

Microsoft Transaction Server Readme
Welcome to Microsoft Transaction Server (MTS), a powerful environment that makes it easier to
develop and deploy high-performance, scalable, and robust enterprise, Internet, and intranet
applications. Microsoft Transaction Server provides an application programming model and a run-time
infrastructure for developing and deploying distributed, component-based applications.

This Readme file lists late-breaking feature information not contained in the regular documentation,
known limitations of this release of MTS, and information on reporting bugs or problems with the
product.

Late-Breaking Information and Known Limitatations

Reporting Problems and Bugs

Late-Breaking Information and Known Limitations
The following sections contain late-breaking information that is not covered in the regular
documentation, as well as known bugs and limitations.

Setting System Package Identity
When installing MTS, set the System package identity before creating any new packages as follows:

1 Create a new local Windows NT group named “MTS Administrators” and a new local user named
“MTS Administrator”.

2 Add the “MTS Administrator” user to the “MTS Administrators” and "Administrators" groups.
3 Set the identity of the System package to “MTS Administrator”.
4 Shut down the System package so that it will be restarted with the new identity.

User Rights for MTS Packages
Make sure the user account for the identities of the System package and other MTS packages have
the Windows NT "Log on as a service" user right. You can verify this by using the Windows NT User
Manager:

1 From the Policies menu, choose User Rights.
2 Click Show Advanced User Rights.

Oracle Client Software Requirements for Use with MTS
Your Microsoft Transaction Server applications can access an Oracle database located on the same
system as Microsoft Transaction Server. In this case, ensure that you install all of the software
described in the Microsoft Transaction Server Help file in the section “Configuring Microsoft
Transaction Server to Access Oracle."

Your Microsoft Transaction Server application can also access an Oracle database located on a
remote Windows NT or UNIX system. To do this you must install the proper versions of Oracle’s client
software on the system containing your Microsoft Transaction Server components. Your Oracle client
software must be equal to or greater than the following versions:

Component Version
Oracle SQL*Net 2.3.3
Oracle OCIW32.DLL 1, 0, 0, 5
Oracle SQLLIB18.DLL 1.8.3.0.1
Oracle XA73.LIB 7.3.3.2.0

Using Oracle Integrated Security with MTS
Oracle databases have integrated security that uses Windows NT authentication to validate database
users. This allows a user to log on to Oracle without supplying a separate user name or password.
Users can maintain one user name and password for both Windows NT and Oracle.

If your MTS components always supply a user name and password when connecting to Oracle
databases, then you are not using integrated security. This is true whether your applications specify
the user name and password directly or indirectly through an ODBC DSN. In either event, you are not
using integrated security and can ignore this step.

If you use integrated security, you must configure MS DTC to run under a user name and password
authorized to connect to your Oracle database. This is required because during database recovery,
MS DTC opens your Oracle database to report the outcome of in-doubt transactions. See "Changing
the User Account Under Which Microsoft Distributed Transaction Coordinator Runs" below. Use the

Oracle security administration tools to ensure that the user name you specify is authorized to open
your Oracle database.

For more information on Oracle's integrated Windows NT security facilities, consult your Oracle
documentation.

Changing the User Account Under Which Microsoft Distributed Transaction
Coordinator Runs
If you configure the Microsoft Distributed Transaction Coordinator (DTC) to run under an account
other than the System account, you must specify an account that is a member of the Administrators
group. If not, MS DTC may fail to start, and you will see the following message in the Windows NT
event log.
XATM log object failed to set log encryption key
You can configure the user ID for MS DTC as follows:

1 Stop MS DTC.
2 From the Start menu select Settings and then Control Panel.
3 Double-click the Services icon in the control panel.
4 Double click on MS DTC in the Service list box.
5 Select Log On As and specify a user name and password.
6 Restart MS DTC.

Configuring Oracle to Support a Large Number of Connections
If you want to create more than a few dozen connections to an Oracle database, you must configure
the Oracle server to support additional database connections. If you do not do this, you may
experience one or more of the following errors:

· Failures on SQLConnect calls.
· Failures to enlist on the calling object's transaction, which may result in any of the following errors

in the Oracle trace file:
· Too many sessions

· TNS server failed to locate the server name

· Too many distributed transactions
· Timeouts while waiting for database locks. This is likely to occur if the configured number of locks

is insufficient for the number of concurrently active transactions.
· Record collision due to locks held by in-doubt transactions.

If you experience any of these problems, consider increasing the following Oracle server configuration
parameters:

· Sessions
· distributed_lock_timeout
· distributed_transactions
· dml_locks
· max_transaction_branches
· open_cursors
· Processes
· Queuesize

Sessions value

The Sessions configuration value should typically be three times the total number of database
connections that you expect your applications to make. This is because the Oracle system typically
opens more than one session (often as many as three sessions) for each transactional database
connection that your application opens.

Queuesize value
The Oracle listener process sometimes falls behind and rejects database open requests if its
queuesize is not adequate. Connection requests that come in too quickly for the Oracle listener to
handle and that exceed the listener’s queue (as determined by the QUEUESIZE parameter in
LISTENER.ORA, TNSNET.ORA, and NAMES.ORA), are returned with an ECONNREFUSED error. A
client that encounters this error returns the message "ORA-12541: No Listener" and the client log or
trace files will show the ECONREFUSED message.

To correct this problem:

1 Stop the Oracle listener on the system containing the Oracle database server.

2 Increase the QUEUESIZE parameter in the LISTENER.ORA, TNSNET.ORA, or NAMES.ORA files
on the Oracle database server system. Choose the queue size based on the number of
simultaneous, or nearly simultaneous, connection requests you anticipate.

For example, to accommodate 100 requests change the LISTENER.ORA file as follows:
QUEUESIZE = 100

3 Restart the Oracle listener.

MTS Packages on MSCS Clusters Cannot Access XA-Compliant Databases
MTS packages on MSCS clusters cannot access an XA-compliant database (such as Oracle).

Security and Communication Between Remote MS DTC Computers
If your application performs transactions spanning two or more computers, you must ensure that the
MS DTCs on these computers are configured to communicate with each other. MS DTC runs under
the identity of the System account by default. The MS DTC on one computer can communicate with
the MS DTC on another computer, only if the Guest accounts on both computers are enabled. If you
disable the Guest account on either machine or in the Windows NT domain to which they belong, you
must configure MS DTC to run under some other user name that can communicate with the remote
computer. See "Changing the User Account Under Which Microsoft Distributed Transaction
Coordinator Runs" above.

MS DTC with MSCS Requires QFE
Customers who use MS DTC in an MSCS environment should install Windows NT QFE Q116844.
This QFE fixes a Remote Procedure Call (RPC) problem that can cause an MS DTC client to hang
when attempting to connect to MS DTC on a clustered server.

Remote Server Name Must Specify a Virtual Server on MSCS Servers
Clustered servers must set the Remote Server Name property to a virtual server name using the
MTS Explorer. This enables remote clients to access MTS components within the cluster, and, in the
event of failure, ensures that clients are referencing the cluster, not a specific node within that cluster.

MTS Package Identities Must Be in Administrator Group on MSCS Clusters
For MTS packages on MSCS clusters, the user account associated with the package identity must be
a system administrator or must have Full Control cluster access permissions (as set in cluadmin). If
you do not run the package under the identity of a system administrator, MTS will be unable to
connect to MS DTC.

MTS on MSCS Clusters Requires Same Windows NT Directory Path on All Nodes
MTS requires that both the Windows NT directory have the same path on all nodes within an MSCS
cluster (for example, c:\winnt).

Shut Down MSCS Cluster Resources Before Installing MTS
You must shut down all MSCS cluster resources (such as SQL Server) that are affected by MTS
setup prior to running the MTS setup program.

Installing SQL Server 6.5 After Installing MTS
You can install SQL Server 6.5 after installing MTS. It is recommended that you install SQL Server 6.5
before installing MTS. If you install SQL Server 6.5 after installing MTS, MTS Setup will attempt to
ensure that MS DTC works properly.

Run the INSTCAT.SQL Script
As a convenience, MTS includes the INSTCAT.SQL script. This script updates the catalog stored
procedures for the SQL Server ODBC driver. If you have not done so already, run this script using the
SQL Server isql utility.

Documentation Errata on Security
Security authorization is not enabled by default.

You cannot set a package's identity to a group.

When setting package identity, MTS validates the password that you enter. However, if you change
the password for the account without updating the password in the MTS Explorer, the package cannot
run.

MS DTC Log File Can Be Compressed
The MS DTC log file can now be located in a compressed directory. However, for optimum
performance, do not compress the Microsoft DTC log file or store it in a compressed directory. MS
DTC must decompress the log file before it can be used.

Monitoring MTS Transactions on Windows 95
The documentation for starting and stopping MS DTC on Microsoft Windows 95 should read as
follows:

By default, the Microsoft Distributed Transaction Coordinator (MS DTC) is configured to start
automatically when a Windows NT or Windows 95 system starts. To prevent MS DTC from
automatically starting after rebooting a Windows 95 computer, use the registry editor to find the
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices registry
key and then delete the value entry named MSDTC. If you want to enable automatic startup of MS
DTC again, use the registry editor to create a value entry named MSDTC with the string value
"msdtcw -start" under the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\RunServices registry key.

Note that the name of the service is "msdtcw", not "msdtc", and that there is a space before the
hyphen.

No Remote Administration of MTS 2.0 Computers from MTS 1.x Computers
You cannot remotely administer an MTS 2.0 installation from a computer running a previous version
of MTS. Attempting to do so will return an error code or cause the MTS Explorer to terminate
unexpectedly.

No Individual Package Shutdown when Remotely Administering an MTS 1.x Computer
Individual package shutdown is not supported when remotely administering an MTS 1.x computer.

Visual Basic 5.0 Shutdown with MTS 2.0
After installing MTS 2.0, you may see an Access Violation when shutting down Microsoft Visual Basic
5.0. This is a known Visual Basic 5.0 bug that can be fixed by installing Visual Studio Service Pack 2
from http://www.microsoft.com/vstudio. Refer to Knowledge Base article Q167213 for more
information about this problem.

Multiple Server Processes on Windows 95
There is a known problem that occurs when, if an MTS server process terminates unexpectedly
(because of a failfast, an assert, or an access violation), subsequent attempts to restart the
application create multiple MTS processes. (The correct behavior should be only one MTS process
per package.) In case of unexpected server process termination, you must reboot your Windows 95
computer.

Deadlocks on Windows 95 When Using Named Pipes
There is a known problem that may cause deadlocks when using more than approximately 40 Named
Pipe connections from a Windows 95 client to MS Distributed Transaction Coordinator (DTC). To fix
this problem, change the protocol between the ODBC driver and SQL Server to TCP/IP.

Components and TreatAs and AutoTreatAs Registry Keys
COM allows one server to emulate another using the TreatAs or AutoTreatAs registry keys.
Suppose a client creates a component of a given CLSID using CoCreateInstance. If the TreatAs or
AutoTreatAs key is present under that CLSID in the registry, COM will instead create the component
indicated by this key. This effectively routes client requests to the emulating server. (The same routing
is possible using the ProgID if the client refers to its servers by ProgID instead of CLSID.)

Components being emulated using TreatAs or AutoTreatAs are not valid MTS components and
cannot be imported. If the emulation is to be added after the component is imported, the component
must be deleted from the MTS catalog, then replaced with the emulating component.

Mixed Threading Models in a Server Process
Within a server process, objects in the same activity must be registered with compatible threading
models. The following combinations are valid:

· Any combination of apartment, both, or free
· Single-threaded only

Note that this means that single-threaded MTS components cannot be created by an Active Server
Page running in-process with IIS or in-process with an IIS application using process isolation.

Do Not Create Non-MTS Local Servers Using CreateInstance
Creating non-MTS local servers using the context object's CreateInstance method is strongly
discouraged. Such servers will not scale well and may result in additional server instances that are
not shut down by MTS. If you need to create a non-MTS local server, use CoCreateInstance.

Do not use COM surrogates within MTS. Instead, load in-process servers into MTS server processes.

MTS Security Does Not Work With IIS Impersonation
MTS role-based package access control does not work properly when packages are front-ended by
mutliplexers that impersonate multiple clients (for example, Internet Information Server). MTS
packages used in these environments should be configured with security disabled.

This can be fixed by installing Windows NT QFE Q147222. After installing this QFE, role-based
security will work properly with IIS.

When you create secure IIS applications that use process isolation, IIS creates an MTS package that
is set to run as IWAM_<computer name>. If you wish to change the identity of these packages, you
should also add the new package identity to the "MTS Trusted Impersonators" group or security will
not work properly in other out-of-process MTS components called by your package. If this is not done,
the caller will appear to be IWAM_<computer name> rather than the actual client of IIS.

Using ErrorInfo with ADO
ADO erases any information that you might have put in the ErrorInfo object. There is a code work-
around for this problem that needs to be implemented in your error handler.

For Visual Basic, the code is similar to the following:
ErrorHandler:
 ' cleanup
 If Not adoRS Is Nothing Then
 Set adoRS = Nothing
 End If
 If Not adoConn Is Nothing Then
 Set adoConn = Nothing
 End If

 Err.Raise Err.Number, "Bank.Accout.Post", Err.Description

Exit Function
For Visual C++, the code is similar to the following:
//
// ErrorInfo is saved here because the following
// ADO cleanup code may clear it.
//
IErrorInfo * pErrorInfo = NULL;
GetErrorInfo(NULL, &pErrorInfo);

if (adoRsBalance) adoRsBalance->Release();
if (adoCoConnection) adoCoConnection->Release();

AtlReportError(CLSID_CAccount, pErrMsg, IID_IAccount, hr);

//
// put the error back in TLS
//
SetErrorInfo(NULL, pErrorInfo);
For Visual J++, the code is similar to the following:
if (adoRsBalance != null) {

if (adoRsBalance.getState() == ObjectStateEnum.adStateOpen)
adoRsBalance.Close();

ComLib.release (adoRsBalance);
}

if (adoConn != null) {
if (adoConn.getState() == ObjectStateEnum.adStateOpen)

adoConn.Close();
ComLib.release (adoConn);

}
Note In Java you must explicitly close recordsets and/or connections as well as explicitly release
the ADO objects.

No Sample Bank ASP Client
The documentation incorrectly states that an Active Server Page (ASP) version of the Sample Bank
client is provided.

Maximum Number of Methods on MTS 2.0 Components Is 1024
MTS 1.0 had a limit of 100 methods per component. In MTS 2.0 this limit is now 1024 methods.

Components Using RDO 2.0 on Multiprocessor Computers May Experience Access
Violations
Components that use RDO 2.0 and are accessed concurrently by multiple clients may experience
access violations. This has been observed on servers that have multiple processors. This problem
has not been observed for components that use ADO.

Location of Visual Basic Script Samples
The Visual Basic Scripting (VBScript) samples for automating MTS administration are located in \
Program Files\Mts\Samples, not \Program Files\Mtx\Samples\WSH as stated in the documentation.

Using the Microsoft Transaction Server API to Develop Applications

Developing Components with Microsoft Visual C++

MFC Extension DLLs
MTS components should not be built as MFC Extension DLLs because such DLLs can be loaded only
by MFC applications. A COM component, and therefore an MTS component, should be built so that it
can be loaded into any process, regardless of the type of application that started the process.

For more information on MFC Extension DLLs, see the Microsoft Visual C++ Programmer’s Guide.

Developing Components with Microsoft Visual Basic

ObjectControl
· The ObjectControl interface is the Automation counterpart of the C++ IObjectControl interface.

The ObjectControl interface is not supported unless you have installed Microsoft Windows NT 4.0
Service Pack version 2 or later.

· The current Microsoft Transaction Server run-time implementation will call the CanBePooled
method of a Transaction Server object, as specified in the Transaction Server online
documentation. However, the return value is currently ignored. Returning TRUE does not stop
Transaction Server from releasing your object.

Known Problem with Mtx.exe Shutdown When Using Visual Basic 4.0 Components
When an Mtx.exe process running Visual Basic 4.0 components is "Shutdown because idle for x
minutes", there is a known problem that results in a Read Access Violation. Currently there is no
known solution to this problem. It is thought that if more than two Visual Basic 4.0 components are
used in a process it is more likely to happen. One workaround is to set your package to "Leave
running when idle". This is only a problem when using components built with Visual Basic 4.0 -- no
such problem exists with Visual Basic 5.0.

Avoiding Visual Basic 4.0/RDO Deadlocks
If your server component uses RDO, never let an rdoConnection with an active rdoResultset fall
out of scope or a deadlock may result. You must manually close the rdoResultset or rdoConnection
to avoid the deadlock. The following sequence produces a deadlock:

1 Create an instance of the server component. Call a method which creates rdoConnection and
then rdoResultset. You may fetch from, but do not exhaust or close the rdoResultset.

2 Release this instance. (As this connection and resultset go out of scope, the ODBC calls required
are not immediately made. Instead, a message is posted to a hidden window to do the
SQLFreeStmt+SQLDisconnect+SQLFreeConnect).

3 Create a second instance of the server component. Create an rdoConnection and attempt to
update a row which was included in the resultset from Step 1 above. This is now a deadlock
because the locks held for the resultset created in Step 1 have not been released. And the
message pump which will process the message posted in Step 2 above will now never have a
chance to run.

The deadlock is avoided by manually closing the resultset (or connection) at the end of Step 1, which
immediately makes the ODBC calls to close the statement (and connection). The root of the problem
is the delay introduced by the message posted to the hidden window to do the ODBC closes.

Maintaining the MTS Catalog when Developing Components with Visual Basic
Whenever you recompile an OLE DLL project in Visual Basic 4.0, Visual Basic rewrites all of the
registry entries for all of the components (Visual Basic classes) that live in that DLL. Additionally,
Visual Basic may generate new GUIDs (depending on your project configuration) to identify the
components in that DLL. This means that your MTS components are no longer properly registered in
the MTS catalog.

There are two solutions to this problem. First, there is a Refresh button in the Transaction Server
Explorer, as well as the Refresh All Components command on the Tools menu. If you use this
command Microsoft Transaction Server will repair all inconsistencies in registry entries of components
currently in the right pane of the Explorer.

If you install the development version of Microsoft Transaction Server, check the VB Addin option to
enable a feature that will automatically refresh your components after recompiling them. The next time
you run Visual Basic 4.0, the add-in will be automatically installed in your Visual Basic IDE. You can
also turn the feature on and off on a per-project basis by selecting or deselecting the MTxServer
RegRefresh | AutoRefresh after compile command on the Visual Basic Add-Ins menu. If you
decide you want to refresh all of your Microsoft Transaction Server components at any given time,
you can use the MTxServer RegRefresh | Refresh all components now command on the Add-Ins
menu.

Important The Visual Basic Add-in has been updated to work with both Visual Basic versions 4.0
and 5.0. Once installed, it will automatically refresh the Transaction Server catalog with the changes
made during each compile. The add-in menu option to enable and disable the automatic refresh is no
longer supported.
Using the add-in will properly refresh the MTS catalog, even after Visual Basic compilations that
generate new component GUIDs. Note also that the Compatible OLE Server setting in the Visual
Basic Project Options dialog box can be used to stop Visual Basic from generating new component
GUIDs.

Refreshing the MTS catalog depends on you not changing the ProgIDs of your components. In Visual
Basic 4.0, a component’s ProgID is formed by the following concatenation: project name.class name.
If you change either of these items, you will have to reinstall your component(s) in the MTS Explorer.

Building your component in Visual Basic 4.0 without selecting the Compatible OLE Server option
replaces your old CLSID and IID on each compile. This has disadvantages when developing an MTS
component, even with the Visual Basic add-in enabled.

· Roles you assigned to the interface using the MTS Explorer are lost, since the interface IID is
obsolete.

· Proxies and registry configurations you distributed to remote machines no longer refer to your
component and must all be updated.

· Packages you exported which contain your component require re-exporting since the package
definition file GUIDs are now out of sync.

Reporting Problems and Bugs
When reporting a bug, please include the following information in your bug report:

· The error number and description.
· Any relevant Windows NT event-log messages. (Microsoft Transaction Server reports errors in the

Windows NT event log. If an error occurs, please check the Windows NT event log).
· The configuration for your client computer, if applicable.
· The configuration for your server computer.
· The components that are causing the problem.
· The language that you used to develop your component (Microsoft Visual Basic, Microsoft Visual

C++, and so on).
· The type of interfaces your component(s) implements. For example, custom interfaces, dual

interface, or dispinterface.
· The ODBC version, if applicable.
· The name and version of the resource manager.
· Any third-party components, resource dispensers, or resource managers that are causing

problems.
· If possible, the line or lines of code where the problem occurs.

