplates.DeleteField CurrentField

The following subroutine, which assumes that there are data fields, uses the Count property, the Item method, 
and the DeleteField method. It searches through the data fields in the FieldTemplates collection and deletes 
any that have a type of 3 (currency).

Sub ABC1_ChartCloseSUBCLASS ()
Dim Chart As Object
Dim FieldTemplates As Object
Set Chart = ABC.ActiveChart

Dim CurrentField As Object
Set FieldTemplates = Chart.FieldTemplates
For FieldNumber = 1 to FieldTemplates.Count

Set CurrentField = FieldTemplates.Item(FieldNumber)
If CurrentField.Type = 3 Then

FieldTemplates.DeleteField CurrentField
End If

Next FieldNumber
End Sub

See the Finding Objects in a Chart for more information on using collections.

{button Related Topics,PI(`',`IDH_RT_Deleting_Data_Fields_from_a_Chart')}



Finding Objects in a Chart

Count property
DeleteField method
Item method



Setting Data Field Preferences
You can set preferences for data fields, such as the font used to display data fields in a chart and the placement 
of data fields relative to shapes.
In ABC, you set data field preferences by clicking Chart on the Fields menu, clicking the Data Fields tab, and then
choosing options in the dialog box. All the data field preferences in this dialog box are also available using ABC 
OLE Automation.
The FieldNamesHidden property of the Chart object lets you choose whether you want to show the data field 
names in a chart. Values in the data field are not affected by this property. Set the FieldNamesHidden property
to True to hide the field names or to False to display them.
The FieldPlacement property of the Chart object lets you prescribe where to position data fields in relation to 
their associated shapes. You use the values in this table.
0 Left
1 Right
2 Above
3 Below
4 Inside Top
5 Inside Middle
The FieldsOpaque property of the Chart object lets you choose whether the background of data fields is 
opaque.
The FieldsHoursPerDay property of the Chart object lets you set the number of hours in a workday. This value 
is used when a field is converted between hours and days. For example, the value is used if you change the data
field's format from hours to days or you link to a chart that displays data fields in a different format.
The FieldsDaysPerWeek property of the Chart object lets you set the number of days in a workweek. This 
value is used when a data field is converted between days and weeks when totaling durations.
The FieldFont property of the Chart object returns the Font object used for data fields. You can format data field 
text just as you format other text objects. The formatting for fields applies to all fields in the chart and to the text
in the Legend.
The FieldFont property contains the following properties.
Bold True if text is bold; False if text is not bold
Italic True if text is italic; False if text is not italic
Strikethrough True if text is strikethrough; False if text is not strikethrough
Underline True if text is underline; False if text is not underline
Opaque True if text is opaque; False if text is not opaque
Name The typeface name of the font
Size The point size of the font
See Formatting Text for more information on these properties.
The following example sets preferences for data fields in a chart.

Dim ABC As Object
Dim Chart As Object
Set ABC = CreateObject ("ABCFlow.application")
Set Chart = ABC.ActiveChart

Chart.FieldFont.Name = "Arial"
Chart.FieldFont.Size = 12
Chart.FieldFont.Bold = True
Chart.FieldFont.Italic = True
Chart.FieldFont.Strikethrough = False
Chart.FieldFont.Underline = False
Chart.FieldFont.Opaque = False



{button Related Topics,PI(`',`IDH_RT_Setting_Data_Field_Preferences')}



Formatting Text

Bold property
FieldFont property
FieldNamesHidden property
FieldPlacement property
FieldsDaysPerWeek property
FieldsHoursPerDay property
FieldsOpaque property

Italic property
Name property
Opaque property
Size property
Strikethrough property
Underline property



Working with Data Field Values
You can enter values into data fields for any shape in a chart. You do not have to enter values for all data fields 
or all shapes.
In ABC, you enter values in data fields by selection Viewer in the Data menu, and working in the Field Viewer 
dialog box.
The FieldValues collection of the Object object contains the data field values. To enter values, you specify the 
values using the Value property of the FieldValue object and the Item method of the FieldTemplates collection. 
You access the values of data fields using the FieldValues property of the Object object.
For example, the following statements set values for an existing shape, Shape1. The statements assume that the
chart has the fields Assigned, Due, and Cost.

Shape1.FieldValues.Item("Assigned").Value = "Beginning"
Shape1.FieldValues.Item("Due").Value = "1/3/95"
Shape1.FieldValues.Item("Cost").Value = "200"

You also can read values. For example, the following subroutine reads the Profit in all shapes and turns the text 
red for all that are negative.

Sub ABC1_DoubleClickSUBCLASS ()
Dim ABC As Object
Dim Chart As Object
Set Chart = ABC.ActiveChart

Dim AllShapes As Object
Set AllShapes = Chart.Objects

Dim Shape As Object
For ChartCount = 1 to AllShapes.Count

Set Shape = AllShapes.ItemFromShapes(ChartCount)
If Shape.FieldValues.Item("Profit").Value < 0 Then

Shape.Font.Color = ABC.RED
End If

Next ChartCount
End Sub

You can read or set the day, month, and year of a Date field (Type = 2) using the Day property, Month property,
and Year property of the FieldValue object. For example, the following statements change any October 15 due 
dates to October 17.

Set Field = Shape1.FieldValues.Item("Due")
If Field.Month = 10 And Field.Day = 15 Then Field.Day = 17

You can find out if a data field contains any value using the IsEmpty property of the FieldValue object. For 
example, the following statement puts into the variable NoCostExists whether the existing "Cost" data field for 
Shape1 is empty.

NoCostExists = Shape1.FieldValues.Item("Cost").IsEmpty

You can read the format of the value in a data field using the FormattedValue property of the FieldValue object.
For example, the following statement puts the formatted value from the existing "Cost" data field for Shape 1 
into the variable CostFormat.



CostFormat = Shape1.FieldValues.Item("Cost").FormattedValue

You use the Accumulation property in the FieldTemplate object to return the accumulated value for a specific 
field. For example, the following statements calculate the accumulated value of the field template created as 
Cost in TotalCost.

Dim TotalCost As Double
TotalCost = Cost.Accumulation

The Accumulation property is read only.

{button Related Topics,PI(`',`IDH_RT_Working_with_Data_Field_Values')}



Knowing When Data Fields Change
Opening the Field Viewer

Accumulation property
Day property
FieldValues property
FormattedValue property
IsEmpty property
Month property
Value property
Year property

Item method



Knowing When Data Fields Change
Sometimes you want to know when the user has changed a data field value so you can react to that change. You 
can use the FieldValueChangedNOTIFY event to be notified when a field has changed.
Note

For custom contol notification to function, you must register events using the RegisterEvent method of 
the Application object. (See Registering Event Procedures.) For example, the following statement registers the 
FieldValueChangedNOTIFY event.

ABC.RegisterEvent ABC1.VBX, Form1.Caption, "FieldValueChangedNOTIFY"

When you are notified with the FieldValueChangedNOTIFY event that a field has changed, you can use the 
FieldValue object of the VBX (ABC1.FieldValue) to access that field. ABC1.Object tells you which shape or line had
the change made in the field value. (ABC1.Chart tells you which chart the object is in.)
The following subroutine checks any changed field. If the field is the cost and if it is zero, then the object 
changes to red.

Sub ABC1_FieldValueChangedNOTIFY ()
If ABC1.FieldValue.Name = "Cost" And ABC1.FieldValue.Value = 0 Then

ABC1.Object.Color = ABC1.App.RED
End If

{button Related Topics,PI(`',`IDH_RT_Knowing_When_Data_Fields_Change')}



FieldValueChangedNOTIFY event
RegisterEvent method



Opening the Field Viewer
The Field Viewer dialog box is used in ABC to enter and display data in fields for a selected shape.
You open the Field Viewer using the FieldViewerVisible property in the Application object. Set the property to 
True to display the Field Viewer or to False to hide it.

ABC.FieldViewerVisible = True  ' Field Viewer is open
ABC.FieldViewerVisible = False  ' Field Viewer is closed

{button Related Topics,PI(`',`IDH_RT_Opening_the_Field_Viewer')}



FieldViewerVisible property



Viewing the Legend
The Legend in ABC shows the totals of the data fields in a chart. The totals reflect the current state of the chart 
and update automatically when any field changes.
The totals in the Legend have the same font and style as other data field fonts. See Setting Data Field 
Preferences for information about formatting field data.
Fields with the accumulation method No Accumulation do not appear in the Legend. See Changing Data Field 
Attributes for information on setting a data field's accumulation method.
In ABC, you show or hide the Legend by clicking Legend in the Data menu. In ABC OLE Automation, you use the 
ShowLegend property of the Chart object to show or hide the Legend or to determine whether the Legend is 
already displayed. When ShowLegend is True, the Legend displays; when it is False, the Legend is hidden.
The following statement shows the Legend.

Chart.ShowLegend = True

Use the following statement to hide the Legend.

Chart.ShowLegend = False

{button Related Topics,PI(`',`IDH_RT_Viewing_the_Legend')}



Changing Data Field Attributes
Setting Data Field Preferences

ShowLegend property



Using Linked Field Data
One of the most useful features of ABC is linked charts. Linking charts lets you have a top-level chart showing 
only summaries, and then go quickly to the linked charts to see details that would otherwise obscure the overall 
picture. You can find information about linking using the help system for ABC FlowCharter.
The LinkFields property in the Shape object returns True if the object's field data show the accumulation of the 
field data in the linked chart. For example, the following statements set the value of LinkedData to the value of 
the Cost field if the object is linked to another chart and shows the information from that chart.

If Shape1.LinkFields Then
LinkedData = Shape1.Fields.Item("Cost").Value

End If

The UpdateFields method in the Chart object updates all the fields for all the linked shapes in a chart so they 
reflect the values in the linked charts. It is the equivalent of opening the Fields menu in ABC and choosing the 
Update command. For example, the following statement updates the fields for all shapes in the chart that are 
linked to another chart.

Chart.UpdateFields

For information on the LinkNOTIFY event, the LinkIndicator property, the LinkShadow property, the 
IsLaunched property, the IsLinked property, the LinkedChartName property, and the Link method, see 
Linking Charts.
You can empty data fields using the Empty method of the FieldValue object. For example, the following 
statement empties the value from the existing "Assigned" data field for Shape1.

Shape1.FieldValues.Item("Assigned").Empty

{button Related Topics,PI(`',`IDH_RT_Using_Linked_Field_Data')}



Linking Charts

LinkNOTIFY event

Empty method
Link method
UpdateFields method

IsLaunched property
IsLinked property
LinkedChartName property
LinkFields property
LinkIndicator property
LinkShadow property



Color Constants Description
When you want to set colors quickly and want to choose only among the sixteen VGA colors, you can use the 
colors whose names are defined as constants in ABC OLE Automation, such as ABC.BLUE. The following table lists
the color constants.
Color Name
White WHITE
Black BLACK
Red RED
Green GREEN
Blue BLUE
Yellow YELLOW
Magenta MAGENTA
Cyan CYAN
Gray GRAY
Dark Red DK_RED
Dark Green DK_GREEN
Dark Blue DK_BLUE
Dark Yellow DK_YELLOW
Dark Magenta DK_MAGENTA
Dark Cyan DK_CYAN
Dark Gray DK_GRAY

For example, suppose you want to set the color of shape numbers to red. The following statements do that.

Dim ABC As Object
Set ABC = CreateObject (ABCFlow.Application)
ABC.ActiveChart.NumberFont.Color = ABC.RED

It does not matter what variable you use for the ABC application. The "ABC" in the previous statements depends 
on the Dim. The following statements have exactly the same effect.

Dim ABCApplication As Object
Set ABCApplication = CreateObject (ABCFlow.Application)
ABCApplication.ActiveChart.NumberFont.Color = ABCApplication.RED

Note
You cannot change the values of the constants. For example, you cannot make the constant DK_YELLOW 

yield the color red.

{button Related Topics,PI(`',`IDH_RT_Color_Constants_Description')}



Color Constants Description
Color Equivalents



BasicColor Method Description
A quick way to set the color is using the array of colors in the BasicColor method of the Application object. As 
with the defined constants, the BasicColor method lets you set colors from the sixteen VGA colors. For 
example, the following statement sets the color of shape numbers color to blue.

ABC.ActiveChart.NumberFont.Color = ABC.BasicColor(4)

The following chart lists the BasicColor method values.
Color BasicColor
White 0
Black 1
Red 2
Green 3
Blue 4
Yellow 5
Magenta 6
Cyan 7
Gray 8
Dark Red 9
Dark Green 10
Dark Blue 11
Dark Yellow 12
Dark Magenta 13
Dark Cyan 14
Dark Gray 15
Note

You cannot change the values in the BasicColor method. For example, you cannot make BasicColor(10) 
yield the color purple.

{button Related Topics,PI(`',`IDH_RT_BasicColor_Method_Description')}



Color Constants Description
Color Equivalents

BasicColor method



RGB Values
If you want to use a color that is not one of the 16 defined in ABC OLE Automation, you can specify the color as 
quantities of red, green, and blue. You specify each color with a number from 0 (no color) through 255 (solid 
color). By specifying values for red, green, and blue, you can choose from over 16 million colors. You specify the 
colors using the MakeRGB method of the Application object.
For example, MakeRGB(0,0,255) is no red, no green, and solid blue, so it specifies blue. MakeRGB(255,255,0) is
solid red, solid green, and no blue, so it specifies yellow. MakeRGB(127,0,255) is 50% red, no green, and solid 
blue, so it specifies a purple color. For example, the following statement sets the color of shape numbers to 
purple.

ABC.ActiveChart.NumberFont.Color = ABC.MakeRGB(127,0,255)

{button Related Topics,PI(`',`IDH_RT_RGB_Values')}



Color Constants Description
Color Equivalents

MakeRGB method



Color Double Values
You can specify a color as a double. You probably only want to use this method when you are passed a color from
another application.
In this method, the color equals the decimal equivalent of six hexadecimal digits. The first two hexadecimal 
digits set the blue component, the second two set the green component, and the third two set the red 
component. (Notice that the order is reversed from when you are using MakeRGB.)

For example, FF0000 in hexadecimal means solid blue, no green, and no red. If you set an object to &HFF0000 (or 
to 16777216, the decimal equivalent of &HFF0000), the object is set to blue.

Most programmers work in hexadecimal rather than decimal for colors, using the Visual Basic language element 
&H to specify that the following number is in hexadecimal, but you can use whichever makes you most 
comfortable. For example, the following statements both set the color of shape numbers to blue.

ABC.ActiveChart.NumberFont.Color = &HFF000
ABC.ActiveChart.NumberFont.Color = 16777216

Tip
You can use the Windows Calculator to convert between hexadecimal and decimal numbers. After choosing 
Scientific in the Calculator's View menu, type a number and select Hex or Dec to convert it. See your Windows 
documentation for more information.

{button Related Topics,PI(`',`IDH_RT_Color_Double_Values')}



Color Constants Description
Color Equivalents
RGB Values

MakeRGB method



Color Equivalents
The following table shows the equivalents for the sixteen VGA colors for the four-color methods. You can set over
sixteen million different colors using MakeRGB or double values.

Double Double
Color Name BasicColor MakeRGB (Decimal) (Hex)
White WHITE 0 (255,255,255) 16777215 FFFFFF
Black BLACK 1 (0,0,0) 0 0
Red RED 2 (255,0,0) 255 FF
Green GREEN 3 (0,255,0) 65280 FF00
Blue BLUE 4 (0,0,255) 16711680 FF0000
Yellow YELLOW 5 (255,255,0) 65535 FFFF
Magenta MAGENTA 6 (255,0,255) 16711935 FF00FF
Cyan CYAN 7 (0,255,255) 16776960 FFFF00
Gray GRAY 8 (192,192,192) 12632256 C0C0C0
Dark Red DK_RED 9 (127,0,0) 127 7F
Dark Green DK_GREEN 10 (0,127,0) 32512 7F00
Dark Blue DK_BLUE 11 (0,0,127) 8323072 7F0000
Dark Yellow DK_YELLOW 12 (127,127,0) 326397 7F7F
Dark Magenta DK_MAGENTA 13 (127,0,127) 8323199 7F007F
Dark Cyan DK_CYAN 14 (0,127,127) 8355584 7F7F00
Dark Gray DK_GRAY 15 (127,127,127) 8355711 7F7F7F

The following five statements all do the same thing. Each changes the shape's fill color to blue.

Object.Shape.FillColor = ABC.BLUE
Object.Shape.FillColor = ABC.BasicColor(4)
Object.Shape.FillColor = ABC.MakeRGB(0,0,255)
Object.Shape.FillColor = 16711680
Object.Shape.FillColor = &HFF0000

You can use the MakeRGB method of the Application object to find the double equivalent of RGB values. For 
example, the following statement puts the double value for blue (16711680) into the variable CurrentColor.

Dim CurrentColor As Long
CurrentColor = ABC.MakeRGB(0,0,255)

{button Related Topics,PI(`',`IDH_RT_Color_Equivalents')}



Color Constants Description
BasicColor Method Description
RGB Values
Color Double Values

MakeRGB method



Setting Shape Colors
You can color a shape by setting its fill color, its border color, and its shadow color.
You set the fill color for shapes using the FillColor property of the Shape object or the Color property of the 
Object object. Both properties produce the same effect. For example, the following statements draw a shape and
then change its fill color to blue using the FillColor property. They then change its fill color to red using the 
Color property.

Dim NewObj1 As Object
Set NewObj1 = Chart.DrawShape
NewObj1.Shape.FillColor = ABC.BLUE
NewObj1.Color = ABC.RED

You set the border color for shapes using the BorderColor property of the Shape object. For example, the 
following statement makes the border of a shape green.

NewObj1.Shape.BorderColor = ABC.GREEN

You set the shadow color for shapes using the ShadowColor property of the Shape object. For example, the 
following statement makes the shadow of a shape gray.

NewObj1.Shape.ShadowColor = ABC.GRAY

{button Related Topics,PI(`',`IDH_RT_Setting_Shape_Colors')}



BorderColor property
FillColor property
Color property
ShadowColor property



Setting Line Colors
You set the colors for lines by coloring the entire line at once or by coloring parts of the line. You use the Color 
property to set the color for the entire line, including the source arrow, the stem, and the destination arrow.
You can use the Color property with either the Line_ object or the Object object. Using either object produces the
same effect. For example, the following statements draw a line and then change its color to blue using the Line_ 
object. They then change the line's color to red using the Object object.

Dim NewObj1 As Object
Set NewObj1 = DrawFreeLine (3,4)
NewObj1.Line_.Color = ABC.BLUE
NewObj1.Color = ABC.RED

You can color parts of a line by coloring the source arrow, the destination arrow, and the stem.

You color the arrow at the source of a line using the SourceArrowColor property of the Line_ object. For example, 
the following statement makes a source arrow red.

NewObj1.Line_.SourceArrowColor = ABC.RED

You color for stem of a line (the part excluding the destination arrow and source arrow) using the StemColor 
property of the Line_ object. For example, the following statement makes a stem yellow.

NewObj1.Line_.StemColor = ABC.YELLOW

You color the arrow at the destination of a line using the DestArrowColor property of the Line_ object. For 
example, the following statement makes a destination arrow blue.

NewObj1.Line_.DestArrowColor = ABC.BLUE

{button Related Topics,PI(`',`IDH_RT_Setting_Line_Colors')}



Color property
DestArrowColor property
SourceArrowColor property
StemColor property



Setting Text Colors
You can set the color of all the text objects that can occur in ABC. You set the color for text using the Color 
property of the Font object.
There are variations in how you set text color depending on where the text occurs. The following examples show 
each type of text object.

Object.Font.Color = ABC.BLUE  ' Text block or text on a line
Object.Font.Color = ABC.BLUE  ' Shape text
Object.Shape.NoteFont.Color = ABC.BLUE  ' Note text
Chart.FieldFont.Color = ABC.BLUE  ' Field text
Chart.NumberFont.Color = ABC.BLUE  ' Shape numbers
Chart.MasterItems.Date.Font.Color = ABC.BLUE  ' Text in the Date master item

You set the color of all the MasterItems text objects in the same way as the Date object in the above example. 
To set the text color for the ChartName, Logo, PageNumber, Text1, Text2, and Time MasterItems objects, 
replace Date in the above example with the appropriate MasterItems object.
For more information on formatting text, see Formatting Text.

{button Related Topics,PI(`',`IDH_RT_Setting_Text_Colors')}



Formatting Text

ChartName property
Color property
Date property
Logo property
PageNumber property
Text1 property
Text2 property
Time property



What Are ABC Events?
ABC events are the key to running an automation program. For example, suppose you want an program to turn 
any shape gray when the user tries to delete it. Since you don't know when the user will delete a shape, and you
don't know what shape the user will delete, you want your program alerted each time the user presses the DEL 
key.
Pressing the DEL key is an event. Each time an event occurs, your program can run a procedure specific to that 
event, known as an event procedure. When a user presses the DEL key, for example, your program can 
automatically run the DeleteSUBCLASS event procedure.
Other examples of ABC events are creating a new chart, selecting a shape, moving a shape, replacing a shape, 
and drawing a line. ABC events can be triggered by actions of the user or by program instructions.
The names of the events recognized by ABC OLE Automation are listed below.

AppQuitNOTIFY FieldValueChangedNOTIFY
AppQuitSUBCLASS LinkNOTIFY
AppMenuHintSUBCLASS NewLineNOTIFY
AppMenuPopupSUBCLASS NewShapeNOTIFY
AppMenuSUBCLASS ObjectClickSUBCLASS
ChartActivateNOTIFY ObjectFontChangeNOTIFY
ChartDeActivateNOTIFY ObjectLineAttachNOTIFY
ChartChangeNOTIFY ObjectLineDeAttachNOTIFY
ChartCloseSUBCLASS ObjectMovedNOTIFY
ChartNewNOTIFY ObjectMoveSUBCLASS
ChartOpenNOTIFY ObjectSizedNOTIFY
ChartPasteNOTIFY ObjectSizeSUBCLASS
DeleteSUBCLASS ObjectTextChangedNOTIFY
DoubleClickSUBCLASS ReplaceShapeNOTIFY
ExclusiveSelectionNOTIFY SpecialKeySUBCLASS

These events provide the capabilities you need to write programs that can interact with the user to create and 
manipulate ABC charts.
Warning

You should not put a method inside an event if that method generates the event. For example, you should 
not put a call to the Link method inside the LinkNOTIFY event. If you do so, the program will go into an endless 
loop, ABC will crash, Visual Basic may crash, and Windows will become unstable.

To tell your program to perform a particular task when an event occurs, you add program instructions to the 
event procedure for that event. When ABC OLE Automation detects the event, it executes the instructions in the 
associated event procedure. At the conclusion of the event procedure, ABC OLE Automation returns to a state in 
which it waits for another event.
Note

ABC OLE Automation requires that you identify the event procedures you want executed by registering the 
events. For more information on registering events, see Registering Event Procedures.

SUBCLASS and NOTIFY Events
ABC has standard actions that it performs when an event is triggered. These actions, called standard behaviors, 
are independent of any tasks performed by program instructions in the event procedure for a triggered event. 
For example, the standard behavior for the AppQuitSUBCLASS event is to close ABC.
ABC events are in two categories, depending on whether the event procedure is executed before or after the 
event's standard behavior.

Subclass event procedures execute before ABC performs its standard behavior. Subclass event procedures 
are identified by the use of SUBCLASS in the event's name.

Notify event procedures execute after ABC performs its standard behavior. Notify event procedures are 
identified by the use of NOTIFY in the event's name.



You can cancel the standard behavior of a subclass event by setting the Override property of the ABC1 object to
True in the event procedure for the event. You cannot override the standard behavior of a notify event, because 
the standard behavior is performed before the event procedure executes.

The sample below demonstrates overriding the standard behavior of a subclass event.

Sub ABC1_DeleteSUBCLASS ( )
Dim ABCObj As Object ' Declare local object variable
Set ABCObj = ABC1.Object ' Set ABCObj to event object
Set ABCObj.Text = "Deleted" ' Set Text of deleted object
ABC1.Override = True ' Override standard behavior

End Sub

{button Related Topics,PI(`',`IDH_RT_What_Are_ABC_Events')}



Registering Event Procedures

AppQuitNOTIFY event
AppQuitSUBCLASS event
AppMenuSUBCLASS event
AppMenuHintSUBCLASS event
AppMenuPopupSUBCLASS event

ChartActivateNOTIFY event
ChartChangeNOTIFY event
ChartCloseSUBCLASS event
ChartDeActivateNOTIFY Event 
ChartNewNOTIFY event

ChartOpenNOTIFY event
ChartPasteNOTIFY event
DeleteSUBCLASS event
DoubleClickSUBCLASS event
ExclusiveSelectionNOTIFY event

FieldValueChangedNOTIFY event
LinkNOTIFY event
NewLineNOTIFY event
NewShapeNOTIFY event
ObjectClickSUBCLASS event

ObjectFontChangeNOTIFY event
ObjectLineAttachNOTIFY event
ObjectLineAttachNOTIFY Event 
ObjectMovedNOTIFY event
ObjectMoveSUBCLASS event

ObjectSizedNOTIFY event
ObjectSizeSUBCLASS event
ObjectTextChangedNOTIFY event
Override property
ReplaceShapeNOTIFY event

SpecialKeySUBCLASS event



Registering Event Procedures
The purpose of registering events is to identify the event procedures that you want ABC OLE Automation to 
execute. Registering an event does not determine whether the event executes when triggered, but only whether 
the procedure associated with the event is executed also.
ABC OLE Automation requires that all event procedures except AppMenuSUBCLASS be registered before they 
can be executed. The AppMenuSUBCLASS event is registered automatically when an add-on menu is created 
with the AddMenu method of the Application object.
Normally, you register event procedures in the startup or initialization code of your program. If you want to "turn 
off" an event procedure that you have registered previously, you can unregister it. When your program ends, all 
events for all ABC VBXs on any form in your program unregistered are automatically.
Note

If the program will be used with ABC FlowCharter 4.0, then you must unregister each registered event 
manually. The events will not be unregistered automatically when ABC shuts down. (See below for information on 
the UnregisterEvent method.) 

You use the RegisterEvent method of the Application object to register an event procedure. The general syntax 
for the RegisterEvent method if you have added the VBX control to your form is shown below. (See To install 
the ABC VB event handler.)

ABC.RegisterEvent VBXName.VBX, IdString, "EventName" [,ChartType]
The VBXName.VBX parameter identifies the ABC OLE Automation control to which the registered events apply. 
Unless you have changed the ABC OLE Automation control's Name property from its default setting, VBXName is 
ABC1.
If you are using the OCX control, the general syntax is slightly different. (See To install the OCX event handler.) 
Note that there is no extension for the OCXName. Unless you have changed the ABC OLE Automation control's 
Name property from its default setting, OCXName is also ABC1.

ABC.RegisterEvent OCXName, IdString, "EventName" [,ChartType]
The IdString parameter identifies the Visual Basic form on which the ABC OLE Automation control is located. 
IdString is normally the Caption property setting of the form (Form1.Caption, by default).
The EventName parameter is the name of the event being registered. This name must be enclosed in quotes.
The ChartType parameter is optional. If ChartType is omitted, the registered events apply to all charts. If you 
wish to register the event for only a particular type of chart, then specify that chart Type for this parameter. You 
set a chart's type with the Type property of the Chart object.
Note

ABC OLE Automation does not permit two or more ABC applications that are running at the same time to 
register the same events, unless the events are registered for different chart types. For information on this 
restriction, see Registering Events and Multiple ABC Applications.

Some examples of registering events are shown below. The first example registers the ChartNewNOTIFY event 
for all charts in the application. The second example registers the DeleteSUBCLASS event for charts of the type
Hourly.

ABC.RegisterEvent ABC1.VBX, Caption, "ChartNewNOTIFY"
ABC.RegisterEvent ABC1.VBX, Caption, "DeleteSUBCLASS", "Hourly"

You use the UnRegisterEvent method of the Application object to unregister an event. The general syntax for 
the UnRegisterEvent method is shown below.

ABC.UnRegisterEvent VBXName.VBX, "EventName" [, ChartType]
VBXName.VBX (or OCXName with no extension) is the name of the ABC OLE Automation control, EventName is 
the name of the event being unregistered, and ChartType is the chart Type. EventName must be enclosed in 
quotes. ChartType is optional.
Some examples of unregistering events are shown below. The first example unregisters the ChartNewNOTIFY 



event for all charts in the application. The second example unregisters the DeleteSUBCLASS event for charts of
the type Hourly.

ABC.UnRegisterEvent ABC1.VBX, "ChartNewNOTIFY"
ABC.UnRegisterEvent ABC1.VBX, "DeleteSUBCLASS", "Hourly"

{button Related Topics,PI(`',`IDH_RT_Registering_Event_Procedures')}



Registering Events and Multiple ABC Applications

AddMenu method
RegisterEvent method
UnRegisterEvent method

AppMenuSUBCLASS event
ChartNewNOTIFY event
DeleteSUBCLASS event

Caption property
Type property



Registering Events and Multiple ABC Applications
ABC OLE Automation imposes a restriction on the registration of events for multiple ABC applications. The same 
events cannot be registered by two or more ABC applications running at the same time, unless the events are 
registered for different chart types.
The AppQuitNOTIFY, AppQuitSUBCLASS, and SpecialKeySUBCLASS events are exempt from this limitation 
and can be registered by multiple ABC applications without restriction.
An example will make this restriction clear. Assume that you are running an ABC application that registers the 
DeleteSUBCLASS event using the statement shown below.

ABC.RegisterEvent ABC1.VBX, AutoParts, "DeleteSUBCLASS"

If you now attempt to run a second ABC application that registers the DeleteSUBCLASS event, you will be 
notified of the event conflict by ABC and asked to close the first application before the second application can 
run.
To avoid this kind of event conflict, design your programs so that they deal with specific chart types. This lets 
you to register events only for those chart types, thereby avoiding any event conflicts with other concurrently 
running ABC applications.

{button Related Topics,PI(`',`IDH_RT_Registering_Events')}



AppQuitNOTIFY event
AppQuitSUBCLASS event
DeleteSUBCLASS event
SpecialKeySUBCLASS event



Event Variables
ABC OLE Automation passes information to its event procedures by setting various ABC OLE Automation object 
variables. These object variables are local to the event procedure and are reset each time the event procedure is
called. If you need to save the value of one of these ABC OLE Automation object variables between executions of
the event procedure, you must save the value of the ABC OLE Automation object variable in a global object 
variable.
Not all ABC OLE Automation object variables apply to all events. The event definitions that appear in later 
sections of this chapter describe which ABC OLE Automation object variables are valid for each event.
The ABC OLE Automation variables passed to events are defined below.
Variable Definition
App The Application object that triggered this event.
Chart The Chart object in which this event occurred.
Object The Object object to which the event applies. This variable is set only if the event applies to 

a single Object.
Object2 The second object to which the event applies. This variable is only set using the 

ObjectLineAttachNOTIFY event.
FieldValue The FieldValue object to which the event applies.
Menu The Menu object to which this event applies.
MenuItem The MenuItem object to which this event applies.
WParam Set only for the SpecialKeySUBCLASS event. (This is a Long variable, not an Object 

variable.)
LParam Reserved for future use.
Override A property that lets you cancel normal ABC behavior in response to an event. It is 

automatically reset to False at the end of every event call.
VBX A property that is used for registering events and adding menus to let ABC add a 

communication path to your program. (This property is not available if you are using the 
OCX custom control.)

The following example of an event procedure uses an ABC OLE Automation object variable. It tests the Type 
property of the Chart object passed to the event procedure. If the Type property is PartTime, then the event 
procedure sets Override to True, which cancels the standard behavior for the event.

Sub ABC1_ChartMoveSUBCLASS ( )
If ABC1.Chart.Type = PartTime Then

ABC1.Override = True
End If

End Sub

{button Related Topics,PI(`',`IDH_RT_Event_Variables')}



Override property
SpecialKeySUBCLASS event
Type property



When ABC Closes
ABC has two events relating to closing: AppQuitSUBCLASS and AppQuitNOTIFY.
The AppQuitSUBCLASS event occurs when a request is made to close ABC. The user can request that ABC 
close by a clicking Exit on the File menu of ABC, pressing the keyboard shortcut ALT+F4, or double clicking the 
Control box of the ABC window. The AppQuitSUBCLASS event procedure is triggered before ABC closes. You can
prevent ABC from closing by setting the ABC1 Override property to True.
An AppQuitSUBCLASS example is shown below. This example tests the UpdateDone variable to determine if 
ABC should be closed. If UpdateDone is False, then the procedure overrides the user's request to close ABC and 
displays a message indicating that ABC cannot be closed.

Sub ABC1_AppQuitSUBCLASS ( )
If UpdateDone = False Then ' Test variable

ABC1.Override = True ' Override close behavior
Message = "Update incomplete. Cannot close ABC."
ABC.MsgBox Message ' Display message

End If
End Sub

The AppQuitNOTIFY event occurs when ABC is closed. The AppQuitNOTIFY event procedure can be used for 
final actions that you want your program to perform before it closes. If you want the Visual Basic application to 
close when ABC does, put a Visual Basic End statement in this procedure.
An AppQuitNOTIFY example is shown below. This example calls the general procedure ShutDown to perform its
final actions and then executes End to close the application.

Sub ABC1_AppQuitNOTIFY ( )
ShutDown ' Perform final actions
End ' Close application

End Sub

{button Related Topics,PI(`',`IDH_RT_When_ABC_Closes')}



AppQuitNOTIFY event
AppQuitSUBCLASS event
Override property



When Add-On Menus Open
The AppMenuPopupSUBCLASS event occurs when the user opens an add-on menu by clicking the menu's 
name. Add-on menus are created with the AddMenu method of the Application object. The 
AppMenuPopupSUBCLASS event procedure is triggered before ABC displays the add-on menu. The menu that 
is about to open is passed to the event procedure in the Menu object variable.
Because the AppMenuPopupSUBCLASS event is triggered before the add-on menu opens, you can use this 
event procedure to determine whether any items on the add-on menu should be disabled (gray) or checked. A 
menu item is disabled by setting the Enabled property of the MenuItem object to False. A menu item is checked 
by setting the Checked property of the MenuItem object to True.
An AppMenuPopupSUBCLASS example is shown below. This example assumes that other code has created an 
add-on menu with the items Shape Count and Line Count.

Sub ABC1_AppMenuPopupSUBCLASS ( )
Dim ShapeCmd As Object ' Declare object variable
Dim LineCmd As Object ' Declare object variable
If CurrentShapeCount = 0 Then

Set ShapeCmd = ABC1.Menu.Item("Shape Count") ' Get MenuItem object
ShapeCmd.Enabled = False ' Gray item

End If
If CurrentLineCount = 0 Then

Set LineCmd = ABC1.Menu.Item("Line Count") ' Get MenuItem object
LineCmd.Enabled = False ' Gray item

End If
End Sub

The procedure tests the status of the CurrentShapeCount and CurrentLineCount variables to determine whether 
the Shape Count and Line Count menu items should be disabled. The Shape Count menu item is disabled when 
the CurrentShapeCount is zero. The Line Count menu item is disabled when the CurrentLineCount is zero.

{button Related Topics,PI(`',`IDH_RT_When_Add_On_Menus_Open')}



AddMenu method
AppMenuPopupSUBCLASS event
Checked property
Enabled property



When MenuItems Are Highlighted
The AppMenuHintSUBCLASS event occurs when the user moves the menu cursor to an item on an add-on 
menu. The AppMenuHintSUBCLASS event procedure is triggered before ABC highlights the menu item. The 
menu item to be highlighted is passed to the event procedure in the MenuItem object variable.
An AppMenuHintSUBCLASS example is shown below. This example illustrates how to use the 
AppMenuHintSUBCLASS event procedure to display hint line messages describing the purpose of items on an 
add-on menu.

Sub ABC1_AppMenuHintSUBCLASS ( )
If ABC1.MenuItem = "Shape Count" Then

ABC1.App.Hint("Click to display shape count") ' Show hint
End If
If ABC1.MenuItem = "Line Count" Then

ABC1.App.Hint("Click to display line count") ' Show hint
End If

End Sub

This example determines which menu item is to be highlighted and displays the appropriate hint line message.

{button Related Topics,PI(`',`IDH_RT_When_MenuItems_Are_Highlighted')}



AppMenuHintSUBCLASS event



When MenuItems Are Chosen
The AppMenuSUBCLASS event occurs when the user chooses an item on an add-on menu. The menu item 
object that was chosen is passed to the event procedure in the MenuItem variable.
Note

Do not register the AppMenuSUBCLASS event. The AppMenuSUBCLASS event is registered 
automatically when an add-on menu is created.

An AppMenuSUBCLASS example is shown below. This example determines which menu item is chosen and 
executes the general procedure that performs the function of the item. Because it may take some time to count 
the shapes or lines, the procedure displays the hourglass cursor using the Hourglass property of Application 
object before it performs the counting operation. When the counting is complete, it clears the hourglass.

Sub ABC1_AppMenuSUBCLASS ( )
ABC.Hourglass = True ' Display hourglass
If ABC1.MenuItem = "Shape Count" Then

X = Shapes.Count
End If
If ABC1.MenuItem = "Line Count" Then

Y = Object.Count
End If
ABC.Hourglass = False ' Clear hourglass

End Sub

{button Related Topics,PI(`',`IDH_RT_When_MenuItems_Are_Chosen')}



AppMenuSUBCLASS event
Hourglass property



When Charts Open
The ChartOpenNOTIFY event occurs when the user opens a new chart file by clicking Open on the File menu of 
ABC. The ChartOpenNOTIFY event procedure is triggered following the successful opening of the chart file. The
opened chart object is passed to the event procedure in the Chart object variable.
A ChartOpenNOTIFY example is shown below. This example stores the path and the page count of the newly 
opened chart in the global variables CurrentPath and CurrentPages.

Sub ABC1_ChartOpenNOTIFY ( )
CurrentPath = ABC1.Chart.FullName ' Save path of chart
CurrentPages = ABC1.Chart.PageCount ' Save chart page count

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Charts_Open')}



ChartOpenNOTIFY event



When Linked Charts Open
The LinkNOTIFY event occurs when a chart file is opened by double-clicking the object to which it is linked. The 
LinkNOTIFY event procedure is triggered following the successful opening of the chart file.
The chart object from which the linked chart was opened (the source chart) is passed to the event procedure in 
the Chart object variable. The linked chart object (the chart just opened) can be obtained using the ActiveChart
property of the Application object. The Object that was double-clicked in the source chart to open the linked 
chart is passed to the event procedure in the Object object variable.
The LinkNOTIFY example below saves the source chart, source object, and linked chart in the global object 
variables SourceChart, SourceObject, and CurrentChart.

Sub ABC1_LinkNOTIFY ( )
SourceChart = ABC1.Chart ' Save source chart
SourceObject = ABC1.Object ' Save source object
CurrentChart = ABC1.ActiveChart ' Save linked chart

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Linked_Charts_Open')}



ActiveChart property
LinkNOTIFY event



When New Charts Are Created
The ChartNewNOTIFY event occurs when the user creates a new chart by clicking New on the File menu of 
ABC. The ChartNewNOTIFY event procedure is triggered following the creation of the new chart. The new chart 
object is passed to the event procedure in the Chart object variable.
A ChartNewNOTIFY example is shown below. It enlarges the new chart to full size.

Sub ABC1_ChartNewNOTIFY ( )
ABC1.Chart.Maximize

End Sub

{button Related Topics,PI(`',`IDH_RT_When_New_Charts_Are_Created')}



ChartNewNOTIFY event



When Charts Are Activated
The ChartActivateNOTIFY event occurs when a chart is activated by clicking it or choosing it from a menu. The
ChartActivateNOTIFY event procedure is triggered following the activation of the chart. The activated chart 
object is passed to the event procedure in the Chart object variable. The ChartDeActivateNOTIFY event occurs
when a different chart is activated. (It does not occur when a chart closes.)
The ChartActivateNOTIFY example shown below tests the Type property of the activated chart and executes 
the general procedure DeployEditMode if it is a CHARTTYPE type. If the activated chart is not a CHARTTYPE type, 
then its Caption (title) property is set to the standard caption "Micrografx ABC FlowCharter 6.0."

Sub ABC1_ChartActivateNOTIFY ( )
If ABC1.Chart.Type = CHARTTYPE Then

Call DeployEditMode
Else

ABC1.App.Caption = "" ' Set to standard caption
End If

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Charts_Are_Activated')}



Caption property
ChartActivateNOTIFY event
ChartDeActivateNOTIFY Event 
Type property



When Charts Change
The ChartChangeNOTIFY event occurs when a chart is changed in any way. The ChartChangeNOTIFY event 
procedure is triggered following the changing of the chart. The changed chart object is passed to the event 
procedure in the Chart object variable.
The ChartChangeNOTIFY example shown below sets the chart's Type property to MODIFIED to indicate that it 
has been changed.

Sub ABC1_ChartChangeNOTIFY ( )
ABC1.Chart.Type = MODIFIED

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Charts_Change')}



ChartChangeNOTIFY event



When Charts Are Pasted
The ChartPasteNOTIFY event occurs when a user pastes something into a chart by pressing the keyboard 
shortcut CTRL+V or clicking Paste on the Edit menu of ABC. The ChartPasteNOTIFY event procedure is 
triggered following the paste. The chart object is passed to the event procedure in the Chart object variable.
A ChartPasteNOTIFY example is shown below. After a paste operation, the objects pasted into a chart are the 
only selected objects. This example uses this feature to color the pasted objects blue.

Sub ABC1_ChartPasteNOTIFY ( )
Dim Obj As Object, Objs As Object ' Declare variables
ABC.Hourglass = True ' Display hourglass

Set Objs = ABC1.Chart.Objects
Do

Set Obj = Objs.ItemFromSelection ' Get selected object
Obj.Color = ABC.BLUE ' Color it blue

Loop While Obj ' Loop until done

ABC.Hourglass = False ' Clear hourglass
End Sub

{button Related Topics,PI(`',`IDH_RT_When_Charts_Are_Pasted')}



ChartPasteNOTIFY event



When Charts Close
The ChartCloseSUBCLASS event occurs when the user closes a chart by clicking Close on the File menu of ABC.
The ChartCloseSUBCLASS event procedure is triggered immediately before the user is prompted to save 
changes and the chart is closed. The closing chart object is passed to the event procedure in the Chart object 
variable.
The ChartCloseSUBCLASS example below calls a general procedure to update an external database when a 
chart is closed.

Sub ABC1_ChartCloseSUBCLASS ( )
UpdateDatabase

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Charts_Close')}



ChartCloseSUBCLASS event



When Objects Are Clicked
The ObjectClickSUBCLASS event occurs when the user clicks an object. The ObjectClickSUBCLASS event 
procedure is triggered before ABC shows the Object as selected.
The clicked Object is passed to the event procedure in the Object variable, and the chart in which the Object is 
located is passed in the Chart variable.
An ObjectClickSUBCLASS example is shown below. This example tests the Type property of the active chart 
and sets the clicked object to Green if it is a PartTime type and to Yellow otherwise.

Sub ABC1_ObjectClickSUBCLASS ( )
If ABC1.Chart.Type = PartTime Then

ABC1.Object.Color = ABC1.App.GREEN
Else

ABC1.Object.Color = ABC1.App.YELLOW
End If

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Objects_Are_Clicked')}



ObjectClickSUBCLASS event
Type property



When Objects Are Selected
The ExclusiveSelectionNOTIFY event occurs when the user selects a single Object object. The 
ExclusiveSelectionNOTIFY event procedure is triggered after ABC shows the Object as selected.
The selected Object is passed to the event procedure in the Object variable, and the chart in which the Object is 
located is passed in the Chart variable.
An ExclusiveSelectionNOTIFY example is shown below. It copies any single object selected to the Clipboard.

Sub ABC1_ExclusiveSelectionNOTIFY ( )
If ABC1.Chart.Copy

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Objects_Are_Selected')}



ExclusiveSelectionNOTIFY event



When Objects Move
ABC OLE Automation has two events relating to moving objects: ObjectMoveSUBCLASS and 
ObjectMovedNOTIFY.
The ObjectMoveSUBCLASS event occurs when the user starts to move an Object object. The 
ObjectMoveSUBCLASS event procedure is triggered before ABC initiates any move behavior.
The Object about to move is passed to the event procedure in the Object variable, and the chart in which the 
Object is located is passed in the Chart variable.
An ObjectMoveSUBCLASS example is shown below. This example saves the left and top locations of the object 
before it is moved in the global variables GLeft and GTop.

Sub ABC1_ObjectMoveSUBCLASS ( )
GLeft = ABC1.Object.Left ' Save left edge
GTop = ABC1.Object.Top ' Save top edge

End Sub

The ObjectMovedNOTIFY event occurs when an Object object is moved. The ObjectMovedNOTIFY event 
procedure is triggered after ABC has moved the Object.
The Object that was moved is passed to the event procedure in the Object variable, and the chart in which the 
Object is located is passed in the Chart variable.
An ObjectMovedNOTIFY example is shown below. This example uses the Type property of the moved Object to
decide its action. For a PHASE type, the procedure sets the top edge of the moved Object to GTop. For a DEPT 
type, the procedure sets the left edge of the moved Object to GLeft.

Sub ABC1_ObjectMovedNOTIFY ( )
If ABC1.Object.Type = PHASE Then

ABC1.Object.Top = GTop
End If
If ABC1.Object.Type = DEPT Then

ABC1.Object.Left = GLeft
End If

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Objects_Move')}



ObjectMoveSUBCLASS event
ObjectMovedNOTIFY event
Type property



When Objects Are Resized
ABC OLE Automation has two events relating to resizing objects: ObjectSizeSUBCLASS and 
ObjectSizedNOTIFY.
The ObjectSizeSUBCLASS event occurs when the user starts to resize an Object object. The 
ObjectSizeSUBCLASS event procedure is triggered before ABC initiates any resizing behavior.
The Object to be resized is passed to the event procedure in the Object variable, and the chart in which the 
Object is located is passed in the Chart variable.
The ObjectSizeSUBCLASS example shown below saves the height and width of the object before it is resized in
the global variables GHeight and GWidth.

Sub ABC1_ObjectSizeSUBCLASS ( )
GHeight = ABC1.Object.Height ' Save object height
GWidth = ABC1.Object.Width ' Save object width

End Sub

The ObjectSizedNOTIFY event occurs when an Object object is resized. The ObjectSizedNOTIFY event 
procedure is triggered after ABC has resized the Object.
The Object that was resized is passed to the event procedure in the Object variable, and the chart in which the 
Object is located is passed in the Chart variable.
The ObjectSizedNOTIFY example below tests the height and width of the resized object and resets these 
properties to GHeight and GWidth if they are less than those values.

Sub ABC1_ObjectSizedNOTIFY ( )
If ABC1.Object.Height < GHeight Then

ABC1.Object.Height = GHeight
End If
If ABC1.Object.Width < GWidth Then

ABC1.Object.Width = GWidth
End If

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Objects_Are_Resized')}



ObjectSizeSUBCLASS event
ObjectSizedNOTIFY event



When Objects Are Deleted
The DeleteSUBCLASS event occurs when one or more Objects are deleted. The user deletes Objects by 
selecting the Objects, and then pressing DEL or clicking Clear on the Edit menu. The DeleteSUBCLASS event 
procedure is triggered before ABC performs the deletion.
The Object to be deleted first is passed to the event procedure in the Object variable, and the chart in which the 
Object is located is passed in the Chart variable. You can use the SelectedObjectCount property of the Chart 
object to find the number of Objects selected for deletion. You can use the ItemFromSelection method of the 
Objects collection in a loop to access the Objects to be deleted.
A DeleteSUBCLASS example is shown below. This example tests all of the Objects selected for deletion and 
cancels the selection (and deletion) of any Objects of the DEPT type.

Sub ABC1_DeleteSUBCLASS ( )
Dim Obj As Object ' Declare variable

Do
Set Obj = Objects.ItemFromSelection ' Get object to delete
If Obj.Type = DEPT Then ' If DEPT type, then

Obj.Selected = False ' cancel selection
End If

Loop While Obj.Valid ' Loop until done
End Sub

{button Related Topics,PI(`',`IDH_RT_When_Objects_Are_Deleted')}



DeleteSUBCLASS event
ItemFromSelection method
SelectedObjectCount property



When Shapes Are Double Clicked
The DoubleClickSUBCLASS event occurs when the user double clicks a Shape object. The 
DoubleClickSUBCLASS event procedure is triggered before ABC shows the Shape as selected.
The clicked Shape is passed to the event procedure in the Object variable, and the chart in which the Shape is 
located is passed in the Chart variable.
The DoubleClickSUBCLASS example below beeps to indicate that a shape was double clicked and sets the 
Override property to cancel ABC's standard behavior for the double click event.

Sub ABC1_DoubleClickSUBCLASS ( )
Beep
ABC1.Override = True

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Shapes_Are_Double_Clicked')}



DoubleClickSUBCLASS event



When Shapes Are Drawn
The NewShapeNOTIFY event occurs when the user draws a new Shape object. The NewShapeNOTIFY event 
procedure is triggered after ABC draws the Shape.
The newly drawn Shape is passed to the event procedure in the Object variable, and the chart in which the 
Shape is located is passed in the Chart variable.
The NewShapeNOTIFY example below sets the color of the newly drawn shape to yellow.

Sub ABC1_NewShapeNOTIFY ( )
ABC1.Object.FillColor = ABC1.App.YELLOW ' Set color

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Shapes_Are_Drawn')}



NewShapeNOTIFY event



When Shapes Are Replaced
The ReplaceShapeNOTIFY event occurs when the user replaces one or more Shape objects. The 
ReplaceShapeNOTIFY event procedure is triggered after ABC replaces the Shape objects.
The Shape to be replaced first is passed to the event procedure in the Object variable, and the chart in which the
Shape is located is passed in the Chart variable. You can use the ItemFromShapes method of the Objects 
collection in a loop to access the Shapes to be replaced.
The ReplaceShapeNOTIFY example below counts the number of Decision shapes in a chart and reports that 
count to the user.

Sub ABC1_ReplaceShapeNOTIFY ( )
Dim Obj As Object, Objs As Object ' Declare variables

ABC.Hourglass = True ' Display hourglass
Counter = 0 ' Initialize count

Set Objs = ABC1.Chart.Objects
Do

Set Obj = Objs.ItemFromShapes
If Obj.Shape.ShapeName = "Decision" Then ' If Decision...

Counter = Counter + 1 ' ...bump counter
Loop While Obj ' Loop until done

ABC.Hourglass = False ' Clear hourglass
ABC.MsgBox "Decision Shape Count = " + Counter ' Show results

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Shapes_Are_Replaced')}



ItemFromShapes method
ReplaceShapeNOTIFY event



When Lines Are Drawn
The NewLineNOTIFY event occurs when the user draws a new Line object. The NewLineNOTIFY event 
procedure is triggered after ABC draws the Line.
The object to which the newly drawn Line is attached is passed to the event procedure in the Object variable, 
and the chart in which the Line is located is passed in the Chart variable.
The NewLineNOTIFY example below sets the color of the object to which the line was just attached to green.

Sub ABC1_NewLineNOTIFY ( )
ABC1.Object.Color = ABC1.App.GREEN ' Set color

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Lines_Are_Drawn')}



NewLineNOTIFY event



When Lines Attach
The ObjectLineAttachNOTIFY event occurs when the user attaches a line to an Object. The 
ObjectLineAttachNOTIFY event procedure is triggered after ABC attaches the Line. When a line is detached, 
the ObjectLineDeAttachNOTIFY event procedure is triggered
The Object to which the line is attached is passed to the event procedure in the Object variable, the line is 
passed in the Object2 variable, and the chart in which the Object is located is passed in the Chart variable.
An ObjectLineAttachNOTIFY example is shown below.

Sub ABC1_ObjectLineAttachNOTIFY ( )
ABC1.Object.Color = ABC1.App.GREEN ' Set color

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Lines_Attach')}



ObjectLineAttachNOTIFY event
ObjectLineDeAttachNOTIFY event 



When Fonts Change
The ObjectFontChangeNOTIFY event occurs when the user changes the font of one or more Text objects. The 
ObjectFontChangeNOTIFY event procedure is triggered after ABC displays the Text objects in the changed 
font.
The Text object that was changed first is passed to the event procedure in the Object variable, and the chart in 
which the text is located is passed in the Chart variable. You can use the ItemFromSelection method of the 
Objects collection in a loop to access the changed Text objects.
The ObjectFontChangeNOTIFY example below searches for all TextBlock objects (a Type 2 Text object is a 
TextBlock object) and resizes them to the same font size when a TextBlock's font size changes.

Sub ABC1_ObjectFontChangeNOTIFY ( )
Dim Text As Object, Objs As Object ' Declare variables

ABC.Hourglass = True ' Display hourglass

Set Objs = ABC1.Chart.Objects

Do
Set Text = Objs.ItemFromSelection ' Get selected object
If Text.Type = 2 Then Exit Do ' Exit if Type 2

Loop While Text ' Loop until done

If Text Then ' If TextBlock found...
Objs.ResetSearch ' ...reset to first object
Size = Text.Font.Size ' Get font size
Do

If Text.Type = 2 Then ' If TextBlock object
Text.Font.Size = Size ' Set font size

End If
Loop While Text ' Loop until done

ABC.Hourglass = False ' Clear hourglass
End Sub

{button Related Topics,PI(`',`IDH_RT_When_Fonts_Change')}



ItemFromSelection method
ObjectFontChangeNOTIFY event



When Field Values Change
The FieldValueChangedNOTIFY event occurs when the user changes a FieldValue object. The 
FieldValueChangedNOTIFY event procedure is triggered after ABC changes the FieldValue.
The FieldValue that was changed is passed to the event procedure in the FieldValue variable, the Object that 
owns the field is passed in the Object variable, and the chart in which the Object is located is passed in the Chart
variable.
A FieldValueChangedNOTIFY example is shown below. The example tests the new value of the FieldValue 
object to ensure that it is between 0 and 1000. If the field value is outside of this range, the invalid value is 
cleared and the user is instructed to enter a value in the valid range.

Sub ABC1_FieldValueChangedNOTIFY ( )
ChangedObject = ABC1.Object
Message = "Data not in range. Please enter a number between 0 and 1000."
If ABC1.FieldValue < 0 or > 1000 Then

ABC1.FieldValue.Empty ' Clear field value
ABC1.App.MsgBox Message ' Display instructions

End If
End Sub

{button Related Topics,PI(`',`IDH_RT_When_Field_Values_Change')}



FieldValueChangedNOTIFY event



When Special Keys Are Pressed
The SpecialKeySUBCLASS event occurs when the user presses one of the special keys. The 
SpecialKeySUBCLASS event procedure is triggered before ABC responds to the key press.
A code representing the key is passed to the event procedure in the WParam variable. These codes are defined 
in the table below.
Key Code Key Code
F1 1 TAB 13
F2 2 ESC 27
F3 3 PGUP 33
F4 4 PGDN 34
F5 5 END 35
F6 6 HOME 36
F7 7 LEFTARROW 37
F8 8 UP ARROW 38
F9 9 RIGHTAARROW 39
F10 10 DOWN ARROW 40
F11 11 INS 45
F12 12 DEL 46
A SpecialKeySUBCLASS example is shown below. It checks for F11 and F12. If F11 is found, ABC is maximized. 
If F12 is found, ABC is minimized.

Sub ABC1_SpecialKeySUBCLASS ( )
If ABC1.WParam = 11 Then ' If F11...

ABC1.Maximize ' ...maximize ABC and...
ABC1.Override = True ' ...override standard behavior

End If
If ABC1.WParam = 12 Then ' If F12...

ABC1.Minimize ' ...minimize ABC and...
ABC1.Override = True ' ...override standard behavior

End If
End Sub

{button Related Topics,PI(`',`IDH_RT_When_Special_Keys_Are_Pressed')}



SpecialKeySUBCLASS event



When Text Changes
The ObjectTextChangedNOTIFY event occurs when the user changes a TextBlock object. The 
ObjectTextChangedNOTIFY event procedure is triggered after ABC changes the TextBlock.
The Object that owns the text is passed in the Object variable, and the chart in which the Object is located is 
passed in the Chart variable.
An ObjectTextChangedNOTIFY event example is shown below. The example displays the text that was 
changed.

Sub ABC1_ObjectTextChangedNOTIFY ( )
Dim ChangedObject As Object
Set ChangedObject = ABC1.Object
ABC1.App.MsgBox "New Text: " + ChangedObject.Text ' Display the new text

End Sub

{button Related Topics,PI(`',`IDH_RT_When_Text_Changes')}



ObjectTextChangedNOTIFY event



Importing Files in Other Formats
In ABC, you use the Open command in the File menu to import charts with other formats into ABC charts. This is 
not a common operation. To support it, there would have to be ABC OLE Automation commands for all the dialog 
boxes for naming the subcharts, choosing the chart font, and so forth.
If you need to import charts with other formats, you should have your user perform the command in ABC rather 
than using ABC OLE Automation.



Printing to a File
In ABC you print to a file by choosing the Print command in the File menu. Then, in the Print dialog box, you 
choose the Print to File option before you print. Printing to a file can be useful in certain instances, but often you 
can print directly to a printer. Printing to a file may be supported in a later version of ABC OLE Automation.
With some printers, you can print to a file by setting an option in the driver, usually in the driver's Options dialog 
box. You always can print to a file by using the Windows Control Panel to set the driver to the port FILE:. If you 
need to print to a file and cannot do it using the printer driver, you should have your user perform the action in 
ABC rather than using ABC OLE Automation.



Saving a Workspace
You usually use the Save Workspace command in the File menu when you have a standard method of working. 
With ABC OLE Automation, you can set up a standard appearance using the commands to open files and position
their windows.



Special Shape Properties
ABC OLE Automation does not let you set connect points, set the rectangle that contains text, or specify label 
alignment. These abilities are often used to make corrections due to the way that objects were originally created.
With ABC OLE Automation, there is less likely a need for these changes.
If you have a particular need that is outside what ABC normally does, you can set up a template and use it as the
basis for a chart using AddFromTemplate. Alternatively, you can have your user perform the commands in ABC
rather than using ABC OLE Automation.



Editing Shapes in the Shape Palette
In ABC, you can choose the ABC Media Manager to perform activities such as arranging the shapes in a palette, 
pasting new shapes into a palette, or deleting shapes from a palette. None of these activities are available in 
ABC OLE Automation. You also cannot alter the shape properties for a particular shape in the palette. If 
customized palettes are required, use ABC to set up the palettes and then reference the custom palette.



Setting Preferences for the Shape Palette
In ABC, you can use the ABC Media Manager to perform activities such as setting the palette title bar or button 
face size. These activities are not available in ABC OLE Automation. If customized palettes are required, use ABC 
to set up the palettes and then reference the custom palette.



Printing Notes Without Shapes
In ABC you can print notes directly from the Note window by choosing the Print command from the Note menu. 
ABC OLE Automation does not allow printing only notes. To print notes, you must print both notes and their 
associated shapes (the equivalent of using the Print command in the File menu of the main window).
If you need to print notes without shapes, you should have your user perform the command in ABC rather than 
using ABC OLE Automation.



Moving Guidelines
Guidelines are a powerful feature of ABC. With ABC OLE Automation, you can create guidelines using the 
AddVerticalGuideline and AddVerticalGuideline methods. You can choose whether guidelines display in the 
chart using the GuidelinesOn property. You can delete all guidelines using the ClearGuidelines method. These
facilities are described in Using Guidelines.
After you create guidelines, you cannot act on them except to delete all the guidelines in a chart. If you need to 
change the placement of guidelines, you should delete them all and recreate the ones you want in the new 
positions you need.

{button Related Topics,PI(`',`IDH_RT_ing_Guidelines')}



Using Guidelines

AddHorizontalGuideline method
AddVerticalGuideline method
GuidelinesOn property
ClearGuidelines method



Opening ABC 1.x Files
You cannot open ABC 1.x files using ABC OLE Automation.
If necessary, you can have your user open the files in ABC rather than using ABC OLE Automation.



Using Mixed Fonts
You can specify the font for a particular object. There is no way to specify different fonts within a particular piece 
of text, however.
If necessary, you can have your user specify fonts for a particular word or phrase rather than using ABC OLE 
Automation.



Drawing Certain Lines
It is not possible to draw certain lines using ABC OLE Automation because there is no way to specify the start 
and finish positions of the line. For example, in the following illustration you cannot specify how to draw the red 
line.

If necessary, you can have your user draw the line rather than using ABC OLE Automation.



OLE Object    
Description The OLE object is below the Object object. Note that this is an OLE client object from another

application, not an ABC OLE Automation object. You can have only one OLE object for each 
Object object.

Properties Methods

Application DoVerb
ObjectType
Parent

{button Related Topics,PI(`',`IDH_RT_OLE_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



ObjectType Property
Usage OLEObject.ObjectType
Description The ObjectType property lets you find the short object class name of an object that is 

embedded or linked. The ObjectType property is read only.
Data Type String
Value The short object class name of an object that is embedded or linked. The name depends on 

the OLE server. For example, the name for bitmaps might be "Paintbrush Picture" and the 
name for Word for Windows is "Document."

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ObjectType_Property')}



Using OLE Client Objects
Example

DoVerb Method
InsertObjectFromFile Method
PasteLink Method
UpdateFields Method

OLE Property

OLE Object



ObjectType, Objects Properties Example
This example uses the ObjectType property of the OLE object and the Objects property of the Chart object to 
find the type of an OLE object.

Dim ABC As Object, Chart As Object
Dim Everything As Object, Current As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Everything = Chart.Objects ' Get all items in the chart
Do

Set Current = Everything.ItemFromAll ' Choose the next item
' Display the OLE type

MsgBox "Current object's OLE type is """ + Current.OLE.ObjectType + """"
Loop While Current.Valid And Current.Type <> 5 ' Skip over master items



DoVerb Method      
Usage OLEObject.DoVerb ([Verb])
Description You use the DoVerb method to specify an OLE verb to execute if the object is a linked or 

embedded OLE object. If you do not specify a verb, the default verb is used.
ABC Equivalent None.

{button Related Topics,PI(`',`IDH_RT_DoVerb_Method')}



Using OLE Client Objects
Example

InsertObjectFromFile Method
PasteLink Method
UpdateFields Method

ObjectType Property
OLE Property

OLE Object



Language Reference
In the descriptions of the ABC OLE Automation procedures, methods, and events, each element has the following
entries, as appropriate.
{button ABC Equivalent,} Steps in the ABC application that are equivalent to using the 

property, method, or event. Click the ABC Equivalent button at the right of the topic title to 
jump to the ABC application help topic that describes the equivalent.

{button Related Topics,} Click the button at the end of the title to see elements that are 
related to the element, topics that describe the element, and objects that contain the 
element. You can click the jump terms to go to the related topics.

Example A concise programming use of the element is provided in the Example topic, which is the last
item on the Related Topics list. Click the Example topic and the example appears in a 
separate window that is always on top of all other windows. Click the X button in the window 
bar to close the window. To copy all or part of the example, select the text and press CTRL-C
to put the selected text on the Windows Clipboard so you can paste it into your program. 
Note
You should maximize the example window before you copy to the Clipboard to avoid 
unexpected wraps in longer statements. Some long lines may still wrap, so be sure to 
unwrap them in your program.

Usage The syntax for using the element in a program. You must replace items in italic with the 
appropriate variable from a Dim statement.

Description How you might use the element.
Data Type The type of the element (Object, Collection, Event, String, Integer, Double, Long, Variant).
Value The values that you can set the element to or that the element returns.

{button Related Topics,PI(`',`IDH_RT_Reference_Chapter')}



Conventions
ABC Menu Command equivalents
Objects, graphical

All Properties, Methods, Objects, and Events, alphabetical
Events, alphabetical
Methods, alphabetical
Objects, alphabetical
Properties, alphabetical



Properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A
Accumulation
AccumulationMethod
ActiveChart
AlignToRulers
Application

AttachedToLine

B
Bold
BorderColor
BorderStyle
BorderWidth
Bottom (Object object)
Bottom (Application object)



C
Caption
CenterX
CenterY
ChannelAlignment
ChartName

ChartNameShown
Charts
Checked
ClipboardFormatAvailable
Color (Object object)

Color (Font object)
Color (Line_ object)
Count
CrossoverSize Property 
CrossoverStyle Property 

CurrentLineRouting
CurrentShape
CurrentShapePalette

D
Date
DateShown
DateStyle
DefaultFilePath
DestArrowColor

DestArrowSize
DestArrowStyle
Destination
DestinationDirection
DrawDirection

DrawPositionX
DrawPositionY
DrawSpacingX
DrawSpacingY

E
Enabled



F
FieldFont
FieldNamesHidden
FieldPlacement
FieldsDaysPerWeek
FieldsHoursPerDay

FieldsOpaque
FieldTemplate
FieldTemplates
FieldValues
FieldViewerVisible

FieldViewerWindowHandle
FillColor
FillPattern
FlippedHorizontal Property 
FlippedVertical Property 

Font
Format
FormattedValue
FullName (Application object)
FullName (Chart object)

G
GuidelinesOn

H
HasDiskFile
Height (Object object)
Height (Application object)
Height (PageLayout object)
Hidden
Hourglass

I
IsEmpty
IsLaunched
IsLinked
Italic

L
LaunchCommand



Left (Object object)
Left (Application object)
Line_
LineCrossoverSize
LineCrossoverStyle

LineSpacingX
LineSpacingY
LinkedChartName
LinkFields
LinkIndicator

LinkShadow
Logo
LogoShown
LogoPathname

M
MarginBottom
MarginLeft
MarginRight
MarginTop
MasterItems

N
Name (Application object)
Name (Chart object)
Name (FieldTemplate object)
Name (FieldValue object)
Name (Font object)

NextNumber
NextShapeHeight
NextShapeWidth
NoRepaint
NoteFont

NoteIndicator
NoteShadow
NoteText
NoteTextLF
NoteViewerVisible



NoteViewerWindowHandle
Number
NumberFont
NumberShown

O
Objects
ObjectType
OLE
Opaque
OperatingSystem
Orientation

P
PageCount
PageHeight
PageLayout
PageNumber
PageNumberShown

PageOrder
PageWidth
PaperSize
Parent
Path

PercentGaugeValue
Preferences
PrintBlankPages
Printer
Protected

R
Range
ReadOnly
Right (Object object)
Right (Application object)
Rotation Property 

Routing Property 

S
Saved
ScrollLeft



ScrollTop
Selected
SelectedLineCount

SelectedObjectCount
SelectedOtherCount
SelectedShapeCount
ShadowColor
ShadowOffset

ShadowStyle
Shape
ShapeName
ShapePaletteVisible
ShapePaletteWindowHandle

ShowLegend
ShowNodesOnLines
ShowRulers
Size
SmartShapeSpacing

Source
SourceArrowColor
SourceArrowSize
SourceArrowStyle
SourceDirection

SSSHorizontal
SSSVertical
StatusBar
StatusBarVisible Property
StemColor

StemStyle
StemWidth
StretchType
Strikethrough

T
Text (Object object)
Text (Menu collection)



Text (MenuItem object)
Text1
Text1Shown

Text2
Text2Shown
TextAlignment
TextBlock
TextLF

Time
TimeShown
Top (Object object)
Top (Application object)
TouchAlignment

Type (Chart object)
Type (FieldTemplate object)
Type (FieldValue object)
Type (Line_ object)
Type (Object object)

TypeRequiresEXE
TypeUsesEXE

U
Underline
UndoAvailable
UniqueID
Units (Chart object)
Units (Preferences object)

V
Valid
Value
Version
View
Visible (Application object)
Visible (Menu collection)

W
Width (Object object)
Width (Application object)



Width (PageLayout object)
WindowHandle

Z
ZoomPercentage
ZoomWindowVisible Property 



Methods
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A
Activate (Application object)
Activate (Chart object)
Add (Charts collection)
Add (FieldTemplates collection)
AddFromTemplate

AddHorizontalGuideline
AddMenu
AddVerticalGuideline
Align Method 
AppendItem

ApplyDefaults Method 
ArrangeIcons



B
BasicColor

C
CancelFullScreen
CascadeCharts
ChartTypeShutdown
Clear
ClearGuidelines

CloseAll 
CloseChart
Copy
CreateAddOn
Cut

D
DeleteAll
DeleteField
DeleteItem
DeleteLines
DeselectAll

DoVerb
DrawFreeLine
DrawLine
DrawLineToOneObject
DrawShape

DrawTextBlock
Duplicate (Object object)
Duplicate (Chart object)

E
Empty
Export Method 

F
FitShapeToText
FullScreen

G
GroupAndLink

H



Help
HideAll
HidePercentGauge
Hint

I
ImportShape Method 
InsertItem
InsertObjectFromFile
Item (Objects collection)
Item (Charts collection)

Item (FieldTemplates collection)
Item (FieldValues collection)
Item (Menu collection)
ItemFromAll
ItemFromAttachments

ItemFromFieldValue
ItemFromLines
ItemFromNumber
ItemFromSelection
ItemFromShapes

ItemFromText
ItemFromUniqueID

L
Link

M
MakeRGB
MakeSameSize Method 
Maximize (Application object)
Maximize (Chart object)
Minimize (Application object)

Minimize (Chart object)
MsgBox

N
New
NewFromTemplate



O
Open

P
Paste
PasteLink
PasteSpecial
PercentGauge
PercentGaugeCancelled

PrintPreview Method 
PrintOut
PrintSelected

Q
Quit

R
RegisterEvent
RemoveAddOn
RemoveMenu
Renumber
Repaint

ReplaceShape
ReplaceText 
Restore (Application object)
Restore (Chart object)
RestorePicture (Object Object)

RevertToSaved

S
Save
ScrollPage
ScrollPosition
Select
SelectShapeType

SendMail
SetDefaults
SetProtection
ShowAll
SpaceEvenly Method 



Spelling

T
TileCharts
ToBack (Object object)
ToBack (Chart object)
ToFront (Object object)
ToFront (Chart object)

U
UnattachFromLine
Undo
UnRegisterEvent
UpdateDateAndTime
UpdateFields



Objects, Alphabetical
Application
Chart
Charts collection
FieldTemplate
FieldTemplates collection

FieldValue
FieldValues collection
Font
Line_
MasterItems

Menu collection
MenuItem
Object
Objects collection
OLE

PageLayout
Preferences
Shape
TextBlock

{button Related Topics,PI(`',`IDH_RT_Objects_Alphabetical')}



Objects, graphical



Objects, Graphical
The ABC OLE Automation object hierarchy, diagrammed below, shows how the objects and collections available 
in ABC OLE Automation relate to each other. The diagram includes the collections, which can contain more than 
one object. You can click on an object or collection to see the properties and methods contained in it and get 
information about those language elements.

At the top of the ABC OLE Automation hierarchy is the Application object, which is the interface to ABC. There can 
be only one ABC Application object at a time running on your system.

Branching from the Application object are the Charts collection, Preferences object, and Menus collection. An 
ABC Application can have multiple Charts collections and Menus collections, but only one Preferences object.
Branching from the Charts collection are the Chart objects. Each Chart object is restricted to a single PageLayout 
and MasterItems object, but can have multiple FieldTemplate and Object objects.
Below the Object object are the Shape, Line_, TextBlock, OLE, and Font objects, and the FieldValues collection. 
Each Object object can have multiple FieldValue objects, but only one Shape, Line_, TextBlock, OLE, and Font 
object.

{button Related Topics,PI(`',`IDH_RT_Objects_Graphical')}



Introducing ABC OLE Automation
Objects, alphabetical



Events
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

A
AppQuitSUBCLASS
AppMenuSUBCLASS
AppMenuHintSUBCLASS
AppMenuPopupSUBCLASS

C
ChartActivateNOTIFY
ChartDeActivateNOTIFY Event 
ChartChangeNOTIFY
ChartCloseSUBCLASS
ChartNewNOTIFY

ChartOpenNOTIFY
ChartPasteNOTIFY

D



DeleteSUBCLASS
DoubleClickSUBCLASS

E
ExclusiveSelectionNOTIFY

F
FieldValueChangedNOTIFY

L
LinkNOTIFY

N
NewLineNOTIFY
NewShapeNOTIFY

O
ObjectClickSUBCLASS
ObjectFontChangeNOTIFY
ObjectLineAttachNOTIFY
ObjectLineDeAttachNOTIFY Event 
ObjectMovedNOTIFY

ObjectMoveSUBCLASS
ObjectSizedNOTIFY
ObjectSizeSUBCLASS
ObjectTextChangedNOTIFY

R
ReplaceShapeNOTIFY

S
SpecialKeySUBCLASS



All Properties, Methods, Objects, and Events
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A
Accumulation property
AccumulationMethod property
Activate method (Application object)
Activate method (Chart object)
ActiveChart property

Add method (Charts collection)
Add method (FieldTemplates collection)
AddFromTemplate method
AddHorizontalGuideline method
AddMenu method

AddVerticalGuideline method
Align Method 
AlignToRulers property
AppendItem method
Application object

Application property
ApplyDefaults Method 
AppMenuHintSUBCLASS event
AppMenuPopupSUBCLASS event
AppMenuSUBCLASS event



AppQuitSUBCLASS event
ArrangeIcons method
AttachedToLine property

B
BasicColor method
Bold property
BorderColor property
BorderStyle property
BorderWidth property

Bottom property (Object object)
Bottom property (Application object)

C
CancelFullScreen method
Caption property
CascadeCharts method
CenterX property
CenterY property

ChannelAlignment property
Chart object
ChartActivateNOTIFY event
ChartChangeNOTIFY event
ChartCloseSUBCLASS event

ChartDeActivateNOTIFY Event 
ChartName property
ChartNameShown property
ChartNewNOTIFY event
ChartOpenNOTIFY event

ChartPasteNOTIFY event
Charts collection
Charts property
ChartTypeShutdown method
Checked property

Clear method
ClearGuidelines method
ClipboardFormatAvailable property



CloseAll method 
CloseChart method

Color property (Object object)
Color property (Font object)
Color property (Line_ object)
Copy method
Count property

CreateAddOn method
CrossoverSize Property 
CrossoverStyle Property 
CurrentLineRouting property
CurrentShape property

CurrentShapePalette property
Cut method

D
Date property
DateShown property
DateStyle property
DefaultFilePath property
DeleteAll method

DeleteField method
DeleteItem method
DeleteLines method
DeleteSUBCLASS event
DeselectAll method

DestArrowColor property
DestArrowSize property
DestArrowStyle property
Destination property
DestinationDirection property

DoubleClickSUBCLASS event
DoVerb method
DrawDirection property
DrawFreeLine method
DrawLine method



DrawLineToOneObject method
DrawPositionX property
DrawPositionY property
DrawShape method
DrawSpacingX property

DrawSpacingY property
DrawTextBlock method
Duplicate method (Object object)
Duplicate method (Chart object)

E
Empty method
Enabled property
ExclusiveSelectionNOTIFY event
Export Method 

F
FieldFont property
FieldNamesHidden property
FieldPlacement property
FieldsDaysPerWeek property
FieldsHoursPerDay property

FieldsOpaque property
FieldTemplate object
FieldTemplate property
FieldTemplates collection
FieldTemplates property

FieldValue object
FieldValueChangedNOTIFY event
FieldValues collection
FieldValues property
FieldViewerVisible property

FieldViewerWindowHandle property
FillColor property
FillPattern property
FitShapeToText method
FlippedHorizontal Property 



FlippedVertical Property 
Font object
Font property
Format property
FormattedValue property

FullName property (Application object)
FullName property (Chart object)
FullScreen method

G
GroupAndLink method
GuidelinesOn property

H
HasDiskFile property
Height property (Object object)
Height property (Application object)
Height property (PageLayout object)
Help method

Hidden property
HideAll method
HidePercentGauge method
Hint method
Hourglass property

I
ImportShape Method 
InsertItem method
InsertObjectFromFile method
IsEmpty property
IsLaunched property

IsLinked property
Italic property
Item method (Objects collection)
Item method (Charts collection)
Item method (FieldTemplates collection)

Item method (FieldValues collection)
Item method (Menu collection)
ItemFromAll method



ItemFromAttachments method
ItemFromFieldValue method

ItemFromLines method
ItemFromNumber method
ItemFromSelection method
ItemFromShapes method
ItemFromText method

ItemFromUniqueID method

L
LaunchCommand property
Left property (Object object)
Left property (Application object)
Line_ object
Line_ property

LineCrossoverSize property
LineCrossoverStyle property
LineSpacingX property
LineSpacingY property
Link method

LinkedChartName property
LinkFields property
LinkIndicator property
LinkNOTIFY event
LinkShadow property

Logo property
LogoPathname property
LogoShown property

M
MakeRGB method
MakeSameSize Method 
MarginBottom property
MarginLeft property
MarginRight property

MarginTop property
MasterItems object



MasterItems property
Maximize method (Application object)
Maximize method (Chart object)

Menu collection
MenuItem object
Minimize method (Application object)
Minimize method (Chart object)
MsgBox method

N
Name property (Application object)
Name property (Chart object)
Name property (FieldTemplate object)
Name property (FieldValue object)
Name property (Font object)

New method
NewFromTemplate method
NewLineNOTIFY event
NewShapeNOTIFY event
NextNumber property

NextShapeHeight property
NextShapeWidth property
NoRepaint property
NoteFont property
NoteIndicator property

NoteShadow property
NoteText property
NoteTextLF
NoteViewerVisible property
NoteViewerWindowHandle property

Number property
NumberFont property
NumberShown property

O
Objects collection
Object object
ObjectClickSUBCLASS event



ObjectFontChangeNOTIFY event
ObjectLineAttachNOTIFY event

ObjectLineDeAttachNOTIFY Event 
ObjectMovedNOTIFY event
ObjectMoveSUBCLASS event
Objects property
ObjectSizedNOTIFY event

ObjectSizeSUBCLASS event

ObjectTextChangedNOTIFY event
ObjectType property
OLE object
OLE property
Opaque property

Open method
OperatingSystem property
Orientation property

P
PageCount property
PageHeight property
PageLayout object
PageLayout property
PageNumber property

PageNumberShown property
PageOrder property
PageWidth property
PaperSize property
Parent property

Paste method
PasteLink method
PasteSpecial method
Path property
PercentGauge method

PercentGaugeCancelled method
PercentGaugeValue property



Preferences object
Preferences property
PrintBlankPages property

Printer property
PrintOut method
PrintPreview Method 
PrintSelected method
Protected property

Q
Quit method

R
Range property
ReadOnly property
RegisterEvent method
RemoveAddOn method
RemoveMenu method

Renumber method
Repaint method
ReplaceShape method
ReplaceText method 
ReplaceShapeNOTIFY event

Restore method (Application object)
Restore method (Chart object)
RestorePicture method (Object object)
RevertToSaved method

Right property (Object object)
Right property (Application object)
Rotation Property 
Routing Property 

S
Save method
Saved property
ScrollLeft property
ScrollPage method
ScrollPosition method



ScrollTop property
Select method
Selected property
SelectedLineCount property
SelectedObjectCount property

SelectedOtherCount property
SelectedShapeCount property
SelectShapeType method
SendMail method
SetDefaults method

SetProtection method
ShadowColor property
ShadowOffset property
ShadowStyle property
Shape object

Shape property
ShapeName property
ShapePaletteVisible property
ShapePaletteWindowHandle property
ShowAll method

ShowLegend property
ShowNodesOnLines property
ShowRulers property
Size property
SmartShapeSpacing property

Source property
SourceArrowColor property
SourceArrowSize property
SourceArrowStyle property
SourceDirection

SpaceEvenly Method 
SpecialKeySUBCLASS event
Spelling method
SSSHorizontal property
SSSVertical property



StatusBar property
StatusBarVisible Property 
StemColor property
StemStyle property
StemWidth property

StretchType property
Strikethrough property

T
Text property (Object object)
Text property (Menu collection)
Text property (MenuItem object)
Text1 property
Text1Shown property

Text2 property
Text2Shown property
TextAlignment property
TextBlock object
TextBlock property

TextLF
TileCharts method
Time property
TimeShown property
ToBack method (Object object)

ToBack method (Chart object)
ToFront method (Object object)
ToFront method (Chart object)
Top property (Object object)
Top property (Application object)

TouchAlignment property
Type property (Object object)
Type property (Chart object)
Type property (FieldTemplate object)
Type property (FieldValue object)

Type property (Line_ object)
TypeRequiresEXE property



TypeUsesEXE property

U
UnattachFromLine method
Underline property
Undo method
UndoAvailable property
UniqueID property

Units property (Chart object)
Units property (Preferences object)
UnRegisterEvent method
UpdateDateAndTime method
UpdateFields method

V
Valid property
Value property
Version property
View property
Visible property (Application object)
Visible property (Menu collection)

W
Width property (Object object)
Width property (Application object)
Width property (PageLayout object)
WindowHandle property

Z
ZoomPercentage property
ZoomWindowVisible Property



ABC Menu Command Equivalents
This topic displays the menu commands available in ABC FlowCharter. When using an ABC OLE Automation Tool 
element, it is equivalent to executing the related command.

File Menu Command ABC OLE Automation Equivalent
New New method
Open Open method
Close CloseChart method
Save Save method
Save As Save method
Save Workspace
Page Setup PageLayout object
Print Preview PrintPreview Method 
Print PrintOut method

PrintSelected method
Print Setup Printer Property 
Send SendMail method
Recent File
Exit Quit method
Links
Object

Edit Menu Command ABC OLE Automation Equivalent
Undo Undo method
Cut Cut method
Copy Copy method
Paste Paste method
Paste Special PasteSpecial method
Clear Clear method
Duplicate Duplicate Method (Object Object) 
Select All Select method
Select Select method
Find
Replace ReplaceText Method 
Insert Object InsertObjectFromFile method

View Menu Command ABC OLE Automation Equivalent
Normal View Property 
Current Page View Property 
Used Pages View Property 
Full Screen FullScreen Method 



Toolbars
Status Bar StatusBarVisible Property 
Rulers ShowRulers Property 
Shape Palette ShapePaletteVisible Property 
QuickZoom ZoomWindowVisible Property 
Note NoteViewerVisible Property 
Guidelines GuidelinesOn Property 
Grid
Zoom ZoomPercentage Property 

Format Menu Command ABC OLE Automation Equivalent
Chart Chart Object 
Font TextBlock Object 
Paragraph Align Method 
Fill FillPattern Property 

FillColor Property 
Border BorderColor Property 

BorderStyle Property 
BorderWidth Property 

Shape Properties
Shape Numbering Number Property 

NumberShown Property 
Line Line_ Object 
Arrowheads DestArrowColor Property 

DestArrowSize Property 
DestArrowStyle Property 
SourceArrowColor Property 
SourceArrowSize Property 
SourceArrowStyle Property 

Crossovers CrossoverSize Property
CrossoverStyle Property 

Tools Menu Command ABC OLE Automation Equivalent
Spelling Spelling method
Protect Chart Protected Property 
Insert SPC Chart
Import Shape ImportShape Method 
Export Chart Export Method 
Customize
Options Preferences Object 
Add On



Arrange Menu Command ABC OLE Automation Equivalent
Bring to front ToFront Method (Object Object) 
Send to back ToBack Method (Object Object) 
Rotate Right Rotation Property 
Rotate Left Rotation Property 
Flip Horizontal FlippedHorizontal Property 
Flip Vertical FlippedVertical Property 
Align Align Method 
Make Same Size MakeSameSize Method 
Space Evenly SpaceEvenly Method 
Fit To Text FitShapeToText Method 

Data Menu Command ABC OLE Automation Equivalent
Setup Fields FieldTemplates collection
Options Preferences object
Report
Update UpdateFields method
Viewer FieldViewerVisible property
Legend ShowLegend property

Window Menu Command ABC OLE Automation Equivalent
New Window
Arrange All ArrangeIcons method
Split
charts Activate method



C++ Sample
A sample C++/MFC program named Ole_vbx.exe is included with ABC OLE Automation. This sample illustrates 
using ABC OLE Automation with C++. The Ole_vbx.exe file is automatically installed in the Program Files\
Micrografx\ABC Graphics Suite\ABC FlowCharter\Samples\Ole_vbx directory by the installation program.



Using C++
Use the Microsoft C++ ClassWizard to help you access ABC OLE Automation functionality. The OLE Automation 
Tab of the ClassWizard lets you read a typelib file and create a .H and a .CPP file from the typelib file. Use this 
function to create the ABC OLE Automation ABCAUTO.H and ABCAUTO.CPP files from the ABC typelib file named 
ABCAUTO.TLB.
After you have generated the ABCAUTO.CPP and ABCAUTO.H files, you can start making calls to ABC with a C++ 
program.
Note
If you want to port C++ code written for ABC FlowCharter 4.0 to ABC FlowCharter 6.0, these files will have to be 
recreated with the ClassWizard and recompiled. C++ programs written for ABC FlowCharter 4.0 and ABC 
FlowCharter 6.0 are not compatible.

{button Related Topics,PI(`',`IDH_RT_Using_C')}



C++: Creating an Application Object
C++: Events
C++: Notes



C++: Creating an Application Object
The first step in accessing ABC is to create an application object, as illustrated below.

#include "ABCAUTO.H" // This file generated by ClassWizard

ABCFlowApp ABC;

ABC.CreateDispatch ("ABCFlow.application");
ABC.SetVisible (TRUE);

In the sample code above, type ABCFlowApp is a class generated by the ClassWizard defined in ABCAUTO.H. All 
of the ABC Application APIs are available in the ABCFlowApp class. All ABC properties are preceded with Set or 
Get, as explained in ABCAUTO.H. The call CreateDispatch("ABCFlow.application") performs the same function as 
Set ABC = CreateObject("ABCFlow.application") in Visual Basic. This call starts ABC if ABC is not already running, 
and returns a valid application object that you can use to call the APIs. The last line in this sample, 
ABC.SetVisible(TRUE), performs the same function as ABC.Visible = True in Visual Basic.
All other ABC Automation objects use AttachDispatch instead of CreateDispatch, as illustrated by the sample 
below.

// Setup the ABCChart
Chart ABCChart;

// Get the active Chart
ABCChart.AttachDispatch(ABC.GetActiveChart());

VARIANT vEmpty;
VariantInit(&vEmpty);

ABCChart.DrawShape(vEmpty);
VariantClear(&vEmpty);

The sample code above assumes that ABC is a valid ABC application object. The call to 
ABCChart.AttachDispatch(ABC.GetActiveChart( )) puts the ABCChart object in a state that enables calls to all 
Chart Object APIs, such as the DrawShape call shown in the sample.
Chart.DrawShape takes one optional parameter, the name of the type of shape to draw. In Visual Basic, optional 
parameters are handled internally, so you can just omit an optional parameter and Visual Basic does all the 
work. However, in C++, you must declare a variable of type VARIANT, initialize it, and pass it to DrawShape. If 
you want to tell ABC to draw a Process shape, use the code shown below instead.

VARIANT vName;
VariantInit(&vName);

V_VT(&vName) = VT_BSTR;
V_BSTR(&vName) = SysAllocString("Process");
ABCChart.DrawShape(vName);
VariantClear(&vName);

For more information on VARIANT variables, see the OLESDKV2.HLP file shipped with VC++ 1.5, and search for 
"Variant Manipulation Functions."

{button Related Topics,PI(`',`IDH_RT_C_Creating_an_Application_Object')}





Using C++



C++: Events
To use the ABC Events VBX in C++, you need to use the CVBControl interface provided in MFC. The simplest way 
is to check "Custom VBX Controls" on the Options menu of MFC AppWizard when starting your new project.
In the ABC OLE Automation sample Ole_vbx.EXE program, the ABC Events VBX was dropped into the project's 
ABOUT box using AppStudio. Then the Message Maps Tab was chosen from the ClassWizard on the Resource 
menu. On the WM_INITDIALOG message the events are registered with ABC.

LPDISPATCH lpVBXDisp = 
(LPDISPATCH)m_pABCVBX->GetNumProperty("lVBX");

VARIANT vEmpty;

VariantInit(&vEmpty);
m_ABC.RegisterEvent(lpVBXDisp, "C++ Events Sample", 
"DoubleClickSUBCLASS", vEmpty);
m_ABC.RegisterEvent(lpVBXDisp, "C++ Events Sample", 
"DeleteSUBCLASS", vEmpty);

In the example above, note the use of casting on the lpVBXDisp assignment statement. MFC's VBX support does 
not allow the transfer of OLE IDispatch pointers to or from properties of the VBX. Therefore, a series of mirror 
invisible properties were added to the ABC VBX.
To allow the ABCAUTO.VBX to work with MFC, some redundant properties were added that are "Num" (long) 
properties. You must cast them to (LPDISPATCH) before using them.

ABC C++
App lApp
Chart lChart
Object lObject
Object2 lObject2
FieldValue lFieldValue
Menu lMenu
MenuItem lMenuItem
VBX lVBX

When responding to a VBX event, use the Message Maps Tab in App Studio to help link your code to the VBX. The
sample below illustrates how a program can respond to the double click event from ABC.

Void cAboutDig::OnDoubleClickSubclassAbc1(Unit, int, Cwnd*, LPVOID)
{

// Setup the ABCObject
Object ABCObject

ABCObject.AttachDispatch((LPDISPATCH)m_pABCVBX->
GetNumProperty("lObject"), FALSE);

// Set the passed object to green
ABCObject.SetColor(RGB(0,0xff,0));

ABCObject.SetText("C++ is easy");



m_pABCVBX->SetNumProperty("Override", TRUE);
}

{button Related Topics,PI(`',`IDH_RT_C_Events')}



Using C++



C++: Notes
When using methods and properties that return a string, check to see if the return value is NULL before assigning
it to a CString.
Additionally, all strings returned from ABC OLE Automation must be freed using SysFreeString.

{button Related Topics,PI(`',`IDH_RT_C_Notes')}



Using C++



Boolean Data Type
A Boolean data type can have a value of either True or False. True is a constant equal to -1. False is a constant
equal to 0.



PageLayout Object
Description The PageLayout object is below the Chart object. You can have only one PageLayout object.

Properties Methods

Application There are no methods for
the

Height PageLayout object.
MarginBottom
MarginLeft
MarginRight
MarginTop
Orientation
PageHeight
PageOrder
PageWidth
PaperSize
Parent
PrintBlankPages
Width

{button Related Topics,PI(`',`IDH_RT_PageLayout_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



Height Property (PageLayout Object)
Usage PageLayoutObject.Height
Description You use the Height property of the PageLayout object to find the height of the drawing area.

The Height property is read only.
Data Type Double
Value The height of the drawing area in pixels
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Height_Property_PageLayout_Object')}



Adjusting the Page Layout
Example

Height Property (Application Object)
Height Property (Object Object)
MarginBottom Property
MarginLeft Property
MarginRight Property
MarginTop Property
Orientation Property
PageHeight Property
PageOrder Property
PageWidth Property
PaperSize Property
Width Property (PageLayout Object)

PageLayout Object



MarginBottom Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_CSH_Margins_option');CW(`concfull')}

Usage PageLayoutObject.MarginBottom = Distance

Description You use the MarginBottom property to find or set the bottom page margins. The 
MarginBottom property is read/write.

Data Type Double
Value The bottom page margin in the current units
ABC Equivalent The MarginBottom property is equivalent to clicking Page Setup in the File menu and 

entering a number in the Margin Bottom text box.

{button Related Topics,PI(`',`IDH_RT_MarginBottom_Property')}



Adjusting the Page Layout
Example

Height Property (PageLayout Object)
MarginLeft Property
MarginRight Property
MarginTop Property
Orientation Property
PageHeight Property
PageWidth Property
PaperSize Property
Units Property (Chart Object)
Units Property (Preferences Object)
Width Property (PageLayout Object)

PageLayout Object



MarginLeft Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_CSH_Margins_option');CW(`concfull')}

Usage PageLayoutObject.MarginLeft = Distance

Description You use the MarginLeft property to find or set the left page margins. The MarginLeft 
property is read/write.

Data Type Double
Value The left page margin in the current units
ABC Equivalent The MarginLeft property is equivalent to clicking Page Setup in the File menu and entering 

a number in the Margin Left text box.
{button Related Topics,PI(`',`IDH_RT_MarginLeft_Property')}



Adjusting the Page Layout
Example

Height Property (PageLayout Object)
MarginBottom Property
MarginRight Property
MarginTop Property
Orientation Property
PageHeight Property
PageWidth Property
PaperSize Property
Units Property (Chart Object)
Units Property (Preferences Object)
Width Property (PageLayout Object)

PageLayout Object



MarginRight Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_CSH_Margins_option');CW(`concfull')}

Usage PageLayoutObject.MarginRight = Distance

Description You use the MarginRight property to find or set the right page margin. The MarginRight 
property is read/write.

Data Type Double
Value The right page margin in the current units
ABC Equivalent The MarginRight property is equivalent to clicking Page Setup in the File menu and 

entering a number in the Margin Left text box.

{button Related Topics,PI(`',`IDH_RT_MarginRight_Property')}



Adjusting the Page Layout
Example

Height Property (PageLayout Object)
MarginBottom Property
MarginLeft Property
MarginTop Property
Orientation Property
PageHeight Property
PageWidth Property
PaperSize Property
Units Property (Chart Object)
Units Property (Preferences Object)
Width Property (PageLayout Object)

PageLayout Object



MarginTop Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_CSH_Margins_option');CW(`concfull')}

Usage PageLayoutObject.MarginTop = Distance

Description You use the MarginTop property to find or set the top page margin. The MarginTop 
property is read/write.

Data Type Double
Value The top page margin in the current units
ABC Equivalent The MarginTop property is equivalent to clicking Page Setup in the File menu and entering a

number in the Margin Top text box.

{button Related Topics,PI(`',`IDH_RT_MarginTop_Property')}



Adjusting the Page Layout
Example

Height Property (PageLayout Object)
MarginBottom Property
MarginLeft Property
MarginRight Property
Orientation Property
PageHeight Property
PageWidth Property
PaperSize Property
Units Property (Chart Object)
Units Property (Preferences Object)
Width Property (PageLayout Object)

PageLayout Object



Orientation Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Orientation');CW(`concfull')}

Usage PageLayoutObject.Orientation = Value

Description You use the Orientation property to find or set portrait or landscape orientation for the 
page. The Orientation property is read/write.

Data Type Integer
Value The value in the Orientation property indicates the page orientation.

Value Orientation
0 Portrait
1 Landscape

ABC Equivalent The Orientation property is equivalent to clicking Page Setup in the File menu and selecting
the page orientation.

{button Related Topics,PI(`',`IDH_RT_Orientation_Property')}



Adjusting the Page Layout
Example

Height Property (PageLayout Object)
MarginBottom Property
MarginLeft Property
MarginRight Property
MarginTop Property
PageHeight Property
PageWidth Property
PaperSize Property
Width Property (PageLayout Object)

PageLayout Object



PageLayout Properties Example
This example uses properties of the PageLayout object and the PageLayout property of the Chart object to set 
up the ABC page.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.Units = 0 ' Set units to inches

Chart.PageLayout.Orientation = 1 ' Set landscape page orientation

Chart.PageLayout.MarginLeft = 0 ' Set left margin
Chart.PageLayout.MarginRight = 0 ' Set right margin
Chart.PageLayout.MarginTop = 0 ' Set top margin
Chart.PageLayout.MarginBottom = 0 ' Set bottom margin

If Chart.PageLayout.Width > 7 Then ' Check current page width
Chart.PageLayout.PageWidth = 7 ' Make pages 7" wide

End If

If Chart.PageLayout.Height > 5 Then ' Check current page height
Chart.PageLayout.PageHeight = 5 ' Make pages 5" high

End If



PageHeight Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Page_height');CW(`concfull')}

Usage PageLayoutObject.PageHeight = Distance

Description You use the PageHeight property to find or set the height of the page. The PageHeight 
property is read/write.

Data Type Double
Value The height of the page in the current units
ABC Equivalent The PageHeight property is equivalent to clicking Page Setup in the File menu and entering 

a number in the Paper Size Height text box.

{button Related Topics,PI(`',`IDH_RT_PageHeight_Property')}



Adjusting the Page Layout
Example

Height Property (PageLayout Object)
MarginBottom Property
MarginLeft Property
MarginRight Property
MarginTop Property
Orientation Property
PageWidth Property
PaperSize Property
Units Property (Chart Object)
Units Property (Preferences Object)
Width Property (PageLayout Object)

PageLayout Object



PageOrder Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Page_Order_option');CW(`concfull')}

Usage PageLayoutObject.PageOrder = Order

Description You use the PageOrder property to find or set the order in which to print the pages in the 
chart. The PageOrder property is read/write.

Data Type Integer
Value The value of the PageOrder property method determines the order to print the pages in the

chart as shown in the following table.
Value Description Pattern
0 Across, then down

1 Down, then across
ABC Equivalent The PageOrder property is equivalent to clicking Page Setup in the File menu and clicking 

one of the Page Order options.

{button Related Topics,PI(`',`IDH_RT_PageOrder_Property')}



Adjusting the Page Layout
Example

PrintBlankPages Property

PageLayout Object



PageWidth Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Page_height');CW(`concfull')}

Usage PageLayoutObject.PageWidth = Distance

Description You use the PageWidth property to find or set the width of the page. The PageWidth 
property is read/write.

Data Type Double
Value The width of the page in the current units
ABC Equivalent The PageWidth property is equivalent to clicking Page Setup in the File menu and entering 

a value in the Paper Size Width text box.

{button Related Topics,PI(`',`IDH_RT_PageWidth_Property')}



Adjusting the Page Layout
Example

Height Property (PageLayout Object)
MarginBottom Property
MarginLeft Property
MarginRight Property
MarginTop Property
Orientation Property
PageHeight Property
PaperSize Property
PrintBlankPages Property
Units Property (Chart Object)
Units Property (Preferences Object)
Width Property (Application Object)
Width Property (Object Object)
Width Property (PageLayout Object)

PageLayout Object



PaperSize Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Page_height');CW(`concfull')}

Usage PageLayoutObject.PaperSize = Size

Description You use the PaperSize property to find or set the size of paper to be printed. The program 
uses a "loose matching" routine when you are setting the value so, for example, setting the 
PaperSize property to "let" chooses the size "Letter 8 1/2 x 11 in." The PaperSize property 
is read/write.

Data Type Double
Value The size of the paper
ABC Equivalent The PaperSize property is equivalent to clicking Page Setup in the File menu and selecting a

value in the Paper Size list box.

{button Related Topics,PI(`',`IDH_RT_PaperSize_Property')}



Adjusting the Page Layout
Example

Height Property (PageLayout Object)
MarginBottom Property
MarginLeft Property
MarginRight Property
MarginTop Property
Orientation Property
PageHeight Property
PageWidth Property
Width Property (PageLayout Object)

PageLayout Object



PaperSize, PageOrder, PrintBlankPages Properties Example
This example uses the PaperSize property, the PageOrder property, and the PrintBlankPages property of the
PageLayout object and the PageLayout property of the Chart object to prepare a chart for printing.

Dim ABC As Object, Chart As Object
Dim NewShape As Object
Dim Printed

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.PageLayout.PaperSize = "Letter" ' Use a Letter 8.5 x 11 size page
Chart.PageLayout.PageOrder = 1 ' Print pages down then across
Chart.PageLayout.PrintBlankPages = False ' Omit printing pages with no objects

Chart.DrawPositionX = 3.5 ' Set X location for the first shape
Chart.DrawPositionY = 4.75 ' Set Y location for the first shape
Set NewShape = Chart.DrawShape ' Place the first shape on page 1
NewShape.Text = "Page one" ' Enter text in the shape

Chart.DrawPositionX = 10.5 ' Set X location for the next shape
Set NewShape = Chart.DrawShape ' Place the second shape on page 3
NewShape.Text = "Page three. Page two is blank." ' Enter text in the shape
NewShape.Shape.FitShapeToText ' Enlarge the shape if necessary

Chart.DrawPositionX = 10.5 ' Set X location for the next shape
Chart.DrawPositionY = 14.25 ' Set Y location for the next shape
Set NewShape = Chart.DrawShape ' Place the third shape on page 4
NewShape.Text = "Page four" ' Enter text in the shape

Chart.View = 2 ' Display the used pages

ABC.Printer = "LPT1" ' Select the first printer on LPT1
Printed = Chart.PrintOut ' Print the chart



PrintBlankPages Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Print_Blank_Pages_option');CW(`concfull')}

Usage PageLayoutObject.PrintBlankPages = {True | False}
Description You use the PrintBlankPages property to specify whether a blank page should be printed if 

there are no objects on the page.The PrintBlankPages property is read/write.
Data Type Integer (Boolean)
Value True prints a blank page when there is a blank page in the chart; False prints only pages that

have objects on them.
ABC Equivalent The PrintBlankPages property is equivalent to clicking Page Setup in the File menu and 

selecting or deselecting the Print Blank Pages option.

{button Related Topics,PI(`',`IDH_RT_PrintBlankPages_Property')}



Printing Charts
Example

PageOrder Property

PageLayout Object



Width Property (PageLayout Object)
Usage PageLayoutObject.Width
Description You use the Width property to find or set the width of the drawing area. The Width property

is read only.
Data Type Double
Value The width of the drawing area
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Width_Property_PageLayout_Object')}



Adjusting the Page Layout
Example

MarginBottom Property
MarginLeft Property
MarginRight Property
MarginTop Property
Orientation Property
PageHeight Property
PageWidth Property
PaperSize Property
Width Property (Application Object)
Width Property (Object Object)

PageLayout Object



Preferences Object
Description The Preferences object is below the Application object. You can have only one Preferences 

object.

Properties Methods

AlignToRulers There are no methods for 
the

Application Preferences object.
ChannelAlignment
LineSpacingX
LineSpacingY
Parent
ShowRulers
SmartShapeSpacing
SSSHorizontal
SSSVertical
TouchAlignment
Units

{button Related Topics,PI(`',`IDH_RT_Preferences_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



AlignToRulers Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_ALIGN');CW(`concfull')}

Usage PreferencesObject.AlignToRulers = Value

Description The AlignToRulers property lets you find or set the choices for aligning to rulers. The 
AlignToRulers property is read/write.

Data Type Integer
Value The values for the AlignToRulers property are in the following table.

Value Description
0 Off (not selected)
1 Coarse
2 Fine

ABC Equivalent The AlignToRulers property is equivalent to clicking Options in the ABC Tools menu, clicking
the Alignment tab, and selecting or deselecting the Snap to Grid option, and the Coarse or 
the Fine option.

{button Related Topics,PI(`',`IDH_RT_AlignToRulers_Property')}



Alignment Options
Example

ChannelAlignment Property
ShowRulers Property
SmartShapeSpacing Property
SSSHorizontal Property
SSSVertical Property
TouchAlignment Property
Units Property (Chart Object)
Units Property (Preferences Object)

Preferences Object



Preferences Object Properties Example
This example uses properties of the Preferences object to set chart preferences.

Dim ABC As Object, Chart As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

ABC.Preferences.AlignToRulers = 2 ' Set fine ruler alignment
ABC.Preferences.ChannelAlignment = True ' Enable channel alignment
ABC.Preferences.LineSpacingX = 2 ' Horizontal spacing for new lines
ABC.Preferences.LineSpacingY = 2 ' Vertical spacing for new lines
ABC.Preferences.ShowRulers = True ' Display the rulers
ABC.Preferences.SmartShapeSpacing = True ' Enable shape spacing
ABC.Preferences.SSSHorizontal = 1 ' Shape spacing horizontal value
ABC.Preferences.SSSVertical = 1 ' Shape spacing vertical value
ABC.Preferences.TouchAlignment = True ' Enable touch alignment
ABC.Preferences.Units = 0 ' Set units to inches

MsgBox "Choose File and Preferences to verify the settings."



ChannelAlignment Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_ALIGN');CW(`concfull')}

Usage PreferencesObject.ChannelAlignment = {True | False}
Description The ChannelAlignment property lets you find or set whether channel alignment is turned 

on. The ChannelAlignment property is read/write.
Data Type Integer (Boolean)
Value True turns channel alignment on; False turns it off.
ABC Equivalent The ChannelAlignment property is equivalent to clicking Options on the Tools menu, 

clicking the Alignment tab, and selecting the Channel Alignment option (True) or deselecting 
the option (False).

{button Related Topics,PI(`',`IDH_RT_ChannelAlignment_Property')}



Alignment Options
Example

AlignToRulers Property
ShowRulers Property
SmartShapeSpacing Property
SSSHorizontal Property
SSSVertical Property
TouchAlignment Property

Preferences Object



LineSpacingX Property {button ABC Equivalent,JI(`ABCFLOW.HLP>large',`IDH_LINESPACE')}

Usage PreferencesObject.LineSpacingX = HorizontalLineSpacing

Description The LineSpacingX property lets you find or set the horizontal value used by line spacing. 
The LineSpacingX property is read/write.

Data Type Double
Value The number of inches or centimeters that line spacing is to use horizontally
ABC Equivalent The LineSpacingX property is equivalent to clicking Options on the Tools menu, clicking the 

Line tab, and entering a value for the horizontal component used by line spacing.

{button Related Topics,PI(`',`IDH_RT_LineSpacingX_Property')}



Line Options
Example

LineSpacingY Property
Units Property (Chart Object)
Units Property (Preferences Object)

Preferences Object



LineSpacingY Property {button ABC Equivalent,JI(`ABCFLOW.HLP>large',`IDH_LINESPACE')}

Usage PreferencesObject.LineSpacingY = VerticalLineSpacing

Description The LineSpacingY property lets you find or set the vertical value used by line spacing. The 
LineSpacingY property is read/write.

Data Type Double
Value The number of inches or centimeters that line spacing is to use vertically
ABC Equivalent The LineSpacingY property is equivalent to clicking Options on the Tools menu, clicking the 

Line tab, and entering a value for the vertical component used by line spacing.

{button Related Topics,PI(`',`IDH_RT_LineSpacingY_Property')}



Line Options
Example

LineSpacingX Property
Units Property (Chart Object)
Units Property (Preferences Object)

Preferences Object



ShowRulers Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_Ruler_Command');CW(`concfull')}

Usage PreferencesObject.ShowRulers = {True | False}
Description The ShowRulers property lets you find or set whether the rulers are shown. The 

ShowRulers property is read/write.
Data Type Integer (Boolean)
Value True turns the rulers on; False turns them off.
ABC Equivalent The ShowRulers property is equivalent to clicking Ruler on the View menu.

{button Related Topics,PI(`',`IDH_RT_ShowRulers_Property')}



Alignment Options
Example

AlignToRulers Property
ChannelAlignment Property
SmartShapeSpacing Property
SSSHorizontal Property
SSSVertical Property
TouchAlignment Property

Preferences Object



SmartShapeSpacing Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_ALIGN');CW(`concfull')}

Usage PreferencesObject.SmartShapeSpacing = {True | False}
Description The SmartShapeSpacing property lets you find or set whether shape spacing is turned on. 

The SmartShapeSpacing property is read/write.
Data Type Integer (Boolean)
Value True turns space shaping on; False turns it off.
ABC Equivalent The SmartShapeSpacing property is equivalent to clicking Options on the Tools menu, 

clicking the Alignment tab, and selecting the Shape Spacing option (True) or deselecting the 
option (False).

{button Related Topics,PI(`',`IDH_RT_SmartShapeSpacing_Property')}



Alignment Options
Example

AlignToRulers Property
ChannelAlignment Property
ShowRulers Property
SSSHorizontal Property
SSSVertical Property
TouchAlignment Property

Preferences Object



SSSHorizontal Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_ALIGN');CW(`concfull')}

Usage PreferencesObject.SSSHorizontal = HorizontalValue

Description The SSSHorizontal property lets you find or set the horizontal value used by Shape 
Spacing. The SSSHorizontal property is read/write.

Data Type Double
Value The number of inches or centimeters that Shape Spacing is to use horizontally
ABC Equivalent The SSSHorizontal property is equivalent to clicking Options on the Tools menu, clicking the

Alignment tab, and entering a value for the horizontal component used by Shape Spacing.

{button Related Topics,PI(`',`IDH_RT_SSSHorizontal_Property')}



Alignment Options
Example

AlignToRulers Property
ChannelAlignment Property
ShowRulers Property
SmartShapeSpacing Property
SSSVertical Property
TouchAlignment Property
Units Property (Chart Object)
Units Property (Preferences Object)

Preferences Object



SSSVertical Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP',`IDH_ALIGN');CW(`concfull')}

Usage PreferencesObject.SSSVertical = VerticalValue

Description The SSSVertical property lets you find or set the vertical value used by Shape Spacing. The 
SSSVertical property is read/write.

Data Type Double
Value The number of inches or centimeters that Shape Spacing is to use vertically
ABC Equivalent The SSSVertical property is equivalent to clicking Options on the Tools menu, clicking the 

Alignment tab, and entering a value for the vertical component used by Shape Spacing.

{button Related Topics,PI(`',`IDH_RT_SSSVertical_Property')}



Alignment Options
Example

AlignToRulers Property
ChannelAlignment Property
ShowRulers Property
SmartShapeSpacing Property
SSSHorizontal Property
TouchAlignment Property
Units Property (Chart Object)
Units Property (Preferences Object)

Preferences Object



TouchAlignment Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_ALIGN');CW(`concfull')}

Usage PreferencesObject.TouchAlignment = {True | False}
Description The TouchAlignment property lets you find or set whether touch alignment is turned on. 

The TouchAlignment property is read/write.
Data Type Integer (Boolean)
Value True turns touch alignment on; False turns it off.
ABC Equivalent The TouchAlignment property is equivalent to clicking Options on the Tools menu, clicking 

the Alignment tab, and selecting the Touch Alignment option (True) or deselecting the option 
(False).

{button Related Topics,PI(`',`IDH_RT_TouchAlignment_Property')}



Alignment Options
Example

AlignToRulers Property
ChannelAlignment Property
ShowRulers Property
SmartShapeSpacing Property
SSSHorizontal Property
SSSVertical Property

Preferences Object



Units Property (Preferences Object)
Usage PreferencesObject.Units = UnitsIndicator

Description You use the Units property of the Preferences object to set whether positions are measured 
in inches or centimeters. The default is inches. The Units property is read/write.

Data Type Integer
Value The units used for measurements are listed in the table below.

UnitsIndicator Description
0 Inches
1 Centimeters

ABC Equivalent The Units property is equivalent to dragging the inches or centimeters button from the View
category in the Customize dialog box to a toolbar, and then clicking it.

{button Related Topics,PI(`',`IDH_RT_Units_Property_Preferences_Object')}



Drawing Unconnected Lines
Creating Text Blocks
Example

Units Property (Chart Object)

Preferences Object



Shape Object
Description The Shape object is below the Object object. You can have only one Shape object for each 

Object object.

Properties Methods

Application DeleteLines
BorderColor FitShapeToText
BorderStyle Launch
BorderWidth Link
FillColor Renumber
FillPattern ReplaceShape
IsLaunched
IsLinked
LaunchCommand
LinkedChartName
LinkFields
NoteFont
NoteText
NoteTextLF
Number
NumberShown
Parent
ShadowColor
ShadowOffset
ShadowStyle
ShapeName

{button Related Topics,PI(`',`IDH_RT_Shape_Object')}



ABC Object Hierarchy Overview
Objects, alphabetical
Objects, graphical



BorderColor Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}

Usage ShapeObject.BorderColor = Color

Description You use the BorderColor property to set the border color for shapes using the MakeRGB 
method. A shape border includes not only the outside part of the shape, but also any interior
lines used in the shape. For example, it includes the concentric circles on the inside of a 
5.25" floppy disk shape. The BorderColor property is read/write.

Data Type Long
Value The color of the shape border
ABC Equivalent The BorderColor property is equivalent to selecting a shape, clicking the Line Color button 

on the Formatting toolbar, and then clicking the color you want.

{button Related Topics,PI(`',`IDH_RT_BorderColor_Property')}



Setting Shape Colors
Fill, Border, and Shadow Colors
Example

BasicColor Method
Color Property (Object Object)
FillColor Property
MakeRGB Method
ShadowColor Property

Shape Object



BorderColor, BorderStyle, BorderWidth, FillPattern, FillColor Properties Example
This example uses the BorderColor property, BorderStyle property, BorderWidth property, FillPattern 
property, and FillColor property of the Shape object to set the border and fill of a shape.

Dim ABC As Object, Chart As Object, Shape As Object
Dim NewShape1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set NewShape1 = Chart.DrawShape("Decision") ' Create a Decision shape
NewShape1.Shape.BorderColor = ABC.MakeRGB(0, 0, 255) ' Make the border blue
NewShape1.Shape.BorderStyle = 1 ' Make the border a solid line
NewShape1.Shape.BorderWidth = 3 ' Give the border a medium width
NewShape1.Shape.FillPattern = 23 ' Fill the shape with a brick pattern
NewShape1.Shape.FillColor = ABC.MakeRGB(255, 255, 0) ' Fill the shape with yellow



BorderStyle Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}

Usage ShapeObject.BorderStyle = StyleNumber

Description You use the BorderStyle property to find or set the line style for shape borders. A shape 
border includes not only the outside edge of a shape, but also any interior lines used in the 
shape (for example, the concentric circles on the inside of a 5.25" floppy disk shape). ABC 
provides many useful border styles, including solid and dashed lines and an invisible border. 
The BorderStyle property is read/write.

Data Type Integer
Value Set the BorderStyle property to 0 for an invisible border and to 1 for a solid border. The 

following illustration shows the values of the BorderStyle property for each available style.

ABC Equivalent The BorderStyle property is equivalent to selecting a shape, clicking the Line Style button on the
Formatting toolbar, and then clicking the border style you want.

{button Related Topics,PI(`',`IDH_RT_BorderStyle_Property')}



Border Style and Width
Example

Shape Object



BorderWidth Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}

Usage ShapeObject.BorderWidth = WidthValue

Description You use the BorderWidth property to find or set the width of the border of a shape. The 
BorderWidth property is read/write.

Data Type Integer
Value The BorderWidth property can have a value ranging from 1 to 5, with 1 a hairline (the 

thinnest possible line) and 5 the thickest line width.
ABC Equivalent The BorderWidth property is equivalent to selecting a shape, and then clicking the arrows 

next to the Line Weight button on the Formatting toolbar.

{button Related Topics,PI(`',`IDH_RT_BorderWidth_Property')}



Border Style and Width
Example

Shape Object



FillColor Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}

Usage ShapeObject.FillColor = Color

Description The FillColor property lets you find or set the fill color ( interior color) for shapes (see the 
MakeRGB method). The FillColor property is read/write.

Data Type Long
Value The fill color of the shape
ABC Equivalent The FillColor property is equivalent to selecting a shape, clicking the Fill Color button on the

Formatting toolbar, and then clicking the color you want.

{button Related Topics,PI(`',`IDH_RT_FillColor_Property')}



Setting Shape Colors
Fill, Border, and Shadow Colors
Example1
Example2

BasicColor Method
BorderColor Property
Color Property (Object Object)
MakeRGB Method
ShadowColor Property

Shape Object



FillPattern Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}

Usage ShapeObject.FillPattern = PatternNumber

Description The FillPattern property lets you find or set a shape's fill pattern. The FillPattern property is 
read/write.

Data Type Integer
Value Set the FillPattern property to 0 for a transparent fill and to 1 for a solid fill. The following 

illustrations show the values of FillPattern for each available pattern

ABC Equivalent The FillPattern property is equivalent to clicking a shape, clicking the Fill Pattern button on 
the Formattin toolbar, and then clicking the fill pattern you want.

{button Related Topics,PI(`',`IDH_RT_FillPattern_Property')}



Fill Pattern
Example

Shape Object



IsLaunched Property
Usage ShapeObject.IsLaunched
Description You can arrange to launch a program using a shape. You use the IsLaunched property to 

find if a shape has an associated program that it can launch. The IsLaunched property is 
read only.

Data Type Integer (Boolean)
Value True means the shape has an associated launch; False means it does not.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_IsLaunched_Property')}



Launching Applications
Example

Shape Object



IsLinked Property
Usage ShapeObject.IsLinked
Description You can link shapes together. After the charts are linked, you can double click a designated 

shape in one chart to open the linked chart. You use the IsLinked property to determine if a 
shape is linked to another chart. The IsLinked property is read only.

Data Type Integer (Boolean)
Value True means the shape is linked; False means the shape is not linked.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_IsLinked_Property')}



Linking Shapes to Other Charts
Example

Link Method
LinkedChartName Property
LinkFields Property
LinkIndicator Property
LinkShadow Property

Shape Object



Number Property
Usage ShapeObject.Number = ShapeNumber

Description You use the Number property to find or set the number of a shape. The Number property is
read/write.

Data Type String
Value The number of a shape
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Number_Property')}



Numbering Shapes
Example

NextNumber Property
NumberShown Property
Renumber Method

Shape Object



NumberShown Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Shape_Numbers_Overview');CW(`concfull')}

Usage ShapeObject.NumberShown = {True | False}
Description You use the NumberShown property to display or hide shape numbers. The NumberShown 

property is read/write.
Data Type Integer (Boolean)
Value True means the shape number is shown; False means it is not shown.
ABC Equivalent The NumberShown property is equivalent to selecting a shape, clicking Shape Numbering 

on the Format menu, and then clicking the Show/Hide Numbers button in the dialog box.

{button Related Topics,PI(`',`IDH_RT_NumberShown_Property')}



Hiding Shape Numbers
Example

NextNumber Property
Number Property
Renumber Method

Shape Object



LaunchCommand Property
Usage ShapeObject.LaunchCommand = Command

The Command element is the command that you want executed when the shape is 
launched, such as the path for the program to run.

Description You use the LaunchCommand property to set a command to launch for the object. The 
LaunchCommand property is read/write.

Data Type String
Value The path and name of the program to run
ABC Equivalent The LaunchCommand property is equivalent to clicking the Selector tool in the toolbox, 

selecting the shape you want to use, clicking the Link button in the standard toolbar, and 
specifying the command line in the dialog box.

{button Related Topics,PI(`',`IDH_RT_LaunchCommand_Property')}



Setting Shapes to Launch Applications
Example

Shape Object



LinkedChartName Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_LINKDB');CW(`concfull')}

Usage ShapeObject.LinkedChartName = ChartName

Description You use the LinkedChartName property to provide a full pathname and filename for a chart
and link the shape to the chart. Quotation marks should be used whenever long filenames or long 
pathnames are used. The LinkedChartName property is read/write.

Data Type String
Value The full pathname and filename of the chart linked to the object
ABC Equivalent The LinkedChartName property is equivalent to clicking the Selector tool in the toolbox, 

selecting the shape you want to use, clicking the Link button in the standard toolbar, and 
entering the pathname in the Link dialog box.

{button Related Topics,PI(`',`IDH_RT_LinkedChartName_Property')}



Linking Shapes to Other Charts
Example

IsLinked Property
Link Method
LinkFields Property
LinkIndicator Property
LinkShadow Property

Shape Object



LinkFields Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>dialog',`IDH_LINKDB');CW(`concfull')}

Usage ShapeObject.LinkFields = {True | False}
Description The LinkFields property lets you choose whether to accumulate the linked chart's field data

as the object's field information if this object is linked to another chart with field information. 
The LinkFields property is read/write.

Data Type Integer (Boolean)
Value True accumulates the linked chart's field data as the object's field information; False does not

accumulate it.
ABC Equivalent The LinkFields property is equivalent to clicking the Selector tool in the toolbox, selecting 

the shape you want to use, clicking the Link button in the standard toolbar, and selecting or 
deselecting the Link Fields option.

{button Related Topics,PI(`',`IDH_RT_LinkFields_Property')}



Linking Shapes to Other Charts
Using Linked Field Data
Example

Link Method
UpdateFields Method

IsLinked Property
LinkedChartName Property
LinkIndicator Property
LinkShadow Property

LinkNOTIFY Event

Shape Object



NoteFont Property
Usage ShapeObject.NoteFont
Description The NoteFont property lets you find the font object for notes. The NoteFont property is 

read only, but all the properties from the object it returns are read/write.
Data Type Object
Value The Font object for notes
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_NoteFont_Property')}



Text Typeface and Size
Example

Font Property
NoteText Property
NoteTextLF Property

Shape Object



NoteText Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_NOTES');CW(`concfull')}

Usage ShapeObject.NoteText = Note

Description You use the NoteText property to find or set notes for a shape. You do not need to open the 
Note window to attach notes to a shape. If you wish, however, you can show or hide the ABC 
Note Viewer using the NoteViewerVisible property. You set the font for notes using the 
NoteFont property. If you wish to preserve Returns when reading a note, you should use the
NoteTextLF property. The NoteText property is read/write.

Data Type String
Value The note associated with a shape
ABC Equivalent The NoteText property is equivalent to selecting a shape and entering text in the Note 

window.

{button Related Topics,PI(`',`IDH_RT_NoteText_Property')}



Attaching a Note to a Shape
Adding Notes to a Shape
Example

NoteFont Property
NoteIndicator Property
NoteShadow Property
NoteTextLF Property
NoteViewerVisible Property

Shape Object



NoteText, NoteFont Properties Example
This example uses the NoteText property and NoteFont property of the Shape object to enter note text for a 
shape and change the text to red.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Storage") ' Draw a Storage shape
Shape1.Shape.NoteText = ("Shape #" + Shape1.Shape.Number + " is a " + Shape1.Shape.ShapeName + 
" shape.") ' Enter text for the shape's note
Shape1.Shape.NoteFont.Color = ABC.MakeRGB(255, 0, 0) ' Make the note text red



ShadowColor Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}

Usage ShapeObject.ShadowColor = Color

Description The ShadowColor property lets you find or set the shadow color for shapes (see the 
MakeRGB method). The ShadowColor property is read/write.

Data Type Long
Value The shadow color for the shape
ABC Equivalent The ShadowColor property is equivalent to selecting a shape, clicking Shadow in the 

Format menu, clicking the down arrow next to the color box, and then clicking the color you 
want.

{button Related Topics,PI(`',`IDH_RT_ShadowColor_Property')}



Setting Shape Colors
Fill, Border, and Shadow Colors
Example

BasicColor Method
BorderColor Property
Color Property (Object Object)
FillColor Property
MakeRGB Method

Shape Object



ShadowOffset Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}

Usage ShapeObject.ShadowOffset = OffsetAmount

Description You use the ShadowOffset property to find or set the width of a shadow (the distance the 
shadow appears away from its shape). The ShadowOffset property is read/write.

Data Type Integer
Value The ShadowOffset property can have a value ranging from 1 to 5, with 1 a hairline (the 

thinnest possible shadow) and 5 the thickest shadow.
ABC Equivalent The ShadowOffset property is equivalent to clicking a shape, clicking Shadow in the Format

menu, and clicking the arrows next to the width box.

{button Related Topics,PI(`',`IDH_RT_ShadowOffset_Property')}



Shadow Style and Width
Example

ShadowStyle Property

Shape Object



ShadowStyle Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}

Usage ShapeObject.ShadowStyle = ShadowStyleNumber 
Description You use the ShadowStyle property to find or set the position of the shadow on a shape. The

ShadowStyle property is read/write.
Data Type Integer
Value ShadowStyle can have a value from 0 to 4, with 0 being no shadow and 1 through 4 the 

positions shown in the following illustration.

ABC Equivalent The ShadowStyle property is equivalent to clicking a shape, clicking the Shadow button on the 
Formatting toolbar, and then clicking the shadow position you want.

{button Related Topics,PI(`',`IDH_RT_ShadowStyle_Property')}



Shadow Style and Width
Example

ShadowOffset Property

Shape Object



ShapeName Property
Usage ShapeObject.ShapeName
Description The ShapeName property lets you find the name of a shape, such as "Process" or 

"Decision." The ShapeName property is read only.
Data Type String
Value The name of the shape
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_ShapeName_Property')}



Identifying an Object
Selecting Shapes
Example

Type Property (Object object)
UniqueID Property

Shape Object



ShapeName, ShadowStyle, ShadowColor, ShadowOffset Properties Example
This example uses the ShapeName property, ShadowStyle property, ShadowColor property, and 
ShadowOffset property of the Shape object to identify a shape and apply a shadow in the desired location, 
color, and offset. To show the proper result, ABC should be open and contain shapes, at least one of which is a 
Decision shape.

Dim ABC As Object, Chart As Object, Shape As Object
Dim CurrentShape As Object
Dim SelectedShapes As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set SelectedShapes = Chart.Objects

Do
Set CurrentShape = SelectedShapes.ItemFromShapes ' Check all shapes in the chart
If CurrentShape.Shape.ShapeName = "Decision" Then ' If a shape is a Decision

CurrentShape.Shape.ShadowStyle = 1 ' Apply shadow to bottom right
CurrentShape.Shape.ShadowColor = ABC.MakeRGB(0, 0, 255) ' Make shadow blue
CurrentShape.Shape.ShadowOffset = 5 ' Give the shadow a big offset

End If
Loop While CurrentShape.Valid



DeleteLines Method
Usage ShapeObject.DeleteLines
Description You use the DeleteLines method of the Shape object to delete all the lines attached to a 

specific shape. Deleting lines with this method does not place the lines in the Windows 
Clipboard.

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_DeleteLines_Method')}



Deleting Lines
Example

Shape Object



DeleteLines, Repaint Methods Example
This example uses the Repaint method of the Object object and the DeleteLines method of the Shape object 
to refresh the screen and delete lines connected to a shape.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, NewLine As Object
Dim Counter As Single

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Document") ' Draw a Document shape
For Counter = 0 To 3 ' To draw 4 lines to the shape

Chart.DrawPositionY = Counter + 1 ' Change the lines' starting points
Set NewLine = Chart.DrawLineToOneObject(Shape1, Counter)' Draw a line to the shape
NewLine.Repaint ' Refresh the lines on screen

Next Counter

MsgBox "Are you ready to delete the lines?"
Shape1.Shape.DeleteLines ' Delete all lines connected to Shape1



FitShapeToText Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Shapes_Look');CW(`concfull')}

Usage ShapeObject.FitShapeToText
Description You use the FitShapeToText method to expand or contract a shape around its center so that 

the text in it fits. This is useful when the length of the text string may vary and you want to 
avoid hiding text that will not fit within the shape. 

ABC Equivalent The FitShapeToText method is equivalent to selecting the shape, and then clicking Fit 
Shape to Text in the Formatting menu.

{button Related Topics,PI(`',`IDH_RT_FitShapeToText_Method')}



Fitting Shapes to Text
Sizing Shapes to Text
Example

Shape Object



FitShapeToText Method Example
This example uses the FitShapeToText method of the Shape object to change the size of a shape so the text in 
it fits correctly.

Dim ABC As Object, Chart As Object, Shape As Object
Dim NewShape1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set NewShape1 = Chart.DrawShape("Document") ' Draw a Document shape
NewShape1.Text = "Antidisestablishmentarianism" ' Enter text in the shape
NewShape1.Shape.FitShapeToText ' Resize the shape to fit the text



Launch Method
Usage ShapeObject.Launch
Description You use the Launch method to execute the shape's launch.
Data Type Integer (Boolean)
Value True means the launch was successful; False means the launch was not successful.
ABC Equivalent The Launch method is equivalent to double clicking the shape you set for launching.

{button Related Topics,PI(`',`IDH_RT_Launch_Method')}



Launching Applications
LaunchCommand Property
LaunchFlags Property
LaunchIndicator Property
LaunchShadow Property
LaunchStartDir Property
Shape Object
Example



Launch Example
This example uses the Launch method, the IsLaunched property and the LaunchCommand property of the 
Shape object to determine if a shape has a launch attached to it and, if it does not, to define the program to be 
launched and launch the application.

Dim ABC As Object, Chart As Object
Dim Shape As Object
Dim CurrentShape As Object
Dim CmdStr As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set CurrentShape = Chart.Objects.ItemFromShapes ' Select a shape
If CurrentShape.Shape.IsLaunched = False Then ' If shape is not launched, set up

CmdStr = "C:\windows\notepad.exe " + Chart.Name + ".txt"' Append chart name 
CurrentShape.Shape.LaunchCommand = CmdStr ' Set command line
CurrentShape.Shape.Launch ' Execute the launch
Else MsgBox "This shape already has a launch."

End If



Link Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>procedur',`IDH_LINKOPENP');CW(`concfull')}

Usage ShapeObject.Link
Description You use the Link method to open the chart linked to a shape. If you have not yet set a value 

for the LinkedChartName property, this method creates a new chart with an automatically 
generated filename using the DefaultFilePath property.

Data Type Object
Value The linked chart
ABC Equivalent The Link method is equivalent to double-clicking the linked shape. The linked chart opens 

and becomes the active chart.

{button Related Topics,PI(`',`IDH_RT_Link_Method')}



Opening a Linked Chart
Example

GroupAndLink Method

DefaultFilePath Property
IsLinked Property
LinkedChartName Property
LinkFields Property
LinkShadow Property

Shape Object



Link Method, LinkFields Property, and LinkShadow Property Example
This example uses the Link method and the LinkFields property of the Shape object and the LinkShadow 
property of the Chart object to link a shape to show a shadow on linked shapes, link a shape to another chart, 
and deselect Link Fields in the Link dialog box.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, Link1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.CloseAll ' Close all charts
ABC.New ' Add a new chart
Set Chart = ABC.ActiveChart ' Get the active chart

Chart.LinkShadow = True ' Show a shadow on linked shapes
Set Shape1 = Chart.DrawShape("Decision") ' Draw a shape
Set Link1 = Shape1.Shape.Link ' Link the shape to a new chart
ABC.TileCharts ' Tile all chart windows

Shape1.Shape.LinkFields = 0 ' Deselect Link Fields in the Link dialog 
box
MsgBox "Accumulations of fields from the linked chart will not appear in the top chart."



Renumber Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Shape_Numbers_Overview');CW(`concfull')}

Usage ShapeObject.Renumber
Description You use the Renumber method to replace the current shape number with the value in the 

NextNumber property and increment the value in the NextNumber property.
ABC Equivalent The Renumber method is equivalent to clicking the Number tool in the toolbox, and then 

clicking the shape.

{button Related Topics,PI(`',`IDH_RT_Renumber_Method')}



Numbering Shapes
Example

NextNumber Property
Number Property
NumberShown Property

Shape Object



ReplaceShape Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_PLACESHAPES');CW(`concfull')}

Usage ShapeObject.ReplaceShape [ShapeName]
The ShapeName element is the name of the shape to put in place of the selected shape.

Description You use the ReplaceShape method of the Shape object to replace shapes. The new shape 
connects to the lines of the old shape. You can replace shapes with the chart's current shape 
or can specify a shape.

Data Type Integer (Boolean)
Value True means the shape was replaced successfully; False means the replacement was not 

successful. The ShapeName element is a string.
ABC Equivalent The ReplaceShape method is equivalent to selecting a shape, choosing the new shape in 

the Shape Palette, and then clicking Replace Shape button in the Arrange toolbar.

{button Related Topics,PI(`',`IDH_RT_ReplaceShape_Method')}



Replacing Shapes
Example

DrawShape Method

Shape Object



ReplaceShape Method Example
This example uses the ReplaceShape method of the Shape object to replace one shape with another.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Terminal") ' Draw a Terminal shape
Shape1.Shape.ReplaceShape "Delay" ' Change Shape1 into a Delay shape



NoteTextLF Property
Usage ShapeObject.NoteTextLF = Note

Description You use the NoteTextLF property to find or set notes for a shape. When adding a note, the 
property is identical to the NoteText property. When reading the text in a note, the property 
does not substitue spaces for Returns as the NoteText property does. If you do not wish to 
preserve Returns, you should use the NoteText property.
You do not need to open the Note window to attach notes to a shape. If you wish, however, 
you can show or hide the ABC Note Viewer using the NoteViewerVisible property. You set 
the font for notes using the NoteTextLF property. The NoteTextLF property is read/write.

Data Type String
Value The note associated with a shape with Returns preserved
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_NoteTextLF_Property')}



Attaching a Note to a Shape
Adding Notes to a Shape
Example

NoteFont Property
NoteIndicator Property
NoteShadow Property
NoteText Property
NoteViewerVisible Property

Shape Object



NoteTextLF Property Example
This example uses the NoteTextLF property of the Shape object to read note text and preserve the Returns in 
the text.

Dim ABC As Object, Chart As Object
Dim Shape1 As Object, NoteText As String

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set Shape1 = Chart.DrawShape("Storage") ' Draw a Storage shape
Shape1.Shape.NoteText = ("Shape #" + Shape1.Shape.Number + " is a " + Shape1.Shape.ShapeName + 
" shape. " + CHR$(13) + "This is a note.") ' Enter text for the shape's note
NoteText = Shape1.Shape.NoteTextLF ' Read the note, preserving Returns



TextBlock Object
Description The TextBlock object is below the Object object. You can have only one TextBlock object for 

each Object object.

Properties Methods

Application UnattachFromLine
AttachedToLine
Parent

{button Related Topics,PI(`',`IDH_RT_TextBlock_Object')}



ABC Object Hierarchy
Objects, alphabetical
Objects, graphical



AttachedToLine Property
Usage TextBlockObject.AttachedToLine
Description The AttachedToLine method lets you find whether a text block is attached to a line. The 

AttachedToLine method is read only.
Data Type Integer (Boolean)
Value True means the text block is attached to a line; False means it is not.
ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_AttachedToLine_Property')}



Unattaching Text from a Line
Example

TextBlock Property
UnattachFromLine Method

TextBlock Object



UnattachFromLine Method {button ABC 
Equivalent,JI(`ABCFLOW.HLP>large',`IDH_Determining_How_Lines_Look');CW(`concfull')}

Usage TextBlockObject.UnattachFromLine
Description The UnattachFromLine method lets you detach a text block from all lines.
ABC Equivalent The UnattachFromLine method is equivalent to dragging a text block away from lines to 

detach it from the lines.

{button Related Topics,PI(`',`IDH_RT_UnattachFromLine_Method')}



Unattaching Text from a Line
Example

AttachedToLine Property

TextBlock Object



UnattachFromLine Method Example
This example uses the UnattachFromLine method of the TextBlock object to detach text from a line.

Dim ABC As Object, Chart As Object
Dim NewLine As Object
Dim NewText As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
Set Chart = ABC.ActiveChart ' Get the active chart

Set NewLine = Chart.DrawFreeLine(4,4) ' Draw a line
Set NewText = Chart.DrawTextBlock("Hello there!") ' Draw a text block
NewLine.Line_.AttachText NewText ' Attach the text to the line
MsgBox "The text is attached to the line. When you click OK, it will be detached."
NewText.TextBlock.UnattachFromLine ' Detach text from the line



Resizing Windows {button OLE 
Automation,JI(`>concfull',`AUTOMATE.HLP',IDH_Bottom_Property_Application_Ob
ject);CW(`large')}
You can make the ABC FlowCharter window larger or smaller, resizing it in any direction. With the mouse, you 
can resize horizontally and vertically at the same time from the corner of a window.
To resize the window with the mouse

1 Point to a border or corner and press and hold the left mouse button. 
2 Drag the border or corner until the new border indicates the desired size.
3 Release the mouse button.
To resize the window with the keyboard

1 Press Alt+Spacebar and then S to choose the Size command. 
2 Press an Arrow key to move the four-headed arrow to the border you want to move. To move to a corner, 

press the two Arrow keys that point to that corner.
3 Press the Arrow keys repeatedly to change the window to the desired size.
4 Press Enter. The active window changes to the new size.



To switch among application windows {button OLE 
Automation,JI(`>concfull',`AUTOMATE.HLP',IDH_Activate_Method_Application_Object);CW(`procedur'
)}

1 Press Alt + Tab. 
A window shows icons for all the active applications.

2 Continue to hold down Alt and press Tab until the desired application is highlighted.



Restore Command (Control Menu) {button OLE 
Automation,JI(`>concfull',`AUTOMATE.HLP',IDH_Restore_Method_Application_Obj
ect);CW(`command')}
Use the Restore command in the Control menu to return the active window to its size and position before you 
chose the Maximize or Minimize command.
Clicking the Restore button in the upper-right corner of a maximized window is the same as choosing the Restore
command.
Tip

Double click the title bar to restore the window quickly.



Minimize Command (Control Menu) {button OLE 
Automation,JI(`>concfull',`AUTOMATE.HLP',IDH_Minimize_Method_Application_O
bject);CW(`command')}
Use the Minimize command in the Control menu to reduce the ABC FlowCharter window to an icon.
Clicking Minimize button in the upper-right corner of the window is the same as choosing the Minimize command.



Maximize Command (Control Menu) {button OLE 
Automation,JI(`>concfull',`AUTOMATE.HLP',IDH_Maximize_Method_Application_Object);CW(`comman
d')}
Use the Maximize command in the Control menu to enlarge the active window    to fill the available space. For 
example, a chart window expands to fill the ABC FlowCharter window. The ABC FlowCharter window expands to 
fill the entire screen.
Clicking the maximize button in the upper-right corner of the window is the same as choosing the Maximize 
command.
Tip

Double click the title bar to maximize the window quickly.



StatusBarVisible Property {button ABC 
Equivalent,JI(`ABCFLOW.HLP>command',`IDH_Status_Bar_Command');CW(`concfull')}

Usage ApplicationObject.StatusBarVisible = {True | False}
Description You use the StatusBarVisible property of the application object to find or set whether the 

status bar is displayed. The StatusBarVisible property is read/write.
Data Type Integer (Boolean)
Value True means the status bar is visible; False means it is not.
ABC Equivalent The StatusBarVisible property is equivalent to clicking Status Bar on the View menu.

{button Related Topics,PI(`',`IDH_RT_StatusBarVisible_Property')}



Changing the ABC Status Bar
Example

StatusBar Property 

Application Object



StatusBarVisible Property Example
This example uses the StatusBarVisible Property to turn the status bar on if it is off, and vice versa.

Dim ABC As Object
Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC Visible
If ABC.StatusBarVisible Then ' Is the status bar visible?

ABC.MsgBox "Status Bar is visible"
ABC.StatusBarVisible= False ' Toggle the status bar off

Else
ABC.MsgBox "Status Bar is not visible"
ABC.StatusBarVisible = True ' Toggle the status bar on

End If



ZoomWindowVisible Property
Usage ApplicationObject.ZoomWindowVisible = {True | False}
Description You use the ZoomWindowVisible property of the application object to find or set whether 

the QuickZoom window is visible. The ZoomWindowVisible property is read/write.
Data Type Integer (Boolean)
Value True means the QuickZoom window is visible; False means it is not.
ABC Equivalent The ZoomWindowVisible property is equivalent to clicking QuickZoom on the View menu.

{button Related Topics,PI(`',`IDH_RT_ZoomWindowVisible_Property')}



Example

Application Object



ZoomWindowVisible Property Example
This example uses the ZoomWindowVisible property to display the Quick Zoom window if it is not visible, and 
vice versa.

Dim ABC As Object
Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC Visible
If ABC.ZoomWindowVisible Then ' Is the zoom window visible?

ABC.MsgBox "Quick Zoom Window is visible"
ABC.ZoomWindowVisible = False ' Toggle the zoom window off

Else
ABC.MsgBox "Quick Zoom Window is not visible"
ABC.ZoomWindowVisible = True ' Toggle the zoom window on

End If



PrintPreview Method
Usage ChartObject.PrintPreview
Description You use the PrintPreview method of the chart object to display the print preview window
ABC Equivalent The PrintPreview method is equivalent to clicking Print Preview on the File menu.

{button Related Topics,PI(`',`IDH_RT_PrintPreview_Method')}



Example

Chart Object



PrintPreview Method Example
This example uses the PrintPreview method to display the print preview.

Dim ABC As Object, Chart As Object, NewObj As Object
Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible

ABC.New ' Create a new chart
Set Chart = ABC.ActiveChart ' Get the new chart object

Set NewObj = Chart.DrawShape("Process") ' Draw a new shape
NewObj.Color = ABC.RED ' Change the objects color
Chart.PrintPreview ' Activate the print preview

' User must close manually



ReplaceText Method
Usage ChartObject.ReplaceText (FindText, ReplacementText [,MatchCase] [,WholeWord])
Description The ReplaceText method of the Chart object looks through the chart and replaces all 

occurrences of FindText    with ReplacementText . The MatchCase and WholeWord    
parameters are optional; they are FALSE if not provided.

Data Type Long. FindText and ReplacementText are strings. MatchCase and WholeWord parameters are
optional. 

Value The number of replacements made
ABC Equivalent The Replace method is equivalent to clicking Replace on the Edit menu and completing the 

dialog box.

{button Related Topics,PI(`',`IDH_RT_ReplaceText_Method')}



Example

Chart Object



ReplaceText Method Example
This example uses the ReplaceText method to replace four shapes with text blocks.

Dim ABC As Object, Chart As Object
Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC Visible
ABC.New ' Create a new chart
Set Chart = ABC.ActiveChart ' Get the new chart object

Chart.DrawPositionX = 1 ' Set next shape X position
Chart.DrawPositionY = 1 ' Set next shape Y position
Chart.DrawSpacingX = 1 ' Set X spacing for new shapes
Chart.DrawSpacingY = 1 ' Set Y spacing for new shapes

For Shapes = 1 To 4
Msg = "Shape " + Str(Shapes)
Chart.DrawTextBlock Msg ' Draw four text blocks

Next Shapes

ABC.MsgBox "Notice Shape names"
NumReplaced = Chart.ReplaceText("Shape", "Text Block", False, False) ' Perform Replace
Msg = "Replaced " + Str(NumReplaced) + " strings" ' Report number of replacements
ABC.MsgBox Msg



ImportShape Method
Usage ChartObject.ImportShape (PathName)
Description You use the ImportShape method of the Chart object to import a graphics file into a new 

shape. A shape is created and the graphics file is inserted into it. The extension on the 
filename determines the graphics filter used. For example, if the filename has the 
extension .DRW, the Draw/Designer filter is used. Quotation marks should be used whenever long 
filenames or long pathnames are used.

Data Type Object
Value It returns the shape object that was drawn; it returns not valid if the import failed.
ABC Equivalent The ImportShape method is equivalent to clicking Import Shape on the Tools menu in ABC.

{button Related Topics,PI(`',`IDH_RT_ImportShape_Method')}



Example

Chart Object



ImportShape Method Example
This example uses the ImportShape method to import a DRW file and place it as a shape.

Dim ABC As Object, Chart As Object, NewObject As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Create a new chart
Set Chart = ABC.ActiveChart ' Get the new chart object
Chart.DrawPositionX = 1 ' Set next shape X position
Chart.DrawPositionY = 1 ' Set next shape Y position
Chart.DrawSpacingX = 1 ' Set X spacing for new shapes
Chart.DrawSpacingY = 1 ' Set Y spacing for new shapes

Set NewObject = Chart.ImportShape("C:\TestObj.Drw")' Import shape and return object
If NewObject.Valid Then ' Verify import was successful

MsgBox "Successfully imported shape"
Else

MsgBox "Failed to import shape"
End If



Export Method
Usage ChartObject.Export (PathName)
Description You use the Export method of the Chart object to export the chart to a graphics file. The 

extension on PathName determines the filter used. The extension on the filename 
determines the graphics filter used. Quotation marks should be used whenever long filenames or 
long pathnames are used.

Data Type Integer (Boolean)
Value True means the export was successful; False means the export was not successful.
ABC Equivalent The Export method is equivalent to clicking Export Chart on the Tools menu in ABC.

{button Related Topics,PI(`',`IDH_RT_Export_Method')}



Example

Chart Object



Export Method Example
This example uses the Export method to export a shape to a DRW file.

Dim ABC As Object, Chart As Object, NewObj As Object
Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Create a new chart 
Set Chart = ABC.ActiveChart ' Get the new chart object
Set NewObj = Chart.DrawShape("Process") ' Draw a new shape
NewObj.Color = ABC.RED ' Change the shape color
If Chart.Export("C:\Process.drw") Then ' Attempt the export to a .DRW file

ABC.MsgBox "Successfully exported chart." ' Export returned true
Else

ABC.MsgBox "Failed to export chart." ' Export returned false
End If



SpaceEvenly Method
Usage ChartObject.SpaceEvenly (Direction)
Description The SpaceEvenly method lets you space currently selected objects evenly either across or 

down, based on their centers or edges.
Data Type Integer (Boolean). Direction is an integer.
Value True means the spacing was successful; False means the spacing was not successful. The 

SpaceEvenly method uses the values in the following table.
Direction Description
0 Across, centers
1 Down, centers
2 Across, edges
3 Down, edges

ABC Equivalent The SpaceEvenly method is equivalent to selecting objects and then clicking a Space 
Evenly command on the Arrange menu or a Space Evenly button on the Arrange toolbar.

{button Related Topics,PI(`',`IDH_RT_SpaceEvenly_Method')}



Example

Chart Object



SpaceEvenly Method, Align Method, and MakeSameSize Method Example
This example uses    the MakeSameSize method to make shapes the same size, then uses the Align method to 
align them along the left edges, and    finally uses the SpaceEvenly method to space them evenly down based 
on the centers.

Dim ABC As Object, Chart As Object
Dim Obj1 As Object

Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Create a new chart

Set Chart = ABC.ActiveChart ' Get the new chart object
For I = 1 To 4

Chart.DrawPositionX = I * .6 ' Position shapes in a staircase
Chart.DrawPositionY = I * .6
Set Obj1 = Chart.DrawShape("Process") ' Draw shape
Obj1.Height = Obj1.Height / I ' Decrease shape height
Obj1.Width = Obj1.Width / I ' Decrease shape width

Next I

Chart.Select (0) ' Select all objects
Chart.MakeSameSize (2) ' Make all same size
Chart.Align (0) ' Align along left edges
Chart.SpaceEvenly (1) ' Space evenly down, centers

Chart.DeselectAll ' Deselect all objects



Align Method
Usage ChartObject.Align (By)
Description You use the Align method to align selected objects. 
Data Type Integer (Boolean)
Value True means the realignment was successful; False means the realignment was not 

successful. The Align method uses the values shown in the following table.
By Description
0 Left edges
1 Centers (horizontal)
2 Right edges
3 Top edges
4 Middle (vertical)
5 Bottom edges

ABC Equivalent The Align method is equivalent to selecting the objects, and then clicking an Align 
command on the Arrange menu or an Align button on the Arrange toolbar.

{button Related Topics,PI(`',`IDH_RT_Align_Method')}



Example

Chart Object



MakeSameSize Method
Usage ChartObject.MakeSameSize (AccordingTo)
Description You use the MakeSameSize method of the Chart object to make the currently selected 

objects the same size. 
Data Type Integer (Boolean). AccordingTo is an integer.
Value True means the resizing was successful; False means the resizing was not successful.

The following table describes the values for the MakeSameSize method.
Value According To
0 Width
1 Height
2 Both
3 Fit to Text

ABC Equivalent The MakeSameSize method is equivalent to selecting objects, and then clicking a Make 
Same Size option on the Arrange menu or a Make Same Size button on the Arrange toolbar.

{button Related Topics,PI(`',`IDH_RT_MakeSameSize_Method')}



Example

Chart Object



FlippedVertical Property
Usage ObjectObject.FlippedVertical = {True | False}
Description You use the FlippedVertical property to find or set whether an object is flipped vertically 

(from top to bottom.) The FlippedVertical property is read/write.
Data Type Integer (Boolean)
Value True means the object is flipped vertically; False means it is not.
ABC Equivalent The FlipVertical property is equivalent to selecting the objects, and then clicking Flip 

Vertically on the Arrange menu or the Flip Vertically button on the Arrange toolbar.

{button Related Topics,PI(`',`IDH_RT_FlippedVertical_Property')}



Example

Object Object



FlippedVertical, FlippedHorizontal, Rotation Properties Example
This example uses the FlippedVertical, FlippedHorizontal, and Rotation properties to change the orientation
of three objects, and then returns them to their original orientation.

Dim ABC As Object, Chart As Object
Dim Obj1 As Object, Obj2 As Object, Obj3 As Object
Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC Visible
ABC.New ' Create a new chart
Set Chart = ABC.ActiveChart ' Get the new chart object
Chart.DrawDirection = 2 ' Draw the new shapes north to south
Chart.DrawPositionY = .5 ' Initial Y position
Chart.DrawSpacingY = 1 ' Vertical spacing between shapes
Set Obj1 = Chart.DrawShape("Merge") ' Draw shapes
Set Obj2 = Chart.DrawShape("Display")
Set Obj3 = Chart.DrawShape("Collate")
ABC.MsgBox "Observe original orientations" ' Show original orientations
Obj1.FlippedVertical = True ' Flip Merge shape vertically
Obj2.FlippedHorizontal = True ' Flip Display shape horizontally
Obj3.Rotation = 1   ' Rotate Collate shape 90 degrees
ABC.MsgBox "Observe new orientations"
Obj1.FlippedVertical = False ' Return to original orientations
Obj2.FlippedHorizontal = False
Obj3.Rotation = 3   ' Rotate 270 degrees



FlippedHorizontal Property
Usage ObjectObject.FlippedHorizontal = {True | False}
Description You use the FlippedHorizontal property to find or set whether an object is flipped vertically

(from top to bottom.) The FlippedHorizontal property is read/write.
Data Type Integer (Boolean)
Value True means the object is flipped horizontally; False means it is not.
ABC Equivalent The FlipHorizontal property is equivalent to selecting the objects, and then clicking Flip 

Horizontally on the Arrange menu or the Flip Horizontally button on the Arrange toolbar.

{button Related Topics,PI(`',`IDH_RT_FlippedHorizontal_Property')}



Example

Object Object



Rotation Property
Usage ObjectObject.Rotation = Value

Description You use the Rotation property to find or set the rotation of an object. All rotation is 
clockwise in 90 degree increments.

Data Type Integer
Value The following table describes the values for the Rotation property.

Value Amount of Rotation
0 0
1 90
2 180
3 270

ABC Equivalent The Rotation property is equivalent to selecting the objects, and then clicking Rotate Right 
on the Arrange menu or the Rotate button on the Arrange toolbar an approprioate number of
times.

{button Related Topics,PI(`',`IDH_RT_Rotation_Property')}



Example

Object Object



ApplyDefaults Method
Usage ObjectObject.ApplyDefaults
Description You first use ChartObject.SetDefaults (ObjectObject) to define the default styling for 

shapes, lines, and textblocks. Then you use the ApplyDefaults property to apply the chart's
default styling to this object.

ABC Equivalent The ApplyDefaults method is equivalent to using the Preset Styles toolbar.

{button Related Topics,PI(`',`IDH_RT_ApplyDefaults_Method')}



Example 

SetDefaults Method 

Object Object



ApplyDefaults Method Example
This example uses the ApplyDefaults method to apply the styles of one shape to two other shapes.

Dim ABC As Object, Chart As Object
Dim Obj1 As Object, Obj2 As Object, Obj3 As Object
Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC visible
ABC.New ' Create a new chart
Set Chart = ABC.ActiveChart ' Get the new chart object
Chart.DrawSpacingX = 1.25 ' Set horizontal spacing
Set Obj1 = Chart.DrawShape("Process") ' Draw shapes
Set Obj2 = Chart.DrawShape("Connector")
Set Obj3 = Chart.DrawShape("Decision")
Obj1.Color = ABC.RED ' Change Process shape color to red
Obj1.Shape.ShadowStyle = 4 ' Add shadow to Process shape
Chart.SetDefaults Obj1.Shape ' Copy Process shape format information
Obj2.ApplyDefaults ' Apply Process format to Connector
Obj3.ApplyDefaults ' Apply Process format to Decision shape



Routing Property
Usage Line_Object.Routing = LineRoutingValue

Description You use the Routing property to change the type of routing for existing lines. The Routing 
property is read/write.

Data Type Integer
Value The following table describes the values for the Routing property.

Value Type of Line
0 Direct
1 Right angle
2 Curved
3 Organization chart
4 Cause-and-effect

ABC Equivalent None

{button Related Topics,PI(`',`IDH_RT_Routing_Property')}



Example

Line Object



Routing, CrossoverSize, CrossoverStyle Properties Example
This example uses the Routing, CrossoverSize, and CrossoverStyle properties of two lines.

Dim ABC As Object, Chart As Object
Dim Obj1 As Object, Obj2 As Object, Obj3 As Object
Dim Line1 As Object, Line2 As Object

 
Set ABC = CreateObject("ABCFlow.application") ' Start ABC
ABC.Visible = True ' Make ABC Visible
ABC.New ' Create a new chart
Set Chart = ABC.ActiveChart ' Get the new chart object

 
Chart.DrawPositionX = 1 ' Set the next shape position
Chart.DrawPositionY = 1
Set Obj1 = Chart.DrawShape("Process") ' Draw a Process shape

Chart.DrawPositionX = 3 ' Set the next shape position
Chart.DrawPositionY = 3
Set Obj2 = Chart.DrawShape("Decision") ' Draw a Decision shape

Chart.DrawPositionX = 2
Chart.DrawPositionY = .5
Set Obj3 = Chart.DrawShape("Connector") ' Draw a Connector shape

 
Chart.DrawPositionX = 2
Chart.DrawPositionY = 3
Set Line2 = Chart.DrawLineToOneObject(Obj3.Shape, 2) ' Draw a line to Connector
Line2.Line_.CrossoverSize = 2 ' Set large crossover size
Line2.Line_.CrossoverStyle = 2 ' Set solid crossover lines

Set Line1 = Chart.DrawLine(Obj1.Shape, Obj2.Shape) ' Draw a line between Decision
   ' and Process shapes

Line1.Line_.Color = ABC.BLUE ' Change the line color to blue
Line1.Line_.Routing = 2       ' Use curved line routing



CrossoverSize Property
Usage Line_Object.CrossoverSize = RelativeSize

Description The CrossoverSize property lets you find or set the size of the crossover when one line 
crosses of another for a specific line. The setting applies to bunny hops and broken lines, but
has no effect when the crossover style is solid lines. (See the CrossoverStyle property for 
information on the available styles.) The CrossoverSize property is read/write.

Data Type Integer
Value The values for the relative sizes for bunny hop crossovers are in the following table. The 

same relative sizes apply when the style is broken lines.
RelativeSize Description
0  Small

1  Medium
2  Large
Value The relative size of the crossover when one line crosses another
ABC Equivalent The CrossoverSize property is equivalent to selecting one or more lines, clicking the 

Crossovers button on the Formatting bar, clicking the Line Options button, and dragging the 
slider in the Crossovers section to set the size of the crossover.

{button Related Topics,PI(`',`IDH_RT_CrossoverSize_Property')}



Example

Line Object



CrossoverStyle Property
Usage Line_Object.CrossoverStyle = Style

Description The CrossoverStyle property lets you find or set the style of the crossover when one line 
crosses another for a specific line. The CrossoverStyle property is read/write.

Data Type Integer
Value The values for the styles are in the following table.

Style Description
0  Bunny hops

1  Broken lines
2  Solid lines
Value The style when one line crosses another
ABC Equivalent The CrossoverStyle property is equivalent to selecting a line, clicking the Crossovers 

button on the Formatting bar, clicking the Line Options button, and clicking a crossover style.

{button Related Topics,PI(`',`IDH_RT_CrossoverStyle_Property')}



Example

Line Object



IndexWindowHandle Property
Description This command was in ABC FlowCharter 4.0, but is not appropriate in ABC FlowCharter 6.0. It 

is not invalid; it is ignored.



IndexVisible Property
Description This command was in ABC FlowCharter 4.0, but is not appropriate in ABC FlowCharter 6.0. It 

is not invalid; it is ignored.



LaunchFlags Property
Description This command was in ABC FlowCharter 4.0, but is not appropriate in ABC FlowCharter 6.0. It 

is not invalid; it is ignored.



LaunchStartDir Property
Description This command was in ABC FlowCharter 4.0, but is not appropriate in ABC FlowCharter 6.0. It 

is not invalid; it is ignored.



RestorePicture Method (OLE Object)
Description This command was in ABC FlowCharter 4.0, but is not appropriate in ABC FlowCharter 6.0. It 

is not invalid; it is ignored.



ShapeSizing Property
Description This command was in ABC FlowCharter 4.0, but is not appropriate in ABC FlowCharter 6.0. It 

is not invalid; it is ignored.



LaunchIndicator Property
Description This command was in ABC FlowCharter 4.0, but is not appropriate in ABC FlowCharter 6.0. It 

calls LinkIndicator property.

{button Related Topics,PI(`',`IDH_RT_LaunchIndicator_Property')}



LinkIndicator Property 



LaunchShadow Property
Description This command was in ABC FlowCharter 4.0, but is not appropriate in ABC FlowCharter 6.0. It 

calls LinkShadow property.

{button Related Topics,PI(`',`IDH_RT_LaunchShadow_Property')}



LinkShadow Property 




