
Legal Information
Microsoft Message Queue Server
Programmer's Reference
Information in this document is subject to change without notice. This document is provided for
informational purposes only and Microsoft Corporation makes no warranties, either express or implied,
in this document. The entire risk of the use or the results of the use of this document remains with the
user. The names of companies, products, people, characters, and/or data mentioned herein are
fictitious and are in no way intended to represent any real individual, company, product, or event,
unless otherwise noted. Complying with all applicable copyright laws is the responsibility of the user.
No part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Microsoft Corporation. If,
however, your only means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these
patents, trademarks, copyrights, or other intellectual property.

© 1995 -1997 Microsoft Corporation. All rights reserved.

Microsoft, JScript, MS, Visual Basic, Transaction Server, Windows, Win32, and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

Finding What You Need
The Microsoft® Message Queue Server (MSMQ) Programmer's Reference is a set of online documents
that accompany Microsoft Message Queue Server (MSMQ). This software development kit is available
through the Microsoft® Platform SDK, as well as on the disks shipped with MSMQ.

For a description of the content of different sections, see:

· Using MSMQ
· MSMQ Guide
· MSMQ Reference

What's in "Using MSMQ"
"Using MSMQ" contains a work-flow listing of code examples needed to perform the basic functions
provided by MSMQ. Use this section to find examples and information about how to complete specific
tasks.

Note For information on a specific MSMQ function, property, structure, and ActiveX component,
refer to the "MSMQ Reference" section.

The following topics are in "Using MSMQ:"

Using MSMQ API Functions
· Creating a Queue
· Locating a Public Queue
· Opening a Queue
· Closing a Queue
· Deleting a Queue
· Sending Messages To a Queue
· Sending Messages That Request Acknowledgments
· Sending Messages That Request a Response
· Sending Private Messages
· Sending Messages Using an Internal Transaction
· Sending Messages Using an MS DTC External Transaction
· Reading Messages Synchronously
· Reading Messages Asynchronously
· Reading Messages Using a Cursor
· Reading Messages in a Dead Letter Queue
· Reading Messages in a Machine Journal
· Reading Messages in a Queue Journal
· Returning an Acknowledgment Message by a Connector Application
· Retrieving a Queue's Properties Using API Functions
· Setting a Queue's Properties Using API Functions
· Authenticating Messages Using API Functions
· Setting Access Control Security for a Queue
· Using Transactions

Using ActiveX Components
· Creating a Queue
· Locating a Public Queue
· Opening a Queue
· Sending Messages To a Queue
· Sending Messages that Request Acknowledgments
· Sending Messages that Request a Response
· Sending Private Messages
· Reading Messages In a Queue
· Retrieving a Queue's Properties Using ActiveX Components

· Setting a Queue's Properties Using ActiveX Components

What's in "MSMQ Guide"
Use this section to get conceptual information about the different queues that can be used, the different
messages that are available, how queues and messages are defined by properties (see object
properties), in addition to information on other MSMQ services.

The following topics are in the "MSMQ Guide:"

· Introduction to MSMQ
· MSMQ Objects
· MSMQ Queues
· MSMQ Messages
· MSMQ Computers
· MSMQ Object Properties
· MSMQ Transactions
· Error Reporting
· MSMQ Offline Support
· MSMQ Security Services
· MSMQ Connector Server
· MSMQ Mail Services
· MSMQ ActiveX Support

What's in "MSMQ Reference"
This reference describes the functions, properties, structures, error and warning codes, and ActiveX
components provided by the Microsoft Message Queue Server (MSMQ) SDK.

Note For code examples of basic MSMQ functions such as creating a queue, sending message,
receiving messages, and so on, refer to "Using MSMQ." For background information on MSMQ
concepts, refer to "MSMQ Guide."

The following topics are in the "MSMQ Reference:"

· MSMQ Functions
· MSMQ Mail Functions
· MSMQ Error and Information Codes
· MSMQ Properties
· MSMQ Structures
· MSMQ Mail Structures
· MSMQ ActiveX Components
· MSMQ Mail ActiveX Components

Finding a Function, Property, Structure,
or ActiveX Component
Information on MSMQ SDK and MSMQ Mail SDK functions, properties, structures, and ActiveX
components can be found in several places. The following information provides one way to get
information on these topics. Once you become familiar with the Microsoft® Message Queue Server
Programmer's Reference, you will develop your own methods to quickly find answers to your
questions.

First, look in "MSMQ Reference" to find information on the specific item. A reference page for each item
is included in this section of the software development kit.

From the reference page, use the jumps to look at examples in "Using MSMQ," or look at background
information on the MSMQ concepts in the "MSMQ Guide."

For example, to find information on MQCreateQueue you could first go to MQCreateQueue in the
reference section, then go to Creating a Queue for an example, or go to MSMQ Queues for
background information on queues.

Finding Examples
To find an example you can go directly to "Using MSMQ," or you can go to any topic in "MSMQ
Reference" and use the jumps provided there. In addition to the examples in "Using MSMQ," several
smaller examples are provided for the ActiveX properties, methods, and events on their individual
reference pages.

Using the MSMQ API Functions
This section contains complete examples of the basic tasks your application may need to perform.

Note For information on a specific MSMQ function, property, or structure, refer to its reference
page in the "MSMQ Reference."

The following tasks are described:

· Creating a Queue
· Locating a Public Queue
· Opening a Queue
· Closing a Queue
· Deleting a Queue
· Sending Messages to a Queue
· Sending Messages that Request Acknowledgments
· Sending Messages that Request a Response
· Sending Private Messages
· Sending Messages Using an Internal Transaction
· Sending Messages Using an MS DTC External Transaction
· Reading Messages Synchronously
· Reading Messages Asynchronously
· Reading Messages Using a Cursor
· Reading Messages in a Dead Letter Queue
· Reading Messages in a Machine Journal
· Reading Messages in a Queue Journal
· Returning an Acknowledgment Message by a Connector Application
· Retrieving a Queue's Properties Using API Functions
· Setting a Queue's Properties Using API Functions
· Authenticating Messages Using API Functions
· Setting Access Control Security for a Queue
· Using Transactions

Creating a Queue
All queues, both public and private, are created by calling MQCreateQueue. For a description of public
and private queues, see Message Queues.

The only property required to create a queue is PROPID_Q_PATHNAME. This property tells MSMQ
where to store the queue's messages, if the queue is public or private, and the name of the queue.
Once the queue is created, the format name returned in the lpwcsFormatName parameter is used to
open the queue. For a description of MSMQ pathnames and queue format names, see Referencing a
Queue.

To create a queue
1. Determine which computer will hold the messages for the queue. The computer's machine name is

part of the queue's MSMQ pathname (PROPID_Q_PATHNAME). For private queues, the local
computer must be specified.

2. Determine whether the queue should be public or private. This tells MSMQ where to register the
queue: public queues are registered in the MQIS and private queues are registered on the local
machine (private queues can only be registered on the local machine). This information is part of the
queue's MSMQ pathname (PROPID_Q_PATHNAME).

3. Determine the name for the queue. The queue's name is part of the queue's MSMQ pathname
(PROPID_Q_PATHNAME).
Note The MSMQ pathname must be unique in the MSMQ enterprise. This applies to public
and private queues.

4. Determine what queue properties must be set. If a queue property is not specified when calling
MQCreateQueue, its default value is used. For a complete list of the queue properties that can be
set when a queue is created, see the following Queue Properties section.

5. Specify the MQQUEUEPROPS structure.
MQQUEUEPROPS QueueProps;
PROPVARIANT aVariant[2];
QUEUEPROPID aPropId[2];
DWORD PropIdCount = 0;
HRESULT hr;
DWORD dwFormatNameBufferLength = 256;
WCHAR szFormatNameBuffer[256];
PSECURITY_DESCRIPTOR pSecurityDescriptor;

6. Fill in the MQQUEUEPROPS structure. PROPID_Q_PATHNAME is required; it indicates if the
queue is public or private.
//Set the PROPID_Q_PATHNAME property.
aPropId[PropIdCount] = PROPID_Q_PATHNAME;        //PropId
aVariant[PropIdCount].vt = VT_LPWSTR;                //Type
aVariant[PropIdCount].pwszVal = L".\\MyPublicQueue";
       
PropIdCount++;
       
//Set the PROPID_Q_LABEL property.
aPropId[PropIdCount] = PROPID_Q_LABEL;        //PropId
aVariant[PropIdCount].vt = VT_LPWSTR;          //Type
aVariant[PropIdCount].pwszVal = L"MyPublicQueue";
       
PropIdCount++;
       
       

//Set the MQQUEUEPROPS structure.
QueueProps.cProp = PropIdCount;                      //No of properties
QueueProps.aPropID = aPropId;                          //Ids of properties
QueueProps.aPropVar = aVariant;                      //Values of properties
QueueProps.aStatus = NULL;                                //No error reports
       

7. Set the queue's security descriptor. The following line of code specifies the default security
descriptor.
pSecurityDescriptor = NULL;
       

8. Call MQCreateQueue.
hr = MQCreateQueue(
          pSecurityDescriptor,                        //Security
          &QueueProps,  //Queue properties
          szFormatNameBuffer,                          //Output: Format Name
          &dwFormatNameBufferLength              //Output: Format Name len
         );

Examples
The following two examples show the code used to specify the MSMQ pathname and label for a public
queue and a private queue, plus a call to MQCreateQueue to create the queue.

Note In these examples, a "." is used to indicate the local machine in PROPID_Q_PATHNAME. For
MSMQ servers and independent clients, the local machine is the local computer. However, for
MSMQ-dependent clients the local machine is the client's MSMQ server.

For a public queue

        ////////////////////////////
        //    Define the MQQUEUEPROPS
        //    structure.
        ////////////////////////////
       
        MQQUEUEPROPS QueueProps;
        PROPVARIANT aVariant[2];
        QUEUEPROPID aPropId[2];
        DWORD PropIdCount = 0;
        HRESULT hr;
        DWORD dwFormatNameBufferLength = 256;
        TCHAR szFormatNameBuffer[256];
        PSECURITY_DESCRIPTOR pSecurityDescriptor;
       
       
        //
        // Specify the queue properties. Add
        // additional properties as needed
        //
       
        //Set the PROPID_Q_PATHNAME property.
        aPropId[PropIdCount] = PROPID_Q_PATHNAME;        //PropId
        aVariant[PropIdCount].vt = VT_LPWSTR;                //Type
        aVariant[PropIdCount].pwszVal = L".\\MyPublicQueue";
       

        PropIdCount++;
       
        //Set the PROPID_Q_LABEL property.
        aPropId[PropIdCount] = PROPID_Q_LABEL;        //PropId
        aVariant[PropIdCount].vt = VT_LPWSTR;          //Type
        aVariant[PropIdCount].pwszVal = L"MyPublicQueue";
       
        PropIdCount++;
       
       
        //Set the MQQUEUEPROPS structure.
        QueueProps.cProp = PropIdCount;                      //No of properties
        QueueProps.aPropID = aPropId;                          //Ids of properties
        QueueProps.aPropVar = aVariant;                      //Values of properties
        QueueProps.aStatus = NULL;                                //No error reports
       
        //Set security to default security descriptor
        pSecurityDescriptor = NULL;
       
       
        ////////////////////////////
        //Create the queue.
        ////////////////////////////
        hr = MQCreateQueue(
                  pSecurityDescriptor,                        //Security
                  &QueueProps,  //Queue properties
                  szFormatNameBuffer,                          //Output: Format Name
                  &dwFormatNameBufferLength              //Output: Format Name len
                 );

For a private queue

        MQQUEUEPROPS QueueProps;
        PROPVARIANT aVariant[2];
        QUEUEPROPID aPropId[2];
        DWORD PropIdCount = 0;
        HRESULT hr;
        DWORD dwFormatNameBufferLength = 256;
        WCHAR szFormatNameBuffer[256];
        PSECURITY_DESCRIPTOR pSecurityDescriptor;
       
       
        //
        // Specify the queue properties. Add
        // additional properties as needed
        //
       
        //Set the PROPID_Q_PATHNAME property.
        aPropId[PropIdCount] = PROPID_Q_PATHNAME;        //PropId
        aVariant[PropIdCount].vt = VT_LPWSTR;                //Type
        aVariant[PropIdCount].pwszVal = L".\\private$\\MyPrivateQueue";
       
        PropIdCount++;
       
        //Set the PROPID_Q_LABEL property.

        aPropId[PropIdCount] = PROPID_Q_LABEL;        //PropId
        aVariant[PropIdCount].vt = VT_LPWSTR;          //Type
        aVariant[PropIdCount].pwszVal = L"MyPrivateQueue";
       
        PropIdCount++;
       
        //Set the MQQUEUEPROPS structure.
        QueueProps.cProp = PropIdCount;                      //No of properties
        QueueProps.aPropID = aPropId;                          //Ids of properties
        QueueProps.aPropVar = aVariant;                      //Values of properties
        QueueProps.aStatus = NULL;                                //No error reports
       
        //Set security to default security descriptor.
        pSecurityDescriptor = NULL;
       
        ///////////////////////       
        //Create the queue.
        ///////////////////////
        hr = MQCreateQueue(
                  pSecurityDescriptor,                        //Security
                  &QueueProps,  //Queue properties
                  szFormatNameBuffer,                          //Output: Format Name
                  &dwFormatNameBufferLength              //Output: Format Name len
                 );

Queue Properties
The following optional queue properties can be set by the application when creating the queue:

PROPID_Q_AUTHENTICATE

PROPID_Q_BASEPRIORITY

PROPID_Q_JOURNAL

PROPID_Q_JOURNAL_QUOTA

PROPID_Q_LABEL

PROPID_Q_PRIV_LEVEL

PROPID_Q_QUOTA

PROPID_Q_TRANSACTION

PROPID_Q_TYPE

The following properties are set by MSMQ when it creates the queue:

PROPID_Q_CREATE_TIME

PROPID_Q_INSTANCE (for public queues)

PROPID_Q_MODIFY_TIME

Locating a Public Queue
Public queues can be located by running a query on the queue information registered in the MQIS. To
run the query, the following three Locate functions are used: MQLocateBegin, MQLocateNext, and
MQLocateEnd.

MQLocateBegin uses two sets of properties: One set specifies the properties used to locate the
queues and the other set specifies the properties that will be included in the query results. For
example, you may want to locate all the queues with a specific service type (PROPID_Q_TYPE) and
only return their labels (PROPID_Q_LABEL). MQLocateBegin returns a handle to the query results.

Note If MSMQ finds a queue but the application does not have the access rights required to get the
queue's properties, that queue is not included in the results of the query.

Once the results are available, MQLocateNext is called (as many times as needed) to navigate
through the results. Finally, after the application is done using the query, MQLocateEnd is called to
release the resources used for the query.

To run a query
1. Determine the search criteria for the query and what properties you want to retrieve.
2. Specify the search criteria using MQPROPERTYRESTRICTION and MQRESTRICTION.

// Set queue restriction to PROPID_Q_TYPE = PRINTER_SERVICE_TYPE.
PropertyRestriction.rel = PREQ;
PropertyRestriction.prop = PROPID_Q_TYPE;
PropertyRestriction.prval.vt = VT_CLSID;
PropertyRestriction.prval.puuid = &PRINTER_SERVICE_TYPE;
       
// Specify a one property restriction.
Restriction.cRes = 1;
Restriction.paPropRes = &PropertyRestriction;
       

3. Specify the properties to retrieve using MQCOLUMNSET.
MQCOLUMNSET        Column;
QUEUEPROPID        aPropId[2];          // only two properties to retrieve.
DWORD                      dwColumnCount = 0;

aPropId[dwColumnCount] = PROPID_Q_INSTANCE;
dwColumnCount++;
       
aPropId[dwColumnCount] = PROPID_Q_CREATE_TIME;
dwColumnCount++;
       
Column.cCol = dwColumnCount;
Column.aCol = aPropId;
       

4. Call MQLocateBegin, to start the query.
HANDLE                  hEnum;
hr = MQLocateBegin(
        NULL,                      //start search at the top.
        &Restriction,      //Search criteria.
        &Column,                //Properties to return.
        NULL,                      //No sort order
        &hEnum                    //Enumeration Handle
       );

5. Call MQLocateNext to look at the query results.

hr = MQLocateNext(
          hEnum,            // Handle returned by MQLocateBegin.
          &cProps,        // Size of aPropVar array.
          aPropVar        // An array of PROPVARIANT for results.
         );

6. Call MQLocateEnd to close the query.
hr = MQLocateEnd(hEnum);      //Handle returned by MQLocateBegin.

Example
The following example shows the code used to locate all the queues of a specific type and return their
queue identifier (PROPID_Q_INSTANCE) and when they were created (PROPID_Q_CREATE_TIME).

        #define Max_PROPERTIES 13              //13 possible queue properties
        CLSID PRINTER_SERVICE_TYPE =        //dummy GUID
                    {0x1, 0x2, 0x3, 0x4, {0x5, 0x6, 0x7, 0x8, 0x9, 0xa}};
        HRESULT hr;
        MQPROPERTYRESTRICTION PropertyRestriction;
        MQRESTRICTION    Restriction;
       
       
        //
        // Set search criteria according to the
        // type of service provided by the queue.
        ///
       
        // Set queue restriction to PROPID_Q_TYPE = PRINTER_SERVICE_TYPE.
        PropertyRestriction.rel = PREQ;
        PropertyRestriction.prop = PROPID_Q_TYPE;
        PropertyRestriction.prval.vt = VT_CLSID;
        PropertyRestriction.prval.puuid = &PRINTER_SERVICE_TYPE;
       
        // Specify a one property restriction.
        Restriction.cRes = 1;
        Restriction.paPropRes = &PropertyRestriction;
       
       
        ///
        // Set MQCOLUMNSET structure to specify
        // the properties to be returned:                 
        // PROPID_Q_INSTANCE and PROPID_Q_CREATE_TIME.
        ///
       
        MQCOLUMNSET        Column;
        QUEUEPROPID        aPropId[2];          // only two properties to retrieve.
        DWORD                      dwColumnCount = 0;
       
        aPropId[dwColumnCount] = PROPID_Q_INSTANCE;
        dwColumnCount++;
       
        aPropId[dwColumnCount] = PROPID_Q_CREATE_TIME;
        dwColumnCount++;

       
        Column.cCol = dwColumnCount;
        Column.aCol = aPropId;
       
       
        /////////////////////////////////////
        // Call MQLocateBegin to start query.
        /////////////////////////////////////
       
        HANDLE                  hEnum;
        hr = MQLocateBegin(
                NULL,                      //start search at the top.
                &Restriction,      //Search criteria.
                &Column,                //Properties to return.
                NULL,                      //No sort order
                &hEnum                    //Enumeration Handle
               );

        if(FAILED(hr))
        {
                //
                //    Error handling
                //
        }
       
       
        /////////////////////////////////////
        // Call MQLocateNext to examine results
        // of query.
        /////////////////////////////////////
       
        PROPVARIANT aPropVar[MAX_PROPERTIES];
        DWORD cProps, index;
       
        do
            {
              cProps = MAX_PROPERTIES;
              hr = MQLocateNext(
                        hEnum,            // Handle returned by MQLocateBegin.
                        &cProps,        // Size of aPropVar array.
                        aPropVar        // An array of PROPVARIANT for results.
                       );

                    if (FAILED(hr))
                    {
                        break;
                    }

                    for (index = 0; index < cProps; index += dwColumnCount)

                    {
                          //Process properties of a queue stored in:
                          //aPropVar[index], aPropVar[index+1], …,
                          //aPropVar[index+dwColumnCount-1].
                    }

            } while (cProps > 0);
       
       
        /////////////////////////////////////
        // Call MQLocateEnd to end query.
        /////////////////////////////////////
        hr = MQLocateEnd(hEnum);      //Handle returned by MQLocateBegin.
        if(FAILED(hr))
        {
                //
                //Error handling
                //
        }

Opening a Queue
Queues can be opened for sending messages to the queue, retrieving messages from the queue, or
peeking at the messages in the queue without removing them. All queues, both public and private, are
opened by calling MQOpenQueue.

MQOpenQueue returns a queue handle that is used to:

· Send messages to the queue (MQSendMessage).
· Retrieve and peek at messages in the queue (MQReceiveMessage).
· Create a format name for the queue (MQHandleToFormatName).
· Create a cursor for navigating through the queue (MQCreateCursor).
· Close the queue (MQCloseQueue).

When opening a queue, the application specifies the access mode and share mode of the queue. The
queue's access mode indicates if the application is going to send messages to the queue, peek at the
messages in the queue, or retrieve messages from the queue. The queue's share mode indicates who
else can use the queue while the application is using the queue.

Before opening a queue, MSMQ verifies that the access mode requested by the application is not
restricted by the access rights of the queue. For example, a queue may restrict those who can send
messages to it. For a discussion of queue access rights, see Access Control.

To open a queue
1. Obtain the format name of the queue. If the format name of the queue is not known, you can obtain

a format name by using one of the following format name translation functions:
MQInstanceToFormatName,
MQPathNameToFormatName.

2. Set the queue's access mode. Are messages going to be sent to the queue (dwAccess =
MQ_SEND_ACCESS), retrieved from the queue(dwAccess = MQ_RECEIVE_ACCESS), or peeked
at without removing them from the queue (dwAccess = MQ_PEEK_ACCESS)?
When a queue is opened with receive access, the application can also peek at the queue's
messages. However, the reverse is not true. When a queue is opened with peek access, the
application cannot retrieve a message from the queue.
DWORD dwAccess = MQ_RECEIVE_ACCESS;

3. Set the queue's share mode. If messages are going to be retrieved from the queue (dwAccess =
MQ_RECEIVE_ACCESS), determine if the application should stop others from retrieving messages
at the same time it is retrieving messages (dwShareMode = MQ_DENY_RECEIVE_SHARE). Using
this setting does not stop other applications from peeking at the messages in the queue, it only
prevents them from retrieving messages at the same time the calling application is retrieving
messages.
DWORD dwShareMode = MQ_DENY_RECEIVE_SHARE;
       

4. Call MQOpenQueue.
hr = MQOpenQueue(
          szwFormatNameBuffer,          // Format Name of queue.
          dwAccess,                                // Access mode of queue.
          dwShareMode,                          // Exclusive mode of queue.
          &hQueue                                    // OUT: Handle to queue.
         );

Example

This example opens a queue for reading messages.

////////////////////////
// Set the access mode.
////////////////////////
DWORD dwAccess = MQ_RECEIVE_ACCESS;

////////////////////////
// Set share mode.
///////////////////////
DWORD dwShareMode = MQ_DENY_RECEIVE_SHARE;

//////////////////////
// Call MQOpenQueue.
/////////////////////
QUEUEHANDLE hQueue;

hr = MQOpenQueue(
          szwFormatNameBuffer,          // Format Name of queue.
          dwAccess,                                // Access mode of queue.
          dwShareMode,                          // Exclusive receive mode.
          &hQueue                                    // OUT: Handle to queue.
         );

Closing a Queue
A queue is closed when its handle is no longer needed and its resources may be freed. Closing a
queue is done with a single call to MQCloseQueue.

Note When an application closes a queue, the queue handle becomes invalid, but the messages
waiting in the queue remain in the queue. This includes any messages sent to the queue by the
application closing the queue.

To close a queue
1. Call MQCloseQueue to close the queue. Use the queue handle returned by MQOpenQueue.

hr    = MQCloseQueue(hQueue);      //handle obtained from MQOpenQueue.
       
If (FAILED(hr))
{
 // MQCloseQueue error handler.
}

Deleting a Queue
Deleting a queue is done with a single call to MQDeleteQueue.

To delete a queue
1. Obtain the format name of the queue. It is returned by MQCreateQueue when the queue is created.

If the format name of the queue is not known, you can obtain a format name by using one of the
following format name translation functions:
MQHandleToFormatName
MQInstanceToFormatName
MQPathNameToFormatName.

2. Call MQDeleteQueue to delete the queue.
hr = MQDeleteQueue(szwFormatName);   

If (FAILED(hr))
{
        // MQDeleteQueue error handler.
}

Example
The following example deletes the queue.

     
        /////////////////
        // Delete queue.
        /////////////////
        hr = MQDeleteQueue(szwFormatName);   
       
        If (FAILED(hr))
              {
              // MQDeleteQueue error handler.
        }

Sending Messages to a Queue
Sending messages is typically a two-function operation: a single call to MQOpenQueue to open the
queue and then one or more calls to MQSendMessage. After the queue is opened, the application can
send any number of messages to the queue.

For examples of sending different types of messages, see:

· Sending Messages That Request Acknowledgments
· Sending Messages That Request a Response
· Sending Private Messages

Note Transaction messages can only be sent to transaction queues and non-transaction messages
can only be sent to non-transaction queues.

Message are defined by a set of properties specified in an MQMSGPROPS structure. This structure
provides the number of properties that will be sent with the message, identifiers for each property, and
the value of each property.

Message properties
The following are general message properties that can be set by the application (length properties that
are associated with another property are not included):

PROPID_M_ACKNOWLEDGE

PROPID_M_ADMIN_QUEUE

PROPID_M_APPSPECIFIC

PROPID_M_BODY

PROPID_M_BODY_TYPE

PROPID_M_CONNECTOR_TYPE

PROPID_M_CORRELATIONID

PROPID_M_DELIVERY

PROPID_M_EXTENSION

PROPID_M_JOURNAL

PROPID_M_LABEL

PROPID_M_PRIORITY

PROPID_M_RESP_QUEUE

PROPID_M_TIME_TO_BE_RECEIVED

PROPID_M_TIME_TO_REACH_QUEUE

PROPID_M_TRACE

PROPID_M_XACT_STATUS_QUEUE

Security message properties
Security properties are used for authenticating and encrypting messages. The following security
message properties can be set by the application:

PROPID_M_AUTH_LEVEL

PROPID_M_DEST_SYMM_KEY

PROPID_M_ENCRYPTION_ALG

PROPID_M_HASH_ALG

PROPID_M_PRIV_LEVEL

PROPID_M_PROV_NAME

PROPID_M_PROV_TYPE

PROPID_M_SECURITY_CONTEXT

PROPID_M_SENDER_CERT

MSMQ-generated messages properties
The following message properties are set by MSMQ and should not be specified by the sending
application. They are attached to the message when it is sent.

Message Property Description
PROPID_M_ARRIVEDTIME Indicates when the message arrived

at its target queue.
PROPID_M_AUTHENTICATED Indicates if the message was

authenticated.
PROPID_M_CLASS Indicates the type of message (such

as normal, acknowledgment, or
report).

PROPID_M_DEST_QUEUE Indicates the destination of the
message.

PROPID_M_MSGID Indicates the message's MSMQ-
generated identifier.

PROPID_M_SENDERID Indicates the identifier of the sending
application.

PROPID_M_SENDERID_TYPE Indicates the type of identifier found
by MSMQ.

PROPID_M_SENTTIME Indicates when the message was
sent.

PROPID_M_SIGNATURE Indicates the digital signature of the
message.

PROPID_M_SRC_MACHINE_ID Indicates the machine identifier of the
computer from where the message
was sent.

PROPID_M_VERSION Indicates what version of MSMQ the
sending application is running.

Sending Messages that Request Acknowledgments
To request acknowledgment messages, the sending application must indicate the type of
acknowledgment(s) it wants to receive and the administration queue where the acknowledgment
message will be placed. It can receive positive, negative, or a combination of positive and negative
acknowledgment messages by setting PROPID_M_ACKNOWLEDGE and attaching it to the messages
it sends.

Acknowledgment messages are generated by MSMQ or by connector applications (when sending
messages to foreign queues), and are returned to the administration queue specified by
PROPID_M_ADMIN_QUEUE.

To send a message requesting acknowledgment messages
1. Call MQOpenQueue to open the queue with send access.
      //////////////////////////////
      // Open the destination queue
      // with send access.
      //////////////////////////////
     
      QUEUEHANDLE hQueue;
      hr = MQOpenQueue(szFormatName, MQ_SEND_ACCESS, 0, &hQueue);
      if (FAILED(hr))
      {
              fprintf(stderr, "Failed in MQOpenQueue, error = 0x%x\n", hr);
              return -1;
      }
       
2. Set PROPID_M_ACKNOWLEDGE. This property specifies the type of acknowledgment messages

that will be sent. The example below requests full-receive acknowledgments.
/////////////////////////////
// Set PROPID_M_ACKNOWLEDGE.
/////////////////////////////
aPropId[PropIdCount] = PROPID_M_ACKNOWLEDGE;                    //PropId
aVariant[PropIdCount].vt = VT_UI1;  //Type
aVariant[PropIdCount].bVal = MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE;//Value

PropIdCount++;

3. Set PROPID_M_ADMIN_QUEUE. This property specifies the administration queue where the
acknowledgment messages will be sent.
///
// Set the PROPID_M_ADMIN_QUEUE property.
///
aPropId[PropIdCount] = PROPID_M_ADMIN_QUEUE;                  //PropId
aVariant[PropIdCount].vt = VT_LPWSTR;                                //Type
aVariant[PropIdCount].pwszVal = szwAdminFormatName;    //An already obtained format
name of the administration queue.

PropIdCount++;

4. Set other message properties, such as the message's body and its label.
5. Set the MQMSGPROPS structure.

////////////////////////////////
// Set the MQMSGPROPS structure.

////////////////////////////////
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

6. Call MQSendMessage to send the message to the queue.
/////////////////
// Send message.
/////////////////
hr = MQSendMessage(
          hQueue,                                    // Handle to the Queue.
          &MsgProps,                              // Message properties to be sent.
          MQ_NO_TRANSACTION                // No transaction
         );

Example
The following example sends a message requesting full-receive acknowledgments.

MQMSGPROPS MsgProps;
PROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;

HRESULT hr;

QUEUEHANDLE hQueue;

    //////////////////////////////
    // Open the destination queue
    // with send access.
    //////////////////////////////
   
    QUEUEHANDLE hQueue;
    hr = MQOpenQueue(szFormatName, MQ_SEND_ACCESS, 0, &hQueue);
    if (FAILED(hr))
    {
            fprintf(stderr, "Failed in MQOpenQueue, error = 0x%x\n", hr);
            return -1;
    }
       
/////////////////////////////
// Set PROPID_M_ACKNOWLEDGE.
/////////////////////////////
aPropId[PropIdCount] = PROPID_M_ACKNOWLEDGE;                    //PropId
aVariant[PropIdCount].vt = VT_UI1;  //Type
aVariant[PropIdCount].bVal = MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE;//Value

PropIdCount++;

///
// Set the PROPID_M_ADMIN_QUEUE property.
///
aPropId[PropIdCount] = PROPID_M_ADMIN_QUEUE;                  //PropId

aVariant[PropIdCount].vt = VT_LPWSTR;                                //Type
aVariant[PropIdCount].pwszVal = szwAdminFormatName;    //An already obtained format
name of the administration queue.

PropIdCount++;

//
// Set other message properties, such
// as PROPID_M_BODY and PROPID_M_LABEL.
///////////////////////////////////////

////////////////////////////////
// Set the MQMSGPROPS structure.
////////////////////////////////
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

/////////////////
// Send message.
/////////////////
hr = MQSendMessage(
          hQueue,                                    // handle to the Queue.
          &MsgProps,                              // Message properties to be sent.
          MQ_NO_TRANSACTION                // No transaction
         );

if (FAILED(hr))
      {
        //
        // Handle error condition
        //
        }

Sending Messages that Request a Response
To request response messages, the sending application must supply a response queue for the
returned messages. Response messages are application-defined, and generated by the application
reading the message.

To send a message that returns a response message
1. Call MQOpenQueue to open the queue with send access.
      //////////////////////////////
      // Open the destination queue
      // with send access.
      //////////////////////////////
     
      QUEUEHANDLE hQueue;
      hr = MQOpenQueue(szFormatName, MQ_SEND_ACCESS, 0, &hQueue);
      if (FAILED(hr))
      {
              fprintf(stderr, "Failed in MQOpenQueue, error = 0x%x\n", hr);
              return -1;
      }
       
2. Set PROPID_M_RESP_QUEUE. This property specifies the response queue where the response

messages will be sent.
///
// Set the PROPID_M_RESPONSE_QUEUE property.
///
aPropId[PropIdCount] = PROPID_M_RESPONSE_QUEUE;          //PropId
aVariant[PropIdCount].vt = VT_LPWSTR;                              //Type
aVariant[PropIdCount].pwszVal = szwRespFormatName;    //An already obtained format
name of the response queue.

PropIdCount++;

3. Set other message properties such as the message's body and its label.
4. Set the MQMSGPROPS structure.

////////////////////////////////
// Set the MQMSGPROPS structure.
////////////////////////////////
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

5. Call MQSendMessage to send the message to the queue.
/////////////////
// Send message.
/////////////////
hr = MQSendMessage(
          hQueue,                                    // handle to the Queue.
          &MsgProps,                              // Message properties to be sent.
          MQ_NO_TRANSACTION                // No transaction
         );

Example
The following example sends a message requesting full receive acknowledgments.

MQMSGPROPS MsgProps;
PROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;

HRESULT hr;

    //////////////////////////////
    // Open the destination queue
    // with send access.
    //////////////////////////////
   
    QUEUEHANDLE hQueue;
    hr = MQOpenQueue(szFormatName, MQ_SEND_ACCESS, 0, &hQueue);
    if (FAILED(hr))
    {
            fprintf(stderr, "Failed in MQOpenQueue, error = 0x%x\n", hr);
            return -1;
    }
       
QUEUEHANDLE hQueue;

///
// Set the PROPID_M_RESP_QUEUE property.
///
aPropId[PropIdCount] = PROPID_M_RESP_QUEUE;                  //PropId
aVariant[PropIdCount].vt = VT_LPWSTR;                                //Type
aVariant[PropIdCount].pwszVal = szwRespFormatName;    //An already obtained format
name of the response queue.

PropIdCount++;

//
// Set other message properties, such
// as PROPID_M_BODY and PROPID_M_LABEL.
///////////////////////////////////////

////////////////////////////////
// Set the MQMSGPROPS structure.
////////////////////////////////
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

/////////////////
// Send message.
/////////////////
hr = MQSendMessage(
          hQueue,                                    // handle to the Queue.
          &MsgProps,                              // Message properties to be sent.
          MQ_NO_TRANSACTION                // No transaction

         );

if (FAILED(hr))
      {
        //
        // Handle error condition
        //
        }

Sending Private Messages
To send a private message , the sending application must set the privacy level of the message. Once
the privacy level is set, the functions used to send the message are no different from those used to
send other messages. When sending (and receiving) private messages, the application has no part in
encrypting (or decrypting) the message.

Note For information on how MSMQ encrypts and decrypts messages, see Private Messages.

To send a private message
1. Obtain the format name of the destination queue. The example below calls

MQPathNameToFormatName to obtain a format name from a known pathname.
WCHAR szFormatName[128];
DWORD dwFormatNameLen = sizeof(szFormatName) / sizeof(WCHAR);
       
hr = MQPathNameToFormatName(L"dest_machine\\secrets",
  szFormatName,
  &dwFormatNameLen);

2. Call MQOpenQueue to open the destination queue with send access.
QUEUEHANDLE hQueue;
hr = MQOpenQueue(szFormatName, MQ_SEND_ACCESS, 0, &hQueue);
       

3. Set message properties. The value of PROPID_M_PRIV_LEVEL indicates that the message is
private.
#define NMSGPROPS 10
MSGPROPID aMsgPropId[NMSGPROPS];
MQPROPVARIANT aMsgPropVar[NMSGPROPS];
HRESULT aMsgStatus[NMSGPROPS];
MQMSGPROPS MsgProps;
DWORD PropIdCount = 0;
       
//Set PROPID_M_LABEL
aMsgPropId[PropIdCount] = PROPID_M_LABEL;                        //PropId
aMsgPropVar[PropIdCount].vt = VT_LPWSTR;                          //Type
aMsgPropVar[PropIdCount].pwszVal = L"Hash hash";          //Value
PropIdCount++
       
//Set PROPID_M_BODY
#define MESSAGE_BODY L"Secret matters"
aMsgPropId[PropIdCount] = PROPID_M_BODY;                          //PropId
aMsgPropVar[PropIdCount].vt = VT_VECTOR | VT_UI1;
aMsgPropVar[PropIdCount].caub.pElems = (LPBYTE)MESSAGE_BODY;
aMsgPropVar[PropIdCount].caub.cElems = sizeof(MESSAGE_BODY);
PropIdCount++
       
//Set PROPID_M_PRIV_LEVEL
aMsgPropId[PropIdCount] = PROPID_M_PRIV_LEVEL;              //PropId
aMsgPropVar[PropIdCount].vt = VT_UI4;                                //Type
aMsgPropVar[PropIdCount].ulVal = MQMSG_PRIV_LEVEL_BODY;
 PropIdCount++
       
//Optional. Set PROPID_M_ENCRYPTION_ALG.

aMsgPropId[PropIdCount] = PROPID_M_ENCRYPTION_ALG;      //PropId
aMsgPropVar[PropIdCount].vt = VT_UI4;                                //Type
aMsgPropVar[PropIdCount].ulVal = CALG_RC4;        //Default is RC2.
 PropIdCount++
       
//Set the MQMSGPROPS structure.
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aMsgPropId;            //Id of properties.
MsgProps.aPropVar = aMsgVariant;        //Value of properties.
MsgProps.aStatus    = aMsgStatus;          //Error report.
       

4. Call MQSendMessage to send the message.
hr = MQSendMessage(hQueue, &MsgProps, NULL);

5. Call MQCloseQueue to close the destination queue.
hr = MQCloseQueue(hQueue);
       

Example
This example starts with a known pathname for the destination queue, translates the pathname to a
format name, opens the destination queue with send access, sets the properties of the message
(including the privacy level of the message), then sends the message to the destination queue.

#include <windows.h>
#include <wincrypt.h>
#include <stdio.h>
#include <mq.h>

int main(int argc, char *argv[])
{
        HRESULT hr;
       
       
        //////////////////////////
        // Get the format name of
        // the destination queue.
        //////////////////////////
       
        WCHAR szFormatName[128];
        DWORD dwFormatNameLen = sizeof(szFormatName) / sizeof(WCHAR);
       
        hr = MQPathNameToFormatName(L"dest_machine\\secrets",
  szFormatName,
  &dwFormatNameLen);
        if (FAILED(hr))
        {
                fprintf(stderr, "Failed in MQPathNameToFormatName, error = 0x%x\n", hr);
                return -1;
        }
       
        //////////////////////////////
        // Open the destination queue
        // with send access.
        //////////////////////////////
       

        QUEUEHANDLE hQueue;
        hr = MQOpenQueue(szFormatName, MQ_SEND_ACCESS, 0, &hQueue);
        if (FAILED(hr))
        {
                fprintf(stderr, "Failed in MQOpenQueue, error = 0x%x\n", hr);
                return -1;
        }
         
         
        ////////////////////////////////////
        // Define the MQMSGPROPS structure.
        ////////////////////////////////////
       
        #define NMSGPROPS 10
        MSGPROPID aMsgPropId[NMSGPROPS];
        MQPROPVARIANT aMsgPropVar[NMSGPROPS];
        HRESULT aMsgStatus[NMSGPROPS];
        MQMSGPROPS MsgProps;
        DWORD PropIdCount = 0;
       
        //Set PROPID_M_LABEL
        aMsgPropId[PropIdCount] = PROPID_M_LABEL;                        //PropId
        aMsgPropVar[PropIdCount].vt = VT_LPWSTR;                          //Type
        aMsgPropVar[PropIdCount].pwszVal = L"Hash hash";          //Value
        PropIdCount++
       
        //Set PROPID_M_BODY
        #define MESSAGE_BODY L"Secret matters"
        aMsgPropId[PropIdCount] = PROPID_M_BODY;                          //PropId
        aMsgPropVar[PropIdCount].vt = VT_VECTOR | VT_UI1;
        aMsgPropVar[PropIdCount].caub.pElems = (LPBYTE)MESSAGE_BODY;
        aMsgPropVar[PropIdCount].caub.cElems = sizeof(MESSAGE_BODY);
        PropIdCount++
       
        //Set PROPID_M_PRIV_LEVEL
        aMsgPropId[PropIdCount] = PROPID_M_PRIV_LEVEL;              //PropId
        aMsgPropVar[PropIdCount].vt = VT_UI4;                                //Type
        aMsgPropVar[PropIdCount].ulVal = MQMSG_PRIV_LEVEL_BODY;
          PropIdCount++
       
        //Optional. Set PROPID_M_ENCRYPTION_ALG.
        aMsgPropId[PropIdCount] = PROPID_M_ENCRYPTION_ALG;      //PropId
        aMsgPropVar[PropIdCount].vt = VT_UI4;                                //Type
        aMsgPropVar[PropIdCount].ulVal = CALG_RC4;        //Default is RC2.
          PropIdCount++
       
        //Set the MQMSGPROPS structure.
        MsgProps.cProp = PropIdCount;              //Number of properties.
        MsgProps.aPropID = aMsgPropId;            //Id of properties.
        MsgProps.aPropVar = aMsgVariant;        //Value of properties.
        MsgProps.aStatus    = aMsgStatus;          //Error report.

        ///////////////////
        // Send the message
        ///////////////////

       
        hr = MQSendMessage(hQueue, &MsgProps, NULL);
        if (FAILED(hr))
        {
          fprint(stderr, "Failed in MQSendMessage, error = 0x%x\n", hr);
          return -1;
        }
       
        ////////////////////
        // Close the queue.
        ///////////////////
        MQCloseQueue(hQueue);
       
        if (FAILED(hr))
        {
            fprintf(stderr, "Failed in MQCloseQueue, error = 0x%x\n", hr);
            return -1;
        }
        printf("The private message was sent successfully\n");
       
        return 0;
}

Sending Messages Using an Internal Transaction
To send a message using an internal transaction, call MQBeginTransaction to initiate the transaction
and call MQSendMessage to send the message.

To send a message using an internal transaction
1. Call MQBeginTransaction to initiate internal transaction.

ITransaction    *pTransaction;
hr = MQBeginTransaction (&pTransaction);      // Pointer to a pointer
  // to the transaction   
  // object.

2. Call MQSendMessage to send message.
hr = MQSendMessage(h,                      // Handle to destination queue.
                                      &msgprops,      // Pointer to MQMSGPROPS structure.
                                      pTransaction); // Pointer to transaction object.

3. Commit or abort the transaction.
hr = pTransaction->Commit(0, 0, 0);
-or-
hr = pTransaction->Abort(0, 0, 0);

4. Release the transaction object.
pTransaction->Release();

Example
This example sends a single message within an internal transaction.

void TransactSend(QUEUEHANDLE h, MQMSGPROPS * pMsgProps)
{
            HRESULT hr;           
            printf ("\nStarting transaction...\n\n");

            ///////////////////////////////////////
            // Call MQBeginTransaction to initiate
            // the internal transaction.
            ///////////////////////////////////////
            ITransaction    *pTransaction;
            hr = MQBeginTransaction (&pTransaction);      // Pointer to a
  // pointer to the
  // transaction object

            if (FAILED(hr))
            {
                  Error ("BeginTransaction",hr);
            }

            ////////////////////////////////////
            // Set default to commit the
            // transaction.
            ////////////////////////////////////
            BOOL fCommit = TRUE;

            ////////////////////////////////////

            // Within the transaction: Call
            // MQSendMessage to send the message to
            // the Receiver Side.
            //////////////////////////////////////
            hr = MQSendMessage(h,                            // Handle to destination
  // queue.
  &msgprops,            // Pointer to MQMSGPROPS
  // structure.
  pTransaction);    // Pointer to transaction
  // object.

            if (FAILED(hr))
            {
                  printf("\nFailed in MQSendMessage(). hresult- %lxh\n", (DWORD) hr) ;
                  fCommit = FALSE;    // Aborting as MQSendMessage failed.
            }

            ////////////////////////////////////
            // Commit or abort the transaction.
            ////////////////////////////////////
            if (fCommit)
            {
                  printf ("Committing the transaction...      ");
                  hr = pTransaction->Commit(0, 0, 0);
                  if (FAILED(hr))
                        printf ("Failed... Transaction aborted.\n\n");
                  else
                        printf ("Transaction committed successfully.\n\n");
            }
            else
            {
                  printf ("Aborting the transaction...      ");
                  hr = pTransaction->Abort(0, 0, 0);
                  if (FAILED(hr))
                        Error("Transaction Abort",hr);
                  else
                        printf ("Transaction aborted.\n\n");
            }
           
            //////////////////////////
            // Release the transaction.
            //////////////////////////
            pTransaction->Release();

    }

Sending Messages Using an MS DTC External
Transaction
To send a message using a Microsoft® Distributed Transaction Coordinator (MS DTC) external
transaction, the application must work with all the resource managers that are needed to complete the
transaction. In the example below, the only resource manager used is MSMQ.

To send a message using an MS DTC external transaction
1. Call DtcGetTransactionManager to get a transaction dispenser. For information on

DtcGetTransactionManager, see the Microsoft Platform SDK.
hr = DtcGetTransactionManager(
                  NULL,  // pszHost
                  NULL,  // pszTmName
                  IID_ITransactionDispenser,          // IID of interface
                  0,  // Reserved: must be null.
                  0,  // Reserved: must be null.
                  0,  // Reserved: must be null.
                  (void **)&g_pTransactionDispenser    // Pointer to pointer
  // to requested
  // interface.
 );

2. Initiate the transaction.
hr = g_pTransactionDispenser->BeginTransaction (
                0,  // Must be null.
                ISOLATIONLEVEL_ISOLATED,      // Isolation level.
                ISOFLAG_RETAIN_DONTCARE,      // Isolation flags.
                0,  // Pointer to transaction
  // options object.
                &pTransaction);                        // Pointer to a pointer to
  // transaction object.

 3. Call MQSendMessage to send message.
hr = MQSendMessage(h,                      // Handle to destination queue.
                                      &msgprops,      // Pointer to MQMSGPROPS
  // structure.
  pTransaction); // Pointer to transaction
  // object.

4. Commit or abort the transaction.
hr = pTransaction->Commit(0, 0, 0);
-or-
hr = pTransaction->Abort(0, 0, 0);

5. Release the transaction object.
pTransaction->Release();

Example
This example sends a single message within an MS DTC external transaction.

ITransactionDispenser      *g_pTransactionDispenser;

BOOL InitCoordinatedTransactions()

{

      //////////////////////////////
      // Get transaction dispenser.
      //////////////////////////////

      // Obtain an interface pointer from MS DTC proxy
      hr = DtcGetTransactionManager(
                  NULL,  // pszHost
                  NULL,  // pszTmName
                  IID_ITransactionDispenser,                  // IID of interface
                  0,  // Reserved: must be null.
                  0,  // Reserved: must be null.
                  0,  // Reserved: must be null.
                  (void **)&g_pTransactionDispenser    // pointer to pointer to
  // requested interface.
 );

      if (FAILED(hr))
      {
          //
          // No Connection to DTC.
          //
      return(FALSE);
      }

      return(TRUE);

}

void TransactSend(QUEUEHANDLE h, MQMSGPROPS * pMsgProps)
{

    ITransaction                        *pTransaction;
    printf ("\nStarting transaction...\n\n");

    ////////////////////////////
    // Initiate a transaction.
    ///////////////////////////

    hr = g_pTransactionDispenser->BeginTransaction (
                0,  // Must be null.
                ISOLATIONLEVEL_ISOLATED,      // Isolation level.
                ISOFLAG_RETAIN_DONTCARE,      // Isolation flags.
                0,  // Pointer to transaction
  // options object.
                &pTransaction);                        // Pointer to a pointer to
  // transaction object.

            if (FAILED(hr))
            {
                  Error ("BeginTransaction",hr);
            }

            // Default is to commit transaction

            BOOL fCommit = TRUE;

            ///
            // Call MQSendMessage to send message to
            // the receiver side within the transaction.
            ///
            hr = MQSendMessage(h,                      // Handle to destination queue
  pMsgprops,      // Pointer to MQMSGPROPS
  // structure.
  pTransaction); // Pointer to transaction
  // Object

            if (FAILED(hr))
            {
                  printf("\nFailed in MQSendMessage(). hresult- %lxh\n", (DWORD) hr) ;
                  fCommit = FALSE;          // Abort if MQSend failed
            }

            ///
            // Here the application can call other resource
            // managers (such as SQL server) and enlist their
            // actions in the transaction pTransaction.    If
            // atomicity is required, set fCommit to FALSE.

            // Commit the transaction or abort it
            if (fCommit)
            {
                  printf ("Committing the transaction...      ");

                  hr = pTransaction->Commit(0, 0, 0);

                  if (FAILED(hr))
                        printf ("Failed... Transaction aborted.\n\n");
                  else
                        printf ("Transaction committed successfully.\n\n");

            }
            else
            {
                  printf ("Aborting the transaction...      ");

                  hr = pTransaction->Abort(0, 0, 0);

                  if (FAILED(hr))
                        Error("Transaction Abort",hr);
                  else
                        printf ("Transaction aborted.\n\n");
            }

            // Release the transaction
            pTransaction->Release();

    }

void CleanupTransaction()
{
      ///
      // Cleanup and release the transaction object.
      ///

      g_pTransactionDispenser->Release();
}

Reading Messages in a Queue
Reading messages in a queue is a two-function operation if the application only reads the first
message in the queue, and a three-function operation if the application needs to navigate through the
queue. To read the first message in the queue, the application must call MQOpenQueue and
MQReceiveMessage. However, to read messages that are not at the front of the queue, the
application must call MQOpenQueue, MQCreateCursor, then MQReceiveMessage.

For examples, see:

· Reading Messages Synchronously
· Reading Messages Asynchronously

When reading messages in a queue, MSMQ can peek at the messages or retrieve them.

When reading messages, the application can retrieve all the message properties that are provided by
MSMQ. It is the application's responsibility to specify which message properties it wants to read (this
includes the body of the message).

Message properties include:

PROPID_M_ACKNOWLEDGE

PROPID_M_ADMIN_QUEUE

PROPID_M_ADMIN_QUEUE_LEN

PROPID_M_APPSPECIFIC

PROPID_M_ARRIVEDTIME

PROPID_M_AUTH_LEVEL

PROPID_M_AUTHENTICATED

PROPID_M_BODY

PROPID_M_BODY_SIZE

PROPID_M_BODY_TYPE

PROPID_M_CLASS

PROPID_M_CONNECTOR_TYPE

PROPID_M_CORRELATIONID

PROPID_M_DELIVERY

PROPID_M_DEST_QUEUE

PROPID_M_DEST_QUEUE_LEN

PROPID_M_DEST_SYMM_KEY

PROPID_M_DEST_SYMM_KEY_LEN

PROPID_M_ENCRYPTION_ALG

PROPID_M_EXTENSION

PROPID_M_EXTENSION_LEN

PROPID_M_HASH_ALG

PROPID_M_JOURNAL

PROPID_M_LABEL

PROPID_M_LABEL_LEN

PROPID_M_MSGID

PROPID_M_PRIORITY

PROPID_M_PRIV_LEVEL

PROPID_M_PROV_NAME

PROPID_M_PROV_NAME_LEN

PROPID_M_PROV_TYPE

PROPID_M_RESP_QUEUE

PROPID_M_RESP_QUEUE_LEN

PROPID_M_SECURITY_CONTEXT

PROPID_M_SENDER_CERT

PROPID_M_SENDER_CERT_LEN

PROPID_M_SENDERID

PROPID_M_SENDERID_LEN

PROPID_M_SENDERID_TYPE

PROPID_M_SENTTIME

PROPID_M_SIGNATURE

PROPID_M_SIGNATURE_LEN

PROPID_M_SRC_MACHINE_ID

PROPID_M_TIME_TO_BE_RECEIVED

PROPID_M_TIME_TO_REACH_QUEUE

PROPID_M_TRACE

PROPID_M_VERSION

PROPID_M_XACT_STATUS_QUEUE

PROPID_M_XACT_STATUS_QUEUE_LEN

Reading Messages Synchronously
When reading messages synchronously, all calls are blocked until the next message is available or
timeout occurs.

To read a message synchronously
1. Open the queue with receive or peek access.

hr = MQOpenQueue(
        szwFormatNameBuffer,        // Format name of the queue.
        MQ_RECEIVE_ACCESS,            // Access rights to the Queue.
        0,  // No receive Exclusive.
        &hQueue                                  // OUT: handle to the opened Queue.
);

2. Specify the message properties to be retrieved. For example, if you only need to look at the body of
the message, only specify PROPID_M_BODY.
//Set the message body property.
aPropId[PropIdCount] = PROPID_M_BODY;                            //PropId
aVariant[PropIdCount].vt = VT_VECTOR|VT_UI1;              //Type
aVariant[PropIdCount].caub.cElems = MSG_BODY_LEN;    //Buffer size
aVariant[PropIdCount].caub.pElems = ucMsgBody;          //Buffer

        PropIdCount++;

3. Set the MQMSGPROPS structure.
// Set the MQMSGPROPS structure.
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

4. Retrieve the message from the queue.
hr = MQReceiveMessage(
          hQueue,                            // Handle to the Queue.
          5 * 60 * 1000,              // Timeout value (msec) to wait for
  // messages (5*60*1000=5 min.).
          MQ_ACTION_RECEIVE,      // Action.
          &MsgProps,                      // Properties to retrieve.
          NULL,                                // Must be NULL for synchronous receive.
          NULL,                                // Must be NULL for synchronous receive.
          NULL,                                // No Cursor.
          MQ_NO_TRANSACTION        // No transaction.
 );

Example
The following example opens a queue with receive access, specifies the body of the message as the
only property to be retrieved, then reads the first message in the queue as a non-transactional,
synchronous operation.

HRESULT hr

//Open Queue
WCHAR * szwFormatNameBuffer;    // Format Name of the queue to be opened
QUEUEHANDLE hQueue;

// Obtain format name of queue.

hr = MQOpenQueue(
        szwFormatNameBuffer,        // Format Name of the queue to be opened.
        MQ_RECEIVE_ACCESS,            // Access rights to the Queue.
        0,  // No receive Exclusive.
        &hQueue                                  // OUT: handle to the opened Queue.
                               );

if (FAILED(hr))
{
 // Error handler for MQOpenQueue.
}

MQMSGPROPS MsgProps;
MQPROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;

//
// Prepare the message properties to be retrieved.
//

#define MSG_BODY_LEN 500
unsigned char ucMsgBody[MSG_BODY_LEN];

// Set the PROPID_M_BODY property.
aPropId[PropIdCount] = PROPID_M_BODY;                            //PropId
aVariant[PropIdCount].vt = VT_VECTOR|VT_UI1;              //Type
aVariant[PropIdCount].caub.cElems = MSG_BODY_LEN;    //Buffer size.
aVariant[PropIdCount].caub.pElems = ucMsgBody;          //Buffer

PropIdCount++;

//
// Set other properties.
//

// Set the MQMSGPROPS structure
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

//
// Retrieve the message.
//
hr = MQReceiveMessage(
        hQueue,                            // handle to the Queue.

    5 * 60 * 1000,            // Timeout value (msec) to wait for
  // for messages (5*60*1000=5 min.).

        MQ_ACTION_RECEIVE,      // Action.
        &MsgProps,                      // properties to retrieve.

        NULL,                                // No overlapped structure.
        NULL,                                // No callback function.
        NULL,                                // No Cursor.
        MQ_NO_TRANSACTION        // No transaction
 );

if (FAILED(hr))
        {
        //    Error handler for MQReceiveMessage.
        }

Reading Messages Asynchronously
Applications can use a callback function, a Windows Event mechanism, or a Microsoft® Windows NT®
completion port to read messages asynchronously. When reading messages asynchronously, the
application is notified if a message is available or if a timeout has occurred.

For information on MQReceiveMessage, see MQReceiveMessage.

Note In the following two examples, the first uses a callback function to retrieve the messages and
the second uses a Windows Event mechanism. Both examples read the first message in the queue.

To read a message asynchronously using a callback function
1. Write the callback function.

void APIENTRY ReceiveCallbackRoutine(
        HRESULT hrStatus,
        QUEUEHANDLE hSource,
        DWORD dwTimeout,
        DWORD dwAction,
        MQMSGPROPS* pMessageProps,
        LPOVERLAPPED lpOverlapped,
        HANDLE hCursor
)
 {
      // Process message.
 }

2. Open the queue with receive or peek access. If the queue is opened with receive access the
application can still peek at the messages in the queue.
hr = MQOpenQueue(
        szwFormatNameBuffer,        // Format name of the queue.
        MQ_RECEIVE_ACCESS,            // Access rights to the queue.
        0,  // No receive Exclusive.
        &hQueue                                  // OUT: handle to the opened queue.
                             );

3. Specify the message properties to be retrieved, retrieving only those properties that are needed. For
example, if you only need to look at the body of the message, only specify PROPID_M_BODY.
// Set the PROPID_M_BODY property.
paPropId[dwPropIdCount] = PROPID_M_BODY;                                //PropId
paVariant[dwPropIdCount].vt = VT_VECTOR|VT_UI1;                  //Type
paVariant[dwPropIdCount].caub.cElems = MSG_BODY_LEN ;      //Value
paVariant[dwPropIdCount].caub.pElems = new unsigned char[MSG_BODY_LEN];

 dwPropIdCount++;

4. Set the MQMSGPROPS structure.
// Set the MQMSGPROPS structure.
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

5. Read message from the queue, using ReceiveCallbackRoutine as the callback function.

hr = MQReceiveMessage(
        hQueue,  // handle to the Queue.
        5 * 60 * 1000,                            // Max time (msec) to wait.
        MQ_ACTION_RECEIVE,                    // Action.
        pMsgProps,                                    // Properties to retrieve.
        NULL,  // No overlapped structure.
        ReceiveCallbackRoutine,          // Callback function.
        NULL,  // No Cursor.
        NULL  // No transaction
                           );

Callback Function Example
The following example specifies a callback function, opens a queue with receive access, specifies the
body of the message as the only message property to retrieve, then reads the first message of the
queue using the callback function.

//////////////////////////////
// Receive callback function.
/////////////////////////////

void APIENTRY ReceiveCallbackRoutine(
      HRESULT hr,
      QUEUEHANDLE hSource,
      DWORD dwTimeout,
      DWORD dwAction,
      MQMSGPROPS* pMessageProps,
      LPOVERLAPPED lpOverlapped,
      HANDLE hCursor
   )
 {
    if (FAILED(hr))
      {
        // Error handler for Callback routine.
      }
    else
    {
      // Process message.
    }
 }

//////////////
// Open Queue
//////////////

HRESULT hr;
QUEUEHANDLE hQueue;

hr = MQOpenQueue(
          szwFormatNameBuffer,        // Format Name of the queue to be opened.
          MQ_RECEIVE_ACCESS,            // Access rights to the Queue.
          0,  // No receive Exclusive.
          &hQueue                                  // OUT: handle to the opened Queue.
);

if (FAILED(hr))

{
 // Error handler for MQOpenQueue.
}

MQMSGPROPS * pMsgProps;
MQPROPVARIANT *paVariant;
MSGPROPID * paPropId;
DWORD dwPropIdCount = 0;

//
//    The output parameters to an asynchronous call to MQReceiveMessage
//    should be kept intact until the operation completes, you should
//    not free or reuse them until the operation is complete.
//
pMsgProps = new MQMSGPROPS;
paVariant = new MQPROPVARIANT[10];
paPropId = new MSGPROPID[10];

       
//
// Prepare the message properties to be retrieved.
///

// Set the PROPID_M_BODY property.
paPropId[dwPropIdCount] = PROPID_M_BODY;                                //PropId
paVariant[dwPropIdCount].vt = VT_VECTOR|VT_UI1;                  //Type
paVariant[dwPropIdCount].caub.cElems = MSG_BODY_LEN ;        //Value
paVariant[dwPropIdCount].caub.pElems = new unsigned char[MSG_BODY_LEN];

 dwPropIdCount++;

////////////////////////////////
// Set the MQMSGPROPS structure
///////////////////////////////
pMsgProps->cProp = dwPropIdCount;          //Number of properties.
pMsgProps->aPropID = paPropId;                //Ids of properties.
pMsgProps->aPropVar = paVariant;            //Values of properties.
pMsgProps->aStatus    = NULL;                      //No Error report.

///
//    Receive the message using callback function
//    ReceiveCallbackRoutine.
///

hr = MQReceiveMessage(
        hQueue,  // handle to the Queue.
        5 * 60 * 1000,                            // Max time (msec) to wait.
        MQ_ACTION_RECEIVE,                    // Action.
        pMsgProps,                                    // properties to retrieve.
        NULL,  // No overlapped structure.
        ReceiveCallbackRoutine,          // Callback function.
        NULL,  // No Cursor.

        NULL  // No transaction
                           );

if (FAILED(hr))
      {
          //    Error handler for MQReceiveMessage.
        }

To read a message asynchronously using a Windows Event
mechanism
1. Open the queue with receive or peek access. The access mode used to open the queue does not

determine how the messages are read from the queue. For example, if the queue is opened with
receive access the application can still peek at the messages in the queue.
hr = MQOpenQueue(
        szwFormatNameBuffer,        // Format name of the queue.
        MQ_RECEIVE_ACCESS,            // Access rights to the Queue.
        0,  // No receive Exclusive.
        &hQueue                                  // OUT: handle to the opened Queue.
                             );

2. Specify the message properties to be retrieved. If you only need to look at the body of the message,
only specify PROPID_M_BODY.
// Set the PROPID_M_BODY property.
paPropId[dwPropIdCount] = PROPID_M_BODY;                                //PropId
paVariant[dwPropIdCount].vt = VT_VECTOR|VT_UI1;                  //Type
paVariant[dwPropIdCount].caub.cElems = MSG_BODY_LEN ;      //Value
paVariant[dwPropIdCount].caub.pElems = new unsigned char[MSG_BODY_LEN];

 dwPropIdCount++;

3. Set the MQMSGPROPS structure.
// Set the MQMSGPROPS structure.
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

4. Create Event object using overlapped structure.
OVERLAPPED *pov = new OVERLAPPED ;
pov->hEvent = CreateEvent(0, TRUE, TRUE, 0);

5. Read message from the queue.
hr = MQReceiveMessage(
        hQueue,  // handle to the Queue.
        5 * 60 * 1000,                            // Max time (msec) to wait.
        MQ_ACTION_RECEIVE,                    // Action.
        pMsgProps,                                    // Properties to retrieve.
        pov,  // Overlapped structure.
        NULL,  // Callback function.
        NULL,  // No Cursor.
        NULL  // No transaction
                           );

6. Write Windows Event handler (typically a separate thread) and close handle to overlapped structure.
if(hr == MQ_INFORMATION_OPERATION_PENDING)
{
        WaitForSingleObject(pov->hEvent, INFINITE);
//
// Parse recieved results
//
}

CloseHandle(pov->hEvent);

Windows Event Mechanism Example
The following example opens a queue with receive access, specifies the body of the message as the
only message property to retrieve, then uses a Windows Event mechanism to read the first message of
the queue.

//////////////
// Open Queue
//////////////

HRESULT hr;
QUEUEHANDLE hQueue;

hr = MQOpenQueue(
          szwFormatNameBuffer,        // Format Name of the queue to be opened.
          MQ_RECEIVE_ACCESS,            // Access rights to the Queue.
          0,  // No receive Exclusive.
          &hQueue                                  // OUT: handle to the opened Queue.
                               );

if (FAILED(hr))
{
 // Error handler for MQOpenQueue.
}

MQMSGPROPS * pMsgProps;
MQPROPVARIANT *paVariant;
MSGPROPID * paPropId;
DWORD dwPropIdCount = 0;

//
//    The output parameters of an asynchronous call to MQReceiveMessage
//    should be kept intact until the operation completes, you cannot
//    free them or reuse them.
//
pMsgProps = new MQMSGPROPS;
paVariant = new MQPROPVARIANT[10];
paPropId = new MSGPROPID[10];

//
// Prepare the message properties to be retrieved.
///

// Set the PROPID_M_BODY property.
paPropId[dwPropIdCount] = PROPID_M_BODY;                                //PropId
paVariant[dwPropIdCount].vt = VT_VECTOR|VT_UI1;                  //Type
paVariant[dwPropIdCount].caub.cElems = MSG_BODY_LEN ;        //Value
paVariant[dwPropIdCount].caub.pElems = new unsigned char[MSG_BODY_LEN];

 dwPropIdCount++;

////////////////////////////////
// Set the MQMSGPROPS structure
///////////////////////////////

pMsgProps->cProp = dwPropIdCount;          //Number of properties.
pMsgProps->aPropID = paPropId;                //Ids of properties.
pMsgProps->aPropVar = paVariant;            //Values of properties.
pMsgProps->aStatus    = NULL;                      //No Error report.

///
//    Create Event object using overlapped
//    structure.
///

OVERLAPPED *pov = new OVERLAPPED ;
pov->hEvent = CreateEvent(0, TRUE, TRUE, 0);

///
//    Retrieve the message using overlapped
//    structure.
///

hr = MQReceiveMessage(
        hQueue,  // handle to the Queue.
        5 * 60 * 1000,                            // Max time (msec) to wait.
        MQ_ACTION_RECEIVE,                    // Action.
        pMsgProps,                                    // properties to retrieve.
        pov,  // Overlapped structure.
        NULL,  // No callback function.
        NULL,  // No Cursor.
        NULL  // No transaction
                           );

if (FAILED(hr))
        {
                //    Error handler for MQReceiveMessage.
        }

//////////////////////////////
// Windows Event handler.
//////////////////////////////

if (hr == MQ_INFORMATION_OPERATION_PENDING)
        {
                WaitForSingleObject(pov->hEvent, INFINITE);
        //
        // Parse recieved results
        //
        }

CloseHandle(pov->hEvent);
delete paVariant;    //Free resources.
delete paPropId;   

Reading Messages Using a Cursor
Cursors allow you to read a message that is not at the front of the queue. The cursor always maintains
its position relative to the message to which it points.

The two functions used to manage the cursor are MQCreateCursor and MQCloseCursor.
MQCreateCursor returns a cursor handle that is used in MQReceiveMessage, and MQCloseCursor
releases the cursor’s resources.

To find a specific message
1. Call MQOpenQueue to open the queue with either receive or peek access. Opening the queue for

receive access allows you to peek at the messages as well as receive them.
hr = MQOpenQueue(
        wszFormatNameBuffer,
        MQ_RECEIVE_ACCESS,
        0,
        &hQueue
       );

2. Call MQCreateCursor to create the cursor.
hr = MQCreateCursor(
      hQueue,                            //Queue handle
    &hCursor
   );

3. Specify the message properties you want to retrieve.
MQMSGPROPS MsgProps;
MQPROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;
       
#define MSG_BODY_LEN 500
unsigned char ucMsgBody[MSG_BODY_LEN];
DWORD dwAppspecificIndex;
       
// Set the PROPID_M_BODY property.
aPropId[PropIdCount] = PROPID_M_BODY;                              //PropId
aVariant[PropIdCount].vt = VT_VECTOR|VT_UI1;                //Type
aVariant[PropIdCount].caub.cElems = MSG_BODY_LEN;      //Value
aVariant[PropIdCount].caub.pElems = ucMsgBody;
PropIdCount++;
       
//Set the PROPID_M_APPSPECIFIC property.
aPropId[PropIdCount] = PROPID_M_APPSPECIFIC;              //PropId
aVariant[PropIdCount].vt = VT_UI4;                                  //Type
dwAppspecificIndex = PropIdCount;
PropIdCount++;
       
//Set the MQMSGPROPS structure.
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.
       

4. Call MQReceiveMessage until the message is found.

DWORD dwAction = MQ_ACTION_PEEK_CURRENT;    //Peek at first msg.
do
 {
 hr = MQReceiveMessage(
        hQueue,                          // handle to the Queue.
        5 * 60 * 1000,            // Max time (msec) to wait for msg.
        dwAction,                      // Action.
        &MsgProps,                    // properties to retrieve.
        NULL,                              // No overlapped structure.
        NULL,                              // No callback function.
        hCursor,                        // Cursor handle.
        NULL                                // No transaction.
);
 if (FAILED(hr))
 {
 //    Handle failure
 }
       
 dwAction = MQ_ACTION_PEEK_NEXT;    //Peek at next message.
} while (MsgProps.aPropVar[dwAppspecificIndex].ulVal != 1);
       

5. Call MQCloseCursor to release the cursor handle’s resources.
hr = MQCloseCursor(
    hCursor                //Cursor handle
   );
       

Examples
The following example locates a message whose application-specific property is equal to 1. It uses
MQ_PEEK_CURRENT to look at the first message in the queue, then uses MQ_PEEK_NEXT to look
at the next message in the queue. MQ_PEEK_NEXT looks at the next message, and then moves the
cursor.

        HRESULT hr;
        QUEUEHANDLE hQueue;
       
       
        //////////////////////////////////
        // Open queue with receive access.
        /////////////////////////////////
        hr = MQOpenQueue(
                wszFormatNameBuffer,
                MQ_RECEIVE_ACCESS,
                0,
                &hQueue
               );
        if (FAILED(hr))
        {
        //
        //    Handle failure
        //
        }
       
       
        //////////////////////////////////

        // Create the cursor.
        /////////////////////////////////
        HANDLE hCursor;
       
        hr = MQCreateCursor(
              hQueue,                            //Queue handle
            &hCursor
           );
        if (FAILED(hr))
        {
        //
        //    Handle failure
        //
        }
       
       
        //
        // Specify the message properties you
        // want to retrieve.
        ///////////////////////////////////////
       
        MQMSGPROPS MsgProps;
        MQPROPVARIANT aVariant[10];
        MSGPROPID aPropId[10];
        DWORD PropIdCount = 0;
       
        #define MSG_BODY_LEN 500
        unsigned char ucMsgBody[MSG_BODY_LEN];
        DWORD dwAppspecificIndex;
       
        // Set the PROPID_M_BODY property.
        aPropId[PropIdCount] = PROPID_M_BODY;                              //PropId
        aVariant[PropIdCount].vt = VT_VECTOR|VT_UI1;                //Type
        aVariant[PropIdCount].caub.cElems = MSG_BODY_LEN;      //Value
        aVariant[PropIdCount].caub.pElems = ucMsgBody;
        PropIdCount++;
       
        //Set the PROPID_M_APPSPECIFIC property.
        aPropId[PropIdCount] = PROPID_M_APPSPECIFIC;              //PropId
        aVariant[PropIdCount].vt = VT_UI4;                                  //Type
        dwAppspecificIndex = PropIdCount;                                    //Value
        PropIdCount++;
       
        //Set the MQMSGPROPS structure.
        MsgProps.cProp = PropIdCount;              //Number of properties.
        MsgProps.aPropID = aPropId;                  //Ids of properties.
        MsgProps.aPropVar = aVariant;              //Values of properties.
        MsgProps.aStatus    = NULL;                      //No Error report.
       
       
        ///////////////////////////////////
        // Peek until you find the message
        // where APPSPECIFIC = 1.
        ///////////////////////////////////
       

        DWORD dwAction = MQ_ACTION_PEEK_CURRENT;    //Peek at first msg.
        do
          {
          hr = MQReceiveMessage(
                hQueue,                          // handle to the Queue.
                5 * 60 * 1000,            // Max time (msec) to wait for msg.
                dwAction,                      // Action.
                &MsgProps,                    // properties to retrieve.
                NULL,                              // No overlapped structure.
                NULL,                              // No callback function.
                hCursor,                        // Cursor handle.
                NULL                                // No transaction.
         );
          if (FAILED(hr))
          {
          //    Handle failure
          break;
          }
       
          dwAction = MQ_ACTION_PEEK_NEXT;    //Peek at next message.
        } while (MsgProps.aPropVar[dwAppspecificIndex].ulVal != 1);
       
        hr = MQCloseCursor(
                  hCursor
               );
       

Reading Messages in a Dead Letter Queue
Reading messages in a dead letter queue is typically a three-function operation: a call to
MQGetMachineProperties to retrieve the local computer identifier (its machine GUID), a call to
MQOpenQueue to open the queue with receive access, and a call to MQReceiveMessage to read the
message.

To read a message in a dead letter queue
1. Define an MQQMProps structure that includes PROPID_QM_MACHINE_ID.

MQQMPROPS QMProps;
MQPROPVARIANT Variant;
MSGPROPID PropId;
GUID        guidMachineId;
       
PropId = PROPID_QM_MACHINE_ID;                                  //PropId
Variant.vt = VT_CLSID;  //Type
Variant.puuid = &guidMachineId;                                //Value
       
QMProps.cProp = 1;                                //Number of properties.
QMProps.aPropID = &PropId;                //Id of property.
QMProps.aPropVar = &Variant;            //Value of property.
QMProps.aStatus    = NULL;                    //No Error report.

2. Call MQGetMachineProperties to retrieve the machine identifier (PROPID_QM_MACHINE_ID) of
the local computer.
hr = MQGetMachineProperties(
                NULL,
                NULL,
                &QMProps
               );
if (FAILED(hr))

3. Translate the machine GUID into a string.
WCHAR wszMachineGuid[40];
TBYTE* pszUuid = 0;
if(UuidToString(&guidMachineId, &pszUuid) != RPC_S_OK)
{
    //    Handle failure
}
else
{
        wcscpy(wszMachineGuid, pszUuid);
        RpcStringFree(&pszUuid);
}

4. Prepare the format name of the dead letter queue.
wsprintf(wszFormatNameBuffer,
                    L"MACHINE=%s%s",
                    wszMachineGuid,
                    L";DEADLETTER"
                   );

5. Call MQOpenQueue and open the queue with receive access.
QUEUEHANDLE hQueue;

       
hr = MQOpenQueue(
        wszFormatNameBuffer,
        MQ_RECEIVE_ACCESS,
        0,
        &hQueue
       );
if (FAILED(hr))

6. Define an MQMSGProps structure for the message properties to be retrieved.
MQMSGPROPS MsgProps;
MQPROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;
       
// Prepare property array (PROPVARIANT).
#define MSG_BODY_LEN 500
unsigned char ucMsgBody[MSG_BODY_LEN];
DWORD dwAppspecificIndex;
       
// Set the PROPID_M_BODY property.
aPropId[PropIdCount] = PROPID_M_BODY;                                  //PropId
aVariant[PropIdCount].vt = VT_VECTOR|VT_UI1;                    //Type
aVariant[PropIdCount].caub.cElems = MSG_BODY_LEN;          //Value
aVariant[PropIdCount].caub.pElems = ucMsgBody;
     
PropIdCount++;
       
// Set the MQMSGPROPS structure
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

7. Call MQReceiveMessage and retrieve the messages in the queue. The following call retrieves the
first message in the queue.
hr = MQReceiveMessage(
          hQueue,                              // handle to the Queue.
          5 * 60 * 1000,                // Max time (msec) to wait for message.
          MQ_ACTION_RECEIVE,        // Action.
          &MsgProps,                        // properties to retrieve.
        NULL,                                    // No overlapped structure.
        NULL,                                    // No callback function.
        NULL,                                    // NO cursor.
        NULL                                      // No transaction
       );
if (FAILED(hr))

Example
The following example opens a dead letter queue and retrieves the message body of the first message
in the queue.

        HRESULT hr;

        #define FORMAT_NAME_LEN 80
        WCHAR wszFormatNameBuffer[FORMAT_NAME_LEN];
         
        //////////////////////////////////
        //    Define an MQQMPROPS structure
        //    for PROPID_QM_MACHINE_ID.
        //////////////////////////////////
       
        MQQMPROPS QMProps;
        MQPROPVARIANT Variant;
        MSGPROPID PropId;
        GUID        guidMachineId;
       
        // Set the PROPID_QM_MACHINE_ID property.
        PropId = PROPID_QM_MACHINE_ID;                                  //PropId
        Variant.vt = VT_CLSID;  //Type
        Variant.puuid = &guidMachineId;                                //Value
       
        // Set the MQQMPROPS structure
        QMProps.cProp = 1;                                //Number of properties.
        QMProps.aPropID = &PropId;                //Id of properties.
        QMProps.aPropVar = &Variant;            //Value of properties.
        QMProps.aStatus    = NULL;                    //No Error report.
       
       
        /////////////////////////////////////
        //    Retrieving the identifier of the
        //    local computer (machine GUID).
        //////////////////////////////////////
        hr = MQGetMachineProperties(
                      NULL,
                      NULL,
                      &QMProps
                     );
        if (FAILED(hr))
        {
                //
                //    Handle failure
                //
        }
       
       
        ///////////////////////////////////
        //    Translating the machine GUID
        //    into a string
        //////////////////////////////////
        WCHAR wszMachineGuid[40];
        WBYTE* pszUuid = 0;
        if(UuidToString(&guidMachineId, &pszUuid) != RPC_S_OK)
        {
                //
                //    Handle failure
                //
        }
        else

        {
                wcscpy(wszMachineGuid, pszUuid);
                RpcStringFree(&pszUuid);
        }
       
       
        ////////////////////////////////
        //    Preparing the format name of
        //    the dead letter queue.
        ///////////////////////////////
        wsprintf(wszFormatNameBuffer,
                            L"MACHINE=%s%s",
                            wszMachineGuid,
                            L";DEADLETTER"
                           );
       
       
        //////////////////////////////
        //    Open the queue for receive
        //////////////////////////////
       
        QUEUEHANDLE hQueue;
       
        hr = MQOpenQueue(
                wszFormatNameBuffer,
                MQ_RECEIVE_ACCESS,
                0,
                &hQueue
               );
        if (FAILED(hr))
        {
                //
                //    Handle failure
                //
        }

        //////////////////////////////////
        //    Define an MQMSGPROPS structure
        //    for the message properties to
        //    be retrieved.
        //////////////////////////////////
       
        MQMSGPROPS MsgProps;
        MQPROPVARIANT aVariant[10];
        MSGPROPID aPropId[10];
        DWORD PropIdCount = 0;
       
        // Prepare property array (PROPVARIANT).
        #define MSG_BODY_LEN 500
        unsigned char ucMsgBody[MSG_BODY_LEN];
        DWORD dwAppspecificIndex;
       
        // Set the PROPID_M_BODY property.
        aPropId[PropIdCount] = PROPID_M_BODY;                                  //PropId
        aVariant[PropIdCount].vt = VT_VECTOR|VT_UI1;                    //Type

        aVariant[PropIdCount].caub.cElems = MSG_BODY_LEN;          //Value
        aVariant[PropIdCount].caub.pElems = ucMsgBody;
       
        PropIdCount++;
       
        // Set the MQMSGPROPS structure
        MsgProps.cProp = PropIdCount;              //Number of properties.
        MsgProps.aPropID = aPropId;                  //Ids of properties.
        MsgProps.aPropVar = aVariant;              //Values of properties.
        MsgProps.aStatus    = NULL;                      //No Error report.

        /////////////////////////////////////
        // Read first message in dead
        // letter queue.
        /////////////////////////////////////

        hr = MQReceiveMessage(
                  hQueue,                              // handle to the Queue.
                  5 * 60 * 1000,                // Max time (msec) to wait for message.
                  MQ_ACTION_RECEIVE,        // Action.
                  &MsgProps,                        // properties to retrieve.
                NULL,                                    // No overlapped structure.
                NULL,                                    // No callback function.
                NULL,                                    // NO cursor.
                NULL                                      // No transaction
               );
        if (FAILED(hr))
        {
        //
        //    Handle failure
        //
        }

Reading Messages in a Machine Journal
To read the messages in a machine journal is typically a three-function operation: a call to
MQGetMachineProperties to retrieve the local computer identifier (its machine GUID), a call to
MQOpenQueue to open the queue with receive access, and a call to MQReceiveMessage to read the
message.

To read messages in a machine journal
1. Prepare the format name of the queue. This includes defining an MQQMProps structure, retrieving

the machine identifier, translating the machine identifier into a string, and constructing the format
name.

2. Define an MQQMProps structure that includes PROPID_QM_MACHINE_ID.
MQQMPROPS QMProps;
MQPROPVARIANT Variant;
MSGPROPID PropId;
GUID        guidMachineId;
       
PropId = PROPID_QM_MACHINE_ID;                                  //PropId
Variant.vt = VT_CLSID;  //Type
Variant.puuid = &guidMachineId;                                //Value
       
QMProps.cProp = 1;                                //Number of properties.
QMProps.aPropID = &PropId;                //Id of properties.
QMProps.aPropVar = &Variant;            //Value of properties.
QMProps.aStatus    = NULL;                    //No Error report.

3. Call MQGetMachineProperties to retrieve the machine identifier (PROPID_QM_MACHINE_ID) of
the local computer.
hr = MQGetMachineProperties(
                NULL,
                NULL,
                &QMProps
               );
if (FAILED(hr))

4. Translate the machine GUID into a string.
WCHAR wszMachineGuid[40];
TBYTE* pszUuid = 0;
if(UuidToString(&guidMachineId, &pszUuid) != RPC_S_OK)
{
    //    Handle failure
}
else
{
        wcscpy(wszMachineGuid, pszUuid);
        RpcStringFree(&pszUuid);
}

5. Construct the format name of the queue.
wsprintf(wszFormatNameBuffer,
                    L"MACHINE=%s;JOURNAL",
                    wszMachineGuid
                   );

6. Call MQOpenQueue and open the queue with receive access.

QUEUEHANDLE hQueue;
       
hr = MQOpenQueue(
        wszFormatNameBuffer,
        MQ_RECEIVE_ACCESS,
        0,
        &hQueue
       );
if (FAILED(hr))

7. Define an MQMSGProps structure for the message properties to be retrieved.
MQMSGPROPS MsgProps;
MQPROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;
       
// Prepare property array (PROPVARIANT).
#define MSG_BODY_LEN 500
unsigned char ucMsgBody[MSG_BODY_LEN];
DWORD dwAppspecificIndex;
       
// Set the PROPID_M_BODY property.
aPropId[PropIdCount] = PROPID_M_BODY;                                  //PropId
aVariant[PropIdCount].vt = VT_VECTOR|VT_UI1;                    //Type
aVariant[PropIdCount].caub.cElems = MSG_BODY_LEN;          //Value
aVariant[PropIdCount].caub.pElems = ucMsgBody;
       
PropIdCount++;
       
// Set the MQMSGPROPS structure
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

8. Call MQReceiveMessage and retrieve the messages in the queue. The following call retrieves the
first message in the queue.
hr = MQReceiveMessage(
          hQueue,                              // handle to the Queue.
          5 * 60 * 1000,                // Max time (msec) to wait for message.
          MQ_ACTION_RECEIVE,        // Action.
          &MsgProps,                        // properties to retrieve.
        NULL,                                    // No overlapped structure.
        NULL,                                    // No callback function.
        NULL,                                    // NO cursor.
        NULL                                      // No transaction
       );
if (FAILED(hr))

Example
The following example opens a machine journal queue and retrieves the message body of the first
message in the queue.

        HRESULT hr;
        #define FORMAT_NAME_LEN 80
        WCHAR wszFormatNameBuffer[FORMAT_NAME_LEN];
         
        //////////////////////////////////
        //    Define an MQQMPROPS structure
        //    for PROPID_QM_MACHINE_ID.
        //////////////////////////////////
       
        MQQMPROPS QMProps;
        MQPROPVARIANT Variant;
        MSGPROPID PropId;
        GUID        guidMachineId;
       
        // Set the PROPID_QM_MACHINE_ID property.
        PropId = PROPID_QM_MACHINE_ID;                                  //PropId
        Variant.vt = VT_CLSID;  //Type
        Variant.puuid = &guidMachineId;                                //Value
       
        // Set the MQQMPROPS structure
        QMProps.cProp = 1;                                //Number of properties.
        QMProps.aPropID = &PropId;                //Id of properties.
        QMProps.aPropVar = &Variant;            //Value of properties.
        QMProps.aStatus    = NULL;                    //No Error report.
       
       
        /////////////////////////////////////
        //    Retrieving the identifier of the
        //    local computer (machine GUID).
        //////////////////////////////////////
        hr = MQGetMachineProperties(
                      NULL,
                      NULL,
                      &QMProps
                     );
        if (FAILED(hr))
        {
                //
                //    Handle failure
                //
        }
       
       
        ///////////////////////////////////
        //    Translating the machine GUID
        //    into a string
        //////////////////////////////////
        WCHAR wszMachineGuid[40];
        TBYTE* pszUuid = 0;
        if(UuidToString(&guidMachineId, &pszUuid) != RPC_S_OK)
        {
                //
                //    Handle failure
                //
        }

        else
        {
                wcscpy(wszMachineGuid, pszUuid);
                RpcStringFree(&pszUuid);
        }
       
       
        ///////////////////////////////
        //    Prepare the format name
        //    of the machine journal.
        ///////////////////////////////
        wsprintf(wszFormatNameBuffer,
                            L"MACHINE=%s%s",
                            wszMachineGuid,
                            L";JOURNAL"
                           );
       
       
        //////////////////////////////
        // Open the queue for receive.
        //////////////////////////////
        QUEUEHANDLE hQueue;
       
        hr = MQOpenQueue(
                wszFormatNameBuffer,
                MQ_RECEIVE_ACCESS,
                0,
                &hQueue
               );
        if (FAILED(hr))
        {
                //
                //    Handle failure
                //
        }
       
       
        //////////////////////////////////
        // Define an MQMSGPROPS structure
        // for the message properties to
        // be retrieved.
        /////////////////////////////////

        MQMSGPROPS MsgProps;
        MQPROPVARIANT aVariant[10];
        MSGPROPID aPropId[10];
        DWORD PropIdCount = 0;
       
        //Prepare the property array (PROPVARIANT)
        #define MSG_BODY_LEN 500
        unsigned char ucMsgBody[MSG_BODY_LEN];
        DWORD dwAppspecificIndex;
       
        // Set the PROPID_M_BODY property.
        aPropId[PropIdCount] = PROPID_M_BODY;                          //PropId

        aVariant[PropIdCount].vt = VT_VECTOR|VT_UI1;            //Type
        aVariant[PropIdCount].caub.cElems = MSG_BODY_LEN    //Value
        aVariant[PropIdCount].caub.pElems = ucMsgBody;

        PropIdCount++;

        // Set the MQMSGPROPS structure
        MsgProps.cProp = PropIdCount;              //Number of properties.
        MsgProps.aPropID = aPropId;                  //Ids of properties.
        MsgProps.aPropVar = aVariant;              //Values of properties.
        MsgProps.aStatus    = NULL;                      //No Error report.
       
       
        ////////////////////////////
        // Read first message in
        // machine journal queue.
        ///////////////////////////
       
        hr = MQReceiveMessage(
                hQueue,                          // handle to the Queue.
                5 * 60 * 1000,            // Max time (msec) to wait for message.
                MQ_ACTION_RECEIVE,    // Action.
                &MsgProps,                    // properties to retrieve.
                NULL,                              // No overlapped structure.
                NULL,                              // No callback function.
                NULL,                              // NO cursor.
                NULL                                // No transaction
               );
        if (FAILED(hr))
        {
        //
        //    Handle failure
        //
        }

Reading Messages in a Queue Journal
The functions used to read messages in a queue journal are the same as those used to read
messages in other queues. The only difference is that the format name used to open the queue journal
has a special format.

To read messages in a queue journal
1. Obtain the queue journal’s format name.

wsprintf(wszFormatNameBuffer,
                    L"%s;JOURNAL",
                    QueueFormatName
                   );         
       

2. Call MQOpenQueue to open the queue with receive access.
QUEUEHANDLE hQueue;
hr= MQOpenQueue(
        wszFormatNameBuffer,
        MQ_RECEIVE_ACCESS,
        0,
        &hQueue
       );
if (FAILED(hr))
{
 //    Handle failure
}
       

3. Specify the message properties to be retrieved.
MQMSGPROPS MsgProps;
MQPROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;
#define MSG_BODY_LEN 500
unsigned char ucMsgBody[MSG_BODY_LEN];
DWORD dwAppspecificIndex;
       
// Set the PROPID_M_BODY property.
aPropId[PropIdCount] = PROPID_M_BODY;                          //PropId
aVariant[PropIdCount].vt = VT_VECTOR|VT_UI1;            //Type
aVariant[PropIdCount].caub.cElems = MSG_BODY_LEN; //Value
aVariant[PropIdCount].caub.pElems = ucMsgBody;
PropIdCount++;
       
// Set the MQMSGPROPS structure
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.
       

4. Call MQReceiveMessage to read the first message in the queue.
hr = MQReceiveMessage(
          hQueue,                            // handle to the Queue.
          5 * 60 * 1000,              // Max time (msec) to wait for msg.
          MQ_ACTION_RECEIVE,      // Action.
          &MsgProps,                      // properties to retrieve.

          NULL,                                // No overlapped structure.
          NULL,                                // No callback function.
          NULL,                                // NO cursor.
          NULL                                  // No transaction.
       );
       

Example
This example reads the first message in the queue journal. It takes the queue’s identifier (GUID),
translates it into a string and, prepares the format name of the queue using the translated string, then
opens the queue and reads the first message.

        HRESULT hr;
        #define FORMAT_NAME_LEN 80
        WCHAR wszFormatNameBuffer[FORMAT_NAME_LEN];
        DWORD dwFormatLen = FORMAT_NAME_LEN;
       
       
        wsprintf(wszFormatNameBuffer,
                    L"%s;JOURNAL",
                    QueueFormatName
                   );         
               
        ///////////////////////////////////
        // Open queue with receive access.
        ///////////////////////////////////
       
        QUEUEHANDLE hQueue;
        hr= MQOpenQueue(
                wszFormatNameBuffer,
                MQ_RECEIVE_ACCESS,
                0,
                &hQueue
               );
        if (FAILED(hr))
        {
          //    Handle failure
        }
       
       
        ///////////////////////////////////
        // Specify the message properties
        // you want to receive.
        ///////////////////////////////////
       
        MQMSGPROPS MsgProps;
        MQPROPVARIANT aVariant[10];
        MSGPROPID aPropId[10];
        DWORD PropIdCount = 0;
        #define MSG_BODY_LEN 500
        unsigned char ucMsgBody[MSG_BODY_LEN];
        DWORD dwAppspecificIndex;
       
        // Set the PROPID_M_BODY property.
        aPropId[PropIdCount] = PROPID_M_BODY;                          //PropId

        aVariant[PropIdCount].vt = VT_VECTOR|VT_UI1;            //Type
        aVariant[PropIdCount].caub.cElems = MSG_BODY_LEN; //Value
        aVariant[PropIdCount].caub.pElems = ucMsgBody;
        PropIdCount++;
       
        // Set the MQMSGPROPS structure
        MsgProps.cProp = PropIdCount;              //Number of properties.
        MsgProps.aPropID = aPropId;                  //Ids of properties.
        MsgProps.aPropVar = aVariant;              //Values of properties.
        MsgProps.aStatus    = NULL;                      //No Error report.
       
       
        //////////////////////////
        // Read a message.
        //////////////////////////

        hr = MQReceiveMessage(
                  hQueue,                            // handle to the Queue.
                  5 * 60 * 1000,              // Max time (msec) to wait for msg.
                  MQ_ACTION_RECEIVE,      // Action.
                  &MsgProps,                      // properties to retrieve.
                  NULL,                                // No overlapped structure.
                  NULL,                                // No callback function.
                  NULL,                                // NO cursor.
                  NULL                                  // No transaction.
               );
        if (FAILED(hr))
        {
          //Handle failure
        }
         

Returning an Acknowledgment Message by a
Connector Application
Acknowledgment messages returned by the connector application must be sent to the administration
queue specified by the original message. Several properties must be set to the acknowledgment
message values shown below and others should be set to the values specified by the original
message.

The following properties must be set to acknowledgment message values shown below.

Property Setting
PROPID_M_ACKNOWLEDGE MQMSG_ACKNOWLEDGMENT

_NONE
PROPID_M_AUTH_LEVEL MQMSG_AUTH_LEVEL_NONE
PROPID_M_BODY For positive acknowledgments

set to NULL. For negative
acknowledgments (with the
exception of encrypted message
bodies), set to the body of the
original message.

PROPID_M_CORRELATIONID Message identifier of original
message.

PROPID_M_CLASS Appropriate acknowledgment
class.

PROPID_M_JOURNAL MQMSG_JOURNAL_NONE
PROPID_M_RESP_QUEUE Destination queue of the original

message.
PROPID_M_TIME_TO_BE_RECEIVED INFINITE
PROPID_M_TIME_TO_REACH_QUEUE INFINITE

All the other properties are set to the same values as the original message.

To send an acknowledgment message
1. Open the administration queue specified by the original application.

hr = MQOpenQueue(lpstrAdminQueue,MQ_SEND_ACCESS,0, &hQueue);
if (FAILED(hr))
{
// Handle failure
// Return hr;
}

2. Set the acknowledgment default value required by MSMQ.
aPropID[cProp] = PROPID_M_CLASS;
aPropVar[cProp].vt = VT_UI2;
aPropVar[cProp].uiVal = AckValue;
cProp++;

aPropID[cProp] = PROPID_M_ACKNOWLEDGE;
aPropVar[cProp].vt = VT_UI1;
aPropVar[cProp].bVal = MQMSG_ACKNOWLEDGMENT_NONE;
cProp++;

aPropID[cProp] = PROPID_M_TIME_TO_BE_RECEIVED;
aPropVar[cProp].vt = VT_UI4;
aPropVar[cProp].ulVal = INFINITE;
cProp++;

aPropID[cProp] = PROPID_M_TIME_TO_REACH_QUEUE;
aPropVar[cProp].vt = VT_UI4;
aPropVar[cProp].ulVal = INFINITE;
cProp++;

aPropID[cProp] = MQMSG_JOURNAL_NONE;
aPropVar[cProp].vt = VT_UI1;
aPropVar[cProp].bVal = pMsgProps->aPropVar[i].bVal;
cProp++;

3. Set the remaining message properties. Set PROPID_M_BODY, PROPID_M_CORRELATIONID,
PROPID_M_CLASS, and PROPID_M_RESP_QUEUE to the values specified above.

4. Set PROPID_M_CONNECTION_TYPE. This tells the application reading the acknowledgment
message that the message was not created by MSMQ.
aPropID[cProp] = PROPID_M_CONNECTOR_TYPE;
aPropVar[cProp].vt = VT_CLSID;
aPropVar[cProp].puuid = &g_gConnectorType;
cProp++;

5. Call MQSendMessage to send the message.
hr = MQSendMessage(hQueue, &SendMsgProp, NULL);

Example
The following example creates an acknowledgment message and sends it back to the administration
queue specified by the original message. It assumes that the format name of the administration queue
(lpstrAdimQueue), all original message properties (pMsgProps), and the value of the acknowledgment
(ackValue) are all available.

        HRESULT CreateAck(LPWSTR lpstrAdminQueue,
  USHORT AckValue,
  MQMSGPROPS* pMsgProps
 )
       
        {
        MQMSGPROPS SendMsgProp;
        MSGPROPID          aPropID[40];
        MQPROPVARIANT    aPropVar[40];
        HRESULT                aStatus[40];
        HRESULT                hr;
        HANDLE hQueue = NULL;
        DWORD cProp = 0;
         
        //////////////////////////////////
        // Open the administration queue
        // specified by the original message.
        /////////////////////////////////
        hr = MQOpenQueue(lpstrAdminQueue,MQ_SEND_ACCESS,0, &hQueue);
        if (FAILED(hr))
        {

        // Handle failure
        // Return hr;
        }
       
        DWORD dwExtensionMsgSize = 0;
        DWORD dwSenderidLen = 0;
        DWORD dwBodySize = 0;
        BOOL fEncrypted = FALSE;
        DWORD i;
       
       
        //
        // Set the acknowledgment message default values.
        //
        aPropID[cProp] = PROPID_M_CLASS;
        aPropVar[cProp].vt = VT_UI2;
        aPropVar[cProp].uiVal = AckValue;
        cProp++;

        aPropID[cProp] = PROPID_M_ACKNOWLEDGE;
        aPropVar[cProp].vt = VT_UI1;
        aPropVar[cProp].bVal = MQMSG_ACKNOWLEDGMENT_NONE;
        cProp++;

        aPropID[cProp] = PROPID_M_TIME_TO_BE_RECEIVED;
        aPropVar[cProp].vt = VT_UI4;
        aPropVar[cProp].ulVal = INFINITE;
        cProp++;

        aPropID[cProp] = PROPID_M_TIME_TO_REACH_QUEUE;
        aPropVar[cProp].vt = VT_UI4;
        aPropVar[cProp].ulVal = INFINITE;
        cProp++;

        aPropID[cProp] = MQMSG_JOURNAL_NONE;
        aPropVar[cProp].vt = VT_UI1;
        aPropVar[cProp].bVal = pMsgProps->aPropVar[i].bVal;
        cProp++;
       
       
        //////////////////////////////////////
        // Set all other message properties to
        // the values of the original message.
        //////////////////////////////////////
       
       
        // Get size and length of properties.
       
        for (i = 0; i < pMsgProps->cProp ; i++)
        {
                switch(pMsgProps->aPropID[i])
                {
                        case PROPID_M_EXTENSION:
                                  dwExtensionMsgSize = pMsgProps->aPropVar[i].ulVal;       
                                  break;

                                 
                        case PROPID_M_SENDERID_LEN:
                                  dwSenderidLen = pMsgProps->aPropVar[i].ulVal;
                                  break;
                                 
                        case PROPID_M_BODY_SIZE:
                                  dwBodySize = pMsgProps->aPropVar[i].ulVal;
                                  break;
                                 
                        case PROPID_M_PRIV_LEVEL:
                                  fEncrypted = (pMsgProps->aPropVar[i].ulVal ==
MQMSG_PRIV_LEVEL_BODY);
                                  break;
                                 
                                  default:
                                  break;
                }
      }
       
        for (i = 0; i < pMsgProps->cProp ; i++)
        {
        switch (pMsgProps->aPropID[i])
        {
       
                          // Set correlation identifier
                        case PROPID_M_MSGID:
                                aPropID[cProp] = PROPID_M_CORRELATIONID;
                                aPropVar[cProp].vt = VT_UI1|VT_VECTOR;
                                aPropVar[cProp].caub.cElems = pMsgProps->aPropVar[i].caub.cElems;
                                aPropVar[cProp].caub.pElems = pMsgProps->aPropVar[i].caub.pElems;
                                cProp++;
                                break;
                       
                        // Set message priority.
                        case PROPID_M_PRIORITY:
                                aPropID[cProp] = PROPID_M_PRIORITY;
                                aPropVar[cProp].vt = VT_UI1;
                                aPropVar[cProp].bVal = pMsgProps->aPropVar[i].bVal;
                                cProp++;
                                break;
                       
                        // Set delivery mode.
                        case PROPID_M_DELIVERY:
                                aPropID[cProp] = PROPID_M_DELIVERY;
                                aPropVar[cProp].vt = VT_UI1;
                                aPropVar[cProp].bVal = pMsgProps->aPropVar[i].bVal;
                                cProp++;
                                break;
                       
                        // Set application specific information
                      case PROPID_M_APPSPECIFIC:
                                aPropID[cProp] = PROPID_M_APPSPECIFIC;
                                aPropVar[cProp].vt = VT_UI4;
                                aPropVar[cProp].ulVal = pMsgProps->aPropVar[i].ulVal;
                                cProp++;

                                break;
                       
                        // Set message label to the same
                        case PROPID_M_LABEL:
                                aPropID[cProp] = PROPID_M_LABEL;
                                aPropVar[cProp].vt = VT_LPWSTR;
                                aPropVar[cProp].pwszVal = pMsgProps->aPropVar[i].pwszVal;
                                cProp++;
                                break;
                        //
                       
                        // Set extension information.
                      case PROPID_M_EXTENSION:
                                aPropID[cProp] = PROPID_M_EXTENSION;
                                aPropVar[cProp].vt = VT_UI1|VT_VECTOR;
                                aPropVar[cProp].caub.cElems = dwExtensionMsgSize;
                                aPropVar[cProp].caub.pElems = pMsgProps->aPropVar[i].caub.pElems;
                                cProp++;
                                break;
                       
                        // Set acknowledge message response queue to
                        // the destination queue of the original message.
                      case PROPID_M_DEST_QUEUE:
                                aPropID[cProp] = PROPID_M_RESP_QUEUE;
                                aPropVar[cProp].vt = VT_LPWSTR;
                                aPropVar[cProp].pwszVal = pMsgProps->aPropVar[i].pwszVal;
                                cProp++;                     
                                break;
                       
                        //
                        // Set message body. If acknowledge is negative
                        // and the original message isn’t encrypted, add
                        // message body of original message.
                        //
                        case PROPID_M_BODY:
                                if (MQCLASS_NACK(AckValue) && ! fEncrypted)
                                {
  aPropID[cProp] = PROPID_M_BODY;
  aPropVar[cProp].vt = VT_UI1|VT_VECTOR;
  aPropVar[cProp].caub.cElems = dwBodySize;
  aPropVar[cProp].caub.pElems = pMsgProps->aPropVar[i].caub.pElems;
  cProp++;
                                }
                                break;

                        default:
                                break;
                }
        }
       
       
        //
        // Set the connector type identifier (GUID) to
        // indicate who generated the acknowledge message.
        //

        aPropID[cProp] = PROPID_M_CONNECTOR_TYPE;
        aPropVar[cProp].vt = VT_CLSID;
        aPropVar[cProp].puuid = &g_gConnectorType;
        cProp++;

        SendMsgProp.aStatus = aStatus;
        SendMsgProp.aPropID = aPropID;
        SendMsgProp.aPropVar = aPropVar;
        SendMsgProp.cProp =cProp;

        //
        // Send the acknowledge message back to the
        // administration queue specified by the
        // original message.
        ///
        hr = MQSendMessage(hQueue, &SendMsgProp, NULL);
       
        MQCloseQueue(hQueue);

        return hr;
}

Retrieving a Queue's Properties Using API
Functions
After a queue is created, its properties can be retrieved at any time by calling
MQGetQueueProperties. All queue properties can be retrieved; however, you can only retrieve the
properties of private queues if they are located on your local computer.

Note Properties of public queues can also be retrieved by doing a query on the MQIS. For details,
see Locating a Public Queue.

In most cases, any application can retrieve a queue's properties. However, if
MQ_ERROR_ACCESS_DENIED is returned to the MQGetQueueProperties call, the queue's access
control is blocking the application from retrieving its properties. For information setting a queue's
access rights, see Setting Access Control Security for a Queue.

To retrieve a queue's properties
1. Obtain the format name of the queue. If the format name of the queue is not known, you can obtain

its format name by using one of the following format name translation functions:
MQHandleToFormatName
MQInstanceToFormatName
MQPathNameToFormatName.

2. Specify the properties you want to retrieve.
3. Call MQGetQueueProperties.

For more information about setting properties, see Setting a Queue's Properties Using API Functions.

Queue Properties
All properties of a queue can be retrieved. However, you can only retrieve the properties of a private
queue if it is located on your local machine.

PROPID_Q_AUTHENTICATE

PROPID_Q_BASEPRIORITY (public queues only)

PROPID_Q_CREATE_TIME

PROPID_Q_INSTANCE (public queues only)

PROPID_Q_JOURNAL

PROPID_Q_JOURNAL_QUOTA

PROPID_Q_LABEL

PROPID_Q_MODIFY_TIME

PROPID_Q_PATHNAME

PROPID_Q_PRIV_LEVEL

PROPID_Q_QUOTA

PROPID_Q_TRANSACTION

PROPID_Q_TYPE

Setting a Queue's Properties Using API
Functions
The properties of a queue can be dynamically set by calling MQSetQueueProperties. All open
instances of the queue are immediately affected when MQSetQueueProperties is called.

Note In most cases, any application can set a queue's properties. However, if
MQ_ERROR_ACCESS_DENIED is returned to the MQSetQueueProperties call, the queue's access
control is blocking the application from setting its properties. For information about access rights, see
Access Control.

Not all properties can be set by MQSetQueueProperties. The following tables indicates which
properties can be set and which cannot.

Property Set by MQSetQueueProperties
PROPID_Q_AUTHENTICATE Yes
PROPID_Q_BASEPRIORITY Yes
PROPID_Q_CREATE_TIME No (set by MSMQ when queue

created)
PROPID_Q_INSTANCE No (set by MSMQ when public

queue is created)
PROPID_Q_JOURNAL Yes
PROPID_Q_JOURNAL_QUOTA Yes
PROPID_Q_LABEL Yes
PROPID_Q_MODIFY_TIME No (set by MSMQ)
PROPID_Q_PATHNAME No (set when queue is created)
PROPID_Q_PRIV_LEVEL Yes

PROPID_Q_QUOTA Yes

PROPID_Q_TRANSACTION No (set when queue is created)

PROPID_Q_TYPE Yes

To set a queue's properties
1. Determine the format name of the queue. If the format name of the queue is not known, you can

obtain its format name by using one of the following format name translation functions:
MQHandleToFormatName,
MQInstanceToFormatName,
MQPathNameToFormatName.

2. Specify the properties you want to retrieve.
3. Call MQSetQueueProperties.

Authenticating Messages Using API Functions
MSMQ provides security services that allow applications to authenticate messages using an internal or
external certificate. Using an internal certificate allows an application to verify the security identifier
(SID) of the user sending the message but nothing more. Using an external certificate allows an
application to verify the sender's SID, plus other user information provided in the certificate.

For information on what MSMQ does to authenticate messages, see How MSMQ Authenticates
Messages.

For information on using an internal certificate, see Authenticating Messages Using an Internal
Certificate.

For information on using an external certificate, see Authenticating Messages Using an External
Certificate.

Authenticating Messages Using an Internal
Certificate
From an application perspective, authenticating messages using an internal certificate requires
registering the internal certificate with MSMQ, and setting the appropriate message properties. An
internal certificate is created the first time the MSMQ Control Panel utility is run.

The following procedures highlight what must be done by the sending computer to request
authentication using an internal certificate, and what the receiving application can do to determine if
MSMQ was able to authenticate the message.

To request authentication using an internal certificate
1. Register the internal certificate using the MSMQ Control Panel option.
2. Set PROPID_M_AUTH_LEVEL to MQMSG_AUTH_LEVEL_ALWAYS in the message properties.
3. Make sure PROPID_M_SENDER_CERT is not specified.
4. If you want to change the hash algorithm MSMQ uses to authenticate the message, set

PROPID_M_HASH_ALG (the default algorithm is CALG_MD5).
5. If you want MSMQ to return an acknowledgment to show that the message reached the queue or

was retreived, set PROPID_M_ACKNOWLEDGE to
MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE |
MQMSG_ACKNOWLEDGMENT_NACK_REACH_QUEUE |
MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE |
MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE.

6. Send the message.

After the message is sent, the remaining work is done by MSMQ. For information on what MSMQ does
to authenticate messages, see How MSMQ Authenticates Messages.

To receive an authenticated message
When reading the message in the queue, verify that PROPID_M_AUTHENTICATED is set to 1. If it
is set to 0, the message was not signed and it is up to the receiving application to decide if it wants
to use the message.

When a message is authenticated (PROPID_M_AUTHENTICATED = 1) using an internal certificate,
MSMQ guarantees that the sender identifier in PROPID_M_SENDERID is correct, and that no one
tampered with the message.

Authenticating Messages Using an External
Certificate
From an application perspective, authenticating messages using an external certificate is very easy. It
simply requires getting the external certificate from a certificate authority, retrieving information from the
certificate, and setting the appropriate message properties.

To send an authenticated message
1. Obtain a certificate from an authorized certificate authority. A common way to obtain a certificate is to

request a class 1 certificate from VeriSign Commercial Software Publishers CA, using Microsoft®
Internet Explorer (version 3.0 or later).

2. Place the certificate in the Microsoft Internet Explorer personal certificate store (if Internet Explorer
was used to obtain the certificate, this is done automatically). MSMQ can only use certificates placed
in this store.

3. If you want to use a sender identifier in addition to the certificate information, register the certificate
using the MSMQ Control Panel. This step is not required to authenticate the message.

4. Set PROPID_M_AUTH_LEVEL to MQMSG_AUTH_LEVEL_ALWAYS.
5. If the certificate is only going to be used once, set PROPID_M_SENDER_CERT. If the same

certificate is going to be used several times, call MQGetSecurityContext to retrieve security
information from the certificate and set PROPID_M_SECURITY_CONTEXT.

6. If you want to change the hash algorithm MSMQ uses to authenticate the message, set
PROPID_M_HASH_ALG (the default algorithm is CALG_MD5).

7. If you want MSMQ to return an acknowledgment to show that the message reached the queue or
was retreived, set PROPID_M_ACKNOWLEDGE to
MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE |
MQMSG_ACKNOWLEDGMENT_NACK_REACH_QUEUE |
MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE |
MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE

8. Send the message.

After the message is sent, the remaining work is done by MSMQ. For information on what MSMQ does
to authenticate the message, see How MSMQ Authenticates Messages.

To receive an authenticated message
· When reading the message in the queue, verify that PROPID_M_AUTHENTICATED is set to 1. If it

is set to 0, the message was not signed and it is up to the receiving application to decide whether to
use the message.

When a message is authenticated (PROPID_M_AUTHENTICATED = 1) using an external certificate,
MSMQ guarantees that the owner of the certificate (as specified in the certificate) sent the message,
that no one tampered with the message, and that the SID is correct if the SID
(PROPID_M_SENDERID) was passed with the message.

Note MSMQ does not validate the external certificate. The receiving application must perform any
validation requirements on the certificate before using an authenticated message. MSMQ generates
the digital signature of a message when it is sent and verifies the digital signature when the message
is received, but does not validate the certificate itself.

Sending Messages While Impersonating Another User
Sending messages while impersonating another user requires that the security information must be
retrieved from the certificate using MQGetSecurityContext, even if you are using the internal
certificate supplied by MSMQ.

To send an authenticated message
1. Call MQGetSecurityContext. When using an external certificate, specify the certificate you want to

use. When using the internal certificate provided by MSMQ, specify NULL. MQGetSecurityContext
must always be used when impersonating a user.

2. Set PROPID_M_SECURITY_CONTEXT to the returned handle.

After the message is sent, the remaining work is done by MSMQ. For information on what MSMQ does
to authenticate the message, see How MSMQ Authenticates Messages.

Setting Access Control Security for a Queue
The access control of a queue is first set when the queue is created (see Creating a Queue). However,
MSMQ also provides two functions for managing access control after the queue is created:
MQGetQueueSecurity and MQSetQueueSecurity.

Access control determines who can perform specific operations on the queue. Operations that can be
set include creating, deleting, and opening the queue; sending messages to and reading messages
from the queue; getting and setting the queue's properties; and getting and setting the queue's security
descriptor. These operations can be restricted to a specific user or group of users.

For information on how MSMQ uses these settings, see Access Control.

Using Transactions
When an MSMQ application performs a transaction, it must work with all the transactional services,
such as Microsoft® Distributed Transaction Coordinator (MS DTC) and all resource managers needed
to complete the transaction. This includes all the resource mangers associated with the transaction,
including MSMQ and MS DTC as the transaction manager.

From a system perspective, the process for performing a transaction starts with the transaction
application asking MS DTC or MSMQ for a new transaction object. Once a transaction object is
available, the application can then make any number of transactional calls, as well as any number of
non-transactional calls, to all the resource managers needed by the application.

The application must check the return values of all the functions called. If all calls succeed, the
application can vote to commit the transaction. This does not mean the transaction is committed; it only
means that the application is ready to commit.

MS DTC now starts a two-phase commit procedure, asking each participating resource manager to
prepare and to inform MS DTC if it is ready to commit. If all the resource managers commit, MS DTC
commits the transaction. If any one resource manager does not commit, the transaction is aborted.

All this activity by MS DTC is invisible to the transaction application. The application only sees the
return value of the Commit function it calls. When a successful Commit is returned to the application,
the transaction is completed.

Note When a transaction is completed, it does not mean the work is completed. When the
transaction manager commits the transaction, it only means that each resource manager guarantees
that it will do its part of the transaction at some later time.

Programming Transactions
The following table lists the elements of MSMQ that require special attention when used as part of a
transaction:

Element Description
MQCreateQueue: Creates a transaction queue

(see
PROPID_Q_TRANSACTION)
.

MQSendMessage: Sends transactional
messages (see pTransaction
parameter) to a transaction
queue.

MQReceiveMessage Retrieves transactional
messages (see pTransaction
parameter) from a transaction
queue.

PROPID_M_PRIORITY MSMQ sets the message
priority of all transactional
messages to 0.

PROPID_M_DELIVERY MSMQ sets the delivery
property of all transaction
messages to
MQMSG_DELIVERY_RECO
VERABLE.

PROPID_M_TIME_TO_BE_RECEIVED MSMQ sets the message's
time-to-be-received property
to the setting of the first
transaction message sent.

PROPID_M_TIME_TO_REACH_QUEUE MSMQ sets the message's
time-to-reach-queue property
to the setting of the first
transaction message sent.

PROPID_M_JOURNAL If set to
MQMSG_DEADLETTER,
MSMQ automatically sends
the transactional messages to
the transaction dead letter
queue (DEADXACT) on the
source machine if the
message is not delivered.

Transaction Programming Considerations
The following issues are unique to MSMQ transactions:

· There are five ways to send and receive transactional messages: MTS transactions, MS DTC
external transactions, MSMQ internal transactions, XA-compliant Transactions, and single-message
transactions.

· When sending messages, the application must get a successful return code from the call to
MQSendMessage and a successful return code from its commit call before it can be assured that
the message will be sent.

· If some operations in a transaction fail, it is the application's responsibility to decide whether to
terminate the entire transaction (by calling the transaction object's abort member function) or commit
the transaction anyway (if the failures are such that the transaction is still viable). If the application
does commit to a transaction where some operations have failed, the failed operations will not be
part of the transaction.

· There is no limit to the number of messages sent, the number of messages retrieved, or the number
of queues used in a single transaction. However, an application cannot send a message to a queue
and then try to retrieve it during the same transaction.

· Messages can be sent to a local or remote transaction queue, but messages can only be received
from a local transaction queue.

· Calling MQSendMessage does not actually send the message within the transaction. The actual
sending is done at some time after MS DTC commits the transaction. When MS DTC returns a
successful commit return value, the sending application is guaranteed that the message will be sent.
If a transaction is aborted, all MSMQ transaction operations are rolled back: no messages are sent,
and all retrieved messages are returned to their original place in the queue.

· MSMQ guarantees exactly-once-delivery. This means that all messages sent to a queue will arrive
once and only once. MSMQ takes special measures to prevent any message duplication or loss.

· MSMQ guarantees that all messages sent to a specific transaction queue will arrive in the order they
were sent by the transaction. This means that if transaction T1 sends messages M1 and M2 to
queue Q1, M1 will arrive before M2.
However, there is no guarantee if two transactions are sending messages to the same queue. If
transaction T1 sends messages M1 and M2 to Q1, and a second transaction T2 sends messages
M3 and M4 to Q1, MSMQ only guarantees that M1 will arrive before M2, and that M3 will arrive
before M4. In order to guarantee that M1 and M2 will arrive before M3 and M4, the application must
commit to T2 only after getting a successful return code from T1.
MSMQ does not guarantee order of delivery to different queues, nor does it guarantee order of
delivery from different computers.

· One may receive messages from a transaction queue using non-transactional receive operations.

Using the ActiveX Components
This section contains complete examples of the basic tasks your application may need to perform.

Note For information on a specific MSMQ ActiveX component method, property, or event, refer to
its reference page in the "MSMQ Reference."

The following tasks are described:

· Creating a Queue
· Locating a Public Queue
· Opening a Queue
· Sending Messages To a Queue
· Sending Messages that Request Acknowledgments
· Sending Messages that Request a Response
· Sending Private Messages
· Sending Messages Using an Internal Transaction
· Sending Messages Using an Internal Transaction
· Sending Messages Using an MS DTC External Transaction
· Reading Messages In a Queue
· Retrieving a Queue's Properties Using ActiveX Components
· Setting a Queue's Properties Using ActiveX Components

Creating a Queue
All queues, either public or private, are created by calling the MSMQQueueInfo object's Create
method. For a description of public and private queues, see Message Queues.

The only queue property required to create the queue is PathName. This property tells 1) MSMQ
where to store the queue's messages, 2) whether the queue is public or private, and 3) the name of the
queue. Once the queue is created, the MSMQQueueInfo object's returned FormatName property is
used to open the queue. For a description of MSMQ pathnames and queue format names, see
Referencing a Queue.

To create a queue
1. Determine which computer will hold the messages for the queue. The computer's machine name is

part of the queue's MSMQ pathname (PathName). For private queues, the local computer must be
specified.

2. Determine whether the queue should be public or private. This tells MSMQ where to register the
queue: public queues are registered in MQIS and private queues are registered on the local
machine (private queues can only be registered on the local machine). This information is part of the
queue's MSMQ pathname (PathName).

3. Determine the name for the queue. The queue's name is part of the queue's MSMQ pathname
(PathName).
Note The MSMQ pathname must be unique in the MSMQ enterprise. This applies to public
and private queues.

4. Determine which queue properties must be set. If a queue property is not specified before calling
Create, its default value is used. For a complete list of the queue properties that can be set when a
queue is created, see the following Queue Properties section.

5. Set the queue properties. The only property required to create a queue is PathName, all other
queue properties are optional. The PathName property specifies where the queue's messages are
stored, if the queue is public or private, and the local name of the queue. To modify properties after
the queue is created, see Update.
qinfo.PathName = "machinename\localname"                 
or
qinfo.PathName = "machinename\PRIVATE$\localname"

Where qinfo is an MSMQQueueInfo object.

6. Call Create.
qinfo.Create

Examples
The following two examples show functions used to create a public queue and a private queue. In
these examples, two queue properties are specified: PathName and Label.

Note In these examples, a "." is used to indicate the local machine in PathName. For MSMQ
servers and Independent clients, the local machine is the local computer. However, for MSMQ
dependent clients the local machine is the client's MSMQ server.

For a public queue

Function CreatePublicQueue() As MSMQQueueInfo
      Dim qinfo As New MSMQQueueInfo
      qinfo.PathName = ".\MyQueue" 'Created on local computer.
      qinfo.Label = "Public Queue"

      On Error GoTo ErrorHandler
      qinfo.Create
      Set CreatePublicQueue = qinfo
      Exit Function
ErrorHandler:
      MsgBox "Couldn't create queue. Error: " + Str$(Err.Number)
      MsgBox "Reason:    " + Err.Description
      Set CreatePublicQueue = Nothing
End Function

Sub Test()
        Dim qinfo As MSMQQueueInfo
        Set qinfo = CreatePublicQueue
        If Not qinfo Is Nothing Then
              MsgBox "Queue's format name is: " = qinfo.FormatName
        End If
End Sub

For a private queue

Function CreatePrivateQueue() As MSMQQueueInfo
      Dim qinfo As New MSMQQueueInfo
      qinfo.PathName = ".\Private$\MyQueue"                'On local computer.
      qinfo.Label = "Private Queue"
      On Error GoTo ErrorHandler
      qinfo.Create
      Set CreatePrivateQueue = qinfo
      Exit Function
ErrorHandler:
      MsgBox "Couldn't create queue. Error: " + Str$(Err.Number)
      MsgBox "Reason:    " + Err.Description
      Set CreatePrivateQueue = Nothing
End Function

Sub Test()
        Dim qinfo As MSMQQueueInfo
        Set qinfo = CreatePrivateQueue
        If Not qinfo Is Nothing Then
              MsgBox "Queue's format name is: " = qinfo.FormatName
        End If
End Sub

Queue Properties
The following optional queue properties can be set by the application when creating the queue:

Authenticate

BasePriority

Journal

JournalQuota

Label

PrivLevel

Quota

ServiceTypeGuid

The following properties are set by MSMQ when it creates the queue. To read these properties, the
application must explicitly call the MSMQQueueInfo object's Refresh method before they can be read.

CreateTime (public queues only)

FormatName (public and private queues)

IsTransactional (public and private queues)

ModifyTime (public queues only)

QueueGuid (public queues only)

The following properties are set by MSMQ when it creates the queue. To read these properties, the
application must explicitly call the MSMQQueueInfo object's Refresh method before they can be read.

Locating a Public Queue
Public queues can be located by running a query on the queues registered in MQIS. A query can be
based on the queue's identifier, its label, the type of service it provides, when it was created, or the last
time the queue's properties were modified.

A query is made by calling the MSMQQuery object's LookupQueue method. When the query is
finished, the returned MSMQQueueInfos object references all the queues located by the query.

To run a query
1. Determine the search criteria for the query. When locating queues by label, type of service, create

time, or modify time you can also specify a relationship parameter. For example, when using the
queue's create time as the search criteria, you can also use the create time's relationship parameter
(RelCreateTime) to locate all the queues that were created before, after, or on a specific date.

2. Call LookupQueue.
Set qinfos = query.LookupQueue(Label:="Test Queue")

3. Call Reset on the returned MSMQQueueInfos object. Although this is not required, it guarantees
that the cursor is looking at the first queue in the returned set.
qinfos.Reset

4. Look at the queues in the query. In the example below, this is done by calling Next to point to the
first queue in the query, followed by a common While loop containing another call to Next.
Set qinfo = qinfos.Next

While Not qinfo Is Nothing
        MsgBox "I found a Test Queue! its Format name is: " + qinfo.FormatName
        Set qinfo = qinfos.Next
Wend

Example
This example assumes that at least one queue whose label is "Test Queue" already exists. It runs a
query for the test queues, displaying the format name of each queue it finds.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Declaration
section of a form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfo As MSMQQueueInfo
Dim Response As String

Private Sub Form_Click()

      Set qinfos = query.LookupQueue(Label:="Test Queue")
      qinfos.Reset
      Set qinfo = qinfos.Next

      While Not qinfo Is Nothing
            MsgBox "I found a Test Queue! its Format name is: " + qinfo.FormatName
            Set qinfo = qinfos.Next
      Wend
       
End Sub

Opening a Queue
Queues can be opened by calling the MSMQQueueInfo object's Open method. The Open method
returns an MSMQQueue object that can be used for:

· Sending messages to the queue (Send).
· Enabling notification for reading messages asynchronously (EnableNotification)
· Reading messages in the queue (Peek, PeekNext, Receive)
· Closing the queue (Close)

Note The MSMQQueue object exposes a queue handle that can be used to call MSMQ API
functions directly. For example, in Microsoft® Visual Basic®, MSMQ functions can be called directly
using the Declare Function facility.

When opening a queue, the application specifies the access rights and share mode of the queue. The
queue's access rights indicate if the application is going to send messages to the queue, peek at the
messages in the queue, or retrieve messages from the queue. The queue's share mode indicates who
else can use the queue while the application is using the queue.

In most cases, a queue can be opened without checking its access rights. However, if
MQ_ERROR_ACCESS_DENIED is returned to the Open call, the queue's access control is blocking
the application from opening the queue. A queue's access control can block sending messages,
retrieving messages, or peeking at messages. For information about access rights, see Access
Control.

The properties of the opened queue are based on the current properties of the MSMQQueueInfo
object used to open the queue. While the queue is opened, the application can always see the current
properties of the queue by calling the MSMQQueue object's queueInfo property.

To open a queue
1. Determine the queue's access mode. Are messages going to be sent to the queue (lAccess =

MQ_SEND_ACCESS), retrieved from the queue(lAccess = MQ_RECEIVE_ACCESS), or peeked at
without removing them from the queue (lAccess = MQ_PEEK_ACCESS)?
When a queue is opened with receive access, the application can also peek at the queue's
messages. However, the reverse is not true. When a queue is opened with peek access, the
application cannot retrieve a message from the queue.

2. Determine the queue's share mode. If messages are going to be retrieved from the queue (lAccess
= MQ_RECEIVE_ACCESS), determine if the application should not allow others to retrieve
messages at the same time it is retrieving messages(ShareMode = MQ_DENY_RECEIVE_SHARE).
Using this setting does not stop other applications from peeking at the messages in the queue, it
only prevents them from retrieving messages at the same time the calling application is retrieving
messages.

3. Verify that the queue information (MSMQQueueInfo) object exists and that a queue object
(MSMQQueue) is available.

4. Call Open, setting the queue's access mode and share mode to the appropriate value.

Example: Opening a queue for sending messages
This example creates a public queue, then opens the queue for sending messages. To try this example
using Microsoft® Visual Basic® (version 5.0), paste the code into the Declaration section of a form, and
then run the example and click the form.

Dim qinfo As New MSMQQueueInfo
Dim q As New MSMQQueue

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\SendTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
   
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
    If q.IsOpen Then
          MsgBox "The queue is open for sending messages."
          Else
                MsgBox "The queue is not open!"
    End If

End Sub

Example: Opening a queue for reading messages
This example creates a public queue, then opens the queue for retrieving messages. To try this
example using Microsoft Visual Basic (version 5.0), paste the code into the Declaration section of a
form, and then run the example and click the form.

Dim qinfo As New MSMQQueueInfo
Dim q As New MSMQQueue

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\ReceiveTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
   
    Set q = qinfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
    If q.IsOpen Then
          MsgBox "The queue is open to receive messages."
          Else
                MsgBox "The queue is not open!"
    End If

End Sub

Sending Messages to a Queue
Sending messages is an asynchronous operation that requires opening the queue and sending the
message.

The body of an MSMQ message can be a string, an array of bytes, or any persistent ActiveX object
that supports IDispatch and IPersist (IPersistStream or IPersistStorage).

To transmit an object, the sending application specifies the object in the message's Body property.
After the message arrives, the receiving application can deserialize the object using the message's
Body property.

For examples of sending messages using ActiveX components, see:

· Sending Messages that Request Acknowledgments
· Sending Messages that Request a Response
· Sending Private Messages

The following is a complete list of message properties that can be set when sending a message.

Message Properties
Property Description
Ack Determines the type of

acknowledgment messages (default
is none) MSMQ will generate and
send back to the administration
queue.

AdminQueueInfo Provides the MSMQQueueInfo object
that MSMQ uses for sending
acknowledgment messages.

CorrelationId Determines the application-defined
identifier for the message.

Delivery Determines how MSMQ delivers the
message: express or guaranteed
delivery.

EncryptAlgorithm Determines which encryption
algorithm is used when sending
private messages.

Label Provides an application-defined label
for the message.

MaxTimeToReachQueue Determines how long the message
has to reach the queue.

MaxTimeToReceive Determines how long before the
message must be removed from the
queue.

Priority Determines the message's priority:
effects routing and placement in the
queue.

PrivLevel Determines if the message is sent as
a private (encrypted) message.

ResponseQueueInfo Provides the MSMQQueueInfo object
used for returning response
messages.

Sending Messages that Request Acknowledgments
Acknowledgment messages are returned by MSMQ whenever the sending application requests them.
To receive acknowledgment messages, the sending application must request the type of
acknowledgment messages it wants returned (Ack), and an administration queue where MSMQ can
send the acknowledgment messages (AdminQueueInfo).

The administration queue is maintained by the sending application. It is the sending application's
responsibility to create the queue, to read the messages in the queue, and to perform whatever actions
are required as a result of the type of acknowledgment message returned by MSMQ.

When reading the messages in the administration queue, the application can check the message's
Class property to determine what type of acknowledgment was returned. Not all acknowledgment
messages contain the same information. For example, although negative acknowledgment messages
contain the message body of the original messages, positive acknowledgment messages do not. For a
complete description of what is in the various types of acknowledgments, see Acknowledgment
Messages.

To send messages that request acknowledgments
1. Determine what type of acknowledgment messages need to be returned and which queue will be

used as the administration queue.
2. Locate the administration queue, creating one if it doesn't exist.

Set qinfos = query.LookupQueue(Label:="Administration Queue")
qinfos.Reset
Set qinfoAdmin = qinfos.Next
If qinfoAdmin Is Nothing Then
      Set qinfoAdmin = New MSMQQueueInfo
      qinfoAdmin.PathName = ".\AdminQueue"
      qinfoAdmin.Label = "Administration Queue"
      qinfoAdmin.Create
End If

3. Locate the destination queue, creating one if it doesn't exist.
Set qinfos = query.LookupQueue(Label:="Destination Queue")
qinfos.Reset
Set qinfoDest = qinfos.Next
If qinfoDest Is Nothing Then
      Set qinfoDest = New MSMQQueueInfo
      qinfoDest.PathName = ".\DestQueue"
      qinfoDest.Label = "Destination Queue"
      qinfoDest.Create
End If

4. Open the destination queue and send the message.
Set qDest = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
msgSent.Label = "Test Message"
msgSent.Body = "This message tests acknowledgment messages."
msgSent.Ack = MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE
Set msgSent.AdminQueueInfo = qinfoAdmin
msgSent.Send qDest

MsgBox "The message was sent. Check the MSMQ Explorer to see the messages in the
queue."

qDest.Close

5. Open the administration queue and read the acknowledgment messages returned by MSMQ.

Messages are placed in the administration queue by their priority. The priority level of an
acknowledgment message is set to the priority level of its original message.
Set qAdmin = qinfoAdmin.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
Set msgAdmin = qAdmin.Receive

6. Perform whatever actions are needed as a result of the returned acknowledgment message. The
acknowledgment message's Class property specifies the type of acknowledgment returned.
If msgAdmin.Class = MQMSG_CLASS_ACK_RECEIVE Then
            MsgBox "The message was removed from the queue."
ElseIF msgAdmin.Class = MQMSG_CLASS_NACK_RECEIVE_TIMEOUT Then
            MsgBox "The message was not removed from the queue in time."
Else
            MsgBox "The returned acknowledgment message (" + CStr(msgAdmin.Class) + ")
is not valid for this example."
End If

Example
This example uses an administration queue to see if a message has been retrieved from its destination
queue. First a message is sent to its destination queue with its time-to-live-timer (MaxTimeToReceive)
set to 60 seconds. Then the application reads the acknowledgment message returned to the
administration queue to see if the original message was retrieved from the queue. The destination and
administration queues are created if they don't exist.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the code window
of a form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfoDest As MSMQQueueInfo
Dim qinfoAdmin As MSMQQueueInfo
Dim qDest As MSMQQueue
Dim qAdmin As MSMQQueue
Dim msgSent As New MSMQMessage

Private Sub Form_Click()
      '****************************
      ' Locate administration queue
      '(create one if one doesn't
      ' exist).
      '****************************
      Set qinfos = query.LookupQueue(Label:="Administration Queue")
      qinfos.Reset
      Set qinfoAdmin = qinfos.Next
      If qinfoAdmin Is Nothing Then
            Set qinfoAdmin = New MSMQQueueInfo
            qinfoAdmin.PathName = ".\AdminQueue"
            qinfoAdmin.Label = "Administration Queue"
            qinfoAdmin.Create
      End If
                 
      '***************************
      ' Locate destination queue
      '(create one if one doesn't

      ' exist).
      '***************************
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next
      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"
            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '**************
      ' Open destination queue.
      '**************
      Set qDest = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
      '**************
      ' Send Message.
      '**************
      msgSent.Label = "Test Message"
      msgSent.Body = "This message tests acknowledgment messages."
      msgSent.Ack = MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE
      msgSent.MaxTimeToReceive = 60
      Set msgSent.AdminQueueInfo = qinfoAdmin
      msgSent.Send qDest
      qDest.Close
   
      '********************************
      ' Read Acknowledgment message in
      ' administration queue.
      '********************************
      Results = MsgBox("The message was sent to the queue. Click YES to remove the
message from the queue and return a positive acknowledgment. Wait for 60 seconds and
click NO to return a negative acknowledgment.", 4)
      If (Results = vbYes) Then
            Set qDest = qinfoDest.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
            Set msgDest = qDest.Receive
      End If

      Set qAdmin = qinfoAdmin.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
      Set msgAdmin = qAdmin.Receive
     
      If msgAdmin.Class = MQMSG_CLASS_ACK_RECEIVE Then
            MsgBox "The message was removed from the queue."
      ElseIf msgAdmin.Class = MQMSG_CLASS_NACK_RECEIVE_TIMEOUT Then
            MsgBox "The message was not removed from the queue in time."
      Else
            MsgBox "The returned acknowledgment message (" + CStr(msgAdmin.Class) + ") is
not valid for this example."
      End If

End Sub
     

Sending Messages that Request a Response
By sending the MSMQQueueInfo object of a second queue along with a message, the sending
application indicates that it expects a response message from the receiving application. The
MSMQQueueInfo object is passed in the ResponseQueueInfo property of the message.

When the receiving application reads the message and sees that a response is requested
(ResponseQueueInfo is not NULL), it should then return a response message to the queue specified
by ResponseQueueInfo. For more information on response queues, see Response Queues.

To request a response
1. Determine what type of response message is needed. For example, the response message could

be a message that only indicates a message arrived, or it could include a message body with
complete instructions on what to do. Both the sending and receiving application must be able to
understand the message.

2. Locate the response queue, creating one if it doesn't exist.
Set qinfos = query.LookupQueue(Label:="Response Queue")
qinfos.Reset
Set qinfoResp = qinfos.Next
If qinfoResp Is Nothing Then
      Set qinfoResp = New MSMQQueueInfo
      qinfoResp.PathName = ".\RespQueue"
      qinfoResp.Label = "Response Queue"
      qinfoResp.Create
End If

3. Locate the destination queue, creating one if it doesn't exist.
Set qinfos = query.LookupQueue(Label:="Destination Queue")
qinfos.Reset
Set qinfoDest = qinfos.Next
If qinfoDest Is Nothing Then
      Set qinfoDest = New MSMQQueueInfo
      qinfoDest.PathName = ".\DestQueue"
      qinfoDest.Label = "Destination Queue"
      qinfoDest.Create
End If

4. Open the destination queue and send the message. The example below asks if a response
message is wanted.
Set q = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

msgSent.Label = "Test Message"
msgSent.Body = "This message tests the response queue."

response = MsgBox("Do you want a response message?", 4)
If response = 6 Then
      Set msgSent.ResponseQueueInfo = qinfoResp
End If

msgSent.Send q

5. Read the message in the destination queue, and return a response message if one is requested. In
the example below, the original message's identifier is included in the response message's
correlation identifier. This provides a way to match the response message with the original message

read from the queue.
Set q = qinfoDest.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
Set msgRead = q.Receive

If Not msgRead.ResponseQueueInfo Is Nothing Then
      Set qResp = msgRead.ResponseQueueInfo.Open(MQ_SEND_ACCESS,
MQ_DENY_NONE)
      msgResp.Label = "Response Message"
      msgResp.Body = "This is a response message"
      msgResp.CorrelationId = msgRead.id
      msgResp.Send qResp
      MsgBox "A response message was returned to :" +
msgRead.ResponseQueueInfo.PathName
Else
      MsgBox "No response was requested."
End If

Example
This example locates the response queue and the destination queue (creating them if needed),
displays a message box that allows you to request a response message, then sends the message
depending on your response.

Next, the example reads the message from the queue, returning a response message if one is
requested. If the response message is requested, its correlation identifier, CorrelationId, is set to the
message identifier of the original message and the response message is sent.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the code window
of a form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfoResp, qinfoDest As MSMQQueueInfo
Dim qRead, qResp As New MSMQQueue
Dim msgSent As New MSMQMessage
Dim msgRead As New MSMQMessage
Dim msgResp As New MSMQMessage

Private Sub Form_Click()
     
      '**********************************
      ' Locate response queue (create one
      ' if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Response Queue")
      qinfos.Reset
      Set qinfoResp = qinfos.Next
      If qinfoResp Is Nothing Then
            Set qinfoResp = New MSMQQueueInfo
            qinfoResp.PathName = ".\RespQueue"
            qinfoResp.Label = "Response Queue"
            qinfoResp.Create
      End If
      '**********************************
      ' Locate destination queue
      '(create one if one doesn't exist).

      '**********************************
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next
      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"
            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '************************
      ' Open destination queue.
      '************************
      Set q = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
      '**************
      ' Send Message.
      '**************
      msgSent.Label = "Test Message"
      msgSent.Body = "This message tests the response queue."
     
      response = MsgBox("Do you want a response message?", 4)
      If response = 6 Then
            Set msgSent.ResponseQueueInfo = qinfoResp
      End If
     
      msgSent.Send q
   
      MsgBox "The message was sent. Check the MSMQ Explorer to see the messages in the
queue."
      q.Close
   
      '************************************
      ' Read the message in the destination
      ' queue and send response message if
      ' one is requested.
      '************************************
      Set q = qinfoDest.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
      Set msgRead = q.Receive
     
      If Not msgRead.ResponseQueueInfo Is Nothing Then
            Set qResp = msgRead.ResponseQueueInfo.Open(MQ_SEND_ACCESS,
MQ_DENY_NONE)
            msgResp.Label = "Response Message"
            msgResp.Body = "This is a response message"
            msgResp.CorrelationId = msgRead.id
            msgResp.Send qResp
            MsgBox "A response message was returned to :" +
msgRead.ResponseQueueInfo.PathName
      Else
            MsgBox "No response was requested."
      End If
       
End Sub

Sending Private Messages
Sending private messages requires setting the privacy level of the message, and, as an option, setting
the privacy level of the queue where the message is sent, before the message is sent.

The properties used to set the privacy level of the message are the MSMQMessage object's PrivLevel
and EncryptAlgorithm properties. The property used to set the privacy level of the queue is the
MSMQQueueInfo object's PrivLevel property.

Note The actual call to send and read private messages is the same as the call to send and read
non-private messages.

To send private messages
1. Optional. Verify that the queue can receive private messages. The MSMQQueueInfo object's

PrivLevel must be set to MQ_PRIV_LEVEL_BODY or MQ_PRIV_LEVEL_OPTIONAL. If set to
MQ_PRIV_LEVEL_BODY, the queue can only accept private messages. Non-private messages will
be ignored.
qinfo.PrivLevel = MQ_PRIV_LEVEL_BODY

2. Open the queue for sending messages.
Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

3. Set the MSMQMessage object's PrivLevel property to MQMSG_PRIV_LEVEL_BODY.
msg.PrivLevel = MQMSG_PRIV_LEVEL_BODY

4. Optional. Set the encryption algorithm used to encrypt the message.
msg.EncryptAlgorithm = MQMSG_CALG_RC4

5. Send the message.
msg.Send q

Example
Dim qinfo As New MSMQQueueInfo
Dim q As New MSMQQueue
Dim msg As New MSMQMessage

Private Sub Form_Click()
    '**********************
    ' Create queue
    '**********************
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PrivacyTest"
    qinfo.Label = "Test Queue"
    qinfo.PrivLevel = MQ_PRIV_LEVEL_BODY
    qinfo.Create
    '*********************
    ' Open queue.
    '*********************
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
    '*********************
    ' Send message.
    '*********************

    msg.Label = "Test Message"
    msg.Body = "This is a private message."
    msg.PrivLevel = MQMSG_PRIV_LEVEL_BODY
    msg.EncryptAlgorithm = MQMSG_CALG_RC4
    msg.Send q
    MsgBox "The message " + msg.Label + " was sent."
    q.Close
    '*********************
    ' Receive message.
    '*********************
    Set q = qinfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
    Set msg = q.Receive
    If msg.PrivLevel = MQMSG_PRIV_LEVEL_BODY Then
          MsgBox "Message " + msg.Label + " is private."
    Else
          MsgBox "Message " + msg.Label + " is not private."
    End If
   
      MsgBox "Encryption alogithm is: " + CStr(msg.EncryptAlgorithm)
     
     
End Sub

Sending Messages Using an Internal Transaction
To send a message within an internal transaction, the MSMQTransactionDispenser is used to create
the transaction object. After the transaction object is created, make sure it is referenced in the call to
Send.

To send a message using an internal transaction
1. Specify the type of transaction dispenser you want to use. For internal transactions, specify the

MSMQTransactionDispenser object.
Dim xdispenser as New MSMQTransactionDispenser

2. Call BeginTransaction.
Set xact = xdispenser.BeginTransaction

3. Open the queue with send access.
Set qSend = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

4. Create and send the message. Make sure the call to Send is associated with the transaction.
msg.Label = "MyTransaction message"
msg.Body = "Message 1 Body"
msg.Send qSend, xact  'Associates send with xact.

Example
This example sends a single message within an internal transaction.

Dim xdispenser as New MSMQTransactionDispenser
Dim xact as MSMQTransaction

Dim qSend as MSMQQueue                               
Dim msg as New MSMQMessage

Set xact = xdispenser.BeginTransaction

'Assumes queue already exists and is transactional.
Set qSend = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
msg.Label = "MyTransaction message"
msg.Body = "Message 1 Body"
msg.Send qSend, xact  'Associates send with xact.

Sending Messages Using an MS DTC External
Transaction
To send a message within an MS DTC external transaction, the
MSMQCoordinatedTransactionDispenser is used to create the transaction object. After the
transaction object is created, make sure it is referenced in the call to Send.

To send a message using an external transaction
1. Specify the type of transaction dispenser you want to use. For external transactions, specify the

MSMQCoordinatedTransactionDispenser object.
Dim xdispenser as New MSMQCoordinatedTransactionDispenser

2. Call BeginTransaction.
Set xact = xdispenser.BeginTransaction

3. Open the queue with send access.
Set qSend = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

4. Create and send the message. Make sure the call to Send is associated with the transaction.
msg.Label = "MyTransaction message"
msg.Body = "Message 1 Body"
msg.Send qSend, xact  'Associates send with xact.

Example
This example sends a single message within an external transaction.

Dim xdispenser as New MSMQCoordinatedTransactionDispenser
Dim xact as MSMQTransaction

Dim qSend as MSMQQueue                               
Dim msg as New MSMQMessage

Set xact = xdispenser.BeginTransaction

'Assumes queue already exists and is transactional.
Set qSend = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
msg.Label = "MyTransaction message"
msg.Body = "Message 1 Body"
msg.Send qSend, xact  'Associates send with xact.

Reading Messages in a Queue
Reading messages in a queue can be done synchronously or asynchronously.

When reading messages synchronously, execution is blocked until a message is available, or the
message time-out timer expires.

When reading messages asynchronously, execution continues until an Arrived or ArrivedError event is
fired. The Arrived and ArrivedError events are provided by the MSMQEvent object.

Cursors are never explicitly defined when reading messages in a queue. However, a single implicit
cursor can be used to navigate through the queue. The methods used to navigate through the queue
are all defined in terms of this implicit cursor.

For examples of reading messages, see:

· Reading Messages Synchronously.
· Reading Messages Asynchronously.

For a description of how the messages in a queue are moved about when an application peeks at or
retrieves a message, see Reading Messages.

Reading Messages Synchronously
When reading messages synchronously, all calls are blocked until the next message is available or
timeout occurs.

To read a message synchronously
1. Open the queue with receive or peek access.

Set qDest = qinfoDest.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

2. Call Receive or Peek to read each message in the queue. The example below uses Receive to
remove each message in the queue. (Using Peek in the code below create an infinite loop.)
Do While True
      Set msgDest = qDest.Receive(ReceiveTimeout:=1000)
      If msgDest Is Nothing Then Exit Do
      MsgBox msgDest.Label + " is removed from the queue."
Loop

Example
This example reads all messages in a queue, removing each message as it is read. An error handler is
added to trap any errors generated as a result of the Receive call.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, and then run the example and click the form.

Option Explicit
Dim qinfoDest As MSMQQueueInfo
Dim qDest As MSMQQueue
Dim msgDest As MSMQMessage

Private Sub Form_Click()
     
      '**********************
      ' Removes all messages
      ' in the queue.
      '**********************
     
      Set qDest = qinfoDest.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
   
      On Error GoTo Handler
     
      Do While True
            Set msgDest = qDest.Receive(ReceiveTimeout:=1000)
            If msgDest Is Nothing Then Exit Do
            MsgBox msgDest.Label + " is removed from the queue."
      Loop

      Exit Sub

      '***************
      ' Error Handler
      '***************
     
Handler:
      If (Err = MQ_ERROR_IO_TIMEOUT) Then
            MsgBox "All messages are removed from the queue."

            Exit Sub
      Else
            MsgBox "Unexpected error!"
      End If

End Sub

Reading Messages Asynchronously
When reading messages asynchronously using ActiveX components, EnableNotification must be
called for each message that is read from the queue.

Typically, EnableNotification is called for the first message to be read, and then again in the event
handler after you read the arrived message. The subsequent calls to EnableNotification are needed
to read the next message in the queue. Notification returns a single Arrived event for each message
found in the queue.

The following diagram shows the basic programming model used for reading messages
asynchronously. It includes two calls to EnableNotification, plus a call to read the message from the
queue.

The model in the diagram shows that there are many ways to combine the two calls to
EnableNotification and the call to read the message in the queue. For example, to purge all the
messages in a queue you could call EnableNotification with Cursor set to MQMSG_FIRST, call
Receive, then call EnableNotification with Cursor set to MQMSG_FIRST.

However, not all combinations necessarily make good programming "sense." For instance, it is
possible to write an event handler that would only read every other message in the queue.

The initial call to EnableNotification and the subsequent call from the event handler can tell MSMQ to
check if a message is in the queue at all (Cursor = MQMSG_FIRST), if a message is at the current
cursor location (Cursor = MQMSG_CURRENT), or if a message is at the next position after the cursor
(Cursor = MQMSG_NEXT). The default is to trigger the Arrived event when MSMQ finds any message
in the queue (Cursor = MQMSG_FIRST).

The calls to read the message in the queue include: Receive, ReceiveCurrent, Peek, PeekCurrent,
or PeekNext.

Note Each call to EnableNotification, plus the calls to ReceiveCurrent, PeekCurrent, or
PeekNext, provide numerous ways to navigate through the queue. Each call can affect how the
implied cursor is moved through the queue.

To find a specific message asynchronously
1. Call Open to open queue with receive access and EnableNotification to start notification.

Set queue = qInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

queue.EnableNotification Event:=Event, Cursor:=MQMSG_CURRENT,
ReceiveTimeout:=1000

2. Write Arrived event handler. The following event handler calls PeekCurrent to look at the current
message, then uses EnableNotification (Cursor = MQMSG_NEXT) to start notification with the
cursor pointing to the next location.
Private Sub TheEvent_Arrived(ByVal Queue As Object, ByVal Cursor As Long)
Dim msgrec As MSMQMessage
On Error GoTo Error_TheEvent_Arrived
        Set msgrec = queue.PeekCurrent(ReceiveTimeout:=0)
        If msgrec.AppSpecific = 34 Then
                Set msgrec = queue.ReceiveCurrent(ReceiveTimeout:=0)
                MsgBox "Found a message with AppSpecific = 34", vbOKOnly, "Inside the
Arrived Event handler"
        Else
                queue.EnableNotification TheEvent, MQMSG_NEXT, 1000
        End If
        Exit Sub
Error_TheEvent_Arrived:
        MsgBox Err.Description + " in TheEvent_Arrived sub"
End Sub

3. Write ArrivedError event handler.
Private Sub TheEvent_ArrivedError(ByVal Queue As Object, ByVal ErrorCode As Long,
ByVal Cursor As Long)
        MsgBox Err.Description + " in TheEvent_ArrivedError sub"
End Sub

Example
This example sends several messages with different application-specific identifiers to a queue, then
searches the queue for the message whose application-specific identifier equals 34.

Option Explicit
Dim queue As MSMQQueue
Dim WithEvents TheEvent As MSMQEvent

Private Sub Form_Click()
Dim qinfo As New MSMQQueueInfo
Dim msgSend As New MSMQMessage
Dim i As Integer
On Error Resume Next
        Set TheEvent = New MSMQEvent
        qInfo.PathName = ".\AsyncSearchDemo"
        qInfo.Create
On Error GoTo Error_Form_Click
        Set queue = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
        msgSend.AppSpecific = 24
        msgSend.Send queue
        msgSend.AppSpecific = 34
        msgSend.Send queue
        msgSend.AppSpecific = 44
        msgSend.Send queue
        msgSend.AppSpecific = 54

        msgSend.Send queue
        msgSend.AppSpecific = 64
        msgSend.Send queue
        queue.Close

'****************************
'* Open queue and start
'* notification.
'****************************
        Set queue = qinfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
        queue.EnableNotification Event:=Event, Cursor:=MQMSG_CURRENT,
ReceiveTimeout:=1000
        Exit Sub
Error_Form_Click:
        MsgBox Err.Description
End Sub

'****************************
'* Define Arrived event handler.
'****************************
Private Sub TheEvent_Arrived(ByVal Queue As Object, ByVal Cursor As Long)
Dim msgrec As MSMQMessage
On Error GoTo Error_TheEvent_Arrived
        Set msgrec = queue.PeekCurrent(ReceiveTimeout:=0)
        If msgrec.AppSpecific = 34 Then
                Set msgrec = queue.ReceiveCurrent(ReceiveTimeout:=0)
                MsgBox "Found a message with AppSpecific = 34", vbOKOnly, "Inside the Arrived
Event handler"
        Else
                queue.EnableNotification TheEvent, MQMSG_NEXT, 1000
        End If
        Exit Sub
Error_TheEvent_Arrived:
        MsgBox Err.Description + " in TheEvent_Arrived sub"
End Sub

Private Sub TheEvent_ArrivedError(ByVal Queue As Object, ByVal ErrorCode As Long, ByVal
Cursor As Long)
        MsgBox Err.Description + " in TheEvent_ArrivedError sub"
End Sub

Retrieving a Queue's Properties Using ActiveX
Components
After a queue is created, the MSMQQueueInfo object's properties can be reset at any time by calling
the object's Refresh method.

Refresh has two uses. It is required before an application can read any queue property that is set by
MSMQ (MSMQ-generated properties such as QueueGuid cannot be used until Refresh is called).
Second, it can also be used to refresh the properties of the MSMQQueueInfo object when another
application resets a queue's properties. When Refresh is called, it updates all of the queue's
properties, not just those set by the application. However, you can only refresh the properties of private
queues if the queue is located on your local computer. To see a list of queue properties, scroll down to
the bottom of this topic.

Note Properties of public queues can also be retrieved by doing a query on MQIS. For details, see
Locating a Public Queue.

To retrieve a queue's properties
1. Determine whether the sending application has the access rights to look at the queue's properties. If

the application does not have MQSEC_GET_QUEUE_PROPERTIES access rights, an
MQ_ERROR_ACCESS_DENIED error is returned to Refresh. For a complete list of queue access
rights, see Access Control.

2. Call Refresh.

Example
This example creates a public queue, then uses Refresh to update the MSMQQueueInfo so it can
display the queue's identifier (QueueGuid). To try this example using Microsoft® Visual Basic® (version
5.0), paste the code into the Declaration section of a form that has a single text box, and then run the
example and click the form.

Dim qinfo As New MSMQQueueInfo
     
Private Sub Form_Click()

    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\RefreshTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
     
    qinfo.Refresh                    'Required to update QueueGuid
    Text1.Text = "quidQueue = " + CStr(qinfo.QueueGuid)

End Sub

Queue Properties
The following queue properties can be retrieved:

Authenticate

BasePriority

Journal

JournalQuota

Label

PrivLevel

Quota

ServiceTypeGuid

The following queue properties are set by MSMQ when it creates the queue. To read these properties,
the application must explicitly call Refresh before they can be read.

CreateTime (public queues only)

FormatName (public and private queues)

IsTransactional (public and private queues)

ModifyTime (public queues only)

QueueGuid (public queues only)

Setting a Queue's Properties Using ActiveX
Components
The properties of a queue can be dynamically set by calling the MSMQQueueInfo object's Update
method. Update can only called on queues that exist. It cannot be called on an MSMQQueueInfo
object before the queue is created or after the queue is deleted.

When Update is called, MQIS (public queues) and the local computer (private queues) are updated
with the current settings of the MSMQQueueInfo object's properties.

Note Properties for private queues can only be updated if the queue is located on the local
computer.

To set a queue's properties
1. Determine whether the application has the access rights needed to set the queue's properties. If the

application does not have MQSEC_SET_QUEUE_PROPERTIES access rights, an
MQ_ERROR_ACCESS_DENIED error is returned to Update. For a complete list of queue access
rights, see Access Control.

2. Set the queue properties that need to be changed to a new value.
3. Call Update.

Example
This example creates a public queue and then uses Update to change the queue's label. To try this
example using Microsoft® Visual Basic® (version 5.0), paste the code into the Declaration section of a
form that has a single text box, and then run the example and click the form.

Dim qinfo As New MSMQQueueInfo

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\UpdateTest1"
    qinfo.Label = "Test Queue"
    qinfo.Create
    MsgBox "The queue's label is: " + qinfo.Label
   
    qinfo.Label = "New Queue Label"
    qinfo.Update
    MsgBox "The queue's new label is: " + qinfo.Label

End Sub

Queue properties
The following queue properties can be set by calling Update:

Authenticate

BasePriority

Journal

JournalQuota

Label

PrivLevel

Quota

ServiceTypeGuid

The following properties cannot be set by Update:

CreateTime (set by MSMQ)

IsTransactional (set when queue is created)

ModifyTime (set by MSMQ)

PathName (set when queue is created)

QueueGuid (set by MSMQ)

Using Transactions
When an MSMQ application performs a transaction, it must work with all the transactional services
(Microsoft® Distributed Transaction Coordinator [MS DTC] and all resource managers) needed to
complete the transaction. This includes all the resource mangers associated with the transaction,
including MSMQ and MS DTC as the transaction manager.

From a system perspective, the process for performing a transaction starts with the transaction
application asking MS DTC or MSMQ for a new transaction object. Once a transaction object is
available, the application can then make any number of transactional calls, as well as any number of
non-transactional calls, to all the resource managers needed by the application.

It is the application's responsibility to check the return values of all the functions called. If all calls
succeed, the application can call the Commit method of the transaction object. This does not mean the
transaction is committed; it only means that the application is ready to commit.

MS DTC now starts a two-phase commit procedure, asking each participating resource manager to
prepare itself and to inform MS DTC if it is ready to commit. If all the resource managers commit, MS
DTC commits the transaction. If any one resource manager does not commit, the transaction is
aborted.

All this activity by MS DTC is invisible to the transaction application. The application only sees the
return value of the Commit function it calls. When a successful Commit is returned to the application,
the transaction is completed.

Note When a transaction is completed, it does not mean the work is completed. When the
transaction manager commits the transaction, it only means that each resource manager guarantees
that it will do its part of the transaction at some later time.

About the MSMQ Guide
The Microsoft® Message Queue Server Guide outlines conceptual information on different queues that
can be used, different messages that are available, how queues and messages are defined by
properties, as well as information on other MSMQ services.

The following topics are in the "MSMQ Guide:"

· About MSMQ
· MSMQ Objects
· MSMQ Queues
· MSMQ Messages
· MSMQ Computers
· MSMQ Object Properties
· MSMQ Transactions
· Error Reporting
· MSMQ Offline Support
· MSMQ Security Services
· MSMQ Connector Server
· MSMQ Mail Services
· MSMQ ActiveX Support

About MSMQ
With the trend toward distributed computing in enterprise environments, it is important to have flexible
and reliable communication among applications. Businesses often require independent applications
that are running on different systems to communicate with each other and exchange messages even
though the applications may not be running at the same time.

Microsoft® Message Queue Server (MSMQ) technology enables applications running at different times
to communicate across heterogeneous networks and systems that may be temporarily offline. Within
an MSMQ enterprise, applications send messages to queues and read messages from queues. The
following illustration shows how queues hold the messages used by both the sending and receiving
application.

MSMQ ensures that all messages eventually reach their destination, whether a message is sent to a
queue or a message is read from a queue. MSMQ provides guaranteed message delivery, efficient
routing, security, and priority-based messaging.

MSMQ is different from remote procedure calls (RPC), Windows Sockets, and messaging API (MAPI).
Because MSMQ is a connectionless message service, where applications do not need to maintain a
session, it is different from RPC where applications are required to maintain sessions. And although
Windows Sockets provides low-level functions for writing applications, Windows Sockets does not
allow applications to run at different times in the way that MSMQ does. MSMQ is also different from
MAPI (an e-mail oriented service) in that it uses a more general-purpose message queuing model than
MAPI.

MSMQ Objects
There are various objects available in Microsoft® Message Queue Server (MSMQ), including
machines, queues, and messages. For information on all MSMQ objects, refer to the Microsoft
Message Queue Server Administrator's Guide.

MSMQ machine, queue, and message objects are all defined by their properties.

Using the MSMQ API, you can:

· Create queue objects
· Locate queue objects
· Open and delete queue objects
· Set and get queue object properties
· Send and receive message objects
· Get machine object properties

For more information see: MSMQ Queues, MSMQ Messages, MSMQ Properties, and MSMQ
Computers.

MSMQ Queues
MSMQ queues are all based on the same model. However, who creates the queue, who sends
messages to the queue, and how the messages are used varies between the different types of queues.

Queues can be created by applications (message, administration, and response queues) or by MSMQ
(journal, dead letter, and report queues). Queues created by applications are application queues and
those created by MSMQ are system queues.

Queues can receive their messages from applications (message and response queues) or from MSMQ
(administration, journal, dead letter and report queues).

Regardless of who creates the queue, who sends messages to the queue, or how messages are used
by an application, the method for sending and receiving messages is the same. An application uses the
same method of sending messages to message and response queues, and uses the same method of
reading messages from message, response, administration, journal, dead letter, and report queues.

The following table lists the different kinds of queues, whether they are application or system queues,
and a brief description of how they can be used by your applications.

Queue Queue Type Description
Message
queues

Application Application-generated messages can be
sent to and read from these queues.
They can be public (they are defined in
the MSMQ information store and can be
located using MSMQ Lookup functions)
or private (they are defined on the local
machine and cannot be located using
MSMQ Lookup functions).

Administration
queues

Application Local queue used to store MSMQ-
generated positive and negative
acknowledgments when sending
messages.

Response
queues

Application Used to return application-generated
response messages from the application
reading the messages in a queue.

Journal
queues

System Used to store copies of application-
generated messages. There are two
types of journal queues: machine
journals and queue journals.

Dead Letter
queues

System Used to store application-generated
messages that cannot be delivered.
There are two dead letter queues, one
for transaction messages and the other
for non-transaction messages.

Report
queues

System Used to track the progress of your
messages as they move through your
enterprise. Report queues receive
MSMQ-generated report messages.

Application Queues
Application queues include message queues, administration queues, and response queues. These
queues are referred to as application queues because they are created by applications.

Message queues and response queues are used to store messages that are sent and read by
applications. Administration queues are used to store acknowledgment messages sent by MSMQ.

For information on a specific type of queue, see:

· Message Queues
· Administration Queues
· Response Queues

Message Queues
Message queues provide applications with a way to exchange information through messages.
Applications can send messages to these queues and read the messages they contain. The following
illustration shows a single message queue with one application sending messages to the queue and
another application reading its messages.

However, this illustration does not indicate where messages are stored. A queue's messages are
stored on the computer that was designated when the queue is created.

To an application, the most important classifications of these queues are whether they are public or
private. Although both public and private queues have significant advantages, the choice to make a
queue public or private depends on whether or not you want others to be able to locate the queue.

The advantage of public queues is that they are registered in the MQIS information store (MSMQ) so
they can be located by any MSMQ application. Public queues are persistent and their registration
information can be backed up on the MSMQ enterprise, making them good for long-term use.

Private queues are registered on the local computer and typically cannot be seen by other applications.
To register a private queue, MSMQ stores a description of the queue, plus cached information about
any local public queues, in the LQS (local queue storage) directory on the local computer (the default
LQS directory is \program files\msmq\storage\lqs). Private queues do have the advantage of no MQIS
overhead (faster to create, no latency, and no replication), and they can be created and deleted when
the MQIS is not working.

Private queues can be exposed to other applications if the queue's location is sent to the other
application. This is done by sending the private queue's format name to the other application. (For
applications using API functions, see PROPID_M_RESP_QUEUE. For applications using ActiveX
components, see ResponseQueueInfo).

Examples
· Creating A Queue (using API functions)
· Creating A Queue (using ActiveX components)
· Locating a Public Queue (using API functions)
· Locating a Public Queue (using ActiveX components)
· Opening a Queue (using API functions)
· Sending Messages To a Queue (using API functions)
· Sending Messages To a Queue (using ActiveX components)

Administration Queues
Administration queues are specified by the sending application when it sends its messages. They
receive MSMQ-generated acknowledgment messages that indicate whether the messages sent by the
application arrived (a positive acknowledgment) or whether an error occurred (a negative
acknowledgment).

The sending application must specify the queue it wants used as the administration queue and the type
of acknowledgment messages it wants returned. Any available queue can be specified as the
administration queue.

Note When an administration queue and a response queue are needed, their functionality can be
combined into a single queue. For information on response queues, see Response Queues.

For an example of how administration queues can be used, see:

· Sending Messages that Request Acknowledgments (using API functions).
· Sending Messages that Request Acknowledgments (using ActiveX components)

Response Queues
Response queues are specified by the sending application when it sends its messages. They receive
application-generated messages that are sent back to the sending application when the receiving
application reads the message from the queue.

Any available queue can be specified as the response queue.

Note The message properties used for specifying a response queue can also be used to send the
location of a private queue to another application.

When a response queue and an administration queue are needed, their functionality can be combined
into a single queue. For information on administration queues, see Administration Queues.

For an example of how administration queues can be used, see:

· Sending Messages To a Queue (using API functions).
· Sending Messages To a Queue (using ActiveX).

System Queues
System queues include journal, dead letter, and report queues. MSMQ or the MSMQ Administrator
creates these queues, and only MSMQ can send messages to them. Applications can read only
messages from these queues.

Journal and dead letter queues are used to store copies of application messages. Report queues
contain report messages that track the path of a specific application message.

For information on a specific type of queue, see:

· Journal Queues
· Dead Letter Queues
· Report Queues

Journal Queues
Journal queues are automatically created by MSMQ whenever a computer is added to the MSMQ
enterprise or a queue is created.

When a computer is created, MSMQ creates, on the computer, a machine journal queue that is used to
track the messages sent from the computer and MSMQ-generated report messages.

When a queue is added, MSMQ creates a queue journal where the queue is located. The queue
journal is used to track the messages removed from a queue.

The following illustration shows a message queue with its queue journal, plus several computers with
machine journals. When the sending application sends a message, a copy of the message is optionally
stored in the source machine journal. When the receiving application removes a message from the
message queue, a copy of the message is optionally sent to the queue journal.

MSMQ never removes messages from a queue or machine journal. It is up to the application using the
queue to clear the queue's messages by retrieving them, or by purging the queue using the MSMQ
Explorer.

For information on opening one of these queues, see:

· Opening a Queue Journal
· Opening a Machine Journal

Opening a Queue Journal
To read messages in a queue journal (you cannot send messages to a queue journal), you must
specify the queue that the journal is associated with. This is done by appending ";JOURNAL" to the
format name of the queue as shown below:

PUBLIC=QueueGUID;JOURNAL
PRIVATE=MachineGUID\QueueNumber;JOURNAL

Note You cannot open a queue journal using a direct format name.

For information on reading messages, see:

· Reading Messages In a Queue (using API functions)
· Reading Messages In a Queue (using ActiveX components)

Opening a Machine Journal
To read messages in a machine journal (you cannot send messages to a machine journal), you must
specify the computer where the journal resides. When opening the machine journal, the format name of
the queue should look like the following:

MACHINE=MachineGUID;JOURNAL

Note You cannot open a machine journal using a direct format name.

For information on reading messages see:

· Reading Messages In a Queue (using API functions)
· Reading Messages In a Queue (using ActiveX components)

Dead Letter Queues
There are two kinds of dead letter queues, one for non-transaction messages and the other for
transaction messages. Both types of queues are created by MSMQ whenever a computer is added to
the enterprise.

Dead letter queues hold messages that could not be delivered. For example, a message is placed in
the dead letter queue when it is not delivered in time or when a wrong destination queue is specified.
When a message is placed in a dead letter queue, MSMQ sets the message's class property to the
appropriate negative acknowledgment.

For non-transaction messages, MSMQ sends messages to the dead letter queue of the computer that
could not send the message. This could be the source computer, the destination computer, or any
MSMQ routing server in between.

Note Only one copy of a message is stored on a computer at one time. If the message reached the
next computer successfully, a copy of the message is stored in that computer's journal queue. If the
message could not be delivered to the next computer, it is stored in the current computer’s dead letter
queue.

Transaction messages are treated differently from non-transaction messages. When the sending
application does not receive an acknowledgment that the transaction message reached the target
queue, or the receiving application does not commit to the transaction, MSMQ automatically sends the
transaction message to the transaction dead letter queue on the source computer. Undeliverable
transaction messages are never stored on an MSMQ routing server.

However, MSMQ does not automatically send non-transaction messages to a dead letter queue. The
sending application must specify that it wants MSMQ to send undeliverable messages to a dead letter
queue at the time a message is sent.

Opening a Dead Letter Queue
To read the messages in the dead letter queue (an application cannot send messages to a dead letter
queue), the format name used to open the queue should look like one of the following:

MACHINE=MachineGUID;DEADLETTER (for non-transaction messages)
-or-
MACHINE=MachineGUID;DEADXACT (for transaction messages)

Note You cannot open these queues using a direct format name.

For an example of reading messages in a dead letter see Reading Messages in a Dead Letter Queue
(using API functions).

Report Queues
Report queues contain MSMQ-generated report messages that track the route of your application
messages as they move toward the queue. A report message is optionally generated each time a
message passes through an MSMQ routing server.

Report queues are created by the MSMQ Administrator. After the MSMQ Administrator has created the
report queue, you can indicate that you want MSMQ to generate report messages by setting the
message trace property.

Referencing a Queue
MSMQ Queues are referenced in three ways: By their MSMQ pathname, their format name, and a
queue handle. The method that is used depends on what is happening with the queue.

First, the queue's MSMQ pathname is used to create a queue. After the queue exists, its format name
is used to open the queue for sending or reading messages, resetting the queue's properties (including
its security), and deleting the queue. After the queue is open, while messages are sent to the queue or
read from the queue, a queue's handle is used.

For information on the three ways to reference the queue, see:

· MSMQ Pathname
· Format Name
· Queue Handle

MSMQ Pathname
The MSMQ pathname is used when creating the queue. It tells MSMQ where to store the queue's
messages, where to register the queue, and provides a name for the queue. A unique MSMQ
pathname must be provided by the application when the queue is created.

For example, here is the MSMQ pathname for a private queue:

MachineName\PRIVATE$\QueueName
Note To indicate the local machine, you can substitute the string "." for the name of the local
computer. For example, the following MSMQ pathname tells MSMQ to store the queue's messages
on the local machine:

.\PRIVATE$\QueueName

For information on format names and queue handles, see:

· Format Name
· Queue Handle

Format Name
Format Names are used to specify a queue when making calls to several API functions.

Note For ActiveX applications, the MSMQQueueInfo object used to represent the created queue
includes a FormatName property that is returned when the queue is created. The object's property
can be used as it is, or it can be modified by the application.

The API function calls that require a format name include the following:

· MQDeleteQueue
· MQGetQueueProperties
· MQGetQueueSecurity
· MQOpenQueue
· MQSetQueueProperties
· MQSetQueueSecurity

Unlike most of the characteristics of a queue, the format name is not an MSMQ queue property. It is
simply a unique name for the queue that is generated by MSMQ when the queue is created, or
generated later by the application. MSMQ never stores the format name of a queue for later reference.

Format names can be obtained by any of the following methods.

Method Details
When creating a queue. MSMQ returns a format name when it creates

a queue.
ActiveX applications can obtain the queue's
format name from the MSMQQueueInfo
object used to create the queue.

When locating a queue. The application can retrieve the queue's
MSMQ pathname or queue identifier (GUID)
and translate it into a format name for the
queue. See MQPathNameToFormatName
and MQInstanceToFormatName respectivley.
ActiveX applications can obtain the queue's
format name from the collection of
MSMQQueueInfo objects referenced by the
MSMQQueueInfos object returned by a
query.

When the queue's handle
is returned.

The application can translate the queue
handle returned by MQOpenQueue to a
format name using
MQHandleToFormatName.
ActiveX applications can obtain the queue's
format name from the MSMQQueueInfo
object's FormatName property.

When reading application-
generated messages from
a message queue.

The receiving application can retrieve the
format name of the response queue and the
format name of administration queue by
retrieving the following message properties.
The format name of the response queue is
found in PROPID_M_RESP_QUEUE.

The format name of the administration queue
is found in PROPID_M_ADMIN_QUEUE.

When reading MSMQ-
generated
acknowledgment
messages from an
administration queue.

When reading the acknowledgment messages
in the administration queue, the format name
of the original message's destination queue
can also be retrieved if
PROPID_M_DEST_QUEUE was set by the
sending application.

The data type holding the format name is a null-terminated Unicode string, with one of the following
general formats:

PUBLIC=QueueGUID  *Public queues.
PUBLIC=QueueGUID;JOURNAL  *Public queue journals.
PRIVATE=MachineGUID\QueueNumber                            *Private queues.
PRIVATE=MachineGUID\QueueNumber;JOURNAL            *Private queue journals.
DIRECT=AddressSpecification\QueueName                *Direct format for public
  queues.
DIRECT=AddressSpecification\PRIVATE$\QueueName          *Direct format for
  private queue.
MACHINE=MachineGUID;JOURNAL                                   *Machine journal.
MACHINE=MachineGUID;DEADLETTER                              *Dead letter queue.
MACHINE=MachineGUID;DEADXACT                                  *Transaction dead letter
  queue.
CONNECTOR=ForeignCNGUID  *Foreign queues.
CONNECTOR=ForeignCNGUID:XACTONLY                          *Transaction foreign
  queues.

For information on public, private, and direct format names, see:

· Public Format Names
· Private Format Names
· Direct Format Names

For information on MSMQ pathnames and queue handles, see:

· MSMQ Pathname
· Queue Handle

For information on journals and dead letter queues, see:

· Journal Queues
· Dead Letter Queues

Public Format Names
Public format names are used to specify queues registered in the MSMQ information store. A queue's
public format name contains the string "Public=", followed by the queue identifier generated by MSMQ
when the queue was created.

The following is the general format for public format names:

"PUBLIC=QueueGUID"

Example:

Lpwstr Sz = L"PUBLIC=308FB580-1EB2-11CA-923B-08002B1075A7";

When this format is used, MSMQ looks in MQIS to determine what computer is currently hosting the
queue, what protocol the host computer uses, and any other information it needs to get to the queue.

Note A public format name is strictly equivalent to the queue's identifier except that it is formatted
as a string rather than as binary data. See PROPID_Q_INSTANCE for API calls or QueueGuid for
ActiveX component calls.

The queue's location (the specific computer where the queue's messages are stored) is not part of the
format name. This allows message operations to succeed regardless of the queue location; a public
queue can be relocated to another machine and the format name remains valid. This is not true of a
direct format name where the queue is bound to a specific location.

For information on other types of format names, see:

· Private Format Names
· Direct Format Names.

Private Format Names
Private format names are used to specify queues that are created and managed locally by the Queue
Manager on the local computer. Unlike public queues, they are not registered in the MQIS and their
scope is restricted to the local computer.

The private format name of the queue includes the string "Private=", followed by the machine identifier
of the computer where the queue is located and a hexadecimal number that identifies the queue.

The following is the general format of a private format name:

"PRIVATE=MachineGUID\QueueNumber"

Example:

Lpwstr Sz = L"PRIVATE=ae0c5671-f190-12ce-ae10-00dd0114290f\0000000d";

When MSMQ detects this type of format name it does not refer to MQIS for information about the
queue. However, it does use MQIS to look up information on the computer for routing purposes.

For information on other types of format names, see:

· Public Format Names
· Direct Format Names

Direct Format Names
Direct format names are used to open a queue that is not in your enterprise, or when you want to make
sure MSMQ sends messages to the queue in one step. Direct format names have two parts: the
address specification of the computer where the queue is located, followed by the local name of the
queue (the name specified in the queue's MSMQ Pathname when the queue was created).

The address specification of the computer can be specified using two forms:

· As the network address of the target machine (including the network protocol). MSMQ supports two
network protocols: TCP and SPX.

· As any string that is supported natively by the underlying operating system to identify the target
machine (OS is used as the protocol to indicate that the computer's native protocol should be used).
Protocol Description Network Address
TCP Connection-oriented TCP

over IP.
Internet address notation (IP
address).

SPX Connection-oriented SPX Network number and host
number (separated by the ":"

over IPX. character).
OS Connection using native

machine-naming
convention.

Any machine name supported
by the underlying operating
system. For Windows NT
version 4.0, it is either UNC or
DNS (see the following
examples).

The following is the general format of a direct format name (public and private queues can be
accessed directly):

DIRECT=AddressSpecification\QueueName                        (For public queues.)
DIRECT=AddressSpecification\PRIVATE$\QueueName      (For private queues.)

Public Queue Examples:

Lpwstr Sz = L"DIRECT=SPX: 00000012:00a0234f7500\MyQueue";
Lpwstr Sz = L"DIRECT=TCP:157.18.3.1\MyQueue";
Lpwstr Sz = L"DIRECT=OS:elvisp.ms.com\MyQueue";
Lpwstr Sz = L"DIRECT=OS:elvisp\MqQueue";

Private Queue Examples:

Lpwstr Sz = L"DIRECT=SPX: 00000012:00a0234f7500\PRIVATE$\MyQueue";
Lpwstr Sz = L"DIRECT=TCP:157.18.3.1\PRIVATE$\MyQueue";
Lpwstr Sz = L"DIRECT=OS:elvisp.ms.com\PRIVATE$\MyQueue";
Lpwstr Sz = L"DIRECT=OS:elvisp\PRIVATE$\MqQueue";

When MSMQ sees a direct format name, it uses the information provided in the format name to locate
the queue, not information in the MQIS (MSMQ information store).

In addition, you cannot use a direct format name to access a journal queue or dead letter queue.

For information on other types of format names, see:

· Public Format Names
· Private Format Names.

Queue Handle
A queue handle is returned to an application when a queue is opened. While the queue is opened, the
application uses the queue's handle to perform the following functions:

· Send messages to the queue (MQSendMessage).
· Retrieve and peek at messages in the queue (MQReceiveMessage).
· Retrieve the format name for the queue (MQHandletoFormatName).
· Create a cursor for navigating through the queue (MQCreateCursor).
· Close the queue (MQCloseQueue).

Note When using ActiveX Components, the MSMQQueue object exposes the queue handle
(Handle) so that applications can call MSMQ API functions directly. For example, when using
Microsoft® Visual Basic®, MSMQ functions can be called directly using the Declare Function facility.

For information on MSMQ pathnames and format names, see:

· MSMQ Pathname
· Format Name

Queue Properties
Queue properties define the queue. They can be set by MSMQ or by the application. Queue properties
include ways to identify the queue, specify who has access to the queue, if the queue's journal queue
is to be used, and many more features.

The following table lists all the queue properties provided by MSMQ.

Property Name Description
PROPID_Q_AUTHENTICATE Optional. Specifies whether or not the

queue only accepts authenticated
messages.

PROPID_Q_BASEPRIORITY Optional for public queues only.
Specifies a single base priority for all
messages sent to the queue.

PROPID_Q_CREATE_TIME Read-only. Indicates the time and
date when the queue was created.
This property is set by MSMQ when
MQCreateQueue is called.

PROPID_Q_INSTANCE Read-only (public queues only).
Identifies the created queue (not an
open instance of the queue).This
property is set by MSMQ when
MQCreateQueue is called.

PROPID_Q_JOURNAL Optional. Specifies if a target journal
is maintained for a specified queue.

PROPID_Q_JOURNAL_QUOTA Optional. Specifies the maximum size
of the target journal (in Kbytes).

PROPID_Q_LABEL Optional. Specifies a description of
the queue.

PROPID_Q_MODIFY_TIME Optional. Indicates the last time the
properties of a queue were modified.
This property is set by MSMQ when
MQCreateQueue is called, then reset
by MSMQ each time the queue
properties are modified by calls to
MQSetQueueProperties.

PROPID_Q_PATHNAME Required to create the queue.
Specifies the MSMQ pathname of the
queue. The MSMQ pathname
includes the name of the machine
where the queue's messages are
stored, whether the queue is public or
private, and the name of the queue.

PROPID_Q_PRIV_LEVEL Optional. Specifies the privacy level
required by the queue. The privacy
level determines how the queue
handles encrypted messages.

PROPID_Q_QUOTA Optional. Specifies the maximum size
of the queue (in Kbytes).

PROPID_Q_TRANSACTION Optional. Specifies whether the
queue is a transaction queue or a

non-transaction queue.
PROPID_Q_TYPE Optional. Specifies the type of service

provided by the queue.

In addition to describing the queue, queue properties can be used as filters to select a unique set of
public queues. The MSMQ locate functions allow you to select the queue properties that you want to
use as filters, returning only those queues that match the properties you specified. All public queue
properties can be used as filters.

For information on how to locate a queue, see one of the following:

· Locating a Public Queue (using API functions)
· Locating a Public Queue (using ActiveX components)

MSMQ Messages
For the most part, MSMQ messages refer to the messages your application uses to send data.
However, there are also several MSMQ-generated messages (for example, acknowledgment and
report messages) that provide additional functionality.

Your application can use any message property to identify a message, including a message's MSMQ-
generated identifier, application-defined identifiers, label, class, body, and so forth.

Each message, whether it is sent by an application or generated by MSMQ, receives an MSMQ-
generated message identifier when it is sent.

The two application-defined identifiers are the correlation identifier and application-specific identifier. By
using these identifiers, you can create your own method for identifying messages.

For information on how to set the correlation identifier and application-specific identifier, see
PROPID_M_CORRELATIONID and PROPID_M_APPSPECIFIC (for applications using ActiveX
components, see CorrelationId and AppSpecific).

Message Properties
The following is a list of all the message properties used by MSMQ.

Property Description
PROPID_M_ACKNOWLEDGE Specifies the types of

acknowledgment messages MSMQ
sends.

PROPID_M_ADMIN_QUEUE Specifies the queue used for
acknowledgment messages.

PROPID_M_ADMIN_QUEUE_LEN Specifies the length of the
administration queue.

PROPID_M_APPSPECIFIC Specifies application-generated
information such as single integer
values or application defined
message classes.

PROPID_M_ARRIVEDTIME Specifies the maximum amount of
time the message has to reach the
queue.

PROPID_M_AUTH_LEVEL Specifies if the message needs to
be authenticated when read.

PROPID_M_AUTHENTICATED Specifies if the message was
authenticated by MSMQ.

PROPID_M_BODY Specifies the body of the message.
PROPID_M_BODY_SIZE Specifies the size of the message.
PROPID_M_BODY_TYPE Specifies the type of message body

(string, array of bytes, or object).
PROPID_M_CLASS Specifies the type of message (for

example, a message can be a
normal, acknowledgment, or report
message).

PROPID_M_CONNECTOR_TYPE Specifies that some message
properties typically generated by
MSMQ are generated externally
from MSMQ.

PROPID_M_CORRELATIONID Specifies the correlation identifier of
the message.

PROPID_M_DELIVERY Specifies how the message is
delivered (optimize throughput or
recoverability).

PROPID_M_DEST_QUEUE Specifies the queue where the
message resides (the queue where
the message is sent).

PROPID_M_DEST_QUEUE_LEN Specifies the length of the
destination queue.

PROPID_M_DEST_SYMM_KEY Specifies the symmetric key
required when sending encrypted
messages to foreign queues.

PROPID_M_DEST_SYMM_KEY_LEN Specifies the length of the
symmetric key.

PROPID_M_ENCRYPTION_ALG Specifies the algorithm used to
encrypt the message body.

PROPID_M_EXTENSION Specifies additional unformatted
information.

PROPID_M_EXTENSION_LEN Specifies the length of the
unformatted information.

PROPID_M_HASH_ALG Specifies the hash algorithm used
when authenticating messages.

PROPID_M_JOURNAL Specifies if a copy of the message
is stored in the machine journal.

PROPID_M_LABEL Specifies an application-defined
label for the message.

PROPID_M_LABEL_LEN Specifies the length of the message
label.

PROPID_M_MSGID Specifies the MSMQ-generated
identifier for the message.

PROPID_M_PRIORITY Specifies the priority of the
message (where it is placed in the
queue).

PROPID_M_PRIV_LEVEL Specifies if the message is private
(encrypted).

PROPID_M_PROV_NAME Specifies the name of the
cryptographic provider. Required
when sending authenticated
messages to foreign queues.

PROPID_M_PROV_NAME_LEN Specifies the length of the
cryptographic provider name.

PROPID_M_PROV_TYPE Specifies the type of cryptographic
provider. Required when sending
authenticated messages to foreign
queues.

PROPID_M_RESP_QUEUE Specifies the queue for sending
responses to the message.

PROPID_M_RESP_QUEUE_LEN Specifies the length of the response
queue.

PROPID_M_SECURITY_CONTEXT Specifies security information for
authenticating the message.

PROPID_M_SENDER_CERT Specifies the security certificate
used to authenticate the message.

PROPID_M_SENDER_CERT_LEN Specifies the length of the sender
certificate buffer.

PROPID_M_SENDERID Identifies the user who sent the
message.

PROPID_M_SENDERID_LEN Indicates the length of the sender
identifier.

PROPID_M_SENDERID_TYPE Specifies the type of sender
identifier found in
PROPID_M_SENDERID (currently,
the only type of sender identifier
available to MSMQ is an SID, or

security identifier).
PROPID_M_SENTTIME Indicates the date and time that the

message was sent by the source
queue.

PROPID_M_SIGNATURE Specifies a digital signature for
authenticating the message. Used
to determine who sent the
message.

PROPID_M_SIGNATURE_LEN Specifies the length of the digital
signature used for authenticating
the message.

PROPID_M_SRC_MACHINE_ID Specifies the computer where the
message originated.

PROPID_M_TIME_TO_BE_RECEIVED Specifies how long the receiving
application has to remove the
message from the queue.

PROPID_M_TIME_TO_REACH_QUEUE Specifies how long the message
has to reach the queue.

PROPID_M_TRACE Specifies if the route of the
message is traced.

PROPID_M_VERSION Specifies the version of MSMQ
used to send the message.

PROPID_M_XACT_STATUS_QUEUE Specifies the format name of the
transaction status queue.

PROPID_M_XACT_STATUS_QUEUE_LEN Indicates the length (in Unicode
characters) of the transaction status
queue's format name buffer.

Sending Messages
Sending messages in MSMQ is always an asynchronous operation. When you are sure the queue is
open, you can continue to send messages, never stopping to wait for a reply.

In addition to the basic asynchronous operation, you can add functionality to your send operation by
using:

· Message timers to control how long your messages stay in the system
· Machine journals to store a copy of the messages you send
· Administration queues to receive MSMQ-generated negative and positive acknowledgment

messages
· Response queues for application-defined response messages
· Report queues for tracking

For information on all the message properties that can be used when sending messages with MSMQ
API functions, see:

· Sending Messages To a Queue (using API functions).
· Sending Messages To a Queue (using ActiveX components).

Reading Messages
MSMQ messages can be read from a queue either synchronously or asynchronously. In addition, they
can be read within a transaction (for information on reading messages in transactions, see MSMQ
Transactions).

When an application synchronously reads messages in a queue, all calls are blocked until the next
message is available or a specific amount of time expires. The amount of time the application waits can
be 0, a specific amount of time (in milliseconds), or the maximum time allowed by your MSMQ
enterprise. When the time expires for a synchronous read, MSMQ returns a NULL message (for
applications using ActiveX components) or an MQ_ERROR_IO_TIMEOUT error (for applications using
API functions).

There are four ways to receive messages asynchronously:

· Use a callback function.
· Use a Windows Event mechanism.
· Use a Windows NT completion port.
· Use the MSMQ ActiveX components, defining an event handler that is notified when a message

arrives or a time-out occurs. ActiveX components return MQ_ERROR_IO_TIMEOUT when a time-
out occurs.

When using a callback function, MSMQ reads the message by calling the callback function that is
currently registered. The function is called if a message is immediately available, when the message
arrives, or when the time expires.

When using an event mechanism, an OVERLAPPED structure provides a valid handle (hEvent field) to
an event object. When a suitable message arrives, or a timeout occurs, the event object is set to the
signaled state. For more information on OVERLAPPED structures, see the Platform SDK.

When using a Windows NT® completion port, a queue handle can be associated with the port to
receive messages asynchronously. For more information, see CreateIOCompletionPort in the
Microsoft Platform SDK.

When reading messages in a queue, MSMQ can peek at the messages (leaving them in the queue) or
retrieve them (removing the messages from the queue).

For examples of reading messages asynchronously, see:

· Reading Messages Asynchronously (using API functions)
· Reading Messages Asynchronously (using ActiveX)

Peeking or Retrieving Messages
MSMQ provides two methods for reading messages in a queue. The application can peek at the
messages in the queue or retrieve the messages in the queue.

Peeking allows you to check a message without removing it from the queue. For example, if you are
searching for a specific message in a queue, you may want to peek at each message's label or
identifier to locate the message, and then retrieve the complete message once it is found.

Retrieving a message in a queue removes it from the queue. For example, if you want to purge a
queue, you could retrieve each message in the queue.

Reading Messages with Cursors
Cursors are used to read messages that are not necessarily at the front of the queue. Cursors can be
application-defined or implied, depending on the development platform you are using.

Using any number of application-defined cursors, C applications can navigate through a queue. Each
cursor is independent of all other cursors, including those generated by other applications. Moving one
cursor has no effect on where another cursor points.

ActiveX applications cannot use multiple, application-defined cursors. They have a single, implied
cursor to navigate through the queue. Each application's implied cursor is, however, independent of
other application's cursors.

Regardless of the development platform, there is no limit to the number of applications that can use
cursors to navigate through a queue.

Message and Cursor Behavior
Although cursors are independent, how they are used may affect a message that another cursor is
pointing to. For example, if two cursors are pointing at the same message and one cursor is used to
remove the message, the other cursor will no longer point to a message. An error will be returned if an
attempt is made to peek at or retrieve the message that was removed.

Note A cursor pointing to a message does not guarantee that the message will always exist. The
message can be removed by another cursor, another application, by MSMQ Explorer, or the queue
could be deleted.

The relationship between message position and cursor position can be simple or complex depending
on how the messages in the queue are read. The following illustrations show several scenarios,
starting with the simple case of retrieving the first message in the queue (using no cursor), and ending
with an example of multiple cursors. Each example shows message and cursor position before and
after the call was made.

Note Cursors work the same way for synchronous and asynchronous operations. However, you
should not use the same cursor when firing receives in overlapping operations. Firing a second
receive (using the same cursor) before the first one is completed will lead to unexpected behavior.

Retrieving the First Message
Here no cursor is used to remove Message A from the queue. The cursor shown in the illustration could
be another application’s cursor, or the implied cursor used by ActiveX applications.

Platform
C: MQReceiveMessage

dwAction==MQ_ACTION_RECEIVE
hCursor==NULL

ActiveX MSMQQueue.Receive

Peeking at a Message in a Queue
Here a cursor is used to look at the second message in the queue. The message is peeked at, but not
removed from the queue. Cursor position and message position remain the same.

Platform
C: MQReceiveMessage

dwAction==MQ_ACTION_PEEK_CURRENT
hCursor==<CurrentCursorHandle>

ActiveX MSMQQueue.PeekCurrent

Retrieving a Message in a Queue
Here a cursor is used to retrieve the second message in the queue. When the call is made, the
message is removed from the queue and the cursor now points at a new message. When the last
message in a queue is retrieved, MSMQ points the cursor to the end of the queue and waits for a new
message or a time-out to occur.

Platform
C: MQReceiveMessage

dwAction==MQ_ACTION_RECEIVE_CURRENT
hCursor==<CurrentCursorHandle>

ActiveX MSMQQueue.ReceiveCurrent

Peeking at the next Message in a Queue
Here a cursor is used to peek at the next two message in the queue. When the first call is made,
MSMQ moves the cursor and then looks at the new message. When the second call is made (the
cursor is pointing to the last message in the queue), MSMQ moves the cursor to the end of the queue
and waits for a new message or a time-out to occur.

Platform
C: MQReceiveMessage

dwAction==MQ_ACTION_PEEK_NEXT
hCursor==<CurrentCursorHandle>

ActiveX MSMQQueue.PeekNext

Using Multiple Cursors
Here one cursor is pointing at a message in the queue and another cursor is removing messages from
the queue. CursorA removes messages from the queue with several receive-current calls while
CursorB remains pointing to message “C.” After CursorA removes message “C,” CursorB no longer
points to a message. CursorB will be pointing to a message place holder, and an error will be returned
if the application tries to read a message at the current CursorB location. However, CursorB can still be
used if peek-next is called.

Platform
C: MQReceiveMessage

dwAction==MQ_ACTION_RECEIVE_CURRENT
hCursor==<CurrentCursor1Handle>

Message Timers
MSMQ provides two timers to help you maintain better control of your messages: a time-to-be-received
and a time-to-reach-queue timer.

The time-to-be-received timer determines how long a message remains in the system, starting from the
time the message is sent to the time it is removed from the target queue.

The time-to-reach-queue timer determines how long a message has until it reaches the target Queue
Manager of the target queue. Typically, this timer is set to a value less than the time-to-be-received
setting.

When both timers are used, if the time-to-be-received timer is set to a shorter time interval than the
time-to-reach-queue timer, it takes precedence over the time-to-reach-queue timer. MSMQ does not
allow messages to remain in the system longer than the time allowed by their time-to-be-received
timer.

When either timer expires, MSMQ discards the message. However, MSMQ can also send a copy of the
message to a dead letter queue or an acknowledgment message to an administration queue. If the
message's acknowledgment property specifies full or negative acknowledgments, MSMQ sends the
appropriate negative acknowledgment message to the administration queue specified by the message.
If the message's journal property specifies a dead letter queue, a copy of the message is sent to one of
two places. The copies of non-transactional messages are sent to the dead letter queue on the
computer where the timer expired. Copies of transactional messages are copied to the transactional
dead letter queue on the source machine.

For more information see:

· Sending Messages To a Queue (using API functions)
· Sending Messages To a Queue (using ActiveX components)
· PROPID_M_TIME_TO_BE_RECEIVED
· PROPID_M_TIME_TO_REACH_QUEUE
· MaxTimeToReceive
· MaxTimeToReachQueue

Acknowledgment and Report Messages
MSMQ generates acknowledgment and report messages, which are sent to administration queues and
report queues, respectively.

Note Acknowledgment and report messages can also be created by MSMQ Connector
applications.

Acknowledgment messages are sent to the administration queue specified by the sending application.
For more information, see Administration Queues.

Report messages are sent to the report queue created by the MSMQ Administrator. For more
information, see Report Queues.

For a description of acknowledgment and report messages, see Acknowledgment Messages and
Report Messages.

Acknowledgment Messages
An acknowledgment message indicates a positive or negative acknowledgment. The following table
lists the message properties that have special meaning when attached to an acknowledgment
message.

Note Connector applications must set these properties when sending positive (including read
receipt messages) and negative acknowledgment messages back to the sending application.

Message Property
(ActiveX property)

Setting

PROPID_M_ACKNOWLEDGE
(Ack)

None.

PROPID_M_ADMIN_QUEUE
(AdminQueueInfo)

Null.

PROPID_M_APPSPECIFIC
(AppSpecific)

Same as original message.

PROPID_M_BODY
(Body)

For positive acknowledgment messages,
the body of the acknowledgment
message is empty. You must refer to the
original message to see the message
body.
For negative acknowledgment messages
(with the exception of private, encrypted
messages) the body of the
acknowledgment message contains the
message body of the original message.

PROPID_M_CLASS
(Class)

Specifies the appropriate positive or
negative acknowledgment class.

PROPID_M_CORRELATIONID
(CorrelationId)

Specifies the original application
message identifier (the
PROPID_M_MSGID of the original
message). If the correlation identifier of
the original message contained an
application-defined identifier, that
information is not included in the
acknowledgment message.

PROPID_M_DELIVERY
(Delivery)

Same as original message.

PROPID_M_EXTENSION Same as original message.
PROPID_M_JOURNAL
(Journal)

Same as original message.

PROPID_M_LABEL
(Label)

Same as original message.

PROPID_M_MSGID
(id)

Message identifier for the
acknowledgment message.

PROPID_M_PRIORITY
(Priority)

Same as original message.

PROPID_M_RESP_QUEUE
(ResponseQueueInfo)

Target queue of the original message.

PROPID_M_TIME_TO_BE_RECEIVED Set to maximum time allowed by MSMQ.

(MaxTimeToReceive)
PROPID_M_TIME_TO_REACH_QUEUE
(MaxTimeToReachQueue)

Set to maximum time allowed by MSMQ.

Positive Acknowledgment Classes
MSMQ generates the following classes of positive acknowledgment messages:

· MQMSG_CLASS_ACK_REACH_QUEUE. This class indicates the original message reached its
destination queue.

· MQMSG_CLASS_ACK_RECEIVE. This class indicates the original message was retrieved by the
receiving application.

Negative Arrival Acknowledgment Classes
MSMQ generates the following classes of negative acknowledgment messages if the message fails to
arrive at the queue:

· MQMSG_CLASS_NACK_ACCESS_DENIED. This class indicates the sender does not have send
access rights to the destination queue.

· MQMSG_CLASS_NACK_BAD_DST_Q. This class indicates the destination queue is not available
to the sender.

· MQMSG_CLASS_NACK_BAD_ENCRYPTION. This class indicates the destination Queue manager
could not decrypt a private message.

· MQMSG_CLASS_NACK_BAD_SIGNATURE. This class indicates that MSMQ could not
authenticate the original message. The original message's digital signature is not valid.

· MQMSG_CLASS_NACK_COULD_NOT_ENCRYPT. This class indicates the source Queue
manager could not encrypt a private message.

· MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED. This class indicates the message hop count
was exceeded. The maximum hop count is set by MSMQ (hop count = 15) and cannot be changed.

· MQMSG_CLASS_NACK_Q_EXCEED_QUOTA. This class indicates the message was not delivered
because the destination queue is full.

· MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT. This class indicates that the message did
not reach the destination queue. It can be generated by either the time-to-reach-queue or time-to-
be-received timer.

· MQMSG_CLASS_NACK_PURGED. This class indicates the message was purged before reaching
the destination queue.

· MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q. This class indicates a transaction message
was sent to a non-transaction queue.

· MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG. This class indicates a non-transaction
message was sent to a transaction queue.

Negative Read Acknowledgment Classes
MSMQ generates the following classes of negative acknowledgment messages if the original message
in the queue could not be read:

· MQMSG_CLASS_NACK_Q_DELETED. This class indicates the queue was deleted before the
message could be read from the queue.

· MQMSG_CLASS_NACK_Q_PURGED. This class indicates that the queue was purged and the
message no longer exists.

· MQMSG_CLASS_NACK_RECEIVE_TIMEOUT. This class indicates that the message was not
retrieved from the queue before its time-to-be-received timer expired.

For an example of returning acknowledgment messages, see:

· Sending Messages that Request Acknowledgments (using API functions)
· Sending Messages that Request Acknowledgments (using ActiveX components)

Report Messages
Report messages are used to trace the path of the message to its target queue. Each report message
has its own message identifier, a specific report message class, a message label, and a message
body.

MSMQ generates the following report message class:

MQMSG_CLASS_REPORT, used for typical report messages.These report messages are sent to
the source Queue Manager as soon as your message enters or exits a source, target, or
intermediate queue along its route. MSMQ generates one report message when the message
leaves the source Queue Manager, two report messages for each MSMQ server it enters and
leaves, and one report message when your message reaches its destination Queue Manager.

The report message label contains a simplified version of the information in the body of the message.
Although it can be used by any MSMQ application, it is primarily used for display purposes by the
MSMQ Explorer. The format of the message label is one of the following:

gggg:dddd:hh sent from <computer> to <address> at <time>
gggg:dddd:hh received by <computer> at <time>

where "gggg" is the first four hexadecimal digits of the source queue identifier, "dddd" is an internal
message identifier, and "hh" is the hop count. The internal message identifier is a 20-byte identifier,
consisting of the first 16 bytes of the original message's identifier plus a 4-byte sequence number.

The body of a report message contains detailed information about the original message. The format of
the message body is:

<MESSAGE ID>{message ID}</MESSAGE ID>
<TARGET QUEUE>{target queue format name}</TARGET QUEUE>
<NEXT HOP>{IP or IPX address of the next hop}</NEXT HOP>
<HOP COUNT>integer</HOP COUNT>

For information on report queues, see Report Queues.

MSMQ Computers
MSMQ computers are defined as machine objects within the MSMQ enterprise. Machine objects are
created and maintained by the MSMQ administrator via the MSMQ Explorer and cannot be created,
modified, or deleted using the MSMQ SDK.

Applications can retrieve the following properties of existing machine objects:

Property Description
PROPID_QM_CONNECTION Identifies the Connected Network

(CN) list of the computer.
PROPID_QM_ENCRYPTION_PK Identifies the public encryption key of

the computer.
PROPID_QM_MACHINE_ID Identifies the computer.
PROPID_QM_PATHNAME Identifies the MSMQ pathname of the

computer.
PROPID_QM_SITE_ID Identifies the MSMQ site where the

computer is defined.

These properties are retrieved by calling MQGetMachineProperties. For example, if the computer's
identifier is needed for the format name of a queue, specify PROPID_QM_MACHINE_ID in the
MQGetMachineProperties call to retrieve the computer's identifier. Once the call returns the identifier, it
can be translated to a string and included in the format name of the queue.

MSMQ Object Properties
MSMQ objects, including computers, public and private queues, and messages, are all defined by their
properties.

Properties can be stored in MQIS, on a local computer, or passed along with their object. Properties for
computers (machine properties) are stored in MQIS. Properties for queues are either stored in MQIS
(for public queues), or on the local computer where the queue resides (for private queues). Properties
for messages are passed along with the message.

For information on the property structures, see Property Structures.

Property Structures
MSMQ uses three property structures: MQQUEUEPROPS for queue properties, MQMSGPROPS for
message properties, and MQQMPROPS for Queue Manager properties. All three structures have the
following four members:

· A count (cProp), indicating how many properties are supplied. This is a double word member field
(DWORD) included in all three property structures.

· An array of PROPID values (aPropID) identifying which properties are specified for the call. MSMQ
uses three different property identifiers: QUEUEPROPID, MSGPROPID, and QMPROPID. These
identifiers are used for MSMQ queue properties, message properties, and Queue Manager
properties, respectively. These identifiers are all of type PROPID.

· An array of PROPVARIANT structures (aPropVar) containing the values of the properties. Position i
in this array is the value of the property whose identifier (PROPID value) is in position i in its
respective aPropID array.

· An array of HRESULT values (aStatus) returned by MSMQ. Position i in this array is a reported
status code of the property whose identifier and value are in position i in the arrays discussed
earlier. This array is optional.

For information on the specific property structures, see MQQUEUEPROPS, MQMSGPROPS, and
MQQMPROPS.

Setting Properties
To set the properties of a queue or message, the corresponding elements of the aPropID array and the
aPropVar array must be set. Element i of the arrays must contain the property's identifier and value,
respectively.

When setting properties, if a property is set to the same value more than once, MSMQ uses the first
entry in the aPropVar array and discards all the subsequent entries. In the aStatus array, an
information error value of MQ_INFORMATION_DUPLICATE_PROPERTY is returned to each
discarded entry.

For information on setting queue properties, see Setting Queue Properties.

For information on setting message properties, see Setting Message Properties.

Unlike queue and message properties, you cannot set Queue Manager properties; they are properties
of the Queue Manager machine. The MSMQ API can only retrieve Queue Manager properties (see
MQGetMachineProperties).

Setting Queue Properties
The following list demonstrates what must be done to set a queue's properties.

· Define a queue property structure.
· For each property:

· Set element i of aPropID to the property's identifier.
· Set element i of aPropVar to the property's value. Each element of aPropVar is an instance of

PROPVARIANT. Set the vt field of PROPVARIANT to the property's type indicator and the value
field (for example, bVal) to the appropriate property value.

· If a status code for this property is needed, include an aStatus array.
· Set cProp to the number of properties specified by the queue property structure.
· Call the appropriate function with the queue property structure.

Setting Message Properties
The following list demonstrates what must be done to set a message property.

· Define a message property structure.
· For each property:

· Set element i of aPropID to the property's identifier.
· Set element i of aPropVar to the property's value. Each element of aPropVar is an instance of

PROPVARIANT. Set the vt field of PROPVARIANT to the property's type indicator and the value
field (for example, bVal) to the appropriate property value.

· If a status code for this property is needed, include an aStatus array.
· Set cProp to the number of properties specified by the queue property structure.
· Call the appropriate function with the queue property structure.

Property Values
A property structure often contains three types of properties: IN properties, OUT properties, and
IN/OUT properties.

· IN properties use values set by the application. They are passed to MSMQ as IN parameters and
can either identify or set queue or message properties. For example, the application must supply the
MSMQ pathname for the queue when the queue is created.

· OUT properties use values set by MSMQ. For example, when a queue is created, MSMQ sets the
time when it was created.

· IN/OUT properties initially use values passed to MSMQ, then MSMQ resets the value when the
property is passed back to the application. For example, when the receiving application asks for the
destination queue of a message, it must first tell MSMQ the size of the buffer allocated for the
destination queue's format name. On return, MSMQ passes back the actual size of the format name.

Properties appear in no particular order in the aPropVar array. To determine the type of a property,
MSMQ examines the property identifier and the function called. For example, for API functions, the
queue quota property (PROPID_Q_QUOTA) is an OUT property when MQGetQueueProperties is
called, and an IN property when MQSetQueueProperties is called.

IN properties can be set to any valid setting for the specific property. However, VT_NULL cannot be
used as an IN property VARTYPE value.

OUT properties returned by MSMQ require an PROPVARIANT entry where the returned value can be
stored. For example, space must be allocated before the label of a queue or the body of a message
can be specified. There are two ways for the application to specify such an PROPVARIANT entry:

· Prepare a PROPVARIANT entry with the appropriate VARTYPE value (vt field) for the expected
value, allocating the corresponding buffer when appropriate. For example, if a message body is
specified, allocate the array of bytes to be pointed to by the caui1.pElems field.

· Let MSMQ fill in the PROPVARIANT with the appropriate VARTYPE value. To do this, set the vt
field to VT_NULL. If memory is required, MSMQ will allocate the buffer for the field as long as its
value is stored in the PROPVARIANT structure (for example, VT_LPWSTR).
For example, if myQueueProps is defined as an MQQUEUEPROPS structure to be passed to
MQGetQueueProperties: Assign myQueueProps.aPropID[j]=PROPID_Q_LABEL and
myQueueProps.aPropVar[j].vt=VT_NULL. When the call returns, myQueueProps.aPropVar[j].
pwszVal will point to the buffer that was allocated by MSMQ that contains the queue label.

For queue and queue manager properties whose field type is VT_LPWSTR, their VARTYPE must be
set to VT_NULL.

In all cases where MSMQ allocates a buffer for the MSMQ application, it is the application's
responsibility to free the memory with the MQFreeMemory function.

MSMQ Transactions
The following illustration shows how transactions are used by the sending and receiving application. In
this model, MSMQ uses two transactions, one to send messages to the queue and the other to retrieve
messages from the queue.

In this model, the sending transaction can commit to sending the messages to the queue and the
receiving application can commit to retrieving the messages; MSMQ provides its own confirmation
process to notify the sending application that either the messages were retrieved from the queue or
why the receiving application failed to retrieve them.

Note A single transaction can contain both transaction send and receive calls.

MSMQ provides several ways to send and receive messages through transactions. Transactions can
be called either explicitly by providing pointers to a transaction object, or implicitly, directing MSMQ to
find the appropriate transaction object.

Transactions that can be explicitly called include MSMQ internal transactions and the Microsoft®
Distributed Transaction Coordinator (MS DTC) external transactions. For information on these
transactions, see:

· MSMQ Internal Transactions
· MS DTC External Transactions

Transactions that can be implicitly called include the current Microsoft® Transaction Server™ (MTS)
and current XA transactions. The current MTS or XA transaction is only used if it is available. In these
cases, MSMQ decides (with the help of MTS or MS DTC) whether the call will truly be part of a
transaction. For information on these transactions, see:

· MTS Transactions
· XA-Compliant Transactions

MS DTC External Transactions
Microsoft® Distributed Transaction Coordinator (MS DTC) external transactions are used when the
transaction includes more actions than simply sending or retrieving MSMQ messages (more than one
resource manager is used). In this case, the application must ask MS DTC for a transaction object and
explicitly reference that object each time it sends a message, retrieves a message, or executes an
action of another resource manager.

When an application is performing an MS DTC transaction, MSMQ is acting as part of a transaction
processing system that includes a transaction manager and any number of resource managers.

The following illustration shows the basic model for the transaction processing system. This model
demonstrates a typical system with MS DTC as the transaction manager and MSMQ and SQL as
resource managers. The application must work with the transaction manager, and with each relevant
resource manager.

For an example of an MS DTC external transaction, see:

· Sending Messages Using an MS DTC External Transaction (using API functions)
· Sending Messages Using an MS DTC External Transaction (using ActiveX components)

MSMQ Internal Transactions
MSMQ internal transactions provide better performance for transactions that only send or receive
MSMQ messages.

Unlike MS DTC external transactions, MSMQ internal transactions cannot be passed to another
resource manager. It is the cost of coordinating between several resource managers that make MSMQ
internal transaction less expensive in terms of memory than MS DTC external transactions.

For information on the SDK components used to create an MSMQ internal transaction, see:

· MQBeginTransaction (using API functions)
· MSMQTransactionDispenser (using ActiveX components)

Note When sending a single message, MSMQ provides a single-message send operation that
uses an MSMQ internal transaction. This mode of sending message provides the best performance of
all transaction types. When using this mode, MQBeginTransaction and Commit are implied.

For an example of an internal transaction, see:

· Sending Messages Using an Internal Transaction (using API functions)
· Sending Messages Using an Internal Transaction (using ActiveX components)

MTS Transactions
When the application is running in the Microsoft® Transaction Server (MTS) environment, MSMQ can
use the current MTS transaction if one is available. For information on MTS see the Microsoft®
Platform SDK.

MSMQ links directly to the MTS runtime environment. Within the runtime environment, MTS uses the
services of Microsoft® Distributed Transaction Coordinator (MS DTC) for transaction coordination.

When this type of transaction is used, the transaction object is provided by MTS.

XA-Compliant Transactions
MSMQ can work in transaction systems that have an XA-compliant transaction manager. Because of
this MS DTC is used as a transaction process monitor and MSMQ is a resource manager.

In the preceding transaction system model, MS DTC acts as a resource manager and a transaction
manager. It acts as an XA-compliant resource manager with the transaction manager above it, and as
an MS DTC-compliant transaction manager to the MSMQ resource manager below it.

Error Reporting
MSMQ can report errors for the properties an application passes to a call, as well as an error for the
call itself. When an error occurs, MSMQ generates an error value that is returned to the application.

For properties, error values are returned to the application in the optional aStatus array of
MQQUEUEPROPS, MQMSGPROPS, and MQQMPROPS. The aStatus array is always optional: if the
application specifies a NULL array in the property structure, MSMQ will not report errors to the
application.

If the application does supply a status array when an error condition is encountered at index n of the
property array (such as an illegal property tag or insufficient access rights to set a property), MSMQ
stores the appropriate error value in entry n of the status array (if no error was encountered with this
property, MSMQ stores the value MQ_OK). This means that if the application passes a status array, it
must be the same size as the list of properties.

The returned value of any call corresponds to the highest-severity error it encounters. For example, if
the error is caused by a property, MSMQ can either return an error code or an information code. To
determine which property caused the error (and why), the application must examine the property status
array.

For a list of error and information codes, see MSMQ Error and Information Codes. For information on
the error codes returned by a specific call, refer to the appropriate API function or ActiveX method
reference page.

MSMQ Offline Support
MSMQ supports offline operations for applications running on independent client computers. While the
client computer is offline, the application can still send and read messages from local queues.
Messages sent while a computer is offline are stored locally, then sent to their final destination when
the client computer is reconnected to the network.

Note Dependent client computers cannot be used for offline operations.

When operating offline, the application must avoid using any call that would need to access the MQIS.
Any call to MQIS would attempt to generate network activity, causing an error or timeout.

The table below lists all the functions and methods that access the MQIS and cannot be called when
operating offline.

API Functions ActiveX Methods
MQCreateQueue (for public queues) Create (for public queues)
MQDeleteQueue (for public queues) Delete (for public queues)
MQGetMachineProperties MachineIdOfMachineName
MQGetQueueProperties Refresh
MQGetQueueSecurity IsWorldReadable
MQGetSecurityContext AttachSecurityContext
MQLocateBegin LookupQueue

Reset
MQLocateNext Next
MQOpenQueue (for public queues
opened to receive messages)

Open (for public queues opened
to receive messages)

MQPathNameToFormatName
MQSetQueueProperties Update
MQSetQueueSecurity

Opening Queues Offline
Queues can be opened offline using public, private, or direct format names. Once the queue is open,
all messages sent to the queue are stored locally by the client computer's Queue Manager, then
passed on to the destination queue when the client computer is reconnected to the network.

Caution Messages must be sent in recoverable mode if the offline client computer is to be turned
off. Messages sent in express mode are held in RAM and will be lost when the computer is turned off.
To send recoverable messages, set the delivery property (PROPID_M_DELIVERY or
MSMQMessage.Delivery) of the message to MQMSG_DELIVERY_RECOVERABLE.

Public queues cannot be opened to retrieve or peek at messages while off line.

Public Format Names
To use a public format name, the identifier of the queue must be known by the application before the
computer is disconnected from the network.

Here is the syntax of a public format name:

"PUBLIC=QueueGUID"

In this format, the client computer accesses MQIS after the computer is reconnected to the network.
MQIS resolves the queue identifier, then passes the messages to the appropriate queue.

Private Format Names
To use a private format name, the identifier of the client computer and the queue's name must be
known.

Here is the general format of a private format name:

"PRIVATE=MachineGUID\QueueNumber"

Direct Format Names
To use a direct format name, the target computer's network address and the queue's name must be
known.

Here is the general format of a direct format name (public and private queues can be accessed
directly):

DIRECT=AddressSpecification\QueueName                        (For public queues.)
DIRECT=AddressSpecification\PRIVATE$\QueueName      (For private queues.)

When using a direct format name, the messages are sent directly to the target computer as soon as
the client computer is brought back online. (For more information on this format see Direct Format
Names.

Opening a Queue
For information on opening a queue, see MQOpenQueue or MSMQQueueInfo.Open

MSMQ Security Services
The MSMQ security services provide MSMQ applications with the following security features:

· Digital signatures for authenticating messages (see Message Authentication)
· Security descriptors for access control to queues (see Access Control)
· Encryption for private messages (see Private Messages)
· Audit messages for tracking the operations performed by MSMQ (see Auditing)

Message Authentication
Message authentication allows the receiving application to verify the source of a message and that the
message was not modified on its way to the queue. This is done by attaching a digital signature to the
message when it is sent, then verifying the digital signature when the message reaches the queue. The
receiving MSMQ Queue Manager uses the digital signature to verify the sender and that the message
was not modified.

To digitally sign a message, the sending application uses a public and private signing key pair to create
the digital signature. MSMQ provides the key pair when an internal security certificate is used or when
an external security certificate is used. External certificates are obtained from a certificate authority
(CA).

When an internal security certificate is used, the private signing key is registered the first time that the
MSMQ Control Panel application is run. The public signing key is provided within the internal
certificate.

Internal certificates are used when the receiving application needs to validate the sender identifier
attached to a message. When using an internal certificate, only the sender identifier is guaranteed
correct.

External certificates are used when you want to use the information in the certificate (not just the
sender identifier sent with the message) to verify the source of a message. The information in the
external certificate is guaranteed by the certificate authority that created the certificate.

MSMQ does not validate an external certificate. The receiving application must validate the certificate
before using an authenticated message. MSMQ generates the digital signature of a message when it is
sent and verifies the digital signature when the message is received, but does not validate the
certificate itself.

Note External certificates are required when communicating with operating environments other
than Windows NT® where the sender identifier is meaningless.

For information on using an internal certificate, see Authenticating Messages Using an Internal
Certificate.

For information on using an external certificate, see Authenticating Messages Using an External
Certificate.

How MSMQ Authenticates Messages
MSMQ authenticates message at the request of the sending application. When the sending application
indicates it wants a message authenticated, the MSMQ runtime code performs the following tasks:

· Retrieves the internal certificate, external certificate certificate, or the security context information.

Note For applications using API functions, external certificates are provided in
PROPID_M_SENDER_CERT and security context information is provided in
PROPID_M_SECURITY_CONTEXT

For applications using ActiveX components, external certificates are provided in SenderCertificate
and security context information is retrieved by AttachCurrentSecurityContext.

· Extracts the public signing key from the internal certificate, external certificate, or from the security
context information taken from the external certificate.

· Extracts the matching private signing key. For internal certificates, MSMQ locates the private signing
key internally. For external certificates, MSMQ searches for the private signing key in the Internet
Explorer certificate store (this is why the external certificate must be registered in the certificate
store).

· Computes a hash value of the message using the algorithm specified by the sending application.

Note For applications using API functions, the Hash algorithm is specified by
PROPID_M_HASH_ALG (the default algorithm is CALG_MD5)

For applications using ActiveX components, the Hash algorithm is specified by the
MSMQMessage object's HashAlgorithm property (the default algorithm is CALG_MD5)

· The following message properties (in the order shown here) are used to create the hash value:
API Functions ActiveX Components
PROPID_M_CORRELATIONID CorrelationId
PROPID_M_APPSPECIFIC AppSpecific
PROPID_M_BODY Body
PROPID_M_LABEL Label
PROPID_M_RESP_QUEUE ResponseQueueInfo
PROPID_M_ADMIN_QUEUE AdminQueueInfo

· Encrypts the hash value using your private signing key. This is the digital signature that will be
attached to the message.

· Attaches the certificate and digital signature to the message, then sends the message on to the
target Queue Manager.

When the target Queue Manager receives the message, it performs the following tasks:

· Computes the hash value of the message using the algorithm specified in PROPID_M_HASH_ALG
or HashAlgorithm.

· Extracts the public key from the certificate.
· Decrypts the digital signature using the public key, obtaining the hash value sent with the message.
· Compares the hash value computed by the Queue Manager to the hash value decoded from the

digital signature.
· If the hash values are the same, the queue then verifies the sender identifier, setting

PROPID_M_AUTHENTICATED or IsAuthenticated to 1 if the sender identifier is valid.
The sender identifier stored with the certificate is retrieved from the MQIS and compared with the

message's PROPID_M_SENDERID or SenderId property. (This is why the certificate should be
registered with MSMQ.)

· If the hash values are not the same, the message is discarded and a negative acknowledgment is
returned to the sending application if one was requested.

Note MSMQ does not validate the external certificate. The receiving application performs any
validation requirements on the certificate before using an authenticated message. MSMQ generates
the digital signature of a message when it is sent and verifies the digital signature when the message
is received, but does not validate the certificate itself.

Access Control
Operations on queues can be restricted to a specific user or group of users. When a queue is created,
a security descriptor is included in the call to specify who has access rights to the queue's operations.

Queue operations that can be set include creating, deleting, and opening a queue (for sending
messages to and reading messages from the queue). Operations also include getting and setting a
queue's properties and security descriptor.

For applications using API functions, the security descriptor is specified by the lpSecurityDescriptor
parameter of MQCreateQueue. For applications using ActiveX components, the default security
descriptor is automatically attached to the queue when it is created and can only be changed using API
functions.

Before MSMQ performs any operation on a queue, it checks the queue's security descriptor to
determine if the user has sufficient access rights to perform the requested operation. To do this, MSMQ
checks whether the operation is restricted. If the operation is restricted, MSMQ then checks the identity
of the user to see if the restriction applies to that user. If it does, the operation is not allowed to
continue.

With the exception of putting a new message in a queue, MSMQ can verify the identity of the user by
the access token attached to the process. Access tokens are produced by the system. When a user
logs on, the system verifies the user's password by comparing it with information stored in the system's
security database. If the password is valid, the system produces an access token and attaches it to
each process started by the user.

However, MSMQ cannot use this access to put a new message in the queue. Instead, it uses a security
identifier (SID) that MSMQ attached to the message when it was sent. Similar to the access token, the
user's SID is created by the application. For a description of access tokens and SIDs, see the Security
section in the Microsoft Platform SDK.

Applications can retrieve or modify the security descriptor of a queue if they have sufficient access
rights. See MQGetQueueSecurity and MQSetQueueSecurity.

Private Messages
MSMQ provides a secured channel for sending private, encrypted messages throughout your MSMQ
enterprise. MSMQ ensures that the body of private messages are kept encrypted from the moment
they leave the source Queue Manager to the moment they reach their target Queue Manager.

Note Private messages can also be sent to foreign queues via an MSMQ connector server. For
information on sending private message to foreign queues, see Passing Private Messages.

With encryption and decryption provided by MSMQ Queue Managers, applications do not have to
encrypt messages when they are sent or decrypt messages when they are received. When a private
message is sent, the source Queue Manager encrypts the body of the message, then sends the
message on to the target Queue Manager. When the target Queue Manager receives the message, it
decodes the body of the message and passes the clear message on to the queue. The receiving
application can then read the message from the queue without ever knowing it was encrypted.

Note Even though the receiving application sees the message as clear text, it can look at the
message's privacy level to determine whether the message was sent encrypted, or look at the
encryption algorithm used when the message was sent.

To send a private message, the sending application sets the privacy level of the message and the
encryption algorithm. The default encryption algorithm is RC2 (message encryption is based on public-
key encryption using the Microsoft® Cryptographic API with an underlying RSA provider).

Note In addition to setting the privacy level of a message, the privacy level of a queue can also be
set so that the queue only accepts private messages.

For a complete example of sending a private message (including setting the privacy level of a queue)
see:

· Sending Private Messages (using API functions)
· Sending Private Messages(using ActiveX components)

For a description of the properties used to set the privacy level of a message, see:

· PROPID_M_PRIV_LEVEL
· PROPID_M_ENCRYPTION_ALG
· PrivLevel
· EncryptAlgorithm

Auditing
MSMQ allows you to audit access operations for your MSMQ enterprise, sites, connected networks
(CNs), computers, and queues.

For the most part, auditing is set up and maintained by the MSMQ Explorer (for a complete description
of auditing, see the Microsoft Message Queue Server Administrator's Guide). However, it is possible to
audit queue operations by modifying the system access control list (SACL) of the queue's security
descriptor.

The following queue operations can be audited:

· MQSEC_DELETE_MESSAGE. When combined with MQSEC_PEEK_MESSAGE, the user can
retrieve messages from the queue. MSMQ does not explicitly delete messages that are in queues.
When a receive operation is requested, MSMQ peeks at the message then deletes it from the
queue.

· MQSEC_DELETE_JOURNAL_MESSAGE. When combined with MQSEC_PEEK_MESSAGE, the
user can retrieve messages from a journal queue. MSMQ does not explicitly delete messages that
are in queues. When a receive operation is requested, MSMQ peeks at the message then deletes it
from the queue.

· MQSEC_PEEK_MESSAGE. The user can look at (peek at) messages from a queue. Messages
cannot be removed.

· MQSEC_GET_QUEUE_PROPERTIES. The user can retrieve the queue's properties.
· MQSEC_SET_QUEUE_PROPERTIES. The user can set the queue's properties.
· MQSEC_DELETE_QUEUE. The user can delete the queue (equivalent to DELETE: as defined in

the Win32 header files).
· MQSEC_GET_QUEUE_PERMISSIONS. The user can retrieve the queue's security descriptor

(equivalent to READ_CONTROL: as defined by the Win32 header files).
· MQSEC_CHANGE_QUEUE_PERMISSIONS. The user can modify the discretionary access control

list (DACL) of the queue's security descriptor (equivalent to WRITE_DAC: as defined by the Win32
header files).

· MQSEC_TAKE_QUEUE_OWNERSHIP: The user can change the queue's owner in the queue's
security descriptor (equivalent to WRITE_OWNER: as defined by the Win32 header files).

Audit log messages are written in the event log on the server that performs the actual operation, not
necessarily the server that owns the object. For example, audits for opening a queue are logged on the
computer where the queue resides. However, other operations (such as setting queue properties) are
logged on the machine that performed the operation. As a result, the audit messages for a queue can
be logged on servers throughout your MSMQ enterprise.

Note The send operation cannot be audited.

For applications using MSMQ API functions, call MQSetQueueSecurity to modify the queue's security
descriptor.

MSMQ Connector Server
The MSMQ connector server is not available with the Windows NT® 4.0 Option Pack.

The MSMQ connector server provides a mechanism for MSMQ applications to send and receive
message from computers using other messaging systems. To do this, MSMQ connector servers use
internal connector queues to receive the messages from MSMQ and a connector application to
translate messages between MSMQ and the other message system.

By using an MSMQ connector server, MSMQ applications can perform the same operations on foreign
queues that they would typically perform on the queues within their enterprise.

Note Foreign queues, foreign computers, and foreign Connected-Networks (CNs) are all created
and used the same way their MSMQ counterparts are. For information on creating foreign computers
and CNs, see the MSMQ Administrator’s Guide.

The MSMQ connector server uses a pair of internal connector queues for each foreign CN attached to
the connector. One is used for transactional messages and the other for non-transactional messages.
Connector queues are implicitly created by MSMQ. They are not registered in the MQIS and they are
transparent to the MSMQ application sending messages to the foreign queue. For applications,
sending a message to a foreign queue is identical to sending a message to an MSMQ queue.

The following illustration shows a single MSMQ server connected to two foreign CNs. In this case,
there are two pairs of connector queues, one pair for each foreign CN.

MSMQ Connector Applications
The MSMQ connector server is not available with the Windows NT® 4.0 Option Pack.

The connector application must be able to translate between MSMQ and the message queue system
used by the foreign computer. It must be able to read the message properties in one system, translate
their values into the format of the other system, then send the message on (with its new properties) to
the appropriate destination.

When an MSMQ application sends a message to a foreign queue, the message is routed to the
connector queue that represents the foreign CN where the queue's computer resides. The connector
application must read the messages in the connector queue, translate them, then forward the message
on to the foreign queue.

When a message is sent to MSMQ it must be routed to the connector application, translated into an
MSMQ message, then forward the message on to the appropriate MSMQ queue.

Connector Application Responsibilities
The MSMQ connector server should be transparent to the applications running on MSMQ computers.
The connector application running on the server, must be able to:

· Handle the time-to-be-received timer. The time-to-reach-queue timer stops when the message
reaches the connector queues.

· Handle the acknowledgment level of messages. The connector must return the appropriate
acknowledgment messages to the appropriate administration queue according to the message
properties.

· When the connector application creates an acknowledgment message, it must set the
PROPID_M_CLASS and PROPID_M_CONNECTOR_TYPE properties when it sends the
acknowledgment back to the sending application.

· Complete any pending transaction status for transacted messages. For information on transactions
with foreign queues, see Using the MSMQ Connector in a Transaction.

· Handle security issues appropriately. See Connector Application Security for information on handling
encrypted messages and authenticating messages.

Moving Messages from MSMQ to another Message
Queue System
To move messages to another message queue system, the connector application must read all the
messages that arrive in the connector queues. All transactional messages sent to foreign queues are
stored in the transactional connector queue. All non-transaction messages are stored in the non-
transactional connector queue. Non-transactional and transactional messages must be read from the
appropriate connector queue.

To open these queues, the connector application must use a specific format name.

The following example shows two MQOpenQueue calls: the first one opens the connector's non-
transaction queue and the second opens the transaction queue.

MQOpenQueue("CONNECTOR=ForeignCNGUID",          //Special format name.
        MQ_RECEIVE,  //Receive access.
        TRUE,  //Read Exclusive.
        &qh  //Returned queue handle.
       )

MQOpenQueue("CONNECTOR=ForeignCNGUID;XACTONLY",    //Format name.
        MQ_RECEIVE,  //Receive access.
        TRUE,  //Read Exclusive.
        &qh  //Returned handle.
       )

An application can find the ForeignCNGUID from the Foreign CN name by calling
MQGetMachineProperties and retrieve PROPID_QM_CONNECTION.

Moving Messages from another Message Queue
System to MSMQ
To move messages from another message queue system to MSMQ, the connector application must
use the standard MSMQ API functions.

To return acknowledgment messages to MSMQ, the connector application must set
PROPID_M_CONNECTOR_TYPE. By setting this property, the application receiving the message
knows that it was not sent by MSMQ.

Message Property Values
There are several message properties that have a specific meaning when they are sent to a foreign
queue. The following table lists these properties and provides a brief description of any special
circumstances.

Property Description
PROPID_M_ADMIN_QUEUE Needed for acknowledgments and

computing the digital signature for
the message.

PROPID_M_APPSPECIFIC Needed for computing the digital
signature for the message.

PROPID_M_BODY Specifies message. Needed for
decrypting private (encrypted)
messages and computing the
digital signature for the message.

PROPID_M_CONNECTOR_TYPE Specifies the connector that was
used to send message to MSMQ.
Not used when sending
messages to foreign queues.

PROPID_M_CORRELATIONID For acknowledgment messages,
specifies the message identifier of
the original message. Also,
needed for computing the digital
signature for the message.

PROPID_M_DEST_SYMM_KEY Needed for decrypting private
(encrypted) messages. When
messages are sent to MSMQ
queues, the symmetric key is
ignored if a connector is not
specified.

PROPID_M_DEST_SYMM_KEY_LEN Needed for security. Specifies the
length of the symmetric key.

PROPID_M_ENCRYPTION_ALG Needed for security. Specifies the
encryption algorithm used to
encrypt the symmetric key.

PROPID_M_EXTENSION Specifies any foreign message
properties that have no
counterpart in MSMQ. MSMQ
includes this property when
returning acknowledgment
messages.

PROPID_M_EXTENSION_LEN Specifies the length of the foreign
message properties.

PROPID M HASH ALG Needed for security. Specifies the
hash algorithm used when
authenticating messages.

PROPID_M_LABEL Needed for computing the digital
signature for the message.

PROPID_M_PROV_NAME Cryptographic provider needed to
verify signature.

PROPID_M_PROV_TYPE Cryptographic provider needed to

verify signature.
PROPID_M_RESP_QUEUE Needed for computing the digital

signature for the message.
PROPID_M_SENDER_CERT Includes public key.
PROPID_M_SIGNATURE Signature of sender.

Connector Application Security
The MSMQ connector server is not available with the Windows NT® 4.0 Option Pack.

Security operations can be performed by the connector application or they can be passed on to the
foreign computer where the destination queue is located.

Applications that pass security operations to the foreign queue are referred to as transparent
applications. As a transparent application, the connector application translates the message properties
so they can be understood by the foreign computer, then passes the translated message properties on
to their destination. In this case, the foreign computer must interpret the message properties and
perform any required actions.

Applications that perform security operations are referred to as non-transparent applications. As a non-
transparent application, an application receives messages from either MSMQ or the other message
queue system, interprets the message’s properties and performs any required actions. Then the
application sends the message on with the appropriate message properties. In this case, the foreign
queue must be able to trust the connector application to perform the correct actions.

Note Tasks for non-transparent applications are also relevant to message systems that use a
transparent connector applications. Even though the transparent application does not perform them at
the server, these security tasks still must be done when the message reaches the foreign queue.

When translating message properties, transparent and non-transparent connector applications must
use the following message properties as described below.

Property Description
PROPID_M_ADMIN_QUEUE Part of signature.
PROPID_M_APPSPECIFIC Part of signature.
PROPID_M_BODY Part of signature.
PROPID_M_CORRELATIONID Part of signature.
PROPID_M_HASH ALG Algorithm used to create signature.
PROPID_M_LABEL Part of signature.
PROPID_M_PROV_NAME
PROPID_M_PROV_TYPE

Cryptographic provider needed to
verify signature.

PROPID_M_RESP_QUEUE Part of signature.
PROPID_M_SENDER_CERT Includes public key.
PROPID_M_SIGNATURE Signature of sender.

In the preceding list, several properties are used when creating the signature of the sender. When a
transparent connector application translates these properties (in particular the administration and
response queue properties) to their new values, it must include both the translated and original values
when it passes the message on to its destination. The foreign application will need the original values
to authenticate the signature when the message arrives.

Providing the necessary information is much more difficult for messages being sent to an MSMQ
queue than messages sent to a foreign queue. In this case, the foreign application must retrieve an
MSMQ-representation of the signature properties before it creates the signature.

Passing Authenticated Messages
To pass authenticated messages between MSMQ and another message queue system, the connector
application (both transparent and non-transparent applications) must retrieve all the properties needed
for authentication.

Transparent connector applications must perform different operations depending on the direction of the
messages. If the message is going from the foreign application to MSMQ, the connector application
needs to translate new property values and pass the new values on to MSMQ. If the messages are
being sent from MSMQ to the other message queue system, the connector application must translate
new property values, then pass both them and the original values on to the foreign application. The
original values are needed to generate the hash value used to authenticate the signature.

Non-transparent applications perform the security operations (verify signature) so there is no need to
pass on security properties. However, the applications do need to indicate that the message was
verified when it passes the message on.

The code needed to perform security operations varies for each application. However, the pseudo-code
provided in the following sample shows the basic elements needed to authenticate a message.

When messages are being sent from another message queue system to MSMQ, non-transparent
applications must have access to the private signing keys of all the users on the foreign side. The
application must compute the message’s hash value, encrypt the hash value by applying the user’s
private signing key, then pass the message on to MSMQ.

Signature Verification Pseudo Code
The following code describes the basic elements needed to authenticate a message.

Retrieve cryptographic provider information needed to perform the cryptographic operation required
for signature verification.
CryptProvName = GetMessageProperty(Message, PROPID_M_PROV_NAME)
CryptProvType = GetMessageProperty(Message, PROPID_M_PROV_TYPE)

Initialize the crpytographic provider.
CryptProvider = AcquireCrpytoraphicConext(
  CryptProvName,
  CryptProvType)

Get the hash algorithm identifier and initialize a hash object. This object is used to perform the
hashing and signature-verification operations.
HashAlogorithm = GetMessageProperty(Message, PROPID_M_HASH_ALG)
HashObject = GetHashObject(CryptProvider, HashAlogorithm)

Get the six message properties that are required for calculating the hash value for the message.
CorrelationId = GetMessageProperty(Message, PROPID_M_CORRELATIONID)
AppSpecific = GetMessageProperty(Message, PROPID_M_APPSPECIFIC)
MessageBody = GetMessageProperty(Message, PROPID_M_BODY)
MessageLabel = GetMessageProperty(Message,    PROPID_M_LABEL)
RespQueueFormat = GetMessageProperty(Message, PROPID_M_RESP_QUEUE)
AdminQueueFormat = GetMessageProperty(Message,    PROPID_M_ADMIN_QUEUE)

Compute the hash value for the message by adding (in order) each message property to the hash
value. The order in which the properties are added is important. Changing the calculation order of
the message properties will cause signature verification to fail.
HashData(HashObject, CorrelationId)
HashData(HashObject, AppSpecific)

if NotEmpty(MessageBody)
                HashData(HashObject, MessageBody)
if NotEmpty(MessageLabel)
                HashData(HashObject, MessageLabel)
if NotEmpty(RespQueueFormat)
                HashData(HashObject, RespQueueFormat)
if NotEmpty(AdminQueueFormat)
                HashData(HashObject, AdminQueueFormat)

Get the message signature.
MessageSignature = GetMessageProperty(Message, PROPID_M_SIGNATURE)

Get the sender's certificate.
SenderCert = GetMessageProperty(Message, PROPID_M_SENDER_CERT)

Get the sender's public key out from the sender's certificate.
SenderPublicKey = GetPublicKeyFromCertificate(CryptProvider,
                                    SenderCert)

Verify the signature of the message according to the message hash value and the sender's public
key.
VerifySignature(HashObject, SenderPublicKey, MessageSignature)

The result of the verify signature function indicates whether or not the signature is valid.

Passing Private Messages
Passing private, encrypted messages between MSMQ and another message queue system is very
similar to passing private messages between MSMQ applications. The only difference is a symmetric
key that is exposed when sending a private message to the other message queue system.

The implementation of the connector application plays a significant role when passing private
messages to their destination.

Transparent connector applications pass the symmetric key, encryption algorithm, and the encrypted
message body on to the queue manager of the destination queue. This is the same regardless of the
direction the message is going. When using a transparent connector application, the public keys of all
destination queue managers must be registered in MQIS.

Non-transparent connector applications decrypt the message at the server and can pass on a clear-
text message body or, encrypt the message again (using a the receiving systems encryption
operations) and pass on a newly encrypted message body. When using a non-transparent connector
application, all destination queues must use the public key of the connector application.

In addition to the type of connector application, there are two design considerations that should be
taken into account:

· When multiple servers are used (two or more servers are connected to the same foreign Connector
Networks), only transparent connector applications can be used.

· When sending messages from another message queue system to the MSMQ, the source
application must get the public key of the destination queue before it can encrypt the message body.
The source application must tell the connector application to call MQGetMachineProperties and
pass back the public key found in PROPID_QM_ENCRYPTION_PK.
This means that there must be a level of trust between the connector application and the foreign
queue manager. There is no way for the foreign queue manager to independently verify that the key
it receives is the public key it requested.

Caching the Symmetric Key
Non-transparent connector applications can cache the symmetric key to save time when decrypting
private messages. If several messages arrive from the same source, there is no need to decrypt a
symmetric key for each message.

To do this, the application must cache the identifier of the source computer and the decrypted and
encrypted values of the symmetric key. The connector application can call
PROPID_M_SRC_MACHINE_ID, to retrieve the identifier of an MSMQ source machine.

When the next message arrives, the connector application can first check if a message has already
arrived from that source machine. If the machine identifier is not found, the connector application will
add it to the cached values.

If a previous message has arrived, the application can next test to see if the new encrypted key
matches the cached encrypted key. If they match, the cached decrypted value can be used
immediately. If they do not match, it will decrypt the new key (storing both the encrypted and decrypted
values in the cache), using the new value to decrypt the message body.

Using the MSMQ Connector in a Transaction
The MSMQ connector server is not available with the Windows NT® 4.0 Option Pack.

When an MSMQ application sends messages in a transaction, MSMQ routes the message to the
transactional connector queue.

When the message is sent, MSMQ keeps a private copy of the message in the source queue manager.
This private copy is either discarded when the source queue manager receives a read receipt
acknowledgment message, or moved to the computer's DEADXACT queue if a negative
acknowledgment is received or a time-out occurs.

To know where to return the read receipt or negative acknowledgment, the connector application must
retrieve the format name of the queue by looking at the message's
PROPID_M_XACT_STATUS_QUEUE property. The read receipt must be returned even if the sending
application did not request acknowledgments (PROPID_M_ACKNOWLEDGE is set to
MQMSG_ACKNOWLEDGMENT_NONE).

MSMQ Mail Services
MSMQ mail services provide a way to send MSMQ mail messages to applications that use e-mail
based messaging. These applications include Microsoft® Exchange, as well as individual MAPI client
applications. Application developers can use these mail services to combine the ease of development
and use of e-mail-based forms with the computing power and interoperability of MSMQ.

MSMQ provides two mail services: the MSMQ MAPI Transport Provider and the MSMQ Exchange
Connector. The differences between the two services are listed below.

MSMQ Exchange Connector MSMQ MAPI Transport Provider
Runs on a single computer, serving
all Microsoft Exchange users.

Runs on a each MAPI client
application computer, serving only
one MAPI client.

Requires MSMQ installed on one
computer.

Requires MSMQ installed on each
MAPI client computer.

Uses a single queue to send e-mail
to all users.

Uses a different user input queue for
each MAPI user.

Stores the addresses of the MSMQ
applications in the Microsoft
Exchange address book, which is
common to all Exchange users.

Stores addresses in personal address
books, which cannot be shared
among MAPI clients.

Requires a connection to a
Microsoft Exchange server.

Does not require Microsoft Exchange.

When sending mail messages, the
MSMQ application must specify
the address of the Microsoft
Exchange user.

When sending mail messages, only
the label of the MAPI client's queue is
needed.

The MSMQ mail services currently support sending/receiving of the following:

· Text Messages, without attachments of any kind.
· EFD (Exchange Form Designer) forms, without attachments of any kind.
· MAPI TNEF messages.
· Delivery and non-delivery reports.

The MSMQ mail services do not support sending/receiving email with:

· Any type of attachment (word docs/pictures/etc...)
· Outlook custom forms

MSMQ Mail SDK
The MSMQ Mail SDK provides the API functions and ActiveX components needed to compose and
parse mail messages.

The MSMQ Mail API functions include:

· MQMailComposeBody
· MQMailFreeMemory
· MQMailParseBody

The MSMQ Mail ActiveX objects include:

· MSMQMailEMail
· MSMQMailFormData
· MSMQMailFormField
· MSMQMailFormFieldList
· MSMQMailRecipient
· MSMQMailRecipientList
· MSMQMailTextMessageData
· MSMQMailTnefData
· MSMQMailDeliveryReportData
· MSMQMailNonDeliveryReportData

MSMQ Exchange Connector
The MSMQ Exchange Connector provides a way for Microsoft® Exchange users to communicate with
MSMQ applications. Using the Exchange Connector, e-mail can be sent to MSMQ applications and
MSMQ mail messages can be sent to Exchange users.

The Exchange Connector is the recommended solution for connecting Microsoft Exchange users to
MSMQ applications.

Additional Exchange Connector information can be found in the following:

· To install and use the Exchange Connector, see the Microsoft Message Queue Administrator's
Guide.

· To see how mail is sent between Exchange users and MSMQ applications, see Sending E-mail to
an MSMQ Application or Sending MSMQ Mail Messages to an Exchange User.

· To install the MSMQ Mail SDK, see MSMQ Mail SDK.
· To use the API functions and ActiveX components provided by the MSMQ Mail SDK, see the

reference page for each item. They can be located by their name, or under MSMQ Mail Functions
and MSMQ Mail ActiveX Components.

· For an example of an MSMQ Mail sample application, see MSMQ Exchange Connector: Book
Server Application.

Sending E-mail to an MSMQ Application
E-mail sent by Exchange users is routed through their Exchange server to the MSMQ Exchange
Connector, then sent on to the input queue of the MSMQ application (see illustration below). The
MSMQ application can then read, process, and return a mail message to the Exchange user who sent
the mail, or forward the mail message (or another mail message) on to the next processing destination.

To send e-mail to an MSMQ application, the Exchange Connector performs the following functions:

· Converts the e-mail to a mail message whose body is in MSMQ mail format.
· Sends the converted mail message to the application input queue of the MSMQ application.

The MSMQ application creates the application input queue that will receive the mail message. The
application must specify a queue type when it creates a queue for the Exchange Connector to find the
queue.

Additional information can be found in the following:

· To see how MSMQ messages are sent to Exchange users, see Sending MSMQ Mail Messages to
an Exchange User.

· To set up the Exchange Connector, see the MSMQ Administrator's Guide.
· To install the MSMQ Mail SDK, see MSMQ Mail SDK.
· To use the API functions and ActiveX components provided by the MSMQ Mail SDK, see the

individual reference pages for each item. They can be located by their name, or under MSMQ Mail
Functions and MSMQ Mail ActiveX Components.

Sending MSMQ Mail Messages to an Exchange User
MSMQ mail messages sent to Exchange users are sent to the server input queue of the Exchange
Connector. MSMQ mail messages are then routed through the Exchange Connector where they are
translated, then sent on to the Exchange Server where they are distributed to the appropriate
Exchange user (see illustration below).

When an MSMQ message is sent to an Exchange user, the Exchange Connector performs the
following functions:

· Creates a server input queue. This queue is created only once by the Exchange Connector. The
Exchange Server input queue is not used when sending information in the other direction (when an
Exchange user sends e-mail to an MSMQ application).

· Translates the mail message into e-mail.
· Sends the e-mail on to the Exchange Server.

The MSMQ application must know the address of the Exchange user it is sending messages to.

Additional information can be found in the following:

· To see how mail is sent to MSMQ applications, see Sending E-mail to an MSMQ Application.
· To set up the Exchange Connector, see the Administrator's Guide.
· To install the MSMQ Mail SDK, see MSMQ Mail SDK.
· To use the API functions and ActiveX components provided by the MSMQ Mail SDK, see the

reference page for the item. They can be located by their name, or by using MSMQ Mail Functions
and MSMQ Mail ActiveX Components.

MSMQ Exchange Connector: Book Server Application
The Book Server sample application uses the MSMQ Exchange Connector to pass messages between
a Microsoft® Exchange user and an MSMQ application. In this application the Exchange user requests
a query, the MSMQ application performs the query, then the results of the query are sent back to the
Exchange user.

How Book Server Works
Here is the step-by-step process that Book Server uses to perform its query.

· Using Microsoft Exchange, the Microsoft Exchange user enters the search criteria and submits the
query mail, which is pre-addressed to a recipient called Book Server. The mail's MSMQ-typed
address is set to the label of the application input queue of the sample MSMQ application booksrvr.

· The Exchange connector receives the form from Exchange (because the recipient is an MSMQ-
typed recipient), translates it into an MSMQ Mail message, and sends it to the application input
queue of the sample MSMQ application.

· The sample MSMQ application (booksrvr) retrieves the message from the application input queue,
calls MQMailParseBody to parse the body of the message into a mail structure, then finds the
values of the query fields from the structure and performs the query.

· Once the query is complete, a reply form is sent to the Exchange connector. The reply form is
created by including the results of the query, who is sending the results (in this case the booksrvr
application), and who will receive the results (the sender of the original mail) in a new mail structure.
After the structure is filled in, a call to MQMailComposeBody creates a message body that is then
sent to the Exchange connector's server input queue.

· The Exchange connector retrieves the message from the queue, translates it into mail, then submits
it to the Exchange user who requested the query.

· The Exchange user can then retrieve the mail from the inbox and view the results of the query.

To Run Book Server
1. Build the sample MSMQ application.

· Make sure that the environment (PATH, INCLUDE, and LIB variables) is set correctly to compile
windows applications.

· Edit the file mk.bat that is in the booksrvr directory. Make the following changes to point to the
correct locations of the MSMQ SDK directory, and the MSMQ Mail SDK directory.
set MSMQ_SDK=c:\msmq\sdk
set MQMAIL_SDK=c:\msmqmail

· Run mk.bat. This should build booksrvr.exe in the booksrvr directory.
2. Ask your Exchange administrator to install the MSMQ Exchange Connector from the MSMQ CD.
3. From the booksrvr directory, the administrator must install the forms bookfrm.efp and bookres.efp

into your Exchange system.
4. Your Exchange administrator must then add a custom recipient named "Book Server" with the

address-type MSMQ and whose address is "booksrvrq." It must NOT be a rich-text recipient.
5. Run booksrvr.exe (make sure MSMQ is running).Type "booksrvr booksrvrq" in the command line.

The argument booksrvrq is the label of the queue that the booksrvr application will use as its input
queue. This label should be identical to the address of the "Book Server" custom recipient that your
Exchange administrator entered.

6. Send the query. In your mail client, open the form named "Book Search". Fill in the appropriate
fields, and submit the form.

7. Verify the query results. After a short time, you should receive a result form sent by the sample
booksrvr application with the results of the query.

MSMQ MAPI Transport Provider
The Microsoft® Message Queue Server (MSMQ) MAPI Transport Provider contains a single MAPI
transport provider that allows you to connect MAPI client applications (such as Microsoft® Exchange
clients) to MSMQ applications. As a transport provider, the MSMQ MAPI Transport Provider translates
between e-mail and MSMQ mail messages.

Additional MAPI Transport Provider is outlined in the following:

· To set up the MAPI Transport Provider, see Setting up the MSMQ MAPI Transport Provider.
· To see how e-mail forms are sent to MSMQ applications, see Sending E-mail to an MSMQ

Application.
· To see how mail messages are sent to MAPI applications, see Sending MSMQ Mail Message to a

MAPI Client
· To install the MSMQ Mail SDK, see MSMQ Mail SDK.
· To use the API functions and ActiveX components provided by the MSMQ Mail SDK, see the

reference page for each item. They can be located by their name, or by using MSMQ Mail Functions
and MSMQ Mail ActiveX Components.

Setting up the MSMQ MAPI Transport Provider
Setting up the MSMQ MAPI Transport Provider is a two-part process that includes:

· Installing the MAPI Transport Provider.
· Creating a MAPI address for your MSMQ application.

Installing the MSMQ MAPI Transport Provider
The MSMQ MAPI Transport Provider can be installed using its own Setup program or from any other
MAPI profile configuration tool (such as Microsoft Exchange).

The MAPI Transport Provider's Setup program can be found in:

msmq\MQMail\mapixp\setup

Note To run Setup from another MAPI profile configuration tool, refer to the documentation for that
tool. Either process adds the Microsoft® Message Queue service to the list of MAPI Transport
Providers available to your MAPI applications.

After MAPI Transport Provider is installed, add Microsoft Message Queue to your other MAPI profiles
(for more information on how to add services to your profiles, refer to the documentation for your MAPI
client). After adding Microsoft Message Queue, restart your other MAPI applications to make sure your
profile changes have taken effect.

Creating MAPI Addresses
Each MSMQ application that sends mail messages or receives translated e-mail messages must have
a MAPI address. The MSMQ MAPI Transport Provider uses this information to locate the application's
input queue.

The addresses for your MSMQ applications should be created and saved in the personal address book
used by your MAPI applications. To create an address, open the personal address book and add a new
address of the type Other Address. The following table describes the necessary content for each field.

Field Description
Display name Specify a name for the MSMQ application. This name

is an alias and is only used for display purposes.
E-mail address Specify the label of the MSMQ application's input

queue (case sensitive). The MAPI transport provider
uses this information to locate the input queue.

E-mail type Set to MSMQ. This instructs the MAPI Transport
Provider to handle this type of forms.

Clear the Always send to this recipient in Microsoft Exchange rich text check box. Rich text
information should never be sent to an MSMQ application.

Sending E-mail to an MSMQ Application
The e-mail submitted by MAPI client applications are routed through the MSMQ MAPI Transport
Provider to the MSMQ application (see the following illustration). The MSMQ application can then pick
up, process, and return the mail to the MAPI user who sent the mail, or forward it (or another mail) on
to the next processing destination.

To send forms to an MSMQ application, the MSMQ MAPI Transport Provider performs the following
tasks:

· Converts the e-mail form to an MSMQ mail message whose body is in MSMQ mail format.
· Sends the converted mail message to the MSMQ application input queue used by the MSMQ

application.

The MSMQ application must create the application input queue. When creating the queue, the
application must specify a queue type so that the MAPI Transport Provider can find the queue.

Additional information can be found in the following:

· To see how MSMQ messages are sent to MAPI clients, see Sending MSMQ Mail Message to a
MAPI Client.

· To set up the MAPI Transport Provider, see Setting up the MSMQ MAPI Transport Provider.
· To install the MSMQ Mail SDK, see MSMQ Mail SDK.
· To use the API functions and ActiveX components provided by the MSMQ Mail SDK, see the

reference page for each item. They can be located by name, or by using MSMQ Mail Functions and
MSMQ Mail ActiveX Components.

Sending MSMQ Mail Message to a MAPI Client
MSMQ mail messages sent to a MAPI client are sent to the client's MAPI user input queue and routed
through the MAPI Transport Provider where they are translated. Then they are sent to the inbox of the
appropriate MAPI client. See the following illustration.

When an MSMQ message is sent to a MAPI client, the MAPI Transport Provider performs the following
functions:

· Creates a MAPI user input queue for the MAPI user. This queue is created just once by the MSMQ
MAPI Transport Provider. However, the MAPI user input queue is not used when sending
information in the other direction (when MAPI clients send e-mail to an MSMQ application).

· Translates the MSMQ mail message into an e-mail form.
· Sends the e-mail form on to the inbox for the MAPI application.

The MSMQ application must know the MAPI address of the client where it sends the messages.

Additional information about MAPI tasks can be found in the following:

· To create an address for the MAPI client, see Creating MAPI Addresses.
· To see how e-mail forms are sent to MSMQ applications, see Sending E-mail to an MSMQ

Application.
· To set up the MAPI Transport Provider, see Setting up the MSMQ MAPI Transport Provider.
· To install the MSMQ Mail SDK, see MSMQ Mail SDK.
· To use the API functions and ActiveX components provided by the MSMQ Mail SDK, see the

reference page for each item. They can be located by name, or by using MSMQ Mail Functions and
MSMQ Mail ActiveX Components.

Logging Information
The MSMQ MAPI Transport Provider uses the Application Event Log to record informational messages
and error messages. When logging messages, it inserts the name MSMQMAPI in the source column of
the event viewer.

For example, when Microsoft Exchange starts the MAPI Transport Provider, it performs a basic
initialization, logging the following informational messages in the event viewer.

If Initialization... Then...
Succeeds "Transport provider logon succeeded"
Fails "Transport provider logon failed"

Error entries that are logged by the MAPI Transport Provider include a details section that provides a
stack trace of error descriptions. Save this information for a reference when troubleshooting problems.

Designing Mail
For mail processing to work correctly, the mail designer and the MSMQ application developer must
agree on the field names used in the mail. The MSMQ application must know the name of the fields on
the form so that it can compose new mail messages and parse received mail messages.

For example, when creating a form that has several fields, the mail designer can use the Microsoft®
Exchange Form Designer to specify a name for each field (the name of each field is entered in the
Reference Name field on the General page in the Field Properties dialog box). The MSMQ
application developer needs to know these names to write an application that can parse the mail
messages it receives and compose its own mail messages.

Note For more information on designing forms, refer to your Exchange Form Designer
documentation.

MSMQ Mail Format
The MSMQ mail format is used to represent e-mail information within the body of an MSMQ mail
message. It is used by the MSMQ Exchange Connector, MSMQ MASPI Transport provider, and the
MSMQ Mail SDK.

Note The MSMQ mail format is a subset of the MIME (Multipurpose Internet Mail Extensions)
format.

The body of a mail message is composed of:

· A header section (see Header Section)
· An empty line (CR/LF pair)
· A body section (see Body Section)

For samples of the MSMQ mail format, see Sample Form Message and Sample Text Message.

Header Section
The header section is composed of several headers, with each header on a separate line (each line is
terminated by a CR/LF pair). Each header is composed of a header name, followed by a colon, and a
header value (for example, Subject: message subject).

The following table describes the headers that are used.

Header Name Description
Mime-Version Describes the MIME version used. It should

contain the value 1.0.
Example: Mime-Version: 1.0

Date Indicates the time the message was submitted
by the sender. It is formatted as {sender-local-
date} {sender-local-time} {sender-local-time-
zone}.
Example: Date: 21 Jul 1996 20:12:06-0300
Month names: Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Sep, and Dec
Time zones should be numeric and prefixed with
a "-" (minus sign) or a "+" (plus sign); that is, no
named time zones.

From Indicates the sender of the message.
For applications using the Exchange Connector,
this header is formatted as {sender-friendly-
name<user-email-alias@server-input-queue-
label>}. Where the user-email-alias is the user's
alias in the Microsoft Exchange system
(corresponds to the PR_ACCOUNT property of
the user) and server-input-queue-label is the
label of the Exchange Connector's input queue.
Example: From: Jane Doe
<janedoe@Exchangeserverinputqueue>
For applications using the MAPI Transport
Provider, it is formatted as {sender-friendly-name
<sender-queue-label>}. Where the sender-
queue-label is the MSMQ queue label
associated with the sender.
Example: From: John Doe <johndoe>

Subject Indicates the subject of the message. The
subject text is not formatted.
Example: Subject: message subject

To Lists each message recipient, separated by a
comma. Each recipient is formatted as
{recipient-friendly-name <recipient-address>}.
For the MSMQ MAPI Transport Provider, the
recipient address is the label of the MAPI user
input queue associated with the recipient.
Example: To: John Doe<johndoe>
For the MSMQ Exchange Connector, the
recipient name includes the user name plus the

label of the Exchange Connector's server input
queue.
Example: To: Jane
Doe<janedoe@ServerInputQueueLabel>

Cc Optional. Lists the copied message recipients,
separated by a comma. Each recipient is
formatted as {recipient-friendly-name <recipient-
address>}.
For the MSMQ MAPI Transport Provider, the
recipient address is the label of the MAPI user
input queue associated with the recipient.
Example: To: John Doe<johndoe>
For the MSMQ Exchange Connector, the
recipient name includes the user name plus the
label of the Exchange Connector's server input
queue.
Example: To: Jane
Doe<janedoe@ServerInputQueueLabel>

Bcc Optional. Lists the hidden copied message
recipients, separated by a comma. Each
recipient is formatted as {recipient-friendly-name
<recipient-address>}.
For the MSMQ MAPI Transport Provider, the
recipient address can be the MSMQ queue label
associated with the recipient.
Example: Bcc: John Doe<johndoe>
For MSMQ Exchange Connector, the recipient
name includes the user name plus the MSMQ
queue label of the connector's queue.
Example: Bcc: Jane
Doe<janedoe@ExchangeConnectorQueueLabel
>

Content-Type Optional. Describes the content of the body
section of the message. It can have one of the
following values (default is "text/plain;
charset=us-ascii"):
text/plain; charset=us-ascii
Means that this is a regular message, and the
body section contains the message text.
Example: Content-Type: text/plain; charset=us-
ascii

application/x-ms-tnef
Means that this is a TNEF message and that the
body section contains the TNEF data of the
message.
Example: Content-Type: application/x-ms-tnef

multipart/form-data; boundary=boundary-string
Means that the form and body section have

multiple parts, and each part describes a single
form field (name, value, and so on). The
boundary-string separates multiple parts in the
body section (see Body Section).
Example: Content-Type: multipart/form-data;
 boundary=xyz12sssdeeggg

Content-Transfer-
Encoding

Describes the encoding of the body section (if it
contains binary data). The only legal header
value is binary (that is, no encoding of binary
data).
Example: Content-Transfer-Encoding: binary

X-Form-Name Name of the form whose fields are described in
the body section. This header is not necessary
on text messages, only on form messages.
The name here corresponds to the name
defined by the Exchange Form Designer (see
the Item Type field in the General tab of the
Form Properties dialog box) and the
PR_MESSAGE_CLASS property of the form.
Example:
 X-Form: IPM.ORGANIZATION.SAMPLE

X-Delivery-Report-
Requested

Specifies whether the receiving application
should return a delivery report when the
message is received. Valid values are True or
False.
Example:
X-Delivery-Report-Requested: True

X-Non-Delivery-Report-
Requested

Specifies whether a non-delivery report should
be sent back. Valid values are True or False.
Example:
X-Non-Delivery-Report-Requested: True

X-Report-Date Indicates the time the report was submitted.
This header is only set for delivery or non-
delivery report messages.
It is formatted as the Date header mentioned
previously.
Example:
X-Report-Date: 22 Jul 1996 21:12:06 -0300

X-Report-To Specifies the recipient of the delivery or non-
delivery report.
This header is set only on delivery or non-
delivery report messages.
It is formatted as the To header above, but
contains only one recipient.
Example:
X-Report-To: John Doe<johndoe>

X-Report-Delivered-To
X-Report-Delivered-Cc

Specifies recipients who received a previously
sent mail.
These headers are only set on delivery report

X-Report-Delivered-Bcc messages.
X-Report-Delivered-To specifies the delivered
recipients from the To: list of the original e-mail.
X-Report-Delivered-Cc specifies the delivered
recipients from the Cc: list of the original e-mail.
X-Report-Delivered-Bcc specifies the delivered
recipients from the Bcc: list of the original e-mail.
It is formatted as the To header above, but
contains the delivery time as well. The delivery
time is formatted as the Date header above, and
appears between round brackets after the
recipient’s address.
Example: X-Report-Delivered-To: John
Doe<johndoe>(22 Jul 1996 21:11:06 -0300),
Jane
Doe<mailto:janedoe@ExchangeConnectorQueu
eLabel >(21 Jul 1996 20:06:06 -0300)

X-Report-Not-Delivered-
To
X-Report- Not-
Delivered-Cc
X-Report- Not-
Delivered-Bcc

Specifies recipients who did not receive a
previously sent mail.
These headers are set only on non-delivery
report messages.
X-Report-Not-Delivered-To specifies the non-
delivered recipients from the To: list of the
original e-mail.
X-Report-Not-Delivered-Cc specifies the non-
delivered recipients from the Cc: list of the
original e-mail.
X-Report-Not-Delivered-Bcc specifies the non-
delivered recipients from the Bcc: list of the
original e-mail.
It is formatted as the X-Report-Delivered-To
header above, but contains the non-delivery
reason instead of the delivery time.
The non-delivery reason is not formatted, and
appears between round brackets after the
recipient’s address.
Example: X-Report-Not-Delivered-To: John
Doe<johndoe>(Communication failure), Jane
Doe<mailto:janedoe@ExchangeConnectorQueu
eLabel >(Recipient is not known at this address)

For samples of the MSMQ mail format format, see Sample Form Message and Sample Text Message.

Body Section
The body section of the MSMQ mail format begins at the line after the separating empty line and ends
at end of the file.

The body section can be formatted in several ways. If the Content-Type header value is text/plain, the
body section only contains the text of the message. If the Content-Type header value is multipart/form-
data, the body section contains a collection of field sections, each separated by a boundary string (the
boundary string is defined in the header section).If the Content-Type header value is application/x-ms-
tnef, the body section contains the TNEF data of the message. For information on the Content-Type
header, see Header Section.

The format of a multiple, form-data body section is as follows:

--boundary string
field section 1
--boundary string
field section 2
--boundary string¾-

Each field section describes one of the form's fields and is formatted very much like the message itself.
Each section starts with a Content-Disposition header line, followed by an empty line, followed by a
body section line. The Content-Disposition line describes the field and the body section line specifies
the value of the field. The boundary string following the last field section always ends with two minus
characters (--).
The following example shows a field section that specifies the customer name John Doe
(7fs9dfsdfs9sdf is the boundary string):

--7fs9dfsdfs9sdf
Content-Disposition: form-data; name=Customer

John Doe
--7fs9dfsdfs9sdf                                  'If last field, add --

If the field is a Boolean field such as a text box, then the Content-Disposition line should also contain
the parameter x-type=boolean (prefixed by a semicolon).

For example:

blank line(cr/lf)
--hj57ujkdfg4535
Content-Disposition: form-data; name=SaveSettingsOnExit; x-type=boolean

true
--hj57ujkdfg4535                                  'If last field, add --

Note When creating a multiple, form-data body section, the following apply:

· The actual separator starts with two minus characters (--), followed by the supplied boundary
string. The last boundary also ends with two minus characters (--). This is part of the MIME
multipart format.

· The blank line (CR/LF pair) before the boundary string belongs to the boundary, not to the field
section before it. If you'd like the field section to end with a CR/LF, leave an empty line before the
boundary.

· Any text in the body section that comes before the first boundary string, or after the last boundary
string (the boundary string followed by two minus characters) is ignored.

For samples of the MSMQ MAIL format, see Sample Form Message and Sample Text Message.

Sample Text Message
In this sample, there are eight headers in the header section and two lines in the message body. Notice
that the Content-Type header (see Body Section) indicates that the body of the message contains only
text.

Mime-Version: 1.0
Date: 21 Jul 1996 20:12:06 -0300
From: User name <useraddress>
Subject: Message representation
Content-Transfer-Encoding: binary
To: John Doe <johndoe>, Good Guy <ggqueue>
Cc: Another Good Guy <aggqueue>
Content-Type: text/plain; charset=us-ascii

This is the first line of the message body. Notice the previous
empty line that separates this body section from the eight headers
in the header section.

This is the second line of the message body.

For information on the header and body sections, see Header Section and Body Section.

For a sample of a form message, see Sample Form Message.

Sample Form Message
In this sample, there are eight headers in the header section and five section fields in the message
body. Notice that the Content-Type header (see Body Section) indicates that the body of the message
contains fields, and that the boundary string is 7pKviP84rI4ZzGBds.

Mime-Version: 1.0
Date: 21 Jul 1996 20:12:06 -0300
From: Jane Doe (MSMQ) <janedoe>
Subject: Form representation
X-Form-Name: IPM.MSMQMAPI.SAMPLE
Content-Transfer-Encoding: binary
To: John Doe <johndoe>
Content-Type: multipart/form-data; boundary=7pKviP84rI4ZzGBds

--7pKviP84rI4ZzGBds
Content-Disposition: form-data; name=TextBox_Name

This is a text box control
--7pKviP84rI4ZzGBds
Content-Disposition: form-data; name=CheckBox_Name; x-type=boolean

true
--7pKviP84rI4ZzGBds
Content-Disposition: form-data; name=RadioButton_Name

RadioButton_choice1
--7pKviP84rI4ZzGBds
Content-Disposition: form-data; name=ComboBox_Name

This is a combo box control
--7pKviP84rI4ZzGBds
Content-Disposition: form-data; name=ListBox_Name

2222
--7pKviP84rI4ZzGBds--

For information on the header and body sections, see Header Section and Body Section.

For a sample of a text message, see Sample Text Message.

MSMQ ActiveX Support
MSMQ provides a set of ActiveX objects for developing MSMQ applications using any ActiveX
development tool, including Microsoft® Visual Basic® (version 4.0 or later), or C.

These objects provide the most common MSMQ API functionality needed for developing MSMQ
applications. This includes queue lookup, queue management, message management, and queue
administration. The guiding principle in designing these ActiveX objects is object model simplicity.

The MSMQ Object Model
The MSMQ object model supports queue lookup, queue management, message management, and
queue administration, allowing for a wide variety of MSMQ application development.

This object model includes:

· MSMQQuery This object locates a collection of queues. It provides a lookup method based on the
queue's properties. The lookup method used by MSMQQuery returns an MSMQQueueInfos object
that references the selected queues.
For an example, see:

Locating a Public Queue.
· MSMQQueueInfos This object represents a collection of MSMQQueueInfo objects, each

corresponding to one of the queues found by the MSMQQuery object. It provides the methods for
selecting one of the queues found in the query.
For an example, see:

Locating a Public Queue.
· MSMQQueueInfo This object contains the information needed to create or access a single queue. It

provides methods for creating, opening, and deleting queues. Each time a queue is opened, an
MSMQQueue object is returned.
For examples see:

Creating a Queue
Opening a Queue

· MSMQQueue This object references a single instance of a queue. It provides methods for working
with the messages in the queue, as well as enabling receive notification and closing the queue
instance.

· MSMQMessage This object corresponds to a message in the queue. Each MSMQQueue object
(described earlier) has an implicit collection of MSMQMessage objects.

· MSMQEvent This object provides the events needed to implement a single event handler that can
support multiple queues. Only two events are provided: message arrival and error notification.

· MSMQCoordinatedTransactionDispenser This object provides a single method for creating a
transaction object for external transactions.
For an example see:

Sending Messages Using an MS DTC External Transaction
· MSMQTransactionDispenser This object provides a single method for creating a transaction object

for internal transactions.
For an example see:

Sending Messages Using an Internal Transaction
· MSMQTransaction This object provides methods for committing and aborting transactions.

For examples see:
Sending Messages Using an MS DTC External Transaction
Sending Messages Using an Internal Transaction

· MSMQApplication This object provides a single method for obtaining the machine identifier of a
computer.

Invoking ActiveX Objects
ActiveX objects can be invoked using Microsoft® Visual Basic®, C/C++, and VC5 with #import.

The following example shows how to create a queue using Visual Basic, VC5 with #import, and C.

Using Visual Basic
dim qinfo as New MSMQQueueInfo

on error goto ErrHandler
qinfo.PathName = ".\queuename"
qinfo.Create
Exit Function
ErrHandler:
      ' handle Create error

Using VC5 and #import
Using VC5 with #import provides an easy-to-use syntax that is similar to the syntax provided by Visual
Basic. This syntax provides:

· HRESULT to exception mapping. A VC5/ActiveX application can use try and catch to handle errors
instead of testing for return values.

· Support for optional parameters (not available in C/C++ implementations).
· Reference counting and Query Interface supportso there is no need for explicit

AddRef/QueryInterface.

#import "mqoa.dll;

      try {
              IMSMQQueueInfoPtr pqinfo ("MSMQ.MSMQQueueInfo");
              pqinfo->PutPathName (L".\queuename");
              //
              // Create non-transactional, non-world-readable queue.
              //
              pqinfo->Create();
              catch (_com_error &e) {
                        // UNDONE: handle error.
                        }
              }

Using C/C++
        IMSMQQueueInfo *pqinfo;

        HRESULT hresult;
        VARIANT varIsTransactional;
        VARIANT varIsWorldReadable;
        //
        // Create MSMQQueueInfo object
        //
        hresult = CoCreateInstance(
                                      CLSID_MSMQQueueInfo,
                                      NULL,  // punkOuter
                                      CLSCTX_SERVER,

                                      IID_IMSMQQueueInfo,
                                      (LPVOID *)&pqinfo
                                     );
        if (SUCCEEDED(hresult)) {
            // Set the PathName.
            pqinfo->put_PathName(L".\queuename");
            //
            // specify if transactional
            //
            VariantInit(&varIsTransactional);
            varIsTransactional.vt = VT_BOOL;
            varIsTransactional.boolVal = MQ_TRANSACTIONAL_NONE;
            VariantInit(&varIsWorldReadable);
            varIsWorldReadable.vt = VT_BOOL;
            varIsWorldReadable.boolVal = FALSE;
            //
            // create the queue
            //
            hresult = pqinfo->Create(&varIsTransactional,
  &varIsWorldReadable);
            //
            // UNDONE: need to handle failure...
            //
        }

Setup and Installation
This topic describes the system requirements and installation procedures for developing your MSMQ
application.

System Requirements
· Any development tool that supports ActiveX objects, including Microsoft® Visual Basic® version 4.0

(32 bit), Microsoft® Visual Basic® version 5.0, Microsoft® Office (95 and 97), Delphi, Microsoft®

Internet Explorer, Microsoft® Active Server Pages, as well as others.

To Use MSMQ ActiveX Components
1. Run MSMQ Queue Manager.
2. Run your development tool (Visual Basic or any other development tool that supports ActiveX

objects).
3. Select the MSMQ Object Library.

· For Visual Basic 4.0: On the Tools menu, click References, and then choose MSMQ Object
Library.

· For Visual Basic 5.0: On the Project menu, click References, and then choose MSMQ Object
Library.

· For all other tools, refer to the development tools documentation for selecting type libraries
4. Select any other object library needed by your application.

Using Microsoft Visual Basic
The following programming tips are provided for those new to writing MSMQ or Microsoft® Visual
Basic® applications. They highlight several issues that may make writing your MSMQ application a bit
easier.

· When declaring object variables, the New keyword can be added to the Dim statement to enable
implicit creation of the object. What this means is that each time the variable is referenced, a new
instance of the object is implicitly created if the current value of the variable is NULL.

· In contrast, when the New keyword is not used an instance of the object is only created when the
Set command is called or some other mechanism (such as a call to a method that returns an object
reference) is used to obtain an object instance. The Set command can be used as well for
variables that were declared with the New keyword.

· The example below shows when the New keyword should be used and when it should not be.
Dim qDest As MSMQQueue                                'Set command needed.
Dim msgSent As New MSMQMessage
Dim msgDest As MSMQMessage                        'Peek method returns
  'MSMQMessage instance.

Set qDest = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
msgSent.Send qDest
Set qDest = qinfoDest.Open(MQ_PEEK_ACCESS, MQ_DENY_NONE)
Set msgDest = qDest.Peek(ReceiveTimeout:=100)

When functions and subroutines are called, parentheses are sometimes required and sometimes
not.
When functions or subroutines are called explicitly using the Call keyword, parentheses are required
whenever there is one or more arguments. (The return value of a function can be ignored.)
For example:
Call Foo(x)
Call Foo(1, 2)

When a function is called and the return value is used, parentheses are always required whenever
there is one or more arguments.
For example:
y = Foo(x, z)                            ' Result of Foo used to assign to y.
Call Bar(Foo(1))                      ' Result of Foo used as argument to Bar.

However, when a function or subroutine is called without using the Call keyword and its return value
is ignored:
· Parentheses cannot be used for functions or subroutines that take more than one argument.
· If parentheses are used for functions or subroutines that take a single argument, then that

argument is effectively passed 'by value' since the argument is in effect an expression whose
result is returned in a temporary variable.

For example:
Foo x              'Parentheses cannot be used: x is passed by reference.
Foo (x)          'x is effectively passed by value.

· Use named arguments to make your code easier to read. Using non-named arguments forces the
reader to remember the argument's name and the order of the arguments. For example, the
following to lines of code are functionally identical, yet the first is much easier to understand:

Create IsWorldReadable:=True, IsTransactional:=False
Create False, True

· A Variant containing an array can be used like an array, e.g. ubound(msg.Id) or
msg.CorrelationId(10).

· When declaring object's, specify the object class in the Dim statement (early-binding). Using early-
binding whenever possible will make your application run faster. For example, the following
examples are both functionally equal, yet the first example executes faster due to early-binding of
the object.
dim qinfo as MSMQQueueInfo
set qinfo = New MSMQQueueInfo
qinfo.PathName = ".\PRIVATE$\CreateTest"
qinfo.Create

dim qinfo as Object
set qinfo = New MSMQQueueInfo
qinfo.PathName = ".\PRIVATE$\CreateTest"
qinfo.Create

· The Microsoft® Visual Basic® 5.0 debugger can be used on MSMQ application executable and DLL
files generated by Visual Basic 5.0. You can set breakpoints as well as disassemble and see the
generated VBA code and look at local variables.

· The MSMQApplication object does not have to be referenced. For example, the following three
calls to MachineIdOfMachineName all return the same computer identifier.
Dim strId As String
Dim myapp As New MSMQApplication
strId = MachineIdOfMachineName("machinename")
Debug.Print strId
strId = MSMQApplication.MachineIdOfMachineName("machinename")
Debug.Print strId
strId = myapp.MachineIdOfMachineName("machinename")
Debug.Print strId

About MSMQ Reference
This reference describes the functions, properties, structures, error and warning codes, and ActiveX
components provided by the Microsoft® Message Queue Server (MSMQ) SDK and the Microsoft®
Message Queue Server Mail SDK.

Note For code examples of basic MSMQ functions such as creating a queue, sending message,
receiving messages, and so on, refer to "Using MSMQ." For background information on MSMQ
concepts, refer to the "MSMQ Guide."

The following topics are in the "MSMQ Reference:"

· MSMQ Functions
· MSMQ Mail Functions
· MSMQ Error and Information Codes
· MSMQ Properties
· MSMQ Structures
· MSMQ Mail Structures
· MSMQ ActiveX Components
· MSMQ Mail ActiveX Components

MSMQ Functions
The MSMQ API functions provide the means to manage queues and messages within your MSMQ
application. The MSMQ API includes functions for creating, opening, and deleting queues; for locating
existing queues and messages in queues; for sending messages and reading them in queues; as well
as functions for setting and retrieving properties.

MSMQ API functions include:

· MQBeginTransaction
· MQCloseCursor
· MQCloseQueue
· MQCreateCursor
· MQCreateQueue
· MQDeleteQueue
· MQFreeMemory
· MQFreeSecurityContext
· MQGetMachineProperties
· MQGetQueueProperties
· MQGetQueueSecurity
· MQGetSecurityContext
· MQHandleToFormatName
· MQInstanceToFormatName
· MQLocateBegin
· MQLocateEnd
· MQLocateNext
· MQOpenQueue
· MQPathNameToFormatName
· MQReceiveMessage
· MQSendMessage
· MQSetQueueProperties
· MQSetQueueSecurity

Note All strings passed to or returned by MSMQ functions are in Unicode format (two-byte
characters).

MQBeginTransaction
The MQBeginTransaction function creates an internal MSMQ transaction object that can be used to
send messages to a queue or read messages from a queue.

HRESULT APIENTRY MQBeginTransaction(
    Transaction **ppTransaction   
);

Parameters
ppTransaction

[out] Pointer to Transaction variable that points to the new transaction object.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_INSUFFICIENT_RESOURCES

There are no resources to create a new transaction.

Remarks
The pointer returned by MQBeginTransaction can be used to set the pTransaction parameter of
MQSendMessage or MQReceiveMessage.

For a description of internal transactions, see MSMQ Internal Transactions.

For an example of an internal transaction, see Sending Messages Using an Internal Transaction.

See Also
MQReceiveMessage, MQSendMessage

MQCloseCursor
The MQCloseCursor function closes a given cursor, allowing MSMQ to release the associated
resources.

HRESULT APIENTRY MQCloseCursor(
    HANDLE hCursor   
);

Parameters
hCursor

[in] Handle to the cursor you want to close.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_INVALID_HANDLE

The cursor handle specified in hCursor is not valid.

Remarks
Typically, cursors are closed by calling MQCloseCursor. However, MSMQ automatically closes any
cursor created for a given queue when the queue is closed. MQCloseCursor returns
MQ_ERROR_INVALID_HANDLE when an attempt is made to close a cursor that is already closed by
MSMQ.

To create a cursor, call MQCreateCursor.

Examples
For an example of how cursors are used when reading messages, see Reading Messages in a Queue.

For examples of using MQCreateClose, see Reading Messages Using a Cursor.

See Also
MQCreateCursor

MQCloseQueue
The MQCloseQueue function closes a given queue.

HRESULT APIENTRY MQCloseQueue(
    QUEUEHANDLE hQueue   
);

Parameters
hQueue

[in] Handle to the queue you want to close.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_INVALID_HANDLE

The queue handle specified in hQueue is not valid.

Remarks
When an application closes a queue, the queue handle becomes invalid, but the messages waiting in
the queue remain in the queue. These includes any messages sent to the queue by the application
closing the queue.

When MQCloseQueue is called, any cursors created for the queue are also closed.

Examples
For an example of using MQCloseQueue, see:

· Closing a Queue
· Sending Private Messages

See Also
MQOpenQueue

MQCreateCursor
The MQCreateCursor function creates a cursor for a specific queue and returns its handle. The cursor
is used to maintain a specific location in a queue when reading the queue's messages.

HRESULT APIENTRY MQCreateCursor(
 QUEUEHANDLE hQueue,   
    PHANDLE phCursor         
);

Parameters
hQueue

[in] Handle to the queue where you want to create a cursor.
phCursor

[out] Pointer to a variable that receives the resulting cursor handle.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_INVALID_HANDLE

The queue handle specified in hQueue is not valid.
MQ_ERROR_STALE_HANDLE

The specified queue handle was obtained in a previous session of the Queue Manager service.
Close the queue and open it again to obtain a fresh handle.

Remarks
The MQCreateCursor function is used with MQReceiveMessage when you need to read messages
that are not at the front of the queue. You do not need to create a cursor if you only want to read the
first message in a queue.

For an example of how cursors are used when reading messages, see Reading Messages in a Queue.

For a description of how MSMQ uses cursors to navigate a queue, see Peeking at the next Message in
a Queue or Retrieving a Message in a Queue

To close the cursor, call MQCloseCursor.

Examples
For examples of using MQCreateCursor, see Reading Messages Using a Cursor.

See Also
MQCloseCursor, MQReceiveMessage

MQCreateQueue
The MQCreateQueue function creates a queue and registers it in MQIS (for public queues) or on the
local computer (for private queues). It also attaches the specified queue properties (default values are
used for all properties that are not specified) and security attributes to the queue, and returns a format
name that can be used to open the queue.

HRESULT APIENTRY MQCreateQueue(
    PSECURITY_DESCRIPTOR pSecurityDescriptor,   
    MQQUEUEPROPS * pQueueProps,                               
    LPWSTR lpwcsFormatName, 
    LPDWORD lpdwFormatNameLength                             
);

Parameters
pSecurityDescriptor

[in] Pointer to a SECURITY_DESCRIPTOR structure that specifies the security information
associated with the queue (for information on the SECURITY_DESCRIPTOR structure, see the
Microsoft Platform SDK). Following are the default values (NULL pointer indicates all default values
are used):
Owner

The process user.
Group

The process group.
DACL

Full control for the creator of the queue. All other processes can get queue properties, get queue
security, and send messages to the queue.

SACL
None.

pQueueProps
[in, out] Pointer to the MQQUEUEPROPS structure that specifies the created queue's properties.
On input, the cProps member of MQQUEUEPROPS specifies the number of queue properties
supplied, the aPropID array specifies their property identifiers, and aPropVar array specifies their
values.
On output, the optional aStatus array, if it was included in MQQUEUPROPS, indicates the status of
the properties.

lpwcsFormatName
[out] Pointer to buffer to receive the format name for the queue (NULL pointer allowed). This buffer is
called the format name buffer.

lpdwFormatNameLength
[in, out] On input, specifies the length of the lpwcsFormatName buffer (in Unicode characters).
Public queues require at least 44 unicode characters; private queues require at least 54. NULL
pointer is not allowed.
On output, indicates the length of the returned format name string, including the null-terminating
character. If the output value is greater than the initial input value, the supplied buffer is not large
enough to contain the complete format name string and
MQ_INFORMATION_FORMATNAME_BUFFER_TOO_SMALL is returned. In this case, the queue is
created and only a portion of the format name is returned.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ACCESS_DENIED

The process does not have the rights to create a queue on this computer.
MQ_ERROR_ILLEGAL_PROPERTY_VALUE

An illegal property value is specified.
MQ_ERROR_ILLEGAL_QUEUE_PATHNAME

PROPID_Q_PATHNAME contains an illegal MSMQ pathname string.
MQ_ERROR_ILLEGAL_SECURITY_DESCRIPTOR

The passed security descriptor has an invalid structure.
MQ_ERROR_INSUFFICIENT_PROPERTIES

No MSMQ pathname was specified (PROPID_Q_PATHNAME).
MQ_ERROR_INVALID_OWNER

The specified MSMQ pathname (PROPID_Q_PATHNAME) contains the name of an unrecognized
machine.

MQ_ERROR_NO_DS
No connection with the Site Controller server. Cannot access the MQIS.

MQ_ERROR_PROPERTY
One or more properties resulted in an error.

MQ_ERROR_PROPERTY_NOTALLOWED
A specified property is not valid when creating the queue.

MQ_ERROR_QUEUE_EXISTS
Queue with an identical MSMQ pathname or instance already exists.

MQ_ERROR_SERVICE_NOT_AVAILABLE
Cannot connect to the Queue Manager.

MQ_ERROR_WRITE_NOT_ALLOWED
Cannot add a queue to MQIS while an MSMQ information store server is being installed.

MQ_INFORMATION_FORMATNAME_BUFFER_TOO_SMALL
The queue was created successfully, but the size of the buffer for receiving the format name of the
created queue is too small.

MQ_INFORMATION_PROPERTY
The function completed, but one or more properties resulted in a warning.

Remarks
You must always specify the queue's MSMQ pathname (PROPID_Q_PATHNAME) before calling
MQCreateQueue. The PROPID_Q_PATHNAME property tells MSMQ where to store the queue's
messages, if the queue is public or private, and the name of the queue.

Public queues are registered in MQIS, and private queues are registered on the local computer. All
queues exist until explicitly deleted.

Private queues can only be created on the local computer. When a private queue is created, MSMQ
stores a description of the queue in the LQS directory on the local computer (by default, \program files\
msmq\storage\lqs). Applications must ensure that no other private queues with the same name exist on
a local computer. If a queue with the same name already exists, MSMQ will return an
MQ_ERROR_QUEUE_EXISTS error when MQCreateQueue is called.

Setting other queue properties is optional. If a property is not specified in the pQueueProps parameter,
MSMQ uses its default value when creating the queue. After the queue is created, its properties can be
changed by calling MQSetQueueProperties.

To use a public queue's queue journal, pass PROPID_Q_JOURNAL and
PROPID_Q_JOURNAL_QUOTA to MQCreateQueue. The journal keeps a copy of all messages
retrieved from the public queue. For conceptual information about queue and machine journals, see

Journal Queues.

To create a transaction queue, pass PROPID_Q_TRANSACTION to MQCreateQueue. This property
cannot be changed once the queue is created.

The queue's returned format name is invalid if MQCreateQueue fails for any reason, including
returning the error MQ_ERROR_QUEUE_EXISTS. If the call returns
MQ_INFORMATION_FORMATNAME_BUFFER_TOO_SMALL, this means that the queue was
created, but the format name could not fit in the format name buffer.

After the queue is created, its properties can be retrieved using MQGetQueueProperties and reset
using MQSetQueueProperties.

Access control for the queue is based on the MSMQ default security. For information on access
control, see Access Control.

Foreign queues must be public queues. Their PROPID_Q_PATHNAME property must specify the
name of the foreign computer as it is defined in MQIS. For information on connecting to foreign
queues, see MSMQ Connector Server.

When creating public queues, some clients may not be able to detect the new queue registered in the
MSMQ information even though the queue was registered. Changes to MQIS (such as creating a
public queue) must be propagated from site to site, which can cause delays in the availability of current
information. Consequently, clients at some sites may not be able to open the queue, even though it
exists. Propagation delays, including communication network delays such as down links, are controlled
by the MSMQ Administrator.

Public queues cannot be created by independent client computers running offline. For information on
offline operations, see MSMQ Offline Support.

Examples
For an example of using MQCreateQueue, see Creating a Queue.

See Also
MQCloseQueue, MQDeleteQueue, MQGetQueueProperties, MQLocateBegin, MQOpenQueue,
MQSetQueueProperties, PROPID_Q_INSTANCE, PROPID_Q_JOURNAL, PROPID_Q_PATHNAME,
PROPID_Q_TRANSACTION

MQDeleteQueue
The MQDeleteQueue function deletes a queue from MQIS (in the case of public queues), or from the
local computer (in the case of private queues).

HRESULT APIENTRY MQDeleteQueue(
    LPCWSTR lpwcsFormatName   
);

Parameters
lpwcsFormatName

[in] Pointer to the queue's format name buffer. This buffer contains the format name string of the
queue to be deleted.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ACCESS_DENIED

The process does not have the access rights to delete this queue. To change access rights, call
MQSetQueueSecurity.

MQ_ERROR_ILLEGAL_FORMATNAME
The specified format name in lpwcsFormatName is illegal.

MQ_ERROR_NO_DS
No connection with the Site Controller server. Cannot access the MQIS.

MQ_ERROR_SERVICE_NOT_AVAILABLE
Cannot connect to the Queue Manager.

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION
Cannot delete a queue using a direct format name.

MQ_ERROR_WRITE_NOT_ALLOWED
Cannot delete a queue from MQIS while an MSMQ information store server is being installed.

Remarks
The format name of the queue (specified by lpwcsFormatName) cannot be a direct format name.

When deleting public queues, some clients may still see the queue registered in MQIS after the queue
was deleted. Changes to MQIS (such as deleting a public queue) are propagated from site to site,
which can cause delays in the availability of current information. Consequently, clients in some sites
may still try to send messages to the queue, even though it was deleted. Propagation delays, including
communication network delays such as down links, are controlled by the MSMQ Administrator.

Public queues cannot be deleted by independent client computers running offline. For information on
offline operations, see MSMQ Offline Support.

Examples
For an example of using MQDeleteQueue, see Deleting a Queue.

See Also
MQCloseQueue, MQCreateQueue, MQOpenQueue, MQSetQueueSecurity

MQFreeMemory
The MQFreeMemory function frees memory allocated by MSMQ.

VOID MQFreeMemory(
    PVOID pvMemory   
);

Parameters
pvMemory

[in] Pointer to the memory to be freed.

Remarks
Whenever an application passes VT_NULL in an aPropVar array and MSMQ allocates memory for the
returned property value (for example, puuid and pwszVal), MQFreeMemory must be called.

For MQLocateNext, all properties whose values returned by MSMQ are stored outside aPropVar and
must also be freed using MQFreeMemory.

See Also
MQLocateNext

MQFreeSecurityContext
The MQFreeSecurityContext function frees the memory allocated by MQGetSecurityContext.

VOID APIENTRY MQFreeSecurityContext(
    HANDLE hSecurityContext   
);

Parameters
hSecurityContext

[in] Handle to the security context buffer.

Return Values
None.

Remarks
The security context buffer is created by MQGetSecurityContext. It contains information MSMQ
needs to authenticate messages.

See Also
MQGetSecurityContext

MQGetMachineProperties
The MQGetMachineProperties function retrieves information about a Queue Manager computer.

HRESULT APIENTRY MQGetMachineProperties(
    LPCWSTR lpwcsMachineName,   
    GUID pguidMachineID,             
    MQQMPROPS pQMProps                 
);

Parameters
lpwcsMachineName

[in] The name of the Queue Manager computer you want to access. If this parameter is used, set
pguidMachineID to NULL.

pguidMachineID
[in] The identifier of the Queue Manager computer you want to access. If this parameter is used, set
lpwcsMachineName to NULL.

pQMProps
[in, out] Pointer to a Queue Manager properties structure (MQQMPROPS), specifying which
properties to retrieve.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ACCESS_DENIED

Access to the specified computer is denied. Verify the access rights for the operation.
MQ_ERROR_INVALID_PARAMETER

Both name (lpwcsMachineName) and computer (pguidMachineID) identifiers were specified.
MQ_ERROR_ILLEGAL_MQQMPROPS

Either pQMprops was NULL or no properties were specified.
MQ_ERROR_ILLEGAL_PROPERTY_VT

An invalid type indicator was supplied for one of the property values in pQMProps.
MQ_ERROR_MACHINE_NOT_FOUND

The specified computer could not be found in MQIS.
MQ_ERROR_NO_DS

No connection with the Site Controller server. Cannot access the MQIS.
MQ_INFORMATION_UNSUPPORTED_PROPERTY

An unsupported property identifier was specified in pQMProps.
MQ_INFORMATION_DUPLICATE_PROPERTY

A duplicate property identifier was specified in pQMProps. The second entry is ignored.

Remarks
If lpwcsMachineName and pguidMachineID are set to NULL, the properties of the local computer are
retreived.

Valid Queue Manager properties are:

· PROPID_QM_CONNECTION
· PROPID_QM_ENCRYPTION_PK
· PROPID_QM_MACHINE_ID
· PROPID_QM_PATHNAME

· PROPID_QM_SITE_ID

If a property specified by pQMProps is set to VT_NULL, MSMQ allocates the memory needed to store
the property value when MQGetMachineProperties is called. However, when the returned property
type replaces the VT_NULL value, the application must still free the memory allocated for the property
value by calling MQFreeMemory.

MQGetMachineProperties is not supported for offline operations. For information on offline
operations, see MSMQ Offline Support.

Examples
For an example of using MQGetMachineProperties, see:

· Reading Messages in a Dead Letter Queue
· Reading Messages in a Machine Journal

See Also
PROPID_QM_CONNECTION, PROPID_QM_ENCRYPTION_PK, PROPID_QM_MACHINE_ID,
PROPID_QM_PATHNAME, PROPID_QM_SITE_ID, MQFreeMemory

MQGetQueueProperties
The MQGetQueueProperties function retrieves the specified properties for a specific queue.

HRESULT APIENTRY MQGetQueueProperties(
    LPCWSTR lpwcsFormatName,   
    MQQUEUEPROPS *pQueueProps
);

Parameters
lpwcsFormatName

[in] Pointer to the format name string of the queue whose properties will be retrieved. Use a public or
private format name to specify the queue. You cannot specify a queue using a direct format name.

pQueueProps
[in, out] Pointer to the MQQUEUEPROPS structure that specifies which properties to retrieve.
On input, the cProps member of MQQUEUEPROPS specifies the number of properties to be
retrieved, and the aPropID array specifies the specific properties.
On output, the aPropVar array indicates the current values of the requested properties, and the
optional aStatus array, if it was included in MQQUEUPROPS, indicates the status of the properties.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ACCESS_DENIED

The process does not have the correct access rights to get the queue's properties. For a complete
list of queue access rights, see Access Control.
To change access rights, call MQSetQueueSecurity.

MQ_ERROR_ILLEGAL_FORMATNAME
The lpwcsFormatName parameter specified an illegal format name.

MQ_ERROR_ILLEGAL_PROPERTY_VT
The variant type of a property does not match the expected variant type. For example, for
PROPID_Q_TYPE, the expected variant types are VT_NULL or VT_CLSID. For
PROPID_Q_PATHNAME and PROPID_Q_LABEL, the expected variant type is VT_NULL.

MQ_ERROR_NO_DS
No connection with the Site Controller server. Cannot access the MQIS.

MQ_ERROR_PROPERTY
One or more properties resulted in an error.

MQ_ERROR_SERVICE_NOT_AVAILABLE
Cannot connect to the Queue Manager.

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION
The lpwcsFormatName parameter specified a direct format name. You cannot get properties from a
queue by accessing it directly.

MQ_INFORMATION_DUPLICATE_PROPERTY
The same property appears more than once in the aPropID array, this information is returned on the
second appearance of the property.

MQ_INFORMATION_PROPERTY
One or more of the properties resulted in a warning code even though the function was completed.

MQ_INFORMATION_UNSUPPORTED_PROPERTY
Not a valid property identifier. The property is ignored.

Remarks
All queue properties can be retrieved; however, you can only retrieve the properties of private queues if
they are located on your local computer.

If the format name of the queue is unknown, see Format Name to find ways to obtain a new format
name.

To retrieve the queue's MSMQ pathname or label, the corresponding property's variant type
(PROPID_Q_PATHNAME or PROPID_Q_LABEL) must be initially set to VT_NULL. If it is not set to
VT_NULL, the operation fails and MQ_ERROR_ILLEGAL_PROPERTY_VT is returned.

If a property value specified by pQueueProps is set to VT_NULL, MSMQ allocates the memory needed
to store the returned value when MQGetQueueProperties is called. When this happens, the
application must free the memory allocated for the returned property value by calling MQFreeMemory.

For a complete discussion on retrieving a queue's properties, see Retrieving a Queue's Properties
Using API Functions.

A public queue's properties cannot be retrieved by independent client computers running offline. For
information on offline operations, see MSMQ Offline Support.

See Also
MQFreeMemory, PROPID_Q_LABEL, PROPID_Q_PATHNAME

MQGetQueueSecurity
The MQGetQueueSecurity function retrieves the access control security descriptor for the specified
queue.

HRESULT APIENTRY MQGetQueueSecurity(
    LPCWSTR lpwcsFormatName, 
    SECURITY_INFORMATION *SecurityInformation,   
    PSECURITY_DESCRIPTOR *pSecurityDescriptor,   
    DWORD nLength, 
    LPDWORD lpnLengthNeeded 
);

Parameters
lpwcsFormatName

[in] Pointer to the format name string of the queue whose security information will be retrieved. Use
a public or private format name to specify the queue. You cannot specify a direct format name.

SecurityInformation
[in] Specifies the SECURITY_INFORMATION structure that identifies the access control information
being requested. (For information on the SECURITY_INFORMATION structure, see the Microsoft
Platform SDK.)

pSecurityDescriptor
[out] Pointer to the security descriptor buffer that receives the queue's security descriptor. The calling
process must have the rights to view the specified aspects of the queue's security status. The
SECURITY_DESCRIPTOR structure is returned in self-relative format. (For information on the
SECURITY_DESCRIPTOR structure, see the Microsoft Platform SDK.)

nLength
[in] Specifies the size, in bytes, of the security descriptor buffer (see pSecurityDescriptor).

lpnLengthNeeded
[out] Pointer to a variable that indicates if any additional length is needed for the security descriptor.
If the security descriptor fits in the buffer, this variable indicates the actual size of the security
descriptor.
If the security descriptor buffer is too small for the security descriptor (the value of lpnLengthNeeded
is greater than the value of nLength), this variable indicates the size of the buffer needed to hold the
security descriptor. When this happens, the security descriptor is not copied to the buffer and
MQ_ERROR_SECURITY_DESCRIPTOR_BUFFER_TOO_SMALL is returned.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ACCESS_DENIED

The process does not have the correct access rights to get the queue's security descriptor. For a
complete list of queue access rights, see Access Control.
To change access rights, call MQSetQueueSecurity.

MQ_ERROR_FUNCTION_NOT_SUPPORTED
MQGetQueueSecurity is not supported in Windows 95.

MQ_ERROR_ILLEGAL_FORMATNAME
The lpwcsFormatName parameter specified an illegal format name.

MQ_ERROR_NO_DS
No connection with the Site Controller server. Cannot access the MQIS.

MQ_ERROR_PRIVILEGE_NOT_HELD

The process does not have the proper privilege to read the queue's system access control list.
MQ_ERROR_SECURITY_DESCRIPTOR_BUFFER_TOO_SMALL

The buffer pointed by pSecurityDescriptor is too small to hold the security descriptor; the returned
value of lpnLengthNeeded is greater than the supplied value of nLength.

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION
The lpwcsFormatName parameter contains a public or private queue using a direct format name, or
a journal, dead letter, or connector queue .

Remarks
The queue's security descriptor is initially set when the queue is created (see MQCreateQueue).
Access to the following queue operations can be controlled: creating, deleting, and opening the queue
for sending messages to and reading messages from the queue; getting and setting the queue's
properties; and getting and setting the queue's security descriptor.

The format name of the queue (specified by lpwcsFormatName) must be a public or private format
name. MSMQ must be able to access MQIS (for public queues) or the local computer (for private
queues) to get the queue's security descriptor.

If the format name of the queue is unknown, see Format Name to find ways to obtain a new format
name.

To read the security descriptor of a queue, the calling process must have READ_CONTROL access or
be the owner of the queue. Access rights such as READ_CONTROL are set when the queue is created
and can be modified by calling MQSetQueueSecurity.

To read the queue's system access control list, the caller must have SE_SECURITY_NAME privileges
on the MQIS server (for public queues) or on the local computer (for private queues).

MQGetQueueSecurity cannot retrieve the security descriptor of a journal, dead letter, connector, or
foreign queues.

A public queue's security descriptor cannot be retrieved by independent client computers running
offline. For information on offline operations, see MSMQ Offline Support.

See Also
MQSetQueueSecurity

MQGetSecurityContext
The MQGetSecurityContext function retrieves security information needed to authenticate messages.

VOID APIENTRY MQGetSecurityContext(
    LPVOID lpCertBuffer,           
    DWORD dwCertBufferLength,   
    HANDLE* hSecurityContext   
);

Parameters
lpCertBuffer

[In] Pointer to the security certificate buffer. External certificates must be in ASN.1 DER encoded
format. If this parameter is NULL, the internal security certificate provided by MSMQ is used.

dwCertBufferLength
[In] Length of the security certificate buffer pointed to by lpCertBuffer. For internal certificates, set to
0.

hSecurityContext
[Out] Handle to the security context buffer allocated by MSMQ.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_COULD_NOT_GET_USER_SID

MSMQ could not get the specified sender identifier.
MQ_ERROR_NO_DS

Only Windows 95. No connection with the Site Controller server. Cannot access the MQIS.
MQ_ERROR_INVALID_PARAMETER

One of the IN parameters supplied by the operation is not valid.
MQ_ERROR_INSUFFICIENT_RESOURCES

Insufficient resources to complete operation (for example, not enough memory). Operation failed
MQ_ERROR_INVALID_CERTIFICATE

Security certificate specified by PROPID_M_SENDER_CERT is invalid, or the certificate is not
correctly placed in the Microsoft® Internet Explorer personal certificate store.

MQ_ERROR_CORRUPTED_INTERNAL_CERTIFICATE
MSMQ-supplied internal certificate is corrupted.

MQ_ERROR_CORRUPTED_SECURITY_DATA
Cryptographic function (CryptoAPI) has failed.

Remarks
The MQGetSecurityContext function retrieves the information MSMQ needs to authenticate
messages from the supplied certificate. It provides a way to send messages that require authentication
in a more efficient way. MQGetSecurityContext should be used when the same certificate is used to
send multiple messages and when impersonating another user.

Although the security information in the certificate can be retrieved directly by the sending application,
this function retrieves and caches the needed information using a single function call. When
MQGetSecurityContext is used, the sending application is only responsible for passing the security
context buffer (PROPID_M_SECURITY_CONTEXT) to MQSendMessage.

When authenticating messages, MSMQ must track which sender certificate is associated with which
message. Consequently, calling MQSendMessage must be done in the same user context as the call

to MQGetSecurityContext. If MQGetSecurityContext is not called before the message is sent (or
PROPID_M_SECURITY_CONTEXT is not passed to MQSendMessage) the security context of the
user who originally ran the process is used.

When more than one certificate is used, MQGetSecurityContext must be called for each certificate
the sending application wants to use.

When impersonating another user, MQGetSecurityContext must be called before a message is sent.
Once the security information for the impersonated user is retrieved, the sending application can revert
to the original user and later use the impersonated security context to send the message, without the
need to impersonate the user again.

To retrieve the security information of an impersonated user, HKEY_CURRENT_USER must point to
the registry of the impersonated user. To do this, call the Win32 API function RegLoadKey() to load the
impersonated user's registry hive. Call ReqCloseKey(HKEY_CURRENT_USER) to close the current
user registry, then call ImpersonateLoggedOnUser() and MQGetSecurityContext to access the
impersonated user registry to retrieve information about the impersonated user. The calls to
RegCloseKey(), ImpersonateLoggedOnUser, MQGetSecurityContext, plus any other calls that may
access the registry under HKEY_CURRENT_USER must be protected by the same critical section
object.

Note For information on RegLoadKey(), RegCloseKey(), ImpersonateLoggedOnUser, and critical
section objects, see the Platform SDK.

After the security certificate is no longer needed, free the memory allocated for the security context
buffer by calling MQFreeSecurityContext.

Windows 95 applications cannot retrieve the security context of the certificate when operating on an
independent client computer running offline. For information on offline operations, see MSMQ Offline
Support.

See Also
MQFreeSecurityContext, MQSendMessage, PROPID_M_SECURITY_CONTEXT

MQHandleToFormatName
The MQHandleToFormatName function returns a format name for the queue based on its handle.

HRESULT APIENTRY MQHandleToFormatName(
    QUEUEHANDLE hQueue,   
    LPWSTR lpwcsFormatName,   
    LPDWORD lpdwCount     
);

Parameters
hQueue

[in] Handle to the queue.
lpwcsFormatName

[out] Buffer to receive the format name for the queue.
lpdwCount

[in, out] On input, specifies the length of the lpwcsFormatName buffer (in Unicode characters).
Public queues require at least 44 unicode characters; private queues require at least 54. NULL
pointer is not allowed.
On output, indicates the length of the returned format name string, including the null-terminating
character. If the output value is greater than the initial input value, the supplied buffer is not large
enough to contain the complete format name string and
MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL is returned. In this case, only a portion of the
format name is returned.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL

The lpwcsFormatName buffer is too small to contain the format name string.
MQ_ERROR_INVALID_HANDLE

The queue handle specified in hQueue is not valid.
MQ_ERROR_SERVICE_NOT_AVAILABLE

Cannot connect to the Queue Manager.
MQ_ERROR_STALE_HANDLE

The specified queue handle was obtained in a previous session of the Queue Manager service.
Close the queue and open it again to obtain a fresh handle.

Remarks
Format names are not stored by MSMQ; the format name is created when MQHandleToFormatName
is called.

Typically, this function is used when you need a format name to specify a queue when calling
MQGetQueueProperties, MQSetQueueProperties, MQGetQueueSecurity, or
MQSetQueueSecurity.

Other format name translation functions include MQPathNameToFormatName and
MQInstanceToFormatName.

See Also
MQGetQueueProperties, MQGetQueueSecurity, MQInstanceToFormatName,
MQPathNameToFormatName, MQSetQueueProperties

MQInstanceToFormatName
The MQInstanceToFormatName function returns a format name for the queue based on the identifier
provided.

This function does not check to see if the identifier is valid.

HRESULT APIENTRY MQInstanceToFormatName(
    GUID * pGUID,                       
    LPWSTR lpwcsFormatName,   
    LPDWORD lpdwCount               
);

Parameters
pGUID

[in] Pointer to the queue identifier (a GUID structure).
lpwcsFormatName

[out] Pointer to a buffer to receive the format name for the queue.
lpdwCount

[in, out] On input, specifies the length of the lpwcsFormatName buffer (in Unicode characters).
Public queues require at least 44 unicode characters; private queues require at least 54. NULL
pointer is not allowed.
On output, indicates the length of the returned format name string, including the null-terminating
character. If the output value is greater than the initial input value, the supplied buffer is not large
enough to contain the complete format name string and
MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL is returned. In this case, only a portion of the
format name is returned.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_SERVICE_NOT_AVAILABLE

Cannot connect to the Queue Manager.
MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL

The buffer pointed to by lpwcsFormatName is too small to contain the format name string.

Remarks
Format names are not stored by MSMQ; the format name is created when
MQInstanceToFormatName is called.

This function is used when you need a format name to specify a queue when calling MQOpenQueue,
MQGetQueueProperties, MQSetQueueProperties, MQGetQueueSecurity, or
MQSetQueueSecurity, and the only available information is the queue's identifier
(PROPID_Q_INSTANCE). Typically, this happens when MQLocateBegin or MQLocateNext locates a
queue and stores its identifier, not the queue's format name, in MQIS.

Other format name translation functions include MQPathNameToFormatName and
MQHandleToFormatName.

See Also
MQGetQueueProperties, MQGetQueueSecurity, MQHandleToFormatName, MQLocateBegin,
MQLocateNext, MQOpenQueue, MQPathNameToFormatName, MQSetQueueProperties,
PROPID_Q_INSTANCE

MQLocateBegin
The MQLocateBegin function starts a query to locate a single public queue (or set of public queues),
returning a query handle. Use MQLocateNext to retrieve the query results.

This function does not return the number of matching entries.

HRESULT APIENTRY MQLocateBegin(
    LPCWSTR lpwcsContext,                   
    MQRESTRICTION *pRestriction,   
    MQCOLUMNSET *pColumns,               
    MQSORTSET *pSort,                         
    PHANDLE phEnum                                 
);

Parameters
lpwcsContext

[in] Specifies the starting point of the query within MQIS. Must be NULL.
pRestriction

[in] Specifies the search criteria for the query. NULL value indicates no restrictions.
pColumns

[in] Specifies which queue properties should be returned by the query. Must not be set to NULL.
pSort

[in] Specifies the sort order for the query results. PROPID_Q_PATHNAME cannot be used as a sort
key. Can be set to NULL to indicate no sort order is needed.

phEnum
[out] Pointer to a query handle to use when calling MQLocateNext and MQLocateEnd.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ILLEGAL_CONTEXT

Indicates that lpwcsContext is not NULL.
MQ_ERROR_ILLEGAL_MQCOLUMNS

Indicates that pColumns is NULL.
MQ_ERROR_ILLEGAL_PROPERTY_VALUE

Indicates that an illegal property value was specified in pRestriction. For example, this error is
returned if PROPID_Q_LABEL is specified and the supplied queue label is longer than the
maximum label length.

MQ_ERROR_ILLEGAL_PROPID
Indicates that an illegal property identifier was specified in pColumns.

MQ_ERROR_ILLEGAL_RELATION
Indicates that an invalid relationship value was specified in pRestriction.

MQ_ERROR_ILLEGAL_RESTRICTION_PROPID
Indicates that an illegal property identifier was specified in pRestriction. For example,
PROPID_Q_PATHNAME is not valid.

MQ_ERROR_ILLEGAL_SORT_PROPID
Indicates that an illegal property identifier was specified in pSort. For example, if pSort specifies
PROPID_Q_PATHNAME, this error is returned.

MQ_ERROR_NO_DS
No connection with the Site Controller server. Cannot access the MQIS.

Remarks
Queries can only locate public queues. MQLocateBegin cannot locate a private queue. For a
complete description of running a query, see Locating a Public Queue.

The pRestriction parameter specifies the search criteria (which queue properties and values are used
in the search). It is a pointer to a structure containing a logically ANDed list of property restrictions, with
each restriction including a queue property identifier, a property value, and a comparison operator.
Comparison operators include: less than (PRLT), less than or equal to (PRLE), equal (PREQ), not
equal (PRNE), greater than or equal to (PRGE), greater than (PRGT).

To specify the search criteria, MSMQ uses two structures: MQPROPERTYRESTRICTION and
MQRESTRICTION. MQPROPERTYRESTRICTION defines a single property restriction.
MQRESTRICTION specifies an array of restrictions as well as a count of how many restrictions there
are (see the following examples).

This example locates queues by their type of service. For example, locating all the queues whose
PROPID_Q_TYPE equals guidx.

/*Set property restriction. */
MQPROPERTYRESTRICTION PropertyRestriction;
PropertyRestriction.rel                  = PREQ;
PropertyRestriction.prop                = PROPID_Q_TYPE;
PropertyRestriction.prval.vt        = VT_CLSID;
PropertyRestriction.prval.puuid = &guidX;

/*Package restrictions. */
MQRESTRICTION rest;
rest.cRes = 1;
rest.paPropRes = &PropertyRestriction;

This example locates queues by their type of service (PROPID_Q_TYPE equals guidx) and by their
message journal property (PROPID_Q_JOURNAL equals 1).

First, prepare the property restrictions:

/*Set property restrictions. */
MQPROPERTYRESTRICTION PropertyRestrictions[2];
/*Set first restriction. */
PropertyRestrictions[0].rel = PREQ;
PropertyRestrictions[0].prop = PROPID_Q_TYPE;
PropertyRestrictions[0].prval.vt    = VT_CLSID;
PropertyRestrictions[0].prval.puuid = &guidX;
/*Set second restriction. */
PropertyRestrictions[1].rel = PREQ;
PropertyRestrictions[1].prop = PROPID_Q_JOURNAL;
PropertyRestrictions[1].prval.vt    = VT_UI1;
PropertyRestrictions[1].prval.bVal = 1;
   
/*Package the restrictions. */
MQRESTRICTION rest;
rest.cRes = 2;
rest.paPropRes = PropertyRestrictions;

Setting pRestriction to NULL retrieves information about all the queues.

The pColumns parameter allows you to specify which queue properties to retrieve. You can retrieve
any number of queue properties with the same call to MQLocateBegin.

The pSort parameter allows you to specify the sort order (ascending or descending) of the result
according to one or more of the properties (PROPID_Q_PATHNAME cannot be used as a sort key).
Two structures are used to set the sort order: MQSORTKEY specifies a single sort key, and
MQSORTSET specifies an array of sort keys along with the number of keys.

For example, the following code sorts queues according to their quota:

/* Prepare sort key. */
MQSORTKEY SortKey;
SortKey.propColumn = PROPID_Q_QUOTA;
SortKey.dwOrder = QUERY_SORTASCEND;

/* Indicate number of sort keys. */
MQSORTSET SortSet;
SortSet.cCol = 1;
SortSet.aCol = &SortKey;

When running a query, MSMQ can locate queues faster when the query is based on
PROPID_Q_INSTANCE, PROPID_Q_TYPE, or PROPID_Q_LABEL (PREQ only). The query runs
faster because these properties are indexed in MQIS, providing a faster way for MSMQ to locate the
property specified in the call.

MQLocateBegin can only return queues that are in MQIS when MQLocateBegin is called. Queues
created after MQLocateBegin is called are not included.

MQLocateBegin is not supported for offline operations. For information on offline operations, see
MSMQ Offline Support.

Examples
For an example of using MQLocateBegin, see Locating a Public Queue.

See Also
MQCOLUMNSET, MQLocateEnd, MQLocateNext, MQPROPERTYRESTRICTION,
MQRESTRICTION, MQSORTKEY, MQSORTSET, PROPID_Q_JOURNAL, PROPID_Q_LABEL,
PROPID_Q_PATHNAME, PROPID_Q_TYPE

MQLocateEnd
The MQLocateEnd function ends a query, releasing the resources associated with the query.

HRESULT APIENTRY MQLocateEnd(
    HANDLE hEnum   
);

Parameters
hEnum

[in] Query handle returned by a call to MQLocateBegin.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_INVALID_HANDLE

The query handle specified in hEnum is not valid.

Remarks
MQLocateEnd is not supported for offline operations. For information on offline operations, see MSMQ
Offline Support.

Examples
For an example of using MQLocateEnd, see Locating a Public Queue.

See Also
MQLocateBegin, MQLocateNext

MQLocateNext
The MQLocateNext function retrieves the requested queue information from the query. It is called after
obtaining a query handle from a previous call to MQLocateBegin.

HRESULT APIENTRY MQLocateNext(
    HANDLE hEnum,                     
    DWORD * pcProps,               
    PROPVARIANT aPropVar[]   
);

Parameters
hEnum

[in] Query handle returned by a previous call to MQLocateBegin.
pcProps

[in, out] On input, a pointer to a variable that specifies the number of elements in the aPropVar[]
array.
On return, pcProps holds the number of properties returned to the query. MQLocateNext returns as
many completed sets of properties (the number of properties returned for each queue) as possible.
A returned value of 0 indicates no queues were found.

aPropVar
[out] Holds the values of the retrieved properties in an array of PROPVARIANT. For each property
returned, MQLocateNext sets the VT field and the corresponding union member of the appropriate
aPropVar[] element. MQFreeMemory must be called to free memory allocated by MSMQ, which
happens when an PROPVARIANT element involves allocation of memory (for example lpwstr,
GUID).

Return Values
MQ_OK

Indicates success.
MQ_ERROR_INVALID_HANDLE

The query handle specified in hEnum is not valid.
MQ_ERROR_NO_DS

No connection with the Site Controller server. Cannot access the MQIS.
MQ_ERROR_RESULT_BUFFER_TOO_SMALL

The supplied buffer for aPropVar is too small. MQLocateNext could not return at least one complete
query result.

Remarks
The MQLocateNext function is called after obtaining a query handle from a previous call to
MQLocateBegin. The call can be repeated, using the same query handle, until all the results of the
query are received (until pcProps is 0). For a complete description of running a query, see Locating a
Public Queue.

The MQLocateNext function returns as many completed results (the number of properties requested in
MQLocateBegin) as possible. Consequently, you should always specify a multiple of the number of
requested properties when setting pcProps. By using a multiple of the requested properties, allocated
space for these properties is not wasted.

MSMQ only returns information for those queues that the calling application has access rights
(MQSEC_GET_QUEUE_PROPERTIES) to.

MQLocateNext is not supported for offline operations. For information on offline operations, see

MSMQ Offline Support.

Examples
For an example of using MQLocateNext, see Locating a Public Queue.

See Also
MQFreeMemory, MQGetQueueProperties, MQLocateBegin, MQLocateEnd,
MQSetQueueSecurity

MQOpenQueue
The MQOpenQueue function opens a queue for sending messages to the queue or for reading its
messages.

HRESULT APIENTRY MQOpenQueue(
    LPCWSTR lpwcsFormatName,   
    DWORD dwAccess,               
    DWORD dwShareMode,         
    LPQUEUEHANDLE phQueue   
);

Parameters
lpwcsFormatName

[in] Pointer to the format name string of the queue you want to open. The format name can be in a
public, private, or direct format. See the Remarks section for details on direct format names.

dwAccess
[in] Specifies how the application accesses the queue (peek, send, or receive). This setting cannot
be changed while the queue is open.
Specify one of the following access modes:
MQ_PEEK_ACCESS

Messages can only be looked at. They cannot be removed from the queue.
MQ_SEND_ACCESS

Messages can only be sent to the queue.
MQ_RECEIVE_ACCESS

Messages can be looked at and removed from of the queue. Whether a message is removed
from the queue or looked at depends on the dwAction parameter of MQReceiveMessage.
See dwShareMode for limiting who can receive the messages.

dwShareMode
[in] How the queue will be shared. Specify one of the following:
MQ_DENY_NONE

Default. The queue is available to everyone. This setting must be used if dwAccess is set to
MQ_SEND_ACCESS.

MQ_DENY_RECEIVE_SHARE
Limits those who can receive messages from the queue to this process. If the queue is already
opened for receiving messages by another process, this call fails and returns
MQ_ERROR_SHARING_VIOLATION. Applicable only when dwAccess is set to
MQ_RECEIVE_ACCESS or MQ_PEEK_ACCESS.

phQueue
[out] Handle to the opened queue.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_SERVICE_NOT_AVAILABLE

Cannot connect to the Queue Manager.
MQ_ERROR_ILLEGAL_FORMATNAME

The lpwcsFormatName parameter specified an illegal format name.
MQ_ERROR_NO_DS

No connection with the Site Controller server. Cannot access the MQIS.

MQ_ERROR_INVALID_PARAMETER
One of the IN parameters is not valid.

MQ_ERROR_SHARING_VIOLATION
Another process already opened this queue with dwShareMode set to
MQ_DENY_RECEIVE_SHARE, or another process has already opened the queue for receive so
you can't specify MQ_DENY_RECEIVE_SHARE.

MQ_ERROR_ACCESS_DENIED
The calling process does not have the required access rights to open the queue with the access
mode specified by dwAccess.

MQ_ERROR_UNSUPPORTED_ACCESS_MODE
The access mode specified by dwAccess is not supported. Set dwAccess to MQ_PEEK_MESSAGE,
MQ_SEND_MESSAGE, or MQ_RECEIVE_MESSAGE and call MQOpenQueue again.

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION
The lpwcsFormatName parameter specified a format name that is not supported by the access
rights specified in dwAccess. See the following Remarks section for restrictions on using direct
format names.

Remarks
If the format name of the queue is unknown, see Format Name to find ways to obtain a new format
name.

Direct format names can only be used when sending messages to a queue. A direct format name
instructs MSMQ not to use MQIS (for public queues) or the local computer (for private queues) to get
routing information. When a direct format name is used, all routing information is derived from the
format name and MSMQ sends the messages to the queue in a single hop.

Setting dwShareMode to MQ_DENY_RECEIVE_SHARE indicates that until the calling application calls
MQCloseQueue, no other MSMQ applications can open a queue with receive access.

When opening a queue on a remote computer, MSMQ does not check for the existence of the queue
when dwAccess is set to MQ_SEND_ACCESS. In addition, if dwAccess is set to
MQ_RECEIVE_ACCESS, the computer opening the queue must support the same protocol as the
remote computer where the queue is located.

Journal queues and dead letter queues can only be opened with dwAccess set to
MQ_PEEK_ACCESS or MQ_RECEIVE_ACCESS. You cannot send messages to a journal queue.

With one exception, foreign queues are opened the same way queues located within the enterprise are
opened. Applications cannot open a foreign queue using a direct format name. MSMQ needs the
routing information stored in MQIS to find a MSMQ Connector Sever for the foreign queue.

If the calling application does not have sufficient access rights to a queue, the following two things can
happen:

· If dwAccess is set to MQ_ACCESS_SEND, MQOpenQueue will succeed, but errors will be returned
when the application tries to send a message.

· If dwAccess is set to MQ_PEEK_ACCESS or MQ_RECEIVE_ACCESS, MQOpenQueue will fail
and return MQ_ERROR_ACCESS_DENIED. In this case a queue handle is not returned to
phQueue.

To change the access rights of the queue, call MQSetQueueSecurity. The following table lists the
access right needed to open the queue in peek, send, or receive access mode.

Queue Access Mode Queue Access Right
MQ_PEEK_MESSAGE MQSEC_PEEK_MESSAGE
MQ_SEND_MESSAGE MQSEC_WRITE_MESSAGE
MQ_RECEIVE_MESSAGE MQSEC_RECEIVE_MESSAGE

There is no provision to change the access mode of the queue when it is open. Either close and open
the queue with the desired access mode, or open a second instance of the queue.

For Windows NT
For Windows NT, a queue handle is always inherited by a child process. If a child process is created by
the process that opened the queue, the queue handle is inherited by the child process.

For Windows 95
A queue handle is not inherited by a child process.

Examples
For examples of using MQOpenQueue, see:

· Opening a Queue
· Reading Messages Using a Cursor
· Reading Messages in a Dead Letter Queue
· Reading Messages in a Machine Journal
· Sending Private Messages

See Also
MQCloseQueue, MQReceiveMessage , MQSetQueueSecurity

MQPathNameToFormatName
The MQPathNameToFormatName function returns a format name based on the MSMQ pathname
provided.

HRESULT APIENTRY MQPathNameToFormatName(
    LPCWSTR lpwcsPathName,   
    LPWSTR lpwcsFormatName,   
    LPDWORD lpdwCount             
);

Parameters
lpwcsPathName

[in] Pathname of the queue. Either private or public MSMQ pathnames are valid.
lpwcsFormatName

[out] Pointer to a buffer to receive the format name for the queue.
lpdwCount

[in, out] On input, specifies the length of the lpwcsFormatName buffer (in Unicode characters).
Public queues require at least 44 unicode characters; private queues require at least 54.
On output, indicates the length of the returned format name string, including the null-terminating
character. If the output value is greater than the initial input value, the supplied buffer is not large
enough to contain the complete format name string and
MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL is returned. In this case, only a portion of the
format name is returned.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ILLEGAL_QUEUE_PATHNAME

The lpwcsPathName parameter contains an illegal MSMQ pathname string.
MQ_ERROR_SERVICE_NOT_AVAILABLE

Cannot connect to the Queue Manager.
MQ_ERROR_NO_DS

No connection with the Site Controller server. Cannot access the MQIS.
MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL

The buffer pointed to by lpwcsFormatName is too small to contain the format name string.

Remarks
Private (local only) and public MSMQ pathnames can be specified.

Typically, this function is used when you need a format name to specify a queue when calling
MQOpenQueue, MQGetQueueProperties, MQSetQueueProperties, MQGetQueueSecurity, or
MQSetQueueSecurity and the only available information is the queue's MSMQ pathname.

The format name of a public queue cannot be returned by an independent client computer running
offline. For information on offline operations, see MSMQ Offline Support.

Other format name translation functions include MQInstanceToFormatName and
MQHandleToFormatName.

Examples
For an example of using MQPathNameToFormatName, see Sending Private Messages.

See Also
MQGetQueueProperties, MQGetQueueSecurity, MQHandleToFormatName,
MQInstanceToFormatName, MQOpenQueue, MQSetQueueProperties, MQSetQueueSecurity

MQReceiveMessage
The MQReceiveMessage function allows you to read messages in the queue. When reading
messages, you can either peek at (not removing them) or retrieve the messages (removing them) in
the queue.

Messages can be read either synchronously, asynchronously, or through a transaction.

HRESULT APIENTRY MQReceiveMessage(
    QUEUEHANDLE hSource,                                     
    DWORD dwTimeout, 
    DWORD dwAction, 
    MQMSGPROPS pMessageProps,                       
    LPOVERLAPPED lpOverlapped,                         
    PMQRECEIVECALLBACK fnReceiveCallback,   
    HANDLE hCursor, 
    Transaction *pTransaction                       
);

Parameters
hSource

[in] Handle to the queue that contains the message. For transactions, specify a queue on a local
computer.

dwTimeout
[in] Time, in milliseconds, to wait for the message. Can be set to INFINITE.

dwAction
[in] How the message is read in the queue. Specify one of the following:
MQ_ACTION_RECEIVE

Reads the message at the current cursor location and removes it from the queue.
MQ_ACTION_PEEK_CURRENT

Reads the message at the current cursor location but does not remove it from the queue. The
cursor remains pointing at the current message.
If a cursor was not created by MQCreateCursor (hCursor is NULL), the queue's cursor can only
point to the first message in the queue.

MQ_ACTION_PEEK_NEXT
Reads the next message in the queue (skipping the message at the current cursor location) but
does not remove it from the queue.
MQCreateCursor must be called (hCursor is not NULL) before MQ_ACTION_PEEK_NEXT can
be used.

pMessageProps
[in, out] On input, a pointer to an MQMSGPROPS structure that specifies which message properties
will be received. Can be set to NULL.
On output, it contains the received message property values.

lpOverlapped
[in, out] Pointer to an OVERLAPPED structure. Set to NULL for synchronous receive and
transactions.

fnReceiveCallback
[in] Pointer to the callback function. Set to NULL for synchronous receive and transactions.

hCursor
[in] Handle to cursor for looking at messages in the queue. Can be set to NULL. See the following
Remarks section

pTransaction

[in] Must be a pointer to a transaction object, a constant, or NULL.
Transaction object can be obtained internally from MSMQ (by calling MQBeginTransaction), or
externally from Microsoft® DTC (Distributed Transaction Coordinator).
Constants include:
MQ_NO_TRANSACTION

Specifies that the call is not part of a transaction.
MQ_MTS_TRANSACTION

Specifies that the current MTS (Microsoft® Transaction Server) transaction is used to retrieve the
message.

MQ_XA_TRANSACTION
Specifies that the call is part of an externally coordinated, XA-compliant transaction.

NULL indicates the message is not retrieved as part of a transaction.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ACCESS_DENIED

The action specified in dwAction does not agree with the access rights the queue was opened with.
MQ_ERROR_BUFFER_OVERFLOW

The supplied buffer for the message body is too small. The part of the message body that fits into
the buffer is copied, but the message is not removed from the queue.

MQ_ERROR_SENDERID_BUFFER_TOO_SMALL
The supplied sender identification buffer is too small to hold the sender identification.

MQ_ERROR_SYMM_KEY_BUFFER_TOO_SMALL
The supplied symmetric key buffer is too small to hold the symmetric key.

MQ_ERROR_SENDER_CERT_BUFFER_TOO_SMALL
The supplied sender certificate buffer is too small to hold security certificate.

MQ_ERROR_SIGNATURE_BUFFER_TOO_SMALL
The supplied signature buffer is too small to hold the message's digital signature.

MQ_ERROR_PROV_NAME_BUFFER_TOO_SMALL
The supplied provider name buffer is too small to hold cryptographic service provider's name.

MQ_ERROR_LABEL_BUFFER_TOO_SMALL
The supplied message label buffer is too small to hold the message's label.

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL
The supplied format name buffer is too small to hold the format name of the queue.

MQ_ERROR_DTC_CONNECT
MSMQ was unable to connect to the MS DTC.

MQ_ERROR_INSUFFICIENT_PROPERTIES
One of the following message properties was specified (in pMessageProps) without its associated
length property: PROPID_M_ADMIN_QUEUE, PROPID_M_DEST_QUEUE, PROPID_M_LABEL,
PROPID_M_RESP_QUEUE, PROPID_M_XACT_STATUS_QUEUE, or PROPID_M_PROV_NAME

MQ_ERROR_INVALID_HANDLE
The queue handle specified in hSource is not valid.

MQ_ERROR_IO_TIMEOUT
No message was received within the timeout period specified by dwTimeout.

MQ_ERROR_MESSAGE_ALREADY_RECEIVED
A message that is currently pointed at by the cursor has been removed from the queue. It can be
removed by another process, by another call to MQReceiveMessage using a different cursor, or the
message time-to-be-received timer has expired.

MQ_ERROR_OPERATION_CANCELLED
The operation was canceled before it could be completed. For example, the queue handle was
closed by another thread while waiting for a message.

MQ_ERROR_PROPERTY
One or more message properties specified in pMessageProps resulted in an error.

MQ_ERROR_QUEUE_DELETED
The queue was deleted before the message could be read. The specified queue handle is no longer
valid and the queue handle must be closed.

MQ_ERROR_ILLEGAL_CURSOR_ACTION
MQ_ACTION_PEEK_NEXT cannot be used with the current cursor position.

MQ_ERROR_SERVICE_NOT_AVAILABLE
Cannot connect to the Queue Manager.

MQ_ERROR_STALE_HANDLE
The specified queue handle was obtained in a previous session of the Queue Manager service.
Close the queue and open it again to obtain a fresh handle.

MQ_ERROR_TRANSACTION_USAGE
Transaction error. Either reading the message is part of a transaction and its queue is a non-
transaction queue, or reading the message is not part of a transaction and the queue is a transaction
queue.

MQ_INFORMATION_PROPERTY
One or more of the properties specified in pMessageProps resulted in a warning code even though
the function is completed.

Remarks
All message properties can be read. However, only those properties specified in the pMessageProps
parameter are returned to the calling application; other properties are simply discarded when the
message is read. For example, when browsing for messages some applications may choose to retrieve
the size of the message without retrieving the message body itself. To do this,
PROPID_M_BODY_SIZE is included in pMessageProps and PROPID_M_BODY is not; the size of the
message is returned to the calling application and the message body is not.

The hCursor parameter contains the handle to a cursor created by MQCreateCursor. Using a cursor is
optional, and is only needed when you want to read messages that are not at the front of the queue.

When using a cursor, you must peek at the first message in the queue by setting dwAction to
MQ_ACTION_PEEK_CURRENT, followed by subsequent calls with dwAction set to
MQ_ACTION_PEEK_NEXT.

The dwAction parameter specifies how MSMQ reads the message (either peek or receive) and which
message is read. For a description of how MSMQ reads the messages in the queue, see:

· Peeking at a Message in a Queue
· Peeking at the next Message in a Queue
· Retrieving the First Message
· Retrieving a Message in a Queue

To retrieve the message body, PROPID_M_BODY must be specified in pMessageProps. The VT field
of the corresponding element in the aPropVar array should be set to VT_UI1 | VT_VECTOR, allowing
MSMQ to use the buffer specified in CAUI1 to store the message. If the supplied buffer is too small to
contain the entire message body, MQReceiveMessage fails and MQ_ERROR_BUFFER_OVERFLOW
is returned. The buffer is filled to capacity and the full message remains in the queue. When this
happens, the other properties specified by pMessageProps are still read.

To retrieve the size of the message, specify PROPID_M_BODY_SIZE in pMessageProps. MSMQ sets
PROPID_M_BODY_SIZE to the size of the message body, even if MQReceiveMessage fails because

the message body exceeded the buffer allocated by PROPID_M_BODY. When retrieving the message
body size, the CAUI1structure associated with the PROPID_M_BODY property does not indicate the
size. The cElems field of the CAUI1 structure merely indicates the maximum message body, which
could be copied into the pElems buffer. The cElems field is never modified by MSMQ.

Not all properties require the application to specify the property type in the VT field of the aPropVar
array. For these properties, the corresponding VT field in the aPropVar array can be set to VT_NULL.

When reading messages in a queue, the function's timeout timer (dwTimeout) can be set to 0, a
specific amount of time, or INFINITE. A message can be retrieved if it is available at that period of time.

Synchronously Reading Messages
To synchronously read messages, fnReceiveCallback and lpOverlapped must be set to NULL. When
this is done, the calling thread is blocked until a suitable message is available or a timeout occurs.

For an example of using MQReceiveMessage to read messages synchronously, see Reading
Messages Synchronously.

Asynchronously Reading Messages
When asynchronously reading messages, MQReceiveMessage returns a SUCCESS value as soon as
a suitable message is found. Otherwise, the function returns immediately with the return value
MQ_INFORMATION_OPERATION_PENDING. This return value indicates that the operation is
pending and will be completed as soon as a suitable message can be found. Asynchronous receive is
based on standard Microsoft Win32 mechanisms.

There are three possible ways to read messages asynchronously:

· By using a callback function (fnReceiveCallback is not NULL). In this case, the message is not
retrieved by MQReceiveMessage. It is retrieved by the registered callback function. Once
registered, a callback function cannot be un-registered.
When multiple asynchronous MQReceiveMessage calls are outstanding, several callbacks are
registered; upon arrival of a message, the first registered callback is called.

· By using a Windows Event mechanism (fnReceiveCallback is NULL and lpOverlapped is not NULL).
In this case, the hEvent member of the specified OVERLAPPED structure contains a valid handle
to an event object. When a suitable message arrives, or a timeout occurs, the event object is set to
the signaled state.
For more information on the OVERLAPPED structure, see the Microsoft Platform SDK.

· By using a Windows NT completion port mechanism (fnReceiveCallback is NULL and lpOverlapped
is not NULL). A queue handle can be associated with a completion port to receive messages
asynchronously.
For more information, see CreateIOCompletionPort in the Microsoft Platform SDK.

The output parameters to an asynchronous call to MQReceiveMessage should be kept intact until the
operation completes, that is, you cannot free them or reuse them. Use automatic variables with
caution.

For an example of using MQReceiveMessage to read messages asynchronously, see Reading
Messages Asynchronously.

Reading message in Transactions
If MQReceiveMessage is called as part of a transaction (pTransaction is not set to
MQ_NO_TRANSACTION or NULL), the following parameters must be set accordingly:

· The lpOverlapped and fnReceiveCallback parameters must be set to NULL. The operation must be
synchronous receive.

· The hSource parameter must specify a queue on a local computer.

When the call is made, MSMQ performs the following tasks.

· In the case of a subsequent Abort, the message is returned to its original place in the queue.
· In the case of a Commit, a positive acknowledgment message is sent to the sender's administration

queue. The class property of the acknowledgment message is MQMSG_CLASS_ACK_RECEIVE.
For information on lTransaction::Commit, see the Platform SDK.

For more information about MSMQ transactions, see MSMQ Transactions.

Messages in Administration Queues
When reading acknowledgment messages in an administration queue, you can see if the original
message failed by looking at the class property (PROPID_M_CLASS) of the acknowledgment
message. The class property will contain a positive or negative acknowledgment.

If the class property is positive, the original message body is not included in the acknowledgment
message. If the class property is negative, the message body is included as the message body of the
acknowledgment message. For a complete description of all the properties of the acknowledgment
message, see Acknowledgment Messages.

Responding to Messages
The receiving application can pass PROPID_M_RESP_QUEUE to MQReceiveMessage to see if the
sending application expects a response to the message. The messages sent back to the response
queue specified by this property, must be understood by the original sending application.

When receiving a message, always check PROPID_M_RESP_QUEUE to see if it is non-NULL. If it is
not NULL, send responses to the specified response queue.

Response queue handles returned by MQOpenQueue can be cached to eliminate the need to call
MQOpenQueue several times for the same response queue.

For an example of sending response messages, see Sending Messages that Request a Response.

Examples
For examples of using MQReceiveMessage, see Reading Messages Using a Cursor.

See Also
MQCreateCursor, MQMSGPROPS, MQOpenQueue, PROPVARIANT, MQSetQueueSecurity,
PROPID_M_BODY, PROPID_M_BODY_SIZE, PROPID_M_CLASS, PROPID_M_RESP_QUEUE

MQSendMessage
The MQSendMessage function sends a message to the queue corresponding to the handle
hDestinationQueue.

HRESULT APIENTRY MQSendMessage(
    QUEUEHANDLE hDestinationQueue,   
    MQMSGPROPS * pMessageProps,   
    ITransaction * pTransaction   
);

Parameters
hDestinationQueue

[in] Handle to the queue where you want to send the message.
pMessageProps

[in] Pointer to an MQMSGPROPS structure describing the message to send.
pTransaction

[in] Must be a pointer to a transaction object, a constant, or NULL.
Transaction object can be obtained internally from MSMQ (by calling MQBeginTransaction), or
externally from Microsoft® Distributed Transaction Coordinator (MS DTC).
Constants include:
MQ_NO_TRANSACTION

Specifies that the call is not part of a transaction.
MQ_MTS_TRANSACTION

Specifies that the current Microsoft Transaction Server (MTS) transaction is used to send the
message.

MQ_SINGLE_MESSAGE
Sends a single message as a transaction. Messages sent as a single-message transaction must
be sent to a transaction queue.

MQ_XA_TRANSACTION
Specifies that the call is part of an externally coordinated, XA-compliant transaction.

NULL indicates the message is not sent as part of a transaction.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ACCESS_DENIED

The queue was not opened with MQ_SEND_ACCESS rights.
MQ_ERROR_BAD_SECURITY_CONTEXT

The security context buffer (PROPID_M_SECURITY_CONTEXT) is corrupted.
MQ_ERROR_CORRUPTED_INTERNAL_CERTIFICATE

The internal security certificate provided by MSMQ is corrupted. Register the internal certificate
again using the MSMQ Control Panel applet.

MQ_ERROR_CORRUPTED_PERSONAL_CERT_STORE
The Microsoft® Internet Explorer personal certificate store is corrupted.

MQ_ERROR_CORRUPTED_SECURITY_DATA
The operating system encountered an error when calling one of the cryptographic functions
(CryptoAPI).

MQ_ERROR_COULD_NOT_GET_USER_SID
MQSendMessage could not retrieve the user identifier specified by PROPID_M_SENDERID.

MQ_ERROR_DTC_CONNECT
MSMQ was unable to connect to MS DTC.

MQ_ERROR_ILLEGAL_FORMATNAME
Format name specified in PROPID_M_ADMIN_QUEUE or PROPID_M_RESP_QUEUE is illegal.

MQ_ERROR_INVALID_CERTIFICATE
The external security certificate passed in PROPID_M_SENDER_CERT is not valid. The certificate
is corrupted, or not placed in the Microsoft Internet Explorer personal certificate store.

MQ_ERROR_INVALID_HANDLE
The queue handle specified in hDestinationQueue is not valid.

MQ_ERROR_MESSAGE_STORAGE_FAILED
A recoverable message (PROPID_M_DELIVERY is set to MQMSG_DELIVERY_RECOVERABLE)
could not be stored on the local computer.

MQ_ERROR_NO_INTERNAL_USER_CERT
The internal security certificate provided by MSMQ is not registered. Register the internal certificate
using the MSMQ Control Panel.

MQ_ERROR_PROPERTY
One or more properties resulted in an error.

MQ_ERROR_SERVICE_NOT_AVAILABLE
Cannot connect to the Queue Manager.

MQ_ERROR_STALE_HANDLE
The specified queue handle was obtained in a previous session of the Queue Manager service.
Close the queue and open it again to obtain a fresh handle.

MQ_ERROR_TRANSACTION_USAGE
Transaction error. Either the message is part of a transaction and its target queue is a non-
transaction queue, or the message is not part of a transaction and the target queue is a transaction
queue.

MQ_INFORMATION_PROPERTY
One or more of the properties resulted in a warning even though the function completed.

Remarks
All message properties can be attached to a message. Some are attached by MSMQ and others can
be attached by the sending application. For a complete list of all the message properties, Sending
Messages To a Queue.

The PROPID_M_BODY property is a CAUI1 structure that contains the message body. The
caui1.cElems field of this structure represents the size of the message body.

The sending application can receive two types of messages in response to the messages it sends:

· If PROPID_M_RESP_QUEUE is passed to MQSendMessage, the receiving application can send
application-defined response messages back to the specified queue. For information on response
queues, see Response Queues.

· If PROPID_M_ADMIN_QUEUE and PROPID_M_ACKNOWLEDGE is passed to MQSendMessage,
MSMQ can return acknowledgment messages back to the administration queue.

You can use the same queue for the response queue (PROPID_M_RESP_QUEUE) and administration
queue (PROPID_M_ADMIN_QUEUE).

To save a copy of a message after it is successfully sent, set PROPID_M_JOURNAL to
MQMSG_JOURNAL or MQMSG_JOURNAL | MQMSG_DEADLETTER and attach it to the message.
This tells MSMQ to save a copy of message in the sending computer's machine journal after the
message is successfully sent. For more information, see Journal Queues.

To save a copy of a message if it does not reach its destination, set PROPID_M_JOURNAL to

MQMSG_DEADLETTER, or MQMSG_JOURNAL | MQMSG_DEADLETTER and attach it to the
message. This tells MSMQ to save a copy of the message in the dead letter queue of the computer
that could not deliver the message. This could be the sending machine, or any MSMQ server used to
rout the message to its destination. For information on dead letter queues, see Dead Letter Queues.

When impersonating another user, MQGetSecurityContext must be called. Typically,
MQGetSecurityContext is only needed when sending authenticated messages.

PROPID_M_RESP_QUEUE can be used to send the format name of a private queue to another
application. This is typically done when the sending application wants to make a private queue
available to other applications.

Sending Messages within a Transactions
If the send is part of a transaction (pTransaction is not set to MQ_NO_TRANSACTION or NULL), the
hDestinationQueue parameter must refer to a transaction queue.

During a transaction, MSMQ performs the following tasks:

· The message's priority property (PROPID_M_PRIORITY) is set to 0.
· The message's delivery property (PROPID_M_DELIVERY) is set to

MQMSG_DELIVERY_RECOVERABLE.
· The time-to-be-received and time-to-reach-queue timers are set by the first message sent in the

transaction. All subsequent messages use the first message's timer settings.
· As part of a transaction, messages are not sent until the Commit time frame. For information on

lTransaction::Commit, see the Platform SDK.

Requesting a Response
The sending application can pass PROPID_M_RESP_QUEUE to MQSendMessage to indicate that it
expects a response from the receiving application. The messages returned to the response queue
specified by this property are application-defined.

Examples
For examples of using MQSendMessage, see:

· Sending Messages That Request Acknowledgments
· Sending Messages That Request a Response
· Sending Private Messages
· Sending Messages Using an Internal Transaction
· Sending Messages Using an MS DTC External Transaction

See Also
MQGetSecurityContext, MQMSGPROPS, MQSetQueueSecurity, PROPID_M_ACKNOWLEDGE,
PROPID_M_ADMIN_QUEUE, PROPID_M_BODY, PROPID_M_BODY_SIZE, PROPID_M_CLASS,
PROPID_M_DELIVERY, PROPID_M_JOURNAL, PROPID_M_MSGID, PROPID_M_PRIORITY,
PROPID_M_RESP_QUEUE, PROPID_M_SENDERID, PROPID_M_SENTTIME,
PROPID_M_TIME_TO_BE_RECEIVED, PROPID_M_TIME_TO_REACH_QUEUE

MQSetQueueProperties
The MQSetQueueProperties function sets the properties of a specific queue.

HRESULT APIENTRY MQSetQueueProperties(
    LPCWSTR lpwcsFormatName,   
    MQQUEUEPROPS *pQueueProps   
);

Parameters
lpwcsFormatName

[in] Pointer to the format name string of the queue whose properties will be set. Use a public or
private format name to specify the queue. You cannot specify a queue using a direct format name.

pQueueProps
[in] Pointer to the MQQUEUEPROPS structure that specifies the properties to be set.
On input, the cProps member of MQQUEUEPROPS specifies the number of properties to be set,
the aPropID array specifies their property identifiers, and the aPropVar array indicates the new
values of the specified properties.
On output, the optional aStatus array, if it was included in MQQUEUPROPS, indicates the status of
the properties.

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ACCESS_DENIED

The process does not have the sufficient access rights to set the properties of the queue. For a
complete list of queue access rights, see Access Control.
To change access rights, call MQSetQueueSecurity.

MQ_ERROR_ILLEGAL_FORMATNAME
The lpwcsFormatName parameter specified an illegal format name.

MQ_ERROR_ILLEGAL_PROPERTY_VALUE
An illegal property value is specified.

MQ_ERROR_NO_DS
No connection with the Site Controller server. Cannot access the MQIS.

MQ_ERROR_PROPERTY
One or more properties resulted in error.

MQ_ERROR_SERVICE_NOT_AVAILABLE
Cannot connect to the Queue Manager.

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION
The lpwcsFormatName parameter specified a direct format name. You cannot set properties for a
queue that is being accessed directly.

MQ_ERROR_WRITE_NOT_ALLOWED
Cannot set the properties of the queue in MQIS while an MSMQ information store server is being
installed.

MQ_INFORMATION_PROPERTY
One or more of the properties resulted in a warning even though the function completed.

Remarks
If the format name of the queue is unknown, see Format Name to find ways to obtain a new format
name.

The following queue properties cannot be set by MQSetQueueProperties.

Property Name Reason
PROPID_Q_BASEPRIORITY For public queues only. Cannot be set

for private queues.
PROPID_Q_CREATE_TIME Set by MSMQ.
PROPID_Q_INSTANCE Set by MSMQ.
PROPID_Q_MODIFY_TIME Set by MSMQ.
PROPID_Q_PATHNAME Can only be set when the queue is

created.
PROPID_Q_TRANSACTION Can only be set when the queue is

created.

For a list of the queue properties you can set, see Setting a Queue's Properties Using API Functions.

When setting the properties for public queues, some clients may see the old settings registered in
MQIS. Changes to MQIS (such as setting queue properties) are propagated from site to site, which can
cause delays in availability of the most current information. Consequently, clients in some sites may still
see old settings, even though they were changed by MQSetQueueProperties. Propagation delays,
including communication network delays such as down links, are controlled by the MSMQ
Administrator.

A public queue's properties cannot be set by an independent client computer running offline. For
information on offline operations, see MSMQ Offline Support.

See Also
MQGetQueueProperties, MQSetQueueSecurity, PROPID_Q_BASEPRIORITY,
PROPID_Q_CREATE_TIME, PROPID_Q_INSTANCE, PROPID_Q_MODIFY_TIME,
PROPID_Q_PATHNAME, PROPID_Q_TRANSACTION

MQSetQueueSecurity
The MQSetQueueSecurity function sets the access control security for the queue.

HRESULT APIENTRY MQSetQueueSecurity(
    LPCWSTR lpwcsFormatName, 
    SECURITY_INFORMATION *SecurityInformation,   
    PSECURITY_DESCRIPTOR *pSecurityDescriptor   
);

Parameters
lpwcsFormatName

[in] Pointer to the format name string of the queue to be secured. You cannot specify a direct format
name.

securityInformation
[in] Specifies a SECURITY_INFORMATION structure identifying the contents of the security
descriptor pointed to by the pSecurityDescriptor parameter. (For information on the
SECURITY_INFORMATION structure, see the Microsoft Platform SDK.)

pSecurityDescriptor
[in] Pointer to a SECURITY_DESCRIPTOR structure. Can be set to NULL; see default values in the
following Return Values section. (For information on the SECURITY_DESCRIPTOR structure, see
the Microsoft Platform SDK.)

Return Values
MQ_OK

Indicates success.
MQ_ERROR_ACCESS_DENIED

The process owner does not have the sufficient access rights to set the queue security information.
The following access rights may be required:
· MQSEC_CHANGE_QUEUE_PERMISSIONS
· MQSEC_TAKE_QUEUE_OWNERSHIP
If access is denied, contact someone who has rights to modify the security descriptor.

MQ_ERROR_FUNCTION_NOT_SUPPORTED
MQSetQueueSecurity is not supported in Windows 95.

MQ_ERROR_ILLEGAL_FORMATNAME
The lpwcsFormatName parameter specified an illegal format name.

MQ_ERROR_NO_DS
No connection with the Site Controller server. Cannot access the MQIS.

MQ_ERROR_PRIVILEGE_NOT_HELD
The process owner does not have the proper privilege to set the queue's system access control list.

MQ_ERROR_SERVICE_NOT_AVAILABLE
Cannot connect to the Queue Manager.

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION
The lpwcsFormatName parameter contains a public or private queue using a direct format name or
a journal, dead letter, or connector queue.

Remarks
Following are the default values for the security descriptor.

Default Value Meaning
Owner The process user.

Group The process group.
DACL Full control for the process user. All

processes of other users can get queue
properties, get queue security, and send
messages to the queue.

SACL None.

The format name of the queue (specified by lpwcsFormatName) must be a public or private format
name. MSMQ must be able to access MQIS (for public queues) or the local computer (for private
queues) to get the queue's security descriptor.

If the format name of the queue is unknown, see Format Name to find ways to obtain a new format
name.

The following access rights and privileges are required to change the queue's security descriptor.

Access Right/Privilege Required To
MQSEC_TAKE_QUEUE
_OWNERSHIP

Change the owner of the queue. This
access right is equivalent to
WRITE_OWNER as defined by the Win32
header files.

SE_TAKE_OWNERSHIP
_NAME

Change the owner of the queue. This
privilege can be used instead of having the
MQSEC_TAKE_QUEUE_OWNERSHIP
access on the queue. If a user has this
privilege on the server, the user can
change the owner of any public queue in
the enterprise. If the user has this privilege
on the local computer, the user can change
the owner of any private queue.

MQSEC_CHANGE_QUEUE
_PERMISSIONS

Change the queue's discretionary access
control list (DACL) if the process is not the
owner of the queue. This access right is
equivalent to WRITE_DAC as defined by
the Win32 header files.

SE_SECURITY_NAME Change the queue's system ACL (SACL);
this privilege must be enabled for the
calling process on MQIS for public queues
and on the local computer for private
queues.

MQGetQueueSecurity cannot retrieve the security descriptor of a journal, dead letter, connector or
foreign queues.

A public queue's security descriptor cannot be set by an independent client computer running offline.
For information on offline operations, see MSMQ Offline Support.

See Also
MQGetQueueSecurity

MSMQ Mail Functions
The following topics describe the MSMQ mail functions. These functions allow you to parse and
compose messages, and free the memory allocated when using these functions.

MSMQ Mail Functions include:

· MQMailComposeBody
· MQMailFreeMemory
· MQMailParseBody

MQMailComposeBody
The MQMailComposeBody function composes a message body from information provided by an e-
mail data structure. The message body is formatted in MSMQ mail format.

STDAPI MQMailComposeBody(
    LPMQMailEMail pEMail,   
    ULONG FAR *pcbBuffer,   
    LPBYTE FAR ppbBuffer   
);

Parameters
pEMail

[in] Pointer to an MQMailEMail structure that contains mail information.
pcbBuffer

[out] Pointer to where the size of the newly allocated message body buffer is copied to.
ppbBuffer

[out] Pointer to where the address of the newly allocated message body buffer is copied to.

Return Values
S_OK

Indicates success.
E_INVALIDARG

Invalid arguments.
Other system errors

Use the FAILED(hr) macro to test for errors.

Remarks
The MQMailComposeBody function is used to create the body of an MSMQ mail message. It
allocates a message body buffer and fills it with an MSMQ mail format representation of the data
specified by the pEMail parameter.

Mail messages can be sent to MAPI clients via the MSMQ MAPI Transport Provider, Microsoft®
Exchange users via the MSMQ Exchange Connector, or other MSMQ applications.

When this function succeeds, the application must free the memory allocated for the message body
buffer by calling MQMailFreeMemory after the buffer is used.

The following table defines which members of the MQMailEMail structure are required to compose a
message body for each type of e-mail. Required properties are marked with an X (default values can
be used). When composing an e-mail object, all required members must have valid values, otherwise
an error condition is raised by MQMailComposeBody.

MQMailEMail
Text
Message Form Tnef

Delivery
Report

Non-
Delivery
Report

pForm X X
szSubject X (Empty

string)
(Empty
string)

fRequestDeliveryReport X (False) X (False)
fRequestNonDeliveryReport X (False) X (False)
pftDate X (Current

time)
X (Current
time)

X (Current
time)

X (Current
time)

pRecips X X X X X
iType X X X X X
form X
message X
tnef X
DeliveryReport X
NonDeliveryReport X

See Also
MQMailEMail, MQMailFreeMemory

MQMailFreeMemory
The MQMailFreeMemory function frees memory allocated by MQMailComposeBody and
MQMailParseBody.

STDAPI_(void) MQMailFreeMemory(
    LPVOID lpBuffer   
);

Parameters
lpBuffer

[in] Pointer to allocated memory.

Return Values
None.

Remarks
It is the application's responsibility to free all memory allocated by MQMailComposeBody and
MQMailParseBody.

See Also
MQMailComposeBody, MQMailParseBody

MQMailParseBody
The MQMailParseBody function parses the body of an MSMQ mail message and places the
information in a mail data structure.

STDAPI MQMailParseBody(
    ULONG cbBuffer,                         
    LPBYTE FAR *pbBuffer,             
    LPMQMailEMail FAR *ppEMail   
);

Parameters
cbBuffer

[in] Buffer size.
pbBuffer

[in] Pointer to the buffer containing the body of the MSMQ mail message.
ppEMail

[out] Pointer to where the address of the newly allocated MQMailEMail structure that contains the
copied mail information.

Return Values
S_OK

Indicates success.
E_INVALIDARG

Invalid arguments.
Other system errors

Use the FAILED(hr) macro to test for errors.

Remarks
The MQMailParseBody function is used to convert the body of an MSMQ mail message so its
information can be used by an MSMQ application.

The application must free the memory allocated for the MQMailEMail object once the parsed
information is used. To free the memory call MQMailFreeMemory.

MSMQ mail messages can be received from another MSMQ application or either of the two MSMQ
Mail services: MSMQ MAPI Transport Provider or the MSMQ Exchange Connector.

See Also
MQMailEMail, MQMailFreeMemory

MSMQ Error and Information Codes
The following error and information codes are defined in mq.h.

Code Description
MQ_ERROR Generic error code.
MQ_ERROR_ACCESS_DENIED Access to the specified queue or

computer is denied.
Verify the access rights for the
operation (for example, creating,
setting properties, or deleting a
queue). To change access rights for
a queue, call
MQSetQueueSecurity.

MQ_ERROR_BAD_DSSERVER
_REGISTRY

Registry parameter for MQIS server
has a bad value.

MQ_ERROR_BAD_SECURITY
_CONTEXT

Security context specified by
PROPID_M_SECURITY_CONTEXT
is corrupted.

MQ_ERROR_BUFFER_OVERFLOW Supplied message body buffer is too
small. A partial copy of the message
body is copied to the buffer, but the
message is not removed from the
queue.

MQ_ERROR_CANNOT
_IMPERSONATE_CLIENT

MSMQ information store server
cannot impersonate the client
application. Security credentials
could not be verified.

MQ_ERROR_COMPUTER_DOES
_NOT_SUPPORT_ENCRYPTION

Encryption failed. Computer (source
or destination) does not support
encryption operations.

MQ_ERROR_CORRUPTED
_INTERNAL_CERTIFICATE

MSMQ-supplied internal certificate is
corrupted.

MQ_ERROR_CORRUPTED
_PERSONAL_CERT_STORE

Microsoft® Internet Explorer
personal certificate store is
corrupted.

MQ_ERROR_CORRUPTED
_SECURITY_DATA

Cryptographic function (CryptoAPI)
has failed.

MQ_ERROR_COULD_NOT
_GET_ACCOUNT_INFO

MSMQ could not get account
information for the user.

MQ_ERROR_COULD_NOT
_GET_USER_SID

MSMQ could not get the specified
sender identifier.

MQ_ERROR_DELETE_CN
_IN_USE

Specified connected network (CN)
cannot be deleted because it is
defined in at least one computer.
Remove the CN from all CN lists and
try again.

MQ_ERROR_DS_ERROR Internal error with MQIS.
MQ_ERROR_DS_IS_FULL MSMQ information store is full.
MQ_ERROR_DTC_CONNECT MSMQ cannot connect to the

Microsoft® Distributed Transaction
Coordinator (MS DTC).

MQ_ERROR_FORMATNAME
_BUFFER_TOO_SMALL

Specified format name buffer is too
small to contain the queue's format
name.

MQ_ERROR_FUNCTION_NOT
_SUPPORTED

Function is not supported in
Windows 95.

MQ_ERROR_ILLEGAL_CONTEXT The lpwcsContext parameter of
MQLocateBegin is not NULL.

MQ_ERROR_ILLEGAL_CURSOR
_OPERATION

An attempt was made to peek at the
next message in the queue when
cursor was at the end of the queue.

MQ_ERROR_ILLEGAL
_FORMATNAME

Format name specified is not valid.

MQ_ERROR_ILLEGAL
_MQCOLUMNS

Indicates that pColumns is NULL.

MQ_ERROR_ILLEGAL
_MQQMPROPS

No properties are specified by the
MQQMPROPS structure, or it is set
to NULL.

MQ_ERROR_ILLEGAL
_MQQUEUEPROPS

No properties are specified by the
MQQUEUEPROPS structure, or it is
set to NULL.

MQ_ERROR_ILLEGAL_OPERATION The operation is not supported on
this specific platform.

MQ_ERROR_ILLEGAL
_PROPERTY_SIZE

The specified buffer for the message
identifier or correlation identifier is
not the correct size.

MQ_ERROR_ILLEGAL
_PROPERTY_VALUE

Property value specified in the
PROPVARIANT array is illegal.

MQ_ERROR_ILLEGAL
_PROPERTY_VT

VARTYPE specified in the VT field of
the PROPVARIANT array is not
valid.

MQ_ERROR_ILLEGAL_PROPID Property identifier in the property
identifier array is not valid.

MQ_ERROR_ILLEGAL_QUEUE
_PATHNAME

MSMQ pathname specified for the
queue is not valid.

MQ_ERROR_ILLEGAL_RELATION Relationship parameter is not valid.
MQ_ERROR_ILLEGAL
_RESTRICTION_PROPID

Property identifier specified in
MQRESTRICTION is invalid.

MQ_ERROR_ILLEGAL
_SECURITY_DESCRIPTOR

Specified security descriptor is not
valid.

MQ_ERROR_ILLEGAL_SORT Illegal sort specified.
MQ_ERROR_ILLEGAL_SORT
_PROPID

Property identifier specified in
MQSORTSET is not valid.

MQ_ERROR_ILLEGAL_USER User is not legal.
MQ_ERROR_INCONSISTENT
_QM_ID

Inconsistency exists between the
Queue Manager identifier found in
MQIS and the one found in the
registry.

MQ_ERROR_INSUFFICIENT Not all properties required for the

_PROPERTIES operation were specified.
MQ_ERROR_INSUFFICIENT
_RESOURCES

Insufficient resources to complete
operation (for example, not enough
memory). Operation failed.

MQ_ERROR_INVALID
_CERTIFICATE

Security certificate specified by
PROPID_M_SENDER_CERT is
invalid, or the certificate is not
correctly placed in the Microsoft®
Internet Explorer personal certificate
store.

MQ_ERROR_INVALID_HANDLE Specified queue handle is not valid.
MQ_ERROR_INVALID_OWNER Object owner is not valid. Owner

was not found when trying to create
object.

MQ_ERROR_INVALID_PARAMETER One of the IN parameters supplied
by the operation is not valid.

MQ_ERROR_IO_TIMEOUT MQReceiveMessage I/O timeout
has expired.

MQ_ERROR_LABEL_TOO_LONG Message label is too long. It should
be equal to or less than
MQ_MAX_MSG_LABEL_LEN.

MQ_ERROR_LABEL_BUFFER
_TOO_SMALL

Message label buffer is too small for
received label.

MQ_ERROR_LOG_XACT_STATE Cannot log transaction state.
MQ_ERROR_LOGMGR_LOAD Cannot get log manager library or

interface.
MQ_ERROR_MACHINE_EXISTS Machine with the specified name

already exists.
MQ_ERROR_MACHINE_NOT
_FOUND

Specified machine could not be
found in MQIS.

MQ_ERROR_MESSAGE
_ALREADY_RECEIVED

Message pointed at by the cursor
has already been removed from the
queue.

MQ_ERROR_MESSAGE
_STORAGE_FAILED

Recoverable message could not be
stored on the local computer.

MQ_ERROR_MISSING
_CONNECTOR_TYPE

Specified a property typically
generated by MSMQ but did not
specify
PROPID_M_CONNECTOR_TYPE

MQ_ERROR_MQIS_READONLY
_MODE

MQIS database is in read-only
mode.

MQ_ERROR_MQIS_SERVER
_EMPTY

The list of MSMQ information store
servers (in registry) is empty.

MQ_ERROR_NO_DS No connection with the Site
Controller server. Cannot access the
MQIS.

MQ_ERROR_NO_INTERNAL
_USER_CERT

No internal certificate available for
this user.

MQ_ERROR_NO_RESPONSE
_FROM_OBJECT_SERVER

No response from MQIS server.
Operation status is unknown.

MQ_ERROR_NO_TRANSPORT No network transport to the remote
computer.

MQ_ERROR_OBJECT_SERVER
_NOT_AVAILABLE

Object's MSMQ information store
server is not available. Operation
failed.

MQ_ERROR_OPERATION
_CANCELLED

Operation was canceled before it
could be started.

MQ_ERROR_PRIVILEGE
_NOT_HELD

Application does not have the
required privileges to perform the
operation.

MQ_ERROR_PROPERTY One or more of the specified
properties caused an error.

MQ_ERROR_PROPERTY
_NOTALLOWED

Specified property is not valid for the
operation (for example, specifying
PROPID_Q_INSTANCE when
setting queue properties).

MQ_ERROR_PROV_NAME
_BUFFER_TOO_SMALL

The provider name buffer for
cryptographic service provider is too
small.

MQ_ERROR_QUEUE_DELETED Queue was deleted before the
message could be read.
The specified queue handle is no
longer valid and the queue must be
closed.

MQ_ERROR_QUEUE_EXCEEDS
_QUOTA

Specified queue is full.

MQ_ERROR_QUEUE_EXISTS Queue (public or private) with the
identical MSMQ pathname is
registered.
Public queues are registered in
MQIS. Private queues are registered
in the local computer.

MQ_ERROR_QUEUE
_NOT_AVAILABLE

Error while reading from queue
residing on a remote computer.

MQ_ERROR_QUEUE_NOT_FOUND Public queue is not registered in
MQIS. This error does not apply to
private queues.

MQ_ERROR_RECOVER
_TRANSACTIONS

MSMQ could not recover the
transactions.

MQ_ERROR_REGISTRATION
_ERROR

Error in registration access.

MQ_ERROR_RESULT
_BUFFER_TOO_SMALL

Supplied result buffer is too small.
MQLocateNext could not return at
least one complete query result.

MQ_ERROR_SECURITY
_DESCRIPTOR_TOO_SMALL

Supplied security buffer is too small.

MQ_ERROR_SENDER_CERT
_BUFFER_TOO_SMALL

Supplied sender certificate buffer is
too small.

MQ_ERROR_SENDERID
_BUFFER_TOO_SMALL

Supplied sender identification buffer
is too small to hold sender

identification.
MQ_ERROR_SERVICE_NOT
_AVAILABLE

Application was unable to connect to
the Queue Manager.

MQ_ERROR_SIGNATURE
_BUFFER_TOO_SMALL

The signature buffer is too small.

MQ_ERROR_SHARING_VIOLATION Sharing violation when opening
queue. The application is trying to
open an already opened queue that
has exclusive read rights.

MQ_ERROR_STALE_HANDLE Specified handle was obtained in a
previous session of the Queue
Manager service.

MQ_ERROR_SYMM_KEY
_BUFFER_TOO_SMALL

The symmetric key buffer is too
small.

MQ_ERROR_TOO_MANY
_TRANSACTIONS

Too many active transactions.

MQ_ERROR_TRANSACTION
_ENLIST

Cannot enlist transaction.

MQ_ERROR_TRANSACTION_FILE MSMQ cannot open or create a
transaction file.

MQ_ERROR_TRANSACTION
_IMPORT

MSMQ could not import the specified
transaction.

MQ_ERROR_TRANSACTION
_PREPAREINFO

MSMQ could not get the Prepare
Info from the Microsoft Distributed
Transaction Coordinator (MS DTC).

MQ_ERROR_TRANSACTION
_QUEUE

The application could not create or
use the transaction queue.

MQ_ERROR_TRANSACTION
_SEQUENCE

Transaction operation sequence is
incorrect.

MQ_ERROR_TRANSACTION
_USAGE

Either the queue or the message is
not transactional. Transaction
messages can only be sent to a
transaction queue, and transaction
queues can only receive transaction
messages.

MQ_ERROR_WRITE_NOT
_ALLOWED

Write operations to MQIS are not
allowed while an MSMQ information
store server is being installed.

MQ_ERROR_UNSUPPORTED
_ACCESS_MODE

Specified access mode is not
supported. Supported access modes
include MQ_PEEK_MESSAGE,
MQ_SEND_MESSAGE, and
MQ_RECEIVE_MESSAGE.

MQ_ERROR_UNSSUPORTED
_DBMS

Current version of Database
Management System is not
supported

MQ_ERROR_UNSUPPORTED
_FORMATNAME_OPERATION

Requested operation is not
supported for the specified format
name (for example, trying to open a
queue to receive messages using a

direct format name).
MQ_ERROR_UNSUPPORTED
_PROTOCOL

Remote machine network protocol is
not supported.

MQ_ERROR_USER_BUFFER
_TOO_SMALL

Supplied buffer for user is too small
to hold the returned information.

MQ_INFORMATION_DUPLICATE
_PROPERTY

Property already specified with same
value.
When duplicate settings are found,
the first entry is used and
subsequent settings are ignored.

MQ_INFORMATION_FORMATNAME
_BUFFER_TOO_SMALL

Supplied format name buffer is too
small. Queue was still created.

MQ_INFORMATION_ILLEGAL
_PROPERTY

Specified identifier in property
identifier array aPropID is not valid.

MQ_INFORMATION_OPERATION
_OPERATION_PENDING

Asynchronous operation is pending.

MQ_INFORMATION_PROPERTY One or more of the specified
properties resulted in a warning.
Operation completed anyway.

MQ_INFORMATION_PROPERTY
_IGNORED

Specified property is not valid for this
operation (for example,
PROPID_M_SENDERID is not valid;
it is set by MSMQ when sending
messages).

MQ_INFORMATION
_UNSUPPORTED_PROPERTY

Specified property is not supported
by this operation. This property is
ignored.

MSMQ Properties
MSMQ uses message, queue, and machine properties to specify the characteristics of messages,
queues, and machines. A property can be an IN property, an OUT property, or both, depending on how
it is used. For a description of IN and OUT properties, see MSMQ Object Properties.

MSMQ properties include:

Queue Properties
· PROPID_Q_AUTHENTICATE
· PROPID_Q_BASEPRIORITY
· PROPID_Q_CREATE_TIME
· PROPID_Q_INSTANCE
· PROPID_Q_JOURNAL
· PROPID_Q_JOURNAL_QUOTA
· PROPID_Q_LABEL
· PROPID_Q_MODIFY_TIME
· PROPID_Q_PATHNAME
· PROPID_Q_PRIV_LEVEL
· PROPID_Q_QUOTA
· PROPID_Q_TRANSACTION
· PROPID_Q_TYPE

Message properties
· PROPID_M_ACKNOWLEDGE
· PROPID_M_ADMIN_QUEUE
· PROPID_M_ADMIN_QUEUE_LEN
· PROPID_M_APPSPECIFIC
· PROPID_M_ARRIVEDTIME
· PROPID_M_AUTH_LEVEL
· PROPID_M_AUTHENTICATED
· PROPID_M_BODY
· PROPID_M_BODY_SIZE
· PROPID_M_BODY_TYPE
· PROPID_M_CLASS
· PROPID_M_CONNECTOR_TYPE
· PROPID_M_CORRELATIONID
· PROPID_M_DELIVERY
· PROPID_M_DEST_QUEUE
· PROPID_M_DEST_QUEUE_LEN
· PROPID_M_DEST_SYMM_KEY
· PROPID_M_DEST_SYMM_KEY_LEN
· PROPID_M_ENCRYPTION_ALG
· PROPID_M_EXTENSION
· PROPID_M_EXTENSION_LEN
· PROPID_M_HASH_ALG

· PROPID_M_JOURNAL
· PROPID_M_LABEL
· PROPID_M_LABEL_LEN
· PROPID_M_MSGID
· PROPID_M_PRIORITY
· PROPID_M_PRIV_LEVEL
· PROPID_M_PROV_NAME
· PROPID_M_PROV_NAME_LEN
· PROPID_M_PROV_TYPE
· PROPID_M_RESP_QUEUE
· PROPID_M_RESP_QUEUE_LEN
· PROPID_M_SECURITY_CONTEXT
· PROPID_M_SENDER_CERT
· PROPID_M_SENDER_CERT_LEN
· PROPID_M_SENDERID
· PROPID_M_SENDERID_LEN
· PROPID_M_SENDERID_TYPE
· PROPID_M_SENTTIME
· PROPID_M_SIGNATURE
· PROPID_M_SIGNATURE_LEN
· PROPID_M_SRC_MACHINE_ID
· PROPID_M_TIME_TO_BE_RECEIVED
· PROPID_M_TIME_TO_REACH_QUEUE
· PROPID_M_TRACE
· PROPID_M_VERSION
· PROPID_M_XACT_STATUS_QUEUE
· PROPID_M_XACT_STATUS_QUEUE_LEN

Queue Manager Properties
· PROPID_QM_CONNECTION
· PROPID_QM_ENCRYPTION_PK
· PROPID_QM_MACHINE_ID
· PROPID_QM_PATHNAME
· PROPID_QM_SITE_ID

PROPID_M_ACKNOWLEDGE
The PROPID_M_ACKNOWLEDGE property specifies the type of acknowledgment messages that
MSMQ posts (in the administration queue) when the message is sent.

Type Indicator
VT_UI1 (or VT_NULL)

PROPVARIANT Field
bVal

Property Values
This property can be set to one (or more by ORing them together) of the following values:
MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE

Posts positive and negative acknowledgments depending on whether or not the message
reaches the queue. This can happen when the time-to-reach-queue timer expires, or a message
cannot be authenticated.

MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE
Posts a positive or negative acknowledgment depending on whether or not the message is
retrieved from the queue before its time-to-be-received timer expires.

MQMSG_ACKNOWLEDGMENT_NACK_REACH_QUEUE
Posts a negative acknowledgment when the message cannot reach the queue. This can happen
when the time-to-reach-queue timer expires, or a message cannot be authenticated.

MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE
Posts a negative acknowledgment when an error occurs and the message cannot be retrieved
from the queue before its time-to-be-received timer expires.

MQMSG_ACKNOWLEDGMENT_NONE
The default. No acknowledgment messages (positive or negative) are posted.

Remarks
Positive and negative acknowledgments are typically MSMQ-generated messages that are sent to an
administration queue specified by the message (acknowledgment messages can also be created by
MSMQ connector applications when sending messages to a foreign queue). When asking for
acknowledgments, you must also specify the administration queue when you send the message (see
PROPID_M_ADMIN_QUEUE). For information on administration queues, see Administration Queues.

Acknowledgment messages contain some of the information found in the original message, however,
each acknowledgment message has its own message identifier and class. The message identifier,
PROPID_M_MSGID, identifies the acknowledgment in the same way it identifies each message sent
by an MSMQ application. The message class, PROPID_M_CLASS, identifies the type of
acknowledgment that was posted. Both these properties are set by MSMQ when it creates the
acknowledgment message.

To request acknowledgment messages, pass PROPID_M_ACKNOWLEDGE and
PROPID_M_ADMIN_QUEUE to MQSendMessage.

To find out if an acknowledgment message was requested for a message in a queue, pass
PROPID_M_ACKNOWLEDGE to MQReceiveMessage and examine its returned value. When passing
PROPID_M_ACKNOWLEDGE to MQReceiveMessage, the corresponding VT field in the aPropVar
array can be set to VT_NULL.

For information on the time-to-reach-queue and time-to-be-received timers, see Message Timers. To
set the time-to-reach-queue and time-to-be-received timers, set
PROPID_M_TIME_TO_REACH_QUEUE and PROPID_M_TIME_TO_BE_RECEIVED, respectively.

To see how PROPID_M_ACKNOWLEDGE is used when sending messages, see Sending Messages
that Request Acknowledgments.

Example
The following example sets PROPID_M_ACKNOWLEDGE and PROPID_M_ADMIN_QUEUE as part
of preparing MQMSGPROPS.

MQMSGPROPS MsgProps;
PROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;

HRESULT hr;

QUEUEHANDLE hQueue;

//
// Set PROPID_M_ACKNOWLEDGE.
//
aPropId[PropIdCount] = PROPID_M_ACKNOWLEDGE;                      //PropId
aVariant[PropIdCount].vt = VT_UI1;  //Type
aVariant[PropIdCount].bVal = MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE; //Value

PropIdCount++;

//
// Set the PROPID_M_ADMIN_QUEUE property.
//
aPropId[PropIdCount] = PROPID_M_ADMIN_QUEUE;                  //PropId
aVariant[PropIdCount].vt = VT_LPWSTR;                                //Type
aVariant[PropIdCount].pwszVal = szwAdminFormatName;    //An already obtained format
name of the admin queue.

PropIdCount++;

//
// Set other message properties such as PROPID_M_BODY, PROPID_M_LABEL.
//

//
// Set the MQMSGPROPS structure
//
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

//
// Send message.
//
hr = MQSendMessage(
          hQueue,                                    // handle to the Queue.
          &MsgProps,                              // Message properties to be sent.

          MQ_NO_TRANSACTION                // No transaction
         );

if (FAILED(hr))
      {
        //
        // Handle error condition
        //
        }

See Also
PROPID_M_ADMIN_QUEUE, PROPID_M_CLASS, PROPID_M_MSGID,
PROPID_M_TIME_TO_BE_RECEIVED, PROPID_M_TIME_TO_REACH_QUEUE

PROPID_M_ADMIN_QUEUE
The PROPID_M_ADMIN_QUEUE property specifies the queue used for MSMQ-generated
acknowledgment messages.

Type Indicator
VT_LPWSTR

PROPVARIANT Field
pwszVal

Property Values
Format name of administration queue.

Remarks
Acknowledgment messages are sent to the administration queue by MSMQ. For more information, see
Administration Queues.

To request acknowledgment messages, pass PROPID_M_ACKNOWLEDGE and
PROPID_M_ADMIN_QUEUE to MQSendMessage.

To find out which queue is being used as the administration queue, pass PROPID_M_ADMIN_QUEUE
and PROPID_M_ADMIN_QUEUE_LEN to MQReceiveMessage and examine the returned values.

To see how PROPID_M_ADMIN_QUEUE is used when sending messages, see Sending Messages
that Request Acknowledgments.

Example
The following example sets PROPID_M_ACKNOWLEDGE and PROPID_M_ADMIN_QUEUE as part
of preparing MQMSGPROPS.

MQMSGPROPS MsgProps;
PROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;

HRESULT hr;

QUEUEHANDLE hQueue;

//
// Set PROPID_M_ACKNOWLEDGE.
//
aPropId[PropIdCount] = PROPID_M_ACKNOWLEDGE;                      //PropId
aVariant[PropIdCount].vt = VT_UI1;  //Type
aVariant[PropIdCount].bVal = MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE; //Value

PropIdCount++;

//
// Set the PROPID_M_ADMIN_QUEUE property.
//
aPropId[PropIdCount] = PROPID_M_ADMIN_QUEUE;                  //PropId
aVariant[PropIdCount].vt = VT_LPWSTR;                                //Type
aVariant[PropIdCount].pwszVal = szwAdminFormatName;    //An already obtained format
name of the admin queue.

PropIdCount++;

//
// Set other message properties such as PROPID_M_BODY, PROPID_M_LABEL.
//

//
// Set the MQMSGPROPS structure
//
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Ids of properties.
MsgProps.aPropVar = aVariant;              //Values of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

//
// Send message.
//
hr = MQSendMessage(
          hQueue,                                    // handle to the Queue.
          &MsgProps,                              // Message properties to be sent.
          MQ_NO_TRANSACTION                // No transaction
         );

if (FAILED(hr))
      {
        //
        // Handle error condition
        //
        }

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_ACKNOWLEDGE,
PROPID_M_ADMIN_QUEUE_LEN

PROPID_M_ADMIN_QUEUE_LEN
The PROPID_M_ADMIN_QUEUE_LEN property indicates the length (in Unicode characters) of the
administration queue's format name buffer.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Length (in Unicode characters) of the administration queue's format name buffer.

Remarks
The PROPID_M_ADMIN_QUEUE_LEN property is only used by the receiving application when looking
for the administration queue used by the sending application

To find out which queue is being used as the administration queue, pass PROPID_M_ADMIN_QUEUE
and PROPID_M_ADMIN_QUEUE_LEN to MQReceiveMessage and examine the returned values.

On input, PROPID_M_ADMIN_QUEUE_LEN specifies the length of the format name buffer (in Unicode
characters) allocated by the receiving application. The buffer should be large enough to hold the format
name string including the null-terminating character.

On return, this property holds the length (in Unicode characters) of the PROPID_M_ADMIN_QUEUE
format name string including the null-terminating character.

MQReceiveMessage fails if the buffer is not large enough to hold the format name, and
PROPID_M_ADMIN_QUEUE_LEN is set to the required buffer length of the format name string.

To see how PROPID_M_ADMIN_QUEUE_LEN is used when reading an acknowledgment message,
see Sending Messages that Request Acknowledgments.

Example
The following example allocates a buffer of size 60 for the format name of the administration queue,
then sets the PROPID_M_ADMIN_QUEUE and PROPID_M_ADMIN_QUEUE_LEN properties.

MQMSGPROPS MsgProps;
PROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;

HRESULT hr;
QUEUEHANDLE hQueue;

//
// Prepare the PROPVARIANT array.
//

#define ADMIN_QUEUE_BUFF_LEN 60
WCHAR szwAdminQueueFormatName[ADMIN_QUEUE_BUFF_LEN];

//
// Set the PROPID_M_ADMIN_QUEUE property.
//
aPropId[PropIdCount] = PROPID_M_ADMIN_QUEUE;                              //PropId
aVariant[PropIdCount].vt = VT_LPWSTR;  //Type
aVariant[PropIdCount].pwszVal = szwAdminQueueFormatName;      //allocated buffer

PropIdCount++;

//
// Set the PROPID_M_ADMIN_QUEUE_LEN property.
//
aPropId[PropIdCount] = PROPID_M_ADMIN_QUEUE_LEN;              //PropId
aVariant[PropIdCount].vt = VT_UI4;  //Type
aVariant[PropIdCount].ulVal = ADMIN_QUEUE_BUFF_LEN;        //Value
PropIdCount++;

//
// Set the MQMSGPROPS structure.
//
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Id of properties.
MsgProps.aPropVar = aVariant;              //Value of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

See Also
MQReceiveMessage, PROPID_M_ACKNOWLEDGE, PROPID_M_ADMIN_QUEUE

PROPID_M_APPSPECIFIC
The PROPID_M_APPSPECIFIC property specifies application-generated information such as single
integer values or application defined message classes.

Type Indicator
VT_UI4 (or VT_NULL)

PROPVARIANT Field
ulVal

Property Values
Unsigned integer. The default is 0.

Remarks
When passing PROPID_M_APPSPECIFIC to MQReceiveMessage, the corresponding VT field in the
aPropVar array can be set to VT_NULL.

In addition to PROPID_M_APPSPECIFIC, you can use the PROPID_M_CORRELATIONID message
property for sorting.

Example
This example shows how PROPID_M_APPSPECIFIC is specified in the MQMSGPROPS structure:

        MsgProps.aPropID[i] = PROPID_M_APPSPECIFIC;              //PropId
        MsgProps.aPropVar[i].vt = VT_UI4;                                  //Type
        MsgProps.aPropVar[i].ulVal = 444;                                  //Value
       
For an example of using PROID_M_APPSPECIFIC, see Reading Messages Using a Cursor.

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_CORRELATIONID

PROPID_M_ARRIVEDTIME
The PROPID_M_ARRIVEDTIME property indicates when the message arrived at the queue.

Type Indicator
VT_UI4 (or VT_NULL)

PROPVARIANT Field
ulVal

Property Values
Unsigned integer.

Remarks
The PROPID_M_ARRIVEDTIME property is attached to the message by MSMQ. The arrival time
returned is the number of seconds elapsed since midnight (00:00:00), January 1, 1970 (Coordinated
Universal time) according to the system clock.

To see when a message arrived, pass PROPID_M_ARRIVEDTIME to MQReceiveMessage and look
at the returned results. When passing PROPID_M_ARRIVEDTIME to MQReceiveMessage, the
corresponding VT field in the aPropVar array can be set to VT_NULL.

When reading messages from a journal queue, PROPID_M_ARRIVETIME indicates when the original
message reached its queue, not when the original message was removed from the queue and a copy
placed in the journal queue.

When reading messages from a machine journal, dead letter queue, or transactional dead letter queue,
PROPID_M_ARRIVETIME indicates when the message reached the system queue where the
application is reading the message.

For information on how to find out when the message was sent, see PROPID_M_SENTTIME.

See Also
MQReceiveMessage, PROPID_M_SENTTIME

PROPID_M_AUTH_LEVEL
The PROPID_M_AUTH_LEVEL property specifies if the message needs to be authenticated.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
This property can be set to one of the following values:
MQMSG_AUTH_LEVEL_NONE

The default. The message is not signed. MSMQ does not need to authenticate the message
when it reaches the queue.

MQMSG_AUTH_LEVEL_ALWAYS
MSMQ must sign the message when it is sent and authenticate the message when it reaches the
queue.

Remarks
The PROPID_M_AUTH_LEVEL property is only used by the sending application.

To authenticate a message, MSMQ digitally signs the message when it is sent, then uses the digital
signature to authenticate the message when it is received. For information on how MSMQ creates the
digital signature and how it authenticates the received message, see Message Authentication.

If PROPID_M_AUTH_LEVEL is set to MQMSG_AUTH_LEVEL_NONE and the target queue is set to
force authentication, the message will be rejected when it reaches the queue.

PROPID_M_AUTHENTICATED
The PROPID_M_AUTHENTICATED property indicates if MSMQ authenticated the message when it
was received by the target queue.

Type Indicator
VT_UI1 (or VT_NULL)

PROPVARIANT Field
bVal

Property Values
This property can be set to one of the following values:
0

MSMQ did not authenticate the message when it was received.
1

MSMQ authenticated the message when it was received.

Remarks
This property is only used by the receiving application when calling MQReceiveMessage. When
passing PROPID_M_AUTHENTICATED to MQReceiveMessage, the corresponding VT field in the
aPropVar array can be set to VT_NULL.

For information on how MSMQ authenticates messages, see Message Authentication.

See Also
MQReceiveMessage, PROPID_M_AUTH_LEVEL, PROPID_Q_AUTHENTICATE

PROPID_M_BODY
The PROPID_M_BODY property contains the body of the message.

Type Indicator
VT_VECTOR | VT_UI1

PROPVARIANT Field
caub

Property Values
Body of the message.

Remarks
The body of a message can consist of any type of information. It is the sending and receiving
application's responsibility to understand the type of information that is in the body. For example, the
sending application could send a binary file with any internal structure, and it would be the receiving
application's responsibility to know how to decipher what was sent.

It is recommended that the sending application set PROPID_M_BODY_TYPE whenever sending
messages. If PROPID_M_BODY_TYPE is not set, the application reading the message should assume
the message is an array of bytes. MSMQ's ActiveX implementation does this automatically.

Note MSMQ's ActiveX implementation supports the following specific types: VT_I2. VT_UI2,
VT_I4, VT_UI4, VT_R4, VT_R8, VT_CY, VT_DATE, VT_BOOL, VT_I1, VT_UI1, VT_BSTR,
VT_ARRAY, VT_STREAMED_OBJECT, VT_STORED_OBJECT, where the last two indicate
serialized objects that support IPersistStream and lPersistStorage. There are many persistent objects,
such as all Microsoft® Office documents, that can be sent as MSMQ messages.

The receiving application can find the size of the message and its type by passing
PROPID_M_BODY_SIZE and PROPID_M_BODY_TYPE to MQReceiveMessage.

When reading acknowledgment messages from an administration queue, PROPID_M_BODY only
returns the original message's body if the acknowledgment message is a negative acknowledgment.
Positive acknowledgment messages do not contain the body of the original message. For information
on acknowledgment messages, see Acknowledgment Messages.

Example
This example shows how PROPID_M_BODY is specified in the MQMSGPROPS structure:

        MsgProps.aPropID[i] = PROPID_M_BODY;  //PropId
        MsgProps.aPropVar[i].vt = VT_VECTOR|VT_UI1;                              //Type
        MsgProps.aPropVar[i].caub.pElems = "Hash hash";                      //Value
        MsgProps.aPropVar[i].caub.cElems = strlen ("Hash hash")+1;
     
For an example of using PROID_M_BODY, see:

· Sending Private Messages
· Reading Messages Using a Cursor

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_BODY_SIZE, PROPID_M_BODY_TYPE

PROPID_M_BODY_SIZE
The PROPID_M_BODY_SIZE property indicates the actual size of the message body.

Type Indicator
VT_UI4 (or VT_NULL)

PROPVARIANT Field
ulVal

Property Values
Size of the message body.

Remarks
PROPID_M_BODY_SIZE is only used when reading messages from a queue. To find the size of a
message, pass PROPID_M_BODY_SIZE to MQReceiveMessage and look at the returned value.
PROPID_M_BODY_SIZE returns the actual size of the message body.

When passing PROPID_M_BODY_SIZE to MQReceiveMessage, the corresponding VT field in the
aPropVar array can be set to VT_NULL.

See Also
MQReceiveMessage, PROPID_M_BODY

PROPID_M_BODY_TYPE
The PROPID_M_BODY_TYPE property indicates the type of body the message contains.

Type Indicator
VT_UI4 (or VT_NULL)

PROPVARIANT Field
ulVal

Property Values
Type of message body. The default is 0.

Remarks
The body of a message can consist of any type of information. It is the sending and receiving
application's responsibility to understand the type of information that is in the queue. For example, the
sending application could send a binary file with any internal structure, and it would be the receiving
application's responsibility to know how to decipher what was sent.

It is recommended that the sending application set PROPID_M_BODY_TYPE whenever sending
messages. If PROPID_M_BODY_TYPE is not set, the application reading the message should assume
the message is an array of bytes. MSMQ's ActiveX implementation does this automatically.

Note MSMQ's ActiveX implementation supports the following specific types: VT_I2. VT_UI2,
VT_I4, VT_UI4, VT_R4, VT_R8, VT_CY, VT_DATE, VT_BOOL, VT_I1, VT_UI1, VT_BSTR,
VT_ARRAY, VT_STREAMED_OBJECT, VT_STORED_OBJECT, where the last two indicate
serialized objects that support IPersistStream and lPersistStorage. There are many persistent objects,
such as all Microsoft Office documents, that can be sent as MSMQ messages.

The receiving application can find the type of a message by passing PROPID_M_BODY_TYPE to
MQReceiveMessage. When passing this property to MQReceiveMessage, the corresponding VT field
in the aPropVar array can be set to VT_NULL.

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_BODY, PROPID_M_BODY_TYPE

PROPID_M_CLASS
The PROPID_M_CLASS property indicates message type. A message can be a normal MSMQ
message, a positive or negative (arrival and read) acknowledgment message, or a report message.
Typically this property is set by MSMQ when it sends the message, however it can also be set by an
MSMQ connector application when the connector application sends a message.

Type Indicator
VT_UI1 (or VT_NULL)

PROPVARIANT Field
uiVal

Property Values
Normal messages (all messages created by your application):
MQMSG_CLASS_NORMAL

A normal MSMQ message.
Positive acknowledgment messages (typically generated by MSMQ):
MQMSG_CLASS_ACK_REACH_QUEUE

The original message reached its destination queue.
MQMSG_CLASS_ACK_RECEIVE

The original message was retrieved by the receiving application.
Negative arrival acknowledgment messages (typically generated by MSMQ):
MQMSG_CLASS_NACK_ACCESS_DENIED

The sending application does not have access rights to the destination queue.
MQMSG_CLASS_NACK_BAD_DST_Q

The destination queue is not available to the sending application.
MQMSG_CLASS_NACK_BAD_ENCRYPTION

The destination Queue Manager could not decrypt a private (encrypted) message (see
PROPID_M_PRIV_LEVEL).

MQMSG_CLASS_NACK_BAD_SIGNATURE
MSMQ could not authenticate the original message. The original message's digital signature is
not valid.

MQMSG_CLASS_NACK_COULD_NOT_ENCRYPT
The source Queue Manager could not encrypt a private message (PROPID_M_PRIV_LEVEL).

MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED
The original message's hop count is exceeded.

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA
The original message's destination queue is full.

MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT
Either the time-to-reach-queue or time-to-be-received timer expired before the original message
could reach the destination queue.

MQMSG_CLASS_NACK_PURGED
The message was purged before reaching the destination queue.

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q
A transaction message was sent to a non-transaction queue.

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG
A non-transaction message was sent to a transaction queue.

Negative read acknowledgment messages (typically generated by MSMQ):
MQMSG_CLASS_NACK_Q_DELETED

The queue was deleted before the message could be read from the queue.
MQMSG_CLASS_NACK_Q_PURGED

The queue was purged and the message no longer exists.
MQMSG_CLASS_NACK_RECEIVE_TIMEOUT

The original message was not removed from the queue before its time-to-be-received timer
expired.

Report messages (typically generated by MSMQ):
MQMSG_CLASS_REPORT

Sent each time the message enters or leaves an MSMQ server.

Remarks
Acknowledgment messages are typically generated by MSMQ whenever the sending application
requests them. The acknowledgment message is returned to the administration queue that is specified
by the sending application. For information on administration queues, see Administration Queues.

Note Acknowledgment messages can also be created by MSMQ connector applications. When the
connector application creates an acknowledgment message, it must set PROPID_M_CLASS and
PROPID_CONNECTOR_TYPE. For additional information, see MSMQ Connector Applications.

Report messages are typically generated by MSMQ whenever a report queue is defined at the source
Queue Manager. For information on report queues, see Report Queues.

To find the class of a message, pass PROPID_M_CLASS to MQReceiveMessage and examine the
returned value. When passing PROPID_M_CLASS to MQReceiveMessage, the corresponding VT
field in the aPropVar array can be set to VT_NULL.

When reading messages in an administration queue or dead letter queue, retrieve PROPID_M_CLASS
to find out why the message was sent to the queue.

See Also
MQSendMessage, PROPID_M_ACKNOWLEDGE, PROPID_M_PRIV_LEVEL

PROPID_M_CONNECTOR_TYPE
The PROPID_M_CONNECTOR_TYPE property indicates that some message properties typically
generated by MSMQ are generated externally from MSMQ. These properties include several security
and acknowledgment properties.

Type Indicator
VT_CLSID

PROPVARIANT Field
*puuid

Property Values
Pointer to a connector application identifier.

Remarks
This property is typically required whenever a message is passed by a connector application. The
connector type is required so that the sending and receiving applications know how to interpret the
security and acknowledgment properties of the messages.

For more information, see MSMQ Connector Server.

PROPID_M_CORRELATIONID
The PROPID_M_CORRELATIONID property specifies the correlation identifier of the message.

Type Indicator
VT_VECTOR | VT_UI1

PROPVARIANT Field
caub

Property Values
Application-defined message identifier (default is 0). Maximum length is 20-bytes.

Remarks
When sending a message, PROPID_M_CORRELATIONID provides an application-defined identifier
that the receiving application can use to sort the message.

When sending response messages to the sending application, PROPID_M_CORRELATIONID can be
set to the message identifier (PROPID_M_MSGID) of the message that is in the queue. This provides
an easy mechanism that the sending application can use to match the response message with the
message that was sent.

When MSMQ generates an acknowledgment message, it uses the PROPID_M_CORRELATIONID
property to specify the message identifier of the original message. The application can then look at the
PROPID_M_CORRELATIONID property to find the message identifier of the original message.

For information on negative and positive acknowledgment messages in administration queues, see
Administration Queues.

When sending messages to a foreign queue, the value of PROPID_M_CORRELATIONID is used to
verify the sender’s signature.

PROPID_M_DELIVERY
The PROPID_M_DELIVERY property specifies how the message is delivered.

Type Indicator
VT_UI1 (or VT_NULL)

PROPVARIANT Field
bVal

Property Values
This property can be set to one of the following values:
MQMSG_DELIVERY_RECOVERABLE

In every hop along its route, the message is forwarded to the next hop or stored locally in a
backup file until delivered. This guarantees delivery even in case of a computer crash.

MQMSG_DELIVERY_EXPRESS
The default. The message stays in memory until it can be delivered. The message is not
recovered if the computer is rebooted.

Remarks
When the message's delivery mechanism is set to MQMSG_DELIVERY_EXPRESS, the message has
faster throughput. When set to MQMSG_DELIVERY_RECOVERABLE, throughput may be slower, but
MSMQ guarantees that the message will be delivered, even if a computer crashes while the message
is en-route to the queue.

MSMQ always sets the delivery property of transactional messages to
MQMSG_DELIVERY_RECOVERABLE. For information on transactions, see MSMQ Transactions.

To see how a message will be delivered, pass PROPID_M_DELIVERY to MQSendMessage.

To determine how a message was delivered, pass PROPID_M_DELIVERY to MQReceiveMessage
and examine its returned value. When passing PROPID_M_DELIVERY to MQReceiveMessage, the
corresponding VT field in the aPropVar array can be set to VT_NULL.

PROPID_M_DEST_QUEUE
The PROPID_M_DEST_QUEUE property identifies the target queue of the message.

Type Indicator
VT_LPWSTR

PROPVARIANT Field
pwszVal

Property Values
Format name of the target queue.

Remarks
The PROPID_M_DEST_QUEUE property is only used by the receiving application. MSMQ attaches
this property to the message according to the destination queue specified in the call to
MQSendMessage.

When PROPID_M_DEST_QUEUE is passed to MQReceiveMessage,
PROPID_M_DEST_QUEUE_LEN must be passed as well.

PROPID_M_DEST_QUEUE is typically used when the receiving application wants to determine the
destination queue of a message in a journal or dead letter queue. For information on journal and dead
letter queues, see Journal Queues and Dead Letter Queues.

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_DEST_QUEUE_LEN

PROPID_M_DEST_QUEUE_LEN
The PROPID_M_DEST_QUEUE_LEN property indicates the length (in Unicode characters) of the
target queue's format name buffer.

Type Indicator
VT_UI4 (or VT_NULL)

PROPVARIANT Field
ulVal

Property Values
Length (in Unicode characters) of the target queue's format name buffer.

Remarks
The PROPID_M_DEST_QUEUE_LEN property is required whenever PROPID_M_DEST_QUEUE is
passed as a property in MQReceiveMessage.

On input, PROPID_M_DEST_QUEUE_LEN specifies the length of the format name buffer passed in
PROPID_M_DEST_QUEUE. The buffer should be large enough to hold the format name string
including the null-terminating character.

On return, this property holds the length (in Unicode characters) of the PROPID_M_DEST_QUEUE
format name string including the null-terminating character.

If the buffer is too small, MQReceiveMessage fails and PROPID_M_DEST_QUEUE_LEN can be used
to obtain the required buffer length of the format name string.

See Also
MQReceiveMessage, PROPID_M_DEST_QUEUE

PROPID_M_DEST_SYMM_KEY
The PROPID_M_DEST_SYMM_KEY property specifies the symmetric key used to encrypt messages.

Type Indicator
VT_UI1 | VT_VECTOR

PROPVARIANT Field
caub

Property Values
Encrypted symmetric key

Remarks
This property is used when sending encrypted messages to a foreign queue. The symmetric key is
encrypted with the public key of the receiving Queue Manager.

When a connector application receives an encrypted message, it forwards the encrypted message with
the attached symmetric key to the receiving application. It is the receiving application's responsibility to
decrypt the symmetric key and the body of the message.

See Also
MQReceiveMessage, PROPID_M_DEST_SYMM_KEY_LEN

PROPID_M_DEST_SYMM_KEY_LEN
The PROPID_M_DEST_SYMM_KEY_LEN property specifies the length of the symmetric key used to
encrypt the message.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Length (in bytes) of the symmetric key.

Remarks
The PROPID_M_DEST_SYMM_KEY_LEN property is set by MSMQ whenever when the message is
sent. It is required whenever the receiving application passes PROPID_M_DEST_SYMM_KEY to
MQReceiveMessage.

When passing PROPID_M_DEST_SYMM_KEY_LEN to MQReceiveMessage, the corresponding VT
field in the aPropVar array can be set to VT_NULL.

See Also
MQReceiveMessage, PROPID_M_DEST_SYMM_KEY

PROPID_M_ENCRYPTION_ALG
The PROPID_M_ENCRYPTION_ALG property specifies the encryption algorithm used to encrypt the
message body of a private message.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
This property can be set to one of the following values:
CALG_RC2 (the default)
CALG_RC4

Remarks
If the message is a private message (PROPID_M_PRIV_LEVEL is set to
MQMSG_PRIV_LEVEL_BODY), the source Queue Manager uses this algorithm to encrypt the
message and the target Queue Manager uses the matching decryption algorithm to decrypt the
message. PROPID_M_ENCRYPTION_ALG is ignored if the message is not a private message
(PROPID_M_PRIV_LEVEL). For a complete example of sending private messages (including creating
a queue that can only accept private messages), see Sending Private Messages.

CALG_RC2 and CALG_RC4 are defined by the ALG_ID data type in wincrypt.h. For more information
on the various encryption methods, see the Microsoft® Cryptographic API (CryptoAPI) in the Microsoft
Platform SDK.

When passing PROPID_M_ENCRYPTION_ALG to MQReceiveMessage, the corresponding VT field
in the aPropVar array can be set to VT_NULL.

Example
This example shows how PROPID_M_ENCRYPTION_ALG is specified in the MQMSGPROPS
structure:

        MsgProps.aPropID[i] = PROPID_M_ENCRYPTION_ALG ;    //PropId
        MsgProps.aPropVar[i].vt = VT_UI4;                                //Type
        MsgProps.aPropVar[i].ulVal = CALG_RC4;                      //Value
               
For an example of using PROID_M_ENCRYPTION_ALG, see Sending Private Messages.

See Also
PROPID_M_PRIV_LEVEL

PROPID_M_EXTENSION
The PROPID_M_EXTENSION property provides a place to put additional information that is associated
with the message.

Type Indicator
VT_UI1 | VT_VECTOR

PROPVARIANT Field
caub

Property Values
Array of bytes

Remarks
The PROPID_M_EXTENSION property is typically used by applications sending messages to or
reading messages from a foreign queue. It is the application's responsibility to understand the content
of this property.

The receiving application can determine the length of the information in this property by calling
PROPID_M_EXTENSION_LEN.

See Also
PROPID_M_EXTENSION_LEN

PROPID_M_EXTENSION_LEN
The PROPID_M_EXTENSION_LEN property specifies the length of the information in the
PROPID_M_EXTENSION property.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Length (in bytes) of PROPID_M_EXTENSION.

Remarks
When passing PROPID_M_EXTENSION_LEN to MQReceiveMessage, the corresponding VT field in
the aPropVar array can be set to VT_NULL.

See Also
MQReceiveMessage, PROPID_M_EXTENSION

PROPID_M_HASH_ALG
The PROPID_M_HASH_ALG property identifies the hashing algorithm used when authenticating
messages.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
This property can be set to any of the values defined by the ALG_ID data type in wincrypt.h (the
default is CALG_MD5).

Remarks
The MSMQ run-time DLL on the source computer uses the hashing algorithm when creating a digital
signature for a message. The target Queue Manger then uses the same hashing algorithm to
authenticate the message when it is received.

When passing PROPID_M_HASH_ALG to MQReceiveMessage, the corresponding VT field in the
aPropVar array can be set to VT_NULL.

For information on what MSMQ does to authenticate messages, see How MSMQ Authenticates
Messages.

PROPID_M_JOURNAL
The PROPID_M_JOURNAL property specifies if the message should be kept in a machine journal (on
the originating machine), sent to a dead letter queue, or neither.

Type Indicator
VT_UI1

PROPVARIANT Field
bVal

Property Values
This property can be set to one or more of the following values:
MQMSG_DEADLETTER

If the message is not delivered to the receiving application (for example, a message timer
expired), it is kept on the computer where the message is located.

MQMSG_JOURNAL
If the message is transmitted (from the originating machine to the next hop), it is kept in a journal
queue on the originating machine.

MQMSG_JOURNAL_NONE
The default. The message is not kept in the originating machine's journal queue.

Remarks
PROPID_M_JOURNAL does not create a queue. Machine journals and dead letter queues are system
queues generated by MSMQ. For information on machine journals and dead letter queues, see Journal
Queues and Dead Letter Queues. For an example of reading messages from a machine journal or
dead letter queue, see Reading Messages In a Queue.

MSMQ always sends transactional messages to the transaction dead letter queue (DEADXACT) on the
source machine if the message is not delivered. For information on transactions, see MSMQ
Transactions.

To use a machine journal or deadletter queue, pass PROPID_M_JOURNAL to MQSendMessage.

To see if the sending application is using a machine journal or dead letter queue, pass
PROPID_M_JOURNAL to MQReceiveMessage and check the returned value. When passing
PROPID_M_JOURNAL to MQReceiveMessage, the corresponding VT field in the aPropVar array can
be set to VT_NULL.

See Also
MQReceiveMessage, MQSendMessage

PROPID_M_LABEL
The PROPID_M_LABEL property specifies a label of the message.

Type Indicator
VT_LPWSTR

PROPVARIANT Field
pwszVal

Property Values
Arbitrary string (the default is none). Maximum length is 250 Unicode characters (including the end-
of-string character).

Remarks
If the sending application specifies a message label longer than 250 Unicode characters, MSMQ
returns an MQ_ERROR_LABEL_TOO_LONG error to the aStatus array.

To find the label of a message, pass PROPID_M_LABEL and PROPID_M_LABEL_LEN to
MQReceiveMessage and examine the returned values.

Example
This example shows how PROPID_M_LABEL is specified in the MQMSGPROPS structure:

        MsgProps.aPropID[i] = PROPID_M_LABEL;                //PropId
        MsgProps.aPropVar[i].vt = VT_LPWSTR;                  //Type
        MsgProps.aPropVar[i].pwszVal = L"Hash hash"; //Value
       

For an example of using PROID_M_LABEL, see Sending Private Messages.

See Also
MQReceiveMessage, PROPID_M_LABEL_LEN

PROPID_M_LABEL_LEN
The PROPID_M_LABEL_LEN property identifies the length (in Unicode characters) of the message
label buffer.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Length (in Unicode characters) of the message label buffer.

Remarks
The PROPID_M_LABEL_LEN property is only used by the receiving application when calling
MQReceiveMessage. It is required whenever PROPID_M_LABEL is passed to MQReceiveMessage.

On input, PROPID_M_LABEL_LEN specifies the size (in Unicode characters) of the message label
buffer allocated by the receiving application. The buffer should be large enough to hold the complete
label string including the end-of-string character.

On return, this property holds the length (in Unicode characters) of the label string plus the end-of-
string character.

MQReceiveMessage succeeds if the buffer is large enough to hold the message label. If the buffer is
too small, MQReceiveMessage fails and PROPID_M_LABEL_LEN can be used to obtain the required
buffer length of the message label string.

Example
The following example allocates a buffer of size 40 for the message label.

WCHAR buffer[40];                                    //Allocate buffer of size 40.
Prop[0]=PROPID_M_LABEL;
PropVar[0].vt=VT_LPWSTR;
PropVar[0].pwszVal=&buffer[0];

Prop[1]=PROPID_M_LABEL_LEN;
PropVar[1].vt=VT_UI4;
PropVar[1].ulVal=40;                            //Buffer length.

MQReceiveMessage(…);

See Also
MQReceiveMessage, PROPID_M_LABEL

PROPID_M_MSGID
The PROPID_M_MSGID property indicates the MSMQ-generated identifier of the message.

Type Indicator
VT_VECTOR | VT_UI1

PROPVARIANT Field
caub

Property Values
20-byte MSMQ-generated message identifier.

Remarks
MSMQ generates a 20-byte message identifier and attaches it to the message when the message is
sent. The identifier is an array of bytes that can be read by either the sending or receiving application.

MSMQ generates message identifiers for all messages, including acknowledgment messages
generated by MSMQ and MSMQ connector applications. When an acknowledgment message is
created, the identifier of the original message can be found in the acknowledgment message's
PROPID_M_CORRELATIONID property.

To read a message's identifier, pass PROPID_M_MSGID to MQSendMessage when sending the
message, or to MQReceiveMessage, when reading the message in the queue.

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_CORRELATIONID

PROPID_M_PRIORITY
The PROPID_M_PRIORITY property specifies the message's priority. A low number means low priority.

Type Indicator
VT_UI1 (or VT_NULL)

PROPVARIANT Field
bVal

Property Values
An integer value between 7 and 0 (the default is 3).

Remarks
Message priority effects how MSMQ handles the message while it is in route, as well as where the
message is placed in the queue. Higher priority messages are given preference during routing, and
inserted towards the front of the queue. Messages with the same priority are placed in the queue
according to their arrival time.

MSMQ automatically sets the priority level of transactional messages to 0: PROPID_M_PRIORITY is
ignored by the transaction. For information on transactions, see MSMQ Transactions.

To set the priority of a message, pass PROPID_M_PRIORITY to MQSendMessage.

To determine the priority of a message in the queue, pass PROPID_M_PRIORITY to
MQReceiveMessage and examine its returned value. When passing PROPID_M_PRIORITY to
MQReceiveMessage, the corresponding VT field in the aPropVar array can be set to VT_NULL.

If the message is sent to a public queue, a second priority (the queue's PROPID_Q_BASEPRIORITY
property) is added to PROPID_M_PRIORITY for routing purposes. However, the queue's base priority
has no effect on how messages are placed in the queue.

See Also
MQReceiveMessage, PROPID_Q_BASEPRIORITY

PROPID_M_PRIV_LEVEL
The PROPID_M_PRIV_LEVEL property specifies the privacy level of the message to be sent.

Type Indicator
VT_UI4 (or VT_NULL)

PROPVARIANT Field
ulVal

Property Values
This property can be set to one or more of the following values:
MQMSG_PRIV_LEVEL_BODY

Privacy is enforced. End-to-end encryption of the message body is used.
MQMSG_PRIV_LEVEL_NONE

The default. No privacy. The message body is sent as clear text.

Remarks
MSMQ can send private messages throughout the MSMQ enterprise. For a discussion on privacy
issues, see Private Messages. For a complete example of sending private messages (including
creating a queue that can only accept private messages), see Sending Private Messages.

To send a private message, pass PROPID_M_PRIV_LEVEL to MQSendMessage. If
PROPID_M_PRIV_LEVEL is set to MQMSG_PRIV_LEVEL_BODY, the body of the message is
encrypted using the algorithm specified by PROPID_M_ENCRYPTION_ALG.

To find out if a message was sent encrypted, pass PROPID_M_PRIV_LEVEL to MQReceiveMessage
and look at the returned value. When passing PROPID_M_PRIV_LEVEL to MQReceiveMessage, the
corresponding VT field in the aPropVar array can be set to VT_NULL.

The target queue can also have its own privacy level (PROPID_Q_PRIV_LEVEL), indicating that it will
only receive private (encrypted) messages. If the target queue forces privacy, non-encrypted messages
will be rejected.

Example
This example shows how PROPID_M_PRIV_LEVEL is specified in the MQMSGPROPS structure:

        MsgProps.aPropID[i] = PROPID_M_PRIV_LEVEL;                    //PropId
        MsgProps.aPropVar[i].vt = VT_UI4;                                      //Type
        MsgProps.aPropVar[i].ulVal = MQMSG_PRIV_LEVEL_BODY; //Value
       
For an example of using PROID_QM_MACHINE_ID, see Sending Private Messages.

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_ENCRYPTION_ALG,
PROPID_Q_PRIV_LEVEL

PROPID_M_PROV_NAME
The PROPID_M_PROV_NAME property specifies the name of the cryptographic provider used to
generate the message's digital signature.

Type Indicator
VT_LPWSTR

PROPVARIANT Field
pwszVal

Property Values
Unicode string of the provider name (the default is "Microsoft Base Cryptographic Provider, Ver.
1.0").

Remarks
The PROPID_M_PROV_NAME property is typically used when working with foreign queues. The
name and type (PROPID_M_PROV_TYPE) of the cryptographic provider is required to validate the
digital signature of messages sent to a foreign queue or messages passed to MSMQ from a foreign
queue. For information on sending authenticated messages to a foreign queue, see MSMQ Connector
Server.

When PROPID_M_PROV_NAME is passed to MQSendMessage, MSMQ automatically sets
PROPID_M_PROV_NAME_LEN to the length of the provider name.

To find out the name of the cryptographic provider used, pass PROPID_M_PROV_NAME and
PROPID_M_PROV_NAME_LEN to MQReceiveMessage and examine the returned values.

See Also
MQSendMessage, PROPID_M_PROV_NAME_LEN, PROPID_M_PROV_TYPE

PROPID_M_PROV_NAME_LEN
The PROPID_M_PROV_NAME_LEN property identifies the length of the name of the cryptographic
provider used for validating the message signature.

Type Indicator
VT_UI4 (or VT_NULL)

PROPVARIANT Field
ulVal

Property Values
Length of the cryptographic provider name (in Unicode characters).

Remarks
When a message is sent, PROPID_M_PROV_NAME_LEN is set by MSMQ when
PROPID_M_PROV_NAME is passed to MQSendMessage.

The PROPID_M_PROV_NAME_LEN property is only used by the receiving application when calling
MQReceiveMessage. It is required whenever PROPID_M_PROV_NAME is passed to
MQReceiveMessage.

On input, PROPID_M_PROV_NAME_LEN specifies the size (in Unicode characters) of the buffer
allocated by the receiving application. The buffer should be large enough to hold the complete provider
name string including the end-of-string character.

On return, this property holds the length (in Unicode characters) of the provider name string plus the
end-of-string character.

MQReceiveMessage succeeds if the buffer is large enough to hold the provider name. If the buffer is
too small, MQReceiveMessage fails and PROPID_M_PROV_NAME_LEN can be used to obtain the
required buffer length of the provider name string.

When passing PROPID_M_PROV_NAME_LEN to MQReceiveMessage, the corresponding VT field in
the aPropVar array can be set to VT_NULL.

PROPID_M_PROV_NAME is typically used when working with foreign queues. For information on
sending authenticated messages to a foreign queue, see MSMQ Connector Server.

See Also
MQSendMessage, PROPID_M_PROV_NAME

PROPID_M_PROV_TYPE
The PROPID_M_PROV_TYPE property specifies the type of cryptographic provider used to generate
the message's digital signature.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Possible values provided in wincrypt.h (the default is PROV_RSA_FULL).

Remarks
The PROPID_M_PROV_TYPE property is typically used when working with foreign queues. The type
and name (PROPID_M_PROV_NAME) of the cryptographic provider is required to validate the digital
signature of a message sent to a foreign queue or messages passed to MSMQ from a foreign queue.
For information on sending authenticated messages to a foreign queue, see MSMQ Connector Server.

When passing PROPID_M_PROV_TYPE to MQReceiveMessage, the corresponding VT field in the
aPropVar array can be set to VT_NULL.

See Also
PROPID_M_PROV_NAME

PROPID_M_RESP_QUEUE
The PROPID_M_RESP_QUEUE property specifies the queue where application-generated response
messages are returned.

Type Indicator
VT_LPWSTR

PROPVARIANT Field
pwszVal

Property Values
Format name of the response queue (the default is none).

Remarks
PROPID_M_RESP_QUEUE is used to send the format name of another queue to the receiving
application. Typically, this is done so that the receiving application can send response messages back
to the sending application. For information on response queues, see Response Queues.

Note The format name of a private queue (which would be inaccessible otherwise) can also be
sent using PROPID_M_RESP_QUEUE.

Messages returned to the queue are application defined. The application must define what is in the
messages, as well as what is to be done when a message is received.

To request a response message, pass PROPID_M_RESP_QUEUE to MQSendMessage, specifying
the queue that will receive the response message.

To check if a response message is required, pass PROPID_M_RESP_QUEUE and
PROPID_M_RESP_QUEUE_LEN to MQReceiveMessage. If the returned value of
PROPID_M_RESP_QUEUE is not NULL, send the response message to the returned queue. If the
returned value is NULL a response is not needed.

PROPID_M_RESP_QUEUE can also be used to send the format name of a private queue to another
application. This is typically done when the sending application wants to make a private queue
available to other applications.

Example
The following example sets PROPID_M_RESP_QUEUE as part of preparing MQMSGPROPS.

MQMSGPROPS MsgProps;
PROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;

HRESULT hr;

QUEUEHANDLE hQueue;

//
// Set the PROPID_M_RESP_QUEUE property.
//
aPropId[PropIdCount] = PROPID_M_RESP_QUEUE;      //Property identifier.
aVariant[PropIdCount].vt = VT_LPWSTR;                  //property type.
aVariant[PropIdCount].pwszVal = szwRESPFormatName;    //An already obtained format
name of the response queue.

PropIdCount++;

//
// Set other message properties such as PROPID_M_BODY, PROPID_M_LABEL.
//

//
// Set the MQMSGPROPS structure
//
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Id of properties.
MsgProps.aPropVar = aVariant;              //Value of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

//
// Send message.
//
hr = MQSendMessage(
          hQueue,                                    // handle to the Queue.
          &MsgProps,                              // Message properties to be sent.
          MQ_NO_TRANSACTION                // No transaction
         );

if (FAILED(hr))
      {
        //
        // Handle error condition
        //
        }

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_RESP_QUEUE_LEN

PROPID_M_RESP_QUEUE_LEN
The PROPID_M_RESP_QUEUE_LEN property indicates the length (in Unicode characters) of the
response queue buffer.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Length (in Unicode characters) of the response queue buffer.

Remarks
The PROPID_M_RESP_QUEUE_LEN property is only used by the receiving application when looking
to see if a response message is expected or when the sending application has passed the format
name of a private queue to the receiving application.

To find the format name of the response queue or private queue, pass PROPID_M_RESP_QUEUE
and PROPID_M_RESP_QUEUE_LEN to MQReceiveMessage.

On input, PROPID_M_RESP_QUEUE_LEN specifies the length of the format name buffer (in Unicode
characters) allocated by the receiving application. The buffer should be large enough to hold the format
name string including the null-terminating character.

On return, this property holds the length (in Unicode characters) of the PROPID_M_RESP_QUEUE
format name string including the null-terminating character.

MQReceiveMessage succeeds if the buffer is large enough to hold the format name of the
administration queue. MQReceiveMessage fails if the buffer is not large enough to hold the format
name, and PROPID_M_RESP_QUEUE_LEN is set to the required buffer length of the format name
string.

Example
The following example allocates a buffer of size 60 for the format name of the response queue, then
sets the PROPID_M_RESP_QUEUE and PROPID_M_RESP_QUEUE_LEN properties.

MQMSGPROPS MsgProps;
PROPVARIANT aVariant[10];
MSGPROPID aPropId[10];
DWORD PropIdCount = 0;

HRESULT hr;
QUEUEHANDLE hQueue;

//
// Prepare the PROPVARIANT array.
//

#define RESP_QUEUE_BUFF_LEN = 60
WCHAR szwRespQueueFormatName[RESP_QUEUE_BUFF_LEN];

//
// Set the PROPID_M_RESP_QUEUE property.
//
aPropId[PropIdCount] = PROPID_M_RESP_QUEUE;          //Property identifier.
aVariant[PropIdCount].vt = VT_LPWSTR;                      //Property type.

aVariant[PropIdCount].pwszVal = szwRespQueueFormatName;      //Allocated buffer.
PropIdCount++;

//
// Set the PROPID_M_RESP_QUEUE_LEN property.
//
aPropId[PropIdCount] = PROPID_M_RESP_QUEUE_LEN; //Property identifier.
aVariant[PropIdCount].vt = VT_UI4;                            //Property type.
aVariant[PropIdCount].ulVal = RESP_QUEUE_BUFF_LEN;      //Property value.
PropIdCount++;

//
// Set the MQMSGPROPS structure.
//
MsgProps.cProp = PropIdCount;              //Number of properties.
MsgProps.aPropID = aPropId;                  //Id of properties.
MsgProps.aPropVar = aVariant;              //Value of properties.
MsgProps.aStatus    = NULL;                      //No Error report.

See Also
MQReceiveMessage, PROPID_M_RESP_QUEUE

PROPID_M_SECURITY_CONTEXT
The PROPID_M_SECURITY_CONTEXT property specifies security information that MSMQ uses to
authenticate messages.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Handle to security context buffer returned by MQGetSecurityContext.

Remarks
The PROPID_M_SECURITY_CONTEXT property is only used by the sending application (it is not
used when receiving messages) and should be deleted (see MQFreeSecurityContext) when the
security context is no longer needed to send messages.

The PROPID_M_SECURITY_CONTEXT property is an opaque handle to the security information
returned by MQGetSecurityContext. This information includes details about the user, as well as
information about the user's security certificate (either an external security certificate provided by a
certificate authority or the internal security certificate provided by MSMQ).

When authenticating messages, MSMQ must track which sender certificate is associated with which
message. Consequently, calling MQSendMessage must be done in the same user-context as the call
to MQGetSecurityContext. If MQGetSecurityContext is not called before the message is sent, the
security context of the user who originally ran the process is used.

When the application is impersonating a user, the security context of the original user should not be
used.

There are two ways to provide the security information for an external certificate. The sending
application can provide the complete certificate using PROPID_M_SENDER_CERT, or it can call
MQGetSecurityContext to retrieve security information from the certificate and place it (along with the
user information) in PROPID_M_SECURITY_CONTEXT. When PROPID_M_SENDER_CERT is used,
the certificate information in PROPID_M_SECURITY_CONTEXT is ignored but the user information is
still valid. Either property can be used when authenticating messages with an external certificate.

See Also
MQFreeSecurityContext, MQGetSecurityContext, MQSendMessage, PROPID_M_SENDER_CERT

PROPID_M_SENDER_CERT
The PROPID_M_SENDER_CERT property specifies the external certificate used to authenticate
messages.

Type Indicator
VT_VECTOR | VT_UI1

PROPVARIANT Field
caub

Property Values
Security certificate (the default is the internal certificate provided by MSMQ).

Remarks
The sending application must obtain an external certificate from a certificate authority, or use the
internal certificate provided by MSMQ.

There are two ways to specify the security information provided by an external certificate.

· If the sending application is only going to use the certificate once, place the complete certificate in
PROPID_M_SENDER_CERT and attach the property to the message.

· If the sending application is going to use the same certificate over and over, call
MQGetSecurityContext to retrieve the security information from the certificate, place it in
PROPID_M_SECURITY_CONTEXT, and attach the property to the message.

When PROPID_M_SENDER_CERT is used, any certificate information in
PROPID_M_SECURITY_CONTEXT is ignored but the user information is still valid. Either property can
be used when authenticating messages with an external certificate.

When an external certificate is specified, the receiving application can use the information in the
certificate to verify who sent the message. When the internal certificate is specified, the information in
this property is not useful to the receiving application.

For information on using an external certificate, see Authenticating Messages Using an External
Certificate.

For information on using an internal certificate, see Authenticating Messages Using an Internal
Certificate.

See Also
MQGetSecurityContext, MQReceiveMessage, PROPID_M_SECURITY_CONTEXT,
PROPID_M_SENDER_CERT_LEN

PROPID_M_SENDER_CERT_LEN
The PROPID_M_SENDER_CERT_LEN property specifies the length of the sender certificate buffer.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Length (in bytes) of the sender certificate buffer.

Remarks
The PROPID_M_SENDER_CERT_LEN property is only used when the receiving application passes
PROPID_M_SENDER_CERT to MQReceiveMessage.

On return, PROPID_M_SENDER_CERT_LEN holds the length (in bytes) of the sender certificate.

MQReceiveMessage succeeds if the buffer is large enough to hold the sender certificate. If the buffer
is too small, MQReceiveMessage fails and PROPID_M_SENDER_CERT_LEN can be used to obtain
the required length for the sender certificate buffer. When passing PROPID_M_SENDER_CERT_LEN
to MQReceiveMessage, the corresponding VT field in the aPropVar array can be set to VT_NULL.

See Also
MQReceiveMessage, PROPID_M_SENDER_CERT

PROPID_M_SENDERID
The PROPID_M_SENDERID property identifies who sent the message.

Type Indicator
VT_VECTOR | VT_UI1

PROPVARIANT Field
caub

Property Values
An array of bytes generated by MSMQ.

Remarks
The PROPID_M_SENDERID property is primarily used by MSMQ security to authenticate messages
when they are retrieved from the queue. For information on authenticating messages, see
Authenticating Messages Using API Functions.

The PROPID_M_SENDERID property is also used internally to verify that the sender has access rights
to the queue. Verification is done by the receiving Queue Manager when it receives the message.

When a message is sent (and PROPID_M_SENDERID_TYPE is not set to
MQMSG_SENDERID_TYPE_NONE), MSMQ attaches PROPID_M_SENDERID to the message.

Receiving applications can pass PROPID_M_SENDERID to MQReceiveMessage to verify who sent a
message. To find out the length of the buffer needed for the sender identifier, peek at the message by
calling MQReceiveMessage (specifying PROPID_M_SENDERID_LEN) to find out the length of the
sender identifier. Then call MQReceiveMessage again (specifying PROPID_M_SENDERID), setting
the caub.cElems field of PROPID_M_SENDERID to the actual length returned by the first call to
MQReceiveMessage.

See Also
MQReceiveMessage, PROPID_M_SENDERID_LEN, PROPID_M_SENDERID_TYPE

PROPID_M_SENDERID_LEN
The PROPID_M_SENDERID_LEN property indicates the length of the sender identifier.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Length (in bytes) of the sender identifier.

Remarks
The PROPID_M_SENDERID_LEN property is only used by the receiving application when calling
MQReceiveMessage. MSMQ attaches this property to the message, along with
PROPID_M_SENDERID, when the message is sent.

The receiving application can use PROPID_M_SENDERID_LEN to determine the length of the buffer
that is needed for the sender identifier. To do this, peek at the message by calling
MQReceiveMessage (specifying PROPID_M_SENDERID_LEN) to find out the length of the sender
identifier. Then call MQReceiveMessage again (specifying PROPID_M_SENDERID), setting the
caub.cElems field of PROPID_M_SENDERID to the actual length returned by the first call to
MQReceiveMessage.

When PROPID_M_SENDERID_LEN is passed to MQReceiveMessage, the corresponding VT field in
the aPropVar array can be set to VT_NULL.

See Also
MQReceiveMessage, PROPID_M_SENDERID

PROPID_M_SENDERID_TYPE
The PROPID_M_SENDERID_TYPE property specifies the type of sender identifier found in
PROPID_M_SENDERID.

Type Indicator
VT_UI4 (or VT_NULL)

PROPVARIANT Field
ulVal

Property Values
This property can have one of the following values:
MQMSG_SENDERID_TYPE_SID

The default. PROPID_M_SENDERID contains the SID of the user sending the message.
MQMSG_SENDERID_TYPE_NONE

No identifier is attached to the message.

Remarks
If the sending application does not want MSMQ to attach a sender identifier to a message, it can
specify MQMSG_SENDERID_TYPE_NONE when passing PROPID_M_SENDERID_TYPE to
MQSendMessage. This suppresses the message's PROPID_M_SENDERID property.

The receiving application can pass PROPID_M_SENDERID_TYPE to MQReceiveMessage to
determine what type of sender identifier was attached to the message. The returned value for
PROPID_M_SENDERID_TYPE can be one of the following:

· MQMSG_SENDERID_TYPE_NONE: No identifier was attached to the message.
· MQMSG_SENDERID_TYPE_SID: The sending user's SID was attached to the message.

When the receiving application specifies PROPID_M_SENDERID_TYPE, the corresponding VT field in
the aPropVar array can be set to VT_NULL.

Local users (users not logged into a Windows NT domain) cannot attach an SID to a message. The
SID of a local user is only valid locally.

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_SENDERID

PROPID_M_SENTTIME
The PROPID_M_SENTTIME property indicates the date and time that the message was sent by the
source Queue Manager.

Type Indicator
VT_UI4 (or VT_NULL)

PROPVARIANT Field
ulVal

Remarks
The PROPID_M_SENTTIME property is attached to the message by MSMQ. The time returned is the
number of seconds elapsed since midnight (00:00:00), January 1, 1970 (Coordinated Universal time)
according to the system clock.

To see when a message was sent, pass PROPID_M_SENTTIME to MQReceiveMessage, and
examine the returned value. When passing PROPID_M_SENTTIME to MQReceiveMessage, the
corresponding VT field in the aPropVar array can be set to VT_NULL.

For information on how to find out when the message arrived at the target queue, see
PROPID_M_ARRIVEDTIME.

See Also
MQReceiveMessage, PROPID_M_ARRIVEDTIME

PROPID_M_SIGNATURE
The PROPID_M_SIGNATURE property specifies the digital signature used to authenticate the
message.

Type Indicator
VT_UI1 | VT_VECTOR

PROPVARIANT Field
caub

Property Values
Digital signature.

Remarks
Typically MSMQ attaches PROPID_M_SIGNATURE to a message when it is sent. However, connector
applications can also attach this property to a message when calling MQSendMessage.

When a connector application attaches this property to a message, it must generate the digital
signature of the user sending the message. (MSMQ does not generate a signature when it sees that
the connector application has supplied the signature.) The following properties are used to computed
the digital signature in the order shown:

· PROPID_M_CORRELATIONID
· PROPID_M_APPSPECIFIC
· PROPID_M_BODY
· PROPID_M_LABEL
· PROPID_M_RESP_QUEUE
· PROPID_M_ADMIN_QUEUE

For a information on authenticating messages sent by a connector application. see Connector
Application Security.

See Also
MQReceiveMessage, PROPID_M_SIGNATURE_LEN

PROPID_M_SIGNATURE_LEN
The PROPID_M_SIGNATURE_LEN property indicates the length of the message's digital signature.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Length (in bytes) of the digital signature.

Remarks
This property is used for messages sent with a digital signature to an MSMQ Connector.

When passing PROPID_M_SIGNATURE_LEN to MQReceiveMessage, the corresponding VT field in
the aPropVar array can be set to VT_NULL.

See Also
MQReceiveMessage, PROPID_M_SIGNATURE

PROPID_M_SRC_MACHINE_ID
The PROPID_M_SRC_MACHINE_ID property specifies the computer where the message originated.

Type Indicator
VT_CLSID

PROPVARIANT Field
*puuid

Property Values
Machine identifier (GUID) of source machine.

Remarks
This property is only used by the receiving application when calling MQReceiveMessage.

PROPID_M_SRC_MACHINE_ID returns the GUID of the computer without the enclosing brackets {}.

See Also
MQReceiveMessage

PROPID_M_TIME_TO_BE_RECEIVED
The PROPID_M_TIME_TO_BE_RECEIVED property specifies the total time (in seconds) the message
is allowed to live. This includes the time spent getting to its destination queue plus the time spent
waiting in the queue before it is retrieved by an application.

Type Indicator
VT_UI4 (or VT_NULL)

PROPVARIANT Field
ulVal

Property Values
Integer value (the default is INFINITE).

Remarks
PROPID_M_TIME_TO_BE_RECEIVED sets the time-to-be-received timer. For a discussion of
message timers, see Message Timers. If the timer expires before the message is removed from the
queue, MSMQ discards the message, sending it to the dead letter queue if the message's
PROPID_M_JOURNAL property is set to MQMSG_DEADLETTER.

MSMQ can also send a return negative acknowledgment message back to the sending application if
the message is not removed in time and the message's PROPID_M_ACKNOWLEDGE property is set
accordingly.

To set the time-to-be-received timer, pass PROPID_M_TIME_TO_BE_RECEIVED to
MQSendMessage.

To find out how much time remains in the time-to-be-received timer, pass
PROPID_M_TIME_TO_BE_RECEIVED to MQReceiveMessage and look at the returned value. When
passing PROPID_M_TIME_TO_BE_RECEIVED to MQReceiveMessage, the corresponding VT field in
the aPropVar array can be set to VT_NULL.

If the time-to-be-received and time-to-reach-queue timers are both specified, the time-to-be-received
timer takes precedence over the time-to-reach-queue timer.

MSMQ uses the time-to-be-received timer of the first message when several messages are sent in a
transaction. For information on transactions, see MSMQ Transactions.

When MSMQ creates an acknowledgment message, it always sets the message's time-to-be-received
timer to INFINITE.

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_ACKNOWLEDGE, PROPID_M_JOURNAL,
PROPID_M_TIME_TO_REACH_QUEUE

PROPID_M_TIME_TO_REACH_QUEUE
The PROPID_M_TIME_TO_REACH_QUEUE property specifies a time limit (in seconds) for the
message to reach the queue.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Integer value (the default is LONG_LIVED).

Remarks
PROPID_M_TIME_TO_REACH_QUEUE sets the message's time-to-reach-queue timer. For a
discussion of message timers, see Message Timers. If the time-to-reach-queue timer expires before
the message reaches its destination, MSMQ discards the message, sending it to the dead letter queue
if the message's PROPID_M_JOURNAL property is set to MQMSG_DEADLETTER.

MSMQ can also send a return negative acknowledgment messages back to the sending application if
the message does not arrive and the message's PROPID_M_ACKNOWLEDGE property is set
accordingly.

To set the time-to-reach-queue timer, pass PROPID_M_TIME_TO_REACH_QUEUE to
MQSendMessage.

The default value LONG_LIVED is an enterprise-wide setting that can be adjusted by the MSMQ
Administrator. Typically, LONG_LIVED is set to 90 days. Although this timer can be set to INFINITE,
MSMQ automatically uses the LONG_LIVED value in its place.

To find out how much time remains in the time-to-reach-queue timer, pass
PROPID_M_TIME_TO_REACH_QUEUE to MQReceiveMessage and look at the returned value. A
value of 0 indicates the timer has expired.

If the time-to-be-received and time-to-reach-queue timers are both specified, the time-to-be-received
timer takes precedence over the time-to-reach-queue timer.

No matter what value PROPID_M_TIME_TO_REACH_QUEUE is set to (even if set to 0), MSMQ
always gives each message one chance to reach its destination if the queue is waiting for the
message. If the queue is local, the message always reaches the queue.

MSMQ uses the time-to-reach-queue timer of the first message when several messages are sent in a
transaction. For information on transactions, see MSMQ Transactions.

When MSMQ creates an acknowledgment message, it always sets the message's time-to-reach-queue
timer to LONG_LIVED.

See Also
MQReceiveMessage, MQSendMessage, PROPID_M_ACKNOWLEDGE, PROPID_M_JOURNAL,
PROPID_M_TIME_TO_BE_RECEIVED

PROPID_M_TRACE
The PROPID_M_TRACE property specifies where report messages will be sent when tracing a
message.

Type Indicator
VT_UI1 (or VT_NULL)

PROPVARIANT Field
bVal

Property Values
This property can be set to one of the following values:
MQMSG_SEND_ROUTE_TO_REPORT_QUEUE

Each hop made by the original message generates a report that is recorded in a report message.
The elements of the report are the source Queue Manager, message identifier, target, time, and
next hop. The report message is sent to the report queue specified by the source Queue
Manager.

MQMSG_TRACE_NONE
The default. No tracing for this message.

Remarks
If MQMSG_SEND_ROUTE_TO_REPORT_QUEUE is specified but the report queue is not defined by
the MSMQ Administrator for the message's source Queue Manager, this property is ignored.

When passing PROPID_M_TRACE to MQReceiveMessage, the corresponding VT field in the
aPropVar array can be set to VT_NULL.

For a description of report queues and messages, see Report Queues and Report Messages.

For information on machine journals, see Journal Queues.

PROPID_M_VERSION
The PROPID_M_VERSION property specifies the version of MSMQ used to send the message.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
0x0010

Remarks
MSMQ attaches PROPID_M_VERSION to the message when it is sent.

The receiving application can pass PROPID_M_VERSION to MQReceiveMessage to find out what
version of MSMQ the sending application is using.

See Also
MQReceiveMessage

PROPID_M_XACT_STATUS_QUEUE
The PROPID_M_XACT_STATUS_QUEUE property identifies the transaction status queue on the
source computer. It is only used when sending messages to a foreign queue.

Type Indicator
VT_LPWSTR

PROPVARIANT Field
pwszVal

Property Values
Format name of transaction status queue.

Remarks
PROPID_M_XACT_STATUS_QUEUE is only used by MSMQ connector applications to send positive
(read receipt) or negative acknowledgment messages back to the sending application. MSMQ attaches
this property to each transaction message sent to a foreign queue. For information on transactions and
connector applications, see Using the MSMQ Connector in a Transaction.

The transaction status queue should receive these acknowledgments even if the sending application
does not request other acknowledgments. See PROPID_M_ACKNOWLEDGE.

For information on the other properties that must be set when creating acknowledgment messages,
see

When the connector application passes PROPID_M_XACT_STATUS_QUEUE to
MQReceiveMessage, PROPID_M_XACT_STATUS_QUEUE_LEN must be passed as well. If the
length property is not included, MQ_ERROR_INSUFFICIENT_PROPERTIES is returned to
MQReceiveMessage.

See Also
MQReceiveMessage, PROPID_M_ACKNOWLEDGE, PROPID_M_XACT_STATUS_QUEUE_LEN

PROPID_M_XACT_STATUS_QUEUE_LEN
The PROPID_M_XACT_STATUS_QUEUE_LEN property indicates the length (in Unicode characters)
of the transaction status queue's format name buffer.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Length (in Unicode characters) of the transaction status queue's format name buffer.

Remarks
The PROPID_M_XACT_STATUS_QUEUE_LEN property is only used by the connector application
when calling MQReceiveMessage. It is required whenever PROPID_M_XACT_STATUS_QUEUE is
passed in MQReceiveMessage.

On input, PROPID_M_XACT_STATUS_QUEUE_LEN specifies the length of the format name buffer (in
Unicode characters) allocated by the receiving application. The buffer should be large enough to hold
the format name string including the null-terminating character.

On return, this property holds the length (in Unicode characters) of the
PROPID_M_XACT_STATUS_QUEUE format name string including the null-terminating character.

See Also
MQReceiveMessage, PROPID_M_XACT_STATUS_QUEUE

PROPID_Q_AUTHENTICATE
Optional. The PROPID_Q_AUTHENTICATE property specifies whether or not the queue only accepts
authenticated messages.

Type Indicator
VT_UI1

PROPVARIANT Field
bVal

Property Values
This property can be set to one of the following values:
MQ_AUTHENTICATE_NONE

The default. The queue accepts authenticated and non-authenticated messages.
MQ_AUTHENTICATE

The queue only accepts authenticated messages.

Remarks
If the authentication level of the message (PROPID_M_AUTH_LEVEL) does not match the
authentication level of the queue, the message is rejected by the queue. In addition, if the sending
application requested a negative acknowledgment message when it sent the message,
MQMSG_CLASS_NACK_BAD_SIGNATURE will be returned to the sending application to indicate the
message was rejected.

For information on how MSMQ authenticates messages, see Message Authentication.

To set the authentication level of the queue, pass PROPID_Q_AUTHENTICATE to MQCreateQueue
when creating the queue.

To change the authentication level of the queue, pass PROPID_Q_AUTHENTICATE to
MQSetQueueProperties. When changing the authentication level of the queue, the new setting only
impacts arriving messages; it does not affect messages already in the queue.

To determine the authentication level of a queue, pass PROPID_Q_AUTHENTICATE to
MQGetQueueProperties and examine its returned value.

The receiving application can also check if a message was authenticated by looking at the message's
PROPID_M_AUTHENTICATED property.

See Also
MQCreateQueue, MQGetQueueProperties, MQSetQueueProperties, PROPID_M_AUTH_LEVEL,
PROPID_M_AUTHENTICATED

PROPID_Q_BASEPRIORITY
Optional. The PROPID_Q_BASEPRIORITY property specifies a single base priority for all messages
sent to a public queue.

Type Indicator
VT_I2

PROPVARIANT Field
iVal

Property Values
Integer value between -32768 and +32767 (the default is 0).

Remarks
A public queue's base priority is used for routing the queue's messages over the network. It can be
used to give the messages sent to the queue a higher (or lower) priority than messages sent to other
queues. For example, when a queue's base priority is set, all the messages sent to it are given a higher
priority than messages sent to queues with a lower base priority. The queue's base priority has no
effect on the order of the messages in the queue, or how messages are read from the queue.

PROPID_Q_BASEPRIORITY only applies to public queues that can be located through MQIS (using a
public format name). The base priority of private queues, as well as public queues accessed directly, is
always 0.

MSMQ combines the queue's base priority with the message's priority (PROPID_M_PRIORITY) to
determine the overall priority of a message when it is sent to the queue.

To set the base priority of a public queue, pass PROPID_Q_BASEPRIORITY to MQCreateQueue.

To change the base priority of a public queue, pass PROPID_Q_BASEPRIORITY to
MQSetQueueProperties.

To determine the base priority of a queue, pass PROPID_Q_BASEPRIORITY to
MQGetQueueProperties and examine its returned value.

See Also
MQCreateQueue, MQGetQueueProperties, MQSetQueueProperties, PROPID_M_PRIORITY

PROPID_Q_CREATE_TIME
Optional read-only. The PROPID_Q_CREATE_TIME property indicates the time and date when the
queue was created.

Type Indicator
VT_I4

PROPVARIANT Field
lVal

Property Values
Time when the queue was created.

Remarks
This property is set by MSMQ when MQCreateQueue is called. An error is returned
(MQ_ERROR_PROPERTY_NOTALLOWED) if any attempt is made to set this property. The time
returned is the number of seconds elapsed since midnight (00:00:00), January 1, 1970 (Coordinated
Universal time) according to the system clock.

There are several related C run-time functions that can be used to manipulate the value of
PROPID_Q_CREATE_TIME. For example, ctime() can be used to display the local date and time that
the queue was created.

To determine when the queue was created, pass PROPID_Q_CREATE_TIME to
MQGetQueueProperties and examine its returned value.

See Also
MQCreateQueue, MQGetQueueProperties

PROPID_Q_INSTANCE
Optional read-only. The PROPID_Q_INSTANCE property identifies a specific public queue.

Type Indicator
VT_CLSID

PROPVARIANT Field
*puuid

Property Values
GUID (globally unique identifier) of queue.

Remarks
The PROPID_Q_INSTANCE property identifies the created public queue (it is not an instance of an
open queue). This property is set by MSMQ when the application calls MQCreateQueue. An
MQ_ERROR_PROPERTY_NOTALLOWED error is returned if any attempt is made to set this property.

PROPID_Q_INSTANCE only applies to public queues. An
MQ_INFORMATION_PROPERTY_IGNORED error is returned if an attempt is made to get this
property for a private queue.

To find the identifier of a public queue, pass PROPID_Q_INSTANCE to MQGetQueueProperties or
MQLocateBegin (when starting a query) and examine its returned value.

See Also
MQCreateQueue, MQGetQueueProperties, MQLocateBegin

PROPID_Q_JOURNAL
Optional. The PROPID_Q_JOURNAL property specifies if messages retrieved from the queue are also
copied to its journal queue.

Type Indicator
VT_UI1

PROPVARIANT Field
bVal

Property Values
This property can be set to one of the following values:
MQ_JOURNAL

All messages removed from the specified queue are stored in its journal queue.
MQ_JOURNAL_NONE

The default. Messages are not stored in a journal queue. All messages removed from the
specified queue are discarded.

Remarks
The PROPID_Q_JOURNAL property does not create a journal, it specifies whether or not messages
removed from the queue are stored in the journal queue. Journal queues are system queues created
by MSMQ (for information on journal queues, see Journal Queues). The application can only read the
messages in a journal.

To save removed messages in a journal queue, pass PROPID_Q_JOURNAL to MQCreateQueue
when creating the queue.

To start or stop storing messages in the journal queue, pass PROPID_Q_JOURNAL to
MQSetQueueProperties. When the property value is changed, the remaining messages retrieved
from the specified queue will be stored or discarded according to the new setting.

To determine if removed messages are being stored in the journal queue, pass PROPID_Q_JOURNAL
to MQGetQueueProperties and examine its returned value.

To specify the size of a queue journal, see PROPID_Q_JOURNAL_QUOTA.

See Also
MQCreateQueue, MQGetQueueProperties, MQSetQueueProperties,
PROPID_Q_JOURNAL_QUOTA

PROPID_Q_JOURNAL_QUOTA
Optional. The PROPID_Q_JOURNAL_QUOTA property specifies the maximum size (in kilobytes) of
the journal queue.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Size (in kilobytes) of the journal queue (the default is INFINITE).

Remarks
To set the size of journal queue, pass PROPID_Q_JOURNAL_QUOTA to MQCreateQueue.

To change the size of a journal queue, pass PROPID_Q_JOURNAL_QUOTA to
MQSetQueueProperties.

To find the size of a journal queue, pass PROPID_Q_JOURNAL_QUOTA to MQGetQueueProperties
and examine its returned value.

See Also
MQCreateQueue, MQGetQueueProperties, MQSetQueueProperties, PROPID_Q_JOURNAL

PROPID_Q_LABEL
Optional. The PROPID_Q_LABEL property specifies a description of the queue.

Type Indicator
VT_LPWSTR

PROPVARIANT Field
pwszVal

Property Value
String (default is ""). The maximum length of the string is MQ_MAX_Q_LABEL_LEN (124 Unicode
characters).

Remarks
The queue's label can be used to identify the queue.

For public queues, the queue's label can be used as the search criteria for a query. By using the same
label for several queues, the application can later run a query on the queue label and locate all the
queues. (A query can also be used to retrieve the label of a public queue.)

To specify the label of a queue, pass PROPID_Q_LABEL to MQCreateQueue.

To change the label of a queue, pass PROPID_Q_LABEL to MQSetQueueProperties.

To find the label of a queue, pass PROPID_Q_LABEL to MQGetQueueProperties and examine its
returned value. When calling MQGetQueueProperties, set the type indicator for PROPID_Q_LABEL
to VT_NULL so that MSMQ will allocate the memory needed for the label. Later, the allocated memory
must be freed using MQFreeMemory.

Example
This example shows how PROPID_Q_LABEL is specified in the MQQUEUEPROPS structure:

        aPropId[PropIdCount] = PROPID_Q_LABEL;        'PropId
        aVariant[PropIdCount].vt = VT_LPWSTR;          'Type
        aVariant[PropIdCount].pwszVal = L"MyPublicQueue";

For an example of using PROID_Q_LABEL, see Creating a Queue.

See Also
MQCreateQueue, MQGetQueueProperties, MQSetQueueProperties

PROPID_Q_MODIFY_TIME
Optional. The PROPID_Q_MODIFY_TIME property indicates the last time the properties of a queue
were modified.

Type Indicator
VT_I4

PROPVARIANT Field
lVal

Property Values
Time when queue properties were last set.

Remarks
This property is set by MSMQ when MQCreateQueue is called, then reset by MSMQ each time the
queue properties are modified by calls to MQSetQueueProperties. The time returned is the number of
seconds elapsed since midnight (00:00:00), January 1, 1970 (Coordinated Universal time) according to
the system clock.

There are several related C run-time functions that can be used to manipulate the value of
PROPID_Q_MODIFY_TIME. For example, ctime() can be used to display the local date and time
when the queue properties were last modified.

To determine when the queue properties were last modified, pass PROPID_Q_MODIFY_TIME to
MQGetQueueProperties or MQLocateBegin (when starting a query) and examine its returned value.

An MQ_ERROR_PROPERTY_NOTALLOWED error is returned if any attempt is made to set this
property.

See Also
MQCreateQueue, MQGetQueueProperties, MQLocateBegin, MQSetQueueProperties

PROPID_Q_PATHNAME
Required (to create the queue). The PROPID_Q_PATHNAME property specifies the MSMQ pathname
of the queue. The MSMQ pathname includes the name of the computer where the queue's message's
are stored, if the queue is public or private, and the name of the queue.

Type Indicator
VT_LPWSTR

PROPVARIANT Field
pwszVal

Property Values
MSMQ pathname.

Remarks
The PROPID_Q_PATHNAME property is the only property required when creating a queue. To specify
the queue's MSMQ pathname, pass PROPID_Q_PATHNAME to MQCreateQueue. An
MQ_ERROR_PROPERTY_NOTALLOWED error is returned if any attempt is made to set this property
after the queue is created.

For public queues, PROPID_Q_PATHNAME includes the name of the computer where the queue's
messages are stored, followed by the name of the queue. For private queues, add PRIVATE$\ between
the name of the local computer and the queue name (private queues can only be created on the local
computer).

Here are three examples of MSMQ pathnames. The first two examples indicate two public queues (one
on a local computer and the other on a remote computer), and the third example indicates a private
queue.

"myMachine\myPublicQueue"
"otherMachine\otherPublicQueue"
"myMachine\Private$\myPrivateQueue"

As a shortcut, you can substitute a period "." for the local machine. So myPublicQueue and
myPrivateQueue could be specified on the local machine as:

".\myPublicQueue"
".\Private$\myPrivateQueue"

Private queues are only created on the local computer. It is the application's responsibility to ensure
that all queue names on the local computer are unique. If a queue name already exists when
MQCreateQueue is called, MSMQ returns an MQ_ERROR_QUEUE_EXISTS error to the application.

To find the MSMQ pathname of a queue, pass PROPID_Q_PATHNAME to MQGetQueueProperties
or MQLocateBegin (when starting a query) and examine its returned value. When passing
PROPID_Q_PATHNAME to MQGetQueueProperties, set its type indicator to VT_NULL. This tells
MSMQ to allocate the memory needed for the pathname. Later, this allocated memory must be freed
using MQFreeMemory.

To create a foreign queue, specify the name of the foreign machine as it is defined in MQIS. (For
information on defining foreign machines, see “To create a foreign computer” in the Administrator’s
Guide.)

Example
This example shows how PROPID_Q_PATHNAME is specified in the MQQUEUEPROPS structure (for
a public queue):

        QProps.aPropID[i] = PROPID_Q_PATHNAME;                          //PropId

        QProps.aPropVar[i].vt = VT_LPWSTR;                                  //Type
        QProps.aPropVar[i].pwszVal = L".\\MyPublicQueue";    //Value
       
For an example of using PROID_Q_PATHNAME, see Creating a Queue.

See Also
MQCreateQueue, MQGetQueueProperties, MQLocateBegin

PROPID_Q_PRIV_LEVEL
Optional. The PROPID_Q_PRIV_LEVEL property specifies the privacy level that is required by the
queue. The privacy level determines how the queue handles encrypted messages.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
This property can be set to one of the following values:
MQ_PRIV_LEVEL_NONE

The queue accepts only non-private (clear) messages.
MQ_PRIV_LEVEL_BODY

The queue accepts only private (encrypted) messages.
MQ_PRIV_LEVEL_OPTIONAL

The default. The queue does not force privacy. It accepts private (encrypted) messages and non-
private (clear) messages.

Remarks
The application can set the privacy level of queues and messages. If the privacy level of the message
(PROPID_M_PRIV_LEVEL) does not match the privacy level of the queue, the message is rejected by
the queue. In addition, if the sending application requested a negative acknowledgment message when
it sent the message, MQMSG_CLASS_BAD_ENCRYPTION will be returned to the sending application
to indicate the message was rejected.

The privacy level of a message is set by PROPID_M_PRIV_LEVEL. When a message is marked
private, its message body is encrypted by MSMQ when the message is sent. For information on
security issues, see MSMQ Security Services.

To set the privacy level of a queue, pass PROPID_Q_PRIV_LEVEL to MQCreateQueue when creating
the queue.

To change the privacy level of a queue, pass PROPID_Q_PRIV_LEVEL to MQSetQueueProperties.
When changing the privacy level of the queue, the new setting only impacts arriving messages; it does
not affect messages already in the queue.

To determine the privacy level of a queue, pass PROPID_Q_PRIV_LEVEL to MQGetQueueProperties
and examine its returned value.

See Also
MQCreateQueue, MQGetQueueProperties, MQSetQueueProperties, PROPID_M_PRIV_LEVEL

PROPID_Q_QUOTA
Optional. The PROPID_Q_QUOTA property specifies the maximum size (in kilobytes) of the queue.

Type Indicator
VT_UI4

PROPVARIANT Field
ulVal

Property Values
Size (in kilobytes) of the queue. The default is INFINITE.

Remarks
The PROPID_Q_QUOTA property is typically set when calling MQCreateQueue.

When a queue's quota is reached, a negative acknowledgment is returned to the administration queue
of the sending application to indicate that the queue is full. MSMQ continues to send negative
acknowledgments until the cumulative size of messages in the queue drop below the queue's quota.

To find the size of a queue, pass PROPID_Q_QUOTA to MQGetQueueProperties and examine its
returned value.

To change the size of a queue, pass PROPID_Q_QUOTA to MQSetQueueProperties with the new
value. When the queue's quota is changed, the new quota only impacts arriving messages; it does not
affect messages already in the queue.

See Also
MQCreateQueue, MQGetQueueProperties, MQSetQueueProperties

PROPID_Q_TRANSACTION
Optional. The PROPID_Q_TRANSACTION property specifies whether the queue is a transaction
queue or a non-transaction queue.

Type Indicator
VT_UI1

PROPVARIANT Field
bVal

Property Values
This property can be set to one of the following values:
MQ_TRANSACTIONAL

All messages sent to the queue must be done through an MSMQ transaction.
MQ_TRANSACTIONAL_NONE

The default. No transaction operations can be performed on the queue.

Remarks
If a queue is transactional, it can only accept messages that are sent as part of a transaction (see
MQSendMessage). However, messages can be retrieved from a local transaction queue with or
without using a transaction (see MQReceiveMessage).

For information on how MSMQ performs transactions, see MSMQ Transactions.

To create a transaction queue, set PROPID_Q_TRANSACTION to MQ_TRANSACTIONAL and pass it
to MQCreateQueue.

PROPID_Q_TRANSACTION cannot be changed once the queue is created. If an attempt is made to
set it afterward, an MQ_ERROR_PROPERTY error is returned to the call and the property's associated
aStatus entry will contain MQ_PROPERTY_NOTALLOWED.

To determine if the queue is a transaction queue, pass PROPID_Q_TRANSACTION to
MQGetQueueProperties and examine its returned value.

See Also
MQCreateQueue, MQGetQueueProperties, MQReceiveMessage, MQSendMessage

PROPID_Q_TYPE
Optional. The PROPID_Q_TYPE property specifies the type of service provided by the queue. The
queue's type allows applications to categorize their queues according to how they are used.

Type Indicator
VT_CLSID

PROPVARIANT Field
*puuid

Property Values
GUID value. The default is NULL_GUID.

Remarks
The queue's service type can be used to identify the queue.

It is recommended that the service type of the queue be specified when the queue is created. In most
cases, the service type of the queue can be defined by the application. However, some queues used
by MSMQ require a specific MSMQ-defined service type. For example, input queues used by the
MSMQ Mail Services have a specific MSMQ-defined MAPI service type.

Note To generate a GUID, run the UUIDGEN.EXE program provided by Microsoft Developer
Network. (For information about UUIDGEN.EXE, see the Microsoft Platform SDK.)

The queue's service type can also be used to locate public queues registered in MQIS (see
MQLocateBegin and MQLocateNext,).

To set the queue's service type, pass PROPID_Q_TYPE to MQCreateQueue.

To change the queue's service type, pass PROPID_Q_TYPE to MQSetQueueProperties with a new
GUID.

To find the service type of a queue, pass PROPID_Q_TYPE to MQGetQueueProperties and examine
its returned value.

See Also
MQCreateQueue, MQGetQueueProperties, MQLocateBegin, MQLocateNext,
MQSetQueueProperties

PROPID_QM_CONNECTION
The PROPID_QM_CONNECTION property identifies the CN (Connected Network) list of the computer.

Type Indicator
VT_LPWSTR | VT_VECTOR

PROPVARIANT Field
calpwstr

Property Values
<CN TYPE><CN GUID><CN Name>

Remarks
This property is typically used by connector applications when retrieving the CN list of a computer.

To retrieve the CN list of a computer, pass PROPID_QM_MACHINE_ID to MQGetMachineProperties
and examine its returned value.

See Also
MQGetMachineProperties

PROPID_QM_ENCRYPTION_PK
The PROPID_QM_ENCRYPTION_PK property indicates the public encryption key of the computer.

Type Indicator
VT_UI1 | VT_VECTOR

PROPVARIANT Field
caub

Property Values
Public encryption key.

Remarks
The PROPID_QM_ENCRYPTION_PK property of the computer is set by MSMQ when MSMQ is
installed.

To find the public encryption key of the computer, pass PROPID_QM_ENCRYPTION_PK to
MQGetMachineProperties and examine its returned value.

See Also
MQGetMachineProperties

PROPID_QM_MACHINE_ID
The PROPID_QM_MACHINE_ID property identifies the computer.

Type Indicator
VT_CLSID

PROPVARIANT Field
*puuid

Property Values
Machine GUID.

Remarks
The PROPID_QM_MACHINE_ID property is set by MSMQ when the computer is defined. It is used
when specifying the format name of a private queue, a machine journal, or a dead letter queue.

To determine the identifier of the machine, pass PROPID_QM_MACHINE_ID to
MQGetMachineProperties and examine its returned value.

Note For dependent clients, MSMQ sets this property to the identifier of the client's server
computer.

Example
This examples shows how PROPID_QM_MACHINE_ID is specified in the MQQMPROPS structure:

        PropId = PROPID_QM_MACHINE_ID;                  //PropId
        Variant.vt = VT_CLSID;                                  //Type
        Variant.puuid = &guidMachineId;                //Value
       
For an example of using PROID_QM_MACHINE_ID, see:

· Reading Messages in a Dead Letter Queue
· Reading Messages in a Machine Journal

See Also
MQGetMachineProperties

PROPID_QM_PATHNAME
The PROPID_QM_PATHNAME property specifies the MSMQ pathname of the computer.

Type Indicator
VT_LPWSTR

PROPVARIANT Field
pwszVal

Property Values
MSMQ pathname.

Remarks
To find the MSMQ pathname of a computer, pass PROPID_QM_PATHNAME to
MQGetMachineProperties and examine its returned value. When calling MQGetMachineProperties,
the type identifier of this property must be set to VT_NULL.

Note For dependent clients, MSMQ sets this property to the pathname of the client's server
computer.

See Also
MQGetMachineProperties

PROPID_QM_SITE_ID
The PROPID_QM_SITE_ID property identifies the site where the computer is located.

Type Indicator
VT_CLSID

PROPVARIANT Field
*puuid

Property Values
Site identifier.

Remarks
PROPID_QM_SITE_ID is set by MSMQ when the computer is created. It is typically used to determine
the site where the Queue Manager resides

The computer's site identifier indicates where the Queue Manager is currently located. When the
computer changes location to another site, MSMQ automatically updates PROPID_QM_SITE_ID to
indicate the new site.

To find the site of the computer, pass PROPID_QM_SITE_ID to MQGetMachineProperties and
examine its returned value.

See Also
MQGetMachineProperties

MSMQ Structures
MSMQ uses structures for message properties, queue properties, and Queue Manager properties, as
well as structures for queries to locate queues. For information about how these structures work
together, see Property Structures.

MSMQ structures include:

· aPropID
· aStatus
· MQCOLUMNSET
· MQMailTnefData
· MQMSGPROPS
· MQPROPERTYRESTRICTION
· MQQMPROPS
· MQQUEUEPROPS
· MQRESTRICTION
· MQSORTKEY
· MQSORTSET
· PROPVARIANT

aPropID
The aPropID structure is an array used to specify queue, message, and machine property identifiers. It
is used to identify which properties are specified for a call. MSMQ uses three different types of property
identifiers: QUEUEPROPID, MSGPROPID, and QMPROPID.

typedef PROPID      MSGPROPID
typedef PROPID      QUEUEPROPID
typedef PROPID      QMPROPID

aStatus
The aStatus structure is an optional array that contains errors returned by MSMQ. It can be used in
MQQUEUEPROPS, MQMSGPROPS, and MQQMPROPS.

Position i in this array is a reported status code of the property whose identifier and value are in
position i in the corresponding property identifier and property value arrays.

MSMQ errors are divided into four categories (by increasing order of severity); the category can be
determined by looking at the upper two bits of the error code (success = 00, informational = 01,
warning = 10, fatal = 11).

For information on how property structures work together, see Property Structures.

See Also
MQMSGPROPS, MQQMPROPS, MQQUEUEPROPS

MQCOLUMNSET
The MQCOLUMNSET structure specifies the number of queue properties to be retrieved from each
queue and their property identifiers. You can specify any number of queue properties, from a single
queue property to all the properties provided by MSMQ. MSMQ can return any number of queue
properties to the single query.

typedef struct    tagMQCOLUMNSET
{
        ULONG                            cCol;
        PROPID _RPC_FAR      *aCol;
}      MQCOLUMNSET;

Members
cCol

Number of properties to be retrieved.
*aCol

An array of property identifiers (for example, PROPID_Q_PATHNAME, PROPID_Q_INSTANCE, and
so on).

See Also
MQLocateBegin

MQMSGPROPS
The MQMSGPROPS structure describes a set of message properties. It specifies the number of
properties (cProp) in the set, the identifier of each property (aPropID), the values (or placeholder for
values) of each property (aPropVar), and it also provides an optional status array (aStatus) for errors
(some properties do not return a status) associated with the property.

For information on how property structures work together, see Property Structures.

typedef struct    tagMQMSGPROPS
{
      DWORD                      cProp;
      MSGPROPID              aPropID[];
      PROPVARIANT          aPropVar[];
      HRESULT                  aStatus[];
} MQMSGPROPS;

Members
cProp

Number of properties in the set.
aPropID

Property identifiers (for example, PROPID_M_LABEL, PROPID_M_MSGID, PROPID_M_BODY,
and so on). For information about the structure, see aPropID.

aPropVar
Value of properties in set. For information about the structure used by aPropVar, see
PROPVARIANT.

aStatus
Optional. Returns errors that indicate the status of the properties in the set, for example, when a
property cannot be set by the call. For information about the structure, see aStatus.

See Also
aPropID, aStatus, PROPVARIANT

MQPROPERTYRESTRICTION
The MQPROPERTYRESTRICTION structure defines a property restriction for a query. The property
restriction consists of a comparison operator, a property identifier, and a property value.

typedef struct    tagMQPROPERTYRESTRICTION
{
    ULONG                          rel;
    PROPID                      prop;
    PROPVARIANT          prval;
} MQPROPERTYRESTRICTION;

Members
rel

Comparison operator for this property. Possible values include: less than (PRLT), less than or equal
to (PRLE), equal (PREQ), not equal (PRNE), greater than or equal to (PRGE), and greater than
(PRGT).

prop
Queue property identifier.

prval
Comparison value (includes variant type and value for the property). For information about the
structure used by prval, see PROPVARIANT.

See Also
MQLocateBegin, MQRESTRICTION, PROPVARIANT

MQQMPROPS
The MQQMPROPS structure describes a set of Queue Manager properties. It specifies the number of
properties (cProp) in the set, the identifier of each property (aPropID), and the values (or placeholder
for values) of each property (aPropVar). It also provides an optional status array (aStatus) for errors
(some properties do not return a status) associated with the property.

For information on how property structures work together, see Property Structures.

typedef struct    tagMQQMPROPS
{
      DWORD                            cProp;
      QMPROPID              aPropID[];
      PROPVARIANT      aPropVar[];
      HRESULT                aStatus[];
} MQQMPROPS;

Members
cProp

Number of properties in the set.
aPropID

Property identifiers (for example, PROPID_QM_PATHNAME). For information about the structure,
see aPropID.

aPropVar
Value of properties in the set. For information about the structure used by aPropVar, see
PROPVARIANT.

aStatus
Optional. Returns errors that indicate the status of the properties in the set. For example, when a
property cannot be set by the call. For information about the structure, see aStatus.

See Also
aPropID, aStatus, PROPVARIANT

MQQUEUEPROPS
The MQQUEUEPROPS structure describes a set of queue properties. It specifies the number of
properties (cProp) in the set, the identifier of each property (aPropID), and the values (or placeholder
for values) of each property (aPropVar). It also provides an optional status array (aStatus) for errors
(some properties do not return a status) associated with the property.

For information on how property structures work together, see Property Structures.

typedef struct    tagMQQUEUEPROPS
{
      DWORD                              cProp;
      QUEUEPROPID          aPropID[];
      PROPVARIANT        aPropVar[];
      HRESULT                  aStatus[];
} MQQUEUEPROPS;

Members
cProp

Number of properties in the set.
aPropID

Property identifiers (for example, PROPID_Q_PATHNAME). For information about the structure, see
aPropID.

aPropVar
Value of properties in the set. For information about the structure used by aPropVar, see
PROPVARIANT.

aStatus
Optional. Returns errors that indicate the status of the properties in the set. For example, when a
property cannot be set by the call. For information about the structure, see aStatus.

See Also
aPropID, aStatus, PROPVARIANT

MQRESTRICTION
The MQRESTRICTION structure indicates the properties used to locate queues in a query. Only those
public queues that match all the restrictions specified here are returned by the query.

For information on starting the query, see MQLocateBegin.

typedef struct    tagMQRESTRICTION
{
    ULONG  cRes;
    MQPROPERTYRESTRICTION    _RPC_FAR *paPropRes;

} MQRESTRICTION;

Members
cRes

Number of property restrictions to use in the query.
*paPropRes

An array of property restrictions. To specify a property restriction, see
MQPROPERTYRESTRICTION.

See Also
MQLocateBegin, MQPROPERTYRESTRICTION

MQSORTKEY
The MQSORTKEY structure specifies a sort key for the query. Each key contains a queue property
and sort order.

To specify multiple sort keys, see MQSORTSET.

typedef struct tagMQSORTKEY
{
        PROPID    propColumn;
        ULONG      dwOrder;
}      MQSORTKEY;

Members
propColumn

Queue property to sort on (for example PROPID_Q_QUOTA).
dwOrder

Order of sort. Possible values are QUERY_SORTASCEND and QUERY_SORTDESCEND.

See Also
MQLocateBegin, MQSORTSET

MQSORTSET
The MQSORTSET structure specifies the sort keys for a query.

typedef struct    tagMQSORTSET
{
        ULONG                                cCol;
        MQSORTKEY    _RPC_FAR *aCol;
}      MQSORTSET;

Members
cCol

Number of sort keys used to sort the results of the query.
*aCol

An array of sort keys. Sort keys are used in the order they appear in the array. For more information
on specifying a sort key, see MQSORTKEY.

See Also
MQLocateBegin, MQSORTKEY

PROPVARIANT
The PROPVARIANT structure is a general structure used to store property values. It is used for the
elements of the aPropVar array used in MQQUEUEPROPS, MQMSGPROPS, and MQQMPROPS; the
prval array of MQPROPERTYRESTRICTION; and as a parameter in MQLocateNext.

Property values are tagged values, where the tag is the type indicator (an integer value) passed as an
instance of PROPVARIANT (a data type that will be part of Automation in the future). MSMQ uses a
similar structure (included here for reference) along with some other Automation types and definitions
on which this structure relies. The complete definition of the Automation PROPVARIANT structure can
be found in the header file ‹oleext.h› and in the additional header files it includes.

For information on how property structures work together, see Property Structures.

struct        MQtagPROPVARIANT    {
        VARTYPE vt;  /* value tag                            */
        WORD wReserved1;
        WORD wReserved2;
        WORD wReserved3;
        union      {
                          UCHAR                          bVal;            /* VT_UI1                                */
                          short                          iVal;            /* VT_I2                                  */
                          USHORT                        uiVal;          /* VT_UI2                                */
                          VARIANT_BOOL            bool;            /* VT_BOOL                              */
                          long                            lVal;            /* VT_I4                                  */
                          ULONG                          ulVal;          /* VT_UI4                                */
                          SCODE                          scode;          /*  */
                          DATE                            date;            /* VT_DATE                              */
                          CLSID    _RPC_FAR    *puuid;          /* VT_CLSID                            */
                          BLOB                            blob;            /* VT_BLOB                              */
                          LPOLESTR                    bstrVal;      /*  */
                          LPSTR                          pszVal;        /* VT_LPSTR                            */
                          LPWSTR                        pwszVal;      /* VT_LPWSTR                          */
                          CAUI1                          caub;            /* VT_VECTOR | VT_UI1        */
                          CAI2                            cai;              /* VT_VECTOR | VT_I2          */
                          CAUI2                          caus;            /* VT_VECTOR | VT_UI2        */
                          CABOOL                        cabool;        /* VT_VECTOR | VT_BOOL      */
                          CAI4                            cal;              /* VT_VECTOR | VT_I4          */
                          CAUI4                          caul;            /* VT_VECTOR | VT_UI4        */
                          CACLSID                      cauuid;        /* VT_VECTOR | VT_CLSID    */
                          CABSTR                        cabstr;        /* VT_VECTOR | VT_BSTR      */
                          CALPWSTR                    calpwstr;    /* VT_VECTOR | VT_LPWSTR */
                          CAPROPVARIANT      capropvar;      /*  */
                        }; 
};

typedef struct MQtagPROPVARIANT PROPVARIANT;

Members
vt

The type indicator of the property. The valid indicators for the VT field are a subset of the Automation
VARENUM enumeration type (including VT_NULL, VT_I2, VT_I4, VT_LPWSTR, VT_UI1, VT_UI4,
VT_CLSID, VT_VECTOR|VT_UI1, VT_VECTOR|VT_LPWSTR).

wReserved1, wReserved2, wReserved3
Reserved by MSMQ.

union
Specifies the value of the property. Depending on the type identifier specified by VT, the
corresponding member of the union holds the value of the property.

Remarks
To specify a property (with the exception of some message properties passed to MQReceiveMessage)
and queue properties passed to MQGetQueueProperties, you must know its type indicator and the
member of the union associated with the type indicator (both are provided with each property
description). For example, to specify the message body in PROPID_M_BODY, the application must set
VT to VT_UI1| VT_VECTOR and assign the message body to the caub member of the union.

CA prefixed members of the union (caub through capropvar) are constructs used to pass buffers as
counted arrays.

For example, CAUI1 is a counted array of bytes:

typedef struct tagCAUI1 {
        ULONG cElems;                              /* Byte Counter                                    */
        unsigned char *pElems;            /* Pointer to a buffer of bytes    */
} CAUI1;

See Also
MQLocateNext, MQMSGPROPS, MQPROPERTYRESTRICTION, MQQMPROPS,
MQQUEUEPROPS

MSMQ Mail Structures
The following topics describe the MSMQ Mail structures.

MSMQ Mail structures include:

· MQMailDeliveryReportData
· MQMailEMail
· MQMailEMailType
· MQMailFormData
· MQMailFormField
· MQMailFormFieldData
· MQMailFormFieldList
· MQMailFormFieldType
· MQMailMessageData
· MQMailNonDeliveryReportData
· MQMailRecip
· MQMailRecipList
· MQMailRecipType
· MQMailTnefData

MQMailDeliveryReportData
The MQMailDeliveryReportData structure describes a delivery report message. It lists the recipients
who received the original mail, the original mail subject, and the original mail submission time.

The pftDeliverTime member of each recipient in the pDeliveredRecips recipient list specifies the time
when the original mail was delivered to the recipient.

typedef struct MQMailDeliveryReportData_tag
    {
      LPMQMailRecipList    pDeliveredRecips;    //Delivered recipients.
      LPSTR                            szOriginalSubject; //Original subject.
      LPFILETIME                  pftOriginalDate;      //Original submission time.
} MQMailDeliveryReportData, FAR * LPMQMailDeliveryReportData;

See Also
MQMailEMail, MQMailRecipList

MQMailEMail
The MQMailEMail structure describes mail information in a mail format. It is used for translating
information between the basic mail format and the MSMQ Mail format used by MSMQ Mail services.

typedef struct    MQMailEMail_tag
{
      LPSTR                                  szSubject;    //Subject of mail.
      BOOL                                    fRequestDeliveryReport;   
      BOOL                                    fRequestNonDeliveryReport;
      LPFILETIME                        pftDate;        //Time sent.
      LPMQMailRecip                  pFrom;            //Sender.
      LPMQMailRecipList          pRecips;        //List of recipients.
      LPMQMailEMailType          iType;            //Type of Email (message, form)
      union  //Union of available Email types.
      {
            MQMailFormData          form;            //when type is MQMailEMail_FORM
            MQMailMessageData    message;      //when type is MQMailEMail_MESSAGE
            MQMailTnefData          tnef              //when type is MQMailEMail_TNEF
            MQMailDeliveryReportData              DeliveryReport; //when type is
MQMailEMail_DELIVERY_REPORT
            MQMailNonDeliveryReportData        NonDeliveryReport; //when type is
MQMailEMail_NON_DELIVERY_REPORT
      };
      LPVOID                                pReserved;    //Should be set to NULL.
} MQMailEMail, FAR* LPMQMailEMail;

For information on MSMQ Mail services, see MSMQ MAPI Transport Provider and MSMQ Exchange
Connector.

See Also
MQMailEMailType, MQMailFormData, MQMailDeliveryReportData, MQMailMessageData,
MQMailNonDeliveryReportData, MQMailRecip, MQMailRecipList, MQMailTnefData

MQMailEMailType
The MQMailEMailType structure describes the type of mail: text message, form, TNEF message,
delivery report, or non-delivery report e-mail.

typedef enum    MQMailEMailType_enum
{
      MQMailEMail_MESSAGE,                              //Mail is text message.
      MQMailEMail_FORM,                                    //Mail is form with fields.
      MQMailEMail_TNEF,                                    //Mail is in MAPI TNEF format.
      MQMailEMail_DELIVERY_REPORT                //Mail is a delivery report.
      MQMailEMail_NON_DELIVERY_REPORT        //Mail is a non-delivery report.
} MQMailEMailType;

See Also
MQMailEMail

MQMailFormData
The MQMailFormData structure describes a message form, giving the name of the form and listing the
fields the form contains.

typedef struct    MQMailFormData_tag
{
      LPSTR                                      szName;          //Name of form.
      LPMQMailFormFieldList      pFields;        //List of fields.
} MQMailFormData, FAR* LPMQMailFormData;

See Also
MQMailEMail, MQMailFormFieldList

MQMailFormField
The MQMailFormField structure describes a form field. The MSMQ Mail SDK supports String, Integer,
Boolean, Double, and Currency fields.

typedef struct    MQMailFormField_tag
{
      LPSTR                                szName;      //Name of field.
      MQMailFormFieldType    iType;        //Type of value.
      MQMailFormFieldData    Value;        //Union of available types.
} MQMailFormField, FAR*LPMQMailFormField;

See Also
MQMailEMail, MQMailFormFieldData, MQMailFormFieldType

MQMailFormFieldData
The MQMailFormFieldData structure describes the data in a form field.

typedef union    MQMailFormFieldData_tag
{
      BOOL                            b;          //Specifies MQMailFormField_BOOL.
      LPSTR                          lpsz;    //Specifies MQMailFormField_STRING.
      LONG                            l            //Specifies MQMailFormField_LONG.
      CY                                cy          //Specifies MQMailFormField_CURRENCY.
      double                        dbl        //Specifies MQMailFormField_DOUBLE.

} MQMailFormFieldData, FAR*LPMQMailFormFieldData;

See Also
MQMailEMail, MQMailFormField

MQMailFormFieldList
The MQMailFormFieldList structure describes a list of form fields.

typedef struct    MQMailFormFieldList_tag
{
      ULONG  cFields;    //Number of fields.
      LPMQMailFormField FAR*      apField;    //Pointer to array of field ptrs.
} MQMailFormFieldList, FAR*LPMQMailFormFieldList;

See Also
MQMailEMail, MQMailFormField

MQMailFormFieldType
The MQMailFormFieldDataType structure describes the field type.

typedef enum    MQMailFormFieldType_enum
{
      MQMailFormField_BOOL,                    //Boolean data.
      MQMailFormField_STRING,                //String data.
      MQMailFormField_LONG,                    //Long data.
      MQMailFormField_CURRENCY,            //Currency data.
      MQMailFormField_DOUBLE,                //Double data.
} MQMailFormFieldType;

See Also
MQMailEMail, MQMailFormField

MQMailMessageData
The MQMailMessageData structure describes a mail message.

typedef struct    MQMailMessageData_tag
{
      LPSTR szText;  //Text of message.
} MQMailMessageData, FAR* LPMQMailMessageData;

See Also
MQMailEMail

MQMailNonDeliveryReportData
The MQMailNonDeliveryReportData structure describes a non-delivery report message. It contains
the recipients to whom the original mail was not delivered, and the original mail in the pOriginalEMail
member.

The szNonDeliveryReason member of each recipient in the pNonDeliveredRecips recipient list
specifies the reason why the original mail was not delivered to the recipient.

typedef struct MQMailNonDeliveryReportData_tag
    {
      LPMQMailRecipList    pNonDeliveredRecips;    //Non-delivered recipients.
      LPMQMailEMail            pOriginalEMail;              //Original mail.
} MQMailNonDeliveryReportData, FAR * LPMQMailNonDeliveryReportData;

See Also
MQMailEMail, MQMailRecipList

MQMailRecip
The MQMailRecip structure describes a recipient.

typedef struct    MQMailMessageData_tag
{
      LPSTR            szName;                              //Name of recipient.
      LPSTR            szQueueLabel;                  //Label of recipient's queue.
      LPSTR            szAddress;                        //Recipient address.
      LPFILETIME pftDeliveryTime;            //Used in delivery reports.
      LPSTR            szNonDeliveryReason;    //Used in non-delivery reports.
} MQMailRecip, FAR*LPMQMailRecip;

Remarks
The recipient address can be an application input queue label (for MSMQ applications), a MAPI client
queue label (for the MSMQ MAPI Transport Provider) or the MSMQ Exchange user mail alias plus the
MSMQ Exchange Connector's queue label in the format user-mail-alias@Exchange connector-queue-
label (for MSMQ Exchange Connector).

pftDeliveryTime is valid only when the recipient is in a delivery report recipient list, e.g. the
pDeliveredRecips member of the MQMailDeliveryReportData structure.

szNonDeliveryReason is valid only when the recipient is in a non-delivery report recipient list, e.g. the
pNonDeliveredRecips member of the MQMailNonDeliveryReportData structure.

See Also
MQMailEMail, MQMailDeliveryReportData, MQMailNonDeliveryReportData, MQMailRecipList

MQMailRecipList
The MQMailRecipList structure lists the recipients of the mail.

typedef struct    MQMailRecipList_tag
{
      ULONG                              cRecips;    //Number of recipients.
      LPMQMailRecip FAR*    apRecip;    //Array of recipient pointers.
} MQMailRecipList, FAR*LPMQMailRecipList;

See Also
MQMailEMail, MQMailRecip

MQMailRecipType
The MQMailRecipType structure describes the type of recipient.

typedef enum MQMailRecipType_enum
{
      MQMailRecip_TO,        //Primary recipient.
      MQMailRecip_CC,        //Copied recipient.
      MQMailRecip_BCC,      //Hidden (blind copied) recipient.

} MQMailRecipType;

See Also
MQMailEMail

MQMailTnefData
The MQMailTnefData structure describes a TNEF message, providing the binary TNEF data.

TNEF is a MAPI internal format that encapsulates the MAPI properties, and is used by the MSMQ Mail
services (the MSMQ Exchange Connector and the MSMQ MAPI Transport) to send mail to recipients
who are defined as rich-text recipients. Rich-text recipients are recipients who have the “Send to this
recipient in Microsoft Exchange rich text format” check-box checked in their Exchange/MAPI address.

typedef struct MQMailTnefData_tag
{
    ULONG cbData;                              //Size of the TNEF data.
    LPBYTE lpbData;                        //The tnef data buffer.
} MQMailTnefData, FAR * LPMQMailTnefData;

See Also
MQMailEMail

MSMQ ActiveX Components
MSMQ provides ActiveX components that support queue lookup, queue management, message
management, queue administration, and transaction support. As a group, these components provide
most of the MSMQ API functionality.

MSMQ ActiveX Objects
The MSMQ objects include:

· MSMQQuery
· MSMQQueueInfos
· MSMQQueueInfo
· MSMQQueue
· MSMQEvent
· MSMQMessage
· MSMQCoordinatedTransactionDispenser
· MSMQTransaction
· MSMQTransactionDispenser
· MSMQApplication

MSMQQuery
Methods

The MSMQQuery object allows you to query MQIS for existing public queues.

Queries are based on the properties of the queue, and their results are returned to MSMQQuery in an
MSMQQueueInfos object.

MSMQQueueInfos
Methods

The MSMQQueueInfos object allows you to select a specific public queue from a collection of queues
returned by calling the LookupQueue method of MSMQQuery.

The information in the collection of queues is dynamic, with other clients looking at the queues (PEEK
access) or deleting them from the collection at any time. As a result, there is no queue count available
for moving through the collection. In place of a queue count, MSMQQueueInfos provides an end-of-list
(EOL) mechanism to indicate when you have completely moved through the collection.

The following example shows how the EOL mechanism is used in a standard Microsoft® Visual Basic®
type While loop.

'Display the format name of all MAPI input queues.
Dim queryMyQuery as new MSMQQuery
Dim qinfoCurrent as MSMQQueueInfo
'Get some interesting queues.
Dim qs as MSMQQueueInfos
Set qs = queryMyQuery.LookupQueue (
        ServiceTypeGuid := "{5EADC0D0-7182-11CF-A8FF-0020AFB8FB50}")
qs.Reset
Set qinfoCurrent = qs.Next
While not qinfoCurrent is Nothing
            msgbox qinfoCurrent.FormatName
            Set qinfoCurrent = qs.Next
Wend

MSMQQueueInfo
Properties Methods

The MSMQQueueInfo object provides queue management. It allows you to create a queue (either a
transaction or non-transaction queue), open an existing queue, change a queue's properties, and
delete a queue.

MSMQQueueInfo objects are either returned by a query or created by you. There is a one-to-one
relationship between each MSMQQueueInfo object and the queue it represents. However, there is
also a one-to-many relationship between the queue's MSMQQueueInfo object and each open instance
of the queue. (Each instance of a queue is referenced by an MSMQQueue object.)

MSMQQueue
Properties Methods

The MSMQQueue object represents an MSMQ queue. It provides cursor-like behavior for traversing
the messages of an open queue. At any given moment, it refers to a particular position in the queue.

For information on how to create or open a queue, see the Create and Open methods of
MSMQQueueInfo.

MSMQEvent
Events

The MSMQEvent object can be used to implement a single event handler that can support multiple
queues. These events include a message arriving at the queue, an error occurring while the message
is being delivered to the queue, or (when asynchronously reading messages) no message arriving at
the queue before its receive timeout timer expires.

Each MSMQ queue can be associated with an instance of the MSMQEvent object. This allows the
applications to have one generic event handler that can treat all common tasks identically, and use the
queue handle passed to the event handler for special-case situations.

Note The formal parameter passed to the MSMQEvent_Arrived event is of type Object (this is
required because event firing is implemented in terms of IDispatch), which means that the event
handler uses ActiveX late-binding by default instead of early-binding. However, early-binding is more
efficient and the applications may choose to assign the formal parameter to a local variable of type
MSMQQueue to regain the benefits of early-binding.

For an example of an event handler, see Reading Messages Asynchronously.

See Also
MSMQQueue

MSMQMessage
Properties Methods

The MSMQMessage object provides properties to define MSMQ messages, plus a single Send
method for sending the message to its destination queue. This single method is used for transaction
and non-transaction messages (for information on transactions, see MSMQ Transactions).

The body of an MSMQ message can be a string, an array of bytes, any numeric, date, and currency
type that a variant can contain, or any persistent ActiveX object that supports IDispatch and IPersist
(IPersistStream or IPersistStorage).

MSMQCoordinatedTransactionDispenser
Methods

The MSMQCoordinatedTransactionDispenser object is used to obtain an MS DTC transaction
object. When the transaction is obtained, an MSMQTransaction object is returned that can be to send
or retrieve messages.

For information on all MS DTC transactions, see MS DTC External Transactions.

MSMQTransaction
Methods Properties

The MSMQTransaction object represents a transaction object obtained externally using
MSMQCoordinatedTransactionDispenser, or created internally using MSMQTransactionDispenser.
MSMQTransaction provides methods for committing to or terminating the transaction, as well as a
single read-only property that represents the underlying transaction object.

In order to use the transaction object, the MSMQTransaction object must be specified by the
pTransaction parameter of one of the following methods:

· MSMQQueue.Receive
· MSMQQueue.ReceiveCurrent
· MSMQMessage.Send

See Also
Receive, ReceiveCurrent, Send

MSMQTransactionDispenser
Methods

The MSMQTransactionDispenser object is used to create a new MSMQ internal transaction object.
When the internal transaction object is created, an MSMQTransaction object is returned that can be
used to send or retrieve messages.

For information on internal transactions, see MSMQ Internal Transactions.

MSMQApplication
Methods

The MSMQApplication object provides a single method for obtaining the machine identifier of a
computer.

Note Creating a new instance of this object does not start a new instance of MSMQ.

Since it is an application object, MSMQApplication does not have to be explicitly referenced when
calling MachineIdOfMachineName. For example, the following three calls to
MachineIdOfMachineName all return the same computer identifier.

        Dim strId As String
        Dim myapp As New MSMQApplication
        strId = MachineIdOfMachineName("machinename")
        Debug.Print strId
        strId = MSMQApplication.MachineIdOfMachineName("machinename")
        Debug.Print strId
        strId = myapp.MachineIdOfMachineName("machinename")
        Debug.Print strId

ActiveX Methods
The following topics describe the methods associated with the ActiveX components provided by
MSMQ.

The methods of the MSMQ objects include:

MSMQQuery
LookupQueue

MSMQQueueInfos
Next

Reset

MSMQQueueInfo
Create

Delete

Open

Refresh

Update

MSMQQueue
Close

EnableNotification

Peek

PeekCurrent

PeekNext

Receive

ReceiveCurrent

Reset

MSMQMessage
Send

AttachCurrentSecurityContext

MSMQCoordinatedTransactionDispenser
BeginTransaction

MSMQTransaction
Abort

Commit

MSMQTransactionDispenser
BeginTransaction

MSMQApplication
MachineIdOfMachineName

Abort
MSMQTransaction

The Abort method terminates the transaction associated with the MSMQTransaction object.

Syntax
object.Abort ([fRetaining][, fAsync])

Syntax Element Description
object Transaction (MSMQTransaction) object that

identifies the transaction.
fRetaining Optional. Boolean.
fAsync Optional. Boolean.

Remarks
After an abort, all actions taken on the queue are rolled back. For example, if a message is sent to a
queue and the transaction is aborted, the messages are not sent to the queue.

Abort is a wrapper for lTransaction::Abort. For information on lTransaction::Abort, see the Microsoft
Platform SDK.)

Example
This example starts a transaction, sends two messages, and then terminates the transaction.

Dim xdispenser as New MSMQCoordinatedTransactionDispenser
Dim xact as MSMQTransaction

Dim qSend as MSMQQueue                               
Dim msg1 as New MSMQMessage
Dim msg2 as New MSMQMessage

Set xact = xdispenser.BeginTransaction
Set qSend = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
msg1.Label = "MyTransaction message"
msg1.Body = "Message 1 Body"
msg1.Send qSend, xact  'Associates send with xact.

msg2.Label = "MyTransaction message"
msg2.Body = "Message 2 Body"
msg2.Send qSend, xact  'Associates send with xact.

xact.Abort  'Aborts transaction.

See Also
BeginTransaction, Body, Label, Open, Send

AttachCurrentSecurityContext
MSMQMessage

The AttachCurrentSecurityContext method retrieves security context information from a specific
certificate.

Quick Info
Type: Long
Run time: read/write

Syntax
object.AttachCurrentSecurityContext

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Remarks
Security context information can be retrieved from the security certificate specified by
SenderCertificate. SenderCertificate can specify an external certificate or an internal certificate.

Although the sending application can explicitly retrieve security context information from the security
certificate, AttachCurrentSecurityContext can retrieve and cache the needed information using a
single call, then automatically pass the information along with the message when it is sent.

For information on how MSMQ authenticates messages, see Message Authentication.

BeginTransaction
MSMQCoordinatedTransactionDispenser MSMQTransactionDispenser

The BeginTransaction method creates a new MSMQ transaction object. It returns an
MSMQTransaction object that is used when sending and retrieving messages during the transaction.

Syntax
Set object1 = object2.BeginTransaction

Syntax Element Description
object1 Transaction (MSMQTransaction) object that

identifies the transaction.
object2 Transaction dispenser

(MSMQTransactionDispenser or
MSMQCoordinatedTransactionDispenser)
object that creates the transaction.

Return Values
MSMQTransaction object that identifies the transaction.

Remarks
The MSMQTransaction object returned by BeginTransaction must be associated with all transaction
queues and messages associated with this transaction. However, this does not mean that a transaction
queue associated with this transaction cannot be used by other transactions. A single transaction
queue can be associated with any number of transactions.

Example
This example starts a transaction and sends two messages.

Dim xdispenser as New MSMQCoordinatedTransactionDispenser
Dim xact as MSMQTransaction

Dim qSend as MSMQQueue                               
Dim msg1 as New MSMQMessage
Dim msg2 as New MSMQMessage

Set xact = xdispenser.BeginTransaction

'Assumes queue already exists and is transactional.
Set qSend = qinfo.Open(MQ_SEND_ACCESS, 0)
msg1.Label = "MyTransaction message"
msg1.Body = "Message 1 Body"
msg1.Send qSend, xact  'Associates send with xact.

msg2.Label = "MyTransaction message"
msg2.Body = "Message 2 Body"
msg2.Send qSend, xact  'Associates send with xact.

xact.Commit

See Also
MSMQTransaction

Close
MSMQQueue

The Close method closes this instance of the queue.

Syntax
object.Close

Syntax Element Description
object Queue (MSMQQueue) object that represents

the open instance of the queue.

Remarks
When this method succeeds, MSMQ sets Handle to INVALID_HANDLE_VALUE.

The MSMQQueue object still exists after Close is called. Use the MSMQQueue object's IsOpen
property to test if the queue is opened or closed.

Example
This example opens a queue for sending messages, then closes the queue. To try this example using
Microsoft® Visual Basic® (version 5.0), paste the code into the Code window of a form, and then run
the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\CloseTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
   
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
    If q.IsOpen Then
          MsgBox "The " + qinfo.Label + " is open."
    Else
          MsgBox "The " + qinfo.Label + " is closed."
    End If
   
    q.Close
   
    If q.IsOpen Then
          MsgBox "The " + qinfo.Label + " is open."
    Else
          MsgBox "The " + qinfo.Label + " is closed."
    End If
     
End Sub

See Also
Create, IsOpen, MSMQQueue, MSMQQueueInfo, Label, Open, PathName

Commit
MSMQTransaction

The Commit method commits the operations requested by the transaction.

Syntax
object.Commit ([fRetaining][, grfTC][, grfRM])

Syntax Element Description
object Transaction (MSMQTransaction) object that

identifies the transaction.
fRetaining Optional. Reserved by Microsoft DTC.
grfTC Optional. Specifies if the commit is

synchronous (default) or asynchronous.
XACTTC_ASYNC: When specified, the call to
commit returns as soon as the two-phase
commit protocol is initiated.
XACTTC_SYNCPHASEONE: When specified,
the call to commit returns after phase one of
the two-phase commit protocol.

grfRM Optional. Reserved by Microsoft DTC.

Remarks
Calling Commit does not mean that the operations requested are performed. It only means that MSMQ
guarantees that the operations will be performed as an atomic unit. (Commit is a wrapper for
lTransaction::Commit. For information on lTransaction::Commit, see the Microsoft Platform SDK.)

An application must call Commit for the messages to be sent. If Commit is not called, the transaction
will be terminated when the application exits.

For information on Microsoft® DTC, refer to the Guide to Microsoft Distributed Transaction Coordinator
in the Microsoft Platform SDK.

Example
This example starts a transaction, sends two messages, and then terminates the transaction.

Dim xdispenser as New MSMQCoordinatedTransactionDispenser
Dim xact as MSMQTransaction

Dim qSend as MSMQQueue                               
Dim msg1 as New MSMQMessage
Dim msg2 as New MSMQMessage

'Begins transaction, opening an existing transaction queue.
Set xact = xdispenser.BeginTransaction
Set qSend = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

'Sends message 1.
msg1.Label = "MyTransaction first message"
msg1.Body = "Message 1 Body"
msg1.Send qSend, xact  'Associates send with xact.

'Sends message 2.
msg2.Label = "MyTransaction second message"

msg2.Body = "Message 2 Body"
msg2.Send qSend, xact  'Associates send with xact.

'Commits transaction.
xact.Commit  'Commits transaction.

Create
MSMQQueueInfo

The Create method produces a queue based on the queue properties of the MSMQQueueInfo object.

Syntax
object.Create ([IsTransactional][, IsWorldReadable])

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines queue.
IsTransactional Optional (default is FALSE). BOOLEAN. When

TRUE, indicates that the queue is a transaction
queue. All messages sent to a transaction
queue or read from a transaction queue must
be done as part of a transaction.

IsWorldReadable Optional (default is FALSE). BOOLEAN. When
TRUE, anyone can read the messages in the
queue and its queue journal. When FALSE,
only the owner can read the messages.

Return Codes
For information on return codes, see MSMQ Error and Information Codes.

Remarks
You must always specify the queue's MSMQ pathname (PathName) before calling Create. The
PathName property tells MSMQ where to store the queue's messages, if the queue is public or private,
and the name of the queue.

Public queues are registered in MQIS, and private queues are registered on the local computer. All
queues exist until deleted explicitly.

Private queues can only be created on the local computer. The applications responsibility to ensure
that no other private queues with the same name exists on the local computer (if a queue with the
same name already exists, MSMQ will return an MQ_ERROR_QUEUE_EXISTS error when the
MQCreateQueue is called).

Setting other queue properties is optional. If a queue property is not set before Create is called, its
default value is used when the queue is created. For a list of the queue properties that can be set by an
application, see Creating a Queue.

To attach a journal to the queue, set Journal and JournalQuota. The journal keeps a copy of all
messages retrieved from the queue. For information about journals, see Journal Queues.

To create a transactional queue, set the IsTransactional parameter to TRUE.

Typically queues are not created from MSMQQueueInfo objects found in a query because the queue
already exists. However, you can create a new queue from an MSMQQueueInfo object found in a
query if you delete the existing queue then change the PathName or FormatName property of the
queue.

After the queue is created, the MSMQQueueInfo object can be opened multiple times. For example,
the same MSMQQueueInfo object can be opened for sending messages to the queue and for reading
the messages in the queue.

Access control can be changed by setting isWorldReadable. If this parameter is not set, its default
value specifies MSMQ default security. Following are the default values for the security descriptor.

Default Value Meaning
Owner The process user.
Group The process group.
DACL Full control for the creator of the queue. All

other processes can get queue properties, get
queue security, and send messages to the
queue.

SACL None.

For information on access control, see Access Control.

Foreign public queues (queues located outside the MSMQ enterprise) are created in the same way as
an MSMQ public queue. For foreign queues, the PathName property specifies the name of the foreign
computer as it is defined in MQIS. For information on foreign computers, see MSMQ Connector Server.

When creating public queues, some clients may not see the new queue registered in the MSMQ
information even though the queue was registered. Changes to MQIS (such as creating a public
queue) must be propagated from site to site, which can cause delays in viewing the most current
information. Consequently, clients in some sites may not be able to open the queue, even though it
exists. Propagation delays, including communication network delays such as down links, are controlled
by the MSMQ Administrator.

Example
This example creates a private queue on the local machine, then displays the queue's format name
(the queue's format name is used to open the queue). To try this example using Microsoft Visual Basic
(version 5.0), paste the code into the Code window of a form, and then run the example and click the
form.

Dim qinfo As MSMQQueueInfo
     
Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PRIVATE$\CreateTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
     
    MsgBox "The queue's format name is: " + qinfo.FormatName
   
End Sub

See Also
IsTransactional, FormatName, Journal, JournalQuota, Label, MSMQQueueInfo, PathName

Delete
MSMQQueueInfo

The Delete method deletes an existing queue (it does not delete the MSMQQueueInfo object used to
create the queue).

Syntax
object.Delete

Syntax Element Description
object The queue information (MSMQQueueInfo)

object that defines the queue.

Return Codes
For information on return codes, see MSMQ Error and Information Codes.

Remarks
Deleting the queue does not delete the MSMQQueueInfo object, only the existing queue. You can still
create a new queue based on the current properties of the MSMQQueueInfo object.

When deleting public queues, some clients may still see the queue registered in MQIS after the queue
was deleted. Changes to MQIS (such as deleting a public queue) are propagated from site to site,
which can cause delays in viewing the most current information. Consequently, clients in some sites
may still try to send messages to the queue, even though it was deleted. Propagation delays, including
communication network delays such as down links, are controlled by the MSMQ Administrator.

Example
This example assumes at least one queue whose label is "Test Queue" already exist. It runs a query
for the test queues, asking if you want to delete each queue it finds.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfo As MSMQQueueInfo
Dim Response As String

Private Sub Form_Click()

      Set qinfos = query.LookupQueue(Label:="Test Queue")
      qinfos.Reset
      Set qinfo = qinfos.Next

      While Not qinfo Is Nothing
            Response = MsgBox("Delete queue: " + qinfo.Label, vbYesNo)
           
            If Response = vbYes Then
                  qinfo.Delete
            End If
           
            Set qinfo = qinfos.Next
      Wend
     

End Sub

See Also
Label, LookupQueue, MSMQQuery, MSMQQueueInfos, MSMQQueueInfo, Next, Reset

EnableNotification
MSMQQueue

The EnableNotification method starts event notification for asynchronously reading messages in the
queue. Once this method is called, applications can asynchronously peek at messages or retrieve
them from the queue in a user-defined event handler.

Syntax
object.EnableNotification (Event[, Cursor][,ReceiveTimeout])

Syntax Element Description
object Queue (MSMQQueue) object that represents

the open instance of the queue.
Event References an MSMQEvent object.
Cursor Optional. Specifies the action of the cursor.

MQMSG_FIRST: Default. Notification starts
when a message is in the queue.
MQMSG_CURRENT: Notification starts when a
message is at the current location of the cursor.
MQMSG_NEXT: The cursor is moved, then
notification starts when a message is at the
new cursor location.

ReceiveTimeout Optional. Specifies how long (in milliseconds)
MSMQ waits for a message to arrive.

Return Codes
For information on return codes, see MSMQ Error and Information Codes.

Remarks
When EnableNotification is called, events are triggered when a message is found at the position
specified by Cursor. When the default setting is used, events are triggered when a message is in the
queue.

EnableNotification fires a single Arrived event when it finds a message. To read more messages,
EnableNotification must be explicitly called again from within the event handler.

The Arrived event is triggered on the MSMQEvent object passed in Event. The MSMQEvent_Arrived
event handler (typically implemented by the user) is passed a reference to the queue where the
message arrived.

Note In Microsoft® Visual Basic®, the application's event handler can still be invoked even if the
form it is on has been unloaded by the application. When the event handler is fired, Visual Basic will
reload the form automatically if any of its members (for example, a message box on the form) are
referred to.

When an Arrived event is triggered, there is no guarantee that the message that triggered the event
will still be available when the application tries to use the message. All queues are dynamic, and other
clients may remove the arrived message before it can be used. It is up to the application to determine if
the message is there before attempting to peek at the message or retrieve it. (If the queue is not being
shared, it is safe to assume that the message is still there.)

Invoking EnableNotification with ReceiveTimeout set to 0 is similar to synchronously calling Peek.

Receive errors (such as timeout errors) trigger an ArrivedError event on the associated MSMQEvent

object.

LookupQueue
MSMQQuery

The LookupQueue method returns a collection of public queues based on the following queue
properties: queue identifier, service type, label, create time, and modify time.

Syntax
object.LookupQueue ([QueueGuid] [, ServiceTypeGuid] [, Label] [, CreateTime] [, ModifyTime]
[, RelServiceType] [, RelLabel] [, RelCreateTime] [, RelModifyTime])

Syntax Element Description
object Query.
QueueGuid (String) Optional. Identifier of queue.
ServiceTypeGuid (String) Optional. Type of service provided by the

queue. See also RelServiceType.
Label (String) Optional. Label of queue. See also RelLabel.
CreateTime (Variant Date) Optional. Time when queue was created.

See also RelCreateTime.
ModifyTime (Variant Date) Optional. Time when queue properties were

last set (both when the queue was created
and the last time Update was called). See
also RelModifyTime.

RelServiceType (Long) Optional (default is REL_EQ). Relationship
parameter for ServiceTypeGuid.

RelLabel (Long) Optional (default is REL_EQ). Relationship
parameter for Label.

RelCreateTime (Long) Optional (default is REL_EQ). Relationship
parameter for CreateTime.

RelModifyTime (Long) Optional (default is REL_EQ). Relationship
parameter for ModifyTime.

Return Values
MSMQQueueInfos object.

Return Codes
For information on return codes, see MSMQ Error and Information Codes.

Remarks
LookupQueue returns a single MSMQQueueInfos object that represents a set of MSMQQueueInfo
objects that each contain information describing a single MSMQ queue.

The relationship parameters RelServiceType, RelLabel, RelCreateTime and RelModifyTime provide
simple Boolean comparison operators that can be used in conjunction with their respective lookup
parameter. These comparison operators include: REL_EQ, REL_NEQ, REL_LT, REL_GT, REL_LE,
REL_GE, and REL_NOP (REL_NOP indicates that the associated lookup parameter should be
ignored). These operators give you greater control over which queues are returned from to the query.

The CreateTime and ModifyTime parameters return both the date and time. Consequently, using the
REL_EQ value for RelCreateTime or RelModifyTime may not prove very useful.

When running a query, MSMQ can locate queues faster when the query is based on QueueGuid,
ServiceTypeGuid, or Label (RelLabel = REL_EQ). The query runs faster because these properties are
indexed in MQIS, providing a faster way for MSMQ to locate the property specified in the call.

LookupQueue can only return queues that are in MQIS when LookupQueue is called. Queues
created after LookupQueue is called are not included.

To open a specific queue from the query, use the MSMQQueueInfos object's Reset and Next methods
to locate the queue. Reset points the cursor to the front of the query results (not the first queue in the
query) and Next points to the next queue. Once the queue is located, use the MSMQQueueInfo
object's Open method to open the queue.

Example
This example assumes that at least one queue with the label "Test Queue" already exists. A query is
run for the test queues, displaying the format name of each queue it finds.

To try this example using Microsoft® Visual Basic® (version 5.0), make sure the Microsoft Message
Queue Object Library is referenced, then paste the following code into the code window of a form, run
the example, then click on the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfo As MSMQQueueInfo

Private Sub Form_Click()

      Set qinfos = query.LookupQueue(Label:="Test Queue")
      qinfos.Reset
      Set qinfo = qinfos.Next

      While Not qinfo Is Nothing
            MsgBox "I found a Test Queue! its Format name is: " + qinfo.FormatName
            Set qinfo = qinfos.Next
      Wend
       
End Sub

See Also
FormatName, Label, MSMQQuery, MSMQQueueInfo, MSMQQueueInfos, Next, Reset

Next
MSMQQueueInfos

The Next method returns the next queue in the collection.

Syntax
object.Next

Syntax Element Description
object Collection that contains the queues.

Return Values
MSMQQueueInfo object.

Return Codes
For information on return codes, see MSMQ Error and Information Codes.

Remarks
When the cursor is pointing to the front of the query results (for example, Reset has been called), call
Next to point to the first queue in the query.

Returns NULL if the cursor is at the end of the collection (EOL).

Example
This example assumes that at least one queue whose label is "Test Queue" already exists. It runs a
query for the test queues, displaying the format name of each queue it finds.

To try this example using Microsoft® Visual Basic® (version 5.0), make sure the Microsoft Message
Queue Object Library is referenced, then paste the following code into the code window of a form, run
the example, then click on the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfo As MSMQQueueInfo

Private Sub Form_Click()

      Set qinfos = query.LookupQueue(Label:="Test Queue")
      qinfos.Reset
      Set qinfo = qinfos.Next

      While Not qinfo Is Nothing
            MsgBox "I found a Test Queue! its Format name is: " + qinfo.FormatName
            Set qinfo = qinfos.Next
      Wend
       
End Sub

See Also
FormatName, Label, MSMQQuery, MSMQQueueInfo, MSMQQueueInfos, Next, Reset

MachineIdOfMachineName
MSMQApplication

The MachineIdOfMachineName method returns a machine identifier for a specified computer. The
machine identifier can be used to create the format name of a machine journal.

Syntax
machineId=MachineIdOfMachineName("MachineName")As String

Return Codes
For information on return codes, see MSMQ Error and Information Codes.

Open
MSMQQueueInfo

The Open method opens a queue for sending messages to the queue, for reading messages in the
queue (peek and receive access), or for looking at the queue's information.

The properties of the queue are based on the current properties of the queue information
(MSMQQueueInfo) object.

Syntax
set object2 = object1.Open (Access, ShareMode)

Syntax Element Description
object1 Queue information (MSMQQueueInfo) object that

defines the queue.
object2 Queue (MSMQQueue) object that represent the open

instance of the queue.
Access Specifies how the application accesses the queue

(peek, send, or receive). This setting cannot be
changed while the queue is open.
Access can be set to one of the following:
MQ_PEEK_ACCESS: Messages can only be looked
at. They cannot be removed from the queue.
MQ_SEND_ACCESS: Messages can only be sent to
the queue.
MQ_RECEIVE_ACCESS: Messages can be
retrieved from the queue or peeked at. See
ShareMode for limiting who can retrieve messages.

ShareMode Specifies who can access the queue. Set to one of
the following:
MQ_DENY_NONE: Default. The queue is available
to everyone. This setting must be used if Access is
set to MQ_PEEK_ACCESS or MQ_SEND_ACCESS.
MQ_DENY_RECEIVE_SHARE: Limits those who
can retrieve messages from the queue to this
process. If the queue is already opened for retrieving
messages by another process, this call fails and
returns MQ_ERROR_SHARING_VIOLATION.
Applicable only when Access is set to
MQ_RECEIVE_ACCESS.

Return Codes
For information on return codes, see MSMQ Error and Information Codes.

Remarks
Open returns an MSMQQueue object each time it is called. Consequently, the MSMQQueueInfo
object that opens the queue can be associated with any number of MSMQQueue objects.

When the queue is opened, MQIS is automatically updated with the current property values of the
MSMQQueueInfo object.

When a queue is opened, the cursor points to the front of the queue, not the first message in the
queue. For information on how to move the cursor to the first message in the queue, see

MSMQQueue.

Direct format names can only be used when sending messages to a queue. A direct format name tells
MSMQ not to use MQIS (for public queues) or the local computer (for private queues) to get routing
information. When a direct format name is used, all routing information is taken from the format name
and MSMQ sends the messages to the queue in a single hop.

Setting ShareMode to MQ_DENY_RECEIVE_SHARE means that until the calling application calls the
MSMQQueue object's Close method, no other MSMQ applications can read the messages in the
queue. This includes applications that may have the correct access rights to read messages from the
queue.

If the calling application does not have sufficient access rights to a queue, two things can happen. If
Access is set to MQ_PEEK_ACCESS or MQ_RECEIVE_ACCESS, Open will fail and throw
MQ_ERROR_ACCESS_DENIED. If Access is set to MQ_ACCESS_SEND, Open will succeed, but
errors will be thrown when the application tries to send a message.

To change the access rights of the queue, call MQSetQueueSecurity. The following table lists the
access right needed to open the queue in peek, send, or receive access mode.

Queue Access Mode Queue Access Right
MQ_PEEK_MESSAGE MQSEC_PEEK_MESSAGE
MQ_SEND_MESSAGE MQSEC_WRITE_MESSAGE
MQ_RECEIVE_MESSAGE MQSEC_RECEIVE_MESSAGE

After opening a queue, there is no provision to change the access mode of the queue. Either close and
open the queue in the current thread, or open a new thread with new access rights.

When the queue is opened, MQIS is automatically updated with the current property values of the
MSMQQueueInfo object.

When a queue is opened, the cursor points to the front of the queue, not the first message in the
queue. For information on how to move the cursor to the first message in the queue, see Reading
Messages In a Queue.

Journal queues and dead letter queues can only be opened with Access set to MQ_PEEK_ACCESS or
MQ_RECEIVE_ACCESS. You cannot send messages to a journal queue.

When opening a queue on a remote computer, MSMQ does not check for the existence of the queue
when Access is set to MQ_SEND_ACCESS. In addition, if Access is set to MQ_RECEIVE_ACCESS,
the computer opening the queue must support the same protocol as the remote computer where the
queue is located.

There is one exception, however. Foreign queues (a queue located outside the MSMQ enterprise) are
opened the same way queues located within the enterprise are opened. Applications cannot open a
foreign queue using a direct format name. MSMQ needs the routing information stored in MQIS to find
a MSMQ Connector Server for the foreign queue.

Example
This example creates a public queue, then opens the queue for sending messages. To try this example
using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window of a form, and then
run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\OpenTest"

    qinfo.Label = "Test Queue"
    qinfo.Create
   
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
    If q.IsOpen Then
          MsgBox "The queue " + qinfo.PathName + " is open."
          Else
          MsgBox "The queue is not open!"
    End If

End Sub

See Also
Create, Label, MSMQQueue, MSMQQueueInfo, PathName

Peek
MSMQQueue

The Peek method returns the first message in the queue, or waits for a message to arrive if the queue
is empty. It does not remove the message from the queue.

Syntax
set object2 = object1.Peek ([ReceiveTimeout][, WantDestinationQueue][, WantBody])

Syntax Element Description
object1 Queue (MSMQQueue) object that represents

the queue where the message resides.
object2 Message (MSMQMessage) object that

represents message read from the queue.
ReceiveTimeout Optional. Specifies how long (in milliseconds)

MSMQ waits for a message to arrive.
WantDestinationQueue Optional (default is FALSE). If TRUE,

DestinationQueueInfo is updated when the
message is read from the queue. Setting this
property to TRUE may slow down the operation
of the application.

WantBody Optional (default is TRUE). If the Body of the
message is not needed, set this property to
FALSE to optimize the speed of the application.

Return Values
MSMQMessage object.

Remarks
The Peek method always looks at the first message in the queue. It is completely independent of the
implied cursor used by PeekCurrent, PeekNext, and ReceiveCurrent.

Applications can peek at messages in queues opened with peek or receive access (see Open).

The ReceiveTimeout parameter can be used to control how long MSMQ waits for a message to arrive
when the queue is empty.

The WantDestinationQueue and WantBody parameters can be used to optimize the speed of the
application.

Example
This example sends a message to the destination queue to make sure at least one message is there,
then reads the first message in the queue. If another message is already in the queue, the message
returned by Peek may not be the message sent by the example.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Option Explicit

Dim query As New MSMQQuery
Dim qinfoDest As MSMQQueueInfo
Dim qDest As MSMQQueue
Dim msgSent As New MSMQMessage
Dim msgDest As MSMQMessage

Private Sub Form_Click()
                       
      '***************************
      ' Locate destination queue
      '(create one if one doesn't
      ' exist).
      '***************************
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next
      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"
            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '**************
      ' Open destination queue.
      '**************
      Set qDest = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
      '**************
      ' Send Message.
      '**************
      msgSent.Label = "Test Message"
      msgSent.Body = "This message is used to test reading messages."
     
      msgSent.Send qDest
      qDest.Close
   
      '**********************
      ' PEEK at first message
      ' in the queue.
      '**********************
     
      Set qDest = qinfoDest.Open(MQ_PEEK_ACCESS, MQ_DENY_NONE)
           
      On Error GoTo Handler
      Set msgDest = qDest.Peek(ReceiveTimeout:=100)
      MsgBox "The first message in the queue is: " + msgDest.Label
      Exit Sub
     
      '***************
      ' Error Handler
      '***************
     
Handler:
      'Test for errors.

End Sub

See Also

Body, Close, Create, Label, LookupQueue, MSMQMessage, MSMQQuery, MSMQQueue,
MSMQQueueInfo, MSMQQueueInfos, Open, PathName, Reset, Send

PeekCurrent
MSMQQueue

The PeekCurrent method returns the current message, depending on the position of the implied
cursor.

When PeekCurrent is called, execution is stopped until the message is read from the queue or the
receive timeout timer (ReceiveTimeout) expires.

Syntax
set object2 = object1.PeekCurrent ([ReceiveTimeout][, WantDestinationQueue][, WantBody])

Syntax Element Description
object1 Queue (MSMQQueue) object that represents

the queue where the message resides.
object2 Message (MSMQMessage) object that

represents message read from the queue.
ReceiveTimeout Optional. Specifies how long (in milliseconds)

MSMQ waits for a message to arrive when the
queue is empty or the cursor is pointing at the
end of the queue.

WantDestinationQueue Optional (default is FALSE). If TRUE,
DestinationQueueInfo is updated when the
message is read from the queue. Setting this
property to TRUE may slow down the operation
of the application.

WantBody Optional (default is TRUE). If the Body of the
message is not needed, set this property to
FALSE to optimize the speed of the application.

Return Values
MSMQMessage object.

PeekNext
MSMQQueue

The PeekNext method returns the next message in the queue, but does not remove it from the queue.

When PeekNext is called, execution is stopped until the message is read from the queue or the
receive timeout timer (ReceiveTimeout) expires.

Syntax
set object2 = object1.PeekNext ([ReceiveTimeout][, WantDestinationQueue][, WantBody])

Syntax Element Description
object1 Queue (MSMQQueue) object that represents

the queue where the message resides.
object2 Message (MSMQMessage) object that

represents message read from the queue.
ReceiveTimeout Optional. Specifies how long (in milliseconds)

MSMQ waits for a message to arrive when the
cursor is pointing at the end of the queue.

WantDestinationQueue Optional (default is FALSE). If TRUE,
DestinationQueueInfo is updated when the
message is read from the queue. Setting this
property to TRUE may slow down the operation
of the application.

WantBody Optional (default is TRUE). If the Body of the
message is not needed, set this property to
FALSE to optimize the speed of the application.

Return Values
MSMQMessage object.

Remarks
PeekNext moves the cursor first, then looks at the message at the new location.

Before PeekNext is called, Peek Current must be called to initialize the implied cursor. If PeekCurrent
is not called, MQ_ERROR_ILLEGAL CURSOR_ACTION is returned.

The WantDestinationQueue and WantBody parameters can be used to optimize the speed of the
application.

The queue where the message resides can be opened with PEEK or RECEIVE access.

Receive
MSMQQueue

The Receive method retrieves the first message in the queue, removing the message from the queue
when the message is read.

Syntax
set object2 = object1.Receive ([pTransaction] [, WantDestinationQueue] [, WantBody] [,
ReceiveTimeout])

Syntax Element Description
object1 Queue (MSMQQueue) object that represents

queue where the message resides.
object2 Message (MSMQMessage) object that

represents message retrieved from the queue.
pTransaction Optional. An MSMQTransaction object or one of

the following constants.
Constants include:
MQ_NO_TRANSACTION: Specifies that the call
is not part of a transaction.
MQ_MTS_TRANSACTION: Default. Specifies
that the call is part of the current MTS (Microsoft
Transaction Server) transaction.
MQ_XA_TRANSACTION: Specifies that the call
is part of an externally coordinated, XA-compliant
transaction.

WantDestinationQueue Optional (default is FALSE). If TRUE,
DestinationQueueInfo is updated when the
message is read from the queue. Setting this
property to TRUE may slow down the operation of
the application.

WantBody Optional (default is TRUE). If the Body of the
message is not needed, set this property to
FALSE to optimize the speed of the application.

ReceiveTimeout Optional (default is INFINITE). Sets the
message's timeout timer. Specifies how long (in
milliseconds) MSMQ waits for a message to
arrive.

Return Values
MSMQMessage object that represents the first message in the queue.

Remarks
To retrieve messages from the queue, the queue must be opened with receive access (Access =
MQ_RECEIVE_ACCESS). Messages retrieved from a queue are also removed from the queue.

The ReceiveTimeout parameter is optional. However, if it is not specified the default value of
ReceiveTimeout (INFINITE) will force the Receive call to block execution until a message arrives.

The pTransaction parameter can be set to an MSMQTransaction object, or one of the constants
described above. For information on the different types of transactions that MSMQ supports, see:

· MSMQ Internal Transactions

· MS DTC External Transactions
· MTS Transactions
· XA-Compliant Transactions

The WantDestinationQueue and WantBody parameters can be used to optimize the speed of the
application.

For synchronous calls, execution is stopped until a message is retrieved from the queue or the
message's timeout timer expires. For an example of reading messages synchronously, see Reading
Messages Synchronously.

For an example of reading messages asynchronously, see Reading Messages Asynchronously.

To read messages in a queue without removing them, see the Peek, PeekCurrent, or PeekNext.

Example
This example locates a destination queue, sends a message to the queue to make sure at least one
message is in the queue, then removes all the messages from the queue. An error handler is added to
trap any errors generated as a result of the Receive call.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, and then run the example and click the form.

Option Explicit
Dim query As New MSMQQuery
Dim qinfos As New MSMQQueueInfos
Dim qinfoDest As MSMQQueueInfo
Dim qDest As MSMQQueue
Dim msgSent As New MSMQMessage
Dim msgDest As MSMQMessage

Private Sub Form_Click()
                       
      '***************************
      ' Locate destination queue
      '(create one if one doesn't
      ' exist).
      '***************************
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next
      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"
            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '**************
      ' Open destination queue.
      '**************
      Set qDest = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
      '**************
      ' Send Message.
      '**************
      msgSent.Label = "Test Message A"

      msgSent.Body = "This message is for testing how messages are read from the queue."
     
      msgSent.Send qDest
      qDest.Close
   
      '**********************
      ' Removes all messages
      ' in the queue.
      '**********************
     
      Set qDest = qinfoDest.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
   
      On Error GoTo Handler
     
      Do While True
            Set msgDest = qDest.Receive(ReceiveTimeout:=1000)
            If msgDest Is Nothing Then Exit Do
            MsgBox msgDest.Label + " is removed from the queue."
      Loop

      Exit Sub

      '***************
      ' Error Handler
      '***************
     
Handler:
      If (Err = MQ_ERROR_IO_TIMEOUT) Then
            MsgBox "All messages are removed from the queue."
            Exit Sub
      Else
            MsgBox "Unexpected error!"
      End If

End Sub

See Also
Body, Close, Create, Label, LookupQueue, MSMQMessage, MSMQQuery, MSMQQueue,
MSMQQueueInfo, MSMQQueueInfos, Next, Open, PathName, Reset, Send

ReceiveCurrent
MSMQQueue

The ReceiveCurrent method reads the message at the current cursor location.

Syntax
set object2 = object1.ReceiveCurrent ([ReceiveTimeout][, pTransaction][,
WantDestinationQueue][, WantBody])

Syntax Element Description
object1 Queue (MSMQQueue) object that represents

the open instance of the queue that is receiving
messages.

object2 Message (MSMQMessage) object that
represents message retrieved from the queue.

ReceiveTimeout Optional. Specifies how long (in milliseconds)
MSMQ waits for a message to arrive.

pTransaction Optional. An MSMQTransaction object or one
of the following constants.
Constants include:
MQ_NO_TRANSACTION: Specifies that the
call is not part of a transaction.
MQ_MTS_TRANSACTION: Default. Specifies
that the call is part of the current MTS
(Microsoft Transaction Server) transaction.
MQ_XA_TRANSACTION: Specifies that the
call is part of an externally coordinated, XA-
compliant transaction.

WantDestinationQueue Optional (default is FALSE). If TRUE,
DestinationQueueInfo is updated when the
message is read from the queue. Setting this
property to TRUE may slow down the operation
of the application.

WantBody Optional (default is TRUE). If the Body of the
message is not needed, set this property to
FALSE to optimize the speed of the application.

Return Values
MSMQMessage object.

Remarks
The pTransaction parameter can be set to an MSMQTransaction object, or one of the constants
described above. For information on the different types of transactions the MSMQ supports, see:

· MSMQ Internal Transactions
· MS DTC External Transactions
· MTS Transactions
· XA-Compliant Transactions

Refresh
MSMQQueueInfo

The Refresh method refreshes the property values of the MSMQQueueInfo object. These values are
retrieved from MQIS (public queues) or from the local computer (private queues).

Syntax
object.Refresh

Syntax Element Description
object The queue information (MSMQQueueInfo)

object that defines the queue.

Remarks
All queue properties can be retrieved, however, you can only retrieve the properties of private queues if
they are located on your local computer.

Refresh is typically used when more than one user is using the queue. For example, if user 1 locates
the queue and then user 2 modifies the queue's properties, user 1 needs to call Refresh to sync up
with user 2's changes.

After a queue is created, the properties of the MSMQQueueInfo object are not updated until Refresh
is explicitly called, or the queue is closed and reopened. For example, even though MSMQ sets
CreateTime, ModifyTime, or QueueGuid when it creates the queue, the application must call Refresh
to update the properties of the MSMQQueueInfo object before it can read those properties.

For a complete discussion on retrieving a queue's properties, see Retrieving a Queue's Properties
Using ActiveX Components.

Refresh uses the MQGetQueueProperties function.

Example
This example creates a public queue, then uses Refresh to update the MSMQQueueInfo so it can
display the queue's identifier (QueueGuid). To try this example using Microsoft Visual Basic (version
5.0), paste the code into the Code window of a form that has a single text box, and then run the
example and click the form.

Dim qinfo As MSMQQueueInfo
     
Private Sub Form_Click()

    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\RefreshTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
     
    qinfo.Refresh                    'Required to update QueueGuid
    Text1.Text = "quidQueue = " + CStr(qinfo.QueueGuid)

End Sub

See Also
Create,Label, MSMQQueueInfo, PathName, QueueGuid

Reset
MSMQQueue MSMQQueueInfos

The Reset method returns the cursor to the start of the results of a query, or to the start of a queue.

Syntax
object.Reset

Syntax Element Description
object Collection (MSMQQuery) object that

represents a collection of queues, or queue
(MSMQQueue) object that represents an open
instance of a queue.

Return Codes
For information on return codes, see MSMQ Error and Information Codes.

Remarks
Next Queue

When looking at the results of a query, the MSMQueueInfo object's Reset method moves the cursor
to the start of the query. To move to the first queue of the query, call Next.

Next Message
When looking at the messages in a queue, the MSMQQueue object's Reset method moves the
cursor to the start of the queue. To move to the first message in the queue, call PeekCurrent or
ReceiveCurrent.

Example: Pointing to the first queue
This example assumes that at least one queue whose label is "Test Queue" already exist. It runs a
query for the test queues, then displays the format name of the first queue it found.

To try this example using Microsoft® Visual Basic® (version 5.0), make sure the Microsoft Message
Queue Object Library is referenced, then paste the following code into the code window of a form, run
the example, then click on the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfo As MSMQQueueInfo

Private Sub Form_Click()

      Set qinfos = query.LookupQueue(Label:="Test Queue")
      qinfos.Reset
      Set qinfo = qinfos.Next
      MsgBox "I found a Test Queue! its Format name is: " + FormatName
       
End Sub

Example: Pointing to the first message
This example assumes that a queue exists, opens the queue for receiving messages, looks at the label
of each message in the queue, and then resets the cursor to the start of the queue.

To try this example using Microsoft® Visual Basic® (version 5.0), make sure the Microsoft Message
Queue Object Library is referenced, then paste the following code into the code window of a form, run

the example, then click on the form.

Dim qinfoMyQueue as MSMQQueueInfo
Dim qMyInputQueue as MSMQQueue
Dim msgMyMessage as MSMQMessage

'Open queue as an input queue (set Access to MQ_RECEIVE_ACCESS).
Set qMyInputQueue = qinfoMyQueue.Open (Access := MQ_RECEIVE_ACCESS,
ShareMode := MQ_DENY_NONE)
Set msgMyMessage = qMyInputQueue.PeekCurrent

'Traverse queue.
While not msgMyMessage is Nothing
            set msgMyMessage = qMyInputQueue.PeekNext
            msgbox msgMyMessage.Label
Wend

qMyInputQueue.Reset                                  'Points to start of queue.

See Also
FormatName, Label, MSMQQuery, MSMQQueueInfo, MSMQQueueInfos, Next, Reset

Send
MSMQMessage

The Send method sends a message to the specified queue.

Syntax
object.Send (DestinationQueue, [pTransaction])

Syntax Element Description
object Message to be sent.
DestinationQueue Reference to destination queue object.
pTransaction Optional. An MSMQTransaction object or one

of the following constants.
Constants include:
MQ_NO_TRANSACTION: Specifies that the
call is not part of a transaction.
MQ_MTS_TRANSACTION: Default. Specifies
that the call is part of the current MTS
(Microsoft Transaction Server) transaction.
MQ_SINGLE_MESSAGE: Sends a single
message as a transaction.
MQ_XA_TRANSACTION: Specifies that the
call is part of an externally coordinated, XA-
compliant transaction.

Remarks
To get the handle of a queue, use the Handle property of the queue.

To save a copy of the message in a machine journal, set Journal to MQMSG_JOURNAL. For
information on machine journals, see Journal Queues.

Messages that do not reach their destination can be sent to a dead letter queue by setting the
messages Journal property to MQMSG_DEADLETTER (transaction messages are automatically sent
to the transaction dead letter queue if the transaction is not successful). For information on dead letter
queues, see Dead Letter Queues.

The pTransaction parameter can be set to an MSMQTransaction object, or one of the constants
described above. For information on the different types of transactions the MSMQ supports, see:

· MSMQ Internal Transactions
· MS DTC External Transactions
· MTS Transactions
· XA-Compliant Transactions

Example
This example sends a message to a queue that it creates. To try this example using Microsoft Visual
Basic (version 5.0), paste the code into the Code window of a form, and then run the example and click
the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue
Dim msg As New MSMQMessage

Private Sub Form_Click()
      '**************
      ' Create queue.
      '**************
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\SendTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
      '**************
      ' Open queue.
      '**************
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
      '**************
      ' Send Message.
      '**************
    msg.Label = "Test Message"
    msg.Body = "This is a test message with a string Body."
    msg.Send q

 q.Close

End Sub

See Also
Body, Close, Create, Label, MSMQMessage, MSMQQueue, MSMQQueueInfo, Open, PathName

Update
MSMQQueueInfo

The Update method updates MQIS (public queues) or the local computer (private queues) with the
current property values of the MSMQQueueInfo object.

Syntax
object.Update

Syntax Element Description
object The queue information (MSMQQueueInfo)

object that defines the public queue.

Remarks
The Update method can only update existing queues. It cannot be called on an MSMQQueueInfo
object before the queue is created or after the queue is deleted.

MQIS (public queues) and the local computer (private queues) are not updated when an
MSMQQueueInfo property is set. They are only updated when a queue is created, when the queue is
opened, and whenever Update is explicitly called.

Update can be used on MSMQQueueInfo objects that define public queues or local private queues.
Properties for remote private queues are stored on the computer where the queue exists, and therefore
cannot be updated.

The following queue properties may not be available to Update.

Property Name Reason
BasePriority For public queues only. Cannot be set

for private queues.
CreateTime Set by MSMQ.
QueueGuid Set by MSMQ.
ModifyTime Set by MSMQ.
PathName Can only be set when the queue is

created.

For a complete description of setting queue properties, including a list of the properties that can be set,
see Setting a Queue's Properties Using ActiveX Components.

When setting the properties for public queues, some clients may see the old settings registered in
MQIS. Changes to MQIS (such as setting queue properties) are propagated from site to site, which can
cause delays in viewing the most current information. Consequently, clients in some sites may still see
old settings, even though they were changed by Update. Propagation delays, including communication
network delays such as down links, are controlled by the MSMQ Administrator.

Example
This example creates a public queue and then uses Update to change the queue's label. To try this
example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of a form that
has a single text box, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo

    qinfo.PathName = ".\UpdateTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
    MsgBox "The queue's label is: " + qinfo.Label
   
    qinfo.Label = "New Queue Label"
    qinfo.Update
    MsgBox "The queue's label is: " + qinfo.Label

End Sub

See Also
Create, Label, MSMQQueueInfo, PathName

ActiveX Properties
These are the properties associated with the ActiveX components provided by MSMQ.

The properties of the MSMQ objects include:

MSMQQueueInfo
Authenticate

BasePriority

CreateTime

FormatName

IsTransactional

IsWorldReadable

Journal

JournalQuota

Label

ModifyTime

Pathname

PrivLevel

QueueGuid

Quota

ServiceTypeGuid

MSMQQueue Properties
Access

Handle

IsOpen

QueueInfo

ShareMode

MSMQMessage Properties
Ack

AdminQueueInfo

AppSpecific

ArrivedTime

AuthLevel

Body

BodyLength

Class

CorrelationId

Delivery

DestinationQueueInfo

EncryptAlgorithm

HashAlgorithm

Id

IsAuthenticated

Journal

Label

MaxTimeToReachQueue

MaxTimeToReceive

Priority

PrivLevel

ResponseQueueInfo

SenderCertificate

SenderID

SenderIDType

SentTime

SourceMachineGuid

Trace

MSMQTransaction Properties
Transaction

Access
MSMQQueue

Read-only. The Access property indicates the access rights of the queue.

Quick Info
Type: Long
Run time: read-only

Syntax
object.Access

Syntax Element Description
object Queue (MSMQQueue) object that represents

an instance of the queue.

Return Values
The Access property returns one of the following values:

MQ_SEND_ACCESS
Messages can only be sent to the queue.

MQ_PEEK_ACCESS
Messages can only be looked at. They cannot be removed from the queue.

MQ_RECEIVE_ACCESS
Messages can be taken out of the queue or peeked at.

Remarks
The Access property returns the access rights of the queue when it was last opened, regardless if the
queue is currently open or closed.

Example
This example opens a queue for sending messages, then uses the value of Access to test how the
queue was opened (with what access rights). To try this example using Microsoft Visual Basic (version
5.0), paste the code into the Code window of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\lAccessTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
   
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
    Select Case q.Access
          Case MQ_SEND_ACCESS
                    MsgBox "The queue is open for sending messages."
          Case MQ_RECEIVE_ACCESS
                    MsgBox "The queue is open for retrieve messages."
          Case MQ_PEEK_ACCESS

                    MsgBox "The queue is open to peek at messages."
          Case Else
                    MsgBox "Not a valid return value!"
    End Select
    q.Close
   
End Sub

See Also
Close, Create, Label, MSMQQueue, MSMQQueueInfo, Open, PathName

Ack
MSMQMessage

The Ack property specifies the type of acknowledgment messages that MSMQ posts (in the
administration queue) when the message is sent.

Quick Info
Type: Long
Run time: read/write

Syntax
object.Ack

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Settings
The Ack property can have any one of the following values:

MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE
Posts positive and negative acknowledgments depending on whether or not the message reaches
the queue. This can happen when the time-to-reach-queue timer expires, or when a message
cannot be authenticated.

MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE
Posts a positive or negative acknowledgment depending on whether or not the message is retrieved
from the queue before its time-to-be-received timer expires.

MQMSG_ACKNOWLEDGMENT_NACK_REACH_QUEUE
Posts a negative acknowledgment when the message cannot reach the queue. This can happen
when the time-to-reach-queue timer expires, or a message cannot be authenticated

MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE
Posts a negative acknowledgment when an error occurs and the message cannot be retrieved from
the queue before its time-to-be-received timer expires.

MQMSG_ACKNOWLEDGMENT_NONE
The default. No acknowledgment messages (positive or negative) are posted.

Remarks
Positive and negative acknowledgments are MSMQ-generated messages that are sent to an
administration queue specified by the message. For an explanation of administration queues, see
Administration Queues.

Acknowledgment messages contain some of the information found in the original message; however,
each acknowledgment message has its own message identifier and class. The message identifier, Id,
identifies the acknowledgment in the same way it identifies each message sent by an MSMQ
application. The message class, Class, identifies the type of acknowledgment that was posted. Both
these properties are set by MSMQ when it creates the acknowledgment message.

To indicate that acknowledgment messages are needed, set Ack and AdminQueueInfo when sending
the message.

The receiving application can determine if MSMQ is sending acknowledgments back to the sending
application by examining Ack and AdminQueueInfo when reading the message in the queue.

For information on the time-to-reach-queue and time-to-be-received timer, see Message Timers. To set

the time-to-reach-queue and time-to-be-received timers, set MaxTimeToReachQueue and
MaxTimeToReceive properties, respectively.

For a example using acknowledgment messages, see Sending Messages that Request
Acknowledgments.

Example
This example uses an administration queue to see if a message reaches its destination queue. It sends
a message and then reads the acknowledgment message (returned by MSMQ) to see if the original
message reached its destination. The destination and administration queues are created if they don't
exist.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the code window of a
form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfoAdmin As MSMQQueueInfo
Dim qinfoDest As MSMQQueueInfo
Dim q As MSMQQueue
Dim msgSent As New MSMQMessage
Dim msgAdmin As MSMQMessage

Private Sub Form_Click()
      '**********************************
      ' Locate administration queue
      '(create one if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Administration Queue")
      qinfos.Reset
      Set qinfoAdmin = qinfos.Next
      If qinfoAdmin Is Nothing Then
            Set qinfoAdmin = New MSMQQueueInfo
            qinfoAdmin.PathName = ".\AdminQueue"
            qinfoAdmin.Label = "Administration Queue"
            qinfoAdmin.Create
      End If
                 
      '**********************************
      ' Locate destination queue
      '(create one if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next
      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"
            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '************************
      ' Open destination queue.
      '************************
      Set q = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

     
      '**************
      ' Send Message.
      '**************
      msgSent.Label = "Test Message"
      msgSent.Body = "This message tests acknowledgment messages."
      msgSent.Ack = MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE
      Set msgSent.AdminQueueInfo = qinfoAdmin
      msgSent.Send q
   
      MsgBox "The message was sent. Check the MSMQ Explorer to
                      see the messages in the queue."
      q.Close
   
      '********************************
      ' Read Acknowledgment message in the
      ' administration queue.
      '********************************
      Set q = qinfoAdmin.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
      Set msgAdmin = q.Receive
     
      If msgAdmin.Class = MQMSG_CLASS_ACK_REACH_QUEUE Then
            MsgBox "The message reached the queue."
      Else
            MsgBox " The message did not reach the queue."
      End If

End Sub

See Also
AdminQueueInfo, Body, Class, Close, Create, Label, LookupQueue, MSMQMessage,
MSMQQueue, MSMQQueueInfo, MSMQQueueInfos, MSMQQuery, Next, Open, PathName,
Receive, Reset, Send

AdminQueueInfo
MSMQMessage

The AdminQueueInfo property specifies the queue used for MSMQ-generated acknowledgment
messages. This object is passed to the Queue Manager on the target machine.

Quick Info
Type: MSMQQueueInfo
Run time: read/write

Syntax
set object1.AdminQueueInfo = object2

Syntax Element Description
object1 Message (MSMQMessage) object that

represents the message.
object2 Queue information (MSMQQueueInfo)

object that represents the administration
queue.

Settings
MSMQQueueInfo object.

Remarks
Acknowledgment messages are sent to the administration queue by MSMQ. For information on
acknowledgment messages and administration queues, see Acknowledgment Messages and
Administration Queues.

The sending application indicates that it wants MSMQ to return acknowledgment messages by
attaching Ack and AdminQueueInfo to the message.

The receiving application can determine if MSMQ is sending acknowledgments back to the sending
application by examining Ack and AdminQueueInfo when reading the message in the queue.

For a complete discussion of sending messages that return acknowledgment messages, see Sending
Messages that Request Acknowledgments.

Example
This example uses an administration queue to see if a message reaches its destination queue. It sends
a message and then reads the acknowledgment message (returned by MSMQ) to see if the original
message reached its destination. The destination and administration queues are created if they don't
exist.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the code window of a
form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfoAdmin As MSMQQueueInfo
Dim qinfoDest As MSMQQueueInfo
Dim q As MSMQQueue
Dim msgSent As New MSMQMessage

Private Sub Form_Click()
      '**********************************

      ' Locate administration queue
      '(create one if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Administration Queue")
      qinfos.Reset
      Set qinfoAdmin = qinfos.Next
      If qinfoAdmin Is Nothing Then
            Set qinfoAdmin = New MSMQQueueInfo
            qinfoAdmin.PathName = ".\AdminQueue"
            qinfoAdmin.Label = "Administration Queue"
            qinfoAdmin.Create
      End If
                 
      '**********************************
      ' Locate destination queue
      '(create one if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next
      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"
            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '************************
      ' Open destination queue.
      '************************
      Set q = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
      '**************
      ' Send Message.
      '**************
      msgSent.Label = "Test Message"
      msgSent.Body = "This message tests acknowledgment messages."
      msgSent.Ack = MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE
      Set msgSent.AdminQueueInfo = qinfoAdmin
      msgSent.Send q
   
      MsgBox "The message was sent. Check the MSMQ Explorer to see the messages in the
queue."
      q.Close
   
      '************************************
      ' Read acknowledgment message in the
      ' administration queue.
      '************************************
      Set q = qinfoAdmin.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
      Set msgAdmin = q.Receive
     
      If msgAdmin.Class = MQMSG_CLASS_ACK_REACH_QUEUE Then
            MsgBox "The message reached the queue."
      Else

            MsgBox " The message did not reach the queue."
      End If

End Sub

See Also
Body, Class, Close, Create, Label, LookupQueue, MSMQMessage, MSMQQuery, MSMQQueue,
MSMQQueueInfo, MSMQQueueInfos, Next, Open, PathName, Receive, Reset, Send

AppSpecific
MSMQMessage

The AppSpecific property specifies application-generated information such as single integer values or
application defined message classes.

Quick Info
Type: Long
Run time: read/write

Syntax
object.AppSpecific

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Remarks
Another message property that can be used to pass application-generated information is
CorrelationId.

ArrivedTime
MSMQMessage

Read-only. The ArrivedTime property indicates when the message arrived at the queue.

Quick Info
Type: Date Variant
Run time: read-only

Syntax
object.ArrivedTime

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Return Values
Date and time when message arrived.

Remarks
The returned value for this property can be manipulated using standard Microsoft® Visual Basic® date
and time functions such as Date$, and Time$. For descriptions of Visual Basic functions, see the
Visual Basic documentation.

When reading messages from a journal queue, ArrivedTime indicates when the original message
reached its queue, not when the original message was removed from the queue and a copy placed in
the journal queue.

When reading messages from a machine journal, dead letter queue, or transactional dead letter queue,
ArrivedTime indicates when the message reached the system queue where the application is reading
the message. In these cases, the original message never reached its destination.

When ArrivedTime is displayed, Visual Basic will automatically convert the parameter's value to the
local system time and system date.

Example
This example locates a destination queue (creating one if one does not exist), sends a message to the
queue, then reads the message and displays when the message arrived in the queue.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfoDest As MSMQQueueInfo
Dim qDest As MSMQQueue
Dim msgSent As New MSMQMessage
Dim msgRead As MSMQMessage

Private Sub Form_Click()
     
     
      '**********************************
      ' Locate destination queue

      '(create one if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next
      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"
            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '**************
      ' Send Message.
      '**************
      Set qDest = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
      msgSent.Label = "Test Message"
      msgSent.Body = "This message tests the message timers."
      msgSent.Send qDest
      qDest.Close
               
      '************************************
      ' Remove the message from destination
      ' queue and display when the message arrived.
      '************************************
      Set qDest = qinfoDest.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
      Set msgRead = qDest.Receive
     
      MsgBox "The message arrived at: " + CStr(msgRead.ArrivedTime)
       
End Sub

See Also
Body, Close, Create, Label, LookupQueue, MSMQMessage, MSMQQuery, MSMQQueue,
MSMQQueueInfo, MSMQQueueInfos, Next, Open, PathName, Receive, Send

Authenticate
MSMQQueueInfo

Optional. The Authenticate property specifies whether or not the queue only accepts authenticated
messages.

Quick Info
Type: Long
Run time: read/write

Syntax
object.Authenticate

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines the queue.

Settings
Set Authenticate to one of the following values:

MQ_AUTHENTICATE_NONE
The default. The queue accepts authenticated and non-authenticated messages.

MQ_AUTHENTICATE
The queue only accepts authenticated messages.

Remarks
If the authentication level of the message (AuthLevel) does not match the authentication level of the
queue, the message is rejected by the queue. In addition, if the sending application requested a
negative acknowledgment message when it sent the message, MQMSG_CLASS_BAD_SIGNATURE
will be returned to the sending application to indicate the message was rejected.

For information on how MSMQ authenticates messages, see Message Authentication.

To set the authentication level of a queue, set Authenticate and call the MSMQQueueInfo object's
Create method.

The authentication level of a queue can be reset after the queue is created. To change the
authentication level of a queue that is open, set Authenticate to a new level and call the
MSMQQueueInfo object's Update method. To change the authentication level of a closed queue, set
Authenticate to the new level. If the queue is not open there is no need to call Update, the queue's
properties are updated automatically when the queue is opened.

To find the authentication level of a queue, call the MSMQQueueInfo object's Refresh method.

The receiving application can check if the message was authenticated by looking at the message's
IsAuthenticated property.

Example
This example creates a private queue on the local machine, setting the queue's authentication level to
MQ_AUTHENTICATE.

To try this example using Microsoft® Visual Basic® (version 5.0), make sure the Microsoft Message
Queue Object Library is referenced, then paste the following code into the code window of a form, run
the example, then click on the form.

Dim qinfo As MSMQQueueInfo

     
Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PRIVATE$\TestQueue"
    qinfo.Label = "Test Queue"
    qinfo.Authenticate = MQ_AUTHENTICATE
    qinfo.Create
     
    MsgBox "Queue's Format name is: " + qinfo.FormatName

End Sub

See Also
AuthLevel, Create, FormatName, IsAuthenticated,Label, PathName, Update

AuthLevel
MSMQMessage

The AuthLevel property specifies whether or not the message must be authenticated when it arrives at
the target queue.

Quick Info
Type: Long
Run time: read/write

Syntax
object.AuthLevel

Syntax Element Description
object Message (MSMQMessage) object that defines

the queue.

Settings
Set AuthLevel to one of the following values:

MQMSG_AUTH_LEVEL_NONE
The default. The message does not have to be authenticated when it arrives at the target queue

MQMSG_AUTH_LEVEL_ALWAYS
The message must be authenticated when it arrives at the target queue.

Remarks
This property is only used when sending messages. Messages are authenticated by MSMQ, not by the
receiving application.

In addition to messages, queues also have an authentication level. The queue's Authenticate property
specifies whether or not the queue accepts only authenticated messages.

BasePriority
MSMQQueueInfo

Optional. The BasePriority property specifies a single base priority for all messages sent to a public
queue.

Quick Info
Type: Long
Run time: read/write

Syntax
object.BasePriority

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines the queue.

Settings
Integer value between -32768 and +32767 (default is 0).

Remarks
A public queue's base priority is used for routing the queue's messages over the network. It can be
used to give the messages sent to the queue a higher (or lower) priority than messages sent to other
queues. When a queue's base priority is set, all the messages sent to it are given a higher priority than
messages sent to queues with a lower base priority. The queue's base priority has no effect on the
order of the messages in the queue, or how messages are read from the queue.

BasePriority only applies to public queues that can be located through MQIS (using a public format
name). The base priority of private queues, as well as public queues accessed directly, is always 0.

MSMQ combines the queue's base priority with the message's priority (Priority) to determine the
overall priority of a message when it is sent to the queue.

To set the base priority of a public queue, set BasePriority and call the MSMQQueueInfo object's
Create method.

To reset the base priority of a public queue after the queue is created, set BasePriority to a new level
and, if the queue is open, call the MSMQQueueInfo object's Update method. If the queue is not open
do not call Update, the queue's properties are updated automatically when the queue is opened.

The base priority of a queue can be reset after the queue is created. To change the base priority of a
queue that is open, set BasePriority to a new level and call the MSMQQueueInfo object's Update
method. To change the base priority of a closed queue, set Basepriority to the new level. If the queue
is not open there is no need to call Update, the queue's properties are updated automatically when the
queue is opened.

To find the base priority of a queue, call the MSMQQueueInfo object's Refresh method.

Example
This example creates a public queue on the local machine, setting the queue's base priority to 7.

To try this example using Microsoft® Visual Basic® (version 5.0), make sure the Microsoft Message
Queue Object Library is referenced, then paste the following code into the code window of a form, run
the example, then click on the form.

Dim qinfo As MSMQQueueInfo
     

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\basepriorityTest"
    qinfo.Label = "Test Queue"
    qinfo.BasePriority = 7
    qinfo.Create
     
    MsgBox "Queue's Format name is: " + qinfo.FormatName

End Sub

See Also
Create, FormatName, Label, MSMQQueueInfo PathName, Priority, Refresh, Update

Body
MSMQMessage

The Body property specifies the contents of the message.

Quick Info
Type: Variant
Run time: read/write

Syntax
object.Body

Syntax Element Description
object Message (MSMQMessage) object that defines

message.

Settings
Any simple Variant type: string, array of bytes, numeric type, currency, date, or persistent ActiveX
object.

Remarks
The sending application does not indicate the type of information (string, array of bytes, numeric types,
currency, date, or ActiveX object) that is stored in the message body. MSMQ determines the body type
from the true type of the Variant assigned to the Body property.

The receiving application, however, should determine what type of information is in the message body.
To do this, it can inspect the message body using a standard Visual Basic If..Then..Else function with
the following conditional functions: TypeOf and TypeName. The TypeName function can be used to
find out if the message in the queue is a string, array of bytes, numeric type, currency, or date. If it is
not one of these, TypeOf can be used to see which OLE interface the object supports. For an example
on how MSMQ reads messages from a queue, see Reading Messages in a Queue.

For information on the type of objects that can be sent, see MSMQ ActiveX Support.

For an example of how MSMQ sends the messages to a queue, see Sending Messages to a Queue.

Example
This example creates a queue, opens the queue for sending messages, sets the body of a message,
then sends the message to the queue.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue
Dim msg As New MSMQMessage

Private Sub Form_Click()
      '**************
      ' Create queue.
      '**************
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\SendTest"
    qinfo.Label = "Test Queue"
    qinfo.Create

      '**************
      ' Open queue.
      '**************
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
      '**************
      ' Send Message.
      '**************
    msg.Label = "Test Message"
    msg.Body = "This is a test message with a string Body."
    msg.Send q

 q.Close

End Sub

See Also
Close, Create, FormatName, Label, MSMQMessage, MSMQQueue, MSMQQueueInfo, Open,
PathName, Send

BodyLength
MSMQMessage

Read-only. The BodyLength property indicates the length of the message Body in bytes.

Quick Info
Type: Long
Run time: read-only

Syntax
object.BodyLength

Syntax Element Description
object Message (MSMQMessage) object that

represents the message.

Return Values
Length (in bytes) of the message.

Remarks
BodyLength can be used by the sending application or receiving application.

Sending applications can use BodyLength to find the size of the message body as soon as Body is
set, including before and after the message is sent.

Receiving applications can use BodyLength to find the size of a message before or after retrieving
the message body.

Class
MSMQMessage

Read-only. The Class property indicates message type. A message can be a normal MSMQ message,
a positive or negative (arrival and read) acknowledgment message, or a report message. This property
is set by MSMQ.

Quick Info
Type: Long
Run time: read-only

Syntax
object.Class

Syntax Element Description
object Message (MSMQMessage) object that

represents the message.

Return Values
MSMQ sets the Class property to one of the following values:

Normal messages (all messages created by your application):
MQMSG_CLASS_NORMAL

A normal MSMQ message.
Positive acknowledgment messages (generated by MSMQ):

MQMSG_CLASS_ACK_REACH_QUEUE
The original message reached its destination queue.

MQMSG_CLASS_ACK_RECEIVE
The original message was retrieved by the receiving application.

Negative arrival acknowledgment messages (generated by MSMQ):
MQMSG_CLASS_NACK_ACCESS_DENIED

The sending application does not have access rights to the destination queue.
MQMSG_CLASS_NACK_BAD_DST_Q

The destination queue is not available to the sending application.
MQMSG_CLASS_NACK_BAD_ENCRYPTION

The destination Queue Manager could not decrypt a private (encrypted) message (see
PrivLevel).

MQMSG_CLASS_NACK_BAD_SIGNATURE
MSMQ could not authenticate the original message. The original message's digital signature is
not valid.

MQMSG_CLASS_NACK_COULD_NOT_ENCRYPT
The source Queue Manager could not encrypt a private message (see PrivLevel).

MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED
The original message's hop count is exceeded.

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA
The original message's destination queue is full.

MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT
Either the time-to-reach-queue or time-to-be-received timer expired before the original message
could reach the destination queue.

MQMSG_CLASS_NACK_PURGED
The message was purged before reaching the destination queue.

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q
A transaction message was sent to a non-transaction queue.

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG
A non-transaction message was sent to a transaction queue.

Negative read acknowledgment messages (generated by MSMQ):
MQMSG_CLASS_NACK_Q_DELETED

The queue was deleted before the message could be read from the queue.
MQMSG_CLASS_NACK_Q_PURGED

The queue was purged and the message no longer exists.
MQMSG_CLASS_NACK_RECEIVE_TIMEOUT

The original message was not removed from the queue before its time-to-be-received timer
expired.

Report messages (generated by MSMQ):
MQMSG_CLASS_REPORT

Sent each time the message enters or leaves an MSMQ server.

Remarks
Acknowledgment messages are generated by MSMQ whenever the sending application requests
them. MSMQ returns the appropriate acknowledgment message to the administration queue that is
specified by the sending application. For information on administration queues, see Administration
Queues. For a complete discussion of requesting acknowledgment messages, Sending Messages that
Request Acknowledgments.

Report messages are generated by MSMQ whenever a report queue is defined at the source Queue
Manager. For information on report queues, see Report Queues.

When reading messages in an administration queue or dead letter queue, retrieve Class to find out
why the message was sent to the queue.

Example
This example uses an administration queue to see if a message reaches its destination queue. It sends
a message and then looks at the Class property of the acknowledgment message (returned by MSMQ)
to see if the original message reached its destination. The destination and administration queues are
created if they don't exist.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the code window of a
form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfoAdmin As MSMQQueueInfo
Dim qinfoDest As MSMQQueueInfo
Dim q As MSMQQueue
Dim msgSent As New MSMQMessage
Dim msgAdmin As MSMQMessage

Private Sub Form_Click()
      '**********************************
      ' Locate administration queue
      '(create one if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Administration Queue")
      qinfos.Reset
      Set qinfoAdmin = qinfos.Next
      If qinfoAdmin Is Nothing Then

            Set qinfoAdmin = New MSMQQueueInfo
            qinfoAdmin.PathName = ".\AdminQueue"
            qinfoAdmin.Label = "Administration Queue"
            qinfoAdmin.Create
      End If
                 
      '**********************************
      ' Locate destination queue
      '(create one if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next
      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"
            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '************************
      ' Open destination queue.
      '************************
      Set q = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
      '**************
      ' Send Message.
      '**************
      msgSent.Label = "Test Message"
      msgSent.Body = "This message tests acknowledgment messages."
      msgSent.Ack = MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE
      Set msgSent.AdminQueueInfo = qinfoAdmin
      msgSent.Send q
   
      MsgBox "The message was sent. Check the MSMQ Explorer to see the messages in the
queue."
      q.Close
   
      '********************************
      ' Read Acknowledgment message in the
      ' administration queue.
      '********************************
      Set q = qinfoAdmin.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
      Set msgAdmin = q.Receive
     
      If msgAdmin.Class = MQMSG_CLASS_ACK_REACH_QUEUE Then
            MsgBox "The message reached the queue."
      Else
            MsgBox " The message did not reach the queue."
      End If

End Sub

See Also

Ack, AdminQueueInfo, Body, Close, Create, Label, LookupQueue, MSMQMessage,
MSMQQueue, MSMQQueueInfo, MSMQQueueInfos, MSMQQuery, Next, Open, PathName,
Receive, Reset, Send

CorrelationId
MSMQMessage

The CorrelationId property identifies the message using a 20-byte, correlation identifier.

Quick Info
Type: Variant (array of bytes).
Run time: read/write

Syntax
object.CorrelationId

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Settings
A 20-byte application-defined correlation identifier.

Remarks
CorrelationId provides an application-defined identifier that the receiving application can use to sort
messages.

When sending response messages to the sending application, CorrelationId can be set to the
message identifier (Id) of the message that is in the queue. This provides an easy mechanism that the
sending application can use to match the response message with the message that was sent.

When MSMQ generates an acknowledgment or report message, it uses the CorrelationId property to
specify the message identifier of the original message. The application can then look at the
CorrelationId property to find the message identifier of the original message.

Note MSMQ Connector applications must also set the correlation identifier of the acknowledgment
and report messages to the message identifier of the original message.

CreateTime
MSMQQueueInfo

Read-only. The CreateTime property indicates when the public queue was created.

Quick Info
Type: Date Variant
Run time: read-only

Syntax
object.CreateTime

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines the queue.

Return Values
Date when queue was created.

Remarks
To read this property, the application must first call the MSMQQueueInfo object's Refresh method.
Although MSMQ updates MQIS when the queue is created, CreateTime is not updated until Refresh
is called.

The returned value for this property can be manipulated using standard Microsoft® Visual Basic® date
and time functions such as Date$, and Time$. For descriptions of Visual Basic functions, see the
Visual Basic documentation.

When CreateTime is displayed, Visual Basic will automatically convert the parameter's value to the
local system time and system date.

The CreateTime property can also be used when making a query. See the MSMQQuery object's
LookupQueue method for details on running a query.

Example
This example uses the CreateTime and RelCreateTime parameters of LookupQueue to locate all the
public queues. To locate the queues, MSMQ compares the date specified by the CreateTime
parameter with the date of each queue's CreateTime property.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfoDest As MSMQQueueInfo
Dim queueCount As Integer

Private Sub Form_Click()
         
      '**********************
      ' Locate public queues
      '**********************
      Set qinfos = query.LookupQueue(CreateTime:=Now, RelCreateTime:=REL_LT)
      qinfos.Reset
     

      '**
      ' Display create time of all public queues.
      '**
      Set qinfoDest = qinfos.Next
      queueCount = 0                          'Counter for number of queues found.
     
      While Not qinfoDest Is Nothing
            MsgBox "This public queue (" + qinfoDest.Label + ") was created on: " +
CStr(qinfoDest.CreateTime)
            queueCount = queueCount + 1
            Set qinfoDest = qinfos.Next
      Wend
     
      MsgBox "The total public queues found were: " + CStr(queueCount)

End Sub

See Also
Label, LookupQueue, MSMQQuery, MSMQQueueInfo, MSMQQueueInfos, Next, Reset

Delivery
MSMQMessage

The Delivery property specifies how MSMQ delivers the message.

Quick Info
Type: Long
Run time: read/write

Syntax
object.Delivery

Syntax Element Description
object Message (MSMQMessage) object that

represents the message.

Settings
The Delivery property can have one of the following values:

MQMSG_DELIVERY_RECOVERABLE
In every hop along its route, the message is forwarded to the next hop or stored locally in a backup
file until delivered. This guarantees delivery even in the case of a machine crash.

MQMSG_DELIVERY_EXPRESS
The default. The message stays in memory until it can be delivered. (In-memory message store and
forward.)

Remarks
When the message's delivery mechanism is set to MQMSG_DELIVERY_EXPRESS, the message has
faster throughput. When set to MQMSG_DELIVERY_RECOVERABLE, throughput may be slower,
however, MSMQ guarantees that the message will be delivered, even if a computer crashes while the
message is en-route to the queue.

MSMQ always sets the delivery mechanism of transactional messages to
MQMSG_DELIVERY_RECOVERABLE. For information on transactions, see MSMQ Transactions.

Example
This example first creates and opens a queue for sending messages, then sets the delivery
mechanism for a message and sends it off to the queue.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the code window
of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue
Dim msg As New MSMQMessage

Private Sub Form_Click()
      '*************************
      ' Create queue (no error
      ' handling if queue exists).
      '**************************
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\DeliveryTest"
    qinfo.Label = "Test Queue"

    qinfo.Create
      '**************
      ' Open queue.
      '**************
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
      '**************
      ' Send Messages.
      '**************
    msg.Label = "Test Message"
    msg.Body = "This is a test message with a string Body."
    msg.Delivery = MQMSG_DELIVERY_RECOVERABLE
   
    msg.Send q
   
    MsgBox "The message was sent. Use the MSMQ Explorer to see the message in the
queue."
   
    q.Close

End Sub

See Also
Body, Close, Create, Label, MSMQMessage, MSMQQueue, MSMQQueueInfo, Open, PathName,
Send

DestinationQueueInfo
MSMQMessage

The DestinationQueueInfo property specifies the destination queue for the message.

Quick Info
Type: MSMQQueueInfo
Run time: read-only

Syntax
set object2 = object1.DestinationQueueInfo

Syntax Element Description
object1 Message (MSMQMessage) object that

represents the message.
object2 Queue information (MSMQQueueInfo) object

that represents the destination queue.

Settings
MSMQQueueInfo object.

Remarks
The DestinationQueueInfo property is set by MSMQ when a message is sent. It is typically used
when reading messages from a machine journal, dead letter queue, or response messages from a
response queue. DestinationQueueInfo provides the destination queue of the original message.

To provide the destination queue of a message in a response message, set the correlation identifier
(CorrelationId) of the response message to the DestinationQueueInfo property of the original
message. The application reading the response message can then look at the correlation identifier to
determine the origin of the response message. For an example of this, see Sending Messages that
Request a Response.

EncryptAlgorithm
MSMQMessage

The EncryptAlgorithm property specifies the encryption algorithm used by MSMQ to encrypt private
messages.

Quick Info
Type: Long
Run time: read-write

Syntax
object.EncrypAlgorithm

Syntax Element Description
object Message (MSMQMessage) object that

represents the message.

Settings
The EncryptAlgorithm property can have any one of the following values:

MQMSG_RC2
Default.

MQMSG_RC4

Message encryption is based on public-key encryption using the Microsoft® Cryptography API with an
underlying RSA provider.

Remarks
EncryptAlgorithm is used with the MSMQMessage object's PrivLevel property to send private
messages.

For a discussion on private messages, see Private Messages.

For a complete example of sending a private message (including setting the privacy level of a queue),
see Sending Private Messages.

FormatName
MSMQQueueInfo

The FormatName property specifies the format name of the queue. This property must be set before
the queue is opened.

When creating a queue, if a format name is not provided by the application, MSMQ generates one from
the queue's MSMQ pathname (PathName). After the queue is created, you can use the name
generated by MSMQ, or specify a different one.

Quick Info
Type: String
Run time: read/write

Syntax
object.FormatName

Syntax Element Description
object The queue (MSMQQueueInfo) object in

question.

Settings
String. Possible strings are:

PUBLIC=QueueGUID
DIRECT=Protocol:MachineAddress\QueueName
DIRECT=OS:MachineName\QueueName
PRIVATE=MachineGUID\QueueNumber

Remarks
The FormatName property must be specified to open the queue. MSMQ uses the queue's format
name to identify which queue to open and how to access the opened queue. A queue's format name
cannot be changed while the queue is open.

For information on how MSMQ uses format names, see Format Name.

Example
This example creates a private queue on the local machine, then opens the queue with the format
name provided by MSMQ. To try this example using Microsoft Visual Basic (version 5.0), paste the
code into the Code window of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PRIVATE$\FormatNameTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
   
    MsgBox "Queue format name is: " + qinfo.FormatName
     
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

   
    On Error GoTo ErrorHandler

End Sub

See Also
Create, IsOpen, Label, MSMQQueue, MSMQQueueInfo, Open, PathName

Handle
MSMQQueue

Read-only. The Handle property indicates the handle of the opened queue.

Quick Info
Type: Long
Run time: read-only

Syntax
object.Handle

Syntax Element Description
object Queue (MSMQQueue) object that represents

the open instance of the queue.

Return Values
Queue handle.

Remarks
This handle refers to this instance of the queue. The value of Handle changes each time a queue is
opened.

After the queue is closed, MSMQ sets Handle to INVALID_HANDLE_VALUE.

Handle can be used to call MSMQ API functions directly. For example, when using Microsoft® Visual
Basic®, MSMQ functions can be called directly using the Declare Function facility.

Example
This example opens a queue for sending messages, then uses the value of Handle to test if the queue
is open. To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code
window of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\Handle"
    qinfo.Label = "Test Queue"
    qinfo.Create
   
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
    If q.Handle = INVALID_HANDLE_VALUE Then
          MsgBox "The queue is closed"
    Else
          MsgBox "The queue is open. Handle is: " + CStr(q.Handle)
    End If

End Sub

See Also

Create, Label, MSMQueue, MSMQQueueInfo, Open, PathName

HashAlgorithm
MSMQMessage

The HashAlgorithm property specifies the hash algorithm used by MSMQ when authenticating
messages.

Quick Info
Type: Long
Run time: read-write

Syntax
object.HashAlgorithm

Syntax Element Description
object Message (MSMQMessage) object that

represents the message.

Settings
This property can be set to any of the values defined by the ALG_ID data type in wincrypt.h (the default
is CALG_MD5) or in the MSMQ_CALG enumeration.

Remarks
The MSMQ run-time code uses the hashing algorithm when creating a digital signature and when
authenticating the message.

For information on what MSMQ does to authenticate messages, see How MSMQ Authenticates
Messages.

Id
MSMQMessage

Read-only. The Id property identifies the message using an MSMQ-generated message identifier.

Quick Info
Type: Variant containing array of bytes.
Run time: read-only

Syntax
object.Id

Syntax Element Description
object Message (MSMQMessage) object from queue.

Return Values
20-byte message identifier (array of bytes).

Remarks
MSMQ generates a 20-byte message identifier and attaches it to the message when the message is
sent. The identifier is an array of bytes that can be read by either the sending or receiving application.

MSMQ generates message identifiers for all messages, including acknowledgment messages
generated by MSMQ and MSMQ Connector applications. When an acknowledgment message is
created, the identifier of the original message can be found in the acknowledgment message's
CorrelationId property.

Example
This example locates a destination queue (creating one if one does not exist), sends two messages to
the queue, then reads the message and displays their message identifier.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfoDest As MSMQQueueInfo
Dim q As MSMQQueue
Dim msgSent1 As New MSMQMessage
Dim msgSent2 As New MSMQMessage
Dim msgRead As MSMQMessage
Dim strID As String                          'String representation of ID.

Private Sub Form_Click()
     
     
      '**********************************
      ' Locate destination queue
      '(create one if one doesn't exist).
      '**********************************
     
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next

      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"
            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '************************
      ' Open destination queue.
      '************************
      Set q = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
      '**************
      ' Send Messages.
      '**************
      msgSent1.Label = "Test Message"
      msgSent1.Body = "This message tests the message identifier."
      msgSent1.Send q
      For counter = LBound(msgSent.Id) To UBound(msgSent.Id)
                    strID = strID & Hex(msgSent.Id(Counter))
      Next counter
      MsgBox "Message (" + StrID + ") was sent to the queue."
      strID = ""
     
      msgSent2.Label = "Test Message"
      msgSent2.Body = "This message tests the message identifier."
      msgSent2.Send q
      For counter = LBound(msgSent2.Id) To UBound(msgSent2.Id)
                    strID = strID & Hex(msgSent2.Id(Counter))
      Next counter

      MsgBox "Message (" + strID + ") was sent to the queue."
      strID = ""
      q.Close
   
      '************************************
      ' Read the message in the destination
      ' queue and display its identifier.
      '************************************
     
      Set q = qinfoDest.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
      Set msgRead = q.Receive (ReceiveTimeout:=0)
     
      While Not msgRead Is Nothing
            For Counter = LBound(msgRead.Id) To UBound(msgRead.Id)
                    strID = strID & Hex(msgRead.Id(Counter))
            Next Counter
            MsgBox "The message " + strID + " was removed from the queue."
            strID = ""
            Set msgRead = q.Receive
    Wend
   
End Sub
     

See Also
Body, Close, Create, Label, MSMQMessage, MSMQQuery, MSMQQueue, MSMQQueueInfo,
MSMQQueueInfos, Next, Open, PathName, Receive, Reset, Send

IsAuthenticated
MSMQMessage

Read-only. The IsAuthenticated property indicates that the message was authenticated by MSMQ.

Quick Info
Type: Boolean
Run time: read-only

Syntax
object.IsAuthenticated

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Returned Value
TRUE

The message is authenticated.
FALSE

The message is not authenticated.

Remarks
The receiving application can use IsAuthenticated to test which messages have been authenticated if
the target queue does not force authentication. By default, the target queue can accept authenticated
and non-authenticated messages. To change this default condition the queue's Authenticate property
must be set.

IsOpen
MSMQQueue

Read-only. The IsOpen property indicates whether or not the queue is open.

Quick Info
Type: Boolean
Run time: read-only

Syntax
object.IsOpen

Syntax Element Description
object Queue (MSMQQueue) object that represents

an instance of the queue.

Return Values
TRUE

The queue is open.
FALSE

The queue is not open.

Remarks
IsOpen is TRUE if and only if Handle <> INVALID_HANDLE_VALUE.

See Also
Create, Label, MSMQQueue, MSMQQueueInfo, Open, PathName

IsTransactional
MSMQQueueInfo

Read-only. The IsTransactional property indicates whether or not the queue supports transactions.

Quick Info
Type: Boolean
Run time: read-only

Syntax
object.IsTransactional

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines the queue.

Return Values
TRUE

The queue is only used in transactions.
FALSE

The queue is not used in transactions.

Remarks
To specify a queue as a transaction queue, see Create.

If a queue is transactional, it can only accept messages that are sent as part of a transaction (see the
MSMQMessage object's Send method). In a similar way, messages read from a transactional queue
must also be done as part of a transaction (see the MSMQQueue object's Peek, PeekNext,
PeekCurrent, Receive, or ReceiveCurrent methods).

For information on transactions, see MSMQ Transactions.

Example
This example creates a transactional private queue on the local machine, then uses the queue's
IsTransactional property to display the appropriate message. To try this example using Microsoft
Visual Basic (version 5.0), paste the code into the Code window of a form, and then run the example
and click the form.

Dim qinfo As MSMQQueueInfo
     
Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PRIVATE$\isTransactionTest"
    qinfo.Label = "Test Queue"
    qinfo.Create IsTransactional:=True      'Creates transactional queue.
     
    qinfo.Refresh
    MsgBox "The queue's format name is: " + qinfo.FormatName
   
    If qinfo.IsTransactional Then
          MsgBox "The queue is a transactional queue."
          Else
          MsgBox "The queue is not a transactional queue."

    End If

End Sub

See Also
Create, FormatName, Label, MSMQMessage, MSMQQueueInfo, PathName, Peek, PeekNext,
Receive, Refresh, Send

IsWorldReadable
MSMQQueueInfo

Read-only. The IsWorldReadable property indicates if everyone can read the messages in the queue.

Quick Info
Type: BOOLEAN
Run time: read-only

Syntax
object.IsWorldReadable

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines the queue.

Return Values
TRUE

Everyone can read messages in the queue and its queue journal.
FALSE

Default. Only the owner of the queue can read the messages in the queue.

Remarks
MSMQ initially sets this property based on the Create method’s optional IsWorldReadable parameter.
After the queue is created, MSMQ resets IsWorldReadable whenever the queue’s security is changed
to allow or disallow read access to everyone.

This property has no effect on sending messages to the queue.

For information on access control, see Access Control.

Journal
MSMQQueueInfo MSMQMessage

The Journal property is used for queues (MSMQQueueInfo object) and messages (MSMQMessage
object).

For a queue, Journal specifies whether or not messages retrieved from the queue are stored in a
queue journal.

For a message, Journal specifies whether a copy of the message is sent to a machine journal when
the message is sent, to a dead letter queue if the message could not be sent, or neither.

Quick Info
Type: Long
Run time: read/write

Syntax
object.Journal

Syntax Element Description
object Queue information (MSMQQueueInfo) object

used to define a queue, or message
(MSMQMessage) object used to define a
message.

Settings
For queues, set Journal to one of the following values:

MQ_JOURNAL
When a message is removed from the queue, it is stored in the queue journal.

MQ_JOURNAL_NONE
The default. Messages are not stored in a journal queue when they are removed from the queue.

For messages, set Journal to one or more of the following values:
MQMSG_DEADLETTER

If the message time-to-be-received or time-to-reach-queue setting expires, keep the message in
the dead letter queue on the machine where time expired.

MQMSG_JOURNAL
If the message is transmitted (from the originating machine to the next hop), keep it in the
machine journal on the originating machine.

MQMSG_JOURNAL_NONE
The default. The message is not kept in the originating machine's machine journal.

Remarks
Journal does not create a queue. Journal, machine, and dead letter queues are all system queues
generated by MSMQ. For more information about types of queues, see Journal Queues and Dead
Letter Queues. For an example of reading messages from a journal queue or dead letter queue, see
Reading Messages In a Queue.

Queue Journal
To specify a journal queue, set Journal to MQ_JOURNAL and call the MSMQQueueInfo object's
Create method.
To reset Journal, set Journal to a new value and, if the queue is open, call the MSMQQueueInfo
object's Update method. If the queue is not open do not call Update, the queue's properties are

updated automatically when the queue is opened.
To find out if a queue is using a journal queue, call the MSMQQueueInfo object's Refresh method.
The size of the queue's journal queue can be set using the JournalQuota property.

Machine Journal
MSMQ automatically sends transactional messages to the transaction dead letter queue
(DEADXACT) on the source machine if the message is not delivered. For information on
transactions, see MSMQ Transactions.

Example: Specifying a queue journal
This example creates a private queue on the local machine, attaching a journal queue to the created
queue. To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code
window of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
     
Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PRIVATE$\JournalTest"
    qinfo.Label = "Test Queue"
    qinfo.Journal = MQ_JOURNAL
    qinfo.Create
     
    MsgBox "Queue's Format name is: " + qinfo.FormatName

End Sub

Example: Specifying a machine journal
This example first creates and opens a queue for sending messages, then sets the delivery
mechanism for a message and sends it off to the queue.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim msgMessage as New MSMQMessage

If qFriendQueue.IsOpen Then
      msgMessage.Journal = MQMSG_JOURNAL          'Specify machine journal.
      msgMessage.Body = Chr(KeyAscii)                'Fills message Body.
      msgMessage.Label = "myMessage"                  'Sets message label.
      msgMessage.Send qFriendQueue                      'Sends message.
End If

See Also
Body, Create, FormatName, JournalQuota, Label, MSMQQueueInfo, PathName, Refresh, Send,
Update

JournalQuota
MSMQQueueInfo

Optional. The JournalQuota property specifies the maximum size (in kilobytes) of the queue journal.

Quick Info
Type: Long
Run time: read/write

Syntax
object.Journal

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines the queue.

Settings
Maximum size (in kilobytes) of the queue journal (the default is INFINITE).

Remarks
JournalQuota is used along with Journal to tell MSMQ to start storing a copy of the messages
retrieved from the queue. For information on accessing queue journals, see Journal Queues.

To set the size of the journal queue, set JournalQuota and call the MSMQQueueInfo object's Create
method.

To reset the size of a journal queue after the queue is created, set JournalQuota to a new value and, if
the queue is open, call the MSMQQueueInfo object's Update method. If the queue is not open do not
call Update, the queue's properties are updated automatically when the queue is opened.

To find the size of a journal queue, call the MSMQQueueInfo object's Refresh method.

Example: Specifying a queue journal
This example creates a private queue on the local machine, attaching a journal queue to the created
queue whose size is 7K. To try this example using Microsoft Visual Basic (version 5.0), paste the code
into the Code window of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
     
Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PRIVATE$\JournalQuotaTest"
    qinfo.Label = "Test Queue"
    qinfo.Journal = MQ_JOURNAL
    qinfo.JournalQuota = 7
    qinfo.Create
     
    MsgBox "Queue's Format name is: " + qinfo.FormatName

End Sub

See Also
Create, FormatName, Journal, Label, MSMQQueueInfo, Refresh, PathName Update

Label
MSMQQueueInfo MSMQMessage

Optional. The Label property specifies a description of the queue or message.

Quick Info
Type: String
Run time: read/write

Syntax
object.Label

Syntax Element Description
object Either the queue information

(MSMQQueueInfo) object that defines the
queue, or the message (MSMQMessage)
object that defines the message.

Settings
Queue label

Application-defined string (default is ""). The maximum length of the string is
MQ_MAX_Q_LABEL_LEN (124 Unicode characters).

Message label
Application-defined string describing the message. The maximum length of a message label is 250
Unicode characters (including end-of-line character).

Remarks
Queue label

For public queues, the queue's label can be used as the search criteria for a query. By setting the
label of several queues to the same string, the application can later run a query on the queue label
and return all the queues with the same label. (A query can also be used to retrieve the label of a
public queue.) For information on running a query, see Locating a Public Queue.
To specify the label of a queue, set Label and call the MSMQQueueInfo object's Create method.
To reset the label of a queue after the queue is created, set Label to a new label and, if the queue is
open, call the MSMQQueueInfo object's Update method. If the queue is not open do not call
Update, the queue's properties are updated automatically when the queue is opened.
To find the label of a queue, call the MSMQQueueInfo object's Refresh method.

Message label
Message labels can be used by administration tools for display purposes. For example, a printing
application could put the source application and document name in the label of each message it
sends to the printer queue.
For an example of how MSMQ sends the messages to a queue, see Sending Messages To a
Queue.

Example: Setting a queue label
This example creates a private queue on the local machine, setting the queue's label to "Test Queue".
To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo

     
Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PRIVATE$\myqueue"
    qinfo.Label = "Test Queue"
    qinfo.Create
     
    MsgBox "Queue's Format name is: " + qinfo.FormatName

End Sub

Example: Setting a message label
This example creates a queue, opens the queue for sending messages, sets the label of a message,
then sends the message to the queue.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue
Dim msg As New MSMQMessage

Private Sub Form_Click()
      '*************************
      ' Create queue (no error
      ' handling if queue exists.
      '**************************
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\LabelTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
      '**************
      ' Open queue.
      '**************
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
      '**************
      ' Send Message.
      '**************
    msg.Label = "Test Message"
    msg.Body = "This is a test message with a string Body."
    msg.Send q

 q.Close

End Sub

See Also
Body, Close, Create, FormatName, MSMQMessage, MSMQQueue, MSMQQueueInfo, Open,
PathName

MaxTimeToReachQueue
MSMQMessage

The MaxTimeToReachQueue property specifies a time limit (in seconds) for the message to reach the
queue.

Quick Info
Type: Long
Run time: read/write

Syntax
object.MaxTimeToReachQueue

Syntax Element Description
object Message (MSMQMessage) object that

represents the message.

Settings
Integer value (the default is LONG_LIVED).

Remarks
MaxTimeToReachQueue sets the message's time-to-reach-queue timer. For a discussion of message
timers, see Message Timers. If the time-to-reach-queue timer expires before the message reaches its
destination, MSMQ discards the message, sending it to the dead letter queue if the message's Journal
property is set to MQMSG_DEADLETTER.

MSMQ can also send a return negative acknowledgment messages back to the sending application if
the message does not arrive and the message's Ack property is set accordingly.

The default value LONG_LIVED is an enterprise-wide setting that can be adjusted by the MSMQ
Administrator. Typically, LONG_LIVED is set to 90 days. Although this timer can be set to INFINITE,
MSMQ automatically uses the LONG_LIVED value in its place.

Once a message arrives at the queue, MaxTimeToReachQueue can be used to find out how much
time remains in the time-to-reach-queue timer. A value of 0 indicates the timer has expired.

MSMQ uses two message timers: time-to-reach-queue and time-to-be-received. If the time-to-be-
received timer is set to a value less than the time-to-reach-queue timer, the time-to-be-received timer
takes precedence over the time-to-reach-queue timer.

No matter what value MaxTimeToReachQueue is set to (even if set to 0), MSMQ always gives each
message one chance to reach its destination if the queue is waiting for the message. If the queue is
local, the message always reaches the queue.

MSMQ automatically uses the time-to-reach-queue timer of the first message when several messages
are sent in a transaction. For information on transactions, see MSMQ Transactions.

When MSMQ creates an acknowledgment message, it always sets the message's time-to-reach-queue
timer to LONG_LIVED.

Example
This example first creates and opens a queue for sending messages, sets the time-to-reach-queue
timer for a message and sends it off to the queue, then reads the message in the queue and displays
the time remaining in the timer.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the code window of a
form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue
Dim msgSent As New MSMQMessage
Dim msgReceived As MSMQMessage

Private Sub Form_Click()
      '***************************
      ' Create queue (no error
      ' handling if queue exists).
      '***************************
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\TimerTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
      '**************
      ' Open queue.
      '**************
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
      '**************
      ' Send Message.
      '**************
    msgSent.Label = "Test Message"
    msgSent.Body = "This message tests MaxTimeToReachQueue."
    msgSent.MaxTimeToReachQueue = 120
    msgSent.Send q
   
    MsgBox "The message was sent. Check the MSMQ Explorer to see the messages in the
queue."
    q.Close
   
    MsgBox "Click OK to continue"
   
      '**************
      ' Read Message.
      '**************
    Set q = qinfo.Open(MQ_PEEK_ACCESS, MQ_DENY_NONE)
    Set msgReceived = q.Peek
    MsgBox "MaxTimeToReachQueue = " + CStr(msgReceived.MaxTimeToReachQueue)

End Sub

See Also
Body, Close, Create, Label, MSMQMessage, MSMQQueueInfo, MSMQQueue, Open, PathName,
Send

MaxTimeToReceive
MSMQMessage

The MaxTimeToReceive property specifies a time limit (in seconds) for the message to be retrieved
from the target queue. This includes the time spent getting to the destination queue plus the time spent
waiting in the queue before it is retrieved by an application.

Quick Info
Type: Long
Run time: read/write

Syntax
object.MaxTimeToReceive

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Settings
Integer value (the default is INFINITE).

Remarks
MaxTimeToReceive sets the message's time-to-be-received timer. For a discussion of message
timers, see Message Timers. If the time-to-be-received timer expires before the message is removed
from the queue, MSMQ discards the message, sending it to the dead letter queue if the message's
Journal property is set to MQMSG_DEADLETTER.

MSMQ can also send a negative acknowledgment message back to the sending application if the
message's Ack property is set accordingly and the message is not retrieved before the timer expires.

Once a message arrives at the queue, MaxTimeToReceive can be used to find out how much time
remains in the time-to-be-received timer.

MSMQ uses two message timers: time-to-reach-queue and time-to-be-received. If the time-to-be-
received timer is set to a value less than the time-to-reach-queue timer, the time-to-be-received timer
takes precedence over the time-to-reach-queue timer.

MSMQ automatically uses the time-to-be-received timer of the first message when several messages
are sent in a transaction. For information on transactions, see MSMQ Transactions.

When MSMQ creates an acknowledgment message, it always sets the message's time-to-be-received
timer to INFINITE.

Example
This example first creates and opens a queue for sending messages, sets the time-to-receive timer for
a message and sends it off to the queue, then reads the message in the queue and displays the time
remaining in the timer.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the code window of a
form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue
Dim msgSent As New MSMQMessage
Dim msgReceived As MSMQMessage

Private Sub Form_Click()
      '***************************
      ' Create queue (no error
      ' handling if queue exists).
      '***************************
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\TimerTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
      '**************
      ' Open queue.
      '**************
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
      '**************
      ' Send Message.
      '**************
    msgSent.Label = "Test Message"
    msgSent.Body = "This message tests MaxTimeToReceive."
    msgSent.MaxTimeToReceive = 120
    msgSent.Send q
   
    MsgBox "The message was sent. Check the MSMQ Explorer to see the messages in the
queue."
    q.Close
   
    MsgBox "Click OK to continue"
   
      '**************
      ' Read Message.
      '**************
    Set q = qinfo.Open(MQ_PEEK_ACCESS, MQ_DENY_NONE)
    Set msgReceived = q.Peek
    MsgBox "MaxTimeToReceive = " + CStr(msgReceived.MaxTimeToReceive)

End Sub

See Also
Body, Close, Create, Label, MSMQMessage, MSMQQueueInfo, MSMQQueue, Open, PathName,
Send

ModifyTime
MSMQQueueInfo

Read-only. The ModifyTime property indicates when the public queue's properties in the information
store were last updated.

Quick Info
Type: Date Variant
Run time: read-only

Syntax
object.ModifyTime

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines the queue.

Return Values
Date when the queue properties were last updated (includes when the queue was created and the last
time Update was called).

Remarks
To read this property, the application must first call the MSMQQueueInfo object's Refresh method.
Although MSMQ updates MQIS when the queue is created and when Update is called, the
ModifyTime property is not updated until Refresh is called.

The returned value for this property can be manipulated using standard Microsoft® Visual Basic® date
and time functions such as Date$, and Time$. For descriptions of Visual Basic functions, see the
Visual Basic documentation.

When ModifyTime is displayed, Visual Basic will automatically convert the parameter's value to the
local system time and system date.

The ModifyTime property can be used when making a query (see example below).

Example
This example uses the ModifyTime and RelModifyTime parameters of LookupQueue to locate all the
public queues that have been modified in the last 10 minutes. To locate the queues, MSMQ compares
the date specified by the ModifyTime parameter with the date of each queue's ModifyTime property.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form. Run the example once, then wait ten minutes and
run the example again with a new PathName. The queue created by the first pass will not be found on
the second pass.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfoNew As MSMQQueueInfo
Dim qinfoDest As MSMQQueueInfo

Private Sub Form_Click()

    Set qinfoNew = New MSMQQueueInfo
    qinfoNew.PathName = ".\ModifyTest1"

    qinfoNew.Label = "Test Queue"
    qinfoNew.Create

         
      '**********************
      ' Locate public queues
      '**********************
      dateLast = DateAdd("n", -10, Now)
      Set qinfos = query.LookupQueue(ModifyTime:=dateLast, RelModifyTime:=REL_GT)
      qinfos.Reset
     
      '**********************************
      ' Display public queues modified in
      ' last 10 minutes.
      '**********************************
      Set qinfoDest = qinfos.Next
      cQueue = 0                          'Counter for number of queues found.
     
      While Not qinfoDest Is Nothing
            MsgBox "The properties of this queue (" + qinfoDest.FormatName + ") were
modified in the last ten minutes."
            cQueue = cQueue + 1
            Set qinfoDest = qinfos.Next
      Wend
     
      MsgBox "The total public queues found were: " + CStr(cQueue)

End Sub

See Also
Create, FormatName, Label, LookupQueue, MSMQQuery, MSMQQueueInfo, MSMQQueueInfos,
Next, PathName, Reset

PathName
MSMQQueueInfo

Required. The PathName property specifies the MSMQ pathname of the queue. The MSMQ pathname
specifies the name of the computer where the queue's message are stored, if the queue is public or
private, and the name of the queue.

Quick Info
Type: String
Run time: read/write

Syntax
object.PathName

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines the queue.

Settings
String. The maximum length for the complete MSMQ pathname is MQ_MAX_Q_NAME_LEN (124
Unicode characters).

Remarks
The PathName property is the only property required when calling the MQQueueInfo object's Create
method. An MQ_ERROR_PROPERTY_NOTALLOWED error is returned if any attempt is made to set
this property after the queue is created.

For public queues, PathName includes the name of the computer where the queue's messages are
stored, followed by the name of the queue (the MSMQ pathname of public queues is stored in MQIS
name space). For private queues, add \PRIVATE$\ between the machine name of the local computer
and the queue name (private queues can only be registered on the local computer). For a description
of public and private queues, see Message Queues.

Here are three examples of MSMQ pathnames. The first two examples indicate two public queues (one
on a local computer and the other on a remote computer), and the third example indicates a private
queue.

"myMachine\myPublicQueue"
"otherMachine\otherPublicQueue"
"myMachine\Private$\myPrivateQueue"

As a shortcut, you can substitute a period "." for the local machine. So myPublicQueue and
myPrivateQueue could be specified on the local machine as:

".\myPublicQueue"
".\Private$\myPrivateQueue"

Public queues are registered in MQIS, and private queues are registered on the local computer. Both
types of queues exist until deleted explicitly.

Private queues are only created on the local computer. It is the application's responsibility to ensure
that all queue names on the local computer are unique. If a queue name already exists when Create is
called, MSMQ returns an MQ_ERROR_QUEUE_EXISTS error to the application.

To find out the MSMQ pathname of a queue, call the MSMQQueueInfo object's Refresh method.

Foreign public queues (queues located outside the MSMQ enterprise) are created in the same way as
an MSMQ public queue. For foreign queues, the PathName property specifies the name of the foreign
computer as it is defined in MQIS. For information on foreign computers, see MSMQ Connector Server.

Example
This example creates a private queue on the local machine, setting the queue's label to “Test Queue".
To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
     
Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PRIVATE$\myqueue"
    qinfo.Label = "Test Queue"
    qinfo.Create
     
    MsgBox "Queue's Format name is: " + qinfo.FormatName

End Sub

See Also
Create, FormatName, Label, MSMQQueueInfo

Priority
MSMQMessage

The Priority property specifies the message's priority. A low number indicates a low priority.

Quick Info
Type: Long
Run time: read/write

Syntax
object.Priority

Syntax Element Description
object Message (MSMQMessage) object that

represents the message.

Settings
Set Priority to an integer value between 7 and 0 (the default is 3).

Remarks
Message priority affects how MSMQ handles the message while it is in route, as well as where the
message is placed in the queue. Higher priority messages are given preference during routing, and
inserted towards the front of the queue. Messages with the same priority are placed in the queue
according to their arrival time.

MSMQ automatically sets the priority level of transactional messages to 0: Priority is ignored by the
transaction. For information on transactions, see MSMQ Transactions.

If the message is sent to a public queue, a second priority (the queue's BasePriority property) is
added to Priority for routing purposes. However, the queue's base priority has no effect on how
messages are placed in the queue.

Example
This example first creates and opens a queue for sending messages, then sets the priority level of two
message and sends them off to the queue.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue
Dim msg1 As New MSMQMessage
Dim msg2 As New MSMQMessage

Private Sub Form_Click()
      '*************************
      ' Create queue (no error
      ' handling if queue exists.
      '**************************
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PriorityTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
      '**************
      ' Open queue.

      '**************
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
      '**************
      ' Send Messages.
      '**************
    msg1.Label = "Test Message1"
    msg1.Body = "This is a test message with a string Body."
    msg1.Priority = 0
   
    msg2.Label = "Test Message2"
    msg2.Body = "This is a test message with a string Body."
    msg2.Priority = 7
   
    msg1.Send q
    msg2.Send q
   
    MsgBox "Both messages were sent. Check the MSMQ Explorer to see the messages in
the queue."
   
 q.Close

End Sub

See Also
Body, Close, Create, Label, MSMQMessage, MSMQQueue, MSMQQueueInfo, Open, PathName,
Send

PrivLevel
MSMQQueueInfo MSMQMessage

Optional. The PrivLevel property specifies the privacy level of a queue or message.

For queues, this property specifies whether or not the queue accepts private (encrypted) messages,
non-private messages, or both.

For messages, this property specifies whether or not the message is private (encrypted).

Quick Info
Type: Long
Run time: read/write

Syntax
object.PrivLevel

Syntax Element Description
object For queues, the queue information

(MSMQQueueInfo) object that defines the
queue.
For messages, the message (MSMQMessage)
object that defines the message.

Settings
For queues, set PrivLevel to one of the following values:

MQ_PRIV_LEVEL_NONE
The queue accepts only non-private (clear) messages.

MQ_PRIV_LEVEL_BODY
The queue accepts only private (encrypted) messages.

MQ_PRIV_LEVEL_OPTIONAL
The default. The queue does not force privacy. It accepts private (encrypted) messages and non-
private (clear) messages.

For messages, set PrivLevel to one of the following values:

MQMSG_PRIV_LEVEL_NONE
The default. The message is a non-private (clear) message.

MQMSG_PRIV_LEVEL_BODY
The message is private (encrypted) message.

Remarks
Queue Privacy Level

The application can set the privacy level of queues and messages. If the privacy level of the
message does not correspond to the privacy level of the queue, the message is rejected by the
queue, and, if the sending application requested a negative acknowledgment message when it sent
the message, MQMSG_CLASS_BAD_ENCRYPTION is returned to the sending application to
indicate the message was rejected.
To specify the privacy level when creating the queue, set PrivLevel and call the MSMQQueueInfo
object's Create method.
To reset the privacy level of a queue after the queue is created, set PrivLevel to a new level and, if

the queue is open, call the MSMQQueueInfo object's Update method. If the queue is not open do
not call Update, the queue's properties are updated automatically when the queue is opened.
To find out the privacy level of a queue, call the MSMQQueueInfo object's Refresh method.

Message Privacy Level
MSMQ can send private messages throughout the MSMQ enterprise. When sending a private
message the source Queue manager encrypts the body of the message and the target queue
manager decrypts the message body. For a discussion of private messages, see Private Messages.
When encrypting and decrypting messages, MSMQ uses the algorithm specified in
EncryptAlgorithm.

For a complete example of sending a private message (including setting the privacy level of a queue),
see Sending Private Messages.

Example: Setting the privacy level of a queue
This example creates a private queue on the local machine, setting the queue's privacy level to
MQ_PRIV_LEVEL_OPTIONAL. To try this example using Microsoft Visual Basic (version 5.0), paste
the code into the Code window of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
     
Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PRIVATE$\PrivacyLevelTest"
    qinfo.Label = "Test Queue"
    qinfo.PrivLevel = MQ_PRIV_LEVEL_OPTIONAL
    qinfo.Create
     
    MsgBox "Queue's Format name is: " + qinfo.FormatName

End Sub

Example: Setting the privacy level of a message
This example opens a queue that can only accept private messages, then sends a private message to
the queue.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue
Dim msg As New MSMQMessage

Private Sub Form_Click()
    '**********************
    ' Create queue
    '**********************
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PrivacyTest"
    qinfo.Label = "Test Queue"
    qinfo.PrivLevel = MQ_PRIV_LEVEL_BODY
    qinfo.Create
    '*********************
    ' Open queue.
    '*********************

    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
    '*********************
    ' Send message.
    '*********************
    msg.Label = "Test Message"
    msg.Body = "This is a private message."
    msg.PrivLevel = MQMSG_PRIV_LEVEL_BODY
   
    msg.Send q
           
    q.Close
       
End Sub

See Also
Body, Create, Label, MSMQMessage, MSMQQueue, MSMQQueueInfo, Open, PathName,
Refresh, Send, Update

QueueGuid
MSMQQueueInfo

Read-only. The QueueGuid property identifies the public queue associated with the MSMQQueueInfo
object. The queue identifier is created by MSMQ when the queue is created.

Quick Info
Type: GUID
Run time: read-only

Syntax
object.QueueGuid

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines the queue.

Return Values
GUID of public queue.

Remarks
To find out the queue identifier of a queue, the application must first call Refresh. Although MSMQ
creates the queue identifier when the queue is created, it does not update quidQueue until Refresh is
called.

The QueueGuid property identifies the queue defined by the MSMQQueueInfo object. It does not
identify an open instance of the queue.

Example
This example creates a public queue and then uses Refresh to display the queue's identifier. To try this
example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of a form that
has a single text box, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
     
Private Sub Form_Click()

    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\guidQueueTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
     
    qinfo.Refresh                    'Required to update QueueGuid
    Text1.Text = "quidQueue = " + CStr(qinfo.QueueGuid)

End Sub

See Also
Create, Label, MSMQQueueInfo, PathName, Refresh

QueueInfo
MSMQQueue

Read-only. The QueueInfo property retrieves the initial settings of the MSMQQueueInfo object used to
open the queue.

Quick Info
Type: MSMQQueueInfo
Run time: read-only

Syntax
Set object2=object1.QueueInfo

Syntax Element Description
object1 Queue (MSMQQueue) object that represents

the open instance of the queue.
object2 Queue information (MSMQQueueInfo) object

that defined the queue.

Return Values
MSMQQueueInfo object.

Remarks
The QueueInfo property is used to determine the original settings used to create the queue. For
example, it can be used to determine the original label of a queue when it has been changed.

Example
This example opens a queue for sending messages, changes the label of the queue, then retrieves the
original label using QueueInfo. To try this example using Microsoft® Visual Basic® (version 5.0), paste
the code into the Code window of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\queueinfo6"
    qinfo.Label = "Test Queue"
    qinfo.Create
   
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
    MsgBox "Label is: " + qinfo.Label
   
    qinfo.Label = "New Label"
    MsgBox "Label is: " + qinfo.Label
   
    q.Close
       
    Set qinfo = q.QueueInfo
    MsgBox "Label is: " + qinfo.Label

End Sub

   
See Also
Close, Create, QueueGuid, Open, Label, PathName

Quota
MSMQQueueInfo

Optional. The Quota property specifies the maximum size (in kilobytes) of the queue.

Quick Info
Type: Long
Run time: read/write

Syntax
object.Quota

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines the queue.

Settings
Long integer (default is INFINITE). Maximum size is based on the memory available in the computer
where the queue's messages are stored.

Remarks
Quota is typically set when the queue is created.

To set the quota of a queue, set Quota and call the MSMQQueueInfo object's Create method.

To reset the quota of a queue after the queue is created, set Quota to a new level and, if the queue is
open, call the MSMQQueueInfo object's Update method. If the queue is not open do not call Update,
the queue's properties are updated automatically when the queue is opened.

To find the quota of a queue, call the MSMQQueueInfo object's Refresh method.

Example
This example creates a private queue on the local machine, setting the queue's quota to 10K. To try
this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of a form,
and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
     
Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\myqueue"
    qinfo.Label = "Test Queue"
    qinfo.Quota = 10
    qinfo.Create
     
    MsgBox "Queue's Format name is: " + qinfo.FormatName

End Sub

See Also
Create, FormatName, Label, MSMQQueueInfo, PathName, Update

ResponseQueueInfo
MSMQMessage

The ResponseQueueInfo property specifies a queue for receiving response messages from the target
application.

Quick Info
Type: MSMQQueueInfo
Run time: read/write

Syntax
set object1.ResponseQueueInfo = object2

Syntax Element Description
object1 Message (MSMQMessage) object that

represents the message.
object2 Queue information (MSMQQueueInfo) object

that represents the response queue.

Settings
MSMQQueueInfo object.

Remarks
ResponseQueueInfo is used to send the format name of another queue to the receiving application.
Typically, this is done so that the receiving application can send response messages back to the
sending application. For information on response queues, see Response Queues.

Note The MSMQQueueInfo object of a private queue (which would be inaccessible otherwise) can
also be sent using queuinfoResponse.

Messages returned to the queue are application defined. The application must define what is in the
messages, as well as what is to be done when a message is received.

For a complete example of sending a message that requests a response plus sending the response,
see Sending Messages that Request a Response.

Example
This example locates a response and destination queue (creating them if needed), sends a message to
the destination queue, then retrieves the message and sends a response message back to the
response queue. To coordinate between the two messages, the correlation identifier of the response
message (CorrelationId) is set to the message identifier of the original message.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the code window of a
form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfoResp, As MSMQQueueInfo
Dim qinfoDest As MSMQQueueInfo
Dim qRead As New MSMQQueue
Dim qResp As MSMQQueue
Dim msgSent As New MSMQMessage
Dim msgRead As MSMQMessage
Dim msgResp As New MSMQMessage

Private Sub Form_Click()
     
      '**********************************
      ' Locate response queue (create one
      ' if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Response Queue")
      qinfos.Reset
      Set qinfoResp = qinfos.Next
      If qinfoResp Is Nothing Then
            Set qinfoResp = New MSMQQueueInfo
            qinfoResp.PathName = ".\RespQueue"
            qinfoResp.Label = "Response Queue"
            qinfoResp.Create
      End If
      '**********************************
      ' Locate destination queue
      '(create one if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next
      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"
            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '************************
      ' Open destination queue.
      '************************
      Set q = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
      '**************
      ' Send Message.
      '**************
      msgSent.Label = "Test Message"
      msgSent.Body = "This message tests the response queue."
      Set msgSent.ResponseQueueInfo = qinfoResp
      msgSent.Send q
   
      MsgBox "The message was sent to the following queue: " + qinfoDest.QueueGuid + ".
Check the MSMQ Explorer to see the message in the queue."
      q.Close
   
      '************************************
      ' Read the message in the destination
      ' queue and send response message if
      ' one is requested.
      '************************************
      Set q = qinfoDest.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
      Set msgRead = q.Receive
     

      Set qResp = msgRead.ResponseQueueInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
      msgResp.Label = "Response Message"
      msgResp.Body = "This is a response message"
      msgResp.CorrelationId = msgRead.Id
      msgResp.Send qResp
      MsgBox "The response message was sent to the following queue: " +
msgRead.ResponseQueueInfo.QueueGuid
     
       
End Sub

See Also
Body, Close, Create, CorrelationId, Id, Label, LookupQueue, MSMQMessage, MSMQQuery,
MSMQQueue, MSMQQueueInfo, MSMQQueueInfos, Next, Open, PathName, Receive, Reset,
Send

SenderCertificate
MSMQMessage

The SenderCertificate property provides an array of bytes that represents the security certificate. The
security certificate is used to authenticate messages.

Quick Info
Type: Variant
Run time: read/write

Syntax
object.SenderCertificate

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Settings
Security certificate (internal or external).

Remarks
The sending application can specify an external certificate obtained from a certificate authority, or use
the internal certificate provided by MSMQ.

When using external certificates, the receiving application can use all the information in the certificate
to verify who sent the message. When using an internal certificate, this property is not useful to the
receiving application.

There are two ways to specify the security information provided by a certificate. If the sending
application is only going to use a certificate once, it should provide the complete certificate using
SenderCertificate. If the sending application is going to use the same certificate over and over, it
should call AttachCurrentSecurityContext.AttachCurrentSecurityContext retrieves and caches the
needed information using a single call, then automatically passes the information along with the
message when it is sent.

For information on using an external certificate, see Authenticating Messages Using an External
Certificate.

For information on using an internal certificate, see Authenticating Messages Using an Internal
Certificate.

SenderId
MSMQMessage

The SenderId property is an array of bytes that represent the identifier of the sending application.
MSMQ sets this property when the message is sent.

Quick Info
Type: Variant
Run time: read-only

Syntax
object.SenderId

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Return Values
An array of bytes generated by MSMQ.

Remarks
When a message is sent, MSMQ attaches SenderId to the message when an MSMQ sender identifier
is found for the user. The SenderId property is primarily used by MSMQ security to identify who sent
the message.

A second property, SenderIdType, is also attached to the message when the sender identifier is found.
This second property indicates what type of identifier was found (currently, the only type of sender
identifier available to MSMQ is an SID.

The receiving applications can look at SenderId to verify who sent a message.

SenderIDType
MSMQMessage

The SenderIDType property specifies the type of sender identifier found by MSMQ. Currently, the only
type of sender identifier available to MSMQ is an SID.

Quick Info
Type: Long
Run time: read-write

Syntax
object.SenderIDType

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Settings
MSMQ sets SenderIDType to one of the following:

MQMSG_SENDERID_TYPE_NONE
SenderID is not attached to the message.

MQMSG_SENDERID_TYPE_SID
The default. The SenderID property contains an SID for the user sending the message.

Remarks
If the sending application does not want MSMQ to send a sender identifier with a message, it can
specify MQMSG_SENDERID_TYPE_NONE when sending the message. This suppresses the
message's SenderID property.

The receiving application can use SenderIDType to determine what type of sender identifier was
attached to the message.

An SID of a local user (a user not logged into a Windows NT domain) is only valid locally. Even if a
local user specifies an SID, it is not sent with the message.

SentTime
MSMQMessage

Read-only. The SentTime property indicates when a message was sent.

Quick Info
Type: Date Variant
Run time: read-only

Syntax
object.SentTime

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Return Values
Date message was sent.

Remarks
The returned value for this property can be manipulated using standard Microsoft® Visual Basic® date
and time functions such as Date$, and Time$. For descriptions of Visual Basic functions, see the
Visual Basic documentation.

When SentTime is displayed, Visual Basic will automatically convert the parameter's value to the local
system time and system date.

Example
This example locates a destination queue (creating one if one does not exist), sends a message to the
queue, then reads the message and displays when the message was sent.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim query As New MSMQQuery
Dim qinfos As MSMQQueueInfos
Dim qinfoDest As MSMQQueueInfo
Dim qDest As MSMQQueue
Dim msgSent As New MSMQMessage
Dim msgRead As MSMQMessage

Private Sub Form_Click()
     
     
      '**********************************
      ' Locate destination queue
      '(create one if one doesn't exist).
      '**********************************
      Set qinfos = query.LookupQueue(Label:="Destination Queue")
      qinfos.Reset
      Set qinfoDest = qinfos.Next
      If qinfoDest Is Nothing Then
            Set qinfoDest = New MSMQQueueInfo
            qinfoDest.PathName = ".\DestQueue"

            qinfoDest.Label = "Destination Queue"
            qinfoDest.Create
      End If
     
      '**************
      ' Send Message.
      '**************
      Set qDest = qinfoDest.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
      msgSent.Label = "Test Message"
      msgSent.Body = "This message tests the message timers."
      msgSent.Send qDest
      qDest.Close
               
      '**
      ' Remove the message from destination queue
      ' and display when the message was sent.
      '**
      Set qDest = qinfoDest.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
      Set msgRead = qDest.Receive
     
      MsgBox "The message was sent at: " + CStr(msgRead.SentTime)
       
End Sub

See Also
Body, Close, Create, Label, LookupQueue, MSMQMessage, MSMQQuery, MSMQQueue,
MSMQQueueInfo, MSMQQueueInfos, Next, Open, PathName, Receive, Send

ServiceTypeGuid
MSMQQueueInfo

Optional. The ServiceTypeGuid property specifies the type of service provided by the queue.

Quick Info
Type: GUID
Run time: read/write

Syntax
object.ServiceTypeGuid

Syntax Element Description
object Queue information (MSMQQueueInfo) object

that defines queue.

Settings
GUID. Pre-defined or application generated.

Remarks
The queue's service type can be used to identify the queue.

It is recommended that the service type of the queue be specified when the queue is created. In most
cases, the service type of the queue can be defined by the application; however, some queues used by
MSMQ require a specific MSMQ-defined service type. For example, input queues used by the MSMQ
MAPI Transport Provider have a specific MSMQ-defined service type.

Note To generate a GUID, run the UUIDGEN.EXE program provided by MSDN. (For information
about UUIDGEN.EXE, see the Microsoft Platform SDK.)

The queue's service type can also be used to locate public queues registered in MQIS (see
LookupQueue).

To specify the queue's service type, set ServiceTypeGuid and call the MSMQQueueInfo object's
Create method.

To reset the service type of a queue after the queue is created, set Authenticate to a new GUID and, if
the queue is open, call the MSMQQueueInfo object's Update method. If the queue is not open do not
call Update, the queue's properties are updated automatically when the queue is opened.

To find the service type of a queue, call the MSMQQueueInfo object's Refresh method.

Example
This example creates a private queue on the local machine, setting the queue's service type to an
application-defined GUID. To try this example using Microsoft® Visual Basic® (version 5.0), paste the
code into the Code window of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
     
Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\PRIVATE$\myqueue"
    qinfo.Label = "Test Queue"
    qinfo.ServiceTypeGuid = "{bed40680-b773-11d0-8b96-00aa0062c8e9}"

    qinfo.Create
     
    MsgBox "Queue's Format name is: " + qinfo.FormatName

End Sub

See Also
Create, FormatName, Label, LookupQueue, PathName

ShareMode
MSMQQueue

Read-only. The ShareMode property indicates the share mode of the queue.

Quick Info
Type: Long
Run time: read-only

Syntax
object.ShareMode

Syntax Element Description
object Queue (MSMQQueue) object that represents

the open instance of the queue.

Return Values
The ShareMode property returns one of the following values:

MQ_DENY_NONE
The queue is available to everyone for sending, peeking, or retrieving messages. This is always
returned if the queue was opened with Access set to MQ_PEEK_ACCESS or MQ_SEND_ACCESS.

MQ_DENY_RECEIVE_SHARE
Messages can only be retrieved by this process. This value is only returned if the queue was opened
with Access set to MQ_RECEIVE_ACCESS.

Remarks
The ShareMode property returns the share mode of the queue when it was last opened, regardless if
the queue is currently opened or closed.

When ShareMode returns MQ_DENY_NONE, several users can be using the queue at the same time.

Example
This example opens a queue for sending messages, then uses the value of ShareMode to test who
can use the queue (with what share mode). To try this example using Microsoft Visual Basic (version
5.0), paste the code into the Code window of a form, and then run the example and click the form.

Dim qinfo As MSMQQueueInfo
Dim q As MSMQQueue

Private Sub Form_Click()
       
    Set qinfo = New MSMQQueueInfo
    qinfo.PathName = ".\lShareModeTest"
    qinfo.Label = "Test Queue"
    qinfo.Create
   
    Set q = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
     
    Select Case q.ShareMode
          Case MQ_DENY_NONE
                    MsgBox "The queue is open for multiple users."
          Case MQ_DENY_RECEIVE_SHARE
                    MsgBox "The queue is only open for this process."

          Case Else
                    MsgBox "Not a valid return value!"
    End Select
   
    q.Close
         
End Sub

See Also
Close, Create, Label, MSMQQueue, MSMQQueueInfo, Open, PathName

SourceMachineGuid
MSMQMessage

Read-only. The SourceMachineGuid specifies the source machine used to send the message.

Quick Info
Type: GUID
Run time: read-only

Syntax
object.SourceMachineGuid

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Return Values
GUID of the source machine.

Trace
MSMQMessage

The Trace property specifies where report messages are sent when tracing a message.

Quick Info
Type: Long
Run time: read/write

Syntax
object.Trace

Syntax Element Description
object Message (MSMQMessage) object that defines

the message.

Settings
The Trace property can be set to one of the following values:

MQMSG_SEND_ROUTE_TO_REPORT_QUEUE
Each hop made by the original message generates a report that is recorded in a report message.
The report elements include source Queue Manager, message identifier, target, time, and next hop.
The report message is sent to the report queue specified by the source Queue Manager.

MQMSG_TRACE_NONE
The default. No tracing for this message.

Remarks
If Trace is specified but the report queue is not defined by the MSMQ Administrator for the message's
source Queue Manager, this property is ignored.

For a description of report queues and messages, see Report Queues and Report Messages.

Transaction
MSMQTransaction

Read-only. The Transaction property represents the underlying transaction object used by this
transaction.

Quick Info
Type: Long
Run time: read-only

Syntax
object.Transaction

Syntax Element Description
object The MSMQTransaction object that represents

the transaction.

Return Values
Transaction object.

ActiveX Events
MSMQ uses a very limited number of events: Arrived and ArrivedError. Both events are fired by the
MSMQEvent component in response to a message or error arriving at a queue. The MSMQEvent
object is triggered whenever a message or error arrives at a queue and the queue object's
EnableNotification method has been called.

Arrived
MSMQEvent

The Arrived event is fired when EnableNotification has been called and some message is found in
the queue.

Syntax
object_Arrived(byval Queue as Object)

Syntax Element Description
object Instance of event (MSMQEvent) object used

for the event handler.
Queue Queue (MSMQQueue) object that represents

an open instance of the queue where the
message arrived.

Remarks
The Arrived event is fired by an instance of the MSMQEvent object. Every queue that has called
EnableNotification triggers an instance of the MSMQEvent object when a message arrives in the
queue (this includes existing messages in the queue when EnableNotification is first called).

There is no association between an Arrived event and a specific message. The arrived event only
means that some message arrived in the queue.

Although an Arrived event is fired for each message, there is no guarantee that the message that
triggered the event will still be there when the event handler tries to use the message. Queues are
dynamic, and another application may have already removed the message that triggered the Arrived
event.

EnableNotification must be explicitly reset after each Arrived event is fired.

Example
This example assumes that queues q1 and q2 are open and that they are not being shared by another
application. EnableNotification is called, and then the label of the first message in the queue (if
messages are already in the queue), or the first message sent to the queue, is displayed.

Dim WithEvents qevents as MSMQEvent
Dim q1 as MSMQQueue
Dim q2 as MSMQQueue

Sub Enable
        'Assuming q1 and q2 are open.
        q1.EnableNotification
        q2.EnableNotification
End Sub

Sub event_Arrived (byval q as Object)
        'Generic event handler
        Dim qArrive as MSMQQueue
        Set qArrive = q                                'Cast Object reference to MSMQQueue

        'This example assumes the message has not been removed
        'by another application.
        msgbox “Message in following queue: “ + qArrive.QueueInfo.Label
        qArrive.EnableNotification Event              'Reenables notification.

End Sub

See Also
EnableNotification, MSMQQueue

ArrivedError
MSMQEvent

The ArrivedError event is fired when EnableNotification has been called and an error is generated.

Syntax
object_ArrivedError(byval Queue as Object, byval ErrorCode as Long)

Syntax Element Description
object Instance of event (MSMQEvent) object used

for the event handler.
Queue Queue (MSMQQueue) object that represents

an open instance of the queue where the
message arrived.

ErrorCode Error code returned by MQReceiveMessage.

Remarks
An ArrivedError event can be triggered by the message's timeout timer expiring or by an error
occurring while the queue is receiving the message. The message's timeout timer can be used when
the application only wants to wait a specific amount of time to receive its messages.

This event applies only to messages failing to arrive at the queue; it is not associated with any errors
generated while the application is trying to read messages in the queue.

MSMQ Mail ActiveX Components
MSMQ provides ActiveX components that support composing and parsing the body of MSMQ mail
messages, which are used to communicate with e-mail based applications through the MSMQ mail
services.

Note The MSMQ Mail SDK must be installed to use any of the MSMQ Mail ActiveX components.

For information on MSMQ mail services (MAPI Transport Provider and Exchange Connector), see
MSMQ Mail Services.

MSMQ Mail Objects
The MSMQ Mail objects include:

· MSMQMailEMail
· MSMQMailFormData
· MSMQMailFormField
· MSMQMailFormFieldList
· MSMQMailRecipient
· MSMQMailRecipientList
· MSMQMailTextMessageData
· MSMQMailTnefData
· MSMQMailDeliveryReportData
· MSMQMailNonDeliveryReportData

MSMQMailEMail
Properties Methods

The MSMQMailEMail object represents an e-mail message. The e-mail message can be a form with
several fields, a text message with a single text body, a MAPI TNEF message, or a delivery or non-
delivery report.

The following properties define the e-mail message.

Property What it does
ContentType Specifies the type of e-mail: form, text

message, MAPI TNEF message, delivery
report, or non-delivery report.

DeliveryReportData Defines a delivery report
(MSMQMailDeliveryReportData object).

DestinationQueueLabels Provides the label of each destination
queue needed to send the MSMQ mail
message (read-only).

FormData Defines an e-mail form
(MSMQMailFormData object).

NonDeliveryReportData Defines a non-delivery report
(MSMQMailNonDeliveryReportData
object).

Recipients Specifies who receives the e-mail
(MSMQMailRecipientList object).

RequestDeliveryReport Specifies whether a delivery report should
be returned when the message is
delivered to a recipient.

RequestNonDeliveryReport Specifies whether a non-delivery report
should be returned when the message is
not delivered to a recipient.

Sender Specifies who sent the e-
mail(MSMQMailRecipient object).

Subject Specifies the subject of the e-mail.
SubmissionTime Indicates when message was sent.
TextMessageData Defines a single-body text message

(MSMQMailTextMessageData object).
TnefData Defines a MAPI TNEF message

(MSMQMailTnefData object).

The MSMQMailEMail object's methods provide a means to compose and parse an e-mail message.

MSMQMailFormData
Properties

The MSMQMailFormData object represents an e-mail form.

The following properties define the form.

Property What it does
FormFields Defines the fields of the form

(MSMQMailFormFieldList object).
Name Specifies the name of the form.

The MSMQMailFormData object has no methods.

MSMQMailFormFieldList
Properties Methods

The MSMQMailFormFieldList object represents a list of all the fields of a specific e-mail form.

It references a collection of MSMQMailFormField objects.

The following properties define a field list.

Property What it does
Count Number of fields in a form (read-only).
Item Defines a field in the list (read-only).

The MSMQMailFormFieldList object has methods for adding and removing items
(MSMQMailFormField objects) from the list.

MSMQMailFormField
Properties

The MSMQMailFormField object represents a field of an e-mail form.

Every MSMQMailFormField object is an item of an MSMQMailFormFieldList object.

The following properties define the field.

Property What it does
Name Specifies the name of the field.
Value Specifies the value of the field.

The MSMQMailFormField object has no methods.

MSMQMailRecipientList
Properties Methods

The MSMQMailRecipientList object represents a list of e-mail recipients.

It contains references to one of more MSMQMailRecipient object.

The following properties define a recipient list.

Property What it does
Count Number of recipients that will receive

the e-mail (read-only).
Item Defines a recipient in the list (read-

only).

The MSMQMailRecipientList object has methods for adding and removing items
(MSMQMailRecipient objects) from the list.

MSMQMailRecipient
Properties

The MSMQMailRecipient object represents an e-mail recipient.

It can be included in a list of recipients (MSMQMailRecipientList object) to indicate who is receiving
the mail, or it can be used to indicate who sent the mail (formdata).

The following properties define a recipient.

Property What it does
Address Specifies the address of the recipient.
Name Specifies the name of the recipient.
RecipientType Specifies how the e-mail is sent to the

recipient.
NonDeliveryReason Optional. Used in non-delivery reports

to specify why the recipient did not
receive the e-mail.

DeliveryTime Optional. Used in delivery reports to
specify when the message arrived

The MSMQMailRecipient object has no methods.

MSMQMailTextMessageData
Properties

The MSMQMailTextMessageData object represents an e-mail text message.

This object uses a single property (Text) to define the message.

The MSMQMailTextMessageData object uses no methods.

MSMQMailTnefData
Properties

The MSMQMailTnefData object represents an e-mail in TNEF format.

TNEF is a MAPI internal format that encapsulates the MAPI properties, and is used by the MSMQ Mail
services (the MSMQ Exchange Connector and the MSMQ MAPI Transport) to send mail to recipients
who are defined as rich-text recipients.

This object uses a single property (Data) to define the TNEF data.

The MSMQMailTnefData object uses no methods.

MSMQMailDeliveryReportData
Properties

The MSMQMailDeliveryReportData object represents a delivery report e-mail.

The following properties define the delivery report.

Property What it does
DeliveredRecipients Defines the recipients to whom the

original mail was delivered.
(MSMQMailRecipientList object).
The information for each recipient in
this list contains the optional recipient
property DeliveryTime which
specifies the delivery time of the
original mail to this recipient.

OriginalSubject Specifies the subject of the original
mail.

OriginalSubmissionTime Specifies the submission time of the
original mail.

The MSMQMailDeliveryReportData object has no methods.

MSMQMailNonDeliveryReportData
Properties

The MSMQMailNonDeliveryReportData object represents a non-delivery report e-mail.

The following properties define the non-delivery report.

Property What it does
NonDeliveredRecipients Defines the recipients to whom the

original mail was not delivered.
(MSMQMailRecipientList object).
The information for each recipient in
this list contains the optional recipient
property NonDeliveryReason which
specifies the reason why the original
e-mail was not delivered to this
recipient.

OriginalEMail Specifies the original e-mail.
(MSMQMailEMail object)

The MSMQMailNonDeliveryReportData object has no methods.

MSMQ Mail ActiveX Methods
The following topics describe the methods associated with the MSMQ Mail ActiveX components
provided by MSMQ Mail SDK.

Note The MSMQ Mail SDK must be installed to use any of the MSMQ Mail ActiveX components.

The methods of the MSMQ Mail objects include:

MSMQMailEMail
ComposeBody

ParseBody

MSMQMailFormFieldList
Add

Remove

MSMQMailRecipientList
Add

Remove

Add
MSMQMailFormFieldList MSMQMailRecipientList

The Add method adds a recipient to the recipient list (MSMQMailRecipientList)or a field to a form
field list (MSMQMailFormFieldList).

Syntax for Adding Recipient
object1.object2.Add Name, Address, Type[, DeliveryTime][, NonDeliveryReason][, Key]

Syntax Element Description
object1 E-mail message (MSMQMailEMail) object that

defines the e-mail message.
object2 Recipient list object (MSMQMailRecipientList) that

represents the list of recipients.
Name String representation of recipient.
Address String representation of the e-mail recipient's

address. Use one of the following formats (see
Remarks for examples).
When the e-mail is being sent to another MSMQ
application, the recipient's address is the label
(Label) of the application input queue
Adress:="MSMQQueueLabel"
When the e-mail is being sent to an Exchange user
via the MSMQ Exchange Connector, the address
includes the e-mail alias of the Exchange user plus
the label of the Exchange Connector’s server input
queue.
Address:="UserName@ServerInputQueueLabel"
When e-mail is being sent to the MAPI Transport
Provider, the address is the label of the MAPI user
input queue.
Adress:="UserInputQueueLabel"

Type The Type parameter can have any one of the
following values:
MSMQMAIL_RECIPIENT_TO: Default. The
recipient is the primary recipient of the e-mail.
MSMQMAIL_RECIPIENT_CC: The e-mail is copied
to the recipient.
MSMQMAIL_RECIPIENT_BCC: The e-mail is blind
copied to the recipient.

DeliveryTime Optional. DeliveryTime is only used when adding a
recipient to the DeliveredRecipients property of the
MSMQMailDeliveryReportData object. This
property specifies when the original e-mail was
delivered to the recipient.

NonDeliveryReason Optional. NonDeliveryReason is only used when
adding a recipient to the NonDeliveredRecipients
property of the MSMQMailNonDeliveryReportData
object. This property specifies the reason why the

original e-mail was not delivered to the recipient.
Key Optional. Key (Variant type) used when removing

the recipient from the recipient list (see IndexKey
parameter of Remove).

Syntax for Adding Field
object1.object2.object3.Add Name, Value[, Key]

Syntax Element Description
object1 E-mail message (MSMQMailEMail) object that

defines the e-mail message.
object2 Form field data (MSMQMailFormData) object that

defines the form.
object3 Form field list (MSMQMailFormFieldList) object that

represents the list of fields in the form.
Name String representation of the name of the field. This

name should correspond to the name of the field's
Reference Name as specified in the Exchange Form
Designer. The Reference Name can be found on the
General page of the Field Properties dialog of the
Exchange Form Designer.
If the correct Reference Name is not used, Microsoft
Exchange may not display the field correctly.

Value String, Integer, Boolean, Double, or Currency value of
field.

Key Optional. Key used when removing the field from
form field list (see IndexKey parameter of Remove).

Remarks
Recipient List

The format of Address varies depending on the MSMQ Mail Service used or if the destination is
another MSMQ apllication.

Form Field List
Fields can be one of the following types: String, Integer, Boolean, Double, or Currency value of field.

Recipient List Example
This example defines an e-mail message with two recipients, then displays the name and address of
each recipient. The addresses of the recipients indicate that the mail will be sent to the Exchange
Connector (first recipient) and the MAPI transport Provider (second recipient).

Note For examples of setting the NonDeliveryReason and DeliveryTime parameters, see the
examples in NonDeliveryReason and DeliveryTime properties respectively.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, and then run the example and click the form.

Private Sub Form_Click()

Dim email As New MSMQMailEMail

'Set e-mail type to text message
 email.ContentType= MSMQMAIL_EMAIL_TEXTMESSAGE

'**********************************
'* Add Exchange Connector recipient
'* as primary recipient.
'**********************************
email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

'*********************
'* Add MAPI recipient
'* as CC recipient.
'*********************
email.Recipients.Add "MAPI_User", "MAPIUserInputQueueLabel", MSMQMAIL_RECIPIENT_CC

'Set who sent the e-mail.
email.Sender.Name = "Our name"
email.Sender.Address = "Our queue label"

'Set the subject of the e-mail.
email.Subject = "Test mail."

'Set the Body of the e-mail.
email.TextMessageData.Text = "This is the Body of the message."

'*********************
'* Display Recipients.
'*********************

Dim recipient As MSMQMailRecipient

For Each recipient In email.Recipients
        MsgBox "Mail was sent to " + recipient.Name + " at " + recipient.Address
Next recipient

End Sub

Field List Example
This example defines an e-mail message with three fields (string Boolean, and Date), then displays the
value given to each field.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim email As New MSMQMailEMail

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************
     
      'Set e-mail type to form message.

      email.ContentType = MSMQMAIL_EMAIL_FORM
     
      'Add primary recipient.
      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
     
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"
     
      'Set the subject of the mail.
      email.Subject = "Test form."
     
      '**********************
      '* Define the form.
      '**********************
     
      'Set the form name.
      email.formdata.Name = "Test Form"
     
      'Set form field list.
        email.formdata.FormFields.Add "StringField", "Test Field"
        email.formdata.FormFields.Add "BooleanField", True
        email.formdata.FormFields.Add "DateField", “DateString”
     
     
      '*********************
      '* Display fields.
      '*********************
     
      Dim formfield As MSMQMailFormField
     
      For Each formfield In email.formdata.FormFields
        MsgBox "Form: " + formfield.Name + " = " +        CStr(formfield.Value)
     
      Next formfield
     
End Sub

See Also
Address, ContentType, FormData, FormFields, MSMQMailEMail, MSMQMailRecipient, Name,
Recipients, Sender, Subject, Text, TextMessageData

ComposeBody
MSMQMailEMail

The ComposeBody method creates the body of an MSMQ mail message based on an e-mail
message.

Syntax
varBody=object.ComposeBody

Syntax Element Description
object E-mail message (MSMQMailEMail) object that

defines the e-mail message.
varBody Variant type (array of bytes) Body of an MSMQ

mail message.

Return Values
Byte-array message body.

Remarks
The returned byte-array can be used as the body of an MSMQ mail message.

The following table defines which properties of the MSMQMailEMail object are required to compose a
message body for each type of e-mail. Required properties are marked with an X (default values can
be used). When composing an e-mail object, all required properties must have valid values, otherwise
an error condition is raised by ComposeBody.

MSMQMailEMail
Text
Message Form TNEF

Delivery
Report

Non-
Delivery
Report

ContentType X X X X X
DeliveryReportData X
DestinationQueueLabels
FormData X
NonDeliveryReportData X
Recipients X X X X X
RequestDeliveryReport X (False) X (False)
RequestNonDeliveryReport X (False) X (False)
Sender X X
Subject X (Empty

string)
X (Empty
string)

SubmissionTime X
(Creation
time of
e-mail
object)

X
(Creation
time of
e-mail
object)

X
(Creation
time of
e-mail
object)

X
(Creation
time of
e-mail
object)

TestMessageData X
TnefData X

Example
This example defines an e-mail message, composes the body of an MSMQ message (formatted in
MSMQ mail format), then prints out the body of the message.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()
     
      '*********************
      '*    Define the e-mail
      '*********************
     
      'Set e-mail type as text message
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE
     
      'Set who receives the e-mail.
      email.Recipients.Add "RecipientName", "RecipientQueueLabel",
MSMQMAIL_RECIPIENT_TO
     
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"
     
      'Set the subject of the e-mail.
      email.Subject = "Test mail."
     
      'Set the Body of the e-mail.
      email.TextMessageData.Text = "This is the Body of the e-mail message."
     
      'Compose the MSMQ mail message Body.
      msg.Body = email.ComposeBody
     
     
      '*********************************
      '*    Display the MSMQ message Body.
      '*********************************
     
      'Display the mail message Body.
      Dim lTmp As Long
      For lTmp = LBound(msg.Body) To UBound(msg.Body)
              Debug.Print Chr$(msg.Body(lTmp));
      Next lTmp

End Sub

See Also
Add, Address, Body, ContentType, MSMQMailEMail, MSMQMessage, Name, Recipients, Sender,
Subject, Text, TextMessageData

ParseBody
MSMQMailEMail

The ParseBody method sets the properties of an e-mail message object based on the body of an
MSMQ mail message.

Syntax
object.ParseBody varBody

Syntax Element Description
object E-mail message (MSMQMailEMail) object that

defines the e-mail message.
varBody Variant type (array of bytes) Body of an MSMQ

mail message.

Remarks
The body of the MSMQ mail message is formatted in MSMQ Mail format.

Example
This example defines an e-mail message object, composes the body of a mail message, then parses
the message body into a second e-mail object and displays its subject.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim email1 As New MSMQMailEMail
Dim email2 As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************
     
      'Set e-mail type as form.
      email1.ContentType = MSMQMAIL_EMAIL_FORM
     
      'Set who receives the e-mail.
      email1.Recipients.Add "RecipientName", "RecipientQueueLabel",
MSMQMAIL_RECIPIENT_TO
     
      'Set who sent the e-mail.
      email1.Sender.Name = "Our name"
      email1.Sender.Address = "Our queue label"
     
      'Set the subject of the e-mail.
      email1.Subject = "Test mail."
     
      '**********************
      ' Define the form.
      '**********************
     
      'Set the form name.

      email1.formdata.Name = "Test Form"
     
      'Set single field of form
      email1.formdata.FormFields.Add "Field1", "Field1 text."
     
     
      '******************************
      'Compose the mail message Body.
      '******************************
      msg.Body = email1.ComposeBody
     
     
      '*********************
      'Parse message Body as
      'new e-mail object.
      '*********************
     
      email2.ParseBody msg.Body
     
      '***
      'Display the subject of new e-mail object.
      '***
     
      MsgBox "The subject of the new mail is: " + email2.Subject

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, FormData, FormFields, MSMQMailEMail,
MSMQMessage, Name, Recipients, Sender, Subject

Remove
MSMQMailFormFieldList MSMQMailRecipientList

The Remove method removes a specific recipient from the recipient list (MSMQMailRecipientList)or a
field from the form field list (MSMQMailFormFieldList).

Syntax for Removing a Recipient
object1.object2.Remove IndexKey

Syntax Element Description
object1 E-mail message (MSMQMailEMail) object that

defines the e-mail message.
object2 Recipient (MSMQMailRecipientList) list

object.
IndexKey Index of the Item array, or the key specified

when the recipient was added to the list (see
Key parameter of Add).

Syntax for Removing a Field
object1.object2.object3.Remove IndexKey

Syntax Element Description
object1 E-mail message (MSMQMailEMail) object that

defines the e-mail message.
object2 Form field data (MSMQMailFormData) object

that defines the form.
object3 Form field (MSMQMailFormFieldList) list

object.
IndexKey Index of the Item array, or the key specifies

when the recipient or field was added to the list
(see Key parameter of Add).

Example of Removing a Recipient
This example creates an e-mail object with a primary, copy, and blind copy recipient, setting the index
key on the blind-copy recipient. It then displays the names of the recipients, removes the blind-copy
recipient using its index key, then displays the names of the recipients remaining in the form.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim email As New MSMQMailEMail

Private Sub Form_Click()

      'Set e-mail type to text message
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE
     
      '**********************************
      '* Add primary recipient.
      '**********************************
      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

     
      '*********************
      '* Add CC recipient.
      '*********************
      email.Recipients.Add "MAPI_User1", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC
     
      '*********************
      '* Add BC recipient.
      '*********************
      email.Recipients.Add "MAPI_User2", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_BCC, "BC"
     
     
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"
     
      'Set the subject of the e-mail.
      email.Subject = "Test mail."
     
      'Set the Body of the e-mail.
      email.TextMessageData.Text = "This is the Body of the message."
     
     
      '*******************************
      '* Remove blind-copy Recipients.
      '*******************************
     
      Dim recipient As MSMQMailRecipient
     
      Debug.Print "**Old Recipient List**"
      For Each recipient In email.Recipients
              Debug.Print recipient.Name
      Next recipient
     
      email.Recipients.Remove "BC"
     
      Debug.Print "**New Recipient List**"
      For Each recipient In email.Recipients
                    Debug.Print recipient.Name
      Next recipient

End Sub

Example of Removing a Field
This example creates an e-mail form with three fields, setting the index key of the date field. It then
displays the names and values of all fields, removes the date field using its index key, then displays the
names of the fields remaining in the form.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim email As New MSMQMailEMail

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************
     
      'Set e-mail type to form message.
      email.ContentType = MSMQMAIL_EMAIL_FORM
     
      'Add primary recipient.
      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
     
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"
     
      'Set subject of mail.
      email.Subject = "Test form."

    'Set form name.
    email.formdata.Name = "Test Form"

 'Set form field list.
      email.formdata.FormFields.Add "StringField", "Test Field"
      email.formdata.FormFields.Add "BooleanField", True
      email.formdata.FormFields.Add "DateField", “DateString”, "SentDate"
     
      '**********************
      '* Remove Date field.
      '**********************
     
      Dim formfield As MSMQMailFormField
     
      Debug.Print "**Old Field List**"
      For Each formfield In email.formdata.FormFields
              Debug.Print formfield.Name + ": " + CStr(formfield.Value)
      Next formfield
     
      email.formdata.FormFields.Remove "SentDate"
     
      Debug.Print "**New Field List**"
      For Each formfield In email.formdata.FormFields
              Debug.Print formfield.Name + ": " + CStr(formfield.Value)
      Next formfield
     
End Sub

See Also
Add, Address, ContentType, FormData, FormFields, MSMQMailEMail, MSMQMailFormField,
MSMQMailRecipient, Name, Recipients, Sender, Subject, Text, TextMessageData, Value

MSMQ Mail ActiveX Properties
The following topics describe the properties associated with the MSMQ Mail ActiveX components.

Note The MSMQ Mail SDK must be installed to use any of the MSMQ Mail ActiveX components.

MSMQMailEMail
ContentType

DeliveryReportData

DestinationQueueLabels

FormData

NonDeliveryReportData

Recipients

RequestDeliveryReport

RequestNonDeliveryReport

Sender

Subject

SubmissionTime

TextMessageData

TnefData

MSMQMailFormData
FormFields

Name

MSMQMailFormField
Name

Value

MSMQMailFormFieldList
Count

Item

MSMQMailRecipient
Address

DeliveryTime

Name

NonDeliveryReason

RecipientType

MSMQMailRecipientList
Count

Item

MSMQMailTextMessageData
Text

MSMQMailTnefData
Data

MSMQMailDeliveryReportData
DeliveredRecipients

OriginalSubject

OriginalSubmissionTime

MSMQMailNonDeliveryReportData
NonDeliveredRecipients

OriginalEMail

Address
MSMQMailRecipient

The Address property specifies the e-mail address of the recipient.

Quick Info
Type: String
Run time: Read-write

Syntax
object1,object2.Address

Syntax Element Description
object1 An e-mail (MSMQMailEMail) object that defines an

e-mail message.
object2 Recipient (MSMQMailRecipient) object the

represents the e-mail recipient.

Settings
String representation of the e-mail recipient's address. Use one of the following formats:

"UserAlias@ServerInputQueueLabel"        Exchange Connector
"MAPIUserInputQueueLabel"                        MAPI Transport Provider
"ApplicationInputQueueLabel"                  MSMQ Application

Remarks
Typically, Address is not referenced explicitly. In most cases, it is set when adding a recipient to the
recipient list.

When the e-mail is being sent to an MSMQ application, the recipient's address is the label (Label) or
the application input queue.

When the e-mail is being sent to an e-mail user, the recipient's address varies depending on which
MSMQ Mail service is being used.

· For applications using the MSMQ Exchange Connector, the address includes the e-mail alias of the
MS Exchange user plus the label of the MSMQ Exchange server input queue.

· For applications using the MSMQ MAPI Transport Provider, the address includes the e-mail alias,
plus the label of the MAPI Transport Provider's User Input Queue.

Example
This example defines an e-mail form, adding three recipients to the e-mail's recipient list. The e-mail
object is composed into a mail message, then each recipient is displayed.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, enter valid user address for each recipient, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to form message.
      email.ContentType = MSMQMAIL_EMAIL_FORM

      'Add Recipients.
      email.Recipients.Add "Exchange_User", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "MAPI_User", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC
      email.Recipients.Add "MSMQApplication", "ApplicationInputQueueLabel",
MSMQMAIL_RECIPIENT_BCC
     
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set subject of mail.
      email.Subject = "Test mail"
     
      'Set name of form
      email.FormData.Name = "Test form"
     
      'Set form field list.
      email.FormData.FormFields.Add "StringField", "Test Field"
     
      'Compose message Body
      msg.Body = email.ComposeBody

      '*********************
      '* Display Recipients.
      '*********************

      Dim recipient As MSMQMailRecipient

      For Each recipient In email.Recipients
              MsgBox "Recipient: " + recipient.Name + " at " + recipient.Address
      Next recipient

End Sub

See Also
Add, ComposeBody, ContentType, FormData, FormFields, MSMQMailEMail, Name, Recipients,
Sender, Subject

ContentType
MSMQMailEMail

The ContentType property specifies the type of e-mail object (MSMQMailEMail).

Quick Info
Type: Long
Run time: Read-write

Syntax for E-mail Type
object.ContentType

Syntax Element Description
object An e-mail (MSMQMailEMail) object that

defines an e-mail message.

Settings
When specifying the type of e-mail message, ContentType can have any one of the following values:

MSMQMAIL_EMAIL_TEXTMESSAGE
The e-mail message consist of a text message (see TextMessageData).

MSMQMAIL_EMAIL_FORM
The e-mail message is a form (see FormData).

MSMQMAIL_EMAIL_TNEF
The e-mail message is a TNEF message (see TnefData).

MSMQMAIL_EMAIL_DELIVERY_REPORT
The e-mail message is a delivery report (see DeliveryReportData).

MSMQMAIL_EMAIL_NON_DELIVERY_REPORT
The e-mail message is a non-delivery report (see NonDeliveryReportData).

Remarks
This property must be set when defining an e-mail object.

Example
This example prints out the form specific information of a e-mail form or the text-message information
of an email text message.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, and then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define form e-mail
      '*********************
      'Set e-mail type to form message.
      email.ContentType = MSMQMAIL_EMAIL_FORM

      'Add primary recipient.

      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set subject of mail.
      email.Subject = "Test form."
   
      'Set form name.
      email.FormData.Name = "Test Form"

      'Set form field list.
      email.FormData.FormFields.Add "Name", "Test Field"
   
    '************************
    '* Compose message bodies.
    '************************
    msg.Body = email.ComposeBody

    MsgBox "The e-mail form object was created."
   
End Sub

See Also
Add, Address, ComposeBody, FormData, MSMQMailEMail, MSMQMessage, Name, Recipients,
Subject

Count
MSMQMailFormFieldList MSMQMailRecipientList

Read-only. The Count property indicates the number of recipients in the recipient list or the number of
fields in the field list.

Quick Info
Type: Long
Run time: Read-only

Syntax for Recipient List
object1.object2.Count

Syntax Element Description
object1 E-mail message (MSMQMailEMail) object that

defines the e-mail message.
object2 The recipient list (MSMQMailRecipientList)

object that defines the list of recipients.

Syntax for Field List
object1.object2.object3.Count

Syntax Element Description
object1 E-mail message (MSMQMailEMail) object that

defines the e-mail message.
object2 Form field data (MSMQMailFormData) object

that defines the form.
object3 The field list (MSMQMailFormFieldList) object

that defines the fields on a form.

Return Values
Number of items in list.

Remarks
Count is updated each time the Add or Remove method of either list object (MSMQMailRecipientList
and MSMQMailFormFieldList) is called.

Example of Recipient List
This example defines an e-mail object, adds three recipients to the recipient list, then displays the
number of recipients followed by the name of each recipient.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, and then run the example and click the form.

Dim email As New MSMQMailEMail

Private Sub Form_Click()

      'Set e-mail type to text message
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE
     
      '**********************************
      '* Add Recipients.

      '**********************************
      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "MAPI_User1", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC
      email.Recipients.Add "MAPI_User2", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_BCC, "BC"
     
     
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"
     
      'Set the subject of the e-mail.
      email.Subject = "Test mail."
     
      'Set the Body of the e-mail.
      email.TextMessageData.Text = "This is the Body of the message."
     
     
      '*******************************
      '* Count recipient.
      '*******************************
     
      Dim recipient As MSMQMailRecipient
     
      Debug.Print "**Number of Recipient in List**"
      Debug.Print CStr(email.Recipients.Count)
     
      Debug.Print "**Recipients**"
      For Each recipient In email.Recipients
              Debug.Print recipient.Name
      Next recipient

End Sub

Example of Form Field List
This example defines an e-mail object as a form, adds three fields to the form, then displays the
number of fields followed by each fields name.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim email As New MSMQMailEMail

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************
     
      'Set e-mail type to form message.
      email.ContentType = MSMQMAIL_EMAIL_FORM
     
      'Add primary recipient.

      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
     
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"
     
      'Set subject of the mail.
      email.Subject = "Test form."
     
    'Set form name.
    email.formdata.Name = "Test Form"

    'Set form field list.
      email.formdata.FormFields.Add "StringField", "Test Field"
      email.formdata.FormFields.Add "BooleanField", True
      email.formdata.FormFields.Add "DateField", “DateString”, "SentDate"
     
     
      '*******************************
      '* Count fields.
      '*******************************
     
      Dim formfield As MSMQMailFormField
     
      Debug.Print "**Number of Fields in Form**"
      Debug.Print CStr(email.formdata.FormFields.Count)
     
      Debug.Print "**Fields**"
      For Each formfield In email.formdata.FormFields
              Debug.Print formfield.Name
      Next formfield
     
End Sub

See Also
Add, Address, ContentType, FormData, FormFields, MSMQMailEMail, MSMQMailFormField,
MSMQMailRecipient, Name, Recipients, Sender, Subject, Text, TextMessageData

Data
MSMQMailTnefData

The Data property specifies the data of a TNEF e-mail.

Quick Info
Type: Variant (variant type is an array of bytes)
Run time: Read-write

Syntax
object1.object2.Data

Syntax Element Description
object1 E-mail (MSMQMailEMail) object that defines

the e-mail message.
object2 TNEF data (MSMQMailTnefData) object that

represents the text message.

Settings
A variant which contains the TNEF data of the e-mail. The data in the variant should be an array of
bytes representing the TNEF data.

TNEF is a MAPI internal format that encapsulates the MAPI properties, and is used by the MSMQ Mail
services (the MSMQ Exchnage Connector and the MSMQ MAPI Transport) to send mail to recipients
who are defined as rich-text recipients. These recipients have selected the check box labeled “Send to
this recipient in Microsoft Exchange rich text format” in their Exchange/MAPI address.

Example
This example defines an e-mail object as a TNEF message, setting the TNEF message body to a
predefined variant value that should be filled by MAPI or taken from another TNEF message. The email
object is then used to compose the body of a mail message, and a message box displays the size of
the TNEF data (the data itself is binary and is not supposed to be readable).

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '***********************
      '*    Define e-mail object
      '***********************
     
      'Set e-mail type to TNEF message
      email.ContentType = MSMQMAIL_EMAIL_TNEF
     
      'Add Recipients
      email.Recipients.Add "Connector Recipient Name",
"ExchangeUser@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "MAPI Recipient Name", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC

'Set the TNEF information of the e-mail.

      email.TnefData.Data = tnefdata
     
      '**********************
      '* Compose message Body
      '**********************
      msg.Body = email.ComposeBody

      '****************************
      '* Display size of TNEF data.
      '****************************
      MsgBox "The size of the TNEF data is:" + (UBound(email.TnefData.Data) -
LBound(email.TnefData.Data) + 1)

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, MSMQMailEMail, MSMQMessage, Name,
Recipients, Sender, Subject, TextMessageData

DeliveredRecipients
MSMQMailDeliveryReportData

The DeliveredRecipients property specifies the recipients that received a previously sent e-mail.

Quick Info
Type: MSMQMailRecipientList
Run time: Read-write

Syntax
object1.object2.DeliveredRecipients

Syntax Element Description
Object1 E-mail (MSMQMailEMail) object that defines

the delivery report.
Object2 Delivery report data

(MSMQMailDeliveryReportData) object that
represents the delivery report information.

Settings
MSMQMailRecipientList object.

Remarks
Each recipient in the delivered recipient list is represented by an MSMQMailRecipient object. Each
recipient object includes the name and address of the recipient, the input queue of the recipient, how
the message was sent to recipient, plus when the message was delivered.

The DeliveryTime property of the MSMQMailRecipient object specifies when the original e-mail was
delivered to the recipient.

Example
This example defines a delivery report, adding two delivered recipients to the delivered recipient list of
the report. The e-mail object is composed into a mail message, then each delivered recipient is
displayed.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, enter valid user address for each recipient, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to delivery report.
      email.ContentType = MSMQMAIL_EMAIL_DELIVERY_REPORT

      'Add the Recipient of the report (usually the original e-mail sender).
      email.Recipients.Add "Exchange_User", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

      'Set subject of original mail.

      email.DeliveryReportData.OriginalSubject = "Original subject "
     
      'Set submission time of original mail.
      email.DeliveryReportData.OriginalSubmissionTIme = CDate("5/20/94 10:16:07 PM")

    'Add two delivered recipients.
      email.DeliveryReportData.DeliveredRecipients.Add "Exchange_User2",
"UserAlias2@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO, DeliveryTime:=
CDate("5/20/94 10:17:00 PM")
email.DeliveryReportData.DeliveredRecipients.Add "Exchange_User3",
"UserAlias3@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_CC, DeliveryTime:=
CDate("5/20/94 11:01:00 PM")

      'Compose message Body
      msg.Body = email.ComposeBody

      '*********************
      '* Display Delivered Recipients.
      '*********************

      Dim recipient As MSMQMailRecipient

      For Each recipient In email.DeliveryReportData.DeliveredRecipients
              MsgBox "Delivered To Recipient: " + recipient.Name + " at " + recipient.Address + “
on “ + recipient.DeliveryTime
      Next recipient

End Sub

See Also
Add, Address, ComposeBody, ContentType, FormData, FormFields, MSMQMailEMail, Name,
Sender, Subject, DeliveryReportData

DeliveryReportData
MSMQMailEMail

The DeliveryReportData defines a delivery report. This report contains a list of the recipients who
received the original e-mail, when the original e-mail was submitted, and the subject of the original e-
mail.

This property is only meaningful if ContentType is set to MSMQMAIL_EMAIL_DELIVERY_REPORT.

Quick Info
Type: MSMQMailDeliveryReportData
Run time: Read-write

Syntax
object.DeliveryReportData

Syntax Element Description
object E-mail message (MSMQMailEMail) object that

defines the e-mail message.

Settings
MSMQMailDeliveryReportData object.

Remarks
When defining delivery report, set ContentType to MSMQMAIL_EMAIL_DELIVERY_REPORT
whenever DeliveryReportData is set.

After parsing an MSMQ Mail message, verify that, ContentType is set to
MSMQMAIL_EMAIL_DELIVERY_REPORT , before looking at DeliveryReportData. This property is
empty if ContentType indicates another e-mail type.

DeliveryTime
MSMQMailRecipient

The DeliveryTime property specifies the time when the original e-mail was delivered to the recipient
(MSMQMailRecipient).

Quick Info
Type: Date
Run time: Read-write

Syntax
object.DeliveryTime

Syntax Element Description
Object A recipient (MSMQMailRecipient) object that

defines an e-mail recipient.

Settings
The time when the original e-mail was delivered to the recipient.

Remarks
DeliveryTime has a valid value only when the recipient is a member of the DeliveredRecipients
property of a delivery report e-mail.

Example
This example defines a delivery report, adding two delivered recipients to the delivered recipient list of
the report. The e-mail object is composed into a mail message, then each delivered recipient is
displayed.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, enter valid user address for each recipient, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to delivery report.
      email.ContentType = MSMQMAIL_EMAIL_DELIVERY_REPORT

      'Add the Recipient of the report (usually the original e-mail sender).
      email.Recipients.Add "Exchange_User", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

      'Set subject of original mail.
      email.DeliveryReportData.OriginalSubject = "Original subject "
     
      'Set submission time of original mail.
      email.DeliveryReportData.OriginalSubmissionTime = CDate("5/20/94 10:16:07 PM")

    'Add two delivered recipients.
      email.DeliveryReportData.DeliveredRecipients.Add "Exchange_User2",
"UserAlias2@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO, DeliveryTime:=
CDate("5/20/94 10:17:00 PM")
email.DeliveryReportData.DeliveredRecipients.Add "Exchange_User3",
"UserAlias3@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_CC, DeliveryTime:=
CDate("5/20/94 11:01:00 PM")

      'Compose message Body
      msg.Body = email.ComposeBody

      '*********************
      '* Display Delivered Recipients.
      '*********************

      Dim recipient As MSMQMailRecipient

      For Each recipient In email.DeliveryReportData.DeliveredRecipients
              MsgBox "Delivered To Recipient: " + recipient.Name + " at " + recipient.Address + “
on “ + recipient.DeliveryTime
      Next recipient

End Sub

See Also
Add, Body, ComposeBody, ContentType, FormData, FormFields, MSMQMailEMail,
MSMQMAILFormField, Name, ParseBody, Recipients, Subject, Text, TextMessageData, Value

DestinationQueueLabels
MSMQMailEMail

The DestinationQueueLabels property provides the label of each destination queue needed to send
the MSMQ mail message. These labels are taken from the recipient addresses defined by the e-mail
object.

Quick Info
Type: Collection of Strings
Run time: Read-only

Syntax
object.DestinationQueueLabels

Syntax Element Description
object An e-mail (MSMQMailEMail) object that

defines an e-mail message.

Returned Value
String representation of each queue label needed to send message.

Remarks
Typically, a query is used to locate the destination queues of an e-mail. When running a query, make
sure the queue type is added to the search criteria as well as the destination queue label. All
application input queues, MAPI user input queues, and Exchange service input queues use the
following MSMQ-defined queue type: MSMQMAIL_SERVICE_MAIL.

When sending mail to several Exchange user via the MSMQ Exchange Connector, only one label is
stored in the destination queue collection. Only one label is needed because the Exchange connector
has only one input queue.

Example
This example sends mail to each destination queue.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, enter valid user address for each recipient, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to text message.
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE

      'Add recipient.
      email.Recipients.Add "User1", "User1Address", MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "User2", "User2Address", MSMQMAIL_RECIPIENT_CC
     
      'Set who sent the e-mail.

      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set subject of mail.
      email.Subject = "Test form."
     
      'Set message text
      email.TextMessageData.Text = "This is a test message."

      '******************
      '* Compose message
      '******************
      msg.Body = email.ComposeBody
     
      '******************
      '* Send Message
      '******************
     
      Dim qLabel As Variant
           
      For Each qLabel In email.DestinationQueueLabels
              Dim query As MSMQQuery
              Dim qinfos As MSMQQueueInfos
              Dim qinfo As MSMQQueueInfo
             
              Set query = New MSMQQuery
              Set qinfos = query.LookupQueue(Label:=qLabel,
ServiceTypeGuid:=MSMQMAIL_SERVICE_MAIL)
             
              qinfos.Reset
              Set qinfo = qinfos.Next
             
              If Not (qinfo Is Nothing) Then
                    Dim qdestination As MSMQQueue
                    Set qdestination = qinfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
                    msg.Send qdestination
              End If
     
      Next qLabel

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, LookupQueue, MSMQMailEMail,
MSMQMessage, MSMQQuery, MSMQQueue, MSMQQueueInfo, MSMQQueueInfos, Name, Open,
Recipients, Send, Sender, Subject, Text, TextMessageData

FormData
MSMQMailEMail

The FormData property defines the form. It specifies the name of the form, and lists all the fields in the
form.

This property is only meaningful if ContentType is set to MSMQMAIL_EMAIL_FORM.

Quick Info
Type: MSMQMailFormData
Run time: Read-write

Syntax
object.FormData

Syntax Element Description
object E-mail message (MSMQMailEMail) object that

defines the e-mail message.

Settings
MSMQMailFormData object.

Remarks
When defining an e-mail object that represent a form, set ContentType to MSMQMAIL_EMAIL_FORM
whenever FormData is set.

After parsing an MSMQ Mail message, verify that, ContentType is set to MSMQMAIL_EMAIL_FORM,
before looking at FormData. This property is empty if ContentType indicates another e-mail type.

Example
This example defines an e-mail form with three fields, composes the body of an MSMQ mail message,
then displays a name of the form plus the number of fields in the form.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Option Explicit
Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type as form.
      email.ContentType = MSMQMAIL_EMAIL_FORM
     
      'Set who receives the e-mail.
      email.Recipients.Add "RecipientName", "RecipientQueueLabel",
MSMQMAIL_RECIPIENT_TO

      'Set who sent the e-mail.
      email.Sender.Name = "Our name"

      email.Sender.Address = "Our queue label"

      'Set the subject of the e-mail.
      email.Subject = "Test mail."

      '**********************
      '* Define the form.
      '**********************

      'Set the form name.
      email.FormData.Name = "Test Form"

      'Set fields of form
      email.FormData.FormFields.Add "Field1", "Field1 text."
      email.FormData.FormFields.Add "Field2", True
      email.FormData.FormFields.Add "Field3", Date

      '******************************
      'Compose the mail message Body.
      '******************************
      msg.Body = email.ComposeBody
     
      MsgBox "Defined the form " + email.FormData.Name + " with " +
CStr(email.FormData.FormFields.Count) + " fields."

End Sub

See Also
Add, Address, ComposeBody, ContentType, FormFields, MSMQMailEMail, MSMQMessage,
Name, Recipients, Sender, Subject

FormFields
MSMQMailFormData

The FormFields property specifies a list of the fields in the e-mail form.

Quick Info
Type: MSMQMailFormFieldList
Run time: Read-write

Syntax
object1.object2.FormFields

Syntax Element Description
object1 E-mail message (MSMQMailEMail) object that

defines the e-mail message.
object2 The form data (MSMQMailFormData) object

that defines the form.

Settings
MSMQMailFormFieldList object.

Remarks
The MSMQMailFormFieldList object specifies all the fields in the form

Example
This example defines an e-mail form with three fields, composes the body of an MSMQ mail message,
then displays a name of the form plus the number of fields in the form.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Option Explicit
Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type as form.
      email.ContentType = MSMQMAIL_EMAIL_FORM
     
      'Set who receives the e-mail.
      email.Recipients.Add "RecipientName", "RecipientQueueLabel",
MSMQMAIL_RECIPIENT_TO

      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set the subject of the e-mail.
      email.Subject = "Test mail."

      '**********************
      '* Define the form.
      '**********************

      'Set the form name.
      email.FormData.Name = "Test Form"

      'Set fields of form
      email.FormData.FormFields.Add "Field1", "Field1 text."
      email.FormData.FormFields.Add "Field2", True
      email.FormData.FormFields.Add "Field3", Date

      '******************************
      'Compose the mail message Body.
      '******************************
      msg.Body = email.ComposeBody
     
      MsgBox "Defined the form " + email.FormData.Name + " with " +
CStr(email.FormData.FormFields.Count) + " fields."

End Sub

See Also
Add, Address, ComposeBody, ContentType, FormFields, MSMQMailEMail, MSMQMessage,
Name, Recipients, Sender, Subject

Item
MSMQMailFormFieldList MSMQMailRecipientList

Read-only. The Item property provides read access to the recipients of an e-mail’s recipient list
(MSMQMailRecipientList) or the fields of a form’s field list (MSMQMailFormFieldList).

Quick Info
Type: MSMQMailRecipient or MSMQMailFormField

object.
Run time: Read-only

Syntax for Recipient List
set object3=object1.Object2.Item (IndexKey)

Syntax Element Description
object1 E-mail message (MSMQMailEMail) object that

defines the e-mail message.
object2 Recipient list (MSMQMailRecipientList)

object.
object3 Recipient (MSMQMailRecipient) object.
IndexKey Specifies the position in the recipient list or a

specific recipient’s key.
Numeric indexes range from 1 to Count.
Keys are added when the recipient is added to
the list.

Syntax for Form Field List
set object4=object1.Object2.Object3.Item (IndexKey)

Syntax Element Description
object1 E-mail message (MSMQMailEMail) object that

defines the e-mail message.
object2 Form data (MSMQMailFormData) object that

defines the form.
object3 Form field list (MSMQMailFormFieldList)

object that references the field.
object4 Form field (MSMQMailFormField) object that

defines the field.
IndexKey Specifies the position in the field list or a

specific field’s key.
Numeric indexes range from 1 to Count.
Keys are added when the recipient is added to
the list.

Return Values
MSMQMailRecipient or MSMQMailFormField object.

Remarks
Item is the default property for the MSMQMailRecipientList and MSMQMailFormFieldList objects.
Thus RecipientList[2] and RecipientList.Item[2] both return the second recipient in the recipient list.

Example of Recipient List
This example adds three recipients, then displays the address of the MAPI recipient using a recipient
key.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim email As New MSMQMailEMail
Dim recipient As New MSMQMailRecipient

Private Sub Form_Click()

      '****************
      '* Define eimail
      '****************
     
      'Set e-mail type to text message
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE

      'Add Recipients.
      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "MAPI_User", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC, "MAPI"
      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_BCC

      'Set who is sending the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set the subject of the e-mail.
      email.Subject = "Test mail."

      'Set the Body of the e-mail.
      email.TextMessageData.Text = "This is the Body of the message."

      '*********************************
      '* Display Name of MAPI recipient.
      '*********************************

      Set recipient = email.Recipients.Item("MAPI")
      MsgBox "The MAPI recipient's address is: " + recipient.Address

End Sub

Example of Form Field List
This example defines a form with three fields, then displays the name of the second field using the field
key specified when the field was added.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage
Dim field As New MSMQMailFormField

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to form message.
      email.ContentType = MSMQMAIL_EMAIL_FORM

      'Add primary recipient.
      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

    'Set who sent the e-mail.
    email.Sender.Name = "Our name"
    email.Sender.Address = "Our queue label"

    'Set subject of mail.
    email.Subject = "Test form."
   
    'Set form name.
    email.FormData.Name = "Test Form"

    'Set form field list.
    email.FormData.FormFields.Add "Name", "Test Field"
    email.FormData.FormFields.Add "Employed", True, "Employed"
    email.FormData.FormFields.Add "CurrentDate", "DateString"
   
    '***********************
    '* Compose message Body.
    '***********************
    msg.Body = email.ComposeBody
   

    '***
    '* Display the value of the "Employed field.
    '***

      Set field = email.FormData.FormFields.Item("Employed")
      MsgBox "The value of the Employment field is: " + CStr(field.Value)

End Sub

See Also
Add, Address, ContentType, FormData, FormFields, MSMQMailEMail, MSMQMailFormData,
MSMQMailRecipient, MSMQMessage, Name, Recipients, Sender, Subject, Text,TextMessageData

Name
MSMQMailFormData MSMQMailFormField MSMQMailRecipient

The Name property identifies the name of a form (MSMQMailFormData), the name of a field on a
form(MSMQMailFormField), or the name of an e-mail recipient(MSMQMailRecipient).

Quick Info
Type: String
Run time: Read-write

Syntax for form name
object1.object2.Name

Syntax Element Description
object1 An e-mail (MSMQMailEMail) object that

defines an e-mail message.
object2 Form data (MSMQMailFormData) object that

defines the form.

Syntax for field name
object1.object2.object3.Item(IndexKey),Name

Syntax Element Description
object1 An e-mail (MSMQMailEMail) object that

defines an e-mail message.
object2 Form data (MSMQMailFormData) object that

defines the form.
object3 Form field (MSMQMailFormField) object that

defines the field.
IndexKey Specifies the position in the field list or a

specific field key.
Numeric indexes range from 1 to Count.
Keys are added when the field is added to the
list.

Syntax for sender recipient name
object1.object2.Name

Syntax Element Description
object1 An e-mail (MSMQMailEMail) object that

defines an e-mail message.
object2 Recipient (MSMQMailRecipient) object that

defines the e-mail user.

Syntax for recipient name (in recipient list)
object1.object2.Item(IndexKey).Name

Syntax Element Description
object1 An e-mail (MSMQMailEMail) object that

defines an e-mail message.

object2 Recipients (MSMQMailRecipientList) object
that defines the list of e-mail user.

IndexKey Specifies the position in the recipient list or a
specific field key.
Numeric indexes range from 1 to Count.
Keys are added when the recipient is added to
the list.

Settings
String that specifies the name of the form, form field, or e-mail recipient.

Remarks
Form Name

When sending a form to an Exchange user, this name should match the name of the field's Item
Type as specified in the Exchange Form Designer. The Item Type can be found on the General page
of the Field Properties dialog of the Exchange Form Designer. If they do not match, Microsoft
Exchange may not display the form correctly.

Form Field Name
When used to specify the field of a form, this name should correspond to the name of the field's
Reference Name as specified in the Exchange Form Designer. The Reference Name can be found
on the General page of the Field Properties dialog of the Exchange Form Designer
If the correct Reference Name is not used, Microsoft Exchange may not display the field correctly.

E-mail Recipient Name
When used to specify an e-mail user, Name is only used for display purposes. It should contain the
full name of the user.
Name is explicitly referenced to name the sender recipient. However, it is not referenced explicitly
when naming a recipient in the recipient list. In these cases, the name is set when adding the
recipient to the recipient list.

Example
This example defines an e-mail message as a form, setting the sender’s name to “Our name”, the
recipient’s name to “Exchange user”, the form name to “Test form”, and field name to “StringField”.
Then a message body is composed and all names are displayed.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to form message.
      email.ContentType = MSMQMAIL_EMAIL_FORM
         
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Add Recipients.

      email.Recipients.Add "Exchange user", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO, "Test"

      'Set subject of mail.
      email.Subject = "Test mail"
     
      '***************
      '*    Define form
      '***************

      'Set name of form
      email.FormData.Name = "Test form"
     
      'Set form field list.
      email.FormData.FormFields.Add "StringField", "Test Field", "Test"
     
      'Compose message Body
      msg.Body = email.ComposeBody

      '*****************
      '* Display names.
      '*****************

      MsgBox "Form name: " + email.FormData.Name
      MsgBox "Field name is: " + email.FormData.FormFields.Item("test").Name
      MsgBox "Sender recipient is: " + email.Sender.Name
      MsgBox "To recipient is: " + email.Recipients.Item("test").Name

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, FormData, FormFields, Item,
MSMQMailEMail, MSMQMessage, Recipients, Sender, Subject

NonDeliveredRecipients
MSMQMailNonDeliveryReportData

The NonDeliveredRecipients property specifies who did not receive the e-mail.

Quick Info
Type: MSMQMailRecipientList
Run time: Read-write

Syntax
object1.object2.NonDeliveredRecipients

Syntax Element Description
Object1 E-mail (MSMQMailEMail) object that defines

the non-delivered report.
Object2 Non-Delivery report data

(MSMQMailNonDeliveryReportData) object
that represents the non-delivery report
information.

Settings
MSMQMailRecipientList object.

Remarks
Each recipient in the non-delivered recipient list is represented by an MSMQMailRecipient object.
Each recipient object includes the name and address of the recipient, the input queue of the recipient,
how the message was sent to recipient, plus the reason why the original message was not delivered.

The NonDeliveryReason property of the MSMQMailRecipient object specifies why the original e-mail
was not delivered to the recipient.

Example
This example defines a non-delivery report, adding two non-delivered recipients to the non-delivered
recipient list of the report. The e-mail object is composed into a mail message, then each non-delivered
recipient is displayed.

To try this example using Microsoft® Visual Basic® (version 5.0), build an original email object in
emailOrig, paste the code into the Code window of a form, enter valid user address for each recipient,
then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to non-delivery report.
      email.ContentType = MSMQMAIL_EMAIL_NON_DELIVERY_REPORT

      'Add the Recipient of the report (usually the original e-mail sender).
      email.Recipients.Add "Exchange_User", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

      'Set original mail.
      Set email.NonDeliveryReportData.OriginalEMail = emailOrig
     

    'Add two non-delivered recipients.
      email.NonDeliveryReportData.NonDeliveredRecipients.Add "Exchange_User2",
"UserAlias2@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO, NonDeliveryReason:=
“Recipient was not available at this address”
email.NonDeliveryReportData.NonDeliveredRecipients.Add "Exchange_User3",
"UserAlias3@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_CC, NonDeliveryReason:=
“Communication failure”

      'Compose message Body
      msg.Body = email.ComposeBody

      '***********************************
      '* Display non-delivered recipients.
      '***********************************

      Dim recipient As MSMQMailRecipient

      For Each recipient In email.NonDeliveryReportData.NonDeliveredRecipients
              MsgBox "Not Delivered To Recipient: " + recipient.Name + " at " +
recipient.Address + “, Reason is:” + recipient.NonDeliveryReason
      Next recipient

End Sub

See Also
Add, Address, ComposeBody, ContentType, FormData, FormFields, MSMQMailEMail, Name,
Sender, Subject, NonDeliveryReportData

NonDeliveryReason
MSMQMailRecipient

The NonDeliveryReason property specifies why the original e-mail was not delivered.

Quick Info
Type: String
Run time: Read-write

Syntax
object.NonDeliveryReason

Syntax Element Description
Object A recipient (MSMQMailRecipient) object that

defines an e-mail recipient.

Settings
A free text which describes the reason for not delivering the original e-mail to this recipient.

Remarks
NonDeliveryReason has a valid value only when the recipient is a member of the
NonDeliveredRecipients property of a non-delivery report e-mail.

Example
This example defines a non-delivery report, adding two non-delivered recipients to the non-delivered
recipient list of the report. The e-mail object is composed into a mail message, then each non-delivered
recipient is displayed.

To try this example using Microsoft® Visual Basic® (version 5.0), build an original email object in
emailOrig, paste the code into the Code window of a form, enter valid user address for each recipient,
then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to non-delivery report.
      email.ContentType = MSMQMAIL_EMAIL_NON_DELIVERY_REPORT

      'Add the Recipient of the report (usually the original e-mail sender).
      email.Recipients.Add "Exchange_User", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

      'Set original mail.
      Set email.NonDeliveryReportData.OriginalEMail = emailOrig
     

    'Add two non-delivered recipients.

      email.NonDeliveryReportData.NonDeliveredRecipients.Add "Exchange_User2",
"UserAlias2@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO, NonDeliveryReason:=
“Recipient was not available at this address”
email.NonDeliveryReportData.NonDeliveredRecipients.Add "Exchange_User3",
"UserAlias3@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_CC, NonDeliveryReason:=
“Communication failure”

      'Compose message Body
      msg.Body = email.ComposeBody

      '*********************
      '* Display Delivered Recipients.
      '*********************

      Dim recipient As MSMQMailRecipient

      For Each recipient In email.NonDeliveryReportData.NonDeliveredRecipients
              MsgBox "Not Delivered To Recipient: " + recipient.Name + " at " +
recipient.Address + “, Reason is:” + recipient.NonDeliveryReason
      Next recipient

End Sub

See Also
Add, Body, ComposeBody, ContentType, FormData, FormFields, MSMQMailEMail,
MSMQMAILFormField, Name, ParseBody, Recipients, Subject, Text, TextMessageData, Value

NonDeliveryReportData
MSMQMailEMail

The NonDeliveryReportData property defines a non-delivery report. The non-delivery report lists the
recipients who did not receive the original e-mail.

This property is only meaningful if ContentType is set to
MSMQMAIL_EMAIL_NON_DELIVERY_REPORT.

Quick Info
Type: MSMQMailNonDeliveryReportData
Run time: Read-write

Syntax
object.NonDeliveryReportData

Syntax Element Description
object E-mail message (MSMQMailEMail) object that

defines the e-mail message.

Settings
MSMQMailNonDeliveryReportData object.

Remarks
When defining a non-delivery report, set ContentType to
MSMQMAIL_EMAIL_NON_DELIVERY_REPORT whenever NonDeliveryReportData is set.

After parsing an MSMQ Mail message, verify that, ContentType is set to
MSMQMAIL_EMAIL_NON_DELIVERY_REPORT , before looking at NonDeliveryReportData. This
property is empty if ContentType indicates another e-mail type.

OriginalEmail
MSMQMailNonDeliveryReportData

The OriginalEmail property specifies the original e-mail in a non-delivery report e-mail.

Quick Info
Type: String
Run time: Read-write

Syntax
object1.object2.OriginalEMail

Syntax Element Description
Object1 E-mail (MSMQMailEMail) object that defines

the e-mail report.
Object2 Non-delivery report data

(MSMQMailNonDeliveryReportData) object
that represents the non-delivery report
information.

Settings
The original e-mail which was not delivered.

Remarks
OriginalEMail should be set to the original e-mail.

Example
This example defines a non-delivery report, adding two non-delivered recipients to the non-delivered
recipient list of the report. The e-mail object is composed into a mail message, then each non-delivered
recipient is displayed.

To try this example using Microsoft® Visual Basic® (version 5.0), build an original email object, paste
the code into the Code window of a form, enter valid user address for each recipient, then run the
example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to non-delivery report.
      email.ContentType = MSMQMAIL_EMAIL_NON_DELIVERY_REPORT

      'Add the Recipient of the report (usually the original e-mail sender).
      email.Recipients.Add "Exchange_User", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

      'Set original mail.
      Set email.NonDeliveryReportData.OriginalEMail = emailOrig
     

    'Add two non-delivered recipients.
      email.NonDeliveryReportData.NonDeliveredRecipients.Add "Exchange_User2",
"UserAlias2@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO, NonDeliveryReason:=
“Recipient was not available at this address”
email.NonDeliveryReportData.NonDeliveredRecipients.Add "Exchange_User3",
"UserAlias3@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_CC, NonDeliveryReason:=
“Communication failure”

      'Compose message Body
      msg.Body = email.ComposeBody

      '********************************
      '* Display non-delivered recipients.
      '********************************

      Dim recipient As MSMQMailRecipient

      For Each recipient In email.NonDeliveryReportData.NonDeliveredRecipients
              MsgBox "Not Delivered To Recipient: " + recipient.Name + " at " +
recipient.Address + “, Reason is:” + recipient.NonDeliveryReason
      Next recipient

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, MSMQMailEMail, MSMQMessage, Name,
Recipients, Sender, Text, TextMessageData

OriginalSubject
MSMQMailDeliveryReportData

The OriginalSubject property specifies the subject of the original e-mail in a delivery report e-mail.

Quick Info
Type: String
Run time: Read-write

Syntax
Object1.Object2.OriginalSubject

Syntax Element Description
Object1 E-mail (MSMQMailEMail) object that defines

the e-mail report.
Object2 Delivery report data

(MSMQMailDeliveryReportData) object that
represents the delivery report information.

Settings
String representation of the original e-mail message's subject.

Remarks
OriginalSubject should be set to the subject of the original e-mail.

Example
This example defines a delivery report, adding two delivered recipients to the delivered recipient list of
the report. The e-mail object is composed into a mail message, then each delivered recipient is
displayed.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, enter valid user address for each recipient, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to delivery report.
      email.ContentType = MSMQMAIL_EMAIL_DELIVERY_REPORT

      'Add the Recipient of the report (usually the original e-mail sender).
      email.Recipients.Add "Exchange_User", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

      'Set subject of original mail.
      email.DeliveryReportData.OriginalSubject = "Original subject "
     
      'Set submission time of original mail.
      email.DeliveryReportData.OriginalSubmissionTIme = CDate("5/20/94 10:16:07 PM")

    'Add two delivered recipients.
      email.DeliveryReportData.DeliveredRecipients.Add "Exchange_User2",
"UserAlias2@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO, DeliveryTime:=
CDate("5/20/94 10:17:00 PM")
email.DeliveryReportData.DeliveredRecipients.Add "Exchange_User3",
"UserAlias3@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_CC, DeliveryTime:=
CDate("5/20/94 11:01:00 PM")

      'Compose message Body
      msg.Body = email.ComposeBody

      '*********************
      '* Display Delivered Recipients.
      '*********************

      Dim recipient As MSMQMailRecipient

      For Each recipient In email.DeliveryReportData.DeliveredRecipients
              MsgBox "Delivered To Recipient: " + recipient.Name + " at " + recipient.Address + “
on “ + recipient.DeliveryTime
      Next recipient

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, MSMQMailEMail, MSMQMessage, Name,
Recipients, Sender, Text, TextMessageData

OriginalSubmissionTime
MSMQMailDeliveryReportData

The OriginalSubmissionTime property specifies the submission time of the original e-mail in a
delivery report e-mail.

Quick Info
Type: Date
Run time: Read-write

Syntax
object1.object2.OriginalSubmissionTime

Syntax Element Description
Object1 E-mail (MSMQMailEMail) object that defines

the e-mail report.
Object2 Delivery report data

(MSMQMailDeliveryReportData) object that
represents the delivery report information.

Settings
Date representation of the original e-mail message's submission time.

Remarks
OriginalSubmissionTime should be set to the SubmissionTime property of the original e-mail.

Example
This example defines a delivery report, adding two delivered recipients to the delivered recipient list of
the report. The e-mail object is composed into a mail message, then each delivered recipient is
displayed.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, enter valid user address for each recipient, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to delivery report.
      email.ContentType = MSMQMAIL_EMAIL_DELIVERY_REPORT

      'Add the Recipient of the report (usually the original e-mail sender).
      email.Recipients.Add "Exchange_User", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO

      'Set subject of original mail.
      email.DeliveryReportData.OriginalSubject = "Original subject "
     
      'Set submission time of original mail.

      email.DeliveryReportData.OriginalSubmissionTime = CDate("5/20/94 10:16:07 PM")

    'Add two delivered recipients.
      email.DeliveryReportData.DeliveredRecipients.Add "Exchange_User2",
"UserAlias2@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO, DeliveryTime:=
CDate("5/20/94 10:17:00 PM")
email.DeliveryReportData.DeliveredRecipients.Add "Exchange_User3",
"UserAlias3@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_CC, DeliveryTime:=
CDate("5/20/94 11:01:00 PM")

      'Compose message Body
      msg.Body = email.ComposeBody

      '*********************
      '* Display Delivered Recipients.
      '*********************

      Dim recipient As MSMQMailRecipient

      For Each recipient In email.DeliveryReportData.DeliveredRecipients
              MsgBox "Delivered To Recipient: " + recipient.Name + " at " + recipient.Address + “
on “ + recipient.DeliveryTime
      Next recipient

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, MSMQMailEMail, MSMQMessage, Name,
Recipients, Sender, Text, TextMessageData

Recipients
MSMQMailEMail

The Recipients property specifies the intended list of recipients for the e-mail message.

Quick Info
Type: MSMQMailRecipientList
Run time: Read-write

Syntax
object.Recipients

Syntax Element Description
object An e-mail (MSMQMailEMail) object that

defines an e-mail message.

Settings
MSMQMailRecipientList object.

Remarks
Each recipient in the e-mail's recipient list is represented by an MSMQMailRecipient object. Each
recipient object includes a name and address for the recipient, an input queue of the recipient, plus
how the message is sent to recipient.

Example
This example defines an e-mail form, adding three recipients to the e-mail's recipient list. The e-mail
object is composed into a mail message, then each recipient is displayed.

To try this example using Microsoft® Visual Basic® (version 5.0), paste the code into the Code window
of a form, enter valid user address for each recipient, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to form message.
      email.ContentType = MSMQMAIL_EMAIL_FORM

      'Add Recipients.
      email.Recipients.Add "Exchange_User", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "MAPI_User", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC
      email.Recipients.Add "MSMQApplication", "ApplicationInputQueueLabel",
MSMQMAIL_RECIPIENT_BCC
     
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set subject of mail.
      email. = "Test mail"
     
      'Set name of form
      email.FormData.Name = "Test form"
     
      'Set form field list.
      email.FormData.FormFields.Add "StringField", "Test Field"
     
      'Compose message Body
      msg.Body = email.ComposeBody

      '*********************
      '* Display Recipients.
      '*********************

      Dim recipient As MSMQMailRecipient

      For Each recipient In email.Recipients
              MsgBox "Recipient: " + recipient.Name + " at " + recipient.Address
      Next recipient

End Sub

See Also
Add, Address, ComposeBody, ContentType, FormData, FormFields, MSMQMailEMail, Name,
Sender, Subject

RecipientType
MSMQMailRecipient

The RecipientType property specifies how the e-mail is sent (MSMQMailRecipient) to the recipient.

Quick Info
Type: Long
Run time: Read-write

Syntax
object.RecipientType

Syntax Element Description
object A recipient (MSMQMailRecipient) object that

defines an e-mail recipient.

Settings
RecipientType can have any one of the following values:

MSMQMailRecipient_TO
Default. The recipient is the primary recipient of the e-mail.

MSMQMailRecipient_CC
The e-mail is copied to the recipient.

MSMQMailRecipient_BCC
The e-mail is blind copied to the recipient.

Remarks
This property is automatically set whenever a recipient is added to the recipient list of an e-mail object
(see the Type parameter of Add). Consequently, explicitly setting this property is seldom required.

Type is ignored if the recipient (MSMQMailRecipient) object represents the sender of an e-mail.

Example
This example composes a message body from an e-mail object with three recipients, then parses the
message body and displays all the recipients who received a copy of the message.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim email As New MSMQMailEMail
Dim emailReceived As New MSMQMailEMail
Dim recipient As MSMQMailRecipient
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to form message.
      email.ContentType = MSMQMAIL_EMAIL_FORM

      'Add primary recipient.

      email.Recipients.Add "Exchange_User1", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "Exchange_User2", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_CC
      email.Recipients.Add "Exchange_User3", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_CC
     
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set subject of mail.
      email.Subject = "Test form."

      'Set form name.
      email.FormData.Name = "Test form."

      'Set form field list.
      email.FormData.FormFields.Add "StringField", "Test Field"

      '***************************
      '* Compose and Parse message
      '***************************
      msg.Body = email.ComposeBody
      emailReceived.ParseBody (msg.Body)
     
      For Each recipient In email.Recipients
              If recipient.RecipientType = MSMQMAIL_RECIPIENT_CC Then
                    MsgBox "Mail was copied to: " + recipient.Name
              End If
      Next recipient

End Sub

See Also
Add, Body, ComposeBody, ContentType, FormData, FormFields, MSMQMailEMail,
MSMQMAILFormField, Name, ParseBody, Recipients, Subject, Text, TextMessageData, Value

RequestDeliveryReport
MSMQMailEMail

The RequestDeliveryReport property specifies whether receiving application should return a delivery
report when the e-mail is received.

Quick Info
Type: Boolean
Run time: Read-write

Syntax
object.RequestDeliveryReport

Syntax Element Description
object E-mail (MSMQMailEMail) object that

represents the e-mail message.

Settings
Boolean (default is False).

Remarks
If RequestDeliveryReport is set to True, the receiving application should send a delivery report e-mail
for the delivered recipients.

The default setting of this property is False.

Example
This example defines an text-message e-mail, setting its RequestDeliveryReport to True. The email
object is then used to compose the body of a mail message, and a message box displays the e-mail’s
subject.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '***********************
      '*    Define e-mail object
      '***********************
     
      'Set e-mail type to text message
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE
     
      'Add Recipients
      email.Recipients.Add "Connector Recipient Name",
"ExchangeUser@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "MAPI Recipient Name", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC

      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set the subject of the e-mail.
      email.Subject = "Test mail."

      'Request delivery report.
      email.RequestDeliveryReport = True

      'Set the Body of the e-mail.
      email.TextMessageData.Text = "This is the Body of the message."
     
      '**********************
      '* Compose message Body
      '**********************
      msg.Body = email.ComposeBody

      '******************
      '* Display delivery report flag.
      '******************
      MsgBox "Request a delivery report for the e-mail:" + email.RequestDeliveryReport

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, MSMQMailEMail, MSMQMessage, Name,
Recipients, Sender, Text, TextMessageData

RequestNonDeliveryReport
MSMQMailEMail

The RequestNonDeliveryReport property specifies whether a non-delivery report is sent back for the
recipients that did not receive the e-mail.

Quick Info
Type: Boolean
Run time: Read-write

Syntax
object.RequestNonDeliveryReport

Syntax Element Description
object E-mail (MSMQMailEMail) object that

represents the e-mail message.

Settings
Boolean (default is False).

Remarks
If RequestNonDeliveryReport is set to True, the sender will receive a non-delivery report for the
recipients that did not receive the e-mail.

Example
This example defines an text-message e-mail, setting its RequestNonDeliveryReport to True. The
email object is then used to compose the body of a mail message, and a message box displays the e-
mail’s non-delivery report request.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '***********************
      '*    Define e-mail object
      '***********************
     
      'Set e-mail type to text message
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE
     
      'Add Recipients
      email.Recipients.Add "Connector Recipient Name",
"ExchangeUser@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "MAPI Recipient Name", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC

      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set the subject of the e-mail.
      email.Subject = "Test mail."

      'Request non-delivery report.
      email.RequestNonDeliveryReport = True

      'Set the Body of the e-mail.
      email.TextMessageData.Text = "This is the Body of the message."
     
      '**********************
      '* Compose message Body
      '**********************
      msg.Body = email.ComposeBody

      '******************
      '* Display delivery report flag.
      '******************
      MsgBox "Request a non-delivery report for the e-mail:" +
email.RequestNonDeliveryReport

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, MSMQMailEMail, MSMQMessage, Name,
Recipients, Sender, Text, TextMessageData

Sender
MSMQMailEMail

The Sender property specifies who is sending the e-mail message. It includes the sender's name and
address.

Quick Info
Type: MSMQMailRecipient
Run time: Read-write

Syntax
object.Sender

Syntax Element Description
object An e-mail (MSMQMailEMail) object that

defines an e-mail message.

Settings
MSMQMailRecipient object.

Remarks
When setting the Sender property, the RecipientType property of the MSMQMailRecipient object can
be ignored. The RecipientType property has no meaning when specifying who sent the message.

Sender can be used to create a reply or reply-all e-mail. To do this, add the Sender to the recipient list
of the reply e-mail.

Example
This example defines an e-mail form, specifying who sent the message. The e-mail object is composed
into a mail message, then the sender recipient is displayed.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, enter valid user address for each recipient, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************

      'Set e-mail type to form message.
      email.ContentType = MSMQMAIL_EMAIL_FORM

      'Add Recipients.
      email.Recipients.Add "Exchange_User", "UserAlias@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
     
      'Set who sent the e-mail.
      email.Sender.Name = "Sender"
      email.Sender.Address = "Sender Application Input Queue"

      'Set subject of mail.

      email.Subject = "Test mail"
     
      'Set name of form
      email.FormData.Name = "Test form"
     
      'Set form field list.
      email.FormData.FormFields.Add "StringField", "Test Field"
     
      'Compose message Body
      msg.Body = email.ComposeBody

      '***************************
      '* Display recipient Sender.
      '***************************

      MsgBox "Recipient sender: " + email.Sender.Name + " at " + email.Sender.Address
     
End Sub

See Also
Add, Address, ComposeBody, ContentType, FormData, FormFields, MSMQMailEMail, Name,
Sender, Subject

Subject
MSMQMailEMail

The Subject property specifies the subject of the e-mail.

Quick Info
Type: String
Run time: Read-write

Syntax
object.Subject

Syntax Element Description
object E-mail (MSMQMailEMail) object that

represents the e-mail message.

Settings
String representation of the e-mail message's subject.

Remarks
Subject can be set to any valid string. There are no restrictions on this property.

Example
This example defines an text-message e-mail, setting its subject to “Test mail.” The email object is then
used to compose the body of a mail message, and a message box displays the e-mail’s subject.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '***********************
      '*    Define e-mail object
      '***********************
     
      'Set e-mail type to text message
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE
     
      'Add Recipients
      email.Recipients.Add "Connector Recipient Name",
"ExchangeUser@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "MAPI Recipient Name", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC

      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set the subject of the e-mail.
      email.Subject = "Test mail."

      'Set the Body of the e-mail.
      email.TextMessageData.Text = "This is the Body of the message."
     
      '**********************
      '* Compose message Body
      '**********************
      msg.Body = email.ComposeBody

      '******************
      '* Display subject.
      '******************
      MsgBox "Subject of e-mail is:" + email.Subject

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, MSMQMailEMail, MSMQMessage, Name,
Recipients, Sender, Text, TextMessageData

SubmissionTime
MSMQMailEMail

The SubmissionTime property specifies when the e-mail object was submitted.

Quick Info
Type: Date
Run time: Read-write

Syntax
object.SubmissionTime

Syntax Element Description
object E-mail (MSMQMailEMail) object that defines

the e-mail message.

Settings
Date e-mail was submitted.

Remarks
Typically, mail is sent at the same time the e-mail object is submitted. However, some applications may
need to store the e-mail objects (such as when communication is broken) and send the actual mail at
another time.

The returned value for this property can be manipulated using standard Microsoft® Visual Basic® date
and time functions such as Date$, and Time$. For descriptions of Visual Basic functions, see Visual
Basic documentation.

When SubmissionTime is displayed, Visual Basic will automatically convert the returned value to the
local system time and system date.

Example
This example defines an e-mail message as a form, then displays the date and time when the e-mail
object was submitted.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, and then run the example and click the form.

Dim email As New MSMQMailEMail

Private Sub Form_Click()

      '****************
      '* Define eimail
      '****************
     
      'Set e-mail type to text message
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE
     
      'Add Recipients.
      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
     
      'Set who is sending the e-mail.
      email.Sender.Name = "Our name"

      email.Sender.Address = "Our queue label"
     
      'Set the subject of the e-mail.
      email.Subject = "Test mail."
     
      'Set the Body of the e-mail.
      email.TextMessageData.Text = "This is the Body of the message."
     
     
      '************************
      '* Display SubmissionTime time.
      '************************
     
      MsgBox "The e-mail object was submitted at: " + CStr(email.SubmissionTime)
     
End Sub

See Also
Add, Address, ContentType, MSMQMailEMail, Name, Recipients, Sender, Subject, Text,
TextMessageData

Text
MSMQMailTextMessageData

The Text property specifies the text of a text message e-mail.

Quick Info
Type: String
Run time: Read-write

Syntax
object1.object2.Text

Syntax Element Description
object1 E-mail (MSMQMailEMail) object that defines

the e-mail message.
object2 Text message data

(MSMQMailTextMessageData) object that
represents the text message.

Settings
String representation of message body.

Example
This example defines an e-mail object as a text message, setting the text message body to “This is a
text message". The email object is then used to compose the body of a mail message, and a message
box displays the text of the mail.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '***********************
      '*    Define e-mail object
      '***********************
     
      'Set e-mail type to text message
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE
     
      'Add Recipients
      email.Recipients.Add "Connector Recipient Name",
"ExchangeUser@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "MAPI Recipient Name", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC

      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set the subject of the e-mail.
      email.Subject = "Test mail."

      'Set the Body of the e-mail.
      email.TextMessageData.Text = "This is the Body of the message."
     
      '**********************
      '* Compose message Body
      '**********************
      msg.Body = email.ComposeBody

      '******************
      '* Display subject.
      '******************
      MsgBox "The text of the message is:" + email.TextMessageData.Text

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, MSMQMailEMail, MSMQMessage, Name,
Recipients, Sender, Subject, TextMessageData

TextMessageData
MSMQMailEMail

The TextMessageData property defines a text-message.

This property is only meaningful if ContentType is set to MSMQMAIL_EMAIL_TEXTMESSAGE.

Quick Info
Type: MSMQMailTextMessageData
Run time: Read-write

Syntax
object.TextMessageData

Syntax Element Description
object E-mail message (MSMQMailEMail) object that

defines the text message.

Settings
MSMQMailTextMessageData object.

Remarks
When composing the body of an MSMQ mail message that represent a text message, set
ContentType to MSMQMAIL_EMAIL_TEXTMESSAGE.

When parsing the body of an MSMQ message, verify that ContentType is set to
MSMQMAIL_EMAIL_TEXTMESSAGE, before looking at TextMessageData. This property is empty if
ContentType indicates another e-mail type.

Example
This example defines an e-mail object as a text message, setting the text message body to “This is a
text message". The email object is then used to compose the body of a mail message, and a message
box displays the text of the mail.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '***********************
      '*    Define e-mail object
      '***********************
     
      'Set e-mail type to text message
      email.ContentType = MSMQMAIL_EMAIL_TEXTMESSAGE
     
      'Add Recipients
      email.Recipients.Add "Connector Recipient Name",
"ExchangeUser@ServerInputQueueLabel", MSMQMAIL_RECIPIENT_TO
      email.Recipients.Add "MAPI Recipient Name", "MAPIUserInputQueueLabel",
MSMQMAIL_RECIPIENT_CC

      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"

      'Set the subject of the e-mail.
      email.Subject = "Test mail."

      'Set the Body of the e-mail.
      email.TextMessageData.Text = "This is the Body of the message."
     
      '**********************
      '* Compose message Body
      '**********************
      msg.Body = email.ComposeBody

      '******************
      '* Display subject.
      '******************
      MsgBox "The text of the message is:" + email.TextMessageData.Text

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, MSMQMailEMail, MSMQMessage, Name,
Recipients, Sender, Subject, Text

TnefData
The TnefData property defines the TNEF data.

This property is only meaningful if ContentType is set to MSMQMAIL_EMAIL_TNEF.

Quick Info
Type: MSMQMailTnefData
Run time: Read-write

Syntax
object.TnefData

Syntax Element Description
object E-mail message (MSMQMailEMail) object that

defines the e-mail message.

Settings
MSMQMailTnefData object.

Remarks
When defining TNEF data, set ContentType to MSMQMAIL_EMAIL_TNEF whenever TnefData is set.

After parsing an MSMQ Mail message, verify that, ContentType is set to MSMQMAIL_EMAIL_TNEF
before looking at TnefData. This property is empty if ContentType indicates another e-mail type.

Value
MSMQMailFormField

The Value property specifies the value of a field.

Quick Info
Type: Variant
Run time: Read-write

Syntax
object.Value

Syntax Element Description
object Field (MSMQMailFormField) object that

represents the field of the form.

Settings
String, Integer, Boolean, Double, or Currency value of field.

Example
This example defines an e-mail form that has three fields (String, Boolean, and Date). Then composes
a message body and displays the values of each field.

To try this example using Microsoft Visual Basic (version 5.0), paste the code into the Code window of
a form, then run the example and click the form.

Dim email As New MSMQMailEMail
Dim msg As New MSMQMessage

Private Sub Form_Click()

      '*********************
      '*    Define e-mail
      '*********************
     
      'Set e-mail type to form message.
      email.ContentType = MSMQMAIL_EMAIL_FORM
     
      'Add primary recipient.
      email.Recipients.Add "Exchange_User", "ExchangeUser@ServerInputQueueLabel",
MSMQMAIL_RECIPIENT_TO
     
      'Set who sent the e-mail.
      email.Sender.Name = "Our name"
      email.Sender.Address = "Our queue label"
     
      'Set subject of mail.
      email.Subject = "Test form."
     
      '***************
      '* Define form
      '***************
     
      'Set form name

      emaile.FormData.Name = "Our name"
       
      'Set form field list.
      email.FormData.FormFields.Add "StringField", "Test String"
      email.FormData.FormFields.Add "BooleanField", True
      email.FormData.FormFields.Add "DateField", "Current Date"

      '***********************
      '* Compose mail message.
      '***********************
     
      msq.Body = email.ComposeBody
     
      '*********************
      '* Display Recipients.
      '*********************

      Dim formfield As MSMQMailFormField

      For Each formfield In email.FormData.FormFields
              MsgBox "Form: " + formfield.Name + " = " + CStr(formfield.Value)
      Next formfield

End Sub

See Also
Add, Address, Body, ComposeBody, ContentType, FormData, FormFields, MSMQMailEMail,
MSMQMessage, Name, Recipients, Sender, Subject

MSMQQuery Methods
LookupQueue

MSMQQueueInfos Methods
Next
Reset

MSMQQueueInfo Properties
Authenticate
BasePriority
CreateTime
FormatName
IsTransactional
IsWorldReadable
Journal
JournalQuota
Label
ModifyTime
PathName
PrivLevel
QueueGuid
Quota
ServiceTypeGuid

MSMQQueueInfo Methods
Create
Delete
Open
Refresh
Update

MSMQQueue Properties
Access
Handle
IsOpen
QueueInfo
ShareMode

MSMQQueue Methods
Close
EnableNotification
Peek
PeekCurrent
PeekNext
Receive
ReceiveCurrent
Reset

MSMQEvent Events
Arrived
ArrivedError

MSMQMessage Properties
Ack
AdminQueueInfo
AppSpecific
ArrivedTime
Authlevel
Body
BodyLength
Class
CorrelationId
Delivery
DestinationQueueInfo
EncryptAlgorithm
HashAlgorithm
Id
IsAuthenticated
Journal
Label
MaxTimeToReachQueue
MaxTimeToReceive
Priority
PrivLevel
ResponseQueueInfo
SenderCertificate
SenderID
SenderIDType
SentTime
SourceMachineGuid
Trace

MSMQMessage Methods
AttachCurrentSecurityContext
Send

MSMQCoordinatedTransactionDispenser Methods
BeginTransaction

MSMQTransactionDispenser Methods
BeginTransaction

MSMQTransaction Properties
Transaction

MSMQTransaction Methods
Abort
Commit
Transaction

MSMQApplication Methods
MachineIdOfMachineName

MSMQMailEMail Properties
ContentType
DestinationQueueLabels
DeliveryReportData
FormData
NonDeliveryReportData
Recipients
RequestDeliveryReport
RequestNonDeliveryReport
Sender
Subject
SubmissionTime
TextMessageData
TnefData

MSMQMailEMail Methods
ComposeBody
ParseBody

MSMQMailFormData Properties
FormFields
Name

MSMQMailFormField Properties
Name
Value

MSMQMailFormFieldList Properties
Count
Item

MSMQMailFormFieldList Methods
Add
Remove

MSMQMailRecipient Properties
Address
Name
RecipientType
NonDeliveryReason
DeliveryTime

MSMQMailRecipientList Properties
Count
Item

MSMQMailRecipientList Methods
Add
Remove

MSMQMailTextMessageData Properties
Text

MSMQMailTnefData Properties
Data

MSMQMailDeliveryReportData Properties
DeliveredRecipients
OriginalSubject
OriginalSubmissionTime

MSMQMailNonDeliveryReportData Properties
NonDeliveredRecipients
OriginalEMail

A
acknowledgment message
Indicates whether the message reached the queue or was retrieved from the queue. The type of
acknowledgment is generated by MSMQ, MSMQ connector applications, or computers outside the
MSMQ system.

AddressSpecification
The address specification of a computer. It can be specified using two forms: either as the network
address of the target machine (including the network protocol) or as any string that is supported
by the underlying operating system to identify the target machine.

As a shortcut, the operating system can be used to indicate that the computer's native protocol
should be used.

administration queue
A queue created and maintained by the application. It receives MSMQ-generated
acknowledgment messages that indicate if a message reaches a queue, or if the message is
retrieved from the queue.

application input queue
An application input queue is created by the MSMQ application that needs to read MSMQ mail
formatted messages. When the application creates the queue, the queue's label must be set to
the address of the MAPI application and the queue's type must be set to the following MAPI type
identifier:

{5EADC0D0-7182-11CF-A8FF-0020AFB8FB50}

When a MAPI form is sent to an MSMQ application, the MSMQ MAPI Transport Provider locates
the application's input queue by the queue's label and type. If the MAPI Transport provider cannot
find the queue with the correct label and type, the form is rejected and a non-delivery report is
generated.

application object
Object whose methods provide global functionality. Unlike most application objects, the MSMQ
application object does not start a new instance of MSMQ.

audit
Queue operations can be audited by modifying the system access control list (SACL) of the
queue's security descriptor. For a complete description of auditing, see the Microsoft Message
Queue Server Administrator's Guide).

C
callback function
Used to asynchronously read the messages in a queue. It is an application-defined function that
MSMQ calls when a message is available, a timeout occurs, or an error occurs.

certificate authority
Issues external certificates. The certificate authority accepts requests for certificates, confirms that
the information provided in the request is accurate, then returns a certificate to the person
requesting it.

The requester must provide their public key, and whatever additional information is required by the
certificate authority.

CN
See connected network.

computer
Computers are created and maintained by the MSMQ administrator. All existing computers are
defined in MQIS.

Their properties can be retrieved using MQGetMachineProperties.

connected network
A collection of computers where any two computers can communicate directly. For more
information on CNs, see the Microsoft Message Queue Server Administrator's Guide.

connector application
Used by a MSMQ connector server to translate between MSMQ message properties and foreign
message properties.

Connector applications may also perform security services such as authenticating messages and
encrypting/decrypting messages.

connector queue
Queue used by an MSMQ connector server. Messages sent to foreign queues are temporarily
stored in a connector queue before they are retrieved by the connector application.

MSMQ connector servers can have several pairs of connector queues. There is a transaction and
non-transaction queue for each foreign CN connected to the server.

critical section object
A Win32 object that provides mutually-exclusive synchronization. A critical section object can only
be used by one thread at a time.

For more information on critical section objects, see the Platform SDK and winbase.h.

D
dead letter queue
Used to store application-generated messages that cannot be delivered. There are two dead letter
queues, one for transaction messages and the other for non-transaction messages.

DEADXACT
Indicates the dead letter queue for transaction messages is requested.

For more information see dead letter queue.

DEADLETTER
Indicates the dead letter queue for non-transaction messages is requested.

For more information see dead letter queue.

delivery report
E-mail that is sent to the originator of a previously sent e-mail (referenced as the original e-mail). It
contains a list of the recipients who received the e-mail and when, plus the original e-mail's
subject and submission time.

dependent client
MSMQ computers that cannot function without synchronous access to an MSMQ server (PEC,
PSC, BSC, or MSMQ routing server).

MSMQ dependent clients require synchronous access to the supporting MSMQ server to perform
all standard MSMQ functions, such as creating queues, sending messages, and receiving
messages.

digital signature
Used to verify the source of a message and that the message was not modified.

direct format name
Format used to open a queue that is not in your enterprise, or when you want to make sure
MSMQ sends messages to the queue in one step.

Direct format names include the address of the computer where the queue is located followed by
the local name of the queue (the name specified in the queue's pathname when the queue was
created).

E
E-mail message
There are two types of e-mail messages: forms and text messages. Text messages use a single
text body to pass information while e-mail forms use one or more fields.

express
Delivery mode that provides faster delivery. The message stays in memory (RAM) until it can be
delivered and is not recovered if the computer is rebooted.

external certificate
Used when the receiving application needs information in the certificate to verify who sent a
message.

External certificates contain information about the certificate authority, the certified user, the
validity period of the certificate, the public key of the certified user, and the certificate authority's
signature.

For more information see internal certificate.

external transaction
Transaction called when the transaction must work with more than one resource manager (more
than simply sending or retrieving an MSMQ message). In this case, the application must ask MS
DTC for a transaction object and reference that object each time it sends a message, retrieves a
message, or executes an action of another resource manager.

F
foreign CN
A connected network (CN) that contains computers that do not run MSMQ (foreign computers)
and at least one MSMQ connector server.

For information on creating, renaming, or removing a foreign CN, see the MSMQ Administrator's
Guide.

foreign computer
A computer that does not run MSMQ, but can exchange messages with MSMQ through an MSMQ
connector application.

For information on creating, renaming, or removing a foreign computer, see the MSMQ
Administrator's Guide.

foreign queue
A queue that resides on a computer that does not run MSMQ (a foreign computer).

ForeignCNGUID
Identifier of the foreign CN where the MSMQ connector is located. The CN's identifier is generated
by MSMQ when the CN is created.

For information on CNs, see the Microsoft Message Queue Server Administrator's Guide.

format name
Used to specify a queue when making calls to several API functions.

The queue's format name is not an MSMQ queue property. It is a unique name for the queue
generated by MSMQ when it is created. The format name can also be generated later by the
application. MSMQ never stores the format name of a queue for later reference.

H
hive
A discrete body of registry keys, subkeys, and values that is rooted at the top of the registry.

I
independent client
MSMQ independent clients can create and modify queues as well as send and receive messages
just as MSMQ servers can. MSMQ independent clients can create queues and store messages on
the local computer without synchronous access to an MSMQ server. The primary difference
between MSMQ independent clients and MSMQ servers is that independent clients do not have
the intermediate store-and-forward capability of MSMQ servers, nor do they store information from
the distributed MSMQ database.

In addition to the basic MSMQ files, you can install the Microsoft Message Queue Server SDK on
MSMQ independent clients.

You can also install the MSMQ Explorer on MSMQ independent clients running under Windows
NT® Workstation or Server. You can use the MSMQ Explorer to administer your MSMQ enterprise
remotely from computers running Windows NT Workstation.

internal certificate
Used when the receiving application only needs to verify that the sender identifier attached to a
message is valid.

An internal certificate contains a public key written in the form of an X.509 certificate. Internal
certificates have no additional sender information that can be used for authentication.

internal transaction
Transaction called where MSMQ is the only resource manager. MSMQ internal transactions
cannot be passed to another resource manager, unlike MS DTC external transactions. It is the
additional RAM that is needed to coordinate between several resource managers that makes
MSMQ internal transaction a better choice than MS DTC external transactions.

J
journal queue
See: machine journal, queue journal.

JOURNAL
Indicates that the journal queue is requested.

For more information see machine journal, or queue journal.

M
machine
See computer.

MachineName
The name of the computer where the queue's messages will be stored. Machine names are not
case sensitive, so "mymachine" and "MyMachine" are treated the same way.

To indicate the local computer, you can substitute the string "." for the name of the local machine.
For private queues the machine name must be the name of the local machine.

MachineGUID
Computer identifier generated by MSMQ when the computer is added to its CN.

For more information see connected network.

machine journal
Used to store copies of application-generated messages.

For more information see queue journal

mail message
An MSMQ message whose body is formatted in MSMQ mail format. The body of a mail message
can be composed or parsed by any MSMQ application.

The MSMQ Exchange Connector and MAPI Transport Provider translate between e-mail and
MSMQ mail messages.

message
MSMQ messages are defined by their properties. Included in these properties is the message
body, which contains the bulk of the information passed between applications.

message identifier
Used by applications to identify a message. It is also used by MSMQ to indicate the original
application message associated with an acknowledgment or report message.

message queue
An application-generated queue that contains application-generated messages. Applications can
send messages to these queues or read their messages. They can be public queues registered in
the MSMQ information store or private queues that are registered on individual computers.

MIME
Multipurpose Internet Mail Extensions (MIME) is a standard that is used to encode Internet mail
messages, and is described by several RFCs; the most relevant RFCs are RFC-822, 1521
(MIME), and RFC-1867 (form data).

MQIS
See: MSMQ Information Store.

MS DTC external transaction
External transaction where transaction object is provided by Microsoft® Distributed Transaction
Coordinator (MS DTC). Used when more then one resource manager is required.

MSMQ Connector Server
The MSMQ connector server allows MSMQ-based applications communicate with computers that
use other messaging systems (foreign computers). MSMQ connector servers use internal
connector queues and a connector application to pass messages between the MSMQ and foreign
enterprises.

The Level 8 Systems MSMQ message queuing product is an example of an MSMQ connector
server.

MSMQ information store
MSMQ information store (MQIS). A Microsoft® SQL Server version 6.5 replicated database that
contains information of about your MSMQ enterprise. It includes information about items such as
public queues, computers, MSMQ servers, and CNs.

MSMQ internal transaction
Transaction provided by MSMQ. Internal transactions cannot be passed to other resource
managers.

MSMQ mail format
The MSMQ mail format is used by applications that send messages to e-mail based applications.
The MSMQ mail format is a subset of the standard Multipurpose Internet Mail Extensions (MIME)
format.

MTS transaction
Transaction that uses the Microsoft® Transaction Server (MTS) environment. MSMQ implicitly
uses the current MTS transaction if one is available.

N
non-delivery report
E-mail that is sent to the originator of a previously sent e-mail (referenced as the original e-mail). It
contains the recipients who did not receive the original e-mail, the reason e-mail was not
delivered, and the original e-mail content.

non-transaction message
Any message that is sent to a non-transaction queue. Typically, any message that is not part of a
transaction.

For more information see non-transaction queue.

non-transaction queue
A queue that only contains non-transaction messages.

For more information see non-transaction message.

P
pathname
Used when creating the queue. It indicates where to store the queue's messages, where to
register the queue, and provides a name for the queue.

peek
To look at a message in a queue without removing it from the queue.

For more information see read or retrieve.

private message
Message whose body is encrypted. Applications can set the privacy-level for each message it
sends and the encryption algorithm used to encrypt the message.

private format name
Format used to specify queues not registered in MSMQ information store (MQIS). The private
format name of the queue includes the string "Private=" followed by the MachineGUID (machine
identifier) of the computer where the queue is located and a hexadecimal number that identifies
the queue.

The following is the general format of a private format name:

"PRIVATE=MachineGUID\QueueNumber"

private signing key
Signature key used to digitally sign a message. The private signing key is part of the signature key
pair and should always be kept private.

For information on the other signature key, see public signing key.

private queue
A queue registered on the local computer (not in MQIS) that typically cannot be located by other
applications. Private queues have the advantage of no MQIS overhead (faster to create, no
latency, and no replication), and they can be created and deleted when MQIS is not working.

For more information see public queue.

PRIVATE$
Indicates the queue is private and is registered on the local computer. Its absence indicates a
public queue that is registered in MQIS.

public format name
Format used to specify a queue registered in MQIS. A queue's public format name contains the
string "Public=" followed by the queue identifier generated by MSMQ when the queue was
created.

The following is the general format for public format names:

"PUBLIC=QueueQUID"

public signing key
Signature key used to validate the digital signature of a message. The public signing key is part of
the signature key pair, and is sent with the message.

For information on the other signature key, see private signing key.

public queue
A queue registered in MQIS that can be located by any MSMQ application. Public queues are
persistent and their registration information can be backed up on the MSMQ enterprise, making
them good for long-term use.

For more information see private queue.

Q
queue
Objects that hold messages passed among applications, or messages passed between MSMQ
and applications. Applications can send messages to queues and read messages from queues.

For more information see message queues, administration queues, dead letter queues, journal
queues, response queues, report queues, transaction queues, and foreign queues.

QueueGUID
Queue identifier returned by MSMQ when the queue is created.

QueueName
Application-defined name used to identify queue. This name is specified when the queue is
created.

QueueNumber
Eight-digit, hexadecimal number that identifies the private queue. It is generated by MSMQ when
the queue is created on the local computer.

To find the queue number of a private queue, use Windows Explorer to locate the queue in the ..\
MSMQ\Storage\Lqs folder.

Queue Manager
An MSMQ service responsible for delivering, receiving, authenticating, and routing messages, as
well as maintaining the MSMQ information store.

queue journal
Used to store copies of application-generated messages after they are retrieved from the queue.

For more information see machine journal.

R
read
Peeking at or retrieving a message in the queue.

For more information see peek or retrieve.

recoverable
Delivery mode that guarantees message delivery even in the case of a computer crash. In this
mode the message is forwarded to the next hop or stored in a local backup file every hop along its
route until it is delivered.

report message
Generated each time a message passes through an MSMQ routing server.

For more information see report queue.

report queue
A queue used to track the progress of your messages as they move through your enterprise.
Report queues receive MSMQ-generated report messages. Applications can only read the
messages in a report queue.

For more information see report message.

response message
Application-generated message that is returned to the sending application's response queue.

For more information see response queue.

response queue
A queue used to return application-generated response messages from the application reading
the messages in a queue.

For more information see Response Queues.

retrieve
To read a message in a queue and remove it from the queue.

For more information see peek or read.

rich-text recipient
Users who selected the check box labeled "Send to this recipient in Microsoft Exchange rich text
format" in their Exchange/MAPI address.

S
security context information
Information extracted from an external certificate or internal certificate. Security context
information is used when the same certificate is used several times. Also, using the correct
security context information is very important when impersonating a user.

For more information, see external certificate. and internal certificates.

security descriptor
An opaque structure that consists of a SECURITY_DESCRIPTOR structure and its associated
security information.

Security information can include security identifiers (SID), a discretionary access-control list
(DACL), and a system access-control list (SACL).

For a complete description of security descriptors, see the Platform SDK.

server input queue
The Exchange server input queue is created by the MSMQ Exchange Connector when the
connector starts the first time. When an MSMQ message reaches this queue, it is picked up by the
MSMQ Exchange Connector, translated into an e-mail message, then sent on to the Exchange
Server where it is distributed to the appropriate Exchange user.

The queue's label is set by the Exchange Connector's Setup program. In addition, the Exchange
Connector sets the queue's type to the MAPI type identifier shown in the following example.

MAPI type identifier:

{5EADC0D0-7182-11CF-A8FF-0020AFB8FB50}

SID
A unique value of variable length used to identify a user or group. The SID is assigned when the
user logs on and becomes part of the access token for any process started by the user.

The SID contains a 48-bit identifier authority value, a revision level, and any number of sub-
authority values. For a complete description of SIDs, see the Platform SDK.

site controller server
MSMQ server installed using MSMQ Explorer. See Microsoft Message Queue Server
Administrator's Guide for details on installing a site controller.

T
TNEF
Transport-Neutral Encapsulation format. A MAPI-defined format that encapsulates MAPI message
properties inside a single binary stream. In order to preserve MAPI properties, a sending
application can encode a MAPI message into a TNEF stream and send the stream to a receiving
application. The receiving application can use MAPI to decode the stream and reconstruct the
original MAPI message.

TNEF message
Message formatted in Transport-Neutral Encapsulation format (TNEF).

See: TNEF.

transaction message
Message sent as part of a transaction. Transaction messages must be sent to transaction queues

For more information see transaction queue.

transaction queue
A queue that contains transaction messages. Transaction queues can only contain transaction
messages, which are messages sent within a transaction.

For more information see transaction message.

transaction status queue
Contains the read receipt acknowledgments returned by connector applications. It is specified by
setting the message's PROPID_M_XACT_STATUS_QUEUE property. The transaction status
queue must be a transaction queue.

U
user input queue
Queue created when the MSMQ MAPI Transport Provider is started the first time. The transport
provider creates a user input queue for each MAPI user. Each queue is created with an enterprise
scope, its type property set to the MAPI type identifier shown in the following example, and its
label set to a MAPI user's login name.

MAPI type identifier:

{5EADC0D0-7182-11CF-A8FF-0020AFB8FB50}

An MSMQ mail message that reaches any of these queues is picked up by the MSMQ MAPI
Transport Provider, translated into an e-mail message, and then sent on to the inbox of the MAPI
application.

X
XA transaction
Transaction that uses an XA-compliant transaction manager. MSMQ implicitly calls the current XA
transaction.

XACTONLY
Indicates that the transactional connector queue is requested.

Release Notes
This appendix contains information about the differences between Microsoft® Message Queue Server
1.0 (MSMQ) and previous preliminary releases, as well as late-breaking information that was not
incorporated into the Guide or Reference sections of the MSMQ Programmer's Reference.

Changes in ActiveX Components
When developing applications, you must use new names when specifying some of the parameters and
properties of the ActiveX components supplied by the MSMQ and MSMQ Mail SDKs.

These new ActiveX objects are not compatible with ActiveX objects that shipped in preliminary releases
of MSMQ. All ActiveX binaries must be recompiled against the new MSMQ 1.0 components, and you
may also need to edit source code due to object model changes.

In addition to some entirely new names, the naming convention used with the MSMQ 1.0 ActiveX
component implementation has removed Hungarian notation prefixes from the old names of all
methods, properties, and parameters.

If your applications use the MSMQ ActiveX components included with any of the MSMQ beta releases,
you must edit the appropriate ActiveX methods, properties, and parameter names before running your
application on MSMQ 1.0. This renaming requires that you edit many, if not all, of your existing
programs.

MSMQQuery.LookupQueue
The following name changes were made to the parameters of the LookupQueue method of
MSMQQuery. Former names are in comments.

    LookupQueue(
                              QueueGuid                'strGuidQueue
                              ServiceTypeGuid    'strGuidServiceType
                              CreateTime              'dateCreateTime
                              ModifyTime              'dateModifyTime
                              RelServiceType      'relServiceType
                              RelLabel                  'relLabel
                              RelCreateTime        'relCreateTime
                              RelModifyTime        'relModifyTime
                             )
     

MSMQMessage (Properties)
The following name changes were made to the properties of the MSMQMessage object.

MSMQMessage.Class                                  'lClass
MSMQMessage.PrivLevel                          'lPrivLevel
MSMQMessage.AuthLevel                          'lAuthLevel
MSMQMessage.IsAuthenticated              'isAuthenticated
MSMQMessage.Delivery                            'lDelivery
MSMQMessage.Trace                                  'lTrace
MSMQMessage.Priority                            'lPriority
MSMQMessage.Journal                              'lJournal
MSMQMessage.ResponseQueueInfo          'queueinfoResponse
MSMQMessage.AppSpecific                      'lAppSpecific
MSMQMessage.SourceMachineGuid          'guidSrcMachine
MSMQMessage.BodyLength                        'lenBody
MSMQMessage.Body                                    'body     
MSMQMessage.AdminQueueInfo                'queueinfoAdmin
MSMQMessage.Id  'id
MSMQMessage.CorrelationId                  'idCorrelation
MSMQMessage.Ack                                      'lAck
MSMQMessage.Label                                  'strLabel
MSMQMessage.MaxTimeToReachQueue      'lMaxTimeToReachQueue
MSMQMessage.MaxTimeToReceive            'lMaxTimeToReceive
MSMQMessage.HashAlgorithm                  'lHashAlg
MSMQMessage.EncryptAlgorithm            'lEncryptAlg
MSMQMessage.SentTime                            'dateSentTime
MSMQMessage.ArrivedTime                      'dateArrivedTime
MSMQMessage.DestinationQueueInfo    'queueinfoDest
MSMQMessage.SenderCertificate          'binSenderCert
MSMQMessage.SenderId                            'binSenderId
MSMQMessage.SenderIdType                    'lSenderIdType

The lSecurityContext property is no longer available. See
MSMQMessage.AttachCurrentSecurityContext.

MSMQMessage.Send
The following name changes were made to the parameters of the Send method of MSMQMessage.
Former names are in comments.

    Send(
                DestinationQueue            'pqDest
                Transaction                    'lTransaction
             )
     

MSMQMessage.AttachCurrentSecurityContext
The AttachCurrentSecurityContext method retrieves the security context information from the
security certificate specified by SenderCertificate and associates it with the current object.

MSMQQueue (Properties)
The following name changes were made to the properties of the MSMQQueue object.

MSMQMessage.Access            'lAccess
MSMQMessage.ShareMode      'lShareMode
MSMQMessage.QueueInfo      'queueinfo
MSMQMessage.Handle            'lHandle
MSMQMessage.IsOpen            'isOpen

MSMQQueue.Receive
The following name changes were made to the parameters of the Receive method of MSMQQueue.
Former names are in comments.

    Receive(
                    Transaction                      'lTransaction
                    WantDestinationQueue    'wantDestQueue
                    WantBody                            'wantBody
                    ReceiveTimeout                'lReceiveTimeout
                 )
     

MSMQQueue.ReceiveCurrent
The following name changes were made to the parameters of the ReceiveCurrent method of
MSMQQueue. Former names are in comments.

    ReceiveCurrent(
                                  Transaction                      'lTransaction
                                  WantDestinationQueue    'wantDestQueue
                                  WantBody                            'wantBody
                                  ReceiveTimeout                'lReceiveTimeout
                                 )
     

MSMQQueue.Peek
The following name changes were made to the parameters of the Peek method of MSMQQueue.
Former names are in comments.

    Peek(
                    WantDestinationQueue    'wantDestQueue
                    WantBody                            'wantBody
                    ReceiveTimeout                'lReceiveTimeout
                 )
     

MSMQQueue.PeekCurrent
The following name changes were made to the parameters of the PeekCurrent method of
MSMQQueue. Former names are in comments.

    PeekCurrent(
                    WantDestinationQueue    'wantDestQueue
                    WantBody                            'wantBody
                    ReceiveTimeout                'lReceiveTimeout
                 )
     

MSMQQueue.PeekNext
The following name changes were made to the parameters of the PeekNext method of
MSMQQueue. Old names are in comments.

    PeekNext(
                    WantDestinationQueue    'wantDestQueue
                    WantBody                            'wantBody
                    ReceiveTimeout                'lReceiveTimeout
                 )
     

MSMQQueue.EnableNotification
The following name changes were made to the parameters of the EnableNotification method of
MSMQQueue. Former names are in comments.

    EnableNotification(
  Event                      'pqEvent
  Cursor                    'lCursor
  ReceiveTimeout    'lReceiveTimeout
 )
     

MSMQEvent.Arrived
The following name changes were made to the parameters of the Arrived method of the MSMQEvent
object. Former names are in comments.

    Arrived(
                      Queue                      'pdispQueue
                      Cursor                    'lCursor
                 )
     

MSMQEvent.ArrivedError
The following name changes were made to the parameters of the ArrivedError method of the
MSMQEvent object. Former names are in comments.

    ArrivedError(
                              Queue                      'pdispQueue
                              ErrorCode              'lErrorCode
                              Cursor                    'lCursor
                           )
     

MSMQQueueInfo (Properties)
The following name changes were made to the properties of the MSMQQueueInfo object.

MSMQQueueInfo.QueueGuid                        'guidQueue
MSMQQueueInfo.ServiceTypeGuid            'guidServiceType
MSMQQueueInfo.Label                                'strLabel
MSMQQueueInfo.PathName                          'strPathName
MSMQQueueInfo.FormatName                      'strFormatName
MSMQQueueInfo.IsTransactional            'isTransactional
MSMQQueueInfo.Journal                            'lJournal
MSMQQueueInfo.Quota                                'lQuota
MSMQQueueInfo.BasePriority                  'lBasePriority
MSMQQueueInfo.CreateTime                      'dateCreateTime
MSMQQueueInfo.ModifyTime                      'dateModifyTime
MSMQQueueInfo.PrivLevel                        'lPrivLevel
MSMQQueueInfo.Authenticate                  'lAuthenticate
MSMQQueueInfo.JournalQuota                  'lJournalQuota
MSMQQueueInfo.IsWorldReadable            'IsWorldReadable (no change)
MSMQQueueInfo.QueueGuid                        'guidQueue

MSMQQueueInfo.Create
The following name changes were made to the parameters of the Create method of the
MSMQQueueInfo object. Former names are in comments.

    Create(
                    IsTransactional                      'isTransactional
                    IsWorldReadable                      'IsWorldReadable (no change)
                 )
     

MSMQQueueInfo.Open
The following name changes were made to the parameters of the Open method of the
MSMQQueueInfo object. Old names are in comments.

    Open(
                    Access                      'lAccess
                    ShareMode                'lShareMode
                 )
     

MSMQTransaction (Properties)
The following name changes were made to the properties of the MSMQTransaction object.

MSMQTransaction.Transaction                                  'lTransaction
     

MSMQMailEMail (Properties)
The following name changes were made to the properties of the MSMQMailEMail object.

MSMQMailEMail.FormData                                      'formdata
MSMQMailEMail.SubmissionTime                          'dateSent
MSMQMailEMail.ContentType                                'lType
MSMQMailEMail.DestinationQueueLabels          'labelsDestination
MSMQMailEMail.Recipients                                  'recipients
MSMQMailEMail.Sender  'recipientSender
MSMQMailEMail.TextMessageData                        'txtmessagedata
MSMQMailEMail.DeliveryReportData                  'New property
MSMQMailEMail.NonDeliveryReportData            'New property
MSMQMailEMail.TnefData                                      'New property
MSMQMailEMail.RequestDeliveryReport            'New property
MSMQMailEMail.RequestNonDeliveryReport      'New property
     

MSMQMailEMail.ParseBody
The following name changes were made to the parameters of the ParseBody method of the
MSMQMailEmail object. Former names are in comments.

    ParseBody(
                          Body              'varBody
                       )
     

MSMQMailFormData (Properties)
The following name changes were made to the properties of the MSMQMailFormData object.

MSMQMailFormData.FormFields                'formfields
MSMQMailFormData.Name                            'strName

MSMQMailFormField (Properties)
The following name changes were made to the properties of the MSMQMailFormField object.

MSMQMailFormField.Name                  'strName
MSMQMailFormField.Value                'varValue

MSMQMailFormFieldList.Add
The following name changes were made to the parameters of the Add method of the
MSMQMailFormFieldList object. Former names are in comments.

    Add(
              Name          'strName
              Value        'varValue
              Key            'sKey
           )
     

MSMQMailFormFieldList.Item
The following name changes were made to the parameters of the Itemmethod of the
MSMQMailFormFieldList object. Former names are in comments.

    Item(
              IndexKey                          'vntIndexKey
           )
     

MSMQMailFormFieldList.Remove
The following name changes were made to the parameters of the Remove method of the
MSMQMailFormFieldList object. Former names are in comments.

    Remove(
                  IndexKey        'vntIndexKey
               )
   

MSMQMailRecipient (Properties)
The following name changes were made to the properties of the MSMQMailRecipient object.

MSMQMailRecipient.Name                              'strName
MSMQMailRecipient.Address                        'strAddress
MSMQMailRecipient.RecipientType            'lType
MSMQMailRecipient.NonDeliveryReason    'New property
MSMQMailRecipient.DeliveryTime              'New propery

MSMQMailRecipientList.Add
The following name changes were made to the parameters of the Add method of the
MSMQMailRecipientList object. Former names are in comments.

    Add(
              Name                              'strName
              Address                        'strAddress
              RecipientType            'lType
              Key                                'sKey
           )
     

MSMQMailRecipientList.Item
The following name changes were made to the parameters of the Itemmethod of the
MSMQMailRecipientList object. Former names are in comments.

    Item(
              IndexKey              'vntIndexKey
           )
     

MSMQMailTextMessageData (Properties)
The following name changes were made to the properties of the MSMQMailTextMessageData object.

MSMQMailTextMessageData.Text                            'strText

Upgrading from Beta2
The following modifications were made to the ActiveX object model between Beta2 and Beta2E
preliminary releases. These changes are relevant to Beta2 clients who are upgrading directly from
Beta2 to MSMQ 1.0.

MSMQQueue
New PeekCurrent method: This new property reads the message at the current cursor position.
lReceiveTimeout is no longer a property: This property is now a parameter for Peek, PeekNext,
PeekCurrent, Receive, ReceiveCurrent, and EnableNotification.
New ReceiveCurrent method: This replaces ReceiveNext, which has been removed.
ReceiveCurrent, PeekCurrent, and PeekNext all use the implied cursor. Peek and Receive do not.
EnableNotification has new MQMSG enumeration parameters: MQMSG_FIRST,
MQMSG_CURRENT, or MQMSG_NEXT.
· MQMSG_FIRST: This user-defined event handler is invoked whenever there is a message in

queue or a timeout occurs. The cursor is not used.
· MQMSG_CURRENT: This user-defined event handler is invoked whenever there is a message at

the current cursor position or a timeout occurs.
· MQMSG_NEXT: This user-defined event handler is invoked whenever there is a message at the

(new) cursor position or a timeout occurs. The cursor is advanced.
DisableNotification has been removed.
Synchronous read methods Peek, PeekNext, PeekCurrent, Receive, and ReceiveCurrent no longer
use the MQ_ERROR_IO_TIMEOUT error. Instead, a NULL message object is returned if a time-out
occurs. Use the idiom: not msg is nothing to test for end of queue.

Note Asynchronous read still can use MQ_ERROR_IO_TIMEOUT error (the
MSMQEvent.ArrivedError event handler is invoked).

MSMQQuery
LookupQueue takes additional optional restriction parameters:
CreateTime (RelCreateTime) and ModifyTime(RelModifyTime).

Note The default REL_EQ relational operator is not very useful for these two parameters

MSMQMessage
· The body property can now be any intrinsic Variant, including date, currency, numbers (in addition to

strings, byte arrays and persistent objects).
· New properties SentTime and ArrivedTime are Variant dates instead of lSentTime and lArrivedTime,

which have been removed.
· New AttachCurrentSecurityContext method replaces lSecurityContext property.

MSMQQueueInfo
New properties: CreateTime and ModifyTime are Variant dates. Use these properties instead of
lCreateTime, strCreateTime, lModifyTime and strModifyTime, which have been removed.
New Create optional parameter: IsWorldReadable. The default is False. This means the default
MSMQ security is used where all users can send to the queue, but only the owner can read from the
queue. When True, any user can read from the queue.
New Boolean read-only property: IsWorldReadable. True indicates that everyone can read from the
queue. False indicates that only the owner can read messages from the queue.

Note The IsWorldReadable property is not cached, because other applications can dynamically
change the state of the queue

MSMQCoordinatedTransactionDispenser
This is simply a renaming of the old MSMQTransactionDispenser. This object dispenses MS DTC
transactions.

MSMQTransactionDispenser
A new object that dispenses MSMQ-only transactions.

MSMQTransaction
A new read-only property: Transaction. It exposes the actual ITransaction* magic cookie internally
used by the BeginTransaction method from either of the dispenser objects. This property can be
used to pass to other components such as SQL Server.

Transactions with Microsoft Transaction Server (MTS)
When sending messages to a transactional queue, the MSMQMessage object's Send method takes an
optional MSMQTransaction object parameter. The parameter can be one of the following:

An actual MSMQTransaction object, as obtained from BeginTransaction.
If no parameter is supplied, then any current MTS transactions will be used.
MQ_NO_TRANSACTION: This is an error if the target queue is transactional. Otherwise, it overrides
the default MTS transaction.
MQ_XA_TRANSACTION: Uses current default XA transaction, if any.
MQ_MTS_TRANSACTION: Explicitly uses the current MTS transaction.
MQ_SINGLE_MESSAGE: Uses internal MSMQ transaction semantics for the message.

MSMQApplication Object
New object: "application object." A single instance of this class is automatically created by MSMQ.
Its methods are all in the global name space, that is, they do not require object qualification.
Its only current method, MachineIdOfMachineName, is used to construct the format name of a
computer journal queue so that it can be opened.

MSMQMailTnefData Object
New object that defines a TNEF message. The MSMQMailTnefData object has a single Data
property and no methods.

MSMQMailDeliveryReportData Object
New object that defines an application-generated delivery report: The
MSMQMailDeliveryReportData object the following properties.
MSMQMailDeliveryReportData.DeliveredRecipients
MSMQMailDeliveryReportData.OriginalSubject
MSMQMailDeliveryReportData.OriginalSubmissionTime

MSMQMailNonDeliveryReoprtData Object
New object that defines a non-delivery report: The MSMQMailNonDeliveryReportData object the
following properties.
MSMQMailDeliveryReportData.NonDeliveredRecipients
MSMQMailDeliveryReportData.OriginalEMail

