
42 April 1999

features Trends

In the glory days of programming,
tightly written, efficient code was
sacrosanct for programmers. Hand-
coding was God, and programmers

were believers. Today, programming is a
dying art. After all, when reusable chunks
of pre-written code can be patched togeth-
er to create an application, who wants to
�program�?

And if applications, created by people
who are essentially non-programmers, are
bloated beyond all reasonable limits, who
cares? A new processor is always ready
and waiting to happily run the bloatware
that these programmers churn out.

Have we reached the point of no-
return?

The evolution
By writing all those mysterious lines of
code, ideally, in as few �words� as possi-
ble, the programmer tells a computer
what to do. The computer cannot under-
stand the English-like instructions so the
instructions have to be �compiled� into
binary numbers�zeroes and ones�by a

what is
called a �com-

piler� so that the
computer can run the resulting program.
Then there are interpreted languages (like
BASIC), where the computer translates
programming instructions as it runs the
program. This is slower, but easier for
programmers�they can, if required, make
changes to the code, and run the program
instantly, without having to compile it
again. That was, basically, the way things

worked until a
couple of years ago.
Now, however, developments in tech-
nology have changed the way program-
mers program. Terms like RAD (Rapid
Application Development), OOP (Object
Oriented Programming) and Visual pro-
gramming, have entered the tech-savvy
programmer�s vocabulary. The buzz-
words might vary, but the goal remains
the same�to make programming easier
for those who are programmers, and
accessible to those who are not. This
would let the programmer concentrate on

l 1949 - Short Code, the first computer language to

be used on an electronic computing device, makes

an appearance.

l 1952 - Alick Glennie, working in the University of

Manchester, designs a very basic programming

system which he calls Autocode. It is a compiler

with limited capabilities.

l 1957 - FORTRAN (mathematical FORmula TRANs-

lation) system is released. John Backus, as head

of the team which developed this language, garners

wide acclaim. FORTRAN II appears in 1958, and

FORTRAN IV in 1962.

l 1958 - John McCarthy, at MIT, begins work on LISP

(LISt Processing). LISP 1.5 is released in 1959.

l 1959 - COBOL (Common Business Oriented Lan-

guage) is created by the Conference on Data Sys-

tems and Languages.

l 1960 - ALGOL 60, the first block-structured lan-

guage, appears, and goes on to become the most

popular programming language in Europe in the

mid-to-late 1960s.

l 1964 - At Dartmouth University, professors John J.

Kemeny and Thomas E. Kurtz invent

BASIC (Beginners All Purpose Symbolic

Instruction Code). The first BASIC program

is run on 1st May, 1964.

l 1968 - Niklaus Wirth begins work on Pas-

cal. The first implementation of Pascal

appears on a CDC 6000 series computer

in 1970. The Pascal User Manual and

Report is published in 1975, and is con-

sidered to be the definitive reference on

Pascal to this day.

The Evolution of Programming

As programming evolves
and becomes easier,
the programmer of
tomorrow may essentially
be a non-programmer

Going,Going, going,

Features-trends-2.qxd 12/1/99 8:53 AM Page 42

solving a prob-
lem without having to
scale a steep learning curve.

RADical change
HyperCard (a forerunner to
Visual Basic) popularised the
visual-prototyping style of pro-
gramming when it made an
attempt to represent every pro-
gram function as an on-screen
object. Visual programming
implies an object-oriented, or at
least an object-like view of a pro-

gram. It entails the visualisation of the
application design from the point of view
of user-interface functionality. OOP and
RAD methods have taken this concept to
a higher level. RAD tools, for example,
promise two basic advantages over tradi-
tional methods of programming�a short-
er, more flexible development cycle and
ease of use, whereby even a �fair-weather-

only� program-
mer would be able

to build reasonably
sophisticated applications.

RAD tools take advantage
of the fact that prototypes are

the ultimate design tool because
they ensure that an application�s

capabilities match a user�s expectations.
RAD makes it easy to develop �mock-ups�
of an end-user application, much faster
than would be possible with traditional
programming tools. This enables devel-
opers to show a prototype application to
the end user.

RAD tools make it easy for developers
to build application interfaces by assem-
bling buttons, menus, windows, toolbars
and so on, from a pre-existing palette of
components. After placing all the neces-
sary components on the application win-
dow, the (non)programmer can simply
hook up the visual components to related
commands�simply by placing these �pro-
gramming constructs� on a form, and
describing their behaviour through the
use of an associated scripting language

(with-
out hav-

ing to write
a single line of

code). This
�model� is shown to

the end user, and once
a model is agreed upon,

the developer simply cre-
ates an application that looks

and behaves like the prototype.
A second, lesser known, category of

visual programming languages is one that
follows the visual modelling approach.
These can be used to create 3D visual
models of systems and programs, and
then simply �execute� the model to simu-
late its actual operation. Physically, of
course, these models do not have any-
thing in common with an actual system,
but they can accurately represent flow of
data, and help design an application that
can control it, in a very intuitive way.

Code as a commodity
So all those wizzo-words�OOP, Visual
Programming, RAD�sound good, right?
But wait�there is a flip side.

43

l 1972 - Dennis Ritchie invents the ‘C’

programming language.

l 1975 - Bill Gates and Paul Allen write a

version of BASIC, which they sell to

MITS (Micro Instrumentation and

Telemetry Systems), who produce the

Altair, an 8080-based microcomputer.

l 1976 - Design System Language, con-

sidered by some to be the forerunner of

PostScript, makes its appearance.

l 1980 - Bjarne Stroustrup develops a set

of languages referred to as ‘C with

Classes’—these later form the basis for

the C++ language.

l 1982 - PostScript arrives on the scene. It is, essen-

tially, a ‘page-description language’ which is opti-

mised for graphics and text, and paves the way for

the desktop-publishing revolution of the late-1980s.

l 1983 - Microsoft and Digital Research release the

first C compilers for microcomputers. In November

the same year, Borland releases its Turbo Pascal.

l 1986 - C++ appears. The name is coined by Rick

Mascitti.

l 1989 - C++ 2.0 arrives, and C++ 2.1 makes its

appearance in 1990, and for the first time, includes

exception-handling features.

l 1991 - Object Oriented Programming (OOP) gets

serious. Visual Basic arrives on the computing

scene, and establishes reasonable presence in a

short time. Microsoft incorporates Visual Basic for

applications in Excel.

l1997 - Release of Visual Studio 97 from Microsoft.

alm ostalm ost gone!

Features-trends-2.qxd 12/1/99 8:53 AM Page 43

44 April 1999

features Trends

Visual programming makes people
think they can start programming right
away. This is true only to some extent.
Many programs require custom-designed
functionality, and for the programmer
who cannot actually program, that pres-
ents a difficulty. Object Oriented Pro-
gramming languages force a programmer
to think from the user-interface down-
wards. Programmers learn to think of one
screen at a time, which can distort their
perspective of the big picture.

RAD can be as bad. The iterative
design process that RAD tools employ
simplifies programming, but the applica-
tions designed using RAD usually require
a lot of reworking.Multiple redeployment
cycles waste much time, and the resulting
�prototyping death spiral� becomes a
process where the programmer gets it
wrong many times before he gets it right.

The Prototypes created using RAD tools
rarely translate into final, working appli-
cations, and when they do, they often turn

out to be slow. This is because most RAD
tools use interpreters, and interpreters usu-
ally execute much slower than most com-
piled code. Such applications are also
difficult to port to different platforms,
because most RAD tools are platform-spe-
cific (Microsoft Visual Basic supports only
Windows apps, for example). To overcome
these difficulties, programmers might
actually build the actual application using
traditional languages like C, once the RAD
prototype is approved, which means that
the application is actually built twice�a
colossal wastage of man-hours!

Code is a common commodity in the
world of RAD/OOP, and reusability is a
prime concern. Although code reuse can
be a good idea (it lets programmers modi-
fy an application in just one �location�, and
the changes would be reflected through-
out�pop-up windows, data windows, dia-
log boxes, and other user-interface
elements), it does not happen on its own.
Developers need to put in time and effort

to maximise code reuse, and often, short
development times do not permit them to
do so. Also, piecing together pre-written
packets of code is not as efficient as writing
routines and sub-routines manually.

Back to the future?
So where do we go from here? Is it time to
go back to traditional methods of pro-
gramming? Should we abandon RAD? No,
there is no going back. New programming
technologies have made a significant
impact upon applications development.
And programmers must take the rough
with the smooth. What has, perhaps, been
ignored is that technology cannot serve as
a substitute for programming skill. New-
fangled programming tools simply bypass
the need for good programming skills, and
soon, we will have a whole new generation
of �programmers�, who are essentially,
non-programmers! That, ultimately, is the
paradox we face.

SAMEER KUMAR

For most of us, our Pentium PCs, with MBs

of RAM and GBs of disk storage space,

constitute our computing universe. But

another world exists—a world with a

computing realitydifferent from ours. In this

world, programmers have to design

applications for 8-bit processors such as

the Zilog Z8, and the Motorola HC05.

These IBPs (itty-bitty processors!!) run

at clock-speeds that are less than one-tenth

that of our PCs, and are often paired with as little

as 16 KB of RAM. IBPs are, usually, single-chip

devices where the CPU, RAM and ROM must all

coexist,

and are most often used in devices which inter-

face directly with the real world—cellular

communications equipment, medical-imaging

equipment, electronic toys (Furby and Barney,for

example), and of course, PDAs.

The processor is small, and the amount of

memory available for processing is very less. To

compound the situation, the device in question must

often respond in real-time (or in near real-time) with

100 percent reliability at all times. This presents pro-

grammers with an environment in which program-

ming routines must fit in tens of bytes, and must be

optimised for speed as well as space. ‘Program-

ming’ assumes a different dimension altogether.

Small is elegant
So how different is this reality? Consider the exam-

ple of Chip Gracey. A software engineer with Paral-

lax, Gracey wrote the on-chip code for the

company’s elegantly designed PIC 16C56 develop-

ment system, which consists of two ICs, one 4 MHz

oscillator circuit, and a voltage regulator, all pow-

ered by a 9V transistor battery. Gracey had to pro-

gram in BASIC, and had all of 1 KB of code space

available for his program. When the program was

finally up and running, there was one last bug to be

fixed. Gracey took four days to find and fix the bug—

not because the bug was hard to find, but because

it entailed the adding of an instruction to the code.

And why, you might ask, should that be difficult?

Simply because there was no space. Gracey

ultimately had to figure out how to make one routine

shorter by an instruction, and with incessant looping

and code-interdependence (changes to any instruc-

tion sequence affect the performance of several rou-

tines), that was no easy task.

The point is, Object Oriented Programming and

pre-structured, reusable code might work just fine

for developing bloated applications for Pentium-III

PCs, but the approach does not work for IBPs.

An off-the-shelf generic routine will not make use

of memory-conserving and/or

performance-boosting features which may be spe-

cific to any one processor, therefore the program-

mer must become an algorithm innovator, and write

processor-specific code, for maximising operating

efficiency.

For hardcore programmers, it should be reassur-

ing to know that assembly language programming

is alive and well, at least in the world of small proces-

sors.

PROGRAMMING FOR THE FEATHERWEIGHT CLASS

Features-trends-2.qxd 12/1/99 8:53 AM Page 44

45

Features-trends-2.qxd 12/1/99 8:53 AM Page 45

