
Microsoft Site Server

Posting Acceptor
Operations Guide

Microsoft Corporation

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Microsoft Corporation.

This documentation is an early release of the final documentation and is confidential and proprietary
information of Microsoft Corporation. It is disclosed pursuant to a nondisclosure agreement that the
recipient has signed with Microsoft. No part of this document may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Microsoft. This is a preliminary document and may be changed substantially prior to
final commercial release. It is meant to accompany software still in development. Some of the
information in the documentation may be inaccurate or may not be an accurate representation of the
functionality in the final released product. This document is therefore provided as is without
warranty of any kind. In no event shall Microsoft be liable for nay damages whatsoever arising out
of the use or inability to use this document.

Microsoft Corporation may have patents or pending patent applications, trademarks, copyrights, or
other intellectual property rights covering subject matter in this document. The furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property rights.

Unpublished work. © 1997 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows NT, and ActiveX are either registered trademarks or trademarks of
the Microsoft Corporation in the United States and/or other countries.

Java is a registered trademark of Sun Microsystems, Inc.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

iii

Contents

Welcome..1
What Posting Acceptor Does..1
How It Works..1

Conventions..3

Understanding Posting Acceptor..5
Posting Acceptor Components...5
Background Functions..6

Authenticating Publishers...7
Processing After Receiving Posts..7
PostInfo File...8
Repost Failures..8
Mapping Modules...8

Setting Up Posting Acceptor...11
Hardware and Software Minimum Requirements..11
Installing Posting Acceptor..12
Configuring Posting Acceptor..12

Selecting TargetURL and PostingURL...13
Configuring with Sample Pages...13
Creating Mapping Modules..13
Using Posting Acceptor with Microsoft Content Replication System........14

Example Scenario Using CRS with Posting Acceptor...........................14
Configuring for Outstanding Posts...15
Specifying a Post-Processing URL..16

Posting Acceptor Administration..17
Performance Monitoring..17

Windows NT Events...18
Registry Keys...22

What to Tell Content Providers Posting To Your Server.................................22
Posting Information for WebPost Clients...22
Posting Information for Netscape Navigator and Other HTTP Clients.......23

Troubleshooting...25
Windows NT Users...25
Windows 95 Users..25

Posting Acceptor Administration iv

Glossary...27

Microsoft® Posting Acceptor is a server add-on tool that Web content providers can
use to publish their content using HTTP Post (RFC 1867). After installing Posting
Acceptor on your Web server running Windows NT® Server, Windows NT
Workstation, or Windows® 95, you will be able to provide a hosting service for users
wanting to post Web content to your server. Resources are provided to assist with
Posting Acceptor installation, configuration, and troubleshooting.

What Posting Acceptor Does
Posting Acceptor allows Microsoft Internet Information Server (IIS), Microsoft Peer
Web Services, and Microsoft Personal Web Server to accept Web content from
Microsoft Web Publishing Wizard/API and Netscape Navigator 2.02 or later through
any standard HTTP connection. In conjunction with Microsoft Content Replication
System (CRS), Posting Acceptor can also distribute content to multiple servers
simultaneously.

How It Works
Posting Acceptor provides a receiver for Microsoft IIS to accept files from clients
using the HTTP multipart/form-data method to post their Web content. Clients using
this posting method include the Web Publishing Wizard/API 1.5 Microsoft
ActiveX™ Upload control and Netscape Navigator 2.02 or later. Posting Acceptor
can also provide the same functionality to a cluster of servers with content managed
through CRS supporting the Web Publishing Wizard/API 1.5 client. In this way,
Microsoft Web Publishing Wizard/API and any HTTP Post–compliant clients, can
post content through a standard firewall.

For example, suppose an Internet service provider (ISP) decides to host Web pages
for its users. The ISP simply installs Posting Acceptor on its Web server and creates
a virtual directory called “users.” Users are then able to post their content to the
server and retrieve it from a URL such as http://servername/users/username. A
graphic representation of these relationships is provided in the following illustration.

Welcome

2

WebPost Client

Profile for site to be posted to

Navigator Client

Posting Acceptor ISAPI

Form referencing ActiveX
Upload Control Form for RFC1867 Posts

CRS Mapping Module File System Mapping Module

CRS File System

Web Server Web Server Web Server

Conventions
The following text formats are used throughout this document.

Convention Meaning

Bold Indicates the actual commands, words, or characters that you type in a
dialog box or at the command prompt.

Italic Indicates a placeholder for information or parameters that you must
provide. For example, if the procedure asks you to type filename, you
must type the actual name of a file.

Monospace Represents examples of screen text or entries that you might type at the
command line or in initialization files.

The following section provides an overview of the components, functionality, and
concepts that make up Posting Acceptor operation.

Posting Acceptor Components
Two sample pages are provided with the Posting Acceptor server add-on: one
designed to accept multi-part/form-data method posts from Netscape Navigator, and
one to provide the ActiveX Upload control for Microsoft Internet Explorer users.
You can modify these pages to fit your needs.

The Active Server Pages (ASP) file (upload.asp) detects the type of incoming
browser and routes the user to the appropriate sample page. If the user has a browser
that supports ActiveX controls, he or she is routed to the page containing the
ActiveX Upload control. If it is not yet installed, the user’s system is automatically
updated with the control. The following table describes the functions of the
components, including sample pages, that make up Posting Acceptor.

Component Description Function

Posting Acceptor ISAPI
cpshost.dll

ISAPI application; core
component of Posting
Acceptor

Receives posted files from
the content providers and
saves them to the disk
according to the
TargetURL.

CRS Mapping Module
crsmapr.dll

A module responsible for
mapping TargetURLs into
physical locations on the
hard disk

Queries CRS for all
MapURLs and compares
them with the TargetURL.
If a match is found,
physical location on the
hard disk is reported back
to Posting Acceptor.

File System Mapping Module
Built-in cpshost.dll

A module responsible for
mapping TargetURLs into
physical locations on the
hard disk

Queries IIS (or PWS) for a
mapping between the
TargetURL and a physical
location on the hard disk.

ActiveX Upload control
flupl.cab

An ActiveX control that
when embedded in a Web
page can be used to post
content files

Users can drag and drop
files and folders or double-
click the control to select
files and folders to upload
to your Web server.

Sample page for clients using
HTTP (for example, Netscape
Navigator) to post content
uploadN.asp

An Active Server Pages
(ASP) file containing a
form with HTTP Post
(RFC 1867)–specific
fields in which to post
files

Can be used by any HTTP
Post (RFC 1867) Web
browser (for example
Netscape Navigator) to
upload files to your server.

Sample page for clients using
the ActiveX Upload control

An Active Server Pages
(ASP) file containing the

Enables browsers
supporting ActiveX to

Understanding Posting
Acceptor

Component Description Function

to post content
uploadX.asp

ActiveX Upload control
(flupl.cab).

post files and folders to
your server via the
ActiveX Upload control
(flupl.cab).

Active Server Pages (ASP)
upload.asp

An Active Server Pages
(ASP) file that determines
the type of client browser
and refers it to the
appropriate content-
uploading form, either
uploadN.asp or
uploadX.asp

If the browser supports
ActiveX controls, it is
automatically referred to
uploadX.asp when it hits
this page. If the browser
does not support the
controls, it is referred to
uploadN.asp

ASP PostInfo file
postinfo.asp

The PostInfo file that is
retrieved by WebPost to
automatically configure
client software for posting
content

The PostInfo file contains
the PostingURL and the
TargetURL that WebPost
uses to post content to
your server.

Postinfo.eg file A file located in your
www root directory

Postinfo.eg is an
“example” file of a line
that needs to be added to
default.htm so that
WebPost can locate the
"PostInfo" file. Setup adds
this line to your
default.htm (home) file.

Background Functions
The following section provides a summary of functions performed by Posting
Acceptor and the concepts behind those functions. This includes authenticating
content publishers, processing a content post after it is received, managing content
reposting failure, and creating mapping modules.

Built as an ISAPI application, Posting Acceptor accepts HTTP-based “POST”
requests that contain a TargetURL for the incoming content. Posting Acceptor then
parses the URL to a base that matches a hosted site, which is determined by querying
the configured mapping modules until one succeeds. The remainder of the URL is
assumed to be subdirectories of the matched/hosted URL. The incoming files are
then deposited into the appropriate directory selected by the module.

Posting Acceptor takes content posts from any client conforming to the rules
outlined in the HTTP multi-part/form-data method (RFC 1867), including Netscape
Navigator (with the use of a form on the server). Further posting options are also
supported if the client code is Microsoft WebPost API based, for example, Web
Publishing Wizard and any other applications using the ActiveX Upload control.

Authenticating Publishers
Authentication of publishers is handled by any mechanism that is exposed by
Windows NT on the server that matches the authentication method supported by the
client-side software; for example, Basic/NTLM/MSN/DPA (Distributed Password
Authentication) or Microsoft Membership System.

Note
Posting Acceptor specifically disallows anonymous connections.

IIS and PWS enumerate supported authentication methods and negotiate with the
client to find a match. You can control who is allowed to post to a given site by
establishing accounts for those users on the server. You can also control which
directories those users can post to by applying access control lists (ACLs) to the
various destination directories for that site. For more information about applying
ACLs to a destination directory, see the Windows NT and Windows 95 user guides.

Your client’s publishing software can authenticate against your Web server to upload
their files using Microsoft Membership System or any other authentication
mechanisms supported by Microsoft Internet Information Server (IIS), Peer Web
Services, and Personal Web Server.

If you have installed a Security Certificate on your Web server, your publishers are
able to upload their files securely via HTTPS (Hypertext Transfer Protocol Secure)
assuming that the client supports SSL (Secure Sockets Layer).

Processing After Receiving Posts
If you want to perform additional processing after a post is received, Posting
Acceptor can call a secondary post-processing URL with all the form data except the
contents of the posted files uploaded from the client. In place of the content is a list
of locations and sizes of the files posted to the server. You are able to edit the
PostInfo file in order to specify the post-processing URL.

If a PostInfo file is not supplied, the option of specifying a post-processing URL is
exposed in the WebPost API. You can also add it to the HTTP (uploadN.asp) sample
page. The post-processing URL is specified as a part of the PostingURL after the
PUBLISH keyword.

As part of the repost, the acceptor sends URL-encoded form fields of well known
names, which list the locations where each of the uploaded files was saved. This
form data is appended to any form data that already resides in the request. For each
of the files uploaded and saved, the following will be passed on to the repost URL:

FileName=page
FilePath=c:\test
FileSize=32
FileExtention=htm
FileName=...

PostInfo File
The PostInfo file contains several definitions for the WebPost client, one of those
definitions being the posting URL, which by default points to Posting Acceptor. The
PostInfo file is used by the WebPost Publishing Wizard only. The WebPost API on
the client’s machine figures out where to post content by information it receives
from the PostInfo file.

Repost Failures
In the case of repost failure, a warning message embedded inside the HTML repost
is sent to the user. A repost failure is marked as a warning, not an error. A program
that only checks for errors, such as WebPost, is not aware that the repost failed. If
the repost succeeds, anything returned from the repost is sent back to the client. The
acceptor then becomes transparent, meaning that it does not send anything back on
its own. If no content is returned from the repost, the acceptor sends a warning
message back to the client.

Mapping Modules
The mapping module is a self-registering server that creates the appropriate entry in
the Posting Acceptor’s mapping modules registry during registration.

Inside the registry, Posting Acceptor expects to find DWORD values, names of
which are the Class IDs of mappers, and the values of which are either 1 (enable) or
0 (disable). For example, the entry for the Microsoft Content Replication System
(CRS) mapping module looks like this:

{66BE7352-83A0-11D0-A317-00C04FD7CFC5}:REG_DWORD:0x1

The acceptor queries each of the installed mapping modules until one of them
succeeds and a physical location is returned to the acceptor. If no mapping module
succeeds, the acceptor defaults to querying IIS for the physical location of the given
URL. If the default also fails, the acceptor returns an error message to the client.

Posting Acceptor can be configured with one or several mapping modules to route
the incoming files to the desired location. When more than one mapping module is
available, you can control where the user’s content is routed depending on user
permissions and setup specifications in the mapping modules.

Note
Mapping module keys are located in HKLM\Software\Microsoft\WebPost\
Acceptors\CPSHost\Mappers\

The following information lists the things you should know before installing Posting
Acceptor, as well as procedures to follow as you install and configure Posting
Acceptor. Before installing Posting Acceptor, note the minimum hardware and
software requirements for the platforms that Posting Acceptor supports.

Hardware and Software Minimum
Requirements

Posting Acceptor runs on the following platforms using either the Intel x86 or DEC
Alpha processor. To successfully install Posting Acceptor, ensure the following
minimum requirements are met.

Category Windows NT Server
Windows NT
Workstation Windows 95

Hardware 486/33 or higher Intel
processor or Alpha
RISC processor
compatible with
Windows NT
16 MB of memory
(64 MB
recommended)
10 MB of hard disk
space plus space for
users’ uploaded files

486/33 or higher Intel
processor or Alpha
RISC processor
compatible with
Windows NT
16 MB of memory
(64 MB recommended)
10 MB of hard disk
space plus space for
users’ uploaded files.

386DX or higher
Intel processor
(486/33 or higher
recommended)
8 MB of memory
(24 MB
recommended)
10 MB of hard disk
space plus space for
users’ uploaded files.

Software IIS 3.0 or later
Active Server Pages
With or without
Content Replication
System

Peer Web Services 3.0
or later
Active Server Pages
No Content Replication
System support

Personal Web Server
1.0a or later
Active Server
Pages*
No Content
Replication System
support

* Active Server Pages (ASP) is not required, but will allow for automatic routing of the posting
client to the proper page for a particular client tool. Microsoft IIS and PWS 3.0 provide ASP in
their respective installations.

Installing Posting Acceptor
During Posting Acceptor installation, the ISAPI, mapping modules, sample forms,
and PostInfo file are deposited by default into the correct virtual directories. You are
required to insert the meta-tag into your default home page. As you install Posting
Acceptor, you may accept the default directory locations for component installation
or specify other directory locations.

Setting Up Posting Acceptor

· To install Posting Acceptor
1. From the root directory, double-click the PostAcc folder. Double-click Posting

Acceptor.exe and accept the license agreement.
2. In the dialog box, enter the physical path to the virtual root of your Web server.

You may select the default, or choose another path. Click OK. If you select
another directory, you must edit all Active Server Pages (.asp) files and adjust the
paths accordingly.

3. In the dialog box, enter the directory where you want to install Posting Acceptor.
This must be a virtual root of your Web server that has execute permissions. You
may select the default, or choose another path. Click OK. If you select another
directory, you must edit all .asp files and adjust the paths accordingly.

4. Click OK to finalize Posting Acceptor installation. Reboot if necessary.
5. Run your editor on your default home page. Insert the meta-tag found in the

postinfo.eg file into your default home page. Inside the meta-tag, modify the path
to your PostInfo file to suit your needs.

Note
It is not required that you add meta-tag information to any virtual root directory
other than the default home page of your Web server. Setup automatically adds that
line for you. You are required to edit the line to point to your PostInfo file if you do
not use the Posting Acceptor default. (/scripts/default.asp)

Configuring Posting Acceptor
An unlimited number of configurations are possible when setting up Posting
Acceptor. You have the option of either selecting the Posting Acceptor defaults or
editing the configuration information to fit your needs.

Elective configurations include selecting the TargetURL and PostingURL to which
users post, editing the Posting Acceptor sample pages, creating mapping modules,
using Posting Acceptor with Microsoft Content Replication System (CRS),
configuring for outstanding posts, and performing additional processing after a post
is received.

Selecting TargetURL and PostingURL
Depending on the content provider’s choice of client browser, you will modify
different Active Server Pages (.asp) files to specify your TargetURL and
PostingURL. For more information about interacting with content providers, see
“What to Tell Content Providers” in the Posting Acceptor Administration section of
this document.

· To select the TargetURL and PostingURL for WebPost API clients
· Modify the postinfo.asp file.

· To select the TargetURL and PostingURL for Netscape Navigator and other
HTTP clients
· Modify the uploadN.asp file.

Configuring with Sample Pages
To quickly get you up and running with Posting Acceptor, two sample pages are
provided in the product. One sample page, UploadX.asp, maps to users posting
content with the WebPost API, and the other sample page, uploadN.asp, maps to
users posting content with Netscape Navigator and other HTTP client browsers. For
more information about sample pages, see the section “Posting Acceptor
Components” in this document.

· To configure Posting Acceptor using the WebPost API and Netscape
Navigator/HTTP sample pages
· You may use both sample pages (uploadX.asp and uploadN.asp) as they currently

exist in Posting Acceptor, or edit each sample page source file to suit your needs.
With the HTTP sample page, you can also copy its forms directly into your
existing Web pages.

Creating Mapping Modules
The mapping module is a self-registering server that creates the appropriate entry in
the Posting Acceptor’s mapping modules registry during registration. You have the
option to accept the default mapping module or create other modules to suit your
needs. For more information about mapping modules, see “Mapping Modules” in the
“Background Functions” section of this document and sample code provided in the
WebPost Software Developers Kit (SDK).

A mapping module must be an in-process server that supports the IMapper interface
defined as follows:

const IID IID_IMapper = \
 {0x66BE7351,0x83A0,0x11D0,{0xA3,0x17,0x00,0xC0,0x4F,0xD7,0xCF,0xC5}};

This interface supports one additional method besides the standard ones:

HRESULT STDMETHODCALLTYPE GetLocation(
/* in */LPCTSTR szUrl, // Destination URL ("TargetURL"variable)
/* in */LPCTSTR szUsername, // User uploading files
/* out */ LPSTR szDestination, // Physical disk location buffer
/* in */DWORD dwDestinationLength); // Length of the buffer

(For the acceptor, the length of the buffer will always be MAX_PATH.)

Note
You can enable or disable a mapping module by setting its value in the registry to 1
(enable) or 0 (disable).

Using Posting Acceptor with Microsoft
Content
Replication System
A mapping module for Content Replication System (CRS) is installed automatically
when you install Posting Acceptor. If you have CRS installed on your system, you
can use it to replicate content posted to your server or to other servers.

· To use Posting Acceptor with CRS
· Set up an automatic project with a MapURL pointing to the content directory of

your project. With the TargetURL being a superset of the MapURL, posted
content is saved in the content directory via the CRS mapping module.

For example, if the TargetURL were http://server/content/html, the MapURL would
be http://server/content.

For more information on setting up automatic projects, see the CRS Operations
Guide.

Example Scenario Using CRS with Posting
Acceptor
The following information is a detailed example of how to use CRS with Posting
Acceptor.

In the example, the Internet service provider (ISP) wants users to post files to an
intermediate machine instead of posting directly to the live WWW servers. The ISP
has a posted file dropped into a directory that is running an Automatic Mode CRS
project. User posts are then replicated to the end WWW servers.

The intermediate system is called stage01.mynet.com and the WWW server is called
www.mynet.com. All systems are running Windows NT Server 4.0 and IIS 3.0.

On www.mynet.com, the ISP has configured the following IIS virtual directory:

/users maps to: d:\inetpub\users
On stage01.mynet.com, the content directory for dropping of files is e:\uploads.

User accounts on stage01.mynet.com must be in the CRS Users group.

CRS Setup
On stage01.mynet.com, create the following project:

crs addproj stage e:\uploads www.mynet.com /automatic /fastmode /mapurl
http://www.mynet.com

On www.mynet.com, create the following project entry:

crs addproj stage d:\inetpub\wwwroot\users

On stage01.mynet.com, start the crs project.

crs startrep stage

Posting Acceptor Setup
This example assumes that the posting acceptor sample has been installed on the
system.

On www.mynet.com, add the following line to the default page of root.

<META name="postinfo" content
http://stage01.mynet.com/scripts/postinfo.asp>

On stage01.mynet.com, create a postinfo.asp file with this content:

<% Response.Buffer = True %>
Version=1.5
[WebPost.PostWPP]
PostingURL="http://<%= Request.ServerVariables("SERVER_NAME")
%>/scripts/cpshost.dll?PUBLISH"
BaseURL="http://<%= Request.ServerVariables("SERVER_NAME") %>/users/<%=
Request.ServerVariables("LOGON_USER") %>"

Note
Stage01.mynet.com, turns off anonymous access so that the postinfo.asp file can
determine LOGON_USER.

Configuring for Outstanding Posts
To keep the system from being overwhelmed by excessive amounts of content posts,
for example, the results from a denial of service attack, Posting Acceptor has
implemented limitations on two posting values. The limitations are placed on the
total number of outstanding posts and on the maximum post duration, both of which
are adjustable in the registry. For more information, see “RegKey,” in the “Posting
Acceptor Administration” section of this document:

· MaximumOpenTransactions. This value controls maximum outstanding posts.
(Default is 200 posts.)

· OpenTransactionsTimeout. This value controls maximum outstanding post
duration. (Default is 600 seconds or five minutes.)

· To configure for outstanding posts
· In a registry editor, open up the registry key, HKLM\Software\Microsoft\

WebPost\Acceptors\CPSHost. Adjust the value limitations to suit your needs.

Specifying a Post-Processing URL
If you want to perform additional configuring after a post is received, Posting
Acceptor is able to call a secondary or “post-processing” URL with all the form data
except that of the posted files uploaded from the client. In place of the content is a
list of locations and sizes of the files posted to the server. You are able to edit the
PostInfo file if you wish to specify a post-processing URL. For more information
about the PostInfo file, see “PostInfo File,” in the “Background Functions” section of
this document.

· To specify a post-processing URL for WebPost API clients
· Modify the PostInfo file for WebPost.

· To specify a post-processing URL for Netscape Navigator and other HTTP
clients
· Modify the HTTP sample page (uploadN.asp) that contains the file upload form

information.

This section contains information necessary to maintain optimal functioning of
Posting Acceptor. This includes performance monitoring tables and other important
information you must provide for users to help them post Web content properly.

Performance Monitoring
Posting Acceptor exposes the following Performance Monitor counters, Windows
NT events, and registry keys to track the activity of multiple components and
operations.

Performance Monitor Counters
For performance monitoring on Windows NT, the Posting Acceptor exports one
object called “RFC 1867 Posting Acceptor.” This object contains the following
counters.

Name Explanation

Current Posts The number of current posts being processed by the acceptor.
Unresolved Posts The number of current posts awaiting commitment from the

clients.
Maximum Posts The maximum number of instantaneous posts over the lifetime of

the acceptor.
Total Posts
Received

The number of posts received up to this point.

Total Successful
Posts

The number of successful posts received up to this point.

Total Re-posts
Done

The number of reposts performed up to this point.

Total Files
Received

The number of files received up to this point.

Total Failed Posts The number of posts that failed so far.
Total Bytes
Received

The number of bytes received so far.

Successful
Posts/Sec

The rate of successful posts.

Re-posts/Sec The rate at which reposts are done.
Posts Received/Sec The rate at which posts are received.
Files Received/Sec The rate at which files are posted.
Failed Posts/Sec The rate at which posts are failing.
Bytes Received/Sec The rate at which bytes are received.

Windows NT Events

Posting Acceptor
Administration

Posting Acceptor logs a limited number of Windows NT events to notify you of
failed posting or reposting attempts. The logs detail the following information:

· Who attempted to post.
· What URL was specified.
· What error or warning was encountered.

Event ID 0x2201
Meaning Cannot move file to its final destination. Further processing is stopped.
Cause NA
Solution None

Event ID 0x2202
Meaning TargetURL is invalid.
Cause NA
Solution None

Event ID 0x2203
Meaning No valid files received.
Cause NA
Solution None

Event ID 0x2204
Meaning Cannot initialize OLE libraries.
Cause NA
Solution None

Event ID 0x2205
Meaning The query string is invalid.
Cause NA
Solution None

Event ID 0x2206
Meaning This is your server and not the specified server in the TargetURL.
Cause NA
Solution None

Event ID 0x2207
Meaning File posted successfully.
Cause NA
Solution None

Event ID 0x2208
Meaning Reposting to URL failed.
Cause NA
Solution None

Event ID 0x2209
Meaning Reposting to URL successful.
Cause NA
Solution None

Event ID 0x220A
Meaning Reposting to URL successful. No content came back from the server.
Cause NA
Solution None

Event ID 0x220B
Meaning Your transaction is either invalid or has expired.

Please try reposting your files again.
Cause NA
Solution None

Event ID 0x220C
Meaning Your files cannot be posted at this time.
Cause There are too many open transactions.
Solution Please try reposting your files again later.

Event ID 0x2281
Meaning Cannot move file to its final destination. Further processing is stopped.
Cause The user may not have adequate permissions on the machine to move

posted files to a final destination.
Solution Check the connected user’s permissions to see if they are allowed to

create directories and files in the specified destination.

Event ID 0x2282
Meaning TargetURL is invalid.
Cause The TargetURL cannot be resolved.
Solution Ask the user to specify the correct TargetURL. Also, confirm that you

have correctly setup the URL in the postinfo.asp and upload.asp files.

Event ID 0x2283
Meaning No valid files received.
Cause The post contained no files. The user is sending posts that do not

contain any valid (non-empty) files.
Solution None

Event ID 0x2284
Meaning Cannot initialize OLE libraries.
Cause Initialization of OLE failed. This may be a bad operating system

installation, or the connected user is not able to use OLE on this
system.

Solution None

Event ID 0x2285
Meaning The query string is invalid.
Cause The query string (part of the PostingURL) is invalid.
Solution Tell the user to specify the correct PostingURL. Also, confirm that you

have correctly setup the URL in postinfo.asp and upload?.asp files.

 ID 0x2286
Meaning This is your server and not the specified server in the targeted URL.
Cause Someone is attempting to post files to a target server that is not yours.
Solution Tell user to specify the correct TargetURL. Also, confirm that you

have correctly setup the URL in postinfo.asp and upload?.asp files.

 ID 0x2288
Meaning Reposting to specified repost URL failed.
Cause An attempted repost of the data to the Re-postURL failed.
Solution Check the Re-postURL for accuracy.

 ID 0x228A
Meaning Reposting to specified Re-postURL successful. No content came back

from the server.
Cause The repost was successful. No HTML content came back from the

server.
Solution May be intentional. If not intentional, check the Re-postURL for

accuracy.

 ID 0x228B
Meaning User specified transaction is either invalid or has expired.
Cause An invalid session (transaction) ID was sent by the client. The client

stayed disconnected for more than the allowed transaction timeout
specified in the registry.

Solution None

 ID 0x228C
Meaning There are too many open transactions to complete the user’s request.
Cause Too many users are trying to post simultaneously.
Solution If your server has adequate space, increase the appropriate value limit

in the registry.

 ID 0x22FC
Meaning Transaction ID has expired.
Cause The user never committed the transaction so it expired.
Solution None

 ID 0x22FD
Meaning Unknown error was encountered.
Cause An internal error occurred.
Solution None

 ID 0x22FE
Meaning Unknown error was encountered.
Cause NA
Solution None

Registry Keys
Microsoft Posting Acceptor contains a single registry key: HKLM\Software\
Microsoft\WebPost\Acceptors\CPSHost

The registry contains the two values that you can adjust to suit your needs. For more
information, see the section “Configuring Outstanding Posts,” in this document:

· OpenTransactionsTimeout. This controls maximum outstanding post duration.
(Default is 600 seconds or five minutes.)

· MaximumOpenTransactions: This controls maximum outstanding posts.
(Default is 200.)

What to Tell Content Providers Posting To
Your Server

Depending upon the type of browser used by your content providers, you must
furnish them with certain information to make sure that their files are successfully
posted.

Posting Information for WebPost Clients
If a content provider is publishing to your server with the WebPost API, you must
convey the name of the server to which content will be posted. If you do not specify
your PostInfo file, you must also tell them the PostingURL and TargetURL.
WebPost API performs a GET against the virtual root of the TargetURL server to
determine the location of the PostInfo file on the server. The WebPost API then
retrieves the PostInfo file and parses out the PostingURL and TargetURL if they
were specified earlier. If either the PostingURL or the TargetURL were not
specified, the content provider must enter that information manually in Web
Publishing Wizard.

Posting Information for Netscape
Navigator and Other HTTP Clients
If a user is publishing to your hosting server with Netscape Navigator or another
HTTP posting method, content is posted through the form that is embedded in the
uploadN.asp sample page and is provided to the user. The PostingURL is specified

by the action field in that form and the TargetURL is specified by the “TargetURL”
form variable.

Note
This procedure is optional. You may accept the default,
http://yourserver/users/username, or select another URL.

This section provides references to assist with any questions you may have about
installing, configuring, and using Posting Acceptor.

Windows NT Users
If you are having problems after checking for possible configuration errors, client-
side errors, and any Windows NT errors in the events log, please post e-mail to the
Posting Acceptor newsgroup:

news://msnews-gw/microsoft.public.site.posting-acceptor

Windows 95 Users
If you are having problems after checking for possible configuration errors and
client-side errors, please post e-mail to the Posting Acceptor newsgroup:

news://msnews-gw/microsoft.public.site.posting-acceptor

Troubleshooting

Glossary
An experimental protocol proposed for the Internet community. It is a suggested
extension to HTML that would allow content providers to express file upload
requests uniformly, and a MIME-compatible representation for file upload responses.

A self-registering server that creates the appropriate entry in the Posting Acceptor’s
mapping modules registry key during registration.

The PostInfo file is used by Web Post API and the ActiveX Upload control to
automatically set up a client to publish content to your server. A sample PostInfo file
(postinfo.asp) is provided in Posting Acceptor.

The following table provides additional details for the parameters in the sample
PostInfo file.

Value Description

Version Must be 1.5 to indicate compatibility with this release.
Provider’s GUID Globally unique identifier.
PostingURL URL to post to.
TargetURL Target URL for the uploaded content.
Default page Name of default page used on the server. For example, the IIS

default is “default.htm.”

PostingURL is used by content providers to post files. It is the full URL path to the
Posting Acceptor, and appears as the following default unless otherwise specified:

http:\\your_server_name\path-to-PostingAcceptor\?PUBLISH

Post-processingURL is part of the PostingURL. It can be created by appending the
PostingURL to read:

http:\\your_server_name\path-to-PostingAcceptor\?PUBLISH?http:\\Post-
processingURL

The TargetURL is the final target for a content provider’s uploaded files, as well as
the URL they use to retrieve content.

The client side of the WebPost API contains the flupl.cab, Web Publishing Wizard,
and any other application that uses ActiveX controls.

HTTP multipart/form-data method (aka RFC 1867) Mapping module PostInfo filePostingURLPost-ProcessingURL TargetURLWebPost API-client side

	What Posting Acceptor Does
	How It Works
	Conventions

	Posting Acceptor Components
	Background Functions
	Authenticating Publishers
	Processing After Receiving Posts
	PostInfo File
	Repost Failures
	Mapping Modules

	Hardware and Software Minimum Requirements
	Installing Posting Acceptor
	Configuring Posting Acceptor
	Selecting TargetURL and PostingURL
	Configuring with Sample Pages
	Creating Mapping Modules
	Using Posting Acceptor with Microsoft Content Replication System
	Example Scenario Using CRS with Posting Acceptor
	CRS Setup
	Posting Acceptor Setup

	Configuring for Outstanding Posts
	Specifying a Post-Processing URL

	Performance Monitoring
	Windows NT Events
	Registry Keys

	What to Tell Content Providers Posting To Your Server
	Posting Information for WebPost Clients
	Posting Information for Netscape Navigator and Other HTTP Clients

	Windows NT Users
	Windows 95 Users

