
Designing Skins for the QCD Player 5/8/2002 Page 1

Designing User Interfaces (“Skins”)
for the QCD Player

Designing User Interfaces (“Skins”) for QCD Player.. 2
Overview .. 2

Contents of a Skin.. 3
A Note About Buttons: The Four Button States ... 4

The Bitmap Files.. 5
Map.bmp – The Master Map ... 6

Color codes .. 6
Body.bmp – The Main Body and Extended Areas .. 8
ButtonSet.bmp – The Track Control Buttons ... 8
WindowSet.bmp – Basic Windows Controls.. 9
TrackSet.bmp – The TrackBox Controls... 10
TimerSet.bmp – The Timer Display... 13
SliderSet.bmp – Sliders, Progress Bars, and Knobs.. 14

“Tracking” Sliders .. 15
“Progressive” Sliders (“Thermometers”) ... 15
“Rotational” Sliders (“Knobs”) ... 16

EqSet.bmp – Equalizer Controls.. 17
MenuSet.bmp – Menu Title Bars... 18
BorderSet.bmp – Window Borders .. 19
CharSet.bmp and CharSet.ini – Character Sets.. 20

Text Controls... 20
CharSet.bmp ... 20
CharSet.ini... 21

Testing a Skin .. 23
Wrapping up skins .. 24

SkinFamily.ini ... 25
SkinKid.ini... 26

Designing Skins for the QCD Player 5/8/2002 Page 2

Designing User Interfaces (“Skins”)
for QCD Player

Overview

The QCD Player is a fully functional digital audio player application for Windows 95 | 98 | ME, Windows
NT 4.x, Windows 2000, and Windows XP. Designed as a lightweight Win32 stand-alone application, it
obtains and displays information from the Gracenote CDDB Music Recognition Service if the user is
connected (or chooses to connect) to the Internet.

The QCD Player provides a unique skinning implementation that allows a designer to replace the entire
graphical user interface, without regard to shape, size, or position of the original QCD user interface.

This feature lets someone with graphics skills create a custom interface for the QCD Player, called a skin,
without any programming required and with only minimal Quality Assurance before being released to the
public. Creating a skin does require a graphic artist skilled in the use of a paint application (such as Adobe
Photoshop) to create bitmapped graphics. QCD lets you design a user interface with arbitrary shape and
layout, so you do not have to limit your player design to rectangular shapes, or to specific layout or shapes
of buttons, slider, displays, and other controls. This gives you tremendous freedom for your player design.

QCD does not require that you include all of its features, buttons, and controls into the design of a skin. In
fact, including all features can lead to a player interface that’s difficult to use. However, certain functions
(such as Play, Stop, Next Track, etc.) are so basic, a user would consider the player broken if it did not
include them. You can also hide some controls in several extended areas of the body that only appear if the
user clicks the Extend button in the main body of the Player—a common technique used by interface
designers to hide more ‘advanced’ functions until the user is ready to deal with them.

Designing Skins for the QCD Player 5/8/2002 Page 3

Contents of a Skin

A skin consists of several files. Except for the CharSet.ini file, all these are .bmp (Windows bitmap) files.

A skin is comprised of the following files.

• Map.bmp is the Master Map that defines which controls appear in the player, and where they appear.

It also defines the shape of the player and of each of the controls. It also defines what part of the
player body is permanently displayed, and which is the Extended Body, which is only displayed if the
user clicks the Extend button. QCD uses a unique color-coding system for this map, which is what
allows it to place the controls of arbitrary shape in an arbitrary layout, including omitting some
controls altogether.

• Body.bmp defines the overall look of the skin. All other controls appear on top of this body.

• A set of seven .bmp files defines the appearance of the various displays, buttons, and sliders. These

seven files are ButtonSet.bmp (the standard playback buttons, Play, Stop, Eject, etc.); WindowSet.bmp
(various window controls, such as minimize, close, menu display, and other general widgets);
TrackSet.bmp (the “TrackBox”, which is an array of buttons corresponding to the individual tracks;
TimerSet.bmp (the playback timer); the SliderSet.bmp (the sliders and knobs such as volume knob or
playback progress); the SkinCtrlSet.bmp (the various buttons to switch between skin modes); and the
EqSet.bmp (the sliders and buttons that implement the equalizer). Four of these files (SliderSet,
TrackSet, TimerSet, and EqSet) use a color coded “Internal Map” that is similar in concept to the
Master Map.bmp file—in other words it uses color coding to let you construct larger controls from
smaller components. The details are defined in the sections for each of these files.

• MenuSet.bmp contains the banners that appear on the main menu and the ‘QuickTrack’ menu.

• BorderSet.bmp defines the appearance of a resizable border for some of the windows within the QCD

Player.

• A CharSet.ini and/or CharSet.bmp file that define the appearance (typeface and size) and color of text

in the player, such as the disc title, artist, and track titles.

If you put these files together in a folder, the QCD Player can load them and display the resulting user
interface. This is probably how you will view the skin as you design and test it. However, for purposes of
delivering the skin, you should collect the files into a compressed ‘zip’ archive. The QCD Player can unzip
the archive and read the files on the fly.

Designing Skins for the QCD Player 5/8/2002 Page 4

A Note About Buttons: The Four Button States

Before describing all the bitmap files, it is useful to pause and agree on some general terminology and
principles about “button” type controls. While other types of controls, such as sliders and displays, are
described in the sections on specific bitmap files, the way buttons behave affects several of these bitmap
files.

Buttons behave in one of two ways: A normal button executes a command when the user clicks on it, and
then returns to its default appearance. A “toggle” type button changes the behavior of the player (such as
changing to loop playback) and stays in a different state of appearance to indicate that the function is active.

In addition, QCD lets each button take one of four appearances depending on the state of the mouse at any
given moment. These provide important cues to the user about the function of the button and what will
happen if the user clicks or releases the mouse button at that moment. You can make several of these
appearances identical, but you must provide an appearance for all four states.

Each button bitmap includes the appearance for four states:

• Normal: The normal “up” state of the control.

• Mouse-over: The “roll-over” state (the mouse pointer is over or rolling over the control).

• Depressed with mouse off: The user most often will see this with a “toggle” type button (such as the

Loop or Shuffle buttons) where clicking the button leaves it in a permanently depressed (“down”)
state. However, the user might also see this state with a normal button if he has pressed down on the
button, but before letting go of the mouse button he changes his mind and moves the pointer off of the
control (if he releases the mouse button, nothing will happen.).

• Depressed with mouse over. For a “toggle” type button, this state serves as “the roll-over” state when
the button is locked in the “depressed” state. For normal buttons, the user will see this as he is clicking
a button (he has pressed a button down, but has not released it yet) as a cue that when he releases the
mouse button, the control’s function will execute.

Although you must provide an appearance for all four states in the skin bitmaps, the appearance of each
state can alter the interaction quite noticeably. For instance, if you give the Normal and Mouse-over states
the same appearance (by copying the bitmap), as well as the two depressed states, this effectively creates a
two-state button rather than four. Designers typically provide different appearance for each of these states
so the user gets more feedback when interacting with the player and one of its controls. The only constraint
is that the alternate appearances of a “button” control must all be the same size (in pixels).

Designing Skins for the QCD Player 5/8/2002 Page 5

The Bitmap Files

The following sections describe each of the .bmp files that together comprise a skin. The illustrations in the
following sections show an example skin designed for skin designers to examine and which illustrates all
the various features. When executing, the example skin makes the QCD player look like this.

Note: With all the bitmaps, make sure to crop out any extra white space around the edges of the files,
especially the Body.bmp file. Getting rid of any unnecessary pixels reduces the size of your skin and thus
reduces download time and memory usage.

Designing Skins for the QCD Player 5/8/2002 Page 6

Map.bmp – The Master Map

The Map.bmp file is the Master Map that defines which controls are displayed in the player as well as the
overall geometry and layout of the skin and the shape of the individual controls. The bitmap may be
arbitrarily large, although a really large Map may encounter performance issues. In addition to the various
code codes for the controls it must include the color codes for the Main Body (black 0x000000) and any of
the four Extended Areas you want to implement. Any control that touches an Extended Area region (in
other words, is adjoining at least one gray pixel) is considered part of the Extended Area, and will only be
visible when the user extends the body. These regions are optional. However, if you choose to include any
of the Extended Areas, you must also include the corresponding Extend Button. If you do not include the
Extend Button, then QCD always displays the Extended Area.

You cannot have two or more instances of a given control (for example, having two Play buttons).
However, you can split a control on the Map.bmp file to create different effects. For example, you can put
a space in the track name text are to make it look like it was obscured by another control or design element.

Important Note: It is very important that you avoid any anti-aliasing in the Map.bmp file. If the edges of
a control are anti-aliased, this will introduce colors that QCD does not recognize (which at best, may
produce unwanted holes in the player), or which QCD has assigned to other controls. For example, if a
light blue control is anti-aliased against a black background, this will introduce pixels that are darker shades
of blue, some of which may be assigned to other controls.

Color codes

The table below defines the color scheme used for each of the controls. These fall into the following main
categories:
• Grays Main window body and extended areas.
• Greens Timer controls and skin modes
• Turquoises Text displays
• Reds Playback controls, EQ Controls
• Yellows Progress, Volume and Equalizer Slider controls
• Blues Window controls
• Violets TrackBox and Playlist controls

Designing Skins for the QCD Player 5/8/2002 Page 7

Each color in the following table is given in both its hexadecimal form, and as an RGB triplet.

Designing Skins for the QCD Player 5/8/2002 Page 8

Body.bmp – The Main Body and Extended Areas

The Body.bmp file provides the graphic background that all of the controls are drawn over. This includes
both the main body of the skin as well as the extended areas (if any). Extended areas aren’t restricted to
just extending the main body. Extended areas can contain the buttons to open other extended areas to create
a branch effect. In this case, when the top-level extension is closed, all sub-extensions close automatically.

ButtonSet.bmp – The Track Control Buttons

Row 1: Eject
Row 2: Track Backward
Row 3: Track Forward
Row 4: Stop
Row 5: Pause
Row 6: Play

The ButtonSet.bmp file defines the basic CD player controls for the skin. Each player Button control must
have a graphic element for each of the four states: Normal, Mouse-over (“rollover”), Depressed with
mouse-off, and Depressed with mouse-over. Each of the images for the four states for a button is separated
on a row by a one-pixel border between graphic elements (vertically) and a one-pixel border between rows
(horizontally).

When implementing a Play/Pause combo button or Play/Stop combo button, the layout of this file remains
the same. However there is the added necessity that the Play and Pause (or Play and Stop) images must be
of the exact same size and shape since they will be occupying the same area on map.

Designing Skins for the QCD Player 5/8/2002 Page 9

WindowSet.bmp – Basic Windows Controls

Row 1: Main Menu (opens the QCD menu)
Row 2: Minimize button
Row 3: Close button
Row 4: Help button
Row 5: Always On Top
Row 6: Preferences (in this example, omitted)
Row 7: Extend Button for Extended Area 1 (in this example, EQ controls)
Row 8: Extend Button for Extended Area 2 (in this example, omitted)
Row 9: Extend Button for Extended Area 3 (in this example, omitted)
Row 10: Extend Button for the detachable Extended Area (in this example, the Playlist)
Row 11: Close button for detachable Extended Area (in this example, omitted)
Row 12: Links Menu (displays CDDB-supplied menu of music-related URLs)
Row 13: Next Visualization (cycles visuals effects to next visualization plug in)
Row 14: External Visualizations (separates visualization area from main body)
Row 15: Full screen Visualizations (runs visualizations in full screen mode)
Row 16: Edit Song Info (brings up window for displaying/editing song or track information)
Row 17: Extended Info (brings up window for displaying extra song or track information)
Row 18: Launch Music Library (displays menu for launching a Library plug-in)
Row 19: Music Browser (displays the CDDB Music Browser)
Row 20: QCD web site link

The WindowSet.bmp file defines the basic window controls (such as Close and Minimize) normally
associated with a Windows application, plus some extra controls specific to the QCD Player. The QCD-
specific controls include the Extend buttons to display or hide the extended body sections (rows 7-10),
Links menu to display a list of music-related dynamically downloaded URLs (row 12), Music Browser
button to display the CDDB Music Browser (row 19), and a button that links to the QCD web site (row 20).

Each window control must have a graphic element for each of the four states: Normal, Mouse-over
(“rollover”), Depressed with mouse-off, and Depressed with mouse-over. Each of the images for the four
states for a button is separated on a row by a one-pixel border between graphic elements (vertically) and a
one-pixel border between rows (horizontally).

Designing Skins for the QCD Player 5/8/2002 Page 10

TrackSet.bmp – The TrackBox Controls

There are variations in the way TrackSet.bmp is laid out, depending on how you want the TrackBox to look
and behave, as well as which Repeat control you decide to use.

The following illustration shows TrackSet.bmp in two formats. The first layout (example 1) is for a player
that uses track titles to label the Track Buttons and the Repeat Combo control. The second layout (example
2) is for a player that labels the Track Buttons with the number of the track and the Repeat Toggle controls.
See the text below for more information on the differences.

Example 1:

Example 2:

Internal Map
0xFF00FF – track item shape
0x0000FF – track digit size (omit if using titles, as in example 1)
0xFF0000 – track spacing (size of track item with surrounding space
0x00FF00 – transparent track indicator
0x00FFFF – bendable trackbox indicator
0x777777 – internal map delimiter (end of internal map)

* when using track titles (example 1)
Row 1: Normal track bitmap
Row 2: ‘Mouse-over’ bitmap
Row 3: ‘Being dragged’ (depressed, mouse-off) bitmap
Row 4: ‘Track selected’ (depressed, mouse-over) bitmap
Row 5: ‘Track marked’ bitmap (track selected)

* when using track numbers (example 2)
Row 1: Normal track bitmap and ‘Mouse-over’ bitmap
Row 2: ‘Being dragged’ (depressed, mouse-off) bitmap and ‘Track
selected’ (depressed, mouse-over) bitmap and ‘Track marked’ bitmap
(track selected)
Row 3: highlighted set of track number digits
Row 4: dimmed set of track number digits
Row 5: non existent

* rows 6 to 11 same for both layouts
Row 6: Scroll Up button
Row 7: Scroll Down button
Row 8: Delete Track button
Row 9: Add Track button
Row 10: Save Playlist button
Row 11: Sort Playlist button

* when using both Loop Playlist and Loop Track buttons (example 2)
Row 12: Repeat Playlist toggle (loop entire playlist)
Row 13: Repeat Track toggle (loop current track)
Row 14: Shuffle Playlist toggle

* when using single Repeat Combo button (example 1)
Row 12: Loop Playlist
Row 13: Loop Track
Row 14: Loop None (off)
Row 15: Shuffle Playlist toggle

The TrackSet.bmp file defines the controls related to the player’s “TrackBox”, an array of Track Buttons
that the user can click on to jump to a specific track, or can rearrange to create a custom playlist. You can
label each Track Button with the number of the track, or with the text of the track title.

Designing Skins for the QCD Player 5/8/2002 Page 11

Trackset.bmp – Internal Map
The top of area of the TrackSet.bmp bitmap image is the Internal Map. This Internal Map is separated from
the rest of the TrackSet.bmp file by a one-pixel line of gray (0x777777), followed by a one-pixel gap. This
allows QCD to stop looking for these reserved colors in the rest of the bitmap so that you don’t have to
avoid them in your design.

Within the Internal Map the following color regions are defined.

0xFF00FF [255, 0, 255] (required)
Represents the size and shape of a single Track Button. Must be present.

0xFF0000 [255, 0, 0] (optional)
Represents the size of a Track Button plus the space to the right and below the button. Shape is not a factor,
only the bounding rectangle. If you omit this region, QCD tiles the buttons with no spacing within the
TrackBox area.

0x0000FF [0, 0, 255] (required for numbered track buttons, omit for text buttons)
Represents the size of a digit of the track number. All digits must be the same size. The presence of this
region also indicates that the Track Buttons are to be numbered.

0x00FF00 [0, 255, 0] (optional)
Indicates that the tracks should be drawn with a transparent background. Size and shape of indicator are not
factors (1x1 pixel is sufficient). The Track Button bitmap (row 1) must still be present to preserve
compatibility with older versions of the player.

0x00FFFF [0, 255, 255] (optional)
Indicates that the tracks should follow the contours of the trackbox boundaries instead of lining up
vertically. Size and shape of indicator are not factors (1x1 pixel is sufficient).

0x777777 (required)
End of Internal Map

The size of the TrackBox in the player is determined by the 0xFF00FF (magenta) region of the Map.bmp
file. QCD tiles as many whole Track Buttons as it can fit across the width of the TrackBox, and then starts
a new row. It then tiles as many whole rows as it can fit into the height of the TrackBox. If there are still
more tracks than fit in the TrackBox area, the user can use the TrackBox Scroll Buttons.

Note: There are five bitmap images for the Track Button, and these appear on either two lines or five lines
depending on whether you are using track numbers or the text of the track title to label the buttons. If you
are using numbers to label the buttons (in other words, if you included dark blue pixels in the Internal
Map), the bitmaps are on two lines. If you are using text to label the buttons, each of the five bitmaps is on
its own line. This is because buttons labeled with text are much wider than buttons labeled with numbers,
so this system reduces unnecessary white pixels in the TrackSet.bmp file.

The first two button bitmaps define the Normal and Mouse-over (“rollover”) state of the track buttons.
Note that when the track is currently playing (and the mouse pointer is not over the TrackBox), the Track
Button flashes between these two states. If the transparent background indicator region (0x00FF00) is in
the Internal Map, the first bitmap is not used but must still be present in some form. This is to provide
compatibility with older player versions.

The second and third track bitmaps define the Depressed with Mouse off, and Depressed with Mouse-on
states. When the user is dragging a track (to create a custom play order) the second of these Depressed
states is used as the “being dragged” icon. The fifth bitmap provides a graphic that QCD merges on top of
a button, using a 50% blend, to indicate that the user has “suppressed” the track from playback by right-

Designing Skins for the QCD Player 5/8/2002 Page 12

clicking the Track Button. This bitmap appears on the same line with the two depressed states if you are
using number-labeled buttons, or on its own line if you are using text-labeled buttons.

If you are using track numbers to label the Track Buttons, QCD constructs the numbers using digits
centered within the button. The size of a digit is determined by the 0x0000FF (dark blue) region at the top
of the TrackSet.bmp file. (It is recommended that the size of the button and the digits be such that you can
fit three digits in the Track Button.) Track digits are constant-width and the bitmaps that define the digit
characters should appear on two rows following the Track Button bitmaps (rows 3 and 4, example 2
above). The two rows define the highlighted and unhighlighted versions of the digits, starting with digit ‘0’,
ending with digit ‘9’. Each of the ten digits should be separated by a one-pixel gap.

If you are using the text of the track title to label the Track Buttons, omit the dark blue region in the
Internal Map, and the two rows of Track Digits. QCD labels the button with the text of the Track Title,
truncated if necessary to fit within the button width. QCD uses the type formatting you specify in the
Charset.ini file (see page 21).

The remaining bitmaps in TrackSet.bmp define the appearance of the other controls related to the
TrackBox.

The TrackBox Scroll Up and Scroll Down buttons each have the standard button states: Normal, Mouse-
over (“rollover”), Mouse-down, mouse-down with mouse-over. Note that there is no “disabled” state for
the scroll buttons—they are always enabled, although they may have no effect if there is a short track list.
Each of the images for the four states is separated on a row by a one-pixel border between graphic elements
(vertically) and a one-pixel border between rows (horizontally).

The Delete Track and Add Track buttons have the standard four button states: Normal, Mouse-over
(“rollover”), Mouse-down, mouse-down with mouse-over. A one-pixel border separates each of the images
for the four states.

There are two ways to implement the Repeat Playlist / Repeat Track buttons. You can implement the two
repeat buttons individually (as example 2 of TrackSet.bmp) where each button is a toggle for its respective
feature. Or you can have one button that cycles through the 3 repeat states (repeat off, repeat playlist, repeat
track) (as example 1 of TrackSet.bmp). The type of repeat button is determined by the color of the repeat
control defined on Map.bmp.
Important: you can only have one or the other type of loop button color defined on Map.bmp. Having both
types will cause errors in the skin.

If implementing two individual repeat buttons, the Repeat Playlist, Repeat Track, and Shuffle Playlist
buttons are toggles, and have basically the same standard four states: Normal (the toggle is off and the
Mouse is not over the button); Mouse-over (the “rollover” state when the toggle is off); Depressed with
mouse off (the normal state when the toggle is on); and Depressed with mouse over (the “rollover” state
when the toggle is on).

If implementing the single repeat button that cycles through the states the layout of TrackSet.bmp varies
somewhat. Rows 12 and 13 are for the Repeat Playlist and Repeat Track buttons respectively, and only the
last two states are used but are laid out as if there where the four states (hence the leading white space).
Row 14 is for the Repeat Off (disabled) image, but in this case, only the first two state images are used.

Designing Skins for the QCD Player 5/8/2002 Page 13

TimerSet.bmp – The Timer Display

Internal Map

0xFF00FF - Timer digit size

0x777777 – internal map delimiter (end of internal map)

Row 1: Timer Digits

Row 2: Track time toggle

Row 3: Playlist time toggle

Row 4: Elapsed time toggle

Row 5: Remaining rime toggle

The TimerSet.bmp file defines the appearance of the Timer display and controls. At the least, the timer area
should be large enough to host two placeholders for the minutes and seconds (e.g., 12:34). However, the
values displayed could require three ‘minute’ placeholders as well as a minus sign for decreasing timers
(i.e.: -123:45). QCD will truncate the left side of the number to the available space.

The top area of the TimerSet.bmp image is the Internal Map consisting of an area of 0xFF00FF (magenta)
pixels defining the size of the Timer Digits. This Internal Map is separated from the rest of TimerSet.bmp
by a one-pixel line of color 0x777777 (gray), followed by a one-pixel gap.

Below the Internal Map is a row defining the appearance of the Timer Digits. These are constant-width
digits 0 through 9, plus a colon and minus sign. These are not separated by a one-pixel boundary.

Tip: the colon and minus sign are capable of being skinnier than the digits using the following technique:
QCD will calculate the width of the colon + the minus sign as the width between the end of the ‘9’ digit
and the right side of the bitmap. The width of each the colon and minus individually are then half that
calculated width. The colon and minus are always of equal width, and cannot be wider than the defined
digit width.

The timer controls are only two-state buttons (toggles) – off and on. Drawing only these two states is
required. In the Master Map (Map.bmp), you should pair the Elapsed/Remaining Time toggles (place them
together). The same applies to the Track vs. Playlist toggles.

Using Charset.ini for Timer digits
As an alternative to using TimerSet.bmp digits for the timer you can choose to define a font using the
charset.ini method described in the Character Sets section below. The existence of a TimerFont in the
charset.ini file will override the digits in TimerSet.bmp.

When using this method you can eliminate the Timer Digit size internal map and the bitmap digits, but the
internal map delimiter must remain. However, by including the internal map and bitmap digits the skin will
remain backwards compatible with older player versions.

Designing Skins for the QCD Player 5/8/2002 Page 14

SliderSet.bmp – Sliders, Progress Bars, and Knobs

Internal Map: delimited by gray (0x777777) line. Defines shape and size of each control using the color
codes listed below.
Row1: The Playback Progress Slider color code: 0xFFFF00 (RGB=[255, 255, 0])
Row 2: The Master Volume Slider color code: 0x999900 (RGB=[153, 153, 0])
Row 3: Soundcard Volume color code: 0xCCCC00 (RGB=[204, 204, 0])
Row 4: Bass Control color code: 0xFFFF33 (RGB=[255, 255, 51])
Row 5: Treble Control color code: 0xFFFF99 (RGB=[255, 255, 153])
Row 6: Balance Control color code: 0xFFFFCC (RGB=[255, 255, 204])
Row 7: Visual Effects Level color code 0xCCCC66 (RGB=[204, 204, 102])
Row 8: Playlist Scrollbar Slider color code: 0x666600 (RGB=[102,102,0])

The SliderSet.bmp file defines the appearance of different types of “slider” controls. In the QCD Player
there are eight controls that use sliders (equalizer exempted, see EqSet.bmp below): the Playback Progress;
Master Volume; Soundcard Volume; Bass; Treble; Balance; Visual Effects Level (a way to control the
degree of response of any visualization plug-in displayed in the visualization area of the Player, if your skin
has a visualization area), and the Playlist Scrollbar. The user can manipulate any slider by clicking down
on the slider then dragging the mouse.

The top of the SliderSet.bmp file is the Internal Map. Each of the eight controls has an assigned color code
that you use to draw the size and shape of the moving part of the control. The assigned color code in the
SliderSet.bmp Internal Map is the same color code as used in Map.bmp for the same control (these are the
yellows on page 6). These color codes are listed again above.

You separate this Internal Map from the body of the SliderSet.bmp file using a one-pixel gray (0x777777)
line followed by a one-pixel gap. This lets QCD stop looking for reserved color pixels so that you can use
these reserved colors in your design of each of the control bitmaps.

Below the Internal Map is a series of rows containing the bitmaps for the eight controls.

You do not have to provide all eight controls, omitting and sliders not required for the skin. The QCD
Player knows which controls you are choosing to implement by whether you have included the control in
the Master Map (Map.bmp). For example, if you wish to provide a Bass control, but not a Balance control,
your Map.bmp image should have a yellow pixel region of color 0xFFFF33, but no pale yellow pixels of
color 0xFFFFCC. If you omit any slider control from the Map.bmp file, then you must omit the
corresponding row from the SliderSet.bmp file as QCD assumes it’s not there.

There are three basic types of sliders that you can use for any of these eight controls:
• A basic tracking slider consisting of a “handle” and a “slot” in which the handle moves;
• A progressive slider (a.k.a. a “thermometer”) consisting of a graphic that grows;
• A rotational slider (a.k.a. a “knob”) consisting of several frames drawn in the same area.

Designing Skins for the QCD Player 5/8/2002 Page 15

You can use any combination of these three types to implement the eight controls. Note that the basic
tracking and progressive (thermometer) sliders can be horizontal, vertical, or diagonal.

“Tracking” Sliders

A basic “Tracking” slider consists of two parts: a movable “Handle” and a static “Slot” in which the handle
appears to move. To implement a “tracking” slider for a control you need to do the following:

• In the Map.bmp file, you define the “Slot Size” by specifying a region in which to draw the “slot”

image. You do this by using pixels of the appropriate color code for the control you are defining. (For
example, for the Bass control, use yellow 0xFFFF33.)

• In the Body.bmp file, you include the Slot image.
• In the Internal Map area of the SliderSet.bmp file, you define the “Handle Size” using the appropriate

color code for the control you are defining. The “Handle Size” must be smaller in width or height (or
both) than the “Slot Size” defined above. (If it is not smaller there is no room for the handle to slide
anywhere within the slot area. In this case QCD will treat the slider as a “knob”.)

• In the appropriate row of the SliderSet.bmp file, you include the Handle image. Be sure to make the
Handle image the same pixel dimensions as the “Handle Size.” Otherwise, QCD just truncates your
image as it draws it into the designated area.

• By default, there is only one image for the Handle bitmap. To create a Handle that has bitmaps for the
four user interaction states, add the color red (0xFF0000) to the internal map section. This color acts as
a flag so size and shape are not a factor. With this flag, all tracking sliders must implement the four
bitmap states.

QCD draws the Slot image within the designated Slot area of Body.bmp. It then draws the Handle image
on top of it, with leftmost-lowest position assumed to be the zero position of the control, and the topmost-
highest position assumed to be the maximum position of the control. To implement a horizontal slider, just
make sure the Handle Size is narrower, but the same pixel height as the Slot Size (i.e. there is room to
move left and right in the slot area). To implement a vertical slider, make sure the Handle Size is shorter,
but the same width as the Slot Size. To implement a diagonal slider, just arrange it so that there is room for
the Handle to move both horizontally and vertically within the Slot area.

“Progressive” Sliders (“Thermometers”)

A “Progressive” slider, otherwise known as a “thermometer”-style slider, consists of a single bitmap that
grows (or more correctly, is revealed) within a background area. To implement a “progressive”
thermometer-style slider for a control, you need to do the following:

• In the Map.bmp file, you define the region in which to draw the “thermometer” image. You do this by

using pixels of the appropriate shade of yellow for the control you are defining (see page 6). (For
example, for the Playback Progress control, use yellow 0xFFFF00.)

• In the Internal Map area of the SliderSet.bmp file, do not include any pixels in the color corresponding
to the control you are defining. For example, if you are defining the Playback Progress control as a
thermometer, omit any pixels of color 0xFFFF00. This is how QCD knows to implement this as a
“progressive” thermometer-type slider rather than a “tracking” slider with a separate moving Handle.
Incidentally, if you are using all thermometer-style sliders, so that the Internal Map is empty, you still
need to draw the one-pixel gray line at the top of the file indicating the end of the Internal Map.

• In the appropriate row of the SliderSet.bmp file, you must have one image: the image that you want to
grow into the designated region on Map.bmp.

• Note that the background of the “thermometer” is defined by the background in Body.bmp (the Main
Body of the player, or the Extended Body if this control is part of the extended area).

QCD draws the control by revealing the slider bitmap within the designated area of Map.bmp. When the
control is in the zero position, the slider bitmap is completely hidden. As the control progresses, or as the

Designing Skins for the QCD Player 5/8/2002 Page 16

user drags within the designated area, more of the bitmap is revealed, from left to right and from bottom to
top, until in the maximum position the slider is completely displayed within the designated area.

“Rotational” Sliders (“Knobs”)

A “Rotational” slider, otherwise known as a “knob”, consists of a series of bitmaps representing frames
showing the control at various stages from zero position to maximum position. You can also use this to
implement standard sliders with special effects, such as a tracking slider that changes color. The user
experiences each frame as a “detent”, so for smoother animation, you need more frames, although you
should bear in mind that this of course makes your skin bitmaps larger. Note that for some controls where
a center position is meaningful, such as a Balance knob, it is advisable to have an odd number of frames so
that there is a center detent. To implement a “knob” for a control, you need to do the following:

• In the Map.bmp file, you define the “Knob Size” by specifying a region in which to draw the “slot”

image. You do this by using pixels of the appropriate shade of yellow for the control you are defining
(see page 6). For example, for the Master Volume control, use dark yellow 0x999900.

• In the Internal Map area of the SliderSet.bmp file, you define the width of the collection of frames by
drawing a one-pixel-wide line using the appropriate reserved color for the control you are defining.
Note that it is the fact that this is wider than the designated control region in the Map.bmp file that tells
QCD that this is a “knob” and not a slider. Note also that if you have several “knob” controls, you
need a different one-pixel-wide line for each (in its appropriate color). This is because each knob may
have different sizes, or different number of frames, or both, and so QCD needs you to tell it how wide
the total collection of frames is.

• In the appropriate row of the SliderSet.bmp file, you draw the individual frames of the knob, from its
zero state at left to its maximum state at right. Unlike images in other files, you do not separate the
frames using a one-pixel gap. (This is to make it easier for you to determine the total width of the
frames for drawing the line in the Internal Map.) Note that each frame should be exactly the same
pixel dimensions and shape as the designated region in the Map.bmp file.

QCD draws the control by drawing one of the frames within the designated region. When the control is in
the zero position, QCD draws the first frame. When the control is in the maximum position, QCD draws
the last frame. All other frames are drawn appropriately for the intervening states.

Designing Skins for the QCD Player 5/8/2002 Page 17

EqSet.bmp – Equalizer Controls

Internal Map: delimited by gray (0x777777) line. Defines shape and size
of each control using the color codes listed below.

Row1: Equalizer Enable (On / Off)
Row 2: Equalizer Presets (Load / Save)
Row 3: Next Equalizer Preset
Row 4: Previous Equalizer Preset

Row 5 - 14: Ten Equalizer bands

The EqSet.bmp file defines the appearance of the different equalizer controls. The equalizer consists of 4
buttons (for On/Off, Presets, and two buttons for moving between presets), and 10 sliders for the 10 bands
of the equalizer.

The EqSet.bmp file follows the exact same rules as SliderSet.bmp (see above) for the 10 sliders making up
the equalizer. The assigned color code in the EqSet.bmp Internal Map is the same color code as used in
Map.bmp for the same control (these are the yellows on page 6). Again, you separate this Internal Map
from the body of the EqSet.bmp file using a one-pixel gray (0x777777) line followed by a one-pixel gap.

There is a difference with EqSet.bmp in that the first four rows after the Internal Map are for the various
buttons, followed then by the 10 sliders. Each slider is independent and can be of a different slider type, but
for consistency in the interface they all should be of the same type.

Designing Skins for the QCD Player 5/8/2002 Page 18

SkinCtrlSet.bmp – Skin Control Buttons

The SkinCtrlSet.bmp file defines the appearance of the buttons for changing between skin modes (if any).
You can create a skin “family” consisting of up to nine skin “kids”, which the user experiences as different
modes of the same skin. (See “Wrapping up skins” on page 24.) Note that end users can also create skin
“families” by grouping together skin “kids” using the QCD Skin Browser. So even if you are only creating
a single skin “kid”, it’s a good idea to include the first button, “Next Skin Mode”, in your skin.

Each of the buttons in SkinCtrlSet.bmp draws in the area indicated by the corresponding color in Map.bmp.
If no pixels of the color are in Map.bmp, QCD skips the corresponding row of SkinCtrlSet.bmp.

Row 1: Next Skin Mode color code: 0x33FF00 (RGB=[51, 255, 0])
Row 2: Go to skin mode 1 color code: 0x00FF11 (RGB=[0, 255, 17])
Row 3: Go to skin mode 2 color code: 0x00FF22 (RGB=[0, 255, 34])
Row 4: Go to skin mode 3 color code: 0x00FF33 (RGB=[0, 255, 51])
Row 5: Go to skin mode 4 color code: 0x00FF44 (RGB=[0, 255, 68])
Row 6: Go to skin mode 5 color code: 0x00FF55 (RGB=[0, 255, 85])
Row 7: Go to skin mode 6 color code: 0x00FF66 (RGB=[0, 255, 102])
Row 8: Go to skin mode 7 color code: 0x00FF77 (RGB=[0, 255, 119])
Row 9: Go to skin mode 8 color code: 0x00FF88 (RGB=[0, 255, 136])
Row 10: Go to skin mode 9 color code: 0x00FF99 (RGB=[0, 255, 153])

MenuSet.bmp – Menu Title Bars

The MenuSet.bmp file defines the banner image used as the title bar on the left side of the two QCD menus:
the QuickTrack menu, and the QCD main menu. The width of each banner is fixed at 23 pixels. The two
banners can be any height, but both must be the same height. If the menu gets longer than the banner
bitmap, QCD tiles the bottom 20 pixels onto the bottom of the bitmap.

Designing Skins for the QCD Player 5/8/2002 Page 19

BorderSet.bmp – Window Borders

The BorderSet.bmp file defines the borders of three resizable windows displayed by the QCD player:

• The CDDB Music Browser, a small web browser window with content provided by the CDDB service;
• The Visualization area (when detached from the player);
• The Preview Skin window (displayed by the user in Preferences:Download Skins:Preview Skin).

As with other .bmp files in the skin, the upper area is the Internal Map, which uses color codes to define the
size of the bitmaps in the lower area. The Internal Map is separated from the bitmaps using a one-pixel
gray line (0x777777).

• The border is separated into 16 segments: four corners and three segments for each of the four sides.
• Each side is divided into three segments: two attach to the corners and do not scale, and one is the

“joiner” and QCD stretches this bitmap either horizontally or vertically to fill the width or height of the
window. Thus you must design the “joiner” bitmap so that it joins to the other two segments, and
design these other two segments to connect to the corners.

• For the color codes of the 16 segments, see the example BorderSet.bmp file.
• The order and layout of the colored regions in the Internal Map is not important. You can put them in

any order and they do not have to be top-aligned. (QCD knows which is which by the color coding.)
So you can rearrange these to occupy less space and make the size of the .bmp file smaller.

• The order and layout of the bitmaps in the lower bitmap area is important. This order is as follows:
The bitmaps must be on three rows: the top border (including top corners), the sides, and the bottom
border (including the bottom corners). The top row starts with the top-left corner, followed by the
three bitmaps for the top edge—the left segment, “joiner”, and right segment—and ends with the top-
right corner. The bottom row starts with the bottom-left corner, followed by the three bitmaps for the
bottom edge, and ends with the bottom-right corner. The middle row has the three bitmaps for the left
side—the bottom segment, the “joiner”, and the top segment—followed by the three bitmaps for the
right side.

• Each bitmap in the lower area must be top-aligned to the top of its row, and separated from other
bitmaps on the row by a one-pixel line.

Close Button

• Optionally, a four state close button may be included within the top-right corner, indicated by the red

color (0xFF0000) within the top-right corner section of the internal map (see the example
BorderSet.bmp file). You can leave this red area out and the entire top-right area will function as the
close button.

• If you include the four state close button, the graphic elements for the button are aligned in the forth
row (as shown in the example BorderSet.bmp file).

• Note: the red area for the close button must not extend beyond the left or bottom of the top-right corner
area.

Designing Skins for the QCD Player 5/8/2002 Page 20

CharSet.bmp and CharSet.ini – Character Sets

The CharSet.bmp and CharSet.ini files define the font(s) to use for the Text Controls. You can create a
custom (hand-made bitmap) font (the CharSet.bmp image), or you can use normal Windows fonts, which is
not only easier to implement, but is required if you want to support international double-byte character sets.
To use a Windows font, you create a CharSet.ini file. When creating a custom CharSet.bmp file, you must
coordinate the background of the characters with the background in the Body.bmp file on which the
characters are drawn.

Text Controls

There are four Text areas: the Disc title; Track title; Artist; and Status. You do not have to display all four
areas, but if you must display a single Text control, the most useful is the Track text followed by the Disc
text. If you do not have an Artist text, the Player adds the artist to the beginning of the Track text,
separated by a slash (although you can change the separation character by editing the character set). Within
each Text control, the Player centers the text vertically within the text area and left-justifies the text
horizontally. If the text is too long to display in the area you designate, the Player scrolls the text from
right to left across the area. The user can also click and drag the text to scroll it left or right. If the user
right-clicks on any text control (except the Status text) the Player brings up the QuickTrack menu.

CharSet.bmp

The CharSet.bmp file lets you create a custom bitmap of characters for use for text display. You can create
different CharSet.bmp files for each of the four different text areas (Disc title, Track Title, Artist, and
Status) that you choose to display. To do so, just give each a different name and use the CharSet.ini to
specify the filenames to use for each text area (see the next section).

The crucial component to the CharSet.bmp bitmap is the very top row of pixels, called the boundary row,
which you use to specify the width of the characters below. Each non-white pixel indicates the first column
of pixels for the character below. The character starts at this first non-white pixel and goes up to, but not
including the next non-white pixel. This allows for variable width fonts. Note that two non-white pixels
together indicate a skipped character (a character of zero width).

Below the top row of character widths is the row of character bitmaps representing characters from ASCII
value 32 (space) to 255. You should draw characters in white, surrounded by black, as QCD looks at the
luminosity of the pixels. Absolute white (0xFFFFFF) will show a solid character. Absolute black
(0x000000) will be completely transparent. Any other values in between (for example, if you create an
anti-aliased font) will result in a corresponding blend with the background.

To help you create a bitmap using any font you wish, the line following this paragraph lists the characters
in the required ANSI order. You can copy this line and paste it into any program (such as Photoshop) that
lets you type and render the characters in any typeface, size, and color you want. (The line is in 3-point
type so that all the characters fit on the same line to make it easy to copy from this PDF file.)

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~�Ä�Ä�Ä‚ƒ„…†‡ˆ‰?‹Œ�Ä�Ä�Ä�Ä‘’“”•–—˜™?›œ�Ä� �ÄŸ ¡¢ A?¥?§¨©ª«¬- ��®?°±??´µ¶·¸?º»???¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏ?ÑÒÓÔÕÖ?ØÙÚÛÜ??ßàáâãäåæçèéêëìíîï ñòóôõö÷øùúûü??ÿ

There are two ways to specify the color in which you want the text to be drawn: either by using the
CharSet.bmp file, or using the CharSet.ini file. Whatever color you use for the very first pixel (position

Designing Skins for the QCD Player 5/8/2002 Page 21

0x0) in the CharSet.bmp file, QCD will use this color to render all the characters. Note that as a non-white
character, this also serves as the boundary delimiter for the character below it (ASCII 32, the space
character). If you set this first pixel to white (0xFFFFFF), QCD makes an exception to the boundary rule
and counts this first pixel as the boundary from the first character (the space character). This is to let you
specify absolute white characters.

The second way to specify the color of the text is using the CharSet.ini file as described in the next section.
A color specification in the CharSet.ini file overrides the first-pixel (position 0x0) color in CharSet.bmp.

QCD uses CharSet.bmp for all Text controls, unless you specify differently using CharSet.ini. You can
have more than one CharSet.bmp file if you want different character bitmaps for different text controls.

CharSet.ini

The CharSet.ini file allows increased flexibility when defining what bitmaps and fonts to use for your skin.
With the CharSet.ini file you can:

• specify multiple CharSet.bmp files. In other words, you could make a file named CharSetDisc.bmp,

and a CharSetTrack.bmp and link them to Disc text and Track text respectively using the CharSet.ini
file.

• specify multiple colors using the same CharSet.bmp file. In other words you can use the same

CharSet.bmp file for any text areas, and use a different color for each.

• save from creating a CharSet.bmp bitmap by simply specifying a Windows font.

• specify a Windows fonts to better support international character sets

The CharSet.ini file is optional. If you do not provide it, QCD will use the CharSet.bmp file for the font
and color specifications of the text for the Disc, Track and Artist text controls. For the Status, TrackButton,
and Campaign text controls QCD will use the SmallCharSet.bmp file if it exists, otherwise those text
controls will default to CharSet.bmp as well.

CharSet.ini has a section for each text control: DiscFont, TrackFont, ArtistFont, StatusFont,
CampaignFont, SearchFont and TimerFont. There are also up to 6 sections for describing the fonts used
on track buttons (see TrackButtonFont below). The format of CharSet.ini has a section header appearing
in brackets (e.g., [DiscFont], followed by key/value combinations describing the font for that section).

The SearchFont section is to describe the font used in the Playlist Search control. If the search control
exists on the skin, this section must be included since only Window’s fonts will be used for the search
control.

The TimerFont section is to describe the font used for the Timer control. Without the TimerFont section
the timer control will revert to it’s bitmap skinning method. See the TimerSet.bmp section for more
information.

The TrackButtonFont section is to describe the font to be used on the track buttons in the TrackBox
control (See TrackSet.bmp above). If you want to specify a different font for any of the different states a
track button can have (Current, Selected, Pressed, Current+Selected, Pressed+Selected) then include the
appropriate sections from the following:
TrackCurrentFont, TrackSelectedFont, TrackPressedFont, TrackCurrentSelFont,
TrackPressedSelFont
Any section missing will default to the TrackButtonFont settings.

Designing Skins for the QCD Player 5/8/2002 Page 22

Valid key/value combinations for each section are:

Height=10 height in pixels
Width=8 average width in pixels
Escapement=0 specifies the angle, in tenths of degrees, between the escapement vector and the x-axis
Orientation=0 specifies the angle, in tenths of degrees, between each character's base line and the x-axis
Weight=400 weight of the font (0 – 1000, 400 is default)
Italic=0 italic font if set to 1
Underline=0 underline font if set to 1
Strikeout=0 strikeout font if set to 1
FaceName=Arial string that specifies the typeface name of the font (e.g.: ‘Arial’, or ‘Courier’)

Color=255,255,255 Text color. Red,Green,Blue triple (valid values are from 0 – 255)
BgColor=255,255,255 Background color. Red,Green,Blue triple (valid values are from 0 – 255) (for

SearchFont section only)
FontFile=filename filename of font file (*.fon; *.ttf) included with skin to be used for this font
Bitmap=filename filename of character bitmap included with skin (same layout as CharSet.bmp)

Tip: If your skin uses a font file that may not be found on some systems, you can include it with the skin
and have it loaded by QCD automatically. Use the FontFile=filename key/value to reference the included
file.

CharSet.ini should always include Windows font settings even if a bitmap is being used since those values
will be used to create a Windows font when the user enables international support or the ‘Windows Fonts
Only’ option.

The following is an example CharSet.ini file:

; Describe a font for each section used on skin
;

; You can just supply the individual
; keys that matter (non zero)
;
; BTW: color is R,G,B
;

; this one is using the Window’s ‘Tahoma’ Font
[TrackFont]
Height=17
Weight=900
FaceName=Tahoma
Color=0,0,255

; this one is using the custom font bitmaps in ‘mycharset.bmp’
[ArtistFont]
Bitmap=mycharset.bmp
Color=0,0,255

; this one is using the Window’s ‘CoolFont’ Font
; and the font file is included to be used incase
; it doesn’t already exist on the system
[StatusFont]
Height=17
Weight=900
FaceName=CoolFont
FontFile=CoolFont.ttf
Color=0,0,255

Designing Skins for the QCD Player 5/8/2002 Page 23

Testing a Skin

Once you have created all the .bmp files, the process for testing a target player using QCD is simple.
Simply copy all of the .bmp files for a single skin into a directory. The next time you run QCD the new skin
will be available to you by selecting it from the list of skins invoked by opening the Skin Browser (from
the main window menu, or by hitting Alt+S). If your skin directory is not listed in the selection window,
change where QCD looks for skins by clicking Select Skins Folder. Select the parent directory of your
skin directory. The assumption is that the parent skin directory will contain several skins. Select the new
skin (its name is taken from the directory name that contains the .bmp files) and verify that the user
interface functions as you expect. If you find problems or inconsistencies you will need to edit the .bmp
files and repeat the testing process. A skin can be reloaded without restarting QCD, by hitting F5.

Designing Skins for the QCD Player 5/8/2002 Page 24

Wrapping up skins

When you are ready to deliver one or more skins, you can deliver skins either as a Skin “Family”, or as
individual Skin “Kids.” You can use a Skin Family to give the experience of several “modes” of the same
skin. You can have up to nine modes in a Skin Family.

In either case, you need to create a Thumbnail image to represent your skin in the QCD Skin
Browser. This is just a 60x60 pixel, RGB .bmp file that represents your skin. This does not
have to be a screenshot of the skin, but can be an icon or logo.

To create a Skin Kid, use WinZip to combine all the skin bitmap files and text files into a single zip archive
and then change the extension from .zip to .qsk (a Quintessential Skin Kid). You can also include an
optional text file that follows the SkinKid.ini format described below. Including the SkinKid.ini file allows
you to set a name for the skin independent of the skin filename and to name any extensions on the skin.

To create a Skin Family, use WinZip to create individual Skin Kid (.qsk) files for each of the skins as
described above (except without the thumbnail). Then create a text file that follows the SkinFamily.ini
format described on the next page. (Note: SkinKid.ini files within the .qsk files are not used in a family
skin). Finally, use WinZip to create a master zip archive containing all the individual .qsk files, the
thumbnail.bmp file, and the SkinFamily.ini file. Change the extension from .zip to .qsf (a Quintessential
Skin Family).

To submit your .qsk or .qsf files to Quinnware, follow instructions found at
http://www.quinnware.com/skinz.html.

http://www.quinnware.com/skinz.html

Designing Skins for the QCD Player 5/8/2002 Page 25

SkinFamily.ini

The SkinFamily.ini file defines how a set of individual skins (Skin Kids) can display as “modes” of the
same Skin Family. There can be up to nine modes defined in a Skin Family. The SkinFamily.ini file
defines the filenames, display names and relationships of the modes.
The format of the SkinFamily.ini file is as follows:

• Under the [family] section, the ‘name=’ key defines the name of the Skin Family as it appears in the

QCD skin browser.
• The ‘notes=’ key defines the text that appears in the notes field in the Skin Browser.
• There can be up to nine [modeN] sections ([mode1] … [mode9])
• Under each of the [modeN] sections, the ‘name=’ key sets the name of each skin mode.
• The ‘file=’ key defines the exact filename of the Skin Kid file containing the skin mode. Note, if you

renamed the .zip archive containing the skin bitmaps and text files from .zip to .qsk, the ‘file=’ key
should end in .qsk.

• The ‘extensionN=’ key sets the name of any of the extensions found on that mode. There are up to
four extensions, with extension1 being the moveable extension.

Mode Switch Forced Extensions

To indicate a relationship between modes and extension states, use the ‘msfe=’ key for each mode. The
msfe key lets you indicate which extensions must be opened, must be closed, or must remain the same as
the current state, when switching to a new mode.

To indicate an extension is to be forced open, set msfe=N+, where N is the number of the extension.
To indicate an extension is to be forced closed, set msfe=N-.
And to indicate an extension is to remain in the same state as the last mode, set msfe=N=

Multiple extension states can be part of the msfe setting separated by commas.

Example: msfe=1=,2+,4-
Means set extension 1 as it stands in the current mode (open if open, closed if closed), set extension 2 as
always opened, set extension 4 as always closed. Extension 3 remains unforced and will have the same
state as when last using the mode.

The following is an example SkinFamily.ini file.

[family]
name=Family Values
notes=A basic skin suitable for the whole family \n Use ‘\n’ for line breaks

[mode1]
name=Large-Mode Fancy
file=Large Mode Fancy.qsk
extension1=name of extension 1 (moveable extension)
extension2=name of extension 2
extension3=name of extension 3
extension4=name of extension 4
msfe=1=,2+,4-

[mode2]
name=Mid-Mode Fancy
file=Mid Mode Fancy.qsk

[mode3]
name=Mini-Mode Fancy
file=Mini Mode Fancy.qsk

[mode4]
name=Mini-Mode Simple
file=Mini Mode Simple.qsk

Designing Skins for the QCD Player 5/8/2002 Page 26

SkinKid.ini

The SkinKid.ini file gives a Skin Kid more customization and control over naming.
The format of the SkinKid.ini file is as follows:

• Under the [settings] section, the “name=” key defines the name of the Skin Family as it appears in the

QCD skin browser.
• The “notes=” key defines the text that appears in the Status area of QCD.
• The “extensionN=” key sets the name of any of the extensions found on that mode. There are up to 4

extensions, with extension1 being the moveable extension.

The following is an example SkinKid.ini file.

[settings]
name=The best kid skin
notes=A simple skin where one mode is enough \n Use ‘\n’ for line breaks
extension1=name of extension 1 (moveable extension)
extension2=name of extension 2
extension3=name of extension 3
extension4=name of extension 4

