
Legal Information
Microsoft Collaboration Data Objects
Programmer’s Reference
Information in this document is subject to change without notice. This document is provided for
informational purposes only and Microsoft Corporation makes no warranties, either express or implied,
in this document. The entire risk of the use or the results of the use of this document remains with the
user. The names of companies, products, people, characters, and/or data mentioned herein are
fictitious and are in no way intended to represent any real individual, company, product, or event,
unless otherwise noted. Complying with all applicable copyright laws is the responsibility of the user.
No part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1996-1997 Microsoft Corporation. All rights reserved.

ActiveX, Microsoft, JScript, Visual Basic, Visual C++, Windows, Windows NT, and Win32 are
trademarks or registered trademarks of Microsoft Corporation in the United States and/or other
countries.

Java is a trademark of Sun Microsystems, Inc.

Macintosh is a registered trademark of Apple Computer, Inc. used under license.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Overview of CDO
Microsoft® Collaboration Data Objects (CDO) is a technology for building messaging or collaboration
applications. (In versions previous to 1.1, CDO was called OLE Messaging; in version 1.1 it was called
Active Messaging.) It is designed to simplify the creation of applications with messaging functionality, or
to add messaging functionality to existing applications. For example, CDO and Active Server Pages
enable you to add script to a Web site to provide support for creating, sending, and receiving e-mail as
well as participating in discussions and other public folder applications.

CDO does not represent a new messaging model, but rather an additional scripting interface to the
Messaging Application Programming Interface (MAPI) model.

CDO is made available through the two CDO libraries. They are described in detail in Introduction and
Overview of CDO Rendering .

These libraries expose programmable messaging objects (including folders, messages, recipient
addresses, attachments, and other messaging components), which are extensions to the
programmable objects offered as part of Microsoft® Visual Basic®, such as forms and controls.

Intended Audience
To develop messaging-enabled applications using CDO, your background should include:

· Proficiency with a scripting language, such as Microsoft® Visual Basic® Scripting Edition (also called
VBScript), Microsoft® JScript™, or JavaScript.

· Some understanding of messaging technology.

To develop messaging-enabled applications for the World Wide Web, you should also be proficient in
the use of Hypertext Markup Language (HTML). No experience with C/C++ is necessary, although
experience with Visual Basic or Visual Basic for Applications is recommended.

Software Requirements
The dynamic-link libraries for CDO (OLEMSG[32].DLL) and CDO Rendering (AMHTML.DLL) are MAPI
client object libraries. As such, they require MAPI (the version of MAPI32.DLL installed with Microsoft®
Exchange Server version 5.0) and service providers ¾ for example, the same service providers as with
Microsoft Exchange Server. AMHTML.DLL and OLEMSG[32].DLL are included with Microsoft
Exchange Server version 5.0 and are installed on the server when the installation option Active Server
Components is selected.

You can also use CDO (OLEMSG[32].DLL only, not AMHTML.DLL) after installing the Windows
Messaging client included with Microsoft® Windows® 95 and Microsoft® Windows NT® version 4.0.
CDO Rendering (AMHTML.DLL) is intended for server-side use only.

Although CDO works with Microsoft® Outlook™, OLEMSG[32].DLL is not installed with the Outlook
setup program. You can set up CDO after setting up Microsoft Outlook by installing the library on its
own or by installing the Microsoft Exchange Server 5.0 client. (You can install the CDO libraries
independently by copying them from the installation CD-ROM to your computer's system directory.)

The Active Server Environment
Built into Microsoft® Internet Information Server (IIS) version 3.0, Active Server is a server-side and
script-based programming model that allows developers to create server and Web server applications.

Active Server also takes full advantage of Microsoft® Windows NT® to create high-performance,
scalable Web applications. Shared Internet server applications benefit from a rich set of services for
messaging, database access, and transaction support. Because Active Server uses the component
model used throughout the Active Platform, third parties can create components and applications that
integrate seamlessly with other platform technologies and applications.

CDO in Microsoft® Exchange Server 5.0 is an Active Server component and provides messaging and
collaboration functionality to all Active Platform applications. The following illustration shows how Active
Server components (including, for example, the Active Server Components of Microsoft Exchange) fit
within the Active Server platform.

The Active Server Components of Microsoft
Exchange
Microsoft® Exchange Active Server components provide the technology for integrating Microsoft
Exchange Server with Web applications. This integration provides Web access to Microsoft Exchange
Server data using IIS and Active Server Pages (ASP).

With Microsoft Exchange Active Server components, developers create applications by combining
scripting, HTML, and core Microsoft Exchange technologies such as messaging, calendaring, and
groupware. The Microsoft Exchange Active Server components let developers leverage not only the
services of Microsoft Exchange Server but also other Microsoft and third-party services using any Web
browser as a front end.

Microsoft Exchange Server installs the Active Server components of Microsoft Exchange if the
installation option Active Server Components is selected. This installation gives you:

· Microsoft CDO, which includes the CDO Library and the CDO Rendering Library.
· The Microsoft Exchange Web client.

As indicated in the following illustration, Microsoft Exchange Server can be installed on the same
computer as the Active Server components or on a different computer.

Other elements in this illustration are:

· Internet browsers Microsoft® Internet Explorer version 3.0 or Netscape Navigator version 3.0 is
required to access Microsoft Exchange ASP-based applications.

· Microsoft Internet Information Server (IIS), a Web server integrated into Windows NT Server. As
shown in the illustration, IIS is required to access Microsoft Exchange ASP-based applications.

· Microsoft Active Server Pages
· Microsoft CDO libraries
· Microsoft Exchange Web client
· Microsoft Exchange Server, a client/server messaging and workgroup system that offers a

transparent connection to many different communications systems. The two key elements of
Microsoft Exchange Server that are used by the CDO libraries are the information store (for
accessing mailboxes and public folders) and the directory (for accessing the address book).

Note For information on installing the Microsoft Exchange Active Server components, see the
release notes for Microsoft Exchange Server 5.0. For a thorough description of the use of the
Microsoft Exchange Web client, see the What's New guide for Microsoft Exchange Server 5.0.

About Active Server Pages
Active Server Pages (ASP) is an open, compile-free application environment in which you can combine
HTML pages, scripts, and Microsoft® ActiveX™ server components to create powerful Web-based
applications.

Active Server Pages offers native support for Microsoft® Visual Basic® Scripting Edition (VBScript) and
Microsoft® JScript™, and supports other scripting languages such as REXX, Python, and Perl through
Active Scripting plug-ins. Active Server Pages also supports ActiveX Scripting, allowing virtually any
scripting engine to be used. It allows Web developers to write scripts that are executed on either the
server or the client.

Active Server Pages also supports ActiveX components developed in any language, such as C++,
Visual Basic, Java, COBOL, and others. The resulting applications are compatible with any Web
browser running on any operating system. (The server-side scripting processor also allows for
multilingual support, defining in which language HTML is returned, based on user preference.)

Script Processing
Microsoft Active Server Pages processes ASP scripts. When Active Server Pages encounters regular
HTML text, it does not process it, but passes it through the Active Server response object (and an
IStream object) directly to the browser. When Active Server Pages encounters text within server-side
script tags (<% and %>), it processes this script code and generates HTML, which it sends to the
browser.

Scripts are not stored in a compiled form. Rather, they are interpreted when the ASP file is requested
from the server.

Active Server Pages Sessions
Active Server Pages is not stateless. This means that, to use it, you need to start an Active Server
Pages session. Such a session exists ¾ and a Session object is created ¾ after a user connects.
When the session expires, the Session object is destroyed. In contrast, the Hypertext Transfer Protocol
(HTTP) is stateless, which means that no "state" information concerning the requester is maintained
between successive requests to the HTTP server.

Because the CDO libraries are an interface to MAPI, they must use a MAPI session. A MAPI session
object is stored as a state variable in an Active Server Pages session, which means that a user need
not log on to MAPI for each request.

Active Server Pages uses a default twenty-minute time-out. Scripts used with the Microsoft Exchange
Web client set this time-out to sixty minutes for authenticated users. When this time-out expires, the
Active Server Pages session and the MAPI session objects are destroyed.

About ASP Files
Active Server Pages (.asp) files are standard HTML documents interlaced with ActiveX script code that
calls specific Active Server components, such as CDO.

The Microsoft Exchange Active Server components include a number of server-side scripts in .asp
files. The scripting in these .asp files functions through calls to the interfaces in the CDO Library and
the CDO Rendering Library. Active Server Pages processes these .asp files, and uses an IStream
interface to send to the browser either generated HTML content or a new (changed) .asp file, which the
browser interprets.

Some .asp files are specific to the Microsoft Exchange Web client, and others are useful for other ASP-
based collaboration applications.

Because .asp files are not compiled and the ASP source code for Web access to Microsoft Exchange
Server is included, the source files for the Web client can be used as sample code for building other
applications or can be modified to customize its behavior, visual appearance, or functionality. Because
Microsoft Exchange Active Server components are built on the Active Server platform using the CDO
libraries, they illustrate how other collaborative Web applications can be created using CDO.

For more information about customizing .asp files for use with Microsoft Exchange Server, see
Overview of CDO Rendering .

About the CDO Libraries
The CDO and CDO Rendering libraries are used for building collaborative Web server applications on
Microsoft® Exchange Server. Both libraries can be used to build client and server applications.

The CDO libraries can be called from Microsoft® Visual Basic® or Visual Basic Scripting Edition
(VBScript), Microsoft® JScript™, Javascript, Java, and any application that supports Visual Basic for
Applications such as Microsoft® Office.

These libraries are used by the following classes of applications:

· Server applications integrated with Active Server Pages and a browser to provide Web access to
client features, namely mailboxes, and public folders.

· Client applications for client-side scripting. In this case, the CDO libraries are not used with Active
Server Pages.

Note Scripts can be run on the server or on the client. The Microsoft Exchange Web
client's .asp files include scripts written in VBScript and executed by Microsoft® Internet
Information Server (IIS); client-side scripts are written in VBScript, JScript, or JavaScript and
executed by the browser.

These are the two CDO libraries:

· CDO Library This library lets you add to your application the ability to send and receive mail
messages and to interact with folders and address books. You can create programmable messaging
objects, then use their properties and methods to meet the needs of your application.

· CDO Rendering Library This library is used to render CDO objects and collections in HTML for
use on the World Wide Web.

Note If your purpose is to run on a Web server to expose content to the Internet, you need a
computer running IIS to work with the CDO libraries. However, you can use the CDO Library or CDO
Rendering Library alone on the client (or on the server) as scripting libraries. In this case, they are
used as general-purpose libraries, and IIS is not required.

The Microsoft Exchange Web Client
With the Microsoft® Exchange Web client, users can access data on a Microsoft Exchange Server
computer using an Internet browser (that supports frames and JavaScript) from a UNIX, Macintosh, or
Microsoft Windows®-based computer. The Web client provides Web-based public access to Microsoft
Exchange Server public folders and the global address list. Authenticated users can log on to their
personal accounts to read private e-mail and send messages. Using Web-based public folder access,
an organization can build private and public discussion forums on the Internet and private intranets.
Users can publish information on the Internet without having to manually convert documents to HTML
format.

With an Internet browser, users specify the Uniform Resource Locator (URL) using HTTP to access the
virtual root for the Microsoft Exchange Server computer. Then, after providing the proper logon
credentials, they can access their mailbox and public folder data. Microsoft Exchange Server data is
translated by Active Server Pages into HTML and transmitted to the browser using HTTP.

Browser access to Active Server Pages through HTTP is controlled through the Microsoft Exchange
Administrator program. Access can be granted on a per-user basis or made available to any user
through anonymous access.

The Microsoft Exchange Web client uses files of these types:

· .asp files Contain Active Server Pages scripts.
· .htm files HTML files that do not contain Active Server Pages scripts.
· .gif files Graphic image files used to depict items such as screen titles, buttons, and icons.

Common Tasks
These are some of the most common actions performed with the Microsoft Exchange Web client:

· An authenticated user opens a mailbox.
· A user (authenticated or not) accesses a public folder.
· An authenticated user reads a message in a mailbox.
· An unauthenticated user reads a message in a public folder.
· An authenticated user sends a message.
· A user (authenticated or not) posts a message to a public folder.
· A user (authenticated or not) looks for recipients in the address book.

Some of these tasks are explained in the following topic.

Note From the server, your CDO application cannot view the contents of a personal folder store
(PST). Likewise, you cannot view the contents of a personal address book (PAB). Personal folder
stores and personal address books are accessible when the CDO application is run on the client
workstation.

Sequence of Events
The following procedures describe the events that take place and the flow of data as selected
messaging tasks are performed. To see a diagram showing how the elements mentioned in these
descriptions relate to one another, see The Active Server Components of Microsoft Exchange.

An authenticated user opens a mailbox
1. A user clicks the logon URL or follows a link (http://<server>/exchange, a virtual root) to the logon

page for Active Server components.
2. The user enters a mailbox name, domain account name, and password. The script for the logon

interaction is contained in the logon.asp file.
3. If the user is authenticated through the Microsoft® Windows NT® domain controller, an Active Server

Pages session is started, which maintains session information until the user logs off or the session
times out. (After authentication, the session timer starts when the first page is sent to the browser,
and is restarted when each subsequent page is sent to the browser.)
A CDO Session object is created and stored as a state variable in the Active Server Pages session.
This lets the CDO Library and CDO Rendering Library make messaging calls to retrieve information
store data from Microsoft Exchange Server.

4. The Inbox for this Session object is opened. This becomes visible to the user as the script file
root.asp is executed. The Inbox is displayed in four frames from the \inbox directory. (Anonymous
users are directed to the file \anon\root.asp.) For more information, see Directory Structure.

An unauthenticated user accesses a public folder
1. A user clicks the logon URL or follows a link (http://<server>/exchange, a virtual root) to the logon

page. (Alternatively, a user may have followed a URL to the public folder, in which case the user is
logged on transparently, and sees no logon page.)

2. The user clicks Public Access (or the appropriate Click here) on the logon screen.
3. A CDO session is started for the unauthenticated user.
4. The root folder of the public folder tree is displayed as the file \anon\root.asp is rendered. Only

certain public folders are visible. The administrator determines which folders are available to
unauthenticated users, using the HTTP Protocol object in the Protocols container on the site.

An unauthenticated user posts a message to a public folder
1. The user opens the public folder, as described in the previous procedure.
2. The user clicks Post New Item. The browser supplies the name "Anonymous" (or a suitable

equivalent in the user's language, if not English) to be displayed on messages posted to public
folders. Unauthenticated users can post messages, but they cannot send e-mail messages.

A user reads a document or message in a public folder
 ¾ or ¾

An authenticated user reads a message in a mailbox or public
folder
1. The user opens the mailbox or public folder, as in one of the previous procedures.
2. The user clicks a message in the mailbox or public folder.
3. If the user is opening a message in a mailbox, the file \forms\ipm\note\read.asp is loaded into

Microsoft Active Server Pages, which renders the message using the CDO Rendering Library. (The
file \forms\ipm\post\read.asp is used to render a message in a public folder.)

Directory Structure
After the Microsoft Exchange Active Server components are installed on a server, the files of the
Microsoft Exchange Web client reside in a directory structure similar to that in the following illustration.
A directory tree exists for each language you install; in the illustration, the usa tree is expanded, and
some of the files in the usa\anon subdirectory are listed in the right pane.

The ASP files used by Microsoft Exchange Active Server components reside in these subdirectories.
For example, the \inbox directory contains .asp files used by the Active Server components to display a
user's mailbox and its contents. Other subdirectories contain files for other uses; for example the \anon
directory contains files that are rendered to show public folders and their contents to an
unauthenticated user, whereas the files in \pf are used when an authenticated user accesses public
folders.

The \forms directory and its subdirectories contain scripts for every form. The structure of the \forms
directory is based on the message class of the form; the .asp files in each directory are named after the
verb that is applied ¾ such as read.asp and compose.asp. For example, an IPM.Note is read using the
file read.asp in the directory \forms\ipm\note. Customizers can install additional forms for each
message class they define using the same structure. This structure is loaded at application start.

Handling Multiple Languages
The Microsoft Exchange Web client handles the rendering of different languages in the following way:

· Scripts for all languages are installed under the same virtual root (typically //<server>/exchange), in
a separate directory for each language. See the illustration in Directory Structure, which shows
directories for German (Ger) and Japanese (Jpn) as well as USA-English (usa). Additional language
packs can be obtained to support other languages.

· An Internet Server API (ISAPI) filter, ExchFilt.dll, is installed. This filter examines all incoming URLs.
If a URL is for one of the applications defined in \\HKLU\System\CurrentControlSet\Services\
MSExchangeWeb\Applications (Microsoft Exchange Server is defined by default, but any application
can be added to this list), the filter will:
1. Examine the AcceptLanguage header from the browser. (The AcceptLanguage is the language

stated to be preferred by a given browser.)
2. Look up the header using the table laid out in \\HKLU\System\CurrentControlSet\Services\

MSExchangeWeb\AcceptLanguages.
3. Insert the directory name into the URL after the application name.

For example, if you have a browser that prefers USA-English, //MyServer/Exchange/logon.asp
becomes //MyServer/Exchange/USA/logon.asp.

This process enables a Web browser being used with Microsoft Exchange Active Server components
to run the set of scripts most suitable for a particular user's language. In the case where a particular
language is not installed, the default will be the language of the Microsoft Exchange Server computer.

Note that code page and locale are also defined in these registry settings and can be used to refine
support for specific sublanguages.

Impersonation
A user's access to Microsoft Exchange Server information is handled in a thread of execution within the
IIS process. If the user wants authenticated access ¾ to open a mailbox, for example ¾ this thread
must impersonate a Windows NT security context. In other words, to be granted authenticated access
to the Microsoft Exchange information store, a thread must be associated with a set of valid security
credentials.

The impersonation process has two parts:

1. At the time a user logs on, save the valid security context into the Session object.
2. When rendering a page in a multiframe set, or when a session ends, retrieve the saved security

context and call the Impersonate method on the RenderingApplication object.

To save a security context
At the time of user logon, use a command such as the following (from the file lib\logon.inc), to save the
current security context in the session object:

Session("hImp") = objRenderApp.ImpID

To impersonate the logged on user
1. When rendering a page in a multiframe set, or as a session is ending (such as in the method

Session_onEnd in the file global.asa), retrieve the saved security context handle from the Session
object. The following code is from the file lib\session.inc:

hImp = Session("hImp")

2. Get the RenderingApplication object and call the Impersonate method, passing the security context
handle, as shown in the following code from the file lib\session.inc.

set objRA = Application(bstrRenderApp)
objRA.Impersonate(hImp)

Introduction
The Microsoft® Collaboration Data Objects (CDO) Library exposes messaging objects for use by
Microsoft® Visual Basic®, C/C++, and Microsoft® Visual C++® applications. (In versions previous to 1.1,
the CDO Library was called the OLE Messaging Library; in version 1.1 it was called the Active
Messaging Library.)

The CDO Library lets you quickly and easily add to your Visual Basic application the ability to send and
receive mail messages and to interact with folders and address books. You can create programmable
messaging objects, then use their properties and methods to meet the needs of your application.

When you combine messaging objects with other programmable objects exposed by Microsoft®
Access, Microsoft® Excel, and Microsoft® Word, you can quickly build custom applications that cover
all your business needs. For example, with these powerful building blocks you can build a custom
application that allows your users to extract information from a database, copy it to a spreadsheet for
analysis, then create a report with the results and mail the report to several people.

The Microsoft CDO Library does not represent a new messaging model. It represents an additional
interface to the Messaging Application Programming Interface (MAPI) model, designed to handle the
most common tasks for client developers using Visual Basic, C/C++, and Visual C++.

This guide assumes that you are familiar with the Microsoft Visual Basic programming model. To help
you use the CDO Library, this guide provides a short overview of the MAPI architecture. For complete
reference information, see the MAPI Programmer's Reference.

The CDO Library requires installation of MAPI and of an automation controller. An automation controller
is an application that supports Automation, such as the following Microsoft applications:

· Microsoft Visual Basic version 3.0 or later
· Microsoft Visual Basic for Applications
· Microsoft Access version 2.0 or later
· Microsoft Excel version 5.0 or later
· Microsoft Project version 4.0 or later
· Microsoft Visual C++ version 1.5 or later

Note Microsoft Visual Basic version 3.0 does not support multivalued properties.

Quick Start
The following example demonstrates how easy it is to add messaging to your applications when you
use Microsoft® Visual Basic® or Visual Basic for Applications.

In this code fragment, we first create a Session object and log on. We then create a Message object
and set its properties to indicate its subject and content. Next we create a Recipient object and call its
Resolve method to obtain a full messaging address. We then call the Message object's Send method
to transmit the message. Finally, we display a completion message and log off.

' You must install the MAPI SDK, registering the
' CDO Library, to run this sample code.
' This sample uses Visual Basic 3.0 error handling.
'
Function QuickStart()
Dim objSession As MAPI.Session ' use early binding for more efficient
Dim objMessage As Message            '                              code and type checking
Dim objOneRecip As Recipient

On Error GoTo error_olemsg

' create a session and log on -- username and password in profile
Set objSession = CreateObject("MAPI.Session")
' change the parameters to valid values for your configuration
objSession.Logon profileName:="Sender Name"

' create a message and fill in its properties
Set objMessage = objSession.Outbox.Messages.Add
objMessage.Subject = "Sample Message"
objMessage.Text = "This is sample message text."

' create the recipient
Set objOneRecip = objMessage.Recipients.Add
objOneRecip.Name = "Recipient Name"
objOneRecip.Type = CdoTo
objOneRecip.Resolve ' get MAPI to determine complete e-mail address

' send the message and log off
objMessage.Send showDialog:=False
MsgBox "The message has been sent"
objSession.Logoff
Exit Function

error_olemsg:
        MsgBox "Error " & Str(Err) & ": " & Error$(Err)
        Exit Function

End Function

The CDO Library invalidates the Message object after you call its Send method. This code fragment
logs off to end the session after sending the message, but if you continued the MAPI session, you
could avoid potential errors by setting the Message object to Nothing.

About Installation
The Collaboration Data Objects Library version 1.2 is installed with the MAPI component of the
Platform Software Development Kit (SDK) and with the Microsoft® Exchange Client. The setup
programs register the CDO Library for subsequent use by automation controllers, that is, applications
that support Automation.

Note No separate setup program is provided or needed for the CDO Library.

When you use the CDO Library with an automation controller, verify that the tool has referenced the
CDO Library. For example, when you are using Microsoft® Visual Basic® version 4.0, choose the
References command from the Tools menu, and select the check box for Microsoft Active
Messaging 1.1 Object Library.

When the CDO Library is available, the following flag is set in the WIN.INI file:

[Mail]
OLEMessaging=1

The OLEMsgPersistenceTimeout registry setting controls how quickly the CDO Library shuts down
and unloads from memory after all messaging objects are released by client applications. On Win32®
systems, the setting appears at the following registry location:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows Messaging Subsystem

For 16-bit Microsoft® Windows® systems, the OLEMsgPersistenceTimeout setting appears within the
[MAPI] section of the WIN.INI file.

About This Guide
Overview defines the MAPI terms used in this guide and compares the CDO Library with the other
MAPI programming interfaces. It then describes the design of the CDO Library, defining the objects
and the collections of objects that are available to you with the CDO Library. This section also explains
the relationships between these objects.

Programming Tasks offers sample Microsoft® Visual Basic® code for many common programming
tasks, such as creating and sending a message, posting a message to a public folder, navigating
through folders, searching through address books, and handling errors.

Objects, Properties, and Methods contains comprehensive reference information for the properties and
methods of all objects and collection objects.

The appendixes, Error Codes, Property Tags, Web Page Support, How Programmable Objects Work,
and Java Programming Considerations, offer additional background information about Automation (the
technology used by the CDO Library), describe how the CDO Library provides support for HTML
(Hypertext Markup Language) script on a Web page, and provide procedures and examples for
accessing CDO Library objects from Java.

The best way to learn about the CDO Library is to alternate your reading with hands-on programming.
You can use the sample code that is provided with the CDO Library.

Overview
This section presents a brief introduction to MAPI and describes how the Collaboration Data Objects
(CDO) Library fits into the mix of MAPI programming interfaces. It provides a short description of
Automation, which is the basis of the design of the CDO Library. The section also offers a conceptual
overview of the CDO Library, and a discussion of differences between 16-bit and 32-bit platforms.

Introduction to MAPI
MAPI defines a complete architecture for messaging applications. The architecture specifies several
well-defined components. This allows system administrators to mix and match components to support
a broad range of vendors, computing devices, and communication protocols.

The MAPI architecture can be used for e-mail, scheduling, personal information managers, bulletin
boards, and online services that run on mainframes, personal computers, and hand-held computing
devices. The comprehensive architectural design allows MAPI to serve as the basis for a common
information exchange.

The MAPI architecture defines messaging applications, or clients, that interact with various message
services through the MAPI programming interfaces, as shown in the following diagram.

To use the messaging services, a client must first establish a session. A session is a specific
connection between the client and the MAPI interface based on information provided in a profile. The
profile contains configuration and user preference information. For example, the profile contains the
names of various supporting files, the time interval to check for new messages, and other settings,
such as whether to remember the user's password or to prompt the user for the password during each
logon. A successful logon is required to enable the client's use of the MAPI system.

After establishing a MAPI session, the client can use the MAPI services. MAPI defines three primary
services: address books, transports, and message stores.

An address book service is similar to a telephone directory. The address book can be thought of as a
persistent database that contains valid addressing information. An entry in the address book is called
an address entry and consists of a display name, an e-mail type, and an e-mail address. The display
name refers to the name, such as a person's full name, that an application displays to its users. You
can provide a display name, and the address book service looks up the display name and provides the
corresponding messaging system address.

A transport supports communication between different devices and different underlying messaging
systems.

A message store stores messages in a hierarchical structure that consists of one or more folders. A
folder can be a personal folder that contains an individual's messages, or a public folder, similar to a
bulletin board or online forum, that is accessible to many users. Each folder can contain messages or
other folders.

A message represents a communication that is sent from the sender to one or more recipients or that
gets posted in a public folder. A message can include one or more attachments, which are attached to
and sent with the message. An attachment can be the contents of a file, a link to a file, an OLE object,
or another message.

Several properties can be associated with a message: its subject, its importance, its delivery properties
(such as the time it is sent and received), and whether to notify the sender when the message is
delivered and read. Some message properties identify the message as part of a conversation. The
conversation properties allow you to group related messages and identify the sequence of comments
and replies in the thread of the conversation.

The message can have one or more recipients. A recipient can be an individual or a distribution list. A
distribution list can contain individuals and other distribution lists. For messages that are posted to
public folders, the recipient can also be the public folder itself. Before sending a message, you should
resolve each recipient; this means you should check each recipient against the address book to make
sure its e-mail address is valid.

MAPI Programming Interfaces
Microsoft provides several programming interfaces for MAPI, so that developers working in a wide
variety of development environments can use this common message exchange.

The following figure shows the CDO Library as a layer that is built on top of MAPI. This is similar to the
way function calls to the Common Messaging Calls (CMC) interface are mapped to the underlying
MAPI interfaces. It also demonstrates that the CDO Library is available to all the concerned languages,
namely Microsoft® Visual Basic®, Visual Basic for Applications, and C/C++.

It is important to recognize that the CDO Library does not offer access to all of the features of MAPI. In
particular, it is designed primarily for clients and is not suitable for service providers.

The following table summarizes the programming interfaces that Microsoft provides for MAPI.

Programming
interface

Description

MAPI custom controls User interface elements for Visual Basic version
3.0 developers.

Simple MAPI Functions for Visual Basic version 3.0 and later,
Visual Basic for Applications, and C/C++ client
developers that allow access to the Inbox (no
access to MAPI properties). Most developers
should probably use either CMC or MAPI rather
than Simple MAPI.

CDO Library Programmable messaging objects for Visual
Basic/Visual Basic for Applications and C/C++
developers.

Common Messaging
Calls (CMC)

Functions for C/C++ client developers; X.400 API
Association (XAPIA) standard.

MAPI OLE Component Object Model (COM) interfaces
for C/C++ developers. Full access to all MAPI
programming interfaces. Implemented and called
by clients, service providers, and MAPI itself.

MAPI Custom Controls and the CDO Library
Although both the MAPI custom controls and the CDO Library are designed for Visual Basic
programmers, they represent significantly different capabilities.

A control is a user interface element that enables you to display data for the user. The custom controls
are usually convenient for offering more specialized capabilities than are provided by the standard user
interface controls such as the list box, combo box, command button, and option button.

A programmable object may offer some user interface capabilities, but that is usually not its primary
purpose. It offers the very powerful ability to interact with existing OLE objects. For a familiar example,
consider the data access objects provided with Microsoft Visual Basic version 3.0 Professional Edition
and subsequent versions. The data access library lets you create and use such database objects as
tables and queries. As the data access library lets you use database objects, the CDO Library lets you
add messaging to your applications.

MAPI Functions and the CDO Library
Compared to the function call interfaces of traditional application programming interface (API) libraries,
an Automation object library yields faster development and code that is easier to read, debug, and
maintain.

The CDO Library also takes care of many programming details for you, such as memory management
and keeping count of the number of objects in collections.

The following table compares a traditional function call interface, such as CMC or Simple MAPI, with
the CDO Library interface.

Task or code Function call interface CDO Library
Dim mFiles() As MapiFile
Dim mRecips() As MapiRecip

Requires arrays of these
structures to be
declared, even if the
developer does not use
them.

Automatically manages
these structures as child
objects of the parent
Message object.

ReDim mRecips(0)
ReDim mFiles(0)

Structures are resized
by redimensioning
arrays.

Objects are added to
collections with the Add
method.

mMessage.RecipCount = 1

Requires developer to
indicate the number of
recipients and
attachments.

Automatically
determines the number
of objects in these
collections.

Error handling

Each function call
returns its own set of
error codes.

Integrated with Visual
Basic error handling
during both design and
run time.

Return values Returned implicitly in the
parameters of the
function call.

Returned as an explicit
result of a method or in
object properties.

As programming tasks grow more complex, the function call approach becomes increasingly unwieldly.
In contrast, the CDO Library expands gracefully to encompass greater complexity. A well-planned,
thorough framework of collections, objects, methods, and properties can neatly encompass very
complex systems.

Introduction to Automation
The CDO Library is based on the capabilities provided by Automation. The CDO Library allows you to
create instances of programmable messaging objects that you can reference with automation
controllers. An automation controller is a tool that supports Automation, such as Microsoft® Visual
Basic®.

For the purposes of this document, an object is an Automation object: a software component that
exposes its properties and methods. Such an object follows the Visual Basic programming model and
lets you get properties, set properties, and call methods.

You can think of programmable objects as additions or extensions to the programmable objects that
are offered as part of Visual Basic, such as forms and controls. Forms and controls expose their
properties and methods so that developers can tailor these objects for the needs of their programs. In
addition to the forms and controls, Visual Basic allows for the definition of a wide variety of other
programmable objects by providing the CreateObject and LoadObject functions. Note that these
functions do not have specialized names like CreateSpreadsheet or LoadDatabase. They are general-
purpose functions that enable an open-ended number of programmable objects, including the CDO
Library.

Throughout this document, Visual Basic is used as a concrete example of an automation controller, but
the statements about Visual Basic apply to all such tools.

Visual Basic scripts drive the CDO Library. The scripts can also drive other libraries that support
Automation, such as the libraries of programmable objects provided by Microsoft® Excel version 5.0
and Microsoft® Access version 2.0. Visual Basic can call many different programmable object libraries
and can act as the glue that holds all of these objects together.

Each library can create its own objects, set properties, and call methods. The Visual Basic program
coordinates the work of all the libraries. For example, it can direct the Microsoft Access object to find
data in a specific table, direct the Microsoft Excel object to run calculations using that data, and then
direct CDO Library objects to create a message containing the results of those calculations and send
the message to several recipients.

CDO Library Object Design
The CDO Library is designed for ease of use and convenience. It implements the MAPI functions most
used by client applications. The CDO Library is not designed for development of service providers. (For
more information about service providers, see Introduction to MAPI.)

Note The CDO Library design does not represent a one-to-one correspondence with MAPI objects.
The description of the CDO Library object design does not always apply to the MAPI programming
interface.

The CDO Library defines the following objects:

AddressEntries collection
AddressEntry
AddressEntryFilter
AddressList
AddressLists collection
Attachment
Attachments collection
Field
Fields collection
Folder
Folders collection
GroupHeader
InfoStore
InfoStores collection
Message
MessageFilter
Messages collection
Recipient
Recipients collection
Session

The objects supported in the CDO Library can be grouped into three categories:

Top-level objects, which can be created directly in a Microsoft® Visual Basic® program.
Child objects, which can be instantiated under the top-level objects.
Collections, or groups of objects of the same type.

Top-Level Objects
A top-level object is one that can be created directly by your code, without having to derive it from any
other object. Currently, the only top-level Active Messaging object is the Session object. Other objects
are accessible only through the Session object.

You can create a Session object either through early binding:

            Dim objSession As MAPI.Session
            Set objSession = CreateObject ("MAPI.Session")
            objSession.Logon

or through late binding:

            Dim objSession As Object
            Set objSession = CreateObject ("MAPI.Session")
            objSession.Logon

and then use the Logon method to initiate a session with MAPI. You cannot access any other object,
or even the Session object's properties or methods, until you log on. The only exception to this rule is
the Session object's SetLocaleIDs method.

Generally, early binding is preferable, because it enforces type checking and generates more efficient
code. Note that you specify "MAPI.Session" instead of just "Session" in order to distinguish a MAPI
session from other types of sessions available to a Visual Basic program through other object libraries.

Early binding is not supported in CDO Library versions previous to 1.1.

C/C++ programmers use globally unique identifiers (GUIDs) for these objects, defined in the type
library for the CDO Library. The following C++ code fragment demonstrates how to create a Session
object and call its Logon method:

// create a Session object and log on using IDispatch interface
// to the CDO library
#include <ole2.h>
#include <stdio.h>
#include <stdlib.h>    // for exit
#define dispidM_Logon 119    // get constants for all props, methods
// allows you to save cost of GetIdsFromNames calls
// can generate yourself by calling GetIdsFromNames for all
// properties and methods
// GUID values for Session defined in the type library
static const CLSID GUID_OM_SESSION =
{0x3FA7DEB3, 0x6438, 0x101B, {0xAC, 0xC1, 0, 0xAA, 0, 0x42, 0x33, 0x26}};
void main(void)
{
HRESULT hr;

/* interface pointers */
LPUNKNOWN punk = NULL; // IUnknown *; used to get IDispatch *
DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, 0};
VARIANT varRetVal;
IDispatch * pSession;

        //Initialize OLE.
        hr = OleInitialize(NULL);
        printf("OleInitialize returned 0x%lx\n", hr);
        VariantInit(&varRetVal);

// Create an instance of the CDO Library Session object
// Ask for its IDispatch interface.
        hr = CoCreateInstance(GUID_OM_SESSION,
  NULL,
  CLSCTX_SERVER,
  IID_IUnknown,
  (void FAR* FAR*)&punk);
        printf("CoCreateInstance returned 0x%lx\n", hr);
        if (S_OK != hr)
                exit(1);
        hr = punk->QueryInterface(IID_IDispatch, (void FAR* FAR*)&pSession);
        punk->Release();         // no longer needed; release it
        printf("QI for IID_IDispatch returned 0x%lx\n", hr);
        if (S_OK != hr)
                exit(1);
// Logon using the session object; call its Logon method
        hr = pSession->Invoke(dispidM_Logon, // value = 119
  IID_NULL,
  LOCALE_SYSTEM_DEFAULT,
  DISPATCH_METHOD,
  &dispparamsNoArgs,
  &varRetVal,
  NULL,
  NULL);
        printf("Invoke returned 0x%lx\n", hr);
        printf("Logon call returned 0x%lx\n", varRetVal.lVal);
// do other things here...
// when done, release the Session dispatch object and shut down OLE
        pSession->Release();
        OleUninitialize();

The following table lists the GUIDs for the top-level objects accessible to C/C++ programmers.

CDO Library object GUID
Session {3FA7DEB3-6438-101B-ACC1-00AA00423326}

Child Objects
All CDO Library objects can be considered as relative to a Session object. A session's immediate child
objects are the AddressLists collection object, the InfoStores collection object, and the Inbox or Outbox
Folder object. These provide access, respectively, to the root of the address book hierarchy for the
current session, the set of all message stores available to the session, and the current default Inbox
and Outbox folders.

The session's child objects have their own child objects, which in turn have child objects, and so on.
This hierarchy permits increasingly detailed levels of access. The AddressLists collection, for example,
contains one or more AddressList child objects, each representing one available address book
container. Each of these has as its child an AddressEntries collection containing AddressEntry child
objects. Each address entry that is a distribution list has a Members property that provides another
AddressEntries collection for the members of the distribution list.

See the Object Model diagram for the logical hierarchy of the CDO Library.

In addition to the hierarchy of objects, each object has properties and methods. The hierarchy is
important because it determines the correct syntax to use in your Visual Basic applications. In your
Visual Basic code, the relationship between a parent object and a child object is denoted by the left-to-
right sequence of the objects in the Visual Basic statement. For example,

objSession.AddressLists("Personal Address Book").AddressEntriesColl(2)

refers to the second AddressEntry object in the AddressEntries collection of the current session's
personal address book (PAB) AddressList object.

Object Collections
A collection is a group of objects of the same type. In the CDO Library, the name of the collection takes
the plural form of the individual CDO Library object. For example, the Messages collection is the name
of the collection that contains Message objects. The CDO Library supports the following collections:

AddressEntries
AddressLists
Attachments
Fields
Folders
InfoStores
Messages
Recipients

For purposes of accessing their individual member objects, collections can be characterized as either
large or small.

For a small collection, the service provider maintains an accurate count of the objects in the collection.
The AddressLists, Attachments, Fields, InfoStores, and Recipients collections are considered small
collections. You can access individual items using an index into the collection. You can also add and
delete items from the collection (except for the AddressLists and InfoStores collections, which are read-
only for the CDO Library).

Small collections, with a known number of member objects, have a reliable Count property, which
always contains the current number of member objects. The Item property can be used to select any
arbitrary member of the collection. A small collection also has an implicit temporary Index property,
assigned by the CDO Library. Index properties are valid only during the current MAPI session and can
change as your application adds and deletes objects. The Index value for the first member object is 1.

For example, in an Attachments collection with three Attachment objects, the first attachment is
referred to as Attachments.Item(1), the second as Attachments.Item(2), and the third as
Attachments.Item(3). If your application deletes the second attachment, the third attachment becomes
the second and Attachments.Item(3) has the value Nothing. The Count property is always equal to the
highest Index in the collection.

Other applications can add and delete objects while your application is running. The Count property is
not updated until you re-create or refresh the collection, for example by calling the parent Message
object's Update or Send method. An attachment is saved in the MAPI system when you refresh the
Message object, and the Count properties of its Attachments and Recipients collections are updated.

For a large collection, the service provider cannot always maintain an accurate count of the objects in
the collection. The AddressEntries, Folders, and Messages collections are considered large
collections. In preference to using a count, these collections support Get methods that let you get the
first, last, next, or previous item in the collection. Programmers needing to access individual objects in
a large collection are strongly advised to use the Visual Basic For Each statement or the Get methods.

Large collections, with an uncertain number of member objects, support the Count property in a limited
way. It can tell you if the collection is empty or not, but it cannot be used as the collection's exact size if
its value is set to CdoMaxCount. The Item property has the same functionality as it does in small
collections. For more information on using the Count and Item properties in a large collection, see the
example in the Count property.

The Count property is updated whenever you refresh an AddressEntries or Messages collection, in
particular by altering its child AddressEntryFilter or MessageFilter object.

MAPI assigns a permanent, unique string ID property when an individual member object is created.

These identifiers do not change from one MAPI session to another. You can call the Session object's
GetAddressEntry, GetFolder, or GetMessage method, specifying the unique identifier, to obtain the
individual AddressEntry, Folder, or Message object. You can also use the GetFirst and GetNext
methods to move from one object to the next in these collections.

Note To ensure correct operation of the GetFirst, GetLast, GetNext, and GetPrevious methods in
a large collection, call GetFirst before making any calls to GetNext on that collection, and call
GetLast before any calls to GetPrevious. To ensure that you are always making the calls on the
same collection, create an explicit variable that refers to that collection.

For example, the following two code fragments are not equivalent:

' fragment 1: each Set statement creates a new Messages collection;
'                          it's undefined which message is returned by GetNext
Set objMessage = objInBox.Messages.GetFirst
...
Set objMessage = objInBox.Messages.GetNext

' fragment 2: use an explicit variable to refer to the collection;
'                          now the Get methods return the intended messages
Set objMsgColl = objSession.objInBox.Messages
Set objMessage = objMsgColl.GetFirst
...
Set objMessage = objMsgColl.GetNext

Code fragment 1 causes the CDO Library to create a new Messages collection in each Set
statement. The GetFirst call returns the first message in the collection, but the result of the GetNext
call is undefined since GetFirst has not yet been called on this new collection.

Code fragment 2 creates and uses the explicit variable objMsgColl, so the GetFirst and GetNext
calls act as expected for collections with more than one item.

The collections in the CDO Library are specifically designed for messaging applications. The definition
of collections in this document may differ slightly from the definitions of collections in the OLE
programming documentation. Where there are differences, the description of the operation of the CDO
Library supersedes the other documentation.

Platform Differences
The CDO Library is available to programs running on both 16-bit and 32-bit versions of the Microsoft®
Windows® operating system. All the features released with CDO Library version 1.0.a can be used on
either platform, but some of the features released with version 1.1 are limited to a 32-bit platform.

Constants with values less than 65,536 can be defined in 16 bits. Those with values from 65,536
through 4,294,967,295 require 32 bits to define, and these are not available in 16-bit type libraries. The
32-bit constants include:

· Limits such as CdoMaxCount.
· MAPI error codes such as CdoE_INVALID_PARAMETER.
· MAPI property tags such as CdoPR_MESSAGE_CLASS.

If your program is intended for a 16-bit platform, you must use numeric equivalents for these constants.
The CdoMaxCount constant is explained in the Count property of the AddressEntries collection.
Definitions for other numeric values can be found in the Error Codes and Property Tags appendixes.

Java programs cannot process #define directives, so they must also use numeric equivalents in place
of the defined constants. For more information, see Java Language Features.

Certain file names are different between the two platforms. Versions of the CDO Library previous to 1.1
had the local server in MDISP.EXE and the type library file in MDISP.TLB. With version 1.1, the in-
process server and the type library both reside in OLEMSG32.DLL for 32-bit platforms and
OLEMSG.DLL for 16-bit platforms.

Programming Tasks
This section describes some of the common programming tasks you can perform with the
Collaboration Data Objects (CDO) Library. The first task your application must complete is to obtain
and Logon to a valid Session object as described in Starting a CDO Session. The following table
categorizes the described tasks:

Category Programming tasks
General programming tasks Handling Errors

Improving Application Performance
Starting a CDO Session
Viewing MAPI Properties

Working with messages Adding Attachments to a Message
Checking for New Mail
Creating and Sending a Message
Customizing a Folder or Message
Deleting a Message
Filtering Messages in a Folder
Making Sure the Message Gets There
Reading a Message from the Inbox
Searching for a Message
Securing Messages

Working with addresses Changing an Existing Address Entry
Creating a New Address Book Entry
Selecting Recipients from the Address Book

Using Addresses

Working with folders Accessing Folders
Copying a Message to Another Folder
Customizing a Folder or Message
Moving a Message to Another Folder
Searching for a Folder

Working with public folders Posting Messages to a Public Folder
Working with Conversations
.

The following table summarizes the programming procedures that you must use to perform these
tasks. Note that all tasks require a valid Session object and a successful Logon.

Programming task Procedure
Accessing Folders 1. Access the Folder object’s Folders

property to obtain its collection of
subfolders.
2. Use the Folders collection’s GetFirst,
GetNext, GetPrevious, and GetLast
methods to navigate through the subfolders.

Adding Attachments to a 1. Create or obtain the Message object that

Message is to include the attachment.
2. Call the Message object’s Attachments
collection’s Add method.
3. Call the Message object’s Update or
Send method.

Changing an Existing
Address Entry

1. Obtain a valid AddressEntry object.
2. Update the AddressEntry object’s Name,
Type, or Address property.
3. Call the AddressEntry object’s Update
method.

Checking for New Mail Count messages in the Inbox folder that
have the Unread property set to True.
 ¾ or ¾
Count messages received after a specified
time.

Copying a Message to
Another Folder

1. Obtain the source message that you
want to copy.
2. Call the source Message object’s
CopyTo method.
3. Call the new Message object’s Update
method.

Creating a New Address
Book Entry

1. Obtain the Session object’s AddressLists
collection.
2. Select the AddressList object
corresponding to the desired address book
container.
3. Obtain the address list’s AddressEntries
collection.
4. Call the AddressEntries collection’s Add
method.

Creating and Sending a
Message

1. Call the Messages collection’s Add
method to create a Message object.
2. Set the Message object’s Text, Subject,
and other message properties.
3. Call the message’s Recipients
collection’s Add method to add a recipient.
 ¾ or ¾
3. Copy a Recipients collection from
another message to the new message’s
Recipients property.
4. Set the Recipient object’s Name,
Address, or AddressEntry property.
5. Call the Recipient object’s Resolve

method to validate the address information.
6. Call the Message object’s Send method.

Customizing a Folder or
Message

1. Create or obtain the Folder or Message
object that is to have the custom properties.
2. Call the object’s Fields collection’s Add
method.

Deleting a Message 1. Select the message you want to delete.
2. Call the Message object’s Delete
method.

Filtering Messages in a
Folder

1. Access the folder in which you wish to
filter the messages.
2. Obtain the MessageFilter object for the
folder.
3. Select and set the desired MessageFilter
properties to specify the filter.

Handling Errors Use the Visual Basic On Error Goto
statement to add exception-handling code
just as you would in any Visual Basic
application.

Improving Application
Performance

Each dot in a Visual Basic statement directs
the CDO Library to create a temporary
internal object. Use explicit variables when
you reuse messaging objects.

Making Sure the Message
Gets There

1. Set the Message object’s
DeliveryReceipt and/or ReadReceipt
properties to True.
2. Call the Message object’s Send method.

Moving a Message to
Another Folder

1. Obtain the source message that you
want to move.
2. Call the source Message object’s
MoveTo method.
3. Call the Message object’s Update
method at its new location.

Posting Messages to a
Public Folder

Use a procedure similar to Creating and
Sending a Message, where you specify the
name of the public folder as the recipient
name.
 ¾ or ¾
1. Call the public folder’s Messages
collection’s Add method to create a

Message object.
2. Set the Message object’s Text, Subject,
ConversationSubject,
ConversationIndex, TimeSent,
TimeReceived, and other message
properties.
3. Set the Message object’s Unread,
Submitted, and Sent properties to True.
4. Call the Message object’s Send or
Update method to post the message.

Reading a Message from the
Inbox

1. Call the session’s Inbox folder’s GetFirst,
GetNext, GetPrevious, and GetLast
methods to obtain a Message object.
2. Obtain the Message object’s Text
property.

Searching for a Folder Use the Session object’s GetFolder method
to obtain the folder from its known identifier
value.
 ¾ or ¾
Call the Folders collection’s Get methods to
get individual Folder objects, and compare
properties of each folder with the desired
property values.

Searching for a Message Use the Session object’s GetMessage
method to obtain the message from its
known identifier value.
 ¾ or ¾
Call the Messages collection’s Get methods
to get individual Message objects, using a
message filter to reduce the number of
messages searched, and if necessary
compare properties of each message with
the desired property values.

Securing Messages 1. Set the Message object’s Encrypted
and/or Signed properties to True.
2. Perform processing on the message’s
Text property to encrypt or sign the
message.
3. Call the Message object’s Send method.

Selecting Recipients from
the Address Book

1. Call the session’s AddressBook method
to use the MAPI address book dialog box.
2. Set a Recipients collection object to the
Recipients collection returned by the
AddressBook method.
3. Use that Recipients collection or copy

individual recipients from it.

Starting a CDO Session 1. Create or obtain a Session object.
2. Call the Session object’s Logon method.

Using Addresses 1. Set the message’s Recipient object’s
Address property to a full address.
2. Call the Recipient object’s Resolve
method.

Viewing MAPI Properties Specify a MAPI property tag as the Fields
collection’s Item property.

Working with Conversations 1. Set the message’s ConversationTopic
property.
2. Set the message’s ConversationIndex
property.
3. Send the message by calling the Send
method.
 ¾ or ¾
3. Post the message in the public folder by
setting the Submitted property to True.

It is important to understand the hierarchy of the CDO Library objects, because the hierarchical
relationships between objects determines the correct syntax of Microsoft® Visual Basic® statements.
The relative positions of these objects in the hierarchy indicate how the objects appear from left to right
in a Visual Basic statement. For more information on the hierarchy, see Object Model.

In the sample code that appears in this guide, individual statements are often broken across several
lines. The convention used for this is the statement continuation introduced in Visual Basic version 4.0,
which consists of a space followed by the underscore character (_). This sequence is placed at the end
of a code line to indicate that the current statement is continued on the next line.

Accessing Folders   

Folders can be organized in a hierarchy, allowing you to access folders within folders. Subfolders
appear in the Folders collection returned by the Folders property of the Folder object containing them.

With the CDO Library version 1.1 and later, you can create a new folder within an existing folder using
the Add method of the Folders collection.

There are two general approaches for accessing folders:

· Obtaining the folder directly by calling the Session object’s GetFolder method.
· Navigating folders using the Folders collection’s Get methods.

To obtain the folder directly using the GetFolder method, you must have the folder’s identifier. In the
following code fragment, the identifier is stored in the variable strFolderID:

Function Session_GetFolder()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strFolderID = "" Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 ' equivalent to:
 ' Set objFolder = objSession.GetFolder(folderID:=strFolderID)
 If objFolder Is Nothing Then
 Set objMessages = Nothing
 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 End If
 MsgBox "Folder set to " & objFolder.Name
 Set objMessages = objFolder.Messages
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objFolder = Nothing
 Set objMessages = Nothing
 MsgBox "Folder is no longer available; no active folder"
 Exit Function
End Function

To navigate through the hierarchy of folders, start with a known or available folder, such as the Inbox or
Outbox, and examine its Folders collection. You can use the collection’s GetFirst and GetNext
methods to get each Folder object in the collection. When you have a subfolder, you can examine its
properties, such as its name, to see whether it is the desired folder. The following code fragment
navigates through all existing subfolders of the Inbox:

Function TestDrv_Util_ListFolders()
 On Error GoTo error_olemsg
 If objFolder Is Nothing Then

 MsgBox "Must select a folder object; see Session menu"
 Exit Function
 End If
 If 2 = objFolder.Class Then ' verify object is a Folder
 ' with CDO Library 1.1, can use Class value:
 ' If CdoFolder = objFolder.Class Then
 x = Util_ListFolders(objFolder) ' use current global folder
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

' Function: Util_ListFolders
' Purpose: Recursively list all folders below the current folder
' See documentation topic: Folders collection
Function Util_ListFolders(objParentFolder As Object)
Dim objFoldersColl As Folders ' the child Folders collection
Dim objOneSubfolder As Folder ' a single Folder object
 On Error GoTo error_olemsg
 If Not objParentFolder Is Nothing Then
 MsgBox ("Folder name = " & objParentFolder.Name)
 Set objFoldersColl = objParentFolder.Folders
 If Not objFoldersColl Is Nothing Then ' loop through all
 Set objOneSubfolder = objFoldersColl.GetFirst
 While Not objOneSubfolder Is Nothing
 x = Util_ListFolders(objOneSubfolder)
 Set objOneSubfolder = objFoldersColl.GetNext
 Wend
 End If
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

See Also
Searching for a Folder

Adding Attachments to a Message   

You can add one or more attachments to a message. You add each attachment to the Attachments
collection obtained from the Message object’s Attachments property. The relationship between the
Message object and an attachment is shown here:

Message object
Attachments collection

Attachment object
Type property
Source property

The CDO Library supports several different kinds of attachments: files, links to files, OLE objects, and
embedded messages. An attachment’s type is specified by its Type property. To add an attachment,
use the related Attachment object property or method appropriate for that type, as shown in the
following table:

Attachment type Related Attachment object property or
method

CdoFileData ReadFromFile method
CdoFileLink Source property
CdoOLE ReadFromFile method
CdoEmbeddedMessage ID property of the Message object to be

embedded

The following example demonstrates inserting a file as an attachment. This example assumes that the
application has already created the Session object variable objSession and successfully called the
Session object’s Logon method, as described in Starting a CDO Session.

' Function: Attachments_Add_Data
' Purpose: Demonstrate the Add method for type = CdoFileData
' See documentation topic: Adding Attachments To A Message,
' Add method (Attachments collection)
Function Attachments_Add_Data()
Dim objMessage As Message ' local
Dim objRecip As Recipient ' local

 On Error GoTo error_olemsg
 If objSession Is Nothing Then
 MsgBox ("must first log on; use Session->Logon")
 Exit Function
 End If
 Set objMessage = objSession.Outbox.Messages.Add
 If objMessage Is Nothing Then
 MsgBox "could not create a new message in the Outbox"
 Exit Function
 End If
 With objMessage ' message object
 .Subject = "attachment test"
 .Text = "Have a nice day."
 .Text = " " & objMessage.Text ' add placeholder for attachment
 Set objAttach = .Attachments.Add ' add the attachment
 If objAttach Is Nothing Then

 MsgBox "Unable to create new Attachment object"
 Exit Function
 End If
 With objAttach
 .Type = CdoFileData
 .Position = 0 ' render at first character of message
 .Name = "c:\smiley.bmp"
 .ReadFromFile "c:\smiley.bmp"
 End With
 objAttach.Name = "smiley.bmp"
 .Update ' update message to save attachment in MAPI system
 End With
 MsgBox "Created message, added 1 CdoFileData attachment, updated"
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

The attachment overwrites the placeholder character at the rendering position specified by the
attachment’s Position property. A space is normally used for the placeholder character.

The CDO Library does not actually place the attachment within the message; that is the responsibility
of the messaging client application. You can also use the value -1 for the Position property, which
indicates that the attachment should be sent with the message, but should not be rendered by the
Position property.

To insert an attachment of type CdoOLE, use code similar to the CdoFileData type example. Set the
attachment type to CdoOLE and make sure that the specified file is a valid OLE docfile (a file saved by
an OLE-aware application such as Microsoft® Word version 7.0 that uses the OLE interfaces IStorage
and IStream).

To add an attachment of type CdoFileLink, set the Type property to CdoFileLink and set the Source
property to the file name. The following sample code demonstrates this type of attachment:

' Function: Attachments_Add
' Purpose: Demonstrate the Add method for type = CdoFileLink
' See documentation topic: Adding Attachments To A Message,
' Add method (Attachments collection)
Function Attachments_Add()
 On Error GoTo error_olemsg

 If objAttachColl Is Nothing Then
 MsgBox "must first select an attachments collection"
 Exit Function
 End If
 Set objAttach = objAttachColl.Add ' add the attachment
 With objAttach
 .Type = CdoFileLink
 .Position = 0 ' render at first character of message
 .Source = "\\server\bitmaps\honey.bmp"
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update message; save attachment in MAPI system
 MsgBox "Added an attachment of type CdoFileLink"

 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also
Creating and Sending a Message

Changing an Existing Address Entry   

The CDO Library lets you change existing address entries in any address book container for which you
have modification permission. Typically you have such permission only for your personal address book
(PAB).

To change an existing address entry
1. Select the AddressEntry object to modify. You can obtain the AddressEntry object in several ways,

including the following:
· Call the Session object’s AddressBook method to let the user select recipients. The method

returns a Recipients collection. Examine each Recipient object’s AddressEntry property to obtain
its child AddressEntry object.

· Use the Message object’s Sender property to obtain an AddressEntry object.
· Use the Message object’s Recipients property to obtain a Recipients collection. Then obtain an

individual Recipient object and use its AddressEntry property to obtain its child AddressEntry
object.

2. Change individual properties of the AddressEntry object, such as the Address, Name, or Type
property.

3. Call the AddressEntry object’s Update method.

The following sample code demonstrates this procedure:

' Function: AddressEntry_Update
' Purpose: Demonstrate the Update method
' See documentation topic: Update method AddressEntry object
Function AddressEntry_Update()
Dim objRecipColl As Recipients ' Recipients collection
Dim objNewRecip As Recipient ' New recipient object

On Error GoTo error_olemsg
If objSession Is Nothing Then
 MsgBox "must log on first"
 Exit Function
End If
Set objRecipColl = objSession.AddressBook ' let user select
If objRecipColl Is Nothing Then
 MsgBox "must select someone from the address book"
 Exit Function
End If
Set objNewRecip = objRecipColl.Item(1)
With objNewRecip.AddressEntry
 .Name = .Name & " the Magnificent"
 .Type = "X.500" ' you can update the type, too ...
 .Update
End With
MsgBox "Updated address entry name: " & objNewRecip.AddressEntry.Name
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

See Also
Using Addresses, Creating a New Address Book Entry, Selecting Recipients from the Address Book

Checking for New Mail   

The Inbox contains new messages. When users refer to new messages, they can mean messages that
have arrived after the last time messages were read, or they can mean all unread messages.
Depending on the needs of your application users, your applications can check various Message object
properties to determine whether there is new mail.

You can force immediate delivery of any pending messages by calling the Session object’s
DeliverNow method.

The following sample code tracks new messages by checking for messages in the Inbox with the
Unread property value equal to True:

' Function: Util_CountUnread
' Purpose: Count unread messages in a folder
'
Function Util_CountUnread()
Dim cUnread As Integer ' counter

 On Error GoTo error_olemsg
 If objMessages Is Nothing Then
 MsgBox "must select a Messages collection"
 Exit Function
 End If
 Set objMessage = objMessages.GetFirst
 cUnread = 0
 While Not objMessage Is Nothing ' loop through all messages
 If True = objMessage.Unread Then
 cUnread = cUnread + 1
 End If
 Set objMessage = objMessages.GetNext
 Wend
 MsgBox "Number of unread messages = " & cUnread
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

You can also check for new messages by counting the messages received after a specified time. For
example, your application can maintain a variable that represents the time of the latest message
received, based on the Message object’s TimeReceived property. The application can periodically
check for all messages with a TimeReceived value greater than the saved value. When new
messages are found, the application increments its count of new messages and updates the saved
value.

With the CDO Library version 1.1 or later, you can use the Messages collection’s Filter property to
obtain a MessageFilter object. Setting the message filter’s TimeFirst or Unread property reduces the
number of messages presented to the loop doing the counting or other processing of new messages.

See Also
Filtering Messages in a Folder, Reading a Message from the Inbox

Copying a Message to Another Folder   

The procedure documented in this section first demonstrates the old way to copy message properties
using the Messages collection’s Add method, and then demonstrates how to take advantage of the
newer CopyTo method of the Message object.

Note With versions of CDO Library previous to 1.1, the Message object’s Sender property and
other read-only properties of the Message object were not preserved during the first part of the
procedure in this section. To preserve these properties using the old procedure, you had to append
their text fields to read/write properties, such as the Message object’s Text property.

With the CopyTo method, every property that is set on a Message object is automatically copied to
the new Message object, regardless of whether it has read-only or read/write access. The access
capability of every property is also preserved across the copy.

To copy a message from one folder to another folder using the
CDO Library
1. Obtain the source message that you want to copy.
2. Call the destination folder’s Messages collection’s Add method, supplying the source message

properties as parameters.
 ¾ or ¾
Call the source Message object’s CopyTo method.

3. Call the new Message object’s Update method to save all new information in the MAPI system.

The hierarchy of objects is as follows:

Session object
 Folder object (Inbox or Outbox)
 Messages collection
 Message object
 InfoStores collection
 InfoStore object
 Folder object
 Messages collection
 Message object

To obtain the source message that you want to copy, first obtain its folder, then obtain the message
within the folder’s Messages collection. For more information about finding messages, see Searching
for a Message.

To obtain the destination folder, you can use the following approaches:

· Use the Folders collection’s Get methods to search for a specific folder.
· Call the Session object’s GetFolder method with a string parameter that specifies the FolderID, a

unique identifier for that folder.

For more information about finding folders, see Searching for a Folder.

The following example copies the first two messages in the given folder to the Inbox. They could as
easily be copied to any folder with a known identifier and therefore accessible using the Session
object’s GetFolder method. The example uses the old procedure to copy the first message and the
new CopyTo method to copy the second.

This code fragment assumes that the application has already created the Session object variable

objSession and successfully called the Session object’s Logon method, as described in Starting a
CDO Session.

'/********************************/
' Function: Util_CopyMessage
' Purpose: Utility functions that demonstrates code to copy a message
' See documentation topic: Copying A Message To Another Folder
Function Util_CopyMessage()
' obtain the source messages to copy
' for this sample, just copy the first two messages to the Inbox
' assume session object already created, validated, and logged on
Dim objMsgColl As Messages ' given folder’s Messages collection
Dim objThisMsg As Message ' original message from given folder
Dim objInbox As Folder ' destination folder is Inbox
Dim objCopyMsg As Message ' new message that is the copy
Dim objOneRecip As Recipient ' single message recipient being copied
Dim strRecipName As String ' recipient name from original message
Dim i As Integer ' loop counter

On Error GoTo error_olemsg
If objGivenFolder Is Nothing Then
 MsgBox "Must supply a valid folder"
 Exit Function
End If
Set objMsgColl = objGivenFolder.Messages ' to be reused later
' (... then validate the Messages collection before proceeding ...)
Set objThisMsg = objMsgColl.GetFirst() ' filter parameter not needed
If objThisMsg Is Nothing Then
 MsgBox "No valid messages in given folder"
 Exit Function
End If
' Get Inbox as destination folder
Set objInbox = objSession.Inbox
If objInbox Is Nothing Then
 MsgBox "Unable to open Inbox"
 Exit Function
Else
 MsgBox "Copying first message to Inbox"
End If
' Copy first message using old procedure
Set objCopyMsg = objInbox.Messages.Add _
 (Subject:=objThisMsg.Subject, _
 Text:=objThisMsg.Text, _
 Type:=objThisMsg.Type, _
 Importance:=objThisMsg.Importance)
If objCopyMsg Is Nothing Then
 MsgBox "Unable to create new message in Inbox"
 Exit Function
End If
' Copy all the recipients
For i = 1 To objThisMsg.Recipients.Count Step 1
 strRecipName = objThisMsg.Recipients.Item(i).Name
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then

 MsgBox "Unable to create recipient in message copy"
 Exit Function
 End If
 objOneRecip.Name = strRecipName
 End If
Next i
' Copy other properties; a few listed here as an example
objCopyMsg.Sent = objThisMsg.Sent
objCopyMsg.Text = objThisMsg.Text
objCopyMsg.Unread = objThisMsg.Unread
' Update new message so all changes are saved in MAPI system
objCopyMsg.Update
' If MOVING a message to another folder, delete the original message:
' objThisMsg.Delete
' Move operation implies that the original message is removed

' Now copy second message using new procedure
Set objThisMsg = objMsgColl.GetNext ()
' (... then validate the second message before proceeding ...)
Set objCopyMsg = objThisMsg.CopyTo (objInbox.ID)
' Then Update and we’re done
objCopyMsg.Update
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Exit Function ' so many steps to succeed; just exit on error

End Function

Note that the old procedure does not preserve all message properties. The CopyTo method copies all
properties with their values and access capabilities (read-only or read/write) unchanged.

See Also
Moving a Message to Another Folder

Creating a New Address Book Entry   

You can create new address entries in a collection with the CDO Library version 1.1 and later.

You need permission to Add a new entry to an address book container. Usually you only have this
permission for your personal address book (PAB).

For address entries in an address book container, the hierarchy of objects is as follows:

Session object
 AddressLists collection
 AddressList object
 AddressEntries collection
 AddressEntry object
 Fields collection
 Field object

The procedure is basically to work down the hierarchy. After a session is established and logged on,
you use the Session object’s AddressLists property to obtain the AddressLists collection, select the
AddressList object corresponding to the desired address book container, and use the address list’s
AddressEntries property to call the AddressEntries collection’s Add method.

If you have not specified all the parameters in the call to the Add method, you can then supply the
missing values by setting AddressEntry object properties such as Address, Name, and Type. You can
also set MAPI properties and custom properties using the new address entry’s Fields property. To
create a custom property you call the Fields collection’s Add method.

Finally, you commit all the new data to the address book container and to the MAPI system by calling
the new address entry’s Update method.

This code fragment adds a new entry to a user’s PAB. Note the use of early binding and of default
properties. The objects are declared using early binding to force matching of object types, and to
distinguish a MAPI session from other types of sessions available to a Microsoft® Visual Basic®
program through other object libraries. The Item property is the default property of all collections and
so does not need to be specifically referenced in the statements selecting items from the AddressLists
and Fields collections.

' we assume we have add permission for our PAB
Function AddEntry()

Dim objSession As MAPI.Session ' Session object
Dim objMyPAB As AddressList ' personal address book object
Dim objNewEntry As AddressEntry ' new address entry object
Dim propTag As Long ' MAPI property tag for new field

On Error GoTo error_olemsg
Set objSession = CreateObject("MAPI.Session")

' log on to session, supplying username and password
objSession.Logon 'profileName:="MyProfile", _
 'profilePassword:="my_password"

' get PAB AddressList from AddressLists collection of Session
Set objMyPAB = objSession.AddressLists("Personal Address Book")
If objMyPAB Is Nothing Then
 MsgBox "Invalid PAB from session"

 Exit Function
End If

' add new AddressEntry to AddressEntries collection of AddressList
Set objNewEntry = objMyPAB.AddressEntries.Add "SMTP", "Jane Doe"
objNewEntry.Address = "janed@exchange.microsoft.com"

' set MAPI property in new AddressEntry (don’t need to Add it)
propTag = &H3A08001E ' VB4.0: CdoPR_BUSINESS_TELEPHONE_NUMBER
objNewEntry.Fields(propTag) = "+1-206-555-9901"

' add custom property to new AddressEntry and set its value
objNewEntry.Fields.Add "CellularPhone", vbString
objNewEntry.Fields("CellularPhone") = "+1-206-555-9902"

' commit new entry, properties, fields, and values to PAB AddressList
objNewEntry.Update
MsgBox "New address book entry successfully added"
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Exit Function ' so many steps to succeed; just exit on error

End Function

Creating and Sending a Message   

Creating and sending a message is easy when you use the CDO Library.

To create and send a message
1. Establish a session with the MAPI system.
2. Call the Messages collection’s Add method to create a Message object.
3. Supply values for the Message object’s Subject, Text, and other properties.
4. Call the Recipients collection’s Add method for each recipient, or copy the Recipients property from

an existing message to the new message.
5. If necessary, set each Recipient object’s Address, AddressEntry, and Name properties.
6. Call each Recipient object’s Resolve method to validate the address information.
7. Call the Message object’s Send method.

The following code fragment demonstrates each of these steps for a message sent to a single
recipient:

' This also appears as the "QuickStart" example in "Overview"
Function QuickStart()
Dim objSession As Object ' or Dim objSession As MAPI.Session
Dim objMessage As Object ' or Dim objMessage As Message
Dim objOneRecip As Object ' or Dim objOneRecip As Recipient

 On Error GoTo error_olemsg

' create a session then log on, supplying username and password
Set objSession = CreateObject("MAPI.Session")
' change the parameters to valid values for your configuration
objSession.Logon 'profileName:="Princess Leia", _
 'profilePassword:="go_rebels"

' create a message and fill in its properties
Set objMessage = objSession.Outbox.Messages.Add
objMessage.Subject = "Gift of droids"
objMessage.Text = "Help us, Obi-Wan. You are our only hope."

' create the recipient
Set objOneRecip = objMessage.Recipients.Add
objOneRecip.Name = "Obi-Wan Kenobi"
objOneRecip.Type = CdoTo
objOneRecip.Resolve

' send the message and log off
objMessage.Update
objMessage.Send showDialog:=False
MsgBox "The message has been sent"
objSession.Logoff
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

Note When you edit an object other than the Message object, save your changes using the
Update method before you clear or reuse the variable that refers to the object. If you do not use the
Update method, your changes can be lost without warning.

After calling the Message object’s Send method, you should not try to access the Message object
again. The Send method invalidates the Message object.

See Also
Adding Attachments to a Message, Customizing a Folder or Message

Customizing a Folder or Message   

The CDO Library allows customization and extensibility by offering the Field object and Fields
collection. A Field object includes a name, a data type, and a value property. An object that supports
fields, in effect, lets you add your own custom properties to the object.

The CDO Library supports the use of fields with the AddressEntry, AddressEntryFilter, Attachment,
Folder, Message and MessageFilter objects. These objects all have a Fields property through which
the Fields collection can be accessed.

For example, suppose that you want to add a “Keyword” property to messages so that you can
associate a string with the message. You may wish to use a self-imposed convention that values of the
“Keyword” are restricted to a small set of strings. You can then organize your messages by the
“Keyword” property.

The following code fragment shows how to add the “Keyword” field to a Message object:

' Function: Fields_Add
' Purpose: Add a new Field object to the Fields collection
' See documentation topic: Add method (Fields collection)
Function Fields_Add()
Dim cFields As Integer ' count of fields in the collection
Dim objNewField As Field ' new Field object

On Error GoTo error_olemsg
If objFieldsColl Is Nothing Then
 MsgBox "must first select Fields collection"
 Exit Function
End If
Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
If objNewField Is Nothing Then
 MsgBox "could not create new Field object"
 Exit Function
End If
cFields = objFieldsColl.Count
MsgBox "new Fields collection count = " & cFields
' you can now write code that searches for
' messages with this "custom property"
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

Note that the new field information specified by the Add method is not actually saved until you call the
Message object’s Update method.

MAPI stores all custom properties that represent date and time information using Greenwich Mean
Time (GMT). The CDO Library converts these properties so that the values appear to the user in local
time.

For more information on the Field object’s data types, see its Type property.

See Also
Creating and Sending a Message

Deleting a Message   

The Message object’s Delete method deletes the message.

To delete a message
1. Select the message you want to delete.
2. Call the Message object’s Delete method.
3. Set the Message object to Nothing.

You should not try to access the message after deleting it. Doing so can produce unpredictable results.

See Also
Searching for a Message

Filtering Messages in a Folder   

A program sometimes needs to traverse an entire collection in order to take some action on all its
members, such as displaying, sending, or copying them. But traversing a large collection like
AddressEntries or Messages can take an inordinate amount of time. If you are only interested in certain
members of the collection, your code can make efficient use of a filter.

The purpose of filtering is to limit the members of a collection that are presented to a traversing
operation such as the Visual Basic For Each construction or a GetFirst … GetNext loop. The
members are limited based on the values of the properties that you specify for the filter. Only those
members that satisfy every filter property you have set are passed to your loop for processing.

In the case of messages in a folder, the hierarchy of objects is as follows:

Session object
 Folder object (Inbox or Outbox)
 Messages collection
 Message object
 Attachments collection
 Fields collection
 Recipients collection
 MessageFilter object
 Fields collection
 Field object

Suppose, for example, you wish to find all unread messages received before a certain date, and to
display the subject of each one. Before your display loop, you can set the message filter to limit the
messages your loop sees. To do this, you obtain the Inbox folder, the folder’s Messages collection, and
the collection’s MessageFilter object. Next you set the filter’s Unread property to True and its
TimeLast property to the desired date. Then your loop deals only with the messages it needs.

This code fragment displays the Subject property of every message in the Inbox received before
August 18, 1997 that has never been read:

Dim objSess, objInbox, objMsgColl, objMsgFilter As Object
Dim objMess As Message ' individual message processed in loop
On Error GoTo error_olemsg
Set objSess = CreateObject ("MAPI.Session")
objSess.Logon ' assume valid session for this example
Set objInbox = objSess.Inbox
If objInbox Is Nothing Then
 MsgBox "Invalid IPM Inbox from session"
 Exit Function
End If
Set objMsgColl = objInbox.Messages ' get Inbox’s messages collection
' (... then validate the messages collection before proceeding ...)
Set objMsgFilter = objMsgColl.Filter
' (... then validate the message filter before proceeding ...)
objMsgFilter.TimeLast = DateValue ("08/18/97")
objMsgFilter.Unread = True ' filter for unread messages
' Message filter is now specified; ready for display loop
For Each objMess in objMsgColl ' performs loop, Sets each objMess
 MsgBox "Message not read: " & objMess.Subject
Next ' even easier than objMsgColl.GetFirst and .GetNext
error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)

Exit Function ' so many steps to succeed; just exit on error

Handling Errors   

The CDO Library raises exceptions for all errors. When you write Microsoft® Visual Basic® applications
that use the CDO Library, use the same run-time error handling techniques that you use in all your
Visual Basic applications: the Visual Basic On Error GoTo statement.

Note that the error values and error handling techniques vary slightly depending on whether you are
using Visual Basic version 4.0 or older versions of Visual Basic for Applications.

When you use older versions of Visual Basic for Applications, use the Err function to obtain the status
code and the Error$ function to obtain a descriptive error message, as in the following code fragment:

' Visual Basic for Applications error handling
MsgBox "Error number " & Err & " description. " & Error$(Err)

When you use Visual Basic 4.0, use the Err object’s Number property to obtain the status code and its
Description property to obtain the error message, as in the following fragment:

‘' Visual Basic version 4.0 error handling
MsgBox "Error " & Err.Number & " description. " & Err.Description

Depending on your version of Visual Basic, the error code is returned as a long integer or as a short
integer, and you should appropriately define the value of the error codes checked by your program.

When you use Visual Basic 4.0, the error value is returned as the value of the MAPI HRESULT data
type, a long integer error code. When you use earlier versions of Visual Basic, the error value is
returned as the sum of decimal 1000 and the low-order word of HRESULT. This is because versions of
Visual Basic previous to 4.0 reserve all run-time error values below 1000 for their own errors.

This code fragment checks for an error corresponding to the MAPI error code CdoE_USER_CANCEL,
which has the value &H80040113. Visual Basic 4.0 users can check directly for this value. Visual Basic
for Applications users check for the value of the low-order word plus decimal 1000. The low-order word
is &H0113, or 275, so the value returned by Visual Basic for Applications is 1275.

' demonstrates error handling for Logon
' Function: TestDrv_Util_CreateSessionAndLogon
' Purpose: Call the utility function Util_CreateSessionAndLogon
Function TestDrv_Util_CreateSessionAndLogon()
Dim bFlag As Boolean
On Error GoTo error_olemsg
bFlag = Util_CreateSessionAndLogon()
MsgBox "bFlag = " & bFlag
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

' Function: Util_CreateSessionAndLogon
' Purpose: Demonstrate common error handling for Logon
Function Util_CreateSessionAndLogon() As Boolean
Dim objSession As MAPI.Session
On Error GoTo err_CreateSessionAndLogon

Set objSession = CreateObject("MAPI.Session")

objSession.Logon
Util_CreateSessionAndLogon = True
Exit Function

err_CreateSessionAndLogon:
If Err() = 1275 Then ' VB4.0: If Err.Number = CdoE_USER_CANCEL Then
 MsgBox "User pressed Cancel"
Else
 MsgBox "Unrecoverable Error:" & Err
End If
Util_CreateSessionAndLogon = False
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

When an error occurs in the MAPI subsystem, the CDO Library supplies the error value returned by
MAPI. However, the value can be returned from any of several different levels of software. The lowest
level of software is that which interacts directly with hardware, such as a mouse driver or video driver.
Higher levels of software move toward greater device independence and greater generality.

The following diagram suggests the different levels of software in Visual Basic applications that use the
CDO Library. Visual Basic applications reside at the highest level and interact with the CDO Library at
the next lower level. The CDO Library interacts with the MAPI system software, and the MAPI system
software interacts with a lower layer of software, the operating system.

Errors can occur at any level or at the interface between any two levels. For example, a user of your
application without security permissions can be denied access to an address book entry. The lowest
level in this diagram, the operating system, returns the error to the next higher level, and so on, until
the error is returned to the highest level in this diagram, the Visual Basic application.

It is often useful to provide a general error handling capability that can display the complete HRESULT
or error code value returned by the CDO Library.

For more information about run-time error handling and the Err object, see your product’s Visual Basic
documentation. For a listing of CDO Library and MAPI error values, see Error Codes.

See Also
Starting a CDO Session

Improving Application Performance   

This section describes how your Microsoft® Visual Basic® code can operate most efficiently when you
use CDO Library objects. Note that this section is written primarily for Visual Basic programmers rather
than for C programmers.

To access CDO Library objects, you create Visual Basic statements that concatenate the object names
in sequence from left to right, separating objects with the period character. For example, consider the
following Visual Basic statement:

Set objMessage = objSession.Inbox.Messages.GetFirst

The CDO Library creates an internal object for each period that appears in the statement. For example,
the portion of the statement that says objSession.Inbox directs the CDO Library to create an internal
Folder object that represents the user’s Inbox. The next portion, .Messages, directs the CDO Library to
create an internal Messages collection object. The final part, .GetFirst, directs the CDO Library to create
an internal Message object that represents the first message in the user’s Inbox. The statement
contains three periods; the CDO Library creates three internal objects.

The best rule of thumb is to remember that periods are expensive. For example, the following two lines
of code are very inefficient:

' warning: do not code this way; this is inefficient
MsgBox "Text: " & objSession.Inbox.Messages.GetFirst.Text
MsgBox "Subj: " & objSession.Inbox.Messages.GetFirst.Subject

While this code generates correct results, it is not efficient. For the first statement, the CDO Library
creates internal objects that represent the Inbox, its Messages collection, and its first message. After
the application displays the text, these internal objects are discarded. In the next line, the same internal
objects are generated again. A more efficient approach is to generate the internal objects only once:

With objSession.Inbox.Messages.GetFirst
 MsgBox "Text: " & .Text
 MsgBox "Subj: " & .Subject
End With

When your application needs to use an object more than once, define a variable for the object and set
its value. The following code fragment is very efficient when your application reuses the Folder or
Message objects or the Messages collection:

' efficient when the objects are reused
Set objInboxFolder = objSession.Inbox
Set objInMessages = objInboxFolder.Messages
Set objOneMessage = objInMessages.GetFirst
With objOneMessage
 MsgBox "The Message Text: " & .Text
 MsgBox "The Message Subject: " & .Subject
End With

Now that you understand that a period in a statement directs the CDO Library to create a new internal
object, you can see that the following two lines of code are not only not optimal but actually incorrect:

' error: collection returns the same message both times
MsgBox("first message: " & inBoxObj.Messages.GetFirst)
MsgBox("next message: " & inBoxObj.Messages.GetNext)

The CDO Library creates a temporary internal object that represents the Messages collection, then
discards it after displaying the first message. The second statement directs the CDO Library to create
another new temporary object that represents the Messages collection. This Messages collection is
new and has no state information, that is, this new collection has not called GetFirst. The GetNext
statement therefore causes it to return its first message again.

Use the Visual Basic With statement or explicit variables to generate the expected results. The
following code fragment shows both approaches:

' Use of the Visual Basic With statement
With objSession.Inbox.Messages
 Set objMessage = .GetFirst
 ' ...
 Set objMessage = .GetNext
End With
' Use of explicit variables to refer to the collection
Set objMsgColl = objSession.Inbox.Messages
Set objMessage = myMsgColl.GetFirst
...
Set objMessage = myMsgColl.GetNext

For more information about improving the performance of your applications, see your Visual Basic
programming documentation.

Making Sure the Message Gets There   

The Message object contains two properties that can direct the underlying MAPI system to report
successful receipt of the message: DeliveryReceipt and ReadReceipt.

When you set these properties to True and send the message, the underlying MAPI system
automatically tracks the message for you. When you set the DeliveryReceipt property, the MAPI
system automatically generates a message to the sender reporting when the recipient receives the
message. When you set the ReadReceipt property, the MAPI system automatically generates a
message to the sender reporting when the recipient reads the message.

Delivery and read notification may not be supported by all messaging systems.

See Also
Securing Messages

Moving a Message to Another Folder   

The procedure documented in this section demonstrates, first, the old way to move message properties
using the Messages collection’s Add method and the Message object’s Delete method, and then how
to take advantage of the newer MoveTo method of the Message object.

Note With CDO Library version 1.0, the Message object’s Sender property and other read-only
properties of the Message object were not preserved during the first part of the procedure in this
section. To preserve these properties using the old procedure, you had to append their text fields to
read/write properties, such as the Message object’s Text property.

With the MoveTo method, every property that is set on a Message object is automatically moved to
the new Message object, regardless of whether it has read-only or read/write access. The access of
every property is also preserved across the copy.

To move a message from one folder to another
1. Obtain the source message that you want to move.
2. Call the destination folder’s Messages collection’s Add method, supplying the source message

properties as parameters.
 - or -
2. Call the source Message object’s MoveTo method.
3. Call the new Message object’s Update method to save all new information in the MAPI system.
4. (Only necessary if you used the old Add and copy procedure) Call the source message’s Delete

method to delete the original message from its folder.

For more details on this procedure and a sample code fragment, see Copying a Message to Another
Folder. The comment lines at the end of the first copy procedure contain the call to delete the original
message:

' If MOVING a message to another folder, delete the original message:
objThisMsg.Delete
' Move operation implies that the original message is removed

This Delete call is not necessary if the MoveTo method is used.

Posting Messages to a Public Folder   

To post a message to a public folder, create a message within the public folder by adding it to the
folder’s Messages collection. Then add your subject and message text as you would for other
messages.

Note that for messages in public folders, you must also set a few more message properties than you
would when sending a message to a recipient. When you post a message to a public folder, the
components of the MAPI architecture that usually handle a message and set its properties do not
manage the message. Your application must set the Sent and Unread properties to True, the
Submitted property to False, and the TimeReceived and TimeSent properties to the current time.

When you are ready to make the message available, call the Update method. The message is not
accessible by any other messaging user until you call Update.

Note When posting messages in a public folder, you cannot use the CDO Library to set the Sender
property. The Sender and related underlying properties are not present for a message created by the
CDO Library.

For more information on sending messages, see Creating and Sending a Message.

To create a message within a public folder
1. Call the Messages collection’s Add method to create a Message object.
2. Set the Message object’s ConversationIndex, ConversationTopic, Subject, Text, TimeReceived,

TimeSent, and other message properties as desired.
3. Set the Message object’s Sent and Unread properties to True, and the Submitted property to

False.
4. Call the Message object’s Update method.

Note that when you post a message, you must explicitly set the TimeSent and TimeReceived
properties. When you send a message using the Send method, the MAPI system assigns the values of
these properties for you. However, when you post the message with the Update method, your
application must set the time properties. Set both time properties to the same value, just before you set
the Sent property to True.

' Function: Util_New_Conversation
' Purpose: Set properties to start a new conversation in a public folder
Function Util_NewConversation()
Dim objRecipColl As Recipients
Dim i As Integer
Dim objNewMsg As Message ' new message object
Dim strNewIndex As String
On Error GoTo error_olemsg

' objPublicFolder is a global variable that indicates
' the folder in which you want to post the message
Set objNewMsg = objPublicFolder.Messages.Add
If objNewMsg Is Nothing Then
 MsgBox "unable to create a new message for the public folder"
 Exit Function
End If
strConversationFirstMsgID = objNewMsg.ID 'save for reply
With objNewMsg

 .Subject = "Used space vehicle wanted"
 .Text = "Wanted: Apollo or Mercury spacecraft with low mileage."
 .ConversationTopic = .Subject
 .ConversationIndex = Util_GetEightByteTimeStamp() ' utility
 .TimeReceived = Time
 .TimeSent = .TimeReceived
 .Sent = True
 .Submitted = False
 .Unread = True
 .Update ' .Send is not used for posting to a folder
End With
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

For more information on the ConversationIndex property, see Working With Conversations.

See Also
Searching for a Folder

Reading a Message from the Inbox   

After establishing a Session object and successfully logging on to the system, a user can access the
Inbox. The Inbox is the default folder for mail received by the user.

As described in CDO Library Object Design, the CDO Library objects are organized in a hierarchy. The
Session object at the topmost level allows access to a Folder object. Each folder contains a Messages
collection, which contains individual Message objects. The text of the message appears in its Text
property.

Session object
 Folder object
 Messages collection
 Message object
 Text property

To obtain an individual message, the application must move down through this object hierarchy to the
Text property. The following example uses the Session object’s Inbox property to obtain a Folder
object, then uses the folder’s Messages property to obtain a Messages collection object, and calls the
collection’s methods to get a specific message.

This code fragment assumes that the application has already created the Session object variable
objSession and successfully called the Session object’s Logon method, as described in Starting a
CDO Session:

Dim objSession As MAPI.Session ' Session object
Dim objInboxFolder As Folder ' Folder object
Dim objInMessages As Messages ' Messages collection
Dim objOneMsg As Message ' Message object
' ...
' move down through the hierarchy
Set objInboxFolder = objSession.Inbox
Set objInMessages = objInboxFolder.Messages
Set objOneMsg = objInMessages.GetFirst
MsgBox "The message text: " & objOneMsg.Text

Note Use the Microsoft® Visual Basic® keyword Set whenever you initialize a variable that
represents an object. When you attempt to set an object variable without using the Set keyword,
Visual Basic generates an error message.

The preceding code fragment declares several object variables. However, it is also possible to access
the message with fewer variables. The following code fragment is equivalent to the preceding code,
and is preferable if you have no subsequent need for the Inbox folder or its Messages collection:

Set objOneMsg = objSession.Inbox.Messages.GetFirst
MsgBox "The message text: " & objOneMsg.Text

You should declare an individual variable when the application needs to access an object more than
once. When an object is accessed repeatedly, variables can help make your code efficient. For more
information, see Improving Application Performance.

See Also
Creating and Sending a Message, Searching for a Message

Searching for a Folder   

Two frequently used folders, the Inbox and the Outbox, are available through Session object
properties. To access these folders, simply set a Folder object to the corresponding property.

To access other folders, search for the folder using one of the following techniques:

· Call the Session object’s GetFolder method with a string parameter that specifies the FolderID, a
unique identifier for the folder.

· Use the Get methods to navigate through the Folders collection. Search for a specific folder by
comparing each folder’s properties with the desired properties.

Using the Session Object’s GetFolder Method
When you know the unique identifier for the folder you are looking for, you can call the Session object’s
GetFolder method.

The unique identifier for the folder, established at the time the folder is created, is stored in its ID
property. The ID property is a string representation of the MAPI entry identifier and its value is
determined by the service provider.

The following code fragment contains code that saves the identifier for the folder, then uses it in a
subsequent GetFolder call:

' Function: Session_GetFolder
' Purpose: Demonstrate how to set a folder object
' See documentation topic: Session object GetFolder method
Function Session_GetFolder()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strFolderID = "" Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 'equivalent to:
 ' Set objFolder = objSession.GetFolder(folderID:=strFolderID)
 If objFolder Is Nothing Then
 Set objMessages = Nothing
 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 End If
 MsgBox "Folder set to " & objFolder.Name
 Set objMessages = objFolder.Messages
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objFolder = Nothing
 Set objMessages = Nothing
 MsgBox "Folder is no longer available; no active folder"
 Exit Function
End Function

Using the Get Methods
When you are looking for a folder within a Folders collection, you can navigate through the collection,
examining properties of each Folder object to determine whether it is the folder you want.

The CDO Library supports the GetFirst, GetNext, GetLast, and GetPrevious methods for the Folders
collection object.

The following code fragment demonstrates how to use the Get methods to search for the specified
folder:

' Function: TestDrv_Util_GetFolderByName
' Purpose: Call the utility function Util_GetFolderByName
' See documentation topic: Item property (Folder object)
Function TestDrv_Util_GetFolderByName()
Dim fFound As Boolean
 fFound = Util_GetFolderByName("Junk mail")
 If fFound Then
 MsgBox "Folder named 'Junk mail' found"
 Else
 MsgBox "Folder named 'Junk mail' not found"
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

' Function: Util_GetFolderByName
' Purpose: Use Get* methods to search for a folder
' See documentation topic: Searching For a Folder
Function Util_GetFolderByName(strSearchName As String) As Boolean
Dim objOneFolder As Object ' local; temp version of folder object

 On Error GoTo error_olemsg
 Util_GetFolderByName = False ' default; assume failure
 If objFolder Is Nothing Then
 MsgBox "Must first select a folder such as Session->Inbox"
 Exit Function
 End If
 Set objFoldersColl = objFolder.Folders ' Folders collection
 If objFoldersColl Is Nothing Then
 MsgBox "no subfolders; not found"
 Exit Function
 End If
 ' get the first folder in the collection
 Set objOneFolder = objFoldersColl.GetFirst
 ' loop through all the folders in the collection
 Do While Not objOneFolder Is Nothing
 If objOneFolder.Name = strSearchName Then
 Exit Do ' found it, leave the loop
 Else ' keep searching
 Set objOneFolder = objFoldersColl.GetNext
 End If
 Loop

 ' exit from the Do While loop comes here
 ' if objOneFolder is valid, the folder is found
 If Not objOneFolder Is Nothing Then ' went off end of loop
 Util_GetFolderByName = True ' success
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

You can also navigate upward through the folder hierarchy by using each Folder object’s Parent
property.

See Also
Searching for a Message

Searching for a Message   

To access a message, you can search for it using one of the following techniques:

· Call the Session object’s GetMessage method with a string parameter that specifies the
MessageID, a unique identifier for the message.

· Use the Get methods to navigate through the folder’s Messages collection. Search for a specific
message by comparing the current Message object’s properties with the desired properties.

· Obtain a MessageFilter object from the Filter property of the Messages collection. Set the desired
properties for filtering, and then use the Get methods, which return only the messages matching the
filter settings.

Using the Session Object’s GetMessage Method
When you know the unique identifier for the message you are looking for, you can call the Session
object’s GetMessage method.

The message identifier specifies a unique identifier that is created for the Message object at the time it
is created. The identifier is accessible through the Message object’s ID property.

The following code fragment contains code that saves the identifier for the message, then uses it in a
subsequent GetMessage call:

' Function: Session_GetMessage
' Purpose: Demonstrate how to set a message object using GetMessage
' See documentation topic: GetMessage method (Session object)
Function Session_GetMessage()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strMessageID = "" Then
 MsgBox ("Must first set Message ID variable; see Message->ID")
 Exit Function
 End If
 Set objOneMsg = objSession.GetMessage(strMessageID)
 If objOneMsg Is Nothing Then
 MsgBox "Unable to retrieve message with specified ID"
 Exit Function
 End If
 MsgBox "GetMessage returned msg with subject: " & objOneMsg.Subject
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objOneMsg = Nothing
 MsgBox "Message is no longer available; no active message"
 Exit Function
End Function

Using the Get Methods
When you are looking for a message within a Messages collection, you can navigate through the
collection, examining properties of each Message object to determine if it is the message you want.

The CDO Library supports the GetFirst, GetNext, GetLast, and GetPrevious methods for the
Messages collection object. You can also use the Visual Basic For Each construction to traverse the
collection.

Note that, with the CDO Library version 1.1 and later, you can use a MessageFilter object to restrict a
search with the Get methods. Obtain the message filter through the Messages collection’s Filter
property, set the filter’s properties to the values desired for the search, and then proceed with the Get
methods. Only the messages passing the filter criteria are returned for your inspection. For more
information on message filtering, see Filtering Messages in a Folder.

The following sample demonstrates how to use the Get methods to search for the specified message:

' Function: TestDrv_Util_GetMessageByName
' Purpose: Call the utility function Util_GetMessageByName
' See documentation topic: Item property (Message object)
Function TestDrv_Util_GetMessageByName()
Dim fFound As Boolean
 On Error GoTo error_olemsg

 fFound = Util_GetMessageByName("Junk mail")
 If fFound Then
 MsgBox "Message named 'Junk mail' found"
 Else
 MsgBox "Message named 'Junk mail' not found"
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

' Function: Util_GetMessageByName
' Purpose: Use Get* methods to search for a message
' See documentation topic: Searching for a message
' Search through the messages for one with a specific subject
Function Util_GetMessageByName(strSearchName As String) As Boolean
Dim objOneMessage As Message ' local; temp version of message object

 On Error GoTo error_olemsg
 Util_GetMessageByName = False ' default; assume failure
 If objFolder Is Nothing Then
 MsgBox "Must first select a folder such as Session->Inbox"
 Exit Function
 End If
 Set objMessages = objFolder.Messages
 Set objOneMessage = objMessages.GetFirst
 If objOneMessage Is Nothing Then
 MsgBox "No messages in the folder"
 Exit Function
 End If
 ' loop through all the messages in the collection
 Do While Not objOneMessage Is Nothing
 If objOneMessage.Subject = strSearchName Then
 Exit Do ' found it, leave the loop
 Else ' keep searching

 Set objOneMessage = objMessages.GetNext
 End If
 Loop
 ' exit from the Do While loop comes here
 ' if objOneMessage is valid, the message was found
 If Not objOneMessage Is Nothing Then
 Util_GetMessageByName = True ' success
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also
Searching for a Folder

Securing Messages   

A Message object contains two properties that specify security for the message: the Encrypted and
Signed properties. When you want to request that your message be secured, set one or both of these
flags to True.

These flags simply represent a request to the underlying messaging service. Whether the message
gets encrypted or digitally signed depends on whether these security measures are implemented by
your messaging service.

Neither MAPI nor the CDO Library performs encryption or digital signing. The CDO Library simply sets
the appropriate MAPI properties so that the proper request for security is delivered to the messaging
service. For more information about the capabilities of your messaging service, contact your server
administrator.

Dim objMessage As Message ' assume valid Message object
' ...
objMessage.Encrypted = True ' can also set objMessage.Signed = True
objMessage.Send

See Also
Making Sure the Message Gets There

Selecting Recipients from the Address
Book   

After establishing a Session object and successfully logging on to the system, the user can access the
address book to select recipients. You can select recipients from any address book, such as the global
address list (GAL) or your personal address book (PAB).

As described in CDO Library Object Design, the CDO Library objects are organized in a hierarchy. The
Session object at the topmost level contains an AddressBook method that lets your application users
select recipients from an address book. The method returns a Recipients collection, which contains
individual Recipient objects. The Recipient object in turn specifies an AddressEntry object. This
hierarchy is shown in the following diagram.

Recipients collection
 Recipient object
 Address property (full address)
 AddressEntry object
 Address property (e-mail address, no type)
 Type property

To obtain an individual Address property that can be used to address and send messages, the
application must move down through this object hierarchy. The following code fragment uses the
Recipients collection returned by the Session object’s AddressBook method.

This code fragment assumes that the application has already created the Session object variable
objSession and successfully called the Session object’s Logon method, as described in Starting a
CDO Session:

' Function: Session_AddressBook
' Purpose: Set the global variable that contains the current recipients
' collection to that returned by the Session AddressBook method
' See documentation topic: AddressBook method (Session object)
Function Session_AddressBook()
 On Error GoTo err_Session_AddressBook

 If objSession Is Nothing Then
 MsgBox "Must first create MAPI session and logon"
 Exit Function
 End If
 Set objRecipColl = objSession.AddressBook(_
 Title:="Select Attendees", _
 forceResolution:=True, _
 recipLists:=1, _
 toLabel:="&Cdo") ' appears on button
 ' Note: first parameter ("recipients") not used in this call
 ' recipients:=objInitRecipColl initializes recipients for dialog
 MsgBox "Name of first recipient = " & objRecipColl.Item(1).Name
 Exit Function

err_Session_AddressBook:
 If (Err = 91) Then ' MAPI dlg-related function that sets an object
 MsgBox "No recipients selected"
 Else
 MsgBox "Unrecoverable Error:" & Err
 End If

 Exit Function
End Function

See Also
Changing an Existing Address Entry, Using Addresses

Starting a CDO Session   

As described in CDO Library Object Design, all messaging objects are relative to the Session object.
The first task of every application is to create a valid Session object and call its Logon method. No
other method or property of the Session object can be accessed, and no other CDO Library object can
be created, until the application has successfully logged on. The only exception to this rule is the
Session object’s SetLocaleIDs method.

The Session object is created using the Microsoft® Visual Basic® function CreateObject. The following
code demonstrates how to perform this common startup task:

Function Util_CreateSessionAndLogon() As Boolean
Dim objSession As MAPI.Session ' use early binding for type checking
On Error GoTo err_CreateSessionAndLogon

Set objSession = CreateObject("MAPI.Session")
' call objSession.SetLocaleIDs here if you need to change your locale
objSession.Logon
Util_CreateSessionAndLogon = True
Exit Function

err_CreateSessionAndLogon:
If (Err = 1275) Then ' VB4.0: If Err.Number = CdoE_USER_CANCEL Then
 MsgBox "User pressed Cancel"
Else
 MsgBox "Unrecoverable Error:" & Err
End If
Util_CreateSessionAndLogon = False
Exit Function

End Function

The way you deal with errors depends on your version of Visual Basic. For more information, see
Handling Errors.

When no parameters are supplied to the Logon method, as in the example above, the CDO Library
displays an application-modal logon dialog box that prompts the application user to select a user
profile. Based on the characteristics of the selected profile, the underlying MAPI system logs on the
user or prompts for password information.

You can also choose to use your own application’s dialog box to obtain the parameters needed to log
on, rather than using the MAPI logon dialog box. The following example obtains the profile name and
password information and directs the Logon method not to display a logon dialog box:

' Function: Session_Logon_NoDialog
' Purpose: Call the Logon method, set parameter to show no dialog
' See documentation topic: Logon Method (Session object)
Function Session_Logon_NoDialog()
Dim objSession As MAPI.Session
On Error GoTo error_olemsg
' can set strProfileName, strPassword from a custom form
' adjust these parameters for your configuration
If objSession Is Nothing Then
 Set objSession = CreateObject("MAPI.Session")
End If
If Not objSession Is Nothing Then

 objSession.Logon profileName:=strProfileName, _
 showDialog:=False
End If
Exit Function

error_olemsg:
If 1273 = Err Then ' VB4.0: If Err.Number = CdoE_LOGON_FAILED Then
 MsgBox "Cannot logon: incorrect profile name or password"
 Exit Function
End If
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next
End Function

Note Your Visual Basic application should be able to handle cases that occur when a user provides
incorrect profile or password information, or when a user cancels from the logon dialog box. For more
information, see Handling Errors. For a listing of CDO Library and MAPI error values, see Error
Codes.

After establishing a Session object and successfully logging on to the system, the user has access to
several default objects provided by the Session object, including the Inbox and Outbox folders. For
more information, see Reading a Message from the Inbox.

See Also
Creating and Sending a Message

Using Addresses   

In general, MAPI supports two kinds of addressing:

· Addresses that the MAPI system looks up for you in your address book, based on a display name
that you supply

· Addresses that represent custom addresses, that are used as supplied without lookup

The CDO Library supports both kinds of addresses with its Recipient object. To look up an address for
a name, you supply the Name property only. To use custom addresses, you supply the full address in
the Address property.

The address book can be thought of as a database in persistent storage, managed by the MAPI
system, that contains valid addressing information that is associated with a display name. The display
name represents the way that a person’s name might be displayed for your application users, using
that person’s full name, rather than the e-mail address that the messaging system uses to transmit the
message. For example, the display name “John Doe” could be mapped to the e-mail address
“johnd@company.com”.

In contrast to the address book, the objects that you create with the CDO Library are temporary objects
that reside in memory. When you fill in the Recipient object’s Name property with a display name, you
must then resolve the address. To resolve the address means that you ask the MAPI system to look up
the display name in the database and supply the corresponding address. When the display name is
ambiguous, or can match more than one entry in the address book, the MAPI system prompts the user
to select from a list of possible matching names.

The Recipient object’s Name property represents the display name. Call the Recipient object’s
Resolve method to resolve the display name.

After the Recipient object is resolved, it has a child AddressEntry object that contains a copy of the
valid addressing information from the database. The child AddressEntry object is accessible from the
Recipient object’s AddressEntry property. The Recipient and AddressEntry object properties are
related as follows:

CDO Library object and
property

MAPI property Description

Recipient.Address Combination of
PR_ADDRTYPE and
PR_EMAIL_ADDRESS

Full address;
AddressEntry
object’s Type
and Address
properties

Recipient.Name PR_DISPLAY_NAME Display name
Recipient.AddressEntry.Addr
ess

PR_EMAIL_ADDRESS E-mail address

Recipient.AddressEntry.ID PR_ENTRYID AddressEntry
object’s unique
identifier

Recipient.AddressEntry.Name PR_DISPLAY_NAME Display name
Recipient.AddressEntry.Type PR_ADDRTYPE E-mail type

The Recipient object’s Address property represents a full address, that is, the combination of address
type and e-mail address that MAPI uses to send a message. The full address represents information
that appears in the AddressEntry object’s Address and Type properties.

You can also supply a complete recipient address. By manipulating the address yourself, you direct the

MAPI system to send the message to the full address that you supply without using the database. In
this case, you must also supply the display name. When you supply a custom address, the Recipient
object’s Address property must use the following syntax:

AddressType:AddressValue

There is also a third method of working with addresses. You can directly obtain and use the Recipient
object’s child AddressEntry object from messages that have already been successfully sent through
the messaging system.

For example, to reply to a message, you can use the Message object’s Sender property to get a valid
AddressEntry object. When you work with valid AddressEntry objects, you do not have to call the
Resolve method.

Note When you use existing AddressEntry objects, do not try to modify them. In general, do not
write directly to the Recipient object’s child AddressEntry object properties.

In summary, you can provide addressing information in three different ways:

· Obtain the correct addressing information for a known display name. Set the Recipient object’s
Name property and call its Resolve method. You can optionally request that Resolve display a
dialog box.

· Create a custom address. Set the Recipient object’s Address property, using the correct syntax as
described earlier, with the colon character (:) separating the address type from the address, and call
the Resolve method. You need Resolve even though you have supplied the address, because it
must be made into an object and given an entry identifier.

· Use an existing valid address entry, such as the Message object’s Sender property, when you are
replying to a message. Set the Recipient object’s AddressEntry property to an existing
AddressEntry object that is known to be valid. You do not need to call the Resolve method.

The following code fragment demonstrates these three kinds of addresses:

' Function: Util_UsingAddresses
' Purpose: Set addresses three ways
' See documentation topic: Using Addresses
Function Util_UsingAddresses()
Dim objNewMessage As Message ' new message to add recipients to
Dim objNewRecips As Recipients ' recipients of new message
Dim strAddrEntryID As String ' ID value from AddressEntry object
Dim strName As String ' Name from AddressEntry object

On Error GoTo error_olemsg
If objOneMsg Is Nothing Then
 MsgBox "Must select a message"
 Exit Function
End If
With objOneMsg.Recipients.Item(1).AddressEntry
 strAddrEntryID = .ID
 strName = .Name
End With
Set objNewMessage = objSession.Outbox.Messages.Add
If objNewMessage Is Nothing Then
 MsgBox "Unable to add a new message"
 Exit Function
End If
Set objNewRecips = objNewMessage.Recipients

' Add three recipients
' 1. look up entry in address book specified by profile
Set objOneRecip = objNewRecips.Add(_
 Name:=strName, _
 Type:=CdoTo)
If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using display name"
 Exit Function
End If
objOneRecip.Resolve ' this looks up the entry

' 2. add a custom recipient
Set objOneRecip = objNewRecips.Add(_
 Address:="SMTP:someone@microsoft.com", _
 Type:=CdoTo)
If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using custom addressing"
 Exit Function
End If
objOneRecip.Resolve ' assign entry identifier

' 3. add an existing valid address entry object
Set objOneRecip = objNewRecips.Add(_
 entryID:=strAddrEntryID, _
 Type:=CdoTo)
If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using existing address entry"
 Exit Function
End If

objNewMessage.Text = "Expect 3 different recipients"
MsgBox ("Count = " & objNewRecips.Count)
' you can also call resolve for the whole collection
' objNewRecips.Resolve (True) ' resolve all; show dialog

objNewMessage.Subject = "Addressing test"
objNewMessage.Update ' commit the message to storage in MAPI system
objNewMessage.Send(showDialog:=False)
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Exit Function

End Function

See Also
Changing an Existing Address Entry

Viewing MAPI Properties   

You can use a feature of the CDO Library’s Fields collection to view the values of MAPI properties.

The Fields collection’s Item property allows you to specify the actual property tag value as an identifier.
The MAPI property tag is a 32-bit unsigned integer that contains the property identifier in its high-order
16 bits and the property type (its underlying data type) in the low-order 16 bits.

Note You can only use the MAPI property tag on 32-bit platforms. This method of access is not
available on any other platform.

The CDO Library also supports multivalued properties, or properties that represent arrays of values. A
multivalued property appears to the Microsoft® Visual Basic® application as a variant array. You can
use the For ... Next construction or For Each statement to access individual array entries.

Note Do not mix data types within an OLE variant array that you are going to use with the CDO
Library. Unlike variant array members, every member of a MAPI multivalued property must be of the
same type. Setting mixed types in a variant array and presenting it to MAPI as a multivalued property
results in MAPI errors.

The CDO Library works with three types of message properties:

· Standard MAPI properties with property tags defined as constants by the CDO Library, such as
CdoPR_MESSAGE_CLASS.

· Standard MAPI properties not defined by the CDO Library. The Object Browser can tell you if the
property you want to access is defined.

· Custom properties created and named by the application.

The Fields collection exposes standard MAPI properties not defined by the CDO Library and custom
properties created and named by the application. The Item property selects an individual Field object
either by its MAPI property tag or by its custom name.

Although the Field object provides a Delete method, some standard MAPI properties, such as those
created by MAPI system components, cannot be deleted.

MAPI stores all properties that represent date and time information using Greenwich Mean Time
(GMT). The CDO Library converts these properties so that the values appear to the user in local time.

For definitions and details on all standard MAPI properties, see the MAPI Programmer's Reference.

' Function: Fields_Selector
' Purpose: View a MAPI property by supplying a property tag value as
' the Item value
' See: Item property (Fields collection)
Function Fields_Selector()
Dim lValue As Long
Dim strMsg As String

On Error GoTo error_olemsg

If objFieldsColl Is Nothing Then
 MsgBox "Must first select a Fields collection"
 Exit Function
End If
' you can provide a dialog here so users enter MAPI proptags,
' or select property names from a list; for now, hard-coded value

lValue = &H001A001E ' VB4.0: lValue = CdoPR_MESSAGE_CLASS
' &H001A = PR_MESSAGE_CLASS; &H001E = PT_TSTRING
' high-order 16 bits = property ID, low-order = property type
Set objOneField = objFieldsColl.Item(lValue)
If objOneField Is Nothing Then
 MsgBox "Could not get the Field using the value " & lValue
 Exit Function
Else
 strMsg = "Used the value " & lValue & " to access the property "
 strMsg = strMsg & "PR_MESSAGE_CLASS: type = " & objOneField.Type
 strMsg = strMsg & "; value = " & objOneField.Value
 MsgBox strMsg
End If
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

See Also
Customizing a Folder or Message

Working with Conversations   

Two Message object properties let you show relationships among messages by defining them as part
of a conversation. A conversation is a series of messages, consisting of an initial message and all
messages sent in reply to the initial message. When the initial message or a reply elicits additional
messages, the resulting messages are called a conversation thread. A thread represents a subset of
messages in the conversation.

The Message object properties ConversationIndex and ConversationTopic give you an easy way to
organize and display messages. Rather than simply grouping messages by subject, time received, or
sender, you can show conversational relationships among messages. The ConversationTopic
property is a string that describes the overall subject of the conversation. All messages within the same
conversation use the same value for the ConversationTopic property. The ConversationIndex
property is a hexadecimal string that you can use to represent the relationships between the messages
in the thread. Each message in the conversation should have a different ConversationIndex property.

When you start an initial message, set the ConversationTopic property to a value appropriate to all
messages within the conversation, not only to the first message. For many applications, the message’s
Subject property is appropriate.

You can use your own convention to decide how to use the ConversationIndex property. However, it
is recommended that you adopt the same convention used by the Microsoft® Exchange Client
message viewer, so that you can use that viewer’s user interface to show the relationships between
messages in a conversation. This convention uses concatenated time stamp values. The first time
stamp in the ConversationIndex string represents the original message. Whenever a message replies
to a conversation message, it appends a time stamp value to the end of the string. The new string
value is used as the ConversationIndex value of the new message. Using this convention, you can
easily see relationships among messages when you sort the messages by ConversationIndex values.

The following code fragment provides a utility function, Util_GetEightByteTimeStamp, which can be
used to build Microsoft Exchange Server compatible ConversationIndex values. The utility function
calls the OLE function CoCreateGuid to obtain the time stamp value from a GUID data structure. The
GUID value is composed of a time stamp and a machine identifier; the utility function saves the part
that contains the time stamp.

' declarations for the Util_GetEightByteTimeStamp function
Type GUID
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
Declare Function CoCreateGuid Lib "COMPOBJ.DLL" (pGuid As GUID) As Long
' Note: Use "OLE32.DLL" for Windows NT, Win95 platforms
Global Const S_OK = 0
' end declarations section

' Function: Util_GetEightByteTimeStamp
' Purpose: Generate a time stamp for use in conversations
' See documentation topic: Working With Conversations
Function Util_GetEightByteTimeStamp() As String
Dim lResult As Long
Dim lGuid As GUID
' Exchange conversation is a unique 8-byte value
' Exchange client viewer sorts by concatenated properties
On Error GoTo error_olemsg

lResult = CoCreateGuid(lGuid)
If lResult = S_OK Then
 Util_GetEightByteTimeStamp = Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
Else
 Util_GetEightByteTimeStamp = "00000000" ' zeroes
End If
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Util_GetEightByteTimeStamp = "00000000"
Exit Function

End Function

When you start a new conversation, set the ConversationIndex property to the value returned by this
function, as follows:

' new conversation
objMessage.ConversationIndex = Util_GetEightByteTimeStamp()

When you are replying to a message in an existing conversation, append the time stamp value to that
message’s ConversationIndex value, as follows:

' reply within an existing conversation
Dim objOriginalMsg As Message ' assume valid
Dim objNewMessage As Message ' new message in conversation
Dim strNewIndex As String
' ...
' copy the original topic and append
' the current time stamp to the original time stamp
objNewMessage.ConversationTopic = objOriginalMsg.ConversationTopic
strNewIndex = objOriginalMsg.ConversationIndex _
 & Util_GetEightByteTimeStamp()
objNewMessage.ConversationIndex = strNewIndex

For additional sample code dealing with conversations, see Posting Messages to a Public Folder.

Designing and Creating Forms
A form is a custom e-mail message that, because of its distinct appearance and functionality, is
rendered differently than a standard e-mail message. This difference reflects the addition of
nonstandard fields used to provide the added functionality.

The way a message is rendered is controlled by its message class. In Microsoft® Exchange, standard
e-mail messages have the class IPM.Note, and every new message is assigned this class by default.
This means that when a person uses a Web browser to create a message, Collaboration Data Objects
(CDO) renders a new message of the class IPM.Note. As with non-Web e-mail clients, the sender can
then fill in the message's fields and mail it. It is sent as an IPM.Note and displayed as such to the
recipient.

A new message class is typically distinguished by the presence of a different set of message fields,
which provide access to MAPI properties. The new class usually contains all the fields of the standard
message plus others that make it useful for its specific purpose. Regardless of a form's appearance,
function, or message class, it remains a message, and Microsoft Exchange stores and transfers it like
any other message.

Creating Web Forms with CDO
Traditionally, the Microsoft Exchange Electronic Forms Designer or Microsoft® Visual C++® is used to
create custom forms for use with Microsoft Exchange Server. Forms can also be created with CDO for
use with a Web browser, a usage that provides the advantage of platform independence when viewing
messages and using forms. Regardless of hardware and operating system, if a Web browser can be
used on a given computer, it can render any message or form written using CDO.

Technically, the World Wide Web has no concept of e-mail forms, or even e-mail messages. On the
Web, only pages are rendered. Still, each page can contain a set of controls that provide nearly all the
functionality offered by a form created with the Electronic Forms Designer or Visual C++.

Active Server Pages renders messages and forms using a collection of ASP scripts. These scripts
contain not only the CDO code that handles information received from users, but also the HTML code
that interacts with users. This code includes input boxes, option buttons, and list controls that a
standard message does not include.

For details about form creation steps, see Creating the New Classified Ad Form.

Message Classes and the Microsoft Exchange
Web Client
The Microsoft Exchange Web client recognizes a form's message class by reading its Type property. It
parses this property to determine the path to the folder where the form's .asp files are installed. For
example, the message class for the Classified Ad sample is:

IPM.Microsoft.ITG.NewClassifiedAd

The Web client starts with the string \exchsrvr\webdata\usa\forms and appends the Type property
string, replacing each period with a backslash character. This gives the following folder path:

\exchsrvr\webdata\usa\forms\IPM\Microsoft\ITG\NewClassifiedAd

When you create a form meant for use with the Microsoft Exchange Web client, follow this convention
when choosing where to save its .asp files and where to install them after distribution. Similarly, forms
you download should be installed into a folder path that follows this convention.

A separate form exists for creating a purchase offer. This form has the message class
IPM.MS.ITG.MicroNews.PrchOfr, and the files that render it can be found in the folder \exchsrvr\
webdata\usa\forms\IPM\MS\ITG\MicroNews\PrchOfr. The existence of this message class illustrates
how the use of different message classes lets one set of information ¾ about an item for sale, for
example ¾ be presented in different ways. Different forms are rendered for different purposes, though
the same data can be used in each form.

The Microsoft Exchange Web client uses this convention in the following way:

Using the Web client to open an existing form
1. At the Microsoft Exchange Web client interface, a user opens a form by clicking it.
2. The Web client reads the form's Type property and uses it to determine the directory path to the

form's installed .asp files.
3. The Web client uses that path to locate and run the file called Read.asp. The Read.asp file can now

redirect control to any other .asp or .htm file.
4. Typically, CDO functions are now called that use MAPI to retrieve properties from the form's

message object stored in a Microsoft Exchange information store. This data populates the controls
of the form, which are rendered to the user.

Form Example: A Classified Ad
A form for classified advertisements was originally created for use with Microsoft® Exchange Server
and has been modified for use on the Web.

The following sections describe design considerations for this sample application and step you through
some of its code, which is found in various Active Server Pages (ASP) scripts.

· Designing the Classified Ad
· Preserving Message Data at Run Time
· Creating the New Classified Ad Form
· Creating the Default Message
· Adding Custom Fields
· Informing Microsoft Exchange Server
· Setting the Message Class

Designing the Classified Ad
The classified ad consists of several forms, each used for a different stage in the advertisement and
sales process. Each form contains a set of custom properties that are useful to sellers and potential
buyers. Also, each form is distinct, and rendered with its own ASP scripts, which are described briefly
here:

1. Advertisement Creation The seller uses this form to create the initial sales (or "item wanted")
announcement. When a form of this type is created, custom advertisement-specific fields such as
Category, Subcategory, and ContactInfo are used.

2. Advertisement Viewing The potential buyer uses this form to read the sales announcement. This
form renders the custom advertisement-specific fields and displays the values specified by the
seller.
A different form is used to view the advertisement than to create it because certain controls are used
only for one action and not the other. For example, the person submitting the ad first selects
"Wanted" or "For Sale," because the item described in the ad may be either sought or offered. The
viewer of the ad need only see the outcome of this choice ¾ that the item is, for example, for sale. In
the viewer's form, only one of "Wanted" or "For Sale" is displayed.

3. Purchase Offer Creation The buyer uses this form to respond to the advertisement.
4. Purchase Offer Viewing The seller uses this form to view the buyer's response.
5. Purchase Offer Response After the preceding forms are used to initiate a sale, one or more

standard e-mail messages (of message class IPM.Note) can be sent to verify the details of the sale.

Preserving Message Data at Run Time
Because the World Wide Web uses pages instead of objects, special design considerations are
required for Web forms. With Microsoft Exchange, if you send a message addressed to an invalid
recipient, your message information remains intact in the message object, though the message is not
delivered. You can readdress the message and send it again.

This model of data persistence cannot be transferred from a traditional messaging system to the Web.
If a person types message information on a Web page and submits the page, that Web page
disappears and a new page appears. This new page can be passed the user's information and can
send it. But if this send attempt fails, perhaps because of an invalid recipient, the original page (along
with the user's information) is gone. At this point, there is no convenient way to repopulate the fields
with the user's message information.

The Classified Ad sample application has a solution to this problem that uses a three-part model. It
uses the three script files RootComp.asp, Resolve.asp, and Compose.asp, as shown in the following
diagram. (More frames are actually used than those shown here; this diagram is meant to illustrate
merely how data is preserved.)

The files and frames in this illustration work together in the following manner.

At the Web client interface, the user clicks a link that creates and renders a new classified ad. The first
script called is RootComp.asp, which initializes and ties together two frames ¾ Compose and Resolve
¾ in one frameset. Since Resolve and Compose are two frames on the same page, both are running
simultaneously.

The Resolve frame first checks a variable called sendRequest. If this variable has not been set to the
value sendMessage, Resolve does not process the message. This mechanism is meant to keep
Resolve from trying to process message information before the user has entered it. (At startup,
VBScript automatically initializes the sendRequest variable to Nothing.)

Resolve displays a caption, but no tags for user input. Meanwhile, the Compose frame displays a form
containing HTML controls with which the ad's creator enters information about offered or sought items.
During this time, Compose sets the sendRequest variable to sendMessage.

When finished entering information, the user clicks Send on the Compose frame. Control is now

passed to Resolve, which, because sendRequest has been set to sendMessage, begins processing
the message. Resolve requests the entered data from Compose, using the Request object in this
manner:

szWorkPhone = Request.Form ("WorkPhone")

The Resolve frame now creates the new message object, adds fields for the data gathered from
Compose, and sets their values. It also sets the form's type. For more information on these actions,
see the following section.

Resolve checks essential fields and, if important data is missing or invalid (such as if the destination
name does not resolve), it displays an alert to notify the user of the error. The user can now re-enter
information at the Compose page, which still holds all the original information. If Resolve determines
that the information is valid this time, it sends the message.

Creating the New Classified Ad Form
These are the main steps to follow for creating a form with CDO:

To create a form using CDO
1. Using VBScript, create a message with the Add method of the Messages collection object. This call

creates a standard message of the default message class IPM.Note, which contains the basic
components needed to send a message, including the To, From, Received, and Subject fields and
the message body.

2. You can now customize the standard message by adding custom fields to provide the special
functionality the form offers.

3. Set the message class for the form and save the name of this message class in the Type property of
the Message object.

4. Set the MS_EXCHANGE_01 property. For more information, see Informing Microsoft Exchange
Server.

5. If the form is to be used by the Microsoft Exchange Web client, save the form's .asp files to the
appropriate location on disk.

6. If the form is to be used by the Microsoft Exchange Client ¾ in addition to or instead of Web use ¾
use the Microsoft Exchange Forms Manager to add the new form's message class to the Microsoft
Exchange Server form library. For information on form libraries, see the MAPI Programmer's
Reference.

These programming actions are discussed in more detail in the following sections.

Creating the Default Message
For the creation of a classified ad form, Read.asp is opened as the default file. In this script, the first
step is the creation of a standard message. This happens in the following line of code, by the addition
of a message to the current profile's (the session's) Outbox:

Set oNewMessage = objAMSession.Outbox.Messages.Add

In this call, objAMSession is the handle to the current session, and oNewMessage is the handle to the
new message object. This new message contains the default fields of a standard message. The
message handle is used later in this script when the message is sent with the command
oNewMessage.Send. The Send command can include various flags, such as for requesting a delivery
receipt or saving a copy in the Sent Items folder.

Because this call requests memory for a message object, it can fail if the computer is currently low on
memory. For this reason, it may be good to check the return value from this call. In VBScript, if the
object creation fails in a given call, the return value is set to Nothing. (In this code, rather than
checking if the new message is set to Nothing, the creation of child objects is checked a few lines of
code later.)

Adding Custom Fields
Within this new message object is a child object known as a Fields collection, which is the actual array
of fields that house data. To start using the Fields collection, you may first want to obtain a handle to it
with the following call:

Set oNewFields = oNewMessage.Fields

This call provides a handle to all the message's properties. After making this call, you can check its
value for success (Nothing = failure). With the oNewFields handle, you can now add new fields to the
message with the Fields.Add method, as in the following call:

oNewFields.Add "Category Name", Category_Type, Value

You can also determine the number of fields (or properties) in the message using Fields.Count (in this
case, oNewFields.Count). For more information, see Add Method (Fields Collection) . The code
example at the bottom of the topic is reproduced here:

' Fragment from Fields_Add; uses the type "vbString"
        Set objNewField = objFieldsColl.Add(_
  Name:="Keyword", _
  Class:=vbString, _
  Value:="Peru")
'    verify that objNewField is a valid Field object
' Fragment from Field_Type; display the integer type value
        MsgBox "Field type = " & objOneField.Type

In this example, the message contains a Fields collection whose handle is objFieldsColl. Using the
Add method, a new field called Keyword is created whose class is vbString and whose value is
"Peru". Then, the variable objNewField is assigned ("Set") the value of this field creation operation, so
that you can check for success. If the value assigned is not Nothing, the field was created.

Field Names and Field Identifiers
Some fields have names ("named properties"), and others do not, such as the FROM field. Unnamed
fields are identified by their identifiers. It is easiest to use the named property when it exists, but you
must use the property identifier otherwise. In the file amprops.inc, a number of custom property form
name identifier numbers are defined. These are hexadecimal numbers used to identify fields. None of
these fields are necessarily rendered, although they may contain data.

For example, in one sample script data is being retrieved from the FROM field. The Fields object is
opened and the current index in the Fields object is set to the identifier of the FROM field. The identifier
must be used because a given field (the FROM field in this example) is not always in the same position
within a Fields collection. Because you can determine the number of properties in the Fields collection
(with Fields.Count), you incrementally loop through the fields (from zero to the Fields count) until you
reach the one whose identifier is equal to the constant defined for the FROM field. Then, you can read
its value.

Informing Microsoft Exchange Server
When you have created a custom form, you need to inform Microsoft Exchange Server in two ways:

1. By setting the message class.
2. By adding the Boolean property called MS_EXCHANGE_01 to the message object and setting its

value to True. This property is required for every Microsoft Exchange Server custom form, whether
or not it is used for the Web.
Use the Add method on the NewFields object, as shown in this example:

oNewFields.Add "MS_EXCHANGE_01", VT_BOOL, "True"

Setting the Message Class
After you have changed the set of fields, you need to provide a way for this form to be recognized (by a
Microsoft Exchange client or by CDO) for the new, distinctive, type that it is. You do this by specifying
and naming a new message class. You can give it any name you want, such as IPM.MyNote.

To set the message class, assign it to the Type property of the Message object. For example, this
assignment occurs in Resolve.asp:

oNewMessage.Type = "IPM.Microsoft.ITG.NewClassifiedAd"

Before you make this assignment (for newly created objects), the Type field had a default setting of
IPM.Note.

To have the Microsoft Exchange Client recognize a new message class, use the Microsoft Exchange
Forms Manager to add it to the forms library. Then, you can view the new form through the New Form
option on the Compose menu of the Microsoft Exchange Client.

Objects, Properties, and Methods
This reference contains property and method information for the Microsoft® Collaboration Data Objects
(CDO) Library objects.

The following table summarizes each object’s properties and methods.

Object

Available
in version

Properties

Methods

AddressEntries
collection

1.1 Application, Class,
Count, Filter, Item,
Parent,
RawTable1,
Session

Add, Delete,
GetFirst, GetLast,
GetNext,
GetPrevious, Sort

AddressEntry 1.0.a Address,
Application, Class,
DisplayType,
Fields, ID,
Manager,
MAPIOBJECT1,
Members, Name,
Parent, Session,
Type

Delete, Details,
GetFreeBusy,
IsSameAs, Update

AddressEntryFilter 1.1 Address,
Application, Class,
Fields, Name, Not,
Or, Parent,
Session

IsSameAs

AddressList 1.1 AddressEntries,
Application, Class,
Fields, ID, Index,
IsReadOnly,
Name, Parent,
Session

IsSameAs

AddressLists
collection

1.1 Application, Class,
Count, Item,
Parent, Session

(none)

AppointmentItem 1.2 AllDayEvent,
Application,
Attachments,
BusyStatus,
Categories, Class,
Conversation,
ConversationIndex
,
ConversationTopic
, DeliveryReceipt,
Duration,
Encrypted,
EndTime, Fields,
FolderID, ID,
Importance,
IsRecurring,

ClearRecurrenceP
attern, CopyTo,
Delete,
GetRecurrencePat
tern, IsSameAs,
MoveTo, Options,
Respond, Send,
Update

Location,
MAPIOBJECT1,
MeetingResponse
Status,
MeetingStatus,
Organizer, Parent,
ReadReceipt,
Recipients,
ReminderMinutes
BeforeStart,
ReminderSet,
ReplyTime,
ResponseRequest
ed, Sender,
Sensitivity, Sent,
Session, Signed,
Size, StartTime,
StoreID, Subject,
Submitted, Text,
TimeCreated,
TimeExpired,
TimeLastModified,
TimeReceived,
TimeSent, Type,
Unread

Attachment 1.0.a Application, Class,
Fields, Index,
MAPIOBJECT1,
Name, Parent,
Position, Session,
Source, Type

Delete, IsSameAs,
ReadFromFile,
WriteToFile

Attachments
collection

1.0.a Application, Class,
Count, Item,
Parent, Session

Add, Delete

Field 1.0.a Application, Class,
ID, Index, Name,
Parent, Session,
Type, Value

Delete,
ReadFromFile,
WriteToFile

Fields collection 1.0.a Application, Class,
Count, Item,
Parent, Session

Add, Delete,
SetNamespace

Folder 1.0.a Application, Class,
Fields, FolderID,
Folders,
HiddenMessages,
ID,
MAPIOBJECT1,
Messages, Name,
Parent, Session,
StoreID

CopyTo, Delete,
IsSameAs,
MoveTo, Update

Folders collection 1.0.a Application, Class,
Count, Item,
Parent,
RawTable1,
Session

Add, Delete,
GetFirst, GetLast,
GetNext,
GetPrevious, Sort

GroupHeader 1.1 Application, Class,
Count, Level,
Name, Parent,
Session, Unread

(none)

InfoStore 1.0.a Application, Class,
Fields, ID, Index,
MAPIOBJECT1,
Name, Parent,
ProviderName,
RootFolder,
Session

IsSameAs

InfoStores
collection

1.0.a Application, Class,
Count, Item,
Parent, Session

(none)

MeetingItem 1.2 Application,
Attachments,
Categories, Class,
Conversation,
ConversationIndex
,
ConversationTopic
, DeliveryReceipt,
Encrypted, Fields,
FolderID, ID,
Importance,
MAPIOBJECT1,
MeetingType,
Parent,
ReadReceipt,
Recipients,
Sender, Sensitivity,
Sent, Session,
Signed, Size,
StoreID, Subject,
Submitted, Text,
TimeCreated,
TimeExpired,
TimeLastModified,
TimeReceived,
TimeSent, Type,

CopyTo, Delete,
Forward,
GetAssociatedApp
ointment,
IsSameAs,
MoveTo, Options,
Reply, ReplyAll,
Respond, Send,
Update

Unread

Message 1.0.a Application,
Attachments,
Categories, Class,
Conversation,
ConversationIndex
,
ConversationTopic
, DeliveryReceipt,
Encrypted, Fields,
FolderID, ID,
Importance,
MAPIOBJECT1,
Parent,
ReadReceipt,
Recipients,
Sender, Sensitivity,
Sent, Session,
Signed, Size,
StoreID, Subject,
Submitted, Text,
TimeCreated,
TimeExpired,
TimeLastModified,
TimeReceived,
TimeSent, Type,
Unread

CopyTo, Delete,
Forward,
IsSameAs,
MoveTo, Options,
Reply, ReplyAll,
Send, Update

MessageFilter 1.1 Application, Class,
Conversation,
Fields,
Importance, Not,
Or, Parent,
Recipients,
Sender, Sent,
Session, Size,
Subject, Text,
TimeFirst,
TimeLast, Type,
Unread

IsSameAs

Messages
collection

1.0.a Application, Class,
Count, Filter, Item,
Parent,
RawTable1,
Session

Add, Delete,
GetFirst, GetLast,
GetNext,
GetPrevious, Sort

Recipient 1.0.a Address,
AddressEntry,
AmbiguousNames,
Application, Class,
DisplayType, ID,
Index,
MeetingResponse
Status, Name,

Delete,
GetFreeBusy,
IsSameAs,
Resolve

Parent, Session,
Type

Recipients
collection

1.0.a Application, Class,
Count, Item,
RawTable1,
Parent, Resolved,
Session

Add, AddMultiple,
Delete,
GetFirstUnresolve
d, GetFreeBusy,
GetNextUnresolve
d, Resolve

RecurrencePatter
n

1.2 Application, Class,
DayOfMonth,
DayOfWeekMask,
Duration,
EndTime,
Instance, Interval,
MonthOfYear,
NoEndDate,
Occurrences,
Parent,
PatternEndDate,
PatternStartDate,
RecurrenceType,
Session, StartTime

(none)

Session 1.0.a AddressLists,
Application, Class,
CurrentUser,
Inbox, InfoStores,
MAPIOBJECT1,
Name,
OperatingSystem,
Outbox,
OutOfOffice,
OutOfOfficeText,
Parent, Session,
Version

AddressBook,
CompareIDs,
CreateConversatio
nIndex,
DeliverNow,
GetAddressEntry,
GetAddressList,
GetDefaultFolder,
GetFolder,
GetInfoStore,
GetMessage,
GetOption, Logoff,
Logon,
SetLocaleIDs,
SetOption

1 The MAPIOBJECT and RawTable properties are not available to Visual Basic applications. For more information, see the
references for these properties.

This reference is organized by object. For each object there is a summary topic, followed by reference
documentation for each property or method that belongs to the object. The properties and methods are
organized alphabetically.

Each property or method topic in the reference displays a Group button following the topic title.
Clicking this button displays the summary topic for the object to which the property or method belongs.
The summary topic includes tables of the object’s properties and methods.

To avoid duplication, the section Properties Common to All CDO Library Objects describes the
properties that have the same meaning for all CDO Library objects. These are:

· Application
· Class
· Parent
· Session

Object Model
The object model for the CDO Library is hierarchical. The following table shows the containment
hierarchy. Each indented object is a child of the object under which it is indented. An object is the
parent of every object at the next level of indentation under it. For example, an Attachments collection
and a Recipients collection are both child objects of a Message object, and a Messages collection is a
parent object of a Message object. However, a Messages collection is not a parent object of a
Recipients collection.

Session
 AddressLists collection
 AddressList
 Fields collection
 Field
 AddressEntries collection
 AddressEntry
 Fields collection
 Field
 AddressEntryFilter
 Fields collection
 Field
 Folder (Inbox or Outbox)
 Fields collection
 Field
 Folders collection
 Folder
 Fields collection
 Field
 [Folders … Folder …]
 Messages collection
 AppointmentItem
 RecurrencePattern
 GroupHeader
 MeetingItem
 Message
 Attachments collection
 Attachment
 Fields collection
 Field
 Fields collection
 Field
 Recipients collection
 Recipient
 AddressEntry
 Fields collection
 Field
 MessageFilter
 Fields collection
 Field
 InfoStores collection
 InfoStore
 Fields collection
 Field
 Folder [as expanded under Folders]

The notation “[Folders … Folder …]” signifies that any Folder object can contain a Folders collection
of subfolders, and each subfolder can contain a Folders collection of more subfolders, nested to an
arbitrary level.

Properties Common to All CDO
Library Objects
All CDO Library objects expose the properties Application, Class, Parent, and Session. The
Application and Session properties have the same values for all objects within a given session. The
Parent property indicates the immediate parent of the object, and the Class property is an integer
value that identifies the CDO Library object.

All four of these common properties have read-only access in all objects. Note that for the Session
object, the Parent and Session properties are assigned the value Nothing. The Session object
represents the highest level in the CDO Library object hierarchy and has no parent.

These common properties do not correspond to MAPI properties and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

To reduce duplication, the detailed reference for these properties appears only once, in this section.
The following table lists the properties that are common to all CDO Library objects and that have the
same meaning for all objects.

Properties
Name Type Access
Application String Read-only
Class Long Read-only
Parent Object Read-only
Session Session object Read-only

Application Property (All CDO Library
Objects)   

The Application property returns the name of the active application, namely the Microsoft®
Collaboration Data Objects (CDO) Library. Read-only.

Syntax
object.Application

Data Type
String

Remarks
The Application property always contains the string “Collaboration Data Objects (CDO) version 1.2”.

By always returning the same string, CDO differs from other implementations of Automation servers.
Many Automation servers are based on executable files, which take the extension .EXE and return an
object value. CDO, being part of the MAPI subsystem, is implemented with dynamic-link libraries,
which take the extension .DLL.

As of version 1.1, CDO is an in-process server, residing in a .DLL file and linking dynamically with the
calling modules. In comparison with the former local server architecture, this removes the need for
remote procedure calls (RPCs) across process boundaries and greatly improves the performance of
CDO Library calls.

The version number of the CDO Library is available through the Session object’s Version property.

The Application property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

Example
' Function: Session_Application
' Purpose: Display the Application property of the Session object
' See documentation topic: Application property
Function Session_Application()
Dim objSession As Object ' or Dim objSession As MAPI.Session
' error handling ...
Set objSession = CreateObject("MAPI.Session")
If Not objSession Is Nothing Then
 MsgBox "Session’s Application property = " & objSession.Application
End If
' error handling
End Function

Class Property (All CDO Library Objects) 

The Class property returns the object class of the object. Read-only.

Syntax
object.Class

Data Type
Long

Remarks
The Class property contains a numeric constant that identifies the CDO Library object. The following
values are defined:

CDO Library object Class
value

Type library constant

AddressEntries collection 21 CdoAddressEntries
AddressEntry 8 CdoAddressEntry
AddressEntryFilter 9 CdoAddressFilter
AddressList 7 CdoAddressList
AddressLists collection 20 CdoAddressLists
AppointmentItem 26 CdoAppointment
Attachment 5 CdoAttachment
Attachments collection 18 CdoAttachments

Field 6 CdoField
Fields collection 19 CdoFields
Folder 2 CdoFolder

Folders collection 15 CdoFolders

GroupHeader 25 CdoGroupHeader
InfoStore 1 CdoInfoStore
InfoStores collection 14 CdoInfoStores

MeetingItem 27 CdoMeetingItem
Message 3 CdoMsg
MessageFilter 10 CdoMessageFilter
Messages collection 16 CdoMessages

Recipient 4 CdoRecipient
Recipients collection 17 CdoRecipients
RecurrencePattern 28 CdoRecurrencePattern
Session 0 CdoSession

CDO also defines CdoUnknown, with the value -1, for an object implementing the OLE IUnknown
interface.

The Class property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

Example
' Function: Util_DecodeObjectClass
' Purpose: Decode the long integer class value,
' show the related object name
' See documentation topic: Class property
Function Util_DecodeObjectClass(lClass As Long)
' error handling here ...
Select Case (lClass)
 Case CdoSession:
 MsgBox ("Session object; Class = " & lClass)
 Case CdoMsg:
 MsgBox ("Message object; Class = " & lClass)
End Select
' error handling ...
End Function

' Function: TestDrv_Util_DecodeObjectClass
' Purpose: Call the utility function DecodeObjectClass for Class values
' See documentation topic: Class property
Function TestDrv_Util_DecodeObjectClass()
' error handling here ...
If objSession Is Nothing Then
 MsgBox "Need to set the Session object: Session->Logon"
 Exit Function
End If
' expect type CdoSession = 0 for Session object
Util_DecodeObjectClass (objSession.Class)
Set objMessages = objSession.Inbox.Messages
Set objOneMsg = objMessages.GetFirst
If objOneMsg Is Nothing Then
 MsgBox "Inbox is empty"
 Exit Function
End If
' expect type CdoMessage = 3 for Message object
Util_DecodeObjectClass (objOneMsg.Class)
' error handling here ...
End Function

Parent Property (All CDO Library
Objects)   

The Parent property returns the parent of the object. Read-only.

Syntax
Set objParent = object.Parent

Data Type
Object

Remarks
The Parent property in CDO returns the immediate parent of an object. The immediate parent for each
object is shown in the following table.

CDO Library object Immediate parent in object
hierarchy

AddressEntries collection AddressList
AddressEntry (returned by
Session.CurrentUser)

AddressEntries collection

AddressEntry (all others) Recipient
AddressEntryFilter AddressEntries collection
AddressList AddressLists collection
AddressLists collection Session
AppointmentItem Messages collection
Attachment Attachments collection
Attachments collection Message

Field Fields collection
Fields collection AddressEntry, AddressEntryFilter,

AddressList, AppointmentItem,
Attachment, Folder, InfoStore,
Message, or MessageFilter

Folder (Inbox or Outbox) Session
Folder (all others) Folders collection or InfoStore

Folders collection Folder, including Inbox or Outbox
GroupHeader Messages collection
InfoStore InfoStores collection
InfoStores collection Session

MeetingItem Messages collection
Message Messages collection
MessageFilter Messages collection
Messages collection Folder, including Inbox or Outbox
Recipient Recipients collection

Recipients collection Message
RecurrencePattern AppointmentItem
Session Set to Nothing

The Parent property represents the immediate parent of the object, rather than the logical parent. For
example, a folder contains a Messages collection, which contains Message objects. The Parent
property for a message is the immediate parent, the Messages collection, rather than the logical
parent, the Folder object.

The Session object represents the highest level in the hierarchy of CDO Library objects and its Parent
property is set to Nothing.

For more information on the CDO Library object hierarchy, see Object Model.

The Parent property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library. Depending on the parent object returned, you might be able
to render it as an object, by setting the ObjectRenderer object's DataSource property to the object
returned by the Parent property, or as a container object, by setting the ContainerRenderer object's
DataSource property to the collection object returned by the Parent property. See the DataSource
properties for what objects are accepted.

Example
This code fragment displays the Class of the parent Messages collection of a Message object:

' Function: Message_Parent
Function Message_Parent()
' error handling here ...
If objOneMsg Is Nothing Then
 MsgBox "Need to select a message; see Messages->Get*"
 Exit Function
End If
' Immediate parent of message is the Messages collection
MsgBox "Message immediate parent class = " & objOneMsg.Parent.Class
' error handling code ...
End Function

To get to the Folder object, you have to take the parent of the Messages collection:

' Function: Messages_Parent
' Purpose: Display the Messages collection Parent class value
' See documentation topic: Parent property
Function Messages_Parent()
Set objMessages = objOneMsg.Parent
' error handling here ...
If objMessages Is Nothing Then
 MsgBox "No active Messages collection"
 Exit Function
End If
MsgBox "Messages collection parent class = " & objMessages.Parent.Class
Exit Function
' error handling here ...
End Function

Session Property (All CDO Library
Objects)   

The Session property returns the top-level Session object associated with the specified CDO Library
object. Read-only.

Syntax
Set objSession = object.Session

Data Type
Object (Session)

Remarks
The Session object represents the highest level in the CDO Library object hierarchy. If you invoke the
Session property of a Session object, it returns the same Session object.

The Session property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

Example
' Function: Folder_Session
' Purpose: Access the Folder's Session property and display its name
' See documentation topic: Session property
Function Folder_Session()
Dim objSession2 As Session ' Session object to get the property
' error handling here ...
If objFolder Is Nothing Then
 MsgBox "No active folder; please select Session->Inbox"
 Exit Function
End If
Set objSession2 = objFolder.Session
If objSession2 Is Nothing Then
 MsgBox "Unable to access Session property"
 Exit Function
End If
MsgBox "Folder's Session property’s Name = " & objSession2.Name
Set objSession2 = Nothing
' error handling here ...
End Function

AddressEntries Collection Object
The AddressEntries collection object contains one or more AddressEntry objects.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.1
Parent objects: AddressList
Child objects: AddressEntry

AddressEntryFilter
Default property: Item

An AddressEntries collection is considered a large collection, which means that the Count property has
limited validity, and the best way to access an individual AddressEntry object within the collection is to
use either its unique identifier or the Get methods. For more information on collections, see Object
Collections.

Properties

Name

Available
in version

Type

Access

Application 1.1 String Read-only
Class 1.1 Long Read-only
Count 1.1 Long Read-only
Filter 1.1 AddressEntryFilter

object
Read/write

Item 1.1 AddressEntry object Read-only
Parent 1.1 AddressList object Read-only
RawTable 1.1 IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

Session 1.1 Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.1 emailtype as String,
(optional) name as String,
(optional) address as String

Delete 1.1 (none)
GetFirst 1.1 (none)
GetLast 1.1 (none)
GetNext 1.1 (none)
GetPrevious 1.1 (none)

Sort 1.1 (optional) SortOrder as Long,
(optional) PropTag as Long,
(optional) PropID as String

Remarks
Each AddressEntry object in the collection holds information representing a person or process to which
the messaging system can deliver messages. An AddressEntries collection provides access to the
entries in a MAPI address book container.

An AddressEntries collection can be rendered into HTML hypertext in tabular form using the CDO
Rendering ContainerRenderer object. To specify this, set the container renderer's DataSource property
to the AddressEntries collection object itself.

With the same DataSource setting, the container renderer's RenderProperty method can also render
selected properties of the collection's parent AddressList object. The individual properties that can be
rendered are indicated in the AddressList object property descriptions.

Large collections, such as the AddressEntries collection, cannot always maintain an accurate count of
the number of objects in the collection. It is strongly recommended that you use the GetFirst, GetLast,
GetNext, and GetPrevious methods to access individual items in the collection. You can access one
specific address entry by using the Session object’s GetAddressEntry method, and you can access all
the items in the collection with the Microsoft® Visual Basic® For Each construction.

The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether the address entries are sorted or not. The AddressEntry objects within a collection can be
sorted on a MAPI property of your choice, either ascending or descending, using the Sort method.
When the items are not sorted, you should not rely on these methods to return the items in any
specified order. The best programming approach to use with unsorted collections is to assume that the
access functions are able to access all items within the collection, but that the order of the objects is
not defined.

Add Method (AddressEntries Collection) 

The Add method creates and returns a new AddressEntry object in the AddressEntries collection.

Syntax
Set objAddressEntry = objAddrEntriesColl.Add(emailtype [, name, address])

objAddressEntry
On successful return, contains the new AddressEntry object.

objAddrEntriesColl
Required. The AddressEntries collection object.

emailtype
Required. String. The address type of the address entry.

name
Optional. String. The display name or alias of the address entry.

address
Optional. String. The full messaging address of the address entry.

Remarks
The emailtype parameter corresponds to the PR_ADDRTYPE property and qualifies the address
parameter by specifying which messaging system the address is valid in. Typical values are SMTP,
FAX, and X400.

The emailtype, name, and address parameters correspond to the Type, Name, and Address
properties of the AddressEntry object.

You can set the emailtype parameter to any string recognized and supported by the address book
providers invoked by the current profile, such as SMTP or X400. In particular, if you are using the
Microsoft® Exchange private address book (PAB) provider, you can set emailtype to MAPIPDL to
indicate a private distribution list (PDL).

The DisplayType property of the new AddressEntry object is set by the address book provider to either
CdoUser or CdoDistList, depending on which kind of address entry is being added. The DisplayType
property is read-only and cannot subsequently be changed.

The user must have the appropriate permission to Add, Delete, or Update an AddressEntry object.
Most users have this permission only for their personal address book (PAB).

The new AddressEntry object is saved in the MAPI system when you call its Update method.

Example
This code fragment adds a new entry to a user’s personal address book (PAB). Note the use of the
Item property as the default property of both the AddressLists and Fields collections.

' get PAB AddressList from AddressLists collection of Session
Set myList = MAPI.Session.AddressLists("Personal Address Book")
' add new AddressEntry to AddressEntries collection of AddressList
Set newEntry = myList.AddressEntries.Add "FAX", "John Doe"
' add FaxNumber field to new AddressEntry and give it a value
newEntry.Fields.Add “FaxNumber”, vbString
newEntry.Fields("FaxNumber") = "+1-206-555-7069"
' commit new entry, field, and value to PAB AddressList
newEntry.Update

Count Property (AddressEntries
Collection)   

The Count property returns the number of AddressEntry objects in the collection, or a very large
number if the exact count is not available. Read-only.

Syntax
objAddrEntriesColl.Count

Data Type
Long

Remarks
A large collection cannot always maintain an accurate count of its members, and the Count property
cannot be used as the collection’s size when it has the value &H7FFFFFFF. Programmers needing to
access individual objects in a large collection are strongly advised to use the Microsoft® Visual Basic®
For Each statement or the Get methods.

The Count property can always be used to determine whether an AddressEntries collection is empty or
not.

The recommended procedures for traversing a large collection are, in decreasing order of preference:

1. Global selection, such as the Visual Basic For Each statement.
2. The Get methods, particularly GetFirst and GetNext.
3. An indexed loop, such as the Visual Basic For ... Next construction.

If the address book provider cannot supply the precise number of AddressEntry objects, CDO returns
&H7FFFFFFF (= 2^31 - 1 = 2,147,483,647) for the Count property. This is the largest positive value
for a long integer and is intended to prevent an approximate count from prematurely terminating an
indexed loop. On 32-bit platforms, this value is defined in the type library as CdoMaxCount. On other
platforms, CdoMaxCount is not defined, and a program on such a platform must compare the Count
property against &H7FFFFFFF to see if it is reliable.

If the Count property is not reliable, that is, if it is &H7FFFFFFF, a program using it to terminate an
indexed loop must also check each returned object for a value of Nothing to avoid going past the end
of the collection.

The use of the Item property in conjunction with the Count property in a large collection can be seen in
the following example.

Example
This code fragment counts the AddressEntry objects in a user’s personal address book (PAB):

Dim i As Integer ' loop index / object counter
Dim myPAB as AddressList ' personal address book AddressList
Dim myPABColl as AddressEntries ' AddressEntries collection of PAB
' select PAB from AddressLists collection of Session
Set myPAB = MAPI.Session.AddressLists.Item("Personal Address Book")
' .Item could have been omitted above since it is default property
' make sure returned AddressList object is valid
If myPAB Is Nothing Then
 ' MsgBox "PAB object is invalid"
 ' Exit
End If

' get AddressEntries collection of PAB AddressList
Set myPABColl = myPAB.AddressEntries
' see if PAB is empty
i = myPABColl.Count ' valid if not a "very large number"
If 0 = i Then ' collection empty; 0 is correct count
 MsgBox "No AddressEntry items in PAB"
ElseIf CdoMaxCount = i Then ' .Count is not valid; get exact count
 For i = 0 To myPABColl.Count Step 1
 If myPABColl.Item(i) Is Nothing Then
 Exit For ' end of collection; members are 0, ... , i - 1
 End If
 Next i
End If

Delete Method (AddressEntries
Collection)   

The Delete method removes all the AddressEntry objects from the AddressEntries collection.

Syntax
objAddrEntriesColl.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to every AddressEntry object. If you have another reference to an address entry,
you can still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another address entry.

The final Release on each AddressEntry object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one AddressEntry object, use the Delete method specific to that object.

The Delete method on a large collection takes effect immediately and is permanent. A deleted member
cannot be recovered. However, the collection itself is still valid, and you can Add new members to it.

Filter Property (AddressEntries
Collection)   

The Filter property returns an AddressEntryFilter object for the AddressEntries collection. Read/write.

Syntax
objAddrEntriesColl.Filter

Data Type
Object (AddressEntryFilter)

Remarks
An AddressEntryFilter object with no criteria is created by default for every AddressEntries collection.
When you specify criteria by setting properties in the filter’s Fields collection, the filter restricts any
subsequent search on the AddressEntries collection. For more information, see the AddressEntryFilter
Object and Filtering Messages in a Folder.

An address entry filter can also be inherited from the restriction specified in a CDO Rendering
TableView object. Writing any property on this filter disinherits it, refreshes the AddressEntries
collection, and instantiates a new address entry filter specifying only the property just written. This new
filter, however, is no longer inherited, and the application can read its properties and set additional
restrictions within it.

The address entry filter affects traversals of the AddressEntries collection using the Microsoft® Visual
Basic® For Each statement, the Get methods, or the Visual Basic For … Next construction. These
accesses return an AddressEntry object.

Example
This code fragment shows how to set a filtering value in an AddressEntries collection’s initial default
address entry filter, and then how to clear all settings and reset the filter to its default state of no
criteria:

Dim objAEColl As AddressEntries ' collection
Dim objAEntry As AddressEntry ' address entry passed by filter
Dim objAEFilt As AddressEntryFilter
' assume valid AddressEntries collection just created
' make first use of filter to check for names containing "Mac"
Set objAEFilt = objAEColl.Filter ' original empty default filter
objAEFilt.Name = "Mac" ' string used in a name resolution search
For Each objAEntry in objAEColl ' loops and Sets each objAEntry
 ' process address entries that are passed by the filter
Next
' ... later, when current filter settings are no longer needed ...
objAEColl.Filter = Nothing ' invalidates and clears filter
Set objAEFilt = objAEColl.Filter ' new empty filter
' filter now available for new settings

GetFirst Method (AddressEntries
Collection)   

The GetFirst method returns the first AddressEntry object in the AddressEntries collection. It returns
Nothing if no first object exists.

Syntax
Set objAddressEntry = objAddrEntriesColl.GetFirst()

objAddressEntry
On successful return, represents the first AddressEntry object in the collection.

objAddrEntriesColl
Required. The AddressEntries collection object.

Remarks
The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether the address entries are sorted or not. The AddressEntry objects within a collection can be
sorted on a MAPI property of your choice, either ascending or descending, using the Sort method.
When the items are not sorted, you should not rely on these methods to return the items in any
specified order. The best programming approach to use with unsorted collections is to assume that the
access functions are able to access all items within the collection, but that the order of the objects is
not defined.

GetLast Method (AddressEntries
Collection)   

The GetLast method returns the last AddressEntry object in the AddressEntries collection. It returns
Nothing if no last object exists.

Syntax
Set objAddressEntry = objAddrEntriesColl.GetLast()

objAddressEntry
On successful return, represents the last AddressEntry object in the collection.

objAddrEntriesColl
Required. The AddressEntries collection object.

Remarks
The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether the address entries are sorted or not. The AddressEntry objects within a collection can be
sorted on a MAPI property of your choice, either ascending or descending, using the Sort method.
When the items are not sorted, you should not rely on these methods to return the items in any
specified order. The best programming approach to use with unsorted collections is to assume that the
access functions are able to access all items within the collection, but that the order of the objects is
not defined.

GetNext Method (AddressEntries
Collection)   

The GetNext method returns the next AddressEntry object in the AddressEntries collection. It returns
Nothing if no next object exists, for example if already positioned at the end of the collection.

Syntax
Set objAddressEntry = objAddrEntriesColl.GetNext()

objAddressEntry
On successful return, represents the next AddressEntry object in the collection.

objAddrEntriesColl
Required. The AddressEntries collection object.

Remarks
The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether the address entries are sorted or not. The AddressEntry objects within a collection can be
sorted on a MAPI property of your choice, either ascending or descending, using the Sort method.
When the items are not sorted, you should not rely on these methods to return the items in any
specified order. The best programming approach to use with unsorted collections is to assume that the
access functions are able to access all items within the collection, but that the order of the objects is
not defined.

If the GetFirst method has not been called since the AddressEntries collection was initialized, the
behavior of the GetNext method is not defined. This can produce unexpected results if the collection is
reinitialized with a Set statement in every iteration of a loop. The recommended procedure is to set an
explicit variable for the collection before entering the loop. For more information, see Object
Collections.

GetPrevious Method (AddressEntries
Collection)   

The GetPrevious method returns the previous AddressEntry object in the AddressEntries collection. It
returns Nothing if no previous object exists, for example if already positioned at the beginning of the
collection.

Syntax
Set objAddressEntry = objAddrEntriesColl.GetPrevious()

objAddressEntry
On successful return, represents the previous AddressEntry object in the collection.

objAddrEntriesColl
Required. The AddressEntries collection object.

Remarks
The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether the address entries are sorted or not. The AddressEntry objects within a collection can be
sorted on a MAPI property of your choice, either ascending or descending, using the Sort method.
When the items are not sorted, you should not rely on these methods to return the items in any
specified order. The best programming approach to use with unsorted collections is to assume that the
access functions are able to access all items within the collection, but that the order of the objects is
not defined.

If the GetLast method has not been called since the AddressEntries collection was initialized, the
behavior of the GetPrevious method is not defined. This can produce unexpected results if the
collection is reinitialized with a Set statement in every iteration of a loop. The recommended procedure
is to set an explicit variable for the collection before entering the loop. For more information, see Object
Collections.

Item Property (AddressEntries
Collection)   

The Item property returns a single AddressEntry object from the AddressEntries collection. Read-only.

Syntax
objAddrEntriesColl.Item(index)

objAddrEntriesColl.Item(searchValue)

index
A long integer ranging from 1 to the size of the AddressEntries collection.

searchValue
A string used to search the AddressEntries collection starting at the current position. The search
returns the next AddressEntry object having the current sorting property greater than or equal to the
searchValue string.

The Item property is the default property of an AddressEntries collection, meaning that
objAddrEntriesColl(index) is syntactically equivalent to objAddrEntriesColl.Item(index) in Microsoft®
Visual Basic® code.

Data Type
Object (AddressEntry)

Remarks
Programmers needing to access individual objects in a large collection are strongly advised to use the
Visual Basic For Each statement or the Get methods, particularly GetFirst and GetNext.

The Item(index) syntax returns the AddressEntry object at the indicated position in the collection. It can
be used in an indexed loop, such as the For ... Next construction in Visual Basic. The first item in the
collection has an index of 1.

For more information on using the Count and Item properties in a large collection, see the example in
the Count property.

The Item(searchValue) syntax returns the next AddressEntry object whose current sorting property is
greater than or equal to the string specified by searchValue. This syntax starts its search at the current
position.

Searching is based on the current sort order of the collection. The default sort property for an
AddressEntries collection is the Name property of the collection’s AddressEntry objects. If you want to
use the Item(searchValue) syntax to search the collection on another property, for example an address
type, you should first call the Sort method specifying the Type property.

Note The Item(searchValue) syntax uses the IMAPITABLE::FindRow method, which performs a
search dependent on the current sort order of the table underlying the collection. Not all tables are
sorted alphabetically. If your most recent sort order is nonalphabetic, you should access the
messages using the Item(index) syntax. This could be the case, for example, if your AddressEntries
collection is sorted on the DisplayType property.

For more information on tables, bookmarks, restrictions, and sort and search orders, see the MAPI
Programmer’s Reference.

Although the Item property itself is read-only, the AddressEntry object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

RawTable Property (AddressEntries
Collection)   

The RawTable property returns an IUnknown pointer to the MAPI table object underlying the
AddressEntries collection. Not available to Microsoft® Visual Basic® applications. Read/write.

Syntax
objAddrEntriesColl.RawTable

Data Type
Variant (vbDataObject format)

Remarks
The RawTable property is not available to Visual Basic programs. It is accessible only by C/C++
programs that deal with IUnknown objects. Visual Basic supports the IDispatch interface and not
IUnknown. The RawTable property is an IUnknown object that returns an IMAPITable interface in
response to QueryInterface. For more information, see Introduction to Automation and How
Programmable Objects Work. Also see the "COM and ActiveX Object Services" section of the Microsoft
Platform SDK.

Sort Method (AddressEntries Collection)

The Sort method sorts the collection on the specified property according to the specified sort order.

Syntax
objAddrEntriesColl.Sort([SortOrder, PropTag])

objAddrEntriesColl.Sort([SortOrder, name])

objAddrEntriesColl
Required. The AddressEntries collection object.

SortOrder
Optional. Long. The specified sort order, one of the following values:
Value Numeric value Description
CdoNone 0 No sort
CdoAscending 1 Ascending sort (default)
CdoDescending 2 Descending sort

PropTag
Optional. Long. The property tag value for the MAPI property to be used for the sort. PropTag is the
32-bit MAPI property tag associated with the property, such as CdoPR_EMAIL_ADDRESS.

name
Optional. String. The custom property name of a MAPI named property.

Remarks
Both parameters are optional. If SortOrder is not specified, ascending order is used. If neither PropTag
nor name is specified, the property used in the previous call to Sort is used again. If Sort has never
been called on this collection during this session, the MAPI property CdoPR_DISPLAY_NAME is used
for the sort.

Each call to Sort generates an entirely new sort order based on the specified property. No previous
sort order is retained or nested.

If the underlying messaging system does not support the sort criteria specified, for example
descending order or MAPI named properties, the Sort method returns CdoE_TOO_COMPLEX.

AddressEntry Object
The AddressEntry object defines addressing information valid for a given messaging system. An
address usually represents a person or process to which the messaging system can deliver messages.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: AddressEntries collection

Recipient
Child objects: Fields collection
Default property: Name

When an AddressEntry object is used as a child object of a Recipient object, it represents a copy of
valid addressing information that is obtained from the address book during a call to the Recipient
object’s Resolve method. When you obtain the AddressEntry object in this context, you should not
modify its properties.

Properties

Name

Available
in version

Type

Access

Address 1.0.a String Read/write

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
DisplayType 1.0.a Long Read-only
Fields 1.0.a Field object or Fields

collection object
Read-only

ID 1.0.a String Read-only
Manager 1.1 AddressEntry object Read-only
MAPIOBJECT 1.1 IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

Members 1.1 AddressEntries
collection object

Read-only

Name 1.0.a String Read/write
Parent 1.0.a AddressEntries

collection object or
Recipient object

Read-only

Session 1.0.a Session object Read-only
Type 1.0.a String Read/write

Methods
 Available

Name in version Parameters
Delete 1.0.a (none)
Details 1.0.a (optional) parentWindow as Long
GetFreeBusy 1.2 StartTime as Variant,

EndTime as Variant,
Interval as Long

IsSameAs 1.1 (required) objAddrEntry2 as Object
Update 1.0.a (optional) makePermanent as

Boolean,
(optional) refreshObject as Boolean

Remarks
An AddressEntry object can be rendered into HTML hypertext using the CDO Rendering
ObjectRenderer object. To specify this, set the object renderer's DataSource property to the
AddressEntry object itself. The individual properties that can be rendered with the RenderProperty
method are indicated in the AddressEntry object property descriptions.

Address Property (AddressEntry Object) 

The Address property specifies the messaging address of an address entry or message recipient.
Read/write.

Syntax
objAddressEntry.Address

Data Type
String

Remarks
The AddressEntry object’s Address property contains a unique string that identifies a message
recipient and provides routing information for messaging systems. The format of the address string is
specific to each messaging system.

The AddressEntry object’s Address and Type properties can be combined to form the full address, the
complete messaging address that appears in the Recipient object’s Address property using the
following syntax:

AddressType:AddressValue

The Address property corresponds to the MAPI property PR_EMAIL_ADDRESS. It can be rendered
into HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object
renderer's DataSource property to this AddressEntry object and the property parameter of the
RenderProperty method to CdoPR_EMAIL_ADDRESS.

Example
' Set up a series of object variables
' Set the Folder and Messages variables from Session_Inbox
Set objFolder = objSession.Inbox
Set objMessages = objFolder.Messages
' Set the Message object variable from Messages_GetFirst()
Set objOneMsg = objMessages.GetFirst
' Set the Recipients collection variable from Message_Recipients()
Set objRecipColl = objOneMsg.Recipients
' Set the Recipient object variable from Recipients_Item()
If 0 = objRecipColl.Count Then
 MsgBox "No recipients in the list"
 Exit Function
End If
iRecipCollIndex = 1
Set objOneRecip = objRecipColl.Item(iRecipCollIndex)
' could also be objRecipColl(iRecipCollIndex) since .Item is default

' set the AddressEntry object variable from Recipient_AddressEntry()
Set objAddrEntry = objOneRecip.AddressEntry
' from Util_CompareFullAddressParts()
' display the values
strMsg = "Recipient full address = " & objOneRecip.Address
strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
strMsg = strMsg & "; AddressEntry address = " & objAddrEntry.Address
MsgBox strMsg

Delete Method (AddressEntry Object)   

The Delete method removes the AddressEntry object from the AddressEntries collection.

Syntax
objAddressEntry.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to the AddressEntry object. If you have another reference to the address entry,
you can still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another address entry.

The final Release on the AddressEntry object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

The action of the Delete method is permanent, and the AddressEntry object cannot be restored to the
collection. Before calling Delete, your application can prompt the user to verify whether the address
entry should be permanently deleted.

When you delete a member of a collection, the collection is immediately refreshed, meaning that its
Count property is reduced by one and its members are reindexed. To access a member following the
deleted member, you must use its new index value. For more information, see Looping Through a
Collection.

The user must have the appropriate permission to Add, Delete, or Update an AddressEntry object.
Most users have this permission only for their personal address book (PAB).

You can delete all the address entries in the AddressEntries collection by calling the collection’s Delete
method. The ability to delete any address entry depends on the permissions granted to the user. The
Delete method returns an error code if called with insufficient permissions.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first AddressEntry object. That reference survives the call to Delete and has to be reassigned.
The second AddressEntry object is deleted without creating another reference, and no other action is
necessary.

' assume valid AddressList object
Set objAddressEntry = objAddressList.AddressEntries.Item(1)
objAddressEntry.Delete ' still have a reference from Set statement
' ... other operations on objAddressEntry possible but pointless ...
Set objAddressEntry = Nothing ' necessary to remove reference
' ...
objAddressList.AddressEntries.Item(2).Delete ' no reference to remove

Details Method (AddressEntry Object)   

The Details method displays a modal dialog box that provides detailed information about an
AddressEntry object.

Syntax
objAddressEntry.Details([parentWindow])

objAddressEntry
Required. The AddressEntry object.

parentWindow
Optional. Long. The parent window handle for the details dialog box. A value of zero (the default)
specifies that the dialog box should be application-modal.

Remarks
The Details dialog box is always modal, meaning the parent window is disabled while the dialog box is
active. If the parentWindow parameter is set to zero or is not set, all windows belonging to the
application are disabled while the dialog box is active. If the parentWindow parameter is supplied but is
not valid, the call returns CdoE_INVALID_PARAMETER.

The dialog box must always contain at least the display name and messaging address of the address
entry. The Details method fails if either the Name or Address property is empty.

The following methods can invoke dialog boxes:

· Details method (AddressEntry object)
· Options and Send methods (AppointmentItem, MeetingItem, and Message objects)
· Resolve method (Recipient object)
· Resolve method (Recipients collection)
· AddressBook and Logon methods (Session object)

However, if your application is running as a Microsoft® Windows NT® service, for example from Active
Server Pages (ASP) script on a Microsoft® Internet Information Server (IIS), no user interface is
allowed.

For more information on Windows NT services, see the Win32® Web page Using MAPI from a
Windows NT Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm. For more information
on running as a service, see "Windows NT Service Client Applications" in the MAPI Programmer's
Reference.

DisplayType Property (AddressEntry
Object)   

The DisplayType property returns the display type of the address entry. Read-only.

Syntax
objAddressEntry.DisplayType

Data Type
Long

Remarks
The DisplayType property enables special processing based on its value, such as displaying an
associated icon. You can also use the display type to sort or filter address entries.

The following values are defined:

DisplayType value

Decimal

value

Description

CdoAgent 3 An automated agent, such as Quote-
of-the-Day.

CdoDistList 1 A public distribution list.
CdoForum 2 A forum, such as a bulletin board or

a public folder.
CdoOrganization 4 A special address entry defined for

large groups, such as a helpdesk.
CdoPrivateDistList 5 A private, personally administered

distribution list.
CdoRemoteUser 6 A messaging user in a remote

messaging system.
CdoUser 0 A local messaging user.

When you Add a new address entry to an AddressEntries collection, the DisplayType property is set
by the address book provider to either CdoUser or CdoDistList, depending on which kind of address
entry is being added. The DisplayType property cannot subsequently be changed.

If an address entry represents a distribution list, the Members property can be used to retrieve an
AddressEntries collection containing the members of the distribution list. If the address entry is a single
messaging user, the Members property returns Nothing.

A private distribution list (PDL) exists only in your personal address book (PAB) and does not have an
e-mail address. Before invoking an address entry's Address or Type property, you should verify that its
DisplayType is not CdoPrivateDistList. Attempted access to addressing properties on a PDL results
in a return of CdoE_NOT_FOUND.

The DisplayType property corresponds to the MAPI property PR_DISPLAY_TYPE. It can be rendered
into HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object
renderer's DataSource property to this AddressEntry object and the property parameter of the
RenderProperty method to CdoPR_DISPLAY_TYPE.

Fields Property (AddressEntry Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objAddressEntry.Fields

objAddressEntry.Fields(index)

objAddressEntry.Fields(proptag)

objAddressEntry.Fields(name)

index
Short integer (less than or equal to 65,535). Specifies the index within the collection.

proptag
Long integer (greater than or equal to 65,536). Specifies the property tag value for the MAPI
property to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object (Field or Fields collection)

Remarks
The Fields property returns one or all of the fields associated with an AddressEntry object. Each field
typically corresponds to a MAPI property. Data types are preserved, except that MAPI counted binary
properties are converted to and from character strings representing hexadecimal digits.

The Fields property provides a generic access mechanism that allows Microsoft® Visual Basic® and
Microsoft® Visual C++® programmers to retrieve the value of any MAPI property using either a name or
a MAPI property tag. For access with the property tag, use objAddressEntry.Fields(proptag), where
proptag is the 32-bit MAPI property tag associated with the property, such as CdoPR_GIVEN_NAME.
To access a named property, use objAddressEntry.Fields(name), where name is a string that
represents the custom property name.

Although the Fields property itself is read-only, the collection it returns can be accessed in the normal
manner through its Add and Delete methods, and the properties on its member Field objects retain
their respective read/write or read-only accessibility.

The Fields property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

GetFreeBusy Method (AddressEntry
Object)   

The GetFreeBusy method returns a string representing the availability of the messaging user for a
meeting over a specified period of time.

Syntax
strAvail = objAddressEntry.GetFreeBusy(StartTime, EndTime, Interval)

strAvail
On successful return, contains a string indicating the messaging user's availability for each of the
time slots in the specified time period.

objAddressEntry
Required. The AddressEntry object.

StartTime
Required. Variant (vbDate format). Specifies the date/time of the beginning of the first time slot.

EndTime
Required. Variant (vbDate format). Specifies the date/time of the end of the last time slot.

Interval
Required. Long. Specifies the length of each time slot in minutes.

Remarks
The returned string length equals the number of time slots between StartTime and EndTime. Each
character is the ASCII representation of the appropriate type library constant indicating the messaging
user's availability during a time slot:

ASCII
character

Corresponding type

library constant

Meaning

"0" CdoFree Available for appointments or
meetings throughout the time slot

"1" CdoTentative At least one tentative commitment
during the time slot

"2" CdoBusy At least one confirmed commitment
during the time slot

"3" CdoOutOfOffice Designated as out-of-office (OOF) for
at least part of the time slot

If there is any overlapping of commitments during a time slot, GetFreeBusy returns the most
committed state, that is, the highest character value. For example, if a messaging user already has one
tentative meeting and one confirmed meeting scheduled during the same time slot, GetFreeBusy
returns "2" for that time slot, corresponding to CdoBusy. CdoFree is not returned unless the entire
time slot is free of commitments.

If an address entry represents a distribution list, the status of its individual members cannot be returned
to you. A meeting request should be sent only to single messaging users. You can determine if a
messaging user is a distribution list by checking its DisplayType property.

ID Property (AddressEntry Object)   

The ID property returns the unique identifier of the AddressEntry object as a string. Read-only.

Syntax
objAddressEntry.ID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another. However, MAPI does
not require identifier values to be binary comparable. Accordingly, two identifier values can be different,
yet refer to the same object. MAPI compares identifiers with the CompareEntryIDs method. CDO
provides the CompareIDs method in the Session object. For more information on entry identifiers, see
the MAPI Programmer’s Reference.

Although the AddressEntry and Recipient objects are not identical objects in the CDO Library, they
represent the same underlying MAPI messaging user object, and the address entry’s ID property is
equal to the recipient’s ID property. This can be used to advantage, for example, when adding an
existing AddressEntry object to a Recipients collection. You can use the address entry’s ID property as
the entryID parameter to the Add method.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters. It can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer object.
To specify this, set the object renderer's DataSource property to this AddressEntry object and the
property parameter of the RenderProperty method to CdoPR_ENTRYID.

Example
This code fragment copies information from an AddressEntry object to a Recipient object:

' Function: Recipients_Add_EntryID
' Purpose: Add a new recipient to the collection using AddressEntry ID
Function Recipients_Add_EntryID()
Dim strID As String ' ID from Message.Sender
Dim strName As String ' Name from Message.Sender
Dim objNewMsg As Message ' new msg; set its recipient using ID
Dim objNewRecip As Recipient ' new msg recipient; set from ID, Name
' error handling
strID = objOneMsg.Sender.ID 'Address Entry object ID
strName = objOneMsg.Sender.Name
Set objNewMsg = objSession.Outbox.Messages.Add
If objNewMsg Is Nothing Then
 MsgBox "Could not create a new message"
 Exit Function
End If
objNewMsg.Subject = "Sample message from CDO Library"
objNewMsg.Text = "Called Recipients.Add method w/ entryID parameter"
Set objNewRecip = objNewMsg.Recipients.Add(_
 entryID:=strID, _
 Name:=strName)
If objNewRecip Is Nothing Then

 MsgBox "Could not create a new recipient"
 Exit Function
End If
objNewMsg.Update ' make sure new data get saved in MAPI
objNewMsg.Send showDialog:=False
MsgBox "Created a new message in the Outbox and sent it"
Exit Function
' error handling
End Function

IsSameAs Method (AddressEntry
Object)   

The IsSameAs method returns True if the AddressEntry object is the same as the AddressEntry object
being compared against.

Syntax
objAddressEntry.IsSameAs(objAddrEntry2)

objAddressEntry
Required. This AddressEntry object.

objAddrEntry2
Required. The AddressEntry object being compared against.

Remarks
Two AddressEntry objects are considered to be the same if and only if they are instantiations of the
same physical (persistent) object in the underlying messaging system. Two objects with the same
value are still considered different if they do not instantiate the same physical object, for example if one
is a copy of the other. In such a case IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. This is necessary because, although MAPI requires all entry identifiers to be
unique, it does not require two of them identifying the same object to be identical. A generic
comparison of any two objects' unique identifiers is available with the Session object’s CompareIDs
method.

Example
This code fragment uses IsSameAs to verify that the sender of a message is the same messaging
user as is found in the local Global Address List (GAL):

 Dim objMessage As Message
 Dim objSender As AddressEntry
 Dim colAEs As AddressEntries
 Dim objAEFilt As AddressEntryFilter
 Dim objUser As AddressEntry
 ' assume objMessage received without error
 Set objSender = objMessage.Sender
 ' construct sender's full address
 strSender = objSender.Type & ":" & objSender.Address
 ' get the Global Address List the easy way (0 = CdoAddressListGAL)
 Set colAEs = objSession.GetAddressList(0).AddressEntries
 Set objAEFilt = colAEs.Filter
 objAEFilt.Address = strSender ' look for sender's full address
 For Each objUser in colAEs
 If objUser.IsSameAs(objSender)
 MsgBox "Sender found in GAL"
 End If
 Next

Manager Property (AddressEntry
Object)   

The Manager property returns an AddressEntry object representing the manager of the user
corresponding to this address entry. Read-only.

Syntax
objAddressEntry.Manager

Data Type
Object (AddressEntry)

Remarks
You can use the Manager property when your organization stores management information in the
MAPI system. This is possible, for example, with Microsoft® Exchange Server.

If the user’s manager is not available in the MAPI system, the Manager property returns Nothing.

The Manager property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library. The Name property of the AddressEntry object returned by
the Manager property corresponds to the MAPI property PR_MANAGER_NAME. To render just the
manager's name, you can set the ObjectRenderer object's DataSource property to this AddressEntry
object and the property parameter of the RenderProperty method to CdoPR_MANAGER_NAME.

MAPIOBJECT Property (AddressEntry
Object)   

The MAPIOBJECT property returns an IUnknown pointer to the AddressEntry object. Not available to
Microsoft® Visual Basic® applications. Read/write.

Syntax
objAddressEntry.MAPIOBJECT

Data Type
Variant (vbDataObject format)

Remarks
The MAPIOBJECT property is not available to Visual Basic programs. It is accessible only by C/C++
programs that deal with IUnknown objects. Visual Basic supports the IDispatch interface and not
IUnknown. The MAPIOBJECT property is an IUnknown object that returns an IMailUser interface in
response to QueryInterface. For more information, see Introduction to Automation and How
Programmable Objects Work. Also see the "COM and ActiveX Object Services" section of the Microsoft
Platform SDK.

The MAPIOBJECT property does not correspond to a MAPI property and cannot be rendered into
HTML hypertext by the CDO Rendering Library.

Members Property (AddressEntry
Object)   

The Members property returns an AddressEntries collection that contains the members of a
distribution list. Read-only.

Syntax
objAddressEntry.Members

Data Type
Object (AddressEntries collection)

Remarks
The Members property returns a collection of all the members of the AddressEntry object if it is a
distribution list. You can browse the returned AddressEntries collection, and you can add and delete
entries if you have change access.

If the AddressEntry object is not a distribution list, the Members property returns Nothing. The address
entry is a distribution list if its DisplayType property is set to CdoDistList or CdoPrivateDistList.

Although the Members property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add and Delete methods, and the properties on its member AddressEntry
objects retain their respective read/write or read-only accessibility.

The Members property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library. It could be rendered as a container object by setting the
ContainerRenderer object's DataSource property to the AddressEntries collection object returned by
the Members property.

Name Property (AddressEntry Object)   

The Name property returns or sets the display name or alias of the AddressEntry object as a string.
Read/write.

Syntax
objAddressEntry.Name

The Name property is the default property of an AddressEntry object, meaning that objAddressEntry is
syntactically equivalent to objAddressEntry.Name in Microsoft® Visual Basic® code.

Data Type
String

Remarks
The AddressEntry object is typically used as a copy of valid addressing information obtained from the
address book after you have called the Recipient object’s Resolve method. When you obtain the
AddressEntry object in this context, you should not modify its properties. To request resolution of a
display name, use the Recipient object’s Name property and Resolve method.

The Name property corresponds to the MAPI property PR_DISPLAY_NAME. It can be rendered into
HTML hypertext using the Active Messaging Rendering ObjectRenderer object. To specify this, set the
object renderer's DataSource property to this AddressEntry object and the property parameter of the
RenderProperty method to CdoPR_DISPLAY_NAME.

Example
' for values of variables, see AddressEntry Address property
' Recipient and AddressEntry display names are the same
 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
 MsgBox strMsg

See Also
Using Addresses

Type Property (AddressEntry Object)   

The Type property specifies the address type, such as SMTP, FAX, or X400. Read/write.

Syntax
objAddressEntry.Type

Data Type
String

Remarks
The address type is usually a tag referring to the messaging system that routes messages to this
address, such as SMTP or FAX.

The AddressEntry object’s Address and Type properties can be combined to form the full address, the
complete messaging address that appears in the Recipient object’s Address property using the
following syntax:

AddressType:AddressValue

The value of the Type property is not checked by CDO, but it should contain a string recognized and
supported by the address book providers invoked by the current profile. For example, the Microsoft®
Exchange private address book (PAB) provider supports a Type value of MAPIPDL to denote a private
distribution list (PDL).

The Type property corresponds to the MAPI property PR_ADDRTYPE. It can be rendered into HTML
hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object renderer's
DataSource property to this AddressEntry object and the property parameter of the RenderProperty
method to CdoPR_ADDRTYPE.

Example
See the example for the AddressEntry object’s Address property.

Update Method (AddressEntry Object)   

The Update method saves changes to the AddressEntry object in the MAPI system.

Syntax
objAddressEntry.Update([makePermanent, refreshObject])

objAddressEntry
Required. The AddressEntry object.

makePermanent
Optional. Boolean. A value of True indicates that the property cache is flushed and all changes are
committed in the underlying address book container. False indicates that the property cache is
flushed but not committed to persistent storage. The default value is True.

refreshObject
Optional. Boolean. A value of True indicates that the property cache is reloaded from the values in
the underlying address book container. False indicates that the property cache is not reloaded. The
default value is False.

Remarks
Changes to objects are not permanently saved in the MAPI system until you call the Update method
with the makePermanent parameter set to True.

For improved performance, CDO caches property changes in private storage and updates either the
object or the underlying persistent storage only when you explicitly request such an update. For
efficiency, you should make only one call to Update with its makePermanent parameter set to True.

The makePermanent and refreshObject parameters combine to cause the following changes:

refreshObject = True refreshObject = False
makePermanent =
True

Commit all changes,
flush the cache, and
reload the cache from
the address book.

Commit all changes and
flush the cache (default
combination).

makePermanent =
False

Flush the cache and
reload the cache from
the address book.

Flush the cache.

Call Update(False, True) to flush the cache and then reload the values from the address book.

The user must have the appropriate permission to Add, Delete, or Update an AddressEntry object.
Most users have this permission only for their personal address book (PAB).

Example
The following code fragment changes the display name for a valid AddressEntry object:

' Function: AddressEntry_Update
' Purpose: Demonstrate the Update method
Function AddressEntry_Update()
Dim objRecipColl As Recipients ' Recipients collection
Dim objNewRecip As Recipient ' New recipient

' error handling omitted ...
Set objRecipColl = objSession.AddressBook

If objRecipColl Is Nothing Then
 MsgBox "must select someone from the address book"
 Exit Function
End If
Set objNewRecip = objRecipColl.Item(1)
' above could be objRecipColl(1) since .Item is default property
With objNewRecip.AddressEntry
 .Name = .Name & " the Magnificent"
 .Type = "X.500" ' you can also change the Type
 .Update ' defaults to makePermanent = True
End With
MsgBox "Updated address entry name: " & objNewRecip.AddressEntry.Name
Exit Function
' error handling omitted
End Function

AddressEntryFilter Object
The AddressEntryFilter object specifies criteria for restricting a search on an AddressEntries collection.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.1
Parent objects: AddressEntries collection
Child objects: Fields collection
Default property: Name

Properties

Name

Available
in version

Type

Access

Address 1.1 String Read/write
Application 1.1 String Read-only
Class 1.1 Long Read-only
Fields 1.1 Field object or Fields

collection object
Read-only

Name 1.1 String Read/write
Not 1.1 Boolean Read/write
Or 1.1 Boolean Read/write
Parent 1.1 AddressEntries

collection object
Read-only

Session 1.1 Session object Read-only

Methods

Name

Available
in version

Parameters

IsSameAs 1.1 objAddrEntryFilter2 as Object

Remarks
An AddressEntryFilter object with no criteria is created by default for every AddressEntries collection.
This means that initially the filter’s properties are unset and its child Fields collection is empty. You
specify the filter by setting values for its properties, and by adding fields to its Fields collection and
setting a value for each added field. You do not need to call any Update method when setting filter
criteria.

The filter is invoked when the AddressEntries collection is traversed with the Get methods or the
Microsoft® Visual Basic® For Each construction. Each field participates in a MAPI search restriction
comparing the field’s Value property against the value of the AddressEntry object’s property specified
by the field’s ID property.

For fields of data type other than String, the MAPI search restriction type is RES_PROPERTY with
relational operator RELOP_EQ. For fields of data type String, the restriction type is RES_CONTENT
with fuzzy level options FL_SUBSTRING, FL_IGNORECASE, and FL_LOOSE. However, the following
MAPI properties are compared using FL_PREFIX instead of FL_SUBSTRING:

PR_ACCOUNT
PR_BUSINESS_ADDRESS_CITY

PR_COMPANY_NAME
PR_DEPARTMENT_NAME
PR_DISPLAY_NAME
PR_GIVEN_NAME
PR_OFFICE_LOCATION
PR_SURNAME
PR_TITLE

If the underlying messaging system does not support the search criteria specified by the filter fields, the
Get methods return CdoE_TOO_COMPLEX.

The results of the individual restrictions are normally ANDed together to form the final filter value. You
can change this by setting the Or property, which causes all the results to be ORed instead of ANDed.
You can also set the Not property to specify that the result of each individual restriction is to be
negated before being ANDed or ORed into the final filter value.

The address entry filter affects traversals of the AddressEntries collection using the Visual Basic For
Each statement, the Get methods, or the Visual Basic For … Next construction. These accesses
return an AddressEntry.

The AddressEntryFilter object is persistent within its parent AddressEntries collection. It is not deleted
even when it is released, and it remains attached to the AddressEntries collection until the collection’s
Filter property is set to Nothing or the collection is itself released. You can use the following code to
clear an address entry filter of all of its previous settings and reset it to its default state of no criteria:

objAddrEntsColl.Filter = Nothing ' filter now invalidated and cleared
Set objAddrEntFilt = objAddrEntsColl.Filter ' new valid empty filter

If an address book container is being rendered with a CDO rendering application, the AddressEntries
collection and the address entry filter are instantiated according to the specifications in the TableView
object being applied to the address book container. The AddressEntryFilter object inherits the
restriction specified in the view. An inherited filter can be used without modification, but it cannot be
read or changed by the rendering application. Writing any property on an inherited filter disinherits it
and refreshes the AddressEntries collection. This means that the collection is reinstantiated with a new
address entry filter specifying only the property just written. This new filter, however, is no longer
inherited, and the application can read its properties and set additional restrictions within it.

Example
This code fragment specifies that the address entry filter on the personal address book (PAB) should
pass only AddressEntry objects that are remote users OR that have a fax address:

Dim objThisPAB As AddressList ' Personal address book
Dim objAddrEntFilt As AddressEntryFilter
Dim propTag As Long ' MAPI property tag
Dim dispType As Long ' MAPI display type

Set objThisPAB = objSession.AddressLists("Personal AddressBook")
' ... validate AddressList object ...
Set objAddrEntFilt = objThisPAB.AddressEntries.Filter
' ... validate AddressEntryFilter object ...
propTag = &H39000003 ' VB4.0: propTag = CdoPR_DISPLAY_TYPE
dispType = 6 ' VB4.0: dispType = CdoRemoteUser
objAddrEntFilt.Fields(propTag) = dispType
objAddrEntFilt.Address = "fax:" ' case-insensitive substring match
objAddrEntFilt.Or = True ' OR results together instead of AND

Address Property (AddressEntryFilter
Object)   

The Address property specifies the full address for the AddressEntry object being filtered. Read/write.

Syntax
objAddressEntryFilter.Address

Data Type
String

Remarks
The AddressEntryFilter object’s Address property is a concatenation of the address type and
messaging address in the following format:

AddressType:AddressValue

where AddressType and AddressValue represent the AddressEntry object’s Type and Address
properties.

The AddressEntryFilter object’s Address property corresponds to a combination of the MAPI
properties PR_ADDRTYPE and PR_EMAIL_ADDRESS. It represents the full address, that is, the
complete messaging address used by the MAPI system.

The Address property can be copied from the Address property of a Recipient. The advantage of
doing this is that the value of the Recipient object’s Address property has already been computed by
CDO from its Name property and the Resolve method.

Fields Property (AddressEntryFilter
Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objAddressEntryFilter.Fields

objAddressEntryFilter.Fields(index)

objAddressEntryFilter.Fields(proptag)

objAddressEntryFilter.Fields(name)

index
Short integer (less than or equal to 65,535). Specifies the index within the Fields collection.

proptag
Long integer (greater than or equal to 65,536). Specifies the property tag value for the MAPI
property to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object (Field or Fields collection)

Remarks
The Fields property returns one or all of the fields associated with an AddressEntryFilter object. Each
field typically corresponds to a MAPI property. Data types are preserved, except that MAPI counted
binary properties are converted to and from character strings representing hexadecimal digits.

The fields that have been set in the Fields collection specify the filter, together with any other
AddressEntryFilter properties that have been set.

The Fields property provides a generic access mechanism that allows Microsoft® Visual Basic® and
Microsoft® Visual C++® programmers to retrieve the value of a MAPI property using either its name or
its MAPI property tag. For access with the property tag, use objAddressEntryFilter.Fields(proptag),
where proptag is the 32-bit MAPI property tag associated with the property, such as
CdoPR_POSTAL_ADDRESS. To access a named property, use objAddressEntryFilter.Fields(name),
where name is a string that represents the custom property name.

Although the Fields property itself is read-only, the collection it returns can be accessed in the normal
manner through its Add and Delete methods, and the properties on its member Field objects retain
their respective read/write or read-only accessibility.

IsSameAs Method (AddressEntryFilter
object)   

The IsSameAs method returns True if the AddressEntryFilter object is the same as the
AddressEntryFilter object being compared against.

Syntax
objAddressEntryFilter.IsSameAs(objAddrEntryFilter2)

objAddressEntryFilter
Required. This AddressEntryFilter object.

objAddrEntryFilter2
Required. The AddressEntryFilter object being compared against.

Remarks
Two AddressEntryFilter objects are considered to be the same if and only if they are instantiations of
the same physical (persistent) object in the underlying messaging system. Two objects with the same
value are still considered different if they do not instantiate the same physical object, for example if one
is a copy of the other. In such a case IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. This is necessary because, although MAPI requires all entry identifiers to be
unique, it does not require two of them identifying the same object to be identical. A generic
comparison of any two objects' unique identifiers is also available with the Session object’s
CompareIDs method.

Name Property (AddressEntryFilter
Object)   

The Name property specifies a value for use in an ANR (ambiguous name resolution) restriction on an
AddressEntry object. Read/write.

Syntax
objAddressEntryFilter.Name

The Name property is the default property of an AddressEntryFilter object, meaning that
objAddressEntryFilter is syntactically equivalent to objAddressEntryFilter.Name in Microsoft® Visual
Basic® code.

Data Type
String

Remarks
The Name property contains an ANR string that can be compared against each AddressEntry object
using a provider-defined algorithm. The property or properties used in the comparison are chosen by
the provider as part of the algorithm; the PR_DISPLAY_NAME property is the most commonly used.

The Name property corresponds to the MAPI property PR_ANR.

Example
This code fragment specifies that the address entry filter should pass all AddressEntry objects that
contain any resolution of the string “pet”, such as “Peter”, “Petra”, “Peterson”, and “pet lovers”:

Dim colAEs As AddressEntries
Dim objAEFilt As AddressEntryFilter
Dim objAEpet As AddressEntry
' ... validate AddressEntries collection ...
Set objAEFilt = colAEs.Filter
' ... validate AddressEntry object ...
objAEFilt.Name = "pet"
For Each objAEpet in colAEs
 MsgBox "Found " & objAEpet ' .Name is default property
Next

Not Property (AddressEntryFilter
Object)   

The Not property specifies that all restriction values are to be negated before being ANDed or ORed to
specify the address entry filter. Read/write.

Syntax
objAddressEntryFilter.Not

Data Type
Boolean

Remarks
If the Not property is False, the restriction values are treated normally. If it is True, each value is
toggled (between True and False) before being used.

Or Property (AddressEntryFilter Object) 

The Or property specifies that the restriction values are to be ORed instead of ANDed to specify the
address entry filter. Read/write.

Syntax
objAddressEntryFilter.Or

Data Type
Boolean

Remarks
If the Or property is False, all the restriction values are ANDed together. If it is True, the values are
ORed together.

AddressList Object
The AddressList object supplies a list of address entries to which a messaging system can deliver
messages.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.1
Parent objects: AddressLists collection
Child objects: AddressEntries collection

Fields collection
Default property: Name

Properties

Name

Available
in version

Type

Access

AddressEntries 1.1 AddressEntries
collection object

Read-only

Application 1.1 String Read-only
Class 1.1 Long Read-only
Fields 1.1 Field object or Fields

collection object
Read-only

ID 1.1 String Read-only
Index 1.1 Long Read-only
IsReadOnly 1.1 Boolean Read-only
Name 1.1 String Read-only
Parent 1.1 AddressLists collection

object
Read-only

Session 1.1 Session object Read-only

Methods

Name

Available
in version

Parameters

IsSameAs 1.1 objAddrList2 as Object

Remarks
An AddressList object represents one address book container available under the MAPI address book
hierarchy for the current session. The entire hierarchy is available through the parent AddressLists
collection.

An AddressList object can be rendered into HTML hypertext as the parent of an AddressEntries
collection, using the ContainerRenderer object. The individual properties that can be rendered with the
RenderProperty method are indicated in the AddressList object property descriptions.

AddressEntries Property (AddressList
Object)   

The AddressEntries property returns a single AddressEntry object or an AddressEntries collection
object. Read-only.

Syntax
Set objAddrEntriesColl = objAddressList.AddressEntries

Set objOneAddrEntry = objAddressList.AddressEntries(index)

objAddrEntriesColl
Object. An AddressEntries collection object.

objAddressList
Object. The AddressList object.

objOneAddrEntry
Object. A single AddressEntry object.

index
Long. Specifies the number of the address entry within the AddressEntries collection. Ranges from 1
to the size of the collection.

Data Type
Object (AddressEntry or AddressEntries collection)

Remarks
An AddressEntries collection is a large collection, and its size cannot necessarily be determined from
its Count property. It is not safe to use the index parameter with the AddressEntries property unless
an indexed loop has determined that an address entry at that position in the collection actually exists.

Although the AddressEntries property itself is read-only, the collection it returns can be accessed in
the normal manner through its Add and Delete methods, and the properties on its member
AddressEntry objects retain their respective read/write or read-only accessibility.

The AddressEntries property does not correspond to a MAPI property and cannot be rendered into
HTML hypertext by the CDO Rendering Library. If a single AddressEntry object is returned, it could be
rendered as an object by setting the ObjectRenderer object's DataSource property to the AddressEntry
object returned by the AddressEntries property. If an AddressEntries collection is returned, it could be
rendered as a container object by setting the ContainerRenderer object's DataSource property to the
AddressEntries collection object returned by the AddressEntries property.

Fields Property (AddressList Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objAddressList.Fields

objAddressList.Fields(index)

objAddressList.Fields(proptag)

objAddressList.Fields(name)

index
Short integer (less than or equal to 65,535). Specifies the index within the collection.

proptag
Long integer (greater than or equal to 65,536). Specifies the property tag value for the MAPI
property to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object (Field or Fields collection)

Remarks
The Fields property returns one or all of the fields associated with an AddressList object. Each field
typically corresponds to a MAPI property. Data types are preserved, except that MAPI counted binary
properties are converted to and from character strings representing hexadecimal digits.

The Fields property provides a generic access mechanism that allows Microsoft® Visual Basic® and
Microsoft® Visual C++® programmers to retrieve the value of any MAPI property using either a name or
a MAPI property tag. For access with the property tag, use objAddressList.Fields(proptag), where
proptag is the 32-bit MAPI property tag associated with the property, such as
CdoPR_DISPLAY_NAME. To access a named property, use objAddressList.Fields(name), where
name is a string that represents the custom property name.

Although the Fields property itself is read-only, the collection it returns can be accessed in the normal
manner through its Add and Delete methods, and the properties on its member Field objects retain
their respective read/write or read-only accessibility.

The Fields property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

ID Property (AddressList Object)   

The ID property returns the unique identifier of the AddressList object as a string. Read-only.

Syntax
objAddressList.ID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another. However, MAPI does
not require identifier values to be binary comparable. Accordingly, two identifier values can be different,
yet refer to the same object. MAPI compares identifiers with the CompareEntryIDs method. CDO
provides the CompareIDs method in the Session object. For more information on entry identifiers, see
the MAPI Programmer’s Reference.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters. It can be rendered into HTML hypertext using the CDO Rendering ContainerRenderer
object if the container renderer's DataSource property is set to this AddressList object's child
AddressEntries collection. To specify this, set the property parameter of the RenderProperty method
to CdoPR_ENTRYID.

Example
This code fragment displays the value of the AddressList object’s permanent identifier:

Dim strAddressListID as String ' hex string version of ID
Dim objAddressList as AddressList ' assume valid for this example
strAddressListID = objAddressList.ID ' global variable
MsgBox "Address Book ID = " & strAddressListID

Index Property (AddressList Object)   

The Index property returns the index number for the AddressList object within the AddressLists
collection. Read-only.

Syntax
objAddressList.Index

Data Type
Long

Remarks
The Index property indicates this object’s position within the parent AddressLists collection. It can be
saved and used later with the collection’s Item property to reselect the same address list in the
collection.

The first object in the collection has an Index value of 1.

The Index property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

Example
Function AddressListsGetByIndex()
Dim rqIndex As Long ' requested index value within collection
Dim svIndex As Long ' saved index value within collection
Dim objOneAddressList As AddressList ' requested address list
' set error handler here
If objAddressListsColl Is Nothing Then
 MsgBox "Must select a valid AddressLists collection"
 Exit Function
End If
If 0 = objAddressListsColl.Count Then
 MsgBox "Must select collection with 1 or more address lists"
 Exit Function
End If
' get rqIndex by passed parameter or by prompting ...
Set objOneAddressList = objAddressListsColl.Item(rqIndex)
If objOneAddressList Is Nothing Then
 MsgBox "AddressList could not be selected"
 Exit Function
End If
MsgBox "Selected address list: " & objOneAddressList.Name
svIndex = objOneAddressList.Index ' save index for later
' get same AddressList object later ...
Set objOneAddressList = objAddressListsColl.Item(svIndex)
If objOneAddressList Is Nothing Then
 MsgBox "Error: could not reselect the address list"
Else
 MsgBox "Reselected address list (" & svIndex & _
 ") using saved index: " & objOneAddressList.Name
End If
Exit Function

IsReadOnly Property (AddressList
Object)   

The IsReadOnly property indicates that the AddressList object cannot be modified. Read-only.

Syntax
objAddressList.IsReadOnly

Data Type
Boolean

Remarks
The IsReadOnly property refers to adding and deleting the entries in the address book container
represented by the AddressList object. The property is True if no entries can be added or deleted, and
False if the container can be modified, that is, if address entries can be added to and deleted from the
container.

IsReadOnly refers to the address book entries in the context of the address book container. It does not
indicate whether the contents of the individual entries themselves can be modified.

The IsReadOnly property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

IsSameAs Method (AddressList Object)   

The IsSameAs method returns True if the AddressList object is the same as the AddressList object
being compared against.

Syntax
objAddressList.IsSameAs(objAddrList2)

objAddressList
Required. This AddressList object.

objAddrList2
Required. The AddressList object being compared against.

Remarks
Two AddressList objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object in the underlying messaging system. Two objects with the same value are
still considered different if they do not instantiate the same physical object, for example if one is a copy
of the other. In such a case IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. This is necessary because, although MAPI requires all entry identifiers to be
unique, it does not require two of them identifying the same object to be identical. A generic
comparison of any two objects' unique identifiers is also available with the Session object’s
CompareIDs method.

Name Property (AddressList Object)   

The Name property returns the name of the AddressList object as a string. Read-only.

Syntax
objAddressList.Name

The Name property is the default property of an AddressList object, meaning that objAddressList is
syntactically equivalent to objAddressList.Name in Microsoft® Visual Basic® code.

Data Type
String

Remarks
The Name property corresponds to the MAPI property PR_DISPLAY_NAME for the address book
container represented by the AddressList object. It can be rendered into HTML hypertext using the
CDO Rendering ContainerRenderer object if the container renderer's DataSource property is set to
this AddressList object's child AddressEntries collection. To specify this, set the property parameter of
the RenderProperty method to CdoPR_DISPLAY_NAME.

Example
Dim objAddressList As AddressList ' assume valid address list object
MsgBox "Address book container name = " & objAddressList.Name
' or could be just objAddressList since .Name is default property

AddressLists Collection Object
The AddressLists collection object contains one or more AddressList objects.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.1
Parent objects: Session
Child objects: AddressList
Default property: Item

An AddressLists collection is considered a small collection, which means that it supports count and
index values that let you access an individual AddressList object through the Item property. The
AddressLists collection supports the Microsoft® Visual Basic® For Each statement. For more
information on collections, see Object Collections.

Properties

Name

Available
in version

Type

Access

Application 1.1 String Read-only
Class 1.1 Long Read-only
Count 1.1 Long Read-only
Item 1.1 AddressList object Read-only
Parent 1.1 Session object Read-only
Session 1.1 Session object Read-only

Methods
(None.)

Remarks
The AddressLists collection provides access to the root of the MAPI address book hierarchy for the
current session. You can obtain the collection through the parent Session object’s AddressLists
property.

You can use the Count and Item properties to traverse the hierarchy for all available address books, or
you can use the Item property to select a particular AddressList object. The type of access you obtain
depends on the access granted to you by each available address book provider.

Each AddressList object represents one MAPI address book container. The AddressLists collection
contains only those AddressList objects that contain recipients, and not those containing only
subcontainers. For more information on the different types of containers, see the description of the
PR_CONTAINER_FLAGS property in the MAPI Programmer’s Reference.

Count Property (AddressLists
Collection)   

The Count property returns the number of AddressList objects in the collection. Read-only.

Syntax
objAddrListsColl.Count

Data Type
Long

Example
This code fragment uses the Count and Item properties to display the name of every valid AddressList
object in the collection:

Dim i As Integer ' loop counter
Set Hierarchy = MAPI.Session.AddressLists
' make sure collection is valid
If Hierarchy Is Nothing Then
 ' Exit "Address book hierarchy is invalid"
End If
' see if hierarchy is empty
i = Hierarchy.Count ' count of address lists in hierarchy
If 0 = i Then
 MsgBox "No available address books"
 ' exit ...
End If
' display names of all valid address book containers
For i = 1 To Hierarchy.Count Step 1
 If Nothing = Hierarchy.Item(i) Then
 MsgBox "Address List " & i & " is not valid"
 Else
 MsgBox "Address List " & i & ": " Hierarchy(i).Name
 End If
Next i

Item Property (AddressLists Collection)   

The Item property returns a single AddressList object from the AddressLists collection. Read-only.

Syntax
objAddrListsColl.Item(index)

objAddrListsColl.Item(name)

index
A long integer ranging from 1 to objAddrListsColl.Count.

name
A string representing the value of the Name property of an AddressList object.

The Item property is the default property of an AddressLists collection, meaning that
objAddrListsColl(index) is syntactically equivalent to objAddrListsColl.Item(index) in Microsoft® Visual
Basic® code.

Data Type
Object (AddressList)

Remarks
The Item property works like an accessor property for small collections.

The Item(index) syntax selects an arbitrary AddressList object within the AddressLists collection. The
example in the Count property shows how these two properties can be used together to traverse the
collection.

The Item(name) syntax returns the first AddressList object whose Name property matches the string
specified by name.

Although the Item property itself is read-only, the AddressList object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

AppointmentItem Object
The AppointmentItem object represents an appointment in a calendar folder.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.2
Parent objects: Messages collection
Child objects: Attachments collection

Fields collection
Recipients collection
RecurrencePattern

Default property: Subject

The AppointmentItem object is a subclass of the Message object and exposes all the same properties
and methods, except for the Message object's Forward, Reply, and ReplyAll methods. In the
following tables of properties and methods, those that are common with the Message object are linked
to their descriptions for the Message object. Only the properties and methods unique to the
AppointmentItem object are described in this section.

Properties

Name

Available
in version

Type

Access

AllDayEvent 1.2 Boolean Read/write
Application 1.2 String Read-only
Attachments 1.2 Attachment object or

Attachments collection
object

Read-only

BusyStatus 1.2 Long Read/write
Categories 1.2 String array Read/write
Class 1.2 Long Read-only
Conversation 1.2 (Obsolete. Do not

use.)
Read/write

ConversationIndex 1.2 String Read/write
ConversationTopic 1.2 String Read/write
DeliveryReceipt 1.2 Boolean Read/write
Duration 1.2 Long Read-only
Encrypted 1.2 Boolean Read/write
EndTime 1.2 Variant (vbDate

format)
Read/write

Fields 1.2 Field object or Fields
collection object

Read-only

FolderID 1.2 String Read-only

ID 1.2 String Read-only
Importance 1.2 Long Read/write
IsRecurring 1.2 Boolean Read-only

Location 1.2 String Read/write
MAPIOBJECT 1.2 IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

MeetingResponseSta
tus

1.2 Long Read/write

MeetingStatus 1.2 Long Read/write

Organizer 1.2 AddressEntry object Read-only
Parent 1.2 Messages collection

object
Read-only

ReadReceipt 1.2 Boolean Read/write
Recipients 1.2 Recipients object or

Recipients collection
object

Read/write

ReminderMinutesBef
oreStart

1.2 Long Read/write

ReminderSet 1.2 Boolean Read/write

ReplyTime 1.2 Variant (vbDate
format)

Read/write

ResponseRequested 1.2 Boolean Read/write

Sender 1.2 AddressEntry object Read/write
Sensitivity 1.2 Long Read/write
Sent 1.2 Boolean Read/write
Session 1.2 Session object Read-only
Signed 1.2 Boolean Read/write
Size 1.2 Long Read-only
StartTime 1.2 Variant (vbDate

format)
Read/write

StoreID 1.2 String Read-only
Subject 1.2 String Read/write
Submitted 1.2 Boolean Read/write
Text 1.2 String Read/write
TimeCreated 1.2 Variant (vbDate

format)
Read-only

TimeExpired 1.2 Variant (vbDate Read/write

format)
TimeLastModified 1.2 Variant (vbDate

format)
Read-only

TimeReceived 1.2 Variant (vbDate
format)

Read/write

TimeSent 1.2 Variant (vbDate
format)

Read/write

Type 1.2 String Read/write
Unread 1.2 Boolean Read/write

Methods

Name

Available
in version

Parameters

ClearRecurrencePatt
ern

1.2 (none)

CopyTo 1.2 folderID as String,
(optional) storeID as String

Delete 1.2 (none)
GetRecurrencePatter
n

1.2 (none)

IsSameAs 1.2 objMessage2 as Object
MoveTo 1.2 folderID as String,

(optional) storeID as String
Options 1.2 (optional) parentWindow as Long
Respond 1.2 RespondType as Long
Send 1.2 (optional) saveCopy as Boolean,

(optional) showDialog as Boolean,
(optional) parentWindow as Long

Update 1.2 (optional) makePermanent as
Boolean,
(optional) refreshObject as Boolean

Remarks
An AppointmentItem object is distinguished from a Message object by its Type property containing
IPM.Appointment.

New AppointmentItem objects can only be created by using the Add method on a Messages collection
obtained from a Folder object reserved for calendar data:

 Dim objSession As Session
 Dim objCalendarFolder As Folder
 Dim objAppointments As Messages
 Dim objNewAppointment As AppointmentItem

 Set objCalendarFolder = objSession.GetDefaultFolder _
 (CdoDefaultFolderCalendar)
 Set objAppointments = objCalendarFolder.Messages
 Set objNewAppointment = objAppointments.Add

An appointment can be obtained from its parent Messages collection using the collection’s Item
property. To get to the Messages collection in a folder, use the Folder object’s Messages property. If
you know an appointment’s unique identifier, you can obtain it directly from the Session object’s

GetMessage method.

You can apply a MessageFilter object to a Messages collection containing appointments. However, the
current version of CDO only supports filtering on the EndTime and StartTime properties. An attempt to
filter on any other properties, including the inherited Message object properties, returns
CdoE_TOO_COMPLEX.

You can turn an appointment into a meeting by setting its MeetingStatus property to CdoMeeting and
sending it to one or more recipients. The appointment becomes a meeting as of the moment you call its
Send method, at which time CDO instantiates a MeetingItem object and identifies you in the
appointment's Organizer property. The MeetingItem object becomes a member of the Messages
collection of each recipient's Inbox. They can treat it programmatically like the Message objects in the
collection.

You should not send a meeting request for an appointment to any recipient that represents a
distribution list, because the status of its individual members cannot be returned to you. You should
only send the meeting request to single messaging users. You can determine if a messaging user is a
distribution list by checking the DisplayType property of the AddressEntry object representing that
user.

To cancel a meeting, you set the MeetingStatus property to CdoMeetingCanceled and send it to all
the recipients. Once you have sent the cancellation you can release the underlying AppointmentItem
object, typically by using the Set statement to assign it to Nothing. Note that simply releasing the
appointment does not cancel the meeting, and in fact can produce unexpected behavior. You should
always cancel first. Only the organizer of a meeting can cancel or release it.

You can cause an appointment or meeting to become recurring by calling its GetRecurrencePattern
method, which sets the IsRecurring property to True and returns a child RecurrencePattern object
describing the recurrence characteristics. At first the RecurrencePattern object is populated with the
default values indicated in its property descriptions, but you can change them as desired. The
appointment or meeting can be restored to nonrecurring status with the ClearRecurrencePattern
method, which also resets IsRecurring to False.

Making an appointment recurring does not create any additional AppointmentItem objects for the
recurrences. An individual recurrence can be instantiated by using a MessageFilter object to restrict
CdoPR_START_DATE and CdoPR_END_DATE to the start and end of the desired occurrence, and
then calling the Messages collection's GetFirst method.

The purpose of instantiating an individual recurrence is to edit it and make it different from other
recurrences in the series. If you intend to change its StartTime or EndTime property, you should keep
these rules in mind:

· Two instances of a recurring appointment must not be on the same day.
· An instance must not be moved before a previous instance or after a subsequent instance.
· Instances must not be overlapped in time.

If these rules are not followed, the next call to Send or Update returns an error.

An individual recurrence's GetRecurrencePattern method returns the same RecurrencePattern object
as does the original appointment's GetRecurrencePattern. However, the individual recurrence is not
the parent of the recurrence pattern. The original AppointmentItem object is the parent and in fact is
obtained from the RecurrencePattern object through its Parent property:

 Dim objRecAppt As AppointmentItem ' an individual recurrence
 Dim objOrigAppt As AppointmentItem ' the original appointment
 Set objOrigAppt = objRecAppt.GetRecurrencePattern.Parent

To edit an entire recurring series of appointments, you modify the appropriate properties on either the
original AppointmentItem object or its child RecurrencePattern object. To edit an individual recurrence

only, you instantiate it and modify its AppointmentItem properties. All changes take effect when you call
the appointment's Send or Update method.

The original appointment's StartTime, EndTime, and AllDayEvent properties are disabled whenever
its IsRecurring property is True. Any attempt to access them while in this state returns
CdoE_NO_SUPPORT. You must use the recurrence pattern's PatternStartDate, PatternEndDate,
StartTime, and EndTime properties to edit a recurring series.

An AppointmentItem object can be rendered into HTML hypertext using the CDO Rendering
ObjectRenderer object. To specify this, set the object renderer's DataSource property to the
AppointmentItem object itself. The individual properties that can be rendered with the RenderProperty
method are indicated in the AppointmentItem and Message object property descriptions.

One or more appointments can also be rendered by the CDO Rendering CalendarView object's
RenderAppointments method. The ContainerRenderer object's DataSource property must be set to
the parent Messages collection and its CurrentView property to a calendar view.

An AppointmentItem object can also be rendered as the parent of a Recipients collection, using the
ContainerRenderer object. The individual properties that can be rendered with the RenderProperty
method are indicated in the AppointmentItem and Message object property descriptions.

AllDayEvent Property (AppointmentItem
Object)   

The AllDayEvent property indicates whether this appointment is an all-day or multiple-day event.
Read/write.

Syntax
objAppointment.AllDayEvent

Data Type
Boolean

Remarks
The AllDayEvent property contains True if the appointment takes up one or more entire days in the
calendar without any free blocks. It contains False if the appointment is limited to a specified start time
and a duration that is not a multiple of 24 hours.

If you change AllDayEvent from False to True, the appointment's StartTime is automatically reset to
the midnight (00:00) preceding the current starting date/time, and EndTime is reset to the midnight
following the current ending date/time. The resulting Duration is a nonzero multiple of 24 hours. If the
appointment underlies a meeting, these calculations are performed in the current time zone of the
appointment's organizer.

If you subsequently change StartTime or EndTime, you are not required to set them to midnight, but
you must set them to the same time of day, such that their values differ by a nonzero multiple of 24
hours. If you do not comply with this restriction while AllDayEvent is True, you get a return of
CdoE_INVALID_OBJECT when you call the appointment's Update method.

If you change AllDayEvent from True to False, the appointment's StartTime is automatically reset to
the current value of the "BusinessDayStartTime" option on the current starting date, and EndTime is
reset to 30 minutes past "BusinessDayStartTime" on the current ending date. Thus the appointment
still covers the same number of days as it did before. The "BusinessDayStartTime" option can be
obtained from the Session object's GetOption method and altered with the SetOption method. If
AllDayEvent was already False, StartTime and EndTime are not modified.

If an appointment is viewed through Microsoft Schedule+ and its StartTime and EndTime are a
multiple of 24 hours apart, its AllDayEvent property is forced True by Schedule+. The starting and
ending times are not changed.

If you make this appointment recurring by calling its GetRecurrencePattern method, its StartTime,
EndTime, and AllDayEvent properties are disabled, and any attempt to access them returns
CdoE_NO_SUPPORT. Calling ClearRecurrencePattern returns the appointment to nonrecurring
status, and these properties can once again be accessed. However, their values may have changed if
the corresponding properties on the RecurrencePattern object were edited while the appointment was
recurring.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

BusyStatus Property (AppointmentItem
Object)   

The BusyStatus property returns or sets the busy status of this messaging user for this appointment.
Read/write.

Syntax
objAppointment.BusyStatus

Data Type
Long

Remarks
The BusyStatus property can have exactly one of the following values:

BusyStatus value

Decimal

value

Description

CdoFree 0 This messaging user has no
conflicting commitments during the
time span of this appointment.

CdoTentative 1 This messaging user has at least
one tentative commitment during the
time span of this appointment.

CdoBusy 2 This messaging user has at least
one confirmed commitment during
the time span of this appointment.

CdoOutOfOffice 3 This messaging user is to be
considered out-of-office (OOF) for at
least part of the time span of this
appointment.

If two or more conflicting commitments are present during the time span of this appointment, the
highest applicable decimal value is returned, representing the most committed state. For example, if
the user has one tentative commitment and one confirmed commitment during the time span, the
BusyStatus property returns CdoBusy, that is, the highest level of commitment.

If an appointment is viewed through Microsoft Schedule+ and its BusyStatus property has a value of
CdoTentative or CdoOutOfOffice, it is handled by Schedule+ as if it were CdoBusy.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

ClearRecurrencePattern Method
(AppointmentItem Object)   

The ClearRecurrencePattern method removes any recurrence settings from this appointment.

Syntax
objAppointment.ClearRecurrencePattern()

Remarks
The ClearRecurrencePattern method sets the IsRecurring property to False and dissociates this
AppointmentItem object from any RecurrencePattern object it might have had assigned to it.

ClearRecurrencePattern calls Release on the RecurrencePattern object. This is normally the final
Release because the RecurrencePattern object applies only to its parent appointment and cannot be
used for any other AppointmentItem object. The RecurrencePattern object is removed from memory in
response to its final Release.

The ClearRecurrencePattern method is only valid on a nonrecurring appointment or an appointment
originating a recurring series. An attempt to call it on an individual recurrence in a series returns
CdoE_NOT_SUPPORTED.

The effect of the ClearRecurrencePattern operation is not permanent until you call the Update
method on the AppointmentItem object.

Calling ClearRecurrencePattern does not immediately invalidate references to individual recurrences
that have been instantiated. You can still access the properties and methods of an individual
recurrence, but when you call Update to make your changes persistent, you get a return of
CdoE_INVALID_OBJECT.

Duration Property (AppointmentItem
Object)   

The Duration property returns the duration of this appointment in minutes. Read-only.

Syntax
objAppointment.Duration

Data Type
Long

Remarks
The Duration property contains the number of minutes the appointment is to last. The minimum value
is 0 and the maximum value is 1,490,000, which is treated as infinity. Exceeding these limits can result
in a return of CdoE_INVALID_PARAMETER. The default value of Duration is 30 minutes.

Since Duration is read-only, you must change the StartTime or EndTime property to cause a new
value to be calculated for Duration.

Among its possible values, the Duration property can be any multiple of 24 hours that does not exceed
its maximum value. If an appointment has such a value for Duration, Microsoft® Schedule+ interprets it
as lasting exactly 24 hours. That is, Schedule+ treats Duration values of 0, 1440, 2880, 4320, and so
on as if they were 1440.

Example
This code fragment causes CDO to calculate a value of 90 minutes for the Duration property of an
appointment:

Dim objAppt As Appointment
' ...
objAppt.EndTime = DateAdd("n", 90, objAppt.StartTime) ' n for minutes!

EndTime Property (AppointmentItem
Object)   

The EndTime property returns or sets the ending date/time of this appointment. Read/write.

Syntax
objAppointment.EndTime

Data Type
Variant (vbDate format)

Remarks
The EndTime property uses both the date and the time component of the vbDate format. Its default
value is the current time rounded up to the next half hour.

The EndTime property ignores seconds and truncates the time component to the minute.

The value of EndTime must be greater than that of the StartTime property. If you make settings that
violate this constraint, your next call to the Update method returns CdoE_INVALID_OBJECT.

If you change the value of EndTime, Duration is automatically recalculated from the new EndTime
and unchanged StartTime values.

You can apply a MessageFilter object to a Messages collection containing AppointmentItem objects
and filter them on the StartTime and EndTime properties. The filter passes appointments starting on
or before the date/time in CdoPR_START_DATE and ending on or after the date/time in
CdoPR_END_DATE.

If you make this appointment recurring by calling its GetRecurrencePattern method, its StartTime,
EndTime, and AllDayEvent properties are disabled, and any attempt to access them returns
CdoE_NO_SUPPORT. Calling ClearRecurrencePattern returns the appointment to nonrecurring
status, and these properties can once again be accessed. However, their values may have changed if
the corresponding properties on the RecurrencePattern object were edited while the appointment was
recurring.

The appointment's StartTime and EndTime properties are always held internally in UTC (Coordinated
Universal Time, also known as GMT). By contrast, the RecurrencePattern object's StartTime and
EndTime properties are always held internally in the organizer's current time zone. However, all these
properties are converted to the local messaging user's current time zone whenever they are displayed
or read programmatically.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

The EndTime property corresponds to the MAPI property PR_END_DATE.

GetRecurrencePattern Method
(AppointmentItem Object)   

The GetRecurrencePattern method returns a RecurrencePattern object defining the recurrence
attributes of an appointment.

Syntax
Set objRecurPatt = objAppointment.GetRecurrencePattern()

objRecurPatt
On successful return, contains the RecurrencePattern object.

objAppointment
Required. This AppointmentItem object.

Remarks
If the appointment had already been specified as recurring, the GetRecurrencePattern method returns
the RecurrencePattern object containing the current recurrence characteristics. If the appointment was
previously nonrecurring, it is made recurring and GetRecurrencePattern returns a new
RecurrencePattern object populated with the default values indicated in its property descriptions.

The IsRecurring property is set to True when the GetRecurrencePattern method is called.

Note You cannot use GetRecurrencePattern to test whether an appointment is recurring, because
it always returns a RecurrencePattern object and forces the appointment to be recurring. Instead, you
should test for recurrence using the IsRecurring property.

You can use the ClearRecurrencePattern method to return the appointment to nonrecurring status.

Example
This code fragment makes an appointment recurring and changes its Subject property. It is equally
valid for a nonrecurring appointment, an appointment originating a recurring series, and an individual
recurrence in that series. If objAppt is nonrecurring before executing this fragment, it becomes the
originator of a recurring series. If it is already an originator, doing objOrig.Update is equivalent to doing
objAppt.Update.

 Dim objAppt, objOrig As AppointmentItem
 Dim objRecPatt As RecurrencePattern
 ' objAppt can be solitary, an originator, or a recurrence
 Set objRecPatt = objAppt.GetRecurrencePattern
 With objRecPatt
 ' set recurrence pattern properties as desired
 End with
 Set objOrig = objRecPatt.Parent
 With objOrig
 .Subject = "New subject for entire recurring series"
 .Update ' necessary for any changes to take effect
 End with

Note If objAppt in the preceding fragment is an individual recurrence, its properties are not
changed by objOrig.Update. This is because changes you make in the original appointment only
affect recurrences instantiated after the update. Because objAppt was already instantiated before the
update, its Subject property is not updated when objOrig.Subject is. To avoid this problem, you can
refresh objAppt by repeating the Set statement that instantiated it in the first place.

IsRecurring Property (AppointmentItem
Object)   

The IsRecurring property indicates whether this appointment is specified as recurring. Read-only.

Syntax
objAppointment.IsRecurring

Data Type
Boolean

Remarks
The IsRecurring property contains True if the appointment is recurring and False if it is not.
IsRecurring defaults to False in a newly created AppointmentItem object.

IsRecurring is set to True when the GetRecurrencePattern method is called and to False when the
ClearRecurrencePattern method is called.

Location Property (AppointmentItem
Object)   

The Location property returns or sets the location of this appointment. Read/write.

Syntax
objAppointment.Location

Data Type
String

Remarks
The Location property contains a string representing the specific location in which this appointment is
scheduled, such as an office or conference room. It is typically set by the messaging user that creates
the MeetingItem object from the appointment. The initiating messaging user is available through the
Organizer property.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

The Location property corresponds to the MAPI property PR_OFFICE_LOCATION.

MeetingResponseStatus Property
(AppointmentItem Object)   

The MeetingResponseStatus property returns or sets the overall status of this appointment for this
messaging user. Read/write.

Syntax
objAppointment.MeetingResponseStatus

Data Type
Long

Remarks
You turn an appointment into a meeting by setting its MeetingStatus property to CdoMeeting and
sending it to one or more recipients. Their responses to your meeting request come back to you in the
form of MeetingItem objects with the MeetingType property set to CdoMeetingResponse. You can
call GetAssociatedAppointment on each meeting response and read the returned appointment's
MeetingResponseStatus property to find out the response of that individual recipient.

The MeetingResponseStatus property can have exactly one of the following values:

MeetingResponseStatus
value

Decimal

value

Description

CdoResponseNone 0 This appointment has not been
made into a meeting.

CdoResponseNotResponde
d

5 This messaging user has not
responded to the meeting
request.

CdoResponseAccepted 3 This messaging user has
responded to the meeting
request with a firm acceptance.

CdoResponseDeclined 4 This messaging user has
responded to the meeting
request with a declination.

CdoResponseTentative 2 This messaging user has
responded to the meeting
request with a tentative
acceptance.

CdoResponseOrganized 1 This messaging user is the
organizer, the user that initiated
the meeting request.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

MeetingStatus Property
(AppointmentItem Object)   

The MeetingStatus property returns or sets the overall meeting status of this appointment. Read/write.

Syntax
objAppointment.MeetingStatus

Data Type
Long

Remarks
The MeetingStatus property is used to indicate whether this appointment represents a meeting, and if
so, what its status is.

MeetingStatus can have exactly one of the following values:

MeetingStatus value

Decimal

value

Description

CdoNonMeeting 0 This appointment has been
scheduled by this messaging user
alone and does not represent a
meeting (default value).

CdoMeeting 1 The appointment has been or is to
be made into a meeting.

CdoMeetingCanceled 5 The meeting organizer has
canceled the meeting.

CdoMeetingReceived 3 The requests for the meeting have
been received by the intended
attendees.

When an AppointmentItem object is first created, its MeetingStatus property contains
CdoNonMeeting. The appointment becomes a meeting when you set MeetingStatus to CdoMeeting
and send it to one or more recipients. This creates a MeetingItem object for the meeting. The meeting
request is usually in your Sent Items folder, and the meeting responses from the recipients appear in
your Inbox.

You should not send a meeting request to any recipient that represents a distribution list, because the
status of its individual members cannot be returned to you. You should only send the meeting request
to single messaging users. You can determine if a messaging user is a distribution list by checking the
DisplayType property of the AddressEntry object representing that user.

To cancel a meeting, you set the MeetingStatus property to CdoMeetingCanceled and send it to all
the recipients. Once you have sent the cancellation you can release the underlying AppointmentItem
object, typically by using the Set statement to assign it to Nothing. Note that simply releasing the
appointment does not cancel the meeting, and in fact can produce unexpected behavior. Only the
organizer of a meeting can cancel or release it.

Before you call the appointment's Send method, you must set MeetingStatus to CdoMeeting or

CdoMeetingCanceled. If MeetingStatus contains any other value or is not set, Send returns
CdoE_NO_SUPPORT.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

Organizer Property (AppointmentItem
Object)   

The Organizer property returns the messaging user that initiated a meeting from this appointment.
Read-only.

Syntax
objAppointment.Organizer

Data Type
Object (AddressEntry)

Remarks
The Organizer property returns an AddressEntry object representing the messaging user that created
the MeetingItem object from this appointment.

The Organizer property is automatically set at the moment the AppointmentItem object is created.

ReminderMinutesBeforeStart Property
(AppointmentItem Object)   

The ReminderMinutesBeforeStart property indicates how many minutes before the start of this
appointment a reminder should be issued. Read/write.

Syntax
objAppointment.ReminderMinutesBeforeStart

Data Type
Long

Remarks
The ReminderMinutesBeforeStart property must contain a positive integer. It is not enabled unless
the ReminderSet property contains True. ReminderMinutesBeforeStart defaults to 15 minutes in a
newly created AppointmentItem object.

Note If you set the ReminderMinutesBeforeStart property on an appointment and then make the
appointment into a meeting by sending it to one or more recipients, the value of
ReminderMinutesBeforeStart for each recipient depends on how that recipient processes the
meeting request. If the recipient uses a CDO Library application or Microsoft® Outlook™, your setting
of ReminderMinutesBeforeStart is preserved. If the recipient uses Microsoft® Schedule+,
ReminderMinutesBeforeStart is reset to the default value of 15 minutes. In either case, the value
can be altered as desired on the recipient's version of the AppointmentItem object.

Schedule+ also resets ReminderMinutesBeforeStart to 15 minutes for any recipient that resets
ReminderSet to False.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

ReminderSet Property
(AppointmentItem Object)   

The ReminderSet property indicates whether this messaging user is to be reminded of this
appointment. Read/write.

Syntax
objAppointment.ReminderSet

Data Type
Boolean

Remarks
The ReminderSet property contains True if a reminder has been set for this appointment and False
otherwise. ReminderSet defaults to True in a newly created AppointmentItem object.

The ReminderMinutesBeforeStart property is not enabled unless the ReminderSet property contains
True.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

ReplyTime Property (AppointmentItem
Object)   

The ReplyTime property returns or sets the date/time by which action on this appointment is expected.
Read/write.

Syntax
objAppointment.ReplyTime

Data Type
Variant (vbDate format)

Remarks
The ReplyTime property does not have a default value. If you attempt to read it when it has never
been set, it returns CdoE_NOT_FOUND.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

The ReplyTime property corresponds to the MAPI property PR_REPLY_TIME.

Respond Method (AppointmentItem
Object)   

The Respond method returns a MeetingItem object for responding to a meeting request for an
appointment.

Syntax
Set objMeetResp = objAppointment.Respond(RespondType)

objMeetResp
Object. On successful return, contains a MeetingItem object that can be used to respond to the
meeting request.

objAppointment
Required. An AppointmentItem object returned by the GetAssociatedAppointment method of a
MeetingItem object.

RespondType
Required. Long. The value to send as the response.

Remarks
The Respond method prepares a meeting response which can be sent in answer to a meeting request
using the Send method. The MeetingItem object has as a primary recipient the messaging user that
created the requesting MeetingItem object from this appointment. The initiating user is available
through the Organizer property.

The RespondType parameter can have exactly one of the following values:

RespondType setting

Decimal

value

Description

CdoResponseAccepted 3 This messaging user wishes to
firmly accept the meeting
request.

CdoResponseDeclined 4 This messaging user wishes to
decline the meeting request.

CdoResponseTentative 2 This messaging user wishes to
tentatively accept the meeting
request.

The message class of the response you send depends on the value you specify in the RespondType
parameter. It is IPM.Schedule.Meeting.Resp.Pos if you accept, IPM.Schedule.Meeting.Resp.Neg if you
decline, or IPM.Schedule.Meeting.Resp.Tent if you accept tentatively.

The only AppointmentItem objects on which you can call the Respond method are those returned by
the GetAssociatedAppointment method of a MeetingItem object. An attempt to call Respond on any
other AppointmentItem object returns CdoE_NO_SUPPORT.

You can also call the Respond method directly from the MeetingItem object.

Example
See the example for the MeetingItem object's Respond method.

ResponseRequested Property
(AppointmentItem Object)   

The ResponseRequested property indicates whether a response is requested for this appointment.
Read/write.

Syntax
objAppointment.ResponseRequested

Data Type
Boolean

Remarks
The ResponseRequested property contains True if the messaging user that created a MeetingItem
object from this appointment wishes a response. It contains False if there is no request for a response.
ResponseRequested defaults to True.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

StartTime Property (AppointmentItem
Object)   

The StartTime property returns or sets the starting date/time of this appointment. Read/write.

Syntax
objAppointment.StartTime

Data Type
Variant (vbDate format)

Remarks
The StartTime property uses both the date and the time component of the vbDate format. Its default
value is the current time rounded down to the preceding half hour.

The StartTime property ignores seconds and truncates the time component to the minute.

The value of StartTime must be less than that of the EndTime property. If you make settings that
violate this constraint, your next call to the Update method returns CdoE_INVALID_OBJECT.

If you change the value of StartTime, Duration is automatically recalculated from the new StartTime
and unchanged EndTime values.

You can apply a MessageFilter object to a Messages collection containing AppointmentItem objects
and filter them on the StartTime and EndTime properties. The filter passes appointments starting on
or before the date/time in CdoPR_START_DATE and ending on or after the date/time in
CdoPR_END_DATE.

If you make this appointment recurring by calling its GetRecurrencePattern method, its StartTime,
EndTime, and AllDayEvent properties are disabled, and any attempt to access them returns
CdoE_NO_SUPPORT. Calling ClearRecurrencePattern returns the appointment to nonrecurring
status, and these properties can once again be accessed. However, their values may have changed if
the corresponding properties on the RecurrencePattern object were edited while the appointment was
recurring.

The appointment's StartTime and EndTime properties are always held internally in UTC (Coordinated
Universal Time, also known as GMT). By contrast, the RecurrencePattern object's StartTime and
EndTime properties are always held internally in the organizer's current time zone. However, all these
properties are converted to the local messaging user's current time zone whenever they are displayed
or read programmatically.

Changes you make to properties on an AppointmentItem object take effect when you call the Send or
Update method.

The StartTime property corresponds to the MAPI property PR_START_DATE.

Attachment Object
The Attachment object represents a document that is an attachment of a message.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Attachments collection
Child objects: Fields collection
Default property: Name

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
Fields 1.1 Field object or Fields

collection object
Read-only

Index 1.0.a Long Read-only
MAPIOBJECT 1.1 IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

Name 1.0.a String Read/write
Parent 1.0.a Attachments collection

object
Read-only

Position 1.0.a Long Read/write
Session 1.0.a Session object Read-only
Source 1.0.a String or Message

object
Read/write

 Type 1.0.a Long Read/write

Methods

Name

Available
in version

Parameters

Delete 1.0.a (none)
IsSameAs 1.1 objAttach2 as Object

ReadFromFile 1.0.a fileName as String
WriteToFile 1.0.a fileName as String

Remarks
An attachment is an object, such as a file or an OLE object, that is associated with and transmitted with

a Message object. It is assigned a particular location within the message, specified by the Position
property, and overwrites the character at that position when the message is displayed to a messaging
user. Typically, a placeholder such as an icon is displayed instead of the attachment's contents, until
the user requests that the attachment be opened and displayed in its entirety.

The Microsoft® CDO Library does not manage the actual display of the attachment or its placeholder.
The properties of the Attachment object simply provide information which the displaying application can
use to find and open the attachment, select a suitable placeholder, and convert the attachment's
contents into a display.

An Attachment object can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer
object. To specify this, set the object renderer's DataSource property to the Attachment object itself.
The individual properties that can be rendered with the RenderProperty method are indicated in the
Attachment object property descriptions.

Delete Method (Attachment Object)   

The Delete method removes the Attachment object from the Attachments collection.

Syntax
objAttachment.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to the Attachment object. If you have another reference to the attachment, you
can still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another attachment.

The final Release on the Attachment object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

When you delete a member of a collection, the collection is immediately refreshed, meaning that its
Count property is reduced by one and its members are reindexed. To access a member following the
deleted member, you must use its new index value. For more information, see Looping Through a
Collection.

The effect of the Delete operation is not permanent until you use the Update, Send, or Delete method
on the Message object to which this attachment belongs.

The immediate parent of this Attachment object is an Attachments collection, which is a child of the
message. You can delete all the message’s attachments by calling the collection’s Delete method.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first Attachment object. That reference survives the call to Delete and has to be reassigned. The
second Attachment object is deleted without creating another reference, and no other action is
necessary.

' assume valid Message object
Set objAttachment = objMessage.Attachments.Item(1)
objAttachment.Delete ' still have a reference from Set statement
' ... other operations on objAttachment possible but pointless ...
Set objAttachment = Nothing ' necessary to remove reference
' ...
objMessage.Attachments.Item(2).Delete ' no reference to remove

Fields Property (Attachment Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objAttachment.Fields

objAttachment.Fields(index)

objAttachment.Fields(proptag)

objAttachment.Fields(name)

index
Short integer (less than or equal to 65,535). Specifies the index within the Fields collection.

proptag
Long integer (greater than or equal to 65,536). Specifies the property tag value for the MAPI
property to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object (Field or Fields collection)

Remarks
The Fields property returns one or all of the fields associated with an Attachment object. Each field
typically corresponds to a MAPI property. Data types are preserved, except that MAPI counted binary
properties are converted to and from character strings representing hexadecimal digits.

The Fields property provides a generic access mechanism that allows Microsoft® Visual Basic® and
Microsoft® Visual C++® programmers to retrieve the value of a MAPI property using either its name or
its MAPI property tag. For access with the property tag, use objAttachment.Fields(proptag), where
proptag is the 32-bit MAPI property tag associated with the property, such as CdoPR_ATTACH_SIZE.
To access a named property, use objAttachment.Fields(name), where name is a string that represents
the custom property name.

Although the Fields property itself is read-only, the collection it returns can be accessed in the normal
manner through its Add and Delete methods, and the properties on its member Field objects retain
their respective read/write or read-only accessibility.

The Fields property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

Index Property (Attachment Object)   

The Index property returns the index number for the Attachment object within the Attachments
collection. Read-only.

Syntax
objAttachment.Index

Data Type
Long

Remarks
The Index property indicates this attachment’s position within the parent Attachments collection. It can
be saved and used later with the collection’s Item property to reselect the same attachment in the
collection.

The first object in the collection has an Index value of 1.

An index value should not be considered a static value that remains constant for the duration of a
session. It can be affected when other attachments are added and deleted. The index value is changed
following an update to the Message object to which the Attachments collection belongs.

The Index property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

Example
Function Attachments_GetByIndex()
Dim lIndex As Long
Dim objOneAttach As Attachment ' assume valid attachment
' set error handler here
If objAttachColl Is Nothing Then
 MsgBox "Must select an Attachments collection"
 Exit Function
End If
If 0 = objAttachColl.Count Then
 MsgBox "Must select collection with 1 or more attachments"
 Exit Function
End If
' prompt user for index; for now, use 1
Set objOneAttach = objAttachColl.Item(1)
MsgBox "Selected attachment 1: " & objOneAttach.Name
lIndex = objOneAttach.Index ' save index to retrieve it later
'
' ... get same attachment object later
Set objOneAttach = objAttachColl.Item(lIndex)
If objOneAttach Is Nothing Then
 MsgBox "Error: could not reselect the attachment"
Else
 MsgBox "Reselected attachment " & lIndex & _
 " using index: " & objOneAttach.Name
End If
Exit Function

IsSameAs Method (Attachment Object)   

The IsSameAs method returns True if the Attachment object is the same as the Attachment object
being compared against.

Syntax
objAttachment.IsSameAs(objAttach2)

objAttachment
Required. This Attachment object.

objAttach2
Required. The Attachment object being compared against.

Remarks
Two Attachment objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object in the underlying messaging system. Two objects with the same value are
still considered different if they do not instantiate the same physical object, for example if one is a copy
of the other. In such a case IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. This is necessary because, although MAPI requires all entry identifiers to be
unique, it does not require two of them identifying the same object to be identical. A generic
comparison of any two objects' unique identifiers is also available with the Session object’s
CompareIDs method.

MAPIOBJECT Property (Attachment
Object)   

The MAPIOBJECT property returns an IUnknown pointer to the Attachment object. Not available to
Microsoft® Visual Basic® applications. Read/write.

Syntax
objAttachment.MAPIOBJECT

Data Type
Variant (vbDataObject format)

Remarks
The MAPIOBJECT property is not available to Visual Basic programs. It is accessible only by C/C++
programs that deal with IUnknown objects. Visual Basic supports the IDispatch interface and not
IUnknown. The MAPIOBJECT property is an IUnknown object that returns an IAttach interface in
response to QueryInterface. For more information, see Introduction to Automation and How
Programmable Objects Work. Also see the "COM and ActiveX Object Services" section of the Microsoft
Platform SDK.

The MAPIOBJECT property does not correspond to a MAPI property and cannot be rendered into
HTML hypertext by the CDO Rendering Library.

Name Property (Attachment Object)   

The Name property returns or sets the display name of the Attachment object as a string. Read/write.

Syntax
objAttachment.Name

The Name property is the default property of an Attachment object, meaning that objAttachment is
syntactically equivalent to objAttachment.Name in Microsoft® Visual Basic® code.

Data Type
String

Remarks
Before setting or changing the Name property, you should be sure that the Source property is already
set. Setting Source after setting Name can result in an incorrect value for Name.

The Name property can also be set at the time of creation of the attachment by supplying the name
parameter to the Add method of the Attachments collection.

The Name property corresponds to the MAPI property PR_ATTACH_LONG_FILENAME if it is present,
and PR_ATTACH_FILENAME otherwise. It can be rendered into HTML hypertext using the CDO
Rendering ObjectRenderer object. To specify this, set the object renderer's DataSource property to
this Attachment object and the property parameter of the RenderProperty method to either
CdoPR_ATTACH_FILENAME or CdoPR_ATTACH_LONG_FILENAME.

Example
See the example for the Attachment object’s Index property.

Position Property (Attachment Object)   

The Position property returns or sets the position of the attachment within the text of the message.
Read/write.

Syntax
objAttachment.Position

Data Type
Long

Remarks
The Position property is a long integer describing where the attachment should be displayed in the
message text. The attachment overwrites the character present at that position. Applications cannot
place two attachments in the same location within a message, and attachments cannot be placed
beyond the end of the message text.

A positive value of Position represents an index to the character within the message text to be
replaced by the attachment. The first text character has an index of 1. The value 0 indicates that the
attachment is present but should not be made visible in the displayed message. The value -1 indicates
that the attachment is not handled using the Position property.

CDO does not manage the actual display of the attachment within the message. The Position property
simply provides a location for the displaying application, which must find and replace the appropriate
character in the message's Text property.

The Position property can also be set at the time of creation of the attachment by supplying the
position parameter to the Add method of the Attachments collection.

The Position property corresponds to the MAPI property PR_RENDERING_POSITION. It can be
rendered into HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the
object renderer's DataSource property to this Attachment object and the property parameter of the
RenderProperty method to CdoPR_RENDERING_POSITION.

Note The MAPI rendering position is zero-based, meaning that the first character in the message
text is considered to be at position zero. All CDO string indexes, including the Position property, are
one-based. If you render the Position property into HTML, the MAPI value is used for the rendering
instead of the CDO value. This could potentially lead to confusion regarding which message text
character is to be replaced with the attachment.

Example
' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = CdoFileLink
 .Position = 0 ' place at beginning of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type CdoFileLink"

ReadFromFile Method (Attachment
Object)   

The ReadFromFile method loads the contents of an attachment from a file.

Syntax
objAttachment.ReadFromFile(fileName)

objAttachment
Required. The Attachment object.

fileName
Required. String. The full path and file name to read from, for example C:\DOCUMENT\
BUDGET.XLS.

Remarks
The ReadFromFile method replaces the existing contents of the Attachment object, if any.

The ReadFromFile method operates differently, depending on the value of the Attachment object’s
Type property. The following table describes its operation:

Attachment Type
property

ReadFromFile operation

CdoFileData Copies the contents of the specified file to the
attachment.

CdoFileLink (Not supported)
CdoOLE Reads the attachment from the specified file,

which must be in OLE docfile format. The file
could have been previously written by the
WriteToFile method with an CdoOLE type
setting.

CdoEmbeddedMessage (Not supported)

The term “OLE docfile” indicates that the file is written by an application such as Microsoft® Word
version 6.0 or later that writes files using the OLE IStorage and IStream interfaces.

Note The current version of CDO does not support ReadFromFile for CdoFileLink or
CdoEmbeddedMessage attachments. These calls generate the run-time error
CdoE_NO_SUPPORT.

You can load the contents of an attachment when you first create it by specifying the type and source
parameters when you call the Add of the Attachments collection.

Source Property (Attachment Object)   

The Source property returns or sets information specifying the location of the data for the attachment.
Read/write.

Syntax
objAttachment.Source

Data Type
String or Object (Message)

Remarks
The Source property returns or sets the full path and file name of the file containing the data for
CdoFileLink attachments. It returns or sets the OLE class name of the attachment for CdoOLE
attachments. For CdoEmbeddedMessage attachments, the Source property is set with the ID
property of the message to be embedded, but it returns the Message object itself. An embedded
message is copied into the attachment at creation time.

Note that the Source property is a string except when it returns the source of an
CdoEmbeddedMessage attachment.

CDO does not synchronize the Source property and the ReadFromFile method. For CdoFileData and
CdoOLE attachments, when you change the Source property to indicate a different file, you must also
explicitly call the ReadFromFile method to update the object data. Similarly, when you call
ReadFromFile with data from a different file, you must change the Source property.

The return value or setting of the Source property depends on the value of the Type property, as
described in the following table:

Type property Source property
CdoFileData Not used; contains an empty string. The

source for this type of attachment must be
specified in the call to the Add method.

CdoFileLink Specifies a full path name in a universal
naming convention (UNC) format, such as \\
SALES\INFO\PRODUCTS\NEWS.DOC.

CdoOLE Specifies the registered OLE class name of
the attachment, such as Word.Document or
PowerPoint.Show.

CdoEmbeddedMessage Specifies the unique identifier of the message
to be embedded; returns the embedded
Message object.

The UNC format is suitable for sending attachments to recipients who have access to a common file
server.

Note Certain of the Attachment object's properties must be set in a specific order. You must set
Type before you set Source, and you must set Source before you set Name. Failure to do this can
result in a return of CdoE_NOT_FOUND from the ReadFromFile or WriteToFile method, or in an
incorrect value for Name.

The Source property can also be set at the time of creation of the attachment by supplying the source

parameter to the Add method of the Attachments collection. For attachments of type CdoFileData, the
Add method is the only place the source file can be specified. However, you can change it later with
the Attachment object’s ReadFromFile method.

The Source property corresponds to the MAPI property PR_ATTACH_PATHNAME. It can be rendered
into HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object
renderer's DataSource property to this Attachment object and the property parameter of the
RenderProperty method to CdoPR_ATTACH_PATHNAME.

Example
' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = CdoFileLink
 .Position = 0 ' place at beginning of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type CdoFileLink"

Type Property (Attachment Object)   

The Type property describes the attachment type. Read/write.

Syntax
objAttachment.Type

Data Type
Long

Remarks
The following attachment types are supported:

Type property Value Description
CdoFileData 1 Attachment is the contents of a file.

(Default value.)
CdoFileLink 2 Attachment is a link to a file.
CdoOLE 3 Attachment is an OLE object.
CdoEmbeddedMessage 4 Attachment is an embedded

message.

The value of the Type property determines the valid values for the Source property. Consequently, you
must set Type before setting Source in order for the ReadFromFile and WriteToFile methods to work
correctly.

The Type property can also be set at the time of creation of the attachment by supplying the type
parameter to the Add method of the Attachments collection.

The Type property corresponds to the MAPI property PR_ATTACH_METHOD. It can be rendered into
HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object
renderer's DataSource property to this Attachment object and the property parameter of the
RenderProperty method to CdoPR_ATTACH_METHOD.

Example
' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = CdoFileLink
 .Position = 0 ' place at beginning of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type CdoFileLink"

WriteToFile Method (Attachment
Object)   

The WriteToFile method saves the attachment to a file in the file system.

Syntax
objAttachment.WriteToFile(fileName)

objAttachment
Required. The Attachment object.

fileName
Required. String. The full path and file name for the saved attachment, for example C:\DOCUMENT\
BUDGET.XLS.

Remarks
The WriteToFile method overwrites the file without warning if a file of that name already exists. Your
application should check for the existence of the file before calling WriteToFile.

The WriteToFile method operates differently, depending on the value of the Attachment object’s Type
property. The following table describes its operation:

Attachment Type
property

WriteToFile operation

CdoFileData Copies the contents of the attachment to the
specified file.

CdoFileLink (Not supported)
CdoOLE Writes the attachment to the specified file in

OLE docfile format. The file can subsequently
be read by the ReadFromFile method with an
CdoOLE type setting.

CdoEmbeddedMessage (Not supported)

The term “OLE docfile” indicates that the file is written by an application such as Microsoft® Word 6.0 or
later that writes files using the OLE IStorage and IStream interfaces.

Note The current version of CDO does not support WriteToFile for CdoFileLink or
CdoEmbeddedMessage attachments. These calls generate the run-time error
CdoE_NO_SUPPORT.

Attachments Collection Object
The Attachments collection object contains one or more Attachment objects.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Message
Child objects: Attachment
Default property: Item

An Attachments collection is considered a small collection, which means that it supports count and
index values that let you access an individual Attachment object through the Item property. The
Attachments collection supports the Microsoft® Visual Basic® For Each statement. For more
information on collections, see Object Collections.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
Count 1.0.a Long Read-only
Item 1.0.a Attachment object Read-only
Parent 1.0.a Message object Read-only
Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.0.a (optional) name as String,
(optional) position as Long,
(optional) type as Long,
(optional) source as String

Delete 1.0.a (none)

Add Method (Attachments Collection)   

The Add method creates and returns a new Attachment object in the Attachments collection.

Syntax
Set objAttachment = objAttachColl.Add([name, position, type, source])

objAttachment
On successful return, contains the new Attachment object.

objAttachColl
Required. The Attachments collection object.

name
Optional. String. The display name of the attachment. The default value is an empty string. To allow
a user to click on the attachment that appears in the message and activate an associated
application, supply the full file name, including the file extension.

position
Optional. Long. The position of the attachment within the body text of the message. The default
value is zero.

type
Optional. Long. The type of attachment; either CdoFileData, CdoFileLink, CdoOLE, or
CdoEmbeddedMessage. The default value is CdoFileData.

source
Optional. String. The path and file name of the file containing the data for the attachment, or the
unique identifier of the message to be embedded. The path and file name must be in the appropriate
format for the attachment type, specified by the type parameter. The default value is an empty string.

Remarks
The Add method parameters correspond to the Name, Position, Type, and Source properties of the
Attachment object. The source parameter is also closely related to the ReadFromFile method’s
fileName parameter.

You can supply the data for the attachment at the same time that you add the attachment to the
collection. The Add method operates differently, depending on the value of the type parameter. The
following table describes its operation.

Value of type parameter Value of source parameter
CdoFileData Specifies a full path and file name that

contains the data for the attachment, for
example C:\DOCUMENT\BUDGET.XLS. Must
be supplied with the Add method. The data is
read into the attachment.

CdoFileLink Specifies a full path and file name in a
universal naming convention (UNC) format,
such as \\SALES\INFO\PRODUCTS\
NEWS.DOC. The attachment is a link, so the
Add method does not read the data.

CdoOLE Specifies a full path and file name to a valid
OLE docfile, for example C:\DOCUMENT\
BUDGET2.XLS. The data is read into the
attachment.

CdoEmbeddedMessage Specifies the ID property of the message to
be embedded. The message is copied into
the attachment.

If the type parameter has the value CdoFileData, the source parameter must be supplied, since it
cannot be subsequently set through the Source property of the Attachment object.

When the type parameter has the value CdoFileLink, the source parameter is a full path and file name
in a UNC format. This is suitable for sending attachments to recipients who have access to a common
file server. Note that when you use the type CdoFileLink, CDO does not validate the file name.

If you do not specify the name, type, and source parameters when you call the Add method, you must
later explicitly set these properties. In this case you must set Type before you set Source, and you
must set Source before you set Name. Failure to do this can result in a return of CdoE_NOT_FOUND
from the ReadFromFile or WriteToFile method, or in an incorrect value for Name. If the type is
CdoOLE, you must also call ReadFromFile on the new Attachment object to load the attachment’s
content.

The Index property of the new Attachment object equals the new Count property of the Attachments
collection.

Note Microsoft Outlook supports attachments on AppointmentItem objects, but Microsoft®
Schedule+ does not. For consistency of interface, the Add method always accepts a new attachment
on an appointment, but if the appointment is associated with Schedule+, the attachment is ignored
and discarded when you commit the appointment to storage with Send or Update.

The attachment is saved in the MAPI system when you Update or Send the parent Message object.

Count Property (Attachments
Collection)   

The Count property returns the number of Attachment objects in the collection. Read-only.

Syntax
objAttachColl.Count

Data Type
Long

Example
This code fragment stores in an array the names of all Attachment objects in the collection. It shows
the Count and Item properties working together.

' from the sample function, TstDrv_Util_SmallCollectionCount
' objAttachColl is an Attachments collection
x = Util_SmallCollectionCount(objAttachColl)

Function Util_SmallCollectionCount(objColl As Object)
Dim strItemName(100) As String ' Names of objects in collection
Dim i As Integer ' loop counter
 On Error GoTo error_actmsg
 If objColl Is Nothing Then
 MsgBox "Must supply a valid collection object as a parameter"
 Exit Function
 End If
 If 0 = objColl.Count Then
 MsgBox "No items in the collection"
 Exit Function
 End If
 For i = 1 To objColl.Count Step 1
 strItemName(i) = objColl.Item(i).Name
 If 100 = i Then ' max size of string array
 Exit Function
 End If
 Next i
 ' error handling here...
End Function

Delete Method (Attachments Collection)  

The Delete method removes all the Attachment objects from the Attachments collection.

Syntax
objAttachColl.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to every Attachment object. If you have another reference to an attachment, you
can still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another attachment.

The final Release on each Attachment object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one Attachment object, use the Delete method specific to that object.

The effect of the Delete method is not permanent until you use the Update, Send, or Delete method
on the parent Message object containing the Attachments collection. A permanently deleted member
cannot be recovered. However, the collection itself is still valid, and you can Add new members to it.

Item Property (Attachments Collection)   

The Item property returns a single Attachment object from the Attachments collection. Read-only.

Syntax
objAttachColl.Item(index)

objAttachColl.Item(recordKey)

index
Long. An integer ranging from 1 to objAttachColl.Count.

recordKey
String. The MAPI record key of an individual attachment.

The Item property is the default property of an Attachments collection, meaning that
objAttachColl(index) is syntactically equivalent to objAttachColl.Item(index) in Microsoft® Visual Basic®
code.

Data Type
Object (Attachment)

Remarks
The Item property works like an accessor property for small collections.

The Item(index) syntax selects an arbitrary Attachment object within the Attachments collection.

The Item(recordKey) syntax returns the first Attachment object with a MAPI record key equivalent to
the string specified by recordKey. You can obtain the MAPI record key of an attachment through its
Fields collection, but you cannot convert it programmatically to the requisite string format with Visual
Basic. The record key is in a counted binary format for which Visual Basic and CDO have no
corresponding data type.

The recordKey parameter corresponds to the MAPI property PR_RECORD_KEY, converted to a string
of hexadecimal characters.

Although the Item property itself is read-only, the Attachment object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

Example
This code fragment shows the Count and Item properties working together to traverse the collection:

' from Util_SmallCollectionCount(objAttachColl As Object)
Dim strItemName(100) as String
Dim i As Integer ' loop counter
' error handling omitted from this fragment ...
For i = 1 To objAttachColl.Count Step 1
 strItemName(i) = objAttachColl.Item(i).Name
 ' or = objAttachColl(i) since Item and Name are default properties
 If 100 = i Then ' max size of string array
 Exit Function
 End If
Next i

Field Object
A Field object represents a MAPI property on a Microsoft® CDO Library object.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Fields collection
Child objects: (none)
Default property: Value

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
ID 1.0.a Long Read-only
Index 1.0.a Long Read-only
Name 1.0.a String Read-only
Parent 1.0.a Fields collection object Read-only
Session 1.0.a Session object Read-only
Type 1.0.a Integer Read-only
Value 1.0.a Variant Read/write

Methods

Name

Available
in version

Parameters

Delete 1.0.a (none)

ReadFromFile 1.0.a fileName as String
WriteToFile 1.0.a fileName as String

Remarks
The Field object gives you the ability to access MAPI properties of an AddressEntry,
AddressEntryFilter, AddressList, AppointmentItem, Attachment, Folder, InfoStore, MeetingItem,
Message, or MessageFilter object. You do not have to add a predefined MAPI property to the Fields
collection in order to access it. You can just set it or read its value.

You can add additional properties tailored for your specific application to the Fields collection. Before
adding a field for an eligible object, review the properties that are already provided by CDO. Many of
the most common ones are already offered. For example, Subject and Importance are already
defined as Message object properties.

Data types are preserved between MAPI properties and CDO fields, with the exception of MAPI
properties of type PT_BINARY. These are converted from counted binary in MAPI to character string

representation in CDO, where the characters in the string represent the hexadecimal digits of the MAPI
property value. The string is converted back into counted binary when you write to the field.

Note that the predefined MAPI properties are unnamed when they are accessed through Field objects.
For these MAPI properties, the Name property is an empty string.

The Field object also supports multivalued MAPI properties. The multivalued property appears to the
Microsoft® Visual Basic® application as a variant array; that is, you can use the For ... Next statement
to access individual array entries, as shown in the following sample program.

 Dim rgstr(0 To 9) As String
 ' Build array of values for MV prop
 For i = 0 To 9
 rgstr(i) = "String" + Str(i)
 Next

 ' Create MV field on the message (note that we don't specify
 ' the array as third argument to Fields.Add, but add separately)
 Set f = msg.Fields.Add("FancyName", vbString + vbArray)
 f.Value = rgstr ' Set value of the new field
 ' Save/send the message, logoff, etc.

 ' later: code that reads the multivalued properties
 Dim rgstr As Variant
 Set f = msg.Fields.Item("FancyName") ' Get MV Field
 rgstr = f.Value ' Get array of values into a variant
 For i = LBound(rgret) To UBound(rgret)
 MsgBox rgret(i)
 Next I

For more information on MAPI properties, see the reference documentation for the Fields collection
and the MAPI Programmer’s Reference.

Delete Method (Field Object)   

The Delete method removes the Field object from the Fields collection if the field is user-defined or
optional.

Syntax
objField.Delete()

Remarks
This method only deletes user-defined fields and fields that represent properties considered optional by
the underlying provider.

The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to the Field object. If you have another reference to the field, you can still access
its properties and methods, but you can never again associate it with any collection because the Add
method always creates a new object. You should Set your reference variable either to Nothing or to
another field.

The final Release on the Field object takes place when you assign your reference variable to Nothing,
or when you call Delete if you had no other reference. At this point the object is removed from memory.
Attempted access to a released object results in an error return of CdoE_INVALID_OBJECT.

When you delete a member of a collection, the collection is immediately refreshed, meaning that its
Count property is reduced by one and its members are reindexed. To access a member following the
deleted member, you must use its new index value. For more information, see Looping Through a
Collection.

The effect of the Delete operation is not permanent until you use the Update, Send, or Delete method
on the parent AddressEntry, AddressEntryFilter, AddressList, AppointmentItem, Attachment, Folder,
InfoStore, MeetingItem, Message, or MessageFilter object of the Fields collection.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first Field object. That reference survives the call to Delete and has to be reassigned. The
second Field object is deleted without creating another reference, and no other action is necessary.

' assume valid Message object
Set objField = objMessage.Fields.Item(1)
objField.Delete ' still have a reference from Set statement
' ... other operations on objField possible but pointless ...
Set objField = Nothing ' necessary to remove reference
' ...
objMessage.Fields.Item(2).Delete ' no reference to remove

ID Property (Field Object)   

The ID property returns the MAPI tag for the Field object as a long integer. Read-only.

Syntax
objField.ID

Data Type
Long

Remarks
The Field object ID property is unique among identifier properties supported in the CDO Library. The
Field object identifier is a long integer that corresponds to a MAPI property tag value. All other ID
properties are hexadecimal strings corresponding to the MAPI PR_ENTRYID property.

A MAPI property tag is a 32-bit unsigned integer. Its high-order 16 bits contain the MAPI property
identifier, and its low-order 16 bits contain the MAPI property type. For more information, see “About
Property Tags” in the MAPI Programmer’s Reference.

Note The MAPI property type is not the same as the CDO Type property. There is a
correspondence between the two entities, but their value sets are not the same. The Field object's ID
property contains the MAPI property type; its Type property contains the Visual Basic® data type used
by CDO.

Example
' The Field.ID property is a long value, not a string
' fragment from the function Field_ID()
' verify that objOneField is valid, then access
 MsgBox "MAPI ID in high-order word, MAPI type in low-order: &H" _
 & Hex(objOneField.ID)

Index Property (Field Object)   

The Index property returns the index number of the Field object within the Fields collection. Read-only.

Syntax
objField.Index

Data Type
Long

Remarks
The Index property indicates this object’s position within the parent Fields collection. It can be saved
and used later with the collection’s Item property to reselect the same field in the collection.

The first object in the collection has an Index value of 1.

An index value should not be considered a static value that remains constant for the duration of a
session. It can be affected when other fields are added and deleted. The index value is changed
following an update to the object to which the Fields collection belongs.

Example
This code fragment shows the Fields collection’s Count property and the Index property working
together:

' set up a variable as an index to access a small collection
' fragment from the functions Fields_FirstItem, Fields_NextItem
 If objFieldsColl Is Nothing Then
 MsgBox "must first select a Fields collection"
 Exit Function
 End If
 If 0 = objFieldsColl.Count Then
 MsgBox "No fields in the collection"
 Exit Function
 End If
' Fragment from Fields_FirstItem
 iFieldsCollIndex = 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 ' verify that the Field object is valid ...
' Fragment from Fields_NextItem
 If iFieldsCollIndex >= objFieldsColl.Count Then
 iFieldsCollIndex = objFieldsColl.Count
 MsgBox "Already at end of Fields collection"
 Exit Function
 End If
 iFieldsCollIndex = iFieldsCollIndex + 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 ' verify that the Field object is valid, then loop back ...

Name Property (Field Object)   

The Name property returns the name of the field as a string. Read-only.

Syntax
objField.Name

objField.Name(PropsetID)

objField
Object. The Field object.

PropsetID
Optional. String. Contains the GUID that identifies the property set, represented as a string of
hexadecimal characters. When this identifier is not present, the property is created within the default
property set. The default property set is either the property set most recently supplied to the
SetNamespace method, or the initial default property set value, PS_PUBLIC_STRINGS.

Data Type
String

Remarks
The Name property is read-only. You set the name of the Field object at the time you create it, when
you call the Fields collection’s Add method.

Field objects used to access predefined MAPI properties do not have names. Names appear only on
the custom properties that you create. For more information, see the Item property documentation for
the Fields collection.

Example
' fragment from Fields_Add
Dim objNewField As Object ' new Field object
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
 If objNewField Is Nothing Then
 MsgBox "could not create new Field object"
 Exit Function
 End If
 cFields = objFieldsColl.Count
 MsgBox "new Fields collection count = " & cFields
' later: fragment from Field_Name; modified to use objNewField
 If "" = objNewField.Name Then
 MsgBox "Field has no name; ID = " & objNewField.ID
 Else
 MsgBox "Field name = " & objNewField.Name
 End If

ReadFromFile Method (Field Object)   

The ReadFromFile method loads the value of a string or binary field from a file.

Syntax
objField.ReadFromFile(fileName)

objField
Required. The Field object.

fileName
Required. String. The full path and file name to read, for example C:\DOCUMENT\BUDGET.XLS.

Remarks
The ReadFromFile method reads the string or binary value from the specified file and stores it as the
value of the Field object. It replaces any previously existing value for the field.

ReadFromFile is not supported for simple types, such as vbInteger, vbLong, and vbBoolean.
Microsoft® Visual Basic® provides common functions to read and write these base types to and from
files. The ReadFromFile method fails if the Type property of the Field object is not vbString or
vbBlob.

MAPI properties of type PT_BINARY are read from persistent storage in counted binary format but
converted to a hexadecimal string format when they are stored as Field values. Comparison operations
on the Value property and the actual contents of the file can return “not equal” even when the values
are equivalent.

In addition, support for types can vary among providers. Not all providers support both the vbString
and vbBlob property types.

ReadFromFile returns CdoE_INTERFACE_NOT_SUPPORTED for Field objects obtained from a
Folder object’s Fields collection.

See Also
WriteToFile Method (Field Object)

Type Property (Field Object)   

The Type property returns the data type of the Field object. Read-only.

Syntax
objField.Type

Data Type
Integer

Remarks
The Type property contains the data type of the Field object and determines the range of valid values
that can be supplied for the Value property. You set the Type property when you first create the field by
setting the Class parameter of the Fields collection’s Add method. After that, you cannot change the
Type property.

Valid data types are as follows:

Type

Descripti
on

Decimal
value

OLE variant
type

MAPI property
type

vbArray Multivalue
d type

8192 VT_ARRAY PT_MV_FLAG

vbBlob Binary
(unknown
format)

65 VT_BLOB PT_BINARY

vbBoolean Boolean 11 VT_BOOL PT_BOOLEAN

vbCurrency 8-byte
integer
(scaled by
10000)

6 VT_CY PT_CURRENCY

vbDataObje
ct

Data
object

13 VT_UNKNOW
N

PT_OBJECT

vbDate 8-byte
real (date
in integer,
time in
fraction)

7 VT_DATE PT_APPTIME

vbDouble 8-byte
real
(floating
point)

5 VT_R8 PT_DOUBLE,
PT_R8

vbEmpty Not
initialized

0 VT_DEREF PT_UNSPECIFI
ED

vbInteger 2-byte
integer

2 VT_I2 PT_I2
PT_SHORT

vbLong 4-byte
integer

3 VT_I4 PT_I4,
PT_LONG

vbNull Null (no 1 VT_NULL PT_NULL

valid
data)

vbSingle 4-byte
real
(floating
point)

4 VT_R4 PT_FLOAT,
PT_R4

vbString String 8 VT_BSTR PT_TSTRING

The current version of CDO does not support the vbNull and vbDataObject data types. The vbEmpty
data type should never appear as the value of the Type property because the Add method should
derive the data type from the new field's value if the Class parameter is set to vbEmpty.

The vbArray data type must always be used in conjunction with one of the other types, for example
vbArray + vbInteger. Note that operations such as comparison cannot be done with a single operator
on types involving vbArray.

When you use a multivalued type, to avoid an CdoE_INVALID_TYPE error you must also declare the
array to be of the appropriate type, as shown in the following code fragment:

Dim Codes(10) As Long ' NOT just Dim Codes(10)
' ...
Set objCodesField = objFieldsColl.Add("Codes", vbArray + vbLong)
objCodesField.Value = Codes

MAPI stores all custom properties that represent date and time information using Greenwich Mean
Time (GMT), also known as Coordinated Universal Time (UTC). CDO converts these properties so that
the values appear to the user in local time.

Example
' Fragment from Fields_Add; uses the type "vbString"
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
' verify that objNewField is a valid Field object
' Fragment from Field_Type; display the decimal type value
 MsgBox "Field type = " & objOneField.Type

Value Property (Field Object)   

The Value property returns or sets the value of the Field object. Read/write.

Syntax
objField.Value

The Value property is the default property of a Field object, meaning that objField is syntactically
equivalent to objField.Value in Microsoft® Visual Basic® code.

Data Type
Variant

Remarks
The Value property of the Field object represents a value of the type specified by the Type property.
For example, when the Field object has the Type property vbBoolean, the Value property can take the
values True or False. When the Field object has the Type property vbInteger, the Value property can
contain a short integer.

Example
' fragment from function Field_Type()
' after validating the Field object objOneField
 MsgBox "Field type = " & objOneField.Type
' fragment from function Field_Value() ...
 MsgBox "Field value = " & objOneField.Value

WriteToFile Method (Field Object)   

The WriteToFile method saves the field value to a file in the file system.

Syntax
objField.WriteToFile(fileName)

objField
Required. The Field object.

fileName
Required. String. The full path and file name for the saved field, for example C:\DOCUMENT\
BUDGET.XLS.

Remarks
The WriteToFile method writes the string or binary value of the Field object to the specified file name.
It overwrites any existing information in that file.

WriteToFile is not supported for simple types, such as vbInteger, vbLong, and vbBoolean.
Microsoft® Visual Basic® provides common functions to read and write these base types to and from
files. The WriteToFile method fails if the Type property of the Field object is not vbString or vbBlob.

MAPI properties of type PT_BINARY are represented in a hexadecimal string format by CDO but
written to persistent storage in counted binary format. Comparison operations on the Value property
and the actual contents of the file can return “not equal” even when the values are equivalent.

In addition, support for types can vary among providers. Not all providers support both the vbString
and vbBlob property types.

See Also
ReadFromFile Method (Field Object)

Fields Collection Object
The Fields collection object contains one or more Field objects.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: AddressEntry

AddressEntryFilter
AddressList
AppointmentItem
Attachment
Folder
InfoStore
MeetingItem
Message
MessageFilter

Child objects: Field
Default property: Item

A Fields collection is considered a small collection, which means that it supports count and index
values that let you access an individual Field object through the Item property. The Fields collection
supports the Microsoft® Visual Basic® For Each statement. For more information on collections, see
Object Collections.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
Count 1.0.a Long Read-only
Item 1.0.a Field object Read-only
Parent 1.0.a AddressEntry object,

AddressEntryFilter
object, AddressList
object,
AppointmentItem
object, Attachment
object, Folder object,
InfoStore object,
MeetingItem object,
Message object, or
MessageFilter object

Read-only

Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.0.a name as String,
Class as Long,

value as Variant,
(optional) PropsetID as String,
PropTag as Long

Delete 1.0.a (none)
SetNamespace 1.0.a (optional) PropsetID as String

Remarks
Field objects give you the ability to access MAPI properties on the parent object of the Fields collection.
These include the predefined underlying MAPI properties and your own custom user-defined
properties.

MAPI defines a set of properties with identifiers less than the value &H8000. These are known as
unnamed properties because they are accessed using the MAPI property tag rather than a name. You
can access these MAPI-defined properties using the Fields collection. All MAPI properties are
accessible except those of types PT_OBJECT and PT_CLSID.

Data types are preserved between MAPI properties and CDO fields, with the exception of MAPI
properties of type PT_BINARY. These are converted from counted binary in MAPI to character string
representation in CDO, where the characters in the string represent the hexadecimal digits of the MAPI
property value. The string is converted back into counted binary when you write to the field.

You can also extend the properties available through MAPI by defining your own properties. These
user-defined properties, defined using a name and automatically assigned an identifier greater than
&H8000 by CDO, are known as named properties. (C++ programmers can access the property name
in the MAPI structure MAPINAMEID and convert it to the property tag value.)

All named properties are defined as part of a property set, which corresponds in the context of CDO to
a name space.

A property set is defined by a GUID, or globally unique identifier. CDO represents this GUID as a string
of hexadecimal characters. Such identifiers are usually referenced using a constant that starts with the
characters PS_, such as PS_PUBLIC_STRINGS, the default property set for all properties created
using the CDO Library.

You can also choose to organize your custom properties within their own name space by defining your
own property set. The Add and Item properties and the SetNamespace method let you specify the
property set identifier to be used for named property access.

When creating your own property set, you should be aware that MAPI reserves several property set
identifiers for specific purposes. The following table lists reserved property sets:

Reserved property set Description
PS_MAPI Allows providers to supply names for

the unnamed properties (properties
with identifiers less than &H8000).

PS_PUBLIC_STRINGS Default property set for custom
properties added using CDO.

PS_ROUTING_ADDRTYPE E-mail address types that are
translated between messaging
domains.

PS_ROUTING_DISPLAY_NAME Display name properties that are
translated between messaging
domains.

PS_ROUTING_EMAIL_ADDRESS
ES

E-mail addresses that are translated
between messaging domains.

PS_ROUTING_ENTRYID Long-term entry identifiers that are
translated between messaging

domains.
PS_ROUTING_SEARCH_KEY Search keys that are translated

between messaging domains.

To create your own GUID that identifies your property set, you can either use the Win32® command-
line utility UUIDGEN or you can call the OLE function CoCreateGuid to supply one for you, as
demonstrated in the following code fragment:

' declarations required for the call to CoCreateGuid
Type GUID
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
Declare Function CoCreateGuid Lib "OLE32.DLL" (pGuid As GUID) As Long
Global Const S_OK = 0
Dim strPropID As String
Dim lResult As Long
Dim lGuid As GUID

' call CoCreateGuid, then convert the result to a hex string
 lResult = CoCreateGuid(lGuid)
 If lResult = S_OK Then
 strPropID = Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
 strPropID = myHexString & Hex$(lGuid.Guid3)
 strPropID = myHexString & Hex$(lGuid.Guid4)
 Else
 ‘ ... handle error ...
 End If

For more information on named properties and property sets, see “Named Properties” in the MAPI
Programmer’s Reference. For more information on UUIDGEN and CoCreateGuid, see "COM and
ActiveX Object Services" in the Microsoft Platform SDK documentation.

MAPI stores all custom properties that represent date and time information using Greenwich Mean
Time (GMT). CDO converts these properties so that the values appear to the user in local time.

Example
To uniquely identify a Field object in the Fields collection, use the Field object’s Name or Index
property, or the MAPI property tag:

Set objNamedField = objFolder.Fields.Item("BalanceDue")
Set objNamedField2 = objMessage.Fields.Item("Keyword")
Set objIndexedField = objMessage.Fields.Item(3)
propTag = &H0E180003 ' VB4.0: propTag = CdoPR_MESSAGE_DOWNLOAD_TIME
Set objMAPIField = objMessage.Fields.Item(propTag)

Add Method (Fields Collection)   

The Add method creates and returns a new Field object in the Fields collection.

Syntax
Set objField = objFieldsColl.Add (name, Class [, value, PropsetID])

Set objField = objFieldsColl.Add (PropTag, value)

objField
On successful return, contains the new Field object.

objFieldsColl
Required. The Fields collection object.

name
Required. String. The property name assigned to a custom MAPI named property.

Class
Required. Long. The data type for the field, such as string or integer. The Class parameter
represents the same values as the Field object’s Type property. The following types are allowed:

Type property

Description

Numeric
value

OLE variant type

vbArray Multivalued type 8192 VT_ARRAY
vbBlob Binary (unknown

format)
65 VT_BLOB

vbBoolean Boolean 11 VT_BOOL
vbCurrency 8-byte integer

(scaled by 10000)
6 VT_CY

vbDataObject Data object 13 VT_UNKNOWN
vbDate 8-byte real (date in

integer, time in
fraction)

7 VT_DATE

vbDouble 8-byte real (floating
point)

5 VT_R8

vbEmpty Not initialized 0 VT_DEREF
vbInteger 2-byte integer 2 VT_I2
vbLong 4-byte integer 3 VT_I4
vbNull Null (no valid data) 1 VT_NULL
vbSingle 4-byte real (floating

point)
4 VT_R4

vbString String 8 VT_BSTR

The current version of CDO does not support the vbNull and vbDataObject data types.
value

Required (optional in first syntax). Variant. The value of the field, of the data type specified in the
Class parameter or implicit in the PropTag parameter. You can change the value later by setting it
directly or by subsequent calls to the Field object’s ReadFromFile method.

PropsetID
Optional. String. Contains the GUID that identifies the property set, represented as a string of
hexadecimal characters. When this identifier is not present, the property is created within the default
property set. The default property set is either the property set most recently supplied to the
SetNamespace method, or the initial default property set value, PS_PUBLIC_STRINGS.

PropTag
Required. Long. The MAPI property tag for a predefined MAPI property.

Remarks
The Field object created by the Add method always represents a MAPI property. This can be either a
predefined MAPI property, which is designated by a property identifier, or a custom property, which is
designated by a unique name that MAPI associates with an identifier by means of a name-identifier
mapping. This mapping makes use of the property set GUID that is common to every named property
in that property set.

The first syntax is used for a named property. The name parameter contains the custom name that
MAPI maps to a property identifier. You can optionally include the property set GUID with the name as
an alternative to using the PropsetID parameter. If you elect this option, the GUID is placed in braces
immediately preceding the property name itself. If the property set GUID is supplied in both the name
and PropsetID parameters, the value in PropsetID takes precedence.

If the Class parameter contains vbEmpty or an invalid setting, the Add method attempts to derive the
data type from the new field's value. If this attempt fails, for example if the value parameter is not set,
the Add method returns CdoE_NO_SUPPORT.

The second syntax is used for a predefined MAPI property. The PropTag parameter contains the 32-bit
MAPI property tag associated with the property and corresponds to the ID property of the Field object.
The property tag contains the MAPI property identifier in its high-order 16 bits and the MAPI property
type in its low-order 16 bits. All MAPI properties are accessible except those of MAPI type PT_OBJECT
or PT_CLSID.

Support for the Add method is provider-dependent. Not all providers support named properties.

The name, Class, and value parameters in the first syntax correspond to the Name, Type, and Value
properties of the Field object.

The Index property of the new Field object equals the new Count property of the Fields collection.

The field is saved in the MAPI system when you Update the parent object, or Send it if the Fields
collection’s parent is a Message object.

The vbArray data type must always be used in conjunction with one of the other types, for example
vbArray + vbInteger. When you use a multivalued type, to avoid an CdoE_INVALID_TYPE error you
must also declare the array to be of the appropriate type:

Dim Words(10) As String ' NOT just Dim Words(10)
' ...
Set objKeysField = objFieldsColl.Add("Keywords", vbArray + vbString)
objKeysField.Value = Words

When you use the vbBlob type for binary data, you supply the value in the form of a hexadecimal
string that contains the hexadecimal representation of the bytes in the binary object (such as a
hexadecimal dump of the object).

MAPI stores all custom properties that represent date and time information using Greenwich Mean
Time (GMT). CDO converts these properties so that the values appear to the user in local time.

Example
' Fragment from Fields_Add; uses the type "vbString"
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
' verify that objNewField is a valid Field object

' Fragment from Field_Type; display the integer type value
 MsgBox "Field type = " & objOneField.Type

Count Property (Fields Collection)   

The Count property returns the number of Field objects in the collection. Read-only.

Syntax
objFieldsColl.Count

Data Type
Long

Example
This code fragment maintains a global variable as an index into the small collection, and uses the
Count property to check its validity:

' from Fields_NextItem
' iFieldsCollIndex is an integer used as an index
' check for empty collection ...
' check index upper bound
 If iFieldsCollIndex >= objFieldsColl.Count Then
 iFieldsCollIndex = objFieldsColl.Count
 MsgBox "Already at end of Fields collection"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iFieldsCollIndex = iFieldsCollIndex + 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 If objOneField Is Nothing Then
 MsgBox "Error, cannot get this Field object"
 Exit Function
 Else
 MsgBox "Selected field # " & iFieldsCollIndex
 End If

Delete Method (Fields Collection)   

The Delete method removes all user-defined and optional Field objects from the Fields collection.

Syntax
objFieldsColl.Delete()

Remarks
The Delete method operates only on user-defined fields and on fields considered optional by the
underlying provider.

The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to every Field object. If you have another reference to a field, you can still access
its properties and methods, but you can never again associate it with any collection because the Add
method always creates a new object. You should Set your reference variable either to Nothing or to
another field.

The final Release on each Field object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one Field object, use the Delete method specific to that object.

The effect of the Delete method is not permanent until you use the Update method on the parent
object containing the Fields collection, or the Send or Delete method if the parent is a Message object.
A permanently deleted member cannot be recovered. However, the collection itself is still valid, and you
can Add new members to it.

Item Property (Fields Collection)   

The Item property returns a single Field object from the Fields collection. Read-only.

Syntax
objFieldsColl.Item(index)

objFieldsColl.Item(proptag)

objFieldsColl.Item(name [, propsetID])

objFieldsColl
Required. Specifies the Fields collection object.

index
Short integer (less than or equal to 65,535 = &HFFFF) ranging from 1 to objFieldsColl.Count.
Specifies the index within the collection.

proptag
Long integer (greater than or equal to 65,536). Specifies the property tag value for the MAPI
property to be retrieved.

name
String. Contains the custom name of the user-defined property, or a string representation of the of its
property tag.

propsetID
Optional. String. Contains the GUID that identifies the property set, represented as a string of
hexadecimal characters. When propsetID is not supplied, the property set used for the access is the
default property set value most recently set by this collection’s SetNamespace method, or the initial
default property set value, PS_PUBLIC_STRINGS.

The Item property is the default property of a Fields collection, meaning that objFieldsColl(index) is
syntactically equivalent to objFieldsColl.Item(index) in Microsoft® Visual Basic® code.

Data Type
Object (Field)

Remarks
The Item property works like an accessor property for small collections. In the Fields collection object it
allows access to the predefined MAPI properties and to your own custom user-defined properties.

The proptag parameter in the second syntax contains the 32-bit MAPI property tag associated with the
property and corresponds to the ID property of the Field object. The property tag contains the MAPI
property identifier in its high-order 16 bits and the MAPI property type in its low-order 16 bits. All MAPI
properties are accessible except those of MAPI type PT_OBJECT or PT_CLSID.

The name parameter in the third syntax must be a string. It contains either the custom property's name
or its property tag. The tag must be represented as an ASCII string, which must consist of the
characters "0x" followed by up to eight hexadecimal digits. Combined with the GUID in the propsetID
parameter, this syntax allows you to access properties from a property set other than your default set,
either by name or by property tag.

If you have a custom property name that starts with the string "0x" you cannot access it with the name
parameter, because the third syntax attempts to interpret the characters following "0x" as hexadecimal
digits.

If the specified property is not present in the Fields collection, the Item property returns
CdoE_NOT_FOUND.

Several macros for C/C++ programmers are available in the MAPI Programmer's Reference to help
manipulate the MAPI property tag data structure. The macros PROP_TYPE and PROP_ID extract the
property type and property identifer from the property tag. The macro PROP_TAG builds the property
tag from the type and identifier components.

Although the Item property itself is read-only, the Field object it returns can be accessed in the normal
manner, and its properties retain their respective read/write or read-only accessibility.

Example
This code fragment accesses a custom user-defined property using its property name:

' from the function Fields_ItemByName()
' error handling here ...
If objFieldsColl Is Nothing Then
 MsgBox "Must first select Fields collection"
 Exit Function
End If
Set objOneField = objFieldsColl.Item("Keyword")
' could be objFieldsColl("Keyword") since .Item is default property
If objOneField Is Nothing Then
 MsgBox "could not select Field object"
 Exit Function
End If
If "" = objOneField.Name Then
 MsgBox "Keyword has no name; ID = " & objOneField.ID
Else
 MsgBox "Keyword name = " & objOneField.Name
End If

You can also use the Item property to access MAPI properties. The defined MAPI properties are
unnamed properties and can only be accessed using the numeric proptag value. They cannot be
accessed using a string that represents the name. This code fragment accesses the MAPI property
PR_MESSAGE_CLASS:

' from the function Fields_Selector()
' ... error handling here
' you can provide a dialog to allow entry for MAPI proptags
' or select property names from a list; for now, hard-coded
lValue = CdoPR_MESSAGE_CLASS ' = &H001A001E
' high-order 16 bits are property ID; low-order are property type
Set objOneField = objFieldsColl.Item(lValue)
If objOneField Is Nothing Then
 MsgBox "Could not get the Field using the value " & lValue
 Exit Function
Else
 strMsg = "Used " & lValue _
 & " to access the MAPI property " _
 & "PR_MESSAGE_CLASS: type = " _
 & objOneField.Type _
 & "; value = " _
 & objOneField.Value
 MsgBox strMsg
End If

CDO also supports multivalued MAPI properties.

You can also choose to access properties from other property sets, including your own, by either

setting the propsetID parameter or by calling the SetNamespace method to set that property set’s
unique identifier.

For more information on working with MAPI properties, see Customizing a Folder or Message and
Viewing MAPI Properties.

SetNamespace Method (Fields
Collection)   

The SetNamespace method selects the default property set to be used for accessing MAPI named
properties in the Fields collection.

Syntax
objFieldsColl.SetNamespace (PropsetID)

objFieldsColl
Required. The Fields collection object.

PropsetID
Optional. String. Contains the GUID that uniquely identifies the property set, represented as a string
of hexadecimal characters. This becomes the default property set to be used in subsequent named
property accesses to a Field object in this Fields collection. An empty string resets the default
property set to PS_PUBLIC_STRINGS.

Remarks
Every MAPI named property belongs to a property set, each member of which uses the same GUID for
the first part of its name. The set of all possible names within a property set is called its name space.
The SetNamespace method specifies which property set is to be in effect until changed by another call
to this method. The MAPI named properties are accessed using the Fields collection’s Add method
and Item property.

The initial default value for the property set is PS_PUBLIC_STRINGS. To create your own property set
for your named properties, supply a unique property set GUID to SetNamespace. This property set
then replaces PS_PUBLIC_STRINGS as the default property set for all subsequent named property
accesses using this object. The default property set is used unless explicitly overridden by an optional
PropsetID parameter. The value is set only for the current object; to continue using the same property
set for all objects, you must call SetNamespace for each object.

To define a new property set, obtain a string that contains hexadecimal characters representing a
unique identifier. You can obtain this identifier by using the Win32® command-line utility UUIDGEN or
by calling the Win32 function CoCreateGuid.

For more information on named properties and property sets, see the MAPI Programmer’s Reference.
For more information on UUIDGEN and CoCreateGuid, see "COM and ActiveX Object Services" in the
Microsoft Platform SDK documentation.

Folder Object
The Folder object represents a folder or container within the MAPI system. A folder can contain
subfolders and messages.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Folders collection

InfoStore
Child objects: Fields collection

Folders collection
Messages collection

Default property: Messages

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
Fields 1.0.a Field object or Fields

collection object
Read-only

FolderID 1.0.a String Read-only
Folders 1.0.a Folders collection

object
Read-only

HiddenMessages 1.2 Messages collection
object

Read-only

ID 1.0.a String Read-only
MAPIOBJECT 1.0.a IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

Messages 1.0.a Messages collection
object

Read-only

Name 1.0.a String Read/write
Parent 1.0.a Folders collection

object or InfoStore
object

Read-only

Session 1.0.a Session object Read-only
StoreID 1.0.a String Read-only

Methods
 Available

Name in version Parameters
CopyTo 1.1 folderID as String,

(optional) storeID as String,
(optional) name as String,
(optional) copySubfolders as
Boolean

Delete 1.0.a (none)
IsSameAs 1.1 objFolder2 as Object
MoveTo 1.1 folderID as String,

(optional) storeID as String
Update 1.0.a (optional) makePermanent as

Boolean,
(optional) refreshObject as Boolean

Remarks
A Folder object can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer
object. To specify this, set the object renderer's DataSource property to the Folder object itself. The
individual properties that can be rendered with the RenderProperty method are indicated in the Folder
object property descriptions.

A Folder object can also be rendered as the parent of a Messages collection, using the
ContainerRenderer object. The individual properties that can be rendered with the RenderProperty
method are indicated in the Folder object property descriptions.

Changes to a folder are not saved by MAPI until you call its Update method.

CopyTo Method (Folder Object)   

The CopyTo method makes a copy of the Folder object at another folder hierarchy location.

Syntax
Set objCopiedFolder = objFolder.CopyTo(folderID [, storeID, name, copySubfolders])

objCopiedFolder
On successful return, contains the copied Folder object.

objFolder
Required. This Folder object.

folderID
Required. String. The unique identifier of the new parent Folder object, that is, the Folder object
under which the copy of this folder is to appear as a subfolder.

storeID
Optional. String. The unique identifier of the InfoStore object in which the folder copy is to appear, if
different from this folder’s InfoStore.

name
Optional. String. The name to be assigned to the folder copy, if different from this folder’s name.

copySubfolders
Optional. Boolean. If True, all subfolders contained within this folder are to be copied along with the
folder. The default value is True.

Remarks
All Message objects contained within this folder are copied along with the folder itself. This also applies
to messages contained in the subfolders if the copySubfolders parameter is True.

The copy operation takes effect immediately. This Folder object, together with all its contents, remains
unchanged by the CopyTo method.

Delete Method (Folder Object)   

The Delete method removes the Folder object from its parent Folders collection or InfoStore object.

Syntax
objFolder.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to the Folder object. If you have another reference to the folder, you can still
access its properties and methods, but you can never again associate it with any collection because
the Add method always creates a new object. You should Set your reference variable either to
Nothing or to another folder.

The final Release on the Folder object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

The action of the Delete method is permanent, and the Folder object cannot be restored to the
collection. Before calling Delete, your application can prompt the user to verify whether the folder
should be permanently deleted.

When you delete a member of a collection, the collection is immediately refreshed, meaning that its
Count property is reduced by one and its members are reindexed. To access a member following the
deleted member, you must use its new index value. For more information, see Looping Through a
Collection.

You can delete all the folders in the Folders collection by calling the collection’s Delete method. The
ability to delete any folder depends on the permissions granted to the user. The Delete method returns
an error code if called with insufficient permissions.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first child Folder object. That reference survives the call to Delete and has to be reassigned. The
second child Folder object is deleted without creating another reference, and no other action is
necessary.

' assume valid Folder object
Set objChildFolder = objFolder.Folders.Item(1)
objChildFolder.Delete ' still have a reference from Set statement
' ... other operations on objChildFolder possible but pointless ...
Set objChildFolder = Nothing ' necessary to remove reference
' ...
objFolder.Folders.Item(2).Delete ' no reference to remove

Fields Property (Folder Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objFolder.Fields

objFolder.Fields(index)

objFolder.Fields(proptag)

objFolder.Fields(name)

index
Short integer (less than or equal to 65,535). Specifies the index within the collection.

proptag
Long integer (greater than or equal to 65,536). Specifies the property tag value for the MAPI
property to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object (Field or Fields collection)

Remarks
The Fields property returns one or all of the fields associated with a Folder object. Each field typically
corresponds to a MAPI property. Data types are preserved, except that MAPI counted binary properties
are converted to and from character strings representing hexadecimal digits.

The Fields property provides a generic access mechanism that allows Microsoft® Visual Basic® and
Microsoft® Visual C++® programmers to retrieve the value of a MAPI property using either its name or
its MAPI property tag. For access with the property tag, use objFolder.Fields(proptag), where proptag
is the 32-bit MAPI property tag associated with the property, such as CdoPR_CONTENT_COUNT. To
access a named property, use objFolder.Fields(name), where name is a string that represents the
custom property name.

Although the Fields property itself is read-only, the collection it returns can be accessed in the normal
manner through its Add and Delete methods, and the properties on its member Field objects retain
their respective read/write or read-only accessibility.

The Fields property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

Example
This code fragment displays the field name or identifier value of all Field Object objects within the
collection:

' many properties are MAPI properties and have no names
' for those properties, display the ID
' fragment from Field_Name
' assume objFieldColl, objOneField are valid objects
For i = 1 to objFieldColl.Count Step 1
 Set objOneField = objFieldColl.Index(i)
 If "" = objOneField.Name Then
 MsgBox "Field has no name; ID = " & objOneField.ID
 Else

 MsgBox "Field name = " & objOneField.Name
 End If
Next i

FolderID Property (Folder Object)   

The FolderID property returns the unique identifier of the subfolder’s parent folder as a string. Read-
only.

Syntax
objFolder.FolderID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another. However, MAPI does
not require identifier values to be binary comparable. Accordingly, two identifier values can be different,
yet refer to the same object. MAPI compares identifiers with the CompareEntryIDs method. CDO
provides the CompareIDs method in the Session object. For more information on entry identifiers, see
the MAPI Programmer’s Reference.

A Microsoft® Schedule+ calendar folder does not have a parent folder nor reside in a message store. If
you obtain the default calendar folder by passing CdoDefaultFolderCalendar to the Session object's
GetDefaultFolder method, the FolderID property has no defined value. An attempt to access FolderID
in this case returns CdoE_NOT_FOUND.

The FolderID property corresponds to the MAPI property PR_PARENT_ENTRYID, converted to a
string of hexadecimal characters. It can be rendered into HTML hypertext using the CDO Rendering
ObjectRenderer object. To specify this, set the object renderer's DataSource property to this Folder
object and the property parameter of the RenderProperty method to CdoPR_PARENT_ENTRYID.

Example
' fragment from Session_Inbox
Set objFolder = objSession.Inbox
' fragment from Folder_FolderID
strFolderID = objFolder.FolderID
MsgBox "Parent Folder ID = " & strFolderID
' later: obtain parent folder of Inbox (that is, store’s root folder)
' fragment from Session_GetFolder
If "" = strFolderID Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
End If
Set objFolder = objSession.GetFolder(strFolderID)
' error checking here ...

See Also
ID Property (Folder Object) , GetFolder Method (Session Object) , StoreID Property (Folder Object)

Folders Property (Folder Object)   

The Folders property returns a Folders collection of subfolders within the folder. Read-only.

Syntax
objFolder.Folders

Data Type
Object (Folders collection)

Remarks
Although the Folders property itself is read-only, the collection it returns can be accessed in the normal
manner through its Add and Delete methods, and the properties on its member Folder objects retain
their respective read/write or read-only accessibility.

The Microsoft® Schedule+ appointment folder is not implemented in the same way as Microsoft®
Outlook™ folders and CDO folders. In particular, it does not have subfolders. An attempt to read the
Folders property on the Schedule+ appointment folder returns CdoE_NO_SUPPORT.

The Folders property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

Example
This code fragment uses a recursive function to list the names of all subfolders of the specified folder:

' fragment from Session_Inbox
Set objFolder = objSession.Inbox
' from TstDrv_Util_ListFolders
If CdoFolder = objFolder.Class Then ' verify it’s a Folder object
 x = Util_ListFolders(objFolder) ' use current global folder
End If

' complete function for Util_ListFolders
Function Util_ListFolders(objParentFolder As Object)
Dim objFoldersColl As Folders ' the child Folders collection
Dim objOneSubfolder As Folder 'a single Folder object
' set up error handler here
If Not objParentFolder Is Nothing Then
 MsgBox ("Folder name = " & objParentFolder.Name)
 Set objFoldersColl = objParentFolder.Folders
 If Not objFoldersColl Is Nothing Then ' loop through all
 Set objOneSubfolder = objFoldersColl.GetFirst
 While Not objOneSubfolder Is Nothing
 x = Util_ListFolders(objOneSubfolder)
 Set objOneSubfolder = objFoldersColl.GetNext
 Wend
 End If
 Exit Function
End If
' error handler here
End Function

HiddenMessages Property (Folder
Object)   

The HiddenMessages property returns a Messages collection object of hidden messages in the folder.
Read-only.

Syntax
objFolder.HiddenMessages

Data Type
Object (Messages collection)

Remarks
The messages in the collection returned by the HiddenMessages property are not visible through the
Microsoft® Exchange Client, Microsoft® Outlook™, or Microsoft Outlook Web Access (OWA). These
hidden messages correspond to the associated information kept in a folder by MAPI.

Although the HiddenMessages property itself is read-only, the collection it returns can be accessed in
the normal manner through its Add and Delete methods, and the properties on its member Message
objects retain their respective read/write or read-only accessibility.

The HiddenMessages property does not correspond to a MAPI property and cannot be rendered into
HTML hypertext by the CDO Rendering Library. It could be rendered as a container object by setting
the ContainerRenderer object's DataSource property to the Messages collection object returned by the
HiddenMessages property.

ID Property (Folder Object)   

The ID property returns the unique identifier of the Folder object as a string. Read-only.

Syntax
objFolder.ID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another. However, MAPI does
not require identifier values to be binary comparable. Accordingly, two identifier values can be different,
yet refer to the same object. MAPI compares identifiers with the CompareEntryIDs method. CDO
provides the CompareIDs method in the Session object. For more information on entry identifiers, see
the MAPI Programmer’s Reference.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters. It can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer object.
To specify this, set the object renderer's DataSource property to this Folder object and the property
parameter of the RenderProperty method to CdoPR_ENTRYID.

Example
' save the current ID and restore using Session.GetFolder
' fragment from Session_Inbox
 Set objFolder = objSession.Inbox
' fragment from Folder_FolderID
 strFolderID = objFolder.ID
 MsgBox "Current Folder ID = " & strFolderID
' later: restore folder using objSession.GetFolder(strFolderID)
' fragment from Session_GetFolder
 If "" = strFolderID Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 ' error checking here ...

See Also
FolderID Property (Folder Object) , GetFolder Method (Session Object) , StoreID Property (Folder
Object)

IsSameAs Method (Folder Object)   

The IsSameAs method returns True if the Folder object is the same as the Folder object being
compared against.

Syntax
objFolder.IsSameAs(objFolder2)

objFolder
Required. This Folder object.

objFolder2
Required. The Folder object being compared against.

Remarks
Two Folder objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object in the underlying messaging system. Two objects with the same value are
still considered different if they do not instantiate the same physical object, for example if one is a copy
of the other. In such a case IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. This is necessary because, although MAPI requires all entry identifiers to be
unique, it does not require two of them identifying the same object to be identical. A generic
comparison of any two objects' unique identifiers is also available with the Session object’s
CompareIDs method.

MAPIOBJECT Property (Folder Object)   

The MAPIOBJECT property returns an IUnknown pointer to the Folder object. Not available to
Microsoft® Visual Basic® applications. Read/write.

Syntax
objFolder.MAPIOBJECT

Data Type
Variant (vbDataObject format)

Remarks
The MAPIOBJECT property is not available to Visual Basic programs. It is accessible only by C/C++
programs that deal with IUnknown objects. Visual Basic supports the IDispatch interface and not
IUnknown. The MAPIOBJECT property is an IUnknown object that returns an IMAPIFolder interface
in response to QueryInterface. For more information, see Introduction to Automation and How
Programmable Objects Work. Also see the "COM and ActiveX Object Services" section of the Microsoft
Platform SDK.

The MAPIOBJECT property does not correspond to a MAPI property and cannot be rendered into
HTML hypertext by the CDO Rendering Library.

Messages Property (Folder Object)   

The Messages property returns a Messages collection object within the folder. Read-only.

Syntax
objFolder.Messages

The Messages property is the default property of a Folder object, meaning that objFolder is
syntactically equivalent to objFolder.Messages in Visual Basic code.

Data Type
Object (Messages collection)

Remarks
Although the Messages property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add and Delete methods, and the properties on its member Message
objects retain their respective read/write or read-only accessibility.

The Messages property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library. It could be rendered as a container object by setting the
ContainerRenderer object's DataSource property to the Messages collection object returned by the
Messages property.

Example
' from the QuickStart sample
' use the Messages property of the Outbox folder to add a new message
 Set objSession = CreateObject("MAPI.Session")
 objSession.Logon
 Set objMessage = objSession.Outbox.Messages.Add

MoveTo Method (Folder Object)   

The MoveTo method relocates the Folder object to another folder hierarchy location.

Syntax
Set objMovedFolder = objFolder.MoveTo(folderID [, storeID])

objMovedFolder
On successful return, contains the moved Folder object.

objFolder
Required. This Folder object.

folderID
Required. String. The unique identifier of the new parent Folder object, that is, the Folder object
under which this folder is to appear as a subfolder.

storeID
Optional. String. The unique identifier of the InfoStore object in which this folder is to appear, if
different from its current InfoStore.

Remarks
All subfolders of this folder, together with all Message objects contained within this folder and its
subfolders, are moved along with the folder itself.

The move operation takes effect immediately. This Folder object is no longer accessible at its former
location after the MoveTo method returns.

Name Property (Folder Object)   

The Name property returns or sets the name of the Folder object as a string. Read/write.

Syntax
objFolder.Name

Data Type
String

Remarks
The Name property corresponds to the MAPI property PR_DISPLAY_NAME. It can be rendered into
HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object
renderer's DataSource property to this Folder object and the property parameter of the
RenderProperty method to CdoPR_DISPLAY_NAME.

Example
Dim objFolder As Object ' assume valid folder
MsgBox "Folder name = " & objFolder.Name

StoreID Property (Folder Object)   

The StoreID property returns the unique identifier of the InfoStore object in which the Folder object
resides. Read-only.

Syntax
objFolder.StoreID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another. However, MAPI does
not require identifier values to be binary comparable. Accordingly, two identifier values can be different,
yet refer to the same object. MAPI compares identifiers with the CompareEntryIDs method. CDO
provides the CompareIDs method in the Session object. For more information on entry identifiers, see
the MAPI Programmer’s Reference.

A Microsoft® Schedule+ calendar folder does not reside in a message store nor have a parent folder. If
you obtain the default calendar folder by passing CdoDefaultFolderCalendar to the Session object's
GetDefaultFolder method, the StoreID property has no defined value. An attempt to access StoreID
in this case returns CdoE_NOT_FOUND.

The StoreID property corresponds to the MAPI property PR_STORE_ENTRYID, converted to a string
of hexadecimal characters. It can be rendered into HTML hypertext using the CDO Rendering
ObjectRenderer object. To specify this, set the object renderer's DataSource property to this Folder
object and the property parameter of the RenderProperty method to CdoPR_STORE_ENTRYID.

Example
' from the sample function Folder_ID
 strFolderID = objFolder.ID
' from the sample function Folder_StoreID
 strFolderStoreID = objFolder.StoreID
' later: can use these IDs with Session.GetFolder()
' from the sample function Session_GetFolder
 Set objFolder = objSession.GetFolder(folderID:=strFolderID, _
 storeID:=strFolderStoreID)

See Also
FolderID Property (Folder Object) , GetFolder Method (Session Object) , ID Property (Folder Object)

Update Method (Folder Object)   

The Update method saves changes to the Folder object in the MAPI system.

Syntax
objFolder.Update([makePermanent, refreshObject])

objFolder
Required. The Folder object.

makePermanent
Optional. Boolean. A value of True indicates that the property cache is flushed and all changes are
committed in the underlying message store. False indicates that the property cache is flushed but
not committed to persistent storage. The default value is True.

refreshObject
Optional. Boolean. A value of True indicates that the property cache is reloaded from the values in
the underlying message store. False indicates that the property cache is not reloaded. The default
value is False.

Remarks
Changes to Folder objects are not permanently saved in the MAPI system until you call the Update
method with the makePermanent parameter set to True.

For improved performance, CDO caches property changes in private storage and updates either the
object or the underlying persistent storage only when you explicitly request such an update. For
efficiency, you should make only one call to Update with its makePermanent parameter set to True.

The makePermanent and refreshObject parameters combine to cause the following changes:

refreshObject = True refreshObject = False
makePermanent =
True

Commit all changes,
flush the cache, and
reload the cache from
the message store.

Commit all changes and
flush the cache (default
combination).

makePermanent =
False

Flush the cache and
reload the cache from
the message store.

Flush the cache.

Call Update(False, True) to flush the cache and then reload the values from the message store.

Folders Collection Object
The Folders collection object contains one or more Folder objects.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Folder
Child objects: Folder
Default property: Item

A Folders collection is considered a large collection, which means that the Count property has limited
validity, and the best way to access an individual Folder object within the collection is to use either its
unique identifier or the Get methods. For more information on collections, see Object Collections.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
Count 1.1 Long Read-only

Item 1.1 Folder object Read-only
Parent 1.0.a Folder object Read-only
RawTable 1.1 IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.1 name as String
Delete 1.1 (none)
GetFirst 1.0.a (none)
GetLast 1.0.a (none)
GetNext 1.0.a (none)
GetPrevious 1.0.a (none)
Sort 1.1 (optional) SortOrder as Long,

(optional) PropTag as Long,
(optional) PropID as String

Remarks
Large collections, such as the Folders collection, cannot always maintain an accurate count of the

number of objects in the collection. It is strongly recommended that you use the GetFirst, GetLast,
GetNext, and GetPrevious methods to access individual items in the collection. You can access one
specific folder by using the Session object’s GetFolder method, and you can access all the items in the
collection with the Microsoft® Visual Basic® For Each construction.

The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether the folders are sorted or not. The Folder objects within a collection can be sorted on a MAPI
property of your choice, either ascending or descending, using the Sort method. When the items are
not sorted, you should not rely on these methods to return the items in any specified order. The best
programming approach to use with unsorted collections is to assume that the access functions are able
to access all items within the collection, but that the order of the objects is not defined.

Example
To refer to a unique Folder object within the Folders collection, use the collection’s GetFirst and
GetNext methods or use the folder’s ID value as an index.

The following code sample demonstrates the Get methods. The sample assumes that you have exactly
three subfolders within your Inbox and exactly three subfolders within your Outbox. After this code
runs, the three folders in the Inbox are named Blue, Red, and Orange (in that order), and the three
folders in the Outbox are named Gold, Purple, and Yellow (in that order).

Dim objSession As MAPI.Session
Dim objMessage As Message
Dim objFolder As Folder

Set objSession = CreateObject("MAPI.Session")
objSession.Logon "User", "", True
With objSession.Inbox.Folders
 Set objFolder = .GetFirst
 objFolder.Name = "Blue"
 Set objFolder = .GetNext
 objFolder.Name = "Red"
 Set objFolder = .GetLast
 objFolder.Name = "Orange"
End With
With objSession.Outbox.Folders
 Set objFolder = .GetFirst
 objFolder.Name = "Gold"
 Set objFolder = .GetNext
 objFolder.Name = "Purple"
 Set objFolder = .GetLast
 objFolder.Name = "Yellow"
End With
objSession.Logoff

Add Method (Folders Collection)   

The Add method creates and returns a new Folder object in the Folders collection.

Syntax
Set objFolder = objFoldersColl.Add(name)

objFolder
On successful return, contains the new Folder object.

objFoldersColl
Required. The Folders collection object.

name
Required. String. The display name of the folder.

Remarks
The name parameter corresponds to the Name property of the Folder object.

The user must have permission to Add or Delete a Folder object. Most users have this permission only
for their personal folders.

You do not need to call the Update method of the new Folder object when you Add it to the collection.
However, when you set or change any of the folder’s properties, you must call Update to save the
changes in the MAPI system.

Example
This code fragment adds a new folder to a user’s Inbox:

Dim myInbox, newFolder As Object
Set myInbox = MAPI.Session.Inbox
' add new folder to Inbox
Set newFolder = myInbox.Folders.Add "Personal Messages"
' Update not needed until changes made

Count Property (Folders Collection)   

The Count property returns the number of Folder objects in the collection, or a very large number if the
exact count is not available. Read-only.

Syntax
objFoldersColl.Count

Data Type
Long

Remarks
A large collection cannot always maintain an accurate count of its members, and the Count property
cannot be used as the collection’s size when it has the value &H7FFFFFFF. Programmers needing to
access individual objects in a large collection are strongly advised to use the Microsoft® Visual Basic®
For Each statement or the Get methods.

The Count property can always be used to determine whether a Folders collection is empty or not.

The recommended procedures for traversing a large collection are, in decreasing order of preference:

1. Global selection, such as the Visual Basic For Each statement.
2. The Get methods, particularly GetFirst and GetNext.
3. An indexed loop, such as the Visual Basic For ... Next construction.

If the message store provider cannot supply the precise number of Folder objects, CDO returns
&H7FFFFFFF (= 2^31 - 1 = 2,147,483,647) for the Count property. This is the largest positive value
for a long integer and is intended to prevent an approximate count from prematurely terminating an
indexed loop. On 32-bit platforms, this value is defined in the type library as CdoMaxCount. On other
platforms, CdoMaxCount is not defined, and a program on such a platform must compare the Count
property against &H7FFFFFFF to see if it is reliable.

If the Count property is not reliable, that is, if it is &H7FFFFFFF, a program using it to terminate an
indexed loop must also check each returned object for a value of Nothing to avoid going past the end
of the collection.

The use of the Item property in conjunction with the Count property in a large collection can be seen in
the following example.

Example
This code fragment searches for a Folder object called “Resumes”:

Dim i As Integer ' loop index / object counter
Dim collFolders as Folders ' Folders collection; assume already given
If collFolders Is Nothing Then
 ' MsgBox "Folders collection object is invalid"
 ' Exit
End If
' see if collection is empty
If 0 = collFolders.Count Then
 ' MsgBox "No folders in collection"
 ' Exit
End If
' look for folder called "Resumes" in collection

For i = 1 To collFolders.Count Step 1
 If collFolders.Item(i) Is Nothing Then
 ' MsgBox "No such folder found in collection"
 ' Exit ' no more folders in collection
 End If
 If collFolders.Item(i).Name = "Resumes" Then
 ' MsgBox "Desired folder is at index " & i
 ' Exit
 End If
Next i

Delete Method (Folders Collection)   

The Delete method removes all the Folder objects from the Folders collection.

Syntax
objFoldersColl.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to every Folder object. If you have another reference to a folder, you can still
access its properties and methods, but you can never again associate it with any collection because
the Add method always creates a new object. You should Set your reference variable either to
Nothing or to another folder.

The final Release on each Folder object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one Folder object, use the Delete method specific to that object.

The Delete method on a large collection takes effect immediately and is permanent. A deleted member
cannot be recovered. However, the collection itself is still valid, and you can Add new members to it.

GetFirst Method (Folders Collection)   

The GetFirst method returns the first Folder object in the Folders collection. It returns Nothing if no
first object exists.

Syntax
Set objFolder = objFoldersColl.GetFirst()

objFolder
On successful return, represents the first Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks
The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether the folders are sorted or not. The Folder objects within a collection can be sorted on a MAPI
property of your choice, either ascending or descending, using the Sort method. When the items are
not sorted, you should not rely on these methods to return the items in any specified order. The best
programming approach to use with unsorted collections is to assume that the access functions are able
to access all items within the collection, but that the order of the objects is not defined.

GetLast Method (Folders Collection)   

The GetLast method returns the last Folder object in the Folders collection. It returns Nothing if no last
object exists.

Syntax
Set objFolder = objFoldersColl.GetLast()

objFolder
On successful return, represents the last Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks
The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether the folders are sorted or not. The Folder objects within a collection can be sorted on a MAPI
property of your choice, either ascending or descending, using the Sort method. When the items are
not sorted, you should not rely on these methods to return the items in any specified order. The best
programming approach to use with unsorted collections is to assume that the access functions are able
to access all items within the collection, but that the order of the objects is not defined.

GetNext Method (Folders Collection)   

The GetNext method returns the next Folder object in the Folders collection. It returns Nothing if no
next object exists, for example if already positioned at the end of the collection.

Syntax
Set objFolder = objFoldersColl.GetNext()

objFolder
On successful return, represents the next Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks
The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether the folders are sorted or not. The Folder objects within a collection can be sorted on a MAPI
property of your choice, either ascending or descending, using the Sort method. When the items are
not sorted, you should not rely on these methods to return the items in any specified order. The best
programming approach to use with unsorted collections is to assume that the access functions are able
to access all items within the collection, but that the order of the objects is not defined.

If the GetFirst method has not been called since the Folders collection was initialized, the behavior of
the GetNext method is not defined. This can produce unexpected results if the collection is reinitialized
with a Set statement in every iteration of a loop. The recommended procedure is to set an explicit
variable for the collection before entering the loop. For more information, see Object Collections.

GetPrevious Method (Folders
Collection)   

The GetPrevious method returns the previous Folder object in the Folders collection. It returns
Nothing if no previous object exists, for example if already positioned at the beginning of the collection.

Syntax
Set objFolder = objFoldersColl.GetPrevious()

objFolder
On successful return, represents the previous Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks
The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether the folders are sorted or not. The Folder objects within a collection can be sorted on a MAPI
property of your choice, either ascending or descending, using the Sort method. When the items are
not sorted, you should not rely on these methods to return the items in any specified order. The best
programming approach to use with unsorted collections is to assume that the access functions are able
to access all items within the collection, but that the order of the objects is not defined.

If the GetLast method has not been called since the Folders collection was initialized, the behavior of
the GetPrevious method is not defined. This can produce unexpected results if the collection is
reinitialized with a Set statement in every iteration of a loop. The recommended procedure is to set an
explicit variable for the collection before entering the loop. For more information, see Object
Collections.

Item Property (Folders Collection)   

The Item property returns a single Folder object from the Folders collection. Read-only.

Syntax
objFoldersColl.Item(index)

objFoldersColl.Item(searchValue)

index
A long integer ranging from 1 to the size of the Folders collection.

searchValue
A string used to search the Folders collection starting at the current position. The search returns the
next Folder object having the current sorting property greater than or equal to the searchValue
string.

The Item property is the default property of a Folders collection, meaning that objFoldersColl(index) is
syntactically equivalent to objFoldersColl.Item(index) in Microsoft® Visual Basic® code.

Data Type
Object (Folder)

Remarks
Programmers needing to access individual objects in a large collection are strongly advised to use the
Visual Basic For Each statement or the Get methods, particularly GetFirst and GetNext.

The Item(index) syntax returns the Folder object at the indicated position in the collection. It can be
used in an indexed loop, such as the For ... Next construction in Visual Basic. The first item in the
collection has an index of 1.

For more information on using the Count and Item properties in a large collection, see the example in
the Count property.

The Item(searchValue) syntax returns the next Folder object whose current sorting property is greater
than or equal to the string specified by searchValue. This syntax starts its search at the current
position.

Prefix searching is based on the current sort order of the collection. The default sort property for a
Folders collection is the Name property of the collection’s Folder objects. If you want to use the
Item(searchValue) syntax to search the collection on another property, for example a parent folder ID,
you should first call the Sort method specifying the FolderID property.

Note The Item(searchValue) syntax uses the IMAPITABLE::FindRow method, which performs a
search dependent on the current sort order of the table underlying the collection. Not all tables are
sorted alphabetically. The Microsoft Exchange Public Folders folder, for example, is held in a
nonalphabetic order, and you should access its subfolders using the Item(index) syntax.

For more information on tables, bookmarks, restrictions, and sort and search orders, see the MAPI
Programmer’s Reference.

If your application is running as a Windows NT® service, you cannot access the Microsoft Exchange
Public Folders through the normal hierarchy because of a notification conflict. You must use the
InfoStore object’s Fields property to obtain the Microsoft Exchange property
PR_IPM_PUBLIC_FOLDERS_ENTRYID, property tag &H66310102. This represents the top-level
public folder and allows you to access all other public folders through its Folders property. For more
information on Windows NT services, see the Win32® Web page Using MAPI from a Windows NT
Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm.

Although the Item property itself is read-only, the Folder object it returns can be accessed in the normal
manner, and its properties retain their respective read/write or read-only accessibility.

RawTable Property (Folders Collection)   

The RawTable property returns an IUnknown pointer to the MAPI table object underlying the Folders
collection. Not available to Microsoft® Visual Basic® applications. Read/write.

Syntax
objFoldersColl.RawTable

Data Type
Variant (vbDataObject format)

Remarks
The RawTable property is not available to Visual Basic programs. It is accessible only by C/C++
programs that deal with IUnknown objects. Visual Basic supports the IDispatch interface and not
IUnknown. The RawTable property is an IUnknown object that returns an IMAPITable interface in
response to QueryInterface. For more information, see Introduction to Automation and How
Programmable Objects Work. Also see the "COM and ActiveX Object Services" section of the Microsoft
Platform SDK.

Sort Method (Folders Collection)   

The Sort method sorts the collection on the specified property according to the specified sort order.

Syntax
objFoldersColl.Sort([SortOrder, PropTag])

objFoldersColl.Sort([SortOrder, name])

objFoldersColl
Required. The Folders collection object.

SortOrder
Optional. Long. The specified sort order, one of the following values:
Value Numeric value Description
CdoNone 0 No sort
CdoAscending 1 Ascending sort (default)
CdoDescending 2 Descending sort

PropTag
Optional. Long. The property tag value for the MAPI property to be used for the sort. PropTag is the
32-bit MAPI property tag associated with the property, such as CdoPR_STORE_ENTRYID.

name
Optional. String. The custom property name of a MAPI named property.

Remarks
Both parameters are optional. If SortOrder is not specified, ascending order is used. If neither PropTag
nor name is specified, the property used in the previous call to Sort is used again. If Sort has never
been called on this collection during this session, the MAPI property CdoPR_DISPLAY_NAME is used
for the sort.

Each call to Sort generates an entirely new sort order based on the specified property. No previous
sort order is retained or nested.

If the underlying messaging system does not support the sort criteria specified, for example
descending order or MAPI named properties, the Sort method returns CdoE_TOO_COMPLEX.

GroupHeader Object
The GroupHeader object represents the header for a grouping of messages within a table view.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.1
Parent objects: Messages collection
Child objects: (none)
Default property: Name

Properties

Name

Available
in version

Type

Access

Application 1.1 String Read-only
Class 1.1 Long Read-only
Count 1.1 Long Read-only
Level 1.1 Long Read-only
Name 1.1 String Read-only
Parent 1.1 Messages collection

object
Read-only

Session 1.1 Session object Read-only
Unread 1.1 Long Read-only

Methods
(None.)

Remarks
A GroupHeader object is only instantiated when a CDO Rendering TableView is applied to a Messages
collection, and furthermore only when this view is a grouped, or categorized, view. The group header
indicates that the items following it in the view are grouped within its category. A grouped view is
generated externally to the CDO application and cannot be created or deleted programmatically by the
application. A rendering application applies the view by assigning it to the CurrentView property of the
CDO Rendering ContainerRenderer object. Applying the grouped view causes the underlying collection
to be updated with the grouping specified in the view.

Currently, categorized views are only applied to folders, and group headers can only appear in a
Messages collection. Address book container views are not grouped.

Group headers are nonpersistent objects instantiated automatically to represent the categorization
rows in a grouped view. They are not stored anywhere. Group headers, like grouped views, cannot be
created or deleted programmatically by a CDO application. The only way to create GroupHeader
objects is to apply a grouped view to a rendering object. The grouping is specified externally as part of
the view, for example by the Microsoft® Exchange Client. A group header is released, with no
persistent copy, when its Messages collection is released.

A GroupHeader object corresponds to a categorization row in a MAPI view table. The group header is
only needed when you traverse a Messages collection and need to distinguish between categorization
and message items. When you render a categorized table with the CDO Rendering ContainerRenderer
object, the categorization rows are rendered as well as the messages.

GroupHeader objects are included with Message objects in the Count property of the Messages
collection and are accessible through its Item property. They can also be returned by the Messages
collection's Get methods.

Count Property (GroupHeader Object)   

The Count property returns the total number of items in the group. Read-only.

Syntax
objGroupHdr.Count

Data Type
Long

Remarks
The Count property represents the number of Message objects that are grouped under this group
header. It includes both read and unread messages. If -1 is returned, an accurate count is not
available.

The Count property corresponds to the MAPI property PR_CONTENT_COUNT.

Level Property (GroupHeader Object)   

The Level property returns the indentation level of the group header within the table view. Read-only.

Syntax
objGroupHdr.Level

Data Type
Long

Remarks
The Level property represents the nesting depth of this group header within the table view. The top-
level group is at level 1, the outermost level. The maximum permitted grouping depth is 4.

The number of categories, or levels of grouping, in a particular table view is given by the Categories
property of the CDO Rendering TableView object.

The Level property corresponds to the MAPI property PR_DEPTH, incremented by a value of 1.

Name Property (GroupHeader Object)   

The Name property returns a string that can be used as text for various categories in the table view.
Read-only.

Syntax
objGroupHdr.Name

The Name property is the default property of a GroupHeader object, meaning that objGroupHdr is
syntactically equivalent to objGroupHdr.Name in Microsoft® Visual Basic® code.

Data Type
String

Remarks
The Name property returns text that can be used for view categories such as sender, recipient, subject,
conversation topic, keyword, size, time sent, and time received.

A rendering object such as the CDO Rendering ContainerRenderer object should use the string in the
Name property to render group headers. The string should be followed by the message counts in the
Count and Unread properties, for example:

 <category header string> (5 items, 3 unread)

or, if all items are marked as having been read:

 <category header string> (5 items)

Unread Property (GroupHeader Object)   

The Unread property returns the number of unread messages in the group. Read-only.

Syntax
objGroupHdr.Unread

Data Type
Long

Remarks
The Unread property represents the number of Message objects grouped under this group header that
have not been marked as read. If -1 is returned, an accurate count is not available.

The Unread property corresponds to the MAPI property PR_CONTENT_UNREAD.

InfoStore Object
The InfoStore object provides access to the folder hierarchy of a message store.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Fields collection

InfoStores collection
Child objects: Folder
Default property: Name

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
Fields 1.1 Field object or Fields

collection object
Read-only

ID 1.0.a String Read-only
Index 1.0.a Long Read-only
MAPIOBJECT 1.1 IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

Name 1.0.a String Read-only
Parent 1.0.a InfoStores collection

object
Read-only

ProviderName 1.0.a String Read-only
RootFolder 1.0.a Folder object Read-only
Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

IsSameAs 1.1 objInfoStore2 as Object

Remarks
The InfoStore object provides access to its interpersonal message folder hierarchy through the
RootFolder property, which returns the Folder object that represents the root of the IPM subtree. To
access the root folder of the entire message store, first obtain its identifier with the FolderID property of
the IPM root folder, and then call the Session object’s GetFolder method.

You can obtain any InfoStore object available to this session with the Item property of the InfoStores

collection. You can also retrieve an InfoStore object with a known identifier by calling the session’s
GetInfoStore method.

Example
Dim objInfoStore, objIPMRoot, objStoreRoot as Object
Dim rootID as String
Set objInfoStore = objSession.InfoStores.Item(1)
If objInfoStore is Nothing Then
 MsgBox "Cannot open session’s first message store"
 ' Exit ...
End If
Set objIPMRoot = objInfoStore.RootFolder
rootID = objIPMRoot.FolderID
Set objStoreRoot = objSession.GetInfoStore (rootID)
' ... error checking ...

Fields Property (InfoStore Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objInfoStore.Fields

objInfoStore.Fields(index)

objInfoStore.Fields(proptag)

objInfoStore.Fields(name)

index
Short integer (less than or equal to 65,535). Specifies the index within the Fields collection.

proptag
Long integer (greater than or equal to 65,536). Specifies the property tag value for the MAPI
property to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object (Field or Fields collection)

Remarks
The Fields property returns one or all of the fields associated with an InfoStore object. Each field
typically corresponds to a MAPI property. Data types are preserved, except that MAPI counted binary
properties are converted to and from character strings representing hexadecimal digits.

The Fields property provides a generic access mechanism that allows Microsoft® Visual Basic® and
Microsoft® Visual C++® programmers to retrieve the value of a MAPI property using either its name or
its MAPI property tag. For access with the property tag, use objInfoStore.Fields(proptag), where
proptag is the 32-bit MAPI property tag associated with the property, such as
CdoPR_STORE_SUPPORT_MASK. To access a named property, use objInfoStore.Fields(name),
where name is a string that represents the custom property name.

Although the Fields property itself is read-only, the collection it returns can be accessed in the normal
manner through its Add and Delete methods, and the properties on its member Field objects retain
their respective read/write or read-only accessibility.

The Fields(name) syntax is not supported by all message store providers. An InfoStore that does not
support named properties returns CdoE_NO_SUPPORT for this syntax.

If your application is running as a Microsoft Windows NT® service, you cannot access the Microsoft
Exchange Public Folders through the normal hierarchy because of a notification conflict. You must use
the InfoStore’s Fields property to obtain the Microsoft Exchange property
PR_IPM_PUBLIC_FOLDERS_ENTRYID, property tag &H66310102. This represents the top-level
public folder and allows you to access all other public folders through its Folders property. For more
information on Windows NT services, see the Win32® Web page Using MAPI from a Windows NT
Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm.

Example
This code fragment accesses the root of the Public Folders subtree of a message store:

Dim objSess As Session ' assume logged on to valid session
Dim objInfoStore As InfoStore ' assume opened and valid
Dim strPFRootID As String ' binary entry ID returned as hex string

Dim objPFRoot As Folder ' root folder of Public Folders
tagPFRootID = &H66310102 ' PR_IPM_PUBLIC_FOLDERS_ENTRYID
strPFRootID = objInfoStore.Fields(tagPFRootID) ' entry ID
MsgBox "Public Folders root folder ID = " & strPFRootID
Set objPFRoot = objSession.GetFolder(strPFRootID)

ID Property (InfoStore Object)   

The ID property returns the unique identifier of the InfoStore object as a string. Read-only.

Syntax
objInfoStore.ID

Data Type
String

Remarks
MAPI systems assign a permanent, unique identifier when an object is created. This identifier does not
change from one MAPI session to another, nor from one messaging domain to another. The InfoStore
identifier can be used in subsequent calls to the Session object’s GetInfoStore method.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Example
Dim strInfoStoreID as String ' hex string version of ID
Dim objInfoStore as InfoStore ' assume valid
strInfoStoreID = objInfoStore.ID ' global variable
MsgBox "InfoStore ID = " & strInfoStoreID
' ... this ID can be used as the parameter to the Session method
Set objInfoStore = objSession.GetInfoStore(strInfoStoreID)

Index Property (InfoStore Object)   

The Index property returns the index number for the InfoStore object within the parent InfoStores
collection. Read-only.

Syntax
objInfoStore.Index

Data Type
Long

Remarks
The Index property indicates this object’s position within the parent InfoStores collection. It can be
saved and used later with the collection’s Item property to reselect the same message store in the
collection.

The first object in the collection has an Index value of 1.

Example
Function InfoStoresGetByIndex()
Dim lIndex As Long
Dim objOneInfoStore As InfoStore ' assume valid InfoStore
 ' set error handler here
 If objInfoStoreColl Is Nothing Then
 MsgBox "Must select an InfoStores collection"
 Exit Function
 End If
 If 0 = objInfoStoreColl.Count Then
 MsgBox "must select collection with 1 or more InfoStores"
 Exit Function
 End If
 ' prompt user for index; for now, use 1
 Set objOneInfoStore = objInfoStoreColl.Item(1)
 MsgBox "Selected InfoStore 1: " & objOneInfoStore.Name
 lIndex = objOneInfoStore.Index ' save index to retrieve this later
 ' ... get same InfoStore object later
 Set objOneInfoStore = objInfoStoreColl.Item(lIndex)
 If objOneInfoStore Is Nothing Then
 MsgBox "Error, could not reselect the InfoStore"
 Else
 MsgBox "Reselected InfoStore " & lIndex & _
 " using index: " & objOneInfoStore.Name
 End If
 Exit Function

IsSameAs Method (InfoStore Object)   

The IsSameAs method returns True if the InfoStore object is the same as the InfoStore object being
compared against.

Syntax
objInfoStore.IsSameAs(objInfoStore2)

objInfoStore
Required. This InfoStore object.

objInfoStore2
Required. The InfoStore object being compared against.

Remarks
Two InfoStore objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object in the underlying messaging system. Two objects with the same value are
still considered different if they do not instantiate the same physical object, for example if one is a copy
of the other. In such a case IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. This is necessary because, although MAPI requires all entry identifiers to be
unique, it does not require two of them identifying the same object to be identical. A generic
comparison of any two objects' unique identifiers is also available with the Session object’s
CompareIDs method.

MAPIOBJECT Property (InfoStore Object)

The MAPIOBJECT property returns an IUnknown pointer to the InfoStore object. Not available to
Microsoft® Visual Basic® applications. Read/write.

Syntax
objInfoStore.MAPIOBJECT

Data Type
Variant (vbDataObject format)

Remarks
The MAPIOBJECT property is not available to Visual Basic programs. It is accessible only by C/C++
programs that deal with IUnknown objects. Visual Basic supports the IDispatch interface and not
IUnknown. The MAPIOBJECT property is an IUnknown object that returns an IMsgStore interface in
response to QueryInterface. For more information, see Introduction to Automation and How
Programmable Objects Work. Also see the "COM and ActiveX Object Services" section of the Microsoft
Platform SDK.

Name Property (InfoStore Object)   

The Name property returns the name of the InfoStore object as a string. Read-only.

Syntax
objInfoStore.Name

The Name property is the default property of an InfoStore object, meaning that objInfoStore is
syntactically equivalent to objInfoStore.Name in Microsoft® Visual Basic® code.

Data Type
String

Remarks
The Name property can be specified as the parameter to the Item property of the InfoStores collection
if you know the name of the message store.

The string “Public Folders” is the name of the InfoStore object that contains the public folders.

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Example
Dim objInfoStore As InfoStore ' assume valid InfoStore object
MsgBox "InfoStore name = " & objInfoStore.Name

ProviderName Property (InfoStore
Object)   

The ProviderName property returns the name of the InfoStore’s message store provider as a string.
Read-only.

Syntax
objInfoStore.ProviderName

Data Type
String

Remarks
A message store provider is a MAPI object that manages one or more MAPI message stores. Each
message store is accessible as a CDO Library InfoStore object.

The ProviderName property corresponds to the MAPI property PR_PROVIDER_DISPLAY.

Example
Dim objInfoStore As InfoStore ' assume valid InfoStore object
MsgBox "Message store provider name = " & objInfoStore.ProviderName

RootFolder Property (InfoStore Object)   

The RootFolder property returns a Folder object representing the root of the IPM subtree for the
InfoStore object. Read-only.

Syntax
Set objFolder = objInfoStore.RootFolder

Data Type
Object (Folder)

Remarks
The RootFolder property provides a convenient way to get to this commonly used Folder object.

In addition to the general ability to navigate through the formal collection and object hierarchy, CDO
supports properties that allow your application to directly access the most common Folder objects:

· The InfoStore object’s RootFolder property for the IPM subtree root folder
· The Session object’s Inbox property for the Inbox folder
· The Session object’s Outbox property for the Outbox folder

Some message stores also support a direct way to obtain the root folder of the message store. For
more information, see the Session object’s GetFolder method.

If your application is running as a Microsoft® Windows NT® service, you cannot access the Microsoft
Exchange Public Folders through the normal hierarchy because of a notification conflict. You must use
the InfoStore’s Fields property to obtain the Microsoft Exchange property
PR_IPM_PUBLIC_FOLDERS_ENTRYID, property tag &H66310102. This represents the top-level
public folder and allows you to access all other public folders through its Folders property. For more
information on Windows NT services, see the Win32® Web page Using MAPI from a Windows NT
Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm.

Example
' from InfoStores_RootFolder
 If objInfoStore Is Nothing Then
 MsgBox "must first select an InfoStore object"
 Exit Function
 End If
 Set objFolder = objInfoStore.RootFolder
 If objFolder Is Nothing Then
 MsgBox "Unable to retrieve IPM root folder"
 Set objMessages = Nothing
 Exit Function
 End If
 If objFolder.Name = "" Then
 MsgBox "Folder set to folder with no name, ID = " _
 & objFolder.ID
 Else
 MsgBox "Folder set to: " & objFolder.Name
 End If
 Set objMessages = objFolder.Messages
 Exit Function

InfoStores Collection Object
The InfoStores collection object contains one or more InfoStore objects.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Session
Child objects: InfoStore
Default property: Item

An InfoStores collection is considered a small collection, which means that it supports count and index
values that let you access an individual InfoStore object through the Item property. The InfoStores
collection supports the Microsoft® Visual Basic® For Each statement. For more information on
collections, see Object Collections.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
Count 1.0.a Long Read-only
Item 1.0.a InfoStore object Read-only
Parent 1.0.a Session object Read-only
Session 1.0.a Session object Read-only

Methods
(None.)

Remarks
An InfoStores collection provides access to all InfoStore objects available to this session. Each
InfoStore object in turn offers access to the folder hierarchy of that message store. This is used
primarily to obtain access to public and private folders.

CDO does not support methods to add or remove InfoStore objects from the collection.

In general, you cannot assume that the InfoStore object’s Name property is unique. This means that
you cannot rely on the name to retrieve the InfoStore from the collection. However, you can iterate
through all objects in the collection using the InfoStores collection object’s Item property, and then
examine properties of the individual InfoStore objects. You can also rely on the InfoStore object’s ID
property, which is guaranteed to be unique.

Count Property (InfoStores Collection)   

The Count property returns the number of InfoStore objects in the collection. Read-only.

Syntax
objInfoStoresColl.Count

Data Type
Long

Example
This code fragment maintains a global variable to loop through the small collection, and uses the
Count property to keep it from getting too large:

' from InfoStores_NextItem
' iInfoStoresCollIndex is an integer used as an index
' check for empty collection ...
' check index upper bound
 If iInfoStoresCollIndex >= objInfoStoresColl.Count Then
 iInfoStoresCollIndex = objInfoStoresColl.Count
 MsgBox "Already at end of InfoStores collection"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iInfoStoresCollIndex = iInfoStoresCollIndex + 1
 Set objInfoStore = objInfoStoresColl.Item(iInfoStoresCollIndex)
 If objInfoStore Is Nothing Then
 MsgBox "Error, cannot get this InfoStore object"
 Exit Function
 Else
 MsgBox "Selected InfoStore " & iInfoStoresCollIndex
 End If

Item Property (InfoStores Collection)   

The Item property returns a single InfoStore object from the InfoStores collection. Read-only.

Syntax
objInfoStoresColl.Item(index)

objInfoStoresColl.Item(storeName)

index
A long integer ranging from 1 to objInfoStoresColl.Count.

storeName
A string representing the name of the desired InfoStore. This can be obtained from the Name
property of an InfoStore object.

The Item property is the default property of an InfoStores collection, meaning that
objInfoStoresColl(index) is syntactically equivalent to objInfoStoresColl.Item(index) in Microsoft® Visual
Basic® code.

Data Type
Object (InfoStore)

Remarks
The Item property works like an accessor property for small collections.

Although the Item property itself is read-only, the InfoStore object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

Example
For more information on using the Count and Item properties in an InfoStores collection, see the
example in the Count property.

MeetingItem Object
The MeetingItem object represents a meeting in a folder.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.2
Parent objects: Messages collection
Child objects: Attachments collection

Fields collection
Recipients collection

Default property: Subject

The MeetingItem object is a subclass of the Message object and exposes all the same properties and
methods. In the following tables of properties and methods, those that are common with the Message
object are linked to their descriptions for the Message object. Only the properties and methods unique
to the MeetingItem object are described in this section.

Properties

Name

Available
in version

Type

Access

Application 1.2 String Read-only
Attachments 1.2 Attachment object or

Attachments collection
object

Read-only

Categories 1.2 String array Read/write
Class 1.2 Long Read-only
Conversation 1.2 (Obsolete. Do not

use.)
Read/write

ConversationIndex 1.2 String Read/write
ConversationTopic 1.2 String Read/write
DeliveryReceipt 1.2 Boolean Read/write
Encrypted 1.2 Boolean Read/write
Fields 1.2 Field object or Fields

collection object
Read-only

FolderID 1.2 String Read-only

ID 1.2 String Read-only
Importance 1.2 Long Read/write
MAPIOBJECT 1.2 IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

MeetingType 1.2 Long Read-only

Parent 1.2 Messages collection
object

Read-only

ReadReceipt 1.2 Boolean Read/write
Recipients 1.2 Recipients object or

Recipients collection
object

Read/write

Sender 1.2 AddressEntry object Read/write
Sensitivity 1.2 Long Read/write
Sent 1.2 Boolean Read/write
Session 1.2 Session object Read-only
Signed 1.2 Boolean Read/write
Size 1.2 Long Read-only
StoreID 1.2 String Read-only
Subject 1.2 String Read/write
Submitted 1.2 Boolean Read/write
Text 1.2 String Read/write
TimeCreated 1.2 Variant (vbDate

format)
Read-only

TimeExpired 1.2 Variant (vbDate
format)

Read/write

TimeLastModified 1.2 Variant (vbDate
format)

Read-only

TimeReceived 1.2 Variant (vbDate
format)

Read/write

TimeSent 1.2 Variant (vbDate
format)

Read/write

Type 1.2 String Read/write
Unread 1.2 Boolean Read/write

Methods

Name

Available
in version

Parameters

CopyTo 1.2 folderID as String,
(optional) storeID as String

Delete 1.2 (none)
Forward 1.2 (none)
GetAssociatedAppoi
ntment

1.2 (none)

IsSameAs 1.2 objMessage2 as Object
MoveTo 1.2 folderID as String,

(optional) storeID as String
Options 1.2 (optional) parentWindow as Long
Reply 1.2 (none)

ReplyAll 1.2 (none)
Respond 1.2 RespondType as Long
Send 1.2 (optional) saveCopy as Boolean,

(optional) showDialog as Boolean,
(optional) parentWindow as Long

Update 1.2 (optional) makePermanent as
Boolean,
(optional) refreshObject as Boolean

Remarks
A MeetingItem object is distinguished from a Message object by its Type property containing
IPM.Schedule.Meeting.Request.

New MeetingItem objects are created automatically by CDO when appointments are made into
meetings. You can cause an AppointmentItem object to become a meeting by setting its
MeetingStatus property to CdoMeeting and sending it to one or more recipients. To do this, create a
Recipients collection using the appointment's Recipients property, populate the collection using its
Add method, and call the appointment's Send method. CDO instantiates a MeetingItem object at the
time you call Send. You cannot create a MeetingItem object directly.

A meeting item can be obtained from its parent Messages collection using the collection’s Item
property. To get to the Messages collection in a folder, use the Folder object’s Messages property. If
you know a meeting’s unique identifier, you can obtain it directly from the Session object’s
GetMessage method.

A MeetingItem object is a member of the Inbox Messages collection of each recipient to which the
original AppointmentItem object was sent. You can treat it programmatically like the Message objects in
the collection. In particular, you can apply a MessageFilter object to the collection and filter meeting
items on any properties, including the inherited Message object properties.

A MeetingItem object can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer
object. To specify this, set the object renderer's DataSource property to the MeetingItem object itself.
The individual properties that can be rendered with the RenderProperty method are indicated in the
MeetingItem and Message object property descriptions.

A MeetingItem object can also be rendered as the parent of a Recipients collection, using the
ContainerRenderer object. The individual properties that can be rendered with the RenderProperty
method are indicated in the MeetingItem and Message object property descriptions.

GetAssociatedAppointment Method
(MeetingItem Object)   

The GetAssociatedAppointment method returns an AppointmentItem object associated with this
meeting.

Syntax
Set objAppoint = objMeeting.GetAssociatedAppointment()

objAppoint
On successful return, contains the AppointmentItem object associated with this meeting.

objMeeting
Required. This MeetingItem object.

Remarks
You can work directly with the AppointmentItem object to access its specifications and respond to it.
The appointment returned by GetAssociatedAppointment is the only AppointmentItem object on
which you can call the Respond method.

MeetingType Property (MeetingItem
Object)   

The MeetingType property returns the type of this meeting item. Read-only.

Syntax
objMeeting.MeetingType

Data Type
Long

Remarks
The MeetingType property is set automatically by the Send method when you send a meeting request
from an AppointmentItem object and when you send a response from an AppointmentItem or
MeetingItem object. MeetingType can have exactly one of the following values:

MeetingType value

Decimal

value

Description

CdoMeetingRequest 1 This meeting item is a meeting
request.

CdoMeetingResponse 2 This meeting item is a response to
a meeting request.

Respond Method (MeetingItem Object)   

The Respond method returns a MeetingItem object for responding to this meeting request.

Syntax
Set objMeetResp = objMeeting.Respond(RespondType)

objMeetResp
Object. On successful return, contains a MeetingItem object that can be used to respond to the
meeting request.

objMeeting
Required. This MeetingItem object.

RespondType
Required. Long. The value to send as the response.

Remarks
The Respond method prepares a meeting response which can be sent in answer to a meeting request
using the Forward, Reply, ReplyAll, or Send method. The response takes the form of a MeetingItem
object with the meeting's initiating user as a primary recipient. The initiating user is available through
the Organizer property of the associated AppointmentItem object, which can be obtained from the
GetAssociatedAppointment method.

The RespondType parameter can have exactly one of the following values:

RespondType setting

Decimal

value

Description

CdoResponseAccepted 3 This messaging user wishes to
firmly accept the meeting
request.

CdoResponseDeclined 4 This messaging user wishes to
decline the meeting request.

CdoResponseTentative 2 This messaging user wishes to
tentatively accept the meeting
request.

The message class of the response you send depends on the value you specify in the RespondType
parameter. It is IPM.Schedule.Meeting.Resp.Pos if you accept, IPM.Schedule.Meeting.Resp.Neg if you
decline, or IPM.Schedule.Meeting.Resp.Tent if you accept tentatively.

Calling the Respond method is the same as calling GetAssociatedAppointment and then calling
Respond on the AppointmentItem object.

Example
Dim objSess As Session
Dim objMtg As MeetingItem
Dim objAppt As AppointmentItem
Dim objResp As MeetingItem ' response to meeting request

On Error Resume Next

Set objSess = CreateObject("MAPI.Session")
objSess.Logon
Set objMtg = objSess.Inbox.Messages(1)

If objMtg Is Nothing Then
 MsgBox "No messages in Inbox"
 ' ... error exit ...
ElseIf objMtg.Class <> 27 Then ' CdoMeetingItem
 MsgBox "Message is not a meeting request or response"
 ' ... error exit ...
End If
MsgBox "Meeting is " & objMtg ' default property is .Subject

' Message exists and is a meeting; is it a request?
If objMtg.MeetingType <> 1 Then ' CdoMeetingRequest
 MsgBox "Meeting item is not a request"
 ' ... error exit ...
End If
Set objAppt = objMtg.GetAssociatedAppointment
MsgBox "Meeting times" & objAppt.StartTime & " - " & objAppt.EndTime _
 & "; recurring is " & objAppt.IsRecurring
' we can Respond from either the AppointmentItem or the MeetingItem
Set objResp = objMtg.Respond(3) ' CdoResponseAccepted
objResp.Text = "OK, I'll be there"
objResp.Send

Message Object
The Message object represents a single message, item, document, or form in a folder.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Messages collection
Child objects: Attachments collection

Fields collection
Recipients collection

Default property: Subject

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Attachments 1.0.a Attachment object or

Attachments collection
object

Read-only

Categories 1.2 String array Read/write
Class 1.0.a Long Read-only
Conversation 1.0.a (Obsolete. Do not

use.)
Read/write

ConversationIndex 1.0.a String Read/write
ConversationTopic 1.0.a String Read/write
DeliveryReceipt 1.0.a Boolean Read/write
Encrypted 1.0.a Boolean Read/write
Fields 1.0.a Field object or Fields

collection object
Read-only

FolderID 1.0.a String Read-only

ID 1.0.a String Read-only
Importance 1.0.a Long Read/write
MAPIOBJECT 1.0.a IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

Parent 1.0.a Messages collection
object

Read-only

ReadReceipt 1.0.a Boolean Read/write
Recipients 1.0.a Recipients object or Read/write

Recipients collection
object

Sender 1.0.a AddressEntry object Read/write
Sensitivity 1.2 Long Read/write
Sent 1.0.a Boolean Read/write
Session 1.0.a Session object Read-only
Signed 1.0.a Boolean Read/write
Size 1.0.a Long Read-only
StoreID 1.0.a String Read-only
Subject 1.0.a String Read/write
Submitted 1.0.a Boolean Read/write
Text 1.0.a String Read/write
TimeCreated 1.2 Variant (vbDate

format)
Read-only

TimeExpired 1.2 Variant (vbDate
format)

Read/write

TimeLastModified 1.2 Variant (vbDate
format)

Read-only

TimeReceived 1.0.a Variant (vbDate
format)

Read/write

TimeSent 1.0.a Variant (vbDate
format)

Read/write

Type 1.0.a String Read/write
Unread 1.0.a Boolean Read/write

Methods

Name

Available
in version

Parameters

CopyTo 1.1 folderID as String,
(optional) storeID as String

Delete 1.0.a (none)
Forward 1.2 (none)
IsSameAs 1.1 objMessage2 as Object
MoveTo 1.1 folderID as String,

(optional) storeID as String
Options 1.0.a (optional) parentWindow as Long
Reply 1.2 (none)
ReplyAll 1.2 (none)

Send 1.0.a (optional) saveCopy as Boolean,
(optional) showDialog as Boolean,
(optional) parentWindow as Long

Update 1.0.a (optional) makePermanent as
Boolean,
(optional) refreshObject as Boolean

Remarks
Microsoft® Visual Basic® programmers can create new Message objects using the Messages
collection’s Add method.

C/C++ programmers can create new Message objects with the OLE function CoCreateInstance.

A message can be obtained from its parent Messages collection using the collection’s Item property. To
get to the Messages collection in a folder, use the Folder object’s Messages property. If you know a
message’s unique identifier, you can obtain it directly from the Session object’s GetMessage method.

A Message object can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer
object. To specify this, set the object renderer's DataSource property to the Message object itself. The
individual properties that can be rendered with the RenderProperty method are indicated in the
Message object property descriptions.

A Message object can also be rendered as the parent of a Recipients collection, using the
ContainerRenderer object. The individual properties that can be rendered with the RenderProperty
method are indicated in the Message object property descriptions.

Attachments Property (Message Object) 

The Attachments property returns a single Attachment object or an Attachments collection object.
Read-only.

Syntax
Set objAttachColl = objMessage.Attachments

Set objOneAttach = objMessage.Attachments(index)

objAttachColl
Object. An Attachments collection object.

objMessage
Object. The Message object.

objOneAttach
Object. A single Attachment object.

index
Long. Specifies the number of the attachment within the Attachments collection. Ranges from 1 to
the value specified by the Attachments collection’s Count property.

Data Type
Object (Attachment or Attachments collection)

Remarks
You can change individual Attachment objects within the Attachments collection, Add them to the
collection, and Delete them from the collection.

Although the Attachments property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add and Delete methods, and the properties on its member Attachment
objects retain their respective read/write or read-only accessibility.

The Attachments property does not correspond to a MAPI property and cannot be rendered into
HTML hypertext by the CDO Rendering Library. If a single Attachment object is returned, it could be
rendered as an object by setting the ObjectRenderer object's DataSource property to the Attachment
object returned by the Attachments property.

Example
This code fragment uses the Attachments property to retrieve an attachment of the message:

' from the sample function Message_Attachments
 Set objAttachColl = objOneMsg.Attachments
 If objAttachColl Is Nothing Then
 MsgBox "unable to set Attachments collection"
 Exit Function
 Else
 MsgBox "Attachments count for this msg: " & objAttachColl.Count
 iAttachCollIndex = 0 ' reset global index variable
 End If
' from the sample function Attachments_FirstItem
 iAttachCollIndex = 1
 Set objAttach = objAttachColl.Item(iAttachCollIndex)

Categories Property (Message Object)   

The Categories property specifies the categories assigned to the message. Read/write.

Syntax
objMessage.Categories

Data Type
String array

Remarks
The contents of the Categories property are defined by the application. Categories is commonly used
to hold a set of keywords that can be used to access messages in a folder.

AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the
Categories property. An attempt to access Categories in this case returns CdoE_NO_SUPPORT.

When you declare a variable to interact with the Categories property, you must dimension it as a string
array, not just as an array of unspecified data type. The Dimension statement must include As String
to accomplish this.

Example
This code fragment sets the Categories property of a message from a string array of keywords:

' assume objMessage is valid and already being accessed
Dim KWords(10) As String ' NOT just Dim KWords(10)
' obtain up to ten keywords from user
objMessage.Categories = KWords

Conversation Property (Message
Object)   

The Conversation property is obsolete. It has been replaced by the ConversationIndex and
ConversationTopic properties.

For more information on conversations, see Working With Conversations.

ConversationIndex Property (Message
Object)   

The ConversationIndex property specifies the index to the conversation thread of the message.
Read/write.

Syntax
objMessage.ConversationIndex

Data Type
String

Remarks
The ConversationIndex property is a string that represents a hexadecimal number. Valid characters
within the string include the numbers 0 through 9 and the letters A through F (uppercase or lowercase).

A conversation is a group of related messages that have the same ConversationTopic property value.
In a discussion application, for example, users can save original messages and responses in their
personal folders. Messages can be tagged with the ConversationIndex property so that users can
order the messages within the conversation.

The Session object provides the CreateConversationIndex method to create or update a
conversation index.

This convention uses concatenated time stamp values, with each new message in the conversation
adding a new time stamp to the end of the ConversationIndex string. You can see time relationships
among the messages when you sort them by ConversationIndex values.

For more information on conversations, see Working With Conversations.

The current version of CDO does not support the ConversationIndex property on AppointmentItem
objects. An attempted access returns CdoE_NOT_FOUND.

The ConversationIndex property corresponds to the MAPI property PR_CONVERSATION_INDEX. It
can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this,
set the object renderer's DataSource property to this Message object and the property parameter of
the RenderProperty method to CdoPR_CONVERSATION_INDEX.

Example
This code fragment demonstrates the old procedure used prior to version 1.1 of CDO. It takes
advantage of the OLE CoCreateGUID function, which returns a value that consists of a time stamp and
a machine identifier. The code fragment saves the time stamp part of the GUID.

For an example of the new procedure available with CDO version 1.1, see the
CreateConversationIndex method.

' declarations section
Type GUID ' global unique identifier; contains a time stamp
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
' function appears in OLE32.DLL on Windows NT and Windows 95
Declare Function CoCreateGuid Lib "COMPOBJ.DLL" (pGuid As GUID) As Long
Global Const S_OK = 0 ' return value from CoCreateGuid

Function Util_GetEightByteTimeStamp() As String
Dim lResult As Long
Dim lGuid As GUID
 ' Exchange conversation is a unique 8-byte value
 ' Exchange client viewer sorts by concatenated properties
 On Error GoTo error_actmsg

 lResult = CoCreateGuid(lGuid)
 If lResult = S_OK Then
 Util_GetEightByteTimeStamp = _
 Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
 Else
 Util_GetEightByteTimeStamp = "00000000" ' zero time stamp
 End If
 Exit Function

error_actmsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Util_GetEightByteTimeStamp = "00000000"
 Exit Function
End Function

Function Util_NewConversation()
Dim i As Integer
Dim objNewMsg As Message ' new message object
Dim strNewIndex As String ' value for ConversationIndex
' ... error handling ...
 Set objNewMsg = objSession.Outbox.Messages.Add
' ... error handling ...
 With objNewMsg
 .Subject = "used space vehicle wanted"
 .ConversationTopic = .Subject
 .ConversationIndex = Util_GetEightByteTimeStamp() ' utility
 .Text = "Wanted: Apollo or Mercury spacecraft with low mileage."
 Set objOneRecip = .Recipients.Add(Name:="Car Ads", Type:=CdoTo)
 ' or you could pick the public folder from the address book
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create the public folder recipient"
 Exit Function
 End If
 .Recipients.Resolve
 .Update ' save everything in the MAPI system
 .Send showDialog:=False
 End With
End Function

A subsequent reply to this message should copy the ConversationTopic property and append its own
time stamp to the original message’s time stamp, as shown in the following code fragment:

Function Util_ReplyToConversation()
Dim objPublicFolder As Folder
Dim i As Integer
Dim objOriginalMsg As Message ' original message in public folder
Dim objNewMsg As Message ' new message object for reply

Dim strPublicFolderID As String ' ID for public folder

 Set objNewMsg = objSession.Outbox.Messages.Add
' error checking ... obtain objOriginalMsg and check that it is valid
 With objNewMsg
 .Text = "How about a slightly used Gemini?" ' new text
 .Subject = objOriginalMsg.Subject ' copy original properties
 .ConversationTopic = objOriginalMsg.ConversationTopic
 ' append time stamp; compatible with Microsoft Exchange client
 .ConversationIndex = objOriginalMsg.ConversationIndex & _
 Util_GetEightByteTimeStamp() ' new stamp
 ' message was sent to a public folder so can copy recipient
 Set objOneRecip = .Recipients.Add(_
 Name:=objOriginalMsg.Recipients.Item(1).Name, _
 Type:=CdoTo)
 ' ... more error handling
 .Recipients.Resolve
 .Update ' save everything in the MAPI system
 .Send showDialog:=False
 End With
' ... error handling
End Function

ConversationTopic Property (Message
Object)   

The ConversationTopic property specifies the subject of the conversation thread of the message.
Read/write.

Syntax
objMessage.ConversationTopic

Data Type
String

Remarks
A conversation is a group of related messages. The ConversationTopic property is the string that
describes the overall topic of the conversation. To be considered as messages within the same
conversation, the messages must have the same value in their ConversationTopic property. The
ConversationIndex property represents an index that indicates a sequence of messages within that
conversation.

When you start an initial message, set the ConversationTopic property to a value appropriate to all
messages within the conversation, not only to the first message. For many applications, the message’s
Subject property is appropriate.

CDO does not automatically copy the ConversationTopic property to other messages unless you are
making an exact copy with the CopyTo method. When your application creates replies to an original
message, you should set the ConversationTopic property to the same value as that of the original
message. To change the ConversationTopic for all messages in a conversation thread, you must
change the property within each message in that thread.

For more information on conversations, see Working With Conversations.

The current version of CDO does not support the ConversationTopic property on AppointmentItem
objects. An attempted access returns CdoE_NOT_FOUND.

The ConversationTopic property corresponds to the MAPI property PR_CONVERSATION_TOPIC. It
can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this,
set the object renderer's DataSource property to this Message object and the property parameter of
the RenderProperty method to CdoPR_CONVERSATION_TOPIC.

Example
See the examples for the ConversationIndex property and for the Session object’s
CreateConversationIndex method.

CopyTo Method (Message Object)   

The CopyTo method makes a copy of the Message object in another folder.

Syntax
Set objCopiedMessage = objMessage.CopyTo(folderID [, storeID])

objCopiedMessage
On successful return, contains the copied Message object.

objMessage
Required. This Message object.

folderID
Required. String. The unique identifier of the destination Folder object in which the copy of this
message is to appear.

storeID
Optional. String. The unique identifier of the InfoStore object in which the message copy is to
appear, if different from this message’s InfoStore.

Remarks
The current version of CDO does not support the CopyTo method on AppointmentItem objects.

All properties that have been set on this message are copied, whether they have read-only or
read/write access. Each property is copied with its value and access unchanged.

The copy operation takes effect when you call the Update method on the copied Message object. This
allows you to change, for example, the Sent property on the message copy before committing the
transaction.

This Message object remains unchanged by the CopyTo method.

Delete Method (Message Object)   

The Delete method removes the AppointmentItem, MeetingItem, or Message object from the
Messages collection.

Syntax
objMessage.Delete()

Remarks
The Delete method moves a MeetingItem or Message object to the Deleted Items folder, if the client
has enabled this option. If the option is not enabled, or if the meeting or message is already in the
Deleted Items folder, the Delete method permanently removes it from the collection, and it cannot be
restored.

The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to the AppointmentItem, MeetingItem, or Message object. If you have another
reference to the object, you can still access its properties and methods, but you can never again
associate it with any collection because the Add method always creates a new object. You should Set
your reference variable either to Nothing or to another object.

The final Release on the AppointmentItem, MeetingItem, or Message object takes place when you
assign your reference variable to Nothing, or when you call Delete if you had no other reference. At
this point the object is removed from memory. Attempted access to a released object results in an error
return of CdoE_INVALID_OBJECT.

The action of the Delete method is permanent, and the Message object cannot be restored to the
collection. Before calling Delete, your application can prompt the user to verify whether the message
should be permanently deleted.

If the Messages collection underlies a categorized view and the deleted message was the last
remaining message in a group, the group’s GroupHeader object is also removed from the collection.
Unlike the message, however, it is not moved anywhere. Group headers do not persist in storage, and
when the collection is released, whether with messages or not, the GroupHeader objects cease to
exist.

When you delete a member of a collection, the collection is immediately refreshed, meaning that its
Count property is reduced by one and its members are reindexed. To access a member following the
deleted member, you must use its new index value. For more information, see Looping Through a
Collection.

You can delete all the group headers and messages in the Messages collection by calling the
collection’s Delete method. The ability to delete any message depends on the permissions granted to
the user. The Delete method returns an error code if called with insufficient permissions.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first Message object. That reference survives the call to Delete and has to be reassigned. The
second Message object is deleted without creating another reference, and no other action is
necessary.

' assume valid Folder object
Set objMessage = objFolder.Messages.Item(1)
objMessage.Delete ' still have a reference from Set statement
' ... other operations on objMessage possible but pointless ...
Set objMessage = Nothing ' necessary to remove reference
' ...
objFolder.Messages.Item(2).Delete ' no reference to remove

DeliveryReceipt Property (Message
Object)   

The DeliveryReceipt property is True if a delivery-receipt notification message is requested.
Read/write.

Syntax
objMessage.DeliveryReceipt

Data Type
Boolean

Remarks
Set the DeliveryReceipt property to True to obtain a notification message when each recipient
receives your message. The default setting is False.

Every transport provider that handles your message sends you a single delivery notification containing
the names and addresses of all the recipients that provider delivered your message to. Therefore you
might not get a separate notification for each recipient. Note that delivery does not imply that the
message has been read.

Notification requests include the DeliveryReceipt and ReadReceipt properties. For more information,
see Making Sure The Message Gets There.

Not all transport providers support notification requests.

The DeliveryReceipt property corresponds to the MAPI property
PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED. It can be rendered into HTML hypertext
using the CDO Rendering ObjectRenderer object. To specify this, set the object renderer's DataSource
property to this Message object and the property parameter of the RenderProperty method to
CdoPR_ORIGINATOR_DELIVERY_REPORT_REQUESTED.

Encrypted Property (Message Object)   

The Encrypted property is True if the message has been encrypted or if encryption is being requested.
Read/write.

Syntax
objMessage.Encrypted

Data Type
Boolean

Remarks
The effect of the Encrypted property is dependent upon the message store or transport provider. CDO
does not encrypt or digitally sign the message.

Security features include the Encrypted and Signed properties. For more information, see Securing
Messages.

The Encrypted property corresponds to the SECURITY_ENCRYPTED flag of the MAPI property
PR_SECURITY. It can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer
object. To specify this, set the object renderer's DataSource property to this Message object and the
property parameter of the RenderProperty method to CdoPR_SECURITY. However, you must assign
a CDO Rendering Format object to the PR_SECURITY property and use the Value property of the
format's Pattern objects to isolate the SECURITY_ENCRYPTED flag's setting for rendering.

Fields Property (Message Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objMessage.Fields

objMessage.Fields(index)

objMessage.Fields(proptag)

objMessage.Fields(name)

index
Short integer (less than or equal to 65,535). Specifies the index within the Fields collection.

proptag
Long integer (greater than or equal to 65,536). Specifies the property tag value for the MAPI
property to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object (Field or Fields collection)

Remarks
The Fields property returns one or all of the fields associated with a Message object. Each field
typically corresponds to a MAPI property. Data types are preserved, except that MAPI counted binary
properties are converted to and from character strings representing hexadecimal digits.

The Fields property provides a generic access mechanism that allows Microsoft® Visual Basic® and
Microsoft® Visual C++® programmers to retrieve the value of a MAPI property using either its name or
its MAPI property tag. For access with the property tag, use objMessage.Fields(proptag), where
proptag is the 32-bit MAPI property tag associated with the property, such as CdoPR_PRIORITY. To
access a named property, use objMessage.Fields(name), where name is a string that represents the
custom property name.

Although the Fields property itself is read-only, the collection it returns can be accessed in the normal
manner through its Add and Delete methods, and the properties on its member Field objects retain
their respective read/write or read-only accessibility.

The Fields property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library.

Example
' get the message’s Fields collection
Set objFieldsColl = objOneMsg.Fields
' get the first field of the Fields collection of the message
i = 1
Set objOneField = objFieldsColl.Item(i)
' could also be objFieldsColl(i) since Item is default property
If objOneField Is Nothing Then
 MsgBox "error; cannot get this Field object"
Else
 MsgBox "Selected Field " & i
End If

FolderID Property (Message Object)   

The FolderID property returns the unique identifier of the folder in which the message resides. Read-
only.

Syntax
objMessage.FolderID

Data Type
String

Remarks
Save the folder identifier to retrieve the Folder object at a later time using the Session object’s
GetFolder method.

MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another. However, MAPI does
not require identifier values to be binary comparable. Accordingly, two identifier values can be different,
yet refer to the same object. MAPI compares identifiers with the CompareEntryIDs method. CDO
provides the CompareIDs method in the Session object. For more information on entry identifiers, see
the MAPI Programmer’s Reference.

The current version of CDO does not support the FolderID property on AppointmentItem objects.

A Microsoft® Schedule+ calendar folder does not have a MAPI identifier. If you obtain the default
calendar folder by passing CdoDefaultFolderCalendar to the Session object's GetDefaultFolder
method, its messages have no defined value for the FolderID property. An attempt to access FolderID
in this case returns CdoE_NOT_FOUND.

The FolderID property corresponds to the MAPI property PR_PARENT_ENTRYID, converted to a
string of hexadecimal characters. It can be rendered into HTML hypertext using the CDO Rendering
ObjectRenderer object. To specify this, set the object renderer's DataSource property to this Message
object and the property parameter of the RenderProperty method to CdoPR_PARENT_ENTRYID.

Forward Method (Message Object)   

The Forward method returns a new Message object that can be used to forward the current message.

Syntax
Set objForwardMessage = objMessage.Forward()

objForwardMessage
On successful return, contains the new Message object ready for forwarding.

objMessage
Required. This Message object.

Remarks
The Forward method copies the current message to the new message, including any Attachment
objects associated with it. In keeping with forwarding conventions, Forward does not copy any
Recipient objects to the new message. You must populate the Recipients collection before calling the
Send method.

The current implementation of the Forward method does not copy the Text property to the new
message.

ID Property (Message Object)   

The ID property returns the unique identifier of the Message object as a string. Read-only.

Syntax
objMessage.ID

Data Type
String

Remarks
The ID property can be used to retrieve this message at a later time, using the Session object’s
GetMessage method.

MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another. However, MAPI does
not require identifier values to be binary comparable. Accordingly, two identifier values can be different,
yet refer to the same object. MAPI compares identifiers with the CompareEntryIDs method. CDO
provides the CompareIDs method in the Session object. For more information on entry identifiers, see
the MAPI Programmer’s Reference.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters. It can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer object.
To specify this, set the object renderer's DataSource property to this Message object and the property
parameter of the RenderProperty method to CdoPR_ENTRYID.

Example
' Save ID of last message accessed; use at startup
' from the sample function Message_ID
 strMessageID = objOneMsg.ID

' ... on shutdown, save the ID to storage
' ... on startup, get the ID from storage and restore
' from the sample function Session_GetMessage
 Set objOneMsg = objSession.GetMessage(strMessageID)

Importance Property (Message Object)   

The Importance property returns or sets the importance of the message. Read/write.

Syntax
objMessage.Importance

Data Type
Long

Remarks
The Importance property can have exactly one of the following values:

Constant Value Description
CdoLow 0 Low importance
CdoNormal 1 Normal importance (default)
CdoHigh 2 High importance

AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the
Importance property. An attempt to access Importance in this case returns CdoE_NOT_FOUND.

The Importance property corresponds to the MAPI property PR_IMPORTANCE. It can be rendered
into HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object
renderer's DataSource property to this Message object and the property parameter of the
RenderProperty method to CdoPR_IMPORTANCE.

Example
This code fragment sets the importance of a message as high:

' from the sample function QuickStart:
 Set objMessage = objSession.Outbox.Messages.Add
 ' ... check here to verify the message was created ...
 objMessage.Subject = "Gift of droids"
 objMessage.Text = "Help us, Obi-wan. You are our only hope."
 objMessage.Importance = CdoHigh
 objMessage.Send

See Also
Send Method (Message Object)

IsSameAs Method (Message Object)   

The IsSameAs method returns True if the Message object is the same as the Message object being
compared against.

Syntax
objMessage.IsSameAs(objMessage2)

objMessage
Required. This Message object.

objMessage2
Required. The Message object being compared against.

Remarks
Two Message objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object in the underlying messaging system. Two objects with the same value are
still considered different if they do not instantiate the same physical object, for example if one is a copy
of the other. In such a case IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. This is necessary because, although MAPI requires all entry identifiers to be
unique, it does not require two of them identifying the same object to be identical. A generic
comparison of any two objects' unique identifiers is also available with the Session object’s
CompareIDs method.

MAPIOBJECT Property (Message Object)   

The MAPIOBJECT property returns an IUnknown pointer to the Message object. Not available to
Microsoft® Visual Basic® applications. Read/write.

Syntax
objMessage.MAPIOBJECT

Data Type
Variant (vbDataObject format)

Remarks
The MAPIOBJECT property is not available to Visual Basic programs. It is accessible only by C/C++
programs that deal with IUnknown objects. Visual Basic supports the IDispatch interface and not
IUnknown. The MAPIOBJECT property is an IUnknown object that returns an IMessage interface in
response to QueryInterface. For more information, see Introduction to Automation and How
Programmable Objects Work. Also see the "COM and ActiveX Object Services" section of the Microsoft
Platform SDK.

The MAPIOBJECT property does not correspond to a MAPI property and cannot be rendered into
HTML hypertext by the CDO Rendering Library.

MoveTo Method (Message Object)   

The MoveTo method relocates the Message object to another folder.

Syntax
Set objMovedMessage = objMessage.MoveTo(folderID [, storeID])

objMovedMessage
On successful return, contains the moved Message object.

objMessage
Required. This Message object.

folderID
Required. String. The unique identifier of the destination Folder object in which this message is to
appear.

storeID
Optional. String. The unique identifier of the InfoStore object in which the message is to appear, if
different from this current InfoStore.

Remarks
The current version of CDO does not support the MoveTo method on AppointmentItem objects.

All properties that have been set on this message are moved, whether they have read-only or
read/write access. Each property is moved with its value and access unchanged.

The move operation takes effect immediately. This Message object is no longer accessible at its former
location after the MoveTo method returns.

Options Method (Message Object)   

The Options method displays a modal dialog box where the user can change the submission options
for a message.

Syntax
objMessage.Options([parentWindow])

objMessage
Required. The Message object.

parentWindow
Optional. Long. The parent window handle for the options dialog box. A value of zero (the default)
specifies that the dialog box should be application-modal.

Remarks
The Options dialog box is always modal, meaning the parent window is disabled while the dialog box
is active. If the parentWindow parameter is set to zero or is not set, all windows belonging to the
application are disabled while the dialog box is active. If the parentWindow parameter is supplied but is
not valid, the call returns CdoE_INVALID_PARAMETER.

The options are provider-specific and are registered by the provider. Providers are not required to
register option sheets. When providers do not register options, the Options method returns the error
code CdoE_NOT_FOUND.

Per-message options are properties of a message that control its behavior after submission. The per-
message options are part of the message envelope, not its content.

The following methods can invoke dialog boxes:

· Details method (AddressEntry object)
· Options and Send methods (AppointmentItem, MeetingItem, and Message objects)
· Resolve method (Recipient object)
· Resolve method (Recipients collection)
· AddressBook and Logon methods (Session object)

However, if your application is running as a Microsoft® Windows NT® service, for example from Active
Server Pages (ASP) script on a Microsoft® Internet Information Server (IIS), no user interface is
allowed.

For more information on Windows NT services, see the Win32® Web page Using MAPI from a
Windows NT Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm. For more information
on running as a service, see "Windows NT Service Client Applications" in the MAPI Programmer's
Reference.

ReadReceipt Property (Message Object) 

The ReadReceipt property is True if a read-receipt notification message is requested. Read/write.

Syntax
objMessage.ReadReceipt

Data Type
Boolean

Remarks
Set the ReadReceipt property to True to obtain a notification message when each recipient reads your
message. The default setting is False.

Each message store that receives your message sends you an individual read notification each time
one of the recipients sets the read flag on the message. Note that the read flag being set does not
imply that the recipient has physically read the message. Move and copy operations, for example,
typically set the read flag.

Notification requests include the DeliveryReceipt and ReadReceipt properties. For more information,
see Making Sure The Message Gets There.

Not all transport providers support notification requests.

The ReadReceipt property corresponds to the MAPI property PR_READ_RECEIPT_REQUESTED. It
can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this,
set the object renderer's DataSource property to this Message object and the property parameter of
the RenderProperty method to CdoPR_READ_RECEIPT_REQUESTED.

Recipients Property (Message Object)   

The Recipients property returns a single Recipient object or a Recipients collection object. Read/write.

Syntax
Set objRecipColl = objMessage.Recipients

Set objOneRecip = objMessage.Recipients(index)

objRecipColl
Object. A Recipients collection object.

objMessage
Object. The Message object.

objOneRecip
Object. A single Recipient object.

index
Long. Specifies the number of the recipient within the Recipients collection. Ranges from 1 to the
value specified by the Recipients collection’s Count property.

Data Type
Object (Recipient or Recipients collection)

Remarks
You can change individual Recipient objects within the Recipients collection, Add them to the
collection, and Delete them from the collection. You can also manipulate the Recipients collection as a
whole with a single Microsoft® Visual Basic® instruction. For example, you can copy the complete
recipient list of a received message, with all of each recipient’s properties, to a reply message:

 Set objReplyMessage.Recipients = objReceivedMessage.Recipients
 Set objSenderAE = objReceivedMessage.Sender
 Set objSender = objReplyMessage.Recipients.Add(objSenderAE.ID)
 ' then copy important properties from objSenderAE

Note that the Attachments property cannot be copied as a whole; attachments must be dealt with in
the manner of the following example.

The Recipients property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library. If a Recipients collection is returned, it could be rendered as
a container object by setting the ContainerRenderer object's DataSource property to the Recipients
collection object returned by the Recipients property.

Example
This code fragment uses a loop to create a copy of every valid recipient of the original message
objOneMsg in the copy message objCopyMsg. For each copied recipient, it also copies important
properties from the original. Note how much more code this requires than copying the Recipients
property from the original message.

' from the sample function Util_CopyMessage
For i = 1 To objOneMsg.Recipients.Count Step 1
 Set objOneRecip = objOneMsg.Recipients.Item(i)
 If objOneRecip Is Not Nothing Then
 Set objCopyRecip = objCopyMsg.Recipients.Add
 If objCopyRecip Is Nothing Then

 MsgBox "Unable to create recipient in message copy"
 Exit Function
 End If
 ' Now copy the most important properties
 objCopyRecip.Address = objOneRecip.Address
 objCopyRecip.Name = objOneRecip.Name
 objCopyRecip.Type = objOneRecip.Type
 End If
Next i

Reply Method (Message Object)   

The Reply method returns a new Message object that can be used to reply to the sender of the current
message.

Syntax
Set objReplyMessage = objMessage.Reply()

objReplyMessage
On successful return, contains the new Message object ready for replying.

objMessage
Required. This Message object.

Remarks
The Reply method copies the current message to the new message and populates its Recipients
collection with a single "To" recipient set from the original message's Sender property. In keeping with
response conventions, Reply does not copy any Attachment objects to the new message.

The current implementation of the Reply method does not copy the Text property to the new message.

ReplyAll Method (Message Object)   

The ReplyAll method returns a new Message object that that can be used to reply to the sender and
all recipients of the current message.

Syntax
Set objReplyMessage = objMessage.ReplyAll()

objReplyMessage
On successful return, contains the new Message object ready for replying.

objMessage
Required. This Message object.

Remarks
The ReplyAll method copies the current message to the new message and populates its Recipients
collection appropriately from the original message's Recipients and Sender properties. In keeping with
response conventions, ReplyAll does not copy any Attachment objects to the new message.

The current implementation of the ReplyAll method does not copy the Text property to the new
message.

Send Method (Message Object)   

The Send method sends the message to the recipients through the MAPI system.

Syntax
objMessage.Send([saveCopy, showDialog, parentWindow])

objMessage
Required. The Message object.

saveCopy
Optional. Boolean. If True, saves a copy of the message in a user folder, such as the Sent Items
folder. The default value is True.

showDialog
Optional. Boolean. If True, displays a Send Message dialog box where the user can change the
message contents or recipients. showDialog cannot be set to True when sending an
AppointmentItem object. The default value is False.

parentWindow
Optional. Long. The parent window handle for the Send Message dialog box. A value of zero (the
default) specifies that the dialog box should be application-modal. The parentWindow parameter is
ignored unless showDialog is True.

Remarks
Like the Update method, the Send method saves all changes to the message in the MAPI system, but
Send also moves the message to the current user’s Outbox folder. Messaging systems retrieve
messages from the Outbox and transport them to the recipients. After it is transported, a message is
removed from the Outbox and deleted unless saveCopy is True.

You should compose your new messages in either your Inbox or your Outbox. The Send method
normally deals only with messages located in these folders. However, if you have appointments in a
calendar folder, you can send them from that folder.

If you are sending a meeting request from an AppointmentItem object, you must first set the
appointment's MeetingStatus property to CdoMeeting, or the call to Send returns
CdoE_NO_SUPPORT. Also, there is no form for showing a meeting request, so you must either set
the showDialog parameter to False or let it default. If showDialog is True, Send returns
CdoE_NO_SUPPORT.

While you are still composing a message you can set its Sent property to False or leave it unset. The
Send method sets the Submitted property to True when the message is accepted in the message
store. After the message is transported, the spooler function of the sending messaging system sets the
Sent and Unread properties to True. The receiving messaging system sets the Submitted property to
False.

The Send method invalidates the composed Message object but does not remove it from memory. The
programmer should Set the invalidated object to Nothing to remove it from memory, or reassign it to
another message. Attempted access to a sent message results in a return of
CdoE_INVALID_OBJECT.

The Send dialog box is always modal, meaning the parent window is disabled while the dialog box is
active. If the parentWindow parameter is set to zero or is not set, all windows belonging to the
application are disabled while the dialog box is active. If the parentWindow parameter is supplied but is
not valid, the call returns CdoE_INVALID_PARAMETER.

For more information on sending and posting messages, see Creating and Sending a Message and
Posting Messages to a Public Folder.

The following methods can invoke dialog boxes:

· Details method (AddressEntry object)
· Options and Send methods (AppointmentItem, MeetingItem, and Message objects)
· Resolve method (Recipient object)
· Resolve method (Recipients collection)
· AddressBook and Logon methods (Session object)

However, if your application is running as a Microsoft® Windows NT® service, for example from Active
Server Pages (ASP) script on a Microsoft® Internet Information Server (IIS), no user interface is
allowed.

For more information on Windows NT services, see the Win32® Web page Using MAPI from a
Windows NT Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm. For more information
on running as a service, see "Windows NT Service Client Applications" in the MAPI Programmer's
Reference.

Sender Property (Message Object)   

The Sender property returns or sets the sender of a message as an AddressEntry object. Read/write.

Syntax
Set objAddrEntry = objMessage.Sender

objAddrEntry
Object. The returned AddressEntry object that represents the messaging user that sent the
message.

objMessage
Object. The Message object.

Data Type
Object (AddressEntry)

Remarks
You can change the Sender property before a message is either sent or saved, for example in a public
folder. After a message has been sent or saved, any attempt to change its Sender property is ignored.

The current version of CDO does not support the Sender property on AppointmentItem objects. An
attempted access returns CdoE_NOT_FOUND.

The Sender property does not correspond to a MAPI property and cannot be rendered into HTML
hypertext by the CDO Rendering Library. It could be rendered as an object by setting the
ObjectRenderer object's DataSource property to the AddressEntry object returned by the Sender
property.

Example
This code fragment displays the name of the sender of a message:

' from the sample function Message_Sender
Set objAddrEntry = objOneMsg.Sender
If objAddrEntry Is Nothing Then
 MsgBox "Could not set the AddressEntry object from the Sender"
 Exit Function
End If
MsgBox "Message was sent by " & objAddrEntry.Name

Sensitivity Property (Message Object)   

The Sensitivity property specifies the sensitivity of the message. Read/write.

Syntax
objMessage.Sensitivity

Data Type
Long

Remarks
The Sensitivity property can have exactly one of the following values:

Constant Value Description
CdoNoSensitivity 0 No special sensitivity (default)
CdoPersonal 1 Personal
CdoPrivate 2 Private
CdoConfidential 3 Designated as company confidential

The Sensitivity property corresponds to the MAPI property PR_SENSITIVITY. It can be rendered into
HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object
renderer's DataSource property to this Message object and the property parameter of the
RenderProperty method to CdoPR_SENSITIVITY.

Example
This code fragment sets the sensitivity of a message as personal:

' from the sample function QuickStart:
 Set objMessage = objSession.Outbox.Messages.Add
 ' ... check here to verify the message was created ...
 objMessage.Subject = "Gift of droids"
 objMessage.Text = "Help us, Obi-wan. You are our only hope."
 objMessage.Sensitivity = CdoPersonal
 objMessage.Send

Sent Property (Message Object)   

The Sent property is True if the message has been sent through the MAPI system. Read/write.

Syntax
objMessage.Sent

Data Type
Boolean

Remarks
In general, there are three different kinds of messages: sent, posted, and saved. Sent messages are
traditional e-mail messages sent to a recipient or public folder. Posted messages are created in a
public folder. Saved messages are created and saved without either sending or posting.

For all three kinds of messages, you use the Sent, Submitted, and Unread properties and the Send
or Update methods.

The following table summarizes the use of the message properties and methods for the three kinds of
messages. In some systems the message store and transport providers are tightly coupled, in which
case they bypass the spooler and perform its functions themselves.

Kind of
message

Method
used

Sent
property

Submitted
property

Unread
property

Sent Send Spooler sets
True

Send sets True Spooler sets
True

Posted Update Application
sets True

Application
sets False

Application
sets True

Saved Update Application
sets False

Application
sets False

Application
sets True

For sent messages, the Sent property can be written until the time you call the Send method. Note that
changing the Sent property to True does not cause the message to be sent. Only the Send method
actually causes the message to be transmitted. After you call Send, the messaging system controls the
Sent property and changes it to a read-only property. The receiving messaging system resets the
Submitted property to False when the message arrives in a recipient's Inbox.

A common use for writing a value to the Sent property is to set it to False so that an electronic mail
system can save pending, unsent messages in an Outbox folder, or to save work-in-progress
messages in a pending folder before committing the messages to a public information store. You can
cause unexpected results if you set the property incorrectly.

For posted messages, you create the message directly within a public folder and call the Update
method. Some viewers do not allow the message to become visible to other users until you set the
Submitted property to True.

The Sent property is changed using the following sequence. When you call the Send method to send a
message to a recipient, the message is moved to the Outbox and the Message object’s Submitted
property is set to True. When the messaging system actually starts transporting the message, the Sent
property is set to True.

When the message is not sent using the Send method, the MAPI system does not change the Sent
property. For posted messages that call the Update method, you should set the value of the Sent
property to True just before you post the message.

For more information on sending and posting messages, see Creating and Sending a Message and
Posting Messages to a Public Folder.

AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the Sent
property. An attempt to access Sent in this case returns CdoE_NOT_FOUND.

The Sent property corresponds to the MSGFLAG_UNSENT flag not being set in the MAPI property
PR_MESSAGE_FLAGS. It can be rendered into HTML hypertext using the CDO Rendering
ObjectRenderer object. To specify this, set the object renderer's DataSource property to this Message
object and the property parameter of the RenderProperty method to CdoPR_MESSAGE_FLAGS.
However, you must assign a CDO Rendering Format object to the PR_MESSAGE_FLAGS property
and use the Value property of the format's Pattern objects to isolate the MSGFLAG_UNSENT flag's
setting for rendering.

Signed Property (Message Object)   

The Signed property is True if the message has been tagged with a digital signature or if digital signing
is being requested. Read/write.

Syntax
objMessage.Signed

Data Type
Boolean

Remarks
The effect of the Signed property is dependent upon the message store or transport provider. CDO
does not encrypt or digitally sign the message.

Security features include the Encrypted and Signed properties. For more information, see Securing
Messages.

The Signed property corresponds to the SECURITY_SIGNED flag of the MAPI property
PR_SECURITY. It can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer
object. To specify this, set the object renderer's DataSource property to this Message object and the
property parameter of the RenderProperty method to CdoPR_SECURITY. However, you must assign
a CDO Rendering Format object to the PR_SECURITY property and use the Value property of the
format's Pattern objects to isolate the SECURITY_SIGNED flag's setting for rendering.

Size Property (Message Object)   

The Size property returns the approximate size in bytes of the message. Read-only.

Syntax
objMessage.Size

Data Type
Long

Remarks
The Size property contains the sum, in bytes, of the sizes of all properties on this Message object,
including in particular the Attachments property. It can be considerably greater than the size of the
Text property alone.

The Size property is computed by the message store and is not valid until after the first Update or
Send operation. Note that not all message stores support this property.

AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the Size
property. An attempt to access Size in this case returns CdoE_NOT_FOUND.

The Size property corresponds to the MAPI property PR_MESSAGE_SIZE. It can be rendered into
HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object
renderer's DataSource property to this Message object and the property parameter of the
RenderProperty method to CdoPR_MESSAGE_SIZE.

StoreID Property (Message Object)   

The StoreID property represents the unique identifier for the message store that contains the
message. Read-only.

Syntax
objMessage.StoreID

Data Type
String

Remarks
You can save the ID and StoreID properties of this message in order to recall it later with the Session
object’s GetMessage method.

A Microsoft® Schedule+ calendar folder does not reside in a message store. If you obtain the default
calendar folder by passing CdoDefaultFolderCalendar to the Session object's GetDefaultFolder
method, its messages have no defined value for the StoreID property. An attempt to access StoreID in
this case returns CdoE_NOT_FOUND.

The StoreID property corresponds to the MAPI property PR_STORE_ENTRYID, converted to a string
of hexadecimal characters. It can be rendered into HTML hypertext using the CDO Rendering
ObjectRenderer object. To specify this, set the object renderer's DataSource property to this Message
object and the property parameter of the RenderProperty method to CdoPR_STORE_ENTRYID.

Subject Property (Message Object)   

The Subject property returns or sets the subject of the message as a string. Read/write.

Syntax
objMessage.Subject

The Subject property is the default property of a Message object, meaning that objMessage is
syntactically equivalent to objMessage.Subject in Microsoft® Visual Basic® code.

Data Type
String

Remarks
In a conversation thread, the Subject property is often used to set the ConversationTopic property.

The Subject property corresponds to the MAPI property PR_SUBJECT. It can be rendered into HTML
hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object renderer's
DataSource property to this Message object and the property parameter of the RenderProperty
method to CdoPR_SUBJECT.

Example
This code fragment sets the subject of a message:

Dim objMessage As Message ' assume valid message
objMessage.Subject = "Microsoft Bob: Check It Out"

See Also
Text Property (Message Object)

Submitted Property (Message Object)   

The Submitted property is True when the message has been submitted to the MAPI system.
Read/write.

Syntax
objMessage.Submitted

Data Type
Boolean

Remarks
In general, there are three different kinds of messages: sent, posted, and saved. Sent messages are
traditional e-mail messages sent to a recipient or public folder. Posted messages are created in a
public folder. Saved messages are created and saved without either sending or posting.

For all three kinds of messages, you use the Sent, Submitted, and Unread properties and the Send
or Update methods.

The following table summarizes the use of the message properties and methods for the three kinds of
messages. In some systems the message store and transport providers are tightly coupled, in which
case they bypass the spooler and perform its functions themselves.

Kind of
message

Method
used

Sent
property

Submitted
property

Unread
property

Sent Send Spooler sets
True

Send sets True Spooler sets
True

Posted Update Application
sets True

Application
sets False

Application
sets True

Saved Update Application
sets False

Application
sets False

Application
sets True

For sent and saved messages, the Submitted property is set to False before sending or saving the
message. The messaging system also resets Submitted to False when the message arrives in a
recipient's Inbox.

For posted messages, you create the message directly within a public folder and call the Update
method. Some viewers do not allow the message to become visible to other users until you set the
Submitted property to True.

For more information on sending and posting messages, see Creating and Sending a Message and
Posting Messages to a Public Folder.

AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the
Submitted property. An attempt to access Submitted in this case returns CdoE_NOT_FOUND.

The Submitted property corresponds to the MSGFLAG_SUBMIT flag being set in the MAPI property
PR_MESSAGE_FLAGS. It can be rendered into HTML hypertext using the CDO Rendering
ObjectRenderer object. To specify this, set the object renderer's DataSource property to this Message
object and the property parameter of the RenderProperty method to CdoPR_MESSAGE_FLAGS.
However, you must assign a CDO Rendering Format object to the PR_MESSAGE_FLAGS property
and use the Value property of the format's Pattern objects to isolate the MSGFLAG_SUBMIT flag's

setting for rendering.

Text Property (Message Object)   

The Text property returns or sets the text of the message as a string. Read/write.

Syntax
objMessage.Text

Data Type
String

Remarks
The message text is the principal content of an interpersonal message, typically displayed to each
recipient as an immediate result of opening the message. Text specifically excludes various other
message properties such as Subject, Attachments, and Recipients.

The Text property is a plain text representation of the message text and does not support formatted
text.

The maximum size of the text can be limited by the tool that you use to manipulate string variables
(such as Microsoft® Visual Basic®).

The Text property corresponds to the MAPI property PR_BODY. It can be rendered into HTML
hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object renderer's
DataSource property to this Message object and the property parameter of the RenderProperty
method to CdoPR_BODY.

Example
This code fragment sets the text of a message:

Dim objMessage As Message ' assume valid message
objMessage.Text = "Thank you for buying Microsoft Home(TM) products."

TimeCreated Property (Message Object) 

The TimeCreated property specifies the date/time the message was first saved. Read-only.

Syntax
objMessage.TimeCreated

Data Type
Variant (vbDate format)

Remarks
AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the
TimeCreated property. An attempt to access TimeCreated in this case returns CdoE_NOT_FOUND.

The TimeCreated property corresponds to the MAPI property PR_CREATION_TIME.

TimeExpired Property (Message Object) 

The TimeExpired property specifies the date/time the message becomes invalid and can be safely
deleted. Read/write.

Syntax
objMessage.TimeExpired

Data Type
Variant (vbDate format)

Remarks
The TimeExpired property is not required on an AppointmentItem, MeetingItem, or Message object. If
the sender does not set TimeExpired, an attempt by the receiver to read it returns
CdoE_NOT_FOUND.

AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the
TimeExpired property. An attempt to access TimeExpired in this case returns CdoE_NOT_FOUND.

The TimeExpired property corresponds to the MAPI property PR_EXPIRY_TIME.

TimeLastModified Property (Message
Object)   

The TimeLastModified property specifies the date/time the message was most recently saved. Read-
only.

Syntax
objMessage.TimeLastModified

Data Type
Variant (vbDate format)

Remarks
AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the
TimeLastModified property. An attempt to access TimeLastModified in this case returns
CdoE_NOT_FOUND.

The TimeLastModified property corresponds to the MAPI property PR_LAST_MODIFICATION_TIME.

TimeReceived Property (Message
Object)   

The TimeReceived property sets or returns the date/time the message was received as a vbDate
variant data type. Read/write.

Syntax
objMessage.TimeReceived

Data Type
Variant (vbDate format)

Remarks
The TimeReceived and TimeSent properties set and return dates and times as the local time for the
user’s system.

When you send messages using the Message object’s Send method, MAPI sets the TimeReceived
and TimeSent properties for you. However, when you post messages in a public folder, you must first
explicitly set these properties. For a message posted to a public folder, set both properties to the same
time value.

The TimeReceived and TimeSent properties represent local time.

AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the
TimeReceived property. An attempt to access TimeReceived in this case returns
CdoE_NOT_FOUND.

The TimeReceived property corresponds to the MAPI property PR_MESSAGE_DELIVERY_TIME. It
can be rendered into HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this,
set the object renderer's DataSource property to this Message object and the property parameter of
the RenderProperty method to CdoPR_MESSAGE_DELIVERY_TIME.

Note When PR_MESSAGE_DELIVERY_TIME is rendered into HTML, it is converted to the local
time at IIS, not the browser's local time.

Example
This code fragment displays the date/time a message was sent and received:

' from the sample function Message_TimeSentAndReceived
' verify that objOneMsg is valid, then ...
With objOneMsg
 strMsg = "Message sent " & Format(.TimeSent, "Short Date")
 strMsg = strMsg & ", " & Format(.TimeSent, "Long Time")
 strMsg = strMsg & "; received "
 strMsg = strMsg & Format(.TimeReceived, "Short Date") & ", "
 strMsg = strMsg & Format(.TimeReceived, "Long Time")
 MsgBox strMsg
End With

TimeSent Property (Message Object)   

The TimeSent property sets or returns the date/time the message was sent as a vbDate variant data
type. Read/write.

Syntax
objMessage.TimeSent

Data Type
Variant (vbDate format)

Remarks
The TimeReceived and TimeSent properties set and return dates and times as the local time for the
user’s system.

When you send messages using the Message object’s Send method, MAPI sets the TimeReceived
and TimeSent properties for you. However, when you post messages in a public folder, you must first
explicitly set these properties. For a message posted to a public folder, set both properties to the same
time value.

The TimeReceived and TimeSent properties represent local time.

AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the
TimeSent property. An attempt to access TimeSent in this case returns CdoE_NOT_FOUND.

The TimeSent property corresponds to the MAPI property PR_CLIENT_SUBMIT_TIME. It can be
rendered into HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the
object renderer's DataSource property to this Message object and the property parameter of the
RenderProperty method to CdoPR_CLIENT_SUBMIT_TIME.

Note When PR_CLIENT_SUBMIT_TIME is rendered into HTML, it is converted to the local time at
IIS, not the browser's local time.

Example
This code fragment displays the date/time a message was sent and received:

' from the sample function Message_TimeSentAndReceived
' verify that objOneMsg is valid, then ...
With objOneMsg
 strMsg = "Message sent " & Format(.TimeSent, "Short Date")
 strMsg = strMsg & ", " & Format(.TimeSent, "Long Time")
 strMsg = strMsg & "; received "
 strMsg = strMsg & Format(.TimeReceived, "Short Date") & ", "
 strMsg = strMsg & Format(.TimeReceived, "Long Time")
 MsgBox strMsg
End With

Type Property (Message Object)   

The Type property returns or sets the MAPI message class for the message. Read/write.

Syntax
objMessage.Type

Data Type
String

Remarks
The Type property contains the MAPI message class, which determines the set of properties defined
for the message, the kind of information it conveys, and how it is to be handled. The message class
consists of ASCII strings concatenated with periods, each string representing a level of subclassing. A
standard interpersonal message has message class IPM.Note, which is a subclass of IPM and a
superclass of IPM.Note.Private.

The subclasses of the Message object are distinguished by the value of their Type property. An
AppointmentItem object has a Type of IPM.Appointment, and a MeetingItem object has a Type of
IPM.Schedule.Meeting.Request.

For more information about MAPI message classes, see the MAPI Programmer’s Reference.

CDO does not impose any restrictions on this value except that it be a valid string value. You can set
the value to any string that is meaningful for your application. By default, CDO sets the Type value of
new messages to the MAPI message class IPM.Note.

AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the Type
property. An attempt to access Type in this case returns CdoE_NOT_FOUND.

The Type property corresponds to the MAPI property PR_MESSAGE_CLASS. It can be rendered into
HTML hypertext using the CDO Rendering ObjectRenderer object. To specify this, set the object
renderer's DataSource property to this Message object and the property parameter of the
RenderProperty method to CdoPR_MESSAGE_CLASS.

Unread Property (Message Object)   

The Unread property is True if the message has not been read by the current user. Read/write.

Syntax
objMessage.Unread

Data Type
Boolean

Remarks
In general, there are three different kinds of messages: sent, posted, and saved. Sent messages are
traditional e-mail messages sent to a recipient or public folder. Posted messages are created in a
public folder. Saved messages are created and saved without either sending or posting.

For all three kinds of messages, you use the Sent, Submitted, and Unread properties and the Send
or Update methods.

The following table summarizes the use of the message properties and methods for the three kinds of
messages. In some systems the message store and transport providers are tightly coupled, in which
case they bypass the spooler and perform its functions themselves.

Kind of
message

Method
used

Sent
property

Submitted
property

Unread
property

Sent Send Spooler sets
True

Send sets True Spooler sets
True

Posted Update Application
sets True

Application
sets False

Application
sets True

Saved Update Application
sets False

Application
sets False

Application
sets True

The Unread property should initially be True for all three kinds of messages. The messaging system
takes care of this for a sent message; you must set the property for a posted or saved message. The
messaging system also resets Submitted to False when the message arrives in a recipient's Inbox.
Each receiving user sets the Unread property to False as it reads its copy of the received message.

Note When you set Unread to False, the MSGFLAG_READ flag of the MAPI property
PR_MESSAGE_FLAGS is immediately updated in the message store. However, to improve
performance by reducing RPCs, the store might not communicate this change to a messaging client
until contacted by the client. Therefore, a client such as the Microsoft® Exchange Client or Microsoft®
Outlook™ may continue to show the message as unread for some indeterminate period of time.

For more information on sending and posting messages, see Creating and Sending a Message and
Posting Messages to a Public Folder.

AppointmentItem objects in a Microsoft® Schedule+ calendar folder do not have the full set of attributes
of a general message. If you obtain the default calendar folder by passing CdoDefaultFolderCalendar
to the Session object's GetDefaultFolder method, its appointments have no defined value for the
Unread property. An attempt to access Unread in this case returns CdoE_NOT_FOUND.

The Unread property corresponds to the MSGFLAG_READ flag not being set in the MAPI property
PR_MESSAGE_FLAGS. It can be rendered into HTML hypertext using the CDO Rendering
ObjectRenderer object. To specify this, set the object renderer's DataSource property to this Message

object and the property parameter of the RenderProperty method to CdoPR_MESSAGE_FLAGS.
However, you must assign a CDO Rendering Format object to the PR_MESSAGE_FLAGS property
and use the Value property of the format's Pattern objects to isolate the MSGFLAG_READ flag's
setting for rendering.

Update Method (Message Object)   

The Update method saves the message in the MAPI system.

Syntax
objMessage.Update([makePermanent, refreshObject])

objMessage
Required. The Message object.

makePermanent
Optional. Boolean. A value of True indicates that the property cache is flushed and all changes are
committed in the underlying message store. False indicates that the property cache is flushed but
not committed to persistent storage. The default value is True.

refreshObject
Optional. Boolean. A value of True indicates that the property cache is reloaded from the values in
the underlying message store. False indicates that the property cache is not reloaded. The default
value is False.

Remarks
Changes to a Message object are not permanently saved in the MAPI system until you either call the
Update method with the makePermanent parameter set to True or call the Send method.

For improved performance, CDO caches property changes in private storage and updates either the
object or the underlying persistent storage only when you explicitly request such an update. For
efficiency, you should make only one call to Update with its makePermanent parameter set to True.

The makePermanent and refreshObject parameters combine to cause the following changes:

refreshObject = True refreshObject = False
makePermanent =
True

Commit all changes,
flush the cache, and
reload the cache from
the message store.

Commit all changes and
flush the cache (default
combination).

makePermanent =
False

Flush the cache and
reload the cache from
the message store.

Flush the cache.

Call Update(False, True) to flush the cache and then reload the values from the message store.

Example
This code fragment changes the subject of the first message in the Inbox:

Set objMessage = objSession.Inbox.GetFirst
' ... verify message
objMessage.Subject = "This is the new subject"
objMessage.Update ' commit changes to MAPI system

To add a new Message object, use the Messages collection’s Add method followed by the message’s
Update method. This code fragment saves a new message in the Outbox:

Dim objMessage As Message ' Message object
'
Set objMessage = objSession.Outbox.Messages.Add
objMessage.Subject = "Microsoft Bob(TM)"
objMessage.Text = "This is incredible; you've got to see it!"

objMessage.Update makePermanent:=True ' redundant parameter (default)

MessageFilter Object
The MessageFilter object specifies criteria for restricting a search on a Messages collection.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.1
Parent objects: Messages collection
Child objects: Fields collection
Default property: Subject

Properties

Name

Available
in version

Type

Access

Application 1.1 String Read-only
Class 1.1 Long Read-only
Conversation 1.1 String Read/write
Fields 1.1 Field object or Fields

collection object
Read-only

Importance 1.1 Long Read/write
Not 1.1 Boolean Read/write
Or 1.1 Boolean Read/write
Parent 1.1 Messages collection

object
Read-only

Recipients 1.1 String Read/write
Sender 1.1 String Read/write
Sent 1.1 Boolean Read/write
Session 1.1 Session object Read-only
Size 1.1 Long Read/write

Subject 1.1 String Read/write
Text 1.1 String Read/write
TimeFirst 1.1 Variant (vbDate

format)
Read/write

TimeLast 1.1 Variant (vbDate
format)

Read/write

Type 1.1 String Read/write
Unread 1.1 Boolean Read/write

Methods

Name

Available
in version

Parameters

IsSameAs 1.1 objMsgFilter2 as Object

Remarks

A MessageFilter object with no criteria is created by default for every Messages collection. This means
that initially the filter’s properties are unset and its child Fields collection is empty. You specify the filter
by setting values for its properties or for fields in its Fields collection. You do not need to call any
Update method when setting filter criteria.

The filter is invoked when the Messages collection is traversed with the Get methods or the Microsoft®
Visual Basic® For Each construction. Each field participates in a MAPI search restriction comparing
the field’s Value property against the value of the Message object’s property specified by the field’s ID
property.

When you are traversing a Messages collection instantiated by a CDO rendering application, you
should declare the Visual Basic variable to be an Object instead of a Message. This is because the
collection may be from a calendar folder, and also because a rendering may have applied a grouped
view to the folder. Therefore you can get AppointmentItem, GroupHeader, and MeetingItem objects
returned as well as Message objects. You should also test the Class property of each returned object
to see if it is an appointment, a group header, a meeting, or a message:

 Dim objMember As Object ' could get one of several classes
 ' collMessages is instantiated from a rendering application
 ' assume collMessages valid
 ' ...
 For Each objMember in collMessages ' collection from a rendering
 If objMember.Class = CdoMsg ' exclude other classes
 ' we have a Message object
 End If
 Next

For fields of data type other than String, the MAPI search restriction type is RES_PROPERTY with
relational operator RELOP_EQ. For fields of data type String, the restriction type is RES_CONTENT
with fuzzy level options FL_SUBSTRING, FL_IGNORECASE, and FL_LOOSE. However, the following
MAPI properties are compared using FL_PREFIX instead of FL_SUBSTRING:

PR_ACCOUNT
PR_BUSINESS_ADDRESS_CITY
PR_COMPANY_NAME
PR_DEPARTMENT_NAME
PR_DISPLAY_NAME
PR_GIVEN_NAME
PR_OFFICE_LOCATION
PR_SURNAME
PR_TITLE

If the underlying messaging system does not support the search criteria specified by the filter fields, the
Get methods return CdoE_TOO_COMPLEX.

You can apply a MessageFilter object to a Messages collection containing AppointmentItem objects.
However, the current version of CDO only supports filtering on the EndTime and StartTime properties.
An attempt to filter on any other properties, including the inherited Message object properties, returns
CdoE_TOO_COMPLEX. MeetingItem objects are members of a Messages collection belonging to a
messaging user's Inbox, and they can be filtered on any properties, including the inherited Message
object properties.

The MAPI search restrictions for appointment properties are as follows:

Property tag Restriction type Relational operator
CdoPR_END_DATE RES_PROPERTY RELOP_GE

CdoPR_START_DATE RES_PROPERTY RELOP_LE

The comparison order is (property value) (relational operator) (constant value). For example, the
message filter passes appointments with a starting date earlier than or equal to the date you indicate.
To specify this restriction, you use the filter's Fields property to obtain its Fields collection, Add a new
Field with CdoPR_START_DATE in the PropTag parameter, and set the new field's Value property to
the last admissible starting date.

The results of the individual restrictions are normally ANDed together to form the final filter value. You
can change this by setting the Or property, which causes all the results to be ORed instead of ANDed.
You can also set the Not property to specify that the result of each individual restriction is to be
negated before being ANDed or ORed into the final filter value.

The message filter affects traversals of the Messages collection using the Visual Basic For Each
statement, the Get methods, or the Visual Basic For … Next construction. These accesses normally
return a Message object but can also return a GroupHeader object if the collection is instantiated by a
CDO rendering application.

The MessageFilter object is persistent within its parent Messages collection. It is not deleted even
when it is released, and it remains attached to the Messages collection until the collection’s Filter
property is set to Nothing or the collection is itself released. You can use the following code to clear a
message filter of all of its previous settings and reset it to its default state of no criteria:

objMessagesColl.Filter = Nothing ' filter now invalidated and cleared
Set objMessageFilt = objMessagesColl.Filter ' new valid empty filter

If a folder is being rendered with a CDO rendering application, the Messages collection and the
message filter are instantiated according to the specifications in the TableView object being applied to
the folder. The MessageFilter object inherits the restriction specified in the view. An inherited filter can
be used without modification, but it cannot be read or changed by the rendering application. Writing
any property on an inherited filter disinherits it and refreshes the Messages collection. This means that
the collection is reinstantiated with a new message filter specifying only the property just written. This
new filter, however, is no longer inherited, and the application can read its properties and set additional
restrictions within it.

Example
This code fragment specifies that the message filter on the Inbox should pass only Message objects
that are Unread AND Not of message class IPM.Note:

Dim objMsgFilt As MessageFilter

Set objMsgFilt = objSession.Inbox.Messages.Filter
' ... validate MessageFilter object ...
objMsgFilt.Not = True ' negate all results before ANDing
objMsgFilt.Type = "IPM.Note" ' MAPI message class
objMsgFilt.Unread = False ' .Not setting negates True to False!

Conversation Property (MessageFilter
Object)   

The Conversation property sets filtering on a message’s conversation topic. Read/write.

Syntax
objMessageFilter.Conversation

Data Type
String

Remarks
The Conversation property specifies that the message filter should pass only messages whose
conversation topic exactly matches the value of Conversation. That is,
objMessageFilter.Conversation sets filtering on objMessage.ConversationTopic.

A conversation is a group of related messages. The Message object’s ConversationTopic property is
the string that describes the overall topic of the conversation. To be defined as messages within the
same conversation, the messages must have the same value in their ConversationTopic property.
The Message object’s ConversationIndex property represents an index that indicates a sequence of
messages within that conversation.

For more information on conversations, see Working With Conversations.

The Conversation property corresponds to the MAPI property PR_CONVERSATION_TOPIC.

Fields Property (MessageFilter Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objMessageFilter.Fields

objMessageFilter.Fields(index)

objMessageFilter.Fields(proptag)

objMessageFilter.Fields(name)

index
Short integer (less than or equal to 65,535). Specifies the index within the Fields collection.

proptag
Long integer (greater than or equal to 65,536). Specifies the property tag value for the MAPI
property to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object (Field or Fields collection)

Remarks
The Fields property returns one or all of the fields associated with a MessageFilter object. Each field
typically corresponds to a MAPI property. Data types are preserved, except that MAPI counted binary
properties are converted to and from character strings representing hexadecimal digits.

The fields that have been set in the Fields collection specify the filter, together with any other
MessageFilter properties that have been set.

The Fields property provides a generic access mechanism that allows Microsoft® Visual Basic® and
Microsoft® Visual C++® programmers to retrieve the value of a MAPI property using either its name or
its MAPI property tag. For access with the property tag, use objMessageFilter.Fields(proptag), where
proptag is the 32-bit MAPI property tag associated with the property, such as
CdoPR_MESSAGE_FLAGS. To access a named property, use objMessageFilter.Fields(name), where
name is a string that represents the custom property name.

Although the Fields property itself is read-only, the collection it returns can be accessed in the normal
manner through its Add and Delete methods, and the properties on its member Field objects retain
their respective read/write or read-only accessibility.

Importance Property (MessageFilter
Object)   

The Importance property sets filtering on a message’s importance to CdoNormal (the default),
CdoLow, or CdoHigh. Read/write.

Syntax
objMessageFilter.Importance

Data Type
Long

Remarks
The following values are defined:

Constant Value Description
CdoLow 0 Low importance
CdoNormal 1 Normal importance (default)
CdoHigh 2 High importance

The Importance property corresponds to the MAPI property PR_IMPORTANCE.

IsSameAs Method (MessageFilter
Object)   

The IsSameAs method returns True if the MessageFilter object is the same as the MessageFilter
object being compared against.

Syntax
objMessageFilter.IsSameAs(objMsgFilter2)

objMessageFilter
Required. This MessageFilter object.

objMsgFilter2
Required. The MessageFilter object being compared against.

Remarks
Two MessageFilter objects are considered to be the same if and only if they are instantiations of the
same physical (persistent) object in the underlying messaging system. Two objects with the same
value are still considered different if they do not instantiate the same physical object, for example if one
is a copy of the other. In such a case IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. This is necessary because, although MAPI requires all entry identifiers to be
unique, it does not require two of them identifying the same object to be identical. A generic
comparison of any two objects' unique identifiers is also available with the Session object’s
CompareIDs method.

Not Property (MessageFilter Object)   

The Not property specifies that all restriction values are to be negated before being ANDed or ORed to
specify the message filter. Read/write.

Syntax
objMessageFilter.Not

Data Type
Boolean

Remarks
If the Not property is False, the restriction values are treated normally. If it is True, each value is
toggled (between True and False) before being used.

Or Property (MessageFilter Object)   

The Or property specifies that the restriction values are to be ORed instead of ANDed to specify the
message filter. Read/write.

Syntax
objMessageFilter.Or

Data Type
Boolean

Remarks
If the Or property is False, all the restriction values are ANDed together. If it is True, the values are
ORed together.

Recipients Property (MessageFilter
Object)   

The Recipients property sets filtering on whether a message’s recipients include at least one recipient
with a particular name. Read/write.

Syntax
objMessageFilter.Recipients

Data Type
String

Remarks
The Recipients property specifies that the message filter should pass only messages with one or more
recipients having a name corresponding to the Recipients property. The filter passes the message if
the Name property of any of its Recipient objects contains the filter’s Recipients property as a
substring.

Example
This code fragment copies the first valid recipient from an original message to a message filter in order
to restrict the Messages collection to messages containing that recipient:

Dim objOneRecip as Recipient
' assume objMessage and objMessageFilter are valid
For i = 1 To objMessage.Recipients.Count Step 1
 strRecipName = objMessage.Recipients.Item(i).Name
' or objMessage.Recipients(i) since Item and Name are default properties
 If strRecipName <> "" Then
 objMessageFilter.Recipients = strRecipName
 Exit For
 End If
Next i

Sender Property (MessageFilter Object) 

The Sender property sets filtering on the name of a message’s sender. Read/write.

Syntax
objMessageFilter.Sender

Data Type
String

Remarks
The Sender property specifies that the message filter should pass only messages sent by a messaging
user having a name corresponding to the Sender property. The filter passes the message if the Name
property of the AddressEntry object returned by the message’s Sender property contains the filter’s
Sender property as a substring.

The Sender property corresponds to the MAPI property PR_SENDER_NAME.

Sent Property (MessageFilter Object)   

The Sent property sets filtering on whether or not a message was sent through the MAPI system.
Read/write.

Syntax
objMessageFilter.Sent

Data Type
Boolean

Remarks
A message’s Sent property is True if it was sent through the MAPI system and False if it was posted or
saved.

In general, there are three different kinds of messages: sent, posted, and saved. Sent messages are
traditional e-mail messages sent to a recipient or public folder. Posted messages are created in a
public folder. Saved messages are created and saved without either sending or posting. For more
information, see the Message object’s Sent property.

Size Property (MessageFilter Object)   

The Size property sets filtering on a message’s approximate total size in bytes. Read/write.

Syntax
objMessageFilter.Size

Data Type
Long

Remarks
The Size property specifies that the message filter should pass only messages with approximate total
size greater than the value of Size.

The Size property represents the sum of all the message’s MAPI properties, including the Subject,
Text, Attachments, and Recipients.

The Size property corresponds to the MAPI property PR_MESSAGE_SIZE.

Subject Property (MessageFilter Object) 

The Subject property sets filtering on a message’s subject. Read/write.

Syntax
objMessageFilter.Subject

The Subject property is the default property of a MessageFilter object, meaning that objMessageFilter
is syntactically equivalent to objMessageFilter.Subject in Microsoft® Visual Basic® code.

Data Type
String

Remarks
The Subject property specifies that the message filter should pass only messages having a Subject
that contains the string in this Subject property as a substring.

The Subject property corresponds to the MAPI property PR_SUBJECT.

Text Property (MessageFilter Object)   

The Text property sets filtering on a message’s main content. Read/write.

Syntax
objMessageFilter.Text

Data Type
String

Remarks
The Text property specifies that the message filter should pass only messages having a Text that
contains the string in this Text property as a substring.

Note that the Text property is a plain text representation of the main portion of the message’s content,
and does not support formatted text.

The Text property corresponds to the MAPI property PR_BODY.

TimeFirst Property (MessageFilter
Object)   

The TimeFirst property sets filtering on whether a message was received at or since the specified
date/time. Read/write.

Syntax
objMessageFilter.TimeFirst

Data Type
Variant (vbDate format)

Remarks
If the TimeFirst property is not set, the message filter passes all messages received at or before the
date/time in the TimeLast property. If neither property is set, the filter passes messages regardless of
their date/time of reception.

The TimeFirst and TimeLast properties represent local time.

The TimeFirst property corresponds to the MAPI Property PR_MESSAGE_DELIVERY_TIME.

TimeLast Property (MessageFilter
Object)   

The TimeLast property sets filtering on whether a message was received at or before the specified
date/time. Read/write.

Syntax
objMessageFilter.TimeLast

Data Type
Variant (vbDate format)

Remarks
If the TimeLast property is not set, the message filter passes all messages received at or since the
date/time in the TimeFirst property. If neither property is set, the filter passes messages regardless of
their date/time of reception.

For more information and an example using the TimeLast property, see Filtering Messages in a Folder.

The TimeFirst and TimeLast properties represent local time.

The TimeLast property corresponds to the MAPI Property PR_MESSAGE_DELIVERY_TIME.

Type Property (MessageFilter Object)   

The Type property sets filtering on a message’s MAPI message class. Read/write.

Syntax
objMessageFilter.Type

Data Type
String

Remarks
The Type property specifies that the message filter should pass only messages with a Type exactly
matching a particular MAPI message class. By default, CDO sets the Type value of new messages to
the MAPI message class IPM.Note.

The Type property corresponds to the MAPI property PR_MESSAGE_CLASS.

Unread Property (MessageFilter Object) 

The Unread property sets filtering on whether or not a message has been read. Read/write.

Syntax
objMessageFilter.Unread

Data Type
Boolean

Remarks
A message’s Unread property is True if it has not been read by the current user.

For more information and an example using the Unread property, see Filtering Messages in a Folder.

The Unread property corresponds to the MSGFLAG_READ flag not being set in the MAPI property
PR_MESSAGE_FLAGS.

Messages Collection Object
The Messages collection object contains one or more AppointmentItem, GroupHeader, MeetingItem,
and Message objects.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Folder
Child objects: AppointmentItem

GroupHeader
MeetingItem
Message
MessageFilter

Default property: Item

A Messages collection is considered a large collection, which means that the Count property has
limited validity, and the best way to access an individual GroupHeader or Message object within the
collection is to use either its unique identifier or the Get methods. For more information on collections,
see Object Collections.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
Count 1.1 Long Read-only
Filter 1.1 MessageFilter object Read/write
Item 1.1 GroupHeader object or

Message object
Read-only

Parent 1.0.a Folder object Read-only
RawTable 1.1 IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.0.a (optional) subject as String,
(optional) text as String,
(optional) type as String,
(optional) importance as Long

Delete 1.0.a (none)
GetFirst 1.0.a (optional) filter as String

GetLast 1.0.a (optional) filter as String
GetNext 1.0.a (none)
GetPrevious 1.0.a (none)
Sort 1.0.a (optional) SortOrder as Long,

(optional) PropTag as Long,
(optional) PropID as String

Remarks
A Messages collection can be rendered into HTML hypertext in tabular form using the CDO Rendering
ContainerRenderer object. To specify this, set the container renderer's DataSource property to the
Messages collection object itself.

With the same DataSource setting, the container renderer's RenderProperty method can also render
selected properties of the collection's parent Folder object. The individual properties that can be
rendered are indicated in the Folder object property descriptions.

Large collections, such as the Messages collection, cannot always maintain an accurate count of the
number of objects in the collection. It is strongly recommended that you use the GetFirst, GetLast,
GetNext, and GetPrevious methods to access individual items in the collection. You can access one
specific appointment, meeting, or message by using the Session object’s GetMessage method, and
you can access all the items in the collection with the Visual Basic For Each construction.

The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether they are sorted or not. The AppointmentItem, GroupHeader, MeetingItem, and Message
objects within a collection can be sorted on a MAPI property of your choice, either ascending or
descending, using the Sort method. When the items are not sorted, you should not rely on these
methods to return the items in any specified order. The best programming approach to use with
unsorted collections is to assume that the access functions are able to access all items within the
collection, but that the order of the objects is not defined.

A message and most of its attachments, fields, properties, and recipients are read from the message
store when the application first accesses the Message object. For performance reasons, attachment
data and field values greater than 1,000 bytes are read from the store only when the application
explicitly accesses the Attachment or Field objects. All other properties of the Attachment and Field
objects are read when the parent message is read.

GroupHeader objects are not saved in the message store. They cannot be created or deleted
programmatically by your application. They are generated only when a CDO Rendering TableView
object is being applied to the Messages collection, and they do not persist when the view is released.

Add Method (Messages Collection)   

The Add method creates and returns a new AppointmentItem or Message object in the Messages
collection.

Syntax
Set objMessage = objMsgColl.Add([subject, text, type, importance])

objMessage
On successful return, represents the new AppointmentItem or Message object added to the
collection. The type of object added depends on the parent folder of the Messages collection.

objMsgColl
Required. The Messages collection object.

subject
Optional. String. The subject of the message. When this parameter is not supplied, the default value
is an empty string.

text
Optional. String. The body text of the message. When this parameter is not supplied, the default
value is an empty string.

type
Optional. String. The message class of the message, such as the default, IPM.Note.

importance
Optional. Long. The importance of the message. The following values are defined:
Constant Value Description
CdoLow 0 Low importance
CdoNormal 1 Normal importance (default)
CdoHigh 2 High importance

Remarks
The method parameters correspond to the Subject, Text, Type, and Importance properties of the
Message object.

Note If you are adding an AppointmentItem object to a calendar folder, you cannot use any of the
parameters of the Add method. You can, however, set the values later by using the corresponding
properties.

You should create new messages in the Inbox or Outbox folder, and new appointments in the calendar
folder.

The user must have permission to Add or Delete a Message object. Most users have this permission
in their mailbox and their Personal Folders.

The new Message object is saved in the MAPI system when you call its Update method.

Example
This code fragment adds a new message to a folder:

' from the sample function Util_ReplyToConversation
Set objNewMsg = objSession.Outbox.Messages.Add
' verify objNewMsg created successfully ... then supply properties
With objNewMsg

 .Text = "How about a slightly used Gemini?" ' new text
 .Subject = objOriginalMsg.Subject ' copy original properties
 .ConversationTopic = objOriginalMsg.ConversationTopic
 ' append time stamp; compatible with Microsoft Exchange client
 Set objOneRecip = .Recipients.Add(_
 Name:=objOriginalMsg.Recipients.Item(1).Name, _
 Type:=CdoTo)
 .Recipients.Resolve
 .Update
 .Send showDialog:=False
End With

Count Property (Messages Collection)   

The Count property returns the number of AppointmentItem, MeetingItem, or GroupHeader and
Message objects in the collection, or a very large number if the exact count is not available. Read-only.

Syntax
objMsgColl.Count

Data Type
Long

Remarks
A large collection cannot always maintain an accurate count of its members, and the Count property
cannot be used as the collection’s size when it has the value &H7FFFFFFF. Programmers needing to
access individual objects in a large collection are strongly advised to use the Microsoft® Visual Basic®
For Each statement or the Get methods.

The Count property can always be used to determine whether a Messages collection is empty or not.

The recommended procedures for traversing a large collection are, in decreasing order of preference:

1. Global selection, such as the Visual Basic For Each statement.
2. The Get methods, particularly GetFirst and GetNext.
3. An indexed loop, such as the Visual Basic For ... Next construction.

If the message store provider cannot supply the precise number of objects, CDO returns &H7FFFFFFF
(= 2^31 - 1 = 2,147,483,647) for the Count property. This is the largest positive value for a long integer
and is intended to prevent an approximate count from prematurely terminating an indexed loop. On 32-
bit platforms, this value is defined in the type library as CdoMaxCount. On other platforms,
CdoMaxCount is not defined, and a program on such a platform must compare the Count property
against &H7FFFFFFF to see if it is reliable.

If the Count property is not reliable, that is, if it is &H7FFFFFFF, a program using it to terminate an
indexed loop must also check each returned object for a value of Nothing to avoid going past the end
of the collection.

The use of the Item property in conjunction with the Count property in a large collection can be seen in
the following example.

Example
This code fragment searches for a Message object with subject “Bonus”. Note that the variable is
declared as Object instead of Message, and that the Class property is tested to verify that the object
returned in the Item property is not an AppointmentItem, GroupHeader, or MeetingItem object.

Dim i As Integer ' loop index / object counter
Dim collMessages As Messages ' assume collection already provided
Dim objMsg As Object ' could get either group header or message
If collMessages Is Nothing Then
 MsgBox "Messages collection object is invalid"
 ' Exit
ElseIf 0 = collMessages.Count Then ' collection is empty
 MsgBox "No messages in collection"
 ' Exit
End If

' look for message about "Bonus" in collection
For i = 1 To collMessages.Count Step 1
 Set objMsg = collMessages.Item(i)
 ' or collMessages(i) since Item is default property
 If objMsg Is Nothing Then ' end of collection
 MsgBox "No such message found in collection"
 Exit For
 ElseIf objMsg.Class = CdoMsg ' exclude other object classes
 If 0 = StrComp(objMsg.Subject, "Bonus") Then
 ' or objMsg since Subject is default property
 MsgBox "Desired message is at index " & i
 Exit For
 End If
 End If
Next i

Delete Method (Messages Collection)   

The Delete method removes all the AppointmentItem, MeetingItem, GroupHeader, and Message
objects from the Messages collection.

Syntax
objMsgColl.Delete()

Remarks
The Delete method moves all the messages in the collection to the Deleted Items folder, if the client
has enabled this option. If the option is not enabled, or if the Messages collection is already in the
Deleted Items folder, the Delete method permanently removes the messages from the collection, and
they cannot be recovered.

The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to every AppointmentItem, GroupHeader, MeetingItem, and Message object. If
you have another reference to an object, you can still access its properties and methods, but you can
never again associate it with any collection because the Add method always creates a new object. You
should Set your reference variable either to Nothing or to another object.

The final Release on each AppointmentItem, GroupHeader, MeetingItem, or Message object takes
place when you assign your reference variable to Nothing, or when you call Delete if you had no other
reference. At this point the object is removed from memory. Attempted access to a released object
results in an error return of CdoE_INVALID_OBJECT.

If the Messages collection underlies a categorized view, the GroupHeader objects are also removed
from the collection, but unlike the messages they are not moved anywhere. Group headers do not
persist in storage, and when the collection is released, whether with messages or not, the
GroupHeader objects cease to exist.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one Message object, use the Delete method specific to that object.

The Delete method on a large collection takes effect immediately and is permanent. A deleted member
cannot be recovered. However, the collection itself is still valid, and you can Add new members to it.

Filter Property (Messages Collection)   

The Filter property returns a MessageFilter object for the Messages collection. Read/write.

Syntax
objMsgColl.Filter

Data Type
Object (MessageFilter)

Remarks
A MessageFilter object with no criteria is created by default for every Messages collection. When you
specify criteria by setting properties in the filter’s Fields collection, the filter restricts any subsequent
search on the Messages collection. For more information, see Filtering Messages in a Folder and the
MessageFilter Object.

A message filter can also be inherited from the restriction specified in a CDO Rendering TableView
object. Writing any property on this filter disinherits it, refreshes the Messages collection, and
instantiates a new message filter specifying only the property just written. This new filter, however, is no
longer inherited, and the application can read its properties and set additional restrictions within it.

The message filter affects traversals of the Messages collection using the Microsoft® Visual Basic® For
Each statement, the Get methods, or the Visual Basic For … Next construction. These accesses
normally return a Message object but can also return an AppointmentItem object if the collection
resides in a calendar folder, a GroupHeader object if the collection is instantiated by a CDO rendering
application, or a MeetingItem object if the collection is in an Inbox or Outbox.

Example
This code fragment shows how to set a filtering value in a Messages collection’s initial default message
filter, and then how to clear all settings and reset the filter to its default state of no criteria:

Dim objMsgColl As Messages ' collection
Dim objMessage As Message ' message passed by filter
Dim objMsgFilt As MessageFilter
' assume valid Messages collection just created
' make first use of filter to check for high importance messages
Set objMsgFilt = objMsgColl.Filter ' original empty default filter
objMsgFilt.Importance = CdoHigh
For Each objMessage in objMsgColl ' loops and Sets each objMessage
 ' process messages that are passed by the filter
Next
' ... later, when current filter settings are no longer needed ...
objMsgColl.Filter = Nothing ' invalidates and clears filter
Set objMsgFilt = objMsgColl.Filter ' new empty filter
' filter now available for new settings

GetFirst Method (Messages Collection)   

The GetFirst method returns the first AppointmentItem, GroupHeader, MeetingItem, or Message object
in the Messages collection. It returns Nothing if no first object exists.

Syntax
Set objMessage = objMsgColl.GetFirst([filter])

objMessage
On successful return, represents the first AppointmentItem, GroupHeader, MeetingItem, or Message
object in the collection.

objMsgColl
Required. The Messages collection object.

filter
Optional. String. Specifies the message class of the object, such as IPM.Note, the default value.
Corresponds to the Type property of the Message object.

Remarks
If the filter parameter is set, the GetFirst method returns the first message in the collection with a Type
property matching the value of filter.

The Get methods normally return a Message object but can also return an AppointmentItem,
GroupHeader, or MeetingItem object.

The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether they are sorted or not. The AppointmentItem, GroupHeader, MeetingItem, and Message
objects within a collection can be sorted on a MAPI property of your choice, either ascending or
descending, using the Sort method. When the items are not sorted, you should not rely on these
methods to return the items in any specified order. The best programming approach to use with
unsorted collections is to assume that the access functions are able to access all items within the
collection, but that the order of the objects is not defined.

GetLast Method (Messages Collection)   

The GetLast method returns the last AppointmentItem, GroupHeader, MeetingItem, or Message object
in the Messages collection. It returns Nothing if no last object exists.

Syntax
Set objMessage = objMsgColl.GetLast([filter])

objMessage
On successful return, represents the last AppointmentItem, GroupHeader, MeetingItem, or Message
object in the collection.

objMsgColl
Required. The Messages collection object.

filter
Optional. String. Specifies the message class of the object, such as IPM.Note, the default value.
Corresponds to the Type property of the Message object.

Remarks
If the filter parameter is set, the GetLast method returns the last message in the collection with a Type
property matching the value of filter.

The Get methods normally return a Message object but can also return an AppointmentItem,
GroupHeader, or MeetingItem object.

The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether they are sorted or not. The AppointmentItem, GroupHeader, MeetingItem, and Message
objects within a collection can be sorted on a MAPI property of your choice, either ascending or
descending, using the Sort method. When the items are not sorted, you should not rely on these
methods to return the items in any specified order. The best programming approach to use with
unsorted collections is to assume that the access functions are able to access all items within the
collection, but that the order of the objects is not defined.

GetNext Method (Messages Collection)   

The GetNext method returns the next AppointmentItem, GroupHeader, MeetingItem, or Message
object in the Messages collection. It returns Nothing if no next object exists, for example if already
positioned at the end of the collection.

Syntax
Set objMessage = objMsgColl.GetNext()

objMessage
On successful return, represents the next AppointmentItem, GroupHeader, MeetingItem, or
Message object in the collection.

objMsgColl
Required. The Messages collection object.

Remarks
The Get methods normally return a Message object but can also return an AppointmentItem,
GroupHeader, or MeetingItem object.

The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether they are sorted or not. The AppointmentItem, GroupHeader, MeetingItem, and Message
objects within a collection can be sorted on a MAPI property of your choice, either ascending or
descending, using the Sort method. When the items are not sorted, you should not rely on these
methods to return the items in any specified order. The best programming approach to use with
unsorted collections is to assume that the access functions are able to access all items within the
collection, but that the order of the objects is not defined.

If the GetFirst method has not been called since the Messages collection was initialized, the behavior
of the GetNext method is not defined. This can produce unexpected results if the collection is
reinitialized with a Set statement in every iteration of a loop. The recommended procedure is to Set an
explicit variable for the collection before entering the loop. For more information, see Object
Collections.

GetPrevious Method (Messages
Collection)   

The GetPrevious method returns the previous AppointmentItem, GroupHeader, MeetingItem, or
Message object in the Messages collection. It returns Nothing if no previous object exists, for example
if already positioned at the beginning of the collection.

Syntax
Set objMessage = objMsgColl.GetPrevious()

objMessage
On successful return, represents the previous AppointmentItem, GroupHeader, MeetingItem, or
Message object in the collection.

objMsgColl
Required. The Messages collection object.

Remarks
The Get methods normally return a Message object but can also return an AppointmentItem,
GroupHeader, or MeetingItem object.

The order that items are returned by GetFirst, GetLast, GetNext, and GetPrevious depends on
whether they are sorted or not. The AppointmentItem, GroupHeader, MeetingItem, and Message
objects within a collection can be sorted on a MAPI property of your choice, either ascending or
descending, using the Sort method. When the items are not sorted, you should not rely on these
methods to return the items in any specified order. The best programming approach to use with
unsorted collections is to assume that the access functions are able to access all items within the
collection, but that the order of the objects is not defined.

If the GetLast method has not been called since the Messages collection was initialized, the behavior
of the GetPrevious method is not defined. This can produce unexpected results if the collection is
reinitialized with a Set statement in every iteration of a loop. The recommended procedure is to Set an
explicit variable for the collection before entering the loop. For more information, see Object
Collections.

Item Property (Messages Collection)   

The Item property returns a single AppointmentItem, GroupHeader, MeetingItem, or Message object
from the Messages collection. Read-only.

Syntax
objMsgColl.Item(index)

objMsgColl.Item(searchValue)

index
A long integer ranging from 1 to the size of the Messages collection.

searchValue
A string used to search the Messages collection starting at the current position. The search returns
the next Message object having the current sorting property greater than or equal to the
searchValue string.

The Item property is the default property of a Messages collection, meaning that objMsgColl(index) is
syntactically equivalent to objMsgColl.Item(index) in Microsoft® Visual Basic® code.

Data Type
Object (GroupHeader or Message)

Remarks
Programmers needing to access individual objects in a large collection are strongly advised to use the
Visual Basic For Each statement or the Get methods, particularly GetFirst and GetNext.

The Item(index) syntax returns the AppointmentItem, GroupHeader, MeetingItem, or Message object at
the indicated position in the collection. It can be used in an indexed loop, such as the For ... Next
construction in Visual Basic. The first item in the collection has an index of 1.

If you are accessing a Messages collection instantiated by a CDO rendering application, the collection
may come from a calendar folder, or there may be a grouped view applied to the folder. Therefore you
can get AppointmentItem, GroupHeader, and MeetingItem objects returned as well as Message
objects. Because of this, you should declare the Visual Basic variable being set to the Item property to
be an Object rather than a Message, and you should also test the Class property of each returned
object to see if it is an appointment, group header, meeting, or message:

 Dim objMember As Object ' could get one of several classes
 ' collMessages is instantiated from a rendering application
 ' assume collMessages valid
 ' ...
 For Each objMember in collMessages ' collection from a rendering
 If objMember.Class = CdoMsg ' exclude other classes
 ' we have a Message object
 End If
 Next

For more information on using the Count and Item properties in a large collection, see the example in
the Count property.

The Item(searchValue) syntax returns the next Message object whose current sorting property is
greater than or equal to the string specified by searchValue. This syntax only applies when the
Messages collection contains Message objects.

The searchValue syntax starts its search at the current position and retrieves only messages and not
group headers. Searching is based on the current sort order of the collection. The default sort property
for a Messages collection is the TimeReceived property of the collection’s Message objects. If you
want to use the Item(searchValue) syntax to search the collection on another property, for example a
message subject, you should first call the Sort method specifying the Subject property.

Note The Item(searchValue) syntax uses the IMAPITABLE::FindRow method, which performs a
search dependent on the current sort order of the table underlying the collection. Not all tables are
sorted alphabetically. If your most recent sort order is nonalphabetic, you should access the
messages using the Item(index) syntax. This applies, for example, to messages in Microsoft
Exchange Public Folders, which are held in an order determined by the currently applied view.

For more information on tables, bookmarks, restrictions, and sort and search orders, see the MAPI
Programmer’s Reference.

Although the Item property itself is read-only, the AppointmentItem, GroupHeader, MeetingItem, or
Message object it returns can be accessed in the normal manner, and its properties retain their
respective read/write or read-only accessibility.

RawTable Property (Messages
Collection)   

The RawTable property returns an IUnknown pointer to the MAPI table object underlying the
Messages collection. Not available to Microsoft® Visual Basic® applications. Read/write.

Syntax
objMsgColl.RawTable

Data Type
Variant (vbDataObject format)

Remarks
The RawTable property is not available to Visual Basic programs. It is accessible only by C/C++
programs that deal with IUnknown objects. Visual Basic supports the IDispatch interface and not
IUnknown. The RawTable property is an IUnknown object that returns an IMAPITable interface in
response to QueryInterface. For more information, see Introduction to Automation and How
Programmable Objects Work. Also see the "COM and ActiveX Object Services" section of the Microsoft
Platform SDK.

Sort Method (Messages Collection)   

The Sort method sorts the collection on the specified property according to the specified sort order.

Syntax
objMsgColl.Sort([SortOrder, PropTag])

objMsgColl.Sort([SortOrder, name])

objMsgColl
Required. The Messages collection object.

SortOrder
Optional. Long. The specified sort order, one of the following values:
Value Numeric value Description
CdoNone 0 No sort
CdoAscending 1 Ascending sort (default)
CdoDescending 2 Descending sort

PropTag
Optional. Long. The property tag value for the MAPI property to be used for the sort. PropTag is the
32-bit MAPI property tag associated with the property, such as CdoPR_MESSAGE_CLASS.

name
Optional. String. The custom property name of a MAPI named property.

Remarks
Both parameters are optional. If SortOrder is not specified, ascending order is used. If neither PropTag
nor name is specified, the property used in the previous call to Sort is used again. If Sort has never
been called on this collection during this session, the MAPI property
CdoPR_MESSAGE_DELIVERY_TIME is used for the sort.

Each call to Sort generates an entirely new sort order based on the specified property. No previous
sort order is retained or nested.

If the Messages collection was instantiated by a CDO rendering application, a view has been applied to
the folder and the collection is already sorted on the property or properties specified by the view.

If the underlying messaging system does not support the sort criteria specified, for example
descending order or MAPI named properties, the Sort method returns CdoE_TOO_COMPLEX.

Recipient Object
The Recipient object represents a recipient of a message.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Recipients collection
Child objects: AddressEntry
Default property: Name

Properties

Name

Available
in version

Type

Access

Address 1.0.a String Read/write
AddressEntry 1.0.a AddressEntry object Read/write
AmbiguousNames 1.1 AddressEntries

collection object
Read-only

Application 1.0.a String Read-only
Class 1.0.a Long Read-only

DisplayType 1.0.a Long Read-only
ID 1.1 String Read/write
Index 1.0.a Long Read-only
MeetingResponseSta
tus

1.2 Long Read/write

Name 1.0.a String Read/write
Parent 1.0.a Recipients collection

object
Read-only

Session 1.0.a Session object Read-only
Type 1.0.a Long Read/write

Methods

Name

Available
in version

Parameters

Delete 1.0.a (none)
GetFreeBusy 1.2 StartTime as Variant,

EndTime as Variant,
Interval as Long

IsSameAs 1.1 objRecip2 as Object
Resolve 1.0.a (optional) showDialog as Boolean

Address Property (Recipient Object)   

The Address property specifies the full address for the recipient. Read/write.

Syntax
objRecipient.Address

Data Type
String

Remarks
You should use the Recipient object’s Address property to specify a custom address. The recipient
Address uses the following syntax:

AddressType:AddressValue

where AddressType and AddressValue correspond to the values of the AddressEntry object’s Type and
Address properties.

The Recipient object’s Address property represents the full address, the complete messaging address
used by the MAPI system.

CDO sets the value of the Recipient object’s Address property for you when you supply the Name
property and call the recipient’s Resolve method.

The Address property corresponds to a combination of the MAPI properties PR_ADDRTYPE and
PR_EMAIL_ADDRESS.

Example
' from the sample function Util_CompareAddressParts
' assume valid Recipient object
 Set objAddrEntry = objOneRecip.AddressEntry
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & _
 objAddrEntry.Address
 MsgBox strMsg ' compare address components

AddressEntry Property (Recipient
Object)   

The AddressEntry property contains the AddressEntry object representing the recipient. Read/write.

Syntax
objRecipient.AddressEntry

Data Type
Object (AddressEntry)

Remarks
For a complete description of the relationship between the AddressEntry object and the Recipient
object, see Using Addresses.

Accessing the AddressEntry property forces resolution of an unresolved recipient name. If the name
cannot be resolved, CDO reports an error. For example, when the recipient contains an empty string,
the resolve operation returns CdoE_AMBIGUOUS_RECIP.

Example
This code fragment compares the Address property of the Recipient object with the Address and
Type properties of its child AddressEntry object, accessible through the recipient’s AddressEntry
property, to demonstrate the relationships between these properties.

' from the sample function Session_AddressEntry
 If objOneRecip Is Nothing Then
 MsgBox "must select a recipient"
 Exit Function
 End If
 Set objAddrEntry = objOneRecip.AddressEntry
 If objAddrEntry Is Nothing Then
 MsgBox "no valid AddressEntry for this recipient"
 Exit Function
 End If
' from the sample function Util_CompareAddressParts
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & _
 objAddrEntry.Address
 MsgBox strMsg ' compare display names
 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
' Note - the Type properties are NOT the same:
' AddressEntry.Type is the address type, such as SMTP
' Recipient.Type is the recipient type, such as To: or Cc:

AmbiguousNames Property (Recipient
Object)   

The AmbiguousNames property returns an AddressEntries collection of suggestions for address
resolution of the Recipient object. Read-only.

Syntax
objRecipient.AmbiguousNames

Data Type
Object (AddressEntries collection)

Remarks
The AmbiguousNames property is used when the recipient has not been resolved by the Recipient
object’s Resolve method or the Recipients collection’s Resolve method. The collection returned in
AmbiguousNames represents the AddressEntry objects in the address book that could resolve to the
supplied recipient name.

If the collection returned in the AmbiguousNames property is empty, there are no candidates for the
supplied recipient name, and it should be considered unresolvable. If the collection contains address
entries, they can be displayed to the user so that the appropriate one can be selected. The
GetFirstUnresolved and GetNextUnresolved methods can be used to find all the ambiguous
recipients in a Recipients collection.

Although the AmbiguousNames property itself is read-only, the collection it returns can be accessed
in the normal manner through its Add and Delete methods, and the properties on its member
AddressEntry objects retain their respective read/write or read-only accessibility.

Example
' function to attempt ambiguous name resolution (ANR)
Function TryANR(objRecip As Recipient) As Boolean
Dim objAmbigEntries As AddressEntries ' possible resolutions
Dim strChosenID As String ' ID of address entry chosen by user
' ... set up error handling ...
Set objAmbigEntries = objRecip.AmbiguousNames
If objAmbigEntries Is Nothing Then
 MsgBox "No eligible names for resolution"
 objRecip.Delete ' nothing else can be done at this point
 TryANR = False
Else
 ' show address entries to user so one can be chosen, and save its
 ' entry identifier: strChosenID = objAddrEntry.ID
 objRecip.ID = strChosenID
 TryANR = True
End If
End Function

Delete Method (Recipient Object)   

The Delete method removes the Recipient object from the Recipients collection.

Syntax
objRecipient.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to the Recipient object. If you have another reference to the recipient, you can
still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another recipient.

The final Release on the Recipient object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

When you delete a member of a collection, the collection is immediately refreshed, meaning that its
Count property is reduced by one and its members are reindexed. To access a member following the
deleted member, you must use its new index value. For more information, see Looping Through a
Collection.

The effect of the Delete operation is not permanent until you use the Update, Send, or Delete method
on the Message object to which this recipient belongs.

The immediate parent of this Recipient object is a Recipients collection, which is a child of the
message. You can delete all the message’s recipients by calling the collection’s Delete method.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first Recipient object. That reference survives the call to Delete and has to be reassigned. The
second Recipient object is deleted without creating another reference, and no other action is
necessary.

' assume valid Message object
Set objRecipient = objMessage.Recipients.Item(1)
objRecipient.Delete ' still have a reference from Set statement
' ... other operations on objRecipient possible but pointless ...
Set objRecipient = Nothing ' necessary to remove reference
' ...
objMessage.Recipients.Item(2).Delete ' no reference to remove

DisplayType Property (Recipient Object) 

The DisplayType property returns the display type of the recipient. Read-only.

Syntax
objRecipient.DisplayType

Data Type
Long

Remarks
The DisplayType property enables special processing based on its value, such as displaying an
associated icon. You can also use the display type to sort recipients.

The following values are defined:

DisplayType value

Decimal

value

Description

CdoAgent 3 An automated agent, such as Quote-
of-the-Day.

CdoDistList 1 A public distribution list.
CdoForum 2 A forum, such as a bulletin board or

a public folder.
CdoOrganization 4 A special address entry defined for

large groups, such as a helpdesk.
CdoPrivateDistList 5 A private, personally administered

distribution list.
CdoRemoteUser 6 A messaging user in a remote

messaging system.
CdoUser 0 A local messaging user.

When you Add a new recipient to a Recipients collection, the DisplayType property is set by the
address book provider to either CdoUser or CdoDistList, depending on which kind of recipient is
being added. The DisplayType property cannot subsequently be changed.

A private distribution list (PDL) exists only in your personal address book (PAB) and does not have an
e-mail address. Before invoking a recipient's Address property, you should verify that its DisplayType
is not CdoPrivateDistList. Attempted access to addressing properties on a PDL results in a return of
CdoE_NOT_FOUND.

GetFreeBusy Method (Recipient Object)   

The GetFreeBusy method returns a string representing the availability of the recipient for a meeting
over a specified period of time.

Syntax
strAvail = objRecipient.GetFreeBusy(StartTime, EndTime, Interval)

strAvail
On successful return, contains a string indicating the recipient's availability for each of the time slots
in the specified time period.

objRecipient
Required. The Recipient object.

StartTime
Required. Variant (vbDate format). Specifies the date/time of the beginning of the first time slot.

EndTime
Required. Variant (vbDate format). Specifies the date/time of the end of the last time slot.

Interval
Required. Long. Specifies the length of each time slot in minutes.

Remarks
The returned string length equals the number of time slots between StartTime and EndTime. Each
character is the ASCII representation of the appropriate type library constant indicating the recipient's
availability during a time slot:

ASCII
character

Corresponding type

library constant

Meaning

"0" CdoFree Available for appointments or
meetings throughout the time slot

"1" CdoTentative At least one tentative commitment
during the time slot

"2" CdoBusy At least one confirmed commitment
during the time slot

"3" CdoOutOfOffice Designated as out-of-office (OOF) for
at least part of the time slot

If there is any overlapping of commitments during a time slot, GetFreeBusy returns the most
committed state, that is, the highest character value. For example, if a recipient already has one
tentative meeting and one confirmed meeting scheduled during the same time slot, GetFreeBusy
returns "2" for that time slot, corresponding to CdoBusy. CdoFree is not returned unless the entire
time slot is free of commitments.

If a recipient represents a distribution list, the status of its individual members cannot be returned to
you. A meeting request should be sent only to single messaging users. You can determine if a
messaging user is a distribution list by checking the DisplayType property of the AddressEntry object
representing that user. You can obtain the AddressEntry object underlying a recipient from the
Recipient object's AddressEntry property.

ID Property (Recipient Object)   

The ID property returns the unique identifier of the Recipient object as a string. Read-write.

Syntax
objRecipient.ID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another. However, MAPI does
not require identifier values to be binary comparable. Accordingly, two identifier values can be different,
yet refer to the same object. MAPI compares identifiers with the CompareEntryIDs method. CDO
provides the CompareIDs method in the Session object. For more information on entry identifiers, see
the MAPI Programmer’s Reference.

Although the AddressEntry and Recipient objects are not identical objects in the CDO Library, they
represent the same underlying MAPI messaging user object, and the address entry’s ID property is
equal to the recipient’s ID property. This can be used to advantage, for example, when adding an
existing AddressEntry object to a Recipients collection. You can use the address entry’s ID property as
the entryID parameter to the Add method.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Index Property (Recipient Object)   

The Index property returns the index number of the Recipient object within the Recipients collection.
Read-only.

Syntax
objRecipient.Index

Data Type
Long

Remarks
The Index property indicates this object’s position within the parent Recipients collection. It can be
saved and used later with the collection’s Item property to reselect the same recipient in the collection.

The first object in the collection has an Index value of 1.

An index value should not be considered a static value that remains constant for the duration of a
session. It can be affected when other recipients are added and deleted. The index value is changed
following an update to the Message object to which the Recipients collection belongs.

Example
Dim curIndex, savIndex as Integer ' variables to work with Index
' select next recipient from collection
If curIndex >= objRecipColl.Count Then
 curIndex = objRecipColl.Count
 MsgBox "Already at end of recipient list"
 Exit Function
End If
' index is < count; can be incremented by 1
curIndex = curIndex + 1
Set objOneRecip = objRecipColl.Item(curIndex)
' could be objRecipColl(curIndex) since Item is default property
' save index for later use; but remember it could change if deletions
If objOneRecip Is Nothing Then
 MsgBox "Could not select next recipient"
 Exit Function
End If
savIndex = objOneRecip.Index
MsgBox "Recipient index = " & savIndex

IsSameAs Method (Recipient Object)   

The IsSameAs method returns True if the Recipient object is the same as the Recipient object being
compared against.

Syntax
objRecipient.IsSameAs(objRecip2)

objRecipient
Required. This Recipient object.

objRecip2
Required. The Recipient object being compared against.

Remarks
Two Recipient objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object in the underlying messaging system. Two objects with the same value are
still considered different if they do not instantiate the same physical object, for example if one is a copy
of the other. In such a case IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. This is necessary because, although MAPI requires all entry identifiers to be
unique, it does not require two of them identifying the same object to be identical. A generic
comparison of any two objects' unique identifiers is also available with the Session object’s
CompareIDs method.

MeetingResponseStatus Property
(Recipient Object)   

The MeetingResponseStatus property returns or sets the status of this recipient's response to a
meeting request. Read/write.

Syntax
objRecipient.MeetingResponseStatus

Data Type
Long

Remarks
A messaging user that has created an AppointmentItem object can turn it into a meeting by setting its
MeetingStatus property to CdoMeeting and sending it to one or more recipients. That user can then
monitor the responses with the MeetingResponseStatus property. The original appointment underlies
the meeting and retains its Recipients collection, and the originating user can read the
MeetingResponseStatus property of each Recipient in the collection to determine the current status
of that recipient's response.

An AddressEntry object representing the originating messaging user is available through the
appointment's Organizer property.

The MeetingResponseStatus property can have exactly one of the following values:

MeetingResponseStatus
value

Decimal

value

Description

CdoMeetingAccepted 3 This recipient has responded to
the meeting request with a firm
acceptance.

CdoMeetingCanceled 5 The meeting has been canceled.
CdoMeetingDeclined 4 This recipient has responded to

the meeting request with a
declination.

CdoMeetingTentative 2 This recipient has responded to

the meeting request with a
tentative acceptance.

Name Property (Recipient Object)   

The Name property returns or sets the name of the Recipient object as a string. Read/write.

Syntax
objRecipient.Name

The Name property is the default property of a Recipient object, meaning that objRecipient is
syntactically equivalent to objRecipient.Name in Microsoft® Visual Basic® code.

Data Type
String

Remarks
The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Example
' from the sample function Util_CompareFullAddressParts()
Dim strMsg As String
 Set objAddrEntry = objOneRecip.AddressEntry
' validate objects ... then display
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & _
 objAddrEntry.Address
 MsgBox strMsg ' compare address parts
 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
 MsgBox strMsg ' compare display names (should be same)

Resolve Method (Recipient Object)   

The Resolve method resolves a recipient’s address information into a full messaging address.

Syntax
objRecipient.Resolve([showDialog])

objRecipient
Required. The Recipient object.

showDialog
Optional. Boolean. If True (the default value), displays a modal dialog box to prompt the user to
resolve ambiguous names.

Remarks
The Resolve method operates when the AddressEntry property is set to Nothing. Its operation
depends on whether you have supplied the Recipient object’s Name or Address property.

When you supply the Name property, Resolve looks it up in the address book. When a recipient is
resolved, the Recipient object’s Address property is set to the full address and its AddressEntry
property is set to the child AddressEntry object that represents a copy of information in the address
book.

When you specify a custom address by supplying only the Recipient object’s Address property, the
Resolve method does not attempt to compare the address against the address book.

The Resolve method validates the Recipient object’s Type property and returns
CdoE_INVALID_PARAMETER if it is not one of the defined recipient types.

You can call the Recipients collection’s Resolve method to resolve every object in the collection and
also force an update to the collection’s Count property.

To avoid delivery errors, clients should always resolve recipients before submitting a message to the
MAPI system. Resolving the recipient name means either finding a matching address in an address list
or having the user select an address from a dialog box.

The Resolve method uses the address book or books specified in the profile, such as the global
address list (GAL) and the personal address book (PAB).

The Recipients collection’s Resolved property is set to True when every recipient in the collection has
its address resolved.

The following methods can invoke dialog boxes:

· Details method (AddressEntry object)
· Options and Send methods (AppointmentItem, MeetingItem, and Message objects)
· Resolve method (Recipient object)
· Resolve method (Recipients collection)
· AddressBook and Logon methods (Session object)

However, if your application is running as a Microsoft® Windows NT® service, for example from Active
Server Pages (ASP) script on a Microsoft® Internet Information Server (IIS), no user interface is
allowed.

For more information on Windows NT services, see the Win32® Web page Using MAPI from a
Windows NT Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm. For more information
on running as a service, see "Windows NT Service Client Applications" in the MAPI Programmer's

Reference.

Type Property (Recipient Object)   

The Type property specifies the recipient type of the Recipient object, that is, whether it is a To, Cc, or
Bcc recipient. Read/write.

Syntax
objRecipient.Type

Data Type
Long

Remarks
The Type property has the following defined values:

Recipient type Value Description
CdoTo 1 The recipient is on the To line (default).
CdoCc 2 The recipient is on the Cc line.
CdoBcc 3 The recipient is on the Bcc line.

The Type property corresponds to the MAPI property PR_RECIPIENT_TYPE.

See Also
Address Property (Recipient Object)

Recipients Collection Object
The Recipients collection object contains one or more Recipient objects and specifies the recipients of
a message.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: Message
Child objects: Recipient
Default property: Item

A Recipients collection is considered a small collection, which means that it supports count and index
values that let you access an individual Recipient object through the Item property. The Recipients
collection supports the Microsoft® Visual Basic® For Each statement. For more information on
collections, see Object Collections.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
Count 1.0.a Long Read-only
Item 1.0.a Recipient object Read-only
RawTable 1.1 IUnknown object Read/write

(Note: Not
available
to Visual
Basic
application
s)

Parent 1.0.a Message object Read-only
Resolved 1.0.a Boolean Read-only
Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.0.a (optional) name as String,
(optional) address as String,
(optional) type as Long,
(optional) entryID as String

AddMultiple 1.1 names as String,
(optional) type as Long

Delete 1.0.a (none)
GetFirstUnresolved 1.1 (none)
GetFreeBusy 1.2 StartTime as Variant,

EndTime as Variant,

Interval as Long
GetNextUnresolved 1.1 (none)
Resolve 1.0.a (optional) showDialog as Boolean

Remarks
A Recipients collection can be rendered into HTML hypertext in tabular form using the CDO Rendering
ContainerRenderer object. To specify this, set the container renderer's DataSource property to the
Recipients collection object itself.

With the same DataSource setting, the container renderer's RenderProperty method can also render
selected properties of the collection's parent Message object. The individual properties that can be
rendered are indicated in the Message object property descriptions.

Add Method (Recipients Collection)   

The Add method creates and returns a new Recipient object in the Recipients collection.

Syntax
Set objRecipient = objRecipColl.Add([name], [address], [type], [entryID])

objRecipient
On successful return, represents the new Recipient object added to the collection.

objRecipColl
Required. The Recipients collection object.

name
Optional. String. The display name of the recipient. When this parameter is not present, the new
Recipient object’s Name property is set to an empty string. The name parameter is ignored if the
entryID parameter is supplied.

address
Optional. String. The full messaging address of the recipient. When this parameter is not present,
the new Recipient object’s Address property is set to an empty string. The address parameter is
ignored if the entryID parameter is supplied.

type
Optional. Long. The recipient type; the initial value for the new recipient’s Type property. The
following values are valid:
Recipient type Value Description
CdoTo 1 The recipient is on the To line (default).
CdoCc 2 The recipient is on the Cc line.
CdoBcc 3 The recipient is on the Bcc line.

The type parameter applies whether the entryID parameter is furnished or not.
entryID

Optional. String. The unique identifier of a valid AddressEntry object for this recipient. No default
value is supplied for the entryID parameter. When it is present, the name and address parameters
are not used. When it is not present, the method uses the name, address, and type parameters to
define the recipient.

Remarks
The name, address, and type parameters correspond to the Recipient object’s Name, Address, and
Type properties, respectively. The entryID parameter corresponds to an AddressEntry object’s ID
property. When the entryID parameter is present, the name and address parameters are not used.

The address parameter, if set, must contain a full address, such as that contained in the recipient’s
Address property. An AddressEntry object’s Address property is not a full address because it does not
contain the address type information found in the AddressEntry object's Type property. If the user you
are adding is represented by an AddressEntry object, such as is returned by the Session object’s
CurrentUser property, you must concatenate its Type and Address properties with a connecting colon
to construct the full address.

When no parameters are present, an empty Recipient object is created.

The DisplayType property of the new Recipient object is set by the address book provider to either
CdoUser or CdoDistList, depending on which kind of recipient is being added. The DisplayType
property is read-only and cannot subsequently be changed.

Call the Resolve method after you add a recipient. After the recipient is resolved, you can access the
child AddressEntry object through the Recipient object’s AddressEntry property.

The Index property of the new Recipient object equals the new Count property of the Recipients
collection.

The new recipient is saved in the MAPI system when you Update or Send the parent Message object.

Example
This code fragment adds three recipients to a message. The address for the first recipient is resolved
using the display name. The second recipient is a custom address, so the Resolve operation does not
modify it. The third recipient is taken from an existing valid AddressEntry object. The Resolve
operation is not needed for this recipient.

' from the sample function "Using Addresses"
' add 3 recipient objects to a valid message object

' 1. look up entry in address book
Set objOneRecip = objNewMessage.Recipients.Add(Name:=strName, _
 Type:=CdoTo)
If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using name and type"
 Exit Function
End If
objOneRecip.Resolve ' find its full address in address book

' 2. add a custom recipient
Set objOneRecip = objNewMessage.Recipients.Add(_
 Address:="SMTP:davidhef@microsoft.com", _
 Type:=CdoTo)
If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using custom address"
 Exit Function
End If
objOneRecip.Resolve ' make it an object and give it an entry ID

' 3. add a valid address entry object, such as Message.Sender
' assume valid address entry ID from an existing message
Set objOneRecip = objNewMessage.Recipients.Add(_
 entryID:=strAddrEntryID)
' or .Add(, , , strAddrEntryID) if you can't use named parameters
If objOneRecip Is Nothing Then
 MsgBox "Unable to add existing AddressEntry using ID"
 Exit Function
End If

objNewMessage.Text = "expect 3 different recipients"
MsgBox ("Count = " & objNewMessage.Recipients.Count)

AddMultiple Method (Recipients
Collection)   

The AddMultiple method creates zero or more new Recipient objects in the Recipients collection.

Syntax
objRecipColl.AddMultiple(names [, type])

objRecipColl
Required. The Recipients collection object.

names
Required. String. A list of zero or more resolvable recipient strings delimited by semicolons. Each
resolvable string can be a messaging user’s display name or a messaging address with or without
the address type. A messaging address without address type must be an SMTP (Simple Mail
Transfer Protocol) address usable on the Internet.

type
Optional. Long. The recipient type; the initial value for the Type property that is to apply to all the
new recipients. The following values are valid:
Recipient type Value Description
CdoTo 1 The recipients are on the To line (default).
CdoCc 2 The recipients are on the Cc line.
CdoBcc 3 The recipients are on the Bcc line.

Remarks
The AddMultiple method is useful when responding to standard e-mail forms that invite the user to
enter a series of recipients in a connected list, such as the To and Cc lines for a Microsoft® Exchange
Client message.

The AddMultiple method does not resolve the new recipients. You must call either each recipient’s
Resolve method or the Recipients collection’s Resolve method following the AddMultiple call.

Example
This code fragment illustrates the different possibilities of resolvable recipient strings:

Dim name1, name2, name3, toStr As String
name1 = "John Doe" ' display name
name2 = "jimdoe@company.com" ' SMTP address without address type
name3 = "Jane Doe[SMTP:janedoe@company.com]" ' full messaging address
toStr = name1 & ";" & name2 & ";" & name3
objRecipients.AddMultiple (toStr, CdoTo)
objRecipients.Resolve()

Count Property (Recipients Collection)   

The Count property returns the number of Recipient objects in the collection. Read-only.

Syntax
objRecipColl.Count

Data Type
Long

Example
This code fragment uses the Count property as a loop terminator to copy all Recipient objects from
one message’s Recipients collection to another message’s collection. It shows the Count and Item
properties working together. Note how much more code this requires than copying the Message
object’s Recipients property from the original message to the copy.

' from the sample function Util_CopyMessage
' Copy all Recipient objects from one message’s collection to another
Dim objOneMsg, objCopyMsg as Message
Dim objRecipColl as Recipients ' source message Recipients collection
Dim objOneRecip as Recipient ' individual recipient in target message
' ... verify valid messages ...
Set objRecipColl = objOneMsg.Recipients
For i = 1 To objRecipColl.Count Step 1
 strRecipName = objRecipColl.Item(i).Name
' could be objRecipColl(i).Name since Item is default property
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create recipient in message copy"
 Exit Function
 End If
 objOneRecip.Name = strRecipName
 objOneRecip.Address = objRecipColl.Item(i).Address
 objOneRecip.Type = objRecipColl.Item(i).Type
 End If
Next i

Delete Method (Recipients Collection)   

The Delete method removes all the Recipient objects from the Recipients collection.

Syntax
objRecipColl.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to every Recipient object. If you have another reference to a recipient, you can
still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another recipient.

The final Release on each Recipient object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one Recipient object, use the Delete method specific to that object.

The effect of the Delete method is not permanent until you use the Update, Send, or Delete method
on the parent Message object containing the Recipients collection. A permanently deleted member
cannot be recovered. However, the collection itself is still valid, and you can Add new members to it.

GetFirstUnresolved Method (Recipients
Collection)   

The GetFirstUnresolved method returns the first unresolved Recipient object in the Recipients
collection. It returns Nothing if there are no unresolved recipients in the collection.

Syntax
Set objRecipient = objRecipColl.GetFirstUnresolved()

objRecipient
On successful return, represents the first unresolved recipient in the collection.

objRecipColl
Required. The Recipients collection object.

Remarks
The GetFirstUnresolved and GetNextUnresolved methods can be used to find all the ambiguous
recipient names in a Recipients collection.

GetFreeBusy Method (Recipients
Collection)   

The GetFreeBusy method returns a string representing the combined availability of all recipients for a
meeting over a specified period of time.

Syntax
strAvail = objRecipColl.GetFreeBusy(StartTime, EndTime, Interval)

strAvail
On successful return, contains a string indicating the recipients' availability for each of the time slots
in the specified time period.

objRecipColl
Required. The Recipients collection object.

StartTime
Required. Variant (vbDate format). Specifies the date/time of the beginning of the first time slot.

EndTime
Required. Variant (vbDate format). Specifies the date/time of the end of the last time slot.

Interval
Required. Long. Specifies the length of each time slot in minutes.

Remarks
The returned string length equals the number of time slots between StartTime and EndTime. Each
character is the ASCII representation of the appropriate type library constant indicating the recipients'
combined availability during a time slot:

ASCII
character

Corresponding type

library constant

Meaning

"0" CdoFree Available for appointments or
meetings throughout the time slot

"1" CdoTentative At least one tentative commitment
during the time slot

"2" CdoBusy At least one confirmed commitment
during the time slot

"3" CdoOutOfOffice Designated as out-of-office (OOF) for
at least part of the time slot

If there is any overlapping of commitments during a time slot, GetFreeBusy returns the most
committed state, that is, the highest character value. For example, if one recipient already has a
tentative meeting and another has a confirmed meeting scheduled during the same time slot,
GetFreeBusy returns "2" for that time slot, corresponding to CdoBusy. CdoFree is not returned
unless the entire time slot is free of commitments.

If a recipient represents a distribution list, the status of its individual members cannot be returned to
you. A meeting request should be sent only to single messaging users. You can determine if a
messaging user is a distribution list by checking the DisplayType property of the AddressEntry object
representing that user. You can obtain the AddressEntry object underlying a recipient from that
Recipient object's AddressEntry property.

GetNextUnresolved Method (Recipients
Collection)   

The GetNextUnresolved method returns the next unresolved Recipient object in the Recipients
collection. It returns Nothing if there are no unresolved recipients remaining in the collection.

Syntax
Set objRecipient = objRecipColl.GetNextUnresolved()

objRecipient
On successful return, represents the next unresolved recipient in the collection.

objRecipColl
Required. The Recipients collection object.

Remarks
The GetFirstUnresolved and GetNextUnresolved methods can be used to find all the ambiguous
recipient names in a Recipients collection.

Item Property (Recipients Collection)   

The Item property returns a single Recipient object from the Recipients collection. Read-only.

Syntax
objRecipColl.Item(index)

index
A long integer ranging from 1 to objRecipColl.Count, or a string that specifies the name of the
object.

The Item property is the default property of a Recipients collection, meaning that objRecipColl(index) is
syntactically equivalent to objRecipColl.Item(index) in Microsoft® Visual Basic® code.

Data Type
Object (Recipient)

Remarks
The Item property works like an accessor property for small collections.

Although the Item property itself is read-only, the Recipient object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

Example
This code fragment shows the Count and Item properties working together:

' list all recipient names in the collection
strRecips = "" ' initialize string
Set objRecipsColl = objOriginalMsg.Recipients
Count = objRecipsColl.Count
For i = 1 To Count Step 1
 Set objOneRecip = objRecipsColl.Item(i) ' or objRecipsColl(i)
 strRecips = strRecips & objOneRecip.Name & "; "
Next i
MsgBox "Message recipients: " & strRecips

RawTable Property (Recipients
Collection)   

The RawTable property returns an IUnknown pointer to the MAPI table object underlying the
Recipients collection. Not available to Microsoft® Visual Basic® applications. Read/write.

Syntax
objRecipColl.RawTable

Data Type
Variant (vbDataObject format)

Remarks
The RawTable property is not available to Visual Basic programs. It is accessible only by C/C++
programs that deal with IUnknown objects. Visual Basic supports the IDispatch interface and not
IUnknown. The RawTable property is an IUnknown object that returns an IMAPITable interface in
response to QueryInterface. For more information, see Introduction to Automation and How
Programmable Objects Work. Also see the "COM and ActiveX Object Services" section of the Microsoft
Platform SDK.

Resolve Method (Recipients Collection)   

The Resolve method traverses the Recipients collection to resolve every recipient’s address
information into a full messaging address.

Syntax
objRecipColl.Resolve([showDialog])

objRecipColl
Required. The Recipients collection object.

showDialog
Optional. Boolean. If True (the default value), displays a modal dialog box to prompt the user to
resolve ambiguous names.

Remarks
Calling the Recipients collection’s Resolve method is similar to calling the Resolve method for each
Recipient object in the collection, except that it also forces an update to the Count property and to all
Recipient objects in the collection. Any Recipient variable previously set to an object in the collection is
invalidated by the collection’s Resolve method and should be retrieved again from the collection. Note
that the individual recipient’s Resolve method does not invalidate the object.

The Resolved property is set to True when every recipient in the collection has its address resolved.

The following methods can invoke dialog boxes:

· Details method (AddressEntry object)
· Options and Send methods (AppointmentItem, MeetingItem, and Message objects)
· Resolve method (Recipient object)
· Resolve method (Recipients collection)
· AddressBook and Logon methods (Session object)

However, if your application is running as a Microsoft® Windows NT® service, for example from Active
Server Pages (ASP) script on a Microsoft® Internet Information Server (IIS), no user interface is
allowed.

For more information on Windows NT services, see the Win32® Web page Using MAPI from a
Windows NT Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm. For more information
on running as a service, see "Windows NT Service Client Applications" in the MAPI Programmer's
Reference.

Example
' from the sample function Util_NewConversation
' create a valid new message object in the Outbox
 With objNewMsg
 .Subject = "used space vehicle wanted"
 ' ... set other properties here ...
 Set objOneRecip = .Recipients.Add(Name:="Car Ads", _
 Type:=CdoTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create the public folder recipient"
 Exit Function
 End If

 .Recipients.Resolve ' resolve and update everything
 End With

Resolved Property (Recipients
Collection)   

The Resolved property contains True if all of the recipients in the collection have their address
information resolved. Read-only.

Syntax
objRecipColl.Resolved

Data Type
Boolean

Remarks
A Recipient object is considered resolved when it has a valid AddressEntry object in its AddressEntry
property.

You should resolve all addresses. Whenever you obtain an address from the address book or supply a
custom address, you should call the Resolve method to ensure that the AddressEntry property is
valid.

When the Resolved property is not True, use either the collection’s Resolve method or each individual
recipient’s Resolve method to resolve all the addresses.

When you use existing valid AddressEntry objects, you do not need to explicitly call the Resolve
method.

RecurrencePattern Object
The RecurrencePattern object describes the recurrence pattern for an AppointmentItem object.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.2
Parent objects: AppointmentItem
Child objects: (none)
Default property: StartTime

Properties

Name

Available
in version

Type

Access

Application 1.2 String Read-only
Class 1.2 Long Read-only
DayOfMonth 1.2 Long Read/write
DayOfWeekMask 1.2 Long Read/write
Duration 1.2 Long Read-only
EndTime 1.2 Variant (vbDate

format)
Read/write

Instance 1.2 Long Read/write
Interval 1.2 Long Read/write
MonthOfYear 1.2 Long Read/write
NoEndDate 1.2 Boolean Read/write
Occurrences 1.2 Long Read/write
Parent 1.2 AppointmentItem

object
Read-only

PatternEndDate 1.2 Variant (vbDate
format)

Read/write

PatternStartDate 1.2 Variant (vbDate
format)

Read/write

RecurrenceType 1.2 Long Read/write
Session 1.2 Session object Read-only
StartTime 1.2 Variant (vbDate

format)
Read/write

Methods
(None.)

Remarks
A RecurrencePattern object contains properties that fully specify the recurrence characteristics of an
AppointmentItem object. It is created and linked to the appointment when you first call the
AppointmentItem object's GetRecurrencePattern method. This sets the IsRecurring property to True
and instantiates a new RecurrencePattern object populated with the default values indicated in the
property descriptions.

The RecurrencePattern object applies only to its parent appointment and cannot be used for any other
AppointmentItem object. The recurrence pattern can be accessed from any appointment in the
recurring series, that is, from an individual recurrence as well as from the appointment that originated
the series. The originating appointment can be obtained with the RecurrencePattern object's Parent
property.

To edit the entire recurring series of appointments, you modify the appropriate properties on either the
originating AppointmentItem object or its child RecurrencePattern object. To edit an individual
recurrence only, you instantiate it and modify its AppointmentItem properties. You can instantiate an
individual recurrence by using a MessageFilter object to restrict the Messages collection containing the
appointments. All changes take effect when you call the appointment's Send or Update method.

The AppointmentItem object's ClearRecurrencePattern method resets IsRecurring to False and calls
Release on the RecurrencePattern object. This is normally the final Release because the
RecurrencePattern object should have no other references. The RecurrencePattern object is removed
from memory in response to its final Release.

The RecurrenceType property determines the recurrence unit, the basic time unit for recurrence of the
appointment. This can be a day, a week, a month, or a year. The appointment can recur on every
instance of this recurrence unit, on isolated instances selected by the Instance property, or on periodic
instances defined by the Interval property.

The DayOfMonth, DayOfWeekMask, and MonthOfYear properties specify the days and months when
the appointment is to recur. The StartTime and EndTime properties determine the times of day for
each occurrence. The PatternStartDate, PatternEndDate, Occurrences, and NoEndDate properties
define the overall time period during which the appointment is to recur.

Several of the recurrence pattern properties have interdependent values. When you set one of these
properties, related properties are forced into conformance in order to ensure consistency. For example,
changing PatternEndDate causes Occurrences to be recalculated, and changing Occurrences
causes PatternEndDate to be recalculated. The most recent change determines the settings of the
interdependent properties. Each property description includes the effects of changing its value.

The pattern you specify in the DayOfMonth, DayOfWeekMask, Instance, Interval, and MonthOfYear
properties is not required to include a recurrence on the day of the original appointment, nor on the
days indicated in PatternStartDate or PatternEndDate. These days are counted in Occurrences only
if they match the pattern, and a recurrence is generated on the starting or ending day only if that day
matches the pattern.

This code fragment defines recurrence patterns for three AppointmentItem objects obtained from the
Messages collection of a calendar folder. The first specifies recurrence on the third Friday of every
month. The second and third specify recurrence on American Thanksgiving and Canadian
Thanksgiving respectively.

Dim objApp3rdFri, objAppAmThx, objAppCanThx As AppointmentItem
Dim objRec3rdFri, objRecAmThx, objRecCanThx As RecurrencePattern
' ... assume all three AppointmentItem objects are valid ...
' ... calling the GetRecurrencePattern method makes them recurring ...
Set objRec3rdFri = objApp3rdFri.GetRecurrencePattern
Set objRecAmThx = objAppAmThx.GetRecurrencePattern
Set objRecCanThx = objAppCanThx.GetRecurrencePattern
' every third Friday
objRec3rdFri.RecurrenceType = CdoRecurTypeMonthlyNth
objRec3rdFri.DayOfWeekMask = CdoFriday
objRec3rdFri.Instance = 3 ' third instance of selected day
objApp3rdFri.Update ' needed for settings to take effect in calendar
' American Thanksgiving (fourth Thursday of November)
objRecAmThx.RecurrenceType = CdoRecurTypeYearlyNth
objRecAmThx.DayOfWeekMask = CdoThursday

objRecAmThx.MonthOfYear = 11 ' November
objRecAmThx.Instance = 4
objAppAmThx.Update ' needed for settings to take effect in calendar
' Canadian Thanksgiving (second Monday of October)
objRecCanThx.RecurrenceType = CdoRecurTypeYearlyNth
objRecCanThx.DayOfWeekMask = CdoMonday
objRecCanThx.MonthOfYear = 10 ' October
objRecCanThx.Instance = 2
objAppCanThx.Update ' needed for settings to take effect in calendar

DayOfMonth Property
(RecurrencePattern Object)   

The DayOfMonth property returns or sets the day of the month on which the appointment recurs.
Read/write.

Syntax
objRecurPatt.DayOfMonth

Data Type
Long

Remarks
The DayOfMonth property contains the calendar date of each month on which the AppointmentItem is
to recur, for example the value 1 to indicate the first day of every month. The last day of every month
can be represented by the value 31.

DayOfMonth is only valid if the value of the RecurrenceType property is CdoRecurTypeMonthly or
CdoRecurTypeYearly. When DayOfMonth is valid on a newly created RecurrencePattern object, it
defaults to the current day of the month.

Note If the AppointmentItem object has been made into a meeting, the DayOfMonth,
DayOfWeekMask, and MonthOfYear properties are all held internally in the meeting organizer's
current time zone. If these properties are displayed or read by a messaging user in a different time
zone, they are not converted. The user or application accessing these properties may need to be
aware that they represent the organizer's time zone.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

DayOfWeekMask Property
(RecurrencePattern Object)   

The DayOfWeekMask property returns or sets the mask for the days of the week on which the
appointment recurs. Read/write.

Syntax
objRecurPatt.DayOfWeekMask

Data Type
Long

Remarks
The DayOfWeekMask property contains the days of the week on each of which the AppointmentItem
is to recur. It can include the following values in any combination:

DayOfWeekMask
setting

Decimal

value

Meaning

CdoSunday 1 The appointment recurs on Sundays.
CdoMonday 2 The appointment recurs on Mondays.
CdoTuesday 4 The appointment recurs on Tuesdays.
CdoWednesday 8 The appointment recurs on Wednesdays.
CdoThursday 16 The appointment recurs on Thursdays.
CdoFriday 32 The appointment recurs on Fridays.
CdoSaturday 64 The appointment recurs on Saturdays.

The maximum value for the DayOfWeekMask property is 127, which is the logical inclusive OR of all
seven days. An attempt to set DayOfWeekMask to any value less than 1 or greater than 127 results in
a return of CdoE_INVALID_PARAMETER.

Note that the DayOfWeekMask property is not compatible with the CDO Rendering
ContainerRenderer object's FirstDayOfWeek property or the Session object's "FirstDayOfWeek"
option, which use an enumeration starting with 1 for Monday and ending with 7 for Sunday. The
session options are obtained with the GetOption method and set with the SetOption method. The
Session object's "WorkingDays" option, however, is compatible with the mask constants used by
DayOfWeekMask.

DayOfWeekMask is not valid if the value of the RecurrenceType property is CdoRecurTypeDaily,
CdoRecurTypeMonthly, or CdoRecurTypeYearly. When DayOfWeekMask is valid on a newly
created RecurrencePattern object, it defaults to the current day of the week.

Setting DayOfWeekMask to multiple days per week is only valid if the value of the RecurrenceType
property is CdoRecurTypeWeekly. Recurrences of type CdoRecurTypeMonthlyNth or
CdoRecurTypeYearlyNth can only use a single day per week.

Note If the AppointmentItem object has been made into a meeting, the DayOfMonth,
DayOfWeekMask, and MonthOfYear properties are all held internally in the meeting organizer's
current time zone. If these properties are displayed or read by a messaging user in a different time
zone, they are not converted. The user or application accessing these properties may need to be
aware that they represent the organizer's time zone.

Changes you make to properties on a RecurrencePattern object take effect when you call the

underlying appointment's Send or Update method.

Duration Property (RecurrencePattern
Object)   

The Duration property returns the duration of the recurring appointment in minutes. Read-only.

Syntax
objRecurPatt.Duration

Data Type
Long

Remarks
The Duration property contains the number of minutes the appointment is to last every time it recurs.
Duration is always valid on a newly created RecurrencePattern object and defaults to the value of the
Duration property of the AppointmentItem object that created this recurrence pattern.

The minimum value of Duration is 0. The maximum value allows an appointment to last until its next
possible recurrence, and is dependent on the settings of the RecurrenceType, Interval, and
DayOfWeekMask properties, as follows:

RecurrenceType setting Maximum Duration value
CdoRecurTypeDaily (1 day) x (Interval value)
CdoRecurTypeMonthly
CdoRecurTypeMonthlyNth

(28 days) x (Interval value)

CdoRecurTypeYearly
CdoRecurTypeYearlyNth

336 days, that is, 48 weeks, since
Interval cannot be greater than 1 for
yearly recurrence types

CdoRecurTypeWeekly,
and DayOfWeekMask specifies
exactly one day per week

(7 days) x (Interval value)

CdoRecurTypeWeekly,
and DayOfWeekMask specifies
more than one day per week

the minimum difference between any
two days specified in the mask, for
example 3 days if the mask specifies
CdoMonday and CdoFriday

Among its possible values, the Duration property can be any multiple of 24 hours that does not exceed
its maximum value. If an occurrence has such a value for Duration, Microsoft® Schedule+ interprets it
as lasting exactly 24 hours. That is, Schedule+ treats Duration values of 0, 1440, 2880, 4320, and so
on as if they were 1440.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

EndTime Property (RecurrencePattern
Object)   

The EndTime property returns or sets the ending date/time for each recurrence of the appointment.
Read/write.

Syntax
objRecurPatt.EndTime

Data Type
Variant (vbDate format)

Remarks
The EndTime property contains the time at which the appointment is to terminate every time it recurs.
EndTime is always valid on a newly created RecurrencePattern object and defaults to the EndTime
property of the AppointmentItem object that created this recurrence pattern.

The EndTime property ignores seconds and truncates the time component to the minute.

EndTime uses both the date and the time component of the vbDate format. When you read EndTime,
you get the date/time of the end of the original appointment.

The recurrence pattern's StartTime and EndTime properties are always held internally in the
organizer's current time zone. By contrast, the AppointmentItem object's StartTime and EndTime
properties are always held internally in UTC (Coordinated Universal Time, also known as GMT).
However, all these properties are converted to the local messaging user's current time zone whenever
they are displayed or read programmatically.

Setting the EndTime property causes CDO to force certain other recurrence pattern properties into
conformance. Duration is recalculated from StartTime and EndTime.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

Instance Property (RecurrencePattern
Object)   

The Instance property returns or sets the instance of the day within the month on which the
appointment recurs. Read/write.

Syntax
objRecurPatt.Instance

Data Type
Long

Remarks
The Instance property is used when the AppointmentItem is to recur only once during each recurrence
unit, such as the second Wednesday of every month or the first Tuesday of every January. The
DayOfWeekMask property must specify exactly one day of the week, and Instance selects the
occurrence of that day within the month on which recurrence is enabled. The last occurrence of the day
within the month can be represented by the value 5.

Instance is only valid if the value of the RecurrenceType property is CdoRecurTypeMonthlyNth or
CdoRecurTypeYearlyNth. When Instance is valid on a newly created RecurrencePattern object, it
defaults to the current instance of the current day of the week. For example, if the RecurrencePattern
object is created on Wednesday 9 December and RecurrenceType is set to
CdoRecurTypeYearlyNth, then DayOfWeekMask defaults to 8 (CdoWednesday), Instance defaults
to 2 (the second Wednesday of the month), and MonthOfYear defaults to 12 (December).

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

Example
This code fragment uses the Instance and Interval properties to specify that an appointment is to
recur on the third Sunday of every other month:

Dim objAppointment As AppointmentItem
Dim objRecurrence As RecurrencePattern
' ... assume AppointmentItem object is valid ...
Set objAppointment = objAppointments.Add
With objAppointment
 .Subject = "Using Instance and Interval with MonthlyNth"
 .Text = "Creating an appointment and making it recur on the " _
 & "3rd Sunday of every other month for one year."
 .Location = "My office"
 Set objRecurrence = .GetRecurrencePattern
 With objRecurrence
 .RecurrenceType = CdoRecurTypeMonthlyNth
 .PatternStartDate = Now
 .PatternEndDate = DateAdd("m", 12, .PatternStartDate)
 .StartTime = .PatternStartDate ' takes only the time component
 .EndTime = DateAdd("h", 1, .StartTime) ' 1-hour appointment
 .DayOfWeekMask = 1 ' CdoSunday
 .Instance = 3 ' third Sunday of month
 .Interval = 2 ' every other month
 End With
 objAppointment.Update ' must do this for settings to take effect

End With

Interval Property (RecurrencePattern
Object)   

The Interval property returns or sets the number of recurrence units between recurrences of the
appointment. Read/write.

Syntax
objRecurPatt.Interval

Data Type
Long

Remarks
The Interval property is used when the AppointmentItem is to recur less often than every recurrence
unit, such as once every three days, once every two weeks, or once every six months. Interval
contains a value representing the frequency of recurrence in terms of recurrence units.

Interval is always valid on a newly created RecurrencePattern object and defaults to 1, which is its
minimum value. Its maximum value depends on the setting of the RecurrenceType property as
follows:

RecurrenceType setting Maximum Interval value
CdoRecurTypeDaily 999
CdoRecurTypeMonthly
CdoRecurTypeMonthlyNth

99

CdoRecurTypeYearly
CdoRecurTypeYearlyNth

1

CdoRecurTypeWeekly 99

Setting the Interval property causes CDO to force certain other recurrence pattern properties into
conformance. PatternEndDate is recalculated from PatternStartDate, Occurrences, and Interval. If
the resulting PatternEndDate is January 1, 4000 or later, NoEndDate is automatically reset to True,
Occurrences is reset to 1,490,000, PatternEndDate is reset to the month and day of
PatternStartDate in the year 4001, and the recurrence pattern is considered to extend infinitely far into
the future.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

MonthOfYear Property
(RecurrencePattern Object)   

The MonthOfYear property returns or sets the month of the year in which the appointment recurs.
Read/write.

Syntax
objRecurPatt.MonthOfYear

Data Type
Long

Remarks
The MonthOfYear property contains the calendar number of the month in which the AppointmentItem
is to recur, for example the value 2 to indicate February.

MonthOfYear is only valid if the value of the RecurrenceType property is CdoRecurTypeYearly or
CdoRecurTypeYearlyNth. When MonthOfYear is valid on a newly created RecurrencePattern object,
it defaults to the current month.

Note If the AppointmentItem object has been made into a meeting, the DayOfMonth,
DayOfWeekMask, and MonthOfYear properties are all held internally in the meeting organizer's
current time zone. If these properties are displayed or read by a messaging user in a different time
zone, they are not converted. The user or application accessing these properties may need to be
aware that they represent the organizer's time zone.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

NoEndDate Property
(RecurrencePattern Object)   

The NoEndDate property indicates whether the recurrence pattern has an ending date. Read/write.

Syntax
objRecurPatt.NoEndDate

Data Type
Boolean

Remarks
The NoEndDate property contains True if the AppointmentItem object is to recur indefinitely and False
if the recurrence has a terminal date. NoEndDate is always valid on a newly created
RecurrencePattern object and defaults to True.

Setting the NoEndDate property causes CDO to force certain other recurrence pattern properties into
conformance. If NoEndDate is set to True, Occurrences is reset to 1,490,000 and PatternEndDate is
reset to the month and day of PatternStartDate in the year 4001. If NoEndDate is set to False,
Occurrences is reset to 10 and PatternEndDate is recalculated from PatternStartDate and
Occurrences. However, no changes are made if NoEndDate was already False.

CDO imposes a limit of December 31, 3999 on PatternEndDate and 1,489,999 on Occurrences. If
either of these properties exceeds its limit, NoEndDate is automatically reset to True, Occurrences is
reset to 1,490,000, PatternEndDate is reset to the month and day of PatternStartDate in the year
4001, and the recurrence pattern is considered to extend infinitely far into the future.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

Occurrences Property
(RecurrencePattern Object)   

The Occurrences property returns or sets the number of occurrences of the recurrence pattern.
Read/write.

Syntax
objRecurPatt.Occurrences

Data Type
Long

Remarks
The Occurrences property is used when the appointment is to recur a specific number of times, such
as the next ten Thursdays. Occurrences has a minimum value of 1 and represents the total number of
occurrences of the AppointmentItem object fitting the recurrence pattern. This qualification is necessary
because the days of the original appointment, the PatternStartDate, and the PatternEndDate are not
required to be included in the pattern specified by the DayOfMonth, DayOfWeekMask, Instance,
Interval, and MonthOfYear properties. The original appointment is counted in Occurrences only if it
matches the pattern.

Occurrences is always valid on a newly created RecurrencePattern object and defaults to its
maximum value of 1,490,000. If the NoEndDate property is subsequently set to False, Occurrences
defaults to 10.

Setting the Occurrences property causes CDO to force certain other recurrence pattern properties into
conformance. PatternEndDate is recalculated from PatternStartDate and Occurrences. NoEndDate
is reset to False if Occurrences is less than 1,490,000, or to True if Occurrences is 1,490,000 or
greater or the recalculated PatternEndDate is January 1, 4000 or later.

CDO imposes a limit of December 31, 3999 on PatternEndDate and 1,489,999 on Occurrences. If
either of these properties exceeds its limit, NoEndDate is automatically reset to True, Occurrences is
reset to 1,490,000, PatternEndDate is reset to the month and day of PatternStartDate in the year
4001, and the recurrence pattern is considered to extend infinitely far into the future.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

PatternEndDate Property
(RecurrencePattern Object)   

The PatternEndDate property returns or sets the day on or before which the appointment last recurs.
Read/write.

Syntax
objRecurPatt.PatternEndDate

Data Type
Variant (vbDate format)

Remarks
The PatternEndDate property contains the latest possible date of the last occurrence of the
appointment. This qualification is necessary because PatternEndDate is not required to be included in
the pattern specified by the DayOfMonth, DayOfWeekMask, Instance, Interval, and MonthOfYear
properties. A recurrence is generated on PatternEndDate only if it matches the pattern.

PatternEndDate is always valid on a newly created RecurrencePattern object and defaults to the
month and day of the PatternStartDate property in the year 4001.

The time component of the vbDate format is ignored when you set the PatternEndDate property.
When you read PatternEndDate, the time component of the EndTime property is used to return a full
vbDate value representing the ending time on the ending date, or on the next day if the appointment
crosses over midnight.

The date component of PatternEndDate must not be earlier than PatternStartDate. These two
properties determine the overall time period during which the AppointmentItem object is scheduled for
recurrence.

Setting the PatternEndDate property causes CDO to force certain other recurrence pattern properties
into conformance. Occurrences is recalculated from PatternStartDate and PatternEndDate, and
NoEndDate is reset to False. However, if PatternEndDate is January 1, 4000 or later, NoEndDate is
reset to True, Occurrences is reset to 1,490,000, and PatternEndDate is reset to the month and day
of PatternStartDate in the year 4001.

You cannot change PatternEndDate to a date earlier than the current PatternStartDate.

CDO imposes a limit of December 31, 3999 on PatternEndDate and 1,489,999 on Occurrences. If
either of these properties exceeds its limit, NoEndDate is automatically reset to True, Occurrences is
reset to 1,490,000, PatternEndDate is reset to the month and day of PatternStartDate in the year
4001, and the recurrence pattern is considered to extend infinitely far into the future.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

PatternStartDate Property
(RecurrencePattern Object)   

The PatternStartDate property returns or sets the day on or after which the appointment first recurs.
Read/write.

Syntax
objRecurPatt.PatternStartDate

Data Type
Variant (vbDate format)

Remarks
The PatternStartDate property contains the earliest possible date of the first occurrence of the
appointment. This qualification is necessary because PatternStartDate is not required to be included
in the pattern specified by the DayOfMonth, DayOfWeekMask, Instance, Interval, and MonthOfYear
properties. A recurrence is generated on PatternStartDate only if it matches the pattern.

PatternStartDate is always valid on a newly created RecurrencePattern object and defaults to the date
component of the StartTime property of the AppointmentItem object that created this recurrence
pattern.

The time component of the vbDate format is ignored when you set the PatternStartDate property.
When you read PatternStartDate, the time component of the StartTime property is used to return a
full vbDate value representing the starting time on the starting date.

The date component of PatternStartDate must not be later than PatternEndDate. These two
properties determine the overall time period during which the AppointmentItem object is scheduled for
recurrence.

Setting the PatternStartDate property causes CDO to force certain other recurrence pattern properties
into conformance. PatternEndDate is recalculated from PatternStartDate and Occurrences.
However, if the new PatternEndDate is January 1, 4000 or later, NoEndDate is reset to True,
Occurrences is reset to 1,490,000, and PatternEndDate is reset to the month and day of
PatternStartDate in the year 4001.

If you change PatternStartDate to a date later than the current PatternEndDate, PatternEndDate is
recalculated using the current value of Occurrences. Since PatternEndDate is always forced to be no
earlier than PatternStartDate, Occurrences always has a minimum value of 1.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

RecurrenceType Property
(RecurrencePattern Object)   

The RecurrenceType property returns or sets the recurrence unit and the frequency with which the
appointment recurs. Read/write.

Syntax
objRecurPatt.RecurrenceType

Data Type
Long

Remarks
The RecurrenceType property determines the periodicity with which the AppointmentItem is to recur. It
can have exactly one of the following values:

RecurrenceType
setting

Decimal

value

Other properties used in
conjunction with this setting

CdoRecurTypeDaily 0 Interval
CdoRecurTypeWeekly 1 DayOfWeekMask

Interval
CdoRecurTypeMonthly 2 DayOfMonth

Interval
CdoRecurTypeMonthlyNth 3 DayOfWeekMask

Instance
Interval

CdoRecurTypeYearly 5 DayOfMonth
Interval
MonthOfYear

CdoRecurTypeYearlyNth 6 DayOfWeekMask
Instance
Interval
MonthOfYear

RecurrenceType is always valid on a newly created RecurrencePattern object and defaults to
CdoRecurTypeWeekly.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

StartTime Property (RecurrencePattern
Object)   

The StartTime property returns or sets the starting date/time for each recurrence of the appointment.
Read/write.

Syntax
objRecurPatt.StartTime

Data Type
Variant (vbDate format)

Remarks
The StartTime property contains the time at which the appointment is to begin every time it recurs.
StartTime is always valid on a newly created RecurrencePattern object and defaults to the time
component of the StartTime property of the AppointmentItem object that created this recurrence
pattern.

The StartTime property ignores seconds and truncates the time component to the minute.

StartTime uses both the date and the time component of the vbDate format. When you set StartTime,
the date component must match the date component of the PatternStartDate property, or
CdoE_INVALID_PARAMETER is returned. When you read StartTime, you get the date/time of the
start of the original appointment.

If the time component of EndTime is earlier than StartTime, each occurrence is treated as ending on
the day after it starts. StartTime and EndTime are not allowed to have equal time components.

The recurrence pattern's StartTime and EndTime properties are always held internally in the
organizer's current time zone. By contrast, the AppointmentItem object's StartTime and EndTime
properties are always held internally in UTC (Coordinated Universal Time, also known as GMT).
However, all these properties are converted to the local messaging user's current time zone whenever
they are displayed or read programmatically.

Setting the StartTime property causes CDO to force certain other recurrence pattern properties into
conformance. EndTime is recalculated from StartTime and Duration.

Changes you make to properties on a RecurrencePattern object take effect when you call the
underlying appointment's Send or Update method.

Session Object
The Session object contains session-wide settings and options. It also contains properties that return
top-level objects, such as CurrentUser.

Quick Info
Specified in type library: OLEMSG32.DLL
First available in: CDO Library version 1.0.a
Parent objects: (none)
Child objects: AddressLists collection

Folder (Inbox or Outbox)
InfoStores collection

Default property: Name

Properties

Name

Available
in version

Type

Access

AddressLists 1.1 AddressList object or
AddressLists collection
object

Read-only

Application 1.0.a String Read-only
Class 1.0.a Long Read-only
CurrentUser 1.0.a AddressEntry object Read-only

Inbox 1.0.a Folder object Read-only
InfoStores 1.0.a InfoStores collection

object
Read-only

MAPIOBJECT 1.0.a IUnknown object Read/write
(Note: Not
available
to Visual
Basic
application
s)

Name 1.0.a String Read-only
OperatingSystem 1.0.a String Read-only
Outbox 1.0.a Folder object Read-only
OutOfOffice 1.1 Boolean Read/write
OutOfOfficeText 1.1 String Read/write
Parent 1.0.a Object; set to Nothing Read-only
Session 1.0.a Object; set to Nothing Read-only
Version 1.0.a String Read-only

Methods

Name

Available
in version

Parameters

AddressBook 1.0.a (optional) recipients as Object,

(optional) title as String,
(optional) oneAddress as Boolean,
(optional) forceResolution as
Boolean,
(optional) recipLists as Long,
(optional) toLabel as String,
(optional) ccLabel as String,
(optional) bccLabel as String,
(optional) parentWindow as Long

CompareIDs 1.1 ID1 as String,
ID2 as String

CreateConversationI
ndex

1.1 (optional) ParentIndex as String

DeliverNow 1.1 (none)
GetAddressEntry 1.0.a entryID as String
GetAddressList 1.2 ObjectType as Long
GetDefaultFolder 1.2 ObjectType as Long
GetFolder 1.0.a folderID as String,

(optional) storeID as String

GetInfoStore 1.0.a storeID as String
GetMessage 1.0.a messageID as String,

(optional) storeID as String
GetOption 1.2 OptType as String

Logoff 1.0.a (none)
Logon 1.0.a (optional) profileName as String,

(optional) profilePassword as
String,
(optional) showDialog as Boolean,
(optional) newSession as Boolean,
(optional) parentWindow as Long,
(optional) NoMail as Boolean,
(optional) ProfileInfo as String

SetLocaleIDs 1.1 LocaleID as Long,
CodePageID as Long

SetOption 1.2 OptType as String,
OptValue as Variant

Remarks
A Session object is considered a top-level object, meaning it can be created directly from a Microsoft®
Visual Basic® program. In the CDO for Exchange Library it has a ProgID of MAPI.Session. This code
fragment creates a Session object through early binding:

Dim objSession As MAPI.Session
Set objSession = CreateObject ("MAPI.Session")
objSession.Logon

This code fragment creates a Session object through late binding:

Dim objSession As Object
Set objSession = CreateObject ("MAPI.Session")
objSession.Logon

Generally, early binding is preferable, because it enforces type checking and generates more efficient
code. Note that you specify the full ProgID “MAPI.Session” instead of just “Session” in order to
distinguish a MAPI session from other types of sessions available to a Visual Basic program through
other object libraries.

In both cases, after you create a new Session object, you use the Logon method to initiate a session
with MAPI. No other activities with CDO are permitted prior to a successful logon. The only exception
to this rule is the Session object’s SetLocaleIDs method.

AddressBook Method (Session Object)   

The AddressBook method displays a modal dialog box that allows the user to select entries from the
address book. The selections are returned in a Recipients collection object.

Syntax
Set objRecipients = objSession.AddressBook([recipients, title, oneAddress, forceResolution,
recipLists, toLabel, ccLabel, bccLabel, parentWindow])

objRecipients
On successful return, the Recipients collection object. When the user does not select any names
from the dialog box, AddressBook returns Nothing.

objSession
Required. The Session object.

recipients
Optional. Object. A Recipients collection object that provides initial values for the recipient list boxes
in the address book dialog box. During the dialog, the user can select recipients from this collection
and add other recipients.

title
Optional. String. The title or caption of the address book dialog box. The default value is an empty
string.

oneAddress
Optional. Boolean. Allows the user to enter or select only one address entry at a time. The default
value is False.

forceResolution
Optional. Boolean. If True, attempts to resolve all names before closing the address book. Prompts
the user to resolve any ambiguous names. The default value is True.

recipLists
Optional. Long. The number of recipient list boxes to display in the address book dialog box:
recipLists
setting

Action

0 Displays no list boxes. The user can interact with the
address book dialog box but no recipients are
returned by this method.

1 Displays one list box for CdoTo recipients (default).
2 Displays two list boxes for CdoTo and CdoCc

recipients.
3 Displays three list boxes for CdoTo, CdoCc, and

CdoBcc recipients.

toLabel
Optional. String. The caption for the button associated with the first recipient list box. Ignored if
recipLists is less than 1. If omitted, the default value “To:” is displayed.

ccLabel
Optional. String. The caption for the button associated with the second recipient list box. Ignored if
recipLists is less than 2. If omitted, the default value “Cc:” is displayed.

bccLabel
Optional. String. The caption for the button associated with the third recipient list box. Ignored if

recipLists is less than 3. If omitted, the default value “Bcc:” is displayed.
parentWindow

Optional. Long. The parent window handle for the address book dialog box. A value of zero (the
default) specifies that the dialog box should be application-modal.

Remarks
The AddressBook method returns Nothing if the user cancels the dialog box.

The recipients parameter provides initial values for the recipient list boxes. These values expedite the
user’s recipient selection process. A common use of this parameter is to set it to the Recipients
collection of a message to which you are generating a reply.

When you use AddressBook to let the user select recipients for a new message, you use either two or
three different Recipients collections, depending on whether you furnish the recipients parameter. Use
the following procedure:

1. Optionally, prepare an initial Recipients collection to be submitted in the recipients parameter to the
AddressBook method.

2. Call AddressBook, which returns the user-selected Recipients collection.
3. Call the Add method on a Messages collection to create a new message.
4. Copy the Recipients collection returned by AddressBook to the Recipients property of the new

message:
 Set objNewMessage.Recipients = objRecipients
 objNewMessage.Recipients.Resolve ' also updates everything

The oneAddress parameter indicates whether only one address entry at a time can be selected before
being added to the recipients list. If oneAddress is set to False, the user can select multiple recipients
by using the CTRL or SHIFT key during the selection. If oneAddress is set to True, multiple selection is
disabled.

To provide an access key for the recipient list boxes, include an ampersand (&) character in the label
argument string, immediately before the character that serves as the access key. For example, if
toLabel is “Local &Attendees:”, users can press ALT+A to move the focus to the first recipient list box.

The address book dialog box is always modal, meaning the parent window is disabled while the dialog
box is active. If the parentWindow parameter is set to zero or is not set, all windows belonging to the
application are disabled while the dialog box is active. If the parentWindow parameter is supplied but is
not valid, the call returns CdoE_INVALID_PARAMETER.

The following methods can invoke dialog boxes:

· Details method (AddressEntry object)
· Options and Send methods (AppointmentItem, MeetingItem, and Message objects)
· Resolve method (Recipient object)
· Resolve method (Recipients collection)
· AddressBook and Logon methods (Session object)

However, if your application is running as a Microsoft® Windows NT® service, for example from Active
Server Pages (ASP) script on a Microsoft® Internet Information Server (IIS), no user interface is
allowed.

For more information on Windows NT services, see the Win32® Web page Using MAPI from a
Windows NT Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm. For more information
on running as a service, see "Windows NT Service Client Applications" in the MAPI Programmer's
Reference.

Example
This code fragment displays an address book dialog box labeled “Select Attendees” with three recipient
lists:

If objSession Is Nothing Then
 MsgBox "Must first create MAPI session and log on"
 Exit Function
End If
Set objRecipColl = objSession.AddressBook(_
 Title:="Select Attendees", _
 forceResolution:=True, _
 recipLists:=3, _
 toLabel:="&Very Important People", _ ' on button
 ccLabel:="&Fairly Important People", _
 bccLabel:="&Secret Important People")
' "recipients:=" parameter not used in preceding call
MsgBox "Name of first recipient = " & objRecipColl.Item(1).Name
' could be objRecipColl(1) since Item and Name are default properties
Exit Function

AddressLists Property (Session Object)   

The AddressLists property returns a single AddressList object or an AddressLists collection object.
Read-only.

Syntax
Set objAddrListsColl = objSession.AddressLists

Set objOneAddrList = objSession.AddressLists(index)

Set objOneAddrList = objSession.AddressLists(name)

objAddrListsColl
Object. An AddressLists collection object.

objSession
Object. The Session object.

objOneAddrList
Object. A single AddressList object.

index
Long. Specifies the number of the address list within the AddressLists collection. Ranges from 1 to
the value specified by the AddressLists collection’s Count property.

name
String. The value of the Name property of the AddressList object to be selected.

Data Type
Object (AddressList or AddressLists collection)

Remarks
The AddressLists collection represents the root of the MAPI address book hierarchy for the current
session. A particular AddressList object represents one of the available address books. The type of
access you obtain depends on the access granted to you by each individual address book provider.

Although the AddressLists property itself is read-only, the collection it returns can be accessed in the
normal manner, and the properties on its member AddressList objects retain their respective read/write
or read-only accessibility.

CompareIDs Method (Session Object)   

The CompareIDs method determines whether two CDO Library objects are the same object.

Syntax
objSession.CompareIDs(ID1, ID2)

objSession
Required. The Session object.

ID1
Required. String. The unique identifier of the first object to be compared.

ID2
Required. String. The unique identifier of the second object to be compared.

Remarks
The CompareIDs method compares the identifiers of two arbitrary CDO Library objects and returns
True if they are the same object. Two objects are considered to be the same if and only if they are
instantiations of the same physical (persistent) object in the underlying messaging system. Two objects
with the same value are still considered different if they do not instantiate the same physical object, for
example if one is a copy of the other. In such a case CompareIDs returns False.

MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another. However, MAPI does
not require identifier values to be binary comparable. Accordingly, two identifier values can be different,
yet refer to the same object. For more information on entry identifiers, see the MAPI Programmer’s
Reference.

The CompareIDs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. Several CDO Library objects also provide the IsSameAs method for a
comparison of two objects of that particular type.

CreateConversationIndex Method
(Session Object)   

The CreateConversationIndex method creates or updates an index for a conversation thread.

Syntax
newIndex = objSession.CreateConversationIndex(ParentIndex)

newIndex
String. The conversation index to be assigned to the first or next message in the thread.

objSession
Required. The Session object.

ParentIndex
Optional. String. The conversation index of a received message for which a reply is being generated.

Remarks
The CreateConversationIndex method takes the current value of a conversation index and returns a
new value suitable for an outgoing message. If the message to be sent represents the beginning of a
new thread, there is no current index, and the ParentIndex parameter is not passed in. If the outgoing
message is a reply to a received message, the ConversationIndex property of the received message is
passed in as the ParentIndex parameter.

The CreateConversationIndex method ultimately calls the MAPI ScCreateConversationIndex
function.

Example
This code fragment responds to the first message in the Inbox:

Dim objInMsgColl As Messages ' messages in Inbox
Dim objRecMsg As Message ' received message
Dim objNewMsg As Message ' outgoing reply message
Dim objRcpColl As Recipients ' recipients for outgoing message
Dim strSenderID As String ' unique ID of original sender
Dim strCnvIndx As String ' conversation index

If objSession Is Nothing Then
 MsgBox "Must first create MAPI session and log on"
 Exit Function
End If
Set objInMsgColl = objSession.Inbox.Messages
' ... error handling ...
If objInMsgColl Is Nothing Then
 MsgBox "Could not successfully access Inbox messages"
 Exit Function
End If
Set objRecMsg = objInMsgColl.GetFirst()
If objRecMsg Is Nothing Then
 MsgBox "No messages in Inbox"
 Exit Function
End If
' make new conversation index from old
strCnvIndx = objSession.CreateConversationIndex _
 (objRecMsg.ConversationIndex)

strSenderID = objRecMsg.Sender.ID ' save sender’s unique ID
Set objNewMsg = objSession.Outbox.Messages.Add ' generate reply
' ... error handling ...
Set objRcpColl = objNewMsg.Recipients
' ... error handling ...
objRcpColl.Add entryID:=strSenderID ' add sender as recipient
' ... error handling ...
With objNewMsg
 .ConversationIndex = strCnvIndx
 .ConversationTopic = objRecMsg.ConversationTopic
 .Subject = "RE: " & objRecMsg.Subject
 .Text = "Please consider this a reply to your message."
 .Update' save everything in the MAPI system
 .Send showDialog:=False
End With

CurrentUser Property (Session Object)   

The CurrentUser property returns the active user as an AddressEntry object. Read-only.

Syntax
objSession.CurrentUser

Data Type
Object (AddressEntry)

Remarks
The CurrentUser property returns Nothing when no user is logged on.

Example
This code fragment checks for logon, then displays the full messaging address of the current user:

 If objSession Is Nothing Then
 MsgBox ("Must log on first")
 Exit Function
 End If
 Set objAddrEntry = objSession.CurrentUser
 If objAddrEntry Is Nothing Then
 MsgBox "Could not set the address entry object"
 Exit Function
 Else
 MsgBox "Full address = " & objAddrEntry.Type & ":" _
 & objAddrEntry.Address
 End If

DeliverNow Method (Session Object)   

The DeliverNow method requests immediate delivery of all undelivered messages submitted in the
current session.

Syntax
objSession.DeliverNow()

Remarks
The DeliverNow method ultimately calls the MAPI spooler’s IMAPIStatus::FlushQueues method to
request that all messages in all inbound and outbound queues be received or delivered immediately.
FlushQueues is invoked synchronously, and performance degradation is possible during the
processing of this request.

GetAddressEntry Method (Session
Object)   

The GetAddressEntry method returns an AddressEntry object.

Syntax
Set objAddressEntry = objSession.GetAddressEntry(entryID)

objAddressEntry
On successful return, represents the AddressEntry object specified by entryID.

objSession
Required. The Session object.

entryID
Required. String. Specifies the unique identifier of the address entry.

Remarks
For more information, see Using Addresses.

Example
This code fragment displays the name of a user from a MAPI address list:

' from the function Session_GetAddressEntry
 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If "" = strAddressEntryID Then
 MsgBox ("Must first set string variable to address entry ID")
 Exit Function
 End If
 Set objAddrEntry = objSession.GetAddressEntry(strAddressEntryID)
 MsgBox "Full address = " & objAddrEntry.Type & ":" _
 & objAddrEntry.Address

GetAddressList Method (Session Object)

The GetAddressList method returns an AddressList object from a directory service.

Syntax
Set objAddressList = objSession.GetAddressList(ObjectType)

objAddressList
On successful return, represents the default AddressList object specified by ObjectType.

objSession
Required. The Session object.

ObjectType
Required. Long. Specifies the address list to be retrieved.

Remarks
The GetAddressList method returns the default address list of the specified type for the default
directory service of the current session.

The ObjectType parameter can have exactly one of the following values:

ObjectType setting Value Default Address list retrieved
CdoAddressListGAL 0 Global address list
CdoAddressListPAB 1 Personal address book

GetDefaultFolder Method (Session
Object)   

The GetDefaultFolder method returns a Folder object from a message store.

Syntax
Set objFolder = objSession.GetDefaultFolder(ObjectType)

objFolder
On successful return, represents the default Folder object specified by ObjectType.

objSession
Required. The Session object.

ObjectType
Required. Long. Specifies the default folder to be retrieved.

Remarks
The GetDefaultFolder method returns the default folder of the specified type for the default message
store of the current session.

The ObjectType parameter can have exactly one of the following values:

ObjectType setting Value Default folder retrieved
CdoDefaultFolderCalendar 0 Calendar
CdoDefaultFolderContacts 5 Contacts
CdoDefaultFolderDeletedItems 4 Deleted Items
CdoDefaultFolderInbox 1 Inbox
CdoDefaultFolderJournal 6 Journal
CdoDefaultFolderNotes 7 Notes
CdoDefaultFolderOutbox 2 Outbox
CdoDefaultFolderSentItems 3 Sent Items
CdoDefaultFolderTasks 8 Tasks

The Contacts, Journal, Notes, and Tasks folders are specific to Microsoft® Outlook™. If your application
is running in a purely Microsoft® Schedule+ environment, an attempt to access any of these four
folders returns CdoE_NOT_FOUND.

GetFolder Method (Session Object)   

The GetFolder method returns a Folder object from a MAPI message store.

Syntax
Set objFolder = objSession.GetFolder(folderID [, storeID])

objFolder
On successful return, contains the Folder object with the specified identifier. When the folder does
not exist, GetFolder returns Nothing.

objSession
Required. The Session object.

folderID
Required. String that specifies the unique identifier of the folder. When you provide an empty string,
some providers return the root folder.

storeID
Optional. String that specifies the unique identifier of the message store containing the folder. The
default value is an empty string, which corresponds to the default message store.

Remarks
The GetFolder method allows you to obtain any Folder object for which you know the identifier, that is,
the folder’s ID property.

For some message stores, you can obtain the store’s root folder by supplying an empty string as the
value for folderID. If the message store does not support returning its root folder, the call returns the
error value CdoE_NOT_FOUND.

Note that the store’s root folder differs from the IPM root folder. The store’s root folder is the parent of
the root folder of the the IPM subtree. The IPM subtree contains all interpersonal messages in a
hierarchy of folders. Interpersonal messages are those whose message class starts with IPM, such as
IPM.Note.

You can obtain the IPM root folder with the InfoStore object’s RootFolder property. You can obtain the
store’s root folder through the IPM root folder’s FolderID property.

If your application is running as a Microsoft® Windows NT® service, you cannot access the Microsoft
Exchange Public Folders through the normal hierarchy because of a notification conflict. You must use
the InfoStore object’s Fields property to obtain the Microsoft Exchange property
PR_IPM_PUBLIC_FOLDERS_ENTRYID, property tag &H66310102. This represents the top-level
public folder and allows you to access all other public folders through its Folders property. For more
information on Windows NT services, see the Win32® Web page Using MAPI from a Windows NT
Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm.

Example
This code fragment uses the GetFolder method to obtain a specific folder from a MAPI message store:

' from the function Session_GetFolder
' requires a global variable that contains the folder ID
' uses a global variable that contains the message store ID if present
 If strFolderID = "" Then
 MsgBox ("Must first set string variable to folder ID")
 Exit Function
 End If

 If strFolderStoreID = "" Then ' maybe get root folder
 Set objFolder = objSession.GetFolder(strFolderID)
 Else
 Set objFolder = objSession.GetFolder(folderID:=strFolderID, _
 storeID:=strFolderStoreID)
 End If
 If objFolder Is Nothing Then
 Set objMessages = Nothing
 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 Else
 Set objMessages = objFolder.Messages
 MsgBox "Folder set to " & objFolder.Name
 End If

GetInfoStore Method (Session Object)   

The GetInfoStore method returns an InfoStore object that can be used to navigate through both public
folders and the user’s personal folders.

Syntax
Set objInfoStore = objSession.GetInfoStore(storeID)

objInfoStore
On successful return, contains the InfoStore object with the specified identifier. When the InfoStore
object does not exist, GetInfoStore returns Nothing.

objSession
Required. The Session object.

storeID
Required. String. Specifies the unique identifier of the InfoStore object to retrieve.

Remarks
The GetInfoStore method allows you to obtain any message store for which you know the ID property.
Within the message store you can then obtain any child Folder object for which you know the ID
property.

Example
This code fragment uses the GetInfoStore method to obtain a specific message store:

' from the function Session_GetInfoStore
' requires a global variable that contains the InfoStore ID
Dim strInfoStoreID as String ' ID as hex string
Dim objInfoStore As InfoStore
 If strInfoStoreID = "" Then
 MsgBox ("Must first set string variable to InfoStore ID")
 Exit Function
 End If
 Set objInfoStore = objSession.GetInfoStore(_
 storeID:=strInfoStoreID)
 ' error handling ...
 MsgBox "InfoStore set to " & objInfoStore.Name

GetMessage Method (Session Object)   

The GetMessage method returns an AppointmentItem, MeetingItem, or Message object from a MAPI
message store.

Syntax
Set objMessage = objSession.GetMessage(messageID [, storeID])

objMessage
On successful return, contains the Message object with the specified identifier. When the specified
messageID does not exist, GetMessage returns Nothing.

objSession
Required. The Session object.

messageID
Required. String. Specifies the unique identifier of the appointment, meeting, or message.

storeID
Optional. String. Specifies the unique identifier of the message store. The default value is an empty
string, which corresponds to the default message store.

Remarks
The GetMessage method allows you to obtain directly any AppointmentItem, MeetingItem, or Message
object for which you know the ID property. You do not have to find and open the folder containing the
message or the InfoStore containing the folder.

Example
This code fragment displays the subject of a message from a MAPI message store:

' fragment from Session_GetMessage
' requires the parameter strMessageID;
' also uses strMessageStoreID if it is defined
If strMessageID = "" Then
 MsgBox ("Must first set string variable to message ID")
 Exit Function
End If
If strMessageStoreID = "" Then ' not present
 Set objOneMsg = objSession.GetMessage(strMessageID)
Else
 Set objOneMsg = objSession.GetMessage(messageID:=strMessageID, _
 storeID:=strMessageStoreID)
End If

GetOption Method (Session Object)   

The GetOption method returns a calendar rendering option for the session.

Syntax
objSession.GetOption(OptType)

objSession
Required. The Session object.

OptType
Required. String. Selects the option by name.

Remarks
The calendar rendering options are set with the SetOption method. A CDO Rendering application can
use their values to set the corresponding properties of a ContainerRenderer object when the rendering
application logs on to the session. The container renderer properties are used by the
RenderAppointments, RenderDateNavigator, and RenderEvents methods of a CalendarView
object to render calendar data. The CDO Rendering ObjectRenderer object can also use the value of
the "TimeZone" option.

Note that the rendering objects do not automatically assimilate the values of the Session object's
calendar rendering options. You must transfer these values yourself between the Session object and
the appropriate properties of the rendering object you are using.

GetOption and SetOption return CdoE_CALL_FAILED if you call them while you are not logged on to
the session. Following a successful logon, GetOption returns the option settings that were stored in
the messaging user's Inbox with SetOption. If no options have ever been stored for the messaging
user, the default settings are returned.

The "CalendarStore" option can be "Outlook" or "SchedulePlus", depending on the store underlying the
messaging user's calendar folder. This option is useful if you have both types of calendar store and
need to determine which one is active. It defaults to "Outlook" if you have neither type or both types.
Calendar store information is irrelevant to the container renderer, so it has no corresponding property.

The "WorkingDays" option also has no corresponding property. It is a bitmask representing the days of
the week that are considered to be part of the work week. "WorkingDays" contains a logical OR of one
or more of the constants used in the RecurrencePattern object's DayOfWeekMask property.

The calendar rendering options that can be selected are as follows:

OptType string value

Data
type

Corresponding
ContainerRenderer
property

Default
value

"BusinessDayEndTime" Variant
(vbDate
format)

BusinessDayEndTim
e

5:00 PM
(17:00)

"BusinessDayStartTime" Variant
(vbDate
format)

BusinessDayStartTi
me

9:00 AM
(09:00)

"CalendarStore" String (none) Current
calendar
store or
"Outlook"

"FirstDayOfWeek" Long FirstDayOfWeek 7 (Sunday)
"Is24HourClock" Boolean Is24HourClock False
"TimeZone" Long TimeZone Current

zone on
Web server

"WorkingDays" Long (none) 62
(CdoMond
ay | … |
CdoFriday
)

Note that the "FirstDayOfWeek" option and the FirstDayOfWeek property are compatible with each
other in using an enumeration starting with 1 for Monday and ending with 7 for Sunday, but they are not
compatible with the DayOfWeekMask property of the RecurrencePattern object, which uses the mask
constants CdoSunday through CdoSaturday. The "WorkingDays" option, however, is compatible with
the mask constants.

Inbox Property (Session Object)   

The Inbox property returns a Folder object representing the current user’s Inbox folder. Read-only.

Syntax
objSession.Inbox

Data Type
Object (Folder)

Remarks
The Inbox property returns Nothing if the current user does not have an Inbox folder.

In addition to the general ability to navigate through the formal collection and object hierarchy, CDO
supports properties that allow your application to directly access the most common Folder objects:

· The InfoStore object’s RootFolder property for the IPM subtree root folder
· The Session object’s Inbox property for the Inbox folder
· The Session object’s Outbox property for the Outbox folder

Example
This code fragment uses the Session object’s Inbox property to initialize a Folder object:

' from the function Session_Inbox
 ' make sure the Session object is valid ...
 Set objFolder = objSession.Inbox
 If objFolder Is Nothing Then
 MsgBox "Failed to open Inbox"
 Exit Function
 End If
 MsgBox "Inbox folder name = " & objFolder.Name
 Set objMessages = objFolder.Messages
 If objMessages Is Nothing Then
 MsgBox "Failed to open folder's Messages collection"
 Exit Function
 End If

InfoStores Property (Session Object)   

The InfoStores property returns an InfoStores collection available to this session. Read-only.

Syntax
objSession.InfoStores

Data Type
Object (InfoStores collection)

Remarks
The InfoStores property returns a collection of available message stores. Each InfoStore object in the
collection represents an individual message store and provides access to its folder hierarchy.

You can access public folders through the InfoStores collection. The public folders are maintained in
their own InfoStore object, which is distinct from the InfoStore object that contains the user’s personal
messages.

When you know the unique identifier for a particular InfoStore object, you can obtain it directly with the
Session object’s GetInfoStore method.

Although the InfoStores property itself is read-only, the collection it returns can be accessed in the
normal manner, and the properties on its member InfoStore objects retain their respective read/write or
read-only accessibility.

Example
' from the functions Session_InfoStores and InfoStores_FirstItem
Dim objSession as MAPI.Session
Dim objInfoStoresColl as InfoStores
Dim objInfoStore as InfoStore
' assume valid Session object
Set objInfoStoresColl = objSession.InfoStores
If objInfoStoresColl Is Nothing Then
 MsgBox "Could not set InfoStores collection"
 Exit Function
End If
If 0 = objInfoStoresColl.Count Then
 MsgBox "No InfoStores in the collection"
 Exit Function
End If
collIndex = 1
Set objInfoStore = objInfoStoresColl.Item(collIndex)
' could be objInfoStoresColl(collIndex) since Item is default property
If objInfoStore Is Nothing Then
 MsgBox "Cannot get first InfoStore object"
 Exit Function
Else
 MsgBox "Selected InfoStores item " & collIndex
End If
If "" = objInfoStore.Name Then
 MsgBox "Active InfoStore has no name; ID = " & objInfoStore.Id
Else
 MsgBox "Active InfoStore has name: " & objInfoStore.Name

End If

Logoff Method (Session Object)   

The Logoff method logs off from the MAPI system.

Syntax
objSession.Logoff()

Remarks
The Logoff method terminates a MAPI session initiated by the Logon method. You can log on to the
same Session object again. Attempted access to the Session object before logon results in a return of
CdoE_NOT_INITIALIZED.

Example
This code fragment logs off from the MAPI system:

' from the function Session_Logoff
If Not objSession Is Nothing Then
 objSession.Logoff
 MsgBox "Logged off; reset global variables"
Else
 MsgBox "No active session"
End If

Logon Method (Session Object)   

The Logon method logs on to the MAPI system.

Syntax
objSession.Logon([profileName, profilePassword, showDialog, newSession, parentWindow, NoMail,
ProfileInfo])

objSession
Required. The Session object.

profileName
Optional. String. Specifies the profile name to use. To prompt the user to select a profile name, omit
profileName and set showDialog to True. The default value is an empty string. The profileName
parameter is ignored if the ProfileInfo parameter is supplied.

profilePassword
Optional. String. Specifies the profile password. To prompt the user to enter a profile password, omit
profilePassword and set showDialog to True. The default value is an empty string.

showDialog
Optional. Boolean. If True, displays a Choose Profile dialog box. The default value is True.

newSession
Optional. Boolean. Determines whether the application opens a new MAPI session or uses the
current shared MAPI session (the default). If a shared MAPI session does not exist, newSession is
ignored and a new session is opened. If a shared MAPI session does exist, this parameter governs
the following actions:
Value Action
True Opens a new MAPI session.
False Uses the current shared MAPI session (default).

parentWindow
Optional. Long. Specifies the parent window handle for the logon dialog box. A value of zero (the
default) specifies that the dialog box should be application-modal. A value of -1 specifies that the
currently active window is to be used as the parent window. The parentWindow parameter is ignored
unless showDialog is True.

NoMail
Optional. Boolean. Determines whether the session should be registered with the MAPI spooler.
This parameter governs the following actions:
Value Action
True The MAPI spooler is not informed of the session’s

existence, and no messages can be sent or received
except through a tightly coupled message store and
transport.

False The session is registered with the MAPI spooler and
can send and receive messages through spooling
(default).

ProfileInfo
Optional. String. Contains the server and mailbox names that Logon should use to create a new
profile for this session. The profile is deleted after logon is completed or terminated. The ProfileInfo
parameter is only used by applications interfacing with Microsoft® Exchange Server. The
profileName parameter is ignored if ProfileInfo is supplied.

Remarks

The user must log on before your application can use any MAPI object, any other CDO Library object,
or even any other method or property of the Session object. An attempt to access any programming
element prior to a successful Logon results in an CdoE_NOT_INITIALIZED error return. The only
exception to this rule is the Session object’s SetLocaleIDs method.

The Choose Profile dialog box is always modal, meaning the parent window is disabled while the
dialog box is active. If the parentWindow parameter is set to zero or is not set, all windows belonging to
the application are disabled while the dialog box is active. If the parentWindow parameter is supplied
but is not valid, the call returns CdoE_INVALID_PARAMETER.

If your application cannot obtain the handle for the currently active window, for example if it is running
in VBScript, you can pass -1 in the parentWindow parameter. CDO then retrieves the handle from the
Microsoft Windows® GetActiveWindow function and uses it as the parent window handle.

The common MAPI dialog boxes automatically handle many of the error cases that can be
encountered during logon. When you call Logon and do not supply the optional profile name
parameter, the Choose Profile dialog box appears, asking the user to select a profile. When the
profileName parameter is supplied but is not valid, common dialog boxes indicate the error and prompt
the user to enter a valid name from the Choose Profile dialog box. When no profiles are defined, the
Profile Wizard takes the user through the creation of a new profile.

The ProfileInfo parameter is used to create a temporary profile for the session. CDO generates a
random name for the profile. For an authenticated profile, the format of the string is
    <server name> & vbLf & <mailbox name>
where the server and mailbox names can be unresolved. Note that the mailbox name is not the
messaging user’s display name, but rather the alias or account name used internally by the user’s
organization. For example, “johnd” should be used instead of “John Doe”.

For an anonymous profile, the format is
    <server distinguished name> & vbLf & vbLf & "anon"
where the distinguished name of the server takes the form
    /o=<enterprise>/ou=<site>/cn=Configuration/cn=Servers/cn=<server>
and any text between the vbLf characters is ignored. At least the /cn=<server> entry is required; if it is
not specified in the ProfileInfo parameter, Logon returns CdoE_INVALID_PARAMETER.

If you log on with an anonymous profile, the Name property of the AddressEntry object returned by the
CurrentUser property contains "Unknown default".

If both profileName and ProfileInfo are supplied, profileName is ignored and the random profile name is
used.

The Logon method does not verify the validity of either the server name or the mailbox name in the
ProfileInfo parameter. You can get a successful return even if you specify one or both of these names
incorrectly. In this case the CurrentUser property returns the value “Unknown”. If you log on using
ProfileInfo, you should attempt to open the Inbox folder to verify that you can access the message
store.

If your application calls the Logon method after the user has already successfully logged on to the
same session, CDO generates the error CdoE_LOGON_FAILED. However, you can create multiple
sessions and log on simultaneously each of them.

A session is terminated by the Logoff method.

For more information, see Starting a CDO Session.

The following methods can invoke dialog boxes:

· Details method (AddressEntry object)
· Options and Send methods (AppointmentItem, MeetingItem, and Message objects)
· Resolve method (Recipient object)
· Resolve method (Recipients collection)

· AddressBook and Logon methods (Session object)

However, if your application is running as a Microsoft® Windows NT® service, for example from Active
Server Pages (ASP) script on a Microsoft® Internet Information Server (IIS), no user interface is
allowed.

For more information on Windows NT services, see the Win32® Web page Using MAPI from a
Windows NT Service at http://www.microsoft.com/win32dev/mapi/mapiserv.htm. For more information
on running as a service, see "Windows NT Service Client Applications" in the MAPI Programmer's
Reference.

Example
The first part of this code fragment displays a Choose Profile dialog box that prompts the user to enter
a profile password. The second part supplies the profileName parameter and does not display the
dialog box:

Dim objSession As MAPI.Session
' (part 1) from the function Session_Logon
Set objSession = CreateObject("MAPI.Session")
If Not objSession Is Nothing Then
 objSession.Logon showDialog:=True
End If

' (part 2) from the function Session_Logon_NoDialog
Function Session_Logon_NoDialog()
On Error GoTo error_actmsg
' can set strProfileName, strPassword from a custom form
' adjust these parameters for your configuration
' create a Session object if necessary here ...
If Not objSession Is Nothing Then
 ' configure these parameters for your needs ...
 objSession.Logon profileName:=strProfileName, _
 showDialog:=False
End If
Exit Function

error_actmsg:
If 1273 = Err Then ' VB4.0: If Err.Number = CdoE_LOGON_FAILED Then
 MsgBox "Cannot log on: incorrect profile name or password; " _
 & "change global variable strProfileName in Util_Initialize"
 Exit Function
End If
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next
End Function

MAPIOBJECT Property (Session Object)   

The MAPIOBJECT property returns an IUnknown pointer to the Session object. Not available to
Microsoft® Visual Basic® applications. Read/write.

Syntax
objSession.MAPIOBJECT

Data Type
Variant (vbDataObject format)

Remarks
The MAPIOBJECT property is not available to Visual Basic programs. It is accessible only by C/C++
programs that deal with IUnknown objects. Visual Basic supports the IDispatch interface and not
IUnknown. The MAPIOBJECT property is an IUnknown object that returns an IMAPISession
interface in response to QueryInterface. For more information, see Introduction to Automation and
How Programmable Objects Work. Also see the "COM and ActiveX Object Services" section of the
Microsoft Platform SDK.

Name Property (Session Object)   

The Name property returns the display name of the profile logged on to this session. Read-only.

Syntax
objSession.Name

The Name property is the default property of a Session object, meaning that objSession is syntactically
equivalent to objSession.Name in Microsoft® Visual Basic® code.

Data Type
String

Remarks
To Name property contains the current profile's display name. To obtain the messaging user's display
name, use the Name property of the AddressEntry object returned by the CurrentUser property.

The Name property corresponds to the MAPI property PR_PROFILE_NAME.

Examples
' from the function Session_Name
 If objSession Is Nothing Then
 MsgBox "Must log on first: see Session menu"
 Exit Function
 End If
 MsgBox "Profile name for this session = " & objSession.Name

OperatingSystem Property (Session
Object)   

The OperatingSystem property returns the name and version number of the current operating system.
Read-only.

Syntax
objSession.OperatingSystem

Data Type
String

Remarks
CDO returns strings in the following formats:

Operating system String value
Microsoft Windows for Workgroups Microsoft® Windows(TM) N.k
Microsoft Windows 95 Microsoft® Windows 95(TM) N.k
Microsoft Windows NT Microsoft® Windows NT(TM) N.k

The N.k values are replaced with the actual version numbers. Note that Microsoft® Windows® for
Workgroups version 3.11 returns the string “Microsoft® Windows(TM) 3.10”. This is due to that
operating system rather than to CDO.

The version number returned in the OperatingSystem property is not related to the version number
returned in the Version property.

Example
This code fragment displays the name and version of the operating system:

' from the function Session_OperatingSystem
' assume objSession is a valid Session object
MsgBox "Operating system = " & objSession.OperatingSystem

Outbox Property (Session Object)   

The Outbox property returns a Folder object representing the current user’s Outbox folder. Read-only.

Syntax
objSession.Outbox

Data Type
Object (Folder)

Remarks
The Outbox property returns Nothing if the current user does not have or has not enabled the Outbox
folder.

In addition to the general ability to navigate through the formal collection and object hierarchy, CDO
supports properties that allow your application to directly access the most common Folder objects:

· The InfoStore object’s RootFolder property for the IPM subtree root folder
· The Session object’s Inbox property for the Inbox folder
· The Session object’s Outbox property for the Outbox folder

Example
' from the function Session_Outbox
Dim objFolder As Object
'
 Set objFolder = objSession.Outbox
 If objFolder Is Nothing Then
 MsgBox "Failed to open Outbox"
 Exit Function
 End If
 MsgBox "Outbox folder name = " & objFolder.Name
 Set objMessages = objFolder.Messages

OutOfOffice Property (Session Object)   

The OutOfOffice property indicates whether the user is currently out-of-office (OOF). Read/write.

Syntax
objSession.OutOfOffice

Data Type
Boolean

Remarks
The OutOfOffice property is set to True when the messaging user wishes to be considered out-of-
office and have automatic responses generated to incoming messages. When this property is True,
CDO signals this condition to the Microsoft® Exchange Client, which then replies to incoming e-mail
with the message text contained in the OutOfOfficeText property.

For more information on using OutOfOffice and OutOfOfficeText, see the example in the
OutOfOfficeText property.

OutOfOfficeText Property (Session
Object)   

The OutOfOfficeText property contains the message text for an out-of-office (OOF) response.
Read/write.

Syntax
objSession.OutOfOfficeText

Data Type
String

Remarks
When the OutOfOffice property is set to True, the Microsoft® Exchange Client uses the text in the
OutOfOfficeText property to generate an automatic reply to incoming messages.

Example
This code fragment sets a messaging user to be considered out-of-office and prepares an appropriate
response:

' Set current user to be out-of-office (OOF)
' assume objSession is a valid Session object
 With objSession
 .OutOfOffice = True
 .OutOfOfficeText = "I’m out of town until next Tuesday"
 End With
 MsgBox "Remember to set .OutOfOffice = False on Tuesday!"

SetLocaleIDs Method (Session Object)   

The SetLocaleIDs method sets identifiers that define a messaging user’s locale.

Syntax
objSession.SetLocaleIDs(LocaleID, CodePageID)

objSession
Required. This Session object.

LocaleID
Required. Long. The locale identifier (LCID) to be used for this messaging user.

CodePageID
Required. Long. The code page identifier to be used for this messaging user.

Remarks
A locale is the set of features of a messaging user’s environment that are dependent on language,
country, culture, and conventions. These features include the character selection, the collating
sequence and sort order, and the date, time, and currency formats. The SetLocaleIDs method sets
identifiers that determine the behavior of locale-sensitive operations.

A locale identifier (LCID) is a 32-bit value containing a 16-bit language identifier and a 4-bit sort
identifier. The Microsoft® Windows NT® macros SORTIDFROMLCID and LANGIDFROMLCID can be
used to extract these identifiers from the LCID.

A code page identifier is a long integer specifying the ordered character set to use when displaying
text. Information about a code page can be obtained from the Windows NT GetCPInfo function.

The CodePage property of the CDO Rendering ContainerRenderer, ObjectRenderer, or
RenderingApplication object can be used to change the character selection at a later time.

If SetLocaleIDs is to be called, it must be called before the Session object’s Logon method is called.
This allows the messaging user’s profile to be set for the appropriate locale. A call to SetLocaleIDs
following logon returns CdoE_CALL_FAILED.

Note that the SetLocaleIDs method is the sole exception to the rule that a call to a session’s Logon
method must precede any other access to that session.

SetLocaleIDs tests the validity of the code page specified by the CodePageID parameter before
actually setting the locale identifiers. If the code page is not valid, CdoE_INVALID_ARGUMENT is
returned.

The LocaleID and CodePageID parameters correspond to the Microsoft Exchange properties
PR_LOCALE_ID and PR_CODE_PAGE_ID.

SetOption Method (Session Object)   

The SetOption method sets a calendar rendering option for the session.

Syntax
objSession.SetOption(OptType, OptValue)

objSession
Required. The Session object.

OptType
Required. String. Selects the option by name.

OptValue
Required. String. Contains the value to set the option to.

Remarks
The calendar rendering options can be inspected with the GetOption method. A CDO Rendering
application can use their values to set the corresponding properties of a ContainerRenderer object
when the rendering application logs on to the session. The container renderer properties are used by
the RenderAppointments, RenderDateNavigator, and RenderEvents methods of a CalendarView
object to render calendar data. The CDO Rendering ObjectRenderer object can also use the value of
the "TimeZone" option.

Note that the rendering objects do not automatically assimilate the values of the Session object's
calendar rendering options. You must transfer these values yourself between the Session object and
the appropriate properties of the rendering object you are using.

GetOption and SetOption return CdoE_CALL_FAILED if you call them while you are not logged on to
the session. Following a successful logon, GetOption returns the option settings that were stored in
the messaging user's Inbox with SetOption. If no options have ever been stored for the messaging
user, the default settings are returned.

The "CalendarStore" option can be "Outlook" or "SchedulePlus", depending on the store underlying the
messaging user's calendar folder. This option is useful if you have both types of calendar store and
need to select between them. It defaults to "Outlook" if you have neither type or both types. Calendar
store information is irrelevant to the container renderer, so it has no corresponding property.

The "WorkingDays" option also has no corresponding property. It is a bitmask representing the days of
the week that are considered to be part of the work week. "WorkingDays" contains a logical OR of one
or more of the constants used in the RecurrencePattern object's DayOfWeekMask property.

The calendar rendering options that can be selected are as follows:

OptType string value

Data
type

Corresponding
ContainerRenderer
property

Default
value

"BusinessDayEndTime" Variant
(vbDate
format)

BusinessDayEndTim
e

5:00 PM
(17:00)

"BusinessDayStartTime" Variant
(vbDate
format)

BusinessDayStartTi
me

9:00 AM
(09:00)

"CalendarStore" String (none) Current
calendar

store or
"Outlook"

"FirstDayOfWeek" Long FirstDayOfWeek 7 (Sunday)
"Is24HourClock" Boolean Is24HourClock False
"TimeZone" Long TimeZone Current

zone on
Web server

"WorkingDays" Long (none) 62
(CdoMond
ay | … |
CdoFriday
)

Note that the "FirstDayOfWeek" option and the FirstDayOfWeek property are compatible with each
other in using an enumeration starting with 1 for Monday and ending with 7 for Sunday, but they are not
compatible with the DayOfWeekMask property of the RecurrencePattern object, which uses the mask
constants CdoSunday through CdoSaturday. The "WorkingDays" option, however, is compatible with
the mask constants.

Version Property (Session Object)   

The Version property returns the version number of CDO as a string, for example “1.2”. Read-only.

Syntax
objSession.Version

Data Type
String

Remarks
The version number for CDO is represented by a string in the form N.k, where N represents a major
version number and k represents a minor version number.

The version number returned in the Version property is not related to the version number returned in
the OperatingSystem property.

Example
' see the function Session_Version
Dim objSession As Object ' or Dim objSession As MAPI.Session
Set objSession = CreateObject("MAPI.Session")
' error handling here ...
MsgBox "Welcome to CDO version " _
 & objSession.Version

Overview of CDO Rendering
This section is an introduction to the Microsoft® Collaboration Data Objects (CDO) Rendering Library. It
describes rendering and how it is accomplished using the objects in the library. It also provides a short
description of Automation and a conceptual overview of the CDO Rendering Library.

The CDO Rendering Library is associated with the CDO Library, and the two are interdependent. CDO
Rendering entails displaying CDO objects and collections over the World Wide Web. For more
information on CDO, see the CDO Library Overview.

The World Wide Web and HTML
The World Wide Web, or Web, is a distributed information retrieval system that employs multiple
protocols on the Internet. The Web operates on a client/server model, where the client is a Web
browser and the server is a Web server. When a browser requests a resource from a server, it
identifies that resource by means of a formalized address known as a Uniform Resource Locator
(URL). The format of a URL is:

 protocol://server.network.domain/path/resource

This sample URL uses HTTP (Hypertext Transfer Protocol) to specify the SDK Start Page of the
Microsoft® Developer Network Online within Microsoft’s home page on the Web:

 http://www.microsoft.com/msdn/sdk/default.htm

A Web server can respond to an HTTP URL with a Hypertext Markup Language (HTML) document.
The hypertext in this document is interpreted by the browser to generate an interactive display on the
user’s screen. An HTML document is commonly stored in an .HTML or .HTM file.

A Web server can also respond to an HTTP URL with an Active Server Pages (ASP) document, which
contains hypertext and ASP script, and is stored in an .ASP file. The script is processed by Microsoft®
Internet Information Server (IIS), which generates normal HTML output and sends it to the browser. IIS
version 3.0 or later is required for proper handling of .ASP files.

The CDO Rendering Library exposes a set of objects that can be used by IIS to render CDO objects
and properties into HTML output. The CDO Rendering objects are described in the remainder of this
section. The following table lists these objects in alphabetic order and gives the purpose of each one.

Object Purpose
CalendarView Specify tabular rendering for a calendar object.
Column Specify rendering for one property in a table view.
Columns collection Provide rendering for every renderable property in

a table view.
ContainerRenderer Render a container object.
Format Specify rendering for one property.
Formats collection Provide rendering for every renderable property of

an object.
ObjectRenderer Render selected properties of a CDO object.
Pattern Specify rendering for certain values of a property.
Patterns collection Provide rendering for all values of a property.
RenderingApplication Create rendering objects.
TableView Specify tabular rendering for a container object.
Views collection Provide a selection of views for rendering a

container object.

HTML Rendering
The purpose of CDO Rendering is to generate displayable output from CDO objects and properties.
The output is sent in Hypertext Markup Language (HTML) to a Web browser and is generated from
objects and properties referenced in an .ASP file invoked by the browser. This process is known as
HTML rendering.

An .ASP file is a specialized HTML file containing hypertext, client-side script, and Active Server Pages
(ASP) script for a Web page. The script can instantiate objects, call their methods, manipulate their
properties, and produce results relating to the Web page. Client-side script is decoded and run by the
browser itself. ASP script is decoded and run by Microsoft® Internet Information Server (IIS) to supply
Web pages to the browser.

Both client-side and ASP script can be written in any scripting language, such as Microsoft® Visual
Basic® Scripting Edition (VBScript), JScript™, or JavaScript. Script can be inserted anywhere in an
HTML document, that is, anywhere between the <HTML> and </HTML> tags.

Client-side script is delineated by the <SCRIPT> and </SCRIPT> tags. The scripting language’s
compiler or interpreter is invoked by the browser. Client-side script typically responds to input from the
browser’s user. For example, it can create and send an e-mail message when the user clicks a button.
For more information on client-side script, see Web Page Support.

ASP script can be delineated by either the <% and %> tags or the <SCRIPT RUNAT=SERVER> and
</SCRIPT> tags. The compiler or interpreter is invoked by an IIS component before the document is
sent to the browser. ASP script uses the CDO Rendering Library to perform HTML rendering. It can, for
example, prepare a displayable rendition of a folder. ASP script is not sent to the browser, but instead
is used to generate hypertext that is sent in its place.

ASP script can be embedded within client-side script. This is useful, for example, when an exception
condition occurring at the server needs to be displayed at the browser. You can only use one level of
embedding, and you must delineate your embedded ASP script with the <% and %> tags.

If the browser invokes a Uniform Resource Locator (URL) specifying an .HTM file, IIS sends the file to
the browser without modification, just as any Web server does. If, however, the URL specifies an .ASP
file, IIS first searches it for any ASP script. If there is none, the file is treated as a normal .HTM file and
sent directly to the browser. If IIS does find ASP script, it calls the appropriate compiler or interpreter to
execute the script and generate HTML hypertext. IIS then replaces the script with the hypertext and
sends the result to the browser as if it were an .HTM file. Note that when ASP script is executed the
server does not retain any persistent file containing the exact stream sent to the browser.

Writing a Rendering Application
To render CDO objects and properties into HTML hypertext, you instantiate a rendering object such as
a ContainerRenderer or ObjectRenderer object. These are top-level objects, which can be created
directly by your code without deriving them from any other object. For more information, see CDO
Rendering Objects.

The recommended approach, however, is to begin by instantiating a RenderingApplication object, from
which you can create a family of related rendering objects. The RenderingApplication object allows you
to set options which are inherited by every rendering object you create from it. You can choose the
verbosity of event logging in each of several categories using the LoggingLevel property, set the code
page for character representation with the CodePage property, and prepare specific rendering
information through the Formats property. These options act as global presettings for your entire
rendering application. The individual rendering objects can change their inherited copies of the code
page and the formats if appropriate.

The next step is to use the CreateRenderer method to instantiate a specific rendering object, such as
a ContainerRenderer or ObjectRenderer object. The rendering object is used to generate HTML
hypertext from a CDO object. You create a container renderer if you want to render the contents of a
container object, such as an address book container or a folder. You create an object renderer if you
only want to render one or more selected properties of an object, such as when a message was sent
and received.

After you create the rendering object, you set its DataSource property to specify the object or
collection you want to render. The container renderer’s DataSource property accepts an
AddressEntries, Folders, Messages, or Recipients collection. The object renderer’s DataSource
property accepts an AddressEntry, AppointmentItem, Attachment, Folder, MeetingItem, Message, or
Recipient object.

Every rendering object has a child Formats collection, which is originally inherited from the parent
RenderingApplication object but can be modified as needed. You can add a new Format object with the
collection’s Add method and delete a format with the Format object’s Delete method. You should make
changes to the Formats collection before setting the DataSource property; otherwise they are not
reflected in the rendering of the new data source.

A Format object provides information for rendering one property of the object being rendered, or one
property of the items in the container object being rendered. Each format controls exactly one property,
and each property to be rendered must be represented by exactly one format. You specify the property
in the format’s Property property. The rendering information is contained in the format’s Patterns
collection, which is accessed with the format’s Patterns property.

Each Pattern object furnishes information for rendering a particular set of values of the property. You
specify the value set in the pattern's Value property and a rendering source for that value set in the
RenderUsing property. The rendering source is a string containing HTML hypertext and substitution
tokens. When the property’s value matches a pattern’s value set, that pattern’s rendering source is
used to render the property.

Container Object Rendering
A container object can be a CDO AddressEntries, Folders, Messages, or Recipients collection. To
render any container object and its contents, you use a ContainerRenderer object.

When you render a container object you apply a view to it. After you have specified the container object
in the container renderer’s DataSource property, a Views collection is available through the container
renderer’s Views property. From this collection you select the appropriate CalendarView or TableView
object and set the CurrentView property to that object. If you do not make a selection, the current view
remains set to the default view, which is the first view in the collection unless specified otherwise by the
underlying store.

A calendar view or table view is normally defined externally to your rendering application. For a folder
there are three types of predefined table views: common views, folder views, and personal views.
Common views are defined globally for all folders and all messaging users. A set of folder views can be
defined for each individual folder, and a set of personal views for each individual messaging user. An
address book container has only one common view predefined, and no folder or personal views. The
type of a table view is available in its Source property.

Modifications you make to predefined views do not persist in storage, but they remain in effect for your
application until you change the source of the view. Modifications to folder views last until the
DataSource property is changed, and modifications to common and personal views last until the
ContainerRenderer object is released. Simply changing the CurrentView property does not nullify your
modifications.

In addition to the predefined views for the container object you are rendering, you can create new
custom views with the collection’s Add method. A custom view is nonpersistent and cannot be saved. It
ceases to exist when the collection is released, for example when the DataSource property is
changed. You cannot delete any views from the Views collection.

A CalendarView or TableView object specifies the overall rendering of a container object through its
Columns property, which returns a child Columns collection for the table view. The order of the
columns in the collection determines their display order. You can use the collection’s Add method to
add new columns, which cease to exist when the collection is released, for example when the
DataSource property is changed. Columns cannot be deleted from their collection.

Each Column object corresponds to one property of the items in the container object being rendered.
The Column object specifies the renderable property in its Property property and a rendering source
for that property in the RenderUsing property. As with a pattern, the rendering source is a string
containing HTML hypertext and substitution tokens. The Column object also specifies the relative width
of the column in its Width property and control flags for the rendering in its Flags property.

The modifications you can make to a column consist of changing its Flags, RenderUsing, and Width
properties. The modifications you can make to an existing calendar view or table view consist of adding
and changing columns in its child Columns collection. Column modifications remain in effect until the
Columns collection is released, which is usually when the DataSource property is changed. Calendar
view and table view modifications remain in effect until the source of the view is changed, namely the
DataSource property for custom and folder views, or the ContainerRenderer object for common and
personal views.

Rendering a Table
A tabular rendering is generated by a ContainerRenderer object under control of a CalendarView or
TableView object. The calendar view or table view is structured using rows and columns. Each entry in
the table, at the intersection of a row and a column, is called a cell. A frame in the HTML output
normally consists of a heading row containing heading cells, followed by one or more rows containing
property cells. The heading row is usually rendered as one HTML table and the remaining rows as a
separate table.

The number of rows after the heading row is determined by the container renderer’s RowsPerPage
property. The row number of each object being rendered corresponds to that object’s position in the
underlying table that contains it.

The overall rendering of the heading row is controlled by the HeadingRowPrefix and
HeadingRowSuffix properties. Each subsequent row is rendered under control of the RowPrefix and
RowSuffix properties. These prefixes and suffixes delineate the row with HTML table tags and specify
rendering characteristics for the entire row, such as bold or italic, font size and color, and alignment
within the cells. The table as a whole is enclosed by the TablePrefix and TableSuffix properties, which
delineate the table and specify characteristics such as the table border. All the prefixes and suffixes
contain rendering information but no text.

Each heading cell takes its text from the appropriate Column object’s Name property and renders it
according to the information in the container renderer’s HeadingCellPattern property.

Each property cell in the subsequent rows takes its value directly from the property being rendered in
that column. Its rendering information comes from the column’s RenderUsing property if this has been
supplied. Otherwise, if there is a Format object associated with the column property, its Pattern objects
are searched for one with a Value property matching the column property’s value. If such a pattern is
found, its RenderUsing property supplies the rendering information. If no pattern can be found with a
value match, or if no format has been defined for the column property, it is rendered by default
according to its data type and value.

The following diagram shows how the CDO Rendering Library properties are used to render the table:

Table
Prefix

Heading
RowPrefix

Heading
CellPattern

…

Heading
CellPattern

Heading
RowSuffix

Table
Suffix

Table
Prefix

 RowPrefix Render
Using

…

Render
Using

RowSuffix

 … … … …
 RowPrefix Render

Using
…

Render
Using

RowSuffix

 Table
Suffix

Rendering Object Usage
The following table summarizes the CDO Rendering objects and their principal functions, in their usual
order of exploitation.

Object Principal function
RenderingApplication Set global rendering options and create container

renderers and object renderers using the
CreateRenderer method.

ContainerRenderer Specify a container object in the DataSource
property and render it using the Render,
RenderHeading, RenderPath, and
RenderProperty methods.

ObjectRenderer Specify a CDO object in the DataSource property
and render selected properties of that object using
the RenderProperty method.

Formats collection Provide rendering control for every renderable
property of the object being rendered.

Format Specify one property to be rendered in the
Property property and provide rendering
information in the patterns accessed with the
Patterns property.

Patterns collection Provide rendering information for all possible
values of the property being rendered under the
control of a format.

Pattern Specify a particular value set of the property being
rendered in the Value property and provide
rendering information for that value set in the
RenderUsing property.

Views collection Provide a selection of views for rendering a
container object, from which a container renderer
can choose using its CurrentView property.

TableView Provide tabular rendering information for every
renderable property of a container object being
rendered, which can be accessed with the
Columns property.

CalendarView Provide tabular rendering information for every
renderable property of a calendar object being
rendered, which can be accessed with the
Columns property.

Columns collection Provide rendering information for every column to
be rendered in a table view, including the display
order of the columns.

Column Specify one property for a table view in the
Property property and provide column rendering
information for that property in the RenderUsing
property.

All URL strings and .ASP file names must be entirely in 7-bit ASCII representation. This provides
maximum code page commonality.

CDO Rendering Library Design
The CDO Rendering Library is designed for flexibility and performance. It implements HTML rendering
of the CDO objects most used by client applications. The CDO Rendering Library is not designed for
development of service providers.

The CDO Rendering Library is based on the capabilities provided by Automation. It allows you to
create instances of programmable rendering objects that you can reference with automation
controllers. An automation controller is a tool that supports Automation, such as Microsoft® Visual
Basic®.

For the purposes of this document, an object is an Automation object: a software component that
exposes its properties and methods. Such an object follows the Visual Basic programming model and
lets you get properties, set properties, and call methods. Throughout this document, Visual Basic is
used as a concrete example of an automation controller, but the statements about Visual Basic apply to
all such tools.

CDO Rendering Objects
Objects in the CDO Rendering Library can be classified as top-level objects, child objects, and
collections. A top-level object is one that can be created directly by your code, without having to derive
it from any other object. A child object is one that must be derived from another object, for example by
an Add method. A collection is a group of objects of the same type.

Currently, the top-level CDO Rendering objects are the RenderingApplication, ContainerRenderer, and
ObjectRenderer objects. Other objects are accessible only through these top-level objects.

You can create a RenderingApplication object either through early binding:

 Dim objRenApp As RenderingApplication
 Set objRenApp = CreateObject ("AMHTML.Application")

or through late binding:

 Dim objRenApp As Object
 Set objRenApp = CreateObject ("AMHTML.Application")

and then later on use the CreateRenderer method to create specific rendering objects.

C/C++ programmers use globally unique identifiers (GUIDs) for these objects, defined in the type
library for the CDO Rendering Library. The following table lists the GUIDs for the top-level objects
accessible to C/C++ programmers. Note the close relationship; only the fourth of the 16 bytes differs
among the GUIDs.

CDO Rendering Library
object

GUID

RenderingApplication {BC00F701-31AC-11D0-B5F1-00AA00BF3382}

ContainerRenderer {BC00F703-31AC-11D0-B5F1-00AA00BF3382}
ObjectRenderer {BC00F702-31AC-11D0-B5F1-00AA00BF3382}

All CDO Rendering Library objects can be considered as relative to a RenderingApplication object. A
rendering application’s immediate child objects are the ContainerRenderer object and the
ObjectRenderer object. These have their own child objects, which in turn have child objects, and so on.
See the Rendering Object Model diagram for the logical hierarchy of the CDO Rendering Library.

The object hierarchy is important because it determines the correct syntax to use in your Microsoft®
Visual Basic® applications. In your Visual Basic code, the relationship between a parent object and a
child object is denoted by the left-to-right sequence of the objects in the Visual Basic statement. For
example,

 objContRend.Formats.Item(2)

refers to the second Format object in the Formats collection of the current ContainerRenderer object.

CDO Rendering Collections
The CDO Rendering Library supports the following collections:

Columns
Formats
Patterns
Views

The Views collection can hold view objects of different classes. The currently supported view classes
are represented by the CalendarView and TableView objects.

CDO Rendering Library collections all have a Count property, which always contains the current
number of member objects. Every collection also has an Item property, which can be used to select
any arbitrary member of the collection. Each object in a collection has an Index property, assigned by
the CDO Rendering Library. The Index value for the first member object is 1. An object’s Index
property can be used as an attribute of the collection’s Item property to reselect that object later.

Index properties are valid only during the current access to the collection and can change as your
application adds and deletes objects. For example, in a Formats collection with three Format objects,
the first format is referred to as Formats.Item(1), the second as Formats.Item(2), and the third as
Formats.Item(3). If your application deletes the second format, the third format becomes the second
and Formats.Item(3) has the value Nothing. The Count property is always equal to the highest Index
currently in the collection. Note that the Count is refreshed when you repopulate the collection.

The collections in the CDO Rendering Library are specifically designed for messaging and rendering
applications. The definition of collections in this document may differ slightly from other definitions in
the OLE programming documentation. Where there are differences, the description of the operation of
the CDO Rendering Library supersedes the other documentation.

Rendering Messaging Objects and
Collections
Messaging objects and object collections are rendered in order to assemble HTML pages. This is done
when server-side Active Server Pages scripts generate HTML into the current HTTP output using the
Active Server Pages Response object.

The properties of collections of objects are rendered differently than are properties of individual objects.
The following sections illustrate typical steps you would take in each case and the various rendering
options available.

Rendering Individual Object Properties
The ObjectRenderer object is used to render one or more properties, rather than an entire object. The
following procedure shows the steps you would take to render a property on an object.

To render an object property
1. Open the MAPI object, such as a message or a user's Inbox. For example, to open the Inbox

belonging to logged-in user, use objSession.Inbox.
2. If it does not already exist, create the ObjectRenderer object with a call such as

objRenderApp.CreateRenderer (class). For more information, see About Renderer Objects.
3. Set the DataSource property to the object that contains properties to be rendered with a command

such as Set objObjectRenderer.DataSource = objMessage. For more information, see Setting the
Data Source.

4. Optionally, depending on the property type of the property to be rendered, set Formats.
5. Render the property. This call specifies what property of the object to render. For example, to render

the subject of the message, you would have set the data source to be the message, and call the
RenderProperty method to render the subject, specifying the MAPI property. You have the choice of
rendering either directly to the screen or to a string.

Rendering Collections
The ContainerRenderer object is used to render one or more properties from a collection of MAPI
objects, as shown in the following procedure.

To render a collection
1. Open the collection within the MAPI object, such as the Inbox.Messages collection or the

Inbox.Folders collection. For example, to open the Messages collection of the logged-in user's
Inbox, use objSession.Inbox.Messages.

2. If it does not already exist, create the ContainerRenderer object with a call such as
objRenderApp.CreateRenderer Method (class). For more information, see About Renderer
Objects.

3. Set the DataSource to the collection to be rendered with a command such as Set objCR.DataSource
= Inbox. For more information, see Setting the Data Source.

4. Optionally, to create active links, set the LinkPattern property. For more information, see Named
Formats.

5. Add any additional Formats needed to render your collection. For example, to render the contents
table of an Inbox, you will probably need to include formats for the MAPI properties
PR_IMPORTANCE, PR_MESSAGE_CLASS, and PR_HASATTACH.

6. Render the object. For collections, you will generally render directly to the screen.

Creating the RenderingApplication
Object
You can usually assume that a RenderingApplication object will at some point be useful for your
application. Only rarely would it not; for example, you may want to view mail but your application does
not deal exclusively with viewing mail; in this case you can create an ObjectRenderer or
ContainerRenderer object when needed, using the Server.CreateObject method instead of using the
RenderingApplication object. See About Standalone Renderer Objects.

But even in those rare cases, you may still choose to start by creating a RenderingApplication object.
This is because it is faster to create child rendering objects from a RenderingApplication object than by
using the Server.CreateObject method.

Therefore, because the Application_OnStart procedure in the global.asa file is automatically called by
IIS, it is efficient to create the RenderingApplication object by placing the following call in that
procedure.

CreateObject ("AMHTML.RenderingApp "virtroot" "classpath" ")

This call creates two other objects as well, the virtroot and classpath format objects. There is only one
RenderingApplication object per virtual root, and therefore only one per application.

Extending the Scope of the
RenderingApplication Object
When you create the RenderingApplication object with the Server.CreateObject method in
Application_OnStart, you assign it to a local variable, which limits its lifetime to that of the
Application_OnStart function.

Because of this limitation, it is a good idea to store the RenderingApplication object in the Active Server
Pages Application object. The Active Server Pages application is global, so storing the
RenderingApplication object expands its scope to let it be accessed by other scripts, and extends its
lifetime to that of the application. To do this, apply a name to the RenderingApplication object and save
it into a table for later reference, using a call like the following:

Set Application("RenderingApplication") = objRenderApp

You can release the RenderingApplication object by setting its value in the Active Server Pages
Application object to Nothing:

Set Application("RenderingApplication") = Nothing

Configuring the RenderingApplication Object
After creating the RenderingApplication object, you need to configure it by setting its properties.
Properties are set using information from these sources:

· Microsoft® Windows NT® registry entries
· Microsoft Exchange directory store

You can configure the RenderingApplication object by calling the LoadConfiguration method on the
RenderingApplication object. Calling LoadConfiguration retrieves information about the Microsoft
Exchange Server from the registry and writes it to a table in the RenderingApplication object. In this
call, set the source parameter to 1 (AMHTML_Config_Registry) to load information from the key
associated with the service.

For the Microsoft Exchange Web client, this key is:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MSExchangeWeb\Parameters

This registry information was originally entered by the administrator who set up the Microsoft Exchange
Web client during the installation of Microsoft Exchange Server.

In a separate call, set the source parameter to 2 (AMHTML_Config_DS) to load information from the
Microsoft Exchange directory service, such as whether HTTP is enabled and what public folders have
been published. This call can be found in the Session_OnStart function in global.asa:

objRenderApp.LoadConfiguration 2, ""

Retrieving Configuration Information
Everything that you store using LoadConfiguration can later be retrieved through the
ConfigParameter property of the RenderingApplication object because all this information, whether
originally from the registry or from the Microsoft Exchange directory service, is mapped into the same
table. You use ConfigParameter by passing a single parameter, called parameter, to specify the
configuration value you want to retrieve. For example,

objRendApp.ConfigParameter("Published Public Folders")

returns the published public folder shortcuts. Because this information is stored in the registry by name,
you can store additional application-specific information in the registry key (with LoadConfiguration)
and retrieve it later when you need it, using the RenderingApplication object. For example, the
following call retrieves the value for the Microsoft Exchange Server saved previously in a registry entry
called Server:

bstrExchServer = objRenderApp.ConfigParameter("Server")

Setting virtroot and classpath
When the RenderingApplication object is created, it contains a Formats collection object as well as two
named formats: the virtroot object and the classpath object. To configure these objects, you set the
VirtualRoot property (to set the virtroot format) and FormsRoot property (to set the classpath format)
as a part of RenderingApplication object configuration. It is good to make these settings right after the
first LoadConfiguration command.

As formats in the formats collection of the RenderingApplication object, the virtroot object and the
classpath object are global to the application.

The virtroot Format Object
The virtroot format functions like a symbol in a table in that it lets you provide a link that will resolve to
the correct location of the current Web application. You can use virtroot as the substitution token
%virtroot% in substitution patterns. For more information, see VirtualRoot Property
(RenderingApplication Object).

In the Microsoft Exchange Web client, the VirtualRoot property is set during configuration of the
RenderingApplication object, in the Application_OnStart procedure in global.asa:

bstrVirtRoot = "/exchange"
objRenderApp.VirtualRoot = bstrVirtRoot

The classpath Format Object
The classpath format is used to create links to forms. If you use the classpath format without having set
the FormsRoot property of the RenderingApplication object, classpath functions as a substitution
token, returning the message class of the current object.

The classpath format object obtains a new value when you set the FormsRoot property. In the
Microsoft Exchange Web client, this property is set during configuration of the RenderingApplication
object, in the Application_OnStart procedure in global.asa:

bstrVirtRoot = "/exchange"
objRenderApp.FormsRoot = Server.MapPath(bstrVirtRoot) & "\usa\forms"

In this example, the Server.MapPath method expands the string bstrVirtRoot to the virtual root of
/exchange, namely c:\exchsrvr\webdata. This FormsRoot call also performs the following actions:

· The objRenderApp.FormsRoot property is set to a value such as c:\exchsrvr\webdata\usa\forms.
· The directory tree starting with the specified physical directory (…\usa\forms) is searched for

installed forms¾that is, directories containing ASP Files.
· A pattern for each form found in this directory tree is added to the classpath format object.

Optionally, to store information about additional forms directories, you can add more patterns to the
classpath format object. Because the classpath contains only the beginning of the path to the forms
directories, it is best to place all forms under the same virtual root, such as /exchange.

For more information, see RenderUsing Property (Column Object) and FormsRoot Property
(RenderingApplication Object).

About Renderer Objects
There are two kinds of renderer objects (or "renderers"): the ObjectRenderer object and the
ContainerRenderer object. Using them in conjunction with Format objects provides the flexibility of
displaying information in an interpreted manner.

The rendering of each property of an object is controlled by the various formats contained in the
renderer object. By creating a renderer in advance and presetting its properties, you can prepare for
rendering an object that later will become or may become the data source. For more information, see
When to Create Renderer Objects.

In general, after creating the renderer and setting its formats and data source, you call the Render
method. When you call the rendering object's Render method, it generates HTML in a stream that
makes up a page about to be sent to the browser.

When to Create Renderer Objects
Because renderer objects can be stored, you can choose the best time to create them:

· Create the renderer object when needed and discard it afterward.
· Create it beforehand and store it until needed¾perhaps reusing it several times.

In fact, it is usually most efficient to create a renderer object before opening the object that it will
render. The Microsoft Exchange Web client, for example, creates rendering objects for mailboxes
before needing them and stores them in the Active Server Pages Session object. The Web client uses
only two rendering objects: one ObjectRenderer and one ContainerRenderer. This means that all its
rendering is done through calls to methods on one of these two objects.

Renderer objects were designed to be reused. Stored renderers retain the property values they held for
previously rendered objects until these properties are given new values.

Note Do not confuse the RenderProperty method of the ContainerRenderer object with that
object's Render method. The Render method renders rows of a folder or address book collection.
The RenderProperty method renders the designated property of the parent of the object specified by
the DataSource property. It renders the property in place, either to the Active Server Pages
Response object or to a bstr string which will then be displayed. Note that bstr (strHTML) is a Pascal-
like string construct used by Microsoft® Visual Basic®; it is a NULL-terminated, Unicode, wide-
character string used by IDispatch.

About Standalone Renderer Objects
The ContainerRenderer and ObjectRenderer objects are known as top-level objects because they can
be created directly by your code, without having to be derived from another object. When created
directly, such an object is known as a standalone renderer object because it has no parent link¾a
pointer to the object it was created by or added to.

Because a standalone renderer has no parent link to the RenderingApplication object, it does not have
the support methods of the RenderingApplication object. Nor is there a global format collection, so the
virtroot and classpath objects would not exist.

To create a ContainerRenderer or ObjectRenderer standalone object, use the Active Server Pages
syntax Server.CreateObject, naming the object AMHTML.ContainerRenderer or
AMHTML.ObjectRenderer.

In general, standalone renderer objects are best used for single operations, such as rendering certain
properties of the current object. When you use standalone renderer objects, you generally do not
intend to read more data from the object or access it in other ways.

Renderers need not be standalone. That is, you can choose to derive objects of these types from a
RenderingApplication object, as shown in the following section.

Web Client Example: Creating Renderer Objects
In the Microsoft Exchange Web client, when a ContainerRenderer or ObjectRenderer object is
required¾for example, to render the Web user's Inbox¾and is not found in the Active Server Pages
Session object, it is created using the existing RenderingApplication object with a call such as:

objRenderApp.CreateRenderer (class)

where class is the CDO Rendering class enumeration, in this case AMHTML_Class_ObjectRenderer.

Using CheckSession
The CheckSession function is a Web client library function that can be called to determine whether the
Active Server Pages session is still valid.

If a Web user times out and then tries to refresh the current page, CheckSession determines that the
user has indeed timed out¾because the Active Server Pages Session object no longer exists. It then
requests that the user log in again, providing a dialog box for that purpose (in the Web client, it
redirects them to logon.asp). When the Web user logs in again, new MAPI and Active Server Pages
sessions are started.

If the Web user logged in anonymously, has timed out, and now refreshes a page, CheckSession logs
the person in transparently¾that is, without requiring user information. This will also be an anonymous
login.

It is good to use CheckSession on every script page.

Setting the Data Source
To display text or images to represent data in Microsoft® Exchange information stores, you render the
MAPI properties that hold that data. Using CDO, you can render properties on individual MAPI objects
or properties on entire collections of objects. To determine what is rendered, set the DataSource
property on the renderer object.

About Collections and Individual Objects
You must set the correct kind of data source¾an object or a collection¾when rendering an individual
object or a collection.

To render a collection, use a ContainerRenderer object. A valid data source for a ContainerRenderer
would be a Folders collection or a Messages collection. Collection objects can be CDO AddressEntries,
Folders, Messages, or Recipients collections.

In contrast, the ObjectRenderer object renders properties on a single MAPI object. It can take any of
the following objects as a valid DataSource: AddressEntry, Attachment, Folder, InfoStore, Message,
and Session.

Because of similarly named objects, take care when setting the DataSource. You can pass a folder
object as the DataSource on the ObjectRenderer object but if you pass it as the DataSource on a
ContainerRenderer object, the call will fail. However, you can pass either Folder.Folders or
Folder.Messages to the ContainerRenderer object because they are collection objects.

Valid Data Sources
Only the following objects can be used as data sources in CDO rendering:

· An individual object (used with an ObjectRenderer object) that has the MAPIOBJECT property.
· A collection object (used with a ContainerRenderer object) that has the RawTable property.

For example, the InfoStores collection object cannot be used as a data source because it has neither a
MAPIOBJECT property nor a RawTable property. But an InfoStore object (a child object of the
InfoStores collection), can be used as a data source for an ObjectRenderer object because it does
have a MAPIOBJECT property.

The MAPIOBJECT property returns an IUnknown pointer to the underlying MAPI (COM) object. The
RawTable property returns a pointer to the IMAPITable object.

Web Client Example: Setting a Data Source
In the Microsoft Exchange Web client, the data source is set after the creation of the object that will
render the data. For example, a ContainerRenderer object is created and saved first (see When to
Create Renderer Objects). Then, as the Web user navigates through the folder hierarchy, Web client
script sets the DataSource property.

For example, the following line sets a MAPI folder as a data source. This is valid because the Folder
object contains a MAPIOBJECT property.

Set objObjectRenderer.DataSource = objFolder

In this call, objObjectRenderer is the CDO Rendering object and objFolder is the MAPI folder object
obtained through CDO calls. This call adds a reference to the MAPI object (in a manner similar to an
AddRef call) while setting it as the current DataSource.

Using Views
A view is a collection of columns. To render a collection, you apply a view to it, which defines which
properties of the collection object are rendered as columns on your Web page. After you have specified
the collection in the DataSource property of the ContainerRenderer object, a views collection becomes
available through the Views property of the ContainerRenderer. For more information, see Container
Object Rendering.

The following diagram shows how the view and other objects relate in the rendering of collections. A
view contains a set of columns to be rendered, each of which represents an object's property. Each
column can render a property according to a specific format, which in turn consists of patterns. And
patterns map to the various values that a messaging object's property can have.

Object Relationships for Collection Rendering

The column object controls rendering of the property in one of these ways:

1. A named format is referenced in the RenderUsing string of the column.
2. A property-only format is defined, and its Property property corresponds to the Property property of

the column object.
3. No format is defined, and the property is rendered by type, as described in the table Default Output

Styles of Supported Property Types in the section About Patterns.

For more information, see About Format Objects and Using Named Properties.

About Format Objects
The format object of the CDO Rendering Library contains specific information that controls how a
messaging property of any type is to be rendered. In other words, format objects provide a way to
interpret information as you render it.

There is a 1:1 relationship between format object and property to be rendered; each format controls
exactly one property, and each property to be rendered must be represented by exactly one format.
Rendering information is contained in the format's Patterns collection, which is accessed with the
format's Patterns property.

You need not always render properties using formats. If you used a ContainerRenderer object without
adding formats, it would render MAPI data according to certain default rules. For example, it would
convert number values into strings and it would convert multivalued string Unicode arrays into a single
line of semicolon-separated text. It would also use its own rules for rendering date and time values.
Using a format object lets you make exceptions to these default rules by having the renderer display
each property value exactly as you want.

There are two mutually exclusive types of formats, whose uses are explained in Property-Only Formats
and Named Formats.

The following diagram shows how formats and other objects relate in the rendering of object properties.
A format contains a set of patterns, each of which tells exactly how to render a specific property value
of the MAPI property being rendered.

Object Relationships for Property Rendering

Example: Results of Using Formats
The following table shows the results of using formats for rendering a typical set of message
properties. These seven properties constitute what is commonly known as the Normal view (of a
message collection). If you do not set formats, the properties are rendered as shown in the second
column, but if you do set formats, you will see the values or images in the third column.

Effect of Using Formats to Render Properties
MAPI property Without a

format
With a format

PR_IMPORTANCE 0, 1, or 2 (long
integer)

image (, nothing, or
)

PR_MSG_CLASS IPM.Note image (, or other item
specific to the
message class)

PR_HASATTACH 0 (or 1) image ()
PR_SENT_REPRESEN
TING

(sender, as a string) (sender, as a string)

PR_SUBJECT (subject, as a string) (subject, as a string)
PR_RECEIVED (date received, in

SYSTIME format)
(date received, as a
string)

PR_SIZE 1024 (long integer
value, in bytes)

1 KB (converted to
kilobytes)

In the preceding table, the MAPI PR_HASATTACH property, which contains a 1 or a 0, indicates
whether an item has an attachment or not. The meaning of this property is better conveyed with text
("Has an Attachment") or a GIF image of a paper clip, which you can display using an HTML image tag.
In this example the image is a pattern that matches the value of 1 for the PR_HASATTACH property.

Property-Only Formats
A property-only format is distinguished by having an empty name property.

The only use of a property-only format is to render the columns of a view. Each column's value is
rendered according to the patterns of the format object whose Property property has been set to the
Property property of the column object. This is the most common way of linking a format to a column
in a view. For more information, see Using Views.

Using Named Properties
User-defined named properties may also be specified in place of a predefined property value for the
Property property of a format or column object.

You can identify the property with either a string name (such as "NAMED_PROP") or a numeric
identifier (such as 0x7E00). If you use a string name, you may omit the GUID of the property set, and
the default value is PS_PUBLIC_STRINGS. If you use the numeric identifier, the GUID of the property
set is required.

The correct format of the property set GUID is an undelimited byte string, the same format as required
by the CDO Fields.Item property.

The following example adds a format for a user-defined property, using the string name for the
property.

' Use GUID of property set (excluding delimeters) and string
const AmPidTag_Location = "{EE0392EFA5B91B10ACC100AA00423326} NAMED_PROP"
Set objFormat = objRenderer.Formats.Add(AmPidTag_Location, Null)

The following example adds a format for a user-defined property, using the identifier of the property.

' Use GUID of property set (excluding delimeters) and numeric ID
const AmPidTag_Location = "{EE0392EFA5B91B10ACC100AA00423326} 0x7E00"
Set objFormat = objRenderer.Formats.Add(AmPidTag_Location, Null)

For information on property sets and GUIDs, see the MAPI Programmer's Reference.

Named Formats
Named formats are objects that can be created by the user or defined by the CDO Rendering Library.
Like property-only formats, these objects can contain any number of patterns which in turn contain
values and RenderUsing pattern strings. They do not require a specific property value.

Once defined, the named format may be used like any other substitution token in a pattern string by
placing the name between percent (%) symbols. This makes complex layering possible. You cannot do
this with property-only formats.

For instance, setting RenderingApplication.VirtualRoot creates the virtroot named format, which
contains a single "*" pattern containing the IIS virtual-root setting. The string %virtroot% in a pattern
string will be replaced by the value set in RenderingApplication.VirtualRoot.

In this way, named format objects may be used as a table of symbols, containing replacement strings
that can be referenced by name. A few reserved named formats contain formatting instructions for
specific operations performed by the CDO Rendering Library rendering objects. These reserved names
are listed in the following table.

Reserved Named Formats and Usage
Named format Used by Function
virtroot RenderingApplicati

on object
IIS virtual root containing web application.

classpath RenderingApplicati
on object

Message class to directory mapping for
forms, for instance "Ipm/Note/" for the
IPM.Note class.

message_Link ObjectRenderer
object

Pattern used by the RenderLink Method
(ObjectRenderer Object).

message_Link ContainerRenderer
object

Pattern used as link for objects in a table
(messages or address entries).
Automatically selects appropriate column
based on table cell value.

folderhierarchy_Par
ent

ContainerRenderer
object

Pattern used to render the link to the parent
of the current folder when rendering a folder
hierarchy.

folderhierarchy_Icon ContainerRenderer
object

Patterns for icons used when rendering
subfolders, and special folders, in the folder
hierarchy.

folderhierarchy_Link ContainerRenderer
object

Pattern used to render active links to
subfolders.

Important In order to render a hierarchy, the named formats folderhierarchy_Parent,
folderhierarchy_Icon, and folderhierarchy_Link must be defined. To know what patterns to add, see
the examples in the tables in Suggested Formats and Patterns.

Formats Collection Objects
Three objects contain Formats collection objects: ContainerRenderer, ObjectRenderer, and
RenderingApplication. The Formats collection object of the RenderingApplication object is used as a
global formats collection. This means that if certain formats will always be used, you can store them in
the RenderingApplication object and they will exist for all objects that you may render. This added
scope is the reason virtroot and classpath exist in the RenderingApplication object and not in the
individual renderers. See Setting virtroot and classpath.

A Formats collection object can contain zero or more format objects.

If a named format in the ObjectRenderer object or the ContainerRenderer object duplicates a named
format in the RenderingApplication object, the format in the ObjectRenderer or ContainerRenderer will
be used.

About Patterns
A pattern object is an object specifying rendering information for a particular set of values of a property
on the object being rendered. Each format contains zero or more pattern objects, and each pattern is
associated with a specific MAPI property value being rendered.

Pattern objects control the output of the associated MAPI property values by substituting the
designated RenderUsing string if a match is found. The Pattern.Value property accepts any VARIANT
type, but it is normally set to a string value. If the MAPI property value being matched contains a
nonstring type, the Pattern.Value VARIANT is coerced to that type and a test for equality is performed.

The supported nonstring property types are PT_BOOLEAN, PT_I2, PT_LONG, and PT_BINARY. If the
MAPI property is PT_UNICODE, it is matched against the BSTR equivalent of the pattern's value
VARIANT using the WILDMAT matching standard, described in the section Pattern Matching. If no
match is found, or if no patterns are defined for the format, the property is rendered by type, as
illustrated in the following table.

Default Output Styles of Supported Property Types
Property type Rendered value
PT_UNICODE String is rendered verbatim.
PT_MV_UNICODE Renders all strings separated by a semicolon (;) and a space.
PT_SYSTIME Shortened date format followed by time without seconds (localized by

LCID).
PT_R4 Rendered as a stringized float value (localized by LCID).
PT_DOUBLE Rendered as a stringized double value (localized by LCID).
PT_BOOLEAN Renders 1 for True, 0 for False.
PT_LONG
PT_I2

Rendered as a stringized long integer value.

PT_ERROR Ignored if error is MAPI_E_NOT_FOUND, otherwise assumed to be
a PT_OBJECT type, which is retrieved with OpenProperty.
Rendered as UNICODE string or a hexized binary string, depending
on object type.

PT_NULL No output.

The exceptions to this default property-type handling are listed in the following table.

Rendering Support for Special Properties
Property Rendered value
PR_ENTRYID
PR_LONGTERM_ENTRYID_FROM_TABLE

Hexized binary string.

PR_BODY
PR_RTF_COMPRESSED

Invokes RTF2HTML conversion engine.

PR_ATTACH_DATA_BIN Sends MIME data to output stream, or
creates a link to public folder object.
Currently only supports
ATTACH_BY_VALUE attachment method.

All other property types are not supported.

Pattern Matching
CDO Rendering library Pattern objects support the WILDMAT syntax of pattern matching. The
WILDMAT format was developed to provide a uniform mechanism for matching patterns in the same
manner that the UNIX shell matches file names. WILDMAT works as follows:

There are five pattern-matching operations other than a strict one-to-one match between the pattern
and the source that must be checked for a match. The first is an asterisk (*) to match any sequence of
zero or more characters. The second is a question mark (?) to match any single character.

The third operation specifies a specific set of characters. The set is specified as a list of characters, or
as a range of characters where the beginning and end of the range are separated by a minus (or
hyphen) character, or as any combination of lists and ranges. The hyphen can also be included in the
range as a character it if is at the beginning or end of the range. This set is enclosed in square
brackets. The close square bracket (]) may be used in a range if it is the first character in the set.

The fourth operation allows you to exclude characters from the set and is specified by adding a caret
character (^) at the beginning of the test string just inside the open square bracket. The final operation
uses the backslash character to invalidate the special meaning of an open square bracket ([), the
asterisk, or the question mark.

Except for characters in a specified range, all patterns in the CDO Rendering library are matched in a
case-insensitive fashion. Example patterns are listed in the following table.

 Examples of Valid WILDMAT Patterns
Pattern Matches
a??d Any four character string which begins with 'a' (or 'A') and ends with 'd' (or

'D').
*bdc Any string that ends with the string "bdc" (any combination of case, without

quotes).
[0-9a-zA-Z] Any alphanumeric character (in English).
[^]-] Any character other than a close square bracket or a minus sign/dash.

Link Patterns
A link pattern specifies the HTML that wraps text being rendered, which creates a hyperlink. The link
pattern could, for example, be in the HTML "HREF" syntax, in order to create a link. Link patterns are
most important when rendering an active table of messages or an active hierarchy of folders, to give
each message or folder a hot link the Web user can click to obtain more detail, or to read or compose a
message.

You should set up link patterns when you create rendering objects, and they will be used throughout
the application.

Setting the LinkPattern property changes the "message_Link" named format. This format is created
with a default value of %value%, which means that initially, it produces no links. Setting LinkPattern
provides active hyperlinks that specify the location of a form or the links from a message or folder to
the next message or folder. The message_link named format should be changed only by setting the
LinkPattern property.

For example, the following link pattern specifies the HTML that wraps the contents of a table cell
(indicated by %value%) when the objContainerRenderer.Render method is called:

objContainerRenderer.LinkPattern = "%value%"

Another type of link pattern is the "folderhierarchy_Link" format. For more information, see the tables in
the section Suggested Formats and Patterns.

RenderUsing Strings
Pattern.RenderUsing strings allow you to specify replacement tokens inside percent symbols (%) to
indicate which values should be substituted when the string is constructed. In addition to formatting and
rendering the current property value, other information about the MAPI object can be rendered as part
of the pattern string.

There are only a few substitution tokens that have special meaning in CDO Rendering. They are listed
in the following table.

CDO Rendering Substitution Tokens
Token Rendered value
%kvalue% For numeric properties, the value/1024. Does not include 'KB' symbol.
%rowid% Index of row in the rendered table. Ranges from 0 to RowsPerPage - 1.
%obj% PR_ENTRYID or PR_LONGTERM_ENTRYID_FROM_TABLE of object.
%parentobj% PR_PARENT_ENTRYID of the object.
%value% The value of the property being rendered, based on usage of Format

object.

In the previous table, output is fixed for all but the %value% token. In other words, the output is directly
related to the underlying MAPI object set as the DataSource. For %value%, however, the rendering
output changes based on property type and the semantics of the format object containing the pattern
string.

For instance, when %value% appears in the ContainerRenderer.LinkPattern string, it is replaced with
the entire contents of the table cell before the link.

Creating Rendering Objects, Formats,
and Patterns
The following code shows how to create an ObjectRenderer object for a message. It also adds the
following:

· One property-only format object to be used by the column object to render the MAPI property
PR_IMPORTANCE. The RenderUsing string contains a reference to a named format that will be
used to display language-specific strings.

· The named format object referenced in the RenderUsing string.
· A pattern for each possible value of PR_IMPORTANCE.
· A LinkPattern string to enable the use of the RenderLink Method (ObjectRenderer Object), which

renders a link to the DataSource object.

' Assume Rendering application is stored in
' Active Server Pages Application object
Set objRenderApp = Application ("RenderingApp")

' Create a renderer object using class object renderer
Set objRenderer = objRenderApp.CreateRenderer (AMHTML_Class_ObjectRenderer)
If (Not objRenderer Is Nothing) Then

      ' Add a property-only Format object (for PR_IMPORTANCE)
      ' (The named format will contain language specific strings.)
      Set objFormat = objRenderer.Formats.Add(CdoPR_IMPORTANCE, Null)
      objFormat.Patterns.Add "*", "%langImportance%"

      ' Add a named Format object to the renderer object
      Set objFormat = objRenderer.Formats.Add(0, "langImportance")

      ' Add patterns to Format object (possible property
      ' values and corresponding RenderUsing strings)
      objFormat.Patterns.Add 0, "Low"
      objFormat.Patterns.Add 1, "Normal"
      objFormat.Patterns.Add 2, "High"

      ' Add LinkPattern string (creates "message_Link" named format)
      objRenderer.LinkPattern = "%virtroot%/forms/%classpath%frmroot.asp?obj=%obj
%&command=open"

      ' Store new renderer object in Session for later use
      Set Session("ObjectRenderer") = objRenderer
End If

Suggested Formats and Patterns
The following tables suggest formats and patterns you can add and use to render a variety of
messaging objects. In each table, the first column lists a property-only format or a named format. When
the format in the first column contains the value in the second column, it is rendered using the string or
image in the third column.

Formats for RenderingApplication Object
Properties on
Format Object

Properties on Pattern Object

Name or property Value RenderUsing
"virtroot" "*" /exchange
"classpath" "*" IPM/Note/ and other patterns, as set by FormsRoot

Formats for ObjectRenderer (DataSource = Message object)
Properties on
Format Object

Properties on Pattern Object

Name or property Value RenderUsing
PR_IMPORTANCE 0 "Low"

1 "Normal"
2 "High"

"message_Link" "*" %virtroot%/Forms/%classpath%read.asp?obj=%obj%

In the preceding table, it is assumed that a read.asp file (which displays the message identified by the
URL parameter obj) exists in the directory indicated by classpath.

Formats for ContainerRenderer (DataSource = Messages Collection)
Properties on
Format Object

Properties on Pattern Object

Name or property Value RenderUsing
PR_IMPORTANCE 0 <IMG SRC='low.gif' ALIGN=CENTER ALT="Low"

BORDER=0>
1 Empty
2 <IMG SRC='urgent.gif' ALIGN=CENTER ALT="High"

BORDER=0>
PR_MESSAGE_CLA
SS

"*" <IMG SRC='envelope.gif' ALT='%value%'
ALIGN=CENTER BORDER=0>‘envelope.gif’.

PR_HASATTACH 0 Empty
1 <IMG SRC='papclip.gif' ALIGN=CENTER

BORDER=0>
PR_MESSAGE_SIZE "*" %kvalue%KB
"message_Link" "*" %virtroot%/Forms/%classpath%read.asp?obj=%obj%

In the preceding table, it is assumed that a read.asp file (which displays the message identified by the
URL parameter obj) exists in the directory indicated by classpath.

Formats for ContainerRenderer (DataSource = Folders Collection)
Properties on
Format Object

Properties on Pattern Object

Name or property Value RenderUsing
PR_DISPLAY_NAME InfoStore.RootFolder.

Name
InfoStore.Name

"folderhierarchy_Pare
nt"

"*" <TD BGCOLOR=CCCC99
COLSPAN=2> </TD>

"folderhierarchy_Icon" "*" <IMG SRC='folder.gif' ALIGN=CENTER
BORDER=0>

"folderhierarchy_Link" "*"
%value%

In the preceding table, it is assumed that a folder.asp file (which displays the folder hierarchy using the
URL parameter obj as the root folder) exists in the current directory.

Formats for ContainerRenderer (DataSource = AddressEntries Collection)
Properties on
Format Object

Properties on Pattern Object

Name or property Value RenderUsing
PR_DISPLAY_NAME InfoStore.RootFolder.

Name
InfoStore.Name

"folderhierarchy_Pare
nt"

"*" <TD BGCOLOR=CCCC99
COLSPAN=2> </TD>

"folderhierarchy_Icon" "*" <IMG SRC='folder.gif'
ALIGN=CENTER BORDER=0>

"folderhierarchy_Link" "*"
%value%

In the preceding table, it is assumed that a address.asp file (which displays the messaging user
identified by the URL parameter obj) exists in the current directory.

Rendering Objects
This reference contains property and method information for the Microsoft® Collaboration Data Objects
(CDO) Rendering Library objects.

The following table summarizes each object’s properties and methods.

Object

Available
in version

Properties

Methods

CalendarView 1.2 BusyCell,
BusyIndicator,
Categories, Class,
Columns,
FreeBusinessCell,
FreeIndicator,
FreeNonBusiness
Cell, Index,
Interval, Mode,
Name,
NumberOfUnits,
OOFIndicator,
Parent, Source,
TentativeIndicator

IsSameAs,
RenderAppointme
nts,
RenderDateNaviga
tor, RenderEvents

Column 1.1 Class, Flags,
Index, Name,
Parent, Property,
RenderUsing,
Width

(none)

Columns
collection

1.1 Class, Count,
Item, Parent

Add

ContainerRendere
r

1.1 BusinessDayEndTi
me,
BusinessDayStart
Time, CellPattern,
Class, CodePage,
CurrentStore,
CurrentView,
DataSource,
FirstDayOfWeek,
Formats,
HeadingCellPatter
n,
HeadingRowPrefix
,
HeadingRowSuffix,
Is24HourClock,
LCID, LinkPattern,
Parent,
PrivateStore,
RowsPerPage,
RowPrefix,
RowSuffix,

Render,
RenderDate,
RenderHeading,
RenderPath,
RenderProperty,
RenderTime

TablePrefix,
TableSuffix,
TimeZone, Views

Format 1.1 Class, Name,
Parent, Patterns,
Property

Delete

Formats collection 1.1 Class, Count,
Item, Parent

Add

ObjectRenderer 1.1 Class, CodePage,
DataSource,
Formats, LCID,
LinkPattern,
Parent

RenderDate,
RenderLink,
RenderProperty,
RenderTime

Pattern 1.1 Class, Parent,
RenderUsing,
Value

Delete

Patterns collection 1.1 Class, Count,
Item, Parent

Add

RenderingApplicat
ion

1.1 Class, CodePage,
ConfigParameter,
Formats,
FormsRoot, ImpID,
LCID,
LoggingLevel,
Name, Parent,
SecurityID,
Version,
VirtualRoot

CreateRenderer,
Impersonate,
LoadConfiguration

TableView 1.1 Categories, Class,
Columns, Index,
Name, Parent,
Source

IsSameAs

Views collection 1.1 Class, Count,
Item, Parent

Add

This reference is organized by object. For each object there is a summary topic, followed by reference
documentation for each property or method that belongs to the object. The properties and methods are
organized alphabetically.

Each property or method topic in the reference displays a Group button following the topic title.
Clicking this button displays the summary topic for the object to which the property or method belongs.
The summary topic includes tables of the object’s properties and methods.

To avoid duplication, the section Properties Common to All CDO Rendering Library Objects describes
the properties that have the same meaning for all CDO Rendering Library objects. These are:

· Class
· Parent

Rendering Object Model
The object model for the CDO Rendering Library is hierarchical. The following table shows the
containment hierarchy. Each indented object is a child of the object under which it is indented. An
object is the parent of every object at the next level of indentation under it. For example, a Formats
collection and a Views collection are both child objects of a ContainerRenderer object, and a
RenderingApplication object is a parent object of a ContainerRenderer object. However, a
RenderingApplication object is not a parent object of a Views collection.

RenderingApplication
 ContainerRenderer
 Formats collection
 Format
 Patterns collection
 Pattern
 Views collection
 CalendarView
 TableView
 Columns collection
 Column
 Formats collection
 Format
 ObjectRenderer
 Formats collection
 Format
 Patterns collection
 Pattern

Properties Common to All CDO
Rendering Library Objects
All CDO Rendering Library objects expose the Class and Parent properties. The Parent property
indicates the immediate parent of the object, and the Class property is an integer value that identifies
the CDO Rendering Library object.

Both of these common properties have read-only access in all objects. The RenderingApplication
object represents the highest level in the CDO Rendering Library object hierarchy and has no parent.

To reduce duplication, the detailed reference for these properties appears only once, in this section.
The following table lists the properties that are common to all CDO Rendering Library objects and that
have the same meaning for all objects.

Properties
Name Type Access

Class Long Read-only
Parent Object Read-only

Class Property (All CDO Rendering
Library Objects)   

The Class property returns the object class of the object. Read-only.

Syntax
object.Class

Data Type
Long

Remarks
The Class property contains a numeric constant that identifies the CDO Rendering Library object. The
following values are defined:

CDO Rendering
Library object

Class
value

Type library constant

CalendarView 12 CdoClassCalendarView
Column 11 CdoClassColumn
Columns collection 10 CdoClassColumns
ContainerRenderer 3 CdoClassContainerRenderer
Format 4 CdoClassFormat
Formats collection 5 CdoClassFormats
ObjectRenderer 2 CdoClassObjectRenderer
Pattern 7 CdoClassPattern
Patterns collection 6 CdoClassPatterns
RenderingApplication 1 CdoClassApplication
TableView 9 CdoClassTableView
Views collection 8 CdoClassViews

The CDO Rendering Library reserves the value 0 for an object implementing the OLE IUnknown
interface.

Example
This code fragment traverses a Views collection to find the class of each view object it contains:

Dim colViews
Dim objView ' could be any type of view object
If colViews Is Nothing Then
 objResponse.Write "Need to set the Views collection"
 End
End If
For Each objView in colViews
 strIndex = str(objView.Index) ' get view's index as a string
 If 5 = objView.Class Then ' CdoClassTableView
 objResponse.Write "View " & strIndex & " is a table view"
 ElseIf 12 = objView.Class Then ' CdoClassCalendarView
 objResponse.Write "View " & strIndex & " is a calendar view"
 Else

 objResponse.Write "Unknown view type: class " & str(objView.Class)
 End If
Next
' error handling here ...

Parent Property (All CDO Rendering
Library Objects)   

The Parent property returns the parent of the object. Read-only.

Syntax
Set objParent = object.Parent

Data Type
Object

Remarks
The Parent property in the CDO Rendering Library returns the immediate parent of an object. The
immediate parent for each object is shown in the following table.

CDO Rendering Library object Immediate parent in object
hierarchy

CalendarView Views collection
Column Columns collection
Columns collection TableView
ContainerRenderer RenderingApplication or Nothing
Format Formats collection
Formats collection ContainerRenderer, ObjectRenderer,

or RenderingApplication
ObjectRenderer RenderingApplication or Nothing
Pattern Patterns collection
Patterns collection Format
RenderingApplication Set to Nothing
TableView Views collection
Views collection ContainerRenderer

The Parent property represents the immediate parent of the object, rather than the logical parent. For
example, a ContainerRenderer object contains a Views collection, which contains various view objects.
The Parent property for a view is the immediate parent, the Views collection, rather than the logical
parent, the ContainerRenderer object.

For more information on the CDO Rendering Library object hierarchy, see Rendering Object Model.

Example
This code fragment displays the Class of the Parent of a Formats collection object, which could be any
rendering object.

Dim colFmts As Formats
Dim parentClass as Long
' assume valid Formats collection
parentClass = colFmts.Parent.Class
MsgBox "Formats parent class = " & parentClass
If 3 = parentClass Then ' CdoClassContainerRenderer
 ' parent is ContainerRenderer
ElseIf 2 = parentClass Then ' CdoClassObjectRenderer

 ' parent is ObjectRenderer
Else
 ' Houston, we have a problem
End If

CalendarView Object
The CalendarView object represents a view of a schedule calendar.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.2
Parent objects: Views collection
Child objects: Columns collection
Default property: (none)

Properties

Name

Available
in version

Type

Access

BusyCell 1.2 String Read/write
BusyIndicator 1.2 String Read/write
Categories 1.2 Long Read/write
Class 1.2 Long Read-only
Columns 1.2 Column object or

Columns collection
object

Read-only

FreeBusinessCell 1.2 String Read/write
FreeIndicator 1.2 String Read/write
FreeNonBusinessCel
l

1.2 String Read/write

Index 1.2 Long Read-only
Interval 1.2 Long Read/write
Mode 1.2 Long Read/write
Name 1.2 String Read-only
NumberOfUnits 1.2 Long Read/write
OOFIndicator 1.2 String Read/write
Parent 1.2 Views collection object Read-only

Source 1.2 Long Read-only
TentativeIndicator 1.2 String Read/write

Methods

Name

Available
in version

Parameters

IsSameAs 1.2 objView2 as Object
RenderAppointments 1.2 (optional) StartDate as Variant,

(optional) ResponseObject as

Object
RenderDateNavigator 1.2 (optional) StartDate as Variant,

(optional) Months as Variant,
(optional) ResponseObject as
Object

RenderEvents 1.2 (optional) StartDate as Variant,
(optional) ResponseObject as
Object

Remarks
A calendar view is a specification of a calendar rendering for a Messages collection in a calendar
folder. It is applied to AppointmentItem objects in a Messages collection obtained from a Folder object
reserved for calendar data:

 Dim objSession As Session
 Dim objCalendarFolder As Folder
 Dim objAppointments As Messages

 Set objCalendarFolder = objSession.GetDefaultFolder _
 (CdoDefaultFolderCalendar)
 Set objAppointments = objCalendarFolder.Messages

The Messages collection obtained in this manner should contain AppointmentItem objects exclusively.
If presented with objects of other classes, the calendar view's rendering methods attempt to render
them as if they were appointments, but unexpected results are likely. In any case, objects not exposing
the StartTime and EndTime properties are not rendered.

The calendar view is applied to the collection in the context of a ContainerRenderer. The container
renderer specifies the Messages collection in its DataSource property and the calendar view to be
applied in its CurrentView property.

The calendar view inherits all the functionality of the TableView object, and has additional capability
specific to rendering a calendar as a table.

The HTML output of a calendar view is constructed on a principal unit of display, or time unit, which is
specified by the view's Mode property. The time unit can be a day or a week. The view's time span,
determined by its NumberOfUnits property, represents the total amount of calendar time displayed in
a single HTML page. Each column of the view covers exactly one day, no matter what the overall time
unit and time span have been set to. A column is subdivided into individual cells or time slots. The size
of these subdivisions is controlled by the view's Interval property.

A calendar view is normally generated externally to a CDO application, although a nonpersistent
calendar view can be created with the Add method of the Views collection. A calendar view created in
this way ceases to exist when the collection is released.

BusyCell Property (CalendarView
Object)   

The BusyCell property returns or sets a pattern string for rendering an appointment. Read/write.

Syntax
objCalendarView.BusyCell

Data Type
String

Remarks
The BusyCell property is used to specify rendering information for AppointmentItem objects. The
BusyCell property applies only when the Mode property of the calendar view contains
CdoModeCalendarDaily.

The default value of the BusyCell property is

<td rowspan=%apptlength% colspan=%apptwidth% bgcolor=ffffff valign=top
align=left width=100% >%value%</td>

for a daily view. For more information on substitution tokens, see the RenderUsing property of the
Pattern object.

BusyIndicator Property (CalendarView
Object)   

The BusyIndicator property returns or sets a pattern string for rendering the indicator bar for a busy
time period. Read/write.

Syntax
objCalendarView.BusyIndicator

Data Type
String

Remarks
The BusyIndicator property applies only when the Mode property of the calendar view contains
CdoModeCalendarDaily.

The default value of the BusyIndicator property is

<td rowspan=%apptlength% colspan=1 bgcolor=0000ff width=3> </td>

For more information on substitution tokens, see the RenderUsing property of the Pattern object.

Categories Property (CalendarView
Object)   

The Categories property returns or sets the number of categories in this calendar view. Read/write.

Syntax
objCalendarView.Categories

Data Type
Long

Remarks
The current version of the CDO Rendering Library does not support a tabular view of a calendar.
Therefore, the Categories property is currently ignored on a CalendarView object.

Columns Property (CalendarView
Object)   

The Columns property returns a single Column object or a Columns collection for this calendar view.
Read-only.

Syntax
Set objColumns = objCalendarView.Columns

Set objColumn = objCalendarView.Columns(index)

objColumns
Object. The Columns collection of this calendar view.

objCalendarView
Required. The CalendarView object.

objColumn
Object. An individual Column object belonging to this calendar view’s Columns collection.

index
Integer. An index into the calendar view’s Columns collection.

Data Type
Object (Column or Columns collection)

Remarks
If a Column object is to be accessed with the index parameter, the value of index must be between 1
and the size of the CalendarView object’s Columns collection. This size is available in the collection’s
Count property.

Although the Columns property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add method, and the properties on its member Column objects retain their
respective read/write or read-only accessibility.

A calendar view renders each day as a one-column-wide HTML table. For each time slot, the columns
specified in the Columns collection are rendered as successive strings within a single HTML table cell.
When you add a column to the collection, you are not causing an additional HTML table column to be
rendered. Instead, you are causing the column's contents to be concatenated with the strings for all the
other columns in the table cell.

FreeBusinessCell Property
(CalendarView Object)   

The FreeBusinessCell property returns or sets a pattern string for rendering a free time slot during
business hours. Read/write.

Syntax
objCalendarView.FreeBusinessCell

Data Type
String

Remarks
The FreeBusinessCell property applies only when the Mode property of the calendar view contains
CdoModeCalendarDaily.

The default value of the FreeBusinessCell property is

<td rowspan=%apptlength% colspan=%apptwidth% bgcolor=ffffff valign=top
align=left width=100% >
</td>

for a daily view

for a weekly view›. For more information on substitution tokens, see the RenderUsing property of the
Pattern object.

FreeIndicator Property (CalendarView
Object)   

The FreeIndicator property returns or sets a pattern string for rendering the indicator bar for a free
time period. Read/write.

Syntax
objCalendarView.FreeIndicator

Data Type
String

Remarks
The FreeIndicator property applies only when the Mode property of the calendar view contains
CdoModeCalendarDaily.

The default value of the FreeIndicator property is

<td rowspan=%apptlength% colspan=1 bgcolor=ffffff width=3> </td>

For more information on substitution tokens, see the RenderUsing property of the Pattern object.

FreeNonBusinessCell Property
(CalendarView Object)   

The FreeNonBusinessCell property returns or sets a pattern string for rendering a free time slot
outside of business hours. Read/write.

Syntax
objCalendarView.FreeNonBusinessCell

Data Type
String

Remarks
The FreeNonBusinessCell property applies only when the Mode property of the calendar view
contains CdoModeCalendarDaily.

The default value of the FreeNonBusinessCell property is

<td rowspan=%apptlength% colspan=%apptwidth% bgcolor=c0c0c0 valign=top
align=left width=100% >
</td>

for a daily view. For more information on substitution tokens, see the RenderUsing property of the
Pattern object.

Index Property (CalendarView Object)   

The Index property returns the index number for this CalendarView object within the Views collection.
Read-only.

Syntax
objCalendarView.Index

Data Type
Long

Remarks
The Index property indicates this calendar view’s position within the parent Views collection. It can later
be used to reselect this calendar view with the collection’s Item property.

The first view in the Views collection has a Index value of 1.

An index value should not be considered a static value that remains constant for the duration of a
container renderer. It can be affected when other views are added and deleted.

Interval Property (CalendarView Object) 

The Interval property returns or sets the length of a time slot in minutes. Read/write.

Syntax
objCalendarView.Interval

Data Type
Long

Remarks
The Interval property is forced by the CDO Rendering Library to a value between 5 and 60 that divides
integrally into 60. The possible resulting values are 5, 6, 10, 12, 15, 20, 30, and 60. The default value of
Interval is 30 minutes.

The Interval property applies only when the Mode property of the calendar view contains
CdoModeCalendarDaily. If Mode is CdoModeCalendarWeekly, time slots are not displayed, and
each AppointmentItem object is rendered with its StartTime and EndTime values.

IsSameAs Method (CalendarView
Object)   

The IsSameAs method returns True if this CalendarView object is the same as the view object being
compared against.

Syntax
objCalendarView.IsSameAs(objView2)

objCalendarView
Required. This CalendarView object.

objView2
Required. Object. The view object being compared against.

Remarks
The objView2 parameter should be declared as an Object rather than as a CalendarView. This allows
for comparison among different classes of view objects being held in a Views collection.

Two view objects are considered to be the same if and only if their pointer values are the same, that is,
if and only if they are the identical object. Otherwise IsSameAs returns False.

Mode Property (CalendarView Object)   

The Mode property returns or sets the time unit of the calendar view. Read/write.

Syntax
objCalendarView.Mode

Data Type
Long

Remarks
The Mode property specifies the principal unit of display on which the calendar rendering is based. It
controls the style of views generated by the RenderAppointments and RenderEvents methods.
Together with the NumberOfUnits property it determines the overall time span of the calendar view,
that is, the total amount of time rendered onto one HTML page.

Mode can have exactly one of the following values:

Mode setting

Decimal

value

Time unit

CdoMode
CalendarDaily

0 This calendar view is rendered in multiples
of a day.

CdoMode
CalendarWeekly

1 This calendar view is rendered in multiples
of a week.

The Mode property defaults to CdoModeCalendarDaily.

Name Property (CalendarView Object)   

The Name property returns the display name of this CalendarView object. Read-only.

Syntax
objCalendarView.Name

Data Type
String

Remarks
The Name property represents the display name assigned to this calendar view. It can be used to refer
to the calendar view, and to retrieve it by name using the container renderer’s CurrentView property.

The names of the predefined calendar views are "Daily" for a view with mode CdoModeCalendarDaily
and "Weekly for a view with mode CdoModeCalendarWeekly. The mode of the view is available from
its Mode property.

NumberOfUnits Property (CalendarView
Object)   

The NumberOfUnits property returns or sets the number of time units to include in a rendering.
Read/write.

Syntax
objCalendarView.NumberOfUnits

Data Type
Long

Remarks
The NumberOfUnits and Mode properties together determine the overall time span of the calendar
view, that is, the total amount of time rendered onto one HTML page. NumberOfUnits defaults to 1.

For example, if Mode contains CdoModeCalendarWeeky and NumberOfUnits is set to 2, each
output page displays two weeks of calendar time.

OOFIndicator Property (CalendarView
Object)   

The OOFIndicator property returns or sets a pattern string for rendering the indicator bar for an out-of-
office (OOF) time period. Read/write.

Syntax
objCalendarView.OOFIndicator

Data Type
String

Remarks
The OOFIndicator property applies only when the Mode property of the calendar view contains
CdoModeCalendarDaily.

The default value of the OOFIndicator property is

<td rowspan=%apptlength% colspan=1 bgcolor=660066 width=3> </td>

For more information on substitution tokens, see the RenderUsing property of the Pattern object.

RenderAppointments Method
(CalendarView Object)   

The RenderAppointments method renders AppointmentItem objects in the Messages collection.

Syntax
strHTML = objCalendarView.RenderAppointments([StartDate] [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the appointments.
However, if the ResponseObject parameter is supplied, RenderAppointments returns a value of
Empty.

objCalendarView
Required. This CalendarView object.

StartDate
Optional. Variant (vbDate format). The date/time used to determine the starting date from which to
render appointments. The time portion of StartDate is ignored. The default value is the current date.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The RenderAppointments method renders appointments starting with a date calculated from the
StartDate parameter, but not necessarily equal to its value. The rendering starts at the beginning of the
time unit containing the StartDate value. For example, if the calendar view's Mode property is set to
CdoModeCalendarWeekly, the ContainerRenderer object's FirstDayOfWeek property is set to
CdoMonday, and the value of StartDate indicates a Sunday, appointments are rendered starting with
the preceding Monday.

The RenderAppointments method generates an HTML table containing one or more cells. If the
Mode property is CdoModeCalendarDaily, the table contains time slots showing free and busy times
for the day. The length of the time slots is determined by the Interval property. All-day events are
shown by the RenderEvents method and do not appear in the RenderAppointments table.

If Mode is CdoModeCalendarWeekly, the table contains a list of appointments and events for each of
seven days, starting with the day designated in the container renderer's FirstDayOfWeek property.

Appointments are rendered for the number of time units indicated by the NumberOfUnits property,
beginning with the starting date calculated from the StartDate parameter. If NumberOfUnits is greater
than 1, each appointments table appears as a cell within an outer table. If the Mode property is
CdoModeCalendarDaily, the outer table is a single row with NumberOfUnits columns. If Mode is
CdoModeCalendarWeekly, the outer table is a single column with NumberOfUnits rows.

You must set the CurrentView property of the ContainerRenderer object before rendering
appointments, even if you are using the normal view. Otherwise RenderAppointments can generate
unexpected results.

RenderDateNavigator Method
(CalendarView Object)   

The RenderDateNavigator method renders a date navigator that can be used to select a starting date
for rendering.

Syntax
strHTML = objCalendarView.RenderDateNavigator([StartDate] [, Months] [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the date navigator.
However, if the ResponseObject parameter is supplied, RenderDateNavigator returns a value of
Empty.

objCalendarView
Required. This CalendarView object.

StartDate
Optional. Variant (vbDate format). The date/time used to determine the starting date from which to
render the date navigator. The time portion of StartDate is ignored. The default value is the current
date.

Months
Optional. Long. The number of months for which to render the date navigator. The default value is 2.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The RenderDateNavigator method renders the date navigator starting with a date calculated from the
StartDate parameter, but not necessarily equal to its value. The rendering starts at the beginning of the
month containing the StartDate value.

The RenderDateNavigator method generates an HTML table containing one or more cells. It renders
a date navigator that can be used to choose the date to view with the RenderAppointments or
RenderEvents method. An entire month is displayed at a time.

Every day of a month is rendered individually within the image of the month. Each day's rendering
contains a link to a JavaScript function with a paradigm of gotoDate(year, month, day). The frame
containing the date navigator must define and implement the gotoDate function for the linking to work
correctly. Microsoft® JScript™ can be used to implement gotoDate.

RenderDateNavigator also requires the two image files LEFT.GIF and RIGHT.GIF for the arrow
pointers used to move to the previous or next month. You must furnish these in the same directory that
contains the .ASP file calling RenderDateNavigator. You can define your own .GIF files or use the
ones provided with Microsoft® Outlook™ Web Access (OWA), typically in a directory with a path similar
to \\…\Exchsrvr\webdata\calendar.

The date navigator is rendered for the number of months specified in the Months parameter, beginning
with the month calculated from the StartDate parameter. If Months is greater than 1, each month
appears as a cell within an outer table. The outer table is a single column with Months rows.

RenderEvents Method (CalendarView
Object)   

The RenderEvents method renders the events in the Messages collection.

Syntax
strHTML = objCalendarView.RenderEvents([StartDate] [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the events. However, if
the ResponseObject parameter is supplied, RenderEvents returns a value of Empty.

objCalendarView
Required. This CalendarView object.

StartDate
Optional. Variant (vbDate format). The date/time used to determine the starting date from which to
render events. The time portion of StartDate is ignored. The default value is the current date.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The RenderEvents method renders events starting with a date calculated from the StartDate
parameter, but not necessarily equal to its value. The rendering starts at the beginning of the time unit
containing the StartDate value. For example, if the calendar view's Mode property is set to
CdoModeCalendarWeekly, the ContainerRenderer object's FirstDayOfWeek property is set to
CdoSunday, and the value of StartDate indicates a Friday, events are rendered starting with the
preceding Sunday.

The RenderEvents method generates an HTML table containing one or more cells. If the Mode
property is CdoModeCalendarDaily, the table contains the date being rendered in the first row and
events for that day, if any, in subsequent rows.

If Mode is CdoModeCalendarWeekly, the table contains a single row with the starting and ending
dates for the week being rendered. The starting date is calculated using the FirstDayOfWeek property.
No events are rendered because there are no weekly events.

Events are rendered for the number of time units indicated by the NumberOfUnits property, beginning
with the starting date calculated from the StartDate parameter. If NumberOfUnits is greater than 1,
each events table appears as a cell within an outer table. The outer table is a single row with
NumberOfUnits columns.

You must set the CurrentView property of the ContainerRenderer object before rendering events, even
if you are using the normal view. Otherwise RenderEvents can generate unexpected results.

Source Property (CalendarView Object)   

The Source property returns the type of this calendar view. Read-only.

Syntax
objCalendarView.Source

Data Type
Long

Remarks
The Source property indicates the source of the definition of the calendar view. It can have exactly one
of the following values:

Calendar view
source

Decimal

value

Meaning

CdoViewComm
on

0 This calendar view is predefined globally for
all folders and all messaging users.

CdoViewCusto
m

2 This calendar view has been defined in the
context of the current setting of the
DataSource property of the
ContainerRenderer object. It ceases to exist
when the DataSource property is changed.

For more information on calendar view rendering, see Container Object Rendering.

TentativeIndicator Property
(CalendarView Object)   

The TentativeIndicator property returns or sets a pattern string for rendering the indicator bar for a
tentatively busy time period. Read/write.

Syntax
objCalendarView.TentativeIndicator

Data Type
String

Remarks
The TentativeIndicator property applies only when the Mode property of the calendar view contains
CdoModeCalendarDaily.

The default value of the TentativeIndicator property is

<td rowspan=%apptlength% colspan=1 bgcolor=99ccff width=3> </td>

For more information on substitution tokens, see the RenderUsing property of the Pattern object.

Column Object
The Column object represents a column within a view.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects: Columns collection
Child objects: (none)
Default property: (none)

Properties

Name

Available
in version

Type

Access

Class 1.1 Long Read-only

Flags 1.1 Long Read/write
Index 1.1 Long Read-only
Name 1.1 String Read/write
Parent 1.1 Columns collection

object
Read-only

Property 1.1 Long or String Read-only
RenderUsing 1.1 String Read/write

Width 1.1 Long Read/write

Methods
(None.)

Flags Property (Column Object)   

The Flags property returns or sets the flags specifying certain display attributes of this Column object.
Read/write.

Syntax
objColumn.Flags

Data Type
Long

Remarks
The Flags property contains the following bits, which can be set in any combination:

Attribute
flag

Decimal

value

Meaning

CdoColumn
Bitmap

8 The property rendered in this column is
displayed using a bitmap.

CdoColumn
NotSortable

32 The display cannot be sorted on the
property rendered in this column.

If the CdoColumnBitmap flag is set, the column width in the Width property is expressed in pixels
instead of characters. If you use a bitmap, be sure you set Width large enough to render the .GIF
image, or you may get unexpected results.

If you are rendering a calendar view, the value of the Flags property is ignored. The CalendarView
object makes its own alignment calculations.

Index Property (Column Object)   

The Index property returns the index number for this Column object within the Columns collection.
Read-only.

Syntax
objColumn.Index

Data Type
Long

Remarks
The Index property indicates this column’s position within the parent Columns collection. It can later be
used to reselect this column with the collection’s Item property.

The first column in the collection has an Index value of 1.

An index value should not be considered a static value that remains constant for the duration of a view.
It can be affected when other columns are added and deleted.

Name Property (Column Object)   

The Name property returns or sets the default heading for this Column object. Read/write.

Syntax
objColumn.Name

Data Type
String

Remarks
The Name property represents the text to be rendered for this column in the header row. The column
header is rendered according to the HeadingCellPattern property of the ContainerRenderer object.

The Name property is also useful for distinguishing between columns that render the same property.
Two different columns, for example, could render the CdoPR_MESSAGE_CLASS property, one as an
icon and the other as a text string. The two columns would have the same Property property, but they
should have different Name properties, such as “Icon” and “Message Class”.

Property Property (Column Object)   

The Property property returns the name or tag of the property rendered in this column. Read-only.

Syntax
objColumn.Property

Data Type
Variant (Long or String)

Remarks
The Property property is a long integer if the column property is specified by a property tag. If it is a
named custom property, the Property property is a string. The property name in this string can
optionally be prefixed with a GUID string identifying its property set. In this case, the GUID should be
enclosed in braces.

RenderUsing Property (Column Object)   

The RenderUsing property returns or sets a rendering source that determines how a column property
is rendered. Read/write.

Syntax
objColumn.RenderUsing

Data Type
Variant (String)

Remarks
The RenderUsing property provides a source for rendering the column property into HTML hypertext.
The column property is designated in the column’s Property property.

If no column rendering information is available, the container renderer searches for a Format object
representing the renderable property. If no such format can be found, or if the format contains no
Pattern object appropriate for the renderable property’s value, the property is rendered by default
according to its data type and value.

If the RenderUsing string contains substitution tokens within percent signs, such as %value%, the
tokens are replaced by the appropriate attributes of the column property to generate the HTML
hypertext. If there are no substitution tokens in the string, the string itself is rendered without
modification.

For more information on rendering sources and substitution tokens, see the Pattern object’s
RenderUsing property.

Width Property (Column Object)   

The Width property returns or sets the width for this Column object. Read/write.

Syntax
objColumn.Width

Data Type
Long

Remarks
The Width property represents the horizontal space the column is to occupy when displayed from the
HTML output of the rendering.

For common, folder, and personal views, the column widths are relative. They are specified in integer
units typically representing characters. The final display width is arrived at in the following manner:

1. The container renderer determines the overall width of the table view by adding together the Width
properties of every column in the Columns collection of the TableView object.

2. The container renderer computes the proportional width for each column by dividing its Width
property by the overall table view width.

3. The proportional width for each column is placed in the HTML output.
4. The browser calculates each column’s final display width from its proportional width and the

available horizontal space in the browser window.

For custom views, the column widths are absolute and are specified in characters. However, if the
CdoColumnBitmap flag is set in a column’s Flags property, that column's width is expressed in pixels.

If you are rendering a calendar view, the value of the Width property is ignored. The CalendarView
object makes its own calculations for column widths based on the values of its Mode and
NumberOfUnits properties.

Columns Collection Object
The Columns collection object contains zero or more columns in a view.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects: CalendarView

TableView
Child objects: Column
Default property: Item

A Columns collection supports count and index values that let you access an individual Column object
through the Item property. The Columns collection also supports the Microsoft® Visual Basic® For
Each statement.

Properties

Name

Available
in version

Type

Access

Class 1.1 Long Read-only
Count 1.1 Long Read-only
Item 1.1 Column object Read-only
Parent 1.1 TableView object Read-only

Methods

Name

Available
in version

Parameters

Add 1.1 name as String,
property as Variant,
width as Long,
flags as Long,
insertAfter as Long

Add Method (Columns Collection)   

The Add method creates and returns a new Column object in the Columns collection.

Syntax
Set objColumn = objColumnsColl.Add(name, property, width, flags, insertAfter)

objColumn
On successful return, contains the new Column object.

objColumnsColl
Required. The Columns collection object.

name
Required. String. The display name to be assigned to the new Column object.

property
Required. Variant (Long or String). The property tag for the predefined property, or the custom name
of the user-defined property, that is to be rendered in the new Column object.

width
Required. Long. The unit width of the new Column object.

flags
Required. Long. The flags specifying certain display attributes of the new Column object. For a
description of these flags, see the Column object’s Flags property.

insertAfter
Required. Long. The Index value of the column after which the new Column object is to be added to
the collection. If this parameter is 0, the new column is added at the beginning of the collection. If
insertAfter is greater than the size of the collection, the new column is added at the end.

Remarks
The Add method parameters correspond to the Name, Property, Width, Flags, and Index properties
of the new Column object, except that the new column’s Index is greater by 1 than the insertAfter
parameter.

The first column in the collection has an Index value of 1, and the last has an Index equal to the size of
the collection in the Count property. If the value of the insertAfter parameter exceeds the collection’s
size, the new column is added with an Index greater by 1 than the previous size. If insertAfter is less
than the previous size, the Index values of all columns after the new column are incremented by 1. In
all cases, the collection’s Count is incremented by 1.

The property parameter designates the property to be rendered in the column. The parameter can be a
long integer designating the property by property tag, or a string designating it by custom name. In both
cases it corresponds to the Property property.

If the property parameter is a custom name, it can optionally be prefixed with a GUID string identifying
its property set. In this case, the GUID should be enclosed in braces.

If you are rendering a calendar view, the value of the width parameter is ignored, although it is still
required. The CalendarView object makes its own calculations for column widths based on the values
of its Mode and NumberOfUnits properties.

Count Property (Columns Collection)   

The Count property returns the number of Column objects in the collection. Read-only.

Syntax
objColumnsColl.Count

Data Type
Long

Remarks
For more information on using the Count and Item properties, see the example in the Item property.

Item Property (Columns Collection)   

The Item property returns the specified Column object from the Columns collection. Read-only.

Syntax
objColumnsColl.Item(index)

objColumnsColl.Item(propTag)

index
A short integer (less than or equal to 65,535 = &HFFFF) ranging from 1 to objColumnsColl.Count.
Specifies the index within the collection.

propTag
A long integer (greater than or equal to 65,536). Specifies the 32-bit property tag of the renderable
property corresponding to a column in the collection. The renderable property is indicated in the
Column object’s Property property.

The Item property is the default property of a Columns collection, meaning that objColumnsColl(index)
is syntactically equivalent to objColumnsColl.Item(index) in Microsoft® Visual Basic® code.

Data Type
Column object

Remarks
The Item property works like an accessor property.

If the specified Column object is not found in the collection, the Item property returns Nothing.

Although the Item property itself is read-only, the Column object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

Example
This code fragment shows the Count and Item properties working together:

' Put all column names in a collection into a string array
Dim strItemName(100) as String
Dim i As Integer ' loop counter
' error handling omitted from this fragment ...
For i = 1 To objColumnsColl.Count
 strItemName(i) = objColumnsColl.Item(i).Name
 ' or = objColumnsColl(i) since Item and Name are default properties
 If 100 = i Then ' max size of string array
 Exit Function
 End If
Next i

ContainerRenderer Object
The ContainerRenderer object renders the rows of a container object as an HTML table.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects: RenderingApplication (or none)
Child objects: Formats collection

Views collection
Default property: (none)

Properties

Name

Available
in version

Type

Access

BusinessDayEndTim
e

1.2 Variant (vbDate
format)

Read/write

BusinessDayStartTi
me

1.2 Variant (vbDate
format)

Read/write

CellPattern 1.1 String Read/write
Class 1.1 Long Read-only
CodePage 1.1 Long, Object, or String Read/write
CurrentStore 1.2 InfoStore object Write-only
CurrentView 1.1 TableView object Read/write
DataSource 1.1 AddressEntries

collection object,
Folders collection
object, Messages
collection object, or
Recipients collection
object

Read/write

FirstDayOfWeek 1.2 Long Read/write
Formats 1.1 Format object or

Formats collection
object

Read-only

HeadingCellPattern 1.1 String Read/write
HeadingRowPrefix 1.1 String Read/write
HeadingRowSuffix 1.1 String Read/write

Is24HourClock 1.2 Boolean Read/write
LCID 1.1 Long Read-only
LinkPattern 1.1 String Read/write
Parent 1.1 Object; set to Nothing Read-only
PrivateStore 1.1 InfoStore object Read/write
RowsPerPage 1.1 Integer Read/write

RowPrefix 1.1 String Read/write
RowSuffix 1.1 String Read/write

TablePrefix 1.1 String Read/write
TableSuffix 1.1 String Read/write
TimeZone 1.2 Long Read/write
Views 1.1 CalendarView object,

TableView object, or
Views collection object

Read-only

Methods

Name

Available
in version

Parameters

Render 1.1 Style as Long,
(optional) pageNo as Long,
(optional) formatting as Boolean,
(optional) ResponseObject as
Object

RenderDate 1.2 Date as Variant,
Format as String,
(optional) ResponseObject as
Object

RenderHeading 1.1 (optional) cellPattern as String,
(optional) ResponseObject as
Object

RenderPath 1.1 activeLinks as Boolean
(optional) ResponseObject as
Object

RenderProperty 1.1 Property as Variant,
(optional) formatting as Boolean,
(optional) ResponseObject as
Object

RenderTime 1.2 Date as Variant,
Format as String,
(optional) ResponseObject as
Object

Remarks
The ContainerRenderer object can render any subset of the rows of a container object. It can accept a
CDO AddressEntries, Folders, Messages, or Recipients collection in its DataSource property.

The container object contents rendered by the container renderer are as follows:

Data source (container object) Objects (contents) rendered
AddressEntries collection AddressEntry
Folders collection Folder
Messages collection AppointmentItem, GroupHeader,

Message

Recipients collection Recipient

The container renderer inherits all the functionality of the object renderer, and has additional capability
specific to rendering an address book container or folder as a table.

BusinessDayEndTime Property
(ContainerRenderer Object)   

The BusinessDayEndTime property returns or sets the time of day the business day is set to end.
Read/write.

Syntax
objContRend.BusinessDayEndTime

Data Type
Variant (vbDate format)

Remarks
The BusinessDayEndTime property is used when a CalendarView is applied to the container object's
CurrentView property. BusinessDayEndTime contains only the time portion of a standard date/time
field.

The BusinessDayEndTime property can be set from the Session object's "BusinessDayEndTime"
option. It defaults to 5:00 P.M. (17:00) if not set. The session's options are set by its SetOption method
and retrieved with its GetOption method.

BusinessDayStartTime Property
(ContainerRenderer Object)   

The BusinessDayStartTime property returns or sets the time of day the business day is set to start.
Read/write.

Syntax
objContRend.BusinessDayStartTime

Data Type
Variant (vbDate format)

Remarks
The BusinessDayStartTime property is used when a CalendarView is applied to the container object's
CurrentView property. BusinessDayStartTime contains only the time portion of a standard date/time
field. The calendar view scrolls the HTML output to the start of the business day before sending it to the
browser.

The BusinessDayStartTime property can be set from the Session object's "BusinessDayStartTime"
option. It defaults to 9:00 A.M. (09:00) if not set. The session's options are set by its SetOption method
and retrieved with its GetOption method.

CellPattern Property
(ContainerRenderer Object)   

The CellPattern property returns or sets a rendering source that determines how every cell in every
table row is rendered. Read/write.

Syntax
objContRend.CellPattern

Data Type
String

Remarks
The text to be rendered in each cell is taken directly from the property associated with that cell’s
column. The contents of the CellPattern property specify the rendering for all cells in all rows except
for the heading row. The rendering for the heading row cells is specified in the HeadingCellPattern
property.

For example, the CellPattern property could contain

<I>%value%</I>

to cause all the cells in every row of the table to be rendered in italic text.

The default setting of the CellPattern property is

CodePage Property (ContainerRenderer
Object)   

The CodePage property returns or sets the code page used by the ContainerRenderer object.
Read/write.

Syntax
objContRend.CodePage

Data Type
Variant (Long, Object, or String)

Remarks
If the CodePage property is a long integer, it represents the code page to be used for character
representation. If CodePage is an object, it contains an IDispatch pointer to an IRequest object. The
CDO Rendering Library obtains from this object an HTTP Accept-Language header and sets the code
page to the value that most closely matches the header. If CodePage is a string, it is treated as an
International Standards Organization (ISO) language name, and the code page is set from the
Microsoft® Windows NT® registry entry for that language.

If a long integer value for CodePage is invalid, the code page remains unchanged. If a string value is
not a recognizable language name, the appropriate default code page for the locale is used.

The setting of the CodePage property affects character selection and any dependent data
considerations. The collating sequence, the sort order, and the formats for time, date, and currency
representation are set by the Session object’s SetLocaleIDs method and cannot be changed using the
CodePage property.

CurrentStore Property
(ContainerRenderer Object)   

The CurrentStore property sets the message store containing the data source. Write-only.

Syntax
objContRend.CurrentStore

Data Type
Object (InfoStore)

Remarks
The CurrentStore property supplies the InfoStore object that holds the container object to be
rendered. Note that not all container objects reside in a message store. An InfoStore object is relevant
if the container object is a Folders, Messages, or Recipients collection, but CurrentStore is undefined
for an AddressEntries collection. The container object to be rendered is supplied by the DataSource
property.

Example
This code fragment places the value of the message store containing the Session object's Inbox folder
into the CurrentStore property:

' assume valid ContainerRenderer and Session objects
Set objInbox = objSession.Inbox
objContRend.DataSource = objInbox.Messages
strStoreID = objInbox.StoreID
Set objDataSourceStore = objSession.GetInfoStore(strStoreID)
objContRend.CurrentStore = objDataSourceStore

CurrentView Property
(ContainerRenderer Object)   

The CurrentView property returns or sets the current view used to render an address book container
or folder. Read/write.

Syntax
Set objView = objContRend.CurrentView

Set objContRend.CurrentView = objNewView

Set objContRend.CurrentView = index

Set objContRend.CurrentView = name

objView
On successful return, contains the TableView object that is currently applied to the container object
being rendered.

objContRend
Required. The ContainerRenderer object.

objNewView
Object. The view that is to become current.

index
Integer. An index into the container renderer’s Views collection ranging from 1 to the collection’s
Count property.

name
String. The display name of an individual TableView object in the container renderer’s Views
collection.

Data Type
TableView object

Remarks
The view object must be a view in the container renderer’s Views collection. This collection can be
accessed with the container renderer’s Views property. If you attempt to set the current view with a
view object that cannot be found, for example if the index is out of range or there is no view with the
specified name, the current view remains unchanged.

If you use the index parameter, the TableView object occupying the indicated position in the Views
collection becomes the current view.

If you use the name parameter, the first view object in the collection having a matching value in its
Name property becomes the current view.

Setting the CurrentView property applies the view to the container object specified in the DataSource
property. If the new view is a table view, its Columns collection becomes available through the
TableView object’s Columns property. For more information, see Container Object Rendering.

Setting the CurrentView property also causes the underlying AddressEntries, Messages, or Recipients
collection to be repopulated. This means that the collection is altered to contain only the items passing
the new view’s restriction, sorted and grouped as specified by the new view. The collection’s Count
property is also refreshed, and access to its members through the Item property reflect the new sort
order.

Repopulating the collection also means that the filter is inherited from the new view, and the
AddressEntryFilter or MessageFilter object is revised to reflect the new view’s restriction. Any previous

settings of the filter are lost.

If you change the CurrentView property or alter the collection’s filter during execution of an indexed
loop, the index reverts to 1 in your next iteration of the loop, and the repopulated collection is accessed
starting with the first member according to the new restriction and sort specification.

A newly instantiated Views collection always has a default current view. This default can be specified
by the directory or message store underlying the container object. If it is not specified, the CDO
Rendering Library sets it to the first view in the Views collection.

DataSource Property
(ContainerRenderer Object)   

The DataSource property contains the CDO collection to be rendered. Read/write.

Syntax
objContRend.DataSource

Data Type
Object (AddressEntries collection, Folders collection, Messages collection, or Recipients collection)

Remarks
The DataSource property accepts a CDO AddressEntries, Folders, Messages, or Recipients
collection.

Setting the DataSource property specifies the container object to be rendered and instantiates a new
Views collection for the container renderer. The previous Views collection is released, and any custom
view created with the Add method ceases to exist.

Setting the DataSource property repopulates the collection underlying the container object and revises
its filter, just as setting the container renderer’s CurrentView property does. Any previous settings of
the filter are lost.

For more information, see Container Object Rendering.

Example
This code fragment assigns the DataSource property to the Messages collection of the Session
object's Inbox folder:

' assume valid ContainerRenderer and Session objects
Set objInbox = objSession.Inbox
objContRend.DataSource = objInbox.Messages

FirstDayOfWeek Property
(ContainerRenderer Object)   

The FirstDayOfWeek property returns or sets the day on which the week is set to start. Read/write.

Syntax
objContRend.FirstDayOfWeek

Data Type
Long

Remarks
The FirstDayOfWeek property is used when a CalendarView is applied to the container object's
CurrentView property. FirstDayOfWeek can have exactly one of the following values:

FirstDayOfWeek setting Meaning
1 The calendar week begins on Monday.
2 The calendar week begins on Tuesday.
3 The calendar week begins on Wednesday.
4 The calendar week begins on Thursday.
5 The calendar week begins on Friday.
6 The calendar week begins on Saturday.
7 The calendar week begins on Sunday.

The FirstDayOfWeek property can be set from the Session object's "FirstDayOfWeek" option. It
defaults to 7 (Sunday) if not set. The session's options are set by its SetOption method and retrieved
with its GetOption method.

Note that the FirstDayOfWeek property and the "FirstDayOfWeek" option are compatible with each
other but not with the DayOfWeekMask property of the RecurrencePattern object, which uses the
mask constants CdoSunday through CdoSaturday.

Formats Property (ContainerRenderer
Object)   

The Formats property returns a single Format object or a Formats collection. Read-only.

Syntax
Set objFormats = objContRend.Formats

Set objFormat = objContRend.Formats(index)

Set objFormat = objContRend.Formats(name)

objFormats
On successful return, contains the Formats collection of this container renderer.

objContRend
Required. The ContainerRenderer object.

objFormat
On successful return, contains an individual Format object belonging to this container renderer’s
Formats collection.

index
Integer. An index into the container renderer’s Formats collection.

name
String. The reference name of a special-purpose Format object in the collection.

Data Type
Object (Format or Formats collection)

Remarks
Each format in the collection corresponds to a single property, except for special-purpose formats,
which do not represent specific properties. Every property to be rendered should be represented by
exactly one Format object.

New formats should be added to the collection before the DataSource property is set. If you define a
new format after changing the data source, it is ignored during the rendering.

If a Format object is to be accessed with the index parameter, the value of index must be between 1
and the size of the container renderer’s Formats collection. This size is available in the collection’s
Count property.

Although the Formats property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add method, and the properties on its member Format objects retain their
respective read/write or read-only accessibility.

HeadingCellPattern Property
(ContainerRenderer Object)   

The HeadingCellPattern property returns or sets a rendering source that determines how the heading
of each table view column is rendered. Read/write.

Syntax
objContRend.HeadingCellPattern

Data Type
String

Remarks
The heading cell is the cell that appears in the heading row above a column in a table view. Its text is
specified in the Name property of the Column object. The contents of the HeadingCellPattern property
specify the rendering for the heading cell text. The rendering for all the other cells in the table is
specified in the CellPattern property.

For example, the Name properties of the columns might contain “From”, “Subject”, and “Received”, and
the HeadingCellPattern property could contain

%value%

to cause all the heading cells to be rendered in bold text.

The default setting of the HeadingCellPattern property is

%value%

The cellPattern parameter of the RenderHeading method can override the setting of the
HeadingCellPattern property for a particular rendering.

HeadingRowPrefix Property
(ContainerRenderer Object)   

The HeadingRowPrefix property returns or sets the HTML string to insert at the beginning of a view’s
heading row. Read/write.

Syntax
objContRend.HeadingRowPrefix

Data Type
String

Remarks
The heading row is a single-row table of heading cells each of which serves as a heading for a column
in the view. The HeadingRowPrefix property can be used to set global rendering for the entire heading
row. For example, it could contain

<TR>

to render all the heading cells in red.

The default setting of the HeadingRowPrefix property is

<TR BGCOLOR=CCCC99 VALIGN=TOP>

If HeadingRowPrefix is changed, it should always contain the <TR> tag.

You can render the heading row each time you output a frame containing table rows, or you can
choose to render it only in the first frame.

HeadingRowSuffix Property
(ContainerRenderer Object)   

The HeadingRowSuffix property returns or sets the HTML string to insert at the end of a view’s
heading row. Read/write.

Syntax
objContRend.HeadingRowSuffix

Data Type
String

Remarks
The heading row is a single-row table of heading cells each of which serves as a heading for a column
in the view. The HeadingRowSuffix property can be used to terminate the heading row rendering. For
example, it could contain

</TR>

to revert the font to its previous value.

The default setting of the HeadingRowSuffix property is

</TR>

If HeadingRowSuffix is changed, it should always contain the </TR> tag.

You can render the heading row each time you output a frame containing table rows, or you can
choose to render it only in the first frame.

Is24HourClock Property
(ContainerRenderer Object)   

The Is24HourClock property indicates whether the calendar is to be rendered in 12-hour or 24-hour
mode. Read/write.

Syntax
objContRend.Is24HourClock

Data Type
Boolean

Remarks
The Is24HourClock property is used when a CalendarView is applied to the container object's
CurrentView property. Set Is24HourClock to True to render in 24-hour mode, or False to render in
12-hour mode.

The Is24HourClock property can be set from the Session object's "Is24HourClock" option. It defaults
to False if not set. The session's options are set by its SetOption method and retrieved with its
GetOption method.

LCID Property (ContainerRenderer
Object)   

The LCID property returns the locale identifier for the current messaging user. Read-only.

Syntax
objContRend.LCID

Data Type
Long

Remarks
A locale is the set of features of a messaging user’s environment that are dependent on language,
country, culture, and conventions. These features include the character selection, the collating
sequence and sort order, and the date, time, and currency formats. The Session object’s SetLocaleIDs
method sets the locale identifier, which cannot be subsequently changed during the session. The
character selection, however, can be changed by setting the CodePage property.

A locale identifier (LCID) is a 32-bit value containing a 16-bit language identifier and a 4-bit sort
identifier. The Microsoft® Windows NT® macros SORTIDFROMLCID and LANGIDFROMLCID can be
used to extract these identifiers from the LCID.

The LCID property corresponds to the MAPI property PR_LOCALE_ID.

LinkPattern Property
(ContainerRenderer Object)   

The LinkPattern property returns or sets a rendering source that determines how a link in a table row
is rendered. Read/write.

Syntax
objContRend.LinkPattern

Data Type
String

Remarks
The LinkPattern property supplies rendering information for a link to the object represented in a row of
a table view. This link should normally use the complete HTTP syntax.

In a calendar view, a link is rendered from each AppointmentItem object to its related appointment
form. The link is rendered on a nonblank property such as Location or Subject, or on StartTime if no
other nonblank property can be found on the appointment.

The CDO Rendering Library generates a link for exactly one cell in each row of a table. It attempts to
link the cell in the first column that represents a nonempty string property other than the message
class. If no such column can be found, the last cell in the row is linked.

The LinkPattern property determines the appearance of the link in the HTML output. The following
table shows which substitution tokens can be used. Note that their interpretations are not the same as
those for either a column’s RenderUsing property or a pattern’s RenderUsing property.

Substitution token Attribute of object being linked
%classpath% A special-purpose format with the name “classpath”

for rendering a message object’s message class.
%obj% The object’s unique identifier, expressed as a

hexadecimal string.
%rowid% The object’s index in its containing table.
%<formatname>% Any user-defined or system-defined named format.

Setting LinkPattern generates a Format object with the name “message_Link” and adds it to the
container renderer’s Formats collection. This named format is for internal use only. You should always
use the combination of Render and LinkPattern to render any link.

PrivateStore Property
(ContainerRenderer Object)   

The PrivateStore property returns or sets the InfoStore object to be used to access personal views for
a container object. Read/write.

Syntax
objContRend.PrivateStore

Data Type
Object (InfoStore)

Remarks
The PrivateStore property represents a messaging user’s default message store, which contains that
user’s personal views. The default message store is the InfoStore containing the user’s active Inbox
folder.

PrivateStore should be set when the container renderer is instantiated. If it is not set, personal views
are not available to the rendering application.

Example
This code fragment determines the user’s default message store from the Session object and sets the
PrivateStore property accordingly:

Dim objSess As MAPI.Session
Dim objStore As InfoStore
Dim strStoreID As String
' ... assume objects are valid ...
strStoreID = objSess.Inbox.StoreID
Set objStore = objSess.GetInfoStore(strStoreID)
Set objContRend.PrivateStore = objStore
MsgBox "Your default store is " & objStore.Name

Render Method (ContainerRenderer
Object)   

The Render method renders the specified rows of a container object.

Syntax
strHTML = objContRend.Render(Style [, pageNo] [, formatting] [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the rows of the folder
or address book container. However, if the ResponseObject parameter is supplied, Render returns a
value of Empty.

objContRend
Required. The ContainerRenderer object.

Style
Required. Long. Determines which objects are to be rendered into HTML hypertext. The Style
parameter must match the setting of the DataSource property as follows:
Style setting Value Data source Objects rendered
CdoFolder
Contents

1 AddressEntries,

Messages,
Recipients

Address entries, group
headers and messages,
or recipients, but not
child folders

CdoFolder
Hierarchy

2 Folders Child folders, but not
address entries, group
headers, messages, or
recipients

pageNo
Optional. Long. The page at which the rendering is to begin. The default value is 1.

formatting
Optional. Boolean. Reserved. Do not use.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The Style parameter applies to all container objects. You must set it to correspond to the value of the
DataSource property. If you set it incorrectly, for example to CdoFolderHierarchy for a Recipients
collection, or if you do not set it, Render returns CdoE_INVALID_PARAMETER.

Normally only enough rows to fill one frame should be rendered in one call to the Render method. The
programmer can control this by setting the RowsPerPage property. Note that the appropriate number
of rows depends on several factors, including the frame size, the font size, what other items are being
displayed together with the table tows, and download time to the browser.

The HTML output of the Render and RenderHeading methods is treated as two separate tables, one
for the header row and one for the container contents rows. The TablePrefix and TableSuffix property
strings are inserted around each of these tables. If you want to force the generated HTML hypertext to
make a single table, you can alter TablePrefix and TableSuffix before and after your calls to Render
and RenderHeading.

Example

If the container contains 40 messages, this code fragment processes them in three renderings:

Dim pStart As Long ' current starting page
Dim rType As Integer ' type of rows to be rendered
Dim objResp As Object ' Active Server response object
' assume ContainerRenderer object already defined and initialized
objContRend.RowsPerPage = 15 ' 15 rows might fit reasonably in a frame
rType = CdoFolderContents
' ...
pStart = 1
objContRend.Render(rType, pStart, , objResp) ' pStart = 2 on return
objContRend.Render(rType, pStart, , objResp) ' pStart = 3 on return
objContRend.Render(rType, pStart, , objResp) ' pStart = 3 on return

RenderDate Method
(ContainerRenderer Object)   

The RenderDate method renders the date portion of the supplied date/time.

Syntax
strHTML = objContRend.RenderDate(Date, Format [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the date. However, if
the ResponseObject parameter is supplied, RenderDate returns a value of Empty.

objContRend
Required. This ContainerRenderer object.

Date
Required. Variant (vbDate format). The date/time to be rendered as a date.

Format
Required. String. The format picture string to use for the date output.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The RenderDate method ignores the time component of the vbDate format. You can render the time
component with the RenderTime method.

The Format parameter specifies a picture for the output. Its contents are defined in the Win32® function
GetDateFormat.

RenderHeading Method
(ContainerRenderer Object)   

The RenderHeading method renders a table containing the current view’s column headers.

Syntax
strHTML = objContRend.RenderHeading([cellPattern] [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the headers. However,
if the ResponseObject parameter is supplied, RenderHeading returns a value of Empty.

objContRend
Required. The ContainerRenderer object.

cellPattern
Optional. String. A rendering source specifying the rendering of the heading cell for each column. If
supplied, the cellPattern parameter overrides the specification in the HeadingCellPattern property.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The HTML output of the Render and RenderHeading methods is treated as two separate tables, one
for the header row and one for the container contents rows. The TablePrefix and TableSuffix property
strings are inserted around each of these tables. If you want to force the generated HTML hypertext to
make a single table, you can alter TablePrefix and TableSuffix before and after your calls to Render
and RenderHeading.

RenderPath Method (ContainerRenderer
Object)   

The RenderPath method renders the path to a folder or address book container.

Syntax
strHTML = objContRend.RenderPath(activeLinks [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the path. However, if
the ResponseObject parameter is supplied, RenderPath returns a value of Empty.

objContRend
Required. The ContainerRenderer object.

activeLinks
Required. Boolean. If this parameter is True, the folder path is rendered with an HTML link to each
folder in the path hierarchy. If it is False, the path is rendered as plain text.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

RenderProperty Method
(ContainerRenderer Object)   

The RenderProperty method renders the designated property of the parent of the object specified by
the DataSource property.

Syntax
strHTML = objContRend.RenderProperty(Property [, formatting] [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the specified property.
However, if the ResponseObject parameter is supplied, RenderProperty returns a value of Empty.

objContRend
Required. The ContainerRenderer object.

Property
Required. Variant (Long or String). The property tag for the predefined property, or the custom name
of the user-defined property, that is to be rendered.

formatting
Optional. Boolean. Reserved. Do not use.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The container object specified by the DataSource property does not expose any renderable properties.
The RenderProperty method renders a property on the parent object of the container object. The
correspondence of these objects is as follows:

Container object in DataSource

Parent object whose properties are
rendered by RenderProperty

AddressEntries collection AddressList
Messages collection Folder
Recipients collection Message

The individual properties that can be rendered with the RenderProperty method are indicated in the
parent object property descriptions.

The Property parameter designates the property to be rendered. The parameter can be a long integer
designating the property by property tag, or a string designating it by custom name. In both cases it
corresponds to the Property property of the Format object controlling the property to be rendered.

If the Property parameter is a custom name, it can optionally be prefixed with a GUID string identifying
its property set. In this case, the GUID should be enclosed in braces.

RenderTime Method
(ContainerRenderer Object)   

The RenderTime method renders the time portion of the supplied date/time.

Syntax
strHTML = objContRend.RenderTime(Date, Format [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the time. However, if
the ResponseObject parameter is supplied, RenderDate returns a value of Empty.

objContRend
Required. This ContainerRenderer object.

Date
Required. Variant (vbDate format). The date/time to be rendered as a time.

Format
Required. String. The format picture string to use for the time output.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The RenderTime method ignores the date component of the vbDate format. You can render the date
component with the RenderDate method.

The Format parameter specifies a picture for the output. Its contents are defined in the Win32® function
GetTimeFormat.

RowPrefix Property (ContainerRenderer
Object)   

The RowPrefix property returns or sets the HTML string to insert at the beginning of the rendering of
each row. Read/write.

Syntax
objContRend.RowPrefix

Data Type
String

Remarks
The default setting of the RowPrefix property is

<TR BGCOLOR=FFFFFF VALIGN=TOP ALIGN=LEFT>

If RowPrefix is changed, it should always contain the <TR> tag.

RowsPerPage Property
(ContainerRenderer Object)   

The RowsPerPage property returns or sets the number of rows to be rendered with the Render
method. Read/write.

Syntax
objContRend.RowsPerPage

Data Type
Integer

Remarks
The RowsPerPage property is set to the number of rows that are to appear together in a single
display, that is, the number or rows in each frame of the rendering. This number typically varies
between 10 and 25, but could be outside that range under certain conditions. RowsPerPage defaults
to 25.

Several factors can determine the appropriate number of rows per frame:

· The larger the frame used for the table rendering, the more rows it can hold.
· The smaller the maximum font size used in each row, the more rows can fit in a frame.
· The more rows a frame has, the longer it takes to transmit it to the browser.

If you call the RenderHeading method only for the first frame and do not render the heading row in
subsequent frames, then you could increase RowsPerPage after the first frame.

If your frames include display items such as artwork in addition to the table rows, the space usable for
the rows is reduced.

RowSuffix Property (ContainerRenderer
Object)   

The RowSuffix property returns or sets the HTML string to insert at the end of the rendering of each
row. Read/write.

Syntax
objContRend.RowSuffix

Data Type
String

Remarks
The default setting of the RowSuffix property is

</TR>

If RowSuffix is changed, it should always contain the </TR> tag.

TablePrefix Property
(ContainerRenderer Object)   

The TablePrefix property returns or sets the HTML string to insert at the beginning of the rendering of
a folder or address book container table. Read/write.

Syntax
objContRend.TablePrefix

Data Type
String

Remarks
The HTML output of the Render and RenderHeading methods is treated as two separate tables, one
for the header row and one for the item rows. The TablePrefix and TableSuffix property strings are
inserted around each of these tables. If you want to force the generated HTML hypertext to make a
single table, you can alter TablePrefix and TableSuffix as follows:

1. Put <TABLE> in TablePrefix and remove </TABLE> from TableSuffix.
2. Call RenderHeading.
3. Remove <TABLE> from TablePrefix and restore </TABLE> to TableSuffix.
4. Call Render.
5. Restore <TABLE> to TablePrefix.

You might choose to call RenderHeading only in the first frame and then display only item rows in
subsequent frames.

You can set the width of the table to be a percentage of the available horizontal space, or you can use
the %tablewidth% substitution token for a fixed value representing the sum of the widths of all the
columns. The substitution tokens are described in the RenderUsing property of the Pattern object.

The default setting of the TablePrefix property is

<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=1 WIDTH=%tablewidth%>

If TablePrefix is changed, it should normally contain the <TABLE> tag.

TableSuffix Property
(ContainerRenderer Object)   

The TableSuffix property returns or sets the HTML string to insert at the end of the rendering of a
folder or address book container table. Read/write.

Syntax
objContRend.TableSuffix

Data Type
String

Remarks
The HTML output of the Render and RenderHeading methods is treated as two separate tables, one
for the header row and one for the item rows. The TablePrefix and TableSuffix property strings are
inserted around each of these tables. If you want to force the generated HTML hypertext to make a
single table, you can alter TablePrefix and TableSuffix as follows:

1. Put <TABLE> in TablePrefix and remove </TABLE> from TableSuffix.
2. Call RenderHeading.
3. Remove <TABLE> from TablePrefix and restore </TABLE> to TableSuffix.
4. Call Render.
5. Restore <TABLE> to TablePrefix.
You might choose to call RenderHeading only in the first frame and then display only item rows in
subsequent frames.

The default setting of the TableSuffix property is

</TABLE>

If TableSuffix is changed, it should normally contain the </TABLE> tag.

TimeZone Property (ContainerRenderer
Object)   

The TimeZone property returns or sets the time zone in which the calendar is to be rendered.
Read/write.

Syntax
objContRend.TimeZone

Data Type
Long

Remarks
The TimeZone property is used when a CalendarView is applied to the container renderer's
CurrentView property.

The TimeZone property can have exactly one of the following values:

TimeZone setting

Decimal

value

Time zone to
render calendar in

Difference

from GMT
CdoTmzAbuDhabi 24 The time zone used in

the United Arab
Emirates

+ 4:00

CdoTmzAdelaide 19 The time zone used in
central Australia

+ 9:30

CdoTmzAlaska 14 Alaska time zone (North
America)

- 9:00

CdoTmzAlmaty 46 The time zone used in
Kazakhstan

+ 6:00

CdoTmzArizona 38 The time zone used in
Arizona (USA)

- 7:00

CdoTmzAthens 7 The time zone used in
Greece

+ 2:00

CdoTmzAtlantic
Canada

9 Atlantic time zone (North
America)

- 4:00

CdoTmzAzores 29 The time zone used in
the Azores

- 1:00

CdoTmzBaghdad 26 The time zone used in
Iraq

+ 3:00

CdoTmzBangkok 22 The time zone used in
Thailand

+ 7:00

CdoTmzBeijing 45 The time zone used in
mainland China

+ 8:00

CdoTmzBerlin 4 The time zone used in
Germany

+ 1:00

CdoTmzBogota 35 The time zone used in
Colombia

- 5:00

CdoTmzBombay 23 The time zone used in
India

+ 5:30

CdoTmzBrisbane 18 The time zone used in
eastern Australia

+ 10:00

CdoTmzBuenosAires 32 The time zone used in
Argentina

- 3:00

CdoTmzCairo 49 The time zone used in
Egypt

+ 2:00

CdoTmzCaracas 33 The time zone used in
Venezuela

- 4:00

CdoTmzCentral 11 Central time zone (North
America)

- 6:00

CdoTmzDarwin 44 The time zone used in
northern Australia

+ 9:30

CdoTmzEastern 10 Eastern time zone
(North America)

- 5:00

CdoTmzEastern
Europe

5 The time zone used in
Latvia, Lithuania, and
Romania

+ 2:00

CdoTmzEnewetak 39 The time zone used on
Enewetak

- 12:00

CdoTmzFiji 40 The time zone used on
the Fijian Islands

+ 12:00

CdoTmzGuam 43 The time zone used on
Guam

+ 10:00

CdoTmzGMT 1 Greenwich Mean Time,
also called UTC
(Coordinated Universal
Time)

+ 0

CdoTmzHarare 50 The time zone used in
Zimbabwe

+ 2:00

CdoTmzHawaii 15 Hawaii time zone (North
America)

- 10:00

CdoTmzHobart 42 The time zone used in
Tasmania

+ 10:00

CdoTmzHongKong 21 The time zone used in
Hong Kong

+ 8:00

CdoTmzIndiana 34 The time zone used in
Indiana (USA)

- 5:00

CdoTmzIslamabad 47 The time zone used in
Pakistan

+ 5:00

CdoTmzIsrael 27 The time zone used in
Israel

+ 2:00

CdoTmzKabul 48 The time zone used in
Afghanistan

+ 4:30

CdoTmzLisbon 2 The time zone used in
Portugal

+ 0

CdoTmzMagadan 41 The time zone used in
eastern Russia

+ 11:00

CdoTmzMexicoCity 37 The time zone used in
central Mexico

- 6:00

CdoTmzMidAtlantic 30 The time zone used on
the mid-Atlantic islands

- 2:00

CdoTmzMidway
Island

16 The time zone used on
Midway Island

- 11:00

CdoTmzMonrovia 31 The time zone used in
Liberia

+ 0

CdoTmzMoscow 51 The time zone used in
western Russia

+ 3:00

CdoTmzMountain 12 Mountain time zone
(North America)

- 7:00

CdoTmzNewfoundlad 28 The time zone used in
far eastern Canada

- 3:30

CdoTmzOrigin 0 The time zone of the
International Date Line,
where each calendar
day begins

+ 12:00

CdoTmzPacific 13 Pacific time zone (North
America)

- 8:00

CdoTmzParis 3 The time zone used in
France

+ 1:00

CdoTmzPrague 6 The time zone used in
Czechoslovakia

+ 1:00

CdoTmzRiode
Janeiro

8 The time zone used in
Brazil

- 3:00

CdoTmzSaskatchewa
n

36 The time zone used in
Saskatchewan (Canada)

- 6:00

CdoTmzTehran 25 The time zone used in
Iran

+ 3:30

CdoTmzTokyo 20 The time zone used in
Japan

+ 9:00

CdoTmzWellington 17 The time zone used in
New Zealand

+ 12:00

The TimeZone property can be set from the Session object's "TimeZone" option. It defaults to the Web
server's current time zone if not set. The session's options are set by its SetOption method and
retrieved with its GetOption method.

Views Property (ContainerRenderer
Object)   

The Views property returns a single CalendarView or TableView object or a Views collection object
containing all the views on a container object. Read-only.

Syntax
Set objViewsColl = objContRend.Views

Set objView = objContRend.Views(index)

objViewsColl
Object. The Views collection of this container renderer.

objContRend
Required. The ContainerRenderer object.

objView
Object. An individual CalendarView or TableView object belonging to this container renderer’s Views
collection.

index
Integer. An index into the container renderer’s Views collection.

Data Type
Object (TableView or Views collection)

Remarks
The Views collection returned by the Views property contains all the predefined common, folder, and
personal views on the container object. If you have modified any of these predefined views, your
changes are still in effect provided the Views collection has not been released in the meantime.
Custom views you have added to the collection are also in effect until the collection is released. Setting
the DataSource property releases the collection, but setting the CurrentView property does not.

To select the view to be used to render the container object, set the CurrentView property to one of the
views returned in the Views property.

If a view object is to be accessed with the index parameter, the value of index must be between 1 and
the size of the container renderer’s Views collection. This size is available in the collection’s Count
property.

Although the Views property itself is read-only, the collection it returns can be accessed in the normal
manner through its Add method, and the properties on its member CalendarView and TableView
objects retain their respective read/write or read-only accessibility.

Format Object
The Format object contains information that controls how a particular property is to be rendered.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects: Formats collection
Child objects: Patterns collection
Default property: (none)

Properties

Name

Available
in version

Type

Access

Class 1.1 Long Read-only

Name 1.1 String Read/write
Parent 1.1 Formats collection

object
Read-only

Patterns 1.1 Pattern object or
Patterns collection
object

Read-only

Property 1.1 Long or String Read-only

Methods

Name

Available
in version

Parameters

Delete 1.1 (none)

Remarks
The Format object provides rendering information for exactly one property of the object being rendered.
The property is designated by either property tag or property name in the corresponding Format
object's Property property.

A format contains a collection of patterns that control how all values of the property are to be rendered,
available through the format’s Patterns property. Each pattern in the Patterns collection governs the
rendering for a particular set of values of the property.

It is recommended that a format be defined for every renderable property, but it is possible to render a
property without a format. If the property is associated with a column in a table view, that Column
object may have a RenderUsing property providing a rendering source for the column. If a property is
rendered without a format or a rendering source, either in a column or with the RenderProperty
method, it is rendered by data type using default rendering information.

Delete Method (Format Object)   

The Delete method removes the Format object from the Formats collection.

Syntax
objFormat.Delete()

objFormat
Required. The Format object.

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to the Format object. If you have another reference to the format, you can still
access its properties and methods, but you can never again associate it with any collection because
the Add method always creates a new object. You should Set your reference variable either to
Nothing or to another format.

The final Release on the Format object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

The action of the Delete method is permanent, and the Format object cannot be restored to the
collection. Before calling Delete, your application can prompt the user to verify whether the format
should be permanently deleted.

When you delete a member of a collection, the collection is immediately refreshed, meaning that its
Count property is reduced by one and its members are reindexed. To access a member following the
deleted member, you must use its new index value. For more information, see Looping Through a
Collection.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first Format object. That reference survives the call to Delete and has to be reassigned. The
second Format object is deleted without creating another reference, and no other action is necessary.

' assume valid ObjectRenderer object
Set objFormat = objObjectRenderer.Formats.Item(1)
objFormat.Delete ' still have a reference from Set statement
' ... other operations on objFormat possible but pointless ...
Set objFormat = Nothing ' necessary to remove reference
' ...
objObjectRenderer.Formats.Item(2).Delete ' no reference to remove

Name Property (Format Object)   

The Name property returns or sets the reference name of this Format object. Read/write.

Syntax
objFormat.Name

Data Type
String

Remarks
The Name property represents the name used to identify a special-purpose format, which does not
represent a specific property.

Patterns Property (Format Object)   

The Patterns property returns a single Pattern object or a Patterns collection belonging to this format.
Read-only.

Syntax
Set objPatterns = objFormat.Patterns

Set objPattern = objFormat.Patterns(index)

objPatterns
Object. The Patterns collection of this format.

objFormat
Required. The Format object.

objPattern
Object. An individual Pattern object belonging to this format’s Patterns collection.

index
Integer. An index into the format’s Patterns collection.

Data Type
Object (Pattern or Patterns collection)

Remarks
Each pattern in the collection specifies rendering for a particular set of values of the property
represented by the Format object.

If a Pattern object is to be accessed with the index parameter, the value of index must be between 1
and the size of the format’s Patterns collection. This size is available in the collection’s Count property.

Although the Patterns property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add method, and the properties on its member Pattern objects retain their
respective read/write or read-only accessibility.

Property Property (Format Object)   

The Property property returns the name or tag of the property to be rendered. Read-only.

Syntax
objFormat.Property

Data Type
Variant (Long or String)

Remarks
The Property property is a long integer if the property being rendered is specified by a property tag. If
it is a named custom property, the Property property is a string. The property name in this string can
optionally be prefixed with a GUID string identifying its property set. In this case, the GUID should be
enclosed in braces.

Formats Collection Object
The Formats collection object contains zero or more formats for a rendering.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects:

ContainerRenderer
ObjectRenderer
RenderingApplication

Child objects: Format
Default property: Item

A Formats collection supports count and index values that let you access an individual Format object
through the Item property. The Formats collection also supports the Microsoft® Visual Basic® For Each
statement.

Properties

Name

Available
in version

Type

Access

Class 1.1 Long Read-only
Count 1.1 Long Read-only
Item 1.1 Format object Read-only
Parent 1.1 ContainerRenderer

object or
ObjectRenderer object

Read-only

Methods

Name

Available
in version

Parameters

Add 1.1 property as Variant,
(optional) name as String

Remarks
The Formats collection object controls how the values of certain properties are rendered. A property
represented by a Format object in the collection is rendered according to the patterns in that format.
Every property to be rendered should be represented by exactly one Format object.

Add Method (Formats Collection)   

The Add method creates and returns a new Format object in the Formats collection.

Syntax
Set objFormat = objFormatsColl.Add(property [, name])

objFormat
On successful return, contains the new Format object.

objFormatsColl
Required. The Formats collection object.

property
Required. Variant (Long or String). The property tag for the predefined property, or the custom name
of the user-defined property, that is to be formatted by the new Format object. A value of zero is
used to indicate a special-purpose format not representing any property.

name
Optional. String. The name to be assigned to the new Format object. The name parameter is for
special-purpose formats only. If it is specified, the property parameter must be set to zero.

Remarks
The Add method parameters correspond to the Property and Name properties of the Format object.

The property parameter designates the property to be rendered. The parameter can be a long integer
designating the property by property tag, or a string designating it by custom name. In both cases it
corresponds to the Property property.

If the property parameter is a custom name, it can optionally be prefixed with a GUID string identifying
its property set. In this case, the GUID should be enclosed in braces.

The name parameter designates a reference name for a special-purpose format, which does not
represent a specific property.

Every property to be rendered should have exactly one format. The Formats collection cannot contain
more than one Format object for any one property.

You can add a format corresponding to a predefined property at any time, but if you wish to add a
format corresponding to a user-defined property, you must first set the data source of the rendering
object you are working with, that is, either the ContainerRenderer object's DataSource property or the
ObjectRenderer object's DataSource property.

If you attempt to add a user-defined property without the data source being set, you get an error return
from Add. Because the CDO Rendering Library runs primarily in server-side script, which does not
support exception handling, you must explicitly test for errors:

 Set objFormat = objFormatsColl.Add("CustomPropName")
 If Err.Number <> 0 Then
 If Err.Number = &H8000FFFF Then ' E_UNEXPECTED - no data source
 ' handle error - perhaps set DataSource property and try again
 End If
 End If

Count Property (Formats Collection)   

The Count property returns the number of Format objects in the collection. Read-only.

Syntax
objFormatsColl.Count

Data Type
Long

Remarks
For more information on using the Count and Item properties, see the example in the Item property.

Item Property (Formats Collection)   

The Item property returns the specified Format object from the Formats collection. Read-only.

Syntax
objFormatsColl.Item(index)

objFormatsColl.Item(name)

objFormatsColl.Item(propTag)

index
A short integer (less than or equal to 65,535 = &HFFFF) ranging from 1 to objFormatsColl.Count.
Specifies the index within the collection.

name
The display name of the Format object to be selected from the collection.

propTag
A long integer (greater than or equal to 65,536). Specifies the 32-bit property tag of the renderable
property corresponding to a format in the collection. The renderable property is indicated in the
Format object’s Property property.

The Item property is the default property of a Formats collection, meaning that objFormatsColl(index) is
syntactically equivalent to objFormatsColl.Item(index) in Microsoft® Visual Basic® code.

Data Type
Format object

Remarks
The Item property works like an accessor property.

If the specified Format object is not found in the collection, the Item property returns Nothing.

Although the Item property itself is read-only, the Format object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

Example
This code fragment shows the Count and Item properties working together:

' Put all format names in a collection into a string array
Dim strItemName(100) as String
Dim i As Integer ' loop counter
' error handling omitted from this fragment ...
For i = 1 To objFormatsColl.Count Step 1
 strItemName(i) = objFormatsColl.Item(i).Name
 ' or = objFormatsColl(i) since Item and Name are default properties
 If 100 = i Then ' max size of string array
 Exit Function
 End If
Next i

ObjectRenderer Object
The ObjectRenderer object renders selected properties of a specified CDO object.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects: RenderingApplication (or none)
Child objects: Formats collection
Default property: (none)

Properties

Name

Available
in version

Type

Access

Class 1.1 Long Read-only
CodePage 1.1 Long, Object, or String Read/write
DataSource 1.1 AddressEntry,

AppointmentItem,
Attachment, Folder,
MeetingItem,
Message, or Recipient
object

Read/write

Formats 1.1 Format object or
Formats collection
object

Read-only

LCID 1.1 Long Read-only
LinkPattern 1.1 String Read/write
Parent 1.1 RenderingApplication

object or set to
Nothing

Read-only

Methods

Name

Available
in version

Parameters

RenderDate 1.2 Date as Variant,
Format as String,
(optional) ResponseObject as
Object

RenderLink 1.1 (optional) ResponseObject as
Object

RenderProperty 1.1 Property as Variant,
(optional) formatting as Boolean,
(optional) ResponseObject as
Object

RenderTime 1.2 Date as Variant,
Format as String,
(optional) ResponseObject as
Object

Remarks
The ObjectRenderer object can be applied to a CDO object to render selected properties. For example,
you can use it to render the subject properties of a Message object or the subfolders of a Folder object.
The object renderer is easier and faster to use than a specialized renderer such as the
ContainerRenderer object. You use the object renderer when you need only a few properties and not
the full tabular functionality of the specialized rendering object.

CodePage Property (ObjectRenderer
Object)   

The CodePage property returns or sets the code page used by the ObjectRenderer object. Read/write.

Syntax
objObjectRend.CodePage

Data Type
Variant (Long, Object, or String)

Remarks
If the CodePage property is a long integer, it represents the code page to be used for character
representation. If CodePage is an object, it contains an IDispatch pointer to an IRequest object. The
CDO Rendering Library obtains from this object an HTTP Accept-Language header and sets the code
page to the value that most closely matches the header. If CodePage is a string, it is treated as an
International Standards Organization (ISO) language name, and the code page is set from the
Microsoft® Windows NT® registry entry for that language.

If a long integer value for CodePage is invalid, the code page remains unchanged. If a string value is
not a recognizable language name, the appropriate default code page for the locale is used.

The setting of the CodePage property affects character selection and any dependent data
considerations. The collating sequence, the sort order, and the formats for time, date, and currency
representation are set by the Session object’s SetLocaleIDs method and cannot be changed using the
CodePage property.

DataSource Property (ObjectRenderer
Object)   

The DataSource property contains the CDO object for which certain properties are to be rendered.
Read/write.

Syntax
objObjectRend.DataSource

Data Type
Object (AddressEntry, AppointmentItem, Attachment, Folder, MeetingItem, Message, or Recipient)

Remarks
The DataSource property accepts a AddressEntry, AppointmentItem, Attachment, Folder,
MeetingItem, Message, or Recipient object.

Formats Property (ObjectRenderer
Object)   

The Formats property returns a single Format object or a Formats collection. Read-only.

Syntax
Set objFormats = objObjectRend.Formats

Set objFormat = objObjectRend.Formats(index)

Set objFormat = objObjectRend.Formats(name)

objFormats
Object. The Formats collection of this object renderer.

objObjectRend
Required. The ObjectRenderer object.

objFormat
Object. An individual Format object belonging to this object renderer’s Formats collection.

index
Integer. An index into the object renderer’s Formats collection.

name
String. The reference name of a special-purpose Format object in the collection.

Data Type
Object (Format or Formats collection)

Remarks
Each format in the collection corresponds to a single property, except for special-purpose formats,
which do not represent specific properties. Every property to be rendered should be represented by
exactly one Format object.

New formats should be added to the collection before the DataSource property is set. If you define a
new format after changing the data source, it is ignored during the rendering.

If a Format object is to be accessed with the index parameter, the value of index must be between 1
and the size of the object renderer’s Formats collection. This size is available in the collection’s Count
property.

Although the Formats property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add method, and the properties on its member Format objects retain their
respective read/write or read-only accessibility.

LCID Property (ObjectRenderer Object)   

The LCID property returns the locale identifier for the current messaging user. Read-only.

Syntax
objObjectRend.LCID

Data Type
Long

Remarks
A locale is the set of features of a messaging user’s environment that are dependent on language,
country, culture, and conventions. These features include the character selection, the collating
sequence and sort order, and the date, time, and currency formats. The Session object’s SetLocaleIDs
method sets the locale identifier, which cannot be subsequently changed during the session. The
character selection, however, can be changed by setting the CodePage property.

A locale identifier (LCID) is a 32-bit value containing a 16-bit language identifier and a 4-bit sort
identifier. The Microsoft® Windows NT® macros SORTIDFROMLCID and LANGIDFROMLCID can be
used to extract these identifiers from the LCID.

The LCID property corresponds to the MAPI property PR_LOCALE_ID.

LinkPattern Property (ObjectRenderer
Object)   

The LinkPattern property returns or sets a rendering source that determines how a link is rendered.
Read/write.

Syntax
objObjectRend.LinkPattern

Data Type
String

Remarks
The LinkPattern property supplies rendering information for a link to the object currently specified in
the DataSource property. The link is rendered by the RenderLink method. It can use the complete
HTTP syntax or simply render a URL.

The LinkPattern property determines the appearance of the link in the HTML output. The following
table shows which substitution tokens can be used. Note that their interpretations are not the same as
for a pattern’s RenderUsing property.

Substitution token Attribute of object being linked
%classpath% A special-purpose format with the name “classpath”

for rendering a message object’s message class.
%obj% The object’s unique identifier, expressed as a

hexadecimal string.
%<formatname>% Any user-defined or system-defined named format.

Setting LinkPattern generates a Format object with the name “message_Link” and adds it to the object
renderer’s Formats collection. This named format is for internal use only. You should always use the
combination of RenderLink and LinkPattern to render any link.

RenderDate Method (ObjectRenderer
Object)   

The RenderDate method renders the date portion of the supplied date/time.

Syntax
strHTML = objObjectRend.RenderDate(Date, Format [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the date. However, if
the ResponseObject parameter is supplied, RenderDate returns a value of Empty.

objObjectRend
Required. This ObjectRenderer object.

Date
Required. Variant (vbDate format). The date/time to be rendered as a date.

Format
Required. String. The format picture string to use for the date output.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The RenderDate method ignores the time component of the vbDate format. You can render the time
component with the RenderTime method.

The Format parameter specifies a picture for the output. Its contents are defined in the Win32® function
GetDateFormat.

RenderLink Method (ObjectRenderer
Object)   

The RenderLink method renders an HTML link to a specified object.

Syntax
strHTML = objObjectRend.RenderLink([ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the link. However, if
the ResponseObject parameter is supplied, RenderLink returns a value of Empty.

objObjectRend
Required. The ObjectRenderer object.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The RenderLink method renders a link to the object currently specified in the DataSource property.
The rendering information is supplied in the LinkPattern property.

RenderProperty Method
(ObjectRenderer Object)   

The RenderProperty method renders the designated property of the object specified by the
DataSource property.

Syntax
strHTML = objObjectRend.RenderProperty(Property [, formatting] [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the specified property.
However, if the ResponseObject parameter is supplied, RenderProperty returns a value of Empty.

objObjectRend
Required. The ObjectRenderer object.

Property
Required. Variant (Long or String). The property tag for the predefined property, or the custom name
of the user-defined property, that is to be rendered.

formatting
Optional. Boolean. Reserved. Do not use.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The individual properties that can be rendered with the RenderProperty method are indicated in the
appropriate object property descriptions.

The Property parameter designates the property to be rendered. The parameter can be a long integer
designating the property by property tag, or a string designating it by custom name. In both cases it
corresponds to the Property property of the Format object controlling the property to be rendered.

If the Property parameter is a custom name, it can optionally be prefixed with a GUID string identifying
its property set. In this case, the GUID should be enclosed in braces.

RenderTime Method (ObjectRenderer
Object)   

The RenderTime method renders the time portion of the supplied date/time.

Syntax
strHTML = objObjectRend.RenderTime(Date, Format [, ResponseObject])

strHTML
On successful return, contains a string with the HTML hypertext representing the time. However, if
the ResponseObject parameter is supplied, RenderTime returns a value of Empty.

objObjectRend
Required. This ObjectRenderer object.

Date
Required. Variant (vbDate format). The date/time to be rendered as a time.

Format
Required. String. The format picture string to use for the time output.

ResponseObject
Optional. Object. An Active Server response object used to send HTML output to the browser. If this
parameter is not supplied, HTML output is written to strHTML.

Remarks
The RenderTime method ignores the date component of the vbDate format. You can render the date
component with the RenderDate method.

The Format parameter specifies a picture for the output. Its contents are defined in the Win32® function
GetTimeFormat.

Pattern Object
The Pattern object represents a rendering pattern within a format.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects: Patterns collection
Child objects: (none)
Default property: (none)

Properties

Name

Available
in version

Type

Access

Class 1.1 Long Read-only
Parent 1.1 Patterns collection

object
Read-only

RenderUsing 1.1 String Read/write

Value 1.1 Variant Read/write

Methods

Name

Available
in version

Parameters

Delete 1.1 (none)

Remarks
The Pattern object governs how a particular set of values of a property are to be rendered. The
property is specified by the Property property of the Format object owning the parent Patterns
collection. Each Pattern object in the collection specifies the rendering for the property when its value
matches the contents of the pattern’s Value property.

Delete Method (Pattern Object)   

The Delete method removes the Pattern object from the Patterns collection.

Syntax
objPattern.Delete()

objPattern
Required. The Pattern object.

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection’s reference to the Pattern object. If you have another reference to the pattern, you can still
access its properties and methods, but you can never again associate it with any collection because
the Add method always creates a new object. You should Set your reference variable either to
Nothing or to another pattern.

The final Release on the Pattern object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

The action of the Delete method is permanent, and the Pattern object cannot be restored to the
collection. Before calling Delete, your application can prompt the user to verify whether the pattern
should be permanently deleted.

When you delete a member of a collection, the collection is immediately refreshed, meaning that its
Count property is reduced by one and its members are reindexed. To access a member following the
deleted member, you must use its new index value. For more information, see Looping Through a
Collection.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first Pattern object. That reference survives the call to Delete and has to be reassigned. The
second Pattern object is deleted without creating another reference, and no other action is necessary.

' assume valid Format object
Set objPattern = objFormat.Patterns.Item(1)
objPattern.Delete ' still have a reference from Set statement
' ... other operations on objPattern possible but pointless ...
Set objPattern = Nothing ' necessary to remove reference
' ...
objFormat.Patterns.Item(2).Delete ' no reference to remove

RenderUsing Property (Pattern Object)   

The RenderUsing property returns or sets a rendering source that determines how a particular value
set of a designated property is rendered. Read/write.

Syntax
objPattern.RenderUsing

Data Type
Variant (String)

Remarks
The RenderUsing property provides a source for rendering a property into HTML hypertext. The
property to be rendered is designated in the parent Format object’s Property property. If that property
has the value or values specified in this pattern’s Value property, this RenderUsing string is used to
render it. Otherwise, the rendering uses a pattern with a matching Value property.

If the renderable property is a column property in a table view, the rendering information is taken from
the Column object’s RenderUsing property. If no column rendering information is available, the
rendering object searches for a format representing the renderable property. If no such format can be
found, or if the format contains no pattern with a value match, the property is rendered by default
according to its data type and value.

If the RenderUsing string contains substitution tokens within percent signs, such as %value%, the
tokens are replaced by the appropriate attributes of the designated property to generate the HTML
hypertext. If there are no substitution tokens in the string, the string itself is rendered without
modification.

This approach lets you keep compact values in a property, such as enumerated integers instead of
lengthier strings. You can then use the integer value as an index into the Patterns collection through
each pattern’s Value property. The pattern’s RenderUsing property can contain the rendering string
appropriate for that particular integer value.

The substitution tokens that can be inserted in a rendering source are as follows:

Substitution

token

Attribute of property being rendered

%apptlength
%

For a property on an AppointmentItem object being viewed
in CdoModeCalendarDaily mode, the number of rows
spanned by the appointment or free block.

%apptwidth
%

For a property on an AppointmentItem object being viewed
in CdoModeCalendarDaily mode, the number of columns
spanned by the appointment or free block.

%classpath% For a property on a Message object, the message class
expressed as a lowercase string, such as ipm.note. For a
report message class, only the first and last elements are
retained, so that REPORT.IPM.Note.NDR is expressed as
report.ndr. When the application sets the FormsRoot
property of the RenderingApplication object, a special-
purpose format named %classpath% is created, which
further processes the output of this token.

%columns% For a property on an AppointmentItem object being viewed
in CdoModeCalendarDaily mode, the total number of
columns in the view.

%date% For a property on an AppointmentItem object, the day for
which appointments are being rendered, expressed as a
string.

%kvalue% For a numeric property, its value expressed in kilobytes,
that is, the value divided by 1024. This value is rendered
without a “K” character.

%obj% For a property on any object, the unique identifier of the
object, expressed as a hexadecimal string.

%parentobj% For a property on a Message object, the unique identifier of
the parent folder of the message, expressed as a
hexadecimal string.

%rowid% For a property on an object in a calendar view or a table
view, the position of the object in its containing table. This
position is also the row number in the view.

%time% For a property on an AppointmentItem object being viewed
in CdoModeCalendarDaily mode, the time of the time slot
currently being rendered, expressed as a string. If the slot
begins on an hour boundary, the string contains the hour
and either "AM" or "PM". Otherwise, the string contains the
time separator character and the starting minute.

%tablewidth
%

For a property on an object in a calendar view or a table
view, the sum of the pixel widths of all the columns in the
view, expressed in pixels. The %tablewidth% token is
primarily useful for the TablePrefix property of the
ContainerRenderer object.

%value% For a property on any object, the value of the property,
rendered according to the property’s data type.

A substitution token can also contain the name of a Format object between the percent signs. If the
token matches a format’s Name property, the patterns of that format are searched to find the
RenderUsing string. This approach lets you bypass the predefined tokens and customize your
rendering.

If the character string between the percent signs is not a valid substitution token or format name, the
property is rendered by data type. If a token is valid but does not apply to the property being rendered,
for example a %kvalue% token for a string property, nothing is rendered in place of the token.

More than one substitution token can be included in a RenderUsing string, for example %value%,
%obj%, and %parentobj%.

The %classpath% token is rendered from the MAPI property PR_MESSAGE_CLASS. The %obj%
token is rendered from a long-term entry identifier if one is available in the underlying table, and
otherwise from the MAPI property PR_ENTRYID. The %parentobj% token is rendered from the MAPI
property PR_PARENT_ENTRYID, and the %rowid% token from the MAPI property PR_ROWID.

Example
The renderable property is specified in a column’s Property property, or a format’s Property property if
the column does not supply rendering information.

If the renderable property contains a string:

www.microsoft.com

and the RenderUsing string contains a substitution token:

Microsoft Corporation

the column property is rendered with the token replaced:

Microsoft Corporation

If the RenderUsing string contains no substitution token:

Microsoft Corporation

it is rendered unchanged for the column property:

Microsoft Corporation

If the RenderUsing string contains an invalid token:

Microsoft Corporation

the column property is rendered based on its data type:

Microsoft Corporation

If the RenderUsing property contains an inapplicable token:

Microsoft Corporation

it is rendered without any output for the token:

Microsoft Corporation

Value Property (Pattern Object)   

The Value property indicates which property value or values are to be rendered using this pattern.
Read/write.

Syntax
objPattern.Value

Data Type
Variant

Remarks
The Value property specifies a set of values for the property designated in the Format object’s
Property property. If the designated property contains a value within this set of values, it is rendered as
specified in the RenderUsing property.

A string value consisting of a single asterisk (*) can be used to match all possible values of the
designated property. A string value can also have the following regular expressions embedded within it:

Regular
expression

Matching values

* Zero or more characters of any values.
? Exactly one character of any value.
[…] A single character matching any character within the

brackets.
[x1-x2] A single character matching any character in the

range between the characters x1 and x2 inclusive.

A valid hexadecimal string in the Value property can be converted to a binary value for purposes of
matching, if appropriate to the data type of the designated property.

If no pattern can be found with a value match, or if no format has been defined for the renderable
property, it is rendered by default according to its data type and value.

Common values of the Value property include:

 "*"
 True
 CdoLow
 CdoCc
 CdoFileLink
 "*Urgent*"
 "\\PAYROLL\ARCHIVE\198?\B.XLS"
 "All[ae]n H. Anders[eo]n"
 "\\SERVER[1-5]\PRODUCTS"

Patterns Collection Object
The Patterns collection object contains zero or more patterns in a format.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects: Format
Child objects: Pattern
Default property: Item

A Patterns collection supports count and index values that let you access an individual Pattern object
through the Item property. The Patterns collection also supports the Microsoft® Visual Basic® For Each
statement.

Properties

Name

Available
in version

Type

Access

Class 1.1 Long Read-only
Count 1.1 Long Read-only
Item 1.1 Pattern object Read-only
Parent 1.1 Format object Read-only

Methods

Name

Available
in version

Parameters

Add 1.1 value as Variant,
renderUsing as Variant

Remarks
The parent Format object represents a property to be rendered. The Patterns collection should contain
enough patterns to cover all possible values of this property. Each Pattern object’s Value property
indicates the set of values to be rendered by that pattern. If only one Pattern object is included in the
collection, its Value property should contain a string value consisting of a single asterisk (*), which
matches all possible values of the property to be rendered.

Add Method (Patterns Collection)   

The Add method creates and returns a new Pattern object in the Patterns collection.

Syntax
Set objPattern = objPatternsColl.Add(value, renderUsing)

objPattern
On successful return, contains the new Pattern object.

objPatternsColl
Required. The Patterns collection object.

value
Required. Variant. Specifies which property values are to be rendered using the new Pattern object.

renderUsing
Required. Variant. Specifies how a property is to be rendered using the new Pattern object.

Remarks
The Add method parameters correspond to the Value and RenderUsing properties of the new Pattern
object.

Count Property (Patterns Collection)   

The Count property returns the number of Pattern objects in the collection. Read-only.

Syntax
objPatternsColl.Count

Data Type
Long

Remarks
For more information on using the Count and Item properties, see the example in the Item property.

Item Property (Patterns Collection)   

The Item property returns the specified Pattern object from the Patterns collection. Read-only.

Syntax
objPatternsColl.Item(index)

index
A short integer ranging from 1 to objPatternsColl.Count.

The Item property is the default property of a Patterns collection, meaning that objPatternsColl(index)
is syntactically equivalent to objPatternsColl.Item(index) in Microsoft® Visual Basic® code.

Data Type
Pattern object

Remarks
The Item property works like an accessor property.

If the specified Pattern object is not found in the collection, the Item property returns Nothing.

Although the Item property itself is read-only, the Pattern object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

Example
This code fragment shows the Count and Item properties working together:

' Put all pattern names in a collection into a string array
Dim strItemName(100) as String
Dim i As Integer ' loop counter
' error handling omitted from this fragment ...
For i = 1 To objPatternsColl.Count Step 1
 strItemName(i) = objPatternsColl.Item(i).Name
 ' or = objPatternsColl(i) since Item and Name are default properties
 If 100 = i Then ' max size of string array
 Exit Function
 End If
Next i

RenderingApplication Object
The RenderingApplication object provides a framework and support for specific rendering objects.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects: (none)
Child objects:

ContainerRenderer
Formats collection
ObjectRenderer

Default property: (none)

Properties

Name

Available
in version

Type

Access

Class 1.1 Long Read-only
CodePage 1.1 Long, Object, or String Read/write
ConfigParameter 1.1 Variant Read-only
Formats 1.1 Formats collection

object
Read-only

FormsRoot 1.1 String Read/write
ImpID 1.2 Double Read-only

LCID 1.1 Long Read-only
LoggingLevel 1.1 Long Read/write
Name 1.1 String Read/write
Parent 1.1 Object; set to Nothing Read-only
SecurityID 1.2 Double Read-only

Version 1.1 String Read-only
VirtualRoot 1.1 String Read/write

Methods

Name

Available
in version

Parameters

CreateRenderer 1.1 class as Integer
Impersonate 1.2 dwImpID as Double
LoadConfiguration 1.1 source as Integer,

section as String

Remarks

The RenderingApplication object provides a framework for a rendering application. You can set options
on the RenderingApplication object that are inherited by all rendering objects created by the
CreateRenderer method. The interface instantiated by the RenderingApplication object also provides
for event logging and performance monitoring.

CodePage Property
(RenderingApplication Object)   

The CodePage property returns or sets the code page to be used by all rendering objects created with
the CreateRenderer method. Read/write.

Syntax
objRendApp.CodePage

Data Type
Variant (Long, Object, or String)

Remarks
If the CodePage property is a long integer, it represents the code page to be used for character
representation. If CodePage is an object, it contains an IDispatch pointer to an IRequest object. The
CDO Rendering Library obtains from this object an HTTP Accept-Language header and sets the code
page to the value that most closely matches the header. If CodePage is a string, it is treated as an
International Standards Organization (ISO) language name, and the code page is set from the
Microsoft® Windows NT® registry entry for that language.

If a long integer value for CodePage is invalid, the code page remains unchanged. If a string value is
not a recognizable language name, the appropriate default code page for the locale is used.

The setting of the CodePage property affects character selection and any dependent data
considerations. The collating sequence, the sort order, and the formats for time, date, and currency
representation are set by the Session object’s SetLocaleIDs method and cannot be changed using the
CodePage property.

ConfigParameter Property
(RenderingApplication Object)   

The ConfigParameter property returns the value of a named configuration parameter. Read-only.

Syntax
objRendApp.ConfigParameter(parameter)

parameter
Required. String. The named of the parameter read from a configuration section.

Data Type
Variant

Remarks
The ConfigParameter property accesses the values of the named configuration parameters read in by
the LoadConfiguration method. The following table lists each parameter and its corresponding user
interface setting in the HTTP Protocol property sheets:

Configuration
parameter

Data
type

HTTP Protocol property sheet
setting

"Admin Display Name" String Display name
"Admin Note" String Administrative note
"Anonymous Access" Boolean Allow anonymous users to access

the public folders
"AnonymousSessionTimeo
ut"

Long (Registry) Session timeout for
anonymous users (default 20
minutes)

"AuthenticatedSessionTim
eout"

Long (Registry) Session timeout for
authenticated users (default 60
minutes)

"Debug" Long Verbosity level of error messages
sent to the browser (used by
Debug build)

"Directory Name" String Directory name
"Enterprise" String Organization name (corresponding

to the X.400 "o=")
"HTTP Enabled" Boolean Enable protocol

"HTTP Servers" String
array

List of all HTTP-enabled servers in
the site

"Language Pack Directory" String Physical directory location of
langpack DLLs

"Publish AB Attributes" String
array

List of GAL attributes to publish

"Publish GAL" Boolean Allow anonymous users to browse
the global address list

"Publish GAL Limit" Long Maximum number of entries
(Advanced page)

"Published Public Folders" String
array

Public folder shortcuts (Folder
Shortcuts page)

"RFC1867NoCleanupAt
Unload"

Long
used as
Boolean

(Registry) Do not attempt to delete
files in the temporary Web server
directory at shutdown

"RFC1867SaveDirectory" String (Registry) Path to a temporary
directory on the Web server to hold
attachments to messages still
being composed

"RFC1867Trace" Long
used as
Boolean

(Registry) Log all file uploads to a
TRCnnnnn.TMP file in the
temporary Web server directory

"Server" String Name of Microsoft® Exchange 5.0
Server

"Site" String Organizational Unit name
(corresponding to the X.400 "ou=")

The user interface can be accessed at

Exchange Administrator\Site name\Configration\Protocol\HTTP(Web) Site
Setting Properties

You can also use ConfigParameter to set and retrieve registry values that are unrelated to CDO
Rendering. If you do this, such values are ignored by the CDO Rendering Library.

CreateRenderer Method
(RenderingApplication Object)   

The CreateRenderer method creates a rendering object attached to the rendering application.

Syntax
Set objRenderer = objRendApp.CreateRenderer(class)

objRenderer
On successful return, contains the new rendering object.

objRendApp
Required. The RenderingApplication object.

class
Required. Integer. The class of rendering object to create. The class parameter can have exactly
one of the following values:
class
setting

Decimal

value

Meaning

CdoClass
ContainerRender
er

3 Create a ContainerRenderer object.

CdoClass
ObjectRenderer

2 Create an ObjectRenderer object.

Remarks
The rendering object created by the CreateRenderer method inherits the code page and formats from
this application, as well as logging capability. You could create a container renderer or object renderer
directly by calling the Microsoft® Visual Basic® CreateObject function, but you would sacrifice the
inheritance.

Formats Property
(RenderingApplication Object)   

The Formats property returns a single Format object or a Formats collection. Read-only.

Syntax
Set objFormats = objRendApp.Formats

Set objFormat = objRendApp.Formats(index)

Set objFormat = objRendApp.Formats(name)

objFormats
Object. The Formats collection of this rendering application.

objRendApp
Required. The RenderingApplication object.

objFormat
Object. An individual Format object belonging to this rendering application’s Formats collection.

index
Integer. An index into the rendering application’s Formats collection.

name
String. The reference name of a special-purpose Format object in the collection.

Data Type
Object (Format or Formats collection)

Remarks
Each format in the collection corresponds to a single property, except for special-purpose formats,
which do not represent specific properties. Every property to be rendered should be represented by
exactly one Format object.

The collection of rendering formats returned by the Formats property is inherited by all rendering
objects created by the CreateRenderer method. Each format corresponds to one property to be
rendered.

If a Format object is to be accessed with the index parameter, the value of index must be between 1
and the size of the rendering application’s Formats collection. This size is available in the collection’s
Count property.

Although the Formats property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add method, and the properties on its member Format objects retain their
respective read/write or read-only accessibility.

FormsRoot Property
(RenderingApplication Object)   

The FormsRoot property returns or sets the absolute path to a forms directory tree on Microsoft®
Internet Information Server (IIS). Read/write.

Syntax
objRendApp.FormsRoot

Data Type
String

Remarks
The FormsRoot property contains the complete path to an IIS disk directory used as the root of a tree
of subdirectories containing .ASP files. Each of these subdirectories corresponds to a message class
which can be rendered into HTML hypertext. The tree is considered to have its root at a path node
ending with the string "\Forms". If the path specified in FormsRoot does not end with this string, it is
appended to FormsRoot to access the tree.

Setting the FormsRoot property causes the rendering application to generate a special-purpose format
with the name “classpath”. This format contains a pattern for each subdirectory in the tree that contains
at least one .ASP file. The %classpath% format is used to process the output of the %classpath%
substitution token when it appears in the RenderUsing property of a Pattern object.

Note that the the FormsRoot property contains an absolute disk directory path at IIS, while the
VirtualRoot property contains an HTTP path at the browser.

If the FormsRoot property has not been set, the %classpath% format is not defined, and the output of
the %classpath% substitution token in the pattern's RenderUsing property is used without
modification. You must set FormsRoot to the appropriate path if %classpath% is to be used to access
a disk directory.

Example
Assuming the following IIS disk directory structure:

 C:\exchsvr\webdata\usa\forms
 \ipm
 \note*.asp
 \post*.asp
 \document*.asp
 \report
 \dr [with no .ASP files]
 \ndr*.asp
 \ipnrn*.asp

the %classpath% format is generated to contain the following patterns:

Value property RenderUsing property
* ipm/note/
ipm.post* ipm/post/
ipm.document* ipm/document/
report.ndr* report/ndr/
report.ipnrn* report/ipnrn/

Impersonate Method
(RenderingApplication Object)   

The Impersonate method uses a saved security context handle to impersonate an authenticated
messaging user.

Syntax
objRendApp.Impersonate(dwImpID)

objRendApp
Required. The RenderingApplication object.

dwImpID
Required. Double. The saved security context handle, or zero to revert to unauthenticated access.

Remarks
The handle to the Microsoft® Windows NT® security context can be obtained from the ImpID property
and saved in the Session object while the authenticated messaging user is logged on to the Microsoft®
Exchange Server. For more information, see Impersonation.

ImpID Property (RenderingApplication
Object)   

The ImpID property returns the security context handle for the current messaging user. Read-only.

Syntax
objRendApp.ImpID

Data Type
Double

Remarks
The handle points to the Microsoft® Windows NT® security context that permits the current messaging
user to make authenticated access to the Microsoft® Exchange Server, for example to open a mailbox.
The security context can be saved in the Session object and used later by the Impersonate method to
impersonate the current messaging user on an unauthenticated thread. For more information, see
Impersonation.

LCID Property (RenderingApplication
Object)   

The LCID property returns the locale identifier for the current messaging user. Read-only.

Syntax
objRendApp.LCID

Data Type
Long

Remarks
A locale is the set of features of a messaging user’s environment that are dependent on language,
country, culture, and conventions. These features include the character selection, the collating
sequence and sort order, and the date, time, and currency formats. The Session object’s SetLocaleIDs
method sets the locale identifier, which cannot be subsequently changed during the session. The
character selection, however, can be changed by setting the CodePage property.

A locale identifier (LCID) is a 32-bit value containing a 16-bit language identifier and a 4-bit sort
identifier. The Microsoft® Windows NT® macros SORTIDFROMLCID and LANGIDFROMLCID can be
used to extract these identifiers from the LCID.

The LCID property corresponds to the MAPI property PR_LOCALE_ID.

LoadConfiguration Method
(RenderingApplication Object)   

The LoadConfiguration method loads configuration information from the specified source.

Syntax
objRendApp.LoadConfiguration(source, section)

objRendApp
Required. The RenderingApplication object.

source
Required. Integer. The enumerated value of the AMHTML configuration source. The source
parameter can have exactly one of the following values:
source
setting

Decimal

value

Meaning

CdoConfigRegist
ry

1 The standard registry key name for the
CDO Rendering Library.

CdoConfigDS 2 The Microsoft® Exchange directory
server.

section
Required. String. The name of the section in the configuration source to load the information from.
This parameter is ignored if the source parameter is set to CdoConfigDS.

Remarks
The LoadConfiguration method is normally called twice. A newly created rendering application calls
LoadConfiguration with the source parameter set to CdoConfigRegistry to read data from the
registry, including the location of the directory server. Later, when a session is started,
LoadConfiguration is called with source set to CdoConfigDS to read information from the protocol
settings for HTTP in the directory server's database.

If the source parameter is CdoConfigRegistry, the section parameter should be the key to the registry
section containing values for Enterprise, Server, and Site. A standard value for this key name is:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MSExchangeWeb\
Parameters

If the source parameter is set to CdoConfigDS, the section parameter is ignored because the directory
server only has one configuration object. The registry information must already be loaded before you
call LoadConfiguration with CdoConfigDS, since the Enterprise, Server, and Site must be set in
order to read from the directory server.

All values read in by LoadConfiguration can be retrieved with the ConfigParameter method.

LoggingLevel Property
(RenderingApplication Object)   

The LoggingLevel property returns or sets the verbosity level for the specified logging category.
Read/write.

Syntax
objRendApp.LoggingLevel(category)

category
Required. Long. The logging category.

Data Type
Long

Remarks
The logging level construct is an array with five elements, one for each logging category. Each element
in the array can have a value from 0 to 5, representing the logging verbosity for that category.

The verbosity level bears an inverse relationship to the severity of the events being logged. The lower
the verbosity level for a category, the fewer events are logged, that is, only the more severe ones. Each
successive logging level logs all events logged by lower levels and also includes events of lesser
severity introduced at its own level.

Level 0, the default, is the least verbose and logs only the most severe errors for that logging category.
Level 5 is the most verbose and logs all events at all levels of severity.

The logging level for each category can have the following values:

Verbosity

level

Event logging in this category

0 Critical - log only the most severe failure events (default).
1 Minimal - include nearly all error events.
2 Basic - include certain important success events.
3 Extensive - include most routine success events.
4 Verbose - include all events not related to internal workings.
5 Internal - include events of interest only to users familiar with

the internal workings of the CDO Rendering Library.

The logging categories are as follows:

Logging category Value Meaning
CATEGORY_STARTUP 1 Events that occur during the

creation of the rendering object
CATEGORY_GENERAL 2 Events that occur while the

rendering object is generating HTML
output

CATEGORY_CONTENT 3 Unused
CATEGORY_SECURITY 4 Unused
CATEGORY_INTERNAL 5 Unused
CATEGORY_SHUTDOWN 6 Unused

Name Property (RenderingApplication
Object)   

The Name property returns or sets the display name of this rendering application. Read/write.

Syntax
objRendApp.Name

Data Type
String

Remarks
The Name property originally contains the string “AMHTML Application Class”. It should normally be
left unchanged, but it can be modified to distinguish between entries in an event log.

SecurityID Property
(RenderingApplication Object)   

The SecurityID property returns the security identification for the current messaging user. Read-only.

Syntax
objRendApp.SecurityID

Data Type
Double

Remarks
For more information, see Impersonation.

Version Property (RenderingApplication
Object)   

The Version property returns a string representing the current version of the AMHTML.DLL library.
Read-only.

Syntax
objRendApp.Version

Data Type
String

Remarks
The Version property contains the string “1.1” in the current release of the CDO Rendering Library.

VirtualRoot Property
(RenderingApplication Object)   

The VirtualRoot property returns or sets the beginning of a URL. Read/write.

Syntax
objRendApp.VirtualRoot

Data Type
String

Remarks
The VirtualRoot property contains the common beginning of a set of HTTP paths, which normally
correspond to disk paths on the server specified in the URL. VirtualRoot should always start with a
forward slash (/).

Setting the VirtualRoot property causes the rendering application to create a special-purpose format
with the name “virtroot”. This format contains the string that was last set in VirtualRoot. The %virtroot
% format can be used as a common beginning for HTTP paths when creating links to objects such as
attachments.

Note that the VirtualRoot property contains an HTTP path at the browser, while the FormsRoot
property contains an absolute disk directory path at Microsoft® Internet Information Server (IIS).

The VirtualRoot property defaults to “/exchange”.

TableView Object
The TableView object represents a tabular view of an address book container or a folder.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects: Views collection
Child objects: Columns collection
Default property: (none)

Properties

Name

Available
in version

Type

Access

Categories 1.1 Long Read/write
Class 1.1 Long Read-only
Columns 1.1 Column object or

Columns collection
object

Read-only

Index 1.1 Long Read-only
Name 1.1 String Read-only
Parent 1.1 Views collection object Read-only

Source 1.1 Long Read-only

Methods

Name

Available
in version

Parameters

IsSameAs 1.1 objView2 as Object

Remarks
A table view is a specification of a tabular rendering for a container object. The container object can be
an address book container or a folder. The table view is applied to the container object in the context of
a ContainerRenderer. The container renderer specifies the container object in its DataSource property
and the table view to be applied in its CurrentView property.

The table view in turn contains a collection of Column objects. The collection is obtainable from the
table view’s Columns property. Each Column object specifies a property to be rendered in its Property
property and the manner of rendering that property in its RenderUsing property. The display order of
the columns is determined by the ordering of the table view’s Columns collection. The leftmost column
is the one obtained from the collection’s Item property with an index value of 1, and the rightmost is
obtained with an index value equal to the collection’s Count property.

A table view is normally generated externally to a CDO application, although a nonpersistent table view
can be created with the Add method of the Views collection. A table view created in this way ceases to
exist when the collection is released.

An externally generated table view can specify restrictions, sorting, and grouping. A restriction specifies
which entries in the underlying container object are to be rendered. A sort specifies the order in which
they are to be rendered. Grouping specifies how the sorted entries are to be categorized in the
rendering.

A restriction is based on selected properties of the container object’s entries and can be arbitrarily
complex. A table view defined on a Messages collection, for example, can restrict the collection so that
the only messages rendered are those that were received since August 18, 1997, have not yet been
read, and have either a subject starting with “Bonus” or a message text containing “Bonus Calculation”.

A table view’s sort can be up to four levels deep. Each level corresponds to a property of the entries
being sorted.

In addition to restrictions and sorting, a table view can be grouped, or categorized. Like a sort, a
grouping can be up to four levels deep. Specifying grouping on a table view generates a sort on the
same properties, in the same nesting order, as in the grouping.

If a restricted table view on a Messages collection is also grouped, GroupHeader objects are rendered
along with the Message objects. Only the group headers corresponding to the messages that pass the
restriction are rendered. AddressEntries collection views are not grouped, and only AddressEntry
objects are rendered.

Categories Property (TableView Object)   

The Categories property returns or sets the number of categories in this table view. Read/write.

Syntax
objTableView.Categories

Data Type
Long

Remarks
The Categories property indicates how many levels of grouping are present in the table view. If the
view is grouped, or categorized, Categories can contain from 1 through 4, the maximum permitted
grouping depth. If the view is not categorized, Categories contains 0.

The nesting depth of a particular group within the table view is given by the Level property of the
GroupHeader object that heads that group.

Columns Property (TableView Object)   

The Columns property returns a single Column object or a Columns collection for this table view.
Read-only.

Syntax
Set objColumns = objTableView.Columns

Set objColumn = objTableView.Columns(index)

objColumns
Object. The Columns collection of this table view.

objTableView
Required. The TableView object.

objColumn
Object. An individual Column object belonging to this table view’s Columns collection.

index
Integer. An index into the table view’s Columns collection.

Data Type
Object (Column or Columns collection)

Remarks
If a Column object is to be accessed with the index parameter, the value of index must be between 1
and the size of the TableView object’s Columns collection. This size is available in the collection’s
Count property.

Although the Columns property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add method, and the properties on its member Column objects retain their
respective read/write or read-only accessibility.

Index Property (TableView Object)   

The Index property returns the index number for this TableView object within the Views collection.
Read-only.

Syntax
objTableView.Index

Data Type
Long

Remarks
The Index property indicates this table view’s position within the parent Views collection. It can later be
used to reselect this table view with the collection’s Item property.

The first view in the Views collection has a Index value of 1.

An index value should not be considered a static value that remains constant for the duration of a
container renderer. It can be affected when other views are added and deleted.

IsSameAs Method (TableView Object)   

The IsSameAs method returns True if this TableView object is the same as the view object being
compared against.

Syntax
objTableView.IsSameAs(objView2)

objTableView
Required. This TableView object.

objView2
Required. Object. The view object being compared against.

Remarks
The objView2 parameter should be declared as an Object rather than as a TableView. This allows for
comparison among different classes of view objects being held in a Views collection.

Two view objects are considered to be the same if and only if their pointer values are the same, that is,
if and only if they are the identical object. Otherwise IsSameAs returns False.

Name Property (TableView Object)   

The Name property returns the display name of this TableView object. Read-only.

Syntax
objTableView.Name

Data Type
String

Remarks
The Name property represents the display name assigned to this table view. It can be used to refer to
the table view, and to retrieve it by name using the container renderer’s CurrentView property.

Source Property (TableView Object)   

The Source property returns the type of this table view. Read-only.

Syntax
objTableView.Source

Data Type
Long

Remarks
The Source property indicates the source of the definition of the table view. It can have exactly one of
the following values:

Table view
source

Decimal

value

Meaning

CdoViewComm
on

0 This table view is predefined globally for all
folders and all messaging users.

CdoViewCusto
m

2 This table view has been defined in the
context of the current setting of the
DataSource property of the
ContainerRenderer object. It ceases to exist
when the DataSource property is changed.

CdoViewFolder 3 This table view is predefined for the
particular folder currently being rendered. It
is no longer available when the DataSource
property is changed.

CdoViewPerson
al

1 This table view is predefined for the
messaging user associated with the current
session represented by the Session object.

For more information on table view rendering, see Container Object Rendering.

Views Collection Object
The Views collection object contains one or more views for a container object.

Quick Info
Specified in type library: AMHTML.DLL
First available in: CDO Rendering Library version 1.1
Parent objects: ContainerRenderer
Child objects: CalendarView

TableView
Default property: Item

An Views collection supports count and index values that let you access an individual TableView object
through the Item property. The Views collection also supports the Microsoft® Visual Basic® For Each
statement.

Properties

Name

Available
in version

Type

Access

Class 1.1 Long Read-only
Count 1.1 Long Read-only
Item 1.1 TableView object Read-only
Parent 1.1 ContainerRenderer

object
Read-only

Methods

Name

Available
in version

Parameters

Add 1.1 Name as String,
(optional) Class as Long,
(optional) SortBy as Variant,
(optional) SortAscending as
Boolean

Remarks
The Views collection can contain a variety of different classes of view objects. The classes currently
implemented are represented by the CalendarView and TableView objects.

The Views collection is used by a ContainerRenderer object to render a container object, such as an
address book container or a folder. The Views collection comes into being when a rendering application
sets the container renderer’s DataSource property to the container object. The collection is released
when the parent ContainerRenderer object is released, or when a new container object is set in the
DataSource property.

The classes of views that can be held in a Views collection and rendered by a ContainerRenderer
object are as follows:

View class View source container object
CalendarView Messages collection

TableView AddressEntries collection, Folders
collection, Messages collection, or
Recipients collection

The various view objects initially in the collection are those that were already generated externally to
the rendering application. These views persist in the underlying store, typically a directory or message
store. New views can be defined and contributed to the collection using the Add method, but they do
not persist after the collection is released.

The view to be applied to the container object is specified in the container renderer’s CurrentView
property. A newly instantiated Views collection always has a default current view. This default can be
specified by the store underlying the container object. If it is not specified, the CDO Rendering Library
sets it to the first view in the collection.

Changing the current view causes a new AddressEntries, Folders, Messages, or Recipients collection
to be instantiated. This collection contains only the items that pass the restriction specified by the new
view. The AddressEntry, Folder, Message, or Recipient objects in the collection are sorted as specified
by the view. If a folder view is categorized, GroupHeader objects appear in the collection along with the
messages.

The initial filter on the AddressEntries, Folders, Messages, or Recipients collection is inherited from the
view’s restriction. It can be used without modification, but it cannot be read or changed by the
rendering application. Any attempt to read a property on an inherited AddressEntryFilter or
MessageFilter object results in an error return. Writing any property on an inherited filter disinherits it
and refreshes the collection. This means that the collection is reinstantiated with a new filter specifying
only the property just written. This new filter, however, is no longer inherited, and the application can
read its properties and set additional restrictions within it.

Add Method (Views Collection)   

The Add method creates and returns a new CalendarView or TableView object in the Views collection.

Syntax
Set objView = objViewsColl.Add(Name [, Class] [, SortBy] [, SortAscending])

objView
On successful return, contains the new CalendarView or TableView object.

objViewsColl
Required. The Views collection object.

Name
Required. String. The display name to be assigned to the new CalendarView or TableView object.

Class
Optional. Long. The class of the view to be created. The currently supported classes are
CdoClassCalendarView and CdoClassTableView. The default value is CdoClassTableView.

SortBy
Optional. Variant (Long or String). The property on which to sort the new view. The default value is
CdoPR_MESSAGE_DELIVERY_TIME if a corresponding column is present in the view. If no such
column is present and the SortBy parameter is not furnished, there is no default value and the sort is
undefined.

SortAscending
Optional. Boolean. The sort direction of the new view. Set to True to sort in ascending order. The
default value is False.

Remarks
The Add method's Name parameter corresponds to the Name property of the new CalendarView or
TableView object.

The calendar view's Name property and the table view's Name property are both read-only. After you
set the display name of a new view, you cannot subsequently change it.

The SortBy parameter must designate a property represented by a Column object within the new
view's Columns collection. SortBy can contain the property tag of a predefined property or the property
name of a custom property.

Count Property (Views Collection)   

The Count property returns the number of CalendarView or TableView objects in the collection. Read-
only.

Syntax
objViewsColl.Count

Data Type
Long

Remarks
For more information on using the Count and Item properties, see the example in the Item property.

Item Property (Views Collection)   

The Item property returns the specified CalendarView or TableView object from the Views collection.
Read-only.

Syntax
objViewsColl.Item(index)

objViewsColl.Item(name)

index
A short integer ranging from 1 to objViewsColl.Count.

name
The display name of the CalendarView or TableView object to be selected from the Views collection.

The Item property is the default property of a Views collection, meaning that objViewsColl(index) is
syntactically equivalent to objViewsColl.Item(index) in Microsoft® Visual Basic® code.

Data Type
TableView object

Remarks
The Item property works like an accessor property.

If the specified view object is not found in the collection, the Item property returns Nothing.

Although the Item property itself is read-only, the CalendarView or TableView object it returns can be
accessed in the normal manner, and its properties retain their respective read/write or read-only
accessibility.

Example
This code fragment shows the Count and Item properties working together:

' Put all view names in a collection into a string array
Dim strItemName(100) as String
Dim i As Integer ' loop counter
' error handling omitted from this fragment ...
For i = 1 To objViewsColl.Count Step 1
 strItemName(i) = objViewsColl.Item(i).Name
 ' or = objViewsColl(i) since Item and Name are default properties
 If 100 = i Then ' max size of string array
 Exit Function
 End If
Next i

Collaboration Data Objects for NTS
Component
[This is preliminary documentation and subject to change.]

The Microsoft® CDO for NTS Library (Collaboration Data Objects for Windows NT Server) exposes
messaging objects for use by Microsoft® Visual Basic®, C/C++, and Microsoft® Visual C++®
applications. The library lets you quickly and easily add to your Visual Basic application the ability to
send and receive messages. You can create programmable messaging objects, then use their
properties and methods to meet the needs of your application.

The CDO for NTS objects are described in the remainder of this section. The following table lists these
objects in alphabetic order and gives the purpose of each one.

Object Purpose
AddressEntry Specify addressing information for an individual

messaging user.

Attachment Associate an additional object with a message.
Attachments
collection

Access all attachments on a message; create new
attachments.

Folder Open the default Inbox or Outbox folder in a
message store.

Message Compose, populate, send, and receive an e-mail
document.

Messages collection Access all messages in a folder; create new
messages.

NewMail Send a message without having to log on to a
session.

Recipient Specify information for a messaging user intended
to receive a message.

Recipients collection Access all recipients of a message; create new
recipients.

Session Establish a connection between an application and
a messaging system.

The CDO for NTS Library interfaces with the SMTP server component of Microsoft® Internet
Information Server (IIS) version 4.0 and later. The Session object uses the LogonSMTP method to
differentiate the access from the Logon method of the the CDO for Exchange Library, which interfaces
with the Microsoft® Exchange Server.

The SMTP server component of IIS has its own message store mechanism. The Inbox and Outbox are
mapped to directories in the file system, and no other folders exist. Message transfer takes place in
such a way that spooling appears instantaneous, so the Inbox has no incoming queue and the Outbox
is always empty.

The Inbox is a single common folder shared by all SMTP recipients and applications. It contains all
messages received by IIS and destined for the local domains the SMTP server is configured for.
However, the incoming messages are segregated by the CDO for NTS Library according to their
recipients. An application can only access messages destined for the address it used when it logged
on.

Objects, Properties, and Methods
[This is preliminary documentation and subject to change.]

This reference contains property and method information for the CDO for NTS Library objects.

The following table summarizes each object's properties and methods.

Object

Available
in version

Properties

Methods

AddressEntry 1.2 Address,
Application, Class,
Name, Parent,
Session, Type

(none)

Attachment 1.2 Application, Class,
ContentBase,
ContentID,
ContentLocation,
Name, Parent,
Session, Source,
Type

Delete,
ReadFromFile,
WriteToFile

Attachments
collection

1.2 Application, Class,
Count, Item,
Parent, Session

Add, Delete

Folder 1.2 Application, Class,
Messages, Name,
Parent, Session

(none)

Message 1.2 Application,
Attachments,
Class,
ContentBase,
ContentID,
ContentLocation,
HTMLText,
Importance,
MessageFormat,
Parent, Recipients,
Sender, Session,
Size, Subject, Text,
TimeReceived,
TimeSent

Delete, Send

Messages
collection

1.2 Application, Class,
Count, Item,
Parent, Session

Add, Delete,
GetFirst, GetLast,
GetNext,
GetPrevious

NewMail 1.2 BCC, Body,
BodyBaseURL,
BodyFormat,
BodyURL, CC,
From, Importance,
MailFormat,
Subject, To, Value,

AttachFile,
AttachURL, Send

Version
Recipient 1.2 Address,

Application, Class,
Name, Parent,
Session, Type

Delete

Recipients
collection

1.2 Application, Class,
Count, Item,
Parent, Session

Add, Delete

Session 1.2 Application, Class,
Inbox,
MessageFormat,
Name, Outbox,
Parent, Session,
Version

GetDefaultFolder,
Logoff,
LogonSMTP,
SetLocaleIDs

This reference is organized by object. For each object there is a summary topic, followed by reference
documentation for each property or method that belongs to the object. The properties and methods are
organized alphabetically.

Object Model
[This is preliminary documentation and subject to change.]

The object model for the CDO for NTS Library is hierarchical. The following table shows the
containment hierarchy. Each indented object is a child of the object under which it is indented. An
object is the parent of every object at the next level of indentation under it. For example, an
Attachments collection and a Recipients collection are both child objects of a Message object, and a
Messages collection is a parent object of a Message object. However, a Messages collection is not a
parent object of a Recipients collection.

 Session
 Folder (Inbox or Outbox)
 Messages collection
 Message
 Attachments collection
 Attachment
 Recipients collection
 Recipient
 (AddressEntry)
 NewMail

The AddressEntry object is not hierarchically contained by the Message object, but its only access is
through the message's Sender property. The NewMail object is independent of the rest of the hierarchy
and and does not access any of the other objects.

Properties Common to All CDO for NTS Library
Objects
[This is preliminary documentation and subject to change.]

All Microsoft® CDO for NTS Library objects except the NewMail object expose the properties
Application, Class, Parent, and Session. The Application and Session properties have the same
values for all objects within a given session. The Parent property indicates the immediate parent of the
object, and the Class property is an integer value that identifies the CDO for NTS Library object.

The NewMail object is self-contained and does not expose any of these properties.

All four of these common properties have read-only access in all objects. Note that for the Session
object, the Parent and Session properties are assigned the value Nothing. The Session object
represents the highest level in the CDO for NTS Library object hierarchy and has no parent.

To reduce duplication, the detailed reference for these properties appears only once, in this section.
The following table lists the properties that are common to all CDO for NTS Library objects and that
have the same meaning for all objects.

Properties
Name Type Access
Application String Read-only
Class Long Read-only
Parent Object Read-only
Session Session object Read-only

Application Property (All CDO for NTS Library
Objects)   
[This is preliminary documentation and subject to change.]

The Application property returns the name of the active application, namely the Microsoft® CDO for
NTS Library. Read-only.

Syntax
object.Application

Data Type
String

Remarks
The Application property always contains the string "Collaboration Data Objects for NTS version 1.2".

The version number of the CDO for NTS Library is available through the Session object's Version
property.

Example
' Function: Session_Application
' Purpose: Display the Application property of the Session object
' See documentation topic: Application property
Function Session_Application()
Dim objSession As Object ' or Dim objSession As CDONTS.Session
' error handling ...
Set objSession = CreateObject("CDONTS.Session")
If Not objSession Is Nothing Then
 MsgBox "Session's Application property = " & objSession.Application
End If
' error handling
End Function

Class Property (All CDO for NTS Library Objects)   
[This is preliminary documentation and subject to change.]

The Class property returns the object class of the object. Read-only.

Syntax
object.Class

Data Type
Long

Remarks
The Class property contains a numeric constant that identifies the CDO for NTS Library object. The
following values are defined:

CDO for NTS Library object Class
value

Type library constant

AddressEntry 8 CdoAddressEntry
Attachment 5 CdoAttachment
Attachments collection 18 CdoAttachments
Folder 2 CdoFolder
Message 3 CdoMsg
Messages collection 16 CdoMessages
Recipient 4 CdoRecipient
Recipients collection 17 CdoRecipients
Session 0 CdoSession

Example
' Function: Util_DecodeObjectClass
' Purpose: Decode the long integer class value,
' show the related object name
' See documentation topic: Class property
Function Util_DecodeObjectClass(lClass As Long)
' error handling here ...
Select Case (lClass)
 Case CdoSession:
 MsgBox ("Session object; Class = " & lClass)
 Case CdoMsg:
 MsgBox ("Message object; Class = " & lClass)
End Select
' error handling ...
End Function

' Function: TestDrv_Util_DecodeObjectClass
' Purpose: Call the utility function DecodeObjectClass for Class values
' See documentation topic: Class property
Function TestDrv_Util_DecodeObjectClass()
' error handling here ...
If objSession Is Nothing Then
 MsgBox "Need to set the Session object: Session->LogonSMTP"
 Exit Function
End If

' expect type CdoSession = 0 for Session object
Util_DecodeObjectClass (objSession.Class)
Set objMessages = objSession.Inbox.Messages
Set objOneMsg = objMessages.GetFirst
If objOneMsg Is Nothing Then
 MsgBox "Inbox is empty"
 Exit Function
End If
' expect type CdoMessage = 3 for Message object
Util_DecodeObjectClass (objOneMsg.Class)
' error handling here ...
End Function

Parent Property (All CDO for NTS Library Objects)   
[This is preliminary documentation and subject to change.]

The Parent property returns the parent of the object. Read-only.

Syntax
Set objParent = object.Parent

Data Type
Object

Remarks
The Parent property in the CDO for NTS Library returns the immediate parent of an object. The
immediate parent for each object is shown in the following table.

CDO for NTS Library object Immediate parent in object
hierarchy

AddressEntry Set to Nothing
Attachment Attachments collection
Attachments collection Message
Folder Session
Message Messages collection
Messages collection Folder, including Inbox or Outbox
Recipient Recipients collection
Recipients collection Message
Session Set to Nothing

The Parent property represents the immediate parent of the object, rather than the logical parent. For
example, a folder contains a Messages collection, which contains Message objects. The Parent
property for a message is the immediate parent, the Messages collection, rather than the logical
parent, the Folder object.

The Session object represents the highest level in the hierarchy of CDO for NTS Library objects and its
Parent property is set to Nothing. The AddressEntry object does not have a hierarchical parent and
can only be obtained through the Sender property of a Message object. Its Parent property is also set
to Nothing.

For more information on the CDO for NTS Library object hierarchy, see Object Model.

Example
This code fragment displays the Class of the parent Messages collection of a Message object:

' Function: Message_Parent
Function Message_Parent()
' error handling here ...
If objOneMsg Is Nothing Then
 MsgBox "Need to select a message; see Messages->Get*"
 Exit Function
End If
' Immediate parent of message is the Messages collection
MsgBox "Message immediate parent class = " & objOneMsg.Parent.Class
' error handling code ...
End Function

To get to the Folder object, you have to take the parent of the Messages collection:

' Function: Messages_Parent
' Purpose: Display the Messages collection Parent class value
' See documentation topic: Parent property
Function Messages_Parent()
Set objMessages = objOneMsg.Parent
' error handling here ...
If objMessages Is Nothing Then
 MsgBox "No active Messages collection"
 Exit Function
End If
MsgBox "Messages collection parent class = " & objMessages.Parent.Class
Exit Function
' error handling here ...
End Function

Session Property (All CDO for NTS Library Objects)   
[This is preliminary documentation and subject to change.]

The Session property returns the top-level Session object associated with the specified CDO for NTS
Library object. Read-only.

Syntax
Set objSession = object.Session

Data Type
Object (Session)

Remarks
The Session object represents the highest level in the CDO for NTS Library object hierarchy. If you
invoke the Session property of a Session object, it returns the same Session object.

Example
' Function: Folder_Session
' Purpose: Access the Folder's Session property and display its name
' See documentation topic: Session property
Function Folder_Session()
Dim objSession2 As Session ' Session object to get the property
' error handling here ...
If objFolder Is Nothing Then
 MsgBox "No active folder; please select Session->Inbox"
 Exit Function
End If
Set objSession2 = objFolder.Session
If objSession2 Is Nothing Then
 MsgBox "Unable to access Session property"
 Exit Function
End If
MsgBox "Folder's Session property's Name = " & objSession2.Name
Set objSession2 = Nothing
' error handling here ...
End Function

AddressEntry Object
[This is preliminary documentation and subject to change.]

The AddressEntry object defines addressing information valid for a given messaging system.

Quick Info
Specified in type library: CDONTS.DLL
First available in: CDO for NTS Library version 1.2
Parent objects: (obtainable through Sender property

of Message object)
Child objects: (none)
Default property: Name

Properties

Name

Available
in version

Type

Access

Address 1.2 String Read-only
Application 1.2 String Read-only
Class 1.2 Long Read-only
Name 1.2 String Read-only
Parent 1.2 Recipient object Read-only
Session 1.2 Session object Read-only
Type 1.2 String Read-only

Methods
(None.)

Remarks
An address usually represents a person or process to which the messaging system can deliver
messages.

The AddressEntry object is only available through the Sender property of a Message object. It is used
to obtain the sender's name, e-mail address, and address type for use in constructing a new Recipient
object on an outbound message.

Address Property (AddressEntry Object)   
[This is preliminary documentation and subject to change.]

The Address property specifies the messaging address of an address entry or a message recipient.
Read-only.

Syntax
objAddressEntry.Address

Data Type
String

Remarks
The AddressEntry object's Address property contains a unique string that identifies a message
recipient and provides routing information for messaging systems. The format of the address string is
specific to each messaging system.

Example
' Set up a series of object variables
' assume valid Session object
Set objInbox = objSession.GetDefaultFolder(CdoFolderInbox)
Set collInMessages = objInbox.Messages
Set objMessage = collInMessages.GetFirst
Set objAddrEntry = objMessage.Sender
strMsg = "Sender name " & objAddrEntry.Name
strMsg = strMsg & "; address type = " & objAddrEntry.Type
strMsg = strMsg & "; e-mail address = " & objAddrEntry.Address
MsgBox strMsg

Name Property (AddressEntry Object)   
[This is preliminary documentation and subject to change.]

The Name property returns the display name or alias of the AddressEntry object as a string. Read-only.

Syntax
objAddressEntry.Name

The Name property is the default property of an AddressEntry object, meaning that objAddressEntry is
syntactically equivalent to objAddressEntry.Name in Microsoft® Visual Basic® code.

Data Type
String

Example
See the example for the AddressEntry object's Address property.

Type Property (AddressEntry Object)   
[This is preliminary documentation and subject to change.]

The Type property specifies the address type, such as SMTP. Read-only.

Syntax
objAddressEntry.Type

Data Type
String

Remarks
The address type is usually a tag referring to the messaging system that routes messages to this
address, such as SMTP.

Example
See the example for the AddressEntry object's Address property.

Attachment Object
[This is preliminary documentation and subject to change.]

The Attachment object represents an object that is an attachment of a message.

Quick Info
Specified in type library: CDONTS.DLL
First available in: CDO for NTS Library version 1.2
Parent objects: Attachments collection
Child objects: (none)
Default property: Name

Properties

Name

Available
in version

Type

Access

Application 1.2 String Read-only
Class 1.2 Long Read-only
ContentBase 1.2 String Read-only

ContentID 1.2 String Read-only
ContentLocation 1.2 String Read-only

Name 1.2 String Read/write
Parent 1.2 Attachments collection

object
Read-only

Session 1.2 Session object Read-only
Source 1.2 String or Message

object
Read/write

Type 1.2 Long Read/write

Methods

Name

Available
in version

Parameters

Delete 1.2 (none)
ReadFromFile 1.2 fileName as String
WriteToFile 1.2 fileName as String

Remarks
An attachment is an object, such as a file or another object, that is associated with and transmitted with
a Message object. The Attachment object does not specify its location within the message. The client
application makes all the display decisions for a message, including whether its attachments are to be
displayed, and if so, when and where.

The CDO for NTS Library does not manage the actual display of the attachment. The properties of the
Attachment object simply provide information that the displaying application can use to find and open
the attachment, and to convert its contents into a display.

ContentBase Property (Attachment Object)   
[This is preliminary documentation and subject to change.]

The ContentBase property returns the Content-Base header of a MIME (Multipurpose Internet Mail
Extensions) message attachment. Read-only.

Syntax
objAttach.ContentBase

Data Type
String

Remarks
The ContentBase property is used for MHTML (MIME HTML) support. It represents the Content-Base
header for the appropriate MIME body part.

For more information on MHTML, see the RFC 2110 document.

ContentID Property (Attachment Object)   
[This is preliminary documentation and subject to change.]

The ContentID property returns the Content-ID header of a MIME (Multipurpose Internet Mail
Extensions) message attachment. Read-only.

Syntax
objAttach.ContentID

Data Type
String

Remarks
The ContentID property is used for MHTML (MIME HTML) support. It represents the Content-ID
header for the appropriate MIME body part.

For more information on MHTML, see the RFC 2110 document.

ContentLocation Property (Attachment Object)   
[This is preliminary documentation and subject to change.]

The ContentLocation property returns the Content-Location header of a MIME (Multipurpose Internet
Mail Extensions) message attachment. Read-only.

Syntax
objAttach.ContentLocation

Data Type
String

Remarks
The ContentLocation property is used for MHTML (MIME HTML) support. It represents the Content-
Location header for the appropriate MIME body part.

For more information on MHTML, see the RFC 2110 document.

Delete Method (Attachment Object)   
[This is preliminary documentation and subject to change.]

The Delete method removes the Attachment object from the Attachments collection.

Syntax
objAttach.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection's reference to the Attachment object. If you have another reference to the attachment, you
can still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another attachment.

The final Release on the Attachment object takes place when you call Delete if you had no other
reference, or when you assign your reference variable to Nothing. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

The effect of the Delete operation is not permanent until you use the Send or Delete method on the
Message object to which this attachment belongs.

The immediate parent of this Attachment object is an Attachments collection, which is a child of the
message. You can delete all the message's attachments by calling the collection's Delete method.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first Attachment object. That reference survives the call to Delete and has to be reassigned. The
second Attachment object is deleted without creating another reference, and no other action is
necessary.

' assume valid Message object
Set objAttach = objMessage.Attachments.Item(1)
objAttach.Delete ' still have a reference from Set statement
' ... other operations on objAttachment possible but pointless ...
Set objAttach = Nothing ' necessary to remove reference
' ...
objMessage.Attachments.Item(2).Delete ' no reference to remove

Name Property (Attachment Object)   
[This is preliminary documentation and subject to change.]

The Name property returns or sets the display name of the Attachment object as a string. Read/write.

Syntax
objAttach.Name

The Name property is the default property of an Attachment object, meaning that objAttach is
syntactically equivalent to objAttach.Name in Microsoft® Visual Basic® code.

Data Type
String

Remarks
Before setting or changing the Name property, you should be sure that the Source property is already
set. Setting Source after setting Name can result in an incorrect value for Name.

The Name property can also be set at the time of creation of the attachment by supplying the name
parameter to the Add method of the Attachments collection.

ReadFromFile Method (Attachment Object)   
[This is preliminary documentation and subject to change.]

The ReadFromFile method loads the contents of an attachment from a file.

Syntax
objAttach.ReadFromFile(fileName)

objAttach
Required. The Attachment object.

fileName
Required. String. The full path and file name to read from, for example C:\DOCUMENT\
BUDGET.XLS.

Remarks
The ReadFromFile method replaces the existing contents of the Attachment object, if any.

The ReadFromFile method operates differently, depending on the value of the Attachment object's
Type property. The following table describes its operation:

Attachment Type
property

ReadFromFile operation

CdoFileData Copies the contents of the specified file to the
attachment.

CdoEmbeddedMessage (Not supported)

Note The current version of the CDO for NTS Library does not support ReadFromFile for
CdoEmbeddedMessage attachments. These calls generate the run-time error
CdoE_NO_SUPPORT.

You can load the contents of an attachment when you first create it by specifying the type and source
parameters when you call the Add method of the Attachments collection.

Source Property (Attachment Object)   
[This is preliminary documentation and subject to change.]

The Source property returns or sets information specifying the location of the data for the attachment.
Read/write.

Syntax
objAttach.Source

Data Type
String or Object (Message)

Remarks
The Source property is not used for CdoFileData attachments. For CdoEmbeddedMessage
attachments, the Source property returns or sets the Message object to be embedded. An embedded
message is copied into the attachment at creation time.

Note The Source property is a string except when it returns the source of a
CdoEmbeddedMessage attachment.

The return value or setting of the Source property depends on the value of the Type property, as
described in the following table:

Type property Source property
CdoFileData Not used; contains an empty string. The

source for this type of attachment must be
specified in the call to the Add method.

CdoEmbeddedMessage Specifies the unique identifier of the message
to be embedded; returns the embedded
Message object.

Note You should set the Source property before you set the Type property. Failure to do this can
result in a return of CdoE_NOT_FOUND from the ReadFromFile or WriteToFile method.

The Source property can also be set at the time of creation of the attachment by supplying the source
parameter to the Add method of the Attachments collection. For attachments of type CdoFileData, the
Add method is the only place the source file can be specified. However, you can reset it later with the
Attachment object's ReadFromFile method.

Type Property (Attachment Object)   
[This is preliminary documentation and subject to change.]

The Type property describes the attachment type. Read/write.

Syntax
objAttach.Type

Data Type
Long

Remarks
The following attachment types are supported:

Type property Value Description
CdoFileData 1 Attachment is the contents of a file.

(Default value.)

CdoEmbeddedMessage 4 Attachment is an embedded
message.

The value of the Type property determines the valid values for the Source property. You should,
however, set Source before setting Type in order for the ReadFromFile and WriteToFile methods to
work correctly.

The Type property can also be set at the time of creation of the attachment by supplying the type
parameter to the Add method of the Attachments collection.

Example
See the example for the Attachment object's Source property.

WriteToFile Method (Attachment Object)   
[This is preliminary documentation and subject to change.]

The WriteToFile method saves the attachment to a file in the file system.

Syntax
objAttach.WriteToFile(fileName)

objAttach
Required. The Attachment object.

fileName
Required. String. The full path and file name for the saved attachment, for example C:\DOCUMENT\
BUDGET.XLS.

Remarks
The WriteToFile method overwrites the file without warning if a file of that name already exists. Your
application should check for the existence of the file before calling WriteToFile.

The WriteToFile method operates differently, depending on the value of the Attachment object's Type
property. The following table describes its operation:

Attachment Type
property

WriteToFile operation

CdoFileData Copies the contents of the attachment to the
specified file.

CdoEmbeddedMessage (Not supported)

Note The current version of the CDO for NTS Library does not support WriteToFile for
CdoEmbeddedMessage attachments. These calls generate the run-time error
CdoE_NO_SUPPORT.

Attachments Collection Object
[This is preliminary documentation and subject to change.]

The Attachments collection object contains zero or more Attachment objects.

Quick Info
Specified in type library: CDONTS.DLL
First available in: CDO for NTS Library version 1.2
Parent objects: Message
Child objects: Attachment
Default property: Item

Properties

Name

Available
in version

Type

Access

Application 1.2 String Read-only
Class 1.2 Long Read-only
Count 1.2 Long Read-only
Item 1.2 Attachment object Read-only
Parent 1.2 Message object Read-only
Session 1.2 Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.2 (optional) name as String,
(optional) type as Long,
(optional) source as String,
(optional) ContentLocation as
String,
(optional) ContentBase as String

Delete 1.2 (none)

Add Method (Attachments Collection)   
[This is preliminary documentation and subject to change.]

The Add method creates and returns a new Attachment object in the Attachments collection.

Syntax
Set objAttach = collAttachments.Add([name, type, source, ContentLocation, ContentBase])

objAttach
On successful return, contains the new Attachment object.

collAttachments
Required. The Attachments collection object.

name
Optional. String. The display name of the attachment. The default value is an empty string. To allow
a user to click on the attachment that appears in the message and activate an associated
application, supply the full file name, including the file extension.

type
Optional. Long. The type of attachment; either CdoFileData or CdoEmbeddedMessage. The
default value is CdoFileData.

source
Optional. String. The path and file name of the file containing the data for the attachment, or the
unique identifier of the message to be embedded. The path and file name must be in the appropriate
format for the attachment type, specified by the type parameter. The default value is an empty string.

ContentLocation
Optional. String. The content location header for the appropriate body part of a MIME message
attachment.

ContentBase
Optional. String. The content base header for the appropriate body part of a MIME message
attachment.

Remarks
The name, type, source, ContentLocation, and ContentBase parameters correspond to the Name,
Type, Source, ContentLocation, and ContentBase properties of the Attachment object. The source
parameter is also closely related to the ReadFromFile method's fileName parameter.

You can supply the data for the attachment at the same time that you add it to the collection. The Add
method operates differently depending on the value of the type parameter. The following table
describes its operation.

Value of type parameter Value of source parameter
CdoFileData Specifies a full path and file name that

contains the data for the attachment, for
example C:\DOCUMENT\BUDGET.XLS. Must
be supplied with the Add method. The data is
read into the attachment.

CdoEmbeddedMessage Specifies the Message object to be
embedded. The message is copied into the
attachment.

The attachment is saved in persistent storage when you call the Send method on the Message object
containing the Attachments collection.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Count Property (Attachments Collection)   
[This is preliminary documentation and subject to change.]

The Count property returns the number of Attachment objects in the collection. Read-only.

Syntax
collAttachments.Count

Data Type
Long

Example
This code fragment stores in an array the names of all Attachment objects in the collection. It shows
the Count and Item properties working together.

' from the sample function, TstDrv_Util_SmallCollectionCount
' collAttachments is an Attachments collection
x = Util_SmallCollectionCount(collAttachments)

Function Util_SmallCollectionCount(objColl As Object)
Dim strItemName(100) As String ' Names of objects in collection
Dim i As Integer ' loop counter
 On Error GoTo error_amsmtp
 If objColl Is Nothing Then
 MsgBox "Must supply a valid collection object as a parameter"
 Exit Function
 End If
 If 0 = objColl.Count Then
 MsgBox "No messages in the collection"
 Exit Function
 End If
 For i = 1 To objColl.Count Step 1
 strItemName(i) = objColl.Item(i).Name
 If 100 = i Then ' max size of string array
 Exit Function
 End If
 Next i
 ' error handling here...
End Function

Delete Method (Attachments Collection)   
[This is preliminary documentation and subject to change.]

The Delete method removes all the Attachment objects from the Attachments collection.

Syntax
collAttachments.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection's reference to every Attachment object. If you have another reference to an attachment, you
can still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another attachment.

The final Release on each Attachment object takes place when you call Delete if you had no other
reference, or when you assign your reference variable to Nothing. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection's member
objects. To delete only one Attachment object, use the Delete method specific to that object.

The effect of the Delete method is not permanent until you use the Send or Delete method on the
Message object containing the Attachments collection. A permanently deleted member cannot be
recovered. However, the collection itself is still valid, and you can Add new members to it.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Item Property (Attachments Collection)   
[This is preliminary documentation and subject to change.]

The Item property returns a single Attachment object from the Attachments collection. Read-only.

Syntax
collAttachments.Item(index)

index
Long. An integer ranging from 1 to collAttachments.Count.

The Item property is the default property of an Attachments collection, meaning that
collAttachments(index) is syntactically equivalent to collAttachments.Item(index) in Microsoft® Visual
Basic® code.

Data Type
Object (Attachment)

Remarks
The Item property works like an accessor property for small collections.

The Item(index) syntax selects an arbitrary Attachment object within the Attachments collection.

Although the Item property itself is read-only, the Attachment object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

Example
This code fragment shows the Count and Item properties working together to traverse the collection:

' from Util_SmallCollectionCount(collAttachments As Object)
Dim strItemName(100) as String
Dim i As Integer ' loop counter
' error handling omitted from this fragment ...
For i = 1 To collAttachments.Count Step 1
 strItemName(i) = collAttachments.Item(i).Name
 ' or = collAttachments(i) since Item and Name are default properties
 If 100 = i Then ' max size of string array
 Exit Function
 End If
Next i

Folder Object
[This is preliminary documentation and subject to change.]

The Folder object represents a folder or container in a message store.

Quick Info
Specified in type library: CDONTS.DLL
First available in: CDO for NTS Library version 1.2
Parent objects: Session
Child objects: Messages collection
Default property: Messages

Properties

Name

Available
in version

Type

Access

Application 1.2 String Read-only
Class 1.2 Long Read-only
Messages 1.2 Messages collection

object
Read-only

Name 1.2 String Read/write
Parent 1.2 Session object Read-only
Session 1.2 Session object Read-only

Methods
(None.)

Remarks
The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Messages Property (Folder Object)   
[This is preliminary documentation and subject to change.]

The Messages property returns a Messages collection object within the folder. Read-only.

Syntax
objFolder.Messages

The Messages property is the default property of a Folder object, meaning that objFolder is
syntactically equivalent to objFolder.Messages in Microsoft® Visual Basic® code.

Data Type
Object (Messages collection)

Remarks
Although the Messages property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add and Delete methods, and the properties on its member Message
objects retain their respective read/write or read-only accessibility.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Example
This code fragment shows how a Messages collection of Message objects is obtained from a folder
which is in turn obtained from a Session object:

Dim objInbox as Folder
Dim collInMessages as Messages
' assume valid Session object
Set objInbox = objSession.GetDefaultFolder(CdoDefaultFolderInbox)
Set collInMessages = objInbox.Messages

Name Property (Folder Object)   
[This is preliminary documentation and subject to change.]

The Name property returns or sets the name of the Folder object as a string. Read/write.

Syntax
objFolder.Name

Data Type
String

Example
Dim objFolder As Object ' assume valid folder
MsgBox "Folder name = " & objFolder.Name

Message Object
[This is preliminary documentation and subject to change.]

The Message object represents a single message, item, document, or form in a folder.

Quick Info
Specified in type library: CDONTS.DLL
First available in: CDO for NTS Library version 1.2
Parent objects: Messages collection
Child objects: Attachments collection

Recipients collection
Default property: Subject

Properties

Name

Available
in version

Type

Access

Application 1.2 String Read-only
Attachments 1.2 Attachment object or

Attachments collection
object

Read-only

Class 1.2 Long Read-only
ContentBase 1.2 String Read/write
ContentID 1.2 String Read/write
ContentLocation 1.2 String Read/write

HTMLText 1.2 IStream object or
String

Read/write

Importance 1.2 Long Read/write
MessageFormat 1.2 Long Read/write
Parent 1.2 Messages collection

object
Read-only

Recipients 1.2 Recipient object or
Recipients collection
object

Read/write

Sender 1.2 AddressEntry object Read-only

Session 1.2 Session object Read-only
Size 1.2 Long Read-only
Subject 1.2 String Read/write

Text 1.2 IStream object or
String

Read/write

TimeReceived 1.2 Variant (vbDate
format)

Read-only

TimeSent 1.2 Variant (vbDate
format)

Read-only

Methods

Name

Available
in version

Parameters

Delete 1.2 (none)

Send 1.2 (none)

Remarks
Microsoft® Visual Basic® programmers can create new Message objects using the Messages
collection's Add method.

A message can be obtained from its parent Messages collection using the collection's Item property. To
get to the Messages collection in a folder, use the Folder object's Messages property.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Attachments Property (Message Object)   
[This is preliminary documentation and subject to change.]

The Attachments property returns a single Attachment object or an Attachments collection object.
Read-only.

Syntax
Set collAttachments = objMessage.Attachments

Set objAttach = objMessage.Attachments(index)

collAttachments
Object. An Attachments collection object.

objMessage
Object. The Message object.

objAttach
Object. A single Attachment object.

index
Long. Specifies the number of the attachment within the Attachments collection. Ranges from 1 to
the value specified by the Attachments collection's Count property.

Data Type
Object (Attachment or Attachments collection)

Remarks
You can change individual Attachment objects within the Attachments collection, Add them to the
collection, and Delete them from the collection.

Although the Attachments property itself is read-only, the collection it returns can be accessed in the
normal manner through its Add and Delete methods, and the properties on its member Attachment
objects retain their respective read/write or read-only accessibility.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Example
This code fragment uses the Attachments property to retrieve an attachment of the message:

Set collAttachments = objMessage.Attachments
If collAttachments Is Nothing Then
 MsgBox "Unable to set Attachments collection"
 Exit Function
Else
 MsgBox "Attachments count for this message: " & collAttachments.Count
 iAttachCollIndex = 0 ' reset global index variable
End If
' from the sample function Attachments_FirstItem
iAttachCollIndex = 1
Set objAttach = collAttachments.Item(iAttachCollIndex)

ContentBase Property (Message Object)   
[This is preliminary documentation and subject to change.]

The ContentBase property returns or sets the Content-Base header of a MIME (Multipurpose Internet
Mail Extensions) message body. Read/write.

Syntax
objMessage.ContentBase

Data Type
String

Remarks
The ContentBase property is used for MHTML (MIME HTML) support. It represents the Content-Base
header for the appropriate MIME body part.

For more information on MHTML, see the RFC 2110 document.

ContentID Property (Message Object)   
[This is preliminary documentation and subject to change.]

The ContentID property returns or sets the Content-ID header of a MIME (Multipurpose Internet Mail
Extensions) message body. Read/write.

Syntax
objAttach.ContentID

Data Type
String

Remarks
The ContentID property is used for MHTML (MIME HTML) support. It represents the Content-ID
header for the appropriate MIME body part.

For more information on MHTML, see the RFC 2110 document.

ContentLocation Property (Message Object)   
[This is preliminary documentation and subject to change.]

The ContentLocation property returns or sets the Content-Location header of a MIME (Multipurpose
Internet Mail Extensions) message body. Read/write.

Syntax
objMessage.ContentLocation

Data Type
String

Remarks
The ContentLocation property is used for MHTML (MIME HTML) support. It represents the Content-
Location header for the appropriate MIME body part.

For more information on MHTML, see the RFC 2110 document.

Delete Method (Message Object)   
[This is preliminary documentation and subject to change.]

The Delete method removes the Message object from the Messages collection.

Syntax
objMessage.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection's reference to the Message object. If you have another reference to the message, you can
still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another message.

The final Release on the Message object takes place when you call Delete if you had no other
reference, or when you assign your reference variable to Nothing. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

The action of the Delete method is permanent, and the Message object cannot be restored to the
collection. Before calling Delete, your application can prompt the user to verify whether the message
should be permanently deleted.

You can delete all the messages in the Messages collection by calling the collection's Delete method.
The ability to delete any message depends on the permissions granted to the user. The Delete method
returns an error code if called with insufficient permissions.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first Message object. That reference survives the call to Delete and has to be reassigned. The
second Message object is deleted without creating another reference, and no other action is
necessary.

' assume valid Folder object (Inbox or Outbox)
Set objMessage = objFolder.Messages.Item(1)
objMessage.Delete ' still have a reference from Set statement
' ... other operations on objMessage possible but pointless ...
Set objMessage = Nothing ' necessary to remove reference
' ...
objFolder.Messages.Item(2).Delete ' no reference to remove

HTMLText Property (Message Object)   
[This is preliminary documentation and subject to change.]

The HTMLText property returns or sets the Hypertext Markup Language (HTML) representation of the
message's text. Read/write.

Syntax
objMessage.HTMLText

Data Type
Object (IStream) or String

Remarks
The text is the principal content of an interpersonal message, typically displayed to each recipient as
an immediate result of opening the message. It specifically excludes various other message properties
such as Subject, Attachments, and Recipients.

The text of a message is represented by its HTMLText and Text properties. The CDO for NTS Library
always keeps these two properties in synchronization with each other. A sending client can set either
property and the other is automatically computed. A receiving client can read either property depending
on its content type preference.

Only C/C++ and Java programs can use an IStream object for this property. They should pass an
IUnknown object that returns an IStream interface in response to QueryInterface. Microsoft® Visual
Basic® supports the IDispatch interface and not IUnknown, so it cannot use an IStream object.

The maximum size of the text can be limited by the tool that you use to manipulate string variables (for
example, Visual Basic).

Importance Property (Message Object)   
[This is preliminary documentation and subject to change.]

The Importance property returns or sets the importance of the message. Read/write.

Syntax
objMessage.Importance

Data Type
Long

Remarks
The following values are defined:

Constant Value Description
CdoLow 0 Low importance
CdoNormal 1 Normal importance (default)
CdoHigh 2 High importance

Example
This code fragment sets the importance of a message as high:

' assume valid Outbox folder object from GetDefaultFolder method
Set objMessage = objOutbox.Messages.Add
' ... check here to verify the message was created ...
objMessage.Subject = "Gift of droids"
objMessage.Text = "Help us, Obi-wan. You are our only hope."
objMessage.Importance = CdoHigh
objMessage.Send

See Also
Send Method (Message Object)

MessageFormat Property (Message Object)   
[This is preliminary documentation and subject to change.]

The MessageFormat property returns or sets the encoding format of the message. Read/write.

Syntax
objMessage.MessageFormat

Data Type
Long

Remarks
The MessageFormat property determines how a message is encoded. The following values are
defined:

MessageFormat setting Value Description
CdoMime 0 The message is in MIME format.
CdoText 1 The message is in uninterrupted

plain text.

The MessageFormat property defaults to the setting of the MessageFormat property of the Session
object.

Recipients Property (Message Object)   
[This is preliminary documentation and subject to change.]

The Recipients property returns a single Recipient object or a Recipients collection object. Read/write.

Syntax
Set collRecips = objMessage.Recipients

Set objRecip = objMessage.Recipients(index)

collRecips
Object. A Recipients collection object.

objMessage
Object. The Message object.

objRecip
Object. A single Recipient object.

index
Long. Specifies the number of the recipient within the Recipients collection. Ranges from 1 to the
value specified by the Recipients collection's Count property.

Data Type
Object (Recipient or Recipients collection)

Remarks
You can change individual Recipient objects within the Recipients collection, Add them to the
collection, and Delete them from the collection.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Example
This code fragment uses a loop to create a copy of every valid recipient of the original message
objMessage in the copy message objCopyItem. For each copied recipient, it also copies important
properties from the original. Note how much more code this requires than copying the Recipients
property from the original message.

For i = 1 To objMessage.Recipients.Count Step 1
 Set objRecip = objMessage.Recipients.Item(i)
 If objRecip Is Not Nothing Then
 Set objCopyRecip = objCopyItem.Recipients.Add
 If objCopyRecip Is Nothing Then
 MsgBox "Unable to create recipient in message copy"
 Exit Function
 End If
 ' Now copy the most important properties
 objCopyRecip.Address = objRecip.Address
 objCopyRecip.Name = objOnRecip.Name
 objCopyRecip.Type = objOnRecip.Type
 End If
Next i

Send Method (Message Object)   
[This is preliminary documentation and subject to change.]

The Send method sends the message to the recipients through the messaging system.

Syntax
objMessage.Send()

objMessage
Required. The Message object.

Remarks
The Send method saves all changes to the message in the messaging system and moves the
message to the current user's Outbox folder. Messaging systems retrieve messages from the Outbox
and transport them to the recipients. After it is transported, a message is removed from the Outbox and
deleted.

You must compose your new messages in your Outbox. The Send method only deals with messages
located in the Outbox and returns CdoE_NO_ACCESS for any attempt to create a message in the
Inbox.

The Send method invalidates the composed Message object but does not remove it from memory. The
programmer should Set the invalidated object to Nothing to remove it from memory, or reassign it to
another message. Attempted access to a sent message results in a return of
CdoE_INVALID_OBJECT.

Sender Property (Message Object)   
[This is preliminary documentation and subject to change.]

The Sender property returns or sets the sender of a message as an AddressEntry object. Read-only.

Syntax
Set objAddrEntry = objMessage.Sender

objAddrEntry
Object. The returned AddressEntry object that represents the messaging user that sent the
message.

objMessage
Object. The Message object.

Data Type
Object (AddressEntry)

Example
This code fragment displays the name of the sender of a message:

' from the sample function Message_Sender
Set objAddrEntry = objMessage.Sender
If objAddrEntry Is Nothing Then
 MsgBox "Could not set the AddressEntry object from the Sender"
 Exit Function
End If
MsgBox "Message was sent by " & objAddrEntry.Name

Size Property (Message Object)   
[This is preliminary documentation and subject to change.]

The Size property returns the approximate size in bytes of the message. Read-only.

Syntax
objMessage.Size

Data Type
Long

Remarks
The Size property contains the sum, in bytes, of the sizes of all properties on this Message object,
including in particular the Attachments property. It can be considerably greater than the size of the
Text property alone.

The Size property is computed by the message store and is not valid until after the Send operation.
Note that not all message stores support this property.

Subject Property (Message Object)   
[This is preliminary documentation and subject to change.]

The Subject property returns or sets the subject of the message as a string. Read/write.

Syntax
objMessage.Subject

The Subject property is the default property of a Message object, meaning that objMessage is
syntactically equivalent to objMessage.Subject in Microsoft® Visual Basic® code.

Data Type
String

Example
This code fragment sets the subject of a message:

Dim objMessage As Message ' assume valid message
objMessage.Subject = "Test message"

See Also
Text Property (Message Object)

Text Property (Message Object)   
[This is preliminary documentation and subject to change.]

The Text property returns or sets the plain text representation of the message's text. Read/write.

Syntax
objMessage.Text

Data Type
Object (IStream) or String

Remarks
The text is the principal content of an interpersonal message, typically displayed to each recipient as
an immediate result of opening the message. It specifically excludes various other message properties
such as Subject, Attachments, and Recipients.

The text of a message is represented by its HTMLText and Text properties. The CDO for NTS Library
always keeps these two properties in synchronization with each other. A sending client can set either
property and the other is automatically computed. A receiving client can read either property depending
on its content type preference.

Only C/C++ and Java programs can use an IStream object for this property. They should pass an
IUnknown object that returns an IStream interface in response to QueryInterface. Microsoft® Visual
Basic® supports the IDispatch interface and not IUnknown, so it cannot use an IStream object.

The maximum size of the text can be limited by the tool that you use to manipulate string variables (for
example, Visual Basic).

Example
This code fragment sets the text of a message:

Dim objMessage As Message ' assume valid message
objMessage.Text = "Text of test message."

TimeReceived Property (Message Object)   
[This is preliminary documentation and subject to change.]

The TimeReceived property sets or returns the date and time the message was received as a vbDate
variant data type. Read-only.

Syntax
objMessage.TimeReceived

Data Type
Variant (vbDate format)

Remarks
The TimeReceived and TimeSent properties set and return dates and times as the local time for the
user's system.

When you send messages using the Message object's Send method, the messaging system sets the
TimeReceived and TimeSent properties for you.

Example
This code fragment displays the date and time a message was sent and received:

' from the sample function Message_TimeSentAndReceived
' verify that objMessage is valid, then ...
With objMessage
 strMsg = "Message sent " & Format(.TimeSent, "Short Date")
 strMsg = strMsg & ", " & Format(.TimeSent, "Long Time")
 strMsg = strMsg & "; received "
 strMsg = strMsg & Format(.TimeReceived, "Short Date") & ", "
 strMsg = strMsg & Format(.TimeReceived, "Long Time")
 MsgBox strMsg
End With

TimeSent Property (Message Object)   
[This is preliminary documentation and subject to change.]

The TimeSent property sets or returns the date and time the message was sent as a vbDate variant
data type. Read-only.

Syntax
objMessage.TimeSent

Data Type
Variant (vbDate format)

Remarks
The TimeReceived and TimeSent properties set and return dates and times as the local time for the
user's system.

When you send messages using the Message object's Send method, the messaging system sets the
TimeReceived and TimeSent properties for you.

Example
See the example for the Message object's TimeReceived property.

Messages Collection Object
[This is preliminary documentation and subject to change.]

The Messages collection object contains zero or more Message objects.

Quick Info
Specified in type library: CDONTS.DLL
First available in: CDO for NTS Library version 1.2
Parent objects: Folder
Child objects: Message
Default property: Item

Properties

Name

Available
in version

Type

Access

Application 1.2 String Read-only
Class 1.2 Long Read-only
Count 1.2 Long Read-only
Item 1.2 Message object Read-only
Parent 1.2 Folder object Read-only
Session 1.2 Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.2 (optional) subject as String,
(optional) text as Object or String,
(optional) importance as Long

Delete 1.2 (none)
GetFirst 1.2 (none)
GetLast 1.2 (none)
GetNext 1.2 (none)
GetPrevious 1.2 (none)

Remarks

The order that messages are returned by GetFirst, GetLast, GetNext, and GetPrevious is not
predictable. The best programming approach to use with unsorted collections is to assume that the
access functions are able to access all messages within the collection, but that the order of the objects
is not defined.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Add Method (Messages Collection)   
[This is preliminary documentation and subject to change.]

The Add method creates and returns a new Message object in the Messages collection.

Syntax
Set objMessage = collMessages.Add([subject, text, importance])

objMessage
On successful return, represents the new Message object added to the collection.

collMessages
Required. The Messages collection object.

subject
Optional. String. The subject line for the message.

text
Optional. IStream object or String. The text of the message.

importance
Optional. Long. The importance associated with the message.

Remarks
The subject, text, and importance parameters correspond to the Subject, Text, and Importance
properties on the Message object.

You must create all new messages in the Outbox folder.

Only C/C++ and Java programs can use an IStream object for the text parameter. They should pass
an IUnknown object that returns an IStream interface in response to QueryInterface. Microsoft®
Visual Basic® supports the IDispatch interface and not IUnknown, so it cannot use an IStream object.

Example
This code fragment adds a new message to a folder to reply to an original message:

' from the sample function Util_ReplyToConversation
Set objOutbox = objSession.GetDefaultFolder(CdoDefaultFolderOutbox)
Set objNewMessage = objOutbox.Messages.Add
' verify objNewMessage created successfully ... then supply properties
With objNewMessage
 .Text = "Here is a reply to your message." ' new text
 .Subject = objOriginalMessage.Subject ' copy original properties
 Set objRecip = .Recipients.Add(_
 name:=objOriginalMessage.Recipients.Item(1).Name, _
 type:=CdoTo)
 .Send
End With

Count Property (Messages Collection)   
[This is preliminary documentation and subject to change.]

The Count property returns the number of Message objects in the collection, or a very large number if
the exact count is not available. Read-only.

Syntax
collMessages.Count

Data Type
Long

Remarks
The use of the Item property in conjunction with the Count property in a large collection can be seen in
the following example.

Example
This code fragment searches for a Message object with subject "Bonus":

Dim i As Integer ' loop index / object counter
Dim collMessages As Messages ' assume collection already provided
Dim objMessage As Message
If collMessages Is Nothing Then
 MsgBox "Messages collection object is invalid"
 ' Exit
ElseIf 0 = collMessages.Count Then ' collection is empty
 MsgBox "No messages in collection"
 ' Exit
End If
' look for message about "Bonus" in collection
For i = 1 To collMessages.Count Step 1
 Set objMessage = collMessages.Item(i)
 ' or collMessages(i) since Item is default property
 If objMessage Is Nothing Then ' end of collection
 MsgBox "No such message found in collection"
 Exit For
 ElseIf 0 = StrComp(objMsg.Subject, "Bonus") Then
 ' or objMessage since Subject is default property
 MsgBox "Desired message is at index " & i
 Exit For
 End If
Next i

Delete Method (Messages Collection)   
[This is preliminary documentation and subject to change.]

The Delete method removes all the Message objects from the Messages collection.

Syntax
collMessages.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection's reference to every Message object. If you have another reference to a message, you can
still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another item.

The final Release on each Message object takes place when you call Delete if you had no other
reference, or when you assign your reference variable to Nothing. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection's member
objects. To delete only one Message object, use the Delete method specific to that object.

The Delete method on a large collection takes effect immediately and is permanent. A deleted member
cannot be recovered. However, the collection itself is still valid, and you can Add new members to it.

GetFirst Method (Messages Collection)   
[This is preliminary documentation and subject to change.]

The GetFirst method returns the first Message object in the Messages collection. It returns Nothing if
no first object exists.

Syntax
Set objMessage = collMessages.GetFirst()

objMessage
On successful return, represents the first Message object in the collection.

collMessages
Required. The Messages collection object.

GetLast Method (Messages Collection)   
[This is preliminary documentation and subject to change.]

The GetLast method returns the last Message object in the Messages collection. It returns Nothing if
no last object exists.

Syntax
Set objMessage = collMessages.GetLast()

objMessage
On successful return, represents the last Message object in the collection.

collMessages
Required. The Messages collection object.

GetNext Method (Messages Collection)   
[This is preliminary documentation and subject to change.]

The GetNext method returns the next Message object in the Messages collection. It returns Nothing if
no next object exists, for example if already positioned at the end of the collection.

Syntax
Set objMessage = collMessages.GetNext()

objMessage
On successful return, represents the next Message object in the collection.

collMessages
Required. The Messages collection object.

Remarks
If the GetFirst method has not been called since the Messages collection was initialized, the behavior
of the GetNext method is not defined. This can produce unexpected results if the collection is
reinitialized with a Set statement in every iteration of a loop. The recommended procedure is to Set an
explicit variable for the collection before entering the loop.

GetPrevious Method (Messages Collection)   
[This is preliminary documentation and subject to change.]

The GetPrevious method returns the previous Message object in the Messages collection. It returns
Nothing if no previous object exists, for example if already positioned at the beginning of the collection.

Syntax
Set objMessage = collMessages.GetPrevious()

objMessage
On successful return, represents the previous Message object in the collection.

collMessages
Required. The Messages collection object.

Remarks
If the GetLast method has not been called since the Messages collection was initialized, the behavior
of the GetPrevious method is not defined. This can produce unexpected results if the collection is
reinitialized with a Set statement in every iteration of a loop. The recommended procedure is to Set an
explicit variable for the collection before entering the loop.

Item Property (Messages Collection)   
[This is preliminary documentation and subject to change.]

The Item property returns a single Message object from the Messages collection. Read-only.

Syntax
collMessages.Item(index)

index
A long integer ranging from 1 to the size of the Messages collection.

The Item property is the default property of a Messages collection, meaning that collMessages(index)
is syntactically equivalent to collMessages.Item(index) in Microsoft® Visual Basic® code.

Data Type
Object (Message)

Remarks
The Item(index) syntax returns the Message object at the indicated position in the collection. It can be
used in an indexed loop, such as the For ... Next construction in Visual Basic. The first item in the
collection has an index of 1.

Although the Item property itself is read-only, the Message object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

For more information on using the Count and Item properties in a collection, see the example in the
Count property.

NewMail Object
[This is preliminary documentation and subject to change.]

The NewMail object provides for sending a message with very few lines of code.

Quick Info
Specified in type library: CDONTS.DLL
First available in: CDO for NTS Library version 1.2
Parent objects: (none)
Child objects: (none)
Default property: Value

Properties

Name

Available
in version

Type

Access

BCC 1.2 String Write-only
Body 1.2 IStream object or

String
Write-only

BodyBaseURL 1.2 String Write-only
BodyFormat 1.2 Long Write-only
BodyURL 1.2 String Write-only
CC 1.2 String Write-only

From 1.2 String Write-only
Importance 1.2 Long Write-only
MailFormat 1.2 Long Write-only
Subject 1.2 String Write-only
To 1.2 String Write-only
Value 1.2 String Write-only
Version 1.2 String Read-only

Methods

Name

Available
in version

Parameters

AttachFile 1.2 Source as Object or String,
(optional) FileName as String,
(optional) EncodingMethod as Long

AttachURL 1.2 Source as Object or String,
URL as String,
(optional) BaseURL as String,
(optional) EncodingMethod as Long

Send 1.2 (optional) From as String,
(optional) To as String,
(optional) Subject as String,

(optional) Body as Object or String,

(optional) Importance as Long

Remarks
The NewMail object is not built on the normal API architecture. It is meant for rapid generation of
notification mail by an automated process running in the Microsoft® Windows NT® Server. No user
interface is supplied, and no interaction with human users is expected during the generation and
sending of the message. Therefore the NewMail object's properties are not designed to be read back
and inspected. With the sole exception of Version, they can only be written.

Attachments and recipients, once added to the NewMail object, cannot be removed, and the NewMail
object itself cannot be deleted. When the Send method completes successfully, the NewMail object is
invalidated but not removed from memory. The programmer should Set the invalid object to Nothing to
remove it from memory, or reassign it to another NewMail object. Attempted access to a sent NewMail
object results in a return of CdoE_INVALID_OBJECT.

The NewMail object does not belong to the hierarchy encompassing the other CDO for NTS Library
objects. It cannot access, nor can it be accessed from, any of the other objects. Like the Session
object, it is considered a top-level object and is created directly from a Microsoft® Visual Basic®
program. Its ProgID is CDONTS.NewMail. This code fragment creates a NewMail object through early
binding:

 Dim objNewMail As CDONTS.NewMail
 Set objNewMail = CreateObject("CDONTS.NewMail")

The main advantage of the NewMail object is the ease and simplicity with which you can generate and
send a message. You do not have to log on to a session nor deal with a folder or a messages
collection. You have only to create the NewMail object, send it, and Set it to Nothing. You can supply
critical information in the parameters of the Send method. In many cases you only need three lines of
code:

 Set objNewMail = CreateObject("CDONTS.NewMail")
 objNewMail.Send("me@company.com", "you@company.com", "Hello", _
 "I sent this in 3 statements!", 0) ' low importance
 Set objNewMail = Nothing ' canNOT reuse it for another message

Including an attachment can add as little as one statement to your code, because you can pass
information in the parameters of the AttachFile method:

 Set objNewMail = CreateObject("CDONTS.NewMail")
 objNewMail.AttachFile("\\server\schedule\sched.xls", "SCHED.XLS")
 objNewMail.Send("Automated Schedule Generator", "you@company.com", _
 "Schedule", "Here's the latest master schedule", 0)
 Set objNewMail = Nothing

AttachFile Method (NewMail Object)   
[This is preliminary documentation and subject to change.]

The AttachFile method adds an attachment to the message by reading a file.

Syntax
objNewMail.AttachFile(Source [, FileName, EncodingMethod])

objNewMail
Required. This NewMail object.

Source
Required. IStream object or String. The full path and file name of the file to be attached to the
message, or a pointer to an IStream object containing the file data.

FileName
Optional. String. The file name to appear in the attachment's placeholder in the message. If
FileName is not supplied, the file name from the Source parameter is used.

EncodingMethod
Optional. Long. The manner of encoding the attachment. The following values are possible:
EncodingMethod setting Value Description
CdoEncodingUUEncoded 0 The attachment is to be in

UUEncode format (default).
CdoEncodingBase64 1 The attachment is to be in base

64 format.

Remarks
The default value for the EncodingMethod parameter can change if you set the MailFormat property. If
MailFormat is set to CdoMailFormatText, the default value is CdoEncodingUUEncoded. If
MailFormat is set to CdoMailFormatMIME, the default value is CdoEncodingBase64. However, if
you add an attachment encoded in base 64 format, the value of the MailFormat property is
automatically set to CdoMailFormatMIME.

Only C/C++ and Java programs can use an IStream object for the Source parameter. They should
pass an IUnknown object that returns an IStream interface in response to QueryInterface. Microsoft®
Visual Basic® supports the IDispatch interface and not IUnknown, so it cannot use an IStream object.

AttachURL Method (NewMail Object)   
[This is preliminary documentation and subject to change.]

The AttachURL method adds an attachment to the message and associates a Uniform Resource
Locator (URL) with the attachment.

Syntax
objNewMail.AttachURL(Source, URL [, BaseURL, EncodingMethod])

objNewMail
Required. This NewMail object.

Source
Required. IStream object or String. The full path and file name of the resource to be attached to the
message, or a pointer to an IStream object containing the file data.

URL
Required. String. The absolute or relative prefix for the URL that the rendering client can use to
reference this attachment.

BaseURL
Optional. String. A base for the URL used to reference this attachment.

EncodingMethod
Optional. Long. The manner of encoding the attachment. The following values are possible:
EncodingMethod setting Value Description
CdoEncodingUUEncoded 0 The attachment is to be in

UUEncode format (default).
CdoEncodingBase64 1 The attachment is to be in base

64 format.

Remarks
You must supply at least the URL parameter to specify a URL for the attachment. If you also supply the
BaseURL parameter, it is combined with the URL parameter to define the full URL path by which this
attachment is to be referenced. For more information on constructing URL paths, see the BodyURL
property.

The default value for the EncodingMethod parameter can change if you set the MailFormat property. If
MailFormat is set to CdoMailFormatText, the default value is CdoEncodingUUEncoded. If
MailFormat is set to CdoMailFormatMIME, the default value is CdoEncodingBase64. However, if
you add an attachment encoded in base 64 format, the value of the MailFormat property is
automatically set to CdoMailFormatMIME.

Only C/C++ and Java programs can use an IStream object for the Source parameter. They should
pass an IUnknown object that returns an IStream interface in response to QueryInterface. Microsoft®
Visual Basic® supports the IDispatch interface and not IUnknown, so it cannot use an IStream object.

BCC Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The BCC property adds to the list of blind copy (Bcc) recipients for the NewMail object. Write-only.

Syntax
objNewMail.BCC

Data Type
String

Remarks
The value you use to set the BCC property can represent a single recipient or a list of recipients. Each
recipient must be represented by a full messaging address:

 "useraddress@company.com"

Multiple recipients on the list are separated by semicolons:

 "user1@company1.com;user2@company2.com;user3@company3.com"

A recipient can include the display name along with the messaging address:

 "John Q. Doe<jdoe@company.com>"

Each time you set the BCC property, the CDO for NTS library appends the value you supply to any
previous Bcc recipients, preceded by a semicolon. For example, if you set the BCC property twice in
succession:

 objNewMail.BCC = "someuser@ABC.com"
 ' ...
 objNewMail.BCC = "anotheruser@XYZ.org"

the resulting contents of the BCC property are:

 "someuser@ABC.com;anotheruser@XYZ.org"

Body Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The Body property sets the text of the NewMail object. Write-only.

Syntax
objNewMail.Body

Data Type
Object (IStream) or String

Remarks
The Body property can contain either plain text or HTML. The BodyFormat property should be set to
indicate whether or not the Body property includes any HTML.

Only C/C++ and Java programs can use an IStream object for this property. They should pass an
IUnknown object that returns an IStream interface in response to QueryInterface. Microsoft® Visual
Basic® supports the IDispatch interface and not IUnknown, so it cannot use an IStream object.

BodyBaseURL Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The BodyBaseURL property sets a base for all URLs relating to the NewMail object's message body.
Write-only.

Syntax
objNewMail.BodyBaseURL

Data Type
String

Remarks
The BodyBaseURL property is used for MHTML (MIME HTML) support. It represents the Content-
Base header for URLs pertaining to the main body of a MIME message. BodyBaseURL corresponds
to the ContentBase property of a Message object.

The BodyBaseURL property is used in conjunction with the BodyURL property to provide an absolute
path for all URLs pertaining to the message body. These include the URL used to reference the
message body itself, and also any URLs within HTML tags in the Body property of the NewMail object.

BodyBaseURL is meant to be combined with BodyURL to produce an absolute path. For more
information on constructing URL paths, see the BodyURL property.

For more information on MHTML, see the RFC 2110 document.

BodyFormat Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The BodyFormat property sets the text format of the NewMail object. Write-only.

Syntax
objNewMail.BodyFormat

Data Type
Long

Remarks
BodyFormat can contain exactly one of the following values:

BodyFormat setting Value Description
CdoBodyFormatHTML 0 The Body property is to include

Hypertext Markup Language
(HTML).

CdoBodyFormatText 1 The Body property is to be
exclusively in plain text (default
value).

BodyURL Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The BodyURL property sets an absolute or relative path for all URLs relating to the NewMail object's
message body. Write-only.

Syntax
objNewMail.BodyURL

Data Type
String

Remarks
The BodyURL property is used for MHTML (MIME HTML) support. It represents the Content-Location
header for URLs pertaining to the main body of a MIME message. BodyURL corresponds to the
ContentLocation property of a Message object.

If the BodyURL property is set, it is taken as an absolute or relative URL that can be used to refer to
the message body of the NewMail object. If the BodyBaseURL property is also set, BodyURL is taken
as relative and is joined to the base provided by BodyBaseURL.

The Body property of the NewMail object can also contain HTML tags that use URLs, for example
 and <FORM>. If the resource for such a URL is not local to the recipient of the NewMail object,
you must provide a path to locate the URL on the Internet. One way to do this is to provide the full path
in the URL itself:

It is often more flexible, however, to supply the path externally and put only the resource name in the
URL:

When this approach is taken, the BodyURL and BodyBaseURL properties can be used to supply the
path. BodyURL can contain an absolute path:

 objNewMail.BodyURL = "HTTP://www.abc.com/graphs/August/15Aug97/"

or a relative path:

 objNewMail.BodyURL = "August/15Aug97/"

If BodyURL contains a relative path, the base URL is supplied in BodyBaseURL:

 objNewMail.BodyBaseURL = "HTTP://www.abc.com/graphs/"

When BodyBaseURL and BodyURL are combined using standard URL combination rules, the result
is an absolute path to the resource referenced by the URL.

Often a resource is included as an attachment to the NewMail object. When this is the case, the URL
and BaseURL parameters of the AttachURL method are used to specify the attachment's URL. They
are combined the same way the BodyURL and BodyBaseURL properties are combined. The URL
specified by the attachment must match the URL requested by the HTML tag in the Body property, or
the tag is not successfully resolved.

The simplest case of attaching with URLs is when your message body refers to the attachments by
their URL parameter values. In this case you do not need either the BodyURL or the BodyBaseURL
property, and the attachments only need resource names in their URL parameters. This code fragment

sends a weekly review of sales activity with two chart images attached:

 Set objNewMail = CreateObject("CDONTS.NewMail")
 strBody = "<HTML><HEAD></HEAD><BODY>" _
 & "This is the sales chart for the past week:" & vbCrLf _
 & "" & vbCrLf _
 & "and this is the sales chart for the month:" & vbCrLf _
 & "" & "</BODY></HTML>"
 objNewMail.AttachURL("\\myserver\sales\pastweek.gif", week.gif)
 objNewMail.AttachURL("\\myserver\sales\thismnth.gif", month.gif)
 objNewMail.Send("Automated Sales Report", "you@company.com", _
 "Sales Charts", strBody, 0)
 Set objNewMail = Nothing ' canNOT reuse it for another message

Note that the URL string specified in the URL parameter of the AttachURL method does not have to
match the file name of the underlying resource. The only requirement is that it match the URL
requested by the HTML tag in the message body.

For more information on MHTML, see the RFC 2110 document.

CC Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The CC property adds to the list of copy (Cc) recipients for the NewMail object. Write-only.

Syntax
objNewMail.CC

Data Type
String

Remarks
The value you use to set the CC property can represent a single recipient or a list of recipients. Each
recipient must be represented by a full messaging address:

 "useraddress@company.com"

Multiple recipients on the list are separated by semicolons:

 "user1@company1.com;user2@company2.com;user3@company3.com"

A recipient can include the display name along with the messaging address:

 "John Q. Doe<jdoe@company.com>"

Each time you set the CC property, the CDO for NTS library appends the value you supply to any
previous Cc recipients, preceded by a semicolon. For example, if you set the CC property twice in
succession:

 objNewMail.CC = "someuser@ABC.com"
 ' ...
 objNewMail.CC = "anotheruser@XYZ.org"

the resulting contents of the CC property are:

 "someuser@ABC.com;anotheruser@XYZ.org"

For more information on MHTML, see the RFC 2110 document.

From Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The From property sets the full messaging address to be used for the sender of this NewMail object.
Write-only.

Syntax
objNewMail.From

Data Type
String

Remarks
The full messaging address must take the form

 "senderaddress@company.com"

You can optionally include the display name along with the messaging address:

 "John Q. Doe<jdoe@company.com>"

Importance Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The Importance property sets the importance associated with the NewMail object. Write-only.

Syntax
objNewMail.Importance

Data Type
Long

Remarks
The following values are defined:

Constant Value Description
CdoLow 0 Low importance
CdoNormal 1 Normal importance (default)
CdoHigh 2 High importance

MailFormat Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The MailFormat property sets the encoding for the NewMail object. Write-only.

Syntax
objNewMail.MailFormat

Data Type
Long

Remarks
MailFormat can contain exactly one of the following values:

MailFormat setting Value Description
CdoMailFormatMIME 0 The NewMail object is to be in MIME

format.
CdoMailFormatText 1 The NewMail object is to be in

uninterrupted plain text (default value).

The setting of the MailFormat property determines the default value for the EncodingMethod
parameter in the AttachFile and AttachURL methods. However, if you add an attachment encoded in
base 64 format, the value of the MailFormat property is automatically set to CdoMailFormatMIME.

For more information on Multipurpose Internet Mail Extensions (MIME), see the RFC 1341 document.

Send Method (NewMail Object)   
[This is preliminary documentation and subject to change.]

The Send method sends the NewMail object to the specified recipients.

Syntax
objNewMail.Send([From, To, Subject, Body, Importance])

objNewMail
Required. This NewMail object.

From
Optional. String. The full messaging address to be identified as the sender.

To
Optional. String. A list of full messaging addresses of recipients. The individual recipient addresses
are separated by semicolons.

Subject
Optional. String. The subject line for the message.

Body
Optional. IStream object or String. The text of the message.

Importance
Optional. Long. The importance associated with the message.

Remarks
The From, To, Subject, Body, and Importance parameters correspond to the From, To, Subject, Body,
and Importance properties on the NewMail object.

If both the To property and the To parameter of the Send method are supplied, the NewMail object is
sent to all recipients on both lists.

Only C/C++ and Java programs can use an IStream object for the Body parameter. They should pass
an IUnknown object that returns an IStream interface in response to QueryInterface. Microsoft®
Visual Basic® supports the IDispatch interface and not IUnknown, so it cannot use an IStream object.

The NewMail object becomes invalid upon successful completion of the Send method, and you cannot
reuse it for another message. You should Set it to Nothing to release the memory. Attempted access
to a sent NewMail object results in a return of CdoE_INVALID_OBJECT.

Subject Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The Subject property sets the subject of the NewMail object as a string. Write-only.

Syntax
objNewMail.Subject

Data Type
String

To Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The To property adds to the list of principal (To) recipients for the NewMail object. Write-only.

Syntax
objNewMail.To

Data Type
String

Remarks
The value you use to set the To property can represent a single recipient or a list of recipients. Each
recipient must be represented by a full messaging address:

 "useraddress@company.com"

Multiple recipients on the list are separated by semicolons:

 "user1@company1.com;user2@company2.com;user3@company3.com"

A recipient can include the display name along with the messaging address:

 "John Q. Doe<jdoe@company.com>"

Each time you set the To property, the CDO for NTS Library appends the value you supply to any
previous To recipients, preceded by a semicolon. For example, if you set the To property twice in
succession:

 objNewMail.To = "someuser@ABC.com"
 ' ...
 objNewMail.To = "anotheruser@XYZ.org"

the resulting contents of the To property are:

 "someuser@ABC.com;anotheruser@XYZ.org"

If both the To property and the To parameter of the Send method are supplied, the NewMail object is
sent to all recipients on both lists.

Value Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The Value property sets the value and contents of an additional header for the NewMail object. Write-
only.

Syntax
objNewMail.Value

The Value property is the default property of a NewMail object, meaning that objNewMail is
syntactically equivalent to objNewMail.Value in Microsoft® Visual Basic® code.

Data Type
String

Remarks
The Value property is used to add one or more headers to the automatically generated headers such
as "To", "From", "Subject", and "Date". Possibilities for additional headers are "Reply To", "Keywords",
and "Ref Number".

You can set the Value property more than once. Each setting generates another header to be included
with the existing headers.

Example
This code fragment adds two headers to a NewMail object before sending it:

 ' strBody set in advance for message body
 objNewMail.Value("Reply To") = "The Boss<myemail@mycompany.com>"
 objNewMail.Value("Confidential") = "For my direct reports only"
 objNewMail.Send("myemail@mycompany.com", "myreports@mycompany.com" _
 "Reorganization", strBody, 2) ' high importance
 Set objNewMail = Nothing

Version Property (NewMail Object)   
[This is preliminary documentation and subject to change.]

The Version property returns the version of the CDO for NTS Library. Read-only.

Syntax
objNewMail.Version

Data Type
String

Remarks
The Version property currently returns "1.2".

Recipient Object
[This is preliminary documentation and subject to change.]

The Recipient object represents a recipient of a message.

Quick Info
Specified in type library: CDONTS.DLL
First available in: CDO for NTS Library version 1.2
Parent objects: Recipients collection
Child objects: AddressEntry
Default property: Name

Properties

Name

Available
in version

Type

Access

Address 1.2 String Read/write
Application 1.2 String Read-only
Class 1.2 Long Read-only
Name 1.2 String Read/write
Parent 1.2 Recipients collection

object
Read-only

Session 1.2 Session object Read-only
Type 1.2 Long Read/write

Methods

Name

Available
in version

Parameters

Delete 1.2 (none)

Address Property (Recipient Object)   
[This is preliminary documentation and subject to change.]

The Address property specifies the full messaging address for the recipient. Read/write.

Syntax
objRecip.Address

Data Type
String

Remarks
The Recipient object's Address property represents the complete messaging address used by the
messaging system.

Example
' assume valid Recipient object
 objRecip.Address = "myname@mycompany.com"

Delete Method (Recipient Object)   
[This is preliminary documentation and subject to change.]

The Delete method removes the Recipient object from the Recipients collection.

Syntax
objRecip.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection's reference to the Recipient object. If you have another reference to the recipient, you can
still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another recipient.

The final Release on the Recipient object takes place when you assign your reference variable to
Nothing, or when you call Delete if you had no other reference. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

The effect of the Delete operation is not permanent until you use the Send or Delete method on the
Message object to which this recipient belongs.

The immediate parent of this Recipient object is a Recipients collection, which is a child of the
message. You can delete all the message's recipients by calling the collection's Delete method.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Example
This code fragment illustrates the two situations previously explained. The Set statement calls AddRef
on the first Recipient object. That reference survives the call to Delete and has to be reassigned. The
second Recipient object is deleted without creating another reference, and no other action is
necessary.

' assume valid Message object
Set objRecip = objMessage.Recipients.Item(1)
objRecip.Delete ' still have a reference from Set statement
' ... other operations on objRecip possible but pointless ...
Set objRecip = Nothing ' necessary to remove reference
' ...
objMessage.Recipients.Item(2).Delete ' no reference to remove

Name Property (Recipient Object)   
[This is preliminary documentation and subject to change.]

The Name property returns or sets the name of the Recipient object as a string. Read/write.

Syntax
objRecip.Name

The Name property is the default property of a Recipient object, meaning that objRecip is syntactically
equivalent to objRecip.Name in Microsoft® Visual Basic® code.

Data Type
String

Example
Dim strMsg As String
' ... validate objects ... then display
 strMsg = "Recipient full address = " & objRecip.Address
 strMsg = strMsg & "; Recipient name = " & objRecip.Name
 MsgBox strMsg ' display recipient parts

Type Property (Recipient Object)   
[This is preliminary documentation and subject to change.]

The Type property specifies the recipient type of the Recipient object, that is, whether it is a To, Cc, or
Bcc recipient. Read/write.

Syntax
objRecip.Type

Data Type
Long

Remarks
The Type property has the following defined values:

Recipient type Value Description
CdoTo 1 The recipient is on the To line (default).
CdoCc 2 The recipient is on the Cc line.
CdoBcc 3 The recipient is on the Bcc line.

See Also
Address Property (Recipient Object)

Recipients Collection Object
[This is preliminary documentation and subject to change.]

The Recipients collection object contains zero or more Recipient objects and specifies the recipients of
a message.

Quick Info
Specified in type library: CDONTS.DLL
First available in: CDO for NTS Library version 1.2
Parent objects: Message
Child objects: Recipient
Default property: Item

Properties

Name

Available
in version

Type

Access

Application 1.2 String Read-only
Class 1.2 Long Read-only
Count 1.2 Long Read-only
Item 1.2 Recipient object Read-only
Parent 1.2 Message object Read-only

Session 1.2 Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.2 (optional) name as String,
(optional) address as String,
(optional) type as Long

Delete 1.2 (none)

Add Method (Recipients Collection)   
[This is preliminary documentation and subject to change.]

The Add method creates and returns a new Recipient object in the Recipients collection.

Syntax
Set objRecip = collRecips.Add([name, address, type])

objRecip
On successful return, represents the new Recipient object added to the collection.

collRecips
Required. The Recipients collection object.

name
Optional. String. The display name of the recipient. When this parameter is not present, the new
Recipient object's Name property is set to an empty string.

address
Optional. String. The full messaging address of the recipient. When this parameter is not present,
the new Recipient object's Address property is set to an empty string.

type
Optional. Long. The recipient type; the initial value for the new recipient's Type property. The
following values are valid:
Recipient type Value Description
CdoTo 1 The recipient is on the To line (default).
CdoCc 2 The recipient is on the Cc line.
CdoBcc 3 The recipient is on the Bcc line.

Remarks
The name, address, and type parameters correspond to the Recipient object's Name, Address, and
Type properties, respectively.

The address parameter, if set, must contain a full address, such as that contained in the recipient's
Address property. An AddressEntry object's Address property is not a full address because it does not
contain the address type information found in the Type property. If the user you are adding is
represented by an AddressEntry object, you must concatenate its Type and Address properties with a
connecting colon to construct the full address.

When no parameters are present, an empty Recipient object is created.

The new recipient is saved in persistent storage when you call the Send method on the Message
object containing the Recipients collection.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Example
This code fragment adds a recipient to a message using information from an existing valid
AddressEntry object

' from the sample function "Using Addresses"
' assume valid address entry ID from an existing message
Set objRecip = objNewMessage.Recipients.Add(type:=CdoTo, _
 name:=objAdrEnt.Name)
objRecip.Address = objAddrEnt.Type & ":" & objAddrEnt.Address

If objRecip Is Nothing Then
 MsgBox "Unable to add existing AddressEntry using ID"
 Exit Function
End If

objNewMessage.Text = "Expect 1 recipient."
MsgBox ("Count = " & objNewMessage.Recipients.Count)

Count Property (Recipients Collection)   
[This is preliminary documentation and subject to change.]

The Count property returns the number of Recipient objects in the collection. Read-only.

Syntax
collRecips.Count

Data Type
Long

Example
This code fragment uses the Count property as a loop terminator to copy all Recipient objects from
one message's Recipients collection to another message's collection. It shows the Count and Item
properties working together. Note how much more code this requires than copying the Message
object's Recipients property from the original message to the copy.

' Copy all Recipient objects from one message's collection to another
Dim objMessage, objCopyItem as Message
Dim collRecips as Recipients ' source message Recipients collection
Dim objRecip as Recipient ' individual recipient in target message
' ... verify valid messages ...
Set collRecips = objMessage.Recipients
For i = 1 To collRecips.Count Step 1
 strRecipName = collRecips.Item(i).Name
' could be collRecips(i).Name since Item is default property
 If strRecipName <> "" Then
 Set objRecip = objCopyItem.Recipients.Add
 If objRecip Is Nothing Then
 MsgBox "Unable to create recipient in message copy"
 Exit Function
 End If
 objRecip.Name = strRecipName
 objRecip.Address = collRecips.Item(i).Address
 objRecip.Type = collRecips.Item(i).Type
 End If
Next i

Delete Method (Recipients Collection)   
[This is preliminary documentation and subject to change.]

The Delete method removes all the Recipient objects from the Recipients collection.

Syntax
collRecips.Delete()

Remarks
The Delete method performs an irreversible operation on the collection. It calls Release on the
collection's reference to every Recipient object. If you have another reference to a recipient, you can
still access its properties and methods, but you can never again associate it with any collection
because the Add method always creates a new object. You should Set your reference variable either
to Nothing or to another recipient.

The final Release on each Recipient object takes place when you call Delete if you had no other
reference, or when you assign your reference variable to Nothing. At this point the object is removed
from memory. Attempted access to a released object results in an error return of
CdoE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection's member
objects. To delete only one Recipient object, use the Delete method specific to that object.

The effect of the Delete method is not permanent until you use the Send or Delete method on the
Message object containing the Recipients collection. A permanently deleted member cannot be
recovered. However, the collection itself is still valid, and you can Add new members to it.

The CDO for NTS Library does not permit any modifications to messages in the Inbox, other than
deleting the entire message. Prohibited modifications include adding, deleting, or modifying any
attachment; adding, deleting, or modifying any recipient; and modifying any message property.

Item Property (Recipients Collection)   
[This is preliminary documentation and subject to change.]

The Item property returns a single Recipient object from the Recipients collection. Read-only.

Syntax
collRecips.Item(index)

index
A long integer ranging from 1 to collRecips.Count, or a string that specifies the name of the object.

The Item property is the default property of a Recipients collection, meaning that collRecips(index) is
syntactically equivalent to collRecips.Item(index) in Microsoft® Visual Basic® code.

Data Type
Object (Recipient)

Remarks
The Item property works like an accessor property for small collections.

Although the Item property itself is read-only, the Recipient object it returns can be accessed in the
normal manner, and its properties retain their respective read/write or read-only accessibility.

Example
This code fragment shows the Count and Item properties working together:

' list all recipient names in the collection
strRecips = "" ' initialize string
Set collRecips = objMessage.Recipients
Count = collRecips.Count
For i = 1 To Count Step 1
 Set objRecip = collRecips.Item(i) ' or collRecips(i)
 strRecips = strRecips & objRecip.Name & "; "
Next i
MsgBox "Message recipients: " & strRecips

Session Object
[This is preliminary documentation and subject to change.]

The Session object contains session-wide settings and options.

Quick Info
Specified in type library: CDONTS.DLL
First available in: CDO for NTS Library version 1.2
Parent objects: (none)
Child objects: Folder
Default property: Name

Properties

Name

Available
in version

Type

Access

Application 1.2 String Read-only
Class 1.2 Long Read-only
Inbox 1.2 Folder object Read-only
MessageFormat 1.2 Long Read/write
Name 1.2 String Read-only
Outbox 1.2 Folder object Read-only
Parent 1.2 Object; set to Nothing Read-only
Session 1.2 Object; set to Nothing Read-only
Version 1.2 Folder object Read-only

Methods

Name

Available
in version

Parameters

GetDefaultFolder 1.2 folderType as Long

Logoff 1.2 (none)
LogonSMTP 1.2 DisplayName as String,

Address as String
SetLocaleIDs 1.2 LocaleID as Long,

CodePageeID as Long

Remarks
A Session object is considered a top-level object, meaning it can be created directly from a Microsoft®
Visual Basic® program. In the CDO for NTS Library it has a ProgID of CDONTS.Session. This code
fragment creates a Session object through early binding:

Dim objSession As CDONTS.Session
Set objSession = CreateObject ("CDONTS.Session")
objSession.LogonSMTP

This code fragment creates a Session object through late binding:

Dim objSession As Object
Set objSession = CreateObject ("CDONTS.Session")
objSession.LogonSMTP

Generally, early binding is preferable, because it enforces type checking and generates more efficient
code. Note that you specify the full ProgID "CDONTS.Session" instead of just "Session" in order to
distinguish a CDO application from other types of applications available to a Visual Basic program
through other object libraries.

In both cases, after you create a new Session object, you call its LogonSMTP method to initialize it.
No other activities with the CDO for NTS Library are permitted prior to a successful LogonSMTP call.
The only exception to this rule is the Session object's SetLocaleIDs method.

GetDefaultFolder Method (Session Object)   
[This is preliminary documentation and subject to change.]

The GetDefaultFolder method returns a Folder object from a message store.

Syntax
Set objFolder = objSession.GetDefaultFolder(folderType)

objFolder
On successful return, contains the store's default Folder object of the specified type. When the folder
does not exist, GetDefaultFolder returns Nothing.

objSession
Required. The Session object.

folderType
Required. Long. The folder type. This parameter can have exactly one of the following values:

folderType setting

Decimal

value

Meaning

CdoDefaultFolderInbox 1 The CDO for NTS Library's
Inbox.

CdoDefaultFolderOutbox 2 The CDO for NTS Library's
Outbox.

Remarks
The GetDefaultFolder method allows you to obtain the message store's default Inbox or Outbox folder.
No other folders are accessible through this method.

Example
This code fragment uses the GetDefaultFolder method to obtain the Inbox folder from a message
store:

Dim objSession As Session
Dim objInbox As Folder ' default Inbox or Outbox
Dim collMessages As Messages ' messages in folder

Set objSession = CreateObject ("CDONTS.Session")
objSession.LogonSMTP
Set objInbox = objSession.GetDefaultFolder(CdoDefaultFolderInbox)
If objInbox Is Nothing Then
 Set collMessages = Nothing
 MsgBox "Unable to retrieve default folder"
 Exit Function
Else
 Set collMessages = objInbox.Messages
 MsgBox "Folder set to " & objInbox.Name
End If

Inbox Property (Session Object)   
[This is preliminary documentation and subject to change.]

The Inbox property returns a Folder object representing the current messaging user's Inbox folder.
Read-only.

Syntax
objSession.Inbox

Data Type
Object (Folder)

Logoff Method (Session Object)   
[This is preliminary documentation and subject to change.]

The Logoff method uninitializes the Session object.

Syntax
objSession.Logoff()

Remarks
The Logoff method terminates all activity on the Session object initialized by the LogonSMTP method.
You can call LogonSMTP on the same Session object again. Attempted access to the Session object
before initialization results in a return of CdoE_NOT_INITIALIZED.

Objects you create while you are active on a Session object become invalid when you call Logoff. You
should Set your reference variables to Nothing for all such objects.

Example
This code fragment logs off from the messaging system:

' from the function Session_Logoff
If Not objSession Is Nothing Then
 objSession.Logoff
 MsgBox "Logged off; reset global variables"
Else
 MsgBox "No active session; cannot log off"
End If

LogonSMTP Method (Session Object)   
[This is preliminary documentation and subject to change.]

The LogonSMTP method initializes the Session object.

Syntax
objSession.LogonSMTP(DisplayName, Address)

objSession
Required. The Session object.

DisplayName
Required. String. The display name to use for the messaging user logging on, such as "John Q.
Doe".

Address
Required. String. The full e-mail address to use for the messaging user logging on, such as
"jdoe@company.com".

Remarks
Your application must call LogonSMTP before it can use any CDO for NTS Library object, including the
Session object. An attempt to access any programming element prior to a successful LogonSMTP call
results in a CdoE_NOT_INITIALIZED error return. The only exception to this rule is the Session
object's SetLocaleIDs method.

An application using the CDO for NTS Library binds by address to the mailbox you specify in the
LogonSMTP parameters:

 objSession.LogonSMTP("My Name", "myaddress@mycompany.com")

The identity of a user logging on with this syntax is not authenticated. The user can assume any
arbitrary identity.

The CDO for NTS Inbox is a common folder shared by all recipients and applications, and containing
all undeleted messages received by Microsoft® Internet Information Server (IIS). However, your
application can access only those messages destined for the mailbox you bind to in the LogonSMTP
call.

The session is terminated by the Logoff method.

MessageFormat Property (Session Object)   
[This is preliminary documentation and subject to change.]

The MessageFormat property returns or sets the default message encoding. Read/write.

Syntax
objSession.MessageFormat

Data Type
Long

Remarks
The MessageFormat property has the following defined values:

MessageFormat setting Value Description
CdoMime 0 The message is in MIME format.
CdoText 1 The message is in uninterrupted

plain text.

The MessageFormat property defaults to CdoMime. It serves as the default value for the
MessageFormat property of the Message object.

Name Property (Session Object)   
[This is preliminary documentation and subject to change.]

The Name property returns the display name used to log on to this session. Read-only.

Syntax
objSession.Name

The Name property is the default property of a Session object, meaning that objSession is syntactically
equivalent to objSession.Name in Microsoft® Visual Basic® code.

Data Type
String

Example
' from the function Session_Name
If objSession Is Nothing Then
 MsgBox "Must log on first: see Session menu"
 Exit Function
End If
MsgBox "Profile name for this session = " & objSession.Name

Outbox Property (Session Object)   
[This is preliminary documentation and subject to change.]

The Outbox property returns a Folder object representing the current messaging user's Outbox folder.
Read-only.

Syntax
objSession.Outbox

Data Type
Object (Folder)

SetLocaleIDs Method (Session Object)   
[This is preliminary documentation and subject to change.]

The SetLocaleIDs method sets identifiers that define a messaging user's locale.

Syntax
objSession.SetLocaleIDs(LocaleID, CodePageID)

objSession
Required. The Session object.

LocaleID
Required. Long. The locale identifier (LCID) to be used for this messaging user.

CodePageID
Required. Long. The code page identifier to be used for this messaging user.

Remarks
A locale is the set of features of a messaging user's environment that are dependent on language,
country, culture, and conventions. These features include the character selection, the collating
sequence and sort order, and the date, time, and currency formats. The SetLocaleIDs method sets
identifiers that determine the behavior of locale-sensitive operations.

A locale identifier (LCID) is a 32-bit value containing a 16-bit language identifier and a 4-bit sort
identifier. The Microsoft® Windows NT® macros SORTIDFROMLCID and LANGIDFROMLCID can be
used to extract these identifiers from the LCID.

A code page identifier is a long integer specifying the ordered character set to use when displaying
text. Information about a code page can be obtained from the Windows NT GetCPInfo function.

If SetLocaleIDs is to be called, it must be called before the Session object's LogonSMTP method is
called. This allows the messaging user's profile to be set for the appropriate locale. A call to
SetLocaleIDs following logon returns CdoE_CALL_FAILED.

Note that the SetLocaleIDs method is the sole exception to the rule that a call to a session's
LogonSMTP method must precede any other access to that session.

SetLocaleIDs tests the validity of the code page specified by the CodePageID parameter before
actually setting the locale identifiers. If the code page is not valid, CdoE_INVALID_ARGUMENT is
returned.

Version Property (Session Object)   
[This is preliminary documentation and subject to change.]

The Version property returns the version of the CDO for NTS Library. Read-only.

Syntax
objSession.Version

Data Type
String

Remarks
The Version property currently returns "1.2".

Error Codes
When the CDO Library or the CDO Rendering Library calls MAPI, the desired return value is zero,
meaning the call was successful and produced the expected results. MAPI can also return either a
warning value or an error value to the CDO libraries. A warning means the call was at least partially
successful but may have produced an unexpected result or side effect. An error means the call was not
successful. All warning and error return codes are nonzero. Warning values have the high-order bit
zero, while error values set it to one.

For the convenience of the Microsoft® Visual Basic® programmer, the CDO libraries define 32-bit type
library constants for all relevant warning and error codes. These are provided here in alphabetic and
then in numeric order.

A program running on a 16-bit platform cannot use these type library constants. Such a program must
test against the low-order word of the constant's value incremented by decimal 1000. For more
information on error checking, see Handling Errors.

Note MAPI returns 32-bit values to Visual Basic for both warnings and errors, but Visual Basic
treats the two cases differently. Errors are passed to the CDO libraries as 32-bit codes, while
warnings are returned as the sum of decimal 1000 and the low-order word of the warning, even on a
32-bit platform. This means that a partial completion, for example, is returned as &H0680 + 1000, or
2664, instead of &H00040680, the full value of CdoW_PARTIAL_COMPLETION.

To test for a MAPI warning in a Visual Basic program, you can code the decimal value from the
following tables directly into your program. Alternatively, if you prefer to use the type constant for
improved readability, you can prepare it for comparison by subtracting the &H40000 bit and then
adding 1000 decimal. This is equivalent to subtracting decimal 261144 from the constant:

 If Err() = CdoW_PARTIAL_COMPLETION - 261144 Then ...

Microsoft Visual Basic Scripting Edition (VBScript) and Microsoft® JScript™ do not support any
predefined constants. If your application is running as server-side or client-side script, you must use the
appropriate hexadecimal or decimal values instead of these type library constants.

The following table lists the return values from MAPI in alphabetic order:

Warning or error code value

(error code constants available only in
32-bit type libraries)

HRESULT
[VB4 error
value]
(hexadecim
al)

Low-order
word
+ 1000
(decimal)

CdoE_ACCOUNT_DISABLED &H8004012
4

1292

CdoE_AMBIGUOUS_RECIP &H8004070
0

2792

CdoE_BAD_CHARWIDTH &H8004010
3

1259

CdoE_BAD_COLUMN &H8004011
8

1280

CdoE_BAD_VALUE &H8004030
1

1769

CdoE_BUSY &H8004010
B

1267

CdoE_CALL_FAILED &H8000400 17389

5
CdoE_CANCEL &H8004050

1
2281

CdoE_COLLISION &H8004060
4

2540

CdoE_COMPUTED &H8004011
A

1282

CdoE_CORRUPT_DATA &H8004011
B

1283

CdoE_CORRUPT_STORE &H8004060
0

2536

CdoE_DECLINE_COPY &H8004030
6

1774

CdoE_DISK_ERROR &H8004011
6

1278

CdoE_END_OF_SESSION &H8004020
0

1512

CdoE_EXTENDED_ERROR &H8004011
9

1281

CdoE_FAILONEPROVIDER &H8004011
D

1285

CdoE_FOLDER_CYCLE &H8004060
B

2547

CdoE_HAS_FOLDERS &H8004060
9

2545

CdoE_HAS_MESSAGES &H8004060
A

2546

CdoE_INTERFACE_NOT_SUPPORTED &H8000400
2

17386

CdoE_INVALID_ACCESS_TIME &H8004012
3

1291

CdoE_INVALID_BOOKMARK &H8004040
5

2029

CdoE_INVALID_ENTRYID &H8004010
7

1263

CdoE_INVALID_OBJECT &H8004010
8

1264

CdoE_INVALID_PARAMETER &H8007005
7

1087

CdoE_INVALID_TYPE &H8004030
2

1770

CdoE_INVALID_WORKSTATION_ACCOUNT &H8004012
2

1290

CdoE_LOGON_FAILED &H80040111 1273
CdoE_MISSING_REQUIRED_COLUMN &H8004020

2
1514

CdoE_NETWORK_ERROR &H8004011
5

1277

CdoE_NO_ACCESS &H8007000 1005

5
CdoE_NO_RECIPIENTS &H8004060

7
2543

CdoE_NO_SUPPORT &H8004010
2

1258

CdoE_NO_SUPPRESS &H8004060
2

2538

CdoE_NON_STANDARD &H8004060
6

2542

CdoE_NOT_ENOUGH_DISK &H8004010
D

1269

CdoE_NOT_ENOUGH_MEMORY &H8007000
E

1014

CdoE_NOT_ENOUGH_RESOURCES &H8004010
E

1270

CdoE_NOT_FOUND &H8004010
F

1271

CdoE_NOT_IN_QUEUE &H8004060
1

2537

CdoE_NOT_INITIALIZED &H8004060
5

2541

CdoE_NOT_ME &H8004050
2

2282

CdoE_OBJECT_CHANGED &H8004010
9

1265

CdoE_OBJECT_DELETED &H8004010
A

1266

CdoE_PASSWORD_CHANGE_REQUIRED &H8004012
0

1288

CdoE_PASSWORD_EXPIRED &H8004012
1

1289

CdoE_SESSION_LIMIT &H8004011
2

1274

CdoE_STRING_TOO_LONG &H8004010
5

1261

CdoE_SUBMITTED &H8004060
8

2544

CdoE_TABLE_EMPTY &H8004040
2

2026

CdoE_TABLE_TOO_BIG &H8004040
3

2027

CdoE_TIMEOUT &H8004040
1

2025

CdoE_TOO_BIG &H8004030
5

1773

CdoE_TOO_COMPLEX &H8004011
7

1279

CdoE_TYPE_NO_SUPPORT &H8004030
3

1771

CdoE_UNABLE_TO_ABORT &H8004011
4

1276

CdoE_UNABLE_TO_COMPLETE &H8004040
0

2024

CdoE_UNCONFIGURED &H8004011
C

1284

CdoE_UNEXPECTED_ID &H8004030
7

1775

CdoE_UNEXPECTED_TYPE &H8004030
4

1772

CdoE_UNKNOWN_CPID &H8004011
E

1286

CdoE_UNKNOWN_ENTRYID &H8004020
1

1513

CdoE_UNKNOWN_FLAGS &H8004010
6

1262

CdoE_UNKNOWN_LCID &H8004011
F

1287

CdoE_USER_CANCEL &H8004011
3

1275

CdoE_VERSION &H8004011
0

1272

CdoE_WAIT &H8004050
0

2280

CdoW_APPROX_COUNT &H0004048
2

2154

CdoW_CANCEL_MESSAGE &H0004058
0

2408

CdoW_ERRORS_RETURNED &H0004038
0

1896

CdoW_NO_SERVICE &H0004020
3

1515

CdoW_PARTIAL_COMPLETION &H0004068
0

2664

CdoW_POSITION_CHANGED &H0004048
1

2153

The following table lists the return values from MAPI in numeric order:

HRESULT
[VB4 error
value]
(hexadecim
al)

Low-order
word
+ 1000
(decimal)

Warning or error code value

(error code constants available only in
32-bit type libraries)

&H0004020
3

1515 CdoW_NO_SERVICE

&H0004038
0

1896 CdoW_ERRORS_RETURNED

&H0004048
1

2153 CdoW_POSITION_CHANGED

&H0004048
2

2154 CdoW_APPROX_COUNT

&H0004058
0

2408 CdoW_CANCEL_MESSAGE

&H0004068
0

2664 CdoW_PARTIAL_COMPLETION

&H8000400
2

17386 CdoE_INTERFACE_NOT_SUPPORTED

&H8000400
5

17389 CdoE_CALL_FAILED

&H8004010
2

1258 CdoE_NO_SUPPORT

&H8004010
3

1259 CdoE_BAD_CHARWIDTH

&H8004010
5

1261 CdoE_STRING_TOO_LONG

&H8004010
6

1262 CdoE_UNKNOWN_FLAGS

&H8004010
7

1263 CdoE_INVALID_ENTRYID

&H8004010
8

1264 CdoE_INVALID_OBJECT

&H8004010
9

1265 CdoE_OBJECT_CHANGED

&H8004010
A

1266 CdoE_OBJECT_DELETED

&H8004010
B

1267 CdoE_BUSY

&H8004010
D

1269 CdoE_NOT_ENOUGH_DISK

&H8004010
E

1270 CdoE_NOT_ENOUGH_RESOURCES

&H8004010
F

1271 CdoE_NOT_FOUND

&H8004011
0

1272 CdoE_VERSION

&H80040111 1273 CdoE_LOGON_FAILED
&H8004011
2

1274 CdoE_SESSION_LIMIT

&H8004011
3

1275 CdoE_USER_CANCEL

&H8004011
4

1276 CdoE_UNABLE_TO_ABORT

&H8004011
5

1277 CdoE_NETWORK_ERROR

&H8004011
6

1278 CdoE_DISK_ERROR

&H8004011
7

1279 CdoE_TOO_COMPLEX

&H8004011
8

1280 CdoE_BAD_COLUMN

&H8004011
9

1281 CdoE_EXTENDED_ERROR

&H8004011
A

1282 CdoE_COMPUTED

&H8004011
B

1283 CdoE_CORRUPT_DATA

&H8004011
C

1284 CdoE_UNCONFIGURED

&H8004011
D

1285 CdoE_FAILONEPROVIDER

&H8004011
E

1286 CdoE_UNKNOWN_CPID

&H8004011
F

1287 CdoE_UNKNOWN_LCID

&H8004012
0

1288 CdoE_PASSWORD_CHANGE_REQUIRED

&H8004012
1

1289 CdoE_PASSWORD_EXPIRED

&H8004012
2

1290 CdoE_INVALID_WORKSTATION_ACCOUNT

&H8004012
3

1291 CdoE_INVALID_ACCESS_TIME

&H8004012
4

1292 CdoE_ACCOUNT_DISABLED

&H8004020
0

1512 CdoE_END_OF_SESSION

&H8004020
1

1513 CdoE_UNKNOWN_ENTRYID

&H8004020
2

1514 CdoE_MISSING_REQUIRED_COLUMN

&H8004030
1

1769 CdoE_BAD_VALUE

&H8004030
2

1770 CdoE_INVALID_TYPE

&H8004030
3

1771 CdoE_TYPE_NO_SUPPORT

&H8004030
4

1772 CdoE_UNEXPECTED_TYPE

&H8004030
5

1773 CdoE_TOO_BIG

&H8004030
6

1774 CdoE_DECLINE_COPY

&H8004030
7

1775 CdoE_UNEXPECTED_ID

&H8004040
0

2024 CdoE_UNABLE_TO_COMPLETE

&H8004040 2025 CdoE_TIMEOUT

1
&H8004040
2

2026 CdoE_TABLE_EMPTY

&H8004040
3

2027 CdoE_TABLE_TOO_BIG

&H8004040
5

2029 CdoE_INVALID_BOOKMARK

&H8004050
0

2280 CdoE_WAIT

&H8004050
1

2281 CdoE_CANCEL

&H8004050
2

2282 CdoE_NOT_ME

&H8004060
0

2536 CdoE_CORRUPT_STORE

&H8004060
1

2537 CdoE_NOT_IN_QUEUE

&H8004060
2

2538 CdoE_NO_SUPPRESS

&H8004060
4

2540 CdoE_COLLISION

&H8004060
5

2541 CdoE_NOT_INITIALIZED

&H8004060
6

2542 CdoE_NON_STANDARD

&H8004060
7

2543 CdoE_NO_RECIPIENTS

&H8004060
8

2544 CdoE_SUBMITTED

&H8004060
9

2545 CdoE_HAS_FOLDERS

&H8004060
A

2546 CdoE_HAS_MESSAGES

&H8004060
B

2547 CdoE_FOLDER_CYCLE

&H8004070
0

2792 CdoE_AMBIGUOUS_RECIP

&H8007000
5

1005 CdoE_NO_ACCESS

&H8007000
E

1014 CdoE_NOT_ENOUGH_MEMORY

&H8007005
7

1087 CdoE_INVALID_PARAMETER

Property Tags
For the convenience of the Microsoft® Visual Basic® programmer, the CDO libraries define 32-bit type
library constants for all predefined MAPI properties. These are provided here in alphabetic and then in
numeric order.

Most of the string properties can also be used in the Unicode format. When you reference a property
for Unicode, you should change its property type from &H001E to &H001F. For example, the standard
property tag for PR_SUBJECT is &H0037001E, but if your application is using Unicode you should
refer to PR_SUBJECT with &H0037001F.

Microsoft Visual Basic Scripting Edition (VBScript) and Microsoft® JScript™ do not support any
predefined constants. If your application is running as server-side or client-side script, you must use the
appropriate hexadecimal or decimal values instead of these type library constants.

The following table lists the MAPI property tags in alphabetic order:

Property tag value
(constants available only in 32-bit type libraries)

Hexadecim
al
value

CdoPR_7BIT_DISPLAY_NAME &H39FF001
E

CdoPR_AB_DEFAULT_DIR &H3D06010
2

CdoPR_AB_DEFAULT_PAB &H3D07010
2

CdoPR_AB_PROVIDER_ID &H3615010
2

CdoPR_AB_PROVIDERS &H3D01010
2

CdoPR_AB_SEARCH_PATH &H3D05110
2

CdoPR_AB_SEARCH_PATH_UPDATE &H3D11010
2

CdoPR_ACCESS &H0FF4000
3

CdoPR_ACCESS_LEVEL &H0FF7000
3

CdoPR_ACCOUNT &H3A00001
E

CdoPR_ACKNOWLEDGEMENT_MODE &H0001000
3

CdoPR_ADDRTYPE &H3002001
E

CdoPR_ALTERNATE_RECIPIENT &H3A01010
2

CdoPR_ALTERNATE_RECIPIENT_ALLOWED &H0002000
B

CdoPR_ANR &H360C001
E

CdoPR_ASSISTANT &H3A30001

E
CdoPR_ASSISTANT_TELEPHONE_NUMBER &H3A2E001

E
CdoPR_ASSOC_CONTENT_COUNT &H3617000

3
CdoPR_ATTACH_ADDITIONAL_INFO &H370F010

2
CdoPR_ATTACH_DATA_BIN &H3701010

2
CdoPR_ATTACH_DATA_OBJ &H3701000

D
CdoPR_ATTACH_ENCODING &H3702010

2
CdoPR_ATTACH_EXTENSION &H3703001

E
CdoPR_ATTACH_FILENAME &H3704001

E
CdoPR_ATTACH_LONG_FILENAME &H3707001

E
CdoPR_ATTACH_LONG_PATHNAME &H370D001

E
CdoPR_ATTACH_METHOD &H3705000

3
CdoPR_ATTACH_MIME_TAG &H370E001

E
CdoPR_ATTACH_NUM &H0E21000

3
CdoPR_ATTACH_PATHNAME &H3708001

E
CdoPR_ATTACH_RENDERING &H3709010

2
CdoPR_ATTACH_SIZE &H0E20000

3
CdoPR_ATTACH_TAG &H370A010

2
CdoPR_ATTACH_TRANSPORT_NAME &H370C001

E
CdoPR_ATTACHMENT_X400_PARAMETERS &H3700010

2
CdoPR_AUTHORIZING_USERS &H0003010

2
CdoPR_AUTO_FORWARD_COMMENT &H0004001

E
CdoPR_AUTO_FORWARDED &H0005000

B
CdoPR_BEEPER_TELEPHONE_NUMBER &H3A21001

E
CdoPR_BIRTHDAY &H3A42004

0

CdoPR_BODY &H1000001
E

CdoPR_BODY_CRC &H0E1C000
3

CdoPR_BUSINESS_ADDRESS_CITY &H3A27001
E

CdoPR_BUSINESS_ADDRESS_COUNTRY &H3A26001
E

CdoPR_BUSINESS_ADDRESS_POST_OFFICE_BOX &H3A2B001
E

CdoPR_BUSINESS_ADDRESS_POSTAL_CODE &H3A2A001
E

CdoPR_BUSINESS_ADDRESS_STATE_OR_PROVINCE &H3A28001
E

CdoPR_BUSINESS_ADDRESS_STREET &H3A29001
E

CdoPR_BUSINESS_FAX_NUMBER &H3A24001
E

CdoPR_BUSINESS_HOME_PAGE &H3A51001
E

CdoPR_BUSINESS_TELEPHONE_NUMBER &H3A08001
E

CdoPR_BUSINESS2_TELEPHONE_NUMBER &H3A1B001
E

CdoPR_CALLBACK_TELEPHONE_NUMBER &H3A02001
E

CdoPR_CAR_TELEPHONE_NUMBER &H3A1E001
E

CdoPR_CELLULAR_TELEPHONE_NUMBER &H3A1C001
E

CdoPR_CHILDRENS_NAMES &H3A58101
E

CdoPR_CLIENT_SUBMIT_TIME &H0039004
0

CdoPR_COMMENT &H3004001
E

CdoPR_COMMON_VIEWS_ENTRYID &H35E6010
2

CdoPR_COMPANY_MAIN_PHONE_NUMBER &H3A57001
E

CdoPR_COMPANY_NAME &H3A16001
E

CdoPR_COMPUTER_NETWORK_NAME &H3A49001
E

CdoPR_CONTACT_ADDRTYPES &H3A54101
E

CdoPR_CONTACT_DEFAULT_ADDRESS_INDEX &H3A55000
3

CdoPR_CONTACT_EMAIL_ADDRESSES &H3A56101

E
CdoPR_CONTACT_ENTRYIDS &H3A53110

2
CdoPR_CONTACT_VERSION &H3A52004

8
CdoPR_CONTAINER_CLASS &H3613001

E
CdoPR_CONTAINER_CONTENTS &H360F000

D
CdoPR_CONTAINER_FLAGS &H3600000

3
CdoPR_CONTAINER_HIERARCHY &H360E000

D
CdoPR_CONTAINER_MODIFY_VERSION &H3614001

4
CdoPR_CONTENT_CONFIDENTIALITY_ALGORITHM_ID &H0006010

2
CdoPR_CONTENT_CORRELATOR &H0007010

2
CdoPR_CONTENT_COUNT &H3602000

3
CdoPR_CONTENT_IDENTIFIER &H0008001

E
CdoPR_CONTENT_INTEGRITY_CHECK &H0C00010

2
CdoPR_CONTENT_LENGTH &H0009000

3
CdoPR_CONTENT_RETURN_REQUESTED &H000A000

B
CdoPR_CONTENT_UNREAD &H3603000

3
CdoPR_CONTENTS_SORT_ORDER &H360D100

3
CdoPR_CONTROL_FLAGS &H3F00000

3
CdoPR_CONTROL_ID &H3F07010

2
CdoPR_CONTROL_STRUCTURE &H3F01010

2
CdoPR_CONTROL_TYPE &H3F02000

3
CdoPR_CONVERSATION_INDEX &H0071010

2
CdoPR_CONVERSATION_KEY &H000B010

2
CdoPR_CONVERSATION_TOPIC &H0070001

E
CdoPR_CONVERSION_EITS &H000C010

2

CdoPR_CONVERSION_PROHIBITED &H3A03000
B

CdoPR_CONVERSION_WITH_LOSS_PROHIBITED &H000D000
B

CdoPR_CONVERTED_EITS &H000E010
2

CdoPR_CORRELATE &H0E0C000
B

CdoPR_CORRELATE_MTSID &H0E0D010
2

CdoPR_COUNTRY &H3A26001
E

CdoPR_CREATE_TEMPLATES &H3604000
D

CdoPR_CREATION_TIME &H3007004
0

CdoPR_CREATION_VERSION &H0E19001
4

CdoPR_CURRENT_VERSION &H0E00001
4

CdoPR_CUSTOMER_ID &H3A4A001
E

CdoPR_DEF_CREATE_DL &H3611010
2

CdoPR_DEF_CREATE_MAILUSER &H3612010
2

CdoPR_DEFAULT_PROFILE &H3D04000
B

CdoPR_DEFAULT_STORE &H3400000
B

CdoPR_DEFAULT_VIEW_ENTRYID &H3616010
2

CdoPR_DEFERRED_DELIVERY_TIME &H000F004
0

CdoPR_DELEGATION &H007E010
2

CdoPR_DELETE_AFTER_SUBMIT &H0E01000
B

CdoPR_DELIVER_TIME &H0010004
0

CdoPR_DELIVERY_POINT &H0C07000
3

CdoPR_DELTAX &H3F03000
3

CdoPR_DELTAY &H3F04000
3

CdoPR_DEPARTMENT_NAME &H3A18001
E

CdoPR_DEPTH &H3005000

3
CdoPR_DETAILS_TABLE &H3605000

D
CdoPR_DISC_VAL &H004A000

B
CdoPR_DISCARD_REASON &H0011000

3
CdoPR_DISCLOSE_RECIPIENTS &H3A04000

B
CdoPR_DISCLOSURE_OF_RECIPIENTS &H0012000

B
CdoPR_DISCRETE_VALUES &H0E0E000

B
CdoPR_DISPLAY_BCC &H0E02001

E
CdoPR_DISPLAY_CC &H0E03001

E
CdoPR_DISPLAY_NAME &H3001001

E
CdoPR_DISPLAY_NAME_PREFIX &H3A45001

E
CdoPR_DISPLAY_TO &H0E04001

E
CdoPR_DISPLAY_TYPE &H3900000

3
CdoPR_DL_EXPANSION_HISTORY &H0013010

2
CdoPR_DL_EXPANSION_PROHIBITED &H0014000

B
CdoPR_EMAIL_ADDRESS &H3003001

E
CdoPR_END_DATE &H0061004

0
CdoPR_ENTRYID &H0FFF010

2
CdoPR_EXPIRY_TIME &H0015004

0
CdoPR_EXPLICIT_CONVERSION &H0C01000

3
CdoPR_FILTERING_HOOKS &H3D08010

2
CdoPR_FINDER_ENTRYID &H35E7010

2
CdoPR_FOLDER_ASSOCIATED_CONTENTS &H3610000

D
CdoPR_FOLDER_TYPE &H3601000

3
CdoPR_FORM_CATEGORY &H3304001

E

CdoPR_FORM_CATEGORY_SUB &H3305001
E

CdoPR_FORM_CLSID &H3302004
8

CdoPR_FORM_CONTACT_NAME &H3303001
E

CdoPR_FORM_DESIGNER_GUID &H3309004
8

CdoPR_FORM_DESIGNER_NAME &H3308001
E

CdoPR_FORM_HIDDEN &H3307000
B

CdoPR_FORM_HOST_MAP &H3306100
3

CdoPR_FORM_MESSAGE_BEHAVIOR &H330A000
3

CdoPR_FORM_VERSION &H3301001
E

CdoPR_FTP_SITE &H3A4C001
E

CdoPR_GENDER &H3A4D000
2

CdoPR_GENERATION &H3A05001
E

CdoPR_GIVEN_NAME &H3A06001
E

CdoPR_GOVERNMENT_ID_NUMBER &H3A07001
E

CdoPR_HASATTACH &H0E1B000
B

CdoPR_HEADER_FOLDER_ENTRYID &H3E0A010
2

CdoPR_HOBBIES &H3A43001
E

CdoPR_HOME_ADDRESS_CITY &H3A59001
E

CdoPR_HOME_ADDRESS_COUNTRY &H3A5A001
E

CdoPR_HOME_ADDRESS_POST_OFFICE_BOX &H3A5E001
E

CdoPR_HOME_ADDRESS_POSTAL_CODE &H3A5B001
E

CdoPR_HOME_ADDRESS_STATE_OR_PROVINCE &H3A5C001
E

CdoPR_HOME_ADDRESS_STREET &H3A5D001
E

CdoPR_HOME_FAX_NUMBER &H3A25001
E

CdoPR_HOME_TELEPHONE_NUMBER &H3A09001

E
CdoPR_HOME2_TELEPHONE_NUMBER &H3A2F001

E
CdoPR_ICON &H0FFD010

2
CdoPR_IDENTITY_DISPLAY &H3E00001

E
CdoPR_IDENTITY_ENTRYID &H3E01010

2
CdoPR_IDENTITY_SEARCH_KEY &H3E05010

2
CdoPR_IMPLICIT_CONVERSION_PROHIBITED &H0016000

B
CdoPR_IMPORTANCE &H0017000

3
CdoPR_INCOMPLETE_COPY &H0035000

B
CdoPR_INITIAL_DETAILS_PANE &H3F08000

3
CdoPR_INITIALS &H3A0A001

E
CdoPR_INSTANCE_KEY &H0FF6010

2
CdoPR_INTERNET_APPROVED &H1030001

E
CdoPR_INTERNET_ARTICLE_NUMBER &H0E23000

3
CdoPR_INTERNET_CONTROL &H1031001

E
CdoPR_INTERNET_DISTRIBUTION &H1032001

E
CdoPR_INTERNET_FOLLOWUP_TO &H1033001

E
CdoPR_INTERNET_LINES &H1034000

3
CdoPR_INTERNET_MESSAGE_ID &H1035001

E
CdoPR_INTERNET_NEWSGROUPS &H1036001

E
CdoPR_INTERNET_NNTP_PATH &H1038001

E
CdoPR_INTERNET_ORGANIZATION &H1037001

E
CdoPR_INTERNET_PRECEDENCE &H1041001

E
CdoPR_INTERNET_REFERENCES &H1039001

E
CdoPR_IPM_ID &H0018010

2

CdoPR_IPM_OUTBOX_ENTRYID &H35E2010
2

CdoPR_IPM_OUTBOX_SEARCH_KEY &H3411010
2

CdoPR_IPM_RETURN_REQUESTED &H0C02000
B

CdoPR_IPM_SENTMAIL_ENTRYID &H35E4010
2

CdoPR_IPM_SENTMAIL_SEARCH_KEY &H3413010
2

CdoPR_IPM_SUBTREE_ENTRYID &H35E0010
2

CdoPR_IPM_SUBTREE_SEARCH_KEY &H3410010
2

CdoPR_IPM_WASTEBASKET_ENTRYID &H35E3010
2

CdoPR_IPM_WASTEBASKET_SEARCH_KEY &H3412010
2

CdoPR_ISDN_NUMBER &H3A2D001
E

CdoPR_KEYWORD &H3A0B001
E

CdoPR_LANGUAGE &H3A0C001
E

CdoPR_LANGUAGES &H002F001
E

CdoPR_LAST_MODIFICATION_TIME &H3008004
0

CdoPR_LATEST_DELIVERY_TIME &H0019004
0

CdoPR_LOCALITY &H3A27001
E

CdoPR_LOCATION &H3A0D001
E

CdoPR_MAIL_PERMISSION &H3A0E000
B

CdoPR_MANAGER_NAME &H3A4E001
E

CdoPR_MAPPING_SIGNATURE &H0FF8010
2

CdoPR_MDB_PROVIDER &H3414010
2

CdoPR_MESSAGE_ATTACHMENTS &H0E13000
D

CdoPR_MESSAGE_CC_ME &H0058000
B

CdoPR_MESSAGE_CLASS &H001A001
E

CdoPR_MESSAGE_DELIVERY_ID &H001B010

2
CdoPR_MESSAGE_DELIVERY_TIME &H0E06004

0
CdoPR_MESSAGE_DOWNLOAD_TIME &H0E18000

3
CdoPR_MESSAGE_FLAGS &H0E07000

3
CdoPR_MESSAGE_RECIP_ME &H0059000

B
CdoPR_MESSAGE_RECIPIENTS &H0E12000

D
CdoPR_MESSAGE_SECURITY_LABEL &H001E010

2
CdoPR_MESSAGE_SIZE &H0E08000

3
CdoPR_MESSAGE_SUBMISSION_ID &H0047010

2
CdoPR_MESSAGE_TO_ME &H0057000

B
CdoPR_MESSAGE_TOKEN &H0C03010

2
CdoPR_MHS_COMMON_NAME &H3A0F001

E
CdoPR_MIDDLE_NAME &H3A44001

E
CdoPR_MINI_ICON &H0FFC010

2
CdoPR_MOBILE_TELEPHONE_NUMBER &H3A1C001

E
CdoPR_MODIFY_VERSION &H0E1A001

4
CdoPR_MSG_STATUS &H0E17000

3
CdoPR_NDR_DIAG_CODE &H0C05000

3
CdoPR_NDR_REASON_CODE &H0C04000

3
CdoPR_NEWSGROUP_NAME &H0E24001

E
CdoPR_NICKNAME &H3A4F001

E
CdoPR_NNTP_XREF &H1040001

E
CdoPR_NON_RECEIPT_NOTIFICATION_REQUESTED &H0C06000

B
CdoPR_NON_RECEIPT_REASON &H003E000

3
CdoPR_NORMALIZED_SUBJECT &H0E1D001

E

CdoPR_OBJECT_TYPE &H0FFE000
3

CdoPR_OBSOLETED_IPMS &H001F010
2

CdoPR_OFFICE_LOCATION &H3A19001
E

CdoPR_OFFICE_TELEPHONE_NUMBER &H3A08001
E

CdoPR_OFFICE2_TELEPHONE_NUMBER &H3A1B001
E

CdoPR_ORGANIZATIONAL_ID_NUMBER &H3A10001
E

CdoPR_ORIG_MESSAGE_CLASS &H004B001
E

CdoPR_ORIGIN_CHECK &H0027010
2

CdoPR_ORIGINAL_AUTHOR_ADDRTYPE &H0079001
E

CdoPR_ORIGINAL_AUTHOR_EMAIL_ADDRESS &H007A001
E

CdoPR_ORIGINAL_AUTHOR_ENTRYID &H004C010
2

CdoPR_ORIGINAL_AUTHOR_NAME &H004D001
E

CdoPR_ORIGINAL_AUTHOR_SEARCH_KEY &H0056010
2

CdoPR_ORIGINAL_DELIVERY_TIME &H0055004
0

CdoPR_ORIGINAL_DISPLAY_BCC &H0072001
E

CdoPR_ORIGINAL_DISPLAY_CC &H0073001
E

CdoPR_ORIGINAL_DISPLAY_NAME &H3A13001
E

CdoPR_ORIGINAL_DISPLAY_TO &H0074001
E

CdoPR_ORIGINAL_EITS &H0021010
2

CdoPR_ORIGINAL_ENTRYID &H3A12010
2

CdoPR_ORIGINAL_SEARCH_KEY &H3A14010
2

CdoPR_ORIGINAL_SENDER_ADDRTYPE &H0066001
E

CdoPR_ORIGINAL_SENDER_EMAIL_ADDRESS &H0067001
E

CdoPR_ORIGINAL_SENDER_ENTRYID &H005B010
2

CdoPR_ORIGINAL_SENDER_NAME &H005A001

E
CdoPR_ORIGINAL_SENDER_SEARCH_KEY &H005C010

2
CdoPR_ORIGINAL_SENSITIVITY &H002E000

3
CdoPR_ORIGINAL_SENT_REPRESENTING_ADDRTYPE &H0068001

E
CdoPR_ORIGINAL_SENT_REPRESENTING_EMAIL_
ADDRESS

&H0069001
E

CdoPR_ORIGINAL_SENT_REPRESENTING_ENTRYID &H005E010
2

CdoPR_ORIGINAL_SENT_REPRESENTING_NAME &H005D001
E

CdoPR_ORIGINAL_SENT_REPRESENTING_SEARCH_KE
Y

&H005F010
2

CdoPR_ORIGINAL_SUBJECT &H0049001
E

CdoPR_ORIGINAL_SUBMIT_TIME &H004E004
0

CdoPR_ORIGINALLY_INTENDED_RECIP_ADDRTYPE &H007B001
E

CdoPR_ORIGINALLY_INTENDED_RECIP_EMAIL_
ADDRESS

&H007C001
E

CdoPR_ORIGINALLY_INTENDED_RECIP_ENTRYID &H1012010
2

CdoPR_ORIGINALLY_INTENDED_RECIPIENT_NAME &H0020010
2

CdoPR_ORIGINATING_MTA_CERTIFICATE &H0E25010
2

CdoPR_ORIGINATOR_AND_DL_EXPANSION_HISTORY &H1002010
2

CdoPR_ORIGINATOR_CERTIFICATE &H0022010
2

CdoPR_ORIGINATOR_DELIVERY_REPORT_REQUESTED &H0023000
B

CdoPR_ORIGINATOR_NON_DELIVERY_REPORT_
REQUESTED

&H0C08000
B

CdoPR_ORIGINATOR_REQUESTED_ALTERNATE_
RECIPIENT

&H0C09010
2

CdoPR_ORIGINATOR_RETURN_ADDRESS &H0024010
2

CdoPR_OTHER_ADDRESS_CITY &H3A5F001
E

CdoPR_OTHER_ADDRESS_COUNTRY &H3A60001
E

CdoPR_OTHER_ADDRESS_POST_OFFICE_BOX &H3A64001
E

CdoPR_OTHER_ADDRESS_POSTAL_CODE &H3A61001
E

CdoPR_OTHER_ADDRESS_STATE_OR_PROVINCE &H3A62001
E

CdoPR_OTHER_ADDRESS_STREET &H3A63001
E

CdoPR_OTHER_TELEPHONE_NUMBER &H3A1F001
E

CdoPR_OWN_STORE_ENTRYID &H3E06010
2

CdoPR_OWNER_APPT_ID &H0062000
3

CdoPR_PAGER_TELEPHONE_NUMBER &H3A21001
E

CdoPR_PARENT_DISPLAY &H0E05001
E

CdoPR_PARENT_ENTRYID &H0E09010
2

CdoPR_PARENT_KEY &H0025010
2

CdoPR_PERSONAL_HOME_PAGE &H3A50001
E

CdoPR_PHYSICAL_DELIVERY_BUREAU_FAX_DELIVERY &H0C0A000
B

CdoPR_PHYSICAL_DELIVERY_MODE &H0C0B000
3

CdoPR_PHYSICAL_DELIVERY_REPORT_REQUEST &H0C0C000
3

CdoPR_PHYSICAL_FORWARDING_ADDRESS &H0C0D010
2

CdoPR_PHYSICAL_FORWARDING_ADDRESS_
REQUESTED

&H0C0E000
B

CdoPR_PHYSICAL_FORWARDING_PROHIBITED &H0C0F000
B

CdoPR_PHYSICAL_RENDITION_ATTRIBUTES &H0C10010
2

CdoPR_POST_FOLDER_ENTRIES &H103B010
2

CdoPR_POST_FOLDER_NAMES &H103C001
E

CdoPR_POST_OFFICE_BOX &H3A2B001
E

CdoPR_POST_REPLY_DENIED &H103F010
2

CdoPR_POST_REPLY_FOLDER_ENTRIES &H103D010
2

CdoPR_POST_REPLY_FOLDER_NAMES &H103E001
E

CdoPR_POSTAL_ADDRESS &H3A15001
E

CdoPR_POSTAL_CODE &H3A2A001

E
CdoPR_PREFERRED_BY_NAME &H3A47001

E
CdoPR_PREPROCESS &H0E22000

B
CdoPR_PRIMARY_CAPABILITY &H3904010

2
CdoPR_PRIMARY_FAX_NUMBER &H3A23001

E
CdoPR_PRIMARY_TELEPHONE_NUMBER &H3A1A001

E
CdoPR_PRIORITY &H0026000

3
CdoPR_PROFESSION &H3A46001

E
CdoPR_PROFILE_NAME &H3D12001

E
CdoPR_PROOF_OF_DELIVERY &H0C11010

2
CdoPR_PROOF_OF_DELIVERY_REQUESTED &H0C12000

B
CdoPR_PROOF_OF_SUBMISSION &H0E26010

2
CdoPR_PROOF_OF_SUBMISSION_REQUESTED &H0028000

B
CdoPR_PROVIDER_DISPLAY &H3006001

E
CdoPR_PROVIDER_DLL_NAME &H300A001

E
CdoPR_PROVIDER_ORDINAL &H300D000

3
CdoPR_PROVIDER_SUBMIT_TIME &H0048004

0
CdoPR_PROVIDER_UID &H300C010

2
CdoPR_RADIO_TELEPHONE_NUMBER &H3A1D001

E
CdoPR_RCVD_REPRESENTING_ADDRTYPE &H0077001

E
CdoPR_RCVD_REPRESENTING_EMAIL_ADDRESS &H0078001

E
CdoPR_RCVD_REPRESENTING_ENTRYID &H0043010

2
CdoPR_RCVD_REPRESENTING_NAME &H0044001

E
CdoPR_RCVD_REPRESENTING_SEARCH_KEY &H0052010

2
CdoPR_READ_RECEIPT_ENTRYID &H0046010

2

CdoPR_READ_RECEIPT_REQUESTED &H0029000
B

CdoPR_READ_RECEIPT_SEARCH_KEY &H0053010
2

CdoPR_RECEIPT_TIME &H002A004
0

CdoPR_RECEIVE_FOLDER_SETTINGS &H3415000
D

CdoPR_RECEIVED_BY_ADDRTYPE &H0075001
E

CdoPR_RECEIVED_BY_EMAIL_ADDRESS &H0076001
E

CdoPR_RECEIVED_BY_ENTRYID &H003F010
2

CdoPR_RECEIVED_BY_NAME &H0040001
E

CdoPR_RECEIVED_BY_SEARCH_KEY &H0051010
2

CdoPR_RECIPIENT_CERTIFICATE &H0C13010
2

CdoPR_RECIPIENT_NUMBER_FOR_ADVICE &H0C14001
E

CdoPR_RECIPIENT_REASSIGNMENT_PROHIBITED &H002B000
B

CdoPR_RECIPIENT_STATUS &H0E15000
3

CdoPR_RECIPIENT_TYPE &H0C15000
3

CdoPR_RECORD_KEY &H0FF9010
2

CdoPR_REDIRECTION_HISTORY &H002C010
2

CdoPR_REFERRED_BY_NAME &H3A47001
E

CdoPR_REGISTERED_MAIL_TYPE &H0C16000
3

CdoPR_RELATED_IPMS &H002D010
2

CdoPR_REMOTE_PROGRESS &H3E0B000
3

CdoPR_REMOTE_PROGRESS_TEXT &H3E0C001
E

CdoPR_REMOTE_VALIDATE_OK &H3E0D000
B

CdoPR_RENDERING_POSITION &H370B000
3

CdoPR_REPLY_RECIPIENT_ENTRIES &H004F010
2

CdoPR_REPLY_RECIPIENT_NAMES &H0050001

E
CdoPR_REPLY_REQUESTED &H0C17000

B
CdoPR_REPLY_TIME &H0030004

0
CdoPR_REPORT_ENTRYID &H0045010

2
CdoPR_REPORT_NAME &H003A001

E
CdoPR_REPORT_SEARCH_KEY &H0054010

2
CdoPR_REPORT_TAG &H0031010

2
CdoPR_REPORT_TEXT &H1001001

E
CdoPR_REPORT_TIME &H0032004

0
CdoPR_REPORTING_DL_NAME &H1003010

2
CdoPR_REPORTING_MTA_CERTIFICATE &H1004010

2
CdoPR_REQUESTED_DELIVERY_METHOD &H0C18000

3
CdoPR_RESOURCE_FLAGS &H3009000

3
CdoPR_RESOURCE_METHODS &H3E02000

3
CdoPR_RESOURCE_PATH &H3E07001

E
CdoPR_RESOURCE_TYPE &H3E03000

3
CdoPR_RESPONSE_REQUESTED &H0063000

B
CdoPR_RESPONSIBILITY &H0E0F000

B
CdoPR_RETURNED_IPM &H0033000

B
CdoPR_ROW_TYPE &H0FF5000

3
CdoPR_ROWID &H3000000

3
CdoPR_RTF_COMPRESSED &H1009010

2
CdoPR_RTF_IN_SYNC &H0E1F000

B
CdoPR_RTF_SYNC_BODY_COUNT &H1007000

3
CdoPR_RTF_SYNC_BODY_CRC &H1006000

3

CdoPR_RTF_SYNC_BODY_TAG &H1008001
E

CdoPR_RTF_SYNC_PREFIX_COUNT &H1010000
3

CdoPR_RTF_SYNC_TRAILING_COUNT &H1011000
3

CdoPR_SEARCH &H3607000
D

CdoPR_SEARCH_KEY &H300B010
2

CdoPR_SECURITY &H0034000
3

CdoPR_SELECTABLE &H3609000
B

CdoPR_SEND_INTERNET_ENCODING &H3A71000
3

CdoPR_SEND_RICH_INFO &H3A40000
B

CdoPR_SENDER_ADDRTYPE &H0C1E001
E

CdoPR_SENDER_EMAIL_ADDRESS &H0C1F001
E

CdoPR_SENDER_ENTRYID &H0C19010
2

CdoPR_SENDER_NAME &H0C1A001
E

CdoPR_SENDER_SEARCH_KEY &H0C1D010
2

CdoPR_SENSITIVITY &H0036000
3

CdoPR_SENT_REPRESENTING_ADDRTYPE &H0064001
E

CdoPR_SENT_REPRESENTING_EMAIL_ADDRESS &H0065001
E

CdoPR_SENT_REPRESENTING_ENTRYID &H0041010
2

CdoPR_SENT_REPRESENTING_NAME &H0042001
E

CdoPR_SENT_REPRESENTING_SEARCH_KEY &H003B010
2

CdoPR_SENTMAIL_ENTRYID &H0E0A010
2

CdoPR_SERVICE_DELETE_FILES &H3D10101
E

CdoPR_SERVICE_DLL_NAME &H3D0A001
E

CdoPR_SERVICE_ENTRY_NAME &H3D0B001
E

CdoPR_SERVICE_EXTRA_UIDS &H3D0D010

2
CdoPR_SERVICE_NAME &H3D09001

E
CdoPR_SERVICE_SUPPORT_FILES &H3D0F101

E
CdoPR_SERVICE_UID &H3D0C010

2
CdoPR_SERVICES &H3D0E010

2
CdoPR_SPOOLER_STATUS &H0E10000

3
CdoPR_SPOUSE_NAME &H3A48001

E
CdoPR_START_DATE &H0060004

0
CdoPR_STATE_OR_PROVINCE &H3A28001

E
CdoPR_STATUS &H360B000

3
CdoPR_STATUS_CODE &H3E04000

3
CdoPR_STATUS_STRING &H3E08001

E
CdoPR_STORE_ENTRYID &H0FFB010

2
CdoPR_STORE_PROVIDERS &H3D00010

2
CdoPR_STORE_RECORD_KEY &H0FFA010

2
CdoPR_STORE_STATE &H340E000

3
CdoPR_STORE_SUPPORT_MASK &H340D000

3
CdoPR_STREET_ADDRESS &H3A29001

E
CdoPR_SUBFOLDERS &H360A000

B
CdoPR_SUBJECT &H0037001

E
CdoPR_SUBJECT_IPM &H0038010

2
CdoPR_SUBJECT_PREFIX &H003D001

E
CdoPR_SUBMIT_FLAGS &H0E14000

3
CdoPR_SUPERSEDES &H103A001

E
CdoPR_SUPPLEMENTARY_INFO &H0C1B001

E

CdoPR_SURNAME &H3A11001
E

CdoPR_TELEX_NUMBER &H3A2C001
E

CdoPR_TEMPLATEID &H3902010
2

CdoPR_TITLE &H3A17001
E

CdoPR_TNEF_CORRELATION_KEY &H007F010
2

CdoPR_TRANSMITABLE_DISPLAY_NAME &H3A20001
E

CdoPR_TRANSPORT_KEY &H0E16000
3

CdoPR_TRANSPORT_MESSAGE_HEADERS &H007D001
E

CdoPR_TRANSPORT_PROVIDERS &H3D02010
2

CdoPR_TRANSPORT_STATUS &H0E11000
3

CdoPR_TTYTDD_PHONE_NUMBER &H3A4B001
E

CdoPR_TYPE_OF_MTS_USER &H0C1C000
3

CdoPR_USER_CERTIFICATE &H3A22010
2

CdoPR_USER_X509_CERTIFICATE &H3A70110
2

CdoPR_VALID_FOLDER_MASK &H35DF000
3

CdoPR_VIEWS_ENTRYID &H35E5010
2

CdoPR_WEDDING_ANNIVERSARY &H3A41004
0

CdoPR_X400_CONTENT_TYPE &H003C010
2

CdoPR_X400_DEFERRED_DELIVERY_CANCEL &H3E09000
B

CdoPR_XPOS &H3F05000
3

CdoPR_YPOS &H3F06000
3

The following table lists the MAPI property tags in numeric order:

Hexadecim
al
value

Property tag value
(constants available only in 32-bit type libraries)

&H0001000
3

CdoPR_ACKNOWLEDGEMENT_MODE

&H0002000
B

CdoPR_ALTERNATE_RECIPIENT_ALLOWED

&H0003010
2

CdoPR_AUTHORIZING_USERS

&H0004001
E

CdoPR_AUTO_FORWARD_COMMENT

&H0005000
B

CdoPR_AUTO_FORWARDED

&H0006010
2

CdoPR_CONTENT_CONFIDENTIALITY_ALGORITHM_ID

&H0007010
2

CdoPR_CONTENT_CORRELATOR

&H0008001
E

CdoPR_CONTENT_IDENTIFIER

&H0009000
3

CdoPR_CONTENT_LENGTH

&H000A000
B

CdoPR_CONTENT_RETURN_REQUESTED

&H000B010
2

CdoPR_CONVERSATION_KEY

&H000C010
2

CdoPR_CONVERSION_EITS

&H000D000
B

CdoPR_CONVERSION_WITH_LOSS_PROHIBITED

&H000E010
2

CdoPR_CONVERTED_EITS

&H000F004
0

CdoPR_DEFERRED_DELIVERY_TIME

&H0010004
0

CdoPR_DELIVER_TIME

&H0011000
3

CdoPR_DISCARD_REASON

&H0012000
B

CdoPR_DISCLOSURE_OF_RECIPIENTS

&H0013010
2

CdoPR_DL_EXPANSION_HISTORY

&H0014000
B

CdoPR_DL_EXPANSION_PROHIBITED

&H0015004
0

CdoPR_EXPIRY_TIME

&H0016000
B

CdoPR_IMPLICIT_CONVERSION_PROHIBITED

&H0017000
3

CdoPR_IMPORTANCE

&H0018010
2

CdoPR_IPM_ID

&H0019004
0

CdoPR_LATEST_DELIVERY_TIME

&H001A001 CdoPR_MESSAGE_CLASS

E
&H001B010
2

CdoPR_MESSAGE_DELIVERY_ID

&H001E010
2

CdoPR_MESSAGE_SECURITY_LABEL

&H001F010
2

CdoPR_OBSOLETED_IPMS

&H0020010
2

CdoPR_ORIGINALLY_INTENDED_RECIPIENT_NAME

&H0021010
2

CdoPR_ORIGINAL_EITS

&H0022010
2

CdoPR_ORIGINATOR_CERTIFICATE

&H0023000
B

CdoPR_ORIGINATOR_DELIVERY_REPORT_REQUESTED

&H0024010
2

CdoPR_ORIGINATOR_RETURN_ADDRESS

&H0025010
2

CdoPR_PARENT_KEY

&H0026000
3

CdoPR_PRIORITY

&H0027010
2

CdoPR_ORIGIN_CHECK

&H0028000
B

CdoPR_PROOF_OF_SUBMISSION_REQUESTED

&H0029000
B

CdoPR_READ_RECEIPT_REQUESTED

&H002A004
0

CdoPR_RECEIPT_TIME

&H002B000
B

CdoPR_RECIPIENT_REASSIGNMENT_PROHIBITED

&H002C010
2

CdoPR_REDIRECTION_HISTORY

&H002D010
2

CdoPR_RELATED_IPMS

&H002E000
3

CdoPR_ORIGINAL_SENSITIVITY

&H002F001
E

CdoPR_LANGUAGES

&H0030004
0

CdoPR_REPLY_TIME

&H0031010
2

CdoPR_REPORT_TAG

&H0032004
0

CdoPR_REPORT_TIME

&H0033000
B

CdoPR_RETURNED_IPM

&H0034000
3

CdoPR_SECURITY

&H0035000
B

CdoPR_INCOMPLETE_COPY

&H0036000
3

CdoPR_SENSITIVITY

&H0037001
E

CdoPR_SUBJECT

&H0038010
2

CdoPR_SUBJECT_IPM

&H0039004
0

CdoPR_CLIENT_SUBMIT_TIME

&H003A001
E

CdoPR_REPORT_NAME

&H003B010
2

CdoPR_SENT_REPRESENTING_SEARCH_KEY

&H003C010
2

CdoPR_X400_CONTENT_TYPE

&H003D001
E

CdoPR_SUBJECT_PREFIX

&H003E000
3

CdoPR_NON_RECEIPT_REASON

&H003F010
2

CdoPR_RECEIVED_BY_ENTRYID

&H0040001
E

CdoPR_RECEIVED_BY_NAME

&H0041010
2

CdoPR_SENT_REPRESENTING_ENTRYID

&H0042001
E

CdoPR_SENT_REPRESENTING_NAME

&H0043010
2

CdoPR_RCVD_REPRESENTING_ENTRYID

&H0044001
E

CdoPR_RCVD_REPRESENTING_NAME

&H0045010
2

CdoPR_REPORT_ENTRYID

&H0046010
2

CdoPR_READ_RECEIPT_ENTRYID

&H0047010
2

CdoPR_MESSAGE_SUBMISSION_ID

&H0048004
0

CdoPR_PROVIDER_SUBMIT_TIME

&H0049001
E

CdoPR_ORIGINAL_SUBJECT

&H004A000
B

CdoPR_DISC_VAL

&H004B001
E

CdoPR_ORIG_MESSAGE_CLASS

&H004C010
2

CdoPR_ORIGINAL_AUTHOR_ENTRYID

&H004D001 CdoPR_ORIGINAL_AUTHOR_NAME

E
&H004E004
0

CdoPR_ORIGINAL_SUBMIT_TIME

&H004F010
2

CdoPR_REPLY_RECIPIENT_ENTRIES

&H0050001
E

CdoPR_REPLY_RECIPIENT_NAMES

&H0051010
2

CdoPR_RECEIVED_BY_SEARCH_KEY

&H0052010
2

CdoPR_RCVD_REPRESENTING_SEARCH_KEY

&H0053010
2

CdoPR_READ_RECEIPT_SEARCH_KEY

&H0054010
2

CdoPR_REPORT_SEARCH_KEY

&H0055004
0

CdoPR_ORIGINAL_DELIVERY_TIME

&H0056010
2

CdoPR_ORIGINAL_AUTHOR_SEARCH_KEY

&H0057000
B

CdoPR_MESSAGE_TO_ME

&H0058000
B

CdoPR_MESSAGE_CC_ME

&H0059000
B

CdoPR_MESSAGE_RECIP_ME

&H005A001
E

CdoPR_ORIGINAL_SENDER_NAME

&H005B010
2

CdoPR_ORIGINAL_SENDER_ENTRYID

&H005C010
2

CdoPR_ORIGINAL_SENDER_SEARCH_KEY

&H005D001
E

CdoPR_ORIGINAL_SENT_REPRESENTING_NAME

&H005E010
2

CdoPR_ORIGINAL_SENT_REPRESENTING_ENTRYID

&H005F010
2

CdoPR_ORIGINAL_SENT_REPRESENTING_SEARCH_KE
Y

&H0060004
0

CdoPR_START_DATE

&H0061004
0

CdoPR_END_DATE

&H0062000
3

CdoPR_OWNER_APPT_ID

&H0063000
B

CdoPR_RESPONSE_REQUESTED

&H0064001
E

CdoPR_SENT_REPRESENTING_ADDRTYPE

&H0065001
E

CdoPR_SENT_REPRESENTING_EMAIL_ADDRESS

&H0066001
E

CdoPR_ORIGINAL_SENDER_ADDRTYPE

&H0067001
E

CdoPR_ORIGINAL_SENDER_EMAIL_ADDRESS

&H0068001
E

CdoPR_ORIGINAL_SENT_REPRESENTING_ADDRTYPE

&H0069001
E

CdoPR_ORIGINAL_SENT_REPRESENTING_EMAIL_
ADDRESS

&H0070001
E

CdoPR_CONVERSATION_TOPIC

&H0071010
2

CdoPR_CONVERSATION_INDEX

&H0072001
E

CdoPR_ORIGINAL_DISPLAY_BCC

&H0073001
E

CdoPR_ORIGINAL_DISPLAY_CC

&H0074001
E

CdoPR_ORIGINAL_DISPLAY_TO

&H0075001
E

CdoPR_RECEIVED_BY_ADDRTYPE

&H0076001
E

CdoPR_RECEIVED_BY_EMAIL_ADDRESS

&H0077001
E

CdoPR_RCVD_REPRESENTING_ADDRTYPE

&H0078001
E

CdoPR_RCVD_REPRESENTING_EMAIL_ADDRESS

&H0079001
E

CdoPR_ORIGINAL_AUTHOR_ADDRTYPE

&H007A001
E

CdoPR_ORIGINAL_AUTHOR_EMAIL_ADDRESS

&H007B001
E

CdoPR_ORIGINALLY_INTENDED_RECIP_ADDRTYPE

&H007C001
E

CdoPR_ORIGINALLY_INTENDED_RECIP_EMAIL_
ADDRESS

&H007D001
E

CdoPR_TRANSPORT_MESSAGE_HEADERS

&H007E010
2

CdoPR_DELEGATION

&H007F010
2

CdoPR_TNEF_CORRELATION_KEY

&H0C00010
2

CdoPR_CONTENT_INTEGRITY_CHECK

&H0C01000
3

CdoPR_EXPLICIT_CONVERSION

&H0C02000
B

CdoPR_IPM_RETURN_REQUESTED

&H0C03010
2

CdoPR_MESSAGE_TOKEN

&H0C04000 CdoPR_NDR_REASON_CODE

3
&H0C05000
3

CdoPR_NDR_DIAG_CODE

&H0C06000
B

CdoPR_NON_RECEIPT_NOTIFICATION_REQUESTED

&H0C07000
3

CdoPR_DELIVERY_POINT

&H0C08000
B

CdoPR_ORIGINATOR_NON_DELIVERY_REPORT_
REQUESTED

&H0C09010
2

CdoPR_ORIGINATOR_REQUESTED_ALTERNATE_
RECIPIENT

&H0C0A000
B

CdoPR_PHYSICAL_DELIVERY_BUREAU_FAX_DELIVERY

&H0C0B000
3

CdoPR_PHYSICAL_DELIVERY_MODE

&H0C0C000
3

CdoPR_PHYSICAL_DELIVERY_REPORT_REQUEST

&H0C0D010
2

CdoPR_PHYSICAL_FORWARDING_ADDRESS

&H0C0E000
B

CdoPR_PHYSICAL_FORWARDING_ADDRESS_
REQUESTED

&H0C0F000
B

CdoPR_PHYSICAL_FORWARDING_PROHIBITED

&H0C10010
2

CdoPR_PHYSICAL_RENDITION_ATTRIBUTES

&H0C11010
2

CdoPR_PROOF_OF_DELIVERY

&H0C12000
B

CdoPR_PROOF_OF_DELIVERY_REQUESTED

&H0C13010
2

CdoPR_RECIPIENT_CERTIFICATE

&H0C14001
E

CdoPR_RECIPIENT_NUMBER_FOR_ADVICE

&H0C15000
3

CdoPR_RECIPIENT_TYPE

&H0C16000
3

CdoPR_REGISTERED_MAIL_TYPE

&H0C17000
B

CdoPR_REPLY_REQUESTED

&H0C18000
3

CdoPR_REQUESTED_DELIVERY_METHOD

&H0C19010
2

CdoPR_SENDER_ENTRYID

&H0C1A001
E

CdoPR_SENDER_NAME

&H0C1B001
E

CdoPR_SUPPLEMENTARY_INFO

&H0C1C000
3

CdoPR_TYPE_OF_MTS_USER

&H0C1D010
2

CdoPR_SENDER_SEARCH_KEY

&H0C1E001
E

CdoPR_SENDER_ADDRTYPE

&H0C1F001
E

CdoPR_SENDER_EMAIL_ADDRESS

&H0E00001
4

CdoPR_CURRENT_VERSION

&H0E01000
B

CdoPR_DELETE_AFTER_SUBMIT

&H0E02001
E

CdoPR_DISPLAY_BCC

&H0E03001
E

CdoPR_DISPLAY_CC

&H0E04001
E

CdoPR_DISPLAY_TO

&H0E05001
E

CdoPR_PARENT_DISPLAY

&H0E06004
0

CdoPR_MESSAGE_DELIVERY_TIME

&H0E07000
3

CdoPR_MESSAGE_FLAGS

&H0E08000
3

CdoPR_MESSAGE_SIZE

&H0E09010
2

CdoPR_PARENT_ENTRYID

&H0E0A010
2

CdoPR_SENTMAIL_ENTRYID

&H0E0C000
B

CdoPR_CORRELATE

&H0E0D010
2

CdoPR_CORRELATE_MTSID

&H0E0E000
B

CdoPR_DISCRETE_VALUES

&H0E0F000
B

CdoPR_RESPONSIBILITY

&H0E10000
3

CdoPR_SPOOLER_STATUS

&H0E11000
3

CdoPR_TRANSPORT_STATUS

&H0E12000
D

CdoPR_MESSAGE_RECIPIENTS

&H0E13000
D

CdoPR_MESSAGE_ATTACHMENTS

&H0E14000
3

CdoPR_SUBMIT_FLAGS

&H0E15000
3

CdoPR_RECIPIENT_STATUS

&H0E16000 CdoPR_TRANSPORT_KEY

3
&H0E17000
3

CdoPR_MSG_STATUS

&H0E18000
3

CdoPR_MESSAGE_DOWNLOAD_TIME

&H0E19001
4

CdoPR_CREATION_VERSION

&H0E1A001
4

CdoPR_MODIFY_VERSION

&H0E1B000
B

CdoPR_HASATTACH

&H0E1C000
3

CdoPR_BODY_CRC

&H0E1D001
E

CdoPR_NORMALIZED_SUBJECT

&H0E1F000
B

CdoPR_RTF_IN_SYNC

&H0E20000
3

CdoPR_ATTACH_SIZE

&H0E21000
3

CdoPR_ATTACH_NUM

&H0E22000
B

CdoPR_PREPROCESS

&H0E23000
3

CdoPR_INTERNET_ARTICLE_NUMBER

&H0E24001
E

CdoPR_NEWSGROUP_NAME

&H0E25010
2

CdoPR_ORIGINATING_MTA_CERTIFICATE

&H0E26010
2

CdoPR_PROOF_OF_SUBMISSION

&H0FF4000
3

CdoPR_ACCESS

&H0FF5000
3

CdoPR_ROW_TYPE

&H0FF6010
2

CdoPR_INSTANCE_KEY

&H0FF7000
3

CdoPR_ACCESS_LEVEL

&H0FF8010
2

CdoPR_MAPPING_SIGNATURE

&H0FF9010
2

CdoPR_RECORD_KEY

&H0FFA010
2

CdoPR_STORE_RECORD_KEY

&H0FFB010
2

CdoPR_STORE_ENTRYID

&H0FFC010
2

CdoPR_MINI_ICON

&H0FFD010
2

CdoPR_ICON

&H0FFE000
3

CdoPR_OBJECT_TYPE

&H0FFF010
2

CdoPR_ENTRYID

&H1000001
E

CdoPR_BODY

&H1001001
E

CdoPR_REPORT_TEXT

&H1002010
2

CdoPR_ORIGINATOR_AND_DL_EXPANSION_HISTORY

&H1003010
2

CdoPR_REPORTING_DL_NAME

&H1004010
2

CdoPR_REPORTING_MTA_CERTIFICATE

&H1006000
3

CdoPR_RTF_SYNC_BODY_CRC

&H1007000
3

CdoPR_RTF_SYNC_BODY_COUNT

&H1008001
E

CdoPR_RTF_SYNC_BODY_TAG

&H1009010
2

CdoPR_RTF_COMPRESSED

&H1010000
3

CdoPR_RTF_SYNC_PREFIX_COUNT

&H1011000
3

CdoPR_RTF_SYNC_TRAILING_COUNT

&H1012010
2

CdoPR_ORIGINALLY_INTENDED_RECIP_ENTRYID

&H1030001
E

CdoPR_INTERNET_APPROVED

&H1031001
E

CdoPR_INTERNET_CONTROL

&H1032001
E

CdoPR_INTERNET_DISTRIBUTION

&H1033001
E

CdoPR_INTERNET_FOLLOWUP_TO

&H1034000
3

CdoPR_INTERNET_LINES

&H1035001
E

CdoPR_INTERNET_MESSAGE_ID

&H1036001
E

CdoPR_INTERNET_NEWSGROUPS

&H1037001
E

CdoPR_INTERNET_ORGANIZATION

&H1038001
E

CdoPR_INTERNET_NNTP_PATH

&H1039001 CdoPR_INTERNET_REFERENCES

E
&H103A001
E

CdoPR_SUPERSEDES

&H103B010
2

CdoPR_POST_FOLDER_ENTRIES

&H103C001
E

CdoPR_POST_FOLDER_NAMES

&H103D010
2

CdoPR_POST_REPLY_FOLDER_ENTRIES

&H103E001
E

CdoPR_POST_REPLY_FOLDER_NAMES

&H103F010
2

CdoPR_POST_REPLY_DENIED

&H1040001
E

CdoPR_NNTP_XREF

&H1041001
E

CdoPR_INTERNET_PRECEDENCE

&H3000000
3

CdoPR_ROWID

&H3001001
E

CdoPR_DISPLAY_NAME

&H3002001
E

CdoPR_ADDRTYPE

&H3003001
E

CdoPR_EMAIL_ADDRESS

&H3004001
E

CdoPR_COMMENT

&H3005000
3

CdoPR_DEPTH

&H3006001
E

CdoPR_PROVIDER_DISPLAY

&H3007004
0

CdoPR_CREATION_TIME

&H3008004
0

CdoPR_LAST_MODIFICATION_TIME

&H3009000
3

CdoPR_RESOURCE_FLAGS

&H300A001
E

CdoPR_PROVIDER_DLL_NAME

&H300B010
2

CdoPR_SEARCH_KEY

&H300C010
2

CdoPR_PROVIDER_UID

&H300D000
3

CdoPR_PROVIDER_ORDINAL

&H3301001
E

CdoPR_FORM_VERSION

&H3302004
8

CdoPR_FORM_CLSID

&H3303001
E

CdoPR_FORM_CONTACT_NAME

&H3304001
E

CdoPR_FORM_CATEGORY

&H3305001
E

CdoPR_FORM_CATEGORY_SUB

&H3306100
3

CdoPR_FORM_HOST_MAP

&H3307000
B

CdoPR_FORM_HIDDEN

&H3308001
E

CdoPR_FORM_DESIGNER_NAME

&H3309004
8

CdoPR_FORM_DESIGNER_GUID

&H330A000
3

CdoPR_FORM_MESSAGE_BEHAVIOR

&H3400000
B

CdoPR_DEFAULT_STORE

&H340D000
3

CdoPR_STORE_SUPPORT_MASK

&H340E000
3

CdoPR_STORE_STATE

&H3410010
2

CdoPR_IPM_SUBTREE_SEARCH_KEY

&H3411010
2

CdoPR_IPM_OUTBOX_SEARCH_KEY

&H3412010
2

CdoPR_IPM_WASTEBASKET_SEARCH_KEY

&H3413010
2

CdoPR_IPM_SENTMAIL_SEARCH_KEY

&H3414010
2

CdoPR_MDB_PROVIDER

&H3415000
D

CdoPR_RECEIVE_FOLDER_SETTINGS

&H35DF000
3

CdoPR_VALID_FOLDER_MASK

&H35E0010
2

CdoPR_IPM_SUBTREE_ENTRYID

&H35E2010
2

CdoPR_IPM_OUTBOX_ENTRYID

&H35E3010
2

CdoPR_IPM_WASTEBASKET_ENTRYID

&H35E4010
2

CdoPR_IPM_SENTMAIL_ENTRYID

&H35E5010
2

CdoPR_VIEWS_ENTRYID

&H35E6010
2

CdoPR_COMMON_VIEWS_ENTRYID

&H35E7010 CdoPR_FINDER_ENTRYID

2
&H3600000
3

CdoPR_CONTAINER_FLAGS

&H3601000
3

CdoPR_FOLDER_TYPE

&H3602000
3

CdoPR_CONTENT_COUNT

&H3603000
3

CdoPR_CONTENT_UNREAD

&H3604000
D

CdoPR_CREATE_TEMPLATES

&H3605000
D

CdoPR_DETAILS_TABLE

&H3607000
D

CdoPR_SEARCH

&H3609000
B

CdoPR_SELECTABLE

&H360A000
B

CdoPR_SUBFOLDERS

&H360B000
3

CdoPR_STATUS

&H360C001
E

CdoPR_ANR

&H360D100
3

CdoPR_CONTENTS_SORT_ORDER

&H360E000
D

CdoPR_CONTAINER_HIERARCHY

&H360F000
D

CdoPR_CONTAINER_CONTENTS

&H3610000
D

CdoPR_FOLDER_ASSOCIATED_CONTENTS

&H3611010
2

CdoPR_DEF_CREATE_DL

&H3612010
2

CdoPR_DEF_CREATE_MAILUSER

&H3613001
E

CdoPR_CONTAINER_CLASS

&H3614001
4

CdoPR_CONTAINER_MODIFY_VERSION

&H3615010
2

CdoPR_AB_PROVIDER_ID

&H3616010
2

CdoPR_DEFAULT_VIEW_ENTRYID

&H3617000
3

CdoPR_ASSOC_CONTENT_COUNT

&H3700010
2

CdoPR_ATTACHMENT_X400_PARAMETERS

&H3701000
D

CdoPR_ATTACH_DATA_OBJ

&H3701010
2

CdoPR_ATTACH_DATA_BIN

&H3702010
2

CdoPR_ATTACH_ENCODING

&H3703001
E

CdoPR_ATTACH_EXTENSION

&H3704001
E

CdoPR_ATTACH_FILENAME

&H3705000
3

CdoPR_ATTACH_METHOD

&H3707001
E

CdoPR_ATTACH_LONG_FILENAME

&H3708001
E

CdoPR_ATTACH_PATHNAME

&H3709010
2

CdoPR_ATTACH_RENDERING

&H370A010
2

CdoPR_ATTACH_TAG

&H370B000
3

CdoPR_RENDERING_POSITION

&H370C001
E

CdoPR_ATTACH_TRANSPORT_NAME

&H370D001
E

CdoPR_ATTACH_LONG_PATHNAME

&H370E001
E

CdoPR_ATTACH_MIME_TAG

&H370F010
2

CdoPR_ATTACH_ADDITIONAL_INFO

&H3900000
3

CdoPR_DISPLAY_TYPE

&H3902010
2

CdoPR_TEMPLATEID

&H3904010
2

CdoPR_PRIMARY_CAPABILITY

&H39FF001
E

CdoPR_7BIT_DISPLAY_NAME

&H3A00001
E

CdoPR_ACCOUNT

&H3A01010
2

CdoPR_ALTERNATE_RECIPIENT

&H3A02001
E

CdoPR_CALLBACK_TELEPHONE_NUMBER

&H3A03000
B

CdoPR_CONVERSION_PROHIBITED

&H3A04000
B

CdoPR_DISCLOSE_RECIPIENTS

&H3A05001
E

CdoPR_GENERATION

&H3A06001 CdoPR_GIVEN_NAME

E
&H3A07001
E

CdoPR_GOVERNMENT_ID_NUMBER

&H3A08001
E

CdoPR_BUSINESS_TELEPHONE_NUMBER

&H3A08001
E

CdoPR_OFFICE_TELEPHONE_NUMBER

&H3A09001
E

CdoPR_HOME_TELEPHONE_NUMBER

&H3A0A001
E

CdoPR_INITIALS

&H3A0B001
E

CdoPR_KEYWORD

&H3A0C001
E

CdoPR_LANGUAGE

&H3A0D001
E

CdoPR_LOCATION

&H3A0E000
B

CdoPR_MAIL_PERMISSION

&H3A0F001
E

CdoPR_MHS_COMMON_NAME

&H3A10001
E

CdoPR_ORGANIZATIONAL_ID_NUMBER

&H3A11001
E

CdoPR_SURNAME

&H3A12010
2

CdoPR_ORIGINAL_ENTRYID

&H3A13001
E

CdoPR_ORIGINAL_DISPLAY_NAME

&H3A14010
2

CdoPR_ORIGINAL_SEARCH_KEY

&H3A15001
E

CdoPR_POSTAL_ADDRESS

&H3A16001
E

CdoPR_COMPANY_NAME

&H3A17001
E

CdoPR_TITLE

&H3A18001
E

CdoPR_DEPARTMENT_NAME

&H3A19001
E

CdoPR_OFFICE_LOCATION

&H3A1A001
E

CdoPR_PRIMARY_TELEPHONE_NUMBER

&H3A1B001
E

CdoPR_BUSINESS2_TELEPHONE_NUMBER

&H3A1B001
E

CdoPR_OFFICE2_TELEPHONE_NUMBER

&H3A1C001
E

CdoPR_CELLULAR_TELEPHONE_NUMBER

&H3A1C001
E

CdoPR_MOBILE_TELEPHONE_NUMBER

&H3A1D001
E

CdoPR_RADIO_TELEPHONE_NUMBER

&H3A1E001
E

CdoPR_CAR_TELEPHONE_NUMBER

&H3A1F001
E

CdoPR_OTHER_TELEPHONE_NUMBER

&H3A20001
E

CdoPR_TRANSMITABLE_DISPLAY_NAME

&H3A21001
E

CdoPR_BEEPER_TELEPHONE_NUMBER

&H3A21001
E

CdoPR_PAGER_TELEPHONE_NUMBER

&H3A22010
2

CdoPR_USER_CERTIFICATE

&H3A23001
E

CdoPR_PRIMARY_FAX_NUMBER

&H3A24001
E

CdoPR_BUSINESS_FAX_NUMBER

&H3A25001
E

CdoPR_HOME_FAX_NUMBER

&H3A26001
E

CdoPR_BUSINESS_ADDRESS_COUNTRY

&H3A26001
E

CdoPR_COUNTRY

&H3A27001
E

CdoPR_BUSINESS_ADDRESS_CITY

&H3A27001
E

CdoPR_LOCALITY

&H3A28001
E

CdoPR_BUSINESS_ADDRESS_STATE_OR_PROVINCE

&H3A28001
E

CdoPR_STATE_OR_PROVINCE

&H3A29001
E

CdoPR_BUSINESS_ADDRESS_STREET

&H3A29001
E

CdoPR_STREET_ADDRESS

&H3A2A001
E

CdoPR_BUSINESS_ADDRESS_POSTAL_CODE

&H3A2A001
E

CdoPR_POSTAL_CODE

&H3A2B001
E

CdoPR_BUSINESS_ADDRESS_POST_OFFICE_BOX

&H3A2B001
E

CdoPR_POST_OFFICE_BOX

&H3A2C001
E

CdoPR_TELEX_NUMBER

&H3A2D001 CdoPR_ISDN_NUMBER

E
&H3A2E001
E

CdoPR_ASSISTANT_TELEPHONE_NUMBER

&H3A2F001
E

CdoPR_HOME2_TELEPHONE_NUMBER

&H3A30001
E

CdoPR_ASSISTANT

&H3A40000
B

CdoPR_SEND_RICH_INFO

&H3A41004
0

CdoPR_WEDDING_ANNIVERSARY

&H3A42004
0

CdoPR_BIRTHDAY

&H3A43001
E

CdoPR_HOBBIES

&H3A44001
E

CdoPR_MIDDLE_NAME

&H3A45001
E

CdoPR_DISPLAY_NAME_PREFIX

&H3A46001
E

CdoPR_PROFESSION

&H3A47001
E

CdoPR_PREFERRED_BY_NAME

&H3A47001
E

CdoPR_REFERRED_BY_NAME

&H3A48001
E

CdoPR_SPOUSE_NAME

&H3A49001
E

CdoPR_COMPUTER_NETWORK_NAME

&H3A4A001
E

CdoPR_CUSTOMER_ID

&H3A4B001
E

CdoPR_TTYTDD_PHONE_NUMBER

&H3A4C001
E

CdoPR_FTP_SITE

&H3A4D000
2

CdoPR_GENDER

&H3A4E001
E

CdoPR_MANAGER_NAME

&H3A4F001
E

CdoPR_NICKNAME

&H3A50001
E

CdoPR_PERSONAL_HOME_PAGE

&H3A51001
E

CdoPR_BUSINESS_HOME_PAGE

&H3A52004
8

CdoPR_CONTACT_VERSION

&H3A53110
2

CdoPR_CONTACT_ENTRYIDS

&H3A54101
E

CdoPR_CONTACT_ADDRTYPES

&H3A55000
3

CdoPR_CONTACT_DEFAULT_ADDRESS_INDEX

&H3A56101
E

CdoPR_CONTACT_EMAIL_ADDRESSES

&H3A57001
E

CdoPR_COMPANY_MAIN_PHONE_NUMBER

&H3A58101
E

CdoPR_CHILDRENS_NAMES

&H3A59001
E

CdoPR_HOME_ADDRESS_CITY

&H3A5A001
E

CdoPR_HOME_ADDRESS_COUNTRY

&H3A5B001
E

CdoPR_HOME_ADDRESS_POSTAL_CODE

&H3A5C001
E

CdoPR_HOME_ADDRESS_STATE_OR_PROVINCE

&H3A5D001
E

CdoPR_HOME_ADDRESS_STREET

&H3A5E001
E

CdoPR_HOME_ADDRESS_POST_OFFICE_BOX

&H3A5F001
E

CdoPR_OTHER_ADDRESS_CITY

&H3A60001
E

CdoPR_OTHER_ADDRESS_COUNTRY

&H3A61001
E

CdoPR_OTHER_ADDRESS_POSTAL_CODE

&H3A62001
E

CdoPR_OTHER_ADDRESS_STATE_OR_PROVINCE

&H3A63001
E

CdoPR_OTHER_ADDRESS_STREET

&H3A64001
E

CdoPR_OTHER_ADDRESS_POST_OFFICE_BOX

&H3A70110
2

CdoPR_USER_X509_CERTIFICATE

&H3A71000
3

CdoPR_SEND_INTERNET_ENCODING

&H3D00010
2

CdoPR_STORE_PROVIDERS

&H3D01010
2

CdoPR_AB_PROVIDERS

&H3D02010
2

CdoPR_TRANSPORT_PROVIDERS

&H3D04000
B

CdoPR_DEFAULT_PROFILE

&H3D05110
2

CdoPR_AB_SEARCH_PATH

&H3D06010 CdoPR_AB_DEFAULT_DIR

2
&H3D07010
2

CdoPR_AB_DEFAULT_PAB

&H3D08010
2

CdoPR_FILTERING_HOOKS

&H3D09001
E

CdoPR_SERVICE_NAME

&H3D0A001
E

CdoPR_SERVICE_DLL_NAME

&H3D0B001
E

CdoPR_SERVICE_ENTRY_NAME

&H3D0C010
2

CdoPR_SERVICE_UID

&H3D0D010
2

CdoPR_SERVICE_EXTRA_UIDS

&H3D0E010
2

CdoPR_SERVICES

&H3D0F101
E

CdoPR_SERVICE_SUPPORT_FILES

&H3D10101
E

CdoPR_SERVICE_DELETE_FILES

&H3D11010
2

CdoPR_AB_SEARCH_PATH_UPDATE

&H3D12001
E

CdoPR_PROFILE_NAME

&H3E00001
E

CdoPR_IDENTITY_DISPLAY

&H3E01010
2

CdoPR_IDENTITY_ENTRYID

&H3E02000
3

CdoPR_RESOURCE_METHODS

&H3E03000
3

CdoPR_RESOURCE_TYPE

&H3E04000
3

CdoPR_STATUS_CODE

&H3E05010
2

CdoPR_IDENTITY_SEARCH_KEY

&H3E06010
2

CdoPR_OWN_STORE_ENTRYID

&H3E07001
E

CdoPR_RESOURCE_PATH

&H3E08001
E

CdoPR_STATUS_STRING

&H3E09000
B

CdoPR_X400_DEFERRED_DELIVERY_CANCEL

&H3E0A010
2

CdoPR_HEADER_FOLDER_ENTRYID

&H3E0B000
3

CdoPR_REMOTE_PROGRESS

&H3E0C001
E

CdoPR_REMOTE_PROGRESS_TEXT

&H3E0D000
B

CdoPR_REMOTE_VALIDATE_OK

&H3F00000
3

CdoPR_CONTROL_FLAGS

&H3F01010
2

CdoPR_CONTROL_STRUCTURE

&H3F02000
3

CdoPR_CONTROL_TYPE

&H3F03000
3

CdoPR_DELTAX

&H3F04000
3

CdoPR_DELTAY

&H3F05000
3

CdoPR_XPOS

&H3F06000
3

CdoPR_YPOS

&H3F07010
2

CdoPR_CONTROL_ID

&H3F08000
3

CdoPR_INITIAL_DETAILS_PANE

Web Page Support
The CDO libraries offer programmatic support for Hypertext Markup Language (HTML) script on a Web
page. Script can be server-side, which is decoded and run at the Web server, or client-side, which is
decoded and run at the browser. The CDO Rendering Library supports server-side script, and the CDO
Library supports client-side script. For more information on server-side script support, see HTML
Rendering.

The language used for the script subroutine can be Microsoft® Visual Basic® Scripting Edition
(VBScript), Microsoft® JScript™, or JavaScript. For simplicity of browser implementation, and also for
security reasons, not all Visual Basic functionality is available in VBScript. In particular, you cannot use:

· Early binding, for example Dim objRecip As Recipient .
· Type library constants, such as CdoPR_DISPLAY_TYPE.
· Named parameters in calls to methods.
· Dialog boxes, for example in the Logon method.

For more information on VBScript and its feature restrictions, see the Microsoft Visual Basic Scripting
Edition Language Reference.

To use the CDO Library in client-side script, you instantiate a CDO Session object in the body of a Web
page, and then log on to this session from a script subroutine. Following logon, you can instantiate and
use other objects subsidiary to the session object.

During logon, a MAPI client can only reference a profile that is stored in its own local MAPISVC.INF
configuration file. A browser is not likely to be able to access a profile defined and stored at the Web
server. Therefore, script running at a browser should create a profile dynamically so that it is local to
the browser. This can be done by using the ProfileInfo parameter of the Logon method, or, as in the
following example, by calling Logon without parameters and letting the browser user choose a profile.

Dynamic profile creation is only possible on a message service that is tightly coupled with MAPI, such
as the Microsoft® Exchange server. Loosely coupled message services cause the MAPI spooler to be
started, and if another message service or user tries to access MAPI, serious errors result.

This client-side script fragment sends a feedback message to the Customer Support department when
the user clicks the Send Feedback button. It demonstrates a script subroutine in VBScript showing
instantiation of a Session object with an HTML <OBJECT> tag. It also shows the subsequent
instantiation of a Message object and its Recipients collection, and the preparation and submission of
an e-mail message.

<HTML>
<BODY LANGUAGE=VBS>
 ...
<SCRIPT LANGUAGE=VBS>
Sub Send_Feedback
        Dim objFBMess ' feedback message from Web page
        Dim objRecips ' can't do "Dim As" (early binding) in VBScript
' ... validate objWebSession object instantiated by HTML, then ...
        objWebSession.Logon ' let user choose profile if not logged on
        Set objFBMess = objWebSession.Outbox.Messages.Add
        objFBMess.Subject = "Feedback from Web page"
        objFBMess.Text = Feedback.Value
        Set objRecips = objFBMess.Recipients
        objRecips.Add "custsupp" ' send to Customer Support
        objRecips.Resolve
        objFBMess.Send ' defaults to save copy and no user dialog

        objWebSession.Logoff
End Sub
</SCRIPT>
 ...
<H1><CENTER>CUSTOMER FEEDBACK WEB PAGE</H1>
<P>Welcome to the Customer Support Feedback Web page.
<P>If you have any additional suggestions or requests,
<P>please send
Customer Support
some e-mail.
<P>Please enter your feedback here:
<INPUT NAME=Feedback TYPE=Text SIZE=80>
<INPUT ONCLICK=Send_Feedback TYPE=Button VALUE="Send Feedback">
<OBJECT CLASSID="clsid:3FA7DEB3-6438-101B-ACC1-00AA00423326"
ID=objWebSession>
<! The OBJECT tag instantiates the CDO Session object>
</OBJECT>
</BODY>
</HTML>

Note The <OBJECT> and <SCRIPT> tags and the <LANGUAGE> and <ONCLICK> attributes are
defined in the HTML 3.2 specification of the World Wide Web Consortium (W3C). Not all Internet
browsers support HTML 3.2 or all of its elements. For more information on HTML 3.2, see the Web
page HTML 3.2 Reference Specification at http://www.w3.org/pub/WWW/TR/REC-html32.html.

For more information on the programming elements in the script fragment, see the Session object's
Logon and Logoff methods, the Messages collection's Add method, the Message object's Recipients
property and Send method, and the Recipients collection's Add and Resolve methods.

How Programmable Objects Work
How do programmable objects work? How do the CDO libraries offer their powerful ability to create,
manage, and render messaging objects?

This appendix provides a very short introduction to the Microsoft® Component Object Model (COM),
Automation, and the OLE programmability interface IDispatch. For complete details, see the "COM
and ActiveX Object Services" section of the Microsoft Platform SDK.

You do not need to understand this material in order to use the CDO libraries.

COM Interfaces
With the combination of Microsoft® RPC (Remote Procedure Call) and Microsoft OLE technology,
Microsoft began to shift the C/C++ programming model from individual functions to a distributed object
model that is based on interfaces. An interface is simply a group of logically related functions. Note that
the interface consists only of functions (called methods). There are no facilities for directly accessing
data within an interface, except through the methods.

The benefit of such a distributed object model is that it allows developers to create small, independent,
self-managing software objects. This modular approach allows software functionality to be developed
in small "building blocks" that are then fitted together. Your application no longer has to handle every
possible data format or possible application feature, as long as it can be integrated with other objects
that can handle the desired formats and features.

The notion of objects is very familiar to Microsoft® Visual Basic® developers. Many software industry
analysts have noted that the most visible success of object-oriented programming to date is the
widespread use of Visual Basic custom controls.

One of the benefits of the modular, interface-based approach to software development is that individual
interfaces usually contain significantly fewer functions than libraries, with the promise of more efficient
use of memory. Whenever you want to use one function in a library, the entire library must be loaded
into memory. Splitting function libraries into smaller interfaces makes it more likely that you load only
the functions that you actually need, or at least fewer that you don't.

By convention, interface names start with the letter I. The methods are given a specific ordering within
the interface. Knowing the order of the methods is important for developers who must define their own
vtables, or function dispatch tables. The C++ compiler creates vtables for you, but if you are writing in
C, you must create your own.

The methods of an interface still physically reside in an .EXE or .DLL file, but Microsoft has defined
new rules for how these files are registered on the system and how they are loaded and unloaded from
memory. Microsoft refers to the new rules as the Component Object Model, or COM.

According to the rules, the first three methods in all interfaces are always QueryInterface, AddRef,
and Release, in that order. These methods provide a pointer to the interface when someone asks for it,
keep track of the number of programs that are being served by the interface, and control how the
physical .DLL or .EXE file gets loaded and unloaded. Any other methods in the interface are defined by
the person who creates the interface. The interface that consists of these three common methods,
QueryInterface, AddRef, and Release, is called IUnknown. Developers can always obtain a pointer
to an IUnknown object.

The Component Object Model, like RPC before it, makes a strong distinction between the definition of
the interface and its implementation. The interface methods and the data items (called properties) that
make up the parameters are defined in a very precise way, using a special language designed
specifically for defining interfaces. These languages (such as MIDL, the Microsoft Interface Definition
Language, and ODL, the Object Definition Language) do not allow you to use indefinite type names,
such as void *, or types that change from computer to computer, such as int. The goal is to force you
to specify the exact size of all data. This makes it possible for one person to define an interface, a
second person to implement the interface, and a third person to write a program that calls the interface.

Developers who write C and C++ code that use these types of interfaces read the object's interface
definition language (IDL) files. They know exactly what methods are present in the interface and what
properties are required. They can call the interfaces directly.

For developers who are not writing in C and C++, or do not have access to the object's IDL files,
Microsoft's Component Object Model defines another way to use software components. This is based
on an interface named IDispatch.

IDispatch
IDispatch is a COM interface that is designed in such a way that it can call virtually any other COM
interface. Developers working in Microsoft® Visual Basic® often cannot call COM interfaces directly, as
they would from C or C++. However, when their tool supports IDispatch, as Visual Basic does, and
when the object they want to call supports IDispatch, they can call its COM interfaces indirectly.

The main method offered by IDispatch is called Invoke. This method adds a level of indirection to the
control flow of the Component Object Model. In the standard COM model, an object obtains a pointer
to an interface and then calls a member method of the interface. With IDispatch, instead of directly
calling the member method, the program calls IDispatch::Invoke, and IDispatch::Invoke calls the
member method for you.

Invoke is a general method-calling machine. Its parameters include a value that identifies the method
that is to be called and the parameters that are to be sent to it. In order to be able to handle the wide
variety of parameters that other COM methods use, Invoke uses a self-describing data structure called
a VARIANTARG.

The VARIANTARG structure contains two parts: a type field, which represents the data type, and a
data field, which represents the actual value of the data. The data type, known also as variant type,
contains a constant such as VT_I2 or VT_DATE, which defines valid values for the data types. For
more information on variant types, see the Type property of the Field object.

Associated with IDispatch is the notion of a type library. The type library publishes information about
an interface so that it is available to Visual Basic programs. The type library, or typelib, contains the
same kind of information that C or C++ programmers would obtain from a header file: the name of the
method and the sequence and types of its parameters.

An executable file or DLL that exposes IDispatch and its type library is known as an Automation
server. The CDO Library and the CDO Rendering Library are both Automation servers. In version 1.1
and later they are also in-process servers, residing in .DLL files and linking dynamically with the calling
modules.

The CDO Libraries as Automation
Servers
So, let's put it all together, from the bottom up, to see how the CDO libraries work.

· Service providers implement COM interfaces ¾ specifically, the MAPI interfaces ¾ as described in
the MAPI documentation.

· The CDO libraries implement several objects (Session, Message, ContainerRenderer, Format, and
so on) that act as clients to these MAPI interfaces. That is, the CDO library objects obtain pointers to
the MAPI interfaces and call MAPI methods.

· The CDO libraries implement IDispatch and act as Automation servers so that they can be called by
tools that can use IDispatch, such as Microsoft® Visual Basic®. That is, they allow other programs
to call them through the IDispatch interface. Beginning with version 1.1, the CDO libraries are self-
registering as Automation servers.

· The CDO libraries publish type libraries that contain information about the objects they make
available through IDispatch.

· Your Visual Basic application acts as a client to the CDO libraries. It reads their type libraries to
obtain information about their objects, methods, and properties. When your Visual Basic application
declares a variable as an object (with code such as Dim objSession as Object or Dim objSession as
MAPI.Session) and uses that object's properties and methods (with code such as MsgBox
objSession.Class), Visual Basic makes calls to IDispatch on your behalf.

The relationships between these programs are shown in the following diagram. Visual Basic is a client
to one or both of the CDO libraries, which are the Automation servers. The CDO libraries, in turn, act
as clients to the MAPI services.

The CDO Libraries and MAPI
The CDO libraries call Microsoft COM and MAPI interfaces for you. The following table describes the
MAPI interfaces that the CDO Library calls when you manipulate a CDO Library object.

CDO
Library object

COM or MAPI interface called by the
CDO Library

AddressEntry IMailUser
AddressEntryFilter IMAPITable (with Restrict method)
AddressList IABContainer
Attachment IAttach
Field IMAPIProp, IStream
Folder IMAPIFolder
InfoStore IMsgStore
Message IMessage
MessageFilter IMAPITable (with Restrict method)
Recipient IMAPITable row (recipient table from IMessage)
Session IMAPISession

For collection objects, the CDO libraries call the MAPI interface IMAPITable.

The CDO libraries also call the MAPI interface IMAPIProp. Many of the properties exposed by the
CDO libraries are based on MAPI properties. The following table describes the mapping between these
CDO library properties and the underlying MAPI properties.

CDO
library
object

Property MAPI property MAPI

property type
AddressEntry Address PR_EMAIL_ADDRESS PT_TSTRING
AddressEntry DisplayType PR_DISPLAY_TYPE PT_LONG
AddressEntry ID PR_ENTRYID PT_BINARY
AddressEntry Name PR_DISPLAY_NAME PT_TSTRING
AddressEntry Type PR_ADDRTYPE PT_TSTRING
AddressList ID PR_ENTRYID PT_BINARY
AddressList Name PR_DISPLAY_NAME PT_TSTRING
Attachment Index PR_ATTACH_NUM PT_LONG
Attachment Name PR_ATTACH_

FILENAME
PT_TSTRING

Attachment Position PR_RENDERING_
POSITION

PT_LONG

Attachment Source PR_ATTACH_
PATHNAME

PT_TSTRING

Attachment Type PR_ATTACH_
METHOD

PT_LONG

Folder FolderID PR_PARENT_
ENTRYID

PT_BINARY

Folder ID PR_ENTRYID PT_BINARY
Folder Name PR_DISPLAY_NAME PT_TSTRING
Folder StoreID PR_STORE_ENTRYID PT_BINARY

InfoStore ID PR_ENTRYID PT_BINARY
InfoStore Name PR_DISPLAY_NAME PT_TSTRING
InfoStore ProviderNam

e
PR_PROVIDER_DISPL
AY

PT_TSTRING

Message Conversation PR_CONVERSATION_
KEY

PT_BINARY

Message Conversation
Index

PR_CONVERSATION_
INDEX

PT_BINARY

Message Conversation
Topic

PR_CONVERSATION_
TOPIC

PT_STRING

Message Delivery
Receipt

PR_ORIGINATOR_
DELIVERY_REPORT_
REQUESTED

PT_BOOLEAN

Message Encrypted PR_SECURITY PT_LONG
Message FolderID PR_PARENT_ENTRYID PT_BINARY
Message ID PR_ENTRYID PT_BINARY
Message Importance PR_IMPORTANCE PT_LONG
Message ReadReceipt PR_READ_RECEIPT_

REQUESTED
PT_BOOLEAN

Message Sender PR_SENDER_
ENTRYID

PT_BINARY

Message Sent PR_MESSAGE_FLAGS PT_LONG
Message Signed PR_SECURITY PT_LONG
Message Size PR_MESSAGE_SIZE PT_LONG
Message StoreID PR_STORE_ENTRYID PT_BINARY
Message Subject PR_SUBJECT PT_TSTRING
Message Submitted PR_MESSAGE_FLAGS PT_LONG
Message Text PR_BODY PT_TSTRING
Message Time

Received
PR_MESSAGE_
DELIVERY_TIME

PT_SYSTIME

Message TimeSent PR_CLIENT_SUBMIT_
TIME

PT_SYSTIME

Message Type PR_MESSAGE_CLASS PT_TSTRING
Message Unread PR_MESSAGE_FLAGS PT_LONG
Recipient Address combination of

PR_ADDRTYPE and
PR_EMAIL_ADDRESS

PT_TSTRING

Recipient DisplayType PR_DISPLAY_TYPE PT_LONG
Recipient Name PR_DISPLAY_NAME PT_TSTRING
Recipient Type PR_RECIPIENT_TYPE PT_LONG
Session Name PR_DISPLAY_NAME PT_TSTRING

For more information about MAPI properties, see the MAPI Programmer's Reference.

Additional References
The following references provide additional information about OLE and Automation:

· "COM and ActiveX Object Services" section of the Microsoft Platform SDK
· Inside OLE, Second Edition, by Kraig Brockschmidt, published by Microsoft Press

Note that this document contains the latest known information about the Microsoft® CDO libraries at
the time of publication. Where terms in this document differ from other Microsoft® Visual Basic®, OLE,
or Component Object Model (COM) terms, this document should be viewed as the definition of the
specific implementation represented by the CDO libraries.

Java Programming Considerations
Accessing the CDO Library and CDO Rendering Library objects from Java requires different
procedures from those used with Microsoft® Visual Basic®. This section describes the important
differences and provides some examples of Java access.

You do not need to understand this material if you are only using Visual Basic for the CDO libraries.

CDO Classes in Java
To take advantage of the CDO libraries in a Java program, you must first create Java class wrappers
from their type libraries. The type library for the CDO Library is embedded in OLEMSG32.DLL. The
type library for the CDO Rendering Library is embedded in AMHTML.DLL.

To create a class wrapper
1. Run the Microsoft® Visual J++™ Development Environment.
2. From theTools menu, choose the Java Type Library Wizard.
3. From the list of available Automation servers, select Active Messaging Object Library or Active

Messaging Rendering Object Library.
4. Click OK to tell the wizard to create the needed classes.

The preceding steps cause the Java classes to reside in the subdirectory …\Java\TrustLib\olemsg32 or
…\Java\TrustLib\amhtml, depending on your choice of Automation server. You may wish to print out the
SUMMARY.TXT file located in this directory. It is a useful reference for Java support for the CDO
libraries.

Java Language Features
The Java language is based on C++ and shows considerable similarity to it. In particular, Java code is
case-sensitive. There are, however, significant differences between the two languages.

Because it is interpreted instead of compiled, Java cannot process #define directives. This means that
the constants defined in the CDO and CDO Rendering type libraries cannot be used in a Java
program. You have to use numeric equivalents, which can be found in the Error Codes and Property
Tags appendixes. For more information, see Platform Differences.

Java does not provide any error trapping mechanism equivalent to the Microsoft® Visual Basic® On
Error GoTo statement. All errors must be anticipated and explicitly tested for after each call that could
generate them.

Like all alphanumeric elements in Java, the keywords are case-sensitive. Their predefined values are
all lowercase, such as true, false, and null. This means Java does not recognize capitalized keywords
such as True, False, or Null, which you may be accustomed to using in Visual Basic.

Java objects expose only methods and no properties. CDO library properties are referenced through
accessor methods defined for each property by prefixing get or put to the property name, for example
getInbox and putSubject. Parameters to methods are referenced by accessor methods with get or
put prefixed to the data type, such as getString and putBoolean.

Read-only properties use the corresponding get accessor method. The Inbox property of the Session
object, for example, can be read with the getInbox method:

    Variant inboxFolder = new Variant();
    inboxFolder = session.getInbox();

Read/write properties use the corresponding get and put accessor methods. For example, the Subject
property of the Message object can be read with getSubject and written with putSubject, after the
parameter is prepared with the help of the getString and putString methods:

    Variant inSubject = new Variant();
    StringBuffer newSubject = new StringBuffer("RE: ");
    Variant outSubject = new Variant();
 ...
    inSubject = inMessage.getSubject();
    newSubject.append(inSubject.getString()); // already have "RE: "
    outSubject.putString(newSubject.toString());
    outMessage.putSubject(outSubject);

The property accessor methods such as getInbox always return a Variant object. If your code assigns
them to another Variant object, as in the preceding code fragments, the types already match. If,
however, you cast an object returned from an accessor method to another object type, you need to use
the getDispatch method to obtain a type match:

    Folder inboxFolder;
    inboxFolder = (Folder) session.getInbox().getDispatch();

The CDO libraries support the IDispatch interface, which allows a program to access the underlying
messaging and rendering objects. Invocation of the getDispatch method signals Java to call
QueryInterface on a Variant object and obtain the appropriate messaging or rendering interface for it.
For more information, see IDispatch.

Java methods do not allow for optional parameters. Calls to methods must present every parameter
included in the definition of the method. The equivalent of a Visual Basic Null parameter can be
achieved by using the noParam method on a Java Variant object:

    Variant nullPar = new Variant();
    nullPar.noParam();
    object.Method(firstPar, nullPar, thirdPar, nullPar, nullPar);

Java Programming Examples
This section presents code illustrating Java access to the CDO Library and the CDO Rendering Library.
Each example accomplishes a task your program might perform when dealing with CDO library
objects.

The following table summarizes the programming procedures used in the examples. Note that all tasks
require creation of a valid session and a successful logon.

Programming task Procedure

Logging On and Off 1. Create a session.
2. Log on.
3. Log off.

Creating and Sending a
Message

1. Create a session.
2. Log on.
3. Get the Outbox Messages collection.
4. Add a new message.
5. Populate the new message.
6. Send the new message.
7. Log off.

It is important to understand the object hierarchies of the CDO libraries, because they determine the
correct syntax of Java statements. The relative positioning of the objects within the hierarchies
determines the order in which the objects should be accessed. For more information on the
hierarchies, see Object Model and Rendering Object Model.

To access the CDO Library, a Java program should import OLEMSG32.DLL on 32-bit platforms and
OLEMSG.DLL on 16-bit platforms. To access the CDO Rendering Library, import AMHTML.DLL on 32-
bit platforms. The CDO Rendering Library is not available on 16-bit platforms.

Logging On and Off (Java)   
This example is a standalone application, not an applet. It is a complete program, including the
importation declarations and the main() function. It demonstrates the basic framework of a Java
program that accesses CDO Library objects. The main() function creates a Session object, logs on to
it, and logs off, with minimal error checking.

import olemsg32.*;
import com.ms.com.*;

public class Sample0
{
    public static void main(String args[])
    {
        // Create a messaging session (call the class factory).
        Session session = (Session) new _CDODispSession();

        Variant v = new Variant();
        Variant profileName = new Variant();
        profileName.putString("MyProfile");
        v.noParam();

        // Log on.
        try
        {
            session.Logon(profileName, v, v, v, v, v, v);
        }
        catch(Exception e)
        {
            System.out.println("Logon failed!");
        }

        // The logon was successful; now do desired processing.

        // Now we will log off.
        try
        {
            session.Logoff();
        }
        catch(Exception e)
        {
            System.out.println("Logoff failed!");
        }
    }
}

Creating and Sending a Message (Java)   
This example is a standalone application, not an applet. It is a complete program demonstrating the
basic procedures for initiating a CDO Library message. Within the framework of logging on to and off
from a session, it creates a Message object, sets its requisite properties, and sends it to its recipients
through the MAPI system.

import olemsg32.*;
import com.ms.com.*;
import java.io.*;

public class Sample1
{
    public static void main(String args[])
    {
        // Call the class factory.
        Session session = (Session) new _CDODispSession();

        Variant nullParam = new Variant();
        nullParam.noParam();
        Messages messages = null;

        try        // First, log on.
        {
            Variant profileName = new Variant();
            profileName.putString("MyProfile");
            session.Logon(profileName, nullParam, nullParam, nullParam,
  nullParam, nullParam, nullParam);
        }
        catch(Exception e)
        {
            System.out.println("Logon failed!");
            e.printStackTrace();
        }

        try        // Get the messages collection in the outbox.
        {
            Folder outBox = (Folder) session.getOutbox().getDispatch();
            messages = (Messages) outBox.getMessages().getDispatch();
        }
        catch(Exception e)
        {
            System.out.println("Failed to get the outbox messages collection!");
            e.printStackTrace();
        }

        try        // Now create, populate, and send the message.
        {
            // Create a new message in the outbox.
            Message newMsg = (Message) messages.Add(nullParam, nullParam,
  nullParam, nullParam).getDispatch();

            // Set the subject of the new message.
            Variant subject = new Variant();

            subject.putString("This is a message from Java!");
            newMsg.putSubject(subject);

            // Set the text (body) of the new message.
            Variant text = new Variant();
            text.putString("This is the message text.");
            newMsg.putText(text);

            // Get the Recipients collection.
            Recipients recips = (Recipients) newMsg.getRecipients().getDispatch();

            // Create a new recipient in the Recipients collection.
            Recipient recip = (Recipient) recips.Add(nullParam, nullParam,
  nullParam, nullParam).getDispatch();

            // Set the name on the new recipient.
            Variant name = new Variant();
            name.putString("somebody");
            recip.putName(name);

            // Set the type on the new recipient.
            Variant type = new Variant();
            type.putInt(1); // "To" recipient
            recip.putType(type);

            // Resolve the new recipient.
            Variant showDialog = new Variant();
            showDialog.putBoolean(true);
            recip.Resolve(showDialog);

            // Make the new message permanent.
            Variant refresh = new Variant();
            Variant makePermanent = new Variant();
            refresh.putBoolean(true);
            makePermanent.putBoolean(true);
            newMsg.Update(makePermanent, refresh);

            // Send the new message.
            Variant saveCopy = new Variant();
            saveCopy.noParam();
            showDialog.noParam(); // already created under Resolve()
            Variant wndHandle = new Variant();
            wndHandle.noParam();
            newMsg.Send(saveCopy, showDialog, wndHandle);
        }
        catch(Exception e)
        {
            System.out.println("Failed to create/send a new message!");
        }

        try        // Finally, log off.
        {
            session.Logoff();
        }
        catch(Exception e)

        {
            System.out.println("Logoff failed!");
        }
        System.out.println("All done!");
    }
}

Common Mistakes
Although the CDO libraries are remarkably free of programming pitfalls, there are some aspects of
Microsoft® Visual Basic® syntax that can lead to misunderstanding. This appendix explains some
common design and coding errors.

Reinstantiating an Object
You normally instantiate a CDO Library or CDO Rendering Library object by accessing a property on a
parent object that causes the desired object to be created. For example, the statement

    Set objMsg = objSession.Inbox.Messages.Item(1)

instantiates a Folder object for the Inbox property of the Session object, then a Messages collection
object for the Messages property of the Inbox folder, and then a Message object for the Item property
of the Messages collection.

Every time you cross a period from left to right, you instantiate the object on the right of the period. This
is true whether or not you have previously instantiated another version of the same object. The
following code fragment, for example, is intended to count the members of an AddressEntries
collection that can resolve the name "John":

    Dim objAdrList As AddressList
    Dim objAEFilt As AddressEntryFilter
    Dim objAE As AddressEntry
    ...
    Set objAEFilt = objAdrList.AddressEntries.Filter
    objAEFilt.Name = "John" ' set filter to restrict on this name
    i = 0
    For Each objAE in objAdrList.AddressEntries
        i = i + 1
        MsgBox objAE.Name
    Next

As written, however, this code counts every AddressEntry object in the collection. This is because the
collection itself is instantiated twice, once when setting the filter and once when initializing the loop, in
response to the code objAdrList.AddressEntries. The second collection is instantiated with a default
AddressEntryFilter object with no restrictions, which is used in the loop. The filter with the Name
property restriction remains with the first collection and is never used.

This behavior is counterintuitive to programmers accustomed to having the same object returned by
repeated references. But no variable is defined for an object that is generated internally by crossing a
period, and Visual Basic has no way of correlating its internal objects. It is up to you to take care of the
correlation at the source code level.

The proper approach is to define and Set a variable for any object you plan to use more than once. In
the case of the previous code fragment, it is the AddressEntries collection object that is to be reused:

    Dim colAddrEntries As AddressEntries
    ...
    Set colAddrEntries = objAdrList.AddressEntries
    Set objAEFilt = colAddrEntries.Filter
    objAEFilt.Name = "John" ' set filter to restrict on this name
    i = 0
    For Each objAE in colAddrEntries
        i = i + 1
        MsgBox objAE.Name
    Next

When you instantiate an object multiple times, you subject your application to several problems:

· Your application wastes execution time and memory creating and retaining more than one version of
the object.

· A subsequent instantiation does not Release a previous one, and all instantiated objects remain in
memory with nonzero reference counts.

· The instantiations are unrelated to one another, and any operations you perform on one have no
effect on any of the others.

· A given instantiation is used only by the code that follows its creation and precedes a subsequent
instantiation. That is, different sections of your code are using different, unrelated versions of the
object.

The safest procedure is to use explicit variables for all the objects and collections in your application.
The consequence of not doing so can vary from inefficient execution to wrong results. For more
information, see Improving Application Performance.

Looping Through a Collection
A CDO or CDO Rendering collection is always refreshed immediately following an Add or Delete
operation on any of its members. This means that the collection's Count property is incremented or
decremented, and all the members following the point of insertion or deletion are reindexed. To access
one of these members, you must use its new index value. This is easy to forget if you are looping
through the collection.

Consider the following code fragment to delete every member of a Messages collection:

    Dim colMsgs As Messages
    ...
    size = colMsgs.Count
    For i = 1 to size
        colMsgs.Item(i).Delete
    Next i

When i = 1, the first Message object's Delete method is called and that message is deleted. The
Messages collection's Count property is immediately decremented by one, and the Message object
that had been the second message in the collection now becomes the first. Therefore, when i = 2, the
second message in the reindexed collection, that is, the message that was originally third in the
collection, is deleted, and the message that was originally fourth now becomes second.

The effect of this loop is to delete all the odd-numbered members of the original collection. Once i has
been incremented past half the value of size, it becomes too large for the reindexed items, and a value
of Nothing is returned for the remaining accesses.

The Microsoft® Visual Basic® For Each statement cannot be used as a workaround, because it is
internally implemented as

    For i = 1 to .Count
        .Item(i).
    Next i

which still exhibits the skipping behavior, although it does at least reread the Count property with each
passage of the loop, so that it avoids going past the end of the collection. The following loop always
deletes the first message and has the effect intended by the erroneous code fragment:

    size = colMsgs.Count
    For i = 1 to size
        colMsgs.Item(1).Delete
    Next i

Of course, the simplest alternative in this case is to use the Delete method of the Messages collection
itself.

Some collections, such as Columns, allow a new member to be inserted following a specified existing
member instead of being added at the end. If you insert a Column object into the middle of the
collection using its Add method, you must take into account the new index values of the columns that
come after the new column.

AddressEntry of a Recipient Object
The principal hierarchical position of an AddressEntry object is as a member of an AddressEntries
collection. The CDO Library also provides an AddressEntry property on the Recipient object in order
to make the address book properties of a recipient available to the programmer. It is important to
understand the differences between the AddressEntry objects accessed in these two ways.

The AddressEntries collection is in turn a child of an AddressList object, which is backed up by a MAPI
IABContainer object implemented by an address book provider and held in persistent storage. An
AddressEntry object obtained through this hierarchy is backed up by a MAPI IMailUser object and
ultimately resides in persistent storage. When you make changes to this AddressEntry object and call
its Update method with the makePermanent parameter set to True, the address book provider saves
your changes in persistent storage.

By contrast, a Recipients collection is implemented with a MAPI IMAPITable object populated from an
IMessage object. MAPI tables are never persistent and only exist in memory. A Recipient object
corresponds to a row in the MAPI recipient table, and an AddressEntry object obtained through its
AddressEntry property, although originally copied out of persistent storage, is only backed up in
memory. Any changes you commit with its Update method are only saved in memory.

Example
This code fragment illustrates the nature of the problem:

Set objAddrEnt = objRecip.AddressEntry
objAddrEnt.Fields(CdoPR_SEND_RICH_INFO) = True
objAddrEnt.Update

objRecip.AddressEntry.Details ' property is NOT set
objRecip.AddressEntry = objAddrEnt '   
objRecip.AddressEntry.Details ' now property is set

Glossary

A
Active Platform
A PC platform for developing Internet applications, including an extensive set of development
tools. The platform is independent of the operating system and presents a consistent interface to
both the client and the server. The Active Platform is based on three core technologies: Active
Desktop, Active Server, and ActiveX.

Active Server
The Active Platform component of Microsoft Internet Information Server (IIS) 3.0 or later, which
extends the Windows NT system services to the World Wide Web. It decodes and runs server-
side script and provides database access and transaction support.

Active Server Pages
See ASP.

ActiveX
A software technology built on the COM foundation and used particularly for applications dealing
with the Internet and the World Wide Web. ActiveX components include ActiveX objects, which
expose their properties and methods, and ActiveX clients, which access them. See also OLE.

ActiveX client
An application or programming tool accessing the ActiveX objects exposed by programs
supporting Automation.

ActiveX control
A reusable, stand-alone software component often exposing a discrete subset of the total
functionality of a product or application. An arbitrary number of ActiveX controls can be used as
prefabricated components to aid in building a new application. Formerly referred to as OLE control
or OCX. For more information, see the ActiveX SDK section of the Platform SDK.

ActiveX object
An object exposed by an application or programming tool supporting Automation for use by
ActiveX clients.

address book
A container object that manages a collection of one or more address book containers furnished by
one or more service providers. CDO applications can access an address book using the
AddressLists collection object.

address book container
An object that contains one or more recipients and makes them available to applications using the
CDO libraries. Common address book containers include the global address list and the personal
address book. CDO applications can access an address book container using the AddressList
object.

address entry
An object containing addressing information such as a display name, an e-mail type, and an e-
mail address. An address usually represents a person or process that can receive a message.
CDO applications can access an address entry using the AddressEntry object. See also recipient.

anonymous user
See unauthenticated user.

ASP
(Active Server Pages) An open application environment in which HTML pages, scripts, and
ActiveX components can be combined to create Web-based applications. ASP is an ISAPI
application.

attachment
An object that is associated with a message and contains additional data, such as a file or an OLE
object. CDO applications can access an attachment using the Attachment object.

authenticated user
A messaging user that has a valid account on a Microsoft Exchange server and can therefore
access a mailbox. Also referred to as a validated user.

Automation
A Microsoft technology that allows objects to expose their internal services to each other as well
as to human users. Automation follows the Component Object Model (COM), and most
Automation applications derive their objects from the IDispatch interface. Objects exposed
through Automation include ActiveX objects, and applications that access them include ActiveX
clients. Formerly referred to as OLE Automation.

Automation controller
A programming tool, such as Microsoft Visual Basic, that supports Microsoft Automation. An
application written in or using an Automation controller can reference an arbitrary number of object
libraries and access their objects from a single program.

B
browser
A client application connected to the World Wide Web that requests resources from a Web server,
usually for the purpose of displaying them. Also referred to as a Web browser.

C
calendar view
A view specifying a calendar rendering of a container object containing a collection of
appointments. CDO applications can access a calendar view using the CalendarView object.

categorized view
See grouped view.

CDO
(Collaboration Data Objects) A technology for building messaging or collaboration applications. In
versions previous to 1.1, CDO was called OLE Messaging; in version 1.1 it was called Active
Messaging. It is designed to simplify the creation of applications with messaging functionality, or to
add messaging functionality to existing applications.

CDO libraries
The set of programmable object libraries that expose messaging-related objects for use by an
Automation controller. An application written in a tool supporting Automation can reference several
object libraries and access all their objects in a single program. The CDO libraries are the CDO
Library and the CDO Rendering Library.

CDO Library
An Automation programming interface that exposes programmable MAPI objects to a messaging
user application. For more information, see the CDO Library Introduction and Overview.

CDO Rendering Library
An Automation programming interface that exposes programmable HTML rendering objects to a
server-side script running on a Web server. For more information, see Overview of CDO
Rendering.

child folder
A folder that is a child object of another folder, which is the child folder's parent folder. Also
referred to as a subfolder.

child object
An object derived from another object, which is referred to as the parent object.

client-side script
Script that is decoded and run at a browser.

Collaboration Data Objects
See CDO.

collection
An object that contains zero or more objects of the same class. The CDO Library supports large
collections and small collections. The CDO Rendering Library uses only small collections. Also
referred to as a collection object or an object collection. See also container object.

collection object
See collection.

column
A vertical section of a table view that specifies rendering for one property on the contents of the
container object being rendered. CDO applications can access a column using the Column object.

COM
(Component Object Model) An architecture for defining interfaces and interaction among objects
implemented by widely varying software applications. A COM object instantiates one or more
interfaces, each of which exposes zero or more properties and zero or more methods. All COM
interfaces are derived from the base class IUnknown. Technologies built on the COM foundation
include ActiveX, MAPI, and OLE.

common view
A predefined, persistent table view defined globally for all messaging users and all folders.

container object
An object that contains a collection of objects of one or more related classes. For example, a
folder can contain both messages and child folders. See also object renderer.

container renderer
A rendering object used to render the contents of a CDO container object in tabular format. CDO
applications can access a container renderer using the ContainerRenderer object.

conversation
A series of messages that pertain to the same topic. All the messages in a conversation typically
have the same subject. Also referred to as a thread.

custom view
A nonpersistent table view created individually by a particular application, which applies only to
one folder and one messaging user.

D
display name
A name associated with an object and used as a display token for that object. Many CDO objects
have display names, exposed in each object's Name property. The display name of an
AddressEntry object commonly contains a human user's friendly name or e-mail alias.

distribution list
(DL) An address entry representing a group of one or more address entries. A distribution list can
contain individual messaging users and other distribution lists.

DL
See distribution list.

F
field
An object providing access to a MAPI property on a CDO Library object. CDO applications can
access a field using the Field object.

File Transfer Protocol
See FTP.

folder
A container object that holds messages and other folders. CDO applications can access a folder
using the Folder object. See also child folder, parent folder, personal folder, public folder.

folder view
A predefined, persistent table view defined individually for a particular folder.

format
An object specifying rendering information for exactly one property on an object being rendered.
CDO applications can access a format using the Format object.

frame
A partition of a computer screen used by a browser to display images from HTML. Unless the
HTML sent to the browser includes <FRAMESET> and <FRAME> tags, the display uses a single
frame occupying the entire screen.

FTP
(File Transfer Protocol) A client/server protocol used on the World Wide Web to transfer a file from
a server to a client. FTP is based on the TCP/IP protocol.

G
GAL
See global address list.

global address list
(GAL) An address book container that holds recipient entries for an entire organization and is
available to all messaging users in that organization. A global address list is typically not
modifiable by the users. See also personal address book.

group header
A nonpersistent object representing the display header for a grouping of messages in a grouped
view on a folder. CDO applications can access a group header using the GroupHeader object.

grouped view
A table view specifying that the contents of the container object are to be sorted into groups for
rendering. The sort is based on a specified property on the container object's contents. Each
group is rendered along with its group header. Also referred to as a categorized view.

H
heading row
A row of an HTML rendering of a table view that contains the name of each column in the view. It
can optionally be included in any desired frame of the rendering.

HTML
(Hypertext Markup Language) A tag language for representing documents with hypertext links. An
HTML tag consists of a directive, possibly extended with one or more attributes, within angle
brackets, for example . HTML is based on Standard Generalized Markup
Language (SGML).

HTML rendering
The process or result of generating displayable HTML output from objects and properties of the
CDO Library. HTML rendering is accomplished using the CDO Rendering Library. See also
rendering.

HTTP
(Hypertext Transfer Protocol) A client/server protocol used on the World Wide Web for sending
and receiving HTML documents. HTTP is based on the TCP/IP protocol.

HTTP output
A stream containing text and HTML tags for the current displayable page, to be sent by HTTP to a
browser either when the End method on the response object is called or when the current script
finishes executing.

hypertext
A collection of documents containing cross-reference links that can be used interactively by a user
to move immediately from one topic to another.

Hypertext Markup Language
See HTML.

Hypertext Transfer Protocol
See HTTP.

I
IIS
(Internet Information Server) A Web server integrated into Windows NT server. Microsoft IIS is
required to access applications based on Microsoft ASP.

impersonation
Associating a set of Windows NT security credentials with an execution thread. This enables the
thread to log on to a session.

interface
The definition of a class of objects of similar behavior. An object is an instance of one or more
interfaces. The COM architecture is the foundation for Microsoft interfaces.

Internet
A worldwide hierarchy of computer networks using a variety of protocols. At its highest level the
Internet is connected by backbone networks such as ARPAnet, NSFNet, and MILNET. The
backbones connect transit networks, which in turn connect stub networks. Logically, Internet
participants are represented by a domain such as .com, .org, and .edu, by a logical network within
the domain, and by a server within the logical network. An example of a logical address is
"www.microsoft.com".

Internet Information Server
See IIS.

Internet Server Application Programming Interface
See ISAPI.

IPM subtree
The hierarchy of folders for all interpersonal messages. An interpersonal message is sent or
received by human users rather than applications or processes. It has a message class that starts
with IPM, such as IPM.Note.

ISAPI
(Internet Server Application Programming Interface) A Microsoft interface for writing in-process
extensions to IIS. ASP is an ISAPI application.

L
large collection
A collection for which the service provider cannot always maintain an accurate count of member
objects. Large collections support Get methods that enable you to access individual members of
the collection. Currently, the large collections are the AddressEntries, Folders, and Messages
collections.

M
mailbox
The set of folders held in the IPM subtree of a messaging user. The mailbox is intended for
interpersonal messages. Its folders typically include the Inbox, Outbox, Sent Items, and Deleted
Items.

MAPI
(Messaging Application Programming Interface) A messaging architecture enabling multiple
applications to interact with multiple messaging systems across a variety of hardware platforms.
MAPI is built on the COM foundation.

message
An object containing information that is sent from a sender to one or more recipients or that is
posted in a public folder. CDO applications can access a message using the Message object.

message store
A container object that holds folders organized hierarchically. CDO applications can access a
message store using the InfoStore object.

messaging user
An object that is capable of sending or receiving messages. A messaging user can be a human
user or an application or process. See also authenticated user, unauthenticated user.

method
A procedure that is exposed by an object and performs a specific action.

O
object
A programmable software component representing an instance of one or more defined interfaces.
The objects exposed by the CDO libraries conform to the COM architecture and expose zero or
more properties and zero or more methods.

object collection
See collection.

object renderer
A rendering object used to render one or more selected properties on a CDO object, rather than
the entire object. CDO applications can access an object renderer using the ObjectRenderer
object. See also container renderer.

OCX
(OLE Custom Controls) See ActiveX control.

OLE
A software technology built on the COM foundation and used for creating and working with
compound documents. OLE objects commonly use the IStream and IStorage interfaces. See also
ActiveX.

OLE Automation
See Automation.

P
PAB
See personal address book.

parent folder
A folder that is the parent object of another folder, which is the parent folder's child folder.

parent object
An object from which another object is derived. The derived object is a child object.

pattern
An object specifying rendering information for a particular set of values of a property on an object
being rendered. CDO applications can access a pattern using the Pattern object.

PDL
See private distribution list.

personal address book
(PAB) A modifiable address book container that holds recipient entries either created by the
messaging user or copied from other address book containers such as a global address list. See
also global address list.

personal folder
A folder held outside of the mailbox of a messaging user, in which the user can store selected
messages. A messaging user's personal folders are normally held in the user's personal message
store.

personal view
A predefined table view defined individually for a particular messaging user.

personal Web server
A Web server that does not use IIS. Because it does not require a Windows server, a personal
Web server can run on a Windows workstation.

private distribution list
(PDL) A distribution list that exists only in a personal address book belonging to one messaging
user. A private distribution list can contain individual messaging users, distribution lists, and other
private distribution lists. However, a PDL does not have an e-mail address. For more information,
see the DisplayType property of the AddressEntry object.

profile
Configuration information about the set of message services for a session. Profiles are created
from information stored in the MAPI configuration file, MAPISVC.INF. A profile indicates which
address books and message stores are accessible to the messaging user that is logging on, as
well as the messaging user's own display name and addressing information.

property
A data attribute exposed by an object. A property represents data that is held inside the object and
is inaccessible from outside except through the object's defined interface. An object may permit
read/write access to some of its properties and read-only access to others.

public folder
A folder held outside of the mailboxes of all the messaging users on a message store, in which
any connected user can post selected messages. A public folder can be used as a bulletin board
or online forum.

R
recipient
A messaging user or distribution list designated to receive a particular message. Recipients are
usually held in address book containers. CDO applications can access a recipient using the
Recipient object.

renderable object
A CDO object being used as a data source for a rendering object.

renderable property
A property on a CDO object being used as a data source for a rendering object.

rendering
The process or result of preparing an image for display. The image can include text, graphics, and
form elements such as frames and borders. Rendering converts coded representations of the
components of the image into a single output suitable for displaying. See also HTML rendering.

rendering object
A CDO Rendering object used for rendering a CDO object, or one or more of its properties, into
HTML output. Currently, the rendering objects are the container renderer and object renderer
objects.

rendering source
A string providing information that a rendering object uses to render a particular property or value
into hypertext. A rendering source contains HTML tags and substitution tokens.

resolution
The process of associating a valid address with a display name or addressing information. The
names of all recipients for a message must be resolved before the message can be sent.

response object
An Active Server object used to send HTML output to a browser. A response object implements
the IResponse interface, which controls page buffering, cookie values, Web server logging, and
browser page caching.

S
script
Code that is run in an application for a special purpose. Script can be in any scripting language.

scripting language
Any language, such as Visual Basic Scripting Edition (VBScript) or JavaScript (JScript) that can
compile or interpret special script.

server-side script
Script that is decoded and run at a Web server.

session
An active connection between a client application and the MAPI subsystem. A session is begun
when a messaging user logs on to the system and references a profile. The profile determines the
available messaging operations and the service providers available to handle the operations.
CDO applications can access a session using the Session object.

small collection
A collection for which the service provider maintains an accurate count of member objects. You
can directly access individual members of the collection using an index. Currently, the large
collections are the AddressLists, Attachments, Columns, Fields, Formats, InfoStores, Patterns,
Recipients, and Views collections.

subfolder
A child folder contained in a parent folder.

T
table view
A view specifying a tabular rendering of a container object. CDO applications can access a table
view using the TableView object. See also common view, custom view, folder view, and personal
view.

TCP/IP
(Transmission Control Protocol over Internet Protocol) One of the most commonly used protocol
suites on the Internet. IP is a network layer protocol that handles packet switching, fragmentation,
and routing. TCP is a transport layer protocol built on top of IP and handles flow control,
multiplexing, and error control.

top-level object
A CDO libraries object that can be defined directly from a program and does not have to be
derived from another already-defined object. Currently, the top-level objects are the CDO Session
object and the CDO Rendering ContainerRenderer, ObjectRenderer, and RenderingApplication
objects. For more information, see Top-Level Objects and CDO Rendering Objects.

transport
A service provider responsible for transferring messages between a message store and an
underlying messaging system that delivers the messages.

U
unauthenticated user
A messaging user that does not have a recognized account on any Microsoft Exchange server. An
unauthenticated user can log on to a server anonymously, but is restricted to accessing only the
published public folders and address books. Also referred to as an anonymous user.

uniform resource locator
See URL.

URL
(Uniform Resource Locator) A standardized string used to specify a resource on the Internet, such
as an HTML document. The format of a URL is "protocol://server.network.domain/path/resource".

V
validated user
See authenticated user.

VBX
(Visual Basic Extensions) See ActiveX control.

view
An object specifying a particular type of rendering of a container object. Currently, the CDO
Rendering Library supports calendar views and table views.

virtual root
A disk directory on IIS designated as a share point, which can be used as a root directory for
paths to its subdirectories.

Visual InterDev
A component of Microsoft® Developer Studio™ that serves as the development platform for
applications dealing with the World Wide Web. Microsoft® Visual InterDev™ supports creation and
editing of .HTM and .ASP files, and development of scripts in scripting languages such as
VBScript and JScript.

W
W3C
(World Wide Web Consortium) The international standards group for the World Wide Web (WWW
or W3), funded by its industrial members but operated principally by the Massachusetts Institute of
Technology (MIT), the Institut National de Recherche en Informatique et Automatique (INRIA), and
the Center for European Particle Research (CERN).

Web
See World Wide Web.

Web browser
See browser.

Web server
A program connected to the World Wide Web that furnishes resources upon request from a
browser. The requested resource is usually identified by a URL.

World Wide Web
(WWW, W3) A distributed client/server information retrieval system using multiple protocols on the
Internet. The client is a browser and the server is a Web server. Typical protocols include HTTP,
FTP, and Gopher. Also referred to as the Web or the WWW.

WWW
See World Wide Web.

X
X.400
An international message-handling standard for connecting e-mail networks to each other and to
messaging users, published by the International Telecommunications Union (ITU).

X.500
An international message-handling standard for directory services (DS), published by the
International Telecommunications Union (ITU).

