
Introduction to Borland Database Engine
This is the complete user guide and reference for Borland® Database Engine.
Borland Database Engine (BDE) is the proven 32-bit Windows-based core database engine
and connectivity software behind Delphi®, Delphi Client/Server®, IntraBuilder®, Paradox®
for Windows, and Visual dBASE® for Windows. BDE offers a rich and robust set of features
to assist developers of client-server applications.
Architecture: The BDE database-driver architecture includes numerous shared services
utilized by database drivers and other functions. The included set of database drivers
enables consistent access to standard data sources: Paradox, dBASE, FoxPro, Access, and
text databases. You can add Microsoft ODBC drivers as needed to the built-in ODBC socket.
Optionally, Borland's SQL Links product provides access to a range of SQL servers,
including Informix, DB2, InterBase, Oracle, and Sybase. Together with its database drivers
and consistent API, BDE gives Microsoft Windows 95 and Windows NT application
developers a direct, clean, separate, and shared high-level access to multiple data sources.
Object-orientation: BDE is object-oriented in design. At run time, application developers
interact with BDE by creating various BDE objects. These run-time objects are then used to
manipulate database entities, such as tables and queries. BDE's extensive application
program interface (API) provides direct C and C++ optimized access to the database
engine, as well as BDE's built-in drivers for dBASE, Paradox, FoxPro, Access, and text
databases.
Guide to programming with BDE: The core database engine files consist of a set of
DLLs that are fully re-entrant and thread-safe. Included with BDE are a helpful set of
supplemental tools and examples with sample code to get you started. See Introduction to
BDE programming for detailed examples of each stage of the programming process,
including a BDE template program that you can copy and use as a functional framework for
building your own BDE applications. Also, in the Function reference of this guide you will
find examples illustrating the use of each function in both C and Delphi (Pascal) languages.
What’s new: See What's new for BDE 5? for an overview of BDE 5 features and important
changes from previous versions of BDE.
Configuration: You configure the BDE system using the BDE Administrator
(BDEADMIN.EXE). BDE provides flexible and powerful configuration management
capabilities.
Local SQL: Included with BDE is Borland's Local SQL, a subset of ANSI-92 SQL enhanced to
support Paradox and dBASE (standard) naming conventions for tables and fields (called
"columns" in SQL). Local SQL lets you use SQL to query "local" standard database tables
that do not reside on a database server as well as "remote" SQL servers. Local SQL is also
essential to make multi-table queries across both local standard tables and those on
remote SQL servers.
(Note: You might occasionally encounter internal references to the older name for the BDE
API: the "Integrated Database Application Program Interface" or "IDAPI".)

{button ,AL(`intro')} Other topics in this introduction to BDE
{button ,AL(`bdedocs')} Other BDE online documentation

Features
BDE offers these features:
· A uniform and consistent API to access multiple database formats including dBASE,

Paradox, Text, FoxPro, Access, InterBase, Oracle, Sybase, and Microsoft SQL Server as
well as any Microsoft Open Database Connectivity (ODBC) data source. Developers can
easily change where and in what format the data resides without having to rewrite their
application.

· BDE is ideally suited for client/server applications because it enables application
developers to access both local and server data, which allows easy upsizing of the
applications.

· BDE gives applications direct and live access to data sources without the need for
importing and exporting.

· BDE is the highest performance database engine for Paradox and dBASE file formats.
· BDE serves the needs of developers coming from two different paradigms: set and

navigational. BDE allows access to data using ISAM (Indexed Sequential Access Method,
which is also used by the Paradox Engine), SQL (Structured Query Language), or QBE
(Query by Example).

· BDE is a data-integration engine, providing services that can be shared across different
database servers. This includes the ability to easily copy data from one format to
another, as well as linking and querying data across formats. For example, you can do a
query across a dBASE and an Oracle table, copy records from InterBase to Paradox, or
establish one-to-many relationships between an InterBase and an Oracle table.

· BDE's query engines provides a consistent query language for SQL and QBE and set-
oriented access. You can define and access data in both SQL-based servers and file-
based databases.

· BDE supports full 32-bit functionality, including multi-threading, preemptive multi-
tasking, universal naming convention (UNC), and long filenames. You can run multiple
queries in the background while using BDE features in the foreground. Multiple
applications can run simultaneously and can access the same database files. You can
access servers by pathname rather than by drive letters. You can give BDE files long,
descriptive names--up to 260 characters--that may contain spaces.

{button ,AL(`intro')} Other topics in this introduction to BDE

BDE components
This table is a high-level overview of Borland Database Engine software components.

Component Description
Core BDE files Core .DLL files are the essential files that make up the Borland

Database Engine.
BDE API functions The Borland Database Engine API, a set of function calls for managing

the environment, configuration, session, error handling, record and
table locking, cursor, index, query, transaction, database, table, and
schema operations.

SnipIt Code Viewer Use to display and run precompiled and linked code segments that
demonstrate the use of BDE functions.

BDE Administrator Convenient tool for configuring BDE: to register drivers and aliases,
set date format options, and customize BDE drivers. (BDEADMIN.EXE)

Database Desktop Use to view, create, and restructure tables and run queries with a
graphic interface.

Query engines BDE’s shared high-performance SQL database query engine supports
Structured Query Language (SQL) with extensive ANSI SQL 92. BDE’s
QBE query engine supports Query by Example (QBE) languages.

Database drivers Five standard database drivers (Paradox, dBASE, FoxPro, Access, and
Text) are included with BDE.

Optional drivers Other database drivers may be added as needed, including drivers
for InterBase servers and native SQL drivers for DB2, Informix,
Oracle, Sybase, and Microsoft SQL Server.

ODBC connectivity ODBC connectivity that allows access to any data source for which an
ODBC driver is available. (BDE applications get the benefits of BDE
even when using an ODBC driver.)

DBPing Allows you to connect to SQL databases.
Tools & examples A collection of tools to ease the task of application development. A

series of sample programs demonstrate the use of BDE functions. (In
addition to these, you will find many examples, both C and Delphi
style, throughout this online guide.)

{button ,AL(`intro')} Other topics in this Introduction to BDE

Core Borland Database Engine files
The core BDE files include:

Core File Description
DBCLIENT.DLL BDE DataSet clients DLL.
IDAPI32.DLL Primary BDE DLL.
BLW32.DLL International Language Driver support functions.
IDBAT32.DLL Contains the batch operations.
IDQBE32.DLL Local QBE Query Engine.
IDSQL32.DLL SQL Query Engine.
IDASCI32.DLL ASCII Text driver.
IDPDX32.DLL Paradox Driver.
IDDBAS32.DLL dBASE driver.
IDODBC32.DLL ODBC Socket Driver (allows the use of any ODBC 3.0 driver).
IDR20009.DLL Resource file for error messages.
IDDAO32.DLL Access Driver for Access 95 and Jet Engine 3.0.
IDDA3532.DLL Access Driver for Access 97 and Jet Engine 3.5.
IDDR32.DLL Data Repository.
BDEADMIN.EXE BDE Administrator utility for managing configuration information stored in

the Windows Registry and aliases in the IDAPI.CFG.
BDEADMIN.HLP Help file for BDE Administrator.
BDEADMIN.CNT Table of contents file for BDEADMIN.HLP. This must remain in same directory

with BDEADMIN.HLP.
BDE32.HLP The online reference for 32-bit BDE.
BDE32.CNT Table of contents file for BDE32.HLP. This should remain in same directory

with BDE32.HLP.
IDAPI.CFG File containing application-specific BDE configuration information, primarily

database aliases.
*.BTL Ctype information (casing, soundex, etc.)
CHARSET.CVB Character set conversion.

{button ,AL(`intro')} Other topics in this introduction to BDE

Tools and examples
The Borland Database Engine includes a number of supplemental tools and examples that
simplify the job of developing applications with BDE.

Tool Description
Database Desktop Simple user interface for viewing and creating tables.
BDE Administrator Tool for managing driver and system configuration.
Default configuration file Depending on whether you save the settings in the BDE Administrator

in 32-bit or composite 16-bit/32-bit format, some or all configuration
information may be stored in the default configuration file.

BDE32.TOK BDE syntax highlighting file for the BC 5 IDE.
BDE32.HLP BDE WinHelp File for 32-bit systems only.
DBPing Connection testing utility.
Query Dynamic SQL and QBE tool.

Example File Description
SNIPIT 60 simple examples written in C. Range from basic to advanced

concepts.
INVENTORY Simple inventory example, works on Paradox tables. Written in C.
ADDRESS Simple AddressBook example. Works with any table type. Written in C.
TABLES Sample tables.
Template program A complete basic BDE program written in C and suitable for use as a

template for structuring your own programs.
Chk function The complete code for the Chk function, which returns more complete

error information about BDE functions than would be returned by the
standard error string.

See Introduction to BDE programming for detailed examples of each stage of the
programming process.
Also see the Function reference section of this guide for examples illustrating the use of
each function in both C and Delphi (Pascal) languages.

{button ,AL(`intro')} Other topics in this introduction to BDE

Initialization
You should be aware of how BDE is loaded at startup. This is important if you have other
versions or multiple copies of BDE on your system.
The search algorithm for loading the BDE dll, Idapi32.dll, is:
1 Current directory (might be different from applications startup directory!).

If not found, then:
2 BDE path registry entry:

HKEY_LOCAL_MACHINE/ SOFTWARE/ Borland/
Database Engine/ DLLPATH/xxxxx

If not found, then:
3 LoadLibrary algorithm. Application’s startup directory.

1 Current directory. If not found, then
2 System directory. If not found, then
3 Windows directory. If not found, then
4 PATH environment

Loading driver dll's follows the same pattern, except the first directory to be searched is
the directory where Idapi32.dll loaded (replaces step1).
Note: Loading from a current directory of an application might be useful in certain

situations, but it effectively prevents other BDE applications from running
simultaneously, because they would likely find another Idapi32.dll and fail at
initialization time (DbiInit) with DBIERR_MULTIPLEIDAPI.

Shared memory loading addresses for DLLs
BDE reserves certain preferred memory addresses for use by its DLLs. In most cases, if a
DLL cannot be loaded at its preferred address, it will load at some other address
determined by the system.
However the DLLs listed below must be loaded at the same preferred address in all
applications using BDE. The native BDE drivers reserve the following addresses:

BDE DLLs Addresses
IDAPI32.DLL 0x4BDE0000
IDPDX32.DLL 0x4CDE0000
IDDBAS32.DLL 0x4DDE0000
IDASCI32.DLL 0x4EDE0000

If these memory locations are already in use by other applications, the BDE DLLs assigned
to those locations might not load, in which case an error message would be generated:
· If Idapi32.dll cannot load because the address space is already used, then

DBIERR_CANTLOADIDAPI is returned.
· If any of the shared drivers cannot load because of a conflict, then

DBIERR_CANTLOADLIBRARY is returned with the name of the driver.
SQL drivers are not shared and do not require fixed loading addresses.
Multiple Initializations and Exits
You may make multiple calls of DbiInit from within the same process, but each DbiInit
should be paired with a corresponding DbiExit.

Error Recovery
In the event of a fatal application error, it is recommended to use DbiExit to shut down BDE
cleanly.
In the event of a fatal BDE error, it is recommended to close down all applications using
BDE.

{button ,AL(`intro')} Other topics in this introduction to BDE

Database Desktop
(\DBD\DBD32.EXE)
The Database Desktop (DBD) is basically a stripped-down version of Paradox for Windows.
It lets you visually create, inspect, and modify tables. This greatly simplifies the task of
creating tables in BDE.

Configuration utility
The BDE Administrator: \IDAPI\BDEADMIN.EXE
The BDE Administrator is a visual tool for managing BDE system configuration information
in the Windows Registry and alias information in the BDE configuration file (IDAPI.CFG).
You can also modify system information and existing aliases by using the functions:
DbiOpenCfgInfoList, DbiAddDriver, DbiDeleteDriver, DbiAddAlias, and DbiDeleteAlias.
For detailed information on the BDE Administrator and the meanings of all BDE
configuration settings, see BDE Administrator Help.
For an overview from a developers’ perspective and complete guidance on configuring
ODBC connectivity, see Configuration management

Default configuration file
The BDE configuration file used at application startup: \IDAPI\IDAPI.CFG      It is listed in the
Windows Registry as CONFIGFILE01.
For example:

HKEY_LOCAL_MACHINE/ SOFTWARE/ Borland/
 Database Engine/CONFIGFILE01

You may name your configuration file anything provided that:
· it ends in ".CFG"; and
· is no more than 255 characters long, including spaces; and
· does not contain the characters:

 \      /      :      *      ?      "      <      >      |
The configuration file always contains database aliases and the active NET DIR entry for
Paradox tables in the Paradox section of the configuration file. This NET DIR setting is
always active and will take precedence over any other NET DIR parameters that may exist
in older 16-bit configuration files, or in the System Init section of the current configuration
file, or in the Registry.
If saved in the Windows 3.11-compatible format (16-/32-bit composite), the configuration
file may duplicate some of the System and Driver entries in the Registry.
The Registry includes all driver information, entries, the size of the Buffer Manager
(Database Data cache), and various other system information.
For details on saving configuration information in the BDE Administrator and where and
how that information is stored, see Saving configuration information

BDE32.TOK
(\BDE32\DOC\BDE32.TOK)
This file is used by the BC 5 IDE to provide syntax highlighting for BDE functions and types.
The BDE32TOK.TXT file in the same directory provides information on using this file.

BDE32.HLP
(\BDE32\DOC\BDE32.HLP)
This is the WinHelp file that you are looking at right now. It contains the complete user's
guide and BDE function reference. It requires the presence of WINHELP.EXE and Windows
95/NT and its associated WinHelp Contents file, BDE32.CNT.

DBPING
(\BDE32\EXAMPLES\C\DBPING\DBPING32.EXE)
This example is used to determine if the BDE can connect to a given database. Basically,
this application attempts to connect to the specified alias using the DbiOpenDatabase
function.

QUERY
(\BDE32\EXAMPLES\QUERY\QUERY32.EXE)
This is a basic InterActive query tool which allows the user to connect to any data source
and perform ad hoc queries. That is, the user can type in SQL Queries or QBE Queries and
see the results of the operation.

SNIPIT
(\BDE32\EXAMPLES\SNIPIT\SNIPIT32.EXE)
This example contains many simple examples on BDE. Run the program to get an idea of
the examples provided.

INVENTORY
(\BDE32\EXAMPLES\C\INVENTRY\INVTRY32.EXE)
This is a simple, stand alone, C windows application using the BDE. Because this example
works only with Paradox tables, it is a good example to use for people familiar with the
Paradox Engine. Note that all engine code is isolated in the ENGINE.C file, so it should be
easy to incorporate aspects of this program in user applications.

ADDRESS
\BDE32\EXAMPLES\C\ADDRESS\ADRESS32.EXE
An enhanced version of the sample inventory table, this example will work with all table
types. This is a good example of performing basic BDE operations on a given table type
(driver).

TABLES
\BDE32\EXAMPLES\TABLES
This directory contains a number of sample tables used by the SNIPIT examples.

Configuration management
BDE Administrator Help
The BDE Administrator (BDEADMIN.EXE) is a redistributable application that you use to set
up and manage your application's configuration. The Configuration page contains the
parameters for BDE system configuration, database aliases, database server drivers, and
ODBC connectivity. The utility includes context-sensitive help to guide you in making
configuration changes (BDEADMIN.HLP).
The BDE Administrator is installed with the Borland Database Engine. Assuming you have
no other BDE-based applications on your workstation at installation time, the installation
program sets up IDAPI.CFG as the default BDE configuration file. This means that the first
time you open the BDE Administrator it will display the parameters stored in IDAPI.CFG as
well as the Windows Registry.
The default configuration file, if any, is defined in the Windows Registry under:
HKEY_LOCAL_MACHINE/SOFTWARE/Borland/Database Engine/CONFIGFILE01
The BDE Administrator gives you the option of saving configuration information in two
formats: 32-bit format and a composite 16-/32-bit format for compatibility with 16-bit BDE
applications. See Saving configuration information for details about how and where
configuration information may be stored.
For complete information on configuring the BDE system, managing database aliases, and
configuring database server drivers, see: BDE Administrator Help
Overriding configuration file defaults
You can override the default configuration file by using the BDE function DbiInit, but only
one configuration file may be used at a time. If one application is active and you attempt to
override the default configuration file while a second application starts with a different
configuration file, the error message DBIERR_CFGMULTIFILE is generated.
Whether you override the default configuration file by using DbiInit or not, the NET DIR
entry in the Paradox section of the configuration file is always active and will take
precedence over any other NET DIR parameters that may exist in older 16-bit configuration
files, or in the System Init section of the current configuration file, or in the Registry. These
other NET DIR entries will have no effect. To access a Paradox table on a network drive, the
active NET DIR parameter in the Paradox section of the BDE configuration file must point to
a network drive.
Any other information in the Drivers and System sections will be drawn from the Registry.

{button ,AL(`intro')} Other topics in this Introduction to BDE

Overview of new features and changes in this release
This section is an overview of the new features and enhancements for Borland Database
Engine version 5, along with other changes since the last release, BDE version 4.51. You
can get detailed descriptions of many of these features by using the jumps to other topics
in this online reference.

Oracle 8 support
· Abstract Data Types (ADTs): Allow you to define your own data types or business objects

for corporate business rules.
· VARRAY (variable-length arrays): Traditional scalar types and new object relational data

can be saved in this persistent array type. VARRAYs can store lists of business objects,
which can refer to additional ADTs.

· Nested tables: Allow repeating groups of information to be stored directly into an
existing table, without requiring keysto be generated for each row of the nested table.
Functions are provided for determining the number of nested rows and manipulating
them.

· REFs (object pointers): References to nested objects are stored in this new data type.
Resolved REF pointers bring referenced objects into the client object space for
examination and modification (pinned).

· BFILE (external file references): Reference files stored external to the database,
eliminating duplication of large files (such as business documents). Increases
performance, provides more flexible file access, and reduces storage requirements.

· Oracle BLOBs: Multimedia applications (and other applications requiring non-structured
data) can now have multiple binary objects, each up to 4Gb in size, stored in a single
record of a table. Large OBject (LOB) types store locators that specify the location of
LOBs stored out-of-line (storing only the locator in the data row, not the actual LOB
data) or in an external file.

Microsoft Transaction Server (MTS)
· Resource pooling: Provides faster connections and reduced network load, increasing the

performance and responsiveness of your database applications.
· Two-phase commit: Database applications can now perform transactions across different

database servers (like Oracle, Sybase, and DB2), for both Microsoft operating systems
and hetergeneous environments. Makes available a more reliable and robust
transaction system for any database natively supported by the BDE.

· X/Open XA support: Open standard XA allows transaction servers (such as Oracle) to
communicate with the MTS resource manager. The client application can now see a
single success or failure for a package of transactions submitted to a server in a
heterogeneous environment.

Architectural overview
BDE has a driver-based architecture. Each distinct database format or data source usually
requires a separate BDE driver. A given driver can support a closely related family of data
sources. For example, the dBASE driver supports dBASE III, dBASE IV and later, and
Microsoft FoxPro version 2.0, 2.5, and 2.6 file formats.
BDE is object-oriented in design, making it easy to extend and customize. To extend BDE to
access an additional database system, simply install the appropriate BDE driver or ODBC
driver for that database system.
In a client/server environment, the applications and development tools reside on the client
PCs, while the data source resides on the SQL server. BDE is ideally suited for a
client/server environment, because it provides transparent access to both server databases
and local databases on PCs.

{button ,AL(`concepts')} More basic concepts

Shared Services
BDE is based upon a software component model. To ease driver development and
maximize reuse, the BDE infrastructure provides the following shared services.
Note: These shared components are mostly internal to BDE and its drivers; they are

described here to help you understand the BDE architecture.

Buffer Manager
BDE's priority-based buffer manager enables all BDE drivers to share the same buffer pool.
Buffers owned by different drivers can coexist in this buffer pool. BDE drivers are not
required to use the common buffer manager, but using it maximizes overall system
resources.

Sort Engine
BDE's high-performance sort engine is used internally by the query engine and by the
Paradox and dBASE drivers.

OS services
BDE's OS services isolate the BDE environment from all OS and platform dependencies,
including file I/O, network access, and OS level memory allocation. This makes BDE highly
portable.
Memory manager
BDE's memory manager provides a sub-allocation service, minimizing OS overhead for
small memory allocations.
BLOB cache
BDE's BLOB caching service makes BLOB access as efficient as possible, so that
programmers don't need to use their own caching schemes. The BLOB cache is accessible
to all BDE drivers. Multiple BLOBs can be simultaneously opened. The BLOB cache
automatically overflows into a shared physical file to handle large BLOBs. The BLOB cache
makes random access to BLOBS possible, eliminating the need for application developers
to transfer BLOBs to files. This facility is available from BDE even when the data
source/server does not provide random access to BLOBs.

Query Engine
The shared query engine supports both SQL and QBE query languages with data format
independence.

SQL Generator
The query engine supports QBE as an alternate query language, which is more intuitive to
end users than SQL. When the QBE query is directed toward a SQL-based server, the SQL
generator module of the QBE engine translates the query into an equivalent SQL query.
Restructure
A restructure service is currently available for Paradox, dBASE, Access, and FoxPro formats.
Restructuring enables the application developer to add, drop, or modify fields and drop or
modify any structural aspects of a table. This module creates new tables when appropriate,
translating and copying data to the new table as necessary.
Batch table functions
A set of generic batch services is available. These include copying data from one format to
another, reading and writing blocks of records, and renaming tables.
Data translation service

BDE's data translation service enables many BDE functions and services to do cross-
database operations. Given any two compatible formats, the data translation service
calculates the optimal conversion. Data is translated from the database's native physical
data format to the common BDE logical data format, and vice versa.
Linked cursors
BDE implements linked cursors to automatically support one-to-many relationships
between two tables. A linked detail cursor tracks its master cursor using the join key and
the records accessible by the detail cursor are constrained by the master record.
Developers can use linked cursors to build sophisticated multi-table applications with little
programming.

In-memory tables
In-memory tables provide efficient access to unlimited virtual memory in a table format.
The sort engine uses in-memory tables to create intermediate batches. SQL drivers use in-
memory tables for caching data locally. Developers can create and access in-memory
tables by using BDE function calls used for accessing persistent tables. See
DbiCreateInMemTable.
Note that in-memory tables cannot be:

· made permanent
· indexed
· moved in batches
· saved to disk

SQL driver services
All SQL-based drivers (including the ODBC connectivity module) are built using SQL driver
services. The following driver services are included:
· Mapping navigational BDE calls to SQL, making it possible to upsize Paradox and dBASE

applications transparently.
· Local caching of records, making it possible to browse on query results.
· Schema inquiry services.
· BLOB handling services that are built using the BLOB cache module.
· Debugging by using the SQL Trace facility to track SQL statements sent to servers by

BDE functions.

System manager
The system manager manages all system-level resources. It loads drivers on demand and
keeps track of open databases and cursors. When an application exits, the system
manager frees the resources allocated to that application.
Configuration manager
The configuration manager maintains the BDE global system configuration information in
the Windows Registry and application-specific information in the BDE configuration file
(IDAPI.CFG). At startup time this information is used to customize the BDE environment.
The BDE functions DbiOpenCfgInfoList, DbiAddDriver, DbiDeleteDriver, DbiAddAlias, and
DbiDeleteAlias give the application access to the configuration file. You use the BDE
Administrator (BDEADMIN.EXE) to register drivers and aliases, set date format options, and
customize BDE drivers.

Language drivers
BDE architecture incorporates language drivers to address the needs of the international
market. Each language driver encodes the collating sequence, capitalization rules, and

OEM/ANSI translation rules to suit its particular language.
All the native BDE drivers and all BDE shared services support these language drivers, so
that the entire BDE environment is automatically "international" enabled. No porting is
necessary. Application developers can deploy applications in international markets using
the same engine. See International compatibility

Resources
All resources, such as error messages, for a language are placed in a separate dynamic link
library. BDE can simultaneously support resources in different languages. An application
can register its language at startup time.

{button ,AL(`concepts')} More basic concepts

BDE API functions
The Borland Database Engine includes an API for directly accessing its functionality. The API
consists of a set of functions that can be called from any programming language capable of
calling Windows DLLs. BDE functions are optimized for calling from C or C++; however,
Delphi Pascal syntax is also provided in the function reference.
Over the years, two different types of database systems have developed that traditionally
supported different data access approaches:
· PC-based database systems (such as Paradox, dBASE, and B-Trieve) have supported the

indexed sequential access method (ISAM) type of data access. However, these systems
have supported different kinds of APIs.

· Server-based database systems (such as InterBase, Sybase, Oracle, and DB2) have
supported the ANSI standard SQL language. However, an industry standard for an API is
just emerging: X/Open SQL Call Level Interface (CLI). This standard addresses only SQL-
based database needs, and does not fully address ISAM type data source requirements.

Unified access
BDE functions unify access to both PC-based or ISAM databases and server-based SQL
databases with a consistent cursor-based API. BDE supports the basic APIs for both types of
databases, extending powerful features of each type to the other. For example, BDE's
navigational features are influenced by ISAM databases, and are extended to support
server-based databases. Similarly, the Query portion of BDE is influenced by the SQL
standard, and is extended to support ISAM databases. Support of these basic API features
on both kinds of databases makes BDE unique. For example, Paradox and dBASE exploit
these features to support transparent access to SQL data sources.
Through each driver, BDE gives the application developer access to the unique features of
each database system, such as data types, primary indexes for Paradox tables, delete flags
and expression indexes for dBASE tables, and special processing for SQL databases. For
this reason, BDE functions are not a least-common-denominator API.
Purposes
For all supported databases for which a BDE native driver or an ODBC driver is available,
BDE API function calls serve the following purposes:
· Opening and closing of databases
· Getting and setting properties of BDE objects: system, clients, sessions, drivers,

databases, cursors, and statements
· Accessing and manipulating data stored in each database system
· Defining the structure of a database in each database system, such as creating tables

and indexes
· Performing operations across database systems, such as copying and joining tables

{button ,AL(`concepts')} More basic concepts

BDE objects
BDE is object-oriented in design. At run time, application developers interact with BDE by
creating various BDE objects. These run-time objects are then used to manipulate database
entities, such as tables and queries. Programming for BDE involves interaction with the
following BDE objects:
· System
· Clients
· Sessions
· Database drivers
· Databases
· Cursors
· Query statements
Each BDE object type is defined by a set of properties. Values are initially assigned to
properties when the object is created. For example, the table name CUSTOMER is the value
assigned to the table name property of the cursor object when the CUSTOMER table is
opened with DbiOpenTable.
The BDE API interface provides a set of functions that the application developer can use to
retrieve existing values of properties (DbiGetProp) and reset these values (DbiSetProp).
For a complete list of BDE object types and their properties, see Getting and Setting
Properties.
For an overview of persistent objects common to most database systems,
see Database Entities..

{button ,AL(`concepts')} More basic concepts
{button ,AL(`bdeobjects')} More BDE objects

System
One system object controls the resources common to all applications running on the same
machine. The BDE API system object is automatically created when the first client
initializes. At this time, any configurable settings, such as the maximum memory allowed
for the buffer pool, are read from the Windows Registry.

{button ,AL(`bdeobjects')} More BDE objects

Clients
A new client object is created when an application calls the BDE initialization function. This
first call to DbiInit is necessary before any other BDE call can be made. The client object is
maintained automatically by BDE and exists mainly as a context for all the system
resources used by the BDE on behalf of each client. The client object has properties which
can be set, such as which language is to be used for error messages.
Database Drivers are owned by the client or the system; once a driver is loaded, all other
clients registered with the BDE have access to it.

{button ,AL(`bdeobjects')} More BDE objects

Sessions
An application can maintain one or more sessions. Sessions provide the means to isolate a
set of database access operations without the need to start another instance of the
application. A default session is automatically created when each application initializes. The
session object is a container for all other BDE run-time objects that can be created:
· Databases
· Cursors
· Query statements
If you access an object created in another session, the current session will change to the
session in which the object was created. The session is also the owner of all table and
record locks acquired by all objects within the session. This means that a table or record
lock acquired using one cursor in a session is owned by all cursors in the session that are
opened on the same table. Any of the cursors on the same table can release such a lock.
Additional sessions can be created to allow for different locking contexts.
Another property of the session is the private directory, where BDE places all temporary
file-based tables created on behalf of the session. In addition, the session owns two
properties specific to the Paradox driver: passwords (for gaining access to password
protected tables) and the network control directory, where the PDOXUSRS.NET file is
located.

{button ,AL(`bdeobjects')} More BDE objects

Database drivers
Each driver is implicitly loaded by the system when an application first requests a service
from that driver. At that time, any configurable settings found in the Windows Registry or
the BDE configuration file (IDAPI.CFG) related to this driver are used to initialize it.
Examples of configurable settings are the default table level and the language driver to be
used when the table is created.
Drivers are owned by the client or the system; once a driver is loaded, all other clients
registered with BDE have access to it.
The application developer can also inquire about driver capabilities, such as whether or not
the driver supports transactions.
dBASE, Paradox, Access, FoxPro, and text drivers
The standard drivers for Paradox, dBASE, Access, FoxPro, and text databases are shipped
with BDE.
SQL drivers
For server-based SQL database systems such as Informix, DB2, InterBase, Oracle, and
Sybase separate native BDE SQL drivers are available.
ODBC drivers
Any ODBC driver can be used with BDE, because BDE has an ODBC connectivity socket.
The rich features of BDE, such as navigational access to data, bi-directional cursors, and
cross-database operations, are also automatically enabled even when an ODBC driver is in
use. Enhanced ODBC connectivity. BDE functions like DbiAddAlias and
DbiOpenDatabase automatically add ODBC drivers and data sources as BDE aliases to
the active session when they aren't currently stored in the configuration file. The BDE also
supports ODBC 3 drivers.

{button ,AL(`bdeobjects')} More BDE objects

Databases
A database is an organized collection of related tables. To access data in a table, the
session first must gain access to the database with a DbiOpenDatabase call, which returns
a database handle to the database.
Standard databases
BDE classifies file-based databases such as Paradox, dBASE, FoxPro, Access, and text as
"standard" databases. Files within a standard database are normally grouped together in
the current directory associated with a standard database, although an application can
expand its database by referencing, by fully qualified pathname, any accessible file either
locally or on the network.

SQL databases
A SQL database usually resides on a server. The client application must first log in,
establishing a connection to the database server. This requires supplying the appropriate
user name and password. When you call DbiOpenDatabase, BDE logs into the server and
establishes a connection, just as with standard databases.

Aliases
An alias is a short name referencing a database. Database references within applications
can use alias names, making your applications portable.
You can change the definition of an alias at any time by using the BDE Administrator
BDEADMIN.EXE. All references to the alias within the application automatically refer to the
new definition of the alias.

Aliases for standard databases
For standard databases, an alias is a name you assign as a shortcut to a directory
containing the files you want to access. You can give a long path name a short alias
name. When you open a database with such an alias, tables in that directory can be
opened by supplying only the table name without supplying the full path.

Aliases for SQL databases
For SQL databases, properties must be defined for the alias. These properties can vary
depending on the SQL driver. Alias properties can include:

· User name
· Server name
· Open mode
· Default SQL query mode
· Schema cache size
· Language driver

After a SQL database alias is established, the client application can use it the same way
it uses an alias for a standard database.

{button ,AL(`bdeobjects')} More BDE objects

Cursors
BDE provides access to tables or query results through cursors. A cursor provides
addressability to a collection of records one at a time. All data manipulation operations
(insert, delete, update, and fetch), as well as positioning the cursor in the table (sometimes
referred to as navigation) are performed with a cursor.
When the application opens a table with DbiOpenTable or executes a query, a cursor
handle is returned. After the cursor handle is returned, you can use it to retrieve data
stored in a table as well as information about a table. You can also obtain and set
properties of this cursor. The application can close a cursor at any time with
DbiCloseCursor. When the cursor is closed, the cursor handle becomes invalid. (Multiple
cursors can be created on the same table.)
To access data in a table, the application opens the table and obtains a cursor handle. The
table can be opened exclusively or shared. The translation mode can be specified as either
xltNONE or xltFIELD. If xltNONE is specified, the data is returned from the table as the
untranslated physical type (the native data type as stored by the data source). If xltFIELD is
specified, the data is translated into a generic, logical type by BDE. Logical types are
compatible with C language data types.

Ordered and unordered cursors
By default, the records returned by a cursor are not in any particular order. Ordered cursors
can be obtained by specifying a current active index for a cursor (using DbiOpenTable or
DbiSwitchToIndex). A query executed using the ORDER BY clause is also an ordered cursor.
Positioning the cursor
Whenever the application opens a cursor on a table or a query result, the resulting cursor is
positioned at the beginning of the result set, before the first row, rather than on the first
record of the table. This initial position enables the application to access all the records
with the DbiGetNextRecord function.
At any time, the cursor can be positioned on a record or on a crack. A crack is a position
between records at the beginning of the table, at the end of the table, or the place left
when a record is deleted.
The possible cursor positions are
· At the beginning of the table or result set (the crack before the first record).

DbiSetToBegin can be used to explicitly position the cursor here; the cursor is always
positioned here when the cursor is opened.

· At the end of the table or result set (the crack after the last record). DbiSetToEnd can be
used to explicitly position the cursor here.

· On a record (after a successful call to retrieve, insert, or update a record).
· On a crack between records. DbiSetToKey positions the cursor on the crack before the

record of the specified key.
· The cursor is positioned on a crack if it was previously positioned on a record, and that

record was deleted.

Bookmarks
A bookmark can be obtained to save the cursor's current position, so that it can be
repositioned to that place later. Bookmarks can remember any position: on the current row,
at the beginning or end of the table, or on a crack. A call to DbiGetBookMark saves the
current position of the cursor as a bookmark. A subsequent call to DbiSetToBookMark
positions the cursor to the location saved by DbiGetBookMark. Multiple bookmarks can be
placed on a cursor. The positions of two bookmarks can be compared with a call to
DbiCompareBookMarks.

{button ,AL(`bdeobjects')} More BDE objects

Query statements
SQL Queries and QBE Queries can be either directly executed or prepared first and then
executed. When a query is prepared, BDE checks its validity; if the query is valid, BDE
creates a query object and returns a query statement handle.
For a general exposition about query statements, see Querying databases
Certain properties of a query can be changed once the query handle is obtained. For
example, if the query has parameter markers, the values of parameters to be used can be
set prior to executing a query. See Getting and setting properties.

{button ,AL(`bdeobjects')} More BDE objects

Database entities
Database entities are persistent objects, common to most database systems, and include
· Tables
· Indexes
· Fields
· Queries
· Transactions
· Callbacks
· Cross-database operations

{button ,AL(`concepts')} More basic concepts
{button ,AL(`databaseentities')} More database entities

Tables
Data in a database is organized in tables. In BDE, a table name has meaning only within a
database. Tables are accessible to the application in rows (records) and columns (fields).
The rows can be ordered by an index.
To create a table, the application calls the BDE function DbiCreateTable passing the
completed table descriptor structure CRTblDesc. Alternatively, tables can be created using
SQL Data Definition Language (DDL).

Temporary Tables
Certain database operations create temporary tables that last only until you close them or
end the BDE session. Your application can create two types of temporary tables:
· Use DbiCreateTempTable to create a temporary table, which can later be saved to disk. If

the table becomes too large, it is automatically written to disk. The client application can
explicitly save the temporary table to disk by calling the function DbiMakePermanent or
DbiSaveChanges. For all practical purposes, these tables behave like regular tables.

· Use DbiCreateInMemTable to create a temporary table never intended to be written to
disk. These tables are created by the application for gathering information that is needed
temporarily during processing. These tables can be created only with logical types. These
tables do not support indexes.

For detailed information, see:
· Accessing and updating tables
· Creating tables
· Modifying table structure

{button ,AL(`databaseentities')} More database entities

Indexes
An index determines the order of the records in a table. Paradox, dBASE, FoxPro, Access,
and SQL database systems all let you create indexes to order records. However, there are
differences in the way indexes work and the information required to define indexes in each
of the database systems.
BDE supports all the native modes of indexing for Paradox, dBASE, FoxPro, Access, and SQL
database systems. To enable your application to create an index, BDE provides a generic
index descriptor structure, IDXDesc. IDXDesc is a union of all of the fields required to define
an index for all of the supported database systems. To add an index, the application
supplies the required data in IDXDesc and calls the function DbiAddIndex.
To create an index for a table, your application need only supply data in the index
descriptor fields that are applicable to that particular table's database system. For
example, when defining an index on an InterBase table, your application ignores fields such
as szTagName and bExpIdx, which are used only in defining dBASE indexes. When required
fields are not supplied, an error message is returned by the DbiAddIndex call.
Different types of indexes allowed within the database system may have different
requirements. For example, when adding a dBASE maintained index, the field szTagName is
required. Indexes can also be created using the SQL Data Definition Language.
Types of Indexes
There are three basic types of indexes:
· Traditional indexes on columns. These indexes can be single column indexes or

composite indexes on more than one column.
· Expression indexes. These indexes have key values determined by an expression (not

necessarily column values). Of the drivers mentioned, only dBASE currently supports
expression indexes.

· Pseudo-indexes. For SQL data sources, BDE can create a pseudo-index by using one or
more user-specified SQL fields to define the requested order

Characteristics of Indexes
Indexes have three other characteristics:
· Subset indexes do not index every record in a table; instead, they index only those rows

that satisfy a given Boolean expression. Of the drivers mentioned, only dBASE uses
subset indexes.

· Unique indexes cannot have duplicate key values.
· Indexes can be ascending or descending for drivers that support them.
Driver-Defined Index Requirements
It is important to understand that different drivers support different types and
characteristics of indexes. The following sections provide a partial list of rules for the
different index types and characteristics supported by each driver:

dBASE
The following rules describe how dBASE supports indexes:
· dBASE supports only expression indexes. (Single-column indexes are treated as a

special case of expression indexes.)
· dBASE supports two different physical index formats: .NDX-style and .MDX-style.
· dBASE supports subset indexes in .MDX-style indexes.
· In dBASE, all maintained indexes are .MDX-style indexes.
· dBASE supports FoxPro compressed index .CDX-style indexes.
· dBASE supports Clipper index .NTX-style indexes for importing.

· dBASE does not support primary indexes (or primary keys).

Expression Indexes
When defining an index, dBASE uses expression indexes. The expression index
determines how the key is computed when a record is added. Expression indexes can be
simply the name of a field or they can be created from field names, operators, and
functions.
Multiple indexes
Multiple indexes are stored in a single file with a .MDX or .CDX extension. dBASE stores
different indexes in the same physical file. Each index in the multiple index file is called a
tag. Tags are identified by the szTagName you assigned when you created the index.
One of the multiple index files is used to store all the maintained indexes. The name of
this file is of the form <Tbl_Name>.MDX or <Tbl_Name>.CDX. This file is called the
production index file; indexes in this file are always maintained.
Single indexes
The dBASE driver also supports the older style dBASE indexes called .NDX indexes. This
index is stored in a file with a .NDX extension. Each such file contains only one index; this
index is maintained only if the index is explicitly opened.
Paradox
The following rules describe how Paradox supports indexes:

· Paradox supports both single- and multi-column indexes.
· Paradox supports a primary key.
· Paradox supports maintained and non-maintained secondary indexes. Maintained

secondary indexes are supported only if the table also has a primary index. If an
index is non-maintained, it becomes out of date if any data in the table changes.

· Paradox does not support expression indexes.
· Paradox does not support subset indexes.
· Paradox supports case-sensitive/insensitive secondary indexes.
· Paradox supports descending indexes with level 6 tables.

Primary indexes
A Paradox primary key is defined as a field or group of fields whose values uniquely
identify each record of a table. The fields in a key must be contiguous starting with the
first field. A primary key requires a unique value for each record (row) of a table. A
table’s primary key establishes the default sort order for the table. A Paradox table is
sorted based on the values in the fields you define as the table's primary key. Only one
record's primary key can be blank. All subsequent blanks are considered as duplicates,
and records containing them are not accepted.
Secondary indexes
Paradox supports secondary indexes. A table can have more than one secondary index,
and a secondary index can be a composite index. Each secondary index can be
maintained or non-maintained. If it is maintained, the index is updated automatically
every time the table is changed. Secondary indexes can be case-sensitive or insensitive.
If it is case-sensitive, BDE differentiates between uppercase and lowercase letters as it
sorts fields. Maintained secondary indexes are supported only if the table also has a
primary key. If an index is non-maintained, it becomes out of date if any data in the table
changes.

SQL
The following rules describe how SQL drivers support indexes:

· All SQL indexes are maintained.
· The rules for index creation are based on SQL server support. SQL drivers support the

following indexes if they are supported by your server:
- Single and multi-column indexes
- Unique and non-unique indexes
- Ascending and descending indexes

· If an index is added to any SQL table, then any cursors open on that table must be
closed and reopened, to allow for possible changes in the buffer size.

{button ,AL(`databaseentities')} More database entities

Fields
Fields are columns of a table. The properties of each field in a table are defined in a field
descriptor structure FLDDesc. When a table is created with DbiCreateTable, the table
descriptor CRTblDesc points to an array of FLDDesc structures, each of which defines a
field in the table.

Physical data types
Physical data types can vary from one data source to another. For example, floating point
numbers are stored differently by Paradox, dBASE, and SQL data sources. Physical data
types of one data source might not be compatible with the physical data types of other
data sources to store the same data.

Logical data types
Logical data types are the generic data types used by BDE. These generic types are made
interchangeable between data sources because BDE automatically translates them into the
proper physical data types for each target data source.
Automatic field translation
To facilitate cross-database processing, BDE does not require your application to translate
data to make it compatible with each different data source. As long as your application
uses BDE logical data types, BDE handles the translation to the correct physical format for
each target data source. When BDE returns data to your application, it can translate all
data types as they are stored by the data source back to the generic logical data types,
depending on the translate mode of the cursor, xltNONE or xltFIELD.
BDE's logical data types are compatible with standard C language data types.
You can make the application override the translation mechanism when accessing a table,
so that it receives data in the physical format used by the data source.

{button ,AL(`databaseentities')} More database entities

Queries
The common query engine allows you to specify queries in either the SQL or QBE language
on any available data source. Through queries, BDE allows uniform data retrieval across
data sources. The local query manager enables you to join data across servers. For
example, you can join Oracle to dBASE, Sybase to Paradox, or InterBase to Oracle on two
different servers. To run cross-database queries, the table names in a query must be
qualified by alias names. Cross-database queries are supported only with standard
database handles, even if the query is targeted for SQL servers.
BDE provides a set of query interface functions so that the application developer can query
tables across all accessible databases:

· DbiQAlloc obtains a new statement handle
· DbiQGetBaseDescs returns the original database, table, and field names of the fields that

make up the result set of a query.
· DbiSetProp sets properties on the new statement handle, such as making the query

result set updateable.
· DbiQPrepare prepares a SQL or QBE query for execution.
· DbiQSetParams sets the value of parameter markers in a prepared query before the

query executes.
· DbiQExec executes a previously prepared query.
· DbiQFree frees resources acquired during preparation and execution of a query.
· DbiQExecDirect prepares and executes a SQL or QBE query.
BDE allows access to SQL, Paradox, dBASE, FoxPro, or Access data through both SQL
queries, a convenient subset of the SQL language, and QBE queries, the Query By Example
language defined in Paradox. For both QBE and SQL, a query can be executed as a live
result set, resulting in an updateable cursor on the original table.
For detailed information on querying, see:

· Querying databases
· Querying Paradox, dBASE, FoxPro, and Access tables
· Querying different databases
· Executing queries directly
· Executing queries in stages

{button ,AL(`databaseentities')} More database entities

Transactions
A transaction is a group of related operations that must all be performed successfully;
otherwise no change to the database takes place.
BDE supports transactions on all servers with three BDE function calls:

· DbiBeginTran
· DbiEndTran
· DbiGetTranInfo
The application calls DbiBeginTran, submits SQL statements and BDE function calls to be
included in the transaction, and then calls DbiEndTran. DbiGetTranInfo returns status
information about a transaction.
BDE supports local transactions for Paradox, dBASE, and Access drivers so that updates to
tables can be rolled back (reverted) or committed. Without transaction support, updates
would be committed immediately with no way to roll them back and applications might fail
to perform updates in a consistent way.
When a local transaction is started on a standard database, updates performed against
tables in that database are logged. Each log record contains the old record buffer of the
record that is updated. When a transaction is active, the records with updates are locked.
These locks are held until the transaction is either committed or rolled back.
· The Commit operation releases all locks that were held when that transaction was active.
· The Rollback operation reapplies the updates to the underlying tables to restore the

original state of the database. Once the original state of the database is restored, the
locks are released.

Note: For standard transactions there is no automatic crash recovery on DDL-related
actions such as table create, restructure, index creation, table/index deletion, and so
on.

For more information, see:
· Transactions on Paradox, dBASE, FoxPro, and Access is a guide to specifics.
· Cached updates offers yet another strategy for dealing with locking.
· Transactions and cached updates provides a comparative discussion.

{button ,AL(`databaseentities')} More database entities

Callbacks
Sometimes a client application needs information about the progress of a given function.
For example, if a table is being restructured, certain conditions can cause records to be
written to a "problems" table rather than the destination table. This situation could warrant
termination of the operation, or it could require some other action. A callback enables the
application to intercede and evaluate such a situation before any action is taken by BDE.
The application registers the callback in advance by calling DbiRegisterCallBack.
After a callback is registered, the occurrence of the specified event triggers the database
engine to call the callback function, which in turn alerts the application that the event has
occurred. The callback then awaits further instructions from the application.
The client responds to the callback by sending an appropriate return code (cbrABORT,
cbrCONTINUE, and so on). The callback mechanism is efficient because BDE can get the
application's response without interrupting the normal client process flow.
For detailed information, see Using callbacks
To inspect the callback structures, see Data structures

{button ,AL(`databaseentities')} More database entities

Cross-database operations
BDE query and batch functions can operate on heterogeneous data sources. The following
examples illustrate this feature:
· A single SQL or QBE query, can do a three-table join, for example, between InterBase,

Oracle, and Paradox tables, and update a Sybase table with join result. For more
information, see "Heterogeneous Joins"    in the Local SQL Guide

· DbiBatchMove can be used to copy one table type to another; for example, a Paradox
table to an Oracle server. All the data types are converted to the appropriate Oracle data
types. The table name and all field names are converted to legal Oracle names, and
options exist to convert any textual data between the character sets of the two data
sources. For more information, see Adding, updating, and deleting records.

· DbiSortTable can be used, for example, to sort an Oracle table and return the result as a
Paradox or a dBASE table. For more information, see Sorting tables.

· See Querying databases for a thorough exposition about cross-database operations.

{button ,AL(`databaseentities')} More database entities

Application development
These topics describe the fundamental steps of application development with the Borland
Database Engine (BDE). The first topic explains how to get started and provides an
introductory tutorial. The remaining topics are guides to the basic tasks.

· Introduction to BDE programming
· Project setup
· Basic procedure
· Chk function
· Template program

· Accessing and updating tables
· Locking
· Transactions
· Querying databases
· Getting and setting properties
· Retrieving schema and system information
· Creating tables
· Integrity constraints
· Modifying table structure
· Using callbacks
· Data source independence
· Error handling
· Debugging
· Filtering records
· Database driver characteristics
· Improving BDE performance

Introduction to BDE programming
These topics show you how to get started programming with the Borland Database Engine
(BDE). After following the steps and examples, you will have a simple EasyWin BDE sample
application that gets a record from a table and displays the first two fields. You can inspect
the completed program, which demonstrates each of the basic steps in context. This
program serves as a template for writing your own BDE programs.
· Project setup

This section covers the basics of what must be done to set up a Borland Database Engine
project or makefile.

· Basic procedure
An overview of the basic steps required to create a simple application that retrieves
fields from a table. From each step you can jump to a detailed description of the
procedure with code examples or to the sample template program.

· Chk function
The complete code for the Chk function, which returns more complete error information
about BDE functions than would be returned by the standard error string.

· Template program
A sample BDE program structure you can use as a convenient template for creating your
own applications.

{button ,AL(`applicationdevelopment')} Application development

Project setup
Follow these steps when you begin to write a BDE application:
1. Create a Win32 console project or makefile.

MAIN.CPP File to contain your code
IDAPI32.LIB BDE Import Library
MAIN.DEF Module Definition file

2. For this simple application, set the target to be a console application. This way you
don't have to deal with any Windows user interface issues.

3. Install the BDE32.TOK file to support syntax highlighting for BDE functions and types.
Directions on how to do this are included in the file \BDE32\DOC\BDE32TOK.TXT.

4 Make certain to compile with "Allocate enums as ints" selected (In the Borland C++ 5
IDE, Options|Project|Compiler|Code Generation). A number of structures, such as
CURProps, make use of Enumerations. This error generally manifests itself with stack
corruption problems, such as GP faults when calling or returning from a function.

5 Within a module to contain BDE code, include the following header files:
WINDOWS.H
IDAPI.H

{button ,AL(`applicationdevelopment')} Application development

Basic procedure
These are the basic steps required to get a record from a table:
1. Initialize the Borland Database Engine
1. Open a database object
1. Set the database object to point to the directory containing the table
1. Set the directory for temporary objects
1. Open a table, creating a cursor object
1. Get the properties of the table
1. Using these properties, allocate memory for a record buffer
1. Position the cursor on the desired record
1. Get the desired record from the cursor (table)
1. Get the desired fields from the record
1. Free all resources

Click on each numbered step to display a detailed explanation and a specific code sample.
At any time, you can refer to the Template program which demonstrates, in the context of a
fully functional program, each of the steps in the basic procedure. You can copy and paste
from this code to build your own BDE programs.
Note that throughout the short examples unfamiliar variable types are used. These are BDE
variable types defined in the IDAPI.H header file, such as: BYTE, BOOL, and CHAR. In
addition, the examples for the steps make use of the Chk function, which returns more
complete error information about BDE functions than would be returned by the standard
error string.

{button ,AL(`applicationdevelopment')} Application development

Step 1: Initialize the Borland Database Engine
Initialize BDE by using the DbiInit function:
CHK(DbiInit(NULL));

Chk is a function that handles errors returned from BDE API calls.

{button ,JI(`>example',`templateprogram')} Template program

Step 2: Connect to a database
Now you are ready to connect to a database.
All table access must be performed within the context of a database. Local databases
generally use what is referred to as the "STANDARD" database, which is used in this
example.
The preferred method is to create an alias to a local directory and use that as the database.
This permits easy future modification if one day it is decided to move the application from
using dBASE tables to using InterBase tables.
You use the function DbiOpenDatabase to open a database:

hDBIDb hDb = 0;// Handle to the Database

Chk(DbiOpenDatabase(
 NULL, // Database name - NULL for standard Database
 NULL, // Database type - NULL for standard Database
 dbiREADWRITE, // Open mode - Read/Write or Read only
 dbiOPENSHARED, // Share mode - Shared or Exclusive
 NULL, // Password - not needed for the STANDARD
database

 NULL, // Number of optional parameters
 NULL, // Field Desc for optional parameters
 NULL, // Values for the optional parameters
 &hDb)); // Handle to the database

{button ,JI(`>example',`templateprogram')} Template program

Step 3: Set the database object to point to the directory containing
the table
Now that the database is open, you must set the table directory.
Although the working directory defaults to the directory that contains the application, most
applications place data in a different directory. The working directory is the directory where
the BDE expects to find tables when a path is not specified.
While it is possible to open a table in other directories by specifying the absolute path, it is
preferable to open tables in the working directory, because a number of operations, such
as getting a list of available tables, use the current directory. Use the function
DbiSetDirectory to set the working directory (using the default location of the BDE sample
tables):

Chk(DbiSetDirectory(
 hDb, // Handle to the database being modified
 "c:\\bde32\\examples\\tables")); // The new working directory

Note: You must use the full, absolute path. Relative paths are not supported.

{button ,JI(`>example',`templateprogram')} Template program

Step 4: Set the directory for temporary objects
You must create a temporary directory for a client.
Not all BDE applications create temporary objects, but larger applications do sometimes
create them. For example, the result set from a query of the records that cause a key
violation in a restructure will be placed in a temporary table. By default, this temporary, or
"private" directory, is the startup directory. This will cause a problem if the application is
running on a network or a CD-ROM, because the directory cannot be shared, and it must
writeable.
Use the function DbiSetPrivateDir to set the private directory for a client:

Chk(DbiSetPrivateDir(
 "c:\\bdetemp")); // Select a directory on a local drive

// not used by other applications.

Note: You must use the full, absolute path. Relative paths are not supported.

{button ,JI(`>example',`templateprogram')} Template program

Step 5: Open a table, creating a cursor object
Now you can open the table.
Upon opening a table, a cursor object is created and returned to the calling application. A
cursor object is an abstraction that lets you access queries and tables in the same method:

hDBICur hCur = 0; // Handle to the cursor (table)
CHAR szTblName[DBIMAXNAMELEN];
// Table name - DBIMAXNAMELEN is defined in IDAPI.H
CHAR szTblType[DBIMAXNAMELEN];
// Table Type

strcpy(szTblName, "customer");
// Name of the table
strcpy(szTblType, szPARADOX);
// Type of the tables - szPARADOX is defined in IDAPI.H

Chk(DbiOpenTable(
 hDb, // Handle to the standard database
 szTblName, // Name of the table
 szTblType, // Type of the table - only used for local
tables

 NULL, // Index Name - Optional
 NULL, // IndexTagName - Optional. Only used by dBASE
 0, // IndexId - 0 = Primary.
 dbiREADWRITE, // Open Mode - Read/Write or Read Only
 dbiOPENSHARED, // Shared mode - SHARED or EXCL
 xltFIELD, // Translate mode - Almost always xltFIELD
 FALSE, // Unidirectional cursor movement.
 NULL, // Optional parameters.
 &hCur)); // Handle to the cursor

{button ,JI(`>example',`templateprogram')} Template program

Step 6: Get the properties of the table
To get record information from the table, you need to determine the size of the record
buffer. You can obtain this information from the cursor by using the function
DbiGetCursorProps. The Cursor properties include information on the table name, size,
type, number of fields, and record buffer size. You can find more information on cursor
properties in CURProps.

CURProps curProps; // Properties of the cursor

Chk(DbiGetCursorProps(
 hCur, // Handle to the cursor
 &curProps)); // Properties of the cursor (table)

curProps.iRecBufSize contains the size of the record buffer.

{button ,JI(`>example',`templateprogram')} Template program

Step 7: Using these properties, allocate memory for a record buffer
You must use the properties you obtained in Step 8 in the following code to allocate
memory for a record buffer:

pBYTE pRecBuf; // Pointer to the record buffer

pRecBuf = (pBYTE) malloc(curProps.iRecBufSize * sizeof(BYTE));
if (pRecBuf == NULL)
{
 // If pRecBuf is NULL, there was not enough memory to allocate
 // a record buffer.
 // Handling of this error is user-determined, but no information
 // from the table can be retrieved.
}

{button ,JI(`>example',`templateprogram')} Template program

Step 8: Position the cursor on the desired record
Use the function DbiSetToBegin to position the cursor on the "crack" before the first record
in the table.
Crack semantics allow you to set the current cursor position to a point just before the first
record, between records, or after the last record. One advantage of crack semantics is that
it lets you use a single function to access all records in a table. For example, rather than
using DbiGetRecord the first time, and DbiGetNextRecord each subsequent time, you can
use DbiGetNextRecord to get all records in a table.

Chk(DbiSetToBegin(hCur)); // Position the specified cursor to the crack
// before the first record.

{button ,JI(`>example',`templateprogram')} Template program

Step 9: Get the desired record from the cursor (table)
To get a record from a table you would normally use the function DbiGetNextRecord. This
will set the current record of the cursor to the record returned by this function (the next
record in the table):

Chk(DbiGetNextRecord(
 hCur, // Cursor from which to get the record.
 dbiNOLOCK, // Lock type
 pRecBuf, // Buffer to store the record
 NULL)); // Record properties - don't need in this case

{button ,JI(`>example',`templateprogram')} Template program

Step 10: Get the desired fields from the record
Now you are ready to get the field values out of the record buffer and into some local
variables.
In this example, we are making assumptions about which field is at which ordinal position
within the table, as well as the size of the field.
The table used by this example is CUSTOMER.DB, included with the BDE SDK.
In general, it is recommended to use DbiGetFieldDescs to get information about a field
before retrieving it. Also note that a single function, DbiGetField, is used to get all fields
(other than BLOBs) from a table.

DFLOAT custNum;
BOOL isBlank;

Chk(DbiGetField(
 hCur, // Cursor which contains the record
 1, // Field Number of the "Customer" field.
 pRecBuf, // Buffer containing the record
 (pBYTE)&custNum, // Variable for the Customer Number
 isBlank)); // Is the field blank?

{button ,JI(`>example',`templateprogram')} Template program

Step 11: Free all resources
After all desired operations have been performed, you need to clean up the resources
allocated on behalf of the application. In addition to any memory explicitly allocated by the
application, using malloc or new, all engine objects must also be cleaned up, including the
cursor, database, and engine:

if (pRecBuf != NULL)
 free(pRecBuf); // Free the record buffer

if (hCur != 0)
 Chk(DbiCloseCursor(&hCur)); // Close the cursor

if (hDb != 0)
 Chk(DbiCloseDatabase(&hDb)); // Close the database

DbiExit(); // Close the BDE.

{button ,JI(`>example',`templateprogram')} Template program

Chk function
The Chk function is useful for returning more complete error information about BDE
functions than would be returned by the standard error string. Here is the complete code
for the Chk function:

DBIResult Chk(DBIResult ErrorValue)
{
 char dbi_status[DBIMAXMSGLEN * 5] = {'\0'};
 DBIMSG dbi_string = {'\0'};
 DBIErrInfo ErrInfo;

 if (ErrorValue != DBIERR_NONE)
 {
 DbiGetErrorInfo(TRUE, &ErrInfo);

 if (ErrInfo.iError == ErrorValue)
 {
 wsprintf(dbi_status, " ERROR %s", ErrInfo.szErrCode);

 if (strcmp(ErrInfo.szContext1, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext1);

 if (strcmp(ErrInfo.szContext2, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext2);

 if (strcmp(ErrInfo.szContext3, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext3);

 if (strcmp(ErrInfo.szContext4, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext4);

 }
 else
 {
 DbiGetErrorString(ErrorValue, dbi_string);
 wsprintf(dbi_status, " ERROR %s", dbi_string);
 }
 MessageBox(NULL, dbi_status, "BDE Error", MB_OK | MB_ICONEXCLAMATION);
 }
 return ErrorValue;
}

{button ,AL(`applicationdevelopment')} Application development

Template program
This program demonstrates each of the basic steps described in the "Basic procedure" for
BDE application development. You can execute the template program and step through it
to see how it works: It opens a BDE sample table and gets two records.
Use this template program as a skeleton on which to build your own BDE programs.

#include <idapi.h>
#include <stdio.h>
#include <windows.h>

DBIResult Chk(DBIResult); // Function Prototype

void main ()
{
 hDBIDb hDb = 0; // Handle to the Database
 hDBICur hCur = 0; // Handle to the cursor (table)
 CHAR szTblName[DBIMAXNAMELEN];
 CHAR szTblType[DBIMAXNAMELEN];
 CURProps curProps; // Properties of the cursor
 pBYTE pRecBuf; // Pointer to the record buffer
 DFLOAT custNum;
 BOOL isBlank;

 printf("\nInitialize engine");
 Chk(DbiInit(NULL)); //
Step 2

printf("\nOpen database");
 Chk(DbiOpenDatabase(//
Step 3

 NULL, // Database name - NULL for standard database
 NULL, // Database type - NULL for standard database
 dbiREADWRITE, // Open mode - Read/Write or Read only
 dbiOPENSHARED, // Share mode - Shared or Exclusive
 NULL, // Password - not needed for the STANDARD
database

 NULL, // Number of optional parameters
 NULL, // Field Desc for optional parameters
 NULL, // Values for the optional parameters
 &hDb)); // Handle to the database

 printf("\nSet table directory");
 Chk(DbiSetDirectory(//
Step 5

 hDb, // Handle to the database which is being
modified

 "e:\\bde32\\examples\\tables"));
 // The new working directory

 printf("\nSet private directory");
 Chk(DbiSetPrivateDir(//
Step 6

 "c:\\temp")); // Select a directory on a local drive not

used
 // by other applications.

 strcpy(szTblName, "customer");
 strcpy(szTblType, szPARADOX);
 printf("\nOpen table");
 Chk(DbiOpenTable(//
Step 7

 hDb, // Handle to the standard database
 szTblName, // Name of the table
 szTblType, // Type of the table - only used for local
tables

 NULL, // Index Name - Optional
 NULL, // IndexTagName - Optional. Only used by dBASE
 0, // IndexId - 0 = Primary.
 dbiREADWRITE, // Open Mode - Read/Write or Read Only
 dbiOPENSHARED, // Shared mode - SHARED or EXCL
 xltFIELD, // Translate mode - Almost always xltFIELD
 FALSE, // Unidirectional cursor movement.
 NULL, // Optional Parameters.
 &hCur)); // Handle to the cursor

 printf("\nGet cursor properties");
 Chk(DbiGetCursorProps(//
Step 8

 hCur, // Handle to the cursor
 &curProps)); // Properties of the cursor (table)

 printf("\nAllocate a record buffer");
 pRecBuf = (pBYTE) malloc(curProps.iRecBufSize * sizeof(BYTE)); //
Step 9

 if (pRecBuf == NULL)
 {
 // If pRecBuf is NULL, there was not enough memory to allocate a
 // record buffer. Handling this error will be user determined, but
 // no information from the table can be retrieved.
 }
 else
 {
 printf("\nSet cursor to the crack before the first record");
 Chk(DbiSetToBegin(hCur)); //
Step 10

 // Position the specified cursor to the crack
 // before the first record

 printf("\nGet the next record");
 Chk(DbiGetNextRecord(//
Step 11

 hCur, // Cursor from which to get the record.
 dbiNOLOCK, // Lock Type
 pRecBuf, // Buffer to store the record
 NULL)); // Record properties - don't need in this case

 printf("\nGet a field out of the record buffer");
 Chk(DbiGetField(
 hCur, // Cursor which contains the record
 1, // Field Number of the "Customer" field.

 pRecBuf, // Buffer containing the record
 (pBYTE)&custNum, // Variable for the Customer Number
 &isBlank)); // Is the field blank?

 printf("\nThe retrieved field value is %f", custNum);
 }

 printf("\nClean-up");

 if (pRecBuf != NULL)
 free(pRecBuf); // Free the record buffer

 if (hCur != 0)
 Chk(DbiCloseCursor(&hCur));
 // Close the cursor

 if (hDb != 0)
 Chk(DbiCloseDatabase(&hDb));
 // Close the database

 DbiExit(); // Close the BDE.
}

DBIResult Chk(DBIResult ErrorValue)
{
 char dbi_status[DBIMAXMSGLEN * 5] = {'\0'};
 DBIMSG dbi_string = {'\0'};
 DBIErrInfo ErrInfo;

 if (ErrorValue != DBIERR_NONE)
 {
 DbiGetErrorInfo(TRUE, &ErrInfo);

 if (ErrInfo.iError == ErrorValue)
 {
 wsprintf(dbi_status, " ERROR %s", ErrInfo.szErrCode);

 if (strcmp(ErrInfo.szContext1, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext1);

 if (strcmp(ErrInfo.szContext2, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext2);

 if (strcmp(ErrInfo.szContext3, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext3);

 if (strcmp(ErrInfo.szContext4, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext4);

 }
 else
 {
 DbiGetErrorString(ErrorValue, dbi_string);
 wsprintf(dbi_status, " ERROR %s", dbi_string);
 }
 MessageBox(NULL, dbi_status, "BDE Error", MB_OK | MB_ICONEXCLAMATION);
 }

 return ErrorValue;
}

{button ,AL(`applicationdevelopment')} Application development

Accessing and updating tables
This table is an overview of the process of accessing and updating tables using BDE:

Phase Task BDE function
Preparation Initialize the database engine Call DbiInit
Preparation Open a database Call DbiOpenDatabase
Preparation Open a table and get a cursor Call DbiOpenTable
Preparation Get the cursor properties Call DbiGetCursorProps
Preparation Allocate the record buffer Responsibility of the application
Preparation Retrieve field descriptor information into

application-supplied memory
Call DbiGetFieldDescs

Preparation Begin cached updates mode Call DbiBeginDelayedUpdates
Retrieval Position the cursor and fetch a record into the

record buffer
Call DbiGetNextRecord

Retrieval Retrieve a field from the record buffer Call DbiGetField
Update Update the field and write it to the record buffer Call DbiPutField
Update Update the table with the new record Call DbiModifyRecord
Update Apply cached updates to the table Call DbiApplyDelayedUpdates
Exit End the cached updates mode Call DbiEndDelayedUpdates
Exit Close the cursor Call DbiCloseCursor
Exit Close the database Call DbiCloseDatabase
Exit Exit the database engine Call DbiExit

{button ,AL(`applicationdevelopment')} Application development topics
{button ,AL(`accessingtables')} Accessing and updating tables
Also See:
· Transactions
· Transactions on Paradox, dBASE, FoxPro, and Access

Preparing to access a table
The steps for preparing to access a table are described in the following topics:
· Initializing BDE
· Opening a database
· Opening a table
· Preparing the record buffer and retrieving field descriptors

Initializing BDE
The first call that the application makes to BDE is always DbiInit, to initialize the database
engine and start a new session. DbiInit can optionally be supplied with a pointer to the
environment information structure DBIEnv. The NULL pointer is normally passed, which
forces BDE to search for the Registry entries and the BDE configuration file (IDAPI.CFG),
and to use the default settings. When a NULL pointer to the DBIEnv structure is passed,
BDE searches in the following order for the configuration file:
1 BDE checks the Windows Registry for a configuration file defined by an entry of [BDE]

with a subentry of CONFIGFILE01.
2 If step 1 is not successful, BDE checks for the configuration file named IDAPI.CFG in the

startup directory.
3 If step 2 is not successful, BDE initializes with a default set of configuration settings,

predefined for each driver. If initialization takes place after the failure of steps 1 and 2,
no SQL driver access is possible.

If the pointer is not NULL, and the configuration file is specified in the DBIEnv structure,
BDE uses that configuration file.
Here is a sample DbiInit call:

// Initialize IDAPI
rslt = DbiInit(NULL);

{button ,AL(`preparingtoaccess')} Preparing to access a table
{button ,AL(`accessingtables')} Accessing and updating tables
See also: Initialization

Opening a database
A database must be opened with a call to DbiOpenDatabase before a table in the database
can be opened. A successful call to DbiOpenDatabase returns the database handle, which
is then passed in subsequent calls to many other BDE functions.
For SQL databases, a password and user name must be supplied with DbiOpenDatabase to
connect to the server.
Specifying a standard database
The following code sample opens a standard database (used to access Paradox, dBASE,
FoxPro, Access, and Text tables) by using a NULL database name and database type:

rslt = DbiOpenDatabase(NULL, NULL, dbiREADWRITE,
 dbiOPENSHARED, NULL, 0, NULL, NULL, &hDb)

To change the current directory for a standard database, call DbiSetDirectory
rslt = DbiSetDirectory(hDb, "C:\\DATE");

Specifying a SQL database
There are several different methods of specifying a SQL database in the DbiOpenDatabase
call:
· The database name can specify a SQL alias, which defines a SQL database in the

configuration file. If a SQL alias is specified, the database type is NULL and optional fields
are not required.

· The database name can be NULL if the database type specifies one of the SQL driver
names (for example, InterBase or Oracle). If optional parameters are not specified,
driver-specific defaults are used.

For example, this code sample opens a named database on a SQL server:
rslt = DbiOpenDatabase("myalias", NULL, dbiREADWRITE,
 dbiOPENSHARED, "mypassword", 0, NULL, NULL,
 &hDb)

Specifying an alias
When calling DbiOpenDatabase you can supply an alias referencing a database name in
the configuration file.
Specifying access rights
The eOpenMode and eShareMode parameters of the DbiOpenDatabase call, in combination
with eOpenMode and eShareMode parameters of the DbiOpenTable call, determine the
access rights of users to tables within a database.
Note: For SQL data sources, the OPEN MODE parameter for each alias in the BDE

configuration file takes precedence over the open mode parameters passed with
DbiOpenDatabase.

If the database open mode is read-only, tables within that database cannot be opened by
DbiOpenTable in read-write mode. If the database open mode is read-write, tables within
that database can be opened by DbiOpenTable either in read-only or read-write mode.
If the database share mode is exclusive, tables within that database cannot be opened by
DbiOpenTable in share mode. If the database was opened in share mode, tables within that
database can be opened by DbiOpenTable in either exclusive or share mode.
Specifying optional parameters
Optional database-specific parameters can be passed to the DbiOpenDatabase function. To
retrieve a list and description of these optional parameters for a database, the application
can call DbiOpenCfgInfoList, supplying the path of the database name in the configuration
file. This function returns the handle to a virtual table listing optional parameters for this

database system and default values for these parameters.
OptFields, pOptFldDesc and pOptParams are the optional parameters, but may actually be
required, depending on which driver is being used, and whether enough information has
been supplied with other parameters to specify the database. For more on these
parameters, see DbiCreateTable

{button ,AL(`preparingtoaccess')} Preparing to access a table
{button ,AL(`accessingtables')} Accessing and updating tables

Opening a table
You can open a table by calling DbiOpenTable, and passing appropriate parameters such as
table name, driver type, index, type of access, and share mode. After the table is
successfully opened, BDE returns a cursor handle to the table.
Specifying the table name and driver type
If the application supplies the fully qualified table name of a Paradox, or dBASE table, it
need not specify the driver type parameter, because the driver type can be determined
from the table name extension. If the table name does not include a path, the path name
defaults to that of the current directory of the database associated with the database
handle.
Driver type must be specified if the table name has no extension, or to overwrite the
default driver associated with the file extension, or to terminate the table name with a
period(.). If the table name does not supply the default extension, and driver type
parameter is NULL, DbiOpenTable attempts to open the table with the default file extension
designated for each file-based driver listed in the configuration file, in the order that the
drivers are listed.
The driver types and their default extensions for Paradox, dBASE, and Text drivers are listed
below:

Driver type Default extension
PARADOX .DB
dBASE .DBF
ASCIIDRV .TXT

For SQL databases, the table name can be a fully qualified name that includes the owner
name, in the form

 <owner>.<tablename>
If not specified, <owner> is inferred from the database handle. Driver type is ignored if the
database is a SQL database, since driver binding is done when the database is opened.
For Access databases, a driver type and table identifier are required.

Specifying an index
To open a table with an active index, you can use the following parameters, depending on
the type of table being opened: pszIndexName, pszIndexTagName, or iIndexId. The active
index determines the order of records for this cursor.

Paradox: If all index parameters are NULL, the table is opened in primary key order, if a
primary key exists. If a secondary key is specified, the table is opened on that key. Either
pszIndexName or iIndexID can be used to specify a composite or non-composite
secondary index.
Access: If all index parameters are NULL, the table is opened in natural order. Either
pszIndexName or iIndexID can be used to specify a composite or non-composite
secondary index.
dBASE and FoxPro: If no index is specified, the table is opened in physical order.
· Use the pszIndexName parameter in the form <tablename>.MDX or

<tablename>.CDX if the index is within a production index.
· Use the pszIndexTagName parameter to specify the tag name of the index in an MDX

or CDX file. This parameter is ignored if the index given by pszIndexName is an NDX
index.

SQL: Use the pszIndexName parameter to specify the index name. The index name can
be qualified or unqualified. An unqualified index name succeeds only if the owner of the
index is the current user. (For servers supporting naming conventions with owner
qualification, it is not necessary to qualify the index name with the owner.)

Specifying table open mode
A table can be opened in EXCLUSIVE or SHARED mode. When a table is opened in exclusive
mode, no other user can access the table. When a table is opened in share mode, other
users can access the table at the same time.

Specifying the data translation mode
The xltFIELD translation mode is recommended. This mode ensures that BDE automatically
translates data from the database's native physical data format to the common BDE logical
data format when a field is read from the record buffer. BDE translates the data back into
native format when the field is written to the record buffer.
When the translation mode is xltNONE, no data translation takes place when a field is read
from the record buffer, or when a field is written to the record buffer.
Note: Data translation occurs only during calls to DbiGetField and DbiPutField; not when

the record is read.

{button ,AL(`preparingtoaccess')} Preparing to access a table
{button ,AL(`accessingtables')} Accessing and updating tables

Preparing the record buffer and retrieving field descriptors
A successful call to DbiOpenTable returns a cursor handle to the application. Before it can
use the cursor handle to access data in the table, the application must prepare the record
buffer. Preparing the record buffer includes allocating memory for it and, in some cases,
initializing it.
The application can also set up an array in which to retrieve the field descriptors for each
field contained in the table. To determine the required sizes of the record buffer and the
array of field descriptors, the application calls DbiGetCursorProps. This call is usually made
immediately after the DbiOpenTable call, and returns the required information in the
CURProps structure.
Example
The following code sample gets the cursor properties, allocates the record buffer, sets up
an array for the field descriptors, and gets the field descriptors:

DBIResult rslt;
pCHAR pRecBuf;
CURProps curProps;
pFLDDesc pFldArray;
...

// Get the table properties
 rslt = DbiGetCursorProps(hCursor, &curProps);
 if (rslt == DBIERR_NONE)
 {
 // Allocate the record buffer
 pRecBuf = malloc(curProps.iRecBufSize);
 // Check result of malloc
...

// Get an array of field descriptors
 pFldArray = (pFLDDesc) malloc(sizeof(FLDDesc) *
 curProps.iFields);
 // Check result of malloc
...

rslt = DbiGetFieldDescs(hCursor, pFldArray);
...

free(pFldArray);
free(pRecBuf);
}

Getting the cursor properties
When the application calls DbiGetCursorProps, the cursor properties CURProps structure is
returned with information describing the most commonly used cursor properties. CURProps
contains the following fields:
Type Name Description
DBITBLNAME szName Table name (no extension, if it can be derived)
UINT16 iFNameSize Full file name size
DBINAME szTableType Table type
UINT16 iFields Number of fields in table
UINT16 iRecSize Record size (logical record)
UINT16 iRecBufSize Record size (physical record)
UINT16 iKeySize Key size
UINT16 iIndexes Number of currently available indexes

UINT16 iValChecks Number of validity checks
UINT16 iRefIntChecks Number of referential integrity constraints
UINT16 iBookMarkSize Bookmark size
BOOL bBookMarkStable TRUE, if the cursor supports stable bookmarks
DBIOpenMode eOpenMode dbiREADWRITE, dbiREADONLY
DBIShareMode eShareMode dbiOPENSHARED, dbiOPENEXCL
BOOL bIndexed TRUE, if the index is active
INT16 iSeqNums 1: Has sequence numbers (Paradox);

 0: Has record numbers (dBASE, FoxPro);
< 0 (-1, -2. . .): None (SQL and Access)

BOOL bSoftDeletes TRUE, if the cursor supports soft deletes (dBASE and FoxPro
only)

BOOL bDeletedOn TRUE, if deleted records are seen
UINT16 iRefRange If > 0, has active refresh
XLTMode exltMode Translate mode: xltNONE (physical types), xltFIELD (logical

types)
UINT16 iRestrVersion Restructure version number
BOOL bUniDirectional TRUE, if the cursor is unidirectional (SQL only)
PRVType eprvRights Table-level rights
UINT16 iFmlRights Family rights (Paradox only)
UINT16 iPasswords Number of auxiliary passwords (Paradox only)
UINT16 iCodePage Code page; if unknown, set to 0
BOOL bProtected TRUE, if the table is protected by password
UINT16 iTblLevel Driver-dependent table level
DBINAME szLangDriver Symbolic name of language driver
BOOL bFieldMap TRUE, if a field map is active
UINT16 iBlockSize Data block size in bytes, if any
BOOL bStrictRefInt TRUE, if strict referential integrity is in place
UINT16 iFilters Number of filters
BOOL bTempTable TRUE, if the table is temporary

Memory allocation elements
The following elements are significant when allocating memory:

iFields
Specifies the number of fields in the table. Use this number to allocate an array to
receive the field descriptors for the table. The size of the array is:
 iFields * sizeof(FLDDesc)

iRecSize
Specifies the record size, depending on the translation mode for the cursor. If the
translation mode is xltFIELD, iRecSize specifies the logical record size. In other words, it
is the size of the record if all fields were represented as BDE logical types. If the
translation mode is xltNONE, iRecSize specifies the physical record size, which is the
same as iRecBufSize.

iRecBufSize
Specifies the physical record size. This is the size of the record buffer that you must
allocate in order to retrieve the records by using DbiGetNextRecord, DbiGetPriorRecord,
and other functions. For example,
 pRecBuf = (pBYTE)malloc(curProps.iRecBufSize);

Initializing the record buffer
Initialize the record buffer with a call to DbiInitRecord if a new record is to be inserted. This
function initializes each field in the record buffer, including BLOB fields, to blanks based on
the data type defined. For Paradox tables, default values are used to initialize the fields if
default values are specified in the table.

Getting the field descriptors
After memory has been allocated for the array of field descriptors, the application can
retrieve the field descriptors with a call to DbiGetFieldDescs. The field descriptors provide
the application with information that it needs to address and manipulate each field within
the record buffer. DbiGetFieldDescs returns an array of FLDDesc structures, with
information describing each field in the table:
Type Name Description
UINT16 iFldNum Field number (1 to n)
DBINAME szName Field name
UINT16 iFldType Field type
UINT16 iSubType Field subtype (if applicable)
UINT16 iUnits1 Number of characters or units
UINT16 iUnits2 Decimal places
UINT16 iOffset Offset in the record (computed)
UINT16 iLen Length in bytes (computed)
UINT16 iNullOffset For NULL bits (computed)
FLDVchk efldvVchk Field has validity checks (computed)
FLDRights efldrRights Field rights (computed)
iFldNum Specifies a driver-specific field ID. For most drivers, this value is from 1 to

curProps.iFields, except for Paradox tables, which can
use an invariant field ID For more information about
invariant field IDs, refer to DbiDoRestructure

Note: For consistency across drivers, use the ordinal position of the field in the descriptor
array. Both DbiGetField and DbiPutField use an ordinal number from 1 to n.

szName
Specifies the name of the field.
iFldType
Specifies the type of the field. Depending on the translate mode property of this cursor
the field type returned could be physical or logical. If the translate mode is xltFIELD, the
field type returned is a BDE logical type; if the mode is xltNONE, the field type returned is
the driver's corresponding physical type. For more information about physical and logical
data types, see Using the function reference and Data structures
iSubType
Specifies the subtype of the field. This could be a BDE logical subtype or a driver physical
subtype, depending on the translate mode.
iUnits1
Specifies the number of characters, digits, and so on. For logical field types, this number

is consistent across drivers. For physical field types, the interpretation of this field can be
dependent on the driver and also on the specific field type. For most drivers, if the field is
of the numeric type, iUnits1 is the precision and iUnits2 is the scale.
iUnits2
Specifies the number of decimal places, and so on. For logical field types, this number is
consistent across drivers. For physical field types, the interpretation of this field can
depend on the driver and also on the specific field type. For most drivers, if the field is of
the numeric type, iUnits1 is the precision and iUnits2 is the scale.

The following three fields together specify the layout of the record buffer:
iOffset
Specifies the offset of this field in the record buffer. The offset depends on the translation
mode. If the mode is xltFIELD, it is the offset of the field within a logical record.
iLen
Specifies the length of this field. The length depends on the translation mode; that is, it
could be the length of the logical or physical representation of the field. The application
developer uses this value to allocate a buffer in which to retrieve the field value.
iNullOffset
Specifies the offset of the NULL indicator for this field in the record buffer. If zero, there is
no NULL indicator. Otherwise, iNullOffset is the offset to an INT16 value, which is -1 if the
field is NULL (SQL only).
efldvVchk
Specifies whether or not validity checks are associated with this field (Paradox and SQL
drivers only).
efldrRights
Specifies the field level rights for this field.

{button ,AL(`preparingtoaccess')} Preparing to access a table
{button ,AL(`accessingtables')} Accessing and updating tables

Positioning the cursor and fetching records
After the record buffer has been prepared, the application can use the record buffer to
fetch records from the table.
To fetch records, the application must position the cursor on the record that it wants to
fetch. Some BDE functions serve only to position the cursor. Calls to these functions can be
followed by a call to a function that fetches the record into the record buffer. Other BDE
functions can simultaneously position the cursor and fetch a record into the record buffer.

Positioning the cursor on a crack
Some BDE functions position the cursor before a record, at the beginning of the file or
result set, or at the end of the file. When the cursor is positioned at one of these locations,
rather than on a record, the cursor is said to be positioned on a crack. The following calls
position the cursor on a crack:
· DbiSetToBegin positions the cursor to the beginning of the file (just before the first

record). When the cursor is opened, it is at this position.
· DbiSetToEnd positions the cursor to the end of the file (just after the last record).
· DbiSetToKey positions the cursor just prior to the record of the specified key value.
Positioning the cursor on a crack can simplify programming. For example, calling
DbiSetToBegin positions the cursor on the crack before the first record in the table. Then,
you can set up a loop to process all the records in the table with DbiGetNextRecord. (If the
cursor had been positioned on the first record in the table to start with, instead of before
the first record, the DbiGetNextRecord loop would have skipped the first record.)

Positioning the cursor on a record and fetching a record
Some BDE functions position the cursor directly on a record. If a record buffer is supplied,
these functions can also be used to fetch the record for processing by the application. Most
of these calls can optionally lock the record. The record remains locked until it is released
explicitly, or the session is closed. For more information about locks, see Locking

DbiGetRecord
This function fetches the current record, and returns an error if the cursor is positioned
on a crack.
DbiGetNextRecord
This function positions the cursor on the next record after the current position of the
cursor, and also fetches that record.
DbiGetPriorRecord
This function positions the cursor on the record before the current position of the cursor,
and also fetches that record.
DbiGetRelativeRecord
This function positions the cursor on the record whose position is specified as an offset
(either a positive or a negative number) from the current position of the cursor, and also
fetches that record.
DbiGetRecordForKey
This function positions the cursor on the record whose key matches the specified key,
and also fetches that record.
Example
The following example shows how to position the cursor to the beginning of file and step
through the table:
 // Position the cursor at the BOF crack
 DbiSetToBegin(hCursor);
 // Step through the table. Read the record each time.
 while (DbiGetNextRecord(hCursor, dbiNOLOCK, pRecBuf, NULL)

 == DBIERR_NONE)
 {
...
}

Repositioning the cursor with bookmarks
Bookmarks provide a convenient way to save the position of the cursor, so that it can be
repositioned to that same place later. The bookmark is written to a client-supplied buffer
which is allocated by the client.
Note: The size of the bookmark buffer may change after a call to DbiSwitchToIndex.
DbiGetBookmark
This function saves the current position in the supplied bookmark.
DbiSetToBookmark
This function repositions the cursor to a previously saved bookmark position.

Fetching multiple records
The application can fetch multiple records with one call by setting up a buffer large enough
to hold the records and calling DbiReadBlock. The specified number of records are fetched
beginning with the next record after the current cursor position. This function is equivalent
to setting up a loop that makes multiple calls to DbiGetNextRecord.

Retrieving limited record sets
Several BDE functions enable you to force the cursor to return only a limited set of records
or fields to the application; that is, the application sees only those records in the table that
meet a predefined set of conditions.
Note: Queries provide another way of returning a limited record set.

Using ranges
Use DbiSetRange to force the cursor to return to the application only those records whose
keys fall within the defined range. This function can be called only if the cursor has a
current active index. (See DbiOpenTable or DbiSwitchToIndex.) Both inclusive and exclusive
ranges can be specified. Subsequent BDE calls treat the set of records within the range as
the complete table. For example, DbiSetToBegin positions the cursor on the crack before
the first record in the range, rather than on the first record in the table.
This function is commonly used to find a set of records between two key values by setting
both the upper range limit and the lower range limit. Open-ended ranges can be specified,
from the beginning of the file to a specified key, or from a specified key to the end of the
file.
For an example, refer to the RANGE code sample in the SNIPIT Code Viewer (\BDE32\
EXAMPLES\SNIPIT).

Creating field maps
Use DbiSetFieldMap to force the cursor to return fields in a different order from their order
in the table, or to drop fields from view. To set up a field map, the application developer
builds an array of field descriptors, including only those fields that are to be made visible
by the cursor, and in the order that they are to be returned. Only the fields named in the
array are made visible.
Note: Creating field maps can change the size of the record buffer.
For an example, refer to the FLDMAP.C code sample in the SNIPIT Code Viewer (\BDE\
EXAMPLES\SNIPIT).

Using filters
An active filter forces the cursor to return a limited record set consisting of only those

records that meet the filter condition. Records that do not meet the filter condition are
skipped, and even though they remain in the table, the records are not visible through the
cursor. Deactivating the filter brings those records back into view.
A filter condition is defined as an expression returning TRUE or FALSE. When the filter is
activated, the filter expression is applied to each record in the table. Only those records
that return TRUE are visible to the application. Multiple filters can be defined for one table.
To define a filter, the application calls DbiAddFilter, passing it an existing cursor handle and
a pointer to a CANExpr structure that contains the expression. The structure is passed in a
flat tree format. (For a detailed explanation and an example of how to use filters, see
Filtering records.)
The CANExpr structure can include comparison operators, AND, OR, and NOT, and tests for
blank fields. Different drivers support different types of expressions, but all drivers support
the basic combination of <field> <compare operator> <constant>; for example, "field1 =
"CA" and field2 < 30" is supported by all drivers.
When DbiAddFilter completes, it returns a filter handle to the application.
After the filter condition has been defined, it must be activated with DbiActivateFilter in
order to take effect. Multiple filters can be activated. Filters can be switched on and off
when needed (using DbiActivateFilter and DbiDeactivateFilter). Filters are automatically
dropped when the cursor is closed, and can be explicitly dropped with DbiDropFilter. If
more than one filter is active, records that fail to meet any active filter condition are filtered
out.
Advantages of using filters are that the BDE filtering mechanism is extremely fast, and
filters are implemented efficiently by the drivers.
Note: While queries provide a more general way of restricting the result set than filters,

filters provide more dynamic control than queries.

{button ,AL(`accessingtables')} Accessing and updating tables

Field-level access
An application usually accesses data in a record at the field level. The BDE functions
DbiGetField and DbiPutField let the application retrieve and update the data within each
field in a record buffer. These functions allow field access without the need to know the
structure of a record buffer.
Field-level access is done through a record buffer:

Reading a record
--> Table [DbiGetRecord] --> Record buffer [DbiGetField] -->    Field
Updating a record
--> Field [DbiPutField] --> Record buffer [DbiModifyRecord] --> Table

Retrieving field values
To retrieve a field within the record buffer, the application calls the BDE function
DbiGetField, supplying the ordinal number of the field and a buffer to hold the data
contents of the field. (The ordinal number is the position of the FLDDesc in the array
returned by DbiGetFieldDescs, 1 to n.) Optionally, a Boolean can be returned indicating if
the field is blank.

Updating field values
To update a field in the record buffer, the application calls the BDE function DbiPutField,
supplying the ordinal number of the field, and a buffer containing the field contents to be
written to the record. (The ordinal number is the position of the FLDDesc in the array
returned by DbiGetFieldDescs, 1 to n.)
DbiPutField can also be used to set a field to blank, by passing a NULL pointer as the field
buffer parameter.

Logical types versus physical types
As a general rule, the application should always use field translation mode xltFIELD. This
parameter is set when the table is opened. If the table has already been opened and the
translation mode is not set to xltFIELD, it can be changed with the DbiSetProp call.
When field translation mode is in effect, BDE automatically translates a field's data
contents. When the field is retrieved, BDE translates the data in the record buffer from the
native data type into a generic logical data type. When the field is written back to the
record buffer, BDE translates the data back into the native physical data type.
When field translation mode is not in effect, BDE performs no translation of data to logical
types. The application must be prepared to accept data from BDE using the data types
native to the database system managing the table.
BDE type C equivalentDescription
fldZSTRING char[] Zero terminated array of chars
fldUINT16 unsigned int 16-bit unsigned integer
fldINT16 int 16-bit integer
fldUINT32 unsigned long32-bit unsigned long integer
fldINT32 long 32-bit long integer
fldFLOAT double 64-bit floating point
fldFLOATIEEE long double 80-bit floating point
fldBOOL int 16-bit quantity, TRUE==1; FALSE==0
fldBYTES unsigned char[] Fixed size (independent of row) array of bytes
fldVARBYTES unsigned char[] Length-prefixed array of bytes

{button ,AL(`accessingtables')} Accessing and updating tables

Working with BLOBs
Because BLOB fields are variable-sized and can be very large, BDE treats them differently
from other fields; they are treated as byte streams. The application developer follows a
similar procedure for accessing and updating records containing BLOB fields as with other
records.
The following set of BDE functions is designed to work with BLOB fields:
· DbiOpenBlob
· DbiGetBlob
· DbiGetBlobHeading
· DbiGetBlobSize
· DbiFreeBlob
· DbiPutBlob
· DbiTruncateBlob
Opening the BLOB
To write to or read from a BLOB, you must open the BLOB first. To open the BLOB, the
record buffer must contain a copy of the record to be modified, or an initialized record, if
the record is being inserted. The application calls DbiOpenBlob, passing the cursor handle,
the pointer to the record buffer, the field number of the BLOB, and the access rights. (If the
BLOB is opened in read-write mode, the table must also be opened in read-write mode.)
DbiOpenBlob stores the BLOB handle in the record buffer. DbiOpenBlob must be called prior
to calling any other BLOB functions.

Standard: It is advisable to lock the record before opening the BLOB in read-write mode.
This ensures that another application does not change the record or lock the record,
preventing the record from being updated.
SQL: For SQL servers that do not support BLOB handles for random reads and writes, full
BLOB support requires uniquely identifiable rows. Most SQL servers limit a single
sequential BLOB read to less than the maximum size of a BLOB. In cases with no row
uniqueness and without BLOB handles, an entire BLOB might not be available.

Retrieving BLOB data
DbiGetBlob retrieves BLOB data from the specified BLOB. Any portion of the data can be
retrieved, starting from the position specified in iOffSet, and extending to the number of
bytes specified in iLen. Typically, the application does not know the length of the BLOB, and
it makes a series of calls to DbiGetBlob to retrieve the entire BLOB. DbiGetBlob returns the
number of bytes read when it completes. The application can tell when it has reached the
end of the BLOB when the number of bytes specified in iLen is greater than the number of
bytes read.
Alternatively, the application can determine beforehand the size of the BLOB by calling
DbiGetBlobSize, and then specifying the actual length of the BLOB in the call to
DbiGetBlob. That way, the entire BLOB can be retrieved with one DbiGetBlob call, instead
of a series of calls.

Updating a BLOB
DbiPutBlob is the equivalent of DbiPutField for a BLOB. DbiPutBlob is used only to write data
into a BLOB. The BLOB must be opened in read-write mode. The application passes a
pointer to the block of data to be written. The application specifies the length of data to be
written, as well as the offset within the BLOB to begin writing the data. The application can
make a series of calls to DbiPutBlob to write the entire BLOB.
Updating or adding a record with a blob
To update or add a record, the application follows these steps:

1 Calls DbiAppendRecord or DbiInsertRecord to add a new record with a BLOB to the table
or the application calls DbiModifyRecord to modify an existing record containing a BLOB.
The pointer to the record buffer containing the new record is passed with the function.

2 Calls DbiFreeBlob to close the BLOB handle and all resources allocated to the BLOB by
DbiOpenBlob. (DbiModifyRecord, DbiInsertRecord or DbiAppendRecord do not
automatically release BLOB resources after record modification.)

Note: It is important to free the BLOB after adding or modifying the record. If DbiFreeBlob
is called prior to DbiModifyRecord, DbiInsertRecord, or DbiAppendRecord, the changes
are lost.

Note: Do not use DbiWriteBlock on tables that contain BLOBs.
This example illustrates BLOB processing:

DBIResult rslt;
 pCHAR blobBuf;
 UINT32 blobSize, bytesRead;
 // Read the current record
 DbiGetRecord(hCursor, dbiNOLOCK, pRecBuf, NULL);
 // Open the BLOB
 rslt = DbiOpenBlob(hCursor, pRecBuf, 3, dbiREADWRITE);
 if (rslt == DBIERR_NONE)
 {
 // Get the size of the BLOB then read it. Note that this
 // example assumes that the BLOB is less than 64k.
 DbiGetBlobSize(hCursor, pRecBuf, 3, &blobSize);
 blobBuf = malloc(blobSize);
 DbiGetBlob(hCursor, pRecBuf, 3, 0, blobSize,
 (pBYTE) blobBuf, &bytesRead);

...

. // Free the blob
 DbiFreeBlob(hCursor, pRecBuf, 3);
 // Clean up
 free(blobBuf);
 }

{button ,AL(`accessingtables')} Accessing and updating tables

Adding, updating, and deleting records
In order to add, modify or delete a record, the cursor must have write access to the table.
The table or record must not be locked by another user. If the application intends to update
a record, it can lock the record through the BDE function that fetches the record. The
record remains locked until the application explicitly releases it, or the session is closed. For
more information about locks, see Locking
Alternatively, you can use the cached updates cursor layer to allow users to retrieve and
modify temporarily cached data without immediately writing to the actual underlying
database. This minimizes the amount of resource locking.

Adding a record
To add a new record to a table, the application follows these steps:
1 Initializes the client-allocated record buffer with a call to DbiInitRecord.
2 Constructs the record one field at a time, using DbiPutField    For information about BLOB

fields, see Working With BLOBs
3 Calls DbiAppendRecord or DbiInsertRecord to write the record buffer contents to the

table. The application specifies whether or not to keep a record lock on the inserted
record (DbiInsertRecord).

Updating a record
To modify an existing record in the table, the application follows these steps:
1 Fetches the record to be modified into the client-allocated record buffer (obtaining a lock,

if necessary).
2 Writes the updated fields to the record buffer with DbiPutField For information about

BLOB fields, see Working with BLOBs
3 Calls DbiModifyRecord to write the record buffer to the table. The application specifies

whether or not to release the record lock on the updated record when DbiModifyRecord
completes.

Deleting a record
To delete a record, the application follows these steps:
1 Positions the cursor on the record to be deleted.
2 Calls DbiDeleteRecord. If a record buffer is supplied, the deleted record is copied there.
3 The cursor is left positioned on the crack where the deleted record was.

dBASE and FoxPro
For dBASE and FoxPro tables, a deleted record is not removed from the table until a
call to DbiPackTable is made.

Paradox
The record cannot be recalled once it is deleted. The record is not deleted if the
deletion would cause violation of referential integrity. For example, if the cursor is
validly positioned on a record within the master table, and that record has linked
values in a detail table, then the call to DbiDeleteRecord fails, and the position of the
cursor remains unchanged.
Deleting a record does not reduce table size. The only way to gain disk space for
records that have been deleted is to restructure the table with a call to
DbiDoRestructure. Deleted space may be reused by later inserts.

Multiple Record Updating, Adding, And Deleting
BDE provides two functions that enable your application to update, add, or delete
multiple records from a table: DbiBatchMove and DbiWriteBlock.

DbiBatchMove
DbiBatchMove can be used in different modes to append, update, append and
update, or subtract records from a source table to a destination table. Source and
destination tables can be of different driver types. This function supports filters and
field maps. It can also copy a table of one driver type to a new table of a different
driver type.
This function can be used with the Text driver to import and export data to or from
any supported driver type.
This function can optionally create a key violations tables, a changed table, and a
problems table to store records that fail to meet the specified criteria for record
transfer. A callback can be registered that alerts the application to data transfer
between source and destination fields that could result in data loss.
For an example, refer to the BATMOVE.C code sample in the SNIPIT Code Viewer (\
BDE\EXAMPLES\SNIPIT).

DbiWriteBlock
To write multiple records to a table, the application creates a record buffer containing
the records to be written, and calls DbiWriteBlock, passing the cursor handle of the
table to be updated. The entire block of records in the record buffer is written to the
specified table. This function is similar to calling DbiAppendRecord for multiple
records.
Refer to the BLOCK.C code sample in the SNIPIT Code Viewer (\BDE\EXAMPLES\
SNIPIT).

{button ,AL(`accessingtables')} Accessing and updating tables

Linking tables
Linked cursors allow you to create one-to-many (master-detail) relationships between
tables. The cursors on two tables can be linked if the tables share a common field, which
must be indexed in the detail table. Linking the cursors on a master table and a detail table
forces the cursor on the detail table to make visible only those records containing a key
value that matches the key value of the current record in the master table.
For example, a CUSTOMER table (master) and an ORDERS table (detail) share a common
field called CUSTOMER_NO. If the current record in the master table has a CUSTOMER_NO
of 1221, then the only records visible in the detail table are those that have a
CUSTOMER_NO of 1221. In other words, the application sees only the orders that are
associated with the current customer.
A master table can be linked to more than one detail table; a detail table can be linked to
only one master table. A detail table can also be a master table, linked to other detail
tables.
Links apply to all available driver types; they can be established between tables of the
same or different driver types.
Setting up the link
To link two tables, the application follows these steps:
1 The application opens cursors on both tables. The detail table cursor must have a current

active index on the field that will be used to link the cursors.
2 The application calls DbiBeginLinkMode for each cursor to be linked. The function returns

a new cursor.
3 The application calls DbiLinkDetail, passing the cursor handles of both the master and

detail tables. The data types of linked fields in master and detail records must match.
This function links only on indexes that are applied on fields within the detail table (no
expression indexes). For expression links in dBASE and FoxPro tables, call
DbiLinkDetailToExp.

4 The two cursors are now linked. When the position of the master cursor changes, the
corresponding detail cursor changes to show the applicable records.

Breaking the link
To break the link between the cursors, the application follows these steps:
1 The application calls DbiUnLinkDetail, passing the cursor handle of the detail table. The

detail table is now unlinked to any master table, and its cursor displays the entire record
range again.

2 The application calls DbiEndLinkMode for each linked cursor, passing it the cursor handle.
A standard cursor handle is returned.

For an example, refer to the LNKCRSR.C code sample in the SNIPIT Code Viewer (\BDE\
EXAMPLES\SNIPIT).

{button ,AL(`accessingtables')} Accessing and updating tables

Sorting tables
The BDE sort function DbiSortTable sorts an opened or closed table, either into itself or into
a destination table. There are options to remove duplicates, to enable case-insensitive
sorts, to sort on subsets of fields, and to enable special user-supplied comparison functions.
The sort can be used with filters and field maps, and it is extremely fast. DbiSortTable is
supported by SQL drivers, but a SQL table can serve only as a source table, not as a
destination table.
The sort engine uses language driver-defined collating sequences to accommodate the
character sets of different languages.

{button ,AL(`accessingtables')} Accessing and updating tables

Cached updates
The cached updates feature allows users to retrieve data from a database and make
changes to that temporarily cached data without immediately writing to the actual
underlying database. Users can make changes over a prolonged period with a minimum
amount of resource locking at the actual database. After modifying the data, users call an
update function to save their changes in the actual database. The update function sends to
the database a batch of all inserts, deletes, and modifications made since the last update
function call.
For a distinguishing comparison of the cached updates feature with transaction processing,
see Transactions and cached updates
To support the cached updates feature, a special cursor layer installs on top of any cursor.
Implementation and use of the cached updates features is described in subsequent
sections

{button ,AL(`cachedupdates')} Cached updates topics
{button ,AL(`accessingtables')} Accessing and updating tables

The cached updates layer
The cached updates layer keeps track of all the changes that are made by users by
intercepting various table methods such as insert record, modify record, and delete record.
As users browse through the table, the cached updates layer recognizes which records are
modified, deleted, and inserted. The layer presents those records to the users accordingly.
The updates are not immediately sent to the underlying table; instead they are cached by
the cached updates layer. No record locks are held until the clients decide to commit the
updates. Then the locks are held only during the commit process.
Because no record locks are held before the commit operation, there is a risk that some
records might be updated by other users. If a record modified by the cached updates layer
is modified by other users before the cached updates layer commits its cached updates, an
error is returned, indicating that the record has been modified by a different user.
For standard database tables, every non-blob field is used in determining the record
modifications.
After making the required changes, the clients call DbiApplyDelayedUpdates either to
commit or rollback the changes. The rollback operation quickly discards the update
information from the cache.
If the user decides to commit the changes, the updates are applied to the database. As the
updates are applied, referential integrity and data validation checks are made.
A callback mechanism informs the users about data integrity violations. This mechanism
can skip a particular failed update or abort the entire commit operation. See Callback
functions
Limitations
The cached updates layer works on one cursor at a time. If clients want to support cached
updates on a form operating on more than one cursor, it is the client's responsibility to
synchronize the updates on various cursors.
A few BDE calls that perform table operations are not supported by the cached updates
layer, including data-ordering BDE calls, such as DbiSwitchToIndex. These can be done
before entering the cached updates mode. The cached updates layer depends on
bookmarks to keep track of modified records. Because bookmarks change when
DbiSwitchToIndex is called, this BDE function is disabled.

{button ,AL(`cachedupdates')} Cached updates topics
{button ,AL(`accessingtables')} Accessing and updating tables

Using the cached updates mode
Use of the cached updates mode is a two-phase process.
Phase 1
The command dbiDelayedUpdPrepare causes all changes in the cache to be applied to the
underlying data. Unless being used in a single-user environment, this command should
always be used within the context of a transaction to allow for error-recovery in the event
of an error during the update. Any errors encountered during this phase should be handled
through callback functions.
Phase 2
The command dbiDelayedUpdateCommit performs the second phase. After successfully
calling dbiDelayedUpdPrepare directly, follow it with the dbiDelayedUpdateCommit
command. The internal cache is updated to reflect the fact that the updates were
successfully applied to the underlying database (that is, the successfully applied records
are removed from the cache).
Procedure
To start the cached updates mode:
1 Create the cached updates layer with a call to DbiBeginDelayedUpdates

DBIResult DBIFN EXPORT DbiBeginDelayedUpdates(phDBICur phDbiCur);

Note: The record buffer size will be different in cached updates mode. You should
reallocate record buffers once the cached updates layer is installed.

2 Apply (commit) changes made to the cached updates cache with a call to
DbiApplyDelayedUpdates
DBIResult DBIFN EXPORT DbiApplyDelayedUpdates (hDBICur
hDbiCur, DBIDelayedUpdCmd eUpdCmd);
typedef enum
{

 dbiDelayedUpdCommit = 0,
 dbiDelayedUpdCancel = 1
 dbiDelayedUpdCancelCurrent = 2
 dbiDelayedUpdPrepare = 3
} DBIDelayedUpdCmd;

Note: When used on inserted, deleted, or modified records, the command
dbiDelayedUpdCancelCurrent resets the current record to its original state.

3 Once the changes have been applied to the database, users can resume making changes
to the database. They don’t have to end the cached updates mode. After completing the
next batch of modifications, DbiApplyDelayedUpdates can be called to apply those
changes to the database or perform a rollback.

4 End the cached updates mode with a call to DbiEndDelayedUpdates
DBIResult DBIFN EXPORT DbiEndDelayedUpdates(phDBICur phDbiCur);

{button ,AL(`cachedupdates')} Cached updates topics
{button ,AL(`accessingtables')} Accessing and updating tables

Callback functions
A callback mechanism is provided when a failure to write a modified record to the database
occurs. Because updates are not sent to the underlying table until the commit time, no
errors (such as integrity constraint violations) are detected before the commit/prepare
operation. If an error occurs at commit time, users are prompted with an error message
describing the error. Applications should register a callback function for cached updates by
using the DbiRegisterCallBack function (ecbType for this callback is cbDELAYEDUPD) to be
notified of the errors during the commit.
The callback descriptor for cached updates is:
// type of delayed update object (cached updates callback)
typedef enum
{
 delayupdNONE = 0,
 delayupdMODIFY = 1,
 delayupdINSERT = 2,
 delayupdDELETE = 3
} DelayUpdErrOpType;

// cached updates callback descriptor.
typedef struct
{
 DBIResult iErrCode;
 DelayUpdErrOpType eDelayUpdErrOpType;
 // Record size (physical record)
 UINT16 iRecBufSize;
 pBYTE pNewRecBuf;
 pBYTE pOldRecBuf;
} DELAYUPDCbDesc;

In the callback descriptor, the eDelayUpdErrOpType indicates the operation type (such as
insert, delete, or modify) and iErrCode indicates what sort of error has occurred during the
eDelayUpdErrOpType operation.
Clients should allocate enough memory for pNewRecBuf and pOldRecBuf. Each record
buffer should be at least as large as the cached update cursor’s physical record buffer size.
The new (after the update) and old (before the update) record buffers are returned to the
clients through pNewRecBuf and pOldRecBuf record buffers.
Clients can respond to this callback function with the following return codes:
Return code Resulting action
cbrABORT The entire commit operation is aborted. cbrABORT is the default return code

if no callback
function is
registered.

cbrSKIP The failed update operation is skipped and the commit process continues
with the remaining
updates.

cbrCONTINUE The failed update operation is skipped and the commit process continues
with the remaining
updates.

cbrRETRY The failed update operation is tried again.
cbrPARTIALASSIST The user-applied changes are kept in the cache. In this case,

the user applies
the changes to the

original table.

{button ,AL(`cachedupdates')} Cached updates topics
{button ,AL(`accessingtables')} Accessing and updating tables

Locking
The Borland Database Engine locking environment is a hierarchy consisting of three layers:

Session layer
(Owns database handles, table cursors,
acquired table locks, and record locks)

Database handle layer
(Open mode limits the open mode of tables in the database)

Table cursor layer
(Cursor open mode can limit access)

See the following topics on the layers and details about table locking:

{button ,AL(`locking')} Locking topics

Session layer
At the top of BDE's locking hierarchy is the session layer. The session indirectly controls
some locks because it controls resources including database handles and table cursors.
Multiple database handles can be opened in the same session; this is what gives the
application access to different databases at the same time. When a session is closed, all
resources attached to the session are closed and all locks owned by those resources are
released.
The session directly owns table locks and record locks acquired by an application after the
table has been opened. This means that if more than one cursor is open on the same table
within a session, one cursor can release a lock that was acquired by another cursor.
Sessions provide complete isolation from each other.

{button ,AL(`locking')} Locking topics

Database handle layer
One step down in BDE's locking hierarchy is the database handle layer. Although no locks
are explicitly owned by the database handle, the share mode assigned to the database
when it is opened determines whether tables within that database can be opened
exclusively or shared. If the database is opened in share mode, then tables within that
database can be opened either in exclusive or share mode. If the database is opened in
exclusive mode, then all tables will be opened in exclusive mode, even if other users
attempt to open the table in share mode.
When the database is closed, all resources allocated to the database handle are released,
including table cursors and table locks owned by these cursors.
Also see Native handles

{button ,AL(`locking')} Locking topics

Table cursor layer
At the bottom of the BDE locking hierarchy is the cursor layer. Only locks placed on the
table when it is opened with the DbiOpenTable function are owned by the cursor. If the
table is opened in exclusive mode, no other user can access that table. An exclusive lock
prevents any other user from accessing the table, or placing any type of lock on it. If the
table is opened in share mode, other cursors can access the table and they can acquire
read or write locks on the table.
When the cursor is closed, any exclusive lock placed on the table when it was opened is
released.

{button ,AL(`locking')} Locking topics

Acquired locks
All locks acquired after the table is opened are owned by the session, rather than the
cursor. There are several types of acquired locks:
· Acquired Table Locks
· Acquired Persistent Table Locks
· Record Locks

Checking a table's lock status
To check the acquired lock status of a table use DbiIsTableLocked. The application specifies
the type of lock (no lock, read lock, or write lock) and the function returns the number of
locks of that type placed on the table.
For dBASE, FoxPro, Access, and Paradox tables, to check whether the table is physically
shared on a network or local drive and opened in share mode, use DbiIsTableShared. For
SQL tables, this function can be used to check whether the table was opened in SHARE
mode.

{button ,AL(`locking')} Locking topics

Acquired table locks
If an application needs to place a lock on a table that was opened in share mode, it calls
the BDE function DbiAcqTableLock. If a lock cannot be obtained, an error is returned.
DbiAcqTableLock can place a read or a write lock on the table.
A write lock prevents other users from updating a table, so that updates can be made
cleanly and without interference. Only one write lock can exist on a table at a time.
A read lock prevents anyone from updating the table and prevents other users from placing
a write lock on the table, so that table data cannot change while you are reading it.
Multiple read locks can co-exist.
If a driver does not support read locks, a read lock is upgraded to a write lock. For example,
for dBASE tables, read locks are upgraded to write locks. For SQL tables, a write lock is the
same as a read lock and behavior varies according to the server.
More than one lock can be acquired on the table.

Releasing acquired table locks
DbiRelTableLock is used to release a table-level lock placed with DbiAcqTableLock. For each
lock acquired, a separate call to DbiRelTableLock is required to release it.

{button ,AL(`locking')} Locking topics

Acquired persistent table locks
A persistent lock can be placed even before the table has been created. For Paradox tables,
this feature can be used to reserve a table name for future use. For SQL tables, BDE
remembers that the lock was placed, and when the table is actually created during that
connection, the table is locked (as long as the server supports table locks). These locks are
acquired by the DbiAcqPersistTableLock function.
Releasing acquired persistent table locks
To release an acquired persistent lock, use the DbiRelPersistTableLock function.

{button ,AL(`locking')} Locking topics

Record locks
Applications can acquire record locks at record retrieval time. Most BDE functions that are
capable of fetching a record provide the option of locking; for example, DbiGetNextRecord,
DbiGetPriorRecord, and DbiGetRelativeRecord. The eLock parameter can be used to specify
one of the following record locks:
Setting Description
dbiNOLOCK No lock; allows other users to read, update, and lock the record
dbiREADLOCK Upgraded to a write lock
dbiWRITELOCKAllows other users to read the record, but prevents them from updating the

record, or placing a
lock on the record

Paradox and dBASE lock managers both upgrade read locks to write locks; so, in effect, a
record is either locked or not locked.
Because some BDE record-fetching functions perform operations other than locking, the
order in which these operations occur can be significant:
· Cursor movement always occurs first.
· Paradox and dBASE drivers attempt to lock the record before filling the record buffer.
· SQL drivers fill the client's record buffer and then attempt to lock the record.
Note: Cursor movement occurs even if the lock fails. For example, if DbiGetNextRecord is

called with a read lock, the cursor moves to the next record, and the lock is then
attempted. If the record is already locked by another user, the lock attempt fails, but
the cursor has changed position.

Maximum number of record locks for standard tables
Shared dBase table 100
Shared Paradox table 255
Checking a record's lock status
To check the lock status of a record, use DbiIsRecordLocked. This function returns the lock
status of the current record; the lock status can be either locked or not locked.
Releasing record locks
The application can call the function DbiRelRecordLock to release the record lock on the
current record or release all the record locks acquired in the current session. In addition,
DbiModifyRecord provides an option to release the lock after the operation has completed.

{button ,AL(`locking')} Locking topics

Table lock coexistence
Each type of table-level lock placed on a table affects to some degree the access that other
users have to the table. You can use a lock aggressively to prohibit other users from
accessing a table, or you can use a lock defensively to prevent other users from placing
locks that would limit your application's access to the table. The chart below shows the
results of User 2's attempts to place table locks after User 1 has successfully placed each
type of lock:

User 2:
Attempts to open Attempts to acquire Attempts to acquire Attempts to open
the table in a write lock a read lock the table in share
exclusive mode mode

User 1:
Opens the table
in exclusive mode Fail Fail Fail Fail
Acquires a
write lock Fail Fail Fail Succeed
Acquires a
read lock Fail Fail Succeeds for Paradox Succeed

Fails for dBASE or
FoxPro

Opens the table
in share mode Fail Succeed Succeed Succeed

{button ,AL(`locking')} Locking topics

Locking strategy
In choosing a locking strategy, you must consider both the application's need to keep other
users from changing data, and the extent to which locking affects other users. You also
need to consider the differences in rules used by the lock managers of each database
system being accessed. SQL lock managers use a different set of locking rules from those
used by dBASE and Paradox lock managers.
Using BDE, an application can update a table as long as it has read-write access to the
table, and no other user has a lock on the table or record to prevent the update. However,
it is necessary with dBASE, FoxPro, Access, and Paradox systems to lock the table or record
before updating to ensure that the data in the table does not change while the application
is in the middle of processing a retrieved record.
Note: With BDE, you can write your application as a multi-user application even if the

database resides on a standalone PC, since locking overhead is marginal when data is
local. This means that you can write a single application for both single-user and
multi-user situations.

{button ,AL(`locking')} Locking topics

SQL-specific locking behavior
With dBASE, Paradox, FoxPro, and Access, a record lock prevents another user from
updating the record. However, SQL deals with record locking differently. If a record in a SQL
table is not in the record cache, the record is fetched from the server. The client has a local
(cached) copy of the record, but that copy can become immediately out-of-date if another
client retrieves the same record from the server, and modifies or deletes it before the first
client is able to submit changes.
BDE SQL drivers (and some ODBC drivers) use optimistic locking. An optimistic lock
actually allows the locked record to be updated by another user, but when the application
that placed the lock attempts to update the record, BDE notifies the application that the
record has changed and that the requested operation cannot be performed because
someone else has modified the data. The application then has the option of inspecting the
new record and deciding whether to submit its changes or not.
Optimistic locking avoids the performance and concurrency penalties incurred by a lock
that ties up record access for the duration of time that it takes to complete a single user’s
modifications. At the same time, the application is protected from inadvertently changing
data that has never been inspected.
You can use keyed updates to control optimistic locking for improved performance.

{button ,AL(`locking')} Locking topics

Transactions
SQL systems use transaction processing with commit and rollback; either the whole series
of operations within the transaction is made permanent when the series completes, or the
whole series is undone.
Transactions can be executed on all SQL platforms supported by BDE. A transaction is a
series of programming commands that access data in the database. When the last of the
series of commands has completed, the entire transaction is either committed or canceled.
If it is committed, all changes performed within the transaction against the associated
database are made permanent. If it is canceled, all changes performed against the
associated database are undone.
Only one transaction can be active per connection to a SQL database. Any attempt to start
an additional transaction before the first one terminates results in an error.
Also see SQL transaction control

Default transactions
SQL operations always take place within the context of a transaction. When no explicit
transaction occurs, the SQL driver manages the SQL server transactions transparently for
the client. Any successful modification of SQL server data is immediately committed to
ensure its permanence in the database. Default transaction behavior would apply if you are
using BDE with a SQL server, but you are not explicitly using transactions (that is, setting
the operations off between DbiBeginTran and DbiEndTran).

Beginning a transaction
The DbiBeginTran function is used to begin a transaction. After a successful DbiBeginTran
call, the transaction state is active. The application specifies the isolation level to be used
for the transaction when DbiBeginTran is called. Possible values are:
· xilDIRTYREAD: Uncommitted changes can be read.
· xilREADCOMMITTED: Other transactions' committed changes can be read.
· xilREPEATABLEREAD: Other transactions' changes to previously read data are not seen.
Availability and behavior of isolation and read repeatability capabilities vary by SQL server.

Ending a transaction
DbiEndTran ends the transaction. The application specifies the transaction end type.
Possible values are
· xendCOMMIT: Commit the transaction.
· xendCOMMITKEEP: For some SQL drivers, commit the transaction and keep cursors.
· xendABORT: Roll back the transaction.
Note: BDE cursors can remain active, even if the underlying SQL cursor is closed. BDE

manages the re-opening of server SQL cursors transparently.
xendCOMMIT and xendABORT keep cursors if the driver and the database support keeping
cursors. If the database does not support keeping cursors, four possibilities exist for each
server cursor opened on behalf of the BDE user:
· A cursor for an open query with pending results is buffered locally. Other than

prematurely reading the data, no visible effect remains.
· A cursor opened on a table supporting direct positioning is closed. No other behavior is

affected.
· A cursor opened on a table that does not support direct positioning is opened initially in a

different transaction or connection context, if the database supports this. This cursor
remains open because it exists in a different context from the requested transaction.

· If none of the previous possibilities apply, the cursor is closed and subsequent access to

the BDE objects associated with the server cursor returns an error.
For an example, refer to the TRANSACT.C code sample in the SNIPIT Code Viewer (\BDE\
EXAMPLES\SNIPIT).

{button ,AL(`transaction')} Transaction topics

Transactions on Paradox, dBASE, FoxPro, and Access
Transactions for Paradox, dBASE, FoxPro, and Access drivers (local transactions) enable you
to roll back (revert) or commit updates to standard tables. This helps ensure that
applications will perform updates in a consistent way.
When a local transaction is started on a standard database, updates performed against
tables in that database are logged. Each log record contains the old record buffer of the
record that is updated. When a transaction is active, the records with updates are locked
and these locks are held until the transaction is either committed or rolled back.
· The Commit operation releases all locks that were held when that transaction was active.
· The Rollback operation reapplies the updates to the underlying tables to restore the

original state of the database. Once the original state of the database is restored, the
locks are released.

Limitations
The following limitations apply to local transactions:
· For standard databases (Paradox, dBASE, FoxPro, Access) there is no automatic crash

recovery or DDL-related actions such as table create, restructure, index creation,
table/index deletion, and so on.

· To perform transactions on a Paradox table, a valid index must exist. Data cannot be
rolled back on Paradox tables lacking an index.

· Inserts rolled back on dBase and FoxPro tables are actually only soft deletes.
· Local transaction do not work for temporary tables.
· Local transactions do not work for the Text driver (ASCII files).
· For Access, if you do not supply a user name and use user-level security you can only

have one active transaction. Transactions are occurring at the driver level not at the
database level.

{button ,AL(`transaction')} Transaction topics

Transactions and cached updates
When a transaction is active, updates are immediately sent to the underlying tables. Thus
errors (such as integrity constraint violations, and so on) are instantly reported to the
clients. Because updates are immediately sent to the underlying tables, the updates are
visible to other transactions. And because each modified record is locked, other users
cannot interfere.
This behavior differs from that of the cached updates layer (batch or burst updates), where
updates are not sent to the underlying table until the commit time. Hence no errors are
reported until the commit time. No record locks are held until the user decides to commit
the updates. The locks are held only during the commit process. If errors occur during the
commit process, clients are given an option to abort the commit process. If clients abort a
commit process, the original state of the table is restored.
The main advantage of the cached updates feature is that the locks are held only during
the commit time, thereby increasing the access time of SQL servers for other system
transactions. Transactions lock out other users after record is changed, and local
transactions limit the user to changing only the maximum number of records that can be
locked. Cached updates avoid these problems, but permit another user to change data
underneath you.
These differences are summarized in the following table:

Advantages Disadvantages
Transactions Updates immediately sent to

tables.
Modified records instantly visible
to other users.
Modified records are locked.
Errors instantly reported.

Lock out other users once a
record is modified.
Local transactions limit users to
changing only the maximum
number of records that can be
locked.

Cached updates Locks are held only during
commit time, increasing server
access time for other
transactions.
Cached updates can be used with
any cursor on a single table.
Not limited to the maximum locks
for dBASE (100) and Paradox
(255) while modifying records.
[When committing more than
these maximums, an exclusive
lock on the table is required to
commit them.]

Permits another user to modify
the records you are using without
your realizing it.
If errors occur during commit
process, you may abort, reverting
table to its original state, losing
all modifications

For more information, see Cached updates.

{button ,AL(`transaction')} Transaction topics

Degree of transaction isolation
The degree of isolation provided by transactions on standard databases is Degree 0. This
means that a transaction does not overwrite another transaction’s dirty data.
Because only Degree 0 isolation is supported, transactions on standard databases are
subject to the following limitations:
· Possible lost updates

Two transactions could perform reads without locking records, that is, using dbiNOLOCK
protocol. If these two transactions post their updates independently, the final result set
might include only one transaction’s changes, losing updates of the other transaction.

· Transaction not isolated from dirty reads
A transaction T1 could read a record previously updated by another transaction T2 and
make further modifications to that record. The record read by T1 might be inconsistent,
because it is not the final update produced by T2. Hence the read of transaction T1 was a
dirty read.

· Unrepeatable reads not prevented
A transaction T1 reads a record twice, once before transaction T2 updates it and once
after committed transaction T2 has updated it. The two read operations return different
values for the record and the first read is not repeatable.

By using the appropriate locking mechanism during the updates, the clients can provide a
higher degree of transaction isolation. For example, lost updates can be prevented if a
transaction always gets a read lock on a record it is about to modify. No user-requested
locks are promoted, that is, if a user requests to read a record by using DbiGetRecord with
dbiNOLOCK protocol, that record is not locked and that read operation might be a dirty
read. However, in the case of inserts and modifications, records are locked with
dbiWRITELOCK and locks are held until that transaction ends.
The function DbiBeginTran supports several transaction isolation levels:
· xilDIRTYREAD (Uncommitted changes read),
· xilREADCOMMITTED (Committed changes, no phantoms), and
· xilREPEATABLEREAD (full read repeatability).
For SQL tables, appropriate transaction isolation levels can be requested depending on the
destination SQL server capabilities. The xilREADCOMMITTED isolation level precludes lost
updates and dirty reads. The xilREPEATABLEREAD isolation level prevents unrepeatable
reads.
Limitation: Because the transaction feature for local (standard) database tables supports
Degree 0 isolation, only the xilDIRTYREAD option is accepted in DbiBeginTran. If a higher
degree of isolation is requested, an error message is returned. For the same reason,
xendCOMMITKEEP is not supported by DbiEndTran.
Because all updates are atomic, users will be informed about the lock conflicts immediately.
No deadlock detection is performed. A deadlock occurs when each of two transactions
waits for locks held by the other. If there are any lock conflicts between different
transactions, an error message is returned to the clients. When a deadlock occurs, it is up
to the clients to decide which transactions to rollback.

{button ,AL(`transaction')} Transaction topics

Using transactions
BDE provides two API functions: DbiBeginTran, to begin transactions and DbiEndTran, to
end transactions:
DBIResult DBIFN DbiBeginTran (// Begin a transaction
 hDBIDb hDb, // Db handle
 eXILType eXIL, // Transaction isolation level
 phDBIXact phXact // Returned. Xact handle
);
// Commit or rollback a basic transaction. If hXact is
// given, hDb is ignored. If hXact == 0, hDb must be given.

DBIResult DBIFN DbiEndTran (// End a transaction
 hDBIDb hDb, // Database handle
 hDBIXact hXact, // Xact handle
 eXEnd eEnd // Xact end type
);
// The transaction model being discussed here supports only
// xilDIRTYREAD isolation level.

typedef enum // Transaction isolation levels
{
 xilDIRTYREAD, // Uncommitted changes read
 xilREADCOMMITTED, // Committed changes, no phantoms
 xilREPEATABLEREAD // Full read repeatability
} eXILType;

typedef enum // Transaction end control
{
 xendCOMMIT, // Commit transaction
 xendCOMMITKEEP, // Commit transaction, keep cursors
 xendABORT // Rollback transaction
} eXEnd;

The following results occur when there are active transactions:
1. If there are active transactions in a session, DbiCloseSession closes that session and its

active transactions are rolled back. Similarly, DbiExit rolls back the active transactions
present in the system.

2. In the case of standard databases (local transactions), DbiModifyRecord, DbiInsertRecord,
and DbiDeleteRecord are intercepted to perform the transaction logging. A separate log
is associated with each transaction. The log is maintained as long as the transaction is
active. It is destroyed once the transaction commits or rolls back.

{button ,AL(`transaction')} Transaction topics

Querying databases
The BDE API enables the client to use SQL or Query by Example (QBE) to access dBASE,
FoxPro, Access, and Paradox tables (standard databases) as well as server-based SQL
tables.
A group of BDE query interface functions is provided for passing either SQL Queries or QBE
queries to both server-based and PC-based sources.

{button ,AL(`querying')} Querying topics

SQL queries
The common query engine uses a convenient subset of SQL to access dBASE, FoxPro,
Access, and Paradox tables. This subset can also be used to join server-based SQL tables
with these tables. The appropriate BDE driver must be installed to allow server-based SQL
access.
To exploit the full functionality of the server, you can use your server's dialect of SQL. Use
passthrough SQL to send native SQL statements directly to your database server to be
executed there. Queries executed in the native dialect might not result in updateable
cursors. If the appropriate BDE driver is installed, the BDE query interface functions can
also be used to pass SQL statements to the server for processing, in the native dialect of a
server-based system, such as Oracle or Sybase.

QBE queries
Query By Example (QBE) allows uniform access to data in Paradox, FoxPro, Access, or
dBASE tables and tables in server-based databases. BDE supports the full QBE language as
defined by Paradox DOS and Paradox for Windows. When QBE is executed with a SQL data
source, the QBE query is translated to SQL and sent to the server; the resulting cursor is
not updateable.

Querying Paradox, dBASE, FoxPro, and Access tables
The common query engine enables BDE application developers to access tables in standard
databases using either the SQL or QBE languages. Two categories of SQL statements
("Local SQL") are supported for tables in standard databases:
· Data Definition Language (DDL)
· Data Manipulation Language (DML)
For more specific information about the BDE implementation of the SQL-92 specification,

see the Local SQL Guide.

Naming conventions
When writing SQL statements to be used with dBASE, FoxPro, Access, and Paradox tables,
observe the following naming conventions:

Table names
Table names that include a period (.) must be placed in either single or double quotation
marks. For example:
 select * from 'c:\sample.dat\table'
 select * from "table.dbf"
Table names can include BDE style aliases. For example,
 select * from ":data:table"
Names that are keywords must be placed in quotation marks. For example,
 select passid from "password"
Names that have spaces must be placed in quotation marks. For example,
 select * from "old table"

Field names
Field names that have spaces must be placed in quotation marks. For example,

 select e."Emp Id" from Employee e
Field names that are keywords must be placed in quotation marks. For example,

 select t."date" from Table t
Field names that are placed in quotation marks must have a table reference.

Data Manipulation Language
The following DML clauses are supported:
SELECT, WHERE, ORDER BY, GROUP BY, UNION, and HAVING
The following aggregates are supported:
SUM, AVG, MIN, MAX, COUNT
Note: The field type returned by aggregator functions is type DOUBLE.
The following operators are supported:
+, -, *, /, =, <, >, <>, <=, >=, NOT
UPDATE, INSERT, DELETE operations are fully supported to SQL 92 entry level.
For example:
DELETE FROM "Current Cust.db" C
WHERE C."CustID" IN
 (SELECT O."CustID"
 FROM "Old Cust.db" O)

Also supported
· Subqueries are supported in SELECT, WHERE, and HAVING clauses. In addition to scalar

comparison operators (=, <, > ...), additional predicates IN, ANY, SOME, ALL, and

EXISTS are supported.
· Complex aggregate expressions are supported, including scalar expressions with both

aggregation and arithmetic. For example:
 SUM(Field * 10)
 SUM(Field) * 10
 SUM(Field1 + Field2)
· Constructs such as SUM(MIN(Field)) are supported in projections.
· You can constrain any updateable query by setting the query statement property

stmtCONSTRAINED to TRUE before execution. A error will then be returned whenever a
modify or insert would cause the new record to disappear from the result set. Refer also
to record integrity constraints.

Data Definition Language
The DDL syntax for Paradox, dBASE, FoxPro, and Access tables is restricted to CREATE
TABLE (or INDEX), DROP TABLE (or INDEX). For example:

create table parts (part_no char(6), part_name char(20))
The following example demonstrates how SQL DDL can be executed through BDE:

hDBICur hCur;
pBYTE szQuery ="create table 'c:\\example\\test.dbf' "

"(fld1 int, fld2 date)";
rslt = DbiQExecDirect(hDb, langSQL, szQuery, &hCur);

For data mappings used by CREATE TABLE and more examples, see the Local SQL Guide.

{button ,AL(`querying')} Querying topics

Querying different databases
Through the BDE interface, the application developer can use SQL to join tables from
different data sources (for example, a Paradox, InterBase, and Sybase table could all
participate in a SQL query). These are called "heterogeneous joins."    See Local SQL Guide
The following SQL statement shows a join of three tables from different platforms, by using
aliases:

select distinct c.cust_no, c.state, o.order_no, i.price
from ':Local_alias:customer.db' c,

':IB_alias:order' o,
':SYB_alias:lineitem' i

where o.cust_no = c.cust_no and
o.order_no = i.order_no

{button ,AL(`querying')} Querying topics

Executing queries directly
Use DbiQExecDirec    for simple queries, where no special preparation is necessary. This
function immediately prepares and executes a SQL or QBE query and returns a cursor to
the result set, if one is generated. The application passes the database handle, specifies
whether the query language is QBE or SQL, and passes the formulated query string.
With SQL query language, if the specified database handle refers to a server database, the
SQL dialect native to that server is expected. If the database handle refers to a standard
database, the SQL statement is limited to the subset supported by the common query
engine.
The following example shows how a SQL query is executed with the function
DbiQExecDirect:

DBIResult rslt;
hDBICur hCur;
pBYTE szQuery = "Select t.name, t.age "

"from EMPLOYEE t "
"where t.age > 30 "
"and t.salary > 1000000 ";

rslt = DbiQExecDirect(hDb, qrylangSQL, szQuery, &hCur);

{button ,AL(`querying')} Querying topics

Executing queries in stages
Some queries require a statement handle and need to be executed in stages. A statement
handle is required if the application needs to control the table type of the result set, to
express preference over the degree of liveness of data, or to bind parameters for queries.
The application uses a separate function call for each stage:
1 To obtain a new statement handle, call DbiQAlloc.
2 To change properties in the statement handle, call DbiSetProp. At this point you can also

indicate whether you want the result set to be "live," that is, modifiable.
3 To prepare the query, call DbiQPrepare.
4 To execute the prepared query, call DbiQExec.
5 To free resources bound to the query, call DbiQFree.
DbiQAlloc
This function allocates a statement handle required for prepared query functions. It
specifies the database handle and whether the query language is QBE or SQL, returning a
statement handle for the prepared query. DbiQAlloc is the necessary first step in all
prepared queries.
DbiSetProp
DbiSetProp is used to set a property of an object to a specified value. In this case, the
object is the statement handle returned by DbiQAlloc. The property to be set can be the
result table type, degree of liveness, or query mode for binding parameters. The following
examples show how values are set for these properties:

DbiSetProp(hStmt, stmtANSTYPE, (UINT32) szPARADOX);
DbiSetProp(hStmt, stmtLIVENESS, (UINT32) wantLIVE);

DbiQPrepare
This function is used to prepare a SQL or QBE query for subsequent execution. It accepts a
handle to a statement containing the prepared query.
Live and canned result sets
The last example above shows how you can specify your preference for live or canned
result sets during query execution. A canned result set is like a snapshot or a copy of the
original data selected by the query. In contrast, a live result set is a view of the original
data; specifically, if you modify a live result set, the changes are reflected in the original
data.
When you specify your preference for a live result set, the Query Manager attempts to give
you a live result set. However, no guarantee can be made that the resulting result set will
indeed be live. After the query has executed and a result set has been returned, you can
check to see if it is live by examining the cursor property bTempTable. If TRUE, the result
set is a temporary table, hence a copy (canned); otherwise, the result set is live.
SQL queries against SQL servers return an error if the result cannot be made live.
bTempTable is valid for local queries.
The possible values for liveness are:
Value Description

wantCANNED Indicates preference for a canned result set (this request is always honored)
wantLIVE Indicates preference for a live result set
wantSPEED Directs the query manager to decide, based on which method is probably

fastest
wantDEFAULT Same as wantCANNED

DbiQExec
DbiQExec executes the previously prepared query identified by the supplied statement
handle and returns a cursor to the result set, if one is generated.
For all queries, remote and local, the same prepared query can be executed several times,
but only after any pending results have been read or discarded (by using DbiCloseCursor
on the answer set cursor).

DbiQFree
This function is always used as the final step in executing prepared queries to free all
system resources allocated during preparation and use of a query. If cursors are associated
with an outstanding result set produced by execution of the statement, the cursors remain
valid and the dependent statement resources are not released until the last cursor has
been closed or the result set is read to completion, whichever happens first.

{button ,AL(`querying')} Querying topics

Getting and setting properties
Each BDE object is defined by a set of properties. The properties defining an object depend
on the object's type. For example, a session is a BDE object, and its properties include
sesMAXPROPS, sesSESSIONNAME, and sesCFGMODE2. Each type of object has its own set
of properties, as listed in Object Properties.
Values are initially assigned to properties when an object is created. For example, the name
of the table is assigned to the curTABLENAME property of the cursor object when the table
is opened with DbiOpenTable.
Values of some properties can be changed with the BDE function DbiSetProp. To reset a
property, the application passes the object handle, the name of the property to be
changed, and the new value of the property.
To retrieve an object's current property settings, use DbiGetProp.
To retrieve an object's handle, use DbiGetObjFromName.
To retrieve a cursor's database handle, use DbiGetObjFromObj.
This example illustrates a method for getting the table name/type when all that is available
is the table cursor:

 UINT16 iLen;
 DBITBLNAME tblName;
 DBINAME tblType, dbName;
 // The table cursor gives you access to the table
 // name and the table type.
 DbiGetProp(hCursor, curTABLENAME, (pVOID) tblName,
 sizeof(tblName), &iLen);
 DbiGetProp(hCursor, curTABLETYPE, (pVOID) tblType,
 sizeof(tblType), &iLen);
 // You can also access database properties (such as
 // the name of the database associated with the cursor).
 DbiGetProp(hCursor, dbDATABASENAME, (pVOID) dbName,
 sizeof(dbName), &iLen);

Object properties
Each BDE object is defined by its own set of properties as described in the following table.
Note:Not all drivers support all properties. Also, some properties are valid only at certain

times. For example, stmtLIVENESS is valid only before DbiQPrepare.
Properties System Session DatabaseDriver Cursor Statement
sysMAXPROPS X X X X X X
sysLOWMEMUSAGE X X X X X X
sesMAXPROPS X X X X
sesSESSIONNAME X X X X
sesNETFILE X X X X
sesCFGNAME X X X X
sesCFGUPDATE X X X X
sesCFGMODE2 X X X X
dbBATCHCOUNT X
dbBLOBCOUNT X
dbBLOBSIZE X
dbMAXPROPS X X X
dbDATABASENAME X X X
dbDATABASETYPE X X X
dbASYNCSUPPORT X
dbPROCEDURES X
dbDEFAULTTXNISO X
dbNATIVEHNDL X
dbNATIVEPASSTHRUHNDL X
dbUSESCHEMAFILE X
dbSERVERVERSION X X
dbTRACEMODE
drvMAXPROPS X X X
drvDRIVERTYPE X X
drvDRIVERVERSION X X
cfgREFRESH X X
curGETEXTENDEDINFO X
curMAXPROPS X
curMAXROWS X X X
curTABLENAME X
curTABLETYPE X
curTABLELEVEL X
curFILENAME X
curXLTMODE X
curSEQREADON X

curONEPASSON X
curUPDATETS X
curSOFTDELETEON X
curLANGDRVNAME X
curPDXMAXPROPS X
curDBMAXPROPS X
curINEXACTON X
curNATIVEHNDL X
curUPDLOCKMODE X
stmtMAXPROPS X
stmtPARAMCOUNT X
stmtUNIDIRECTIONAL X
stmtANSTYPE X
stmtLIVENESS X
stmtQRYMODE X
stmtBLANKS X
stmtDATEFORMAT X
stmtNUMBERFORMAT X
stmtAUXTBLS X
stmtTBLVECTOR X
stmtALLPROPS X
stmtALLPROPSSIZE X
stmtANSNAME X
stmtNATIVEHNDL X
stmtCURSORNAME X
stmtROWCOUNT X
stmtCONSTRAINED X
stmtFIELDDESCS X
stmtCURPROPS X
Descriptions

sesCFGUPDATE When set to ON, the session receives a copy of any alias or driver
additions that are applied to other sessions. Set to OFF to disable this
behavior.

sesCFGNAME Read only property that returns the name of the configuration file in
use by the session.

dbBLOBCOUNT Read only property that returns the current setting of BLOBS TO
CACHE.

dbBLOBSIZE Read only property that returns the current setting of BLOB SIZE.
CfgREFRESH Specifies whether the BDE retrieves virtual ODBC information each
time it is needed (TRUE) or only at the start of the BDE session (FALSE), which improves
performance.

Retrieving schema and system information
A set of BDE functions return schema or system information. Some functions, in the format
DbiOpenxxxList, can be used to return a cursor to an in-memory table whose records
contain the requested information. Other functions in the format DbiGetxxxDescs return
information directly to descriptor structures and arrays supplied by the application. In each
of the topics below you will find a chart of record structures of the virtual table returning
the information.
· DbiOpenList Functions

Return a cursor handle to an in-memory table listing the requested information. This
topic includes an example that illustrates the use of a static structure as the record
buffer

· DbiGetDescs Functions
These function calls return descriptive information. Inquiry function structures are
supplied by the application. This topic includes an example showing how to retrieve all
the index descriptors with one function call.

DbiOpenList functions
One series of inquiry function calls, in the form DbiOpenxxxList, return a cursor handle to
an in-memory table listing the requested information. The cursor to an in-memory table is
read-only, so that the application is prohibited from updating the table. Information can be
retrieved from the in-memory table in the normal way, by preparing the record buffer,
positioning the cursor, fetching each record into the record buffer, and using DbiGetField.
Or each record can be read into the predefined structures assigned to the function. These
structures are listed in the IDAPI.H file.
List functionRecord structure of the virtual table

returning the information
DbiOpenDatabaseList DBDesc
DbiOpenDriverList The virtual table contains only one CHAR field.
DbiOpenFamilyList FMLDesc
DbiOpenFieldList FLDDesc
DbiOpenFieldTypesList FLDType
DbiOpenFileList FILEDesc
DbiOpenFunctionArgList DBIFUNCArgDesc
DbiOpenFunctionList DBIFUNCDesc
DbiOpenIndexList IDXDesc
DbiOpenIndexTypesList IDXType
DbiOpenLdList LDDesc
DbiOpenLockList LOCKDesc
DbiOpenRintList RINTDesc
DbiOpenSecurityList SECDesc
DbiOpenTableList TBLBaseDesc, TBLExtDesc, TBLFullDesc
DbiOpenTableTypesList TBLType
DbiOpenUserList USERDesc
DbiOpenVchkList VCHKDesc

Example
This example illustrates the use of a static structure as the record buffer:

 DBIResult rslt;
 hDBICur hListCur;
 IDXDesc idxDesc;
 // Open a schema table which will contain 1 record for each
 // index currently available for the given table.

 rslt = DbiOpenIndexList(hDb, "Sample", szPARADOX, &hListCur);
 if (rslt == DBIERR_NONE)
 {
 // Use a loop to retrieve each index descriptor
 while (DbiGetNextRecord(hListCur, dbiNOLOCK,
 (pBYTE) &idxDesc, NULL)
 == DBIERR_NONE)
 {

...
}

 // Close the index list
 DbiCloseCursor(&hListCur);
 }

DbiGetDescs functions
Inquiry function structures are supplied by the application. These function calls return
descriptive information.
List functionRecord structure of the virtual table

returning the information
DbiGetDatabaseDesc DBDesc structure
DbiGetDriverDesc DRVType structure
DbiGetFieldDescs Array of FLDDesc structures
DbiGetFieldTypeDesc FLDType structure
DbiGetIndexDesc IDXDesc structure
DbiGetIndexDescs Array of IDXDesc structures
DbiGetIndexTypeDesc IDXType structure
DbiGetTableTypeDesc TBLType structure
DbiQGetBaseDescsSTMTBaseDesc structure

Example
The following example shows how to retrieve all the index descriptors with one function
call:

DBIResult rslt;
 hDBICur hCursor;
 CURProps curProps;
 pIDXDesc pIdxArray;
 // Open the table
 rslt = DbiOpenTable(hDb, "Sample", szPARADOX, NULL, NULL, 0,
 dbiREADWRITE, dbiOPENSHARED, xltFIELD,
 TRUE, NULL, &hCursor);
 if (rslt == DBIERR_NONE)
 {
 // Get the properties for the cursor
 DbiGetCursorProps(hCursor, &curProps);
 // Allocate the buffer for the index descriptors
 pIdxArray = (pIDXDesc) malloc(sizeof(IDXDesc) *
 curProps.iIndexes);
// Get the indexes
 rslt = DbiGetIndexDescs(hCursor, pIdxArray);
 if (rslt == DBIERR_NONE)
 {

...
}
// Clean up

 free((pCHAR) pIdxArray);
 DbiCloseCursor(&hCursor);
 }

Creating tables
The application can create permanent tables by using the BDE function DbiCreateTable. It
can also create temporary tables with DbiCreateTempTable and in-memory tables with
DbiCreateInMemTable. To see code samples of creating tables, run the SnipIt Code Viewer
and select Table: Create dBASE or Table: Create Paradox.

Permanent tables
Permanent tables are named and are saved to disk. To create a permanent table, the
application first creates a field descriptor structure FLDDesc for each field in the table and
an index descriptor structure IDXDesc for each index. For SQL and Paradox tables, the
application can also define a descriptor structure for each validity check VCHKDesc. For
Paradox and SQL tables, the application can define a descriptor structure for each
referential integrity check RINTDesc, and each security check SECDesc to be enforced.
Next, the application creates a table descriptor structure CRTblDesc defining general
attributes of the table, and supplying pointers to arrays of field, index, validity, referential
integrity and security descriptor structures previously created. Finally, the application calls
DbiCreateTable, passing the CRTblDesc structure.

Specifying optional parameters
When creating a Paradox, dBASE, FoxPro, or Access table, optional driver-specific
parameters may be included in the last three fields of the CRTblDesc structure. To retrieve
a list and description of these optional parameters for a driver, the application can call
DbiOpenCfgInfoList, supplying the path of the driver's table create options in the
configuration file. This function returns an in-memory table with information about relevant
optional parameters, as well as the default values for these parameters. For example, the
Table Level is an optional parameter for dBASE and Paradox tables.
Temporary tables
A temporary table is deleted when the cursor is closed. The application can create a
temporary table in the same way it creates a permanent table except that it calls
DbiCreateTempTable instead of DbiCreateTable. See "Permanent Tables" above for a
description of the descriptor structures used to create a table.
For Paradox, dBASE, and FoxPro only, a temporary table can be made into a permanent
table by calling DbiMakePermanent while the cursor is still open and supplying a table
name, or calling DbiSaveChanges.

In-memory tables
An in-memory table cannot be saved as a permanent table. The application can create an
in-memory table by calling DbiCreateInMemTable, and supplying an array of field descriptor
structures FLDDesc. The table descriptor CRTblDesc is not used. Only BDE logical types are
supported.
{button ,AL(`creatingtables')} Creating tables topics

Integrity constraints
When creating a table by using the BDE function DbiCreateTable, you can use integrity
constraints to ensure that references in the key fields of secondary tables (in the same
database) or foreign tables (in another database) are maintained to key fields in a primary
table. For example, if several tables have keys referencing the primary key Customer ID in
the Customer table, then this dependency must be checked so that referenced customer
IDs cannot be deleted, thereby orphaning records in secondary or foreign tables.
Primary key and foreign key integrity constraints are implemented wherever supported by
SQL servers such as:
· Sybase system 10
· Microsoft SQL server 6.0
· InterBase 5
· Oracle 6.0 (syntax only, not enforced)
· Oracle 8
· DB2 2.1.1
· Informix 7.11
· Informix 9

Primary key support
1.Decide which fields or set of fields will act as the primary key for the table to be created.

For a dBASE table, choose the index that will act as the primary key for the table to be
created.

2.Put this information in an IDXDesc structure with these columns.
3.Set IDXDesc.bPrimary = TRUE;
4.Attach the IDXDesc structure to a CRTBLDesc.pidxDesc pointer.
Primary key columns must be NOT NULL, which means you should have VCHKDesc for each
column with VCHKDesc.bRequired = TRUE. The exception is Paradox which can have one
blank record.
There can be only one primary key per table.
A table with primary key constraint (table level) is created and an unique index (ascending)
on these columns is also created. For dBASE, any index can be used, whether ascending or
descending. For remote databases, this index can neither be added nor dropped by using
CREATE INDEX or DROP INDEX. The index will be created when table is created and will go
away when the table is dropped. (In Local SQL, you can drop the primary index by using
this statement: "DropIndex TABLENAME.PRIMARY".)

Foreign key support
1 Decide which table (the other Table) is going to be referenced by the table (this table)

being created. It could be the same table if supported by the server.
2 Decide which columns of this table reference the other tables columns
3 Decide what should be the referential action for Delete. If cascading is required, set

RINTDesc. eDelOp = rintCASCADE. (This is supported by ORACLE 7.x and Sybase System
10.)

4 Put this information in the RINTDesc structure.
5 Attach the RINTDesc to CRTBLDesc.printDesc pointer
There can be more than one referential (foreign key) integrity constraint.
Note: Some servers, such as InterBase 4.0, create an index on referencing columns of this

table.

Schema retrieval/integrity constraints
Primary key: Any of index retrieval functions and check if pIdxDesc->bPrimary = TRUE.
Foreign Key: Use BDE function DbiGetRINTDesc.

{button ,AL(`creatingtables')} Creating tables topics

Modifying table structure
After a table has been created, the application can modify it using BDE functions in the
following ways:
· Add, delete, or regenerate indexes
· Restructure the table

Adding indexes
The application can add an index to a table by calling DbiAddIndex and supplying the
IDXDesc structure, with the appropriate fields filled in (the fields required vary by driver
and index type). For a complete description of these fields by driver and index type, see
DbiAddIndex.

Deleting and regenerating indexes
The application can delete an index by calling DbiDeleteIndex. The application can either
specify the table by name or by opening a cursor on the table. The index to be deleted
cannot be active.
The application can bring dBASE, FoxPro, Access, or Paradox indexes up to date by calling
either of two BDE functions. DbiRegenIndex regenerates a single out-of-date index.
DbiRegenIndexes regenerates multiple out-of-date indexes on a table. The application
specifies the index name.
Restructuring a table
Currently, for Paradox, dBASE, FoxPro, and Access tables only, the application can call
DbiDoRestructure to modify existing field types or sizes, add new fields, delete a field,
rearrange fields, change indexes, security passwords, or referential integrity.
The application passes the table descriptor structure, CRTblDesc.

{button ,AL(`creatingtables')} Creating tables topics

Using callbacks
Sometimes an application needs to be notified of a specific type of database engine event
in order to complete an operation or to provide the user with information. The advantage of
using callbacks is that BDE can get a user's response without interrupting the normal
application process flow.
The following rules must be strictly followed in a callback function:
· No other BDE calls can be made inside the callback function.
· BDE is not re-entrant during the callback function. The application must not yield to

Windows within the callback function. For example, if the application displays a dialog
box in Windows inside a callback function, the dialog box must be System Modal.

Types of callbacks
The application can choose to be notified of many different types of events, depending on
which callback type it registers. The application can specify the following callback types in
a call to DbiRegisterCallback.

Callback Description
cbGENPROGRESS Informs applications about the progress made during large

batch operations.
cbRESTRUCTURE Supplies information about an impending action and requests

a response from
the caller.

cbBATCHRESULT Batch processing results.
cbTABLECHANGED Notifies user that table has changed.
cbCANCELQRY Allows user to cancel a Sybase query.
cbINPUTREQ A BDE driver requests input from user.
cbDBASELOGIN Enables clients to access encrypted dBASE tables.
cbFIELDRECALC Field(s) recalculation
cbTRACE Trace
cbDBLOGIN Database login
cbDELAYEDUPD Cached updates callback
cbNBROFCBS Number of callbacks

Callback function declarations and associated parameter lists, function return types, and
callback data types are defined in the header file IDAPI.H, which is the application interface
to Borland Database Engine.

Return codes
The application responds to a callback by issuing a return code that commands an
appropriate action:
Return code Action description
cbrUSEDEF Take default action
cbrCONTINUE Continue
cbrABORT Abort the operation
cbrCHKINPUT Input given

cbrYES Take requested action
cbrNO Do not take requested action
cbrPARTIALASSIST Assist in completing the job

Registering a general progress report callback
Suppose that an application must copy a million-record table, and you want to periodically
display a progress report on screen indicating the progress of the copy operation. You
would use the following procedure:
1 Write the body of the of the progress callback function, declaring it with an associated

predefined parameter list:
 typedef CBRType far *pCBRType;
typedef CBRType (DBIFN * pfDBICallBack)
(
CBType ecbType, // Callback type
UINT32 iClientData, // Client callback data
pVOID pCbInfo // Call back info/Client
Input
);

2 The application allocates memory for the buffer pCbBuf to be used for passing data back
and forth from the application to the function, and pointing to a CBPROGRESSDesc
structure.
 typedef struct
{
INT16 iPercentDone; // Percentage done
DBIMSG szMsg; // Message to display
} CBPROGRESSDesc;
typedef CBPROGRESSDesc far * pCBPROGRESSDesc;

3 To register a callback, the application calls DbiRegisterCallback passing cbGENPROGRESS
as the value for ecbType.

4 The application issues a call to DbiBatchMove.
5 BDE returns either a percentage done (in the iPercentDone parameter of the

CBPROGRESSDesc structure), or a message string to display on the status bar. The
application can assume that if the iPercentDone value is negative, the message string is
valid; otherwise, the application needs to consider the value of iPercentDone. The
message string format is <Text String><:><Value> to allow easy international
translations. For example: Records copied: 250

6 To continue processing the application returns the code cbrUSEDEF. The application can
abort the BDE function call in progress by returning cbrABORT.

Data source independence
You can use these techniques to achieve data source independence:
· Qualify table names through aliases defined in the configuration file (or by supplying fully

qualified path names).
· Use only BDE logical data types.
· Use the generic subset of SQL supported by the shared query engine.
The application can determine which aliases are available to it by calling the BDE function
DbiOpenDatabaseList. This function lists all of the database aliases in the configuration file
(IDAPI.CFG).

Filtering records
This section is an overview of how to create an expression tree used in DbiAddFilter. This is
a fairly complex undertaking. You would want to write an expression tree only when you
need to efficiently generate a highly constrained view of the data in a table, by qualifying
multiple, unindexed fields. (If the fields were all indexed, you might be able to use
DbiSetToKey more easily.)
A filter is a mechanism that lets you qualify the data that a cursor displays, relieving the
application of the task of testing each record. For a basic example, let's say you want to
open a customer table but display only those customers living in California. To use a filter
to accomplish this, you can write your application to define a filter for a cursor open on the
Customer table, where customer.state= CA. When the filter is activated, the BDE retrieves
only those records that meet this condition, so your application can view and process only
those records. For example, when your application calls DbiGetNextRecord, any records
where the customer is not a resident of California are skipped.
To define a filter, the application calls DbiAddFilter, passing the cursor handle and the filter
condition specification. The function returns the filter handle to the application. The
DbiAddFilter parameter pcanExpr points to an expression tree of type pBYTE. The
application can use the expression tree to specify the filter condition.
The advantage of using an expression tree to define a filter condition is that BDE can use it
to optimize the filtering operation. The level of optimization depends on the driver's level of
support for parsing the expression tree.
After defining the filter, the filter must be activated with DbiActivateFilter.

{button ,AL(`filtering')} Filtering topics

Using an expression tree
An expression tree is a filter expression of type pBYTE cast as a pCANExpr. It is a three-part
block of memory, consisting of:
· Header

A CANExpr structure defining size, number of nodes, and offsets.
· Node Area

A series of conditional (operator and operand) branches in the tree, "nodes," defining the
filter's tree of conditions. Operand nodes point to offset locations of field names or
constants stored in the literal pool area.

· Literal Pool Area
Used to store the field names pointed to by each field node and the constant values
pointed to by each constant node.

Note that the header consists of a CANExpr structure 10 bytes in length, hence the Node
Area begins at offset 10:
Header Node Area Literal Pool Area

The first node in the node area is the canBinary specifying the operand:   
canExpr.iFirstNode = 10 (where 10 is offset for entire expression tree)
canExpr.iLiteralStart = 48 (where 48 is offset for entire expression tree)
canBinary.Operand1 = 12 (where 12 is offset into Node Area)
canBinary.Operand2 = 24 (where 24 is offset into Node Area)
canField.iNameOffset = 0 (where 0 is offset into Literal Pool)
canConst.iOffset = strlen(<fieldName>)+1 -- (where the constant value appears just after

the field name in the Literal Pool)
Example
Normally you would use an expression tree to tightly focus a view by using a tree of
conditions that could be quite complex. For the sake of clarity, in this example, we want a
simple filter to display only those records where "CUST_NO>1500". Our task is to create an
expression tree CUST_NO > 1500.00 to pass to DbiAddFilter. The following chart represents
this expression tree:

The same expression tree is defined in C as a parameter to be passed to DbiAddFilter. The
following example assumes that the compiler allocates consecutively declared variables in
physically contiguous memory:
void
Filter (void)
{
 hDBIDb hDb = 0; // Handle to the database.
 hDBICur hCur = 0; // Handle to the table.
 DBIResult rslt; // Return value from IDAPI
functions.

 pBYTE pcanExpr; // Structure containing filter
info.
 hDBIFilter hFilter; // Filter handle.
 UINT16 uSizeNodes; // Size of the nodes in the tree.
 UINT16 uSizeCanExpr; // Size of the header information.
 UINT32 uSizeLiterals; // Size of the literals.
 UINT32 uTotalSize; // Total size of the filter
expression.
 UINT32 uNumRecs = 10; // Number of records to display.
 CANExpr canExp; // Contains the header information.
 struct {
 CANBinary BinaryNode;
 CANField FieldNode;
 CANConst ConstantNode;
 }
 Nodes = { // Nodes of the filter tree.
 {
 // Offset 0
 nodeBINARY, // canBinary.nodeClass
 canGT, // canBinary.canOp
 sizeof(Nodes.BinaryNode), // canBinary.iOperand1
 sizeof(Nodes.BinaryNode) + sizeof(Nodes.FieldNode),
 // canBinary.iOperand2
 // Offsets in the Nodes array
 },
 {
 // Offset sizeof(Nodes.BinaryNode)
 nodeFIELD, // canField.nodeClass
 canFIELD, // canField.canOp
 1, // canField.iFieldNum
 0, // canField.iNameOffset: szField is
the
 // literal at offset 0
 },
 {
 // Offset sizeof(Nodes.BinaryNode) + sizeof(Nodes.FieldNode)
 nodeCONST, // canConst.nodeClass
 canCONST, // canConst.canOp
 fldFLOAT, // canConst.iType
 sizeof(fConst), // canConst.iSize
 8, // canConst.iOffset: fconst is the
 // literal at offset
strlen(szField) + 1
 }};
static const char szTblName[] = "cust"; // Name of the table
static const char szTblType[] = szDBASE; // Type of table
static const char szField[] = "CUST_NO"; // Name of the field for the
 // third node of the tree.
static const DFLOAT fConst = 1500.0; // Value of the constant for
 // the second node of the
tree.

{button ,AL(`expressiontree')} Expression tree topics

Expression tree header
The expression tree header defines:

· the version tag of the expression
· the size of the tree structure
· the number of nodes in the node area
· the offset locations of the first node and the beginning of the literal pool.

The header is in this form:
#define CANEXPRVERSION 2
typedef struct{

UINT16 iVer;
UINIT16iTotalSize;
UINT16 iNodes;
UINT16 iNodeStart;
UINT16 iLiteralStart;

} CANExpr;
typedef CANExpr far *pCANExpr;
typedef pCANExpr far *ppCANExpr;

{button ,AL(`expressiontree')} Expression tree topics

Expression tree node area
Each node forms a branch of the tree and defines a condition. Nodes can define either
operators or operands.
Operand nodes store the offset of field names or constants within the Literal Pool Area. The
values are stored in the literal pool. A field node points to the offset location of a field name
containing a literal, that is, the actual character string of the field name, which must be
zero-terminated. A constant node points to a constant value within the literal pool.
Operator nodes are of different types:
· Relational
· Logical
· Arithmetic
· Miscellaneous

{button ,AL(`expressiontree')} Expression tree topics

Operator nodes, relational
Enumerated type Description
canISBLANK Unary; blank operand
canNOTBLANK Unary; non-blank operand
canEQ Binary; equal to
canNE Binary; not equal to
canGT Binary; greater than
canLT Binary; less than
canGE Binary; greater than or equal to
canLE Binary; less than or equal to

Operator nodes, logical
Enumerated type Description

canNOT Unary; NOT
canAND Binary; AND
canOR Binary; OR

Operator nodes, arithmetic
Enumerated type Description SQL support

canMINUS Unary; minus Not supported by all SQL drivers
canADD Binary; addition Not supported by all SQL drivers
canSUB Binary; subtraction Not supported by all SQL drivers
canMUL Binary; multiplication Not supported by all SQL drivers
canDIV Binary; division Not supported by all SQL drivers
canMOD Binary; modulo division Not supported by all SQL drivers
canREM Binary; remainder of division Not supported by all SQL drivers

Operator nodes, miscellaneous
Enumerated type Description

canCONTINUE Unary; stops
evaluating records
when operand
evaluates to false
(provides a stop at
the high range of
the filter value)

Operator nodes point to the offsets of their operand nodes. See the sample expression tree
in Literal Pool Area where binary operands cause the tree to branch.

Literal pool area
The literal pool is used to store the field names pointed to by each field node and the
constant values pointed to by each constant node. Field names contain literals. Constant
values must be represented in BDE logical types only.
For example, the following Boolean condition is represented as an expression tree
parameter, and then as a chart:

CUST_NO <= 1500 AND CUST_NO >= 1300
Expression Tree
The following example assumes that the compiler allocates consecutively declared
variables in physically contiguous memory:

static const char szTblName[] = "cust"; // Name of the table
static const char szTblType[] = szDBASE; // Type of table
static const char szField[] = "CUST_NO"; // Name for the first field
node
static const char szField2[] = "CUST_NO"; // Name for the second field
node
static const DFLOAT fConst = 1500.0; // Value of the first constant
node
static const DFLOAT fConst2 = 1300.0; // Value of the second constant
node

void
Filter (void)
{
 hDBIDb hDb = 0; // Handle to the database.
 hDBICur hCur = 0; // Handle to the table.
 DBIResult rslt; // Return value from IDAPI
functions.
 pBYTE pcanExpr; // Structure containing filter
info.
 hDBIFilter hFilter; // Filter handle.
 UINT16 uSizeNodes; // Size of the nodes in the tree.
 UINT16 uSizeCanExpr; // Size of the header information.
 UINT32 uSizeLiterals; // Size of the literals.
 UINT32 uTotalSize; // Total size of the filter
expression.
 UINT32 uNumRecs = 10; // Number of records to display.
 CANExpr canExp; // Contains the header information.
 struct {
 CANBinary MainNode;
 CANBinary BinaryNode1;
 CANField FieldNode1;
 CANConst ConstantNode1;
 CANBinary BinaryNode2;
 CANField FieldNode2;
 CANConst ConstantNode2;
 }
 Nodes = { // Nodes of the filter tree.
 {
 // Offset 0
 nodeBINARY, // canBinary.nodeClass
 canAND, // canBinary.canOp

 sizeof(Nodes.MainNode), // canBinary.iOperand1
 sizeof(Nodes.MainNode)
 + sizeof(Nodes.BinaryNode1)
 + sizeof(Nodes.FieldNode1)
 + sizeof(Nodes.ConstantNode1),// canBinary.iOperand2
 // Offsets in the Nodes array
 },
 {
 // Offset sizeof(Nodes.MainNode)
 nodeBINARY, // canBinary.nodeClass
 canLE, // canBinary.canOp
 sizeof(Nodes.MainNode)
 + sizeof(Nodes.BinaryNode1), // canBinary.iOperand1
 sizeof(Nodes.MainNode)
 + sizeof(Nodes.BinaryNode1)
 + sizeof(Nodes.FieldNode1), // canBinary.iOperand2
 // Offsets in the Nodes array
 },
 {
 // Offset sizeof(Nodes.MainNode) + sizeof(Nodes.BinaryNode1)
 nodeFIELD, // canField.nodeClass
 canFIELD, // canField.canOp
 1, // canField.iFieldNum
 0 , // canField.iNameOffset: szField is
the
 // literal at 0 (start of literal
pool)
 },
 {
 // Offset sizeof(Nodes.MainNode) + sizeof(Nodes.BinaryNode1)
 // + sizeof(Nodes.FieldNode1)
 nodeCONST, // canConst.nodeClass
 canCONST, // canConst.canOp
 fldFLOAT, // canConst.iType
 sizeof(fConst), // canConst.iSize
 sizeof(szField), // canConst.iOffset: fConst is the
 // literal at offset
sizeof(szField)
 },
 {
 // Offset sizeof(Nodes.MainNode) + sizeof(Nodes.BinaryNode1)
 // + sizeof(Nodes.FieldNode1) + sizeof(Nodes.ConstantNode1)
 nodeBINARY, // canBinary.nodeClass
 canGE, // canBinary.canOp
 sizeof(Nodes.MainNode)
 + sizeof(Nodes.BinaryNode1)
 + sizeof(Nodes.FieldNode1)
 + sizeof(Nodes.ConstantNode1)
 + sizeof(Nodes.BinaryNode2), // canBinary.iOperand1
 sizeof(Nodes.MainNode)
 + sizeof(Nodes.BinaryNode1)
 + sizeof(Nodes.FieldNode1)
 + sizeof(Nodes.ConstantNode1)
 + sizeof(Nodes.BinaryNode2)
 + sizeof(Nodes.FieldNode2), // canBinary.iOperand2
 // Offsets in the Nodes array
 },

 {
 // Offset sizeof(Nodes.MainNode) + sizeof(Nodes.BinaryNode1)
 // + sizeof(Nodes.FieldNode1) + sizeof(Nodes.ConstantNode1)
 // + sizeof(Nodes.BinaryNode2)
 nodeFIELD, // canField.nodeClass
 canFIELD, // canField.canOp
 2, // canField.iFieldNum
 sizeof(szField)+sizeof(fConst), // canField.iNameOffset: szField2
is
 // the literal at sizeof(fConst)
 // + size of the first field
 },
 {
 // Offset sizeof(Nodes.MainNode) + sizeof(Nodes.BinaryNode1)
 // + sizeof(Nodes.FieldNode1) + sizeof(Nodes.FieldNode1)
 // + sizeof(Nodes.BinaryNode2) + sizeof(Nodes.FieldNode2)
 nodeCONST, // canConst.nodeClass
 canCONST, // canConst.canOp
 fldFLOAT, // canConst.iType
 sizeof(fConst2), // canConst.iSize
 sizeof(szField)
 + sizeof(fConst)
 + sizeof(szField2), // canConst.iOffset: fconst is the
 // literal at sizeof(fConst)+size
of
 // the first field + second field
 }};

Chart
The chart below represents the same Boolean expression: CUST_NO <= 1500 AND CUST_NO >=
1300
(Note that the offsets are shown in parentheses.)
Header:                 -
Binary node: AND (0)
Binary nodes: LE (12) GE (50)
Constant & field nodes: FIELD (24) CONST (36) FIELD (62) CONST (74)
Literal / constant pool: CUST_NO (0) 1500 (8) CUST_NO (16) 1300 (24)

{button ,AL(`expressiontree')} Expression tree topics

Database driver characteristics
The Borland Database Engine (BDE) requires a separate driver to support each database
format or data source. Standard database drivers for dBASE, FoxPro, Access, Paradox, and
Text databases are included with BDE. To extend BDE to support additional SQL database
systems, you must install the appropriate Borland SQL Links driver.
These sections provide additional information about specific driver types that you may use.
· SQL Drivers
· Paradox Driver
· Access Driver
· FoxPro Driver
· Text Driver

SQL drivers
All BDE drivers for SQL servers share common services including record navigation, record
caching, record editing, and server query management. Only about twenty percent of the
services are driver specific, addressing driver capabilities, data types and data translations,
transaction control, server specific query creation and server calls.
All SQL drivers are fully described in SQL Links Guide
Click here for topics on using BDE with SQL drivers:
{button ,AL(`sqldrivers')} SQL driver topics

Informix driver
This topic discusses features unique to the Informix SQL Link driver.
Stored procedure support
The Informix driver supports stored procedures. Please note the following points:
1. Informix stored procedures have input parameters but no output parameters.
2. DbiOpenSPParamList returns all input parameters and sets

SPParamDesc.uParamNum and SPParamDesc.szName starting from 1.
SPParamDesc[0].uParamNum = 1
SPParamDesc[0].szName = "1"
and SPParamDesc[0].eParamType = paramIN;
.
.
.

The rest of the information for SPParamDescs (such as uFldType, usubType, iUnits1,
iUnits2, uOffset, uLen, and uNullOffset) must be set by user.

Retrieving SQLCA information
The Informix SQL Link driver includes an improved passthrough property that contains
native SQLCA information. Users can use the drvNATIVESQLCA property with DbiGetProp to
retrieve SQLCA information. SQLCA information gives detailed data on Informix server
errors and exceptions. When an Informix error occurs, the Informix Global SQLCA
information for that error is retrieved and retained by the SQL driver until the next time the
database server is accessed. General SQLCA information is returned whenever an error
hasn't occurred.
The following table shows the information that is made available.
*ppropValue *pilen
SQLCA sizeof(struct sqlca_s)
An example:
// Informix SQLCA structure from Informix sqlca.h header file
struct sqlca_s
 {
 long sqlcode;
 char sqlerrm[72]; /* error message parameters */
 char sqlerrp[8];
 long sqlerrd[6];
 /* 0 - estimated number of rows returned */
 /* 1 - serial value after insert or ISAM error code */
 /* 2 - number of rows processed */
 /* 3 - estimated cost */
 /* 4 - offset of the error into the SQL statement */
 /* 5 - rowid after insert */
 struct sqlcaw_s
 {
 char sqlwarn0; /* = W if any of sqlwarn[1-7] = W */
 char sqlwarn1; /* = W if any truncation occurred or
 database has transactions */
 char sqlwarn2; /* = W if a null value returned or
 ANSI database */
 char sqlwarn3; /* = W if no. in select list != no. in into list or
 turbo backend */

 char sqlwarn4; /* = W if no where clause on prepared update,
 delete or incompatible float format */
 char sqlwarn5; /* = W if non-ANSI statement */
 char sqlwarn6; /* reserved */
 char sqlwarn7; /* reserved */
 } sqlwarn;
 };

struct sqlca_s mySqlca;

int main()
{
 // Initialize engine

 // Connect to database.

 //get the sqlca (on no exception)
 unsigned int len;
 DbiGetProp(hDb,drvNATIVESQLCA, &mySqlca, sizeof(sqlca_s),
 &len);

 //get the sqlca (on an exception)
 DbiOpenTable(hDb, "non existing table", ...)

 DbiGetProp(hDb,drvNATIVESQLCA, &mySqlca, sizeof(sqlca_s),
 &len);
 return 0;
}
Retrieving Informix database information
The Informix SQL Link driver has three properties that you can access using DbiGetProp to
determine the type of database the BDE is connected to
 Property Type Description
dbONLINE BOOL TRUE if the database connected is ONLINE type

otherwise FALSE
dbTRANALLOWED BOOL TRUE if the database connected permits

transactions otherwise FALSE
dbANSI BOOL TRUE if the database connected is ANSI type

otherwise FALSE

{button ,AL(`sqldrivers')} SQL driver topics

DB2 driver
This topic discusses features unique to the DB2 SQL Link driver.
DBCLOB data type
The DB2 physical type DBCLOB is not currently supported within the BDE even though
schema information indicates that it is an available type. It is suggested that you use either
CLOB or BLOB physical types.

Stored procedures
The SQL Links driver for DB2 translates the logical BDE string type (fldZSTRING) to a
physical DB2 SQL_CHAR data type when it is passed as a parameter to a stored procedure.
This can cause problems for stored procedures that are hard-coded to expect a physical
SQL_VARCHAR as a parameter.
Programmers should write stored procedures that examine the sqltype member of the
SQLDA structure (for example, input_sqlda->sqlvar[i].sqltype) to determine which data
type the client has actually bound, instead of expecting a specific data type.
Creating indexes on AS/400 servers
Due to a problem with the IBM server software version 2.1.1, if you create a new index by
specifying an index name that includes lowercase characters and is enclosed in double
quotes ("<index_name>"), the index cannot be accessed by the BDE.
For example, the following statement creates an accessible index,
 CREATE INDEX CustNdx ON
but the following statement creates an index that the BDE can't access,
 CREATE INDEX "CustNdx" ON
If creating an index through a call to DbiAddIndex, the szName member in the IDXDesc
Parameter should only be uppercase.

Creating BLOB or CLOB columns
When using DbiCreateTable, BLOB or CLOB columns created in a DB2 table by the function
are set by default to a size of 1MB. To create BLOB columns of different sizes, use
Passthrough SQL.
VARBINARY output parameters in stored procedures
In a stored procedure parameter description (SPParamDesc.uFldType), normally a
corresponding BDE logical data type is specified. There is one exception. A varbinary
output parameter should specify fldBYTES instead of fldVARBYTES.

Calling by name in stored procedures
DB2 only supports calling by number in stored procedures. Always use calling by number
instead of calling by name.

{button ,AL(`sqldrivers')} SQL driver topics

Sybase CT-Lib driver
This topic discusses features unique to the Sybase CT-Lib SQL Link driver.
DBIERR_MULTIPLEUNIQRECS on dead tables
If the error DBIERR_MULTIPLEUNIQRECS occurs while using a dead table (no index at all),
then the cursor for that table should be closed and reopened, regardless of whether
DbiBeginTran had been called to start a transaction.

Multiple active stored procedure support
The Sybase CT-Lib SQL Link driver can now perform row fetches from multiple stored
procedures simultaneously using the new property stmtEXECASCURSOR.
The stmtEXECASCURSOR property allows users to ask for a CT-Lib cursor instead of    a CT-
Lib command. CT-Lib cursors let the user have multiple cursors open and fetch rows from
those simultaneously. With CT-Lib commands, all pending results must be processed before
executing the next operation. This property is mainly for users who execute Sybase stored
procedures that return a result set. They can pass the SQL string as "EXECUTE proc_name" 
or "EXECUTE proc_name    :1, :2, :3    ..." (if there are parameters), prepare the statement,
then set stmtEXECASCURSOR to True. This makes the driver open cursors on the stored
procedure instead of a command.
Some limitations to this property:
1. The stored procedure should not have any BDE output parameters or return status.
2. Input parameters must be place holders in the SQL string and must be bound before

execution. (Literal substitution of parameter values in the string doesn't work.)
3. The stored procedure body should contain a single SELECT statement returning a

single result set.
An example:
 int main ()
 {
 // Initialize engine

 // Connect to database

 //Prepare a statement
 DbiQPrepare(hDb, .., .. , phStmt);

 // Set the property
 DbiSetProp(hStmt, stmtEXECASCURSOR, TRUE);

 // Bind parameters if any

 //DbiQExec(hStmt, phCur);

 .
 .
 .

 return 0;
 }

{button ,AL(`sqldrivers')} SQL driver topics

Passthrough SQL
The native SQL dialect of the SQL server can be passed directly to the server, as long as
the appropriate BDE driver is installed. These passthrough SQL queries can be executed
directly by using DbiQExecDirect or in stages. See Querying Databases
The SQLPASSTHRU MODE parameter of the BDE configuration file allows you to specify
whether passthrough and non-passthrough SQL operations can share the same connection.
It also allows you to specify whether you want passthrough SQL to be autocommitted or
not (if the connection is shared). When passthrough and non-passthrough SQL operations
share the same connection, transaction control statements should not be executed in
passthrough SQL. Instead, use DbiBeginTran and DbiEndTran.
Update of Simple Unidirectional SQL Passthrough Queries
Certain SQL servers support these dynamic SQL statements:

UPDATE ... WHERE CURRENT of CursorName
DELETE ... WHERE CURRENT of CursorName

BDE supports this syntax, provided that it is also supported by the server.
Use the statement property stmtCURSORNAME (defined in the header file IDAPI.H) to set or
get the cursor name from the passthrough SELECT statement and use it in the UPDATE
statement. For example:
 ...
 DbiQPrepare(hDb,
 qrylangSQL,
 "SELECT * FROM FOO FOR UPDATE OF f1",
 &hStmt);

 // set the cursor name for the SELECT statement
 DbiSetProp(hStmt,
 stmtCURSORNAME,
 pszCursorName);

 // set unidirectional cursor
 DbiSetProp(hStmt,
 stmtUNIDIRECTIONAL,
 TRUE);

 // execute the SELECT stmt
 DbiQExec(hStmt,
 &hCur);

 // fetch a record
 DbiGetNextRecord(hCur,
 dbiNOLOCK,
 pRecBuf,
 NULL);

 // Note that we use DbiQExecDirect to execute the UPDATE
 // statement in this example.
 // DbiQPrepare/DbiQExec/DbiQFree can be used instead of
 // DbiQExecDirect to execute the UPDATE

 sprintf(pszQuery,
 "UPDATE foo SET f1 = 'X' WHERE CURRENT of %s",
 pszCursorName);

 // update the current record
 DbiQExecDirect(hDb,
 qrylangSQL,
 pszQuery,
 NULL);

 // free the SELECT stmt
 DbiQFree(&hStmt);

 // close the SELECT cursor
 DbiCloseCursor(&hCur);
 ...

Certain drivers require that you set the cursor name BEFORE the SELECT statement is
executed (as in the above example). Other drivers do not require you to explicitly set the
cursor name and will generate one for you. If the server generates a cursor name, you can
retrieve that name by calling DbiGetProp AFTER the SELECT statement has been executed.
As always, when using passthrough SQL, you must know the native syntax supported by
the back end server.
Where not supported, the function DbiSetProp with stmtCURSORNAME will return
DBIERR_NOTSUPPORTED.

InterBase
By default the InterBase SQL Link driver must close cursors when transactions end
(COMMIT/ABORT occurs). When this happens, the remaining rows are read from the server
and cached locally. This means that a COMMIT/ABORT can cause you to lose your current
cursor position, and a subsequent UPDATE ... WHERE CURRENT can update the WRONG
row. For this reason, you must be certain that a COMMIT/ABORT does not cause SQL Link to
prematurely close the server cursor.
There are two ways to guarantee this:
1 Set your SQLPASSTHRU MODE to NOT SHARED. In this    mode, all passthrough

statements are performed on a separate connection and will NOT be autocommitted.
2 If your SQLPASSTHRU MODE is either SHARED AUTOCOMMIT or SHARED

NOAUTOCOMMIT, passthrough and non-passthrough statements share the same
connection. Operations performed within an explicit transaction (that is, within the
DbiBeginTran/DbiEndTran block) are never autocommitted.

By adding 4096 to the setting of DRIVER FLAGS in the BDE configuration, you can specify
that the InterBase SQL Links driver should use soft commits. Soft commits are a feature of
InterBase that let the driver retain the cursor when commiting changes. Soft commits
improve performance on updates to large sets of data. When not used, the BDE must re-
fetch all the records, even for a single record change. With soft commit the cursor is
retained, and a re-fetch isn't needed. Soft commits are never used in explicit transactions
started by BDE client applications.
DRIVER FLAGS Isolation level and commit type
0 Read committed, hard commit
512 Repeatable read, hard commit
4096 Read committed, soft commit
4068              Repeatable read, soft commit

{button ,AL(`sqldrivers')} SQL driver topics

SQL transaction control
To control explicit transactions, use DbiBeginTran and DbiEndTran. Except for explicit
transactions, the BDE isolation level is Read Committed, with auto-committed
modifications. Some SQL drivers support only the server default isolation level inside of an
explicit transaction. To verify the actual isolation level used, call DbiGetTranInfo after a
successful call to DbiBeginTran.
Example 1: No explicit transaction
The SQL driver automatically starts a server transaction if necessary:

DbiGetNextRecord (hCursor, dbiWRITELOCK, &myRecBuff, NULL);
The application changes the record buffer data:

DbiModifyRecord (hCursor, &myRecBuff, TRUE);
If the record modification succeeds, it is automatically committed to the database.

Example 2: Explicit transaction used
The application uses a transaction:

DbiBeginTran (hDb, xilREADCOMMITTED, NULL);
The SQL driver starts a server transaction:

DbiGetNextRecord (hCursor, dbiWRITELOCK, &myRecBuff, NULL);
The application changes the record buffer data:

DbiModifyRecord (hCursor, &myRecBuff, TRUE);
The application can make more changes in the transaction:
DbiEndTran (hDb, NULL, xendCOMMIT);

The SQL driver commits the server transaction.
InterBase: By default, when the InterBase SQL Link driver's SQLPASSTHRUMODE is set to
SHAREDAUTOCOMMIT, the BDE uses the InterBase API call isc_commit_transaction to
commit transactions, which close all cursors. When using implicit transactions, running a
new query makes the BDE pre-fetch all records of the previous query, if it is still open.
When using an explicit transaction, a pre-fetch of all open queries will occur when the
transaction is committed. If the result sets of the opened queries are large, then slower
performance can occur.
When using Interbase 4 with the InterBase SQL Links driver, you can improve performance
for implicit transactions by setting DRIVER FLAGS to 4096. This makes the BDE use
isc_commit_retaining to keep cursors open; this avoids having to pre-fetch records when a
commit occurs. Setting DRIVER FLAGS to 4096 does not effect explicit transaction
behavior; when an explicit commit occurs, any open queries on that connection will be pre-
fetched.
NOTE: The driver places interest locks on any relation touched during a transaction, and
interest locks are maintained across isc_commit_retaining calls. Therefore any DDL-related
operations for the locked relations are blocked for all users, including your session, when
DRIVER FLAGS is 4096. To avoid this, perform periodic "hard" commits by using
DbiBeginTran and DbiEndTran to start and commit an explicit transaction.
Transaction isolation levels
Extended transaction isolation levels are supported. If an unsupported isolation level is
specified in DbiBeginTran, the next-highest supported isolation level is used. If the
requested isolation level is higher than any supported isolation level, then an error is
returned (DBIERR_NOTSUPPORTED). The highest level (most isolated) level is Repeatable
Read, then Read Committed, and finally Dirty Read. As always, you can verify the actual
isolation level that was used by calling DbiGetTranInfo.
This database property is used with DbiGetProp to retrieve the server's default transaction

isolation level:
dbDEFAULTTXNISO, ro eXILType Server's default transaction isolation
level

Compatibility
InterBase
Supports Repeatable Read and Read Committed. The wait mode is set to NO WAIT.
Sybase
Supports only the server default, Read Committed.
Oracle
Supports Read Committed and Repeatable Read. However, a Repeatable Read
transaction is always READ ONLY.
Informix
In some cases, when connecting with your Informix database, your BDE application
overrides the current Informix transaction isolation settings. The following table shows
under which circumstances these overrides occur.
DB2
Supports all BDE transaction isolation levels. Any DB2 isolation levels not supported by
the BDE are converted to Read Committed.
Database Default isolation level: Default isolation level:

Informix SQL Link
ANSI RepeatableRead CommittedRead
Logged CommittedRead CommittedRead
Non-logged DirtyRead DirtyRead

The following table shows the changes from previous versions of BDE.
REQUESTED ACTUAL ISOLATION LEVEL USED
Isolation Level pre-BDE 2.5 BDE 2.5
Sybase:

DirtyRead ReadCommited ReadCommitted
ReadCommitted ReadCommitted ReadCommitted
RepeatableRead ReadCommitted DBIERR_NOTSUPPORTED

Oracle:
DirtyRead ReadCommitted ReadCommitted
ReadCommitted ReadCommitted ReadCommitted
RepeatableRead ReadCommitted RepeatableRead (READ ONLY)

InterBase:
DirtyRead RepeatableRead ReadCommitted
ReadCommitted RepeatableRead ReadCommitted
RepeatableRead RepeatableRead RepeatableRead

You can maintain compatibility with pre-BDE 2.5 behavior by setting the DRIVER FLAGS
parameter in the BDE configuration file. All SQL drivers have a field called DRIVER FLAGS in
the DRIVER INIT section. To obtain pre-BDE 2.5 transaction behavior, set the bit
corresponding to 0x0200 (512 decimal).

{button ,AL(`sqldrivers')} SQL driver topics

SQL connection
BDE connects to the SQL server database by using the following guidelines:
· BDE uses the server authorization scheme. The password is used in DbiOpenDatabase to

connect to the server.
· Most BDE features require an open database, with the exception of retrieving driver

capabilities, such as data-types information.
· Transactions and passthrough operations are done in the database context.

SQL record caching
Two caching mechanisms are used:
· Live Caching

Done for a cursor, if possible.
· Dead Caching

Used if live caching cannot be done.

{button ,AL(`sqldrivers')} SQL driver topics

Live caching
Live caching provides fuller BDE support than dead caching. It can be fast or slow,
depending on other factors. Live caching is used by default if an index or row ID exists, but
only for tables, not queries. With DbiOpenTable, iIndexId can be set to NODEFAULTINDEX to
force dead caching even though an index or row ID exists.
The following general rules apply to live caching:
· Data tends to be fresh. The fastest index is chosen automatically if none is specified

during table open.
· A partial cache is kept, ordered by index. The cache contains the current cursor row, plus

the last several rows fetched.
· Live caching allows cache refresh. Refresh can be done manually via DbiForceReread and

is done automatically if the cursor moves around.
· Live caching allows key-oriented operations, such as DbiSetRange and DbiSetToKey.

Record caching example: live
A Customer table with unique or non-unique index on ID field.
ID Name

10000 John
11001 Mary
12321 Harry
12345 Beth
12666 Joe
The SQL driver finds some basic information about the table structure, but no data is
retrieved:

DbiOpenTable (
hDb,
"Customer",
NULL,
"IdIndex",
...,
&hCursor ...);

The SQL driver sets up for data retrieval:
UINT16 myKey = 12321;
DbiPutField (hCursor,
 1,
&myRecBuff,
&myKey);

DbiSetToKey (hCursor,
keySEARCHGEQ,
FALSE,
1,
0,
&myRecBuff);

The SQL driver query:
SELECT Id, Name
FROM Customer
WHERE Id >= 12321
ORDER BY Id
DbiGetNextRecord (...)

The SQL driver caches a row:

ID Name
12321 Harry

DbiGetNextRecord (...)
DbiGetNextRecord (...)

The SQL driver caches more rows:
ID Name

12321 Harry
12345 Beth
12666 Joe

DbiGetPriorRecord (...)
The SQL driver uses a cache, rather than the server:

DbiSetToBegin (...)
The SQL driver terminates the query and clears the cache:
ID Name

No data in the cache

Dead caching
Dead caching may be used when live caching is not possible. With dead caching, the data
may not be fresh. The following rules apply to dead caching:
· Dead caching is used

- for passthrough queries; or
- if no ordering exists; and
- provided that the statement property stmtLIVENESS is not set to wantLIVE

· Dead caching is used for DbiOpenTable if no index is available and the server does not
support row IDs, or if iIndexId is set to NODEFAULTINDEX with DbiOpenTable.

· Dead caching keeps a full client snapshot cache. As records are read from the server,
they are stored locally in case they are needed again.

· Dead caching provides no cache refresh. You must close and re-open the table, or re-
execute a query to see new data.

· Since there is no key, key operations (such as DbiSetRange and DbiSetToKey) are not
supported. Other navigation functions such as DbiSetToBookMark are supported.

Record caching example: dead
The SQL driver finds some basic information about the Customer table structure, but no
data is retrieved:
ID Name

11001 Mary
10000 John
12666 Joe
12321 Harry
12345 Beth

DbiOpenTable (
hDb,
"Customer",
NULL,
NULL,
...,
&hCursor ...);

DbiGetNextRecord (...)
The SQL driver executes a query:

SELECT Id, Name
FROM Customer

The SQL driver caches a row:
ID Name

11001 Mary
DbiGetNextRecord (...)

The SQL driver caches another row:
DbiGetPriorRecord (...)

The SQL driver uses a cache:
DbiSetToBegin (...)

The SQL driver leaves the query and cache alone:
ID Name

11001 Mary
10000 John
12666 Joe

iIndexId
iIndexId Type: UINT16 (Input)
Specifies the index identifier, which is the number of the index to be used. The range for
the index identifier is 1 to 511. Used for Paradox tables only and is ignored if pszIndexName
is specified.

SQL record modification requirements
The following requirements must be met to modify a record:
· The server must allow each operation. Security and capability are important: server

views may not allow changes, and different types of modification are authorized
separately.

· Views support insert, modify, and delete if allowed by the server. Queries do not support
modifications.

· Record modifications performed within an explicit client transaction may require that a
unique index or server ROWID exists on the table. For example, both DbiSetRange and
DbiGetRecordForKey require a current index. However, BDE supports the ability of SQL
data sources to order records by any field without using an index on the server. A current
index (for SQL data sources) can be defined as any group of fields from a specific table,
whether or not a corresponding index exists on the server. BDE creates a pseudo-index
by using one or more user-specified SQL fields to define the requested order.
For information on implementing pseudo-indexes, see DbiOpenTable or
DbiSwitchToIndex.

{button ,AL(`sqldrivers')} SQL driver topics

SQL record modification behavior
The following characteristics describe record modification behavior:
· All current record modifications use optimistic locking. An optimistic lock must be

explicitly requested, but the lock request does not attempt to explicitly lock the record on
the server.

· Except for an explicit client transaction, all modifications are singleton operations. This
means that upon successful completion, each modification is autocommitted.

· Transaction or batch request overrides singleton behavior.

Record Modification Example
The SQL driver saves a copy of the record as an optimistic lock. The application changes
the record buffer data:

DbiGetNextRecord (hCursor, dbiWRITELOCK, &myRecBuff, NULL);
The SQL driver uses the saved record copy to find and modify the data:

DbiModifyRecord (hCursor, &myRecBuff, TRUE);
UPDATE Customer
SET Name = "Harold"
WHERE Id = 12321 AND Name = "Harry"

Then the SQL driver verifies the resulting rows changed:
- If one row changed, optimism has paid off.
- If no rows changed, the optimistic lock was broken.
- If more than one row changed, there was no unique index

and the optimistic lock was broken.

{button ,AL(`sqldrivers')} SQL driver topics

SQL record-locking behavior
SQL servers automatically and transparently lock data as required, although different SQL
servers vary in the type of lock used, and how granular the lock is. For example, some
servers provide individual record locks, while others can only lock a group, or page, of
records. Also, some servers provide automatic record versioning or database snapshots so
that other copies of data being modified can be read by clients instead of waiting for a
modification to finish.
In addition to the automatic locking that SQL servers provide, SQL drivers provide a
particular type of record locking called optimistic locking. Optimistic locking allows a client
to make changes to a local copy of the record without the performance and concurrency
penalty incurred by asking the server for a lock over the modification duration. When the
client modifications are finished, the current SQL server record is first checked to make
sure no changes have occurred to the record, then the modifications are completed. The
operation is said to be optimistic because it assumes that no other client will change the
record, but then makes sure of that as the final change is sent to the SQL server.
If the record was changed, an optimistic lock failure occurs. The client is notified that the
requested operation cannot be performed because someone else has changed the data.
The client can then inspect the new data and decide whether or not to make changes at
that time.
Because server data cached on the client can immediately become out of date at the
server, SQL drivers always perform optimistic locking. This protects the client against
inadvertently changing data that has never been inspected.
Keyed Updates
Keyed updates give you more control over optimistic record locking for improved
performance. You can control which columns are placed in the WHERE clause of an UPDATE
or DELETE statement generated by calls to DbiModifyRecord or DbiDeleteRecord.
You can set and retrieve the SQL-specific cursor property curUPDLOCKMODE by using
DbiGetProp and DbiSetProp. This property is valid for all SQL Link drivers and the ODBC
Socket.
The following enumeration defines the options:

typedef enum
 {
 updWHEREALL,
 updWHEREKEYCHG,
 updWHEREKEY
 } UPDLockMode;

updWHEREALL
All fields (except BLOBs) are placed in the WHERE clause of the update or delete statement
for DbiModifyRecord or DbiDeleteRecord. This is the default when a cursor is returned. The
behavior is identical to current "optimistic record locking" behavior.
updWHEREKEY
If a unique index exists, only those fields in the key are placed in the WHERE clause of the
update or delete statement for DbiModifyRecord and DbiDeleteRecord. The key that is used
is based on the active index. If the active index is a unique index, then it will be used.
Otherwise the driver will pick the "best" unique index. (Note: For Oracle, it will pick the
special column, ROWID). If there is no unique index, then all fields are placed in the WHERE
clause and the behavior is identical to updWHEREALL.
updWHEREKEYCHG
Similar to updWHEREKEY except that changed fields (as well as indexed fields) are placed
in the WHERE clause.

WARNING: When using updWHEREKEY or updWHEREKEYCHG, it is possible to overwrite
other users' updates. Therefore you should use this feature only when you
know that overwrites will not be a problem.

{button ,AL(`sqldrivers')} SQL driver topics

SQL table-locking behavior
The SQL driver provides a degree of support for table locking if the SQL server supports it.
Different SQL servers provide different levels of support for table locking. Some servers
provide no table locking support at all. Others only provide support for read-only locking
(many clients can share a lock and all can read). Some SQL servers provide support for
locking, but require the client to wait until a lock is granted, rather than letting the client
know immediately if the lock could not be achieved. For information on locking support
provided by your SQL server, see your server documentation.
SQL servers that support table locks maintain a lock within the context of a transaction: a
lock can only be acquired within a transaction, and only released by terminating the
transaction. This is sometimes referred to as a two-phase locking protocol. When the SQL
driver is asked to acquire a table lock, it automatically starts a transaction if necessary.
When asked to release a table lock, the SQL driver must commit the transaction in order to
release the lock. Because a transaction commit releases all locks, the SQL driver
automatically re-acquires any remaining locks.
Note: If a table lock is held when a commit becomes necessary, a time window exists in

which the lock is not held and unanticipated changes can occur. For this reason, it is
recommended that all table locks be released together when the last lock is needed,
or that explicit SQL transactions be used instead of table locking.

{button ,AL(`sqldrivers')} SQL driver topics

SQL asynchronous queries
SQL Links can cancel long-running queries if the server supports asynchronous query
submission. Verify that your SQL Link driver currently supports asynchronous query
execution on Windows.
Use the dbASYNCSUPPORT database property with DbiGetProp to inquire whether a driver
supports asynchronous queries:

dbASYNCSUPPORT , ro BOOL Does the driver support
 asynchronous query execution?

There are two options to asynchronous query submission/cancel:
1) The query cancels because it exceeds the maximum time allowed.
2) The query completes normally.
The parameter MAX QUERY TIME in the BDE configuration file (IDAPI.CFG) is a DB OPEN
parameter. It is available for SQL Links drivers that support this feature, such as those for
Sybase and Microsoft SQL Server.
Note: By default, SQL statements sent to MS SQL and Sybase servers using DB-Lib are now

sent using the synchronous query submission API. Earlier versions of SQL Links used
the asynchronous query submission API. To use the asynchronous query submission
API, add 2048 to the current value of DRIVER FLAGS or set it to 2048 if it's blank.

You can use the BDE Administrator to set MAX QUERY TIME for the maximum amount of
time (seconds) you want to wait for a query to finish executing. (The default value is 3600
seconds, or one hour.)    If this time limit is exceeded, the query is canceled. When a query
is successfully canceled, DBIERR_CANCEXCEPT "Query canceled" is returned.

{button ,AL(`sqldrivers')} SQL driver topics

SQL performance tips
The following tips are suggested to help reduce unnecessary processing, and speed up
performance:
· Use passthrough SQL for complex queries or stored procedures.
· You can bypass BDE functions and make direct calls using the native SQL API. Use

DbiGetProp to get native handles.
· Use the server to minimize the size of the returned result set.
· Return results into a local table for processing.
· Use DbiAddFilter, DbiSetRange, and DbiSetFieldMap before data access to limit the

number of records accessed.
· Create a descending index if backwards navigation is done frequently.
· Avoid moving toward the beginning of the table except within a small cache range.
· Avoid using DbiSetToEnd and DbiSetToKey in the middle of large tables or when the table

is ordered on a composite index.
All options mentioned below are configurable using the BDE Administrator:
· For Microsoft SQL Server and Sybase: increase PACKET SIZE to at least 4096. You must

also need to set the Packet Size option on the Microsoft of Sybase Server to match. Make
sure that DRIVER FLAGS is 0. If it is 2048, queries will execute in asynchronous mode,
which is slow.

· For Oracle, DB2, and the ODBC socket: try adjusting ROWSET SIZE. This specifies how
many rows you fetch or insert in a single server operation.

· Set TRACE MODE to 0. This option is used only for debugging and can slow down your
application.

· If your client/server applications TTables in Delphi, consider using TQueries along with
cached updates to improve the performance of your overall application. TTables give you
an easy model for programming and provide adequate performance but are not designed
with speed in mind.

· Set SQLPASSTHRU MODE to SHARED NOAUTOCOMMIT and use explicit Begin Transaction
and End Transaction statements in your application instead of relying on SQL Links to do
AUTOCOMMIT.

See also:
Improving BDE performance
A few general suggestions for maximizing BDE's performance in accessing tables.

{button ,AL(`sqldrivers')} SQL driver topics

Paradox driver
The Paradox driver supports both descending and unique secondary index types and
default values ("NOW") for the time stamp and time fields.

Descending and unique secondary index types
You can use composite indexes where some fields are ascending and others are
descending.
The descending and unique secondary index types share these characteristics :
· Both index types require Table Level 7.
· At table creation time the table level is automatically upgraded to level 7 if:

a) any of these index types are requested, and
b) no lower table level is specified as an optional parameter (DBIERR_TABLELEVEL).

· If adding the index to a table with a lower table level, the error returned is
DBIERR_TABLELEVEL.

· DBIERR_TABLELEVEL error code replaces DBIERR_OLDVERSION whenever a higher table
level is required.

· Both index types share the characteristics of "Composite secondary indexes."    They
require a unique index name and so on.

· The Descending and Unique options can be mixed with each other, as well as with the
bMaintained, and bCaseInsensitive options.

· In case of duplicate fields, the indexes must be distinguished by at least one of these
options:

bUnique
bCaseInsensitive
bDescending (not bMaintained)

Note: If two indexes are distinguished only by the bUnique option, they will in effect be
equivalent, but is still accepted.

Descending secondary indexes
The IDXDesc structure includes this boolean array :
BOOL16 abDescending[DBIMAXFLDSINKEY];
The abDescending array indicates which fields in a composite secondary index are
descending (TRUE). Thus, in a composite key, if abDescending[i] is TRUE--where 'i' is the
index to aiKeyFlds[]--then the aiKeyFld[i] is descending.
This array is ignored if:
· The existing boolean bDescending is FALSE.
· The index has only one field.

If you have an index with only one field, (and if and bDescending is TRUE), then you do
not need to specify TRUE in abDescending[0]. In that case, bDescending counts for
everything and abDescending is ignored. This rule is consistent with previous semantics
(for dBASE and FoxPro descending indexes).

There are no other restrictions on how ascending and descending can be mixed. You may
improve performance slightly if you do not specify a descending index.

Unique secondary indexes
The bUnique option enables the creation of unique secondary indexes.
· At table create time: upgrades the table to level 7.
· At add index time: requires the fields in the unique index to be unique already, otherwise

it will fail. No error table is generated for the records that contain the non-unique field

values.
· At restructure time: If the fields are not unique, restructure will fail, and will not generate

an error table for records containing non-unique field values.
Valchecks
Valchecks are default values for TIME and TIMESTAMP. Similar to specifying "TODAYVAL" for
a default value for a date field. You can specify 'NOW' for the default value for a TIME and
TIMESTAMP field.
· This has an effect only at DbiInitRecord time, where the 'current' time or timestamp will

be substituted.
· This feature is supported only for table level 7 or higher.
· At create table or restructure table time: if the table level is less than 6, the function will

fail with DBIERR_TABLELEVEL.
· The table will NOT be automatically upgraded.
· For table level 7 tables, up to 255 VCHKDesc's may be supplied at table create time. For

lower table levels, the number is 64. If more are supplied, the function returns
DBIERR_TABLELEVEL.

Record locks
The maximum number of record locks on a shared Paradox table is 255.

Access driver
If you have a version of the Microsoft JET engine (included with Microsoft Access and
FoxPro) installed on your system you can use the BDE to open or create Microsoft Access
tables using the MSACCESS driver. In the BDE API, use the constant szMSACCESS when
creating Access tables or checking the table type. See Logical types and driver-specific
physical types for a table listing the new physical data types for MSACCESS and their BDE
logical equivalents:
Two drivers are available: driver IDDAO32.DLL for Access 95 and Jet Engine 3.0, and driver
IDDA3532.DLL for Access 97 and Jet Engine 3.5. Use the BDE Administrator
(BDEADMIN.EXE) to specify which Access driver to use. The default is IDDA3532.DLL.

FoxPro driver
The included FoxPro driver allows BDE clients to access FoxPro tables natively. Previous
versions of the BDE used the native dBASE driver to access FoxPro data. When opening a
table, the BDE detects if you are opening a FoxPro table and uses the appropriate driver.

Text driver
The text driver allows BDE clients to access text files. The text driver allows BDE clients to
access text data directly without first importing into a table format. By using this driver, the
application developer can build a more efficient import/export utility. Filters can be set on
the cursors that are opened on the text files to import/export only those records that satisfy
the filter's criteria.
When you open a text table, you can provide the field descriptor information by calling the
function DbiSetFieldMap to set a field map or you can bind external schema to text tables:
· Field Maps
· Binding External Schema to Text Tables
Creating a text file with DbiCreateTable
A text file can be created by using DbiCreateTable. The developer supplies only table name
and driver type values in the CRTblDesc descriptor; the rest of the field values are ignored.
DbiCreateTable creates a file with the given name; no field descriptions are necessary.

Opening, importing and exporting text files
DbiOpenTable can be used to open a text file for import/export. The file can be opened as a
delimited text file or as a fixed length text file.

Example 1: Opening a delimited text file
In this example, the text file dBASE.txt is opened as a delimited text file. The quotation
mark (") is the delimiter character and comma is the field separator character.
DbiOpenTable (hDb, "DBASE.TXT", "ASCIIDRV-\"-,", NULL, NULL, 0,
dbiREADWRITE, dbiOPENEXCL, xltNONE, FALSE, NULL, &hCursor);

The pszDriverType argument of DbiOpenTable is used to indicate the field separator and
the delimiter characters. The field separator and delimiter characters are passed through
the pszDriverType argument as shown below:
"ASCIIDRV-<Delimiterchar>-<FieldSeparator>"

The field separator character separates the text file field values. The delimited character
surrounds the text field types (alphanumeric or character) in the text file.
Example 2: Opening a fixed length text file
In this example, the text file dBASE.txt is opened as a fixed length text file:
DbiOpenTable (hDb, "DBASE.TXT", "ASCIIDRV", NULL, NULL, 0,
dbiREADWRITE, dbiOPENEXCL, xltNONE, FALSE, NULL, &hCursor);

When opening a fixed-length text file, no delimiter and separator characters are passed
along with the pszDriverType argument.

{button ,AL(`textdriver')} Text driver topics

Field maps
Because no description of the fields is available when a text file is created, it is a good
practice to set a field map on the cursor that is opened on that text file. The text driver
uses this field map to interpret the data types of the fields in that text file.
When you open a text table, you can provide the field descriptor information by using the
DbiSetFieldMap call. dBASE, FoxPro, Access, and Paradox go through the following steps in
setting the field description information for a text table.
1 Obtains the field descriptors of the source/target table by using the function call

DbiGetFieldDescs.
2 Obtains equivalent physical field descriptors of the text driver by using the call

DbiTranslateRecordStructure.
3 Sets the field descriptor information on the text table by using the call DbiSetFieldMap.
If no field maps are set, the following behavior is expected:

The text file exists and has records:
Fixed-length Text Delimited Text

iFlds = 1        iFlds = Calculated using the first record
fldType = CHAR fldType = CHAR
fldLen = Calculated using first record fldLen= (4k/iFlds) && less than 255.

The text file does not exist and has no records:
Fixed -length Text Delimited Text

iFlds = 1 iFlds = 1
fldType = CHAR fldType = CHAR
fldLen = 255    fldLen = 255
When a field map is set on a cursor that is opened as a text table, the source field
descriptors (or destination field descriptors when importing) must be converted into text
driver type descriptors. This step is necessary because some data types (for example,
DBIDATE) have different field lengths in different driver types (for example, in Paradox, a
DATE field is of four bytes long, while in dBASE a DATE field is eight bytes long).
The DbiTranslateRecordStructure call can be used to convert the logical or physical fields of
a given driver type (that is, Paradox, dBASE, FoxPro, or Access) to the physical fields of the
text driver. Then those physical text fields should be used in the DbiSetFieldMap call. When
a field map is set on a text table, the iFldType, iFldNum, iUnits1, iUnits2 and iLen elements
should be set correctly in all the field descriptors.
Note: The Text driver supports files with field names in the first record because many

applications export ASCII files with field names in the first line.
After a field map is set on the Text driver, DbiBatchMove can be used to import and export
data to and from the text files. Refer to the online SnipIt code Import and Export examples.
Alternatively, you can bind schema information to a text table by storing the schema
information of that text table in another text file. See Binding External Schema to Text
Tables

{button ,AL(`textdriver')} Text driver topics

Binding external schema to text tables
Although you can set the field descriptors on text tables for use with export/import utilities,
the BDE text driver can bind an external schema information to text tables. You bind
schema information to a text table by storing the schema information of that text table in
another text file.
The extension of the text file containing the schema information will be "sch". Thus, the
name of the text file containing the schema information of the text table zzz.txt will be
zzz.sch. If the text table has an extension other than "txt", extension of the schema file
would still be "sch".

Schema File
All information in the schema file is case-insensitive.
Here is a sample schema file:

[CUSTOMER] // File name with no extension.
FILETYPE = VARYING // Format: VARYING or FIXED
CHARSET = ascii // Language driver name.
DELIMITER = " // Delimiter for char fields.
SEPARATOR = , // Separator character
Field1 = Name,CHAR,12,0,0 // Field information
Field2 = Salary,FLOAT,8,2,12

The schema file has a format similar to Windows INI files. The file begins with the name of
the table in brackets. The second line specifies the file format following the keyword
FILETYPE: FIXED or VARYING.

FIXED format file
Each field always takes up a fixed number of characters in the file, and the data is
padded with blanks as needed.
VARYING format file
Each field takes a variable number of characters, each character field is enclosed by
DELIMITER characters, and the fields are separated by a SEPARATOR character. The
DELIMITER and SEPARATOR must be specified for a VARYING format file, but not for a
FIXED format file.

The CHARSET attribute specifies the name of the language driver to use. This is the base
filename of the .LD file used for localization purposes.
The DELIMITED character surrounds the text field types (alphanumeric or character) in the
text file. Delimited fields must be of character type.
The field SEPARATOR character separates the text file field values.
The remaining lines specify the attributes of the table's fields (columns). Each line must
begin with "Fieldx = ", where x is the field number (that is. Field1, Field2, and so on).
Next appears a comma-delimited list specifying:
· Field name. Same restrictions as Paradox field names.
· Data type. The field data type. See below.
· Number of characters or units. Must be <= 20 for numeric data types. Total maximum

number of characters for date/time data types (including / and : separators).
· Number of digits after the decimal (FLOAT only).
· Offset. Number of characters from the beginning of the line that the field begins. Used

for FIXED and DELIMITED formats.

The following data types are supported:
CHAR - Character
FLOAT - 64-bit floating point
NUMBER - 16-bit integer
BOOL - Boolean (T or F)
LONGINT - 32-bit long integer
DBIDATE - Date field. Format specified in Registry
TIME - Time field. Format specified in Registry
TIMESTAMP - Date/Time field. Format specified in Registry

Note: You specify date and time formats by using the BDE Administrator.
Example 1:    VARYING format file
CUSTOMER.SCH:

[CUSTOMER]
Filetype=VARYING
Delimiter="
Separator=,
CharSet=ascii
Field1=Customer No,Float,20,04,00
Field2=Name,Char,30,00,20
Field3=Phone,Char,15,00,145
Field4=First Contact,Date,11,00,160

CUSTOMER.TXT:
1221.0000,"Kauai Dive Shoppe","808-555-0269",04/03/1994
1231.0000,"Unisco","809-555-3915",02/28/1994
1351.0000,"Sight Diver","357-6-876708",04/12/1994
1354.0000,"Cayman Divers World Unlimited","809-555-8576",04/17/1994
1356.0000,"Tom Sawyer Diving Centre","809-555-7281",04/20/1994

All the BDE API functions work with the text driver. To support external schema binding, the
text driver includes the database property dbUSESCHEMAFILE applicable only to the text
driver.
If the dbUSESCHEMAFILE property is set to true at the time of an export to a text table, the
schema information of that text table is stored in a schema file. The DbiBatchMove function
is used in exporting data to a text file. DbiBatchMove automatically stores the schema
information while copying the data to a text table.
If the dbUSESCHEMAFILE flag is set to TRUE at the time of an import and a schema file
exists for the text table, the text driver gets the field descriptors from the schema text file
and sets them as the default fields for that text table. If the dbUSESCHEMAFILE flag is not
set, you should define the field descriptions of the text table by using the function
DbiSetFieldMap.

{button ,AL(`textdriver')} Text driver topics

Error handling
BDE functions return error codes to inform the calling program if the function succeeded or
failed. The return value is DBIERR_NONE when the function was successful. If an error
occurs during the execution of a BDE call, any of the BDE subsystems may push an error
context onto the common BDE error stack. This error context allows the application to
examine potentially more detailed information about the cause of any error.
Several BDE functions enable the application to retrieve different levels of information
about errors:
Error function Level of information returned
DbiGetErrorEntry Allows any entry on the error stack to be returned. This is the

only function that
returns native
server error codes
for SQL drivers.

DbiGetErrorString When the application passes the error code, this function
returns a more
detailed message;
for example, "At
end of table."

DbiGetErrorContext Pass it an error context type, such as "ecTABLENAME," and it
returns specific
information; in this
case, the full path
name of the table
involved in the
error.

DbiGetErrorInfo Returns the error code, descriptive error message, and error
contexts for the
first four error
messages on the
error stack.

For more specific instructions on using error messages, see the following topics:

{button ,AL(`errorhandling')} Error handling topics

Using DbiGetErrorEntry to access the error stack
Every error generated as a result of a BDE function call goes onto an error stack. Error
stack entries begin with 1. Each stack entry contains a DBIERR code, and possibly a native
server error code and a native server error message. (The only way for the application to
get native server errors is to access the error stack.)
The application can access the error stack by calling DbiGetErrorEntry. This function returns
the error code and description of a specified error stack entry. The application can
optionally pass a pointer to a buffer to receive the native error code and the native error
message.
DbiGetErrorEntry returns the error code DBIERR_NONE for stack entries beyond the current
error stack, so this successful return can be used as a loop termination. For example, if
error entry 1 returns an error code of DBIERR_NONE, there are no errors on the stack. The
stack may be traversed multiple times or combined with other error interface calls, but
non-error routine BDE calls reset the error stack.

{button ,AL(`errorhandling')} Error handling topics

Using DbiGetErrorString to get a detailed error message
DbiGetErrorString returns a more detailed message for the error code returned by
DbiGetErrorEntry. The application passes the error code and receives the error message.
For example, if DbiGetErrorString is called with the error code DBIERR_EOF, it returns the
string "At End of Table." BDE keeps the error strings as Windows string resources in
the .DLL file with the IDR prefix. This way the application developer can translate or
customize them as needed by using a product such as Resource Workshop.

{button ,AL(`errorhandling')} Error handling topics

Using DbiGetErrorContext to get more specific information
DbiGetErrorContext returns more specific error information about the context of an error,
such as the name of the offending table or field. When an error occurs, the error context is
logged by the BDE engine. Other error contexts can be logged as well, so rather than force
the user to scan each error context individually, DbiGetErrorContext searches for a
particular context type. The application inputs the error context type and the function
returns a character string.

Error Context Types
Error contexts can be one of the following types:
Type Description
ecTOKEN Token (For QBE)
ecTABLENAME Table name
ecFIELDNAME Field name
ecIMAGEROW Image row (For QBE)
ecUSERNAME For example, in lock conflicts, user involved
ecFILENAME File name
ecINDEXNAME Index name
ecDIRNAME Directory name
ecKEYNAME Key name
ecALIAS Alias
ecDRIVENAME Drive name ('c:')
ecNATIVECODE Native error code
ecNATIVEMSG Native error message
ecLINENUMBER Line number
ecCAPABILITY Capability
For example, if the application attempts to open a nonexistent table by using
DbiOpenTable, it receives an error code of DBIERR_NOSUCHFILE. To determine which table
name is associated with the error condition, the application calls DbiGetErrorContext
(ecTABLENAME, buffer), which returns the full path name of the table. If there is no table
name associated with the error, the buffer is empty.

{button ,AL(`errorhandling')} Error handling topics

Using DbiGetErrorInfo to get immediate information
DbiGetErrorInfo provides immediate descriptive error information about the last error that
occurred. This information consists of the DBIResult error code, an error message in ANSI
characters corresponding to the code, and up to four associated error contexts. For
example, if the error message is "Table Not Found," the user might want to know the table
name. The BDE engine logged the table name with the error context ecTABLENAME, which
can be found in one of the contexts contained in the DBIErrInfo structure.
The application calls DbiGetErrorInfo which returns relevant error information in the
provided DBIErrInfo structure. These structure types are shown in the following table.

DbiErrorInfo Structure
Type Name Description
DBIResult iError Last error code returned
DBIMSG szErrCode More descriptive information
DBIMSG szContext1 Context 1
DBIMSG szContext2 Context 2
DBIMSG szContext3 Context 3
DBIMSG szContext4 Context 4
This function immediately displays up to four error contexts to the user, while the function
DbiGetErrorContext returns only the specific error context requested by the user.
If all that is required is a formatted error message for the end user, DbiGetErrorInfo is a
more convenient way to get it.
These examples shows how to get information about an error when a BDE function returns
a value other than DBIERR_NONE:

hDBIDb hDb;
 DBIResult rslt;
 DBIMSG dbiStatus;
 // Open a STANDARD database
 rslt = DbiOpenDatabase(NULL, NULL, dbiREADWRITE, dbiOPENSHARED,
 NULL, 0, NULL, NULL, &hDb);
 if (rslt != DBIERR_NONE)
 {
 // An error occurred. Retrieve the error string.
 DbiGetErrorString(rslt, dbiStatus);
 }

{button ,AL(`errorhandling')} Error handling topics

Debugging
BDE provides SQL Trace to track SQL statements sent to the servers when BDE functions
execute.

SQL Trace
The SQL Trace facility is a useful debugging tool that opens the SQL "black box," allowing
you to track the SQL statements sent to the servers when their BDE function calls are
executed. SQL Trace is implemented as the SQL TRACE option in the Windows Registry and
as a callback to return trace information.

Configuration option
To set the SQL trace mode, use the SQLTRACE option in the DRIVER\INIT section of the
Windows Registry (settings\driver\driver_name\init\TRACE MODE) for the appropriate driver.
The option takes a numeric value (actually a bit mask) that determines how much
information to log. The Windows OutputDebugString call is used to output the requested
information to the debug window. The following table shows which information is logged
based on bit settings:
Bit Settings Logged Information
0x0001 prepared query statement
0x0002 executed query statements
0x0004 vendor errors
0x0008 statement ops (that is: allocate, free)
0x0010 connect / disconnect
0x0020 transaction
0x0040 BLOB I/O
0x0080 miscellaneous
0x0100 vendor calls
Examples
1 To trace only prepared and executed query statements, sets bits 0x0001 and 0x0002

(that is, set SQLTRACE to 3)
2 To trace only vendor calls, set bit 0x0100 (that is, set SQLTRACE to 256)
Because the value of SQLTRACE is evaluated as an unsigned integer, a value of -1 will turn
on all bits, and therefore all of the above events will be traced.

dbTRACEMODE
To programatically override the DRIVER option for any database, use the database property
dbTRACEMODE with DbiSetProp. TRACE MODE is a DRIVER option in the Registry that
determines the trace behavior for all database operations associated with the driver.
cbTRACE
To retrieve trace information, use the system-level callback cbTRACE. The trace string
retrieved through the callback is the same as that which goes to the debug window via
OutputDebugString.
The TraceDESC structure is used to return trace information to the callback:
typedef struct // trace callback info
 {
 TRACECat eTraceCat; // trace category
 UINT16 uTotalMsgLen; // total message length
 CHAR pszTrace[]; // trace string
 // (recommended size = DBIMAXTRACELEN
(8192))
 } TRACEDesc;

 typedef enum // trace categories
 {
 traceUNKNOWN = 0x0000,
 traceQPREPARE = 0x0001, // prepared query statements
 traceQEXECUTE = 0x0002, // executed query statements
 traceERROR = 0x0004, // vendor errors
 traceSTMT = 0x0008, // statement ops (i.e. allocate, free)
 traceCONNECT = 0x0010, // connect / disconnect
 traceTRANSACT = 0x0020, // transaction
 traceBLOB = 0x0040, // blob i/o
 traceMISC = 0x0080, // misc.
 traceVENDOR = 0x0100, // vendor calls
 } TRACECat;

The TRACECat enums have the same bit sequence used to set the TRACE MODE
configuration option, and can also be used (singularly or piped together) as input to the
dbTRACEMODE database property. You can use the uTotalMsgLen field of the TRACEDesc
structure to determine whether the returned string (in pszTrace) has been truncated.

Example: Registering a cbTRACE Callback:
Note: Before calling DbiRegisterCallBack() for SQLTRACE, the argument pTraceInfo must be
allocated for the size of (TRACEDESC) plus DBIMAXTRACELEN.
DbiRegisterCallBack
 (NULL,
 cbTRACE,
 iClientData,
 sizeof (TRACEDesc) + DBIMAXTRACELEN,
 (pVOID)pTraceInfo, // ptr to client-allocated TRACEDesc
 (pfDBICallBack) lpfnTrace);

Improving BDE performance
Here are a few general programming practices to help improve overall BDE performance in
accessing tables:
1 Keep the number of maintained secondary indexes to a minimum; sometimes it is better

to delete the index and recreate it than to perform a number of table operations with the
indexes in place.

2 If possible, increase the size of the swap buffer and the number of file handles that BDE
has available to it. This will decrease BDE's need to swap resources.
Note: Be sure to increase the file handles available to your application by using
SetHandleCount. Also, in IDAPI.CFG, increase the number of file handles available to BDE.

3 Open the table exclusively.
4 Batch as many operations as possible--do not read or write records one at a time. Use

DbiBatchMove, DbiCopyTable, DbiReadBlock, and/or DbiWriteBlock.
5 When using DbiWriteBlock, try to work in multiples of the physical block size, usually 2K

or 4K.
6 If you are opening and closing one or more tables repeatedly, consider calling

DbiAcqPersistTableLock on a non-existent file after you initialize the BDE. This will create
the .LCK file so that it will not have to be created each time a table is opened, created,
and so on. (Note: You'll also want to call DbiRelPersistTableLock before calling DbiExit).
This applies to Paradox tables only.

7 Work with in-memory tables when possible.
8 When working with remote data sources that support transactions, use explicit

transactions. For example, each insert to a table on an SQL server will force a transaction
to be started and committed. This adds a lot of overhead when inserting a large group of
records. Instead, start a transaction, insert a group of records, and then commit the
changes as a group.

All options mentioned below are configurable using the BDE Administrator:
1 Set LOCAL SHARE to False. This option should only be TRUE if both BDE and non-BDE

applications are accessing dBASE or Paradox tables simultaneously. Borland products all
use the BDE to access Paradox and dBASE tables, so this option can be FALSE if you're
using only Borland applications.

2 To improve performance of opening tables and updateable queries for a Server BDE Alias,
set ENABLE SCHEMA CACHE to TRUE. Do not use the schema cache if your application is
constantly creating tables or altering the structures of existing tables.

3 Try adjusting BATCH COUNT. This is the amount of records processed in a single
transaction in a BatchMove operation. This also affects the performance of the Data
Migration Expert.

See also:    SQL performance tips

{button ,AL(`applicationdevelopment')} Application development

Using the function reference
You can find a complete description of each BDE function by looking in the task-related
tables in Function Reference, Categorical.
Alternatively, you can quickly access the topic for any function by searching the complete
list in Function Reference, Alphabetical.
Each BDE function name begins with the prefix Dbi. The remainder of the name describes
the function's use. For example, DbiGetClientInfo is the name of the BDE function that
retrieves information about the client application environment.
Syntax is provided in both C and in Delphi (Pascal) languages.
Next to the title of each function topic you’ll see two Examples buttons, one in C code, the
other in Delphi (Pascal). Click here to display code examples that you can copy and paste
into your applications.
See the following topics for general conventions and definitions that will assist you in
understanding and making effective use of the BDE function reference:
{button ,AL(`usingfuncref')} Using the function reference

Syntax conventions
The C syntax for BDE function calls is:

DBIResult DBIFN DbiFunctionName (argument1, argument2, argument3
 ...);

Each function definition includes the elements described in this table:
Element Description
Function nameName of function
Examples buttons Click to display a window of code examples (either C or

Delphi) that you
can copy and paste
into your
application.

Description Summary description of function
Syntax Diagram of the function and parameters in both C and Delphi coding styles.
Parameters Descriptions of each parameter
Usage Detailed information about using the function
Prerequisites State required before function is called
Completion state State after the function completes
DBIResult return values Description of possible values returned after the function

completes, if any
See Also Cross references to other related functions

Each function definition observes these typographical conventions:
Convention Purpose Example
Courier font Keywords that must be typed DBIResult DBIFN DbiInit();

exactly as they appear when
 used (case-sensitive).

italic Variables and parameters passed (hCursor, piRecords, pBuf)   
to the function, returned from the
function, or both.

[] Brackets enclose optional iPosOffset, [eLock]
parameters. Optional parameters
can be set to NULL.

{button ,AL(`usingfuncref')} Using the function reference

Variable names
Each variable name used in this reference begins with a standard prefix and appears
italicized in text.. These prefixes indicate the variable's type or use, as described in the
following table:
Prefix Variable type or use
a The declared variable is an array.
b The declared variable is of the boolean type.
dt The declared variable is of the datetime type.
e The content of the declared variable is of the enumerated type.
h The declared variable is used as a handle.
i The declared variable is an integer.
p The declared variable is a pointer.
sz The declared variable is a null-terminated character string.
tm The declared variable is of the timestamp type.
Prefixes can be combined to more completely describe the variable's use. For example, the
prefix psz in the variable name pszIndexName indicates that the variable is a pointer to a
null-terminated character string, in this case, where the name of the index is stored.

{button ,AL(`usingfuncref')} Using the function reference

Constants
The following table lists the constants used to define maximum limits throughout this
reference:
Constant Limit Description
DBIMAXBOOKMARKLEN 4104 Maximum bookmark length
DBIMAXDRIVELEN 2 Maximum drive length (if Win32 not defined)
DBIMAXDRIVELEN 127 Maximum drive length (if Win32 defined)
DBIMAXDRSQLSTR 8192 Max size of SQL constraint
DBIMAXEXTLEN 3 Maximum file extension length, not including the extension

delimiter "."
DBIMAXFLDSINKEY 16 Maximum number of fields in a key
DBIMAXFLDSINSEC 256 Maximum fields in security specification
DBIMAXFUNCNAMELEN 255 Max function name length
DBIMAXKEYEXPLEN 220 Maximum key expression length
DBIMAXMSGLEN 127 Maximum message length (allocate 128)
DBIMAXNAMELEN 31 Maximum object name limit (such as, table, field)
DBIMAXPATHLEN 81 Maximum path plus filename length. Allocate 80. (If Win32

not defined.)
DBIMAXPATHLEN 260 Maximum path plus filename length, excluding zero

termination. (If Win32 defined.)
DBIMAXPICTLEN 175 Maximum picture length
DBIMAXSCFIELDS 32 Maximum number of fields in an optional parameter list
DBIMAXSCFLDLEN 128 Maximum field length in an optional parameter list
DBIMAXSCRECSIZE 2048 Maximum record size in an optional parameter list,

computed as DBIMAXSCFIELDS*DBIMAXSCFLDLEN.
DBIMAXSPNAMELEN 64 Maximum stored procedure name length
DBIMAXTBLNAMELEN 127 Maximum table name length (if Win32 not defined)
DBIMAXTBLNAMELEN 260 Maximum table name length (if Win32 defined)
DBIMAXTRACELEN 8192 Maximum trace message length
DBIMAXTYPEDESC 127 Maximum type description size
DBIMAXUSERNAMELEN 14 Maximum user name (general)
DBIMAXVCHKLEN 255 Maximum validity check length
DBIMAXXBUSERNAMELEN 12 Maximum user name length for xBASE

{button ,AL(`usingfuncref')} Using the function reference

#defines
The following table lists the #defines used throughout this reference:
#define Definition
NULL (0)
VOID void
INT8 char
CHAR char
BYTE unsigned char
UINT8 unsigned char
INT16 int (if defined FLAT); short
UINT16 unsigned short (if defined FLAT); unsigned int
INT32 long
UINT32 unsigned long
BOOL short (if defined FLAT) int
DFLOAT double
DBIDATE long
TIME long
TIMESTAMP double
DBIFN pascal far
UINT16 DBIResult

{button ,AL(`usingfuncref')} Using the function reference

Typedefs
The following table lists the typedefs used throughout this reference:
typedefs Definition
VOID far *pVOID
pVOID far *ppVOID
CHAR far *pCHAR
BYTE far *pBYTE
INT8 far *pINT8
UINT8 far *pUINT8
INT16 far *pINT16
UINT16 far *pUINT16
INT32 far *pINT32
UINT32 far *pUINT32
DFLOAT far *pFLOAT
DBIDATE far *pDATE
TIME far *pTIME
BOOL far *pBOOL
TIMESTAMP far *pTIMESTAMP
pBYTE far *ppBYTE
pCHAR far *ppCHAR
pBOOL far *ppBOOL
DBIResult far *pDBIResult

{button ,AL(`usingfuncref')} Using the function reference

Object definitions
The following objects are defined:
Type Object Description
UINT32 hDBIObj Generic object handle
hDBIObj hDBIDb Database handle
hDBIObj hDBIQry Query handle
hDBIObj hDBIStmt Statement handle ("new query")
hDBIObj hDBICur Cursor handle
hDBIObj hDBISes Session handle
hDBIObj hDBIXlt Translation handle
UINT32 hDBIXact Transaction handle
hDBIObj far *phDBIObj Pointer to generic object handle
hDBICfg far *phDBICfg Pointer to configuration handle
hDBIDb far *phDBIDb Pointer to database handle
hDBIQry far *phDBIQry Pointer to query handle
hDBIStmt far *phDBIStmt Pointer to statement handle
hDBICur far *phDBICur Pointer to cursor handle
hDBISes far *phDBISes Pointer to session handle
hDBIXlt far *phDBIXlt Pointer to translation handle
hDBIXact far *phDBIXact Pointer to transaction handle

{button ,AL(`usingfuncref')} Using the function reference

Buffer Typedefs
The following typedefs for buffers of various common sizes are defined:
Type typedef Description
DBIPATH CHAR[DBIMAXPATHLEN+1] Holds a DOS path
DBINAME CHAR[DBIMAXNAMELEN+1] Holds a name
DBIEXT CHAR[DBIMAXEXTLEN+1] Holds a file extension
DBIDOTEXT CHAR[DBIMAXEXTLEN+2] Holds a file extension including "."
DBIDRIVE CHAR[DBIMAXDRIVELEN+1] Holds a drive name
DBITBLNAME CHAR[DBIMAXTBLNAMELEN+1] Holds a table name
DBIUSERNAME CHAR[DBIMAXUSERNAMELEN+1] Holds a user name
DBIKEY UINT16[DBIMAXFLDSINKEY] Holds a list of fields in a key
DBIKEYEXP CHAR[DBIMAXKEYEXPLEN+1]; Holds a key expression
DBIVCHK BYTE[DBIMAXVCHKLEN+1] Holds a validity check
DBIPICT CHAR[DBIMAXPICTLEN+1] Holds a picture clause
DBIMSG CHAR[DBIMAXMSGLEN+1] Holds an error message

{button ,AL(`usingfuncref')} Using the function reference

Function reference, categorical
Each of the BDE functions documented in this reference fall into one of the categories
listed in the table below:
Function Type Purpose
Capability or schema Returns information about database schema.
Cursor Returns information or affects cursors and bookmarks.
Data access Performs specific data access operations.
Database Returns information or performs related tasks.
Date/time/number Handles formats for the session.
Environment Returns information or affects the client application environment.
Error handling Returns information or performs related tasks.
Index Returns information or affects indexes.
Locking Returns information or affects locks.
Query Performs query tasks.
Session Returns information or affects a session.
Table Returns information or performs table-wide operations.
Transaction Returns information or performs related tasks.

Environment functions
Each BDE function listed below returns information about the client application
environment such as the supported table, field and index types for the driver type, or the
available driver types. Also listed are functions that perform a task that affects the client
application environment, such as loading a driver.
Function Description
DbiAddAlias Adds an alias to the BDE configuration file (IDAPI.CFG).
DbiAddDriver Adds a driver to the BDE configuration file (IDAPI.CFG).
DbiAnsiToNative Multipurpose translate function.
DbiDeleteAlias Deletes an alias from the BDE configuration file (IDAPI.CFG).
DbiDeleteDriver Deletes a driver from the BDE configuration file (IDAPI.CFG).
DbiDllExit Prepares the BDE to be disconnected within a Dll.
DbiExit Disconnects the client application from BDE.
DbiGetClientInfo Retrieves system-level information about the client

application
environment.

DbiGetDriverDesc Retrieves a description of a driver.
DbiGetLdName Retrieves the name of the language driver associated with the

specified object
name (table
name).

DbiGetLdObj Retrieves the language driver object associated with the given cursor.
DbiGetNetUserName Retrieves the user's network login name. User names should

be available for all
networks
supported by
Microsoft Windows.

DbiGetProp Returns a property of an object.
DbiGetSysConfig Retrieves BDE system configuration information.
DbiGetSysInfo Retrieves system status and information.
DbiGetSysVersion Retrieves the system version information, including the BDE

version number,
date, and time,
and the client
interface version
number.

DbiInit Initializes the BDE environment.
DbiLoadDriver Loads a given driver.
DbiNativeToAnsi Translates a string in the native language driver to an ANSI

string.
DbiOpenCfgInfoList Returns a handle to an in-memory table listing all the nodes in

the configuration
file accessible by
the specified path.

DbiOpenDriverList Creates an in-memory table containing a list of driver names
available to the

client application.
DbiOpenFieldTypesList Creates an in-memory table containing a list of field types

supported by the
table type for the
driver type.

DbiOpenFunctionArgList Returns a list of arguments to a data source function.
DbiOpenFunctionList Returns a description of a data source function.
DbiOpenIndexTypesList Creates an in-memory table containing a list of all supported

index types for the
driver type.

DbiOpenLdList Creates an in-memory table containing a list of available language drivers.
DbiOpenTableList Creates an in-memory table with information about all the

tables accessible
to the client
application.

DbiOpenTableTypesList Creates an in-memory table listing table type names for the
given driver.

DbiOpenUserList Creates an in-memory table containing a list of users sharing
the same network
file.

DbiSetProp Sets the specified property of an object to a given value.

Session functions
Each BDE function listed below returns information about a session, or performs a task that
affects the session, such as adding a password.
Function Description
DbiAddPassword Adds a password to the current session.
DbiCheckRefresh Checks for remote updates to tables for all cursors in the

current session,
and refreshes the
cursors if changed.

DbiCloseSession Closes the session associated with the given session handle.
DbiDropPassword Removes a password from the current session.
DbiGetCallBack Returns a pointer to the function previously registered by the

client for the given
callback type.

DbiGetCurrSession Returns the handle associated with the current session.
DbiGetDateFormat Gets the date format for the current session.
DbiGetNumberFormat Gets the number format for the current session.
DbiGetSesInfo Retrieves the environment settings for the current session.
DbiGetTimeFormat Gets the time format for the current session.
DbiRegisterCallBack Registers a callback function for the client application.
DbiSetCurrSession Sets the current session of the client application to the

session associated
with hSes.

DbiSetDateFormat Sets the date format for the current session.
DbiSetNumberFormat Sets the number format for the current session.
DbiSetPrivateDir Sets the private directory for the current session.
DbiSetTimeFormat Sets the time format for the current session.
DbiStartSession Starts a new session for the client application.

Error handling functions
Each BDE function listed below returns error handling information, or performs a task that
relates to error handling.
Function Description
DbiGetErrorContext After receiving an error code back from a call, enables the

client to probe BDE
for more specific
error information.

DbiGetErrorEntry Returns the error description of a specified error stack entry.
DbiGetErrorInfo Provides descriptive error information about the last error that

occurred.
DbiGetErrorString Returns the message associated with a given error code.

Locking functions
Each BDE function listed below returns information about lock status, or acquires or
releases a lock at the table or record level.
Function Description
DbiAcqPersistTableLock Acquires an exclusive persistent lock on the table preventing

other users from
using the table or
creating a table of
the same name.

DbiAcqTableLock Acquires a table-level lock on the table associated with the
given cursor.

DbiGetRecord Record positioning functions have a lock parameter.
DbiIsRecordLocked Checks the lock status of the current record.
DbiIsTableLocked Returns the number of locks of a specified type acquired on

the table
associated with the
given session.

DbiIsTableShared Determines whether the table is physically shared or not.
DbiOpenLockList Creates an in-memory table containing a list of locks acquired

on the table.
DbiOpenUserList Creates an in-memory table containing a list of users sharing

the same network
file.

DbiRelPersistTableLock Releases the persistent table lock on the specified table.
DbiRelRecordLock Releases the record lock on either the current record of the

cursor or only the
locks acquired in
the current
session.

DbiRelTableLock Releases table locks of the specified type associated with the
current session
(the session in
which the cursor
was created).

DbiSetLockRetry Sets the table and record lock retry time for the current
session.

Cursor functions
Each BDE function listed below returns information about a cursor, or performs a task that
performs a cursor-related task such as positioning of a cursor, linking of cursors, creating
and closing cursors, counting of records associated with a cursor, filtering, setting and
comparing bookmarks, and refreshing all buffers associated with a cursor.
Function Description
DbiActivateFilter Activates a filter.
DbiAddFilter Adds a filter to a table, but does not activate the filter (the record set is not

yet altered).
DbiApplyDelayedUpdates When cached updates cursor layer is active, writes all

modifications
made to cached
data to the
underlying
database.

DbiBeginDelayedUpdates Creates a cached updates cursor layer so that users can make
extended changes
to temporarily
cached table data
without writing to
the actual table,
thereby minimizing
resource locking.

DbiBeginLinkMode Converts a cursor to a link cursor. Given an open cursor,
prepares for linked
access. Returns a
new cursor.

DbiCloneCursor Creates a new cursor (clone cursor) which has the same result
set as the given
cursor (source
cursor).

DbiCloseCursor Closes a previously opened cursor.
DbiCompareBookMarks Compares the relative positions of two bookmarks in the

result set
associated with the
cursor.

DbiDeactivateFilter Temporarily stops the specified filter from affecting the record
set by turning the
filter off.

DbiDropFilter Deactivates and removes a filter from memory, and frees all resources.
DbiEndDelayedUpdates Closes a cached updates cursor layer ending the cached

updates mode.
DbiEndLinkMode Ends linked cursor mode, and returns the original cursor.
DbiExtractKey Retrieves the key value for the current record of the given cursor or from the

supplied record
buffer.

DbiForceRecordReread Rereads a single record from the server on demand,
refreshing one row

only, rather than
clearing the cache.

DbiForceReread Refreshes all buffers associated with the cursor, if necessary.
DbiFormFullName Returns the fully qualified table name.
DbiGetBookMark Saves the current position of a cursor to the client-supplied

buffer called a
bookmark.

DbiGetCursorForTable Finds the cursor for the given table.
DbiGetCursorProps Returns the properties of the cursor.
DbiGetExactRecordCount Retrieves the current exact number of records associated with

the cursor.
DbiGetFieldDescs Retrieves a list of descriptors for all the fields in the table

associated with the
cursor.

DbiGetLinkStatus Returns the link status of the cursor.
DbiGetNextRecord Retrieves the next record in the table associated with the

cursor.
DbiGetPriorRecord Retrieves the previous record in the table associated with the

given cursor.
DbiGetProp Returns a property of an object.
DbiGetRecord Retrieves the current record, if any, in the table associated with the cursor.
DbiGetRecordCount Retrieves the current number of records associated with the

cursor.
DbiGetRecordForKey Finds and retrieves a record matching a key and positions the

cursor on that
record.

DbiGetRelativeRecord Positions the cursor on a record in the table relative to the
current position of
the cursor.

DbiGetSeqNo Retrieves the sequence number of the current record in the table associated
with the cursor.

DbiLinkDetail Establishes a link between two tables such that the detail table has its
record set limited
to the set of
records matching
the linking key
values of the
master table
cursor.

DbiLinkDetailToExp Links the detail cursor to the master cursor using an
expression.

DbiMakePermanent Changes a temporary table created by DbiCreateTempTable
into a permanent
table.

DbiOpenTable Opens the given table for access and associates a cursor handle with the
opened table.

DbiResetRange Removes the specified table's limited range previously

established by the
function
DbiSetRange.

DbiSaveChanges Forces all updated records associated with the cursor to disk.
DbiSetFieldMap Sets a field map of the table associated with the given cursor.
DbiSetProp Sets the specified property of an object to a given value.
DbiSetRange Sets a range on the result set associated with the cursor.
DbiSetToBegin Positions the cursor to BOF (just before the first record).
DbiSetToBookMark Positions the cursor to the location saved in the specified

bookmark.
DbiSetToCursor Sets the position of one cursor (the destination cursor) to that

of another (the
source cursor).

DbiSetToEnd Positions the cursor to EOF (just after the last record).
DbiSetToKey Positions an index-based cursor on a key value.
DbiSetToRecordNo Positions the cursor of a dBASE or FoxPro table to the given

physical record
number.

DbiSetToSeqNo Positions the cursor to the specified sequence number of a
Paradox table.

DbiUnlinkDetail Removes a link between two cursors.

Index functions
Each BDE function listed below returns information about an index or indexes, or performs
a task that affects an index, such as dropping it, deleting it, or adding it.
Function Description
DbiAddIndex Creates an index on an existing table.
DbiCloseIndex Closes the specified index on a cursor.
DbiCompareKeys Compares two key values based on the current index of the

cursor.
DbiDeleteIndex Drops an index on a table.
DbiExtractKey Retrieves the key value for the current record of the given cursor or from the

supplied record
buffer.

DbiGetIndexDesc Retrieves the properties of the given index associated with
the cursor.

DbiGetIndexDescs Retrieves index properties.
DbiGetIndexForField Returns the description of any useful index on the specified

field.
DbiGetIndexSeqNo Retrieves the ordinal number of the index in the index list of

the specified
cursor.

DbiGetIndexTypeDesc Retrieves a description of the index type.
DbiOpenIndex Opens the index for the table associated with the cursor.
DbiRegenIndex Regenerates an index to make sure that it is up-to-date (all

records currently in
the table are
included in the
index and are in
the index order).

DbiRegenIndexes Regenerates all out-of-date indexes on a given table.
DbiSwitchToIndex Allows the user to change the active index order of the given

cursor.

Query functions
Each BDE function listed below performs a query task.
Function Description
DbiGetProp Returns a property of an object.
DbiQAlloc Allocates a new statement handle for a prepared query.
DbiQExec Executes the previously prepared query identified by the supplied statement

handle and returns
a cursor to the
result set, if one is
generated.

DbiQExecDirect Executes a SQL or QBE query and returns a cursor to the
result set, if one is
generated.

DbiQExecProcDirect Executes a stored procedure and returns a cursor to the result
set, if one is
generated.

DbiQFree Frees the resources associated with a previously prepared query identified
by the supplied
statement handle.

DbiQGetBaseDescs Returns the original database, table, and field names of the
fields that make up
the result set of a
query.

DbiQInstantiateAnswer Creates a permanent table from the cursor to the result set.
DbiQPrepare Prepares a SQL or QBE query for execution, and returns a handle to a

statement
containing the
prepared query.

DbiQPrepareProc Prepares and optionally binds parameters for a stored
procedure.

DbiQSetParams Associates data with parameter markers embedded within a
prepared query.

DbiQSetProcParams Binds parameters for a stored procedure prepared with
DbiQPrepareProc.

DbiSetProp Sets the specified property of an object to a given value.
DbiValidateProp Validates a property.

Database functions
The BDE functions listed below return information about a specific database, available
databases, or perform a database-related task.
Function Description
DbiCloseDatabase Closes a database and all tables associated with this database

handle.
DbiGetDatabaseDesc Retrieves the description of the specified database from the

configuration file.
DbiGetDirectory Retrieves the current working directory or the default

directory.
DbiOpenDatabase Opens a database in the current session and returns a

database handle.
DbiOpenDatabaseList Creates an in-memory table containing a list of accessible

databases and
their descriptions.

DbiOpenFileList Opens a cursor on the virtual table containing all the tables
accessible by the
client application
and their
descriptions.

DbiOpenIndexList Opens a cursor on an in-memory table listing the indexes on a
specified table,
along with their
descriptions.

DbiOpenTableList Creates an in-memory table with information about all the
tables accessible
to the client
application.

DbiSetDirectory Sets the current directory for a standard database.

Table functions
Each BDE function listed below returns information about a specific table, such as all the
locks acquired on the table, all the referential integrity links on the table, the indexes open
on the table, or whether or not the table is shared. Or, it performs a table-wide operation,
such as copying and deleting.
Function Description
DbiBatchMove Appends, updates, subtracts, and copies records or fields from a source

table to a
destination table.

DbiCopyTable Duplicates the specified source table to a destination table.
DbiCreateInMemTable Creates a temporary, in-memory table.
DbiCreateTable Creates a table.
DbiCreateTempTable Creates a temporary table that is deleted when the cursor is

closed, unless the
call is followed by
a call to
DbiMakePermanent
.

DbiDeleteTable Deletes a table.
DbiDoRestructure Changes the properties of a table.
DbiEmptyTableDeletes all records from the table associated with the specified table cursor

handle or table
name.

DbiGetTableOpenCount Returns the total number of cursors that are open on the
specified table.

DbiGetTableTypeDesc Returns a description of the capabilities of the table type for
the driver type.

DbiIsTableLocked Returns the number of locks of a specified type acquired on
the table
associated with the
given session.

DbiIsTableShared Determines whether the table is physically shared or not.
DbiMakePermanent Changes a temporary table created by DbiCreateTempTable

into a permanent
table.

DbiOpenFamilyList Creates an in-memory table listing the family members
associated with a
specified table.

DbiOpenFieldList Creates an in-memory table listing the fields in a specified
table and their
descriptions.

DbiOpenIndexList Opens a cursor on an in-memory table listing the indexes on a
specified table,
along with their
descriptions.

DbiOpenLockList Creates an in-memory table containing a list of locks acquired
on the table

associated with the
cursor.

DbiOpenRintList Creates an in-memory table listing the referential integrity
links for a specified
table, along with
their descriptions.

DbiOpenSecurityList Creates an in-memory table listing record-level security
information about
a specified table.

DbiOpenTable Opens the given table for access and associates a cursor handle with the
opened table.

DbiPackTable Optimizes table space by rebuilding the table associated with the cursor and
releasing any free
space.

DbiQInstantiateAnswer Creates a permanent table from a cursor handle.
DbiRegenIndexes Regenerates all out-of-date indexes on a given table.
DbiRenameTable Renames the table and all of its resources to the new name

specified.
DbiSaveChanges Forces all updated records associated with the table to disk.
DbiSortTable Sorts an opened or closed table, either into itself or into a destination table.

There are options
to remove
duplicates, to
enable case-
insensitive sorts
and special sort
functions, and to
control the number
of records sorted.

Data access functions
Each BDE function listed below accesses data in a table.
Function Description
DbiAppendRecord Appends a record to the end of the table associated with the

given cursor.
DbiDeleteRecord Deletes the current record of the given cursor.
DbiFreeBlob Closes the BLOB handle located within the specified record buffer.
DbiGetBlob Retrieves data from the specified BLOB field.
DbiGetBlobHeading Retrieves information about a BLOB field from the BLOB

heading in the
record buffer.

DbiGetBlobSize Retrieves the size of the specified BLOB field in bytes.
DbiGetField Retrieves the data contents of the requested field from the record buffer.
DbiGetFieldDescs Retrieves a list of descriptors for all the fields in the table

associated with the
cursor.

DbiGetFieldTypeDesc Retrieves a description of the specified field type.
DbiInitRecord Initializes the record buffer to a blank record according to the data types of

the fields.
DbiInsertRecord Inserts a new record into the table associated with the given

cursor.
DbiModifyRecord Modifies the current record of table associated with the cursor

with the data
supplied.

DbiOpenBlob Prepares the cursor's record buffer to access a BLOB field.
DbiPutBlob Writes data into an open BLOB field.
DbiPutField Writes the field value to the correct location in the supplied record buffer.
DbiReadBlock Reads a specified number of records (starting from the next position of the

cursor) into a
buffer.

DbiSaveChanges Forces all updated records associated with the cursor to disk.
DbiSetFieldMap Sets a field map of the table associated with the given cursor.
DbiTruncateBlob Shortens the size of the contents of a BLOB field, or deletes

the contents of a
BLOB field from the
record, by
shortening it to
zero.

DbiUndeleteRecord Undeletes a dBASE or FoxPro record that has been marked for
deletion (a "soft"
delete).

DbiVerifyField Verifies that the data specified is a valid data type for the field specified,
and that all validity
checks in place for
the field are
satisfied. It can

also be used to
check if a field is
blank.

DbiWriteBlock Writes a block of records to the table associated with the cursor.

Capability or schema functions
Each BDE function listed below returns information about a data source's capabilties, or
about its schema.
Function Description
DbiOpenCfgInfoList Returns a handle to an in-memory table listing all the nodes in

the configuration
file accessible by
the specified path.

DbiOpenDatabaseList Creates an in-memory table containing a list of accessible
databases and
their descriptions.

DbiOpenDriverList Creates an in-memory table containing a list of driver names
available to the
client application.

DbiOpenFamilyList Creates an in-memory table listing the family members
associated with a
specified table.

DbiOpenFieldList Creates an in-memory table listing the fields in a specified
table and their
descriptions.

DbiOpenFieldTypesList Creates an in-memory table containing a list of field types
supported by the
table type for the
driver type.

DbiOpenFunctionArgList Returns a list of arguments to a data source function.
DbiOpenFunctionList Returns a description of a data source function.
DbiOpenIndexList Opens a cursor on an in-memory table listing the indexes on a

specified table,
along with their
descriptions.

DbiOpenIndexTypesList Creates an in-memory table containing a list of all supported
index types for the
driver type.

DbiOpenLockList Creates an in-memory table containing a list of locks acquired
on the table.

DbiOpenRintList Creates an in-memory table listing the referential integrity
links for a specified
table, along with
their descriptions.

DbiOpenSecurityList Creates an in-memory table listing record-level security
information about
a specified table.

DbiOpenTableList Creates an in-memory table with information about all the
tables accessible
to the client
application.

DbiOpenTableTypesList Creates an in-memory table listing table type names for the
given driver.

DbiOpenVchkList Creates an in-memory table containing records with
information about
validity checks for
fields within the
specified table.

Date/time/number functions
Each BDE function listed below sets or retrieves date, time or number formats for the
current session, or decodes or encodes date and time into or from a timestamp.

Function Description
DbiBcdFromFloat Converts FLOAT data to binary coded decimal (BCD) format.
DbiBcdToFloat Converts binary coded decimal (BCD) data to FLOAT format.
DbiDateDecode Decodes DBIDATE into separate month, day and

year components.
DbiDateEncode Encodes separate date components into date

for use by DbiPutField and other functions.
DbiGetDateFormat Gets the date format for the current session.
DbiGetNumberFormat Gets the number format for the current session.
DbiGetTimeFormat Gets the time format for the current session.
DbiSetDateFormat Sets the date format for the current session.
DbiSetNumberFormat Sets the number format for the current session.
DbiSetTimeFormat Sets the time format for the current session.
DbiTimeDecode Decodes time into separate components (hours, minutes,

milliseconds).
DbiTimeEncode Encodes separate time components into time

for use by DbiPutField and other functions.
DbiTimeStampDecode Extracts separate encoded date and time components from

the timestamp.
DbiTimeStampEncode Encodes the encoded date and encoded time into a

timestamp.

Transaction functions
The BDE functions listed below begin, end, or return information about a transaction.
Function Description
DbiBeginTran Begins a transaction.
DbiEndTran Ends a transaction.
DbiGetTranInfoRetrieves the transaction state.

Function reference, alphabetical
Function Description
DbiAcqPersistTableLock Acquires an exclusive persistent lock on the table preventing

other users from using the table or creating a table of the same
name.

DbiAcqTableLock Acquires a table-level lock on the table associated with the
given cursor.

DbiActivateFilter Activates a filter.
DbiAddAlias Adds an alias to the BDE configuration file (IDAPI.CFG).
DbiAddDriver Adds a driver to the BDE configuration file (IDAPI.CFG).
DbiAddFilter Adds a filter to a table, but does not activate the filter (the record set is not

yet altered).
DbiAddIndex Creates an index on an existing table.
DbiAddPassword Adds a password to the current session.
DbiAnsiToNative Multipurpose translate function.
DbiAppendRecord Appends a record to the end of the table associated with the

given cursor.
DbiApplyDelayedUpdates When cached updates cursor layer is active, writes all

modifications made to cached data to the underlying database.
DbiBatchMove Appends, updates, subtracts, and copies records or fields from a source

table to a destination table.
DbiBcdFromFloat Converts FLOAT data to binary coded decimal (BCD) format.
DbiBcdToFloat Converts binary coded decimal (BCD) data to FLOAT format.
DbiBeginDelayedUpdates Creates a cached updates cursor layer so that users can make

extended changes to temporarily cached table data without
writing to the actual table, thereby minimizing resource
locking.

DbiBeginLinkMode Converts a cursor to a link cursor. Given an open cursor,
prepares for linked access. Returns a new cursor.

DbiBeginTran Begins a transaction.
DbiCheckRefresh Checks for remote updates to tables for all cursors in the

current session, and refreshes the cursors if changed.
DbiCloneCursor Creates a new cursor (clone cursor) which has the same result

set as the given cursor (source cursor).
DbiCloseCursor Closes a previously opened cursor.
DbiCloseDatabase Closes a database and all tables associated with this database

handle.
DbiCloseFieldXlt Closes a field translation object.
DbiCloseIndex Closes the specified index on a cursor.
DbiCloseSession Closes the session associated with the given session handle.
DbiCompareBookMarks Compares the relative positions of two bookmarks in the result

set associated with the cursor.
DbiCompareKeys Compares two key values based on the current index of the

cursor.

DbiCopyTable Duplicates the specified source table to a destination table.
DbiCreateInMemTable Creates a temporary, in-memory table.
DbiCreateTable Creates a table.
DbiCreateTempTable Creates a temporary table that is deleted when the cursor is

closed, unless the call is followed by a call to
DbiMakePermanent.

DbiDateDecode Decodes DBIDATE into separate month, day and year
components.

DbiDateEncode Encodes separate date components into date for use by
DbiPutField and other functions.

DbiDeactivateFilter Temporarily stops the specified filter from affecting the record
set by turning the filter off.

DbiDeleteAlias Deletes an alias from the BDE configuration file (IDAPI.CFG).
DbiDeleteDriver Deletes a driver from the BDE configuration file (IDAPI.CFG).
DbiDeleteIndex Drops an index on a table.
DbiDeleteRecord Deletes the current record of the given cursor.
DbiDeleteTable Deletes a table.
DbiDllExit Prepares the BDE to be disconnected within a Dll.
DbiDoRestructure Changes the properties of a table.
DbiDropFilter Deactivates and removes a filter from memory, and frees all resources.
DbiDropPassword Removes a password from the current session.
DbiEmptyTableDeletes all records from the table associated with the specified table cursor

handle or table name.
DbiEndDelayedUpdates Closes a cached updates cursor layer ending the cached

updates mode.
DbiEndLinkMode Ends linked cursor mode, and returns the original cursor.
DbiEndTran Ends a transaction.
DbiExit Disconnects the client application from BDE.
DbiExtractKey Retrieves the key value for the current record of the given cursor or from the

supplied record buffer.
DbiForceRecordReread Rereads a single record from the server on demand, refreshing

one row only, rather than clearing the cache.
DbiForceReread Refreshes all buffers associated with the cursor, if necessary.
DbiFormFullName Returns the fully qualified table name.
DbiFreeBlob Closes the BLOB handle located within the specified record buffer.
DbiGetBlob Retrieves data from the specified BLOB field.
DbiGetBlobHeading Retrieves information about a BLOB field from the BLOB

heading in the record buffer.
DbiGetBlobSize Retrieves the size of the specified BLOB field in bytes.
DbiGetBookMark Saves the current position of a cursor to the client-supplied

buffer called a bookmark.
DbiGetCallBack Returns a pointer to the function previously registered by the

client for the given callback type.

DbiGetClientInfo Retrieves system-level information about the client application
environment.

DbiGetCurrSession Returns the handle associated with the current session.
DbiGetCursorForTable Finds the cursor for the given table.
DbiGetCursorProps Returns the properties of the cursor.
DbiGetDatabaseDesc Retrieves the description of the specified database from the

configuration file.
DbiGetDateFormat Gets the date format for the current session.
DbiGetDirectory Retrieves the current working directory or the default directory.
DbiGetDriverDesc Retrieves a description of a driver.
DbiGetErrorContext After receiving an error code back from a call, enables the

client to probe BDE for more specific error information.
DbiGetErrorEntry Returns the error description of a specified error stack entry.
DbiGetErrorInfo Provides descriptive error information about the last error that

occurred.
DbiGetErrorString Returns the message associated with a given error code.
DbiGetExactRecordCount Retrieves the current exact number of records associated with

the cursor.
DbiGetField Retrieves the data contents of the requested field from the record buffer.
DbiGetFieldDescs Retrieves a list of descriptors for all the fields in the table

associated with the cursor.
DbiGetFieldTypeDesc Retrieves a description of the specified field type.
DbiGetFilterInfo Retrieves information about a specified filter.
DbiGetIndexDesc Retrieves the properties of the given index associated with the

cursor.
DbiGetIndexDescs Retrieves index properties.
DbiGetIndexForField Returns the description of any useful index on the specified

field.
DbiGetIndexSeqNo Retrieves the ordinal number of the index in the index list of

the specified cursor.
DbiGetIndexTypeDesc Retrieves a description of the index type.
DbiGetLdName Retrieves the name of the language driver associated with the

specified object name (table name).
DbiGetLdObj Retrieves the language driver object associated with the given cursor.
DbiGetLinkStatus Returns the link status of the cursor.
DbiGetNetUserName Retrieves the user's network login name. User names should be

available for all networks supported by Microsoft Windows.
DbiGetNextRecord Retrieves the next record in the table associated with the

cursor.
DbiGetNumberFormat Gets the number format for the current session.
DbiGetObjFromName Returns an object handle of the specified type or with the given

name, if any.
DbiGetObjFromObj Returns an object of the specified object type associated with

or derived from a given object.

DbiGetPriorRecord Retrieves the previous record in the table associated with the
given cursor.

DbiGetProp Returns a property of an object.
DbiGetRecord Retrieves the current record, if any, in the table associated with the cursor.
DbiGetRecordCount Retrieves the current number of records associated with the

cursor.
DbiGetRecordForKey Finds and retrieves a record matching a key and positions the

cursor on that record.
DbiGetRelativeRecord Positions the cursor on a record in the table relative to the

current position of the cursor.
DbiGetRintDesc Retrieves the referential integrity descriptor identified by the

referential integrity sequence number and the cursor.
DbiGetSeqNo Retrieves the sequence number of the current record in the table associated

with the cursor.
DbiGetSesInfo Retrieves the environment settings for the current session.
DbiGetSysConfig Retrieves BDE system configuration information.
DbiGetSysInfo Retrieves system status and information.
DbiGetSysVersion Retrieves the system version information, including the BDE

version number, date, and time, and the client interface
version number.

DbiGetTableOpenCount Returns the total number of cursors that are open on the
specified table.

DbiGetTableTypeDesc Returns a description of the capabilities of the table type for
the driver type.

DbiGetTimeFormat Gets the time format for the current session.
DbiGetTranInfoRetrieves the transaction state.
DbiGetVchkDesc Retrieves the validity check descriptor identified by the validity

check sequence number and the cursor.
DbiInit Initializes the BDE environment.
DbiInitRecord Initializes the record buffer to a blank record according to the data types of

the fields.
DbiInsertRecord Inserts a new record into the table associated with the given

cursor.
DbiIsRecordLocked Checks if current record is locked.
DbiIsTableLocked Returns the number of locks of a specified type acquired on the

table associated with the given session.
DbiIsTableShared Determines whether the table is physically shared or not.
DbiLinkDetail Establishes a link between two tables such that the detail table has its

record set limited to the set of records matching the linking key
values of the master table cursor.

DbiLinkDetailToExp Links the detail cursor to the master cursor using an
expression.

DbiLoadDriver Loads a given driver.
DbiMakePermanent Changes a temporary table created by DbiCreateTempTable

into a permanent table.

DbiModifyRecord Modifies the current record of table associated with the cursor
with the data supplied.

DbiNativeToAnsi Translates a string in the native language driver to an ANSI
string.

DbiOpenBlob Prepares the cursor's record buffer to access a BLOB field.
DbiOpenCfgInfoList Returns a handle to an in-memory table listing all the nodes in

the configuration file accessible by the specified path.
DbiOpenDatabase Opens a database in the current session and returns a

database handle.
DbiOpenDatabaseList Creates an in-memory table containing a list of accessible

databases and their descriptions.
DbiOpenDriverList Creates an in-memory table containing a list of driver names

available to the client application.
DbiOpenFamilyList Creates an in-memory table listing the family members

associated with a specified table.
DbiOpenFieldList Creates an in-memory table listing the fields in a specified

table and their descriptions.
DbiOpenFieldTypesList Creates an in-memory table containing a list of field types

supported by the table type for the driver type.
DbiOpenFieldXlt Builds a field translation object that can be used to translate a

logical or physical field type into any other compatible logical
or physical field type.

DbiOpenFileList Opens a cursor on the virtual table containing all the tables
accessible by the client application and their descriptions.

DbiOpenFunctionArgList Returns a list of arguments to a data source function.
DbiOpenFunctionList Returns a description of a data source function.
DbiOpenIndex Opens the index for the table associated with the cursor.
DbiOpenIndexList Opens a cursor on an in-memory table listing the indexes on a

specified table, along with their descriptions.
DbiOpenIndexTypesList Creates an in-memory table containing a list of all supported

index types for the driver type.
DbiOpenLockList Creates an in-memory table containing a list of locks acquired

on the table associated with the cursor.
DbiOpenRintList Creates an in-memory table listing the referential integrity links

for a specified table, along with their descriptions.
DbiOpenSecurityList Creates an in-memory table listing record-level security

information about a specified table.
DbiOpenSPList Creates a table containing information about the stored procedures

associated with the database.
DbiOpenSPParamList Creates a table listing the parameters associated with a

specified stored procedure.
DbiOpenTable Opens the given table for access and associates a cursor handle with the

opened table.
DbiOpenTableList Creates an in-memory table with information about all the

tables accessible to the client application.
DbiOpenTableTypesList Creates an in-memory table listing table type names for the

given driver.
DbiOpenUserList Creates an in-memory table containing a list of users sharing

the same network file.
DbiOpenVchkList Creates an in-memory table containing records with

information about validity checks for fields within the specified
table.

DbiPackTable Optimizes table space by rebuilding the table associated with the cursor and
releasing any free space.

DbiPutBlob Writes data into an open BLOB field.
DbiPutField Writes the field value to the correct location in the supplied record buffer.
DbiQAlloc Allocates a new statement handle for a prepared query.
DbiQExec Executes the previously prepared query identified by the supplied statement

handle and returns a cursor to the result set, if one is
generated.

DbiQExecDirect Executes a SQL or QBE query and returns a cursor to the result
set, if one is generated.

DbiQExecProcDirect Executes a stored procedure and returns a cursor to the result
set, if one is generated.

DbiQFree Frees the resources associated with a previously prepared query identified
by the supplied statement handle.

DbiQGetBaseDescs Returns the original database, table, and field names of the
fields that make up the result set of a query.

DbiQInstantiateAnswer Creates a permanent table from a cursor handle.
DbiQPrepare Prepares a SQL or QBE query for execution, and returns a handle to a

statement containing the prepared query.
DbiQPrepareProc Prepares and optionally binds parameters for a stored

procedure.
DbiQSetParams Associates data with parameter markers embedded within a

prepared query.
DbiQSetProcParams Binds parameters for a stored procedure prepared with

DbiQPrepareProc.
DbiReadBlock Reads a specified number of records (starting from the next position of the

cursor) into a buffer.
DbiRegenIndex Regenerates an index to make sure that it is up-to-date (all

records currently in the table are included in the index and are
in the index order).

DbiRegenIndexes Regenerates all out-of-date indexes on a given table.
DbiRegisterCallBack Registers a callback function for the client application.
DbiRelPersistTableLock Releases the persistent table lock on the specified table.
DbiRelRecordLock Releases the record lock on either the current record of the

cursor or only the locks acquired in the current session.
DbiRelTableLock Releases table locks of the specified type associated with the

current session (the session in which the cursor was created).
DbiRenameTable Renames the table and all of its resources to the new name

specified.

DbiResetRange Removes the specified table's limited range previously
established by the function DbiSetRange.

DbiSaveChanges Forces all updated records associated with the table to be
written to disk.

DbiSetCurrSession Sets the current session of the client application to the session
associated with hSes.

DbiSetDateFormat Sets the date format for the current session.
DbiSetDirectory Sets the current directory for a standard database.
DbiSetFieldMap Sets a field map of the table associated with the given cursor.
DbiSetLockRetry Sets the table and record lock retry time for the current

session.
DbiSetNumberFormat Sets the number format for the current session.
DbiSetPrivateDir Sets the private directory for the current session.
DbiSetProp Sets the specified property of an object to a given value.
DbiSetRange Sets a range on the result set associated with the cursor.
DbiSetTimeFormat Sets the time format for the current session.
DbiSetToBegin Positions the cursor to BOF (just before the first record).
DbiSetToBookMark Positions the cursor to the location saved in the specified

bookmark.
DbiSetToCursor Sets the position of one cursor (the destination cursor) to that

of another (the source cursor).
DbiSetToEnd Positions the cursor to EOF (just after the last record).
DbiSetToKey Positions an index-based cursor on a key value.
DbiSetToRecordNo Positions the cursor of a dBASE or FoxPro table to the given

physical record number.
DbiSetToSeqNo Positions the cursor to the specified sequence number of a

Paradox table.
DbiSortTable Sorts an opened or closed table, either into itself or into a destination table.

There are options to remove duplicates, to enable case-
insensitive sorts and special sort functions, and to control the
number of records sorted.

DbiStartSession Starts a new session for the client application.
DbiSwitchToIndex Allows the user to change the active index order of the given

cursor.
DbiTimeDecode Decodes time into separate components (hours, minutes,

milliseconds).
DbiTimeEncode Encodes separate time components into time for use by

DbiPutField and other functions.
DbiTimeStampDecode Extracts separate encoded date and time components from the

timestamp.
DbiTimeStampEncode Encodes the encoded date and encoded time into a timestamp.
DbiTranslateField Translates a logical or physical field value to any compatible

logical or physical field value.
DbiTranslateRecordStructure Translates the source driver's physical or logical fields to

equivalent physical or logical fields of the destination driver.

DbiTruncateBlob Shortens the size of the contents of a BLOB field, or deletes the
contents of a BLOB field from the record, by shortening it to
zero.

DbiUndeleteRecord Undeletes a dBASE or FoxPro record that has been marked for
deletion (a "soft" delete).

DbiUnlinkDetail Removes a link between two cursors.
DbiValidateProp Validates a property.
DbiVerifyField Verifies that the data specified is a valid data type for the field specified,

and that all validity checks in place for the field are satisfied. It
can also be used to check if a field is blank.

DbiWriteBlock Writes a block of records to the table associated with the cursor.

DbiAcqPersistTableLock {button C
Examples,JI(`>example',`exdbiacqpersisttablelock')} {button
Delphi Examples,JI(`>example',`dexdbiacqpersisttablelock')}
C syntax
DBIResult DBIFN DbiAcqPersistTableLock (hDb, pszTableName, [pszDriverType]);
Delphi syntax
function DbiAcqPersistTableLock (hDb: hDBIDb; pszTableName: PChar;
pszDriverType: PChar): DBIResult stdcall;

Description
DbiAcqPersistTableLock acquires an exclusive persistent lock on the table that prevents
other users from using the table or creating a table of the same name.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Specifies the pointer to table name. For Paradox , if pszTableName is a fully qualified name
of a table, the pszDriverType parameter need not be specified. If the path is not included,
the path name is taken from the current directory of the database associated with hDb.
For SQL databases, this parameter can be a fully qualified name that includes the owner
name.
pszDriverType Type: pCHAR (Input)
Specifies the pointer to the driver type. Optional. For Paradox, dBASE, and FoxPro tables,
this parameter is required if pszTableName has no extension. This parameter is ignored if
the database associated with hDb is a SQL database.
For Paradox tables, pszDriverType is required if the client application wants to overwrite the
default file extension, including the situation where pszTableName is terminated with a
period(.) pszDriverType must be szPARADOX.
If pszTableName does not supply the default extension, and pszTableType is NULL,
DbiOpenTable tries to open the table with the default file extension of all file-based drivers
listed in the configuration file in the order that the drivers are listed.
Usage
This function can be used to acquire an exclusive lock on a non-existent table as a way to
reserve the table name. The function fails if the table is already in use. You cannot use
DbiSetLockRetry to retry persistent locks.
dBASE and FoxPro: This function is not supported for dBASE and FoxPro tables.
Access: This function is not supported for Access tables.
SQL: This function depends on the capabilities of the server. Some servers provide non-
blocking table locks; others provide blocking table locks only; others don't provide table
locking. In no case is table locking truly persistent, however. If table locking is supported
for the server but locks are not held across transactions, the lock is automatically
reacquired after transaction commit. If the application requires a commit, it is responsible
for insuring that the window of exposure between lock release and reacquisition has not
impacted its consistency requirements. This function is provided to enable a degree of
consistency with other drivers. It is recommended that transactions or transactions
combined with explicit locking be used for SQL.
Prerequisites

The client application must have exclusive access to the table; if another user is accessing
the table, the attempt to lock the table fails.
Completion state
The acquired persistent lock must be explicitly released by the client application. To release
the lock, the client application that placed the lock must call DbiRelPersistTableLock.
DbiResult return values
DBIERR_NONE The persistent lock was acquired successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_INVALIDPARAM Either pszTableName or *pszTableName is NULL.
DBIERR_INVALIDFILENAME An invalid file name was specified by pszTableName.
DBIERR_NOSUCHTABLE pszTableName is invalid.
DBIERR_UNKNOWNTBLTYPE The driver type specified by pszTableType is invalid.
DBIERR_LOCKED The table is already opened by another user, or another session.
DBIERR_NOTSUPPORTED This function is not supported for dBASE and FoxPro tables.

See also
DbiOpenLockList

C Examples: DbiAcqPersistTableLock
Place a lock on a non-existent table:

DBIResult fDbiAcqPersistTableLock(hDBIDb hDb, char *TableName, char *Driver)
{
DBIResult rslt;
rslt = Chk(DbiAcqPersistTableLock(hDb, TableName, Driver));
return rslt;

}

Delphi Examples: DbiAcqPersistTableLock
Place a lock on a non-existent table:
This example places and releases persistent lock on the TTable T. This example uses the
following input:
 AcqAndRelPersistTableLock(Table1);

procedure AcqAndRelPersistTableLock(T: TTable);
var
 Drv: PChar;
begin
 with T do begin
 if (TableType = ttParadox) then
 Drv := StrNew(szParadox)
 else if (TableType = ttdBASE) then
 Drv := StrNew(szdBASE)
 else Drv := nil;
 try
 Check(DbiAcqPersistTableLock(DBHandle, PChar(TableName), Drv));
 Check(DbiRelPersistTableLock(DBHandle, PChar(TableName), Drv));
 finally
 if Assigned(Drv) then StrDispose(Drv);
 end;
 end;
end;

DbiAcqTableLock {button C
Examples,JI(`>example',`exdbiacqtablelock')} {button Delphi
Examples,JI(`>example',`dexdbiacqtablelock')}
C syntax
DBIResult DBIFN DbiAcqTableLock (hCursor, eLockType);
Delphi syntax
function DbiAcqTableLock (hCursor: hDBICur; eLockType: DBILockType):
DBIResult stdcall;

Description
DbiAcqTableLock acquires a table-level lock on the table associated with the given cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
eLockType Type: DBILockType (Input)
Specifies the table lock type.

Usage
This function is used to prevent other users from updating a table. It can be used to ensure
that the data read by the client application is the same data that is stored in the table at
that specific moment.
This function is used to acquire a lock of higher precedence than the lock acquired when
the cursor was opened. Locks acquired are owned by the session, not the cursor. If a lock
cannot be obtained, an error is returned.
Redundant locks can be acquired on the table. For each lock acquired, a separate call to
DbiRelTableLock is required to release it.
dBASE and FoxPro: If a READ lock is attempted, it is automatically upgraded to a WRITE
lock.
Paradox: Both READ locks and WRITE locks can be acquired.
Access: Access tables are locked exclusively.
SQL: This function depends on the capabilities of the server. Some servers provide non-
blocking table locks; others provide blocking table locks only; others don't provide table
locking. If table locking is supported for the server but locks are not held across
transactions, the lock is automatically reacquired after transaction commit. If the
application requires a commit, it is responsible for insuring that the window of exposure
between lock release and reacquisition has not impacted its consistency requirements. This
function is provided to enable a degree of consistency with other drivers. It is
recommended that transactions or transactions combined with explicit locking be used for
SQL.
Completion state
Any cursor opened on a table can release locks placed by any cursor opened on that table
within the same session. When the last cursor on the table is closed, the locks on the table
are automatically released.

DbiResult return values
DBIERR_NONE The lock was acquired successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_LOCKEDThe requested lock is not available.

DBIERR_TBLLOCKLIMIT The lock limit has been reached.

See also
DbiRelTableLock, DbiIsTableLocked, DbiOpenLockList, DbiAcqPersistTableLock,
DbiOpenTable

eLockType
eLockType can be one of the following values:
Lock Type Description
dbiWRITELOCKWhen a write lock is placed, it prevents other sessions from placing any

locks. For SQL tables, a write lock is the same as a read lock; behavior
varies according to the server.

dbiREADLOCK When a read lock is placed, it prevents other users from placing a write lock.
For dBASE and FoxPro tables, a read lock is automatically upgraded to
a write lock. For SQL tables, a write lock is the same as a read lock;
behavior varies according to the server.

Note: Exclusive locks and NO locks are not considered acquired table locks. They are
achieved with the DbiOpenTable function, and are owned by the cursor, rather than
the session.

Note: Persistent locks are acquired table locks for Paradox and SQL tables only; acquired
by the DbiAcqPersistTableLock function.

C Examples: DbiAcqTableLock
Place a write lock on an existing table:

DBIResult fDbiAcqTableLock(hDBICur hTmpCur)
{
DBIResult rslt;
rslt = Chk(DbiAcqTableLock(hTmpCur, dbiWRITELOCK));
return rslt;

}

Delphi Examples: DbiAcqTableLock
Place a write lock on an existing table:
Delphi users should use the method TTable.LockTable rather than directly calling
DbiAcqTableLock. This method is defined as:

procedure TTable.LockTable(LockType: TLockType);

The following code places a write lock on a TTable object called Table1:

Table1.LockTable(ltWriteLock);
Place a write lock on the specified cursor's table:
Delphi users should use TTable.LockTable: This example uses the following input:
 fDbiAcqTableLock(Table1.Handle);

procedure fDbiAcqTableLock(hTmpCur: hDBICur);
begin
 Check(DbiAcqTableLock(hTmpCur, dbiWRITELOCK));
end;

DbiActivateFilter {button C
Examples,JI(`>example',`exdbiactivatefilter')} {button Delphi
Examples,JI(`>example',`dexdbiaddfilter')}
C syntax
DBIResult DBIFN DbiActivateFilter (hCursor, [hFilter]);
Delphi syntax
function DbiActivateFilter (hCursor: hDBICur; hFilter: hDBIFilter):
DBIResult stdcall;

Description
DbiActivateFilter activates a filter.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle of the cursor for which the filter is to be activated.
hFilter Type: hDBIFilter (Input)
Specifies the filter handle of the filter to be activated.

Usage
A single cursor can have many filters associated with it. If the filter handle is NULL, all
filters for this cursor are activated. See DbiAddFilter for a detailed explanation of filters.

Prerequisites
The filter must have been successfully added with DbiAddFilter, which returns the filter
handle.

Completion state
Once the filter is activated, the filter controls the record set and all operations for that
cursor are affected. Only those records which meet the criteria defined by the filter will be
retrieved. For example, moving to the next record moves the cursor to the next record that
passes the filter criteria, not to the next sequential record. The filter provides a restricted
view of live data.
DbiResult return values
DBIERR_NONE The filter was activated successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_NOSUCHFILTER The specified filter handle is invalid.

See also
DbiAddFilter, DbiDeactivateFilter, DbiDropFilter

C Examples: DbiActivateFilter
Limiting the records which are available in the table using a filter.
This example limits records to those with a CUST_NO field greater than 1500.
static const char szTblName[] = "cust"; // Name of the table
static const char szTblType[] = szDBASE; // Type of table
static const char szField[] = "CUST_NO"; // Name of the field for the
 // third node of the tree.
static const DFLOAT fConst = 1500.0; // Value of the constant for
 // the second node of the
tree.

void
Filter (void)
{
 hDBIDb hDb = 0; // Handle to the database.
 hDBICur hCur = 0; // Handle to the table.
 DBIResult rslt; // Return value from IDAPI
functions.
 pBYTE pcanExpr; // Structure containing filter
info.
 hDBIFilter hFilter; // Filter handle.
 UINT16 uSizeNodes; // Size of the nodes in the tree.
 UINT16 uSizeCanExpr; // Size of the header information.
 UINT32 uSizeLiterals; // Size of the literals.
 UINT32 uTotalSize; // Total size of the filter
expression.
 UINT32 uNumRecs = 10; // Number of records to display.
 CANExpr canExp; // Contains the header information.
 struct {
 CANBinary BinaryNode;
 CANField FieldNode;
 CANConst ConstantNode;
 }
 Nodes = { // Nodes of the filter tree.
 {
 // Offset 0
 nodeBINARY, // canBinary.nodeClass
 canGT, // canBinary.canOp
 sizeof(Nodes.BinaryNode), // canBinary.iOperand1
 sizeof(Nodes.BinaryNode) + sizeof(Nodes.FieldNode),
 // canBinary.iOperand2
 // Offsets in the Nodes array
 },
 {
 // Offset sizeof(Nodes.BinaryNode)
 nodeFIELD, // canField.nodeClass
 canFIELD, // canField.canOp
 1, // canField.iFieldNum
 0, // canField.iNameOffset: szField is
the
 // literal at offset 0
 },
 {
 // Offset sizeof(Nodes.BinaryNode) + sizeof(Nodes.FieldNode)
 nodeCONST, // canConst.nodeClass

 canCONST, // canConst.canOp
 fldFLOAT, // canConst.iType
 sizeof(fConst), // canConst.iSize
 8, // canConst.iOffset: fconst is the
 // literal at offset
strlen(szField) + 1
 }};

 Screen("*** Filter Example ***\r\n");

 BREAK_IN_DEBUGGER();

 Screen(" Initializing IDAPI...");

 if (InitAndConnect(&hDb) != DBIERR_NONE)
 {
 Screen("\r\n*** End of Example ***");
 return;
 }

 Screen(" Setting the database directory...");
 rslt = DbiSetDirectory(hDb, (pCHAR)szTblDirectory);
 ChkRslt(rslt, "SetDirectory");

 Screen(" Open the %s table...", szTblName);
 rslt = DbiOpenTable(hDb, (pCHAR)szTblName, (pCHAR)szTblType, NULL,
NULL, 0,
 dbiREADWRITE, dbiOPENSHARED, xltFIELD, FALSE, NULL,
 &hCur);
 if (ChkRslt(rslt, "OpenTable") != DBIERR_NONE)
 {
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Go to the beginning of the table
 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Display the %s table...", szTblName);
 DisplayTable(hCur, uNumRecs);

 uSizeNodes = sizeof(Nodes); // Size of the nodes.
 uSizeLiterals = (UINT16)(strlen((pCHAR)szField) + 1 +
sizeof(fConst));
 // Size of the literals.
 uSizeCanExpr = sizeof(CANExpr); // Size of the header information.
 uTotalSize = (UINT16)(uSizeCanExpr + uSizeNodes + uSizeLiterals);
 // Total size of the filter.

 // Initialize the header information
 canExp.iVer = 1; // Version.
 canExp.iTotalSize = (UINT16)uTotalSize; // Total size of the filter.

 canExp.iNodes = 3; // Number of nodes.
 canExp.iNodeStart = uSizeCanExpr; // The offset in the buffer where
the
 // expression nodes start.
 canExp.iLiteralStart = (UINT16)(uSizeCanExpr + uSizeNodes);
 // The offset in the buffer where
the
 // literals start.

 // Allocate contiguous memory space to hold
 // 1) Header information i.e. the CANExpr structure
 // 2) Binary, field and constant nodes i.e. the Nodes structure
 // 3) Literal and constant pool i.e. field names and constant values
 pcanExpr = (pBYTE)malloc(uTotalSize * sizeof(BYTE));
 if (pcanExpr == NULL)
 {
 Screen(" Could not allocate memory...");
 DbiCloseCursor(&hCur);
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Initialize the filter expression by placing header, nodes and
 // pool into pcanexpr

 // Move header information into pcanexpr. pcanExpr will now look as
follows:
 // **canExp**| | |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(pcanExpr, &canExp, uSizeCanExpr);

 // Move node structure into pcanexpr. pcanExpr will now look as
follows:
 // |**canExp*|**Node Structure*| |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[uSizeCanExpr], &Nodes, uSizeNodes);

 // Move the literal into pcanexpr. pcanExpr will now look as follows:
 // |**canExp*|**Node Structure*|***szField |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[uSizeCanExpr + uSizeNodes],
 szField, strlen(szField) + 1); // First literal "CUST_NO"

 // Move the literal into pcanexpr. pcanExpr will now look as follows:
 // |**canExp*|**Node Structure*|***szField*****fConst***|

 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[uSizeCanExpr + uSizeNodes + strlen(szField) + 1],
 &fConst, sizeof(fConst)); // Second literal 1500.00

 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Add a filter to the %s table which will limit"
 " the records\r\n which are displayed to those whose"
 " %s field is greater than %.1lf...", szTblName, szField,
fConst);
 rslt = DbiAddFilter(hCur, 0L, 1, FALSE, (pCANExpr)pcanExpr, NULL,
 &hFilter);
 if (ChkRslt(rslt, "AddFilter") != DBIERR_NONE)
 {
 rslt = DbiCloseCursor(&hCur);
 ChkRslt(rslt, "CloseCursor");
 free(pcanExpr);
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Activate the filter.
 Screen(" Activate the filter on the %s table...", szTblName);
 rslt = DbiActivateFilter(hCur, hFilter);
 ChkRslt(rslt, "ActivateFilter");

 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Display the %s table with the filter set...",
szTblName);
 DisplayTable(hCur, uNumRecs);

 Screen("\r\n Deactivate the filter...");
 rslt = DbiDeactivateFilter(hCur, hFilter);
 ChkRslt(rslt, "DeactivateFilter");

 Screen("\r\n Drop the filter...");
 rslt = DbiDropFilter(hCur, hFilter);
 ChkRslt(rslt, "DropFilter");

 rslt = DbiCloseCursor(&hCur);
 ChkRslt(rslt, "CloseCursor");

 free(pcanExpr);

 Screen(" Close the database and exit IDAPI...");
 CloseDbAndExit(&hDb);

 Screen("\r\n*** End of Example ***");
}

Limiting the records which are available in the table using a comparison filter.
This example shows how to use filters to limit the result set of a table. This example does a
comparison of the first N digits of a character field.
static const char szTblName[] = "cust"; // Name of the table
static const char szTblType[] = szDBASE; // Type of table
static const char szField[] = "CUST_NO"; // Name of the field for the
 // third node of the tree.
static const DFLOAT fConst = 1500.0; // Value of the constant for
 // the second node of the
tree.

void
Filter (void)
{
 hDBIDb hDb = 0; // Handle to the database.
 hDBICur hCur = 0; // Handle to the table.
 DBIResult rslt; // Return value from IDAPI
functions.
 pBYTE pcanExpr; // Structure containing filter
info.
 hDBIFilter hFilter; // Filter handle.
 UINT16 uSizeNodes; // Size of the nodes in the tree.
 UINT16 uSizeCanExpr; // Size of the header information.
 UINT32 uSizeLiterals; // Size of the literals.
 UINT32 uTotalSize; // Total size of the filter
expression.
 UINT32 uNumRecs = 10; // Number of records to display.
 CANExpr canExp; // Contains the header information.
 struct {
 CANBinary BinaryNode;
 CANField FieldNode;
 CANConst ConstantNode;
 }
 Nodes = { // Nodes of the filter tree.
 {
 // Offset 0
 nodeBINARY, // canBinary.nodeClass
 canGT, // canBinary.canOp
 sizeof(Nodes.BinaryNode), // canBinary.iOperand1
 sizeof(Nodes.BinaryNode) + sizeof(Nodes.FieldNode),
 // canBinary.iOperand2
 // Offsets in the Nodes array
 },
 {
 // Offset sizeof(Nodes.BinaryNode)
 nodeFIELD, // canField.nodeClass
 canFIELD, // canField.canOp
 1, // canField.iFieldNum
 0, // canField.iNameOffset: szField is
the
 // literal at offset 0
 },
 {

 // Offset sizeof(Nodes.BinaryNode) + sizeof(Nodes.FieldNode)
 nodeCONST, // canConst.nodeClass
 canCONST, // canConst.canOp
 fldFLOAT, // canConst.iType
 sizeof(fConst), // canConst.iSize
 8, // canConst.iOffset: fconst is the
 // literal at offset
strlen(szField) + 1
 }};

 Screen("*** Filter Example ***\r\n");

 BREAK_IN_DEBUGGER();

 Screen(" Initializing IDAPI...");

 if (InitAndConnect(&hDb) != DBIERR_NONE)
 {
 Screen("\r\n*** End of Example ***");
 return;
 }

 Screen(" Setting the database directory...");
 rslt = DbiSetDirectory(hDb, (pCHAR)szTblDirectory);
 ChkRslt(rslt, "SetDirectory");

 Screen(" Open the %s table...", szTblName);
 rslt = DbiOpenTable(hDb, (pCHAR)szTblName, (pCHAR)szTblType, NULL,
NULL, 0,
 dbiREADWRITE, dbiOPENSHARED, xltFIELD, FALSE, NULL,
 &hCur);
 if (ChkRslt(rslt, "OpenTable") != DBIERR_NONE)
 {
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Go to the beginning of the table
 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Display the %s table...", szTblName);
 DisplayTable(hCur, uNumRecs);

 uSizeNodes = sizeof(Nodes); // Size of the nodes.
 uSizeLiterals = (UINT16)(strlen((pCHAR)szField) + 1 +
sizeof(fConst));
 // Size of the literals.
 uSizeCanExpr = sizeof(CANExpr); // Size of the header information.
 uTotalSize = (UINT16)(uSizeCanExpr + uSizeNodes + uSizeLiterals);
 // Total size of the filter.

 // Initialize the header information

 canExp.iVer = 1; // Version.
 canExp.iTotalSize = (UINT16)uTotalSize; // Total size of the filter.
 canExp.iNodes = 3; // Number of nodes.
 canExp.iNodeStart = uSizeCanExpr; // The offset in the buffer where
the
 // expression nodes start.
 canExp.iLiteralStart = (UINT16)(uSizeCanExpr + uSizeNodes);
 // The offset in the buffer where
the
 // literals start.

 // Allocate contiguous memory space to hold
 // 1) Header information i.e. the CANExpr structure
 // 2) Binary, field and constant nodes i.e. the Nodes structure
 // 3) Literal and constant pool i.e. field names and constant values
 pcanExpr = (pBYTE)malloc(uTotalSize * sizeof(BYTE));
 if (pcanExpr == NULL)
 {
 Screen(" Could not allocate memory...");
 DbiCloseCursor(&hCur);
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Initialize the filter expression by placing header, nodes and
 // pool into pcanexpr

 // Move header information into pcanexpr. pcanExpr will now look as
follows:
 // **canExp**| | |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(pcanExpr, &canExp, uSizeCanExpr);

 // Move node structure into pcanexpr. pcanExpr will now look as
follows:
 // |**canExp*|**Node Structure*| |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[uSizeCanExpr], &Nodes, uSizeNodes);

 // Move the literal into pcanexpr. pcanExpr will now look as follows:
 // |**canExp*|**Node Structure*|***szField |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[uSizeCanExpr + uSizeNodes],
 szField, strlen(szField) + 1); // First literal "CUST_NO"

 // Move the literal into pcanexpr. pcanExpr will now look as follows:
 // |**canExp*|**Node Structure*|***szField*****fConst***|
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[uSizeCanExpr + uSizeNodes + strlen(szField) + 1],
 &fConst, sizeof(fConst)); // Second literal 1500.00

 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Add a filter to the %s table which will limit"
 " the records\r\n which are displayed to those whose"
 " %s field is greater than %.1lf...", szTblName, szField,
fConst);
 rslt = DbiAddFilter(hCur, 0L, 1, FALSE, (pCANExpr)pcanExpr, NULL,
 &hFilter);
 if (ChkRslt(rslt, "AddFilter") != DBIERR_NONE)
 {
 rslt = DbiCloseCursor(&hCur);
 ChkRslt(rslt, "CloseCursor");
 free(pcanExpr);
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Activate the filter.
 Screen(" Activate the filter on the %s table...", szTblName);
 rslt = DbiActivateFilter(hCur, hFilter);
 ChkRslt(rslt, "ActivateFilter");

 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Display the %s table with the filter set...",
szTblName);
 DisplayTable(hCur, uNumRecs);

 Screen("\r\n Deactivate the filter...");
 rslt = DbiDeactivateFilter(hCur, hFilter);
 ChkRslt(rslt, "DeactivateFilter");

 Screen("\r\n Drop the filter...");
 rslt = DbiDropFilter(hCur, hFilter);
 ChkRslt(rslt, "DropFilter");

 rslt = DbiCloseCursor(&hCur);
 ChkRslt(rslt, "CloseCursor");

 free(pcanExpr);

 Screen(" Close the database and exit IDAPI...");

 CloseDbAndExit(&hDb);

 Screen("\r\n*** End of Example ***");
}

Limiting the records which are available in the table using a continue filter.
This example shows how to use filters to limit the result set of a table. This example shows
the use of a canContinue node. A Continue node is used to stop evaluating when a certain
condition is false for the first time. This filter will limit the result set to those customers
living in Hawaii, you are listed in the table before the customer with ID 1624.

static const char szTblName[] = "customer";
static const char szTblType[] = szPARADOX;
static const CHAR szField1[] = "Customer No";
static const CHAR szField2[] = "State/Prov";
static const CHAR szConst[] = "HI";
static const DFLOAT fConst = 1624.0;

void
FiltCont (void)
{
 hDBIDb hDb = 0; // Handle to the database.
 hDBICur hCur = 0; // Handle to the table.
 DBIResult rslt; // Return value from IDAPI functions.
 pBYTE pcanExpr; // Structure containing
 // filter info.
 hDBIFilter hFilter; // Filter handle.
 UINT16 uSizeNodes; // Size of the nodes in the
 // tree.
 UINT16 uSizeCanExpr; // Size of the header
 // information.
 UINT32 uSizeLiterals; // Size of the literals.
 UINT32 uTotalSize; // Total size of the filter
 // expression.
 UINT32 uNumRecs = 10; // Number of records to
 // display.
 CANExpr canExp; // Contains the header
 // information.

 struct {
 CANBinary BinaryNode1;
 CANBinary BinaryNode2;
 CANField FieldNode1;
 CANConst ConstantNode1;
 CANUnary UnaryNode1;
 CANBinary BinaryNode3;
 CANField FieldNode2;
 CANConst ConstantNode2;
 } Nodes = { // Nodes of the filter tree.
 {
 // Offset 0. Node 1. sizeof(Nodes.BinaryNode1)
 nodeBINARY, // canBinary.nodeClass
 canAND, // canBinary.canOp
 sizeof(Nodes.BinaryNode1), // canBinary.iOperand1 - node 2

 sizeof(Nodes.BinaryNode1) + sizeof(Nodes.BinaryNode2) +
 sizeof(Nodes.FieldNode1) + sizeof(Nodes.ConstantNode1),
 // canBinary.iOperand2 - node 5
 },
 {
 // Offset 8. Node 2. sizeof(Nodes.BinaryNode2)
 nodeBINARY, // canBinary.nodeClass
 canEQ , // canBinary.canOp
 sizeof(Nodes.BinaryNode1) + sizeof(Nodes.BinaryNode2),
 // canBinary.iOperand1 - node 3

 sizeof(Nodes.BinaryNode1) + sizeof(Nodes.BinaryNode2) +
 sizeof(Nodes.FieldNode1), // canBinary.iOperand2 - node 4
 },
 {
 // Offset 16. Node 3. sizeof(Nodes.FieldNode1)
 nodeFIELD, // canField.nodeClass
 canFIELD, // canField.canOp
 5, // canField.iFieldNum
 12, // canField.iNameOffset: szField2
 }, // is the literal at offset
 { // strlen(szField1) + 1

 // Offset 24. Node 4. sizeof(Nodes.ConstantNode1)
 nodeCONST, // canConst.nodeClass
 canCONST, // canConst.canOp
 fldZSTRING, // canConst.iType
 3, // canConst.iSize
 31, // canConst.iOffset: fconst is
 }, // the literal at offset
 { // strlen(szField1) + 1 +
 // sizeof(fConst) +
 // strlen(szField2) + 1

 // Offset 34. Node 5. sizeof(Nodes.UnaryNode1)
 nodeUNARY, // canBinary.nodeClass
 canCONTINUE, // canBinary.canOp
 sizeof(Nodes.BinaryNode1) + sizeof(Nodes.BinaryNode2) +

 sizeof(Nodes.FieldNode1) + sizeof(Nodes.ConstantNode1) +
 sizeof(Nodes.UnaryNode1), // canBinary.iOperand1 - node 6
 }, // Offsets in the Nodes array
 {
 // Offset 40. Node 6. sizeof(Nodes.BinaryNode3)
 nodeBINARY, // canBinary.nodeClass
 canNE , // canBinary.canOp
 sizeof(Nodes.BinaryNode1) + sizeof(Nodes.BinaryNode2) +
 sizeof(Nodes.FieldNode1) + sizeof(Nodes.ConstantNode1) +
 sizeof(Nodes.UnaryNode1) + sizeof(Nodes.BinaryNode3),
 // canBinary.iOperand1 - node 7

 sizeof(Nodes.BinaryNode1) + sizeof(Nodes.BinaryNode2) +
 sizeof(Nodes.FieldNode1) + sizeof(Nodes.ConstantNode1) +
 sizeof(Nodes.UnaryNode1) + sizeof(Nodes.BinaryNode3) +
 sizeof(Nodes.FieldNode2), // canBinary.iOperand2 - node 8

 },
 {
 // Offset 48. Node 7. sizeof(Nodes.FieldNode2)
 nodeFIELD, // canField.nodeClass
 canFIELD, // canField.canOp
 1, // canField.iFieldNum
 0, // canField.iNameOffset:
 }, // szField1 is the literal at
 { // offset 0.

 // Offset 56. Node 8. Size 14 Bytes
 nodeCONST, // canConst.nodeClass
 canCONST, // canConst.canOp
 fldFLOAT, // canConst.iType
 sizeof(fConst), // canConst.iSize
 23, // canConst.iOffset: fconst is
 }}; // the literal at offset
 // strlen(szField1) + 1 +
 // strlen(szField2) + 1

 Screen("*** Continue Filter Example ***\r\n");

 BREAK_IN_DEBUGGER();

 Screen(" Initializing IDAPI...");
 if (InitAndConnect(&hDb) != DBIERR_NONE)
 {
 Screen("\r\n*** End of Example ***");
 return;
 }

 Screen(" Setting the database directory...");
 rslt = DbiSetDirectory(hDb, (pCHAR)szTblDirectory);
 ChkRslt(rslt, "SetDirectory");

 Screen(" Open the %s table...", szTblName);
 rslt = DbiOpenTable(hDb, (pCHAR)szTblName, (pCHAR)szTblType, NULL,
NULL, 0,
 dbiREADWRITE, dbiOPENSHARED, xltFIELD, FALSE, NULL,
 &hCur);
 if (ChkRslt(rslt, "OpenTable") != DBIERR_NONE)
 {
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Go to the beginning of the table
 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Display the %s table...", szTblName);
 DisplayTable(hCur, uNumRecs);

 // Size of the nodes.
 uSizeNodes = sizeof(Nodes);
 // Size of the literals.
 uSizeLiterals = strlen(szField1) + 1 + sizeof(fConst) +
 strlen(szField2) + 1 + strlen(szConst)
 + 1;
 // Size of the header information.
 uSizeCanExpr = sizeof(CANExpr);
 // Total size of the filter.
 uTotalSize = uSizeCanExpr + uSizeNodes + uSizeLiterals;
 // Initialize the header information
 canExp.iVer = 1; // Version.
 canExp.iTotalSize = (UINT16)uTotalSize; // Total size of the filter.
 canExp.iNodes = 8; // Number of nodes.
 canExp.iNodeStart = uSizeCanExpr; // The offset in the
 // buffer where the
 // expression nodes
 // start.
 // The offset in the buffer where the literals start.
 canExp.iLiteralStart = (UINT16)(uSizeCanExpr + uSizeNodes);

 // Allocate contiguous memory space to hold
 // 1) Header information i.e. the CANExpr structure
 // 2) Compare, field and constant nodes i.e. the Nodes structure
 // 3) Literal and constant pool i.e. field names and constant values
 pcanExpr = (pBYTE)malloc(uTotalSize * sizeof(BYTE));
 if (pcanExpr == NULL)
 {
 Screen(" Could not allocate memory...");
 DbiCloseCursor(&hCur);
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Initialize the filter expression by placing header, nodes and
 // pool into pcanexpr

 // Move the literal into pcanexpr. pcanExpr will now look as follows:
 // |**canExp*| | |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(pcanExpr, &canExp, uSizeCanExpr); // Insert Header Information

 // Move the literal into pcanexpr. pcanExpr will now look as follows:
 // |**canExp*|**Node Structure*| |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[uSizeCanExpr], &Nodes, uSizeNodes); // Insert Nodes

 // Move the literal into pcanexpr. pcanExpr will now look as follows:

 // |**canExp*|**Node Structure*|*szField1* |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[uSizeCanExpr + uSizeNodes],
 szField1, strlen(szField1) + 1); // First litteral

 // Move the literal into pcanexpr. pcanExpr will now look as follows:
 // |**canExp*|**Node Structure*|*szField1*szField2* |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[(uSizeCanExpr + uSizeNodes +
 strlen(szField1) + 1)],
 szField2, strlen(szField2) + 1); // Second litteral

 // Move the literal into pcanexpr. pcanExpr will now look as follows:
 // |**canExp*|**Node Structure*|*szField1*szField2*fConst* |
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[(uSizeCanExpr + uSizeNodes +
 strlen(szField1) + 1 +
 strlen(szField2) + 1)],
 &fConst, sizeof(fConst)); // First Constant

 // Move the literal into pcanexpr. pcanExpr will now look as follows:
 // |**canExp*|**Node Structure*|*szField1*szField2*fConst*szConst*|
 // | CANExpr | All Nodes | Literal, Constant Pool |
 // |--|
 // 0
sizeof(uTotalSize)
 memmove(&pcanExpr[(uSizeCanExpr + uSizeNodes +
 strlen(szField1) + 1 +
 strlen(szField2) + 1 + sizeof(fConst))],
 szConst, strlen(szConst) + 1); // Second Constant

 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Add a filter to the %s table which will"
 " limit the records\r\n in the result set"
 " to those whose %s field is equal to '%s', until\r\n"
 " the first record where the %s field is equal to
%.1lf...",
 szTblName, szField2, szConst, szField1, fConst);
 rslt = DbiAddFilter(hCur, 0L, 1, FALSE, (pCANExpr)pcanExpr,
 NULL, &hFilter);
 if (ChkRslt(rslt, "AddFilter") != DBIERR_NONE)
 {
 rslt = DbiCloseCursor(&hCur);
 ChkRslt(rslt, "CloseCursor");

 free(pcanExpr);
 CloseDbAndExit(&hDb);
 Screen("\r\n*** End of Example ***");
 return;
 }

 // Activate the filter.
 Screen(" Activate the filter on the %s table...",
 szTblName);
 rslt = DbiActivateFilter(hCur, hFilter);
 ChkRslt(rslt, "ActivateFilter");

 rslt = DbiSetToBegin(hCur);
 ChkRslt(rslt, "SetToBegin");

 Screen("\r\n Display the %s table with the filter"
 " set...", szTblName);
 DisplayTable(hCur, uNumRecs);

 Screen("\r\n Deactivate the filter...");
 rslt = DbiDeactivateFilter(hCur, hFilter);
 ChkRslt(rslt, "DeactivateFilter");

 Screen("\r\n Drop the filter...");
 rslt = DbiDropFilter(hCur, hFilter);
 ChkRslt(rslt, "DropFilter");

 rslt = DbiCloseCursor(&hCur);
 ChkRslt(rslt, "CloseCursor");

 free(pcanExpr);

 Screen(" Close the database and exit IDAPI...");
 CloseDbAndExit(&hDb);

 Screen("\r\n*** End of Example ***");
}

Delphi Examples: DbiActivateFilter
An example for this function is under development and will be provided in an upcoming
Help release.

DbiAddAlias {button C Examples,JI(`>example',`exdbiaddalias')}
{button Delphi Examples,JI(`>example',`dexdbiaddalias')}

C syntax
DBIResult DbiAddAlias([hCfg], pszAliasName, pszDriverType, pszParams,
bPersistent);

Delphi syntax
function DbiAddAlias (hCfg: hDBICfg; pszAliasName: PChar; pszDriverType:
PChar; pszParams: PChar; bPersist: Bool): DBIResult stdcall;

Description
Adds an alias to the configuration file specified by the parameter hCfg.
Parameters
hCfg Type: hDBICfg (Input)
Specifies the configuration file to be used. This parameter is required to be NULL, indicating
that the new alias is added to the configuration file for the current session.
pszAliasName Type: pCHAR (Input)
Pointer to the alias name. This is the name of the new alias that is to be added.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. This is the driver type for the new alias that is to be added. If this
parameter is NULL, the alias will be for the STANDARD database. If szPARADOX, szDBASE,
or szASCII are passed, this will add an entry in the STANDARD database alias generated to
indicate that this will be the preferred driver type. If a driver name is an ODBC driver not
previously added to the configuration file being modified, the BDE adds it automatically.
pszParams Type: pCHAR (Input)
Pointer to a list of optional parameters. This is a list defined as follows:
"AliasOption: Option Data[;AliasOption: Option Data][;...]"
AliasOption must correspond to a value retrieved by DbiOpenCfgInfoList. For a STANDARD
database alias, the only valid parameter is PATH, all others will be ignored (no errors). If the
parameter setting contains a semicolon (;) , enclose the entire setting in quotes ("Option
Data";).
bPersistent Type: BOOL (Input)
This determines the scope of the new alias:
        TRUE Stored in the configuration file for future sessions.
        FALSE For use only in this session.
Examples
To set the path for a STANDARD database use:
"PATH:c:\mydata"

To set the server name and user name for a SQL driver use:
"SERVER NAME: server:/path/database;USER NAME: myname"

Usage
The alias added by this function will have whatever default values are associated with the
driver specified unless they are specifically mentioned in the pszParams parameter. For a
standard database alias, all entries in pszParams except PATH will be ignored. You can use
DbiOpenCfgInfoList to modify the default values after DbiAddAlias has been called.
ODBC: DbiAddAlias automatically adds ODBC drivers and data sources as BDE aliases to
the active session when they aren't currently stored in the configuration file. The BDE also
supports ODBC 3 drivers.
Note: All changes you make to the current session are also applied to any sessions with

sesCFGUPDATE set to ON.

Prerequisites
DbiInit must be called prior to calling DbiAddAlias.
DbiResult return values
DBIERR_INVALIDPARAM Null or invalid alias name. Invalid characters include a colon

(:) and backslash (\). szASCII, szDBASE, and szPARADOX are
entered as a STANDARD alias with the respective default driver.

DBIERR_NONE The alias was added successfully.
DBIERR_NAMENOTUNIQUE Another alias with the same name already exists (applicable

only when bPersistent is TRUE).
DBIERR_OBJNOTFOUND One (or more) of the optional parameters passed in through

pszParams was not found as a valid type in the driver section
of the configuration file.

DBIERR_UNKNOWNDRIVER No driver name found in configuration file matching
pszDriverType.

See Also
DbiInit, DbiOpenCfgInfoList, DbiAddDriver

C Examples: DbiAddAlias
Example 1: Add a STANDARD database alias to the configuration file.
This example uses the following input:

fDbiAddAlias1("TestAlias", "PATH:C:\\BDE32\\EXAMPLES\\TABLES");
DBIResult fDbiAddAlias1(char *AliasName, char *AliasPath)
{
 DBIResult rslt;
 rslt = Chk(DbiAddAlias(NULL, AliasName, NULL, AliasPath, TRUE));
 return rslt;
}

Example 2: Add an InterBase database alias to the configuration file.
This example uses the following input:

fDbiAddAlias2("RemoteAlias",
"PATH:frobosrv:d:/interbas;"
"SERVER NAME:frobosrv:d:/interbas/slim.gdb;"
"USER NAME:test;"
"SQLQRYMODE:SERVER;"
"SQLPASSTHRU MODE:SHARED NOAUTOCOMMIT");

Note: The last parameter in the string does not have a semicolon (;) at the end.
DBIResult fDbiAddAlias2(char *AliasName, char *AliasPath)
{
 DBIResult rslt;
 rslt = Chk(DbiAddAlias(NULL, AliasName, "INTRBASE", AliasPath, TRUE));
 return rslt;
}

Delphi Examples: DbiAddAlias
Example 1: Add a STANDARD database alias to the configuration file.
This example uses the following input:
 fDbiAddAlias1('TestAlias', 'PATH:C:\BDE32\EXAMPLES\TABLES');

procedure fDbiAddAlias1(AliasName, AliasPath: string);
begin
 Check(DbiAddAlias(nil, PChar(AliasName), nil, PChar(AliasPath), True));
end;
Example 2: Add an InterBase database alias to the configuration file.
This example uses the following input:
fDbiAddAlias2('RemoteAlias', 'PATH:frobosrv:d:/interbas;' +
 'SERVER NAME:frobosrv:d:/interbas/slim.gdb;' +
 'USER NAME:test;' +
 'SQLQRYMODE:SERVER;' +
 'SQLPASSTHRU MODE:SHARED NOAUTOCOMMIT');
Note: The last parameter in the string does not have a semicolon (;) at the end.
procedure fDbiAddAlias2(AliasName, AliasPath: string);
begin
 Check(DbiAddAlias(nil, PChar(AliasName), 'INTRBASE', PChar(AliasPath),
True));

end;

DbiAddDriver {button C
Examples,JI(`>example',`exdbiadddriver')} {button Delphi
Examples,JI(`>example',`dexdbiadddriver')}
C syntax
DBIResult DbiAddDriver([hCfg], pszDriverName, pszParams, bPersistent);
Delphi syntax
function DbiAddDriver (hCfg: hDBICfg; pszDriverName: PChar; pszParams:
PChar; bPersist: Bool): DBIResult stdcall;

Description
Adds a driver to the configuration file specified by the parameter hCfg.

Parameters
hCfg Type: hDBICfg (Input)
Specifies the configuration file to be used. This parameter is required to be NULL, indicating
that the new alias is added to the configuration file for the current session.
pszDriverName Type: pCHAR (Input)
Pointer to the driver name. This is the new driver that is to be added.
pszParams Type: pCHAR (Input)
Pointer to a list of optional parameters. This is a list defined as follows:
"AliasOption: Option Data[;AliasOption: Option Data][;...]"
AliasOption must correspond to a value retrieved by DbiOpenCfgInfoList. If the parameter
setting contains a semicolon (;) , enclose the entire setting in quotes ("Option Data";).
bPersistent Type: BOOL (Input)
This determines the scope of the new alias:
        TRUE Stored in the configuration file for future sessions.
        FALSE For use only in this session.

Usage
The driver added by this function will have whatever default values are associated with the
driver unless they are specifically mentioned in the pszParams parameter.
Note: All changes you make to the current session are also applied to any sessions with

sesCFGUPDATE set to ON.

Prerequisites
DbiInit must be called prior to calling DbiAddDriver.
DbiResult return values
DBIERR_INVALIDPARAM Null or invalid driver name. Invalid characters include a colon

(:) and backslash (\).
DBIERR_NONE The driver was added successfully.
DBIERR_NAMENOTUNIQUE Another driver with the same name already exists (applicable

only when bPersistent is TRUE).
DBIERR_OBJNOTFOUND One (or more) of the optional parameters passed in through

pszParams was not found as a valid type in the driver section
of the configuration file.

See Also
DbiInit, DbiOpenCfgInfoList, DbiDeleteDriver, DbiAddAlias

C Examples: DbiAddDriver
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiAddDriver
An example for this function is under development and will be provided in an upcoming
Help release.

DbiAddFilter {button C
Examples,JI(`>example',`exdbiactivatefilter')} {button Delphi
Examples,JI(`>example',`dexdbiaddfilter')}
C syntax
DBIResult DBIFN DbiAddFilter (hCursor, [iClientData], [iPriority],
[bCanAbort], pcanExpr, [pfFilter], phFilter);

Delphi syntax
function DbiAddFilter (hCursor: hDBICur; iClientData: Longint; iPriority:
Word; bCanAbort: Bool; pcanExpr: pCANExpr; pfFilter: pfGENFilter; var
hFilter: hDBIFilter): DBIResult stdcall;

Description
DbiAddFilter adds a filter to a table. When activated with DbiActivateFilter, only those
records in the table that satisfy the filter condition are seen.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle of the table to which the filter is being applied.
iClientData Type: UINT32 (Input)
Not currently used. Must be 0.
iPriority Type: UINT16 (Input)
Not currently used. Must be 1.
bCanAbort Type: BOOL (Input)
Not currently used. Must be FALSE.
pcanExpr Type: pCANExpr (Input)
Pointer to the CANExpr structure, which describes the filter condition as a Boolean
expression in prefix format.
pfFilter Type: pfGENFilter (Input)
Not currently used. Must be NULL.
phFilter Type: phDBIFilter (Output)
Pointer to the filter handle.

Usage
Filters subset result sets. They are similar to a SQL statement's WHERE clause, but are
expressed in prefix format. The filter must be specified by the client as a filter expression
returning TRUE or FALSE. Multiple filters are allowed per table, and if more than one filter is
active, records that violate any active filter condition are not included in the result set.
Filters can be switched on and off when needed (using DbiActivateFilter and
DbiDeactivateFilter), and are automatically dropped when the table is closed.
DbiGetSeqNo is not influenced by filters; the sequence number returned is that of the
record in the original table. DbiGetRecordCount does not guarantee to return an exact
count of all records in the filter set. Use DbiGetExactRecordCount to return the exact count
of all records in the filter set. Drivers can return the count of all records (including those not
satisfying the filter condition) or can return an estimate.
Note: Passthrough SQL query cursors do not support this function currently.
Oracle8: Not supported for object types (ADT, REF, nested table, and VARARRAY).
DbiResult return values
DBIERR_NONE The filter has been successfully added.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_NA The filter condition described by the filter expression could not be handled
by the driver.

See also
DbiActivateFilter, DbiDeactivateFilter, DbiDropFilter

C Examples: DbiAddFilter
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiAddFilter
Add a filter that only shows records that the specified field is not NULL. This example uses
the following input:

fDbiAddFilter(Table1, Table1.FieldByName('Addr1'), hFilter);
Note: When done with filter, call DbiDeactivateFilter and DbiDropFilter. If table is connected

to data aware cnotrols, call TTable.Refresh.
procedure fDbiAddFilter(Table: TTable; Field: TField; var hF: hDBIFilter);
type
 // Setup the node structure
 TNodes = record
 UNode: CANUnary;
 FNode: CANField;
 end;
var
 Nodes: TNodes;
 Expression: CANExpr;
 pCan: pByte;

begin
 // Uninary Node - set the operator to NOT BLANK or (NOT NULL)
 with Nodes.UNode do begin
 nodeClass := nodeUNARY;
 canOp := canNOTBLANK;
 iOperand1 := 12;
 end;
 // Field Node - set the field number and literal pool offset
 with Nodes.FNode do begin
 nodeClass := nodeFIELD;
 canOp := canFIELD2;
 iFieldNum := Field.Index + 1;
 iNameOffset := 0;
 end;
 // Expression - set the expression size, nodes and start positions
 with Expression do begin
 iVer := 1;
 iTotalSize := sizeof(CANExpr) + sizeof(Nodes) + Length(Field.FieldName)
+ 1;

 iNodes := 2;
 iNodeStart := sizeof(CANExpr);
 iLiteralStart := sizeof(CANExpr) + sizeof(Nodes);
 end;
 GetMem(pCan, Expression.iTotalSize * sizeof(BYTE));
 try
 // Move expression, nodes and literal pool into a contiguous memory
space

 Move(Expression, pCan^, sizeof(CANExpr));
 Inc(pCan, sizeof(CANExpr));
 Move(Nodes, pCan^, sizeof(Nodes));
 Inc(pCan, sizeof(Nodes));
 Move(Field.FieldName, pCan^, Length(Field.FieldName) + 1);
 Dec(pCan, sizeof(Nodes) + sizeof(CANExpr));
 // Add and activate the filter
 Check(DbiAddFilter(Table.Handle, 0, 1, False, pCANExpr(pCan), nil, hF));

 Check(DbiActivateFilter(Table.Handle, hF));
 finally
 FreeMem(pCan, Expression.iTotalSize * sizeof(BYTE));
 end;
end;

DbiAddIndex {button C
Examples,JI(`>example',`exdbiaddindex')} {button Delphi
Examples,JI(`>example',`dexdbiaddindex')}
C syntax
DBIResult DBIFN DbiAddIndex (hDb, hCursor, pszTableName, [pszDriverType],
pIdxDesc, [pszKeyviolName]);

Delphi syntax
function DbiAddIndex (hDb: hDBIDb; hCursor: hDBICur; pszTableName: PChar;
pszDriverType: PChar; var IdxDesc: IDXDesc; pszKeyviolName: PChar):
DBIResult stdcall;

Description
DbiAddIndex creates an index on an existing table specified by pszTableName or
associated with the cursor handle specified by hCursor.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
hCursor Type: hDBICur (Input)
Specifies the cursor on the table. Optional. If hCursor is specified, the operation is
performed on the table associated with the cursor. If hCursor is NULL, pszTableName and
pszTableType determine the table to be used. This option is not supported with Access
tables.
pszTableName Type: pCHAR (Input)
Pointer to the table name. Optional. If hCursor is NULL, pszTableName and pszDriverType
determine the table to be used. (If both pszTableName and hCursor are specified,
pszTableName is ignored.)
For Paradox, dBASE, and FoxPro, if pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name
is taken from the current directory of the database associated with hDb.
For SQL databases, this parameter can be a fully qualified name that includes the owner
name.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. For Paradox, dBASE, and FoxPro tables, this parameter
is required if pszTableName has no extension. This parameter is ignored if the database
associated with hDb is a SQL database. pszDriverType can be one of the following values:
szDBASE, szMSACCESS, or szPARADOX.
pIdxDesc Type: pIDXDesc (Input)
Pointer to the index descriptor structure (IDXDesc). The IDXDesc elements required vary by
database driver.
pszKeyviolName Type: pCHAR (Input/Output)
Optional. Pointer to a key violation table name (a buffer of DBIMAXPATHLEN+1 characters).
You can specify a table name or use this parameter to retrieve the name generated by the
BDE. This parameter is not supported for Access tables.
Usage
If a cursor handle is supplied, the function generally does not affect the order or the
position of the cursor. However, adding Paradox primary indexes sets the cursor position to
the beginning of the file.
Index descriptors vary by driver. For details, see IDXDesc and IDXType

dBASE: The client application must have permission to lock the table exclusively.
FoxPro: The client application must have permission to lock the table exclusively.
SQL: The client application must have the appropriate privileges to add indexes. Also, if an
index is added to any SQL table, then any cursors open on that table must be closed and
reopened, to allow for possible changes in the buffer size.
Paradox: The client application must have permission to lock the table exclusively. If
adding a non-maintained Paradox index, only a read lock is required.
Access: You can't add indexes to an open cursor, and Access does not support key
violation tables.
Oracle8: Not supported for object types (ADT, REF, nested table, and VARARRAY).
Prerequisites
If the table name or cursor handle is used to specify the table, the cursor must be opened
exclusively on behalf of the client application, and is closed after the index has been
created. If the index is a maintained or primary Paradox index, the cursor also must be
opened exclusively.
Completion state
Before the cursor is reordered to reflect the newly added index, the application must use or
switch to the index.
DbiResult return values
DBIERR_NONE The index was successfully added.
DBIERR_INVALIDHNDL The specified database handle or the cursor handle (if

specified) is invalid or NULL.
DBIERR_INVALIDPARAM Neither hCursor nor pszTableName was specified.
DBIERR_UNKNOWNTBLTYPE The parameter, pszDriverType is invalid.
DBIERR_PRIMARYKEYREDEFINE The primary index already exists; illegal to define another.
DBIERR_INVALIDINDEXTYPE The index descriptor is invalid.
DBIERR_INVALIDIDXDESC The index descriptor is invalid.
DBIERR_INVALIDFLDTYPE Attempting to index an invalid field type (that is, BLOB field)
DBIERR_INVALIDINDEXNAME The index name or tag name is invalid (usually for dBASE or

FoxPro tables)
DBIERR_NAMEREQUIRED Index name is required.
DBIERR_NAMENOTUNIQUE Index name was not unique.
DBIERR_MUSTUSBASEORDER The default order must be used when adding an index.
DBIERR_NEEDEXCLACCESS Table is opened in share mode when creating a maintained or

primary index.
See also
DbiOpenIndexList, DbiGetIndexDesc, DbiSetToKey, DbiRegenIndex, DbiRegenIndexes,
DbiDeleteIndex, DbiOpenIndex, DbiCloseIndex, DbiSwitchToIndex, DbiCreateTable,
DbiDoRestructure

C Examples: DbiAddIndex
Example 1: Add an index to a Paradox 4.0 or 5.0 version table:
Note: This is a primary index.

DBIResult fDbiAddIndex1(hDBIDb hTmpDb, hDBICur hTmpCur)
{
 DBIResult rslt;
 IDXDesc NewIndex;
 DBIKEY aiKeys = { 1 }; // Field to put index on

 NewIndex.iIndexId = 0;
 NewIndex.bPrimary = TRUE;
 NewIndex.bUnique = TRUE;
 NewIndex.bDescending = FALSE;
 NewIndex.bMaintained = TRUE;
 NewIndex.bSubset = FALSE;
 NewIndex.bExpIdx = FALSE;
 NewIndex.iFldsInKey = 1;
 memcpy(NewIndex.aiKeyFld, aiKeys, sizeof(DBIKEY));
 NewIndex.bCaseInsensitive = FALSE;
 rslt = Chk(DbiAddIndex(hTmpDb, hTmpCur, NULL, NULL, &NewIndex, NULL));

 return rslt;
}

Example 2: Add an index to a Paradox 4.0 or 5.0 version table:
Note: This is a case-insensitive, secondary, maintained index:

DBIResult fDbiAddIndex2(hDBIDb hTmpDb, hDBICur hTmpCur)
{
 DBIResult rslt;
 IDXDesc NewIndex;
 DBIKEY aiKeys = { 2 }; // Field to put index on

 strcpy(NewIndex.szName, "TempIndex");
 NewIndex.bPrimary = FALSE;
 NewIndex.bUnique = FALSE;
 NewIndex.bDescending = FALSE;
 NewIndex.bMaintained = TRUE;
 NewIndex.bSubset = FALSE;
 NewIndex.bExpIdx = FALSE;
 NewIndex.iFldsInKey = 1;
 memcpy(NewIndex.aiKeyFld, aiKeys, sizeof(DBIKEY));
 NewIndex.bCaseInsensitive = TRUE;
 rslt = Chk(DbiAddIndex(hTmpDb, hTmpCur, NULL, NULL, &NewIndex, NULL));

 return rslt;
}

Example 3: Add an index to a dBASE for Windows version table:

DBIResult fDbiAddIndex3(hDBIDb hTmpDb, hDBICur hTmpCur)
{
 DBIResult rslt;
 IDXDesc NewIndex;
 DBIKEY aiKeys = { 2 }; // Field to put index on

 strcpy(NewIndex.szTagName, "TestIndex");
 NewIndex.bPrimary = FALSE;
 NewIndex.bUnique = FALSE;
 NewIndex.bDescending = FALSE;
 NewIndex.bMaintained = TRUE;
 NewIndex.bSubset = FALSE;
 NewIndex.bExpIdx = FALSE;
 NewIndex.iFldsInKey = 1;
 memcpy(NewIndex.aiKeyFld, aiKeys, sizeof(DBIKEY));
 strcpy(NewIndex.szKeyExp, ""); // Although this is not an Expression
index,

 strcpy(NewIndex.szKeyCond, ""); // szKeyExp and szKeyCond must be set
blank

 NewIndex.bCaseInsensitive = FALSE;
 NewIndex.iBlockSize = 0;

 rslt = Chk(DbiAddIndex(hTmpDb, hTmpCur, NULL, NULL, &NewIndex, NULL));
 return rslt;
}

Example 4: Add an expression index to a dBASE for Windows version table:

DBIResult fDbiAddIndex4(hDBIDb hTmpDb, hDBICur hTmpCur, char *Expression)
{
 DBIResult rslt;
 IDXDesc NewIndex;
 DBIKEY aiKeys = { 0 }; // Field to put index on

 strcpy(NewIndex.szTagName, "ExpIndex");
 NewIndex.bPrimary = FALSE;
 NewIndex.bUnique = FALSE;
 NewIndex.bDescending = FALSE;
 NewIndex.bMaintained = TRUE;
 NewIndex.bSubset = FALSE;
 NewIndex.bExpIdx = TRUE;
 NewIndex.iFldsInKey = 0;
 memcpy(NewIndex.aiKeyFld, aiKeys, sizeof(DBIKEY));
 strcpy(NewIndex.szKeyExp, Expression);
 strcpy(NewIndex.szKeyCond, "");
 NewIndex.bCaseInsensitive = FALSE;
 NewIndex.iBlockSize = 0;

 rslt = Chk(DbiAddIndex(hTmpDb, hTmpCur, NULL, NULL, &NewIndex, NULL));
 return rslt;
}

Delphi Examples: DbiAddIndex
Also see TTable.AddIndex in the Delphi online help. TTable.AddIndex will usually handle
most of your indexing needs.
Example 1: Add an index to a Paradox 4.0 or 5.0 version table:
This is a primary index. This example uses the following input:
 fDbiAddIndex1(Table1);

procedure fDbiAddIndex1(Tbl: TTable);
var
 NewIndex: IDXDesc;
begin
 if not Tbl.Exclusive then
 raise EDatabaseError.Create('TTable.Exclusive must be set to ' +
 'true in order to add an index to the table');
 with NewIndex do begin
 iIndexId:= 0;
 bPrimary:= True;
 bUnique:= True;
 bDescending:= False;
 bMaintained:= True;
 bSubset:= False;
 bExpIdx:= False;
 iFldsInKey:= 1;
 aiKeyFld[0]:= 1;
 bCaseInsensitive:= False;
 end;
 Check(DbiAddIndex(Tbl.dbhandle, Tbl.handle, PChar(Tbl.TableName),
 szParadox, NewIndex, nil));
end;

Example 2: Add an index to a Paradox 4.0 or 5.0 version table.
This is a case insensitive, secondary, maintained index. This example uses the following

input:
 fDbiAddIndex2(Table1);

The procedure is defined as:
procedure fDbiAddIndex2(Tbl: TTable);
var
 NewIndex: IDXDesc;
 Buffer: pchar;
begin
 if not Tbl.Exclusive then
 raise EDatabaseError.Create
 ('TTable.Exclusive must be set to true in order to ' +
 'add an index to the table');
 with NewIndex do begin
 szName:= 'NewIndex';
 iIndexId:= 0;
 bPrimary:= False;
 bUnique:= False;
 bDescending:= False;
 bMaintained:= True;
 bSubset:= False;

 bExpIdx:= False;
 iFldsInKey:= 1;
 aiKeyFld[0]:= 2;
 bCaseInsensitive:= True;
 end;
 Check(DbiAddIndex(Tbl.dbhandle, Tbl.handle, PChar(Tbl.TableName),
 szParadox, NewIndex, nil));
end;

Example 3: Add an index to a Paradox 7.0 version table.
This is a secondary unique / descending index. This example uses the following input:
 fDbiAddIndex3(Table1);

The procedure is defined as:
procedure fDbiAddIndex3(Tbl: TTable);
var
 NewIndex: IDXDesc;
begin
 if not Tbl.Exclusive then
 raise EDatabaseError.Create
 ('TTable.Exclusive must be set to true in order to ' +
 'add an index to the table');
 NewIndex.szName := 'NewIndex';
 NewIndex.iIndexId := 0;
 NewIndex.bPrimary := False;
 NewIndex.bUnique := TRUE;
 NewIndex.bDescending := True;
 NewIndex.bMaintained := True;
 NewIndex.bSubset := False;
 NewIndex.bExpIdx := False;
 NewIndex.iFldsInKey := 1;
 NewIndex.aiKeyFld[0]:= 2;
 NewIndex.bCaseInsensitive := True;
 Check(DbiAddIndex(Tbl.dbhandle, Tbl.handle, PChar(Tbl.TableName),
 szParadox, NewIndex, nil));
end;

Example 4: Add an index to a dBASE for Windows version table.
This example uses the following input:
 fDbiAddIndex4(Table1);

The procedure is defined as:
procedure fDbiAddIndex4(Tbl: TTable);
var
 NewIndex: IDXDesc;
begin
 NewIndex.szTagName := 'NewIndex1';
 NewIndex.bPrimary := False;
 NewIndex.bUnique := False;
 NewIndex.bDescending := False;
 NewIndex.bMaintained := True;
 NewIndex.bSubset := False;
 NewIndex.bExpIdx := False;
 NewIndex.iFldsInKey := 1;
 NewIndex.aiKeyFld[0] := 2;

 NewIndex.szKeyExp := ''; // Although this is not an Expression index,
 NewIndex.szKeyCond := ''; // szKeyExp and szKeyCond must be set blank
 NewIndex.bCaseInsensitive := False;
 NewIndex.iBlockSize := 0;
 Check(DbiAddIndex(Tbl.dbhandle, Tbl.handle, PChar(Tbl.TableName),
 szParadox, NewIndex, nil));
end;

Example 5: Add an expression index to a dBASE for Windows version table.
This example uses the following input:
 fDbiAddIndex5(Table1);

The procedure is defined as:
procedure fDbiAddIndex5(Tbl: TTable);
var
 NewIndex: IDXDesc;
begin
 NewIndex.szTagName := 'EXPINDEX';
 NewIndex.bPrimary := False;
 NewIndex.bUnique := False;
 NewIndex.bDescending := False;
 NewIndex.bMaintained := True;
 NewIndex.bSubset := False;
 NewIndex.bExpIdx := True;
 NewIndex.iFldsInKey := 1;
 NewIndex.aiKeyFld[0] := 2;
 NewIndex.szKeyExp := 'UPPER(FIELD1) + UPPER(FIELD2)';
 NewIndex.szKeyCond := '';
 NewIndex.bCaseInsensitive := False;
 NewIndex.iBlockSize := 0;
 Check(DbiAddIndex(Tbl.dbhandle, Tbl.handle, PChar(Tbl.TableName),
 szDBASE, NewIndex, nil));
end;

DbiAddPassword {button C
Examples,JI(`>example',`exdbiaddpassword')} {button Delphi
Examples,JI(`>example',`dexdbiaddpassword')}
C syntax
DBIResult DBIFN DbiAddPassword (pszPassword);
Delphi syntax
function DbiAddPassword (pszPassword: PChar): DBIResult stdcall;
Description
DbiAddPassword adds a password to the current session. This function is supported for
Paradox tables only.

Parameters
pszPassword Type: pCHAR (Input)
Pointer to the password to be added.

Usage
DbiAddPassword provides users with access to a previously encrypted table (adding a
password does not encrypt the table). Examples of operations on an encrypted table
include: opening the table, record and field access on the table, and batch functions (copy,
delete, empty, or restructure). DbiCreateTable and DbiDoRestructure can be used to place
or remove table encryption.
Paradox: Table and field level security is supported for the Paradox driver only.
SQL: This function is not supported with SQL tables. Access rights for SQL drivers are
controlled when the database is opened.

DbiResult return values
DBIERR_NONE The password was successfully added.
DBIERR_PASSWORDLIMIT Maximum number of passwords have already been added.
DBIERR_INVALIDPASSWORD The specified password is invalid (for example, it is too long or

contains invalid characters).

See also
DbiDropPassword, DbiCreateTable, DbiDoRestructure

C Examples: DbiAddPassword
Create a table with a password and add that password to the current session.
If phCur is not NULL, return an open cursor. This example uses the following input:

fDbiAddPassword(hDb, &hTmpCur, "BORLAND C");
DBIResult fDbiAddPassword(hDBIDb hDb, phDBICur phCur, pCHAR pPWD)
{
 DBIResult rslt;
 CRTblDesc TblDesc;
 FLDDesc fldDesc[] = {{ // Field 1 - ALPHA
 1, "MyAlpha", fldZSTRING, fldUNKNOWN, 10, 0,
 0, 0, 0, fldvNOCHECKS, fldrREADWRITE
 }};

 memset((void *) &TblDesc, 0, sizeof(CRTblDesc));
 lstrcpy(TblDesc.szTblName, "COBRA.DB");
 TblDesc.iFldCount = 1;
 TblDesc.pfldDesc = fldDesc;
 TblDesc.bProtected = TRUE;
 lstrcpy(TblDesc.szPassword, pPWD);

 rslt = Chk(DbiAddPassword(pPWD));
 if (rslt != DBIERR_NONE)
 return rslt;

 rslt = Chk(DbiCreateTable(hDb, TRUE, &TblDesc));
 if (rslt != DBIERR_NONE)
 return rslt;

 if (phCur != NULL)
 rslt = Chk(DbiOpenTable(hDb, TblDesc.szTblName, NULL, NULL, NULL, NULL,
 dbiREADWRITE, dbiOPENSHARED, xltFIELD, FALSE, NULL,
phCur));

 return rslt;
}

Delphi Examples: DbiAddPassword
Add a password to the current session.
Delphi users should use TSession.AddPassword rather than directly calling dbiAddPassword.
The method TSession.AddPassword is defined as:
 procedure AddPassword(const Password: string);
The following code adds the password "Hip Hop" to TSession Session:
 Session.AddPassword('Hip Hop');
Add a password to the specified handle's session:
Delphi users should use TSession.AddPassword. See DbiGetCurrSession to get the current
session's handle. This example uses the following input:
fDbiAddPassword(Session3.Handle, 'SPRINT');

The procedure is defined as:
procedure fDbiAddPassword(hSes: hDBISes; Pswd: string);
begin
 Check(DbiSetCurrSession(hSes));
 Check(DbiAddPassword(PChar(Pswd)));
end;

DbiAnsiToNative {button C
Examples,JI(`>example',`exdbiansitonative')} {button Delphi
Examples,JI(`>example',`dexdbiansitonative')}
C syntax
DBIResult DBIFN DbiAnsiToNative (pLdObj, pOemStr, pAnsiStr, iLen,
pbDataLoss);

Delphi syntax
function DbiAnsiToNative (LdObj: Pointer; pNativeStr: PChar; pAnsiStr:
PChar; iLen: Word; var bDataLoss: Bool): DBIResult stdcall;

Description
DbiAnsiToNative translates strings from ANSI to the language driver's native character set.
If the native character set is ANSI, no translation takes place.

Parameters
pLdObj Type: pVOID (Input)
Pointer to the language driver object returned from DbiGetLdObj.
pOemStr Type: pCHAR (Output)
Pointer to the client buffer where the translation string is placed. If pOemStr equals
pAnsiStr, conversion occurs in place.
pAnsiStr Type: pCHAR (Input)
Pointer to the client buffer containing the ANSI data.
iLen Type: UINT16 (Input)
If iLen equals 0, assumes null-terminated string; otherwise iLen specifies the length of the
buffer to convert.
pbDataLoss Type: pBOOL (Output)
Pointer to a client variable. If set to TRUE, the ANSI string cannot map to a character in the
native character set.
Usage
Works on drivers with both ANSI and OEM native character sets. Does not handle multi-byte
character sets, such as Japanese ShiftJIS. If the native character set is ANSI, no translation
takes place. See International Compatibility

DBIResult return values
DBIERR_NONE The translation completed successfully.
DBIERR_INVALIDPARAM A parameter passed to the function is invalid.
DBIERR_NOTSUPPORTED A function is not supported by the driver.
See also
DbiNativeToAnsi, DbiGetLdObj

C Examples: DbiAnsiToNative
Translate the ANSI string into the specified tables's language driver native
character set.
This example uses the following input:

fDbiAnsiToNative(hPXCur, Buffer, ANSIStr);
DBIResult fDbiAnsiToNative(hDBICur hTmpCur, pCHAR OemStr, pCHAR AnsiStr)
{
 DBIResult rslt;
 pVOID LD;
 BOOL Loss;

 rslt = Chk(DbiGetLdObj(hTmpCur, &LD));
 if (rslt != DBIERR_NONE)
 return rslt;

 rslt = Chk(DbiAnsiToNative(LD, OemStr, AnsiStr, 0, &Loss));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (Loss == TRUE)
 return DBIERR_INVALIDLANGDRV;

 return rslt;
}

Delphi Examples: DbiAnsiToNative
Translate a string from the ANSI character set to the language driver's native character set.
This example uses the following input:
 fDbiAnsiToNative(CustTbl, string);

The function is defined as:
function fDbiAnsiToNative(Table: TTable; AnsiStr: string): string;
var
 pDesc: pLDDesc;
 Len: Word;
 Done: Boolean;
begin
 Len := Length(AnsiStr);
 SetLength(Result, Len);
 Check(DbiGetLDObj(Table.Handle, pointer(pDesc)));
 Check(DbiAnsiToNative(pointer(pDesc), PChar(Result), PChar(AnsiStr), Len,
Done));

end;

DbiAppendRecord {button C
Examples,JI(`>example',`exdbiappendrecord')}{button Delphi
Examples,JI(`>example',`dexdbiinsertrecord')}
C syntax
DBIResult DBIFN DbiAppendRecord (hCursor, pRecBuf);
Delphi syntax
function DbiAppendRecord (hCursor: hDBICur; pRecBuff: Pointer): DBIResult
stdcall;

Description
DbiAppendRecord appends a record to the end of the table associated with the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle to the table to which the record is being appended.
pRecBuf Type: pBYTE (Input)
Specifies the pointer to the record buffer.

Usage
The contents of the current record buffer are appended. This function is equivalent to
calling DbiSetToEnd followed by DbiInsertRecord.
dBASE, FoxPro, and Access: This function behaves the same as DbiInsertRecord.
Paradox: For tables with a primary index, where physical reordering of records is forced,
DbiAppendRecord is equivalent to DbiInsertRecord. If referential integrity or validity checks
are applied to the Paradox table, the data is verified prior to appending the record. If any of
the checks fail, an error is returned and the operation is not completed.
SQL: This function behaves the same as DbiInsertRecord.

Prerequisites
A valid cursor handle must be obtained. Other users cannot have a write lock on the table.
The record buffer should be initialized with DbiInitRecord, and data filled in using
DbiPutField.
Completion state
This function leaves the cursor positioned on the inserted record. If there is an active range
and the inserted record falls outside the range, the cursor might be positioned at the
beginning or end of the file.

DbiResult return values
DBIERR_NONE The data was successfully appended.
DBIERR_INVALIDHNDL The specified cursor is invalid or NULL.
DBIERR_INVALIDPARAM The record buffer is NULL.
DBIERR_KEYVIOL The table has a unique index and the inserted key value

conflicts with an existing record's key value.
DBIERR_FOREIGNKEYERR A linking field value does not exist in the corresponding

master table (Paradox only).
DBIERR_MINVALERR The specified data is less than the required minimum value.
DBIERR_MAXVALERR The specified data is greater than the required maximum

value.

DBIERR_LOOKUPTABLEERR One or more of the fields in the record buffer have failed an
existing validity check (Paradox only).

DBIERR_REQDERR A required field in the record buffer was left blank (not
applicable to dBASE or FoxPro).

DBIERR_TABLEREADONLY Table access denied; the cursor does not have write access to
the table.

DBIERR_NOTSUFFTABLERIGHTS Insufficient table rights to append a record (Paradox only).
DBIERR_NOTSUFFSQLRIGHTS Insufficient SQL rights for operation.
DBIERR_NODISKSPACE The record cannot be appended because there is insufficient

disk space.
See also
DbiGetNextRecord, DbiGetPriorRecord, DbiGetRecord, DbiGetCursorProps,
DbiGetRelativeRecord, DbiOpenTable, DbiInitRecord, DbiPutBlob, DbiPutField, DbiVerifyField
For SQL-related restrictions, see DbiInsertRecord.

C Examples: DbiAppendRecord
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiAppendRecord
Append a record to the end of the table associated with the cursor.
Delphi users should use TTable.AppendRecord rather than directly calling dbiAppendRecord.
The TTable.AppendRecord method is defined as:
 procedure AppendRecord(const Values: array of const);
This statement appends a record to a TTable called Customer. Note that NULL values (using
the Pascal nil) are entered for some of the values, but are not required for missing values at
the end of the array argument, for example, after the Discount field.
Customer.AppendRecord([CustNoEdit.Text, CoNameEdit.Text, AddrEdit.Text,
 nil, nil, nil, nil, nil, nil, DiscountEdit.Text]);

DbiApplyDelayedUpdates {button C
Examples,JI(`>example',`exdbiapplydelayedupdates')} {button
Delphi Examples,JI(`>example',`dexdbiapplydelayedupdates')}
C syntax
DBIResult DBIFN EXPORT DbiApplyDelayedUpdates (hCursor,eUpdCmd);

typedef enum // Op types for cached updates cursor
 {
 dbiDelayedUpdCommit = 0 // Commit the updates
 dbiDelayedUpdCancel = 1 // Rollback the updates
 dbiDelayedUpdCancelCurrent = 2 // Cancel current record change
 dbiDelayedUPDPREPARE = 3 // Phase 1 of two-phase commit
 } DBIDelayedUpdCmd;

Delphi syntax
function DbiApplyDelayedUpdates (hCursor: hDBICur; eUpdCmd:
DBIDelayedUpdCmd): DBIResult stdcall;

Description
When the cached updates mode is active, DbiApplyDelayedUpdates writes any changes
made to cached data to the underlying database, or rolls back all modifications made to
the cached data. DbiApplyDelayedUpdates sends to the database a batch of all inserts,
deletes, and modifications made since the last DbiApplyDelayedUpdates function call.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cached updates cursor handle.
eUpdCmd Type: DBIDelayedUpdCmd (Input)
Specifies the operation to be performed on the cached updates cursor.

Usage
After making the changes to table data cached by the cached updates mode, call
DbiApplyDelayedUpdates either to commit (write to the actual table) or rollback the
changes. The rollback operation quickly discards the update information from the cache.
You may continue modifying data in the cached updates mode after calling
DbiApplyDelayedUpdates. When you are ready to write the modified data permanently, call
DbiApplyDelayedUpdates to commit changes to the actual database. When finished,
DbiEndDelayedUpdates closes the cached updates mode.
Use of the cached updates mode is a two-phase process involving the use of the operation
types for the cached updates cursor:
Phase 1: The operation DbiDelayedUpdPrepare causes all changes in the cache to be
applied to the underlying data. Unless being used in a single-user environment, this
operation should always be used within the context of a transaction to allow for error-
recovery in the event of an error during the update. Any errors encountered during this
phase should be handled through callback functions.
Phase 2: The operation dbiDelayedUpdateCommit performs the second phase. After
successfully calling DbiDelayedUpdPrepare directly, follow it with the
dbiDelayedUpdateCommit operation. The internal cache is updated to reflect the fact that
the updates were successfully applied to the underlying database (that is, the successfully
applied records are removed from the cache).
There are two ways to cancel changes made while cached updates are enabled:

The operation dbiDelayedUpdCancel clears the cache and restores the dataset to the state
it was in when:

- the table was opened,
- cached updates were enabled, or
- updates were last successfully applied.

The operation dbiDelayedUpdCancelCurrent restores the current record in the dataset to an
unmodified state. If the record was not modified this call has no effect. This operation is
similar to the dbiDelayedUpdCancel operation but operates only on the current record.
Standard: Every non-blob field is used in determining the record modifications

Prerequisites
A call to DbiBeginDelayedUpdates must have been made.
DbiResult return values
DBIERR_NONE The update information in the temporary cache was successfully written to

the database.
See also
DbiBeginDelayedUpdates, DbiEndDelayedUpdates, Cached updates

C Examples: DbiApplyDelayedUpdates
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiApplyDelayedUpdates
An example for this function is under development and will be provided in an upcoming
Help release.

DbiBatchMove {button C
Examples,JI(`>example',`exdbibatchmove')} {button Delphi
Examples,JI(`>example',`dexdbibatchmove')}
C syntax
DBIResult DBIFN DbiBatchMove (pSrcTblDesc, hSrcCur, pDstTblDesc, hDstCur,
ebatMode, iFldCount, pSrcFldMap, pszIndexName, pszIndexTagName, iIndexId,
[pszKeyviolName], [pszProblemsName], [pszChangedName], p1ProbRecs,
p1KeyvRecs, p1ChangedRecs, bAbortOnFirstProb, bAbortOnFirstKeyviol,
p1RecsToMove, bTransliterate);

Delphi syntax
function DbiBatchMove (pSrcTblDesc: pBATTblDesc; hSrcCur: hDBICur;
pDstTblDesc: pBATTblDesc; hDstCur: hDBICur; ebatMode: eBATMode; iFldCount:
Word; pSrcFldMap: PWord; pszIndexName: PChar; pszIndexTagName: PChar;
iIndexId: Word; pszKeyviolName: PChar; pszProblemsName: PChar;
pszChangedName: PChar; lProbRecs: PLongint; lKeyvRecs: PLongint;
lChangedRecs: PLongint; bAbortOnFirstProb: Bool; bAbortOnFirstKeyviol:
Bool; var lRecsToMove: Longint; bTransliterate: Bool): DBIResult stdcall;

Description
DbiBatchMove is used to append, update, or subtract records from a source table to a
destination table. It can also be used to copy an entire table to a table of a different driver
type.
Parameters
pSrcTblDesc Type: pBATTblDesc (Input)
Optional. Pointer to the source table descriptor (BATTblDesc). If NULL, then hSrcCur is used
to identify the source table. If not NULL, the specified table is opened, and the entire table
is processed.
hSrcCur Type: hDBICur (Input)
Optional. Specifies the cursor handle of the source table; hSrcCur is used only if psrcTab is
NULL. The source table is processed from the current position of the cursor.
pDstTblDesc Type: pBATTblDesc (Input)
Optional. Pointer to the destination table descriptor (BATTblDesc). If NULL, then hDstCur is
used to identify the destination table. If not NULL, the specified table is opened, and the
entire table is processed. Must be specified if mode is batCOPY.
hDstCur Type: hDBICur (Input)
Optional. Specifies the cursor handle of the destination table; hDstCur is used only if
pdstTab is NULL. The destination table is processed from the current position of the cursor.
ebatMode Type: eBATMode (Input)
Specifies the mode; valid modes are batAPPEND, batUPDATE, batAPPENDUPDATE,
batSUBTRACT, or batCOPY. The mode determines how the append operation is used. See
the Usage section for details.
iFldCount Type: UINT16 (Input)
Specifies the number of fields in pSrcFldMap. Optional. Normally set to 0.
pSrcFldMap Type: pUINT16 (Input)
Pointer to an array of field numbers in the source table to be copied; the number of fields in
the array must be equal to iFldCount. Optional. If set to NULL, the fields in the source are
matched from left to right with the fields in the destination. This array is indexed by the
destination field position (0 to n-1) and contains either the source field number (1 to n) to
be matched with the destination or zero to leave the destination field blank or unmodified.
pszIndexName Type: pCHAR (Input)

Pointer to the index name. Optional. This parameter is used only when ebatMode is
batUPDATE, batAPPENDUPDATE, or batSUBTRACT to specify the index used by the
destination table to define matching records.
pszIndexTagName Type: pCHAR (Input)
Pointer to the index tag name. Optional. This parameter is used only when ebatMode is
batUPDATE, batAPPENDUPDATE, or batSUBTRACT to specify the index used by the
destination table to define matching records.
iIndexId Type: UINT16 (Input)
Specifies the index identification number. Optional. This parameter is used only when
ebatMode is batUPDATE, batAPPENDUPDATE, or batSUBTRACT to specify the index used by
the destination table to define matching records.
pszKeyviolName Type: pCHAR (Input)
Optional. Pointer to the Key Violation table name. All records that cause an integrity
violation when inserted or updated into the destination table can be placed here. If NULL,
no Key Violation table is created. If the user supplies a table name, that name is used. If not
NULL and a pointer to a NULL character is specified, BDE generates a name for the
auxiliary table and copies the name back to the location specified by the pointer; therefore,
this area must be at least DBIMAXPATHLEN+1 bytes. If no auxiliary table is created, this
area is set to all NULLs.
pszProblemsName Type: pCHAR (Input)
Optional. Pointer to the Problems table name. Unless the user has overridden the default
behavior with a callback, records are placed in a Problems table if they cannot be placed
into the destination table without trimming data.
If NULL, no Problems table is created. If the user supplies a table name, that name is used.
If not NULL and a pointer to a NULL character is specified, BDE generates a name for the
auxiliary table and copies the name back to the location specified by the pointer; therefore,
this area must be at least DBIMAXPATHLEN+1 bytes. If no auxiliary table is created, this
area is set to all NULLs.
pszChangedName Type: pCHAR (Input)
Optional. Pointer to the Changed table name. A change table is created when
DbiBatchMove is called with ebatMode being either batUPDATE or batAPPENDUPDATE. If
NULL, no Changed table is created. If the user supplies a table name, that name is used. If
not NULL and a pointer to a NULL character is specified, BDE generates a name for the
auxiliary table and copies the name back to the location specified by the pointer; therefore,
this area must be at least DBIMAXPATHLEN+1 bytes. If no auxiliary table is created, this
area is set to all NULLs.
p1ProbRecs Type: pUINT32 (Output)
Pointer to the client variable that receives the number of records that were added, or would
have been added to the Problems table. (When pszProblemsName is NULL, the Problems
table is not actually created. In that case, p1ProbRecs reports the number of records that
would have been added to the Problems table.) Optional. If p1ProbRecs is NULL, the
number of records is not returned.
p1KeyvRecs Type: pUINT32 (Output)
Pointer to the client variable that receives the number of records that were added, or would
have been added to the Key Violations table. (If pszKeyViolName is NULL, the Key Violations
table is not actually created. In that case, p1KeyvRecs reports the number of records that
would have been added to the Key Violations table.) Optional. If p1KeyvRecs is NULL, the
number of records is not returned.
p1ChangedRecs Type: pUINT32 (Output)
Pointer to the client variable that receives the number of records that were added, or would
have been added to the Changed table. (If pszChangedName is NULL, the Changed table is
not actually created. In that case, p1ChangedRecs reports the number of records that

would have been added to the Changed table.) Optional. If p1ChangedRecs is NULL, the
number of records is not returned.
bAbortOnFirstProb Type: BOOL (Input)
Specifies whether to cancel as soon as a record is encountered that would be written to the
Problems table. If TRUE, the operation is canceled and DBIERR_NONE is returned.
bAbortOnFirstKeyviol Type: BOOL (Input)
Specifies whether to cancel as soon as a record is encountered that would be written to the
Key Violations table. If TRUE, the operation is canceled and DBIERR_NONE is returned.
p1RecsToMove Type: pUINT32 (Input/Output)
On input, p1RecsToMove specifies the number of records to be read from the source table.
On output, pointer to the client variable that receives the actual number of records read
from the source table. If p1RecsToMove contains 0 or p1RecsToMove is NULL, all of the
records in the table are processed.
bTransliterate Type: BOOL (Input)
Specifies whether to transliterate character data from one character set to another, when
the source and destination character sets differ. TRUE causes all data in character fields of
the source table to be transliterated into the character set of the destination table.

Usage
Depending on the mode specified in ebatMode, DbiBatchMove can be used in the following
ways:
Mode Use
batAPPEND Adds records from the source table to the destination table.
batUPDATE Overwrites matching records in the destination table, which must have a

unique index. (Records from the source table that don't match are not
added.)

batAPPENDUPDATE Adds non-matching records to the destination table, which
must have a unique index, and overwrites matching records.

batSUBTRACT Deletes matching records from the destination table, which must have a
unique index.

batCOPY Copies a table to a new table of a different driver type. This creates the
destination table with a record structure that minimizes potential data loss.
(See the following section for a description of the method by which field
types are translated.)

Important: For batAPPEND and batCOPY no index is required on the destination table. For
the other three mode options an index is required.

Where an index is required on the destination table, the index is used to find matching
records.
When the source and destination record structures differ in the field size or type, data from
the source table is converted to the size or type of the destination table. If the conversion
is not allowed, an error is returned and no data is transferred.
As each destination record is constructed, the default behavior is to trim any data that does
not fit, possibly producing a NULL value in the destination. To override this default
behavior, the client must register a callback of type cbBATCHRESULT with a client-allocated
callback buffer CBRESTCbDesc (the same structure as is used for DbiDoRestructure). Before
data transfer begins a callback is made for each pair of source and destination fields that
could result in data loss. During this callback, RESTCBDesc.iErrCode is set to
DBIERR_OBJMAYBETRUNCATED, RESTCBDesc.eRestrObjType is set to restrNEWFLD,
RESTCBDesc.iObjNum is set to the field number of the destination field, and
RESTCBDesc.uObjDesc.fldDesc contains the destination FLDDesc. If the client returns

cbrYES from the callback, this field is trimmed. If cbrNO is returned, then any records that
would be trimmed are written to the problems table instead of the destination. If any one
field is marked for no trimming and the data must be trimmed, the entire record is written
to the Problems table.
You can adjust the size of a batch to accommodate server transaction logs that are not big
enough to handle the whole batch. Set the database property dbBATCHCOUNT for the
number of records you want to include in a batch before an auto-commit occurs. The value
you set will override the default and take effect for all subsequent calls of DbiBatchMove.
You can reset the default (32 Kb) by using the BDE Administrator to change the Database
Configuration option BATCH COUNT.
Note: When using a Sybase or Microsoft backend, you cannot do a DbiBatchMove using

eBATMode set to batCOPY to copy a table containing a memo field larger than 32K.
This is a server limitation. You should create the new table, add a unique index, and
then use DbiBatchMove with eBATMode set to batAPPEND instead.

Oracle8: Not supported for object types (ADT, REF, nested table, and VARARRAY).

Prerequisites
If cursors are not passed in, this call acquires a read lock on the source and a write lock on
the destination. If cursors are passed in, the client is responsible for controlling locking
behavior.
Completion state
If the function is called within the context of a transaction on the destination database
handle, it does not modify the transaction.
DbiResult return values
DBIERR_NONE The operation was performed successfully.
DBIERR_INVALIDPARAM Either the source or the destination table identification is invalid.
DBIERR_INVALIDFILENAME The source table name provided is an empty string.

See also
DbiOpenTable, DbiCreateTable, DbiRegisterCallBack, DbiDoRestructure

C Examples: DbiBatchMove
Create and copy table information from a dBASE or FoxPro table to a Paradox
table.
Source table must be a dBASE or FoxPro table. This example uses the following input:

fDbiBatchMove(hDb, &hPXCur, hdBASECur);
DBIResult fDbiBatchMove(hDBIDb hTmpDb, phDBICur phDestCur, hDBICur hSrcCur)
{
 DBIResult rslt;
 CURProps CurProps;
 BATTblDesc TblDesc;

 // Get source cursor properties
 rslt = Chk(DbiGetCursorProps(hSrcCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 TblDesc.hDb = hTmpDb;
 strcpy(TblDesc.szTblName, CurProps.szName);
 strcpy(TblDesc.szTblType, szPARADOX);

 // Delete table if it exists
 rslt = DbiDeleteTable(hTmpDb, CurProps.szName, szPARADOX);
 if ((rslt != DBIERR_NOSUCHFILE) && (rslt != DBIERR_NOSUCHTABLE))
 Chk(rslt);

 // Copy the information from the dBASE table to the Paradox table
 rslt = Chk(DbiBatchMove(NULL, hSrcCur, &TblDesc, NULL, batCOPY,
 0, 0, NULL, NULL, NULL, "KEYVIOL", "PROBLEMS",
"CHANGED",

 NULL, NULL, NULL, FALSE, FALSE, NULL, FALSE));
 if (rslt != DBIERR_NONE)
 return rslt;

 // Open the newly created Paradox table
 rslt = Chk(DbiOpenTable(hTmpDb, CurProps.szName, szPARADOX, NULL, NULL,
0,

 dbiREADWRITE, dbiOPENSHARED, xltFIELD, FALSE, NULL,
phDestCur));

 return rslt;
}

Delphi Examples: DbiBatchMove
Create and copy table information from one table to another.
Because the DBIBatchMove function is a complex function that accepts over 20
parameters, Delphi users are often better served by using the VCL component TBatchMove.
This component is found on the Data Access page of the Component Palette.
To use the TBatchMove component in your application, set the component's Mode,
Mapping, Source, and Destination properties. You can then execute the batch move at
design time by right clicking on the component and choosing Execute from the Speed
Menu. Or you can execute the function at runtime by calling its Execute method. The
following example illustrates using the component at runtime by appending TTables Table1
to Table2:
procedure TForm1.Button1Click(Sender : TObject);
begin
 with BatchMove1 do begin
 Mode := batAppend;
 Source := Table1;
 Destination := Table2;
 Execute;
 end;
end;
Append the source handle's table records to the destination handle's table:
BatchCount is the amount of records to append before committing the transaction. Most
Delphi users should use the TBatchMove component or the TTable.BatchMove method. This
example uses the following input:
 fDbiBatchMove(VendorTbl.Handle, VendorIBTbl.Handle, 500);

The procedure is defined as:
procedure fDbiBatchMove(hSrcCur, hDstCur: hDBICur; BatchCount: Longint);
var
 hDb: hDBIDb;
 Count: Longint;
 Length: Word;
 DBType: string;
begin
 Count := 0;
 // Get the database handle from the destination cursor
 Check(DbiGetObjFromObj(hDBIObj(hDstCur), objDATABASE, hDBIObj(hDb)));
 SetLength(DBType, DBIMAXNAMELEN);
 // Get the database type from the database handle
 Check(DbiGetProp(hDBIObj(hDb), dbDATABASETYPE, PChar(DBType),
DBIMAXNAMELEN,

 Length));
 SetLength(DBType, StrLen(PChar(DbType)));
 if DBType <> 'STANDARD' then
 // If the database is SQL based, set the batch count
 Check(DbiSetProp(hDBIObj(hDb), dbBATCHCOUNT, BatchCount));
 // Append the records
 Check(DbiBatchMove(nil, hSrcCur, nil, hDstCur, batchAPPEND, 0, nil, nil,
 nil, 0, nil, nil, nil, nil, nil, nil, True, True, Count, False));
end;

dbBATCHCOUNT
The database property, dbBATCHCOUNT, lets you control the number of records to include
in a batch before an auto-commit occurs. In this way you can adjust the size of a batch to
accommodate server transaction logs that are not big enough to handle the whole batch.
dbBATCHCOUNT //rw UINT16, batch mod count (records) before auto-commit
The value of the batch count property is obtained from the BDE DB OPEN section of the
Windows Registry:
BATCH COUNT // UINT16, batch mod count (records) before auto-commit
If this option is not present or is zero then the default is the number of records that will fit
in 32k bytes. You can override this value by setting dbBATCHCOUNT and the new value will
take effect for all subsequent DbiBatchMove calls. When DbiBatchMove is called in an
explicit client transaction (inside a DbiBeginTran/DbiEndTran block), the value of batch
count is ignored.

DbiBcdFromFloat {button C
Examples,JI(`>example',`exdbibcdfromfloat')} {button Delphi
Examples,JI(`>example',`dexdbibcdfromfloat')}
C syntax
DBIResult DBIFN DbiBcdFromFloat (piVal, iPrecision, iPlaces, pBcd);
Delphi syntax
function DbiBcdFromFloat (var iVal: Double; iPrecision: Word; iPlaces: Word;
var Bcd: FMTBcd): DBIResult stdcall;

Description
DbBcdFromFloat converts a number in the BDE logical FLOAT format into the BDE logical
binary coded decimal (BCD) format.
Parameters
piVal Type: pDFLOAT (Input)
Specifies the FLOAT data to convert.
iPrecision Type: UINT16 (Input)
Specifies the precision of the BCD number. This number must be 32 for Paradox fields and
usually the iUnits1 value for other drivers.
iPlaces Type: UINT16 (Input)
Specifies the number of decimals of the BCD number.
pBcd Type: pFMTBcd (Output)
Pointer to the client buffer that receives    the BCD number (FMTBcd). The BDE logical BCD
format has a    length which equals (iPrecision 2).
Usage
Due to a lack of high precision support for floating point values on the Intel platform, using
the functions DbiBcdFromFloat and DbiBcdToFloat to convert values with more than 14
significant digits is not recommended. To convert high precision values on the Intel
platform, develop a manual conversion routine that uses the information in the FMTBcd
structure.

See Also
DbiBcdToFloat

C Examples: DbiBcdFromFloat
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiBcdFromFloat
An example for this function is under development and will be provided in an upcoming
Help release.

DbiBcdToFloat {button C
Examples,JI(`>example',`exdbibcdtofloat')} {button Delphi
Examples,JI(`>example',`dexdbibcdtofloat')}
C syntax
DBIResult DBIFN DbiBcdToFloat (pBcd, piVal);
Delphi syntax
function DbiBcdToFloat (var Bcd: FMTBcd; var iVal: Double): DBIResult
stdcall;

Description
DbiBcdToFloat converts a number in the BDE logical binary coded decimal (BCD) format to
the BDE FLOAT format.
Parameters
pBcd Type: pFMTBcd (Input)
Pointer to a FMTBcd structure that specifies the binary coded decimal (BCD) data to
convert.
piVal Type: pDFLOAT (Output)
Pointer to the client buffer that receives the FLOAT number.

Usage
Due to a lack of high precision support for floating point values on the Intel platform, using
the functions DbiBcdFromFloat and DbiBcdToFloat to convert values with more than 14
significant digits is not recommended. To convert high precision values on the Intel
platform, develop a manual conversion routine that uses the information in the FMTBcd
structure.
See Also
DbiBcdFromFloat

C Examples: DbiBcdToFloat
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiBcdToFloat
An example for this function is under development and will be provided in an upcoming
Help release.

DbiBeginDelayedUpdates {button C
Examples,JI(`>example',`exdbibegindelayedupdates')} {button
Delphi Examples,JI(`>example',`dexdbibegindelayedupdates')}
C syntax
DBIResult DBIFN DbiBeginDelayedUpdates (phCursor);
Delphi syntax
function DbiBeginDelayedUpdates (var hCursor: hDBICur): DBIResult stdcall;
Description
DbiBeginDelayedUpdates converts a cursor to a cached updates cursor. Given an open
cursor, prepares for cached updates. Returns a new cursor; the old cursor is no longer
valid.
Parameters
phCursor Type: phDBICur (Input/Output)
On input, specifies the original cursor. On output, returns the new cursor; the old cursor is
no longer valid.

Usage
Use DbiBeginDelayedUpdates to activate the cached updates mode. This feature lets you
retrieve data from a table and make changes to that temporarily cached data without
immediately writing to the actual underlying table. You can make changes over a prolonged
period with a minimum amount of resource locking at the actual database. After modifying
the data, call DbiApplyDelayedUpdates to save changes in the actual table.
Prerequisites
None

Completion state
The record buffer (RecBuffsize) and the bookmark (BookMarksize) increase in size upon
completion of DbiBeginDelayedUpdates. You should call DbiGetCursorProps and reallocate
memory properties for bookmark and record buffers accordingly.
DbiResult return values
DBIERR_NONE The cached updates mode was initiated and the new cached updates cursor

handle was successfully created.
See also
DbiEndDelayedUpdates, DbiApplyDelayedUpdates, Cached updates

C Examples: DbiBeginDelayedUpdates
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiBeginDelayedUpdates
An example for this function is under development and will be provided in an upcoming
Help release.

DbiBeginLinkMode {button C
Examples,JI(`>example',`exdbibeginlinkmode')} {button Delphi
Examples,JI(`>example',`dexdbibeginlinkmode')}
C syntax
DBIResult DBIFN DbiBeginLinkMode (phCursor);
Delphi syntax
function DbiBeginLinkMode (var hCursor: hDBICur): DBIResult stdcall;
Description
DbiBeginLinkMode converts a cursor to a link cursor. Given an open cursor, prepares for
linked access. Returns a new cursor; the old cursor is no longer valid.

Parameters
phCursor Type: phDBICur (Input/Output)
On input, specifies the original cursor. On output, returns the new cursor; the old cursor is
no longer valid.
Usage
Enables linking between tables using DbiLinkDetail. Both master and detail cursors must be
link-enabled before calling DbiLinkDetail. DbiEndLinkMode must be called to end Link mode
before the cursor is closed.
Warning: Using the original cursor (supplied as input) will result in an error when used

with any BDE calls.

DbiResult return values
DBIERR_NONE The cursor was successfully converted to a linked cursor.
See also
DbiEndLinkMode, DbiLinkDetail, DbiLinkDetailToExp, DbiUnlinkDetail, DbiGetLinkStatus

C Examples: DbiBeginLinkMode
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiBeginLinkMode
Create a master/detail link between two tables. The two hDBICur cusrors return linked
handles to both tables. Tables must be open on the indexes to link on. This example only
supports a 'full index' link; if the link is on a composite index, both tables must link on the
complete index. This example uses the following input:
 fDbiBeginLinkMode(CustomerTbl, OrdersTbl, hMas, hDet);

The procedure is defined as:
procedure fDbiBeginLinkMode(MasTbl, DetTbl: TTable; var hMasCur,
 hDetCur: hDBICur);
var
 MasIdxDesc, DetIdxDesc: IDXDesc;
begin
 Check(DbiCloneCursor(MasTbl.Handle, False, False, hMasCur));
 Check(DbiCloneCursor(DetTbl.Handle, False, False, hDetCur));
 Check(DbiGetIndexDesc(hMasCur, 0, MasIdxDesc));
 Check(DbiGetIndexDesc(hDetCur, 0, DetIdxDesc));
 Check(DbiSetToBegin(hMasCur));
 Check(DbiBeginLinkMode(hMasCur));
 Check(DbiBeginLinkMode(hDetCur));
 Check(DbiLinkDetail(hMasCur, hDetCur, MasIdxDesc.iFldsInKey,
 @MasIdxDesc.aiKeyFld, @DetIdxDesc.aiKeyFld));
end;

DbiBeginTran {button C
Examples,JI(`>example',`exdbibegintran')} {button Delphi
Examples,JI(`>example',`dexdbibegintran')}
C syntax
DBIResult DBIFN DbiBeginTran (hDb, eXIL, phXact);
Delphi syntax
function DbiBeginTran (hDb: hDBIDb; eXIL: eXILType; var hXact: hDBIXact):
DBIResult stdcall;

Description
DbiBeginTran begins a transaction on SQL server tables or local (Paradox, dBASE, FoxPro,
Access) tables.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
eXIL Type: eXILType (Input)
Specifies the transaction isolation level.
phXact Type: phDBIXact (Output)
Pointer to the transaction handle.
Usage
This function begins a transaction on the given database. Within a transaction, operations
are not committed automatically, giving the client control over transaction behavior. The
transaction remains active until a call to DbiEndTran is made to end the transaction.
Some servers do not allow Data Definition Language (DDL) statements within a transaction,
or implicitly commit the transaction when a DDL statement is issued. For such servers, DDL
operations are not allowed within a transaction. If table lock release requests cause implicit
commits, a request for a table lock release is held until the transaction is ended.
Servers vary in the availability and behavior of isolation and read repeatability capabilities.
Some SQL drivers support only the server default isolation level. To check the isolation level
actually used, call DbiGetTranInfo after a successful call to DbiBeginTran.
Nested transactions are not supported. If a previously requested transaction is still active,
this function returns an error.
For local transactions, only xlDIRTYREAD is supported.

Prerequisites
A valid database handle must be obtained from a server.
DbiResult return values
DBIERR_NONE The transaction has begun successfully.
DBIERR_ACTIVETRAN There is already an active transaction.

C Examples: DbiBeginTran
Start a transaction on the specified database.
This example uses the following input:

fDbiBeginTran(hDb, xilDIRTYREAD, &xTran);
DBIResult fDbiBeginTran(hDBIDb hTmpDb, eXILType xType, phDBIXact phXact)
{
 DBIResult rslt;
 rslt = Chk(DbiBeginTran(hTmpDb, xType, phXact));
 return rslt;
}

Delphi Examples: DbiBeginTran
Start a transaction on the specified database.
Delphi users should use the TDataBase.StartTransaction method rather than directly calling
DbiBeginTran. This method is defined as:
 procedure TDataBase.StartTransaction;
The following code begins a transaction on a TDataBase object called DataBase1 at the
isolation level specified by the TransIsolation property:
 DataBase1.StartTransaction;
(Note: If a transaction is currently active, Delphi will raise an exception.)
Start a transaction on a database.
If the database is local, set the transaction isolation level to 'Dirty Read' (the only
supported local isolation level). Most Delphi users should use TDatabase.StartTransaction.
This example uses the following input:
 fDbiBeginTran(Database1.Handle, xilREADCOMMITTED, hTran);

The procedure is defined as:
procedure fDbiBeginTran(hTmpDb: hDBIDb; Mode: eXILType; var hXact:
hDBIXact);

var
 DBType: string;
 W: Word;
begin
 SetLength(DBType, DBIMAXNAMELEN);
 Check(DbiGetProp(hDBIObj(hTmpDb), dbDATABASETYPE, PChar(DBType),
 DBIMAXNAMELEN, W));
 SetLength(DBType, StrLen(PChar(DBType)));
 // If the transaction is on a local table, make sure it is set to Dirty
Read

 if (DBType = 'STANDARD') then
 Mode := xilDIRTYREAD;
 Check(DbiBeginTran(hTmpDb, Mode, hXact));
end;

DbiCheckRefresh {button C
Examples,JI(`>example',`exdbicheckrefresh')} {button Delphi
Examples,JI(`>example',`dexdbicheckrefresh')}
C syntax
DBIResult DBIFN DbiCheckRefresh (VOID);
Delphi syntax
function DbiCheckRefresh: DBIResult stdcall;
Description
DbiCheckRefresh checks for remote updates to tables for all cursors in the current session,
and refreshes the cursors if changed.

Usage
DbiCheckRefresh is useful for implementing an auto-refresh function that periodically
refreshes client data. It can be called when a specified time period for the client process
auto-refresh timer has elapsed. To receive a notification on the cursors that were actually
refreshed, install a callback of the type cbTABLECHANGED.
SQL: This function is not operational with SQL drivers.
DbiResult return values
DBIERR_NONE All cursors in the current session have been successfully refreshed.

See also
DbiForceReread, DbiRegisterCallBack

C Examples: DbiCheckRefresh
Refresh all cursors in the current session.
This example uses the following input:

fDbiCheckRefresh();
DBIResult fDbiCheckRefresh(VOID)
{
 DBIResult rslt;
 rslt = Chk(DbiCheckRefresh());
 return rslt;
}

Delphi Examples: DbiCheckRefresh
Refresh all sessions within the application, if needed. This is a good function to place in a
TTimer to refresh data. This example uses the following input:
 fDbiCheckRefresh;

The procedure is defined as:
procedure fDbiCheckRefresh;
var
 OldSession: TSession;
 B: Byte;
begin
 OldSession := Sessions.CurrentSession;
 for B := 0 to (Sessions.Count – 1) do begin
 Sessions.CurrentSession := Sessions.Sessions[B];
 Check(DbiCheckRefresh);
 end;
 Sessions.CurrentSession := OldSession;
end;

DbiCloneCursor {button C
Examples,JI(`>example',`exdbiclonecursor')} {button Delphi
Examples,JI(`>example',`dexdbiclonecursor')}
C syntax
DBIResult DBIFN DbiCloneCursor (hCurSrc, bReadOnly, bUniDirectional,
phCurNew);

Delphi syntax
function DbiCloneCursor (hCurSrc: hDBICur; bReadOnly: Bool; bUniDirectional:
Bool; var hCurNew: hDBICur): DBIResult stdcall;

Description
DbiCloneCursor creates a new cursor (cloned cursor) that is similar to the given cursor
(source cursor).

Parameters
hCurSrc Type: hDBICur (Input)
Specifies the cursor handle of the source cursor.
bReadOnly Type: BOOL (Input)
Specifies whether the cloned cursor access mode is to be read-only or read-write. TRUE
specifies read-only and FALSE specifies read-write.
The client is able to choose the access mode of the cloned cursor only if the access mode
of the source cursor is dbiREADWRITE. If the access mode of the source cursor is
dbiREADONLY, then the access mode of the cloned cursor must be read-only.
bUnidirectional Type: BOOL (Input)
Specifies whether the cloned cursor movement is unidirectional or bidirectional (applies to
SQL tables only). TRUE specifies unidirectional; FALSE specifies bidirectional.
Generally, bidirectional movement is preferable. However, if the client application knows
that the cloned cursor is to access data solely from beginning to end, unidirectional
movement might deliver better performance.
The client is able to choose the type of cursor movement for the cloned cursor only if the
source cursor's bUnidirectional parameter is FALSE (bidirectional). If the source cursor's
bUnidirectionalparameter is TRUE (unidirectional), the cloned cursor can be only
unidirectional.
phCurNew Type: phDBICur (Output)
Pointer to the cursor handle for the cloned cursor.

Usage
DbiCloneCursor provides the client a relatively quick way to get a cursor for a table that is
already opened. The source cursor can be opened on a table or a query. The cloned cursor
can then be used as a regular cursor, inheriting certain properties from the source cursor,
but remaining completely independent in terms of position and ordering.
The cloned cursor inherits the following properties from the source cursor:
· Current index
· Range
· Translate mode
· Share mode
· Position
· Field maps
· Filters

Putting a field map or a filter on a cloned cursor does not affect the source cursor. The
filters of a cloned cursor do not have the same filter handles as the original cursor,
however, the filter ID (obtained with DbiGetFilterInfo) is invariant to the clone. This can be
used to obtain the new filter handle for a given filter.
Positional commands (for example, DbiGetNextRecord) performed on the source cursor
have no effect on the cloned cursor and vice versa.
dBASE and FoxPro: All indexes open on the source cursor are open on the clone.
Access: A cursor that references a table that is opened exclusively cannot be cloned.
Completion state
The returned cursor inherits certain properties from the source cursor but is completely
independent in terms of position and ordering. The cloned cursor must be closed
separately.

DbiResult return values
DBIERR_NONE The cloned cursor was created successfully.
DBIERR_CURSORLIMIT The maximum number of cursors has been exceeded.
DBIERR_INVALIDHNDL The specified source cursor handle is invalid or NULL, or the pointer

to the new cursor handle is NULL.

See also
DbiOpenTable

bReadOnly
The following table illustrates the effect that the access mode of the source cursor has on
the cloned cursor access mode:
Source cursor bReadOnlyCloned cursor
Read-only TRUE Read-only
Read-only FALSE Read-only
Read-write TRUE Read-only
Read-write FALSE Read-write

bUnidirectional
The following table lists the effect of the source cursor's direction on the cloned cursor's
direction:
Source direction bUniDirectional Cloned direction
Unidirectional TRUE Unidirectional
Unidirectional FALSE Unidirectional
Bidirectional TRUE Unidirectional
Bidirectional FALSE Bidirectional

C Examples: DbiCloneCursor
Clone (copy) a cursor and set the specified index. This example uses the following input:

ffDbiCloneCursor(hOrderCur, &hNewCur, "Customer No");
DBIResult fDbiCloneCursor(hDBICur hTmpCurSrc, phDBICur phTmpCurNew, pCHAR
IndexName)

{
 DBIResult rslt;

 rslt = Chk(DbiCloneCursor(hTmpCurSrc, FALSE, FALSE, phTmpCurNew));
 if (rslt != DBIERR_NONE)
 return rslt;

 rslt = Chk(DbiSwitchToIndex(phTmpCurNew, IndexName, NULL, 0, FALSE));

 return rslt;
}

Delphi Examples: DbiCloneCursor
Return a new cursor positioned at the first record.
This example uses the following input:
 fDbiCloneCursor(Table1.Handle, MyNewCursor);

The procedure is defined as:
procedure fDbiCloneCursor(hTmpCur: hDBICur; var hNewCur: hDBICur);
begin
 Check(DbiCloneCursor(hTmpCur, False, False, hNewCur));
 Check(DbiSetToBegin(hNewCur));
 Check(DbiGetNextRecord(hNewCur, dbiNOLOCK, nil, nil));
end;

DbiCloseCursor{button C
Examples,JI(`>example',`exdbiclosecursor')} {button Delphi
Examples,JI(`>example',`dexdbiclosecursor')}
C syntax
DBIResult DBIFN DbiCloseCursor (phCursor);
Delphi syntax
function DbiCloseCursor (var hCursor: hDBICur): DBIResult stdcall;
Description
DbiCloseCursor closes a cursor.
Parameters
phCursor Type: phDBICur (Input)
Pointer to the cursor handle to be closed.
Usage
This function can be used to close all types of cursors. For temporary tables,
DbiCloseCursor removes the table from memory.
If the cursor closed is the last remaining cursor for the table in the current session, then all
locks acquired with DbiAcqTableLock are released.
If the given cursor is valid, the cursor is closed even if an error message is returned. Any
error returned is to inform the client of a potential problem (for example, a network
problem).

Completion state
All resources associated with the cursor are released, including record locks, filters, and all
indexes that have been opened by DbiOpenIndex for that particular cursor. The cursor
handle is invalid after DbiCloseCursor is called (even if an error, such as a network
problem, occurs).

DbiResult return values
DBIERR_NONE The table cursor was successfully closed.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_NODISKSPACE Table could not be saved to disk due to lack of space.
See also
DbiOpenTable, DbiCreateTempTable, DbiCreateInMemTable, DbiQExec, DbiQExecDirect,
DbiOpenTableList, DbiOpenFileList, DbiOpenIndexList, DbiOpenFieldList, DbiOpenVchkList,
DbiOpenRintList, DbiOpenSecurityList, DbiOpenFamilyList, DbiCloneCursor,
DbiCloseDatabase

C Examples: DbiCloseCursor
Close the specified table cursor:
If the cursor is not an open cursor, the function exits. This example uses the following
input:

fDbiCloseCursor(&hCur);
DBIResult fDbiCloseCursor (phDBICur phTmpCur)
{
 DBIResult rslt = DBIERR_NONE;
 if (*phTmpCur != 0)
 rslt = Chk(DbiCloseCursor(phTmpCur));
 return rslt;
}

Delphi Examples: DbiCloseCursor
Close the valid cursor passed in:
If you have opened a cursor with a dbi call, then this example applies. Otherwise, use the
Close method of a Delphi TDataSet descendent component.
This example uses the following input:
 fDbiCloseCursor(hCursor);

The procedure is defined as:
procedure fDbiCloseCursor(phTmpCur: phDBICur);
begin
check(DbiCloseCursor(phTmpCur));

end;

DbiCloseDatabase {button C
Examples,JI(`>example',`exdbiclosedatabase')} {button Delphi
Examples,JI(`>example',`dexdbiclosedatabase')}
C syntax
DBIResult DBIFN DbiCloseDatabase (phDb);
Delphi syntax
function DbiCloseDatabase (var hDb: hDBIDb): DBIResult stdcall;
Description
DbiCloseDatabase closes a database and all cursors associated with the database handle.
Parameters
phDb Type: phDBIDb (Input)
Pointer to the database handle returned by DbiOpenDatabase.
Usage
DbiCloseDatabase releases the provided database handle and any associated cursors.
When closing the standard database handle with DbiCloseDatabase, all dBASE, FoxPro,
Access, Paradox, and Text tables previously opened within this database are closed and the
associated resources released.
SQL: Each database represents one or more connections to a specific SQL server. Closing
the database closes those connections as well as releases other client database resources
that have been acquired.

Prerequisites
DbiInit and DbiOpenDatabase must be called before a valid database handle is available.
Completion state
The client handle, phDb, is set to NULL.

DbiResult return values
DBIERR_NONE The database specified by phDb was closed successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

See also
DbiOpenDatabase, DbiExit, DbiCloseCursor

C Examples: DbiCloseDatabase
Close the database associated with the valid handle passed in:
This example uses the following input:

fDbiCloseDatabase(&hDb);
DBIResult fDbiCloseDatabase(phDBIDb phTmpDb)
{
 DBIResult rslt = DBIERR_NONE;
 if (*phTmpDb != 0)
 rslt = Chk(DbiCloseDatabase(phTmpDb));
 return rslt;
}

Delphi Examples: DbiCloseDatabase
Close the database associated with the valid handle passed in:
Delphi users should call TDatabase.Close rather than directly calling DbiCloseDatabase.
This method is defined as:
 procedure TDatabase.Close;

The following code closes a TDatabase component called MyDatabase:
 MyDatabase.Close;

Close the database associated with the handle:
Most Delphi users should use TDatabase.Close. This example uses the following input:
 fDbiCloseDatabase(hDb);

procedure fDbiCloseDatabase(var hTmpDb: hDBIDb);
begin
 Check(DbiCloseDatabase(hTmpDb));
end;

DbiCloseFieldXlt {button C
Examples,JI(`>example',`exdbiclosefieldxlt')} {button Delphi
Examples,JI(`>example',`dexdbiclosefieldxlt')}
C syntax
DBIResult DBIFN DbiCloseFieldXlt (hXlt);
Delphi syntax
function DbiCloseFieldXlt (hXlt: hDBIXlt): DBIResult stdcall;
Description
DbiCloseFieldXlt closes a field translation object.
Parameters
hXlt Type: hDBIXlt (Input)
Specifies the field translation handle.
DbiResult return values
DBIERR_NONE The translation object was closed successfully.
DBIERR_INVALIDHNDL The specified translation handle is invalid.

See also
DbiOpenFieldXlt, DbiTranslateField

C Examples: DbiCloseFieldXlt
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiCloseFieldXlt
An example for this function is under development and will be provided in an upcoming
Help release.

DbiCloseIndex {button C
Examples,JI(`>example',`exdbicloseindex')} {button Delphi
Examples,JI(`>example',`dexdbicloseindex')}
C syntax
DBIResult DBIFN DbiCloseIndex (hCursor, pszIndexName, iIndexId);
Delphi syntax
function DbiCloseIndex (hCursor: hDBICur; pszIndexName: PChar; iIndexId:
Word): DBIResult stdcall;

Description
DbiCloseIndex closes the specified index for this cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pszIndexName Type: pCHAR (Input)
Specifies the pointer to the index name. pszIndexName cannot be the name of the current
active index of the cursor or a production index.
iIndexId Type: UINT16 (Input)
Currently not used.
Usage
DbiCloseIndex is applicable only with dBASE and FoxPro tables. It is used primarily to
manipulate non-production indexes. DbiCloseIndex cannot close a current index, or a
production index. To close a current index, DbiSwitchToIndex must be called first, to make
another index (or no index) current.
This function does not affect the order of the records or the current position of the cursor.

Prerequisites
The index must be open.
Completion state
Once a production index is closed, it is no longer maintained.

DbiResult return values
DBIERR_NONE The index was successfully closed.
DBIERR_NA Operation is not applicable.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_CANNOTCLOSE The given index is a production index and must stay open.
DBIERR_ACTIVEINDEX The given index is currently used by the cursor to order the result

set.
DBIERR_NOSUCHINDEX The given index is either not opened or no such index exists for the

table.

See also
DbiSwitchToIndex, DbiOpenTable, DbiOpenIndex

C Examples: DbiCloseIndex
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiCloseIndex
Close the specified index for this cursor.
This example uses the following input:
 fDbiCloseIndex(Table2.Handle, 'SYMBOL');

procedure fDbiCloseIndex(hTmpCur: hDBICur; IndexName: string);
begin
 Check(DbiCloseIndex(hTmpCur, PChar(IndexName), 0));
end;

DbiCloseSession {button C
Examples,JI(`>example',`exdbiclosesession')} {button Delphi
Examples,JI(`>example',`dexdbiclosesession')}
C syntax
DBIResult DBIFN DbiCloseSession (hSes);
Delphi syntax
function DbiCloseSession (hSes: hDBISes): DbiResult stdcall;
Description
DbiCloseSession closes the session associated with the given session handle.
Parameters
hSes Type: hDBISes (Input)
Specifies the session handle.
Completion state
When a session is closed, all resources (database handles, cursors, table level locks, and
record level locks) attached to the given session are released. Any buffers that BDE has
allocated that are specific to the session are also released. If hSes is the session handle of
the current session, the client application is set to the default session after DbiCloseSession
is completed. The client application cannot close the default session without exiting the
client.
DbiResult return values
DBIERR_NONE The session specified by hSes was closed successfully.
DBIERR_INVALIDSESHANDL The specified session handle is invalid or NULL, or the session has

already been closed.

See also
DbiGetCurrSession, DbiSetCurrSession, DbiStartSession, DbiGetSysInfo, DbiGetSesInfo

C Examples: DbiCloseSession
Close the current session.
DbiCloseSession releases all session resources. This example uses the following input:

fDbiCloseSession();
DBIResult fDbiCloseSession(VOID)
{
 DBIResult rslt;
 hDBISes hSes;

 rslt = Chk(DbiGetCurrSession(&hSes));
 if (rslt != DBIERR_NONE)
 return rslt;

 rslt = Chk(DbiCloseSession(hSes));

 return rslt;
}

Delphi Examples: DbiCloseSession
Close the current session.
Delphi users should use TSession.Close rather than directly calling dbiCloseSession. The
method TSession.Close is defined as:
 procedure TSession.Close;

The following code closes TSession Session:
 Session.Close;

Close the session associated with the handle.
Most Delphi users should use Session.Close or the TSession component. This example uses
the following input:
 DbiCloseSession(hSes);

procedure fDbiCloseSession(hTmpSes: hDBISes);
begin
 Check(DbiCloseSession(hTmpSes));
end;

DbiCompareBookMarks {button C
Examples,JI(`>example',`exdbicomparebookmarks')} {button
Delphi Examples,JI(`>example',`dexdbicomparebookmarks')}
C syntax
DBIResult DBIFN DbiCompareBookMarks (hCur, pBookMark1, pBookMark2,
pCmpBkmkResult);

Delphi syntax
function DbiCompareBookMarks (hCur: hDBICur; pBookMark1: Pointer;
pBookMark2: Pointer; var CmpBkmkResult: Word): DBIResult stdcall;

Description
DbiCompareBookMarks compares the relative positions of two bookmarks associated with
the cursor.

Parameters
hCur Type: hDBICur (Input)
Specifies the cursor handle.
pBookMark1 Type: pBYTE (Input)
Specifies the pointer to the first bookmark.
pBookMark2 Type: pBYTE (Input)
Specifies the pointer to the second bookmark.
pCmpBkmkResult Type: pCMPBkMkRslt (Output)
Pointer to the client variable that receives the comparison result.

Usage
Both bookmarks must be placed on cursors opened on the same table with the same order.
Note: Comparing bookmarks from cursors with different orders or that are unstable can

lead to unpredictable results.
Prerequisites
Valid bookmarks must have been obtained with DbiGetBookMark.

DbiResult return values
DBIERR_NONE Bookmarks were compared successfully.
DBIERR_INVALIDHNDL The specified cursor is invalid or NULL.
DBIERR_INVALIDPARAM At least one of the following parameters is NULL: pBookMark1,

pBookMark2.
DBIERR_INVALIDBOOKMARK Bookmarks are incompatible or corrupt.

See also
DbiGetCursorProps, DbiGetBookMark, DbiSetToBookMark

pCmpBkmkResult
Comparison results can be:
Result Description
CMPLess Bookmark1 is before Bookmark2 in the result set.
CMPEql Bookmark1 is the same as Bookmark2.
CMPGtr Bookmark1 is after Bookmark2 in the result set.
CMPKeyEql Bookmark1 and Bookmark2 have the same key value. Used in cases involving

non-unique keys when it is uncertain if two bookmarks represent the same
record.

C Examples: DbiCompareBookMarks
Compare the relative locations of two different bookmarks in a table.
This example uses the following input:

fDbiCompareBookMarks(hPXCurEx, BookMark1, BookMark2);
DBIResult fDbiCompareBookMarks(hDBICur hCur, pBYTE pBk1, pBYTE pBk2)
{
 DBIResult rslt;
 CMPBkMkRslt CmpRslt;
 Chk(DbiCompareBookMarks(hCur, pBk1, pBk2, &CmpRslt));
 return rslt;
}

Delphi Examples: DbiCompareBookMarks
Compare the relative positions of two bookmarks associated with the cursor.
See also the method GetBookmark associated with a TTable, TQuery, and TStoredProc. This
example uses the following input:
 Compare := fdbiCompareBookMarks(Table1, BookMark25, BookMark50);

function fdBICompareBookMarks(DataSet: TDataSet; Bookmark1, Bookmark2:
TBookmark): Integer;

var
 Compare: Integer;
begin
 Check(DbiCompareBookMarks(DataSet.Handle, Bookmark1, Bookmark2, Compare));
 Result:= Compare;
end;

DbiCompareKeys {button C
Examples,JI(`>example',`exdbicomparekeys')} {button Delphi
Examples,JI(`>example',`dexdbicomparekeys')}
C syntax
DBIResult DBIFN DbiCompareKeys (hCursor, pKey1, [pKey2], iFields, iLen,
piResult);

Delphi syntax
function DbiCompareKeys (hCursor: hDBICur; pKey1: Pointer; pKey2: Pointer;
iFields: Word; iLen: Word; var iResult: SmallInt): DBIResult stdcall;

Description
DbiCompareKeys compares two key values based on the current index of the cursor.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pKey1 Type: pBYTE (Input)
Pointer to the first key value. The key is assumed to be in physical format.
pKey2 Type: pBYTE (Input)
Pointer to the second key value. Optional. If pKey2 is NULL, the key value is extracted from
the current record. If the key is specified, it is assumed to be in physical format.
iFields Type: UINT16 (Input)
Specifies the number of fields to be used for composite keys. iFields and iLen together
indicate how much of the key is to be used for matching. If both are 0, the entire key is
used. If a match is required on a given field of the key, all the key fields preceding it in the
composite key must also be supplied for a match. Only character fields can be matched for
a partial key; all other field types must be fully matched.
For partial key matches, iFields must be equal to the number of key fields preceding (if any)
the field being partially matched.
iLen Type: UINT16 (Input)
Specifies a partial length in the last field to be used for composite keys; works in
conjunction with iFields. The last field of the composite key must be a character type if iLen
not equal to 0.
piResult Type: pINT16 (Output)
Pointer to the client variable that receives the compared result.

Usage
This function is used to compare two key values. Keys can be obtained by using
DbiExtractKey.

Prerequisites
There must be an active index.
DbiResult return values
DBIERR_NONE The key fields were compared successfully.
DBIERR_NOCURREC pKey2 is NULL and the current record is invalid.

See also
DbiExtractKey

piResult
The result can be one of the following values:
Result Description
-1 pKey1 < pKey2
0 pKey1 = pKey2
1 pKey1 > pKey2

C Examples: DbiCompareKeys
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiCompareKeys
An example for this function is under development and will be provided in an upcoming
Help release.

DbiCopyTable {button C
Examples,JI(`>example',`exdbicopytable')} {button Delphi
Examples,JI(`>example',`dexdbicopytable')}
C syntax
DBIResult DBIFN DbiCopyTable (hDb, bOverwrite, pszSrcTableName,
pszSrcDriverType, pszDestName);

Delphi syntax
function DbiCopyTable (hDb: hDBIDb; bOverWrite: Bool; pszSrcTableName:
PChar; pszSrcDriverType: PChar; pszDestTableName : PChar): DBIResult
stdcall;

Description
DbiCopyTable duplicates the source table, to a destination table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
bOverwrite Type: BOOL (Input)
Specifies whether to overwrite an existing destination table or not. If TRUE, the table is
overwritten; if FALSE, an error is returned if the destination table already exists.
pszSrcTableName Type: pCHAR (Input)
Pointer to the name of the table to be copied. pszSrcTblName can include a file extension,
in which case pszSrcDriverType is ignored.
pszSrcDriverType Type: pCHAR (Input)
Pointer to the driver type, when pszTblName specifies a table name without a file
extension. Required with Paradox, dBASE, FoxPro, and Access tables if no table extension is
specified in pszSrcTableName.
pszDestName Type: pCHAR (Input)
Pointer to the name of the destination table.

Usage
This function is used to copy tables of the same driver type. It cannot copy a table across
databases or driver types. To transfer data from one database type to another, see
DbiBatchMove.
Driver-specific rules must be followed in defining family members:
Access: All Access objects in the .MDB file that are associated with the table are copied.
dBASE and FoxPro: For dBASE and FoxPro tables, default family members include

· The table (usually ends with a .DBF extension)
· BLOB file (usually <tablename>.DBT or <tablename>.FPT)
· Production index (usually <tablename>.MDX or <tablename>.CDX)

Non-production indexes are not included in the default family.
Paradox: For Paradox tables, default family members include

· The table (<tablename>. DB)
· The BLOB file (<tablename>.MB)
· All indexes
· Any <tablename>. VAL file

If the table is encrypted and the master password is not available, the copy fails. See
DbiAddPassword.

SQL: The DbiCopyTable function copies only the table itself. The indexes are not copied.
Oracle8: Not supported for object types (ADT, REF, nested table, and VARARRAY).
Prerequisites
A read lock is required on source dBASE, FoxPro, Access, and Paradox tables. For SQL
tables, at least a READ (SELECT) privilege is required on the source table.
Completion state
The source table is copied to the destination table.

DbiResult return values
DBIERR_NONE The table was successfully copied.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_INVALIDPARAM The source or destination table name was not specified.
DBIERR_INVALIDFILENAME An empty string or invalid filename was specified for the source or

destination table name.
DBIERR_FILEEXISTS The table already exists, and bOverwrite specifies not to overwrite it.
DBIERR_FAMFILEINVALID The family file is corrupt.
DBIERR_NOSUCHTABLE The source table does not exist.
DBIERR_NOTSUFFTABLERIGHTS The user does not have permission to delete the existing destination

table (Paradox only).
DBIERR_NOTSUFFFAMILYRIGHTS The user does not have rights to family members (Paradox only).
DBIERR_LOCKEDThe table is locked by another user.

See also
DbiBatchMove

C Examples: DbiCopyTable
Copy a source table into a destination table.
If pNewCur is not NULL, DbiCopyTable returns a cursor handle from the newly created table.
This example uses the following input:

fDbiCopyTable(hDb, "STOCK.DB", "NEWSTOCK.DB", &hNewCur);
DBIResult fDbiCopyTable(hDBIDb hTmpDb, pCHAR SourceTbl, pCHAR DestTbl,
phDBICur pNewCur)

{
 DBIResult rslt;
 rslt = Chk(DbiCopyTable(hTmpDb, TRUE, SourceTbl, NULL, DestTbl));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (pNewCur != NULL)
 rslt = Chk(DbiOpenTable(hTmpDb, DestTbl, NULL, NULL, NULL, 0,
dbiREADWRITE,

 dbiOPENSHARED, xltFIELD, FALSE, NULL, pNewCur));
 return rslt;
}

Delphi Examples: DbiCopyTable
Copy a source table into a destination table.
If the destination table exists, it is overwritten.If the tables are Paradox, dBASE, FoxPro, or
Access, you must supply a file extension. This example uses the following input:
 fDbiCopyTable(Table1.dbhandle, 'CUSTOMER.DB', 'CUSTOMER2.DB');

procedure fDbiCopyTable(hTmpDb: hDbiDb; SrcTableName: string; DestName:
string);

begin
 Check(DbiCopyTable(hTmpDb, True, PChar(SrcTableName), nil,
PChar(DestName)));

end;

DbiCreateInMemTable {button C
Examples,JI(`>example',`exdbicreateinmemtable')} {button Delphi
Examples,JI(`>example',`dexdbicreateinmemtable')}
C syntax
DBIResult DBIFN DbiCreateInMemTable (hDb, pszName, iFields, pfldDesc,
phCursor);

Delphi syntax
function DbiCreateInMemTable (hDb: hDBIDb; pszName: PChar; iFields: Word;
pfldDesc: pFLDDesc; var hCursor: hDBICur): DBIResult stdcall;

Description
DbiCreateInMemTable creates a temporary in-memory table.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszName Type: pCHAR (Input)
Pointer to the table name.
iFields Type: UINT16 (Input)
Specifies the number of fields in the table.
pfldDesc Type: pFLDDesc (Input)
Pointer to an array of field descriptor (FLDDesc) structures.
phCursor Type: phDBICur (Output)
Pointer to the cursor handle.
Usage
Only logical BDE field types are supported by the in-memory table. Physical field types are
not supported. The table is kept in memory if possible, but it could be swapped to disk if
the table becomes too big. Maximum table size is 512M with a maximum record size of 16K
with a maximum of 1024 fields. Logical Autoincrement and BLOB fields are not supported.
Indexes are not supported. Records cannot be deleted(DbiDeleteRecord).
DbiGetExactRecordCount (Delphi's TTable.RecordCount) is not supported; instead use
DbiGetRecordCount.

Completion state
This function returns a cursor on the temporary table in phCursor. The table will be deleted
when the cursor is closed.

DbiResult return values
DBIERR_NONE The table was created successfully.
DBIERR_NODISKSPACE The table could not be saved to disk due to lack of space.

See also
DbiCreateTempTable, DbiCreateTable

C Examples: DbiCreateInMemTable
Create an in-memory table with two fields, one alpha, and one numeric.
This example uses the following input:

fDbiCreateInMemTable(hDb, &hInMemCur);
DBIResult fDbiCreateInMemTable(hDBIDb hTmpDb, phDBICur phTmpCur)
{
 DBIResult rslt;
 UINT16 NumFields;

 FLDDesc fldDesc[] = {
 { // Field 1 - ALPHA
 1, "MyAlpha", fldZSTRING, fldUNKNOWN, 10, 0,
 0, 0, 0, fldvNOCHECKS, fldrREADWRITE
 },
 { // FIELD 2 - NUMERIC
 2, "MyNumber", fldFLOAT, fldUNKNOWN, 0, 0, 0,
 0, 0, fldvNOCHECKS, fldrREADWRITE
 }
 };
 NumFields = sizeof(fldDesc) / sizeof(FLDDesc);
 rslt = Chk(DbiCreateInMemTable(hTmpDb, "InMemTbl", NumFields, fldDesc,
 phTmpCur));
 return rslt;
}

Delphi Examples: DbiCreateInMemTable
Example 1: Create an in-memory table using a custom field descriptor.

procedure MakeInMemTable1;
const
 fldDes: array[0..2] of FLDDesc = (
 // Field 1 - ALPHA
 (iFldNum: 1;
 szName: 'ALPHA';
 iFldType: fldZSTRING;
 iSubType: fldUNKNOWN;
 iUnits1: 10;
 iUnits2: 0;
 iOffset: 0;
 iLen: 0;
 iNullOffset: 0;
 efldvVchk: fldvNOCHECKS;
 efldrRights: fldrREADWRITE),
 // Field 2 - NUMERIC
 (iFldNum: 2;
 szName: 'NUMERIC';
 iFldType: fldFLOAT;
 iSubType: fldUNKNOWN;
 iUnits1: 0;
 iUnits2: 0;
 iOffset: 0;
 iLen: 0;
 iNullOffset: 0;
 efldvVchk: fldvNOCHECKS;
 efldrRights: fldrREADWRITE),
 // Field 3 - SHORT
 (iFldNum: 3;
 szName: 'SHORT';
 iFldType: fldINT16;
 iSubType: fldUNKNOWN;
 iUnits1: 0;
 iUnits2: 0;
 iOffset: 0;
 iLen: 0;
 iNullOffset: 0;
 efldvVchk: fldvNOCHECKS;
 efldrRights: fldrREADWRITE));
var
 hIMcur : hDBICur;
 hNilDB : hDBIDb;
begin
 Check(dbiOpenDatabase(nil, nil, dbiREADWRITE, dbiOPENSHARED, nil, 0, nil,
 nil, hNilDB));
 Check(dbiCreateInMemTable(hNilDB, 'InMemTbl', 3, @fldDes, hIMCur));
end;

Example 2: Create an in-memory table by borrowing the field descriptor from an

existing Paradox table.
The existing table is passed in the Tbl parameter.

procedure MakeInMemTable2(Tbl: TTable);
var
 TblProps : CurProps;
 PFDesc : pFldDesc;
 hIMcur : hDBICur;
 MemSize : Integer;
begin
 Check(dbiGetCursorProps(Tbl.Handle, TblProps));
 MemSize := SizeOf(FldDesc) * (TblProps.iFields);
 PFDesc := AllocMem(MemSize);
 try
 Check(dbiGetFieldDescs(Tbl.Handle, PFDesc));
 Check(dbiCreateInMemTable(Tbl.DBHandle, 'InMemTbl', 3, PFDesc, hIMCur));
 finally
 FreeMem(PFDesc, MemSize);
 end;
end;

DbiCreateTable{button C
Examples,JI(`>example',`exdbicreatetable')} {button Delphi
Examples,JI(`>example',`dexdbicreatetable')}
C syntax
DBIResult DBIFN DbiCreateTable (hDb, bOverWrite, pcrTblDsc);
Delphi syntax
function DbiCreateTable (hDb: hDBIDb; bOverWrite: Bool; var crTblDsc:
CRTblDesc): DBIResult stdcall;

Description
DbiCreateTable creates a table in the database associated with the given database handle.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
bOverWrite Type: BOOL (Input)
Specifies whether to overwrite an existing table or not. If TRUE is specified, and there is an
existing table, it will be overwritten. If FALSE is specified, and there is an existing table, an
error is returned.
pcrTblDsc Type: pCRTblDesc (Input)
Pointer to the table descriptor structure (CRTblDesc). Refer to DbiGetFieldTypeDesc and
DbiGetIndexTypeDesc for more information on the legal values for these structures for each
Borland Database Engine driver.

Optional parameters
The optional parameter fields iOptParams, pfldOptParams, and pOptData are used to set
other driver-specific attributes of the table. These parameters are used to describe a single
record that is constructed by the client and contains the null-terminated ASCII strings that
specify the values for these driver-specific attributes.
iOptParams is the number of optional parameters. pfldOptParams contains a pointer to an
array of FLDDesc of iOptParams size. Each of these field descriptors is given a field name
equal to the name of the optional parameter (for example, MDXBLOCKSIZE) and has iLen
and iOffset set to the length (including the NULL terminator) and position in the pOptData
record buffer of the ASCII string containing the value of this parameter (for example, 512).
All other elements of the FLDDesc are ignored. The pOptData record buffer need only be
large enough to hold all the null-terminated strings for each optional parameter value. This
style of setting optional parameters is also used by DbiOpenDatabase. The names of the
optional parameters can be obtained using DbiOpenCfgInfoList with a configuration path of
DRIVERS\DRIVERNAME\TABLECREATE.

Usage
The required descriptors are specified in CRTblDesc; different drivers might require
different descriptors.
Text: DbiCreateTable can be used to create a text file to export the data to it. For text file
creation, only szTblName and szTblType values in the CRTblDesc are used and the rest of
the values are ignored (szTblType is specified as ASCIIDRV). A text file is created with the
given name; no field descriptions are necessary.
Paradox: Referential integrity can be created only when creating or restructuring the
detail table. The master table must already exist and must be in the same directory as the
table being created. A lookup table may exist in any accessible directory, but must exist at
the time this table is created.

SQL: All indexes are maintained; there are no non-maintained indexes.
Oracle8: Not supported for object types (ADT, REF, nested table, VARARRAY).
Integrity Constraints: When creating a table by using DbiCreateTable, you can use
integrity constraints to ensure that references in the key fields of secondary tables (in the
same database) or foreign tables (in another database) are maintained to key fields in a
primary table. For example, if several tables have keys referencing primary key Customer
ID in the Customer table, then this dependecy must be checked so that referenced
customer IDs cannot be deleted, thereby orphaning records in secondary or foreign tables.
Prerequisites
If the client chooses to overwrite an existing table; the existing table must be closed.
DbiCreateTable supports up to 255 val-checks.
Completion state
All files associated with the table are created.

DbiResult return values
DBIERR_NONE The table was created successfully.
DBIERR_INVALIDFILEEXTN The driver type or file extension is invalid.
DBIERR_INVALIDOPTION The index description is invalid.
DBIERR_INVALIDINDEXSTRUCT Invalid index structure. For SQL servers, all indexes are maintained;

verify that bMaintained in pidxDesc specifies TRUE.
DBIERR_FILEEXISTS The table already exists (returned when bOverWrite is FALSE).
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_UNKNOWNTBLTYPE The specified driver type is invalid.
DBIERR_MULTILEVELCASCADE An illegal attempt was made to create a referential integrity link that

is already in use as a link to a higher level cascade update
(Paradox only).

DBIERR_FLDLIMIT iFldCount exceeds maximum number of fields.
DBIERR_INVALIDFIELDNAME An invalid field name was specified.
DBIERR_NAMENOTUNIQUE The specified field name or index name is not unique.
DBIERR_INVALIDFLDTYPE The specified field type is unknown or not allowed.
DBIERR_RECTOOBIG The record size exceeds the maximum allowed.
DBIERR_INVALIDINDEXNAME The specified index name is invalid.
DBIERR_INVALIDINDEXTYPE The specified index type is invalid.
DBIERR_INDEXNAMEREQUIRED No index name was specified.
DBIERR_LOOKUPTBLOPENERR The specified lookup table could not be opened.

See also
DbiCopyTable, DbiSortTable, DbiDoRestructure

C Examples: DbiCreateTable
Example 1: Create a Paradox table:
This example uses the following input:

fDbiCreateTable1(hDb);
DBIResult fDbiCreateTable1(hDBIDb hTmpDb)
{
 CHAR szTblType[] = szPARADOX;
 CHAR szTblName[] = "PX_Table";
 CRTblDesc TblDesc; // Create Table Descriptor
 DBIResult rslt;
 UINT16 NumFields = 2;
 FLDDesc fldDesc[] = {
 { // Field 1 - TIMESTAMP
 1, "MyAlpha", fldPDXDATETIME, fldUNKNOWN, 0, 0,
 0, 0, 0, fldvNOCHECKS, fldrREADWRITE
 },
 { // FIELD 2 - AUTOINCREMENT
 2, "MyNumber", fldPDXAUTOINC, fldUNKNOWN, 0, 0, 0,
 0, 0, fldvNOCHECKS, fldrREADWRITE
 }
 };
 memset((void *) &TblDesc, 0, sizeof(CRTblDesc));
 lstrcpy(TblDesc.szTblName, szTblName);
 lstrcpy(TblDesc.szTblType, szTblType);
 TblDesc.iFldCount = NumFields;
 TblDesc.pfldDesc = fldDesc;
 //Could add indexes, validity checks, and security descriptors here.
 rslt = Chk(DbiCreateTable(hTmpDb, TRUE, &TblDesc));
 return rslt;
}

Example 2: Create a dBASE table:
This example uses the following input:

fDbiCreateTable2(hDb);
DBIResult fDbiCreateTable2(hDBIDb hTmpDb)
{
 CHAR szTblType[] = szDBASE;
 CHAR szTblName[] = "dBASE_TBL";
 CRTblDesc TblDesc; // Create Table Descriptor
 DBIResult rslt;
 UINT16 NumFields = 2;
 FLDDesc fldDesc[] = {
 { // Field 1 - MEMO
 1, "MyAlpha", fldDBMEMO, fldUNKNOWN, 0, 0,
 0, 0, 0, fldvNOCHECKS, fldrREADWRITE
 },
 { // FIELD 2 - BOOLEAN
 2, "MyNumber", fldDBBOOL, fldUNKNOWN, 0, 0, 0,
 0, 0, fldvNOCHECKS, fldrREADWRITE
 }
 };
 memset((void *) &TblDesc, 0, sizeof(CRTblDesc));
 lstrcpy(TblDesc.szTblName, szTblName);
 lstrcpy(TblDesc.szTblType, szTblType);

 TblDesc.iFldCount = NumFields;
 TblDesc.pfldDesc = fldDesc;
 //Could add indexes, validity checks, and security descriptors here.
 rslt = Chk(DbiCreateTable(hTmpDb, TRUE, &TblDesc));
 return rslt;
}

Example 3: Create a InterBase table:
This example uses the following input:

fDbiCreateTable3(hDb);
DBIResult fDbiCreateTable3(hDBIDb hTmpDb)
{
 CHAR szTblName[] = "IB_TBL";
 CRTblDesc TblDesc; // Create Table Descriptor
 DBIResult rslt;
 UINT16 NumFields = 2;
 FLDDesc fldDesc[] = {
 { // Field 1 - MEMO
 1, "MyAlpha", fldIBCHAR, fldUNKNOWN, 300, 0,
 0, 0, 0, fldvNOCHECKS, fldrREADWRITE
 },
 { // FIELD 2 - BLOB
 2, "MyNumber", fldIBBLOB, fldUNKNOWN, 0, 0, 0,
 0, 0, fldvNOCHECKS, fldrREADWRITE
 }
 };
 memset((void *) &TblDesc, 0, sizeof(CRTblDesc));
 lstrcpy(TblDesc.szTblName, szTblName);
 lstrcpy(TblDesc.szTblType, szTblType);
 TblDesc.iFldCount = NumFields;
 TblDesc.pfldDesc = fldDesc;
 //Could add indexes, validity checks, and security descriptors here.
 rslt = Chk(DbiCreateTable(hTmpDb, TRUE, &TblDesc));
 return rslt;
}

Delphi Examples: DbiCreateTable
Create a table with a different level, block size, and fill factor than specified in the BDE
configuration. Most Delphi users should use TTable.CreateTable. This example uses the
following input:
 fDbiCreateTable(Database1.Handle, 'TableChange', 3, @FDesc, 7, 32768, 95);

procedure fDbiCreateTable(hTmpDb: hDBIDb; TableName: string; Fields: Word;
 pFlds: pFLDDesc; Level, BlockSize, FillFactor: Word);
var
 pOptDesc, pOrigDesc: pFLDDesc;
 pOptData, pOrigData: pBYTE;
 TblDesc: CRTblDesc;
 sLevel, sBlockSize, sFillFactor: string;
begin
 pOptDesc := AllocMem(3 * sizeof(FLDDesc));
 pOrigDesc := pOptDesc;
 pOptData := AllocMem(20);
 pOrigData := pOptData;
 try
 sLevel := IntToStr(Level);
 sBlockSize := IntToStr(BlockSize);
 sFillFactor := IntToStr(FIllFactor);
 // Set up first parameter
 pOptDesc.iOffset := 0;
 pOptDesc.iLen := Length(sLevel) + 1;
 StrPCopy(pOptDesc.szName, 'LEVEL');
 StrPCopy(PChar(pOptData), sLevel);
 Inc(pOptData, Length(sLevel) + 1);
 Inc(pOptDesc);
 // Set up second parameter
 pOptDesc.iOffset := Length(sLevel) + 1;
 pOptDesc.iLen := Length(sLevel) + 1 + Length(sBlockSize) + 1;
 StrPCopy(pOptDesc.szName, 'BLOCK SIZE');
 StrPCopy(PChar(pOptData), sBLockSize);
 Inc(pOptData, Length(sBlockSize) + 1);
 Inc(pOptDesc);
 // Set up third parameter
 pOptDesc.iOffset := Length(sLevel) + 1 + Length(sBlockSize) + 1;
 pOptDesc.iLen := Length(sLevel) + 1 + Length(sBlockSize) + 1 +
 Length(sFillFactor) + 1;
 StrPCopy(pOptDesc.szName, 'FILL FACTOR');
 StrPCopy(PChar(pOptData), sFillFactor);
 // Format the table descriptor
 FillChar(TblDesc, sizeof(TblDesc), #0);
 StrPCopy(TblDesc.szTblName, TableName);
 StrCopy(TblDesc.szTblType, szPARADOX);
 TblDesc.iOptParams := 3;
 TblDesc.pFldOptParams := pOrigDesc;
 TblDesc.pOptData := pOrigData;
 TblDesc.iFldCount := Fields;
 TblDesc.pFldDesc := pFlds;
 // Create the table
 Check(DbiCreateTable(hTmpDb, True, TblDesc));
 finally
 FreeMem(pOrigDesc, 3 * sizeof(FLDDesc));

 FreeMem(pOrigData, 20);
 end;
end;

DbiCreateTempTable{button C
Examples,JI(`>example',`exdbicreatetemptable')} {button Delphi
Examples,JI(`>example',`dexdbicreatetemptable')}
C syntax
DBIResult DBIFN DbiCreateTempTable (hDb, pcrTblDsc, phCursor);
Delphi syntax
function DbiCreateTempTable (hDb: hDBIDb; var crTblDsc: CRTblDesc; var
hCursor: hDBICur): DBIResult stdcall;

Description
DbiCreateTempTable creates a temporary table that is deleted when the cursor is closed,
unless the call is followed by a call to DbiMakePermanent or DbiSaveChanges.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle. When a NULL hDb is specified, all temp tables will be
created in the default working directory of the current session (the location of BDE
executable or explicitly set by using DbiSetDirectory)--unless a private directory has been
explicitly set on the current session by using DbiSetPrivateDir.
pcrTblDsc Type: pCRTblDesc (Input)
Pointer to the table descriptor structure (CRTblDesc). Usage is the same as in
DbiCreateTable except that referential integrity cannot be created for a temporary table.
Refer to DbiGetFieldTypeDesc and DbiGetIndexTypeDesc for more information on the legal
values for these structures for each Borland Database Engine driver.
phCursor Type: phDBICur (Output)
Pointer to the cursor handle for the table.
Usage
Physical as well as logical field types are supported by the temporary table.
SQL: This function is not supported with SQL tables.
DbiResult return values
DBIERR_NONE The table was created successfully.

See also
DbiMakePermanent, DbiCreateTable, DbiCreateInMemTable

C Examples: DbiCreateTempTable
Example 1: Create a temporary table using IDAPI logical types in the field
descriptor.
The temporary table can be made permanent later on. This example uses the following
input:

fDbiCreateTempTable1(hDb, &hTmpCur);
DBIResult fDbiCreateTempTable1(hDBIDb hTmpDb, phDBICur phTmpCur)
{
 CHAR szTblName[] = "TempPXTbl";
 CRTblDesc TblDesc; // Create Table Descriptor
 DBIResult rslt;
 UINT16 NumFields = 2;
 FLDDesc fldDesc[] = {
 { // Field 1 - ALPHA
 1, "MyAlpha", fldZSTRING, fldUNKNOWN, 10, 0,
 0, 0, 0, fldvNOCHECKS, fldrREADWRITE
 },
 { // FIELD 2 - NUMERIC
 2, "MyNumber", fldFLOAT, fldUNKNOWN, 0, 0, 0,
 0, 0, fldvNOCHECKS, fldrREADWRITE
 }
 };
 memset((void *) &TblDesc, 0, sizeof(CRTblDesc));
 lstrcpy(TblDesc.szTblName, szTblName);
 lstrcpy(TblDesc.szTblType, szPARADOX);
 TblDesc.iFldCount = NumFields;
 TblDesc.pfldDesc = fldDesc;
 //Could add indexes, validity checks, and security descriptors here.
 rslt = Chk(DbiCreateTempTable(hTmpDb, &TblDesc, phTmpCur));
 return rslt;
}

Example 2: Create a temporary table using dBASE physical types in the field
descriptor.
The temporary table can be made permanent later on. This example uses the following
input:

fDbiCreateTempTable2(hDb, &hTmpCur);
DBIResult fDbiCreateTempTable2(hDBIDb hTmpDb, phDBICur phTmpCur)
{
 CHAR szTblName[] = "TempdBASETbl";
 CRTblDesc TblDesc; // Create Table Descriptor
 DBIResult rslt;
 UINT16 NumFields = 2;
 FLDDesc fldDesc[] = {
 { // Field 1 - MEMO
 1, "MyAlpha", fldDBMEMO, fldUNKNOWN, 0, 0,
 0, 0, 0, fldvNOCHECKS, fldrREADWRITE
 },
 { // FIELD 2 - BOOLEAN
 2, "MyNumber", fldDBBOOL, fldUNKNOWN, 0, 0, 0,
 0, 0, fldvNOCHECKS, fldrREADWRITE
 }
 };
 memset((void *) &TblDesc, 0, sizeof(CRTblDesc));

 lstrcpy(TblDesc.szTblName, szTblName);
 lstrcpy(TblDesc.szTblType, szDBASE);
 TblDesc.iFldCount = NumFields;
 TblDesc.pfldDesc = fldDesc;
 //Could add indexes, validity checks, and security descriptors here.
 rslt = Chk(DbiCreateTempTable(hTmpDb, &TblDesc, phTmpCur));
 return rslt;
}

Delphi Examples: DbiCreateTempTable
Example 1: Create a temporary table using BDE logical types in the field
descriptor.
Note: This table can be made permanent later on.

procedure fDbiCreateTempTable(var hTmpDb: hDBIDb;var hTmpCur: hDBICur);
const
 fldDes: array[0..1] of FLDDesc = (
 (// Field 1 - ALPHA
 iFldNum: 1; { Field Number }
 szName: 'MyAlpha'; { Field Name }
 iFldType: fldZSTRING; { Field Type }
 iSubType: fldUNKNOWN; { Field Subtype }
 iUnits1: 10; { Field Size }
 iUnits2: 0;
 iOffset: 0;
 iLen: 0;
 iNullOffset: 0;
 efldvVchk: fldvNOCHECKS;
 efldrRights: fldrREADWRITE
),
 (// FIELD 2 - NUMERIC
 iFldNum: 2;
 szName: 'MyNumber';
 iFldType: fldFLOAT;
 iSubType: fldUNKNOWN;
 iUnits1: 0;
 iUnits2: 0;
 iOffset: 0;
 iLen: 0;
 iNullOffset: 0;
 efldvVchk: fldvNOCHECKS;
 efldrRights: fldrREADWRITE
)
);
var
 szTblName: array[0..DBIMAXTBLNAMELEN] of Char;
 TblDesc: CRTblDesc; // Create Table Descriptor
 NumFields: LongInt;
begin
 StrPCopy(szTblName,'TempPXTbl');
 NumFields:= 2;
 FillChar(TblDesc,sizeof(CRTblDesc),#0);
 StrCopy(TblDesc.szTblName, szTblName);
 StrCopy(TblDesc.szTblType, szPARADOX);
 TblDesc.iFldCount:= NumFields;
 TblDesc.pfldDesc:= @fldDes;
 //Could add indexes, validity checks, and security descriptors here.
 Check(DbiCreateTempTable(hTmpDb, TblDesc, hTmpCur));
end;

Example 2: Create a temporary table using dBASE physical types in the field

descriptor.
Note: This table can be made permanent later on.

procedure fDbiCreateTempTable(hTmpDb: hDBIDb;hTmpCur: hDBICur);
const
 fldDes: array[0..1] of FLDDesc = (
 (// Field 1 - MEMO
 iFldNum: 1; { Field Number }
 szName: 'MyAlpha'; { Field Name }
 iFldType: fldDBMEMO; { Field Type }
 iSubType: fldUNKNOWN; { Field Subtype }
 iUnits1: 0; { Field Size }
 iUnits2: 0;
 iOffset: 0;
 iLen: 0;
 iNullOffset: 0;
 efldvVchk: fldvNOCHECKS;
 efldrRights: fldrREADWRITE
),
 (// FIELD 2 - BOOLEAN
 iFldNum: 2; { Field Number }
 szName: 'MyNumber'; { Field Name }
 iFldType: fldDBBOOL; { Field Type }
 iSubType: fldUNKNOWN; { Field Subtype }
 iUnits1: 0; { Field Size }
 iUnits2: 0;
 iOffset: 0;
 iLen: 0;
 iNullOffset: 0;
 efldvVchk: fldvNOCHECKS;
 efldrRights: fldrREADWRITE)
);
var
 szTblName: array[0..DBIMAXTBLNAMELEN] of Char;
 TblDes: CRTblDesc; // Create Table Descriptor
 NumFields: LongInt;
begin
 StrCopy(szTblName,'TempdBASETbl');
 NumFields:= 2;
 FillChar(TblDes,SizeOf(TblDes),#0);
 StrCopy(TblDes.szTblName, szTblName);
 StrCopy(TblDes.szTblType, szDBASE);
 TblDes.iFldCount := NumFields;
 TblDes.pfldDesc := @fldDes;
 //Could add indexes, validity checks, and security descriptors here.
 Check(DbiCreateTempTable(hTmpDb, TblDes, hTmpCur));
end;

DbiDateDecode {button C
Examples,JI(`>example',`exdbidatedecode')} {button Delphi
Examples,JI(`>example',`dexdbidatedecode')}
C syntax
DBIResult DBIFN DbiDateDecode (dateD, piMon, piDay, piYear);
Delphi syntax
function DbiDateDecode (dateD: DbiDate; var iMon: Word; var iDay: Word; var
iYear: SmallInt): DBIResult stdcall;

Description
DbiDateDecode decodes DBIDATE into separate month, day, and year components.

Parameters
dateD Type: DBIDATE (Input)
Specifies the encoded date.
piMon Type: pUINT16 (Output)
Pointer to the client variable that receives the decoded month component. Valid values
range from 1 through 12.
piDay Type: pUINT16 (Output)
Pointer to the client variable that receives the decoded day component. Valid values range
from 1 through 31.
piYear Type: pINT16 (Output)
Pointer to the client variable that receives the decoded year component. Valid values range
from -9999 to 9999.
Usage
This call enables the client to interpret date information returned from a call to DbiGetField.

DbiResult return values
DBIERR_NONE The date was decoded successfully.
DBIERR_INVALIDHNDL At least one of the following parameters is NULL: piMon, piDay,

piYear.

See also
DbiGetField, DbiDateEncode, DbiTimeEncode, DbiTimeDecode, DbiTimeStampEncode,
DbiTimeStampDecode

C Examples: DbiDateDecode
Decode a DBIDATE structure into month, day, and year numbers.
In this example the input is:
fDbiDateDecode(dbDate, &M, &D, &Y);

DBIResult fDbiDateDecode(DBIDATE DecodeDate, pUINT16 Month, pUINT16 Day,
pINT16 Year)

{
 DBIResult rslt;
 rslt = Chk(DbiDateDecode(DecodeDate, Month, Day, Year));
 return rslt;
}

Delphi Examples: DbiDateDecode
Decode a DBIDATE structure into month, day, and year numbers.
DbiDateDecode returns a string containing the date. Keep in mind that you need to use this
function only when you are directly accessing BDE format dates. Otherwise, VCL handles
this conversion for you.
This example uses the following input:
 fDbiDateDecode(MyDate, MyMonth, MyDay, MyYear);

The function is defined as:
function fDbiDateDecode(dateD: DbiDATE; var Month: word; var Day: word; var
Year: SmallInt): string;

begin
 Check(DbiDateDecode(dateD, Month, Day, Year));
 Result := Format('%d/%d/%d', [Month, Day, Year]);
end;

DbiDateEncode{button C
Examples,JI(`>example',`exdbidateencode')} {button Delphi
Examples,JI(`>example',`dexdbidateencode')}
C syntax
DBIResult DBIFN DbiDateEncode (iMon, iDay, iYear, pdateD);
Delphi syntax
function DbiDateEncode (iMon: Word; iDay: Word; iYear: SmallInt; var dateD:
DbiDate): DBIResult stdcall;

Description
DbiDateEncode encodes separate date components into DBIDATE for use by DbiPutField
and other functions.
Parameters
iMon Type: UINT16 (Input)
Specifies the month. Valid values range from 1 through 12.
iDay Type: UINT16 (Input)
Specifies the day. Valid values range from 1 through 31.
iYear Type: INT16 (Input)
Specifies the year. Valid values range from -9999 to 9999.
pdateD Type: pDBIDATE (Output)
Pointer to the client buffer that receives the encoded date.
Usage
This function enables the client to construct a logical date value to use with the function
DbiPutField.
DbiResult return values
DBIERR_NONE The date was encoded successfully.
DBIERR_INVALIDHNDL pDate is NULL.
DBIERR_INVALIDPARAM The ranges of month and day parameters are wrong, according to

the rules of the Gregorian calendar. iMon is zero or iMon is greater
than 12 or iDay is zero or iDay is greater than 31.

See also
DbiDateDecode, DbiTimeEncode, DbiTimeDecode, DbiTimeStampEncode,
DbiTimeStampDecode

C Examples: DbiDateEncode
Encode month, day, and year numbers into a DBIDATE structure.
In this example the input is:
 fDbiDateEncode(2, 24, 67, &dbDate);

DBIResult fDbiDateEncode(UINT16 Month, UINT16 Day, INT16 Year, pDBIDATE
EncodeDate)

{
 DBIResult rslt;
 rslt = Chk(DbiDateEncode(Month, Day, Year, EncodeDate));
 return rslt;
}

Delphi Examples: DbiDateEncode
Encode month, day, and year numbers into a DBIDATE structure.
Keep in mind that you need to use this function only when you are directly accessing BDE
format dates. Otherwise, VCL handles this conversion for you.
This example uses the following input:
 fDbiDateEncode(2, 8, 71, MyDate);

The function is defined as:
function fDbiDateEncode(Month : Word, Day : Word, Year : SmallInt, MyDate :
DbiDate) : DbiDate;

begin
 Check(DbiDateEncode(Month, Day, Year, MyDate));
 Result := Mydate;
end;

DbiDeactivateFilter {button C
Examples,JI(`>example',`exdbiactivatefilter')} {button Delphi
Examples,JI(`>example',`dexdbidropfilter')}
C syntax
DBIResult DBIFN DbiDeactivateFilter (hCursor, [hFilter]);
Delphi syntax
function DbiDeactivateFilter (hCursor: hDBICur; hFilter: hDBIFilter):
DBIResult stdcall;

Description
DbiDeactivateFilter temporarily disables the specified filter from affecting the record set by
turning the filter off.
Parameters
hCursor Type: hDBICur (Input)
Specifies the valid cursor handle from an open table.
hFilter Type: hDBIFilter (Input)
Specifies the filter handle of the filter to deactivate. If NULL, then all filters for this cursor
are deactivated.

Usage
Once a filter has been activated, that filter controls what is contained in the record set, and
all operations on the associated cursor are affected. Once a filter is deactivated, all the
records that were excluded by the filter are now accessible, subject to other active filters.
Prerequisites
The filter must have been previously added and activated. If a non-NULL filter is applied, it
must be activated.
DbiResult return values
DBIERR_NONE The filter specified by hFilter was successfully deactivated. If NULL was passed for

the filter handle, all filters were deactivated.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_NOSUCHFILTER The specified filter handle is invalid.
DBIERR_NA The filter was already deactivated.

See also
DbiAddFilter, DbiDeactivateFilter, DbiDropFilter

C Examples: DbiDeactivateFilter
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiDeactivateFilter
An example for this function is under development and will be provided in an upcoming
Help release.

DbiDeleteAlias {button C
Examples,JI(`>example',`exdbideletealias')} {button Delphi
Examples,JI(`>example',`dexdbideletealias')}
C syntax
DBIResult DbiDeleteAlias ([hCfg], pszAliasName);
Delphi syntax
function DbiDeleteAlias (hCfg: hDBICfg; pszAliasName: PChar): DBIResult
stdcall;

Description
DbiDeleteAlias deletes an alias from the configuration file specified by the parameter hCfg.

Parameters
hCfg Type: hDBICfg (Input)
Specifies the configuration file to be used. This parameter is required to be NULL, indicating
that the alias is removed from the configuration file for the current session.
pszAliasName Type: pCHAR (Input)
Pointer to the alias name. This is the name of the new alias that is to be removed.
Usage
This function removes an alias that is either defined for use in the current session or stored
in the configuration file. (See the DbiAddAlias parameter bPersistent.)
Prerequisites
DbiInit must be called prior to calling DbiDeleteAlias.

DbiResult return values
DBIERR_INVALIDPARAM Null alias name.
DBIERR_NONE The alias was deleted successfully.
DBIERR_OBJNOTFOUND No alias was found matching pszAliasName.

See Also
DbiInit, DbiOpenCfgInfoList, DbiAddAlias

C Examples: DbiDeleteAlias
Delete an existing index from the configuration file:
DBIResult fDbiDeleteAlias(char *AliasName)
{
 DBIResult rslt;
 rslt = Chk(DbiDeleteAlias(NULL, AliasName));
 return rslt;
}

DbiDeleteDriver {button C
Examples,JI(`>example',`cexdbideletedriver')} {button Delphi
Examples,JI(`>example',`dexdbideletedriver')}
C syntax
DBIResult DbiDeleteDriver ([hCfg], pszDriverName, bSave);
Delphi syntax
function DbiDeleteDriver (hCfg: hDBICfg; pszDriverName: PChar; bSave: Bool):
DBIResult stdcall;

Description
DbiDeleteDriver deletes a driver from the configuration file specified by the parameter
hCfg.
Parameters
hCfg Type: hDBICfg (Input)
Specifies the configuration file to be used. This parameter is required to be NULL, indicating
that the alias is removed from the configuration file for the current session.
pszDriverName Type: pCHAR (Input)
Pointer to the driver name. This is the name of the new driver that is to be removed.
bSave Type: BOOL (Input)
If TRUE, saves the change to the configuration file.

Usage
This function removes a driver that is either defined for use in the current session or stored
in the configuration file. (See the DbiAddDriver parameter bPersistent.)

Prerequisites
DbiInit must be called prior to calling DbiDeleteDriver.
DbiResult return values
DBIERR_INVALIDPARAM Null driver name.
DBIERR_NONE The driver was deleted successfully.
DBIERR_OBJNOTFOUND No driver was found matching pszDriverName.

See Also
DbiInit, DbiOpenCfgInfoList, DbiAddDriver

C Examples: DbiDeleteDriver
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiDeleteDriver
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiDeleteAlias
Delete an existing index from the configuration file of the current session:

procedure DoDbiDeleteAlias(AliasName: string);
begin
 Check(DbiDeleteAlias(nil, PChar(AliasName)));
end;
// Sample input:
 DoDbiDeleteAlias('SomeAlias');

DbiDeleteIndex{button C
Examples,JI(`>example',`exdbideleteindex')} {button Delphi
Examples,JI(`>example',`dexdbideleteindex')}
C syntax
DBIResult DBIFN DbiDeleteIndex (hDb, hCursor, pszTableName, [pszDriverType],
pszIndexName, pszIndexTagName, iIndexId);

Delphi syntax
function DbiDeleteIndex (hDb: hDBIDb; hCursor: hDBICur; pszTableName: PChar;
pszDriverType: PChar; pszIndexName: PChar; pszIndexTagName: PChar;
iIndexId: Word): DBIResult stdcall;

Description
DbiDeleteIndex drops an index on a table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
hCursor Type: hDBICur (Input)
Specifies the cursor handle. If hCursor is specified, the operation is performed on the table
associated with that cursor. If hCursor is NULL, pszTableName and pszDriverType determine
the table to be used. This option is not supported with Access tables.
pszTableName Type: pCHAR (Input)
Pointer to the table name. If hCursor is NULL, pszTableName and pszDriverType determine
the table to be used. (If both pszTableName and hCursor are specified, pszTableName is
ignored.)
For Paradox, FoxPro, and dBASE, if pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name
is taken from the current directory of the database associated with hDb.
For SQL databases, this parameter can be a fully qualified name that includes the owner
name.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. For Paradox, FoxPro, and dBASE tables, this parameter
is required if pszTableName has no extension. This parameter is ignored if the database
associated with hDb is a SQL database. pszDriverType can be one of the following values:
szDBASE, szMSACCESS, or szPARADOX.
pszIndexName Type: pCHAR (Input)
Pointer to the name of the index to be dropped. See IDXDesc for index naming rules.
pszIndexTagName Type: pCHAR (Input)
Pointer to the index tag name. Used only to identify dBASE .MDX or FoxPro .CDX indexes.
(See the pszIndexName parameter description above.) This parameter is ignored for
Paradox and SQL tables.
iIndexId Type: UINT16 (Input)
Specifies the index identifier, which is the number of the index to be used. The range for
the index identifier is 1 to 511. Used for Paradox tables only and is ignored if
pszIndexName is specified.

Usage
Used to drop an index. The client application can either specify the table by name or by
opening a cursor on the table. If a cursor is specified, it must not be opened with the index
to be deleted.

Prerequisites
If hCursor is specified, an exclusive cursor handle must be supplied. The index must exist.
See the following driver-specific information for locking requirements. A currently active
index cannot be dropped. If the table name is specified, the table must be able to be
opened exclusively.
dBASE and FoxPro: The table must be opened exclusively on behalf of the client
application.
Paradox: The table must be opened exclusively on behalf of the client application. (The
client application must have permission to lock the table exclusively.)
SQL: The table must be open exclusively where table locking is supported by the driver.
Access: The table must be closed to to drop an index.
Oracle8: Not supported for object types (ADT, REF, nested table, and VARARRAY).

Completion state
If a cursor is specified, DbiDeleteIndex does not affect the order or the position of the
cursor.

DbiResult return values
DBIERR_NONE The index was successfully deleted.
DBIERR_INDEXNAMERQUIRED An index name is required.
DBIERR_INDEXREADONLY An illegal attempt was made to delete a read-only index.
DBIERR_ACTIVEINDEX An illegal attempt was made to delete an active, primary index.
DBIERR_MUSTUSEBASEORDER An illegal attempt was made to delete an active, secondary index.
DBIERR_INVALIDHNDL Handle was invalid or NULL.
DBIERR_NEEDEXCLACCESS Exclusive access is required to delete the index.
DBIERR_NOSUCHINDEX The specified index does not exist.

See also
DbiAddIndex, DbiCloseIndex, DbiOpenIndex, DbiSwitchToIndex, DbiDoRestructure

C Examples: DbiDeleteIndex
Remove the specified index from the specified table. This example uses the following input:

fDbiDeleteIndex(hDb, "New Customer.db", "Place");
DBIResult fDbiDeleteIndex(hDBIDb hTmpDb, pCHAR szTableName, pCHAR
szIndexName)

{
 DBIResult rslt;

 rslt = Chk(DbiDeleteIndex(hTmpDb, NULL, szTableName, NULL, szIndexName,
 NULL, NULL));

 return rslt;
}

Delphi Examples: DbiDeleteIndex
Delete the specified index.
Delphi users should normally call TTable.DeleteIndex rather directly calling dbiDeleteIndex.
The method TTable.DeleteIndex is defined as:
 procedure DeleteIndex(const Name: string);
The following example removes an alias called "ByCompany" from TTable Table1:
 Table1.DeleteIndex('ByCompany');
Delete the active index on a table.
Most Delphi users should use Table.DeleteIndex. This example uses the following input:
 fDbiDeleteIndex(CustTemp, False);

The procedure is defined as:
procedure fDbiDeleteIndex(Table: TTable; Tag: Boolean);
var
 ActiveIdx: IDXDesc;
begin
 if not Table.Exclusive then
 raise EDatabaseError.Create('Table must be opened exclusively to delete
index');

 Check(DbiGetIndexDesc(Table.Handle, 0, ActiveIdx));
 // Cannot delete the active index, so change to default
 Table.IndexName := '';
 Table.IndexFieldNames := '';
 Check(DbiDeleteIndex(Table.DBHandle, Table.Handle, nil, nil,
ActiveIdx.szName,

 ActiveIdx.szTagName, 0));
end;

DbiDeleteRecord {button C
Examples,JI(`>example',`exdbideleterecord')} {button Delphi
Examples,JI(`>example',`dexdbideleterecord')}
C syntax
DBIResult DBIFN DbiDeleteRecord (hCursor, [pRecBuf]);
Delphi syntax
function DbiDeleteRecord (hCursor: hDBICur; pRecBuf: Pointer): DBIResult
stdcall;

Description
DbiDeleteRecord deletes the current record of the given cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the deleted record. Optional.

Usage
dBASE and FoxPro: DbiDeleteRecord marks the record for deletion. The record is not
physically removed from the table until the table is packed with DbiPackTable.
Paradox: After a record is deleted and committed, it cannot be recalled. The record is not
deleted if the deletion would cause violation of referential integrity. For example, if the
cursor is validly positioned on a record within the master table, and that record has linked
values in a detail table, then the call to DbiDeleteRecord fails, and the position of the
cursor remains unchanged.
Deleting a record does not reduce table size. The only way to gain disk space for records
that have been deleted is to restructure the table with a call to DbiDoRestructure.
Access: After a record is deleted and committed, it cannot be recalled. The record is not
deleted if the deletion would cause violation of referential integrity. For example, if the
cursor is validly positioned on a record within the master table, and that record has linked
values in a detail table, then the call to DbiDeleteRecord fails, and the position of the
cursor remains unchanged.
SQL: Record deletions are done via optimistic locking. Unless a transaction is explicitly
started using DbiBeginTran, a successful deletion is immediately committed.

Prerequisites
The cursor must be positioned on a record, not on a crack, beginning of file, or end of file.
The user must have read/write access to the table. The record must not be locked by
another session.
Completion state
After DbiDeleteRecord has successfully completed, the cursor is positioned on the crack
between the records before and after the deleted record. A subsequent call to
DbiGetNextRecord returns the record after the deleted record, while a subsequent call to
DbiGetPriorRecord returns the record before the deleted record.
DbiResult return values
DBIERR_NONE The record was successfully deleted.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_BOF The cursor is not positioned on a record.

DBIERR_EOF The cursor is not positioned on a record.
DBIERR_KEYORRECDELETED The cursor is not positioned on a record.
DBIERR_NOCURRREC The cursor is not positioned on a record.
DBIERR_RECLOCKED The record or table is locked by another session.
DBIERR_NOTABLESUPPORT A deletion cannot be made from a view. Some SQL drivers do not

support deletions from non-uniquely indexed tables.
DBIERR_TABLEREADONLY Table access denied; the cursor does not have write access to the

table.
DBIERR_DETAILRECORDSEXIST The table is the master table in a referential integrity link and the

record to be deleted has associated detail records (Paradox only).
DBIERR_NOTSUFFTABLERIGHTS Insufficient table rights to delete a record (Paradox only).
DBIERR_NOTSUFFSQLRIGHTS Insufficient SQL rights to delete a record (SQL only).
DBIERR_MULTIPLEUNIQRECS Attempt to delete a record that has a duplicate (SQL only).

See also
DbiGetRecord, DbiDoRestructure, DbiGetNextRecord, DbiGetPriorRecord,
DbiGetRelativeRecord, DbiPackTable (dBASE and FoxPro only), DbiUndeleteRecord (dBASE
and FoxPro only)

C Examples: DbiDeleteRecord
Delete the current record.
If Pack is set to true and the cursor is open exclusively on a dBASE or FoxPro table, the
table is packed. This example uses the following input:

fDbiDeleteRecord(hdBASECur, pRecBuf, TRUE);
DBIResult fDbiDeleteRecord(hDBICur hTmpCur, pBYTE pTmpRecBuf, BOOL Pack)
{
 DBIResult rslt;
 CURProps CurProps;
 hDBIDb hTmpDb;

 rslt = Chk(DbiDeleteRecord(hTmpCur, pTmpRecBuf));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (Pack == TRUE)
 {
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (strcmp(CurProps.szTableType, szDBASE) == 0)
 {
 // Get the database handle from the cursor handle
 rslt = Chk(DbiGetObjFromObj(hTmpCur, objDATABASE, &hTmpDb));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiPackTable(hTmpDb, hTmpCur, NULL, NULL, TRUE));
 }
 }
 return rslt;
}

Delphi Examples: DbiDeleteRecord
Delete the current record.
Delphi users should instead use the TTable.Delete method rather than directly calling
dbiDeleteRecord. This method is defined as:
 procedure TTable.Delete;
The following code deletes the current record from TTable component Table1:
Table1.Delete;

DbiDeleteTable {button C
Examples,JI(`>example',`exdbideletetable')} {button Delphi
Examples,JI(`>example',`dexdbideletetable')}
C syntax
DBIResult DBIFN DbiDeleteTable (hDb, pszTableName, [pszDriverType]);
Delphi syntax
function DbiDeleteTable (hDb: hDBIDb; pszTableName: PChar; pszDriverType:
PChar): DBIResult stdcall;

Description
DbiDeleteTable deletes the table given in pszTableName.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Pointer to the name of the table to delete. For Paradox, FoxPro, and dBASE, if
pszTableName is a fully qualified name of a table, the pszDriverType parameter need not
be specified. If the path is not included, the path name is taken from the current directory
of the database associated with hDb.
For SQL databases, this parameter can be a fully qualified name that includes the owner
name. This function cannot be used to delete SQL views.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type of the table being deleted. Optional. For Paradox, FoxPro, and
dBASE tables, this parameter is required if pszTableName has no extension. This parameter
is ignored if the database associated with hDb is a SQL database. pszDriverType can be one
of the following values: szDBASE, szMSACCESS, or szPARADOX.

Prerequisites
The client application must have permission to lock the table exclusively.
Paradox: If the table is encrypted, the master password must have been registered (using
DbiAddPassword).
Completion state
The table and all associated family members are deleted. Deletes all files with
<tablename>.*
DbiResult return values
DBIERR_NONE The table was successfully deleted.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_NOSUCHFILE The table does not exist.
DBIERR_NOSUCHTABLE The table does not exist.
DBIERR_UNKNOWNTBLTYPE The specified driver type is invalid.
DBIERR_NOTSUFFTABLERIGHTS The user has insufficient rights to the table (Paradox only).
DBIERR_NOTSUFFFAMILYRIGHTS The user has insufficient rights to family members (Paradox only).
DBIERR_LOCKEDThe table is locked by another user.

See also
DbiCreateTable, DbiCopyTable, DbiAddPassword

C Examples: DbiDeleteTable
Delete a table.
Must have sufficient rights. This example uses the following input:

fDbiDeleteTable(hDb, "dBASE_TBL.DBF");
DBIResult fDbiDeleteTable(hDBIDb hDb, pCHAR TblName)
{
 DBIResult rslt;
 rslt = Chk(DbiDeleteTable(hDb, TblName, NULL));
 return rslt;
}
Delete an opened table.
Once executed, the cursor is closed and the table deleted. This example uses the following
input:

fDbiDeleteTable(hDb, &hCur);
DBIResult fDbiDeleteTable(hDBIDb hDb, phDBICur phCur)
{
 DBIResult rslt;
 CURProps Props;

 rslt = Chk(DbiGetCursorProps(*phCur, &Props));
 if (rslt != DBIERR_NONE)
 return rslt;

 rslt = Chk(DbiCloseCursor(phCur));
 if (rslt != DBIERR_NONE)
 return rslt;

 rslt = Chk(DbiDeleteTable(hDb, Props.szName, Props.szTableType));

 return rslt;
}

Delphi Examples: DbiDeleteTable
Delete a table.
Delphi users should use the TTable.DeleteTable method rather than directly calling
DbiDeleteTable. This method is defined as:
 procedure TTable.DeleteTable;

The following code deletes the table associated with the TTable object named Table1:
Table1.DeleteTable;

DbiDllExit
C syntax
DBIResult DBIFN DbiDllExit (VOID);
Delphi syntax
function DbiDllExit: DBIResult stdcall;

Description
DbiDllExit prepares the BDE to be disconnected within a DLL.
Usage
DbiDllExit should be called immedietely prior to DbiExit within the DLL. This function is only
needed when the BDE is initialized (DbiInit) and un-initialized (DbiExit) within a DLL.    It is
not necessary to call DbiDllExit from within an executable: use only DbiExit.

DbiResult return values
DBIERR_NONE The connection to BDE has been successfully prepared for removal.
See also
DbiInit, DbiExit

DbiDoRestructure {button C
Examples,JI(`>example',`exdbidorestructure')}{button Delphi
Examples,JI(`>example',`dexdbidorestructure')}
C syntax
DBIResult DBIFN DbiDoRestructure (hDb, iTblDescCount, pTblDesc, pszSaveAs,
[pszKeyviolName], [pszProblemsName], bAnalyzeOnly);

Delphi syntax
function DbiDoRestructure (hDb: hDBIDb; iTblDescCount: Word; pTblDesc:
pCRTblDesc; pszSaveAs: PChar; pszKeyviolName: PChar; pszProblemsName:
PChar; bAnalyzeOnly: Bool): DBIResult stdcall;

Description
DbiDoRestructure changes the properties of a table such as the following: modifying field
types or field sizes, adding a field, deleting a field, rearranging fields; or changing indexes,
security passwords, or referential integrity.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
iTblDescCount Type: UINT16 (Input)
Specifies the number of table descriptors. Currently, only one table descriptor can be
processed per call, so iTblDescCount must be set to 1.
pTblDesc Type: pCRTblDesc (Input)
Pointer to the client-allocated CRTblDesc structure, which identifies the source table,
describes the new record structure (if modified), and lists all other changes to the table
pszSaveAs Type: pCHAR (Input)
Optional. If not NULL, creates a restructured table with this name and leaves the original
unchanged.
pszKeyviolName Type: pCHAR (Input)
Optional. Pointer to the Key Violation table name. All records that cause an integrity
violation are placed here. If NULL, no Key Violation table is created. If the user supplies a
table name, that name is used. If a pointer to an empty string is specified, the table name
created is returned in the user's area (must be at least DBIMAXPATHLEN+1 bytes).
pszProblemsName Type: pCHAR (Input)
Optional. Pointer to the Problems table name. If NULL, no Problems table is created. If the
user supplies a table name, that name is used. If the user has overridden the default
behavior with a callback, records are placed in a Problems table if they cannot be placed
into the destination table without trimming data. If a pointer to an empty string is specified,
the table name created is returned in the user's area (must be at least DBIMAXPATHLEN+1
bytes).
bAnalyzeOnly Type: BOOL (Input)
Not currently used.
Usage
Paradox: For Paradox, after a restructure an application can use the invariant field
identification numbers to determine how each column of data has been affected by the
restructure.
For example, a form on CUST table displays two fields: CUSTOMER and ADDRESS. A user
then restructures the CUST table and adds a new field before CUSTOMER called
CUSTOMERID and    changes the name of the field CUSTOMER    to CUSTOMERNAME. Even
though the name and position of the original CUSTOMER field has changed, its invariant

field ID does not. When the form is reopened on the table, it can check the cursor property
called iRestrVersion, if this has changed since the last time the form was used, it can fetch
the field descriptors and use the iFldNum of each field descriptor to fetch the invariant field
ID and compare these to the last invariant field IDs fetched before the restructure. This tells
the application where each column of data has been moved regardless of any field
renaming. Any new fields are given a new invariant field ID and no deleted field's ID is
reused. Care must be taken not to use iFldNum as a field number in this case.
SQL, Access: Not currently supported for SQL or Access.
Prerequisites
The application must specify a completed CRTblDesc structure that defines the
modifications to the table.
Completion state
When the restructure completes successfully, the following tables might be created:
· A Key Violations table (if pszKeyviolName was specified integrity violations occurred)
· A Problems table (if pszProblemsName was specified and there was data loss that the

client disallowed by a callback)
DbiResult return values
DBIERR_NONE A table was successfully generated with the new structure.
Generally, errors returned are due to invalid descriptors or invalid transformations.

See also
DbiRegisterCallBack, DbiBatchMove for use of pszKeyviolName and pszProblemsName

C Examples: DbiDoRestructure
Example 1: Change first field type to fldINT16 and save table as NEW_CUST PX
table to dBASE table.
This example uses the following input:

fDbiDoRestructure1(hDb, hCur, "CUSTOMER.DB");
DBIResult fDbiDoRestructure1(hDBIDb hDb, hDBICur hXCur, char *TblName)
{
 DBIResult rslt;
 CRTblDesc TblDesc;
 CURProps CurProps;
 pFLDDesc fldDesc;

 rslt = Chk(DbiGetCursorProps(hXCur, &CurProps));

 fldDesc = (pFLDDesc)malloc(CurProps.iFields * sizeof(FLDDesc));
 rslt = Chk(DbiGetFieldDescs(hXCur, fldDesc));

 fldDesc[0].iFldType = fldINT16;

 memset((void *) &TblDesc, 0, sizeof(CRTblDesc));
 lstrcpy(TblDesc.szTblName, TblName);
 lstrcpy(TblDesc.szTblType, szDBASE);
 TblDesc.pfldDesc = fldDesc;
 rslt = Chk(DbiDoRestructure(hDb, 1, &TblDesc, "NEW_CUST", NULL,
 NULL, FALSE));
 return rslt;
}
Example 2: Pack a Paradox table.
This example uses the following input:

fDbiDoRestructure2(hDb, "CUSTOMER");
DBIResult fDbiDoRestructure2(hDBIDb hDb, char *TblName)
{
 DBIResult rslt;
 CRTblDesc TblDesc;

 memset((void *) &TblDesc, 0, sizeof(CRTblDesc));
 lstrcpy(TblDesc.szTblName, TblName);
 lstrcpy(TblDesc.szTblType, szPARADOX);
 TblDesc.bPack = TRUE;
 rslt = Chk(DbiDoRestructure(hDb, 1, &TblDesc, NULL, NULL,
 NULL, FALSE));
 if(rslt == DBIERR_NONE)
 ShowMessage("Successful Pack");

 return rslt;
}
Example 3: Add validity checks and referential integrity to a table.
This example uses the following input:

fDbiDoRestructure3(hDb, "CUSTOMER");
DBIResult fDbiDoRestructure3(hDBIDb hDb, char *TblName)
{
 DBIResult rslt;
 CRTblDesc TblDesc;

 RINTDesc pRintDesc[] = {{1, "Order No", rintDEPENDENT, "orders.db",
 rintCASCADE, rintRESTRICT, 1, {2}, {1}}};
 VCHKDesc pVchkDesc[] = {{1, TRUE, TRUE, FALSE, FALSE, 1000.00,
 NULL, NULL, NULL, lkupNONE, NULL},
 // Setting the first field required with minimum value 1000.00
 {2, TRUE, TRUE, FALSE, FALSE, NULL, NULL,
 NULL, NULL, lkupNONE, NULL}};
 // Setting second field required.
 memset((void *) &TblDesc, 0, sizeof(CRTblDesc));
 lstrcpy(TblDesc.szTblName, TblName);
 lstrcpy(TblDesc.szTblType, szPARADOX);
 TblDesc.pvchkDesc = pVchkDesc;
 TblDesc.printDesc = pRintDesc;
 rslt = Chk(DbiDoRestructure(hDb, 1, &TblDesc, NULL, NULL,
 NULL, FALSE));
 return rslt;
}
Example 4: Add a default value to an existing field in a Paradox table.
This example uses the following input:

fDbiDoRestructure4(hDb, "STOCK", 2, &DefValue);
DBIResult fDbiDoRestructure4(hDBIDb hTmpDb, pCHAR TblName, UINT16 Field,
pVOID Value)

{
 DBIResult rslt;
 CRTblDesc TblDesc;
 VCHKDesc VCHK;
 CROpType Operation = crADD;

 memset(&VCHK, 0, sizeof(VCHK));
 VCHK.iFldNum = Field;
 VCHK.bHasDefVal = TRUE;
 memcpy(&VCHK.aDefVal, Value, sizeof(Value));

 memset(&TblDesc, 0, sizeof(TblDesc));
 strcpy(TblDesc.szTblName, TblName);
 strcpy(TblDesc.szTblType, szPARADOX);
 TblDesc.iValChkCount = 1;
 TblDesc.pecrValChkOp = &Operation;
 TblDesc.pvchkDesc = &VCHK;

 rslt = Chk(DbiDoRestructure(hTmpDb, 1, &TblDesc, NULL, NULL, NULL,
FALSE));

 return rslt;
}
Example 5: Add a new field to a Paradox or dBASE table
This example uses the following input:

fDbiDoRestructure5(hDb, "STOCK.DB", NewFld, "Stock Add.DB");
Note: A field descriptor must be setup prior to calling this function. You must fill in szName,

iFLdType, iSubType (optional), iUnits1 (optional), iUnits2 (optional).
DBIResult fDbiDoRestructure5(hDBIDb hTmpDb, pCHAR TblName, FLDDesc FldDesc,
pCHAR NewTblName)

{
 DBIResult rslt;
 CRTblDesc TblDesc;

 pCROpType AddOp;
 UINT16 i;
 pFLDDesc pFldDesc;
 hDBICur hCur;
 CURProps Props;

 // Get an existing cursor on the source table.
 rslt = Chk(DbiGetCursorForTable(hTmpDb, TblName, NULL, &hCur));
 if (rslt != DBIERR_NONE)
 return rslt;

 // Get the amount of fields in the source table.
 rslt = Chk(DbiGetCursorProps(hCur, &Props));
 if (rslt != DBIERR_NONE)
 return rslt;

 // Get the existing field descriptor.
 pFldDesc = (pFLDDesc)malloc((Props.iFields + 1) * sizeof(FLDDesc));
 rslt = Chk(DbiGetFieldDescs(hCur, pFldDesc));
 if (rslt != DBIERR_NONE)
 {
 free(pFldDesc); return rslt;
 }

 // Close the source table so the restructure can occur.
 rslt = Chk(DbiCloseCursor(&hCur));
 if (rslt != DBIERR_NONE)
 {
 free(pFldDesc); return rslt;
 }

 // Move the new field descriptor to the end of the source field
descriptor.

 memcpy(&pFldDesc[Props.iFields], &FldDesc, sizeof(FLDDesc));

 // Put a crADD at the same position ad the new field descriptor
 AddOp = (pCROpType)malloc((Props.iFields + 1) * sizeof(CROpType));
 memset(AddOp, crNOOP, (Props.iFields + 1) * sizeof(CROpType));
 AddOp[Props.iFields] = crADD;

 memset(&TblDesc, 0, sizeof(TblDesc));
 strcpy(TblDesc.szTblName, TblName);
 TblDesc.iFldCount = (UINT16)(Props.iFields + 1);
 TblDesc.pecrFldOp = AddOp;
 TblDesc.pfldDesc = pFldDesc;

 // Resync the field numbers in order.
 for (i = 0; i < Props.iFields; i++)

pFldDesc[i].iFldNum = (UINT16)(i + 1);

 rslt = Chk(DbiDoRestructure(hTmpDb, 1, &TblDesc, NewTblName, NULL, NULL,
FALSE));

 free(AddOp);
 free(pFldDesc);
 return rslt;
}

Example 6: Remove a validity descriptor on the specified field.
This example uses the following input:

fDbiDoRestructure6(hDb, "STOCK", 3);
DBIResult fDbiDoRestructure6(hDBIDb hTmpDb, pCHAR TblName, UINT16 Field)
{
 DBIResult rslt;
 CRTblDesc TblDesc;
 CROpType Operation = crDROP;
 VCHKDesc VCHK;

 memset(&VCHK, 0, sizeof(VCHK));
 VCHK.iFldNum = Field;

 memset(&TblDesc, 0, sizeof(TblDesc));
 strcpy(TblDesc.szTblName, TblName);
 strcpy(TblDesc.szTblType, szPARADOX);
 TblDesc.iValChkCount = 1;
 TblDesc.pecrValChkOp = &Operation;
 TblDesc.pvchkDesc = &VCHK;

 rslt = Chk(DbiDoRestructure(hTmpDb, 1, &TblDesc, NULL, NULL, NULL,
FALSE));

 return rslt;
}

Delphi Examples: DbiDoRestructure
Example 1: Add a validity check to the specified field.
The field must be a longint, and the TTable must be open.
This example uses the following input:
 fDbiDoRestructure(Table4, Table4.Fields[0], @Min, @Max, nil, True);

(This input works for the EMPLOYEE.DB table.)
procedure fDbiDoRestructure(Tbl: TTable; Field: TField; MinVal, MaxVal,
DefVal: pLongint; Required: Boolean);

var
 hDb: hDbiDb;
 TblDesc: CRTblDesc;
 VChk: pVChkDesc;
 Dir: string;
 NumVChks: Word;
 OpType: CROpType;
begin
 NumVChks := 0;
 SetLength(Dir, dbiMaxNameLen + 1);
 Check(DbiGetDirectory(Tbl.DBHandle, False, PChar(Dir)));
 SetLength(Dir, StrLen(PChar(Dir)));
 VChk := AllocMem(sizeof(VChkDesc));
 try
 FillChar(TblDesc, sizeof(CRTblDesc), #0);
 VChk.iFldNum := Field.Index + 1;
 Tbl.DisableControls;
 Tbl.Close;
 Check(DbiOpenDatabase(nil, nil, dbiReadWrite, dbiOpenExcl, nil, 0, nil,
nil,

 hDb));
 Check(DbiSetDirectory(hDb, PChar(Dir)));
 with VChk^ do begin
 bRequired := Required;
 if (MinVal <> nil) then begin
 Inc(NumVChks);
 bHasMinVal := True;
 move(MinVal^, aMinVal, sizeof(MinVal^));
 end
 else
 bHasMinVal := False;
 if (MaxVal <> nil) then begin
 Inc(NumVChks);
 bHasMaxVal := True;
 move(MaxVal^, aMaxVal, sizeof(MaxVal^));
 end
 else
 bHasMaxVal := False;
 if (DefVal <> nil) then begin
 Inc(NumVChks);
 bHasDefVal := True;
 move(DefVal^, aDefVal, sizeof(DefVal^));
 end
 else

 bHasDefVal := False;
 end;
 TblDesc.iValChkCount := NumVChks;
 TblDesc.pVChkDesc := VChk;
 OpType := crADD;
 TblDesc.pecrValChkOp := @OpType;
 StrPCopy(TblDesc.szTblName, Tbl.TableName);
 StrCopy(TblDesc.szTblType, szParadox);
 Check(DbiDoRestructure(hDb, 1, @TblDesc, nil, nil, nil, False));
 finally
 Check(DbiCloseDatabase(hDb));
 FreeMem(VChk, sizeof(VChkDesc));
 Tbl.EnableControls;
 Tbl.Open;
 end;
end;

Example 2: Pack a Paradox (with DbiDoRestructure) or dBASE table.

This example will pack a Paradox or dBASE table therfore removing already deleted rows in
a table. This function will also regenerate all out-of-date indexes (maintained indexes). This
example uses the following input:
 PackTable(Table1)

The function is defined as follows:

// Pack a Paradox or dBASE table
// The table must be opened execlusively before calling this function...
procedure PackTable(Table: TTable);
var
 Props: CURProps;
 hDb: hDBIDb;
 TableDesc: CRTblDesc;
begin
 // Make sure the table is open exclusively so we can get the db handle...
 if not Table.Active then
 raise EDatabaseError.Create('Table must be opened to pack');
 if not Table.Exclusive then
 raise EDatabaseError.Create('Table must be opened exclusively to pack');
 // Get the table properties to determine table type...
 Check(DbiGetCursorProps(Table.Handle, Props));

 // If the table is a Paradox table, you must call DbiDoRestructure...
 if (Props.szTableType = szPARADOX) then begin
 // Blank out the structure...
 FillChar(TableDesc, sizeof(TableDesc), 0);
 // Get the database handle from the table's cursor handle...
 Check(DbiGetObjFromObj(hDBIObj(Table.Handle), objDATABASE,
hDBIObj(hDb)));

 // Put the table name in the table descriptor...
 StrPCopy(TableDesc.szTblName, Table.TableName);
 // Put the table type in the table descriptor...

 StrPCopy(TableDesc.szTblType, Props.szTableType);
 // Set the Pack option in the table descriptor to TRUE...
 TableDesc.bPack := True;
 // Close the table so the restructure can complete...
 Table.Close;
 // Call DbiDoRestructure...
 Check(DbiDoRestructure(hDb, 1, @TableDesc, nil, nil, nil, False));
 end
 else
 // If the table is a dBASE table, simply call DbiPackTable...
 if (Props.szTableType = szDBASE) then
 Check(DbiPackTable(Table.DBHandle, Table.Handle, nil, szDBASE, True))
 else
 // Pack only works on PAradox or dBASE; nothing else...
 raise EDatabaseError.Create('Table must be either of Paradox or dBASE
' +

 'type to pack');

 Table.Open;
end;

Example 3: Alter a field in a Paradox or dBASE table.

This example will alter an existing field in a Paradox or dBASE table. NOTE: You must fill in
all options in the ChangeRec with 0 or '' if the option is not used in the restructure. FillChar
can be used to do this:
    Fillchar(MyChangeRec, sizeof(MyChangeRec), 0);
This example uses the following input:
 ChangeField(Table1, Table1.FieldByName('FOO'), MyChangeRec)

ChangeRec is defined as follows:
type
 ChangeRec = packed record
 szName: DBINAME;
 iType: Word;
 iSubType: Word;
 iLength: Word;
 iPrecision: Byte;
 end;

The function is defined as follows:
procedure ChangeField(Table: TTable; Field: TField; Rec: ChangeRec);
var
 Props: CURProps;
 hDb: hDBIDb;
 TableDesc: CRTblDesc;
 pFields: pFLDDesc;
 pOp: pCROpType;
 B: Byte;
begin
 // Initialize the pointers...
 pFields := nil;
 pOp := nil;

 // Make sure the table is open exclusively so we can get the db handle...
 if not Table.Active then
 raise EDatabaseError.Create('Table must be opened to restructure');
 if not Table.Exclusive then
 raise EDatabaseError.Create('Table must be opened exclusively' +
 'to restructure');
 Check(DbiSetProp(hDBIObj(Table.Handle), curxltMODE, Integer(xltNONE)));
 // Get the table properties to determine table type...
 Check(DbiGetCursorProps(Table.Handle, Props));
 // Make sure the table is either Paradox or dBASE...
 if (Props.szTableType <> szPARADOX) and (Props.szTableType <> szDBASE)
then

 raise EDatabaseError.Create('Field altering can only occur on Paradox' +
 ' or dBASE tables');
 // Allocate memory for the field descriptor...
 pFields := AllocMem(Table.FieldCount * sizeof(FLDDesc));
 // Allocate memory for the operation descriptor...
 pOp := AllocMem(Table.FieldCount * sizeof(CROpType));
 try
 // Set the pointer to the index in the operation descriptor to put
 // crMODIFY (This means a modification to the record is going to
happen)...

 Inc(pOp, Field.Index);
 pOp^ := crMODIFY;
 Dec(pOp, Field.Index);
 // Fill the field descriptor with the existing field information...
 Check(DbiGetFieldDescs(Table.Handle, pFields));
 // Set the pointer to the index in the field descriptor to make the
 // midifications to the field
 Inc(pFields, Field.Index);
 // If the szName portion of the ChangeRec has something in it, change
it...

 if (Length(Rec.szName) > 0) then
 pFields^.szName := Rec.szName;
 // If the iType portion of the ChangeRec has something in it, change
it...

 if (Rec.iType > 0) then
 pFields^.iFldType := Rec.iType;
 // If the iSubType portion of the ChangeRec has something in it, change
it...

 if (Rec.iSubType > 0) then
 pFields^.iSubType := Rec.iSubType;
 // If the iLength portion of the ChangeRec has something in it, change
it...

 if (Rec.iLength > 0) then
 pFields^.iUnits1 := Rec.iLength;
 // If the iPrecision portion of the ChangeRec has something
 // in it, change it...
 if (Rec.iPrecision > 0) then
 pFields^.iUnits2 := Rec.iPrecision;
 Dec(pFields, Field.Index);
 for B := 1 to Table.FieldCount do begin
 pFields^.iFldNum := B;
 Inc(pFields, 1);
 end;
 Dec(pFields, Table.FieldCount);

 // Blank out the structure...
 FillChar(TableDesc, sizeof(TableDesc), #0);
 // Get the database handle from the table's cursor handle...
 Check(DbiGetObjFromObj(hDBIObj(Table.Handle), objDATABASE,
hDBIObj(hDb)));

 // Put the table name in the table descriptor...
 StrPCopy(TableDesc.szTblName, Table.TableName);
 // Put the table type in the table descriptor...
 StrPCopy(TableDesc.szTblType, Props.szTableType);
 // The following three lines are necessary when doing any field
restructure

 // operations on a table...

 // Set the field count for the table
 TableDesc.iFldCount := Table.FieldCount;
 // Link the operation descriptor to the table descriptor...
 TableDesc.pecrFldOp := pOp;
 // Link the field descriptor to the table descriptor...
 TableDesc.pFldDesc := pFields;
 // Close the table so the restructure can complete...
 Table.Close;
 // Call DbiDoRestructure...
 Check(DbiDoRestructure(hDb, 1, @TableDesc, nil, nil, nil, False));
 finally
 if (pFields <> nil) then
 FreeMem(pFields);
 if (pOp <> nil) then
 FreeMem(pOp);
 end;
end;

Example 4: Add a master password to a Paradox table.
This example uses the following input:
 AddMasterPassword(Table1, 'MyNewPassword')

The procedure is:
procedure AddMasterPassword(Table: TTable; pswd: string);
const
 RESTRUCTURE_TRUE = WordBool(1);
var
 TblDesc: CRTblDesc;
 hDb: hDBIDb;
begin
 { Make sure that the table is opened and is exclusive }
 if not Table.Active or not Table.Exclusive then
 raise EDatabaseError.Create('Table must be opened in exclusive ' +
 'mode to add passwords');
 { Initialize the table descriptor }
 FillChar(TblDesc, SizeOf(CRTblDesc), #0);
 with TblDesc do begin
 { Place the table name in descriptor }
 StrPCopy(szTblName, Table.TableName);
 { Place the table type in descriptor }
 StrCopy(szTblType, szPARADOX);
 { Master Password, Password }

 StrPCopy(szPassword, pswd);
 { Set bProtected to True }
 bProtected := RESTRUCTURE_TRUE;
 end;
 { Get the database handle from the cursor handle }
 Check(DbiGetObjFromObj(hDBIObj(Table.Handle), objDATABASE, hDBIObj(hDb)));
 { Close the table }
 Table.Close;
 { Add the master password to the Paradox table }
 Check(DbiDoRestructure(hDb, 1, @TblDesc, nil, nil, nil, False));
 { Add the new password to the session }
 Session.AddPassword(pswd);
 { Re-Open the table }
 Table.Open;
end;

DbiDropFilter {button C
Examples,JI(`>example',`exdbiactivatefilter')} {button Delphi
Examples,JI(`>example',`dexdbidropfilter')}
C syntax
DBIResult DBIFN DbiDropFilter (hCursor, [hFilter]);
Delphi syntax
function DbiDropFilter (hCursor: hDBICur; hFilter: hDBIFilter): DBIResult
stdcall;

Description
DbiDropFilter drops the specified filter and frees all resources associated with the filter.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
hFilter Type: hDBIFilter (Input)
Specifies the filter handle.

Usage
The filter is automatically deactivated before being dropped, and automatically dropped
when the cursor is closed. Providing a NULL filter handle drops all filters for this cursor. If no
filters are activated and NULL has been specified for the filter handle, no error condition is
returned.

Prerequisites
The filter must have been previously added.
DbiResult return values
DBIERR_NONE The filter specified by the filter handle was successfully dropped. If NULL is passed

for the filter handle, all filters, if any, were dropped.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_NOSUCHFILTER The filter handle (hFilter) is invalid.

See also
DbiActivateFilter, DbiDeactivateFilter, DbiAddFilter

C Examples: DbiDropFilter
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiDropFilter
Deactivate and drop a filter on the specified table. This example uses the following input:
 fDbiDropFilter(Table1, hFilter);

The procedure is defined as:
procedure fDbiDropFilter(Table: TTable; var hFilter: hDBIFilter);
var
 Props: CURProps;
begin
 Check(DbiGetCursorProps(Table.Handle, Props));
 // Check to see if there are any active filters on the cursor
 if (Props.iFilters = 0) then
 raise EDatabaseError.Create('There are no active filters on the
specified cursor');

 if(hFilter <> nil) then begin
 // Deactivate and drop filter
 Check(DbiDeactivateFilter(Table.Handle, hFilter));
 Check(DbiDropFilter(Table.Handle, hFilter));
 end
 else
 raise EDatabaseError.Create('Filter handle is invalid or already
dropped');

end;

DbiDropPassword {button C
Examples,JI(`>example',`exdbidroppassword')} {button Delphi
Examples,JI(`>example',`dexdbidroppassword')}
C syntax
DBIResult DBIFN DbiDropPassword (pszPassword);
Delphi syntax
function DbiDropPassword (pszPassword: PChar): DBIResult stdcall;
Description
DbiDropPassword removes a password from the current session. This function is used by
the Paradox driver only.

Parameters
pszPassword Type: pCHAR (Input)
Pointer to the password to be dropped. If NULL is specified, all passwords for the session
are dropped.
Usage
This function removes the rights to access previously encrypted tables with that password;
it does not cause tables to become decrypted.
DbiResult return values
DBIERR_NONE The password specified by pszPassword was successfully dropped.
DBIERR_INVALIDPASSWORD The specified password is empty or too long.
DBIERR_OBJNOTFOUND pszPassword was not found.

See also
DbiAddPassword

C Examples: DbiDropPassword
Remove all passwords from the current session. This example uses the following input:

fDbiDropPassword();
DBIResult fDbiDropPassword(VOID)
{
      return Chk(DbiDropPassword(NULL));
}

Delphi Examples: DbiDropPassword
Drop a password.
Delphi users should use TSession.RemovePassword method rather than directly calling
dbiDropPassword. The method TSession.RemovePassword is defined as:
 procedure RemovePassword(const Password: string);
The following code removes a password called "Hip Hop" from TSession Session:
Session.RemovePassword('Hip Hop');

DbiEmptyTable {button C
Examples,JI(`>example',`exdbiemptytable')} {button Delphi
Examples,JI(`>example',`dexdbiemptytable')}
C syntax
DBIResult DBIFN DbiEmptyTable (hDb, hCursor, pszTableName, [pszDriverType]);
Delphi syntax
function DbiEmptyTable (hDb: hDBIDb; hCursor: hDBICur; pszTableName: PChar;
pszDriverType: PChar): DBIResult stdcall;

Description
DbiEmptyTable deletes all records from the given table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
hCursor Type: hDBICur (Input)
Specifies the cursor on the table. Optional. If hCursor is specified, the operation is
performed on the table associated with the cursor. If hCursor is NULL, pszTableName and
pszDriverType determine the table to be used.
pszTableName Type: pCHAR (Input)
Pointer to the table name. Optional. If hCursor is NULL, pszTableName and pszDriverType
determine the table to be used. (If both pszTableName and hCursor are specified,
pszTableName is ignored.)
For Paradox, FoxPro, and dBASE, if pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name
is taken from the current directory of the database associated with hDb.
For SQL databases, this parameter can be a fully qualified name that includes the owner
name.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. For Paradox , FoxPro, and dBASE tables, this parameter
is required if pszTableName has no extension. This parameter is ignored if the database
associated with hDb is a SQL database. pszDriverType can be one of the following values:
szDBASE, szMSACCESS, or szPARADOX.

Usage
This function is used to remove all records from the specified table.
Paradox: The operation is not performed if there are any conflicting referential integrity
constraints on the table.
Prerequisites
If a cursor is passed in, it must have been opened in exclusive mode. For Paradox tables, if
the table is encrypted, a table-level password with prvINSDEL or prvFULL rights must have
been registered.

Completion state
No records remain in the table. However, all resources (for example, indexes and validity
checks) remain. The table and index should now be at their respective minimum sizes.

DbiResult return values
DBIERR_NONE The table was successfully emptied.
DBIERR_INVALIDHNDL The specified database handle or the specified cursor handle is

invalid or NULL.
DBIERR_NEEDEXCLACCESS The table was not emptied because the user does not have exclusive

access to this table.
DBIERR_NOSUCHTABLE The table specified in pszTableName and pszDriverType does not

exist.
DBIERR_INVALIDPARAM The pointer to the table name is NULL, or the table name is an empty

string.
DBIERR_NOTSUFFTABLERIGHTS The user does not have permission to perform this operation

(Paradox only).
DBIERR_NOTSUFFSQLRIGHTS Insufficient SQL rights to perform this operation (SQL only).
DBIERR_DETAILRECEXISTEMPTY There are conflicting referential integrity constraints on the table

(Paradox only).

See also
DbiOpenTable, DbiAddPassword

C Examples: DbiEmptyTable
Creates a copy of a source table, then empties it. Both tables must be of the same type.
This example uses the following input:

fDbiEmptyTable(hDb, "CUSTOMER.DB", "NEW CUSTOMER.DB");
DBIResult fDbiEmptyTable(hDBIDb hTmpDb, pCHAR szSrcTblName, pCHAR
szDstTblName)

{
 DBIResult rslt;
 hDBICur hCursor = 0;

 // Creating a dummy table to empty.
 rslt = Chk(DbiCopyTable(hTmpDb, TRUE, szSrcTblName, dbiNOLOCK,
szDstTblName));

 if (rslt != DBIERR_NONE)
 return rslt;
 // Open the dummy table so it can be emptied.
 rslt = Chk(DbiOpenTable(hTmpDb, szDstTblName, NULL, NULL, NULL, 0,
dbiREADWRITE,

 dbiOPENEXCL, xltFIELD, FALSE, NULL, &hCursor));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiEmptyTable(hTmpDb, hCursor, NULL, NULL));
 if (rslt != DBIERR_NONE)
 return rslt;

 rslt = Chk(DbiCloseCursor(&hCursor));
 if (rslt != DBIERR_NONE)
 return rslt;

 return rslt;
}

Delphi Examples: DbiEmptyTable
Delete all records from the given table.
Delphi users should use the TTable.EmptyTable method rather than directly calling
dbiEmptyTable. The method TTable.EmptyTable is defined as:
 procedure TTable.EmptyTable;
The following code empties TTable Table1:
Table1.EmptyTable;

DbiEndDelayedUpdates {button C
Examples,JI(`>example',`exdbienddelayedupdates')} {button
Delphi Examples,JI(`>example',`dexdbienddelayedupdates')}
C syntax
DBIResult DBIFN DbiEndDelayedUpdates(phCursor);
Delphi syntax
function DbiEndDelayedUpdates (var hCursor: hDBICur): DBIResult stdcall;
Description
DbiEndDelayedUpdates takes the cursor out of cached updates mode, and returns a new
cursor handle.

Parameters
phCursor Type: phDBICur (Input/Output)
Specifies the cached updates cursor handle and returns a new cursor handle.

Usage
Use DbiEndDelayedUpdates to terminate the cached updates mode.
Prerequisites
A call to DbiBeginDelayedUpdates must have been made.

Completion state
If this function is called while cached updates are pending, all changes are discarded.
DbiResult return values
DBIERR_NONE The cached updates mode was ended and a standard cursor handle was successfully

created.

See also
DbiBeginDelayedUpdates, DbiApplyDelayedUpdates, Cached Updates

C Examples: DbiEndDelayedUpdates
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiEndDelayedUpdates
An example for this function is under development and will be provided in an upcoming
Help release.

DbiEndLinkMode {button C
Examples,JI(`>example',`exdbiendlinkmode')} {button Delphi
Examples,JI(`>example',`dexdbiendlinkmode')}
C syntax
DBIResult DBIFN DbiEndLinkMode (phCursor);
Delphi syntax
function DbiEndLinkMode (var hCursor: hDBICur): DBIResult stdcall;
Description
DbiEndLinkMode takes cursor out of Link mode, and returns a new cursor handle.
Parameters
phCursor Type: phDBICur (Input/Output)
Specifies the linked cursor handle, and returns a new cursor handle.
Prerequisites
A previous call to DbiBeginLinkMode must have been made. DbiUnlinkDetail should be
called to unlink the cursor before DbiEndLinkMode is called.
Usage
DbiEndLinkMode takes a cursor out of Link mode. For example, if a detail cursor is taken
out of link mode, it is no longer constrained by the master cursor.
Warning: The cursor handle passed in as input can no longer be used.

DbiResult return values
DBIERR_NONE Linked cursor mode was successfully ended.

See also
DbiBeginLinkMode, DbiLinkDetail, DbiUnlinkDetail

C Examples: DbiEndLinkMode
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiEndLinkMode
End the master/detail link and close the associated cursors. This example uses the
following input:
 fDbiEndLinkMode(hMas, hDet);

The procedure is defined as:
procedure fDbiEndLinkMode(var hMasCur, hDetCur: hDBICur);
begin
 Check(DbiUnlinkDetail(hDetCur));
 Check(DbiEndLinkMode(hMasCur));
 Check(DbiEndLinkMode(hDetCur));
 Check(DbiCloseCursor(hMasCur));
 Check(DbiCloseCursor(hDetCur));
end;

DbiEndTran {button C Examples,JI(`>example',`exdbiendtran')}
{button Delphi Examples,JI(`>example',`dexdbiendtran')}

C syntax
DBIResult DBIFN DbiEndTran (hDb, hXact, eEnd);
Delphi syntax
function DbiEndTran (hDb: hDBIDb; hXact: hDBIXact; eEnd: eXEnd): DBIResult
stdcall;

Description
DbiEndTran ends a transaction on a SQL server table or a local (Paradox, FoxPro, Access,
and dBASE) table.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
hXact Type: hDBIXact (Input)
Specifies the transaction handle.
eEnd Type: eXEnd (Input)
Specifies the transaction end type.
Usage
Ends a transaction that was previously requested. If a commit is done, all changes
performed within the transaction against the associated database are made permanent. If
an abort is done, all changes performed against the associated database are undone.
xendCOMMIT and xendABORT currently keep cursors if the driver and the database can
support it. For xendCOMMIT and xendABORT, if the database cannot support keeping
cursors, four possibilities exist for each server cursor opened on behalf of the BDE user:
· A cursor for an open query with pending results is buffered locally. Other than

prematurely reading the data, no visible effect remains.
· A cursor opened on a table supporting direct positioning is closed. No other behavior is

affected.
· A cursor opened on a table that does not support direct positioning is opened initially in a

different transaction or connection context, if the database supports this. This cursor
remains open because it exists in a different context from the requested transaction.

· If none of the previous possibilities apply, the cursor is closed and subsequent access to
the BDE objects associated with the server cursor returns an error.

For local transactions, xendCOMMITKEEP is not supported by DbiEndTran.
InterBase, Sybase: It is recommended that after a rollback on a dead table you close all
cursors that can be closed, reopening if needed.
Prerequisites
DbiBeginTran must have been called first.

DbiResult return values
DBIERR_NONE The transaction has ended successfully.

See also
DbiBeginTran

eEnd
Possible transaction end type values are:
Value Description
xendCOMMIT Commit the transaction.
xendCOMMITKEEP Commit the transaction and keep cursors.
xendABORT Roll back the transaction.

C Examples: DbiEndTran
End the specified transaction:
This example uses the following input:

fDbiEndTran(hDb, xTran, xendCOMMIT);
DBIResult fDbiEndTran(hDBIDb hTmpDb, hDBIXact hXact, eXEnd XEnd)
{
 DBIResult rslt;
 rslt = Chk(DbiEndTran(hTmpDb, hXact, XEnd));
 return rslt;
}

Delphi Examples: DbiEndTran
End the specified transaction:
Delphi users should use the TDataBase.Commit,TDataBase.RollBack methods rather than
directly calling DbiEndTran. These methods are defined as:
 procedure TDataBase.Commit;
 procedure TDataBase.RollBack;
The following code ends a transaction on a TDataBase object called DataBase1 and rolls
back changes to the pre-transaction state:
{ cancels all modifications made to DataBase1 since last call to
StartTransaction }

 DataBase1.RollBack
The following code ends a transaction on a TDataBase object called DataBase1 and
commits changes to the table:
{ commits all modifications made to DataBase1 since last call to
StartTransaction. }

 DataBase1.Commit;
end;
End the master/detail link and close the associated cursors. This example uses the
following input:
 fDbiEndLinkMode(hMas, hDet);

The procedure is defined as:
procedure fDbiEndLinkMode(var hMasCur, hDetCur: hDBICur);
begin
 Check(DbiUnlinkDetail(hDetCur));
 Check(DbiEndLinkMode(hMasCur));
 Check(DbiEndLinkMode(hDetCur));
 Check(DbiCloseCursor(hMasCur));
 Check(DbiCloseCursor(hDetCur));
end;

DbiExit {button C Examples,JI(`>example',`exdbiexit')}{button
Delphi Examples,JI(`>example',`dexdbiexit')}
C syntax
DBIResult DBIFN DbiExit (VOID);
Delphi syntax
function DbiExit: DBIResult stdcall;
Description
DbiExit disconnects the client application from BDE.
Usage
DbiExit uninitializes BDE for use by this client and releases all resources allocated by the
client application. DbiExit should be the last DBI/BDE call made by the client application.
Completion state
All databases and cursors are closed, and any temporary tables are removed. If the exit is
done while in a SQL transaction, the active transaction is usually rolled back. (Some SQL
drivers commit.) Since the connection to BDE has been removed, the user must reinitialize
BDE before any BDE functions can be called.
DbiResult return values
DBIERR_NONE The connection to BDE has been successfully removed.

See also
DbiInit, DbiDllExit

C Examples: DbiExit
Exit BDE
This example uses the following input:

fDbiExit();
DBIResult fDbiExit(VOID)
{
 DBIResult rslt;
 rslt = Chk(DbiExit());
 return rslt;
}

Delphi Examples: DbiExit
Exit BDE
You should not call dbiExit in a Delphi application if you have any of the "Data Access" or
"Data Controls" VCL components in your project. Those components will automatically call
dbiInit and dbiExit.
If you are not using VCL database controls and have called dbiInit yourself, then the
following code properly deinitializes the engine:
Check(DbiExit);.

DbiExtractKey {button C
Examples,JI(`>example',`exdbiextractkey')} {button Delphi
Examples,JI(`>example',`dexdbiextractkey')}
C syntax
DBIResult DBIFN DbiExtractKey (hCursor, [pRecBuf], pKeyBuf);
Delphi syntax
function DbiExtractKey (hCursor: hDBICur; pRecBuf: Pointer; pKeyBuf:
Pointer): DBIResult stdcall;

Description
DbiExtractKey retrieves the key value for the current record of the given cursor or from the
supplied record buffer.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle. The cursor must be opened with an active index.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer from which to extract the key. Optional; if NULL, DbiExtractKey
extracts the key from the current record.
pKeyBuf Type: pBYTE (Output)
Pointer to the client buffer receiving the key value. The length of the key value can be
determined by retrieving the Index Descriptor (IDXDesc) and using iKeyLen or iKeySize in
the CURProps structure.

Prerequisites
An index must be active. To retrieve the key from the current record, the cursor must be on
a valid record.

Completion state
The extracted key value is returned in pKeyBuf. The returned key can be used as input to
functions such as DbiSetToKey, DbiSetRange, and DbiCompareKey.
Note: In case a field map is active on the cursor, and does not include one or more of the

index fields, those index fields become blanks in the extracted key if a record buffer
was supplied.

Note: The key length is not affected by a field map.

DbiResult return values
DBIERR_NONE The key value was retrieved successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_NOASSOCINDEX The cursor does not have an index active.
DBIERR_NOCURRREC The cursor is not positioned on a record.

See also
DbiGetCursorProps, DbiSetToKey, DbiSetRange, DbiCompareKeys, DbiGetRecordForKey

C Examples: DbiExtractKey
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiExtractKey
Extract the key value for the current record.
This example assumes the field is of type character and uses the following input:
 fDbiExtractKey(Table1.Handle, KeyValue);

The procedure is defined as:
procedure fDbiExtractKey(hTmpCur: hDBICur; var KeyBuff: string);
var
 P: PChar;
 Props: CurProps;
begin
 Check(DbiGetCursorProps(hTmpCur,Props));
 GetMem(P, Props.IkeySize);
 Check(DbiExtractKey(hTmpCur, nil, P));
 KeyBuff:= StrPas(P);
 FreeMem(p, Props.IkeySize);
end;

DbiForceRecordReread {button C
Examples,JI(`>example',`exdbiforcerecordreread')} {button Delphi
Examples,JI(`>example',`dexdbiforcerecordreread')}
C syntax
DBIResult DBIFN DbiForceRecordReread (hCursor, pRecBuf);
Delphi syntax
function DbiForceRecordReread (hCursor: hDBICur; pRecBuff: Pointer):
DBIResult stdcall;

Description
DbiForceRecordReread rereads a single record from the server on demand. It refreshes one
row only, rather than clearing the cache.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pRecBuf Type: pBYTE (Output)
Location of record buffer.
Usage
Use DbiForceRecordReread as an alternative to using DbiForceReread, which allows users
to refresh their cursor by re-executing the query on the server. DbiForceReread may be an
expensive call because the complete contents of the local cache must be updated. Based
on the optimistic record locking method, individual records (rows) may be reread from the
server if a record lock is requested. However this is based on a number of factors, including
record age (how long since the record has been retrieved from the server).
Using DbiForceRecordReread, a valid record is reread from the server, based on the index
or record address. The refreshed record value will be placed in pRecBuf. The behavior is
similar to DbiGetRecord with a lock, except an optimistic record lock is not obtained, and
the record is always reread from the server. Keep in mind that the record is always reread
using the current index (or record address), which must be unique.

Prerequisites
A table must be open.
Completion state
A valid record is reread from the server and the refreshed record value is placed in
pRecBuf.
DbiResult return values
DBIERR_NONE Buffers were refreshed successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiForceReread

C Examples: DbiForceRecordReread
Update the record buffer with current record information:
This example uses the following input:

fDbiForceRecordReread(hCur, pRecBuf);
DBIResult fDbiForceRecordReread(hDBICur hTmpCur, pBYTE pTmpRecBuf)
{
 DBIResult rslt;
 rslt = Chk(DbiForceRecordReread(hTmpCur, pTmpRecBuf));
 return rslt;
}

Delphi Examples: DbiForceRecordReread
Update the record buffer with current record information.
This example uses the following input:
 fDbiForceRecordReread(hCur, pRecBuf);

The procedure is defined as:
procedure fDbiForceRecordReread(hTmpCur : hDBICur, pTmpRecBuf : pBYTE)
begin
 Check(DbiForceRecordReread(hTmpCur, pTmpRecBuf));
end;

DbiForceReread {button C
Examples,JI(`>example',`exdbiforcereread')} {button Delphi
Examples,JI(`>example',`dexdbiforcereread')}
C syntax
DBIResult DBIFN DbiForceReread (hCursor);
Delphi syntax
function DbiForceReread (hCursor: hDBICur): DBIResult stdcall;
Description
DbiForceReread refreshes all buffers for the table associated with the cursor in case remote
updates took place.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

Usage
DbiForceReread is used to ensure that the client application is using current data. All
subsequent retrieval operations will get new data.
Note: This function ensures only that the buffered data is current at the time of the call.

Periodically use DbiForceReread or DbiCheckRefresh to ensure current data. Use
record locking to prevent other users from updating records being modified by this
cursor.

Note: This function is supported only on cursors for DbiOpenTable and "live" local
(Paradox, FoxPro, Access, or dBASE) query cursors. "Dead" table cursors, and tables
with no unique index are not supported.

Alternatively you can use DbiForceRecordReread to reread a single record from the server
on demand, refreshing one row only, rather than clearing the cache.
In order to notify the client application that the table data was actually changed by a
remote user, a callback of the type cbTABLECHANGED can be installed. This callback will be
invoked whenever a change is detected.

Prerequisites
SQL: There must be a unique row identifier such as an index.
DbiResult return values
DBIERR_NONE Buffers were refreshed successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiCheckRefresh, DbiRegisterCallback, DbiForceRecordReread

C Examples: DbiForceReread
Force the cache to be cleared for the specified cursor:

DBIResult fDbiForceReread(hDBICur hTmpCur)
{
 DBIResult rslt;
 rslt = Chk(DbiForceReread(hTmpCur));
 return rslt;
}

Delphi Examples: DbiForceReread
Refresh all buffers associated with TTable component T:

procedure ForceReread(T: TTable);
begin
 Check(DbiForceReread(T.Handle));
end;

DbiFormFullName {button C
Examples,JI(`>example',`exdbiformfullname')} {button Delphi
Examples,JI(`>example',`dexdbiformfullname')}
C syntax
DBIResult DBIFN DbiFormFullName (hDb, pszTableName, pszDriverType,
pszFullName);

Delphi syntax
function DbiFormFullName (hDb: hDBIDb; pszTableName: PChar; pszDriverType:
PChar; pszFullName: PChar): DBIResult stdcall;

Description
DbiFormFullName returns the fully qualified table name.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Pointer to the table name.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type.
pszFullName Type: pCHAR (Output)
Pointer to the client buffer that receives the fully qualified table name. pszFullName should
be allocated for DBIMAXTBLNAMELEN.

Usage
If the given table name contains a beginning drive letter followed by a colon, this function
simply returns the same table name that was passed in without changing it. Otherwise, this
function qualifies the table name using the directory associated with the supplied database
handle. You can use DbiSetDirectory to change this directory. The table name need not be
an existing file.
DbiResult return values
DBIERR_NONE The table name has been successfully returned.
DBIERR_INVALIDFILENAME The specified table name is invalid. This might occur if the combined

length of the directory and table name are greater than
DBIMAXTBLNAMELEN). Output pszFullname is left unchanged.

See also
DbiSetDirectory

C Examples: DbiFormFullName
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiFormFullName
Return the fully qualified table name and path.
This example uses the following input:
 FullName:=fDbiFormFullName(Table1);

The function is defined as:
function fDbiFormFullName(Tbl: TTable): string;
var
 Props: CurProps;
begin
 Check(DbiGetCursorProps(Tbl.Handle,Props));
 SetLength(Result, DBIMAXPATHLEN);
 Check(DbiFormFullName(Tbl.DBHandle, PChar(Tbl.TableName),
 Props.szTableType, PChar(Result)));
end;

DbiFreeBlob {button C Examples,JI(`>example',`exdbigetblob')}
{button Delphi Examples,JI(`>example',`dexdbigetblob')}

C syntax
DBIResult DBIFN DbiFreeBlob (hCursor, pRecBuf, iField);
Delphi syntax
function DbiFreeBlob (hCursor: hDBICur; pRecBuf: Pointer; iField: Word):
DBIResult stdcall;

Description
DbiFreeBlob closes the BLOB handle obtained by DbiOpenBlob. The BLOB handle is located
within the specified record buffer.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle for the table. The table must contain a BLOB field.
pRecBuf Type: pBYTE (Input)
Specifies the pointer to the record buffer containing the BLOB handle. DbiOpenBlob sets
the BLOB handle in the record buffer.
iField Type: UINT16 (Input)
Specifies the valid field number of the open BLOB field. If set to 0, the DbiFreeBlob call
closes all open BLOBs associated with the record buffer.
Usage
The BLOB handle is closed, and all resources allocated to the BLOB with DbiOpenBlob are
released.
This function must be called after calling DbiModifyRecord, DbiInsertRecord, or
DbiAppendRecord (only if a BLOB has been opened), in order to free BLOB resources.
DbiModifyRecord, DbiInsertRecord, or DbiAppendRecord do not automatically release BLOB
resources after record modification. However, if DbiFreeBlob is called prior to calling
DbiModifyRecord, DbiInsertRecord, or DbiAppendRecord, then any changes made to the
BLOB are lost.
This function does not affect the contents of the BLOB on disk.

Prerequisites
The current record buffer must contain a BLOB field, and the BLOB must have been opened
with DbiOpenBlob.

Completion state
After a BLOB handle has been freed, subsequent calls to DbiFreeBlob for the same handle
result in an error.

DbiResult return values
DBIERR_NONE The BLOB field was freed successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified record buffer is NULL.
DBIERR_OUTOFRANGE The number specified in iField is greater than the number of fields in

the table.
DBIERR_BLOBNOTOPENED The specified BLOB field has not been opened via a call to

DbiOpenBlob. This error is returned if the BLOB has already been
freed with a previous DbiFreeBlob call.

DBIERR_INVALIDBLOBHANDLE The logical BLOB handle in the record buffer is invalid.

DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.

See also
DbiOpenTable, DbiOpenBlob, DbiPutBlob, DbiTruncateBlob, DbiGetBlob, DbiGetBlobSize,
DbiInsertRecord, DbiAppendRecord, DbiModifyRecord

DbiGetBlob {button C Examples,JI(`>example',`exdbigetblob')}
{button Delphi Examples,JI(`>example',`dexdbigetblob')}

C syntax
DBIResult DBIFN DbiGetBlob (hCursor, pRecBuf, iField, iOffSet, iLen, pDest,
piRead);

Delphi syntax
function DbiGetBlob (hCursor: hDBICur; pRecBuf: Pointer; iField: Word;
iOffSet: Longint; iLen: Longint; pDest: Pointer; var iRead: Longint):
DBIResult stdcall;

Description
DbiGetBlob retrieves data from the specified BLOB field.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer containing the BLOB handle. The record buffer is returned from
a call to DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord, or DbiGetRecord.
DbiOpenBlob sets the BLOB handle in the record buffer.
iField Type: UINT16 (Input)
Specifies the ordinal number of the BLOB field in the record.
iOffSet Type: UINT32 (Input)
Specifies the start location for retrieval within the BLOB field. If 0 is specified, retrieval
starts from the beginning of the field. If the value exceeds the length of the BLOB field, an
error is returned. If any value greater than 0 is specified, then only a portion of the BLOB
field is retrieved.
iLen Type: UINT32 (Input)
Specifies the number of bytes to retrieve. iLen must be between 0 and the length of the
BLOB field. iLen may be larger than 64K.
pDest Type: pBYTE (Output)
Pointer to the client buffer that receives the BLOB data.
piRead Type: pUINT32 (Output)
Pointer to the client variable that receives the actual number of bytes read. The actual
number can be less than the number of bytes requested if the end of the BLOB is reached.
Usage
Any portion of the data within the BLOB field can be retrieved, starting from the position
specified in iOffSet, and extending to the number of bytes specified in iLen. pRecBuf should
contain a BLOB handle obtained by calling DbiOpenBlob. DbiGetBlob can access data larger
than 64Kb, depending on the size you allocate for the buffer.
Prerequisites
The current record buffer must contain a BLOB field which has been opened by a call to
DbiOpenBlob.
Completion state
piRead points to the number of bytes of BLOB data retrieved, and pDest points to the
retrieved BLOB data.
DbiResult return values
DBIERR_NONE The BLOB field was successfully retrieved.

DBIERR_BLOBNOTOPENED The specified BLOB field has not been opened via call to
DbiOpenBlob.

DBIERR_INVALIDBLOBHANDLE The logical BLOB handle supplied in the record buffer is invalid.
DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.
DBIERR_INVALIDBLOBOFFSET The start location specified in iOffSet is greater than the length of

the BLOB field.
DBIERR_ENDOFBLOB The end of the BLOB has been reached. Check piRead to see if any

data was returned.

See also
DbiOpenBlob, DbiPutBlob, DbiFreeBlob, DbiTruncateBlob, DbiGetBlobSize

C Examples: DbiGetBlob
Display the specified field's memo:
The field specified in uFldNum must be a valid memo blob. This example uses the following
input:

fBlobExample1(hCur, pRecBuf, 7);
DBIResult fBlobExample1 (hDBICur hTmpCur, pBYTE pTmpRecBuf, UINT16 uFldNum)
{
 DBIResult rslt;
 char *BlobInfo; // Holds Blob information
 UINT32 BlobSize; // Input / Output Blob size in Bytes

 rslt = Chk(DbiOpenBlob(hTmpCur, pTmpRecBuf, uFldNum, dbiREADONLY));
 if (rslt != DBIERR_NONE)
 return rslt;

 rslt = Chk(DbiGetBlobSize(hTmpCur, pTmpRecBuf, uFldNum, &BlobSize));
 if (rslt != DBIERR_NONE)
 return rslt;

 BlobInfo = (char *)malloc(BlobSize * sizeof(BYTE));

 rslt = Chk(DbiGetBlob(hTmpCur, pTmpRecBuf, uFldNum, 0, BlobSize,
 (pBYTE)BlobInfo, &BlobSize));
 if (rslt == DBIERR_NONE)
 MessageBox(0, BlobInfo, "This is the Blob Information", MB_OK);

 free(BlobInfo);

 rslt = Chk(DbiFreeBlob(hTmpCur, pTmpRecBuf, uFldNum));

 return rslt;
}

Delphi Examples: DbiGetBlob
Display the specified field's memo.
The field specified in BlobIndex must be a valid memo blob and the BlobBuffer must be
allocated. This example uses the following input:
 fDbiGetBlob(BIOLIFE_TABLE, BIOLIFE_TABLE.FieldByName('Notes').Index,
 BlobBuffer);

The procedure is defined as:
procedure fDbiGetBlob(InDataSet: TDataSet; BlobIndex: Word; var BlobInfo:
string);

var
 NumRead: longint;
begin
 // Parameter iField of DbiOpenBlob requires an ordinal field number
 Inc(BlobIndex);
 InDataSet.UpdateCursorPos;
 Check(DbiOpenBlob(InDataSet.Handle, InDataSet.ActiveBuffer, BlobIndex,
dbiReadOnly));

 Check(DbiGetBlobSize(InDataSet.Handle, InDataSet.ActiveBuffer, BlobIndex,
NumRead));

 SetLength(BlobInfo, NumRead);
 Check(DbiGetBlob(InDataSet.Handle, InDataSet.ActiveBuffer, BlobIndex, 0,
 NumRead, PChar(BlobInfo), longint(NumRead)));
 Check(DbiFreeBlob(InDataSet.Handle, InDataSet.ActiveBuffer, BlobIndex));
end;

DbiGetBlobHeading {button C
Examples,JI(`>example',`exdbigetblobheading')} {button Delphi
Examples,JI(`>example',`dexdbigetblobheading')}
C syntax
DBIResult DBIFN DbiGetBlobHeading (hCursor, iField, pRecBuf, pDest);
Delphi syntax
function DbiGetBlobHeading (hCursor: hDBICur; iField: Word; pRecBuf:
Pointer; pDest: Pointer): DBIResult stdcall;

Description
DbiGetBlobHeading retrieves information about a BLOB field from the BLOB heading in the
record buffer.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iField Type: UINT16 (Input)
Specifies the ordinal number of the BLOB field within the record.
pRecBuf Type: pBYTE (Input)
Pointer to the client buffer containing the BLOB heading.
pDest Type: pBYTE (Output)
Pointer to the client buffer that receives the retrieved BLOB heading. The client buffer must
be large enough to accommodate the retrieved information.

Usage
This function is valid only for table types that support BLOB headings, that is, Paradox only.
When the table is created, the client can specify the number of bytes of the BLOB field
information to be stored in the tuple itself. This information is also contained in the normal
storage area of the BLOB; it is actually duplicated. The benefit of storing some of the BLOB
field in the tuple is that the BLOB field does not have to be opened to retrieve this
information. If the BLOB is small, it can be contained fully in the record making access
faster.
Paradox: With formatted BLOB fields, the formatting information in the first eight bytes of
the field is not stored within the tuple. It is functionally the same as if DbiGetBlob were
called with an iOffSet of 8 and an iLen the length of the tuple area.
dBASE or FoxPro: This function is not supported for dBASE or FoxPro tables.
Access: This function is not supported for Access tables.
SQL: This function is not supported for SQL tables.
Prerequisites
This call does not require a prior call to DbiOpenBlob. (This call can be understood as the
functional equivalent of a DbiGetField call for BLOB fields).
Completion state
If the BLOB does not have a heading, DbiGetBlobHeading returns an error.

DbiResult return values
DBIERR_NONE The BLOB heading was retrieved successfully.
DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.
DBIERR_NOTSUFFFIELDRIGHTS The application does not have sufficient rights to this field.

DBIERR_NOTSUPPORTED This function is not supported by SQL, dBASE, FoxPro, or Access.

See also
DbiPutBlob, DbiTruncateBlob, DbiFreeBlob, DbiGetBlob, DbiGetBlobSize

C Examples: DbiGetBlobHeading
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetBlobHeading
Display the specified field's memo heading.
The field specified in BlobIndex must be a valid memo blob and the BlobBuffer must be
allocated. Used only with Paradox memo fields. This example uses the following input:
fDbiGetBlobHeading(BIOLIFE_TABLE, BIOLIFE_TABLE.FieldByName('Notes').Index,
BlobBuffer);

The procedure is defined as:
procedure fDbiGetBlobHeading(InDataSet: TDataSet; BlobIndex: Word; var P:
PChar);

var
 NumRead: longint;
begin
 Inc(BlobIndex); // Parameter iField of DbiOpenBlob requires an ordinal
field number

 InDataSet.UpdateCursorPos;
 Check(DbiOpenBlob(InDataSet.Handle, InDataSet.ActiveBuffer, BlobIndex,
dbiReadOnly));

 Check(DbiGetBlobSize(InDataSet.Handle, InDataSet.ActiveBuffer, BlobIndex,
NumRead));

 Check(DbiGetBlobHeading(InDataSet.Handle, BlobIndex,
InDataSet.ActiveBuffer, P));

 Check(DbiFreeBlob(InDataSet.Handle, InDataSet.ActiveBuffer, BlobIndex));
end;

DbiGetBlobSize{button C Examples,JI(`>example',`exdbigetblob')}
{button Delphi Examples,JI(`>example',`dexdbigetblob')}

C syntax
DBIResult DBIFN DbiGetBlobSize (hCursor, pRecBuf, iField, piSize);
Delphi syntax
function DbiGetBlobSize (hCursor: hDBICur; pRecBuf: Pointer; iField: Word;
var iSize: Longint): DBIResult stdcall;

Description
DbiGetBlobSize retrieves the size of the specified BLOB field in bytes.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer containing the BLOB handle. The client application must first
allocate the buffer and fetch a valid record. A call to DbiOpenBlob then obtains the BLOB
handle.
iField Type: UINT16 (Input)
Specifies the ordinal number of the BLOB field within the specified record buffer.
piSize Type: pUINT32 (Output)
Pointer to the client variable that receives the BLOB size in bytes.

Usage
This function is used to get the size of a BLOB.
Prerequisites
The current record buffer must contain a BLOB field which has been opened by a call to
DbiOpenBlob.
Completion state
piSize points to the retrieved size of the BLOB field.

DbiResult return values
DBIERR_NONE The BLOB size was successfully retrieved.
DBIERR_BLOBNOTOPENED The specified BLOB field has not been opened with a call to

DbiOpenBlob.
DBIERR_INVALIDBLOBHANDLE The logical BLOB handle supplied in the record buffer is invalid.
DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.

See also
DbiOpenBlob, DbiPutBlob, DbiGetBlob, DbiFreeBlob, DbiTruncateBlob

DbiGetBookMark {button C
Examples,JI(`>example',`exdbigetbookmark')} {button Delphi
Examples,JI(`>example',`dexdbigetbookmark')}
C syntax
DBIResult DBIFN DbiGetBookMark (hCur, pBookMark);
Delphi syntax
function DbiGetBookMark (hCur: hDBICur; pBookMark: Pointer): DBIResult
stdcall;

Description
DbiGetBookMark saves the current position of a cursor in the client-supplied bookmark
buffer. This position is called a bookmark.
Parameters
hCur Type: hDBICur (Input)
Specifies the cursor handle.
pBookMark Type: pBYTE (Output)
Pointer to the client-allocated bookmark buffer.
Usage
A bookmark contains internal information about the current position of the cursor. This
information can be passed to DbiSetToBookMark to reposition the same or compatible
cursor. If a bookmark is stable, it is guaranteed that the cursor can be repositioned there.
Whether or not the bookmark is stable can be determined from the bBookMarkStable
property returned by DbiGetCursorProps.
dBASE and FoxPro: For dBASE and FoxPro tables, the bookmark is always stable.
Paradox: For Paradox tables, the bookmark is stable only if the table has a primary key.
SQL: For SQL tables, the bookmark is stable only if the table has a unique index or unique
row identifier.

Prerequisites
DbiGetCursorProps should be called to retrieve the iBookMarkSize property and the
bookmark buffer should be allocated to accommodate the bookmark.
Note: The size of a bookmark depends on the current index and can change if

DbiSwitchToIndex is called.

Completion state
The bookmark buffer pointed to by pBookMark contains the saved cursor position. The
bookmark is valid only with a cursor that is using the same table and ordered with the
same index.
DbiResult return values
DBIERR_NONE The bookmark was returned successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL, or the pointer to the

bookmark buffer is NULL.

See also
DbiSetToBookMark, DbiCompareBookMarks, DbiGetCursorProps

C Examples: DbiGetBookMark
Set a bookmark on the current position of a cursor:
Note: The table must have a primary index. This example uses the following input:

fDbiGetBookMark(hPXCur, &pBookmark);
DBIResult fDbiGetBookMark(hDBICur hCur, ppBYTE ppBookMark)
{
 DBIResult rslt;
 CURProps CurProps;
 rslt = Chk(DbiGetCursorProps(hCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 *ppBookMark = (pBYTE)malloc(CurProps.iBookMarkSize);
 rslt = Chk(DbiGetBookMark(hCur, *ppBookMark));
 return rslt;
}

Delphi Examples: DbiGetBookMark
Set a bookmark on the current position of a cursor:
Delphi users should use the GetBookmark method associated with descendents of
TDataSet including TTable, TQuery, and TStoredProc rather than directly calling
DbiGetBookmark. This method is defined as:
 function GetBookmark: TBookmark;
The following saves the current record information of the dataset to allow you to return to
that record with a later call to the GotoBookmark method.
Table1.GetBookmark;

DbiGetCallBack{button C
Examples,JI(`>example',`exdbigetcallback')} {button Delphi
Examples,JI(`>example',`dexdbigetcallback')}
C syntax
DBIResult DBIFN DbiGetCallBack (hCursor, ecbType, piClientData, piCbBufLen,
ppCbBuf, ppfCb);

Delphi syntax
function DbiGetCallBack (hCursor: hDBICur; ecbType: CBType; var iClientData:
Longint; var iCbBufLen: Word; var pCbBuf: Pointer; ppfCb: ppfDBICallBack):
DBIResult stdcall;

Description
DbiGetCallBack returns a pointer to the function previously registered by the client (using
DbiRegisterCallBack) for the given callback type.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle. If NULL, hCursor specifies that the callback is session-wide,
rather than cursor-level.
ecbType Type: CBType (Input)
Specifies the type of callback.
piClientData Type: pUINT32 (Input)
Pointer to the passthrough client data (used by the client function).
piCbBufLen Type: pUINT16 (Input)
Pointer to the callback buffer length.
ppCbBuf Type: ppVOID (Input)
Pointer to the callback buffer pointer.
ppfCb Type: ppfDBICallBack (Output)
Pointer to the client variable that receives a pointer to the callback function that was
previously registered for this type. The buffer receives a NULL pointer if no function was
registered.

Usage
This function is typically used to find out whether the specified callback function was
registered for the given cursor handle or the currently active session.

DbiResult return values
DBIERR_NONE The callback function for the given cursor handle has been successfully retrieved.

See also
DbiRegisterCallBack

C Examples: DbiGetCallBack
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetCallBack
An example for this function is under development and will be provided in an upcoming
Help release.

DbiGetClientInfo {button C
Examples,JI(`>example',`exdbigetclientinfo')} {button Delphi
Examples,JI(`>example',`dexdbigetclientinfo')}
Syntaax
DBIResult DBIFN DbiGetClientInfo (pclientInfo);
Delphi syntax
function DbiGetClientInfo (var clientInfo: CLIENTInfo): DBIResult stdcall;
Description
DbiGetClientInfo retrieves system-level information about the client application.
Parameters
pclientInfo Type: pCLIENTInfo (Output)
Pointer to the client-allocated CLIENTInfo structure.
Usage
This function can be used to determine if other sessions are present when exclusive access
is required to a table. It can also be used to determine the current language driver and to
get the working directory.

Completion state
The output buffer pointed to by pclientInfo contains client environment information.
DbiResult return values
DBIERR_NONE Client application information was returned successfully.

See also
DbiGetSysVersion, DbiGetSysConfig, DbiGetSysInfo

C Examples: DbiGetClientInfo
Obtain client info:
If ClientStr is not null, this function also creates a string with the client information. This
example uses the following input:

fDbiGetClientInfo(&Client, Buffer);
DBIResult fDbiGetClientInfo(pCLIENTInfo pCInfo, pCHAR ClientStr)
{
 DBIResult rslt;
 rslt = Chk(DbiGetClientInfo(pCInfo));
 if ((rslt == DBIERR_NONE) && (ClientStr != NULL))
 wsprintf(ClientStr, "Name: %s, Sessions: %d, Working Dir: %s,
Language: %s",

 pCInfo->szName, pCInfo->iSessions, pCInfo->szWorkDir, pCInfo-
>szLang);

 return rslt;
}

Delphi Examples: DbiGetClientInfo
Display a message box containing system-level information about client
application.
This example uses the following input:
 ShowClientInfo;

The procedure is defined as:
procedure ShowClientInfo;
const
 InfoStr = 'Name: %s'#13#10'Number of sessions: %d'#13#10 +
 'Working directory: %s'#13#10'Language: %s';
var
 ClientInf: ClientInfo;
begin
 Check(DbiGetClientInfo(ClientInf));
 with ClientInf do
 ShowMessage(Format(InfoStr, [szName, iSessions, szWorkDir, szLang]));
end;

DbiGetCurrSession {button C
Examples,JI(`>example',`exdbigetcurrsession')} {button Delphi
Examples,JI(`>example',`dexdbigetcurrsession')}
C syntax
DBIResult DBIFN DbiGetCurrSession (phSes);
Delphi syntax
function DbiGetCurrSession (var hSes: hDBISes): DbiResult stdcall;
Description
DbiGetCurrSession returns the handle associated with the current session.
Parameters
phSes Type: phDBISes (Output)
Pointer to the current session handle.
Completion state
This function returns the handle to current session, that is, the handle identified by the
most recent call to DbiSetCurrSession or DbiStartSession. If neither of these calls has been
made, DbiGetCurrSession returns the handle to the default session.

DbiResult return values
DBIERR_NONE The current session handle has been retrieved successfully.
DBIERR_INVALIDHNDL phSes is NULL.

See also
DbiSetCurrSession, DbiStartSession, DbiCloseSession, DbiGetSysInfo, DbiGetSesInfo

C Examples: DbiGetCurrSession
Return the handle associated with the current session:   
This function returns the handle of the current session. If pSesInfo is not null,
DbiGetCurrSession retrieves session information. This example uses the following input:

fDbiGetCurrSession(&hSes, &SesInfo);
DBIResult fDbiGetCurrSession(phDBISes pTmpSes, pSESInfo pSesInfo)
{
 DBIResult rslt;
 rslt = Chk(DbiGetCurrSession(pTmpSes));
 if (rslt == DBIERR_NONE)
 {
 if (pSesInfo != NULL)
 rslt= Chk(DbiGetSesInfo(pSesInfo));
 }
 return rslt;
}

Delphi Examples: DbiGetCurrSession
Return the handle associated with the current session:   
If a call to DbiStartSession has occurred previously, then this function returns a handle to
the current session. This example uses the following input:
 fDbiGetCurrSession(hSes);

The procedure is defined as:
procedure fDbiGetCurrSession(var hTmpSes: hDBISes);
begin
 Check(DbiGetCurrSession(hTmpSes));
end;

DbiGetCursorForTable {button C
Examples,JI(`>example',`exdbigetcursorfortable')} {button Delphi
Examples,JI(`>example',`dexdbigetcursorfortable')}
C syntax
DBIResult DBIFN DbiGetCursorForTable ([hDb], pszTableName, [pszDriverType],
phCursor);

Delphi syntax
function DbiGetCursorForTable (hDb: hDBIDb; pszTableName: PChar;
pszDriverType: PChar; var hCursor: hDBICur): DBIResult stdcall;

Description
DbiGetCursorForTable returns an existing cursor for the given table within the current
session.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle. Optional. If supplied, DbiFormFullName is called to create a
fully qualified table name.
pszTableName Type: pCHAR (Input)
Pointer to the table name.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. If supplied, used with hDb in a call to DbiFormFullName.
phCursor Type: phDBICur (Output)
Pointer to a cursor handle.
Usage
If more than one cursor is opened on the table, the first cursor found on the table is
returned. There is no implied ordering of cursors on a table.
DbiResult return values
DBIERR_NONE The cursor for the table was retrieved successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.
DBIERR_NOSUCHTABLE The specified table name is invalid.
DBIERR_OBJNOTFOUND A valid cursor could not be found.

See also
DbiFormFullName

C Examples: DbiGetCursorForTable
Retrieve a cursor for a table.
The table should have at least one open cursor already on it. This example uses the
following input:

fDbiGetCursorForTable("STOCK.DB", &hSTOCKCur);
DBIResult fDbiGetCursorForTable(pCHAR TblName, hDBIDb hDb, phDBICur phCur)
{
 DBIResult rslt;
 rslt = Chk(DbiGetCursorForTable(hDb, TblName, szPARADOX, phCur));
 return rslt;
}

Delphi Examples: DbiGetCursorForTable
Return an existing cursor for the given table within the current session.
This function also returns the name of the index on which the table is open. This example
uses the following input:
 OutputStr:= fDbiGetCursorForTable(Table1.DBHandle, Table1.TableName,
MyNewCursor);

The function is defined as:
function fDbiGetCursorForTable(hTmpDb: hDbiDb; TblName: string; var hNewCur:
hDBICur): string;

var
 IndexDesc: IdxDesc;
begin
 Check(DbiGetCursorForTable(hTmpDb, PChar(TblName), '', hNewCur));
 Check(DbiGetIndexDesc(hNewCur, 0, IndexDesc));
 Result := StrPas(IndexDesc.szName);
end;

DbiGetCursorProps {button C
Examples,JI(`>example',`exdbigetcursorprops')} {button Delphi
Examples,JI(`>example',`dexdbigetcursorprops')}
C syntax
DBIResult DBIFN DbiGetCursorProps (hCursor, pcurProps);
Delphi syntax
function DbiGetCursorProps (hCursor: hDBICur; var curProps: CURProps):
DBIResult stdcall;

Description
DbiGetCursorProps returns the properties of the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pcurProps Type: pCURProps (Output)
Pointer to the client-allocated CURProps structure.

Usage
This function retrieves the most commonly used cursor properties. Additional properties
can be obtained by using DbiGetProp. This function can be called immediately after
DbiOpenTable to retrieve information necessary to allocate the record buffer and the array
for the field descriptors in the table.
FoxPro: To see if a cursor is referencing a FoxPro table, check if iTblLevel is equal to the
constant FOXLEVEL25.

DbiResult return values
DBIERR_NONE Cursor properties for hCursor were successfully retrieved.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiGetProp, DbiSetProp, Getting and Setting Properties, CURProps

C Examples: DbiGetCursorProps
Return a string containing cursor properties.
OutName must have sufficient space to hold the return string. This example uses the
following input:

fDbiGetCursorProps(hCursor, Name);
DBIResult fDbiGetCursorProps(hDBICur hTmpCur, pCHAR OutName)
{
 DBIResult rslt;
 CURProps Prop;
 rslt = Chk(DbiGetCursorProps(hTmpCur, &Prop));
 if (rslt != DBIERR_NONE)
 return rslt;
 wsprintf(OutName, "Name: %s, Name Size: %d\r\nTableType: %s"
 ", Fields: %d\r\nRecord Buffer Size: %d, Key Size: %d\r\nIndexes: %d"
 ", Validity Checks: %d\r\nRef Integ Checks: %d, Passwords: %d",
 Prop.szName, Prop.iFNameSize, Prop.szTableType, Prop.iFields,
 Prop.iRecBufSize, Prop.iKeySize, Prop.iIndexes, Prop.iValChecks,
 Prop.iRefIntChecks, Prop.iPasswords);
 return rslt;
}

Delphi Examples: DbiGetCursorProps
Example 1: Return the size of the record buffer needed to hold information for
one record.
Note: Delphi programs should use TTable.RecordSize.
This example uses the following input:
 RecBuf := AllocMem(fDbiGetCursorProps1(Table1.Handle));

The function is defined as:
function fDbiGetCursorProps1(hTmpCur: hDbiCur): Word;
var
 Prop : CURProps;
begin
 Check(DbiGetCursorProps(hTmpCur, Prop));
 Result := Prop.iRecBufSize;
end;

Example 2: Return information about the table open on the specified cursor.
This example uses the following input:
 fDbiGetCursorProps2(Table1.Handle, TmpList);

The procedure is defined as:
procedure fDbiGetCursorProps2(hTmpCur: hDbiCur; CurList: TStringList);
var
 Prop : CURProps;
begin
 Check(DbiGetCursorProps(hTmpCur, Prop));
 with CurList do begin
 Add('Table Name: ' + Prop.szName);
 Add('Table Type: ' + Prop.szTableType);
 Add('Fields: ' + IntToStr(Prop.iFields));
 Add('Record Buffer Size: ' + IntToStr(Prop.iRecBufSize));
 Add('Indexes: ' + IntToStr(Prop.iIndexes));
 Add('Validity Checks: ' + IntToStr(Prop.iValChecks));
 Add('Referential Integ Checks: ' + IntToStr(Prop.iRefIntChecks));
 Add('Table Level: ' + IntToStr(Prop.iTblLevel));
 Add('Language Driver: ' + Prop.szLangDriver);
 end;
end;

DbiGetDatabaseDesc {button C
Examples,JI(`>example',`exdbigetdatabasedesc')} {button Delphi
Examples,JI(`>example',`dexdbigetdatabasedesc')}
C syntax
DBIResult DBIFN DbiGetDatabaseDesc (pszName, pdbDesc);
Delphi syntax
function DbiGetDatabaseDesc (pszName: PChar; pdbDesc: pDBDesc): DBIResult
stdcall;

Description
DbiGetDatabaseDesc retrieves the description of the specified database from the
configuration file.
Parameters
pszName Type: pCHAR (Input)
Pointer to the database name.
pdbDesc Type: pDBDesc (Output)
Pointer to the client-allocated DBDesc structure.
Prerequisites
A valid database (alias) name must be specified.

Completion state
The output buffer contains the database description.
DbiResult return values
DBIERR_NONE The database description for pszName was retrieved successfully.
DBIERR_OBJNOTFOUND The database named in pszName was not found.

See also
DbiOpenDatabaseList

C Examples: DbiGetDatabaseDesc
Get database description.
If DBStr is not null, this function also creates a string with the database information. This
example uses the following input:
 fDbiGetDatabaseDesc("BDEDEMOS", &DbDesc, Buffer)
DBIResult fDbiGetDatabaseDesc(pCHAR DBName, pDBDesc pDB, pCHAR DBStr)
{
 DBIResult rslt;
 rslt = Chk(DbiGetDatabaseDesc(DBName, pDB));
 if ((rslt == DBIERR_NONE) && (DBStr != NULL))
 wsprintf(DBStr, "Name: %s, Description: %s, Physical Name: %s, Type:
%s",

 pDB->szName, pDB->szText, pDB->szPhyName, pDB->szDbType);
 return rslt;
}

Delphi Examples: DbiGetDatabaseDesc
Retrieve the description of the specified database from the configuration file.
This example uses the following input:
 ShowDatabaseDesc('IBLOCAL');

The procedure is defined as:
procedure ShowDatabaseDesc(DBName: string);
const
 DescStr = 'Driver Name: %s'#13#10'AliasName: %s'#13#10 +
 'Text: %s'#13#10'Physical Name/Path: %s';
var
 dbDes: DBDesc;
begin
 Check(DbiGetDatabaseDesc(PChar(DBName), @dbDes));
 with dbDes do
 ShowMessage(Format(DescStr, [szDbType, szName, szText, szPhyName]));
end;

DbiGetDateFormat {button C
Examples,JI(`>example',`exdbigetdateformat')} {button Delphi
Examples,JI(`>example',`dexdbigetdateformat')}
C syntax
DBIResult DBIFN DbiGetDateFormat (pfmtDate);
Delphi syntax
function DbiGetDateFormat (var fmtDate: FMTDate): DBIResult stdcall;
Description
DbiGetDateFormat gets the date format for the current session.
Parameters
pfmtDate Type: pFMTDate (Output)
Pointer to the client-allocated FMTDate structure.
Usage
The date format is used by QBE for input and wildcard character matching. It is also used
by batch operations (such as DbiDoRestructure and DbiBatchMove) to handle data type
coercion between character and date types. The default date format can be changed by
editing the system configuration file. The date format for the current session can be
changed using DbiSetDateFormat.

DbiResult return values
DBIERR_NONE The date format was successfully retrieved.
DBIERR_INVALIDHNDL pfmtDate is NULL.

See also
DbiGetNumberFormat, DbiGetTimeFormat, DbiSetDateFormat

C Examples: DbiGetDateFormat
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetDateFormat
Retrieve the date separator from the current session
The date separator is displayed it in a dialog box.

procedure TForm1.Button3Click(Sender: TObject);
var
 fmt: fmtdate;
 s: string;
begin
 Check(dbiGetDateFormat(fmt));
 s:=fmt.szDateSeparator;
 ShowMessage('Date is seperated by a ' + s + ' Character');
end;

DbiGetDirectory {button C
Examples,JI(`>example',`exdbigetdirectory')} {button Delphi
Examples,JI(`>example',`dexdbigetdirectory')}
C syntax
DBIResult DBIFN DbiGetDirectory (hDb, bDefault, pszDir);
Delphi syntax
function DbiGetDirectory (hDb: hDBIDb; bDefault: Bool; pszDir: PChar):
DBIResult stdcall;

Description
DbiGetDirectory retrieves the current directory or the default directory, depending on the
value specified in bDefault.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle. Must be associated with a standard database.
bDefault Type: BOOL (Input)
The bDefault parameter specifies whether to retrieve the default directory or the current
working directory.
pszDir Type: pCHAR (Output)
Pointer to the client-allocated buffer which receives the directory string. The buffer must be
large enough to hold the directory string (DBIMAXPATHLEN + 1).
Usage
This function is valid only for a Paradox, FoxPro, or dBASE database. The default directory
can be set when DbiInit is called as part of the DBIEnv structure. If DbiSetDirectory is not
called, then the default directory is the same as the application startup directory.
SQL: DbiGetDirectory is not applicable to SQL databases.
Prerequisites
A valid database handle must be obtained.

Completion state
The output buffer contains the directory string.
DbiResult return values
DBIERR_NONE The directory was returned successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

See also
DbiSetDirectory, DbiInit, DbiOpenDatabase

bDefault
bDefault can be one of the following values:
bDefault value Directory to retrieve
TRUE Default directory
FALSE Current working directory

C Examples: DbiGetDirectory
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetDirectory
Return the current working directory.
This example uses the following input:
 ReturnString:= fDbiGetDirectory(Table1.DBHandle);

The function is defined as:
function fDbiGetDirectory(hDB: hDbiDb): string;
var
 Dir: string;
begin
 SetLength(Dir, dbiMaxPathLen + 1);
 Check(DbiGetDirectory(hDB, False, PChar(Dir)));
 SetLength(Dir, StrLen(PChar(Dir)));
 Result:= Dir;
end;

DbiGetDriverDesc {button C
Examples,JI(`>example',`exdbigetdriverdesc')}{button Delphi
Examples,JI(`>example',`dexdbigetdriverdesc')}
C syntax
DBIResult DBIFN DbiGetDriverDesc (pszDriverType, pdrvType);
Delphi syntax
function DbiGetDriverDesc (pszDriverType: PChar; var drvType: DRVType):
DBIResult stdcall;

Description
DbiGetDriverDesc retrieves a description of a driver.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver name string.
pdrvType Type: pDRVType (Output)
Pointer to the client-allocated DRVType structure.

DbiResult return values
DBIERR_NONE The driver description was retrieved successfully.
DBIERR_INVALIDPARAM Invalid pszDriverType argument
DBIERR_INVALIDHNDL Invalid handles to function errors (bad cursors or database handles).

See also
DbiOpenDriverList

C Examples: DbiGetDriverDesc
Obtain information about a certain driver.
DBIResult fDbiGetDriverDesc(pCHAR DrvName)
{
 DBIResult rslt;
 DRVType DrvDesc;
 rslt = Chk(DbiGetDriverDesc(DrvName, &DrvDesc));
 return rslt;
}

Delphi Examples: DbiGetDriverDesc
Obtain information about a certain driver.
This example uses the following input:
 fDbiGetDriverDesc('INTRBASE', TmpList);

The procedure is defined as:
Procedure fDbiGetDriverDesc(DrvName: string; DriverList: TStringList);
var
 DrvDesc : DRVType;
begin
 Check(DbiGetDriverDesc(PChar(DrvName), DrvDesc));
 with DriverList do begin
 Add('Driver Type: ' + DrvDesc.szType);
 Add('Text: ' + DrvDesc.szText);
 Add('Database Type: ' + DrvDesc.szDbType);
 end;
end;

DbiGetErrorContext {button C
Examples,JI(`>example',`exdbigeterrorcontext')} {button Delphi
Examples,JI(`>example',`dexdbigeterrorcontext')}
C syntax
DBIResult DBIFN DbiGetErrorContext (eContext, pszContext);
Delphi syntax
function DbiGetErrorContext (eContext: SmallInt; pszContext: PChar):
DBIResult stdcall;

Description
After receiving an error code back from a call, DbiGetErrorContext allows the client to probe
BDE for more specific error information.
Parameters
eContext Type: INT16 (Input)
Specifies the context type.
pszContext Type: pCHAR (Output)
Pointer to the client-allocated buffer that receives the context string. The buffer must be at
least as large as (DBIMAXMSGLEN+1).

Usage
DbiGetErrorContext allows the client to receive more information about the error just
received, such as which table failed to open. The client inputs the error context type and
the function returns a character string.
For example, a client tries to open a nonexistent table using DbiOpenTable, and receives a
return of DBIERR_NOSUCHFILE. The error context is logged by the BDE. Other error
contexts can be logged as well, so rather than force the user to scan each error context
individually, the BDE provides a way to search for a particular context type. In this
example, the user wants to know the table name associated with the error condition, and
calls DbiGetErrorContext (ecTABLENAME, buffer), which returns the full path name of the
table. If there is no table name associated with the error, the buffer is empty.
Note: If all that is required is a formatted error message for the end user,
DbiGetErrorInfo is a more convenient way to get it.

Prerequisites
Calls other than error handling functions may be made after the call that produced the
error, but the current context information is lost. If DbiOpenTable fails, no functions that
require a cursor can be called because none was returned. But other functions and another
DbiOpenTable can be called.

DbiResult return values
DBIERR_NONE The error context was successfully returned.

See also
DbiGetErrorInfo, DbiGetErrorEntry, DbiGetErrorString

eContext
eContext can be one of the following values:
Value Description
ecTOKEN Token (For QBE)
ecTABLENAME Table name
ecFIELDNAME Field name
ecIMAGEROW Image row (For QBE)
ecUSERNAME For example, in lock conflicts, user involved
ecFILENAME File name
ecINDEXNAME Index name
ecDIRNAME Directory name
ecKEYNAME Key name
ecALIAS Alias
ecDRIVENAME Drive name (C:)
ecNATIVECODE Native error code
ecNATIVEMSG Native error message
ecLINENUMBER Line number
ecCAPABILITY Capability

C Examples: DbiGetErrorContext
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetErrorContext
Show error context string.
After a dbi function returns an error, you can use this procedure to display the error context
string associated with the context type specified in eContext. This example uses the
following input:
 ShowErrorContext(ecTABLENAME);

The procedure is defined as:
procedure ShowErrorContext(eContext: Integer);
var
 Ctxt: string;
begin
 SetLength(Ctxt, DBIMAXMSGLEN);
 DbiGetErrorContext(eContext, PChar(Ctxt));
 SetLength(Ctxt, StrLen(PChar(Ctxt)));
 if (Ctxt > '') then
 ShowMessage(format('Error context string: %s',[Ctxt]));
end;

DbiGetErrorEntry {button C
Examples,JI(`>example',`exdbigeterrorentry')} {button Delphi
Examples,JI(`>example',`dexdbigeterrorentry')}
C syntax
DBIResult DBIFN DbiGetErrorEntry (uEntry, pulNativeError, pszError);
Delphi syntax
function DbiGetErrorEntry (uEntry: Word; var ulNativeError: Longint;
pszError: PChar): DBIResult stdcall;

Description
DbiGetErrorEntry returns the error description (including native server errors returned from
SQL systems) of a specified error stack entry.
Parameters
uEntry Type: UINT16 (Input)
Specifies the error stack entry.
pulNativeError Type: pUINT32 (Output)
Pointer to the client variable that receives the native error code (if any).
pszError Type: pCHAR (Output)
Pointer to the client-allocated buffer that receives the error string (if any).
Usage
Error stack entries begin with 1. Each stack entry contains a DBIERR, and possibly a native
error code and a native error message. DBIERR_NONE is returned for stack entries beyond
the current error stack, so this successful return can be used as a loop termination. For
example, if error entry 1 returns DBIERR_NONE, there are no errors on the stack. Both the
native error code and the native error message result are optional. The stack can be
traversed multiple times, or combined with other error interface calls, but non-error routine
BDE calls reset the error stack.

DbiResult return values
DBIERR_NONE The error stack entry is empty.
Any other error return value indicates what the error code is that is contained in the error
stack entry.

See also
DbiGetErrorInfo, DbiGetErrorString

C Examples: DbiGetErrorEntry
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetErrorEntry
Get the error for the specified entry and return the result in a ClientError string. If a native
error also exists in the entry, return it as the function result. Raise an EDatabaseError
exception if an attempt is made to go beyond the end of the error stack. This example uses
the following input:
 NativeError := fDbiGetErrorEntry(1, ClientStr);

The function is defined as:
function fDbigetErrorEntry(Entry: Word; var ClientError: string): Longint;
var
 L: Longint;
 rslt: DBIResult;
begin
 SetLength(ClientError, DBIMAXMSGLEN + 1);
 rslt := DbiGetErrorEntry(Entry, L, PChar(ClientError));
 SetLength(ClientError, StrLen(PChar(ClientError)));
 Result := L;
 if (rslt = DBIERR_NONE) then
 raise EDatabaseError.Create('No errors at stack entry ' +
IntToStr(Entry));

end;

DbiGetErrorInfo {button C
Examples,JI(`>example',`exdbigeterrorinfo')} {button Delphi
Examples,JI(`>example',`dexdbigeterrorinfo')}
C syntax
DBIResult DBIFN DbiGetErrorInfo (bFull, pErrInfo);
Delphi syntax
function DbiGetErrorInfo (bFull: Bool; var ErrInfo: DBIErrInfo): DBIResult
stdcall {$ENDIF};

Description
DbiGetErrorInfo provides descriptive error information about the last error that occurred,
and error contexts for the first four error messages on the error stack.
Parameters
bFull Type: BOOL (Input)
Not currently used.
pErrInfo Type: pDBIErrInfo (Output)
Pointer to the client DBIErrInfo structure.
Usage
Error information consists of the DBIResult error code, an error message in ANSI characters
corresponding to the code, and up to four associated error contexts. For example, if the
error message is "Table Not Found," the user might want to know the table name. The BDE
engine logged the table name with the error context ecTABLENAME, which can be found in
one of the contexts contained in the DBIErrInfo structure.

Prerequisites
This function is designed for immediate display to the user, so unlike the function
DbiGetErrorContext, the client does not need to be concerned about the different types of
error contexts. If the client wishes to interpret certain error codes and contexts (for
example, the ALIAS error context), DbiGetErrorContext should be used.

DbiResult return values
DBIERR_NONE Error information was retrieved successfully.

See also
DbiGetErrorContext

C Examples: DbiGetErrorInfo
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetErrorInfo
Get descriptive error information about the last error
In addition the the most recent error, this function displays error contexts for up to four
error messages on the error stack. This example uses the following input:
 fDbiGetErrorInfo(DbiOpenLDList(hCur), ErrorList);

The procedure is defined as:
procedure fDbiGetErrorInfo(ErrorCode: DbiResult; ErrorList: TStringList);
var
 ErrorInfo: DBIErrInfo;
 ErrorString: string;
begin
 if (ErrorCode <> dbiERR_NONE) then begin
 ErrorList.Clear;
 Check(DbiGetErrorInfo(True,ErrorInfo));
 if (ErrorCode = ErrorInfo.iError) then begin
 ErrorList.Add('Error Number: ' + IntToStr(ErrorInfo.iError));
 ErrorList.Add('Error Code: ' + StrPas(ErrorInfo.szErrcode));
 if (StrLen(ErrorInfo.szContext[1]) <> 0) then
 ErrorList.Add('Error Context1: ' + StrPas(ErrorInfo.szContext[1]));
 if (StrLen(ErrorInfo.szContext[2]) <> 0) then
 ErrorList.Add('Error Context2: ' + StrPas(ErrorInfo.szContext[2]));
 if (StrLen(ErrorInfo.szContext[3]) <> 0) then
 ErrorList.Add('Error Context3: ' + StrPas(ErrorInfo.szContext[3]));
 if (StrLen(ErrorInfo.szContext[4]) <> 0) then
 ErrorList.Add('Error Context4: ' + StrPas(ErrorInfo.szContext[4]));
 end
 else begin
 SetLength(ErrorString, dbiMaxMsgLen + 1);
 Check(DbiGetErrorString(ErrorCode, PChar(ErrorString)));
 SetLength(ErrorString, StrLen(PChar(ErrorString)));
 ErrorList.Add(ErrorString);
 end;
 end;
end;

DbiGetErrorString {button C
Examples,JI(`>example',`exdbigeterrorstring')} {button Delphi
Examples,JI(`>example',`dexdbigeterrorinfo')}
C syntax
DBIResult DBIFN DbiGetErrorString (rslt, pszError);
Delphi syntax
function DbiGetErrorString (rslt: DBIResult; pszError: PChar): DBIResult
stdcall;

Description
DbiGetErrorString returns the message associated with a given error code.

Parameters
rslt Type: DBIResult (Input)
Specifies the error code.
pszError Type: pCHAR (Output)
Pointer to the client buffer that receives the message string for the given error code.

Usage
This function maps an error code in rslt to the corresponding error string. For example, if
DbiGetErrorString is called with the error code DBIERR_EOF, it returns the string "At End of
Table." BDE keeps the error strings as Windows string resources, so the client can
translate/customize them as needed (using a resource editor such as Resource Workshop).
Note: This function has no context, so it is not limited to error codes that were returned by

previous BDE calls. In contrast, DbiGetErrorInfo returns information only on the last
error logged by BDE.

Prerequisites
The client must allocate a buffer at least as large as (DBIMAXMSGLEN+1).

DbiResult return values
DBIERR_NONE The error string was retrieved successfully.

See also
DbiGetErrorInfo, DbiGetErrorEntry, DbiGetErrorContext

C Examples: DbiGetErrorString
Check the BDE error stack for error information:
This example uses the following input:

fError(DbiSaveChanges(hCur));
DBIResult fError(DBIResult ErrorValue)
{
 char dbi_status[DBIMAXMSGLEN * 5] = {'\0'}; // Error String
 DBIMSG dbi_string = {'\0'};
 DBIErrInfo ErrInfo; // Contains information about the error

 if (ErrorValue != DBIERR_NONE)
 {
 // Note - make certain to call DbiGetErrorInfo() right after
 // the error because it will give information about only the
 // most recent error.
 DbiGetErrorInfo(TRUE, &ErrInfo);

 if (ErrInfo.iError == ErrorValue)
 {
 strcpy(dbi_status, ErrInfo.szErrCode);

 // Need to check how much information was provided -
 // different errors return different amounts of information.
 if (strcmp(ErrInfo.szContext1, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext1);

 if (strcmp(ErrInfo.szContext2, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext2);

 if (strcmp(ErrInfo.szContext3, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext3);

 if (strcmp(ErrInfo.szContext4, ""))
 wsprintf(dbi_status, "%s\r\n %s", dbi_status,
ErrInfo.szContext4);

 }
 else
 {
 DbiGetErrorString(ErrorValue, dbi_string);
 strcpy(dbi_status, dbi_string);
 }
 // Display error in snipit and in a MessageBox
 MessageBox(NULL, dbi_status, "BDE Error - Example Only",
MB_ICONEXCLAMATION);

 }
 return ErrorValue;
}

Delphi Examples: DbiGetErrorString
An example for this function is under development and will be provided in an upcoming
Help release.

DbiGetExactRecordCount
C syntax
DBIResult DBIFN DbiGetExactRecordCount (hCursor, piRecCount);
Delphi syntax
function DbiGetExactRecordCount (hCursor: hDBICur; var iRecCount: Longint):
DBIResult stdcall;

Description
DbiGetExactRecordCount retrieves the current exact number of records associated with the
cursor.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
piRecCount Type: pUINT32 (Output)
Pointer to the client variable which receives the number of records associated with the
cursor.

Usage
This function is meant to get the exact number of records associated with the cursor.
Use DbiGetExactRecordCount instead of DbiGetRecordCount if:
1. A filter is active on the specified cursor
2. A range is active on the specified cursor (Paradox tables: use DbiGetRecordCount)
3. A live result is requested on a cursor handle from any of the DbiQ functions
Note: This function should only be used when necessary.    With SQL servers, the entire

result set will need to be read to determine the record count which can result in
extermely slow responce.    An alternative is to use a SELECT COUNT query.

DbiResult return values
DBIERR_NONE The record count was retrieved successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiGetRecordCount

DbiGetField {button C Examples,JI(`>example',`exdbigetfield')}
{button Delphi Examples,JI(`>example',`dexdbigetfield')}

C syntax
DBIResult DBIFN DbiGetField (hCursor, iField, pRecBuf, [pDest], [pbBlank]);
Delphi syntax
function DbiGetField (hCursor: hDBICur; iField: Word; pRecBuff: Pointer;
pDest: Pointer; var bBlank: Bool): DBIResult stdcall;

Description
DbiGetField retrieves the data contents of the requested field from the record buffer.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iField Type: UINT16 (Input)
Specifies the ordinal number of the field within the record. Field numbers start with 1.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer.
pDest Type: pBYTE (Output)
Pointer to the client buffer that receives the data from the requested field. Optional.
pbBlank Type: pBOOL (Output)
Pointer to the client variable. Set to TRUE if the field is blank; otherwise, FALSE. Optional.

Usage
To determine if a field is blank or if a BLOB is NULL, DbiGetField can be called with pDest
set to NULL. pbBlank is returned indicating whether the field is blank or nonblank.
The data that DbiGetField returns is based on the current translation mode of the cursor. If
the record translation is set to xltNONE, DbiGetField returns the raw data in the driver's
physical format. This is called a BDE physical type. If the translation mode is set to
xltFIELD, the data is returned in a generic form (for example, a Paradox numeric value is
returned as an 8-byte double). This is called a BDE logical type.
DbiGetField cannot be used to return the data contents of a BLOB field, although it can be
used to determine if the BLOB field is empty.
Completion state
The output buffer pointed to by pDest (if supplied) contains the requested field. The output
buffer pointed to by pbBlank (if supplied) indicates whether the field is blank.
DbiResult return values
DBIERR_NONE Data contents were retrieved successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiPutField, DbiInsertRecord, DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord,
DbiGetRecord

C Examples: DbiGetField
Example 1: Get the field value by field number.
This example uses the following input:

fDbiGetField1(hPXCur, pPXRecBuf, 1, (pBYTE)&DFloat);
DBIResult fDbiGetField1(hDBICur hTmpCur, pBYTE pTmpRecBuf, INT16 FldNum,
pBYTE Info)

{
 DBIResult rslt;
 rslt = Chk(DbiGetField(hTmpCur, FldNum, pTmpRecBuf, Info, NULL));
 return rslt;
}

Example 2: Get the field value specified by a field name.
If Info is NULL, this function will check to see if a field exists. If an invalid field name is
given, an error is returned. This example uses the following input:

fDbiGetField2(hPXCur, pPXRecBuf, "STOCK NO", (pBYTE)&DFloat);
DBIResult fDbiGetField2(hDBICur hTmpCur, pBYTE pTmpRecBuf, pCHAR FldName,
pBYTE Info)

{
 DBIResult rslt;
 CURProps CurProps;
 pFLDDesc pFldDesc;
 UINT16 Field;
 BOOL Found = FALSE;
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 pFldDesc = (pFLDDesc)malloc(CurProps.iFields * sizeof(FLDDesc));
 if (pFldDesc == NULL)
 return DBIERR_NOMEMORY;
 rslt = Chk(DbiGetFieldDescs(hTmpCur, pFldDesc));
 if (rslt != DBIERR_NONE)
 {
 free(pFldDesc);
 return rslt;
 }
 for(Field = 0; Field < CurProps.iFields; Field++)
 {
 if (strcmpi(pFldDesc[Field].szName, FldName) == 0)
 {
 Found = TRUE;
 if (Info != NULL)
 rslt = Chk(DbiGetField(hTmpCur, pFldDesc[Field].iFldNum,
pTmpRecBuf, Info, NULL));

 }
 }
 if (Found == FALSE)
 rslt = DBIERR_INVALIDFIELDNAME;
 free(pFldDesc);
 return rslt;
}

Delphi Examples: DbiGetField
Retrieve the data contents of the requested field from the record buffer:
Delphi users should not need to directly call dbiGetField because Delphi provides a variety
of ways to retrieve the value of a particular field. Use the Delphi online help to browse the
Value and As... properties of TField. Also see the FieldValues[] array property of TTable.
Get a field in a table and return it in a Variant type variable.
Some field types are not supported and will cause an exception. Most Delphi users should
use TField objects to retrieve table information. This example uses the following input:
 MStr := fDbiGetField(Table1.Handle, Table1.Fields[0].Index + 1);

The function is:
function fDbiGetField(hTmpCur: hDBICur; FieldNo: Word): Variant;
var
 Props: CURProps;
 pFlds, pOldFlds: pFLDDesc;
 pRecBuf: pBYTE;
 FieldString: string;
 FieldINT16: Smallint;
 FieldINT32: Longint;
 FieldUINT16: Word;
 FieldFLOAT: Double;
 Blank: Boolean;
begin
 if (FieldNo < 1) then
 raise EDatabaseError.Create('Field number index is 1 based');
 Check(DbiGetCursorProps(hTmpCur, Props));
 pFlds := AllocMem(Props.iFields * sizeof(FLDDesc));
 pOldFlds := pFlds;
 pRecBuf := AllocMem(Props.iRecBufSize * sizeof(BYTE));
 try
 Check(DbiGetFieldDescs(hTmpCur, pFlds));
 Inc(pFlds, FieldNo - 1);
 Check(DbiGetRecord(hTmpCur, dbiNOLOCK, pRecBuf, nil));
 case pFlds.iFldType of
 fldDATE, fldTIME, fldTIMESTAMP, fldUNKNOWN, fldBLOB, fldBOOL, fldBCD:
 raise EDBEngineError.Create(DBIERR_NOTSUPPORTED);
 fldZSTRING:
 begin
 SetLength(FieldString, pFlds.iUnits1 + 1);
 Check(DbiGetField(hTmpCur, FieldNo, pRecBuf,
 pBYTE(PChar(FieldString)), Blank));
 SetLength(FieldString, StrLen(PChar(FieldString)));
 Result := FieldString;
 end;
 fldINT16:
 begin
 Check(DbiGetField(hTmpCur, FieldNo, pRecBuf, pBYTE(@FieldINT16),
 Blank));
 Result := FieldINT16;
 end;
 fldUINT16:
 begin

 Check(DbiGetField(hTmpCur, FieldNo, pRecBuf, pBYTE(@FieldUINT16),
 Blank));
 Result := FieldUINT16;
 end;
 fldFLOAT:
 begin
 Check(DbiGetField(hTmpCur, FieldNo, pRecBuf, pBYTE(@FieldFLOAT),
 Blank));
 Result := FieldFLOAT;
 end;
 fldINT32, fldUINT32:
 begin
 Check(DbiGetField(hTmpCur, FieldNo, pRecBuf, pBYTE(@FieldINT32),
 Blank));
 Result := FieldINT32;
 end;
 end;
 finally
 FreeMem(pOldFlds, Props.iFields * sizeof(FLDDesc));
 FreeMem(pRecBuf, Props.iRecBufSize * sizeof(BYTE));
 end;
end;

DbiGetFieldDescs {button C
Examples,JI(`>example',`exdbiputfield')} {button Delphi
Examples,JI(`>example',`dexdbigetfielddescs')}
C syntax
DBIResult DBIFN DbiGetFieldDescs (hCursor, pfldDesc);
Delphi syntax
function DbiGetFieldDescs (hCursor: hDBICur; pfldDesc: pFLDDesc): DBIResult
stdcall;

Description
DbiGetFieldDescs retrieves a list of descriptors for all the fields in the table associated with
hCursor. The structure returned is identical in form to the fields contained in
DbiOpenFieldList.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pfldDesc Type: pFLDDesc (Output)
Pointer to the client FLDDesc structures, one for each of the fields in the table associated
with the specified cursor.
Usage
The field descriptors returned are in accordance with the translation mode set for the
cursor. If the translation mode is xltNONE, the physical field descriptors are returned. If the
translation mode is xltFIELD, the logical field descriptors are returned.
Use DbiGetCursorProps to get the number of field in the table.
DbiResult return values
DBIERR_NONE The field Descriptions were returned successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiGetCursorProps, DbiOpenFieldList

Delphi Examples: DbiGetFieldDescs
Retrieve a list of descriptors for all fields in the table associated with the given
TTable:
This function prints out the field numbers and names of the table. This example uses the
following input:
 fDbiGetFieldDescs(Table1);

The procedure is:
procedure ShowFields(T: TTable);
var
 curProp: CURProps;
 pfldDes, pCurFld: pFLDDesc;
 // pfldDes is a pointer to a list of field descriptors.
 // It must be allocated with (iFields * sizeof(FLDDesc))
 // where iFields is a field in the structure curProps
 // from DbiGetCursorProps
 // pCurFld is a pointer the description of one field in the list.
 i: Integer; // counter
 MemSize: Integer;
 FieldList: string;
begin
 Check(DbiGetCursorProps(T.Handle, curProp));
 // Get enough memory for one field desc times the # of fields
 MemSize := curProp.iFields * SizeOf(FLDDesc);
 pfldDes := AllocMem(MemSize);
 try
 pCurFld := pfldDes;
 Check(DbiGetFieldDescs(T.Handle, pfldDes));
 I := 0;
 FieldList := '';
 while (i < curProp.iFields) do begin
 FieldList := FieldList + Format('%d - %s'#13#10,[pCurFld^.iFldNum,
 pCurFld^.szName]);
 // increment pointer to the next record
 inc(pCurFld);
 inc(i);
 end;
 finally
 ShowMessage(FieldList);
 FreeMem(pfldDes, MemSize);
 end;

DbiGetFieldTypeDesc {button C
Examples,JI(`>example',`exdbigetfieldtypedesc')} {button Delphi
Examples,JI(`>example',`dexdbigetfieldtypedesc')}
C syntax
DBIResult DBIFN DbiGetFieldTypeDesc (pszDriverType, pszTableType,
pszFieldType, pfldType);

Delphi syntax
function DbiGetFieldTypeDesc (pszDriverType: PChar; pszTableType: PChar;
pszFieldType: PChar; var fldType: FLDType): DBIResult stdcall;

Description
DbiGetFieldTypeDesc retrieves a description of the specified field type.
Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Use DbiOpenDriverList to find the valid driver types.
pszTableType Type: pCHAR (Input)
Pointer to the table type. Use DbiOpenTableTypesList to find the valid table types.
pszFieldType Type: pCHAR (Input)
Pointer to the field type. Use DbiOpenFieldTypesList to find the valid field types.
pfldType Type: pFLDType (Output)
Pointer to the client FLDType structure.
DbiResult return values
DBIERR_NONE The field type Description was retrieved successfully.

See also
DbiOpenFieldTypesList, DbiOpenTableTypesList, DbiOpenDriverList

C Examples: DbiGetFieldTypeDesc
Obtain the descriptor for a possible field type.
DBIResult fDbiGetFieldTypeDesc(hDBICur hTmpCur)
{
 DBIResult rslt;
 hDBICur hTmpListCur;
 FLDType fldType;
 FLDDesc fldDesc;
 TBLType tblType;
 pCHAR DrvType = szPARADOX;
 pCHAR info;
 rslt = Chk(DbiOpenTableTypesList(DrvType, &hTmpListCur));
 rslt = DbiSetToBegin(hTmpListCur);
 rslt = Chk(DbiGetNextRecord(hTmpListCur, dbiNOLOCK,
 (pBYTE)&tblType, NULL));
 info = (pCHAR)malloc(DBIMAXMSGLEN);
 rslt = Chk(DbiSetToBegin(hTmpCur));
 rslt = Chk(DbiGetNextRecord(hTmpCur, dbiNOLOCK,
 (pBYTE)&fldDesc, NULL));
 rslt = Chk(DbiGetFieldTypeDesc(DrvType, (pCHAR)tblType.szName,
 (pCHAR)fldDesc.szName, &fldType));
 info[0] = '\0';
 strcat(info, "\r\n\r\n");
 strcat(info, tblType.szName);
 strcat(info, ":\r\n");
 strcat(info, fldType.szName);
 strcat(info, ": ");
 strcat(info, fldType.szText);
 return rslt;
}

Delphi Examples: DbiGetFieldTypeDesc
Retrieve a description of the specified field type.
This example uses the following input:
 fDbiGetFieldTypeDesc(szPARADOX, 'PDOX 7.0', 'ALPHA', MyFieldType);

The procedure is:
procedure fDbiGetFieldTypeDesc(DriverType, TableType, FieldType: PChar;
 var FieldTypeInfo: TStringList);
 function BoolVal(InBool: Boolean): string;
 begin
 if InBool then Result:= 'True'
 else Result:= 'False';
 end;
var
 FieldTypeRec: FLDType;
begin
 Check(DbiGetFieldTypeDesc(DriverType, TableType, FieldType,
FieldTypeRec));

 FieldTypeInfo.Add
 ('Field ID Type: ' + IntToStr(FieldTypeRec.iId));
 FieldTypeInfo.Add('Symbolic Name: ' + StrPas(FieldTypeRec.szName));
 FieldTypeInfo.Add('Descriptive Text: ' + StrPas(FieldTypeRec.szText));
 FieldTypeInfo.Add('Physical / Native Type: ' + IntToStr
(FieldTypeRec.iPhyType));

 FieldTypeInfo.Add('Default Translated Type: ' + IntToStr
(FieldTypeRec.iXltType));

 FieldTypeInfo.Add('Default Translated Subtype: ' + IntToStr
(FieldTypeRec.iXltSubType));

 FieldTypeInfo.Add('Maximum Units Allowed (1): ' + IntToStr
(FieldTypeRec.iMaxUnits1));

 FieldTypeInfo.Add('Maximum Units Allowed (2): ' + IntToStr
(FieldTypeRec.iMaxUnits2));

 FieldTypeInfo.Add('Physical Size: ' + IntToStr (FieldTypeRec.iPhySize));
 FieldTypeInfo.Add('Field Required: ' + BoolVal(FieldTypeRec.bRequired));
 FieldTypeInfo.Add('Supports user-specified default: ' +
BoolVal(FieldTypeRec.bDefaultVal));

 FieldTypeInfo.Add('Supports Min Val constraint: ' +
BoolVal(FieldTypeRec.bMinVal));

 FieldTypeInfo.Add('Supports Max Val constraint: ' +
BoolVal(FieldTypeRec.bMaxVal));

 FieldTypeInfo.Add('Supports Referential Integerity: ' +
BoolVal(FieldTypeRec.bRefIntegrity));

 FieldTypeInfo.Add('Supports Other Checks: ' +
BoolVal(FieldTypeRec.bOtherChecks));

 FieldTypeInfo.Add('Can Be Keyed: ' + BoolVal(FieldTypeRec.bKeyed));
 FieldTypeInfo.Add('Multiple Fields of this Type: ' +
BoolVal(FieldTypeRec.bMultiplePerTable));

 FieldTypeInfo.Add('Minimum Units Required (1): ' + IntToStr
(FieldTypeRec.iMinUnits1));

 FieldTypeInfo.Add('Minimum Units Required (2): ' + IntToStr
(FieldTypeRec.iMinUnits2));

 FieldTypeInfo.Add('Field Type Can be Created: ' +

BoolVal(FieldTypeRec.bCreateable));
end;

DbiGetFilterInfo {button C
Examples,JI(`>example',`exdbigetfilterinfo')} {button Delphi
Examples,JI(`>example',`dexdbigetfilterinfo')}
C syntax
DBIResult DBIFN DbiGetFilterInfo (hCursor, hFilter, iFilterId, iFilterSeqNo,
pFilterinfo);

Delphi syntax
function DbiGetFilterInfo (hCur: hDBICur; hFilter: hDBIFilter; iFilterId:
Word; iFilterSeqNo: Word; var Filterinfo: FilterInfo): DBIResult stdcall;

Description
DbiGetFilterInfo retrieves information about a specified filter.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
hFilter Type: hDBIFilter (Input)
Specifies the filter handle. Filter handles are not preserved for cloned cursors. Optional,
specify a filter handle, filter identification number, or filter sequence number to identify the
filter. The default is NULL.
iFilterId Type: UINT16 (Input)
Specifies the filter identification number. Optional, specify a filter handle, filter
identification number, or filter sequence number to identify the filter. The default is 0.
iFilterSeqNo Type: UINT16 (Input)
Specifies the filter sequence number. Optional, specify a filter handle, filter identification
number, or filter sequence number to identify the filter. The default is 0.
pFilterinfo Type: pFILTERInfo (Output)
Pointer to the client FILTERInfo structure.
DbiResult return values
DBIERR_NONE Filter information was retrieved successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

C Examples: DbiGetFilterInfo
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetFilterInfo
Return the filter information for the specified table and filter handles. This example uses
the following input:
 FInfo := fDbiGetFilterInfo(CustomerTbl.Handle, hFilter);

The function is:
function fDbiGetFilterInfo(hTmpCur: hDBICur; hFilter: hDBIFilter):
FILTERInfo;

var
 Props: CURProps;
begin
 Check(DbiGetCursorProps(hTmpCur, Props));
 if (Props.iFilters = 0) then
 raise EDatabaseError.Create('Ther is not filter associated with the
cursor');

 Check(DbiGetFilterInfo(hTmpCur, hFIlter, 0, 0, Result));
end;

DbiGetIndexDesc {button C
Examples,JI(`>example',`exdbigetindexdesc')} {button Delphi
Examples,JI(`>example',`dexdbigetindexdesc')}
C syntax
DBIResult DBIFN DbiGetIndexDesc (hCursor, iIndexSeqNo, pidxDesc);
Delphi syntax
Function DbiGetIndexDesc (hCursor: hDBICur; iIndexSeqNo: Word; var idxDesc:
IDXDesc): DBIResult stdcall;

Description
DbiGetIndexDesc retrieves the properties of the given index associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iIndexSeqNo Type: UINT16 (Input)
Specifies the ordinal number of the index in the list of open indexes of the cursor.
DbiGetIndexSeqNo can be called to obtain this number for a given index. If iIndexSeqNo is
0, the properties of the active index are returned.
pidxDesc Type: pIDXDesc (Output)
Pointer to the client-allocated IDXDesc structure.

Usage
This function is used to find the properties of an open index for this cursor. Use
DbiGetCursorProps to get the number of open indexes (iIndexes). iIndexSeqNo must be
between zero and iIndexes.
Note: If a field map is active, the field numbers in aiKeyFld list the mapped field numbers,

however, if a key field is not part of the field map, it is a negative number.
Oracle: For performance reasons, bPrimary is not set in the FLDDesc structure.    To
determine if a primary index exists on a table, use DbiSetProp    with the
curGETEXTENDEDINFO property before calling DbiGetIndexDescs.

Prerequisites
A valid cursor handle must be on one or more open indexes.
DbiResult return values
DBIERR_NONE The properties of the specified index were returned successfully.
DBIERR_INVALIDHNDL The specified handle is invalid or NULL.
DBIERR_NOTINDEXED Table has no associated indexes.
DBIERR_NOSUCHINDEX iIndexSeqNo is invalid.

See also
DbiOpenIndex, DbiCloseIndex, DbiGetCursorProps, DbiGetIndexSeqNo, DbiOpenIndexList,
DbiGetIndexDescs

C Examples: DbiGetIndexDesc
Get the name and the amount of fields for the index open on the current cursor.
IXDesc must be of sufficient size to hold the index description. This example uses the
following input:

fDbiGetIndexDesc(hCur, Buffer);
DBIResult fDbiGetIndexDesc(hDBICur hTmpCur, pCHAR IXDesc)
{
 DBIResult rslt;
 IDXDesc IdxDesc;
 rslt = Chk(DbiGetIndexDesc(hTmpCur, 0, &IdxDesc));
 wsprintf(IXDesc, "Index name: %s; Fields in Key: %d", IdxDesc.szName,
 IdxDesc.iFldsInKey);
 return rslt;
}

Delphi Examples: DbiGetIndexDesc
Get the properties of a specific index associated with a cursor:
This function returns the IDXDesc properties specified by the IndexName parameter of
TTable T's index.

function GetIndexDesc(T: TTable; IndexName: string): IDXDesc;
var
 hNewCur: hDbiCur;
 iIndexId: LongInt;
 InfoStr: string;
 pInfoStr: array[0..100] of char;
begin
 Check(DbiCloneCursor(T.Handle, False, False, hNewCur));
 try
 iIndexId := 1;
 Check(DbiSwitchToIndex(hNewCur, PChar(IndexName), nil, iIndexId,
False));

 Check(DbiGetIndexDesc(hNewCur, 0, Result)); //'0' specifies the active
index

 finally
 Check(DbiCloseCursor(hNewCur));
 end;
end;

DbiGetIndexDescs {button C
Examples,JI(`>example',`exdbigetindexdescs')} {button Delphi
Examples,JI(`>example',`dexdbigetindexdescs')}
C syntax
DBIResult DBIFN DbiGetIndexDescs (hCursor, pidxDesc);
Delphi syntax
function DbiGetIndexDescs (hCursor: hDBICur; var idxDesc: IDXDesc):
DBIResult stdcall;

Description
DbiGetIndexDescs retrieves index properties for all indexes associated with this cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pidxDesc Type: pIDXDesc (Output)
Pointer to the client-allocated IDXDesc structure.

Usage
The client must allocate a buffer large enough to hold all index descriptors. The number of
indexes can be obtained by using DbiGetCursorProps and examining the iIndexes property.
dBASE: DbiGetIndexDescs won't include dBASE non-production indexes if the indexes are
not opened.
Oracle: For performance reasons, bPrimary is not set in the FLDDesc structure.    To
determine if a primary index exists on a table, use DbiSetProp    with the
curGETEXTENDEDINFO property before calling DbiGetIndexDescs.
Prerequisites
A valid cursor handle must be obtained, and at least one index must exist.

DbiResult return values
DBIERR_NONE Index Descriptions were returned successfully.
DBIERR_INVALIDHNDL The specified handle is invalid or NULL.

See also
DbiGetIndexDesc, DbiOpenIndex, DbiCloseIndex, DbiGetIndexSeqNo, DbiGetCursorProps,
DbiOpenIndexList, DbiGetIndexForField

C Examples: DbiGetIndexDescs
Get the properties of all the indexes for the table open with the specified cursor
IndexDesc is allocated within the function. This example uses the following input:

fDbiGetIndexDescs(hCur, &pIdxDesc);
DBIResult fDbiGetIndexDescs(hDBICur hTmpCur, pIDXDesc *IndexDesc)
{
 DBIResult rslt;
 CURProps CurProps;
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 *IndexDesc = (pIDXDesc)malloc(CurProps.iIndexes * sizeof(IDXDesc));
 if (IndexDesc == NULL)
 return DBIERR_NOMEMORY;
 rslt = Chk(DbiGetIndexDescs(hTmpCur, *IndexDesc));
 return rslt;
}

Delphi Examples: DbiGetIndexDescs
Get the properties of all indexes for TTable T:
This function loops through all the indexes and shows the names and fields in the key. This
example uses the following input:
 ShowIndexDescs(Table1);

The procedure is:
procedure ShowIndexDescs(T: TTable);
const
 IDXStr = '%sIndex name: %s. Number of fields in key: %d'#13#10;
var
 CurProp: CURProps;
 pIndexDesc, pTmpMem: pIdxDesc;
 i, MemSize: Integer;
 ShowString, IDXName: string;
begin
 Check(DbiGetCursorProps(T.Handle, CurProp));
 MemSize := CurProp.iIndexes * sizeof(IDXDesc);
 pIndexDesc := AllocMem(MemSize);
 try
 pTmpMem := pIndexDesc;
 Check(DbiGetIndexDescs(T.Handle, pIndexDesc));
 i := 0;
 ShowString := '';
 while (i < curProp.iIndexes) do begin
 with pTmpMem^ do begin
 // primary index does not have a name for PARADOX tables }
 if bPrimary and (StrComp(curProp.szTableType, szParadox) = 0) then
 IDXName := 'Primary'
 else
 IDXName := szName;
 ShowString := Format(IDXStr, [ShowString, IDXName, iFldsInKey])
 end;
 // increment pointer to the next record
 inc(pTmpMem);
 inc(i);
 end;
 finally
 FreeMem(pIndexDesc, MemSize);
 ShowMessage(ShowString);
 end;
end;

DbiGetIndexForField{button C
Examples,JI(`>example',`exdbigetindexforfield')} {button Delphi
Examples,JI(`>example',`dexdbigetindexforfield')}
C syntax
DBIResult DBIFN DbiGetIndexForField (hCursor, iFld, bProdTagOnly,
[pidxDesc]);

Delphi syntax
function DbiGetIndexForField (hCursor: hDBICur; iFld: Word; bProdTagOnly:
Bool; var idxDesc: IDXDesc): DBIResult stdcall;

Description
DbiGetIndexForField returns the description of any useful index on the specified field. You
can also use it just to check if an index exists for the given field.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iFld Type: UINT16 (Input)
Specifies the field number.
bProdTagOnly Type: BOOL (Input)
For dBASE only. If set to TRUE, only dBASE production tags are searched.
pidxDesc Type: pIDXDesc (Output)
Pointer to the client-allocated IDXDesc structure.

Usage
Paradox: If multiple indexes exist on the field, the following order of precedence is
followed: primary index, secondary index on the specified field only, and secondary
composite index with the specified field as the first component.
dBASE or FoxPro: For dBASE or FoxPro tables, only simple indexes are considered
because there are no composite indexes. Expression indexes are not considered.
Access: The first index found is used.
SQL: For SQL tables, if multiple indexes are created for the field, the first useful index is
returned. (An attempt is made to return the unique index with the least number of fields in
the key. If there is no unique index, an index with the least number of fields in the key is
returned.)

Prerequisites
A valid cursor handle must be obtained on a base table, not on a query or in-memory or
temporary table.

Completion state
The index Description is returned in the specified IDXDesc structure.
DbiResult return values
DBIERR_NONE The index descriptors were returned successfully.
DBIERR_INVALIDHNDL The specified handle is invalid or NULL.
DBIERR_NOSUCHINDEX No index on this field.

See also
DbiOpenIndex, DbiCloseIndex, DbiDeleteIndex, DbiAddIndex

C Examples: DbiGetIndexForField
Get the Index descriptor for the current field (if any).
If IdxDesc is null, this function can be used to check if an index exists. It returns
DBIERR_NOSUCHINDEX if no index exists. This example uses the following input:

fDbiGetIndexForField(hPXCur, 1, &IdxDesc);
DBIResult fDbiGetIndexForField(hDBICur hTmpCur, INT16 Field, pIDXDesc
IdxDesc)

{
 DBIResult rslt;
 rslt = DbiGetIndexForField(hTmpCur, Field, FALSE, IdxDesc);
 if (rslt == DBIERR_NOSUCHINDEX)
 return rslt;
 else
 Chk(rslt);
 return rslt;
}

Delphi Examples: DbiGetIndexForField
Return the description of any useful index on the specified field.
You can also use this function can just to check if an index exists for the given field. When
you pass a handle of the table, a valid field number, and a TStringList, the procedure
appends the information accessed from a IdxDesc Record to the TStringList. This example
uses the following input:
 fDbiGetIndexForField(DBASEAnimals.handle, 1, False, MyIndexInfo);

The procedure is:
procedure fDbiGetIndexForField(hCursor: hDBICur; Field: TField; IndexInfo:
TStringList);

 function BoolVal(InBool: Boolean): String;
 begin
 if InBool then Result:= 'True'
 else Result:= 'False';
 end;
var
 KeyArray: string;
 x: Word;
 MyidxDesc: IdxDesc;
begin
 Check(DbiGetIndexForField(hCursor, Field.Index + 1, True, MyidxDesc));
 with IndexInfo do begin
 Add('Index Name: ' + MyidxDesc.szname);
 Add('Index Number: ' + IntToStr(MyidxDesc.iIndexId));
 Add('Tag Name (dBASE): ' + MyidxDesc.szTagName);
 Add('Index Format: ' + MyidxDesc.szformat);
 Add('Primary: ' + BoolVal(MyidxDesc.bPrimary));
 Add('Descending: ' + BoolVal(MyidxDesc.bDescending));
 Add('Maintained: ' + BoolVal(MyidxDesc.bMaintained));
 Add('Subset: ' + BoolVal(MyidxDesc.bSubset));
 Add('ExpIdx: ' + BoolVal(MyidxDesc.bExpIdx));
 Add('Fields In Key: ' + IntToStr(MyidxDesc.iFldsInKey));
 Add('Key Length: ' + IntToStr(MyidxDesc.iKeyLen));
 Add('Out of Date: ' + BoolVal(MyidxDesc.bOutofDate));
 Add('Key Expression Type: ' + IntToStr(MyidxDesc.iKeyExpType));
 for x:= 0 to (MyidxDesc.iFldsInKey –1) do
 KeyArray:= KeyArray + IntToStr(MyidxDesc.aiKeyFld[x]) + ', ';
 Add('Field Numbers used in Key: ' + KeyArray);
 Add('Key Expression: ' + MyidxDesc.szKeyExp);
 Add('Key Condition: ' + MyidxDesc.szKeyCond);
 Add('Case Insensitive: ' + BoolVal(MyidxDesc.bCaseInsensitive));
 Add('iBlockSize: ' + IntToStr(MyidxDesc.iBlockSize));
 Add('iRestrNum: ' + IntToStr(MyidxDesc.iRestrNum));
 end;
end;

DbiGetIndexSeqNo {button C
Examples,JI(`>example',`exdbigetindexseqno')} {button Delphi
Examples,JI(`>example',`dexdbigetindexseqno')}
C syntax
DBIResult DBIFN DbiGetIndexSeqNo (hCursor, pszIndexName, pszTagName,
iIndexId, piIndexSeqNo);

Delphi syntax
function DbiGetIndexSeqNo (hCursor: hDBICur; pszIndexName: PChar;
pszTagName: PChar; iIndexId: Word; var iIndexSeqNo: Word): DBIResult
stdcall;

Description
DbiGetIndexSeqNo retrieves the ordinal number of the index in the index list of the
specified cursor.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pszIndexName Type: pCHAR (Input)
Pointer to the index name.
pszTagName Type: pCHAR (Input)
For dBASE and FoxPro only. Pointer to the index tag name.
iIndexId Type: UINT16 (Input)
Specifies the index ID, if required to identify an index.
piIndexSeqNo Type: pUINT16 (Output)
Pointer to the client variable which receives the index sequence number.
Usage
dBASE or FoxPro: For dBASE or FoxPro tables, the ordinal number of the index in the
index list can be affected by the opening and closing of indexes on the cursor.
pszIndexName and pszTagName are used to specify the index.
Paradox, Access: The index can be specified by name or ID.
SQL: The index must be specified by name.

Completion state
The sequence number of the specified index is returned. The result of this function can be
used as input for DbiGetIndexDesc.

DbiResult return values
DBIERR_NONE The index sequence number was returned successfully.
DBIERR_INVALIDHNDL The specified handle is invalid or NULL.
DBIERR_NOSUCHINDEX The index is not open, or does not exist.

See also
DbiGetIndexDesc

C Examples: DbiGetIndexSeqNo
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetIndexSeqNo
Return the index sequence number for the current index. This example only works with
Paradox and SQL tables and uses the following input:
 IXNum := fDbiGetIndexSeqNo(InterBaseCustTbl);

The function is:
function fDbiGetIndexSeqNo(Table: TTable): Word;
begin
 Check(DbiGetIndexSeqNo(Table.Handle, PChar(Table.IndexName), nil, 0,
Result));

end;

DbiGetIndexTypeDesc {button C
Examples,JI(`>example',`exdbigetindextypedesc')} {button Delphi
Examples,JI(`>example',`dexdbigetindextypedesc')}
C syntax
DBIResult DBIFN DbiGetIndexTypeDesc (pszDriverType, pszIndexType, pidxType);
Delphi syntax
function DbiGetIndexTypeDesc (pszDriverType: PChar; pszIndexType: PChar; var
idxType: IDXType): DBIResult stdcall;

Description
DbiGetIndexTypeDesc retrieves a description of the index type.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type.
pszIndexType Type: pCHAR (Input)
Pointer to the index type. Use DbiOpenIndexTypesList to find the valid index types.
pidxType Type: pIDXType (Output)
Pointer to the client-allocated IDXType structure.

DbiResult return values
DBIERR_NONE The index type description was returned successfully.

See also
DbiOpenIndexTypesList

C Examples: DbiGetIndexTypeDesc
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetIndexTypeDesc
An example for this function is under development and will be provided in an upcoming
Help release.

DbiGetLdName {button C
Examples,JI(`>example',`exdbigetldname')} {button Delphi
Examples,JI(`>example',`dexdbigetldname')}
C syntax
DBIResult DBIFN DbiGetLdName (pszDriver, pObjName, pLdName);
Delphi syntax
function DbiGetLdName (pszDriver: PChar; pObjName: PChar; pLdName: PChar):
DBIResult stdcall;

Description
DbiGetLdName retrieves the name of the language driver associated with the specified
object name (table name).
Parameters
pszDriver Type: pCHAR (Input)
Pointer to the driver name.
pObjName Type: pCHAR (Input)
Pointer to the table name.
pLdName Type: pCHAR (Output)
Pointer to the client buffer that receives the language driver name associated with the
specified table. This buffer should be at least (DBIMAXNAMELEN + 1) in size.

Usage
If pObjName is NULL, the name of the driver's default language driver is returned.
Standard: The returned language driver name can be used as an optional parameter for
DbiCreateTable as a way to override the default language driver at create time.
SQL: If pObjName is not NULL, it must be of the form :dbalias:objName.

DbiResult return values
DBIERR_NONE The name of the language driver was retrieved successfully.

See also
DbiCreateTable

C Examples: DbiGetLdName
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetLdName
Obtain the current dBASE language driver and display its name in a dialog box.

procedure fDbiGetLDName;
var
 S: string;
begin
 SetLength(S, dbiMaxNameLen + 1);
 Check(DbigetLDName(szDBASE, nil, PChar(S)));
 SetLength(S, StrLen(PChar(S)));
 ShowMessage('Current dBase Language driver is ' + S);
end;

DbiGetLdObj {button C Examples,JI(`>example',`exdbigetldobj')}
{button Delphi Examples,JI(`>example',`dexdbigetldobj')}

C syntax
DBIResult DBIFN DbiGetLdObj (hCursor,*ppLdObj);
Delphi syntax
function DbiGetLdObj (hCursor: hDBICur; var pLdObj: Pointer): DBIResult
stdcall;

Description
DbiGetLdObj returns the language driver object associated with the given cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
*ppLdObj Type: pVOID (Output)
Pointer to the client variable that receives the pointer to the language driver.

Usage
The object pointer returned in this function can be used with DbiNativeToAnsi and
DbiAnsiToNative.

Completion state
If a valid cursor is passed to this function, the returned object pointer has a lifetime
equivalent to the cursor's lifetime. In other words, if the cursor is closed (and no other
cursors are open on the same table), the language driver object is destroyed and can no
longer be accessed through this object pointer.
If the hCursor parameter is NULL, a pointer to the system language driver is returned. This
pointer is valid for the duration of the session and can be used regardless of which cursors
are opened or closed.
DbiResult return values
DBIERR_NONE The language driver object was returned successfully.

See also
DbiNativeToAnsi, DbiAnsiToNative

C Examples: DbiGetLdObj
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetLdObj
Obtain the language driver information for TDataSet descendant D.
TStrings LdObjList is filled with the language driver information. This example uses the
following input:
 fDbiGetLdObj(Table1, Listbox1.Items);

The procedure is:
procedure fDbiGetLdObj(D: TDataSet; LdObjList: TStrings);
var
 MypLdObj: pLDDesc;
begin
 Check(DbiGetLdObj(D.Handle, Pointer(MypLdObj)));
 with MypLdObj^, LdObjList do begin
 Add(Format('Name: %s', [szName]));
 Add(Format('Description: %s', [szDesc]));
 Add(Format('Code Page: %d', [iCodePage]));
 case PrimaryCpPlatform of
 1: Add('Primary Platform: DOS(OEM) platform');
 2: Add('Primary Platform: Windows (ANSI) platform');
 6: Add('Primary Platform: HP UNIX (ROMAN8) platform');
 else
 Add(Format('Primary Platform: Other (%d)', [PrimaryCpPlatform]));
 end;
 end;
end;

DbiGetLinkStatus {button C
Examples,JI(`>example',`exdbigetlinkstatus')} {button Delphi
Examples,JI(`>example',`dexdbigetlinkstatus')}
C syntax
DBIResult DBIFN DbiGetLinkStatus (hCursor, phCursorMstr, phCursorDet,
phCursorSib);

Delphi syntax
function DbiGetLinkStatus (hCursor: hDBICur; var hCursorMstr: hDBICur; var
hCursorDet: hDBICur; var hCursorSib: hDBICur): DBIResult stdcall;

Description
DbiGetLinkStatus returns the master, detail, and sibling cursors, if any, of the specified
linked cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
phCursorMstr Type: phDBICur (Output)
Pointer to the master cursor, if any.
phCursorDet Type: phDBICur (Output)
Pointer to the first detail cursor, if any.
phCursorSib Type: phDBICur (Output)
Pointer to the next sibling detail cursor.

Usage
Used to find all links for the given cursor. If the cursor has a master, the master is returned.
If the cursor has one or more details, the first detail is returned. If the cursor has siblings,
the next sibling is returned. The master, detail, and sibling cursor handle can be used as an
input to this function. If handle is not applicable, NULL is returned.

Prerequisites
The cursor must be a linked cursor. A linked cursor is created with DbiBeginLinkMode,
DbiLinkDetail, or DbiLinkDetailToExp.

DbiResult return values
DBIERR_NONE The linked cursor status was returned successfully.
DBIERR_INVALIDHNDL The specified handle is invalid, not a linked cursor, or NULL.

See also
DbiBeginLinkMode, DbiLinkDetail, DbiLinkDetailToExp

C Examples: DbiGetLinkStatus
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetLinkStatus
An example for this function is under development and will be provided in an upcoming
Help release.

DbiGetNetUserName{button C
Examples,JI(`>example',`exdbigetnetusername')} {button Delphi
Examples,JI(`>example',`dexdbigetnetusername')}
C syntax
DBIResult DBIFN DbiGetNetUserName (pszNetUserName);
Delphi syntax
function DbiGetNetUserName (pszNetUserName: PChar): DBIResult stdcall;
Description
DbiGetNetUserName returns the user's network login name. User names are available for
all networks supported by Microsoft Windows.

Parameters
pszNetUserName Type: pCHAR (Output)
Pointer to the client variable that receives the user network login name string.

DbiResult return values
DBIERR_NONE The user network login name was successfully retrieved.
DBIERR_INVALIDHNDL pszNetUserName is NULL.

C Examples: DbiGetNetUserName
Get the network user name.
If there is no network, this function returns NONE as the user. This example uses the
following input:

fDbiGetNetUserName(UserName);
DBIResult fDbiGetNetUserName(pCHAR NetName)
{
 DBIResult rslt;
 rslt = Chk(DbiGetNetUserName(NetName));
 if (rslt == DBIERR_INVALIDHNDL)
 {
 strcpy(NetName, "NONE");
 rslt = DBIERR_NONE;
 }
 else
 Chk(rslt);
 return rslt;
}

Delphi Examples: DbiGetNetUserName
Return the user's network login name.
User names are available for all networks supported by Microsoft Windows.
This example uses the following input:
 MyName := GetMyNetUserName;

The function is:
function GetMyNetUserName: string;
begin
 SetLength(Result, dbiMaxUserNameLen + 1);
 Check(DbiGetNetUserName(PChar(Result)));
 SetLength(Result, StrLen(PChar(Result)));
end;

DbiGetNextRecord {button C
Examples,JI(`>example',`exdbigetnextrecord')} {button Delphi
Examples,JI(`>example',`dexdbigetnextrecord')}
C syntax
DBIResult DBIFN DbiGetNextRecord (hCursor, [eLock], [pRecBuf], [precProps]);
Delphi syntax
function DbiGetNextRecord (hCursor: hDBICur; eLock: DBILockType; pRecBuff:
Pointer; precProps: pRECProps): DBIResult stdcall;

Description
DbiGetNextRecord retrieves the next record in the table associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
eLock Type: DBILockType (Input)
Specifies the lock request type. Optional.
pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the record data. Optional. If NULL, no data is
returned.
precProps Type: pRECProps (Output)
Pointer to the client-allocated RECProps structure. For dBASE, FoxPro, and Paradox drivers
only. Optional. If NULL, no record properties are returned.

Usage
If a record buffer is provided, DbiGetNextRecord reads the data for the record into the
record buffer. If the precProps argument is supplied, record properties are returned (dBASE,
FoxPro, Access, and Paradox only). If filters are active, the next record that meets the filter
criteria is retrieved. The record can be locked if an explicit lock is specified (using eLock),
and the function call fails if the requested lock cannot be acquired. (Exceptions: see the
discussion of SQL-specific locking behavior that follows.)
Field data can be retrieved using DbiGetField or DbiOpenBlob or DbiGetBlob for BLOB fields.
dBASE or FoxPro: If the precProps argument is supplied, the record number can be
retrieved for the record (via the iPhyRecNum field of precProps). dBASE and FoxPro do not
support the concept of sequence number.
Paradox: If the precProps argument is supplied, the sequence number can be retrieved for
the record (via the iSeqNum field of RECProps). Paradox does not support the concept of
record number.
SQL: Record properties are not supported for SQL drivers. If precProps is supplied, no
properties are returned. For more information on locking, see Locking Strategy
Completion state
If the cursor is at the beginning of a table (after a opening a table or calling DbiSetToBegin),
DbiGetNextRecord positions the cursor on the first record of the table. If the cursor is
currently positioned on the last record in the table, DbiGetNextRecord returns an EOF error.

DbiResult return values
DBIERR_NONE The next record was successfully retrieved.
DBIERR_EOF The cursor was positioned at the crack at the end of the file or on the last record. It

is now positioned at the crack at the end of the file.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_ALREADYLOCKED The record is already locked by the same user in the same session.
DBIERR_FILELOCKED The table is already locked by another user (Paradox, FoxPro, Access,

and dBASE only).

See also
DbiGetRecord, DbiGetPriorRecord, DbiGetRelativeRecord

eLock
eLock can be one of the following values:
Value Description
dbiNOLOCK No lock
dbiREADLOCK Read lock
dbiWRITELOCK Write lock

C Examples: DbiGetNextRecord
Retrieve the next record for the specified cursor.
In the case of local tables only, if pRecNum is not null, the corresponding record number is
returned. This example uses the following input:

fDbiGetNextRecord(hCursor, pRecBuf, &RecNum);
DBIResult fDbiGetNextRecord(hDBICur hTmpCur, pBYTE pTmpRecBuf, pUINT32
pRecNum)

{
 DBIResult rslt;
 CURProps CurProps;
 RECProps RecProps;
 rslt = Chk(DbiGetNextRecord(hTmpCur, dbiNOLOCK, pTmpRecBuf, &RecProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (pRecNum != NULL)
 {
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (strcmp(CurProps.szTableType, szPARADOX) == 0)
 *pRecNum = RecProps.iSeqNum;
 else
 {
 if (strcmp(CurProps.szTableType, szDBASE) ==0)
 *pRecNum = RecProps.iPhyRecNum;
 else
 *pRecNum =0;
 }
 }
 return rslt;
}

Delphi Examples: DbiGetNextRecord
Retrieve the next record in the table associated with the cursor:
Use Delphi's TTable methods to get records from a table (Next, Prior, First, Last, MoveBy,
and so on.) For information about retrieving record numbers from a Paradox, FoxPro,
Access, or dBASE table, see DbiGetRecord.

DbiGetNumberFormat {button C
Examples,JI(`>example',`exdbigetnumberformat')} {button Delphi
Examples,JI(`>example',`dexdbigetnumberformat')}
C syntax
DBIResult DBIFN DbiGetNumberFormat (pfmtNumber);
Delphi syntax
function DbiGetNumberFormat (var fmtNumber: FMTNumber): DBIResult stdcall;
Description
DbiGetNumberFormat returns the number format for the current session.
Parameters
pfmtNumber Type: pFMTNumber (Output)
Pointer to the client-allocated FMTNumber structure.
Usage
The number format is used by QBE for input and wildcard character matching. It is also
used by batch operations (such as DbiDoRestructure and DbiBatchMove) to handle data
type coercion between character and numeric types.

DbiResult return values
DBIERR_NONE The number format was successfully retrieved.
DBIERR_INVALIDHNDL pfmtNumber is NULL.

See also
DbiGetDateFormat, DbiGetTimeFormat, DbiSetNumberFormat

C Examples: DbiGetNumberFormat
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetNumberFormat
Return the number format for the current session.
The number format is appended to the TStringList passed in. This example uses the
following
 input:fDbiGetNumberFormat(MyNumberFormat);

The procedure is:
procedure fDbiGetNumberFormat(var NumberFormat: TStringList);
var
 FormatNumber: fmtNumber;
begin
 Check(DbiGetNumberFormat(FormatNumber));
 with NumberFormat do begin
 Add('Decimal Separator: ' + FormatNumber.cDecimalSeparator);
 Add('Thousand Separator: ' + FormatNumber.cThousandSeparator);
 Add('Decimal Digits: ' + IntToStr(FormatNumber.iDecimalDigits));
 if (fmtNumber.bLeadingZero) then
 Add('Leading Zero: True')
 else
 Add('Leading Zero: False');
 end;
end;

DbiGetObjFromName {button C
Examples,JI(`>example',`exdbigetobjfromname')} {button Delphi
Examples,JI(`>example',`dexdbigetobjfromname')}
C syntax
DBIResult DBIFN DbiGetObjFromName (eObjType, [pszObjName], phObj);
Delphi syntax
function DbiGetObjFromName (eObjType: DBIOBJType; pszObjName: PChar; var
hObj: hDBIObj): DBIResult stdcall;

Description
DbiGetObjFromName returns an object handle of the specified type or with the given name,
if any.
Parameters
eObjType Type: DBIOBJType (Input)
Specifies the type of object.
pszObjName Type: pCHAR (Input)
Pointer to the name of the object. Optional.
phObj Type: phDBIObj (Output)
Pointer to the object handle.
Usage
Some handles can be retrieved only by name, such as handles associated with cursors. For
those, pszObjName is not optional. There can be more than one cursor open for a given
table name; DbiGetObjFromName returns the handle to one of those cursors. To get a
session handle, the session name need not be specified; by default, a handle to the
currently active session is returned.

DbiResult return values
DBIERR_NONE The object handle was returned successfully.
DBIERR_NOTSUPPORTED Object is not supported for this function.
DBIERR_OBJNOTFOUND Named object was not found.

pszObjName
The following chart lists the supported object types and whether or not the object name is
required:
eObjType Name
objSYSTEM not needed
objSESSION optional
objDRIVER required
objDATABASE optional
objCURSOR required
objCLIENT not needed

C Examples: DbiGetObjFromName
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetObjFromName
An example for this function is under development and will be provided in an upcoming
Help release.

DbiGetObjFromObj {button C
Examples,JI(`>example',`exdbigetobjfromobj')} {button Delphi
Examples,JI(`>example',`dexdbigetobjfromobj')}
C syntax
DBIResult DBIFN DbiGetObjFromObj (hObj, eObjType, phObj);
Delphi syntax
function DbiGetObjFromObj (hObj: hDBIObj; eObjType: DBIOBJType; var hObj:
hDBIObj): DBIResult stdcall;

Description
DbiGetObjFromObj returns an object of the specified object type associated with or derived
from a given object.
Parameters
hObj Type: hDBIObj (Input)
Specifies the object.
eObjType Type: DBIOBJType (Input)
Specifies the type of object.
phObj Type: phDBIObj (Output)
Pointer to the object handle.
Usage
The following table summarizes the relationship between eObjType and hObj:
eObjType Type of hObj allowed
objCURSOR None
objDRIVER objCURSOR, objDATABASE
objDATABASE objCURSOR
objSESSION objCURSOR, objDATABASE, NULL (active)
objCLIENT Any or NULL
objSYSTEM Any or NULL
objSTATEMENT None
DbiResult return values
DBIERR_NONE The object handle was returned successfully.
DBIERR_INVALIDPARAM phObj is NULL or hObj is invalid.
DBIERR_NA No associated object.

C Examples: DbiGetObjFromObj
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetObjFromObj
Show the driver name associated with the given parameters.
Delphi users will rarely need to call this function because most of this information is
available through methods and properties of the TTable object.

// Arguments:
// hTmpDb: Database handle
// pszTableName: Name of an existing table in the specified database
// fDbiGetObjFromObj(hTmpDb, 'Employee.DB');
procedure fDbiGetObjFromObj(hTmpDb: hDBIDb; TblName: string);
var
 hCursor: hDBICur;
 szName: array[0..DBIMAXPATHLEN] of char;
 nLen: Word;
 hObj: hDBIObj;
 rslt: DBIResult;
begin
 // Open the specified table
 Check(DbiOpenTable(hTmpDb, PChar(TblName), nil, nil, nil, 0,
 dbiREADONLY, dbiOPENSHARED, xltFIELD, True, nil, hCursor));
 // Retrieve driver handle given cursor handle
 Check(DbiGetObjFromObj(hDBIObj(hCursor), DBIOBJType(objDRIVER), hObj));
 // Display driver name associated with the object handle
 rslt := DbiGetProp(hObj, drvDRIVERTYPE, @szName, sizeof(DBIPATH),nLen);
 if (rslt <> DBIERR_NONE) then
 Check(DbiCloseCursor(hCursor))
 else
 ShowMessage('Drive type: '+szName);
 // Close table
 Check(DbiCloseCursor(hCursor));
end;
Return the driver name for the specified table
Return the driver name for the specified table. This example uses the following input:
 DriverStr := fDbiGetObjFromObj(hTmpDb, CustomerTbl);

The function is:
function fDbiGetObjFromObj(Table: TTable): string;
var
 nLen: Word;
 hObj: hDBIObj;
begin
 // Retrieve driver handle given cursor handle
 Check(DbiGetObjFromObj(hDBIObj(Table.Handle), objDRIVER, hObj));
 SetLength(Result, DBIMAXDRIVELEN);
 // Get driver name associated with the driver handle
 Check(DbiGetProp(hObj, drvDRIVERTYPE, PChar(Result), DBIMAXDRIVELEN,
nLen));

 SetLength(Result, StrLen(PChar(Result)));
end;

DbiGetPriorRecord {button C
Examples,JI(`>example',`exdbigetpriorrecord')} {button Delphi
Examples,JI(`>example',`dexdbigetpriorrecord')}
C syntax
DBIResult DBIFN DbiGetPriorRecord (hCursor, [eLock], [pRecBuf],
[precProps]);

Delphi syntax
function DbiGetPriorRecord (hCursor: hDBICur; eLock: DBILockType; pRecBuff:
Pointer; precProps: pRECProps): DBIResult stdcall;

Description
DbiGetPriorRecord retrieves the previous record in the table associated with the given
cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
eLock Type: DBILockType (Input)
Specifies the lock request type Optional.
pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the record data. Optional. If NULL, no data is
returned.
precProps Type: pRECProps (Output)
Pointer to the client-allocated RECProps structure. For dBASE, FoxPro, and Paradox drivers
only. Optional. If NULL, no record properties are returned.

Usage
If a record buffer is provided, DbiGetPriorRecord reads the data for the record into the
record buffer. If the precProps argument is supplied, record properties are returned (for
dBASE, FoxPro, Access, and Paradox only). If filters are active, only records that meet the
filter's criteria are retrieved. The record can be locked if an explicit lock is specified (using
eLock), and the function call fails if the requested lock cannot be acquired. (Exceptions: see
the discussion of SQL-specific locking behavior that follows.)
dBASE and FoxPro: If the precProps argument is supplied, the record number can be
retrieved for the prior record (the iPhyRecNum field of the RECProps structure). dBASE and
FoxPro do not support the concept of sequence numbers.
Paradox: If the precProps argument is supplied, the sequence number can be retrieved for
the prior record (via the iSeqNum field of precProps). Paradox does not support the concept
of record numbers.
SQL: Record properties are not supported for SQL drivers (precProps is NULL). If precProps
is supplied, no properties are returned.

Prerequisites
A valid cursor handle must be obtained. If a lock is requested, the call returns
DBIERR_NONE only if the lock is granted. For SQL, an error is returned if the cursor is not
bidirectional.
Completion state
If the cursor is currently positioned on the first record in the table and the user calls
DbiGetPriorRecord, then a BOF error is returned.

DbiResult return values
DBIERR_NONE The prior record was retrieved successfully.
DBIERR_BOF The cursor was positioned in the crack before the beginning of the file or on the first

record after the crack. The cursor is now positioned in the crack at
the beginning of the file.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_ALREADYLOCKED The record is already locked by the same user in the same session.
DBIERR_FILELOCKED The table is already locked by another user (Paradox, FoxPro,

Access, and dBASE only).
DBIERR_NA Cursor is unidirectional.

See also
DbiGetRecord, DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord, DbiGetField,
DbiModifyRecord

C Examples: DbiGetPriorRecord
Retrieve the prior record for the specified cursor.
For local tables only, if pRecNum is not null, the corresponding record number is returned.
This example uses the following input:

fDbiGetPriorRecord(hCursor, pRecBuf, &RecNum);
DBIResult fDbiGetPriorRecord(hDBICur hTmpCur, pBYTE pTmpRecBuf, pUINT32
pRecNum)

{
 DBIResult rslt;
 CURProps CurProps;
 RECProps RecProps;
 rslt = Chk(DbiGetPriorRecord(hTmpCur, dbiNOLOCK, pTmpRecBuf, &RecProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (pRecNum != NULL)
 {
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (strcmp(CurProps.szTableType, szPARADOX) == 0)
 *pRecNum = RecProps.iSeqNum;
 else
 {
 if (strcmp(CurProps.szTableType, szDBASE) ==0)
 *pRecNum = RecProps.iPhyRecNum;
 else
 *pRecNum =0;
 }
 }
 return rslt;
}

Delphi Examples: DbiGetPriorRecord
Retrieve the previous record in the table associated with the cursor:
Use Delphi's TTable methods to get records from a table (Next, Prior, First, Last, MoveBy,
and so on.) For information about retrieving record numbers from a Paradox, FoxPro,
Access, or dBASE table, see DbiGetRecord.

DbiGetProp {button C Examples,JI(`>example',`exdbigetprop')}
{button Delphi Examples,JI(`>example',`dexdbigetprop')}

C syntax
DBIResult DBIFN DbiGetProp (hObj, iProp, pPropValue, iMaxLen, piLen);
Delphi syntax
function DbiGetProp (hObj: hDBIObj; iProp: Longint; PropValue: Pointer;
iMaxLen: Word; var iLen: Word): DBIResult stdcall;

Description
DbiGetProp retrieves the properties of an object. See Getting and Setting Properties

Parameters
hObj Type: hDBIObj (Input)
Specifies the system, session, client, driver, database, cursor, or statement object.
iProp Type: UINT32 (Input)
Specifies the property to retrieve.
pPropValue Type: pVOID (Output)
Pointer to the client variable that receives the value of the property. Optional. If NULL,
validates iProp for retrieval.
iMaxLen Type: UINT16 (Input)
Specifies the length of the pPropValue buffer.
piLen Type: pUINT16 (Output)
Pointer to the client variable that receives the buffer length.
Usage
The specified object does not necessarily have to match the type of property as long as the
object is associated with the object type of the property. For example, the property
drvDRIVERTYPE assumes an object of type objDRIVER, but because a cursor is derived from
a driver, a cursor handle (objCURSOR) could also be specified. See DbiGetObjFromObj for
details about associated objects.
You can access the native connection, statement, and cursor handles by using DbiGetProp
with the properties: dbNATIVEHNDL, dbNATIVEPASSTHRUHNDL, stmtNATIVEHNDL, and
curNATIVEHNDL. This feature for retrieving native handles is useful for making direct native
API calls when the necessary functionality is not available through BDE or in order to
improve performance.
To inquire whether a driver supports stored procedures, use the property dbPROCEDURES.
To retrieve the server's default transaction isolation level use the property
dbDEFAULTTXNISO.

Example
DBIPATH filename;
result=DbiGetProp (hCursor, curFILENAME, &filename, sizeof (DBIPATH),
&length);

returns the file name associated with the cursor handle hCursor in filename and its length
in length.
DbiResult return values
DBIERR_NONE The properties were retrieved successfully.
DBIERR_BUFFTOOSMALL Required buffer length is bigger than iMaxLen.
DBIERR_NOTSUPPORTED Property is not supported for this object.

See also
DbiSetProp, DbiGetCursorProps, DbiGetObjFromObj

C Examples: DbiGetProp
Example 1: Get the native database handle from a remote database:
This example uses the following input:

fDbiGetProp1(hDb, &hIBDb);
DBIResult fDbiGetProp1(hDBIDb hTmpDb, pUINT32 hRemoteDb)
{
 DBIResult rslt;

 rslt = Chk(DbiGetProp((hDBIObj)hTmpDb, dbNATIVEHNDL, (pBYTE)hRemoteDb,
 sizeof(dbNATIVEHNDL), NULL));
 return rslt;
}

Example 2: Return a string containing information about the specified table:
Note: pCursorInfo must be large enough to hold data. This example uses the following
input:

char      Buffer[500];
fDbiGetProp2(hCur, Buffer);

DBIResult fDbiGetProp2(hDBICur hTmpCur, pCHAR pCursorInfo)
{
 DBIResult rslt;
 CHAR Buffer[500];
 INT16 Level;

 strcpy(pCursorInfo, "\0");
 // Get the table name.
 rslt = Chk(DbiGetProp((hDBIObj)hTmpCur, curTABLENAME, (pBYTE)Buffer,
 DBIMAXTBLNAMELEN, NULL));
 if (rslt != DBIERR_NONE)
 return rslt;
 wsprintf(pCursorInfo, "%s\r\nTable Name: %s", pCursorInfo, Buffer);

 // Get the table type.
 rslt = Chk(DbiGetProp((hDBIObj)hTmpCur, curTABLETYPE, (pBYTE)Buffer,
 DBIMAXNAMELEN, NULL));
 if (rslt != DBIERR_NONE)
 return rslt;
 wsprintf(pCursorInfo, "%s\r\nTable Type: %s", pCursorInfo, Buffer);

 // Get the full file name.
 rslt = Chk(DbiGetProp((hDBIObj)hTmpCur, curFILENAME, (pBYTE)Buffer,
 DBIMAXPATHLEN, NULL));
 if (rslt != DBIERR_NONE)
 return rslt;
 wsprintf(pCursorInfo, "%s\r\nFile Name: %s", pCursorInfo, Buffer);

 // Get the table level.
 rslt = Chk(DbiGetProp((hDBIObj)hTmpCur, curTABLELEVEL, (pBYTE)&Level,
 sizeof(curTABLELEVEL), NULL));
 if (rslt != DBIERR_NONE)
 return rslt;
 wsprintf(pCursorInfo, "%s\r\nTable Level: %d", pCursorInfo, Level);

 return rslt;

}

Example 3: Return a string containing information about the specified SQL
database:   
Note: pCursorInfo must be large enough to hold data. This example uses the following
input:

char      Buffer[500];
fDbiGetProp3(hCur, Buffer);

DBIResult fDbiGetProp3(hDBIDb hTmpDb, pCHAR pDBInfo)
{
 DBIResult rslt;
 BOOL b;
 UINT16 i;

 strcpy(pDBInfo, "\0");

 // Does the Database support Asyncronous Query Execution support?
 rslt = Chk(DbiGetProp((hDBIObj)hTmpDb, dbASYNCSUPPORT, (pBYTE)&b,
 sizeof(b), NULL));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (b == TRUE)
 wsprintf(pDBInfo, "%s\r\nAsync. query exec support: TRUE", pDBInfo);
 else
 wsprintf(pDBInfo, "%s\r\nAsync. query exec support: FALSE", pDBInfo);

 // Does the Database support Stored Procedures?
 rslt = Chk(DbiGetProp((hDBIObj)hTmpDb, dbPROCEDURES, (pBYTE)&b,
 sizeof(b), NULL));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (b == TRUE)
 wsprintf(pDBInfo, "%s\r\nStored Procedure support: TRUE", pDBInfo);
 else
 wsprintf(pDBInfo, "%s\r\nStored Procedure support: FALSE", pDBInfo);

 // What is the major server version?
 rslt = Chk(DbiGetProp((hDBIObj)hTmpDb, dbSERVERVERSION, (pBYTE)&i,
 sizeof(i), NULL));
 if (rslt != DBIERR_NONE)
 return rslt;
 wsprintf(pDBInfo, "%s\r\nMajor server version: %d", pDBInfo, i);

 return rslt;
}

Delphi Examples: DbiGetProp
Example 1: Return the native database handle

This example uses the following input:
Size := GetNativeDBHandle(Database1.Handle, NativeDB);

Size is a variable of type word. NativeDB is a variable of type longint.

function GetNativeDBHandle(DBHandle: hDBIDb; var NativeHandle: longint):
Word;

begin
 Result := 0;
 // Get the native handle to the database...
 Check(DbiGetProp(hDBIObj(DBHandle), dbNATIVEHNDL, @NativeHandle,
 sizeof(NativeHandle), Result));
end;

Native Handles
Native handles allow you to bypass BDE functions to use native SQL database APIs to
create and manipulate tables. This approach can deliver substantial performance
improvement.
For example, to get a native database handle from a SQL database, you would use this
code (assuming you have already obtained a valid handle hDb to an existing SQL
database):

UINT16 Size;
hDBIDb hDb;
UINT32 hNativeDb

DbiGetProp(hDb, dbNATIVEHNDL, &hNativeDb, sizeof(hNativeDb), &Size);

A native handle to the SQL database is returned in &hNativeDb and the size in bytes in
&Size. Now you can execute native API calls for the SQL database.
The following table shows the information that is available for each driver when using
dbNATIVEHNDL, dbNATIVEPASSTHRUHNDL, stmtNATIVEHNDL, or curNATIVEHNDL with
DbiGetProp.
dbNATIVEHNDL,
dbNATIVEPASSTHRUHNDL

*ppropValue *pilen
InterBase gds_db_handle 4
Sybase DBPROCESS NEAR * 2
Oracle LDA 64
Informix DBIERR_NOTSUPPORTED --
DB2 HDBCsizeof(HDBC)
ODBC Socket HDBC4
stmtNATIVEHNDL,
curNATIVEHNDL

*ppropValue *pilen
InterBase gds_stmt_handle 4
Sybase DBIERR_NOTSUPPORTED --
Oracle CDA 64
Informix DBIERR_NOTSUPPORTED --
DB2 HSTMT sizeof(HSTMT)
ODBC Socket HSTMT 4
When SQLPASSTHRU MODE is NOT SHARED, the native handles returned from DbiGetProp
with dbNATIVEHNDL and dbNATIVEPASSTHRUHNDL will be different. Certain drivers (for
example, Sybase) may open multiple connections for one call to DbiOpenDatabase    Only
the main native connection handle is available.
Although the native connection and statement handles are always available when there is
an active connection or statement, the native cursor handle may not always be available.
For example: When working with a "dead" (snapshot) cursor, SQL Links caches each record
as it is fetched from the server cursor. When all the records have been fetched, the server
cursor is closed and it is no longer available. An attempt to retrieve the native cursor
handle by using DbiGetProp with curNATIVEHNDL will return the error,
DBIERR_OBJNOTFOUND.

Additional information on the native handle and its use is available from the SQL server
vendors.

DbiGetRecord {button C
Examples,JI(`>example',`exdbigetrecord')} {button Delphi
Examples,JI(`>example',`dexdbigetrecord')}
C syntax
DBIResult DBIFN DbiGetRecord (hCursor, [eLock], [pRecBuf], [precProps]);
Delphi syntax
function DbiGetRecord (hCursor: hDBICur; eLock: DBILockType; pRecBuff:
Pointer; precProps: pRECProps): DBIResult stdcall;

Description
DbiGetRecord retrieves the current record, if any, in the table associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
eLock Type: DBILockType (Input)
Specifies the lock request type Optional.
pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the record data. Optional. If NULL, no data is
returned.
precProps Type: pRECProps (Output)
Pointer to the client-allocated RECProps structure. For Paradox, FoxPro, and dBASE drivers
only. Optional. If NULL, no record properties are returned.

Usage
If NULL pointers are supplied for pRecBuf and pRecProps, DbiGetRecord can be used to
validate the current cursor position (on a current record, or on a crack).
If filters are active, the record is retrieved only if it meets the filter's criteria. The record can
be locked if an explicit lock is specified (using eLock), and the function call fails if the
requested lock cannot be acquired. (Exceptions: see the discussion of SQL-specific locking
behavior that follows. Also see Locking.)
If the cursor is currently positioned on a record, and that record is subsequently deleted or
the record's key value is changed, then the cursor is left on a crack between records. At
this point, a call to DbiGetRecord returns the DBIERR_KEYORRECDELETED error.
dBASE and FoxPro: If precProps is supplied, the record number can be retrieved for the
current record (via the iPhyRecNum field of precProps). dBASE and FoxPro do not support
the concept of sequence numbers.
Paradox: If precProps is supplied, the sequence number can be retrieved for the current
record (via the iSeqNum field of precProps). Paradox does not support the concept of record
numbers.
SQL: Record properties are not supported for SQL drivers (precProps is NULL). If precProps
is supplied, no properties are returned.
Note: DbiGetRecordCount is not supported for cursors that reference query results or

reference remote tables without a unique index; an error of
DBIERR_NOTABLESUPPORT is returned.

DbiResult return values
DBIERR_NONE The record was successfully retrieved.
DBIERR_BOF At beginning of file.

DBIERR_EOF At end of file.
DBIERR_NOCURRREC No current record.
DBIERR_KEYORRECDELETED The cursor is positioned on a record that has been deleted, or the

key value was changed.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_ALREADYLOCKED The record is already locked by the same user in the same session.
DBIERR_LOCKEDThe table is already locked by another user (Paradox, FoxPro, Access, and

dBASE only).
DBIERR_NOTABLESUPPORT The cursor is referencing a query result or a remote table

without a unique index.
See also
DbiGetField, DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord

C Examples: DbiGetRecord
Retrieve the current record for the specified cursor.
For local tables only, if pRecNum is not null, the corresponding record number is returned.
This example uses the following input:

fDbiGetRecord(hCursor, pRecBuf, &RecNum);
DBIResult fDbiGetRecord(hDBICur hTmpCur, pBYTE pTmpRecBuf, pUINT32 pRecNum)
{
 DBIResult rslt;
 CURProps CurProps;
 RECProps RecProps;
 rslt = Chk(DbiGetRecord(hTmpCur, dbiNOLOCK, pTmpRecBuf, &RecProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (pRecNum != NULL)
 {
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (strcmp(CurProps.szTableType, szPARADOX) == 0)
 *pRecNum = RecProps.iSeqNum;
 else
 {
 if (strcmp(CurProps.szTableType, szDBASE) ==0)
 *pRecNum = RecProps.iPhyRecNum;
 else
 *pRecNum =0;
 }
 }
 return rslt;
}

Delphi Examples: DbiGetRecord
Get the record ID of the current record in the specified TTable.
This example uses the following input:
 fDbiGetRecord(Table1, Num);

The procedure is:
procedure fDbiGetRecord(ATable: TTable; var RecID: Longint);
var
 CP: CurProps;
 RP: RecProps;
begin
 with ATable do begin
 // Make sure it is a Paradox table!
 UpdateCursorPos; // sync BDE with Delphi
 // Find out if table support Seq nums or Physical Rec nums
 Check(DbiGetCursorProps(Handle, CP));
 Check(DbiGetRecord(Handle, dbiNOLOCK, nil, @RP));
 if (StrComp(CP.szTableType, szDBASE) = 0) then
 RecID := RP.iPhyRecNum
 else
 if (StrComp(CP.szTableType, szPARADOX) = 0) then
 RecID := RP.iSeqNum
 else
 // raise exception if it's not a Paradox or dBASE table
 raise EDatabaseError.Create('Not a Paradox or dBASE table');
 end;
end;

DbiGetRecordCount {button C
Examples,JI(`>example',`exdbigetrecordcount')} {button Delphi
Examples,JI(`>example',`dexdbigetrecordcount')}
C syntax
DBIResult DBIFN DbiGetRecordCount (hCursor, piRecCount);
Delphi syntax
function DbiGetRecordCount (hCursor: hDBICur; var iRecCount: Longint):
DBIResult stdcall;

Description
DbiGetRecordCount is used to get the current number of records associated with the
cursor.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
piRecCount Type: pUINT32 (Output)
Pointer to the client variable which receives the number of records associated with the
cursor. This number may be approximate.

Usage
This function is meant to get the number of records associated with the cursor. The count is
approximate in some cases, rather than exact. (If there are any active filters associated
with the cursor, or if there are any active ranges declared on it, the results are
approximate; they are normally the upper limits.)
Paradox: If a range is active, the record count returned is the number of records in the
range.

DbiResult return values
DBIERR_NONE The record count was retrieved successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiGetExactRecordCount

C Examples: DbiGetRecordCount
Example 1: Get the record count for the specified table
This example uses the following input:

fDbiGetRecordCount1(hCursor, &RecCount);
DBIResult fDbiGetRecordCount1(hDBICur hTmpCur, pUINT32 piRecCount)
{
 DBIResult rslt;
 rslt = Chk(DbiGetRecordCount(hTmpCur, piRecCount));
 return rslt;
}

Example 2 (for local tables only): Get the amount of records after the current
location of the cursor.
This example uses the following input:

fDbiGetRecordCount2(hCursor, &RecLeft);
DBIResult fDbiGetRecordCount2(hDBICur hTmpCur, pUINT32 piRecLeft)
{
 DBIResult rslt;
 UINT32 RecNum, CurrRec;
 CURProps Props;
 RECProps RecProps;
 rslt = Chk(DbiGetRecordCount(hTmpCur, &RecNum));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (piRecLeft != NULL)
 {
 rslt = Chk(DbiGetCursorProps(hTmpCur, &Props));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (strcmp(Props.szTableType, szPARADOX) == 0)
 {
 rslt = Chk(DbiGetSeqNo(hTmpCur, &CurrRec));
 if (rslt != DBIERR_NONE)
 return rslt;
 }
 else
 {
 if (strcmp(Props.szTableType, szDBASE) == 0)
 {
 rslt = Chk(DbiGetRecord(hTmpCur, dbiNOLOCK, NULL, &RecProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 CurrRec = RecProps.iPhyRecNum;
 }
 else
 return DBIERR_NA;
 }
 *piRecLeft = RecNum - CurrRec;
 }
 return rslt;
}

Delphi Examples: DbiGetRecordCount
Return the record count of the TDataSet descendant (TTable, TQuery,
TStoredProc) passed in parameter D.
This example uses the following input:
 ShowMessage(IntToStr(fDbiGetRecordCount(Table1)));

The function is:
function fDbiGetRecordCount(D: TDataSet): LongInt;
begin
 Check(DbiGetRecordCount(D.Handle, Result));
end;

DbiGetRecordForKey{button C
Examples,JI(`>example',`exdbigetrecordforkey')} {button Delphi
Examples,JI(`>example',`dexdbigetrecordforkey')}
C syntax
DBIResult DBIFN DbiGetRecordForKey (hCursor, bDirectKey, iFields, iLen,
pKey, [pRecBuf]);

Delphi syntax
function DbiGetRecordForKey (hCursor: hDBICur; bDirectKey: Bool; iFields:
Word; iLen: Word; pKey: Pointer; pRecBuff: Pointer): DBIResult stdcall;

Description
DbiGetRecordForKey finds a record matching pKey and positions the cursor on that record.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
bDirectKey Type: BOOL (Input)
Determines whether pKey is used to specify the key directly or not. If TRUE, the value in
pKey is used to specify the key directly. If FALSE, pKey specifies the record buffer.
iFields Type: UINT16 (Input)
Specifies the number of fields to be used for composite keys. If iFields and iLen are both 0,
the entire key is used.
iLen Type: UINT16 (Input)
Specifies the length into the last field to be used for composite keys. If not 0, the last field
to be used must be a character type.
pKey Type: pBYTE (Output)
If bDirectKey is TRUE, the pKey specifies the pointer to the record key; otherwise, pKey
specifies the pointer to the record buffer. DbiExtractKey can be used to construct the record
key when bDirectKey is TRUE. The iFields and iLen Parameters together indicate how much
of the key should be used for matching. If both are 0, the entire key is used. If a match is
required on a given field of the key, all the key fields preceding it in the composite key
must also be supplied for a match. Only character fields can be matched for a partial key;
all other field types must be fully matched.
For partial key matches, iFields must be equal to the number of keyfields preceding the
field being partially matched. iLen specifies the number of characters in the (iFields+1)
field.
pRecBuf Type: pBYTE (Output)
Pointer to the record buffer where the new current record is returned.
Usage
SQL: For SQL tables, if the active index is not unique, DbiGetRecordForKey may return
different records with the same key value.
Prerequisites
A valid cursor handle must be obtained.

Completion state
The cursor is positioned on the found record. If pRecBuf is supplied, the new current record
is retrieved. If there is no key in the index that matches the given key, an error is returned.

DbiResult return values

DBIERR_NOCURRREC The cursor is not positioned on a record.
DBIERR_RECNOTFOUND No record with the specified key value was found.

See also
DbiSetToKey, DbiExtractKey

C Examples: DbiGetRecordForKey
Position the cursor and return the record buffer containing the specified key
This examples works with the STOCK.DB table and uses the following input:

fDbiGetRecordForKey(hCur, pRecBuf);

DBIResult fDbiGetRecordForKey(hDBICur hTmpCur, pBYTE pTmpRecBuf)
{
 DBIResult rslt;
 DFLOAT key = 1330.00;
 rslt = Chk(DbiInitRecord(hTmpCur, pTmpRecBuf));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiPutField(hTmpCur, 1, pTmpRecBuf, (pBYTE)&key));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiGetRecordForKey(hTmpCur, FALSE, 0, 0, pTmpRecBuf,
pTmpRecBuf));

 return rslt;
}

Delphi Examples: DbiGetRecordForKey
Position the cursor and return the record buffer containing the specified key
Delphi users should use TDataSet.Locate, TTable.FindKey, or TTable.GotoKey rather than
directly calling dbiGetRecordForKey. These methods are described in the Delphi online help.

DbiGetRelativeRecord {button C
Examples,JI(`>example',`exdbigetrelativerecord')} {button Delphi
Examples,JI(`>example',`dexdbigetrelativerecord')}
C syntax
DBIResult DBIFN DbiGetRelativeRecord (hCursor, iPosOffset, [eLock],
[pRecBuf], [precProps]);

Delphi syntax
function DbiGetRelativeRecord (hCursor: hDBICur; iPosOffset: Longint; eLock:
DBILockType; pRecBuff: Pointer; precProps: pRECProps): DBIResult stdcall;

Description
DbiGetRelativeRecord positions the cursor on a record in the table relative to the current
position of the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iPosOffset Type: INT32 (Input)
Specifies the (signed) offset from current record.
eLock Type: DBILockType (Input)
Specifies the lock request type. Optional.
pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the record data. Optional. If NULL, no data is
returned.
precProps Type: pRECProps (Output)
Pointer to the client-allocated RECProps structure.
Usage
This function positions the cursor relative to the current position. The record offset
(iPosOffset) can be positive or negative. If the cursor is currently positioned between
records, the next or prior (depending on the direction) record is counted as 1. If the filter is
active, only those records that meet the filter condition are included. For dBASE or FoxPro if
Soft Delete is off, only undeleted records are included.
If a record buffer is provided, DbiGetRelativeRecord reads the data for the record into the
record buffer. If the precProps argument is supplied, record properties are returned (for
Paradox, FoxPro, Access, and dBASE only). If filters are active, only records that meet the
filter's criteria are retrieved. The record can be locked if an explicit lock is specified (using
eLock), and the function call returns an error if the requested lock cannot be acquired. See
the following section for SQL-specific locking behavior information.
dBASE and FoxPro: If the precProps argument is supplied, the record number can be
retrieved for the record (the iPhyRecNum field of the RECProps structure). dBASE and
FoxPro do not support the concept of sequence numbers.
Paradox: If the precProps argument is supplied, the sequence number can be retrieved for
the record (via the iSeqNum field of precProps). Paradox does not support the concept of
record numbers.
SQL: Record properties are not supported for SQL drivers (precProps is NULL). If precProps
is supplied, no properties are returned.

Completion state
If not enough records exist in the result set to move to the relative record location, a

beginning of file/end of file (BOF/EOF) error is returned. An error is returned if the cursor is
not bidirectional, and the cursor is moving backwards.
DbiResult return values
DBIERR_NONE The record was retrieved successfully.
DBIERR_BOF The beginning of the file was reached.
DBIERR_EOF The end of the file was reached.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_KEYORRECDELETED The cursor is positioned in a crack other than BOF or EOF.
DBIERR_ALREADYLOCKED The record is already locked by the same user in the same session.
DBIERR_FILELOCKED The table is already locked by another user.

See also
DbiGetField, DbiGetNextRecord, DbiGetPriorRecord

C Examples: DbiGetRelativeRecord
Retrieve the relative record for the specified cursor.
For local tables only, if pRecNum is not null, the corresponding record number is returned.
This example use the following input:

fDbiGetRelativeRecord(hPXCur, 10, pPXRecBuf, &FldNum);

DBIResult fDbiGetRelativeRecord(hDBICur hTmpCur, INT32 iOffset, pBYTE
pTmpRecBuf, pUINT32 pRecNum)

{
 DBIResult rslt;
 CURProps CurProps;
 RECProps RecProps;
 rslt = Chk(DbiGetRelativeRecord(hTmpCur, iOffset, dbiNOLOCK, pTmpRecBuf,
&RecProps));

 if (rslt != DBIERR_NONE)
 return rslt;
 if (pRecNum != NULL)
 {
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (strcmp(CurProps.szTableType, szPARADOX) == 0)
 *pRecNum = RecProps.iSeqNum;
 else
 {
 if (strcmp(CurProps.szTableType, szDBASE) ==0)
 *pRecNum = RecProps.iPhyRecNum;
 else
 *pRecNum =0;
 }
 }
 return rslt;
}

Delphi Examples: DbiGetRelativeRecord
Retrieve the relative record for the specified cursor.
Use Delphi's TTable methods to get records from a table (Next, Prior, First, Last, MoveBy,
and so on.) For information about retrieving record numbers from a Paradox, FoxPro,
Access, or dBASE table, see DbiGetRecord.

DbiGetRintDesc {button C
Examples,JI(`>example',`exdbigetrintdesc')} {button Delphi
Examples,JI(`>example',`dexdbigetrintdesc')}
C syntax
DBIResult DBIFN DbiGetRintDesc (hCursor, iRintSeqNo, printDesc);
Delphi syntax
function DbiGetRintDesc (hCursor: hDBICur; iRintSeqNo: Word; printDesc:
pRINTDesc): DBIResult stdcall;

Description
DbiGetRintDesc retrieves the referential integrity descriptor identified by the referential
integrity sequence number and the cursor.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iRintSeqNo Type: UINT16 (Input)
The referential integrity sequence number. This number is between 1 and the value of
iRefIntChecks. The value of iRefIntChecks can be obtained from the cursor properties
(CURProps) structure.
printDesc Type: pRINTDesc (Output)
Pointer to the client variable that receives the referential integrity descriptor.
Usage
If a field map is associated with the cursor, the aiThisTabFld array in the referential
integrity descriptor reflects the field map. If any of the fields are not part of the field-
mapped record, a negative number is listed.

DbiResult return values
DBIERR_NONE The descriptor was returned successfully.

See also
DbiGetCursorProps, DbiOpenRintList

C Examples: DbiGetRintDesc
Get the first referential integrity constraint for the specified cursor.
If RIDesc is not null, a string is also formulated with RI information.This example uses the
following input:

fDbiGetRintDesc(hCur, &RintDesc, Buffer);
DBIResult fDbiGetRintDesc(hDBICur hTmpCur, pRINTDesc pRintDesc, pCHAR RIDesc)
{
 DBIResult rslt;
 CURProps CurProps;
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if(CurProps.iRefIntChecks > 0)
 {
 rslt = Chk(DbiGetRintDesc(hTmpCur, 1, pRintDesc));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (RIDesc != NULL)
 wsprintf(RIDesc, "RI Number: %i, IR Name: %s, RI Tbl Name: %s, RI
Fields: %d",

 pRintDesc->iRintNum, pRintDesc->szRintName, pRintDesc-
>szTblName,

 pRintDesc->iFldCount);
 }
 else
 MessageBox(0, "No Referential Integrity Links", "Warning", MB_OK);
 return rslt;
}

Delphi Examples: DbiGetRintDesc
Return and fill a TStringList with information on the referential integrity. This example uses
the following input:
 fDbiGetRIntDesc(OrdersTbl, 1, MyList);

The function is:
function fDbiGetRIntDesc(Table: TTable; SeqNo: Word; RIntList: TStringList):
RINTDesc;

var
 ThisTable, OtherTable: string;
 Props: CURProps;
 B: Byte;
begin
 ThisTable := '';
 OtherTable := '';
 FillChar(Result, sizeof(Result), #0);
 Check(DbiGetCursorProps(Table.Handle, Props));
 if (Props.iRefIntChecks = 0) then
 raise EDatabaseError.Create('There are no referential integrity checks
on this table');

 Check(DbiGetRIntDesc(Table.Handle, SeqNo, @Result));
 if (RIntList <> nil) then begin
 with RIntList do begin
 Add(Format('NUMBER=%d', [Result.iRintNum]));
 Add(Format('NAME=%s', [Result.szRintName]));
 case Result.eType of
 rintMASTER: Add('TYPE=MASTER');
 rintDEPENDENT: Add('TYPE=DEPENDENT');
 else
 Add('TYPE=UNKNOWN');
 end;
 Add(Format('OTHER TABLE=%s', [Result.szTblName]));
 case Result.eModOp of
 rintRESTRICT: Add('MODIFY=RESTRICT');
 rintCASCADE: Add('MODIFY=CASCADE');
 else
 Add('MODIFY=UNKNOWN');
 end;
 case Result.eDelOp of
 rintRESTRICT: Add('DELETE=RESTRICT');
 rintCASCADE: Add('DELETE=CASCADE');
 else
 Add('DELETE=UNKNOWN');
 end;
 Add(Format('FIELD COUNT=%d', [Result.iFldCount]));
 for B := 0 to DBIMAXFLDSINKEY do begin
 if (Result.aiThisTabFld[B] <> 0) then begin
 if (B <> 0) then
 ThisTable := Format('%s, %d', [ThisTable,
Result.aiThisTabFld[B]])

 else
 ThisTable := IntToStr(Result.aiThisTabFld[B]);
 end
 else
 Break;

 end;
 Add('FIELDS=' + ThisTable);
 for B := 0 to DBIMAXFLDSINKEY do begin
 if (Result.aiOthTabFld[B] <> 0) then begin
 if (B <> 0) then
 OtherTable := Format('%s, %d', [OtherTable,
Result.aiOthTabFld[B]])

 else
 OtherTable := IntToStr(Result.aiOthTabFld[B]);
 end
 else
 Break;
 end;
 Add('FIELDS OTHER=' + OtherTable);
 end;
 end;
end;

DbiGetSeqNo {button C
Examples,JI(`>example',`exdbigetrecordcount')} {button Delphi
Examples,JI(`>example',`dexdbigetseqno')}
C syntax
DBIResult DBIFN DbiGetSeqNo (hCursor, piSeqNo);
Delphi syntax
function DbiGetSeqNo (hCursor: hDBICur; var iSeqNo: Longint): DBIResult
stdcall;

Description
DbiGetSeqNo retrieves the sequence number of the current record in the table associated
with the cursor.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
piSeqNo Type: pUINT32 (Output)
Pointer to the client variable that receives the logical sequence number of the current
record in the table associated with hCursor.

Usage
Paradox: This function is supported for all Paradox tables.
SQL: This function is not supported by SQL drivers.
dBASE: This function is not supported by the dBASE driver.
Access: This function is not supported by the Access driver.
Cached updates: This function is not supported with cached updates, since cached
updates use an in-memory table.

Prerequisites
The cursor should be positioned on a record.
Completion state
The sequence number is the relative position of a record with respect to the beginning of
the file. A sequence number for a given record therefore depends on the current index in
use. An active range also affects the sequence numbers, the sequence number is relative
to the beginning of the range. Filters do not affect sequence numbers, so there might seem
to be gaps in the sequence numbers.

DbiResult return values
DBIERR_NOTSUPPORTED This call is not supported for the given table.
DBIERR_NONE The sequence number was returned successfully.
DBIERR_BOF The cursor must be positioned on a record; it is positioned at the beginning of the

file.
DBIERR_EOF The cursor must be positioned on a record; it is positioned at the end of the file.
DBIERR_KEYORRECDELETED The cursor is positioned on a deleted record.
DBIERR_NOCURRREC No record is current.

See also
DbiSetToSeqNo, DbiGetCursorProps

Delphi Examples: DbiGetSeqNo
Retrieve the sequence number of the current record associated with a cursor:
The following procedure returns the record ID of the current record in ATable. If ATable is a
Paradox table, it uses DbiGetSeqNo() to obtain the sequence number. If ATable is a dBASE
or FoxPro table, it uses record properties provided by DbiGetRecord to obtain the physical
record number. If the table is SQL or text, an exception is raised. The record ID is returned
in the RecID parameter, which is passed by reference.

procedure GetRecordID(ATable: TTable; var RecID: Longint);
var
 CP: CURProps;
 RP: RECProps;
begin
 with ATable do begin
 { Make sure it is a Paradox table! }
 UpdateCursorPos; // sync BDE with Delphi
 { Find out if table support Seq nums or Physical Rec nums }
 Check(dbiGetCursorProps(Handle, CP));
 case CP.iSeqNums of
 0 : begin // dBASE tables support Phy Rec Nums
 Check(DbiGetRecord(Handle, dbiNOLOCK, nil, @RP));
 RecID := RP.iPhyRecNum;
 end;
 1 : Check(DbiGetSeqNo(Handle, RecID)); // Paradox tables support Seq
Nums

 else
 { raise exception if it's not a Paradox or dBASE table }
 raise EDatabaseError.Create('Not a Paradox or dBASE table');
 end;
 CursorPosChanged; // sync Delphi with BDE
 end;
end;

DbiGetSesInfo {button C
Examples,JI(`>example',`exdbigetsesinfo')} {button Delphi
Examples,JI(`>example',`dexdbigetsesinfo')}
C syntax
DBIResult DBIFN DbiGetSesInfo (psesInfo);
Delphi syntax
function DbiGetSesInfo (var sesInfo: SESInfo): DbiResult stdcall;
Description
DbiGetSesInfo retrieves the environment settings for the current session.
Parameters
psesInfo Type: pSESInfo (Output)
Pointer to the client-allocated SESInfo structure.
Usage
This function provides the client with information about the resources attached to the
current session, including the number of database handles and open cursors (when the
session is closed, these resources are released). This function also returns the session ID
and name, the current private directory, and the lock retry time for repeated attempts to
lock a table. The lock retry time is specified by DbiSetLockRetry.

Completion state
The session information is returned in the specified SESInfo structure.
DbiResult return values
DBIERR_NONE The session information was returned successfully.
DBIERR_INVALIDHNDL psesInfo is NULL.

See also
DbiSetLockRetry, DbiStartSession, DbiCloseSession, DbiGetCurrSession, DbiSetCurrSession

C Examples: DbiGetSesInfo
Get session information.
If SesInfo is not NULL, a string is also returned containing session information. This example
uses the following input:

fDbiGetSesInfo(&Sesinfo, Buffer);
DBIResult fDbiGetSesInfo(pSESInfo pSesInfo, pCHAR SesInfo)
{
 DBIResult rslt;
 rslt = Chk(DbiGetSesInfo(pSesInfo));
 if (rslt == DBIERR_NONE)
 {
 if (SesInfo != NULL)
 wsprintf(SesInfo, "ID: %d, Name: %s, Open DB: %d, Open Cursors: %d,
"

 "Lock Wait: %d, Net Dir: %s, Private Dir: %s", pSesInfo-
>iSession,

 pSesInfo->szName, pSesInfo->iDatabases, pSesInfo->iCursors,
 pSesInfo->iLockWait, pSesInfo->szNetDir, pSesInfo->szPrivDir);
 }
 return rslt;
}

Delphi Examples: DbiGetSesInfo
Get BDE session information. This function can return the SESInfo structure or clear and
add the information to the SesInfoList TStringList. If nil is passed in, only the SESInfo
structure is returned. This example uses the following input:
 Ses := fDbiGetSesInfo(MyList);

The function is:
function fDbiGetSesInfo(SesInfoList: TStringList): SESInfo;
begin
 Check(DbiGetSesInfo(Result));
 if (SesInfoList <> nil) then
 begin
 with SesInfoList do begin
 Clear;
 Add(Format('SESSION ID=%d', [Result.iSession]));
 Add(Format('SESSION NAME=%s', [Result.szName]));
 Add(Format('DATABASES=%d', [Result.iDatabases]));
 Add(Format('CURSORS=%d', [Result.iCursors]));
 Add(Format('LOCK WAIT=%d', [Result.iLockWait]));
 Add(Format('NET DIR=%s', [Result.szNetDir]));
 Add(Format('PRIVATE DIR=%s', [Result.szPrivDir]));
 end;
 end;
end;

DbiGetSysConfig {button C
Examples,JI(`>example',`exdbigetsysconfig')} {button Delphi
Examples,JI(`>example',`dexdbigetsysconfig')}
C syntax
DBIResult DBIFN DbiGetSysConfig (psysConfig);
Delphi syntax
function DbiGetSysConfig (var sysConfig: SYSConfig): DBIResult stdcall;
Description
DbiGetSysConfig retrieves BDE system configuration information.
Parameters
psysConfig Type: pSYSConfig (Output)
Pointer to the client-allocated SYSConfig structure.
Completion state
The SYSConfig structure pointed to by psysConfig contains the retrieved system
configuration information.
DbiResult return values
DBIERR_NONE System configuration information was returned successfully.

See also
DbiGetSysVersion, DbiGetClientInfo, DbiGetSysInfo

C Examples: DbiGetSysConfig
Get system configuration information.
If SysCfg is not NULL, a string is also returned containing system configuration. This
example uses the following input:

fDbiGetSysConfig(&SysConfig, Buffer);
DBIResult fDbiGetSysConfig(pSYSConfig pSysConfig, pCHAR SysCfg)
{
 DBIResult rslt;
 CHAR szLocal[] = {"False"};
 rslt = Chk(DbiGetSysConfig(pSysConfig));
 if (rslt == DBIERR_NONE)
 {
 if (SysCfg != NULL)
 {
 if (pSysConfig->bLocalShare == TRUE)
 strcpy(szLocal, "True");
 wsprintf(SysCfg, "Local Share: %s, Net Type: %s, User Name: %s, "
 ".CFG File: %s, Lang Driver: %s", szLocal, pSysConfig->szNetType,
 pSysConfig->szUserName, pSysConfig->szIniFile, pSysConfig-
>szLangDriver);

 }
 }
 return rslt;
}

Delphi Examples: DbiGetSysConfig
Get system configuration information:
DbiGetSysConfig retrieves the BDE system configuration information and appends it to the
TStringList passed in. This example uses the following input:
 fDbiGetSysConfig(MySysInfo);

The procedure is:
procedure fDbiGetSysConfig(var IdapiSysConfig: TStringList);
var
 SysConfigInfo: SYSConfig;
begin
 Check(DbiGetSysConfig(SysConfigInfo));
 if SysConfigInfo.bLocalShare then
 IdapiSysConfig.Add('Local Share: ON')
 else
 IdapiSysConfig.Add('Local Share: OFF');
 IdapiSysConfig.Add('Net Protocol: ' +
IntToStr(SysConfigInfo.iNetProtocol));

 if SysConfigInfo.bNetShare then
 IdapiSysConfig.Add('Net Share: ON')
 else
 IdapiSysConfig.Add('Net Share: OFF');
 IdapiSysConfig.Add('Network Type: ' + StrPas(SysConfigInfo.szNetType));
 IdapiSysConfig.Add('User Name: ' + StrPas(SysConfigInfo.szUserName));
 IdapiSysConfig.Add('Ini File: ' + StrPas(SysConfigInfo.szIniFile));
 IdapiSysConfig.Add('Language Driver: ' +
StrPas(SysConfigInfo.szLangDriver));

end;

DbiGetSysInfo {button C
Examples,JI(`>example',`exdbigetsysinfo')} {button Delphi
Examples,JI(`>example',`dexdbigetsysinfo')}
C syntax
DBIResult DBIFN DbiGetSysInfo (psysInfo);
Delphi syntax
function DbiGetSysInfo (var sysInfo: SYSInfo): DBIResult stdcall;
Description
DbiGetSysInfo retrieves system status and information.
Parameters
psysInfo Type: pSYSInfo (Output)
Pointer to the client-allocated SYSInfo structure.
Completion state
The SYSInfo structure pointed to by psysInfo contains the retrieved system status and
information.
DbiResult return values
DBIERR_NONE System status information was returned successfully.

See also
DbiGetSysVersion, DbiGetSysConfig, DbiGetClientInfo

C Examples: DbiGetSysInfo
Get system information.
If SysCfg is not NULL, a string is also returned containing system information. This example
uses the following input:

fDbiGetSysConfig(&SysInfo, Buffer);
DBIResult fDbiGetSysInfo(pSYSInfo pSysInfo, pCHAR SysInfo)
{
 DBIResult rslt;
 rslt = Chk(DbiGetSysInfo(pSysInfo));
 if (rslt == DBIERR_NONE)
 {
 if (SysInfo != NULL)
 wsprintf(SysInfo, "Buffer Space: %d, Heap: %d, Drivers: %d, Clients:
%d, "

 "Sessions: %d, Databases: %d, Cursors: %d", pSysInfo-
>iBufferSpace,

 pSysInfo->iHeapSpace, pSysInfo->iDrivers, pSysInfo->iClients,
 pSysInfo->iSessions, pSysInfo->iDatabases, pSysInfo->iCursors);
 }
 return rslt;
}

Delphi Examples: DbiGetSysInfo
Get BDE system status information. This function can return the SYSInfo structure or clear
and add the information to the SysInfoList TStringList. lf nil is passed in, only the SYSInfo
structure is returned. This example uses the following input:
 Sys := fDbiGetSysInfo(MyList);

The function is:
function fDbiGetSysInfo(SysInfoList: TStringList): SYSInfo;
begin
 Check(DbiGetSysInfo(Result));
 if (SysInfoList <> nil) then begin
 with SysInfoList do begin
 Clear;
 Add(Format('BUFFER SPACE=%d', [Result.iBufferSpace]));
 Add(Format('HEAP SPACE=%d', [Result.iHeapSpace]));
 Add(Format('DRIVERS=%d', [Result.iDrivers]));
 Add(Format('CLIENTS=%d', [Result.iClients]));
 Add(Format('SESSIONS=%d', [Result.iSessions]));
 Add(Format('DATABASES=%d', [Result.iDatabases]));
 Add(Format('CURSORS=%d', [Result.iCursors]));
 end;
 end;
end;

DbiGetSysVersion {button C
Examples,JI(`>example',`exdbigetsysversion')}{button Delphi
Examples,JI(`>example',`dexdbigetsysversion')}
C syntax
DBIResult DBIFN DbiGetSysVersion (psysVersion);
Delphi syntax
function DbiGetSysVersion (var sysVersion: SYSVersion): DBIResult stdcall;
Description
DbiGetSysVersion retrieves the system version information, including the BDE version
number, date, and time; and the client interface version number.

Parameters
psysVersion Type: pSYSVersion (Output)
Pointer to the client-allocated SYSVersion structure.

Completion state
The SYSVersion structure returned in psysVersion contains the retrieved system version
information.

DbiResult return values
DBIERR_NONE The system version information was returned successfully.

See also
DbiGetSysConfig, DbiGetClientInfo, DbiGetSysInfo

C Examples: DbiGetSysVersion
Get system version information:
If SysVer is not NULL, a string is also returned containing system version information. This
example uses the following input:

fDbiGetSysVersion(&SysVersion, Buffer);
DBIResult fDbiGetSysVersion(pSYSVersion pSysVersion, pCHAR SysVer)
{
 DBIResult rslt;
 UINT16 Mo, Da, H, M, Ms;
 INT16 Yr;
 rslt = Chk(DbiGetSysVersion(pSysVersion));
 if (rslt == DBIERR_NONE)
 {
 if (SysVer != NULL)
 {
 rslt = Chk(DbiDateDecode(pSysVersion->dateVer, &Da, &Mo, &Yr));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiTimeDecode(pSysVersion->timeVer, &H, &M, &Ms));
 if (rslt != DBIERR_NONE)
 return rslt;
 wsprintf(SysVer, "Engine: %d, Interface Level: %d, Date: %d/%d/%d, "
 "Time: %d:%d:%d", pSysVersion->iVersion, pSysVersion->iIntfLevel,
 Mo, Da, Yr, H, M, (Ms / 1000));
 }
 }
 return rslt;
}

Delphi Examples: DbiGetSysVersion
Get BDE system version information. This function can return the SYSVersion structure or
clear and add the information to the SysVerList TStringList. If nil is passed in, only the
SYSVersion structure is returned. This example uses the following input:
 Ver := fDbiGetSysVersion(MyList);

The function is:
function fDbiGetSysVersion(SysVerList: TStringList): SYSVersion;
var
 Month, Day, iHour, iMin, iSec: Word;
 Year: SmallInt;
begin
 Check(DbiGetSysVersion(Result));
 if (SysVerList <> nil) then begin
 with SysVerList do begin
 Clear;
 Add(Format('ENGINE VERSION=%d', [Result.iVersion]));
 Add(Format('INTERFACE LEVEL=%d', [Result.iIntfLevel]));
 Check(DbiDateDecode(Result.dateVer, Month, Day, Year));
 Add(Format('VERSION DATE=%s', [DateToStr(EncodeDate(Year, Month,
 Day))]));
 Check(DbiTimeDecode(Result.timeVer, iHour, iMin, iSec));
 Add(Format('VERSION TIME=%s', [TimeToStr(EncodeTime(iHour, iMin,
 Sec div 1000, iSec div 100))]));
 end;
 end;
end;

DbiGetTableOpenCount {button C
Examples,JI(`>example',`exdbigettableopencount')} {button Delphi
Examples,JI(`>example',`dexdbigettableopencount')}
C syntax
DBIResult DBIFN DbiGetTableOpenCount (hDb, pszTableName, [pszDriverType],
 piOpenCount);
Delphi syntax
function DbiGetTableOpenCount (hDb: hDBIDb; pszTableName: PChar;
pszDriverType: PChar; var iOpenCount: Word): DBIResult stdcall;

Description
DbiGetTableOpenCount returns the total number of cursors that are open on the specified
table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Pointer to the name of the table. For Paradox, FoxPro, Access, and dBASE, if pszTableName
is a fully qualified name of a table, the pszDriverType parameter need not be specified. If
the path is not included, the path name is taken from the current directory of the database
associated with hDb.
For SQL databases, this parameter can be a fully qualified name that includes the owner
name.
pszDriverType Type: pCHAR (Input)
Pointer to the table type. Optional. For Paradox, FoxPro, and dBASE tables, this parameter
is required if pszTableName has no extension. This parameter is ignored if the database
associated with hDb is a SQL database. pszDriverType can be one of the following values:
szDBASE, szMSACCESS, or szPARADOX.
piOpenCount Type: pUINT16 (Output)
Pointer to the client variable that receives the number of cursors opened on the table.

Usage
This function returns the total number of cursors open on this table by this instance of BDE,
irrespective of database and current session.
Most of the functions that operate on tables require a cursor, which is obtained by calling
DbiOpenTable. A table can be opened more than once, resulting in more than one cursor for
that table. Some functions, such as DbiDoRestructure, require that no cursors be opened
on the table. Use this function to check for this requirement.
The name of the table (not the cursor) is input to DbiGetTableOpenCount, which returns a
count of how many cursors are opened on the table. This function is useful for determining
whether a table is in use.
Paradox: For Paradox, the number of open cursors includes any cursors opened implicitly
by referential integrity or look up tables.
DbiResult return values
DBIERR_NONE The table open count was returned successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.
DBIERR_NOSUCHTABLE The specified table name is invalid.

DBIERR_UNKNOWNTBLTYPE The specified driver type is invalid or NULL, or the pointer to the
driver type is NULL.

See also
DbiOpenTable

C Examples: DbiGetTableOpenCount
Obtain the number of cursors open on a table.
DBIResult fDbiGetTableOpenCount(hDBIDb hDb, pCHAR TblName, pUINT16
piOpenCount)

{
 DBIResult rslt;
 rslt = Chk(DbiGetTableOpenCount(hDb, TblName, NULL, piOpenCount));
 return rslt;
}

Delphi Examples: DbiGetTableOpenCount
Return the number of open cursors on the specified table. This example uses the following
input:
 NumCursors := fDbiGetTableOpenCount(InterBaseTable);

The function is:
function fDbiGetTableOpenCount(Table: TTable): Word;
var
 Props: CURProps;
begin
 Check(DbiGetCursorProps(Table.Handle, Props));
 Check(DbiGetTableOpenCount(Table.DBHandle, PChar(Table.TableName),
 Props.szTableType, Result));
end;

DbiGetTableTypeDesc {button C
Examples,JI(`>example',`exdbigettabletypedesc')} {button Delphi
Examples,JI(`>example',`dexdbigettabletypedesc')}
C syntax
DBIResult DBIFN DbiGetTableTypeDesc (pszDriverType, pszTableType, ptblType);
Delphi syntax
function DbiGetTableTypeDesc (pszDriverType: PChar; pszTableType: PChar; var
tblType: TBLType): DBIResult stdcall;

Description
DbiGetTableTypeDesc returns a description of the capabilities of the table type given in
pszTableType for the driver type given in pszDriverType.
Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type.
pszTableType Type: pCHAR (Input)
Pointer to the table type. Use DbiOpenTableTypesList to get a list of valid table types.
ptblType Type: pTBLType (Output)
Pointer to the client-allocated TBLType structure.
Usage
SQL: The table type distinguishes between views, queries, and tables. It does not identify
the driver type.
DbiResult return values
DBIERR_NONE The table type Description was returned successfully.
DBIERR_INVALIDHNDL The pointer to the driver type is NULL, or the pointer to the table

type is NULL, or pTblType is NULL.
DBIERR_UNKNOWNDRVTYPE The specified driver type is invalid or NULL, or the specified table

type is invalid or NULL.

See also
DbiOpenTableTypesList

C Examples: DbiGetTableTypeDesc
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetTableTypeDesc
Retrieve a description of the capabilities of the table type
The description is appended to the TStringList passed in. This example uses the following
input:
 fDbiGetTableTypeDesc(szPARADOX, 'PDOX 7.0', MyTableInfo);
 fDbiGetTableTypeDesc(szDBASE, 'DBASE5', MyTableInfo);
 fDbiGetTableTypeDesc('INTRBASE', 'INTERBASE', MyTableInfo);

The procedure is:
procedure fDbiGetTableTypeDesc(DriverType, TableType: PChar;
 var TableTypeInfo: TStringList);

 function BoolVal(InBool: Boolean): string;
 begin
 if InBool then Result:= 'True'
 else Result:= 'False';
 end;
var
 TableTypeRec: TBLType;
begin
 Check(DbiGetTableTypeDesc(DriverType, TableType, TableTypeRec));
 TableTypeInfo.Add('Table ID: ' + IntToStr(TableTypeRec.iId));
 TableTypeInfo.Add('Name: ' + StrPas(TableTypeRec.szName));
 TableTypeInfo.Add('Text: ' + StrPas(TableTypeRec.szText));
 TableTypeInfo.Add('Format: ' + StrPas(TableTypeRec.szFormat));
 TableTypeInfo.Add('User can Read/Write: ' +
BoolVal(TableTypeRec.bReadWrite));

 TableTypeInfo.Add('Can create new tables: ' +
BoolVal(TableTypeRec.bCreate));

 TableTypeInfo.Add('Can restructure: ' +
BoolVal(TableTypeRec.bRestructure));

 TableTypeInfo.Add('Val Checks can be specified: ' +
BoolVal(TableTypeRec.bValChecks));

 TableTypeInfo.Add('Can be protected: ' + BoolVal(TableTypeRec.bSecurity));
 TableTypeInfo.Add('Can participate in ref integrity: ' +
BoolVal(TableTypeRec.bRefIntegrity));

 TableTypeInfo.Add('Supports primary key concept: ' +
BoolVal(TableTypeRec.bPrimaryKey));

 TableTypeInfo.Add('Can have other indexes: ' +
BoolVal(TableTypeRec.bIndexing));

 TableTypeInfo.Add('Number of Phy Field types supported: ' +
IntToStr(TableTypeRec.iFldTypes));

 TableTypeInfo.Add('Max record size: ' +
IntToStr(TableTypeRec.iMaxRecSize));

 TableTypeInfo.Add('Max fields in a table: ' +
IntToStr(TableTypeRec.iMaxFldsInTable));

 TableTypeInfo.Add('Maximum field name length: ' +
IntToStr(TableTypeRec.iMaxFldNameLen));

 TableTypeInfo.Add('Driver dependent table level (version): ' +
IntToStr(TableTypeRec.iTblLevel));

end;

DbiGetTimeFormat {button C
Examples,JI(`>example',`exdbigettimeformat')} {button Delphi
Examples,JI(`>example',`dexdbigettimeformat')}
C syntax
DBIResult DBIFN DbiGetTimeFormat (pfmtTime);
Delphi syntax
function DbiGetTimeFormat (var fmtTime: FMTTime): DBIResult stdcall;
Description
DbiGetTimeFormat gets the time format for the current session.
Parameters
pfmtTime Type: pFMTTime (Output)
Pointer to the client-allocated FMTTime structure.
Usage
The time format is used by QBE for input and wildcard character matching. It is also used
by batch operations (such as DbiDoRestructure and DbiBatchMove) to handle data type
coercion between character and datetime or time types.

DbiResult return values
DBIERR_NONE The time format was successfully retrieved.
DBIERR_INVALIDHNDL pfmtTime is NULL.

See also
DbiGetNumberFormat, DbiGetDateFormat, DbiSetTimeFormat

C Examples: DbiGetTimeFormat
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiGetTimeFormat
Obtain information about the Time Format on your system.
This example uses the following input:
 Memo1.Lines.Add(fDbiGetTimeFormat);

The function is:
function fDbiGetTimeFormat: string;
var
 MyTimeFormat : FMTTime;
begin
 Check(DbiGetTimeFormat(MyTimeFormat));
 SetLength(Result, 100);
 with MyTimeFormat do
 Result := Format('Separator: %s, AM: %s, PM: %s',
 [cTimeSeparator, szAmString, szPmString]);
 SetLength(Result, StrLen(PChar(Result)));
end;

DbiGetTranInfo {button C
Examples,JI(`>example',`exdbigettraninfo')} {button Delphi
Examples,JI(`>example',`dexdbigettraninfo')}
C syntax
DBIResult DBIFN DbiGetTranInfo (hDb, hXact, pxInfo);
Delphi syntax
function DbiGetTranInfo (hDb: hDBIDb; hXact: hDBIXact; pxInfo: pXInfo):
DBIResult stdcall;

Description
DbiGetTranInfo retrieves transaction information.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
hXact Type: hDBIXact (Input)
Specifies the transaction handle. If NULL, hDb is used; if not NULL, hDb is ignored.
pxInfo Type: XInfo (Output)
Pointer to the client-allocated XInfo structure.

Usage
After a successful DbiBeginTran request, the transaction state is active. The state remains
active until DbiEndTran is called. While the transaction is active, the actual isolation level
being used can be retrieved with this function. Since transaction nesting is currently not
supported, the uNests value is unused.

Prerequisites
A valid database handle must be obtained on a database.
Completion state
Information function only; does not affect transaction processing.

DbiResult return values
DBIERR_NONE

C Examples: DbiGetTranInfo
Gets the specified transaction information.
This example uses the following input:

fDbiGetTranInfo(hDb, xTran, Buffer);
DBIResult fDbiGetTranInfo(hDBIDb hTmpDb, hDBIXact hXact, pCHAR XactInfo)
{
 DBIResult rslt;
 XInfo xinfo;
 CHAR XState[10] = {"Unknown"};
 CHAR XType[20] = {"Unknown"};

 rslt = Chk(DbiGetTranInfo(hTmpDb, hXact, &xinfo));
 if (rslt == DBIERR_NONE)
 {
 switch (xinfo.exState)
 {
 case xsACTIVE:
 strcpy(XState, "Active");
 break;
 case xsINACTIVE:
 strcpy(XState, "Inactive");
 break;
 }
 switch (xinfo.eXIL)
 {
 case xilDIRTYREAD:
 strcpy(XType, "Dirty Read");
 break;
 case xilREADCOMMITTED:
 strcpy(XType, "Read Committed");
 break;
 case xilREPEATABLEREAD:
 strcpy(XType, "Repeatable Read");
 break;
 }
 }
 wsprintf(XactInfo, "Transaction State: %s, Isolation Level: %s, Nests:
%d",

 XState, XType, xinfo.uNests);
 return rslt;
}

Delphi Examples: DbiGetTranInfo
Get transaction information on the database handle.
This example uses the following input:
 fDbiGetTranInfo(Database1.Handle);

The procedure is:
procedure fDbiGetTranInfo(hTmpDb: HDBIDb);
var
 xInfoVar: XInfo;
begin
 Check(DbiGetTranInfo(hTmpDb, nil, @xInfoVar));
 case XInfoVar.eXIL of
 xilDIRTYREAD: ShowMessage('Isolation level is Uncommitted changes');
 xilREADCOMMITTED: ShowMessage('Isolation level is Committed changes');
 xilREPEATABLEREAD: ShowMessage('Isolation level is Full read
repeatablity');

 end;
end;

DbiGetVchkDesc {button C
Examples,JI(`>example',`exdbigetvchkdesc')} {button Delphi
Examples,JI(`>example',`dexdbigetvchkdesc')}
C syntax
DBIResult DBIFN DbiGetVchkDesc (hCursor, iValSeqNo, pvalDesc);
Delphi syntax
function DbiGetVchkDesc (hCursor: hDBICur; iValSeqNo: Word; pvalDesc:
pVCHKDesc): DBIResult stdcall;

Description
DbiGetVchkDesc retrieves the validity check descriptor identified by the validity check
sequence number and the cursor.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iValSeqNo Type: UINT16 (Input)
The validity check sequence number. This number is between 1 and the value of
iValChecks. The value of iValChecks can be obtained from the cursor properties (CURProps)
structure.
pvalDesc Type: pVCHKDesc (Output)
Pointer to the client-allocated VCHKDesc structure.
Usage
If a field map is active, the iFldNum in the validity check descriptor reflects the field map. If
any of the fields are not part of the field-mapped record, a negative number is listed.
DbiResult return values
DBIERR_NONE The descriptor was returned successfully.

See also
DbiGetCursorProps, DbiOpenVChkList

C Examples: DbiGetVchkDesc
Get the first Validity Check Descriptor for the specified cursor.
This example uses the following input:

fDbiGetVchkDesc(hCur, &VchkDesc);
DBIResult fDbiGetVchkDesc(hDBICur hCur, pVCHKDesc pVchkDesc)
{
 DBIResult rslt;
 CURProps CurProps;
 rslt = Chk(DbiGetCursorProps(hCur, &CurProps));
 if(CurProps.iValChecks > 0)
 rslt = Chk(DbiGetVchkDesc(hCur, 1, pVchkDesc));
 else
 MessageBox(0, "No validity checks on this table", "Validity Check
Warning", MB_OK);

 return rslt;
}

Delphi Examples: DbiGetVchkDesc
Obtain the first validity check descriptor for the specified cursor.
This example uses the following input:
 fDbiGetVchkDesc(hCur, VchkDesc);

The procedure is:
procedure fDbiGetVchkDesc(hCur: hDBICur; var VchkDes: VCHKDesc);
var
 CurProp: CURProps;
begin
 Check(DbiGetCursorProps(hCur, CurProp));
 if (CurProp.iValChecks > 0) then begin
 Check(DbiGetVchkDesc(hCur, 1, @VchkDes));
 ShowMessage('Field #' + IntToStr(VchkDes.iFldNum) +
 ' has Validity Checks.');
 end
 else
 MessageDlg(' Validity Check Warning: No validity checks on this table.',
 mtError,[MBOK], 0);
end;

DbiInit {button C Examples,JI(`>example',`exdbiinit')} {button
Delphi Examples,JI(`>example',`dexdbiinit')}
C syntax
DBIResult DBIFN DbiInit (pEnv);
Delphi syntax
function DbiInit (pEnv: PDbiEnv): DBIResult stdcall;
Description
DbiInit initializes the BDE environment.
Parameters
pEnv Type: pDBIEnv (Input)
Pointer to the DBIEnv structure. Optional. Can be used to change the working directory and
the location of the configuration file, to set up the language driver, and to supply BDE with
the client name.
Usage
Initializes the BDE environment. Default settings can be overwritten by supplying the
appropriate settings. If pEnv is NULL, then BDE assumes that the start-up directory is the
working directory. In this case, szClientName is empty and bForceLocalInit is FALSE.

Prerequisites
DbiInit must be called once by each client application before any other calls
(DbiOpenDatabase, DbiOpenTable, and so on.) are made. The client should be familiar with
the environment Parameters such as working directory, BDE configuration file path, and so
on.

DbiResult return values
DBIERR_NONE The BDE environment was initialized successfully.
DBIERR_MULTIPLEINIT Illegal attempt to initialize BDE more than once.
DBIERR_OSACCESS Attempting to run a BDE application from a Windows NT directory

without write access; create a Windows NT TEMP directory to
avoid this

See also
DbiExit, DbiDllExit

C Examples: DbiInit
Example 1: Initialize BDE with default settings.
It is strongly recommended to use this method. This example uses the following input:

fDbiInit1();
DBIResult fDbiInit1()
{
 DBIResult rslt;
 rslt = Chk(DbiInit(NULL));
 return rslt;
}

Example 2: Initialize BDE with a different working directory.
It is not recommended to use this method for most cases. This example uses the following
input:

fDbiInit2("c:\\program\\tables);
DBIResult fDbiInit2(pCHAR WorkDir)
{
 DBIResult rslt;
 DBIEnv Env;
 memset(&Env, 0, sizeof(DBIEnv));
 strcpy(Env.szWorkDir, WorkDir);
 rslt = Chk(DbiInit(&Env));
 return rslt;
}

Example 3: Initialize BDE with a different configuration file.
It is not recommended to use this method for most cases. This example uses the following
input:

fDbiInit3("c:\\myidapi\\idapi32.cfg");
DBIResult fDbiInit3(pCHAR ConfigDir)
{
 DBIResult rslt;
 DBIEnv Env;
 memset(&Env, 0, sizeof(DBIEnv));
 strcpy(Env.szIniFile, ConfigDir);
 rslt = Chk(DbiInit(&Env));
 return rslt;
}

Delphi Examples: DbiInit
Initialize BDE with default values.
If you have any of the "Data Access" or "Data Controls" VCL components in your project,
you should not directly call DbiInit in a Delphi application Those components will
automatically call DbiInit.
If you are not using VCL database components, then the following code shows how to
initialize the BDE with default values:
Check(dbiInit(nil));

DbiInitRecord {button C
Examples,JI(`>example',`exdbiinitrecord')} {button Delphi
Examples,JI(`>example',`dexdbiinitrecord')}
C syntax
DBIResult DBIFN DbiInitRecord (hCursor, pRecBuf);
Delphi syntax
function DbiInitRecord (hCursor: hDBICur; pRecBuff: Pointer): DBIResult
stdcall;

Description
DbiInitRecord initializes a record buffer. This operation is required before composing a new
record for insertion.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the initialized record buffer.
Usage
DbiInitRecord initializes the record buffer to a blank record according to the data types of
the fields.
Paradox: If the table has associated default values with any of the fields, the default
values are used to initialize the fields.
Completion state
The record buffer contains blank fields or default values. The position of the given cursor is
not affected. The client application can use the BDE field-level functions to fill the record
buffer with the appropriate values.

DbiResult return values
DBIERR_NONE The initialization was successful.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified record buffer is NULL.

See also
DbiAppendRecord, DbiGetRecord, DbiGetNextRecord, DbiGetPriorRecord, DbiModifyRecord,
DbiInsertRecord, DbiPutField, DbiSetToKey, DbiGetBlob, DbiPutBlob, DbiOpenBlob,
DbiFreeBlob, DbiGetField

C Examples: DbiInitRecord
Initialize the specified record buffer.
This example uses the following input:

fDbiInitRecord(hCursor, RecBuf);
DBIResult fDbiInitRecord(hDBICur hTmpCur, pBYTE pTmpRecBuf)
{
 DBIResult rslt;
 rslt = Chk(DbiInitRecord(hTmpCur, pTmpRecBuf));
 return rslt;
}

Delphi Examples: DbiInitRecord
An example for this function is under development and will be provided in an upcoming
Help release.

DbiInsertRecord {button C
Examples,JI(`>example',`exdbiinsertrecord')} {button Delphi
Examples,JI(`>example',`dexdbiinsertrecord')}
C syntax
DBIResult DBIFN DbiInsertRecord (hCursor, [eLock], pRecBuf);
Delphi syntax
function DbiInsertRecord (hCursor: hDBICur; eLock: DBILockType; pRecBuff:
Pointer): DBIResult stdcall;

Description
DbiInsertRecord inserts a new record, contained in pRecBuf, into the table associated with
the given cursor.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
eLock Type: DBILockType (Input)
Specifies the lock request type. Optional.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer.
Usage
The client application can optionally acquire a lock on the newly inserted record by
specifying the lock type in eLock.
dBASE, FoxPro, Access: For dBASE, FoxPro, and Access there is no difference between
DbiAppendRecord and DbiInsertRecord. The record is inserted at the end of the table. The
cursor is positioned at the inserted record. If an active range exists, the cursor might be
positioned at the beginning or end of the file.
Paradox: Before inserting the record, the function verifies any referential integrity
requirements or validity checks that may be in place. If either fails, an error is returned and
the insert operation is canceled. If a primary index is in place, the record is physically
placed at a location that conforms to the primary index order. With non-indexed tables, the
record is inserted before the current position.
SQL: The table must be opened for write access. After the insert, the cursor is always
positioned on the inserted record.

Prerequisites
Other users cannot have a write lock, or greater, on the table. The record buffer should be
initialized with DbiInitRecord, and data filled in using DbiPutField or DbiOpenBlob, and
DbiPutBlob.
Completion state
After successful completion, the cursor is positioned on the new record. If the function fails,
the record is not inserted and the current position of the cursor is not affected.
If the cursor has a filter or a range associated with it, the cursor might be positioned on a
crack or BOF/EOF and the operation will fail if a record lock was requested.
DbiResult return values
DBIERR_NONE The record was successfully inserted.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified record buffer is NULL.

DBIERR_FOREIGNKEYERR The target table is a detail table in a referential integrity link, and the
linking value cannot be found in the master table.

DBIERR_MINVALERR The specified data is less than the required minimum value.
DBIERR_MAXVALERR The specified data is greater than the required maximum value.
DBIERR_REQDERR The field cannot be blank.
DBIERR_LOOKUPTABLEERR The specified value was not found in the assigned lookup table.
DBIERR_KEYVIOL The table has a unique index and the inserted key value conflicts

with an existing record's key value.
DBIERR_FILELOCKED The table is locked by another user.
DBIERR_TABLEREADONLY Table access denied; the specified cursor handle is read-only.
DBIERR_NOTSUFFTABLERIGHTS Insufficient table rights to insert a record (Paradox only).
DBIERR_NODISKSPACE Insert failed due to insufficient disk space.
DBIERR_RECLOCKFAILED Insert failed because the record could not be locked due to range or

filter constraint.

See also
DbiPutField, DbiGetNextRecord, DbiGetRecord, DbiGetRelativeRecord, DbiAppendRecord,
DbiModifyRecord

C Examples: DbiInsertRecord
Append or insert a record on the specified table.
If the table has an index, insert the record; otherwise, append the record. This example
uses the following input:

fAddRecord(hCur, pRecBuf);
DBIResult fAddRecord(hDBICur hTmpCur, pBYTE pTmpRecBuf)
{
 DBIResult rslt;
 CURProps CurProps;
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (CurProps.iIndexes == 0)
 rslt = Chk(DbiAppendRecord(hTmpCur, pTmpRecBuf));
 else
 rslt = Chk(DbiInsertRecord(hTmpCur, dbiNOLOCK, pTmpRecBuf));
 return rslt;
}

Delphi Examples: DbiInsertRecord
Append or insert a record on the specified table.
Use the Insert and Post methods on a dataset to insert records. This inserts a new record,
contained in pTmpRecBuf, into the table associated with the given cursor. This example
uses the following input:
 fDbiInsertRecord(hCursor, RecBuf);
The procedure is:
procedure fDbiInsertRecord(hTmpCur: hDBICur; pTmpRecBuf: pByte);
begin
 Check(DbiInsertRecord(hTmpCur, dbiNOLOCK, pTmpRecBuf));
end;
Insert or append a record to a table.
If the table has an index, insert the record. Most Delphi users should use: TTable.Insert,
TTable.Append, TTable.InsertRecord, or TTable.AppendRecord. This example uses the
following input:
 fDbiInsertRecord(Table1.Handle, pRecBuf: pBYTE);
The procedure is:
procedure fDbiInsertRecord(hTmpCur: hDBICur; pRec: pBYTE);
var
 Props: CURProps;
begin
 Check(DbiGetCursorProps(hTmpCur, Props));
 // Check to see if there are any active indexes on the table
 if (Props.iIndexes > 0) then
 // Insert the record
 Check(DbiInsertRecord(hTmpCur, dbiNOLOCK, pRec))
 else
 // Append the record
 Check(DbiAppendRecord(hTmpCur, pRec));
end;

DbiIsRecordLocked {button C
Examples,JI(`>example',`exdbiisrecordlocked')} {button Delphi
Examples,JI(`>example',`dexdbiisrecordlocked')}
C syntax
DBIResult DBIFN DbiIsRecordLocked (hCursor, pbLocked);
Delphi syntax
function DbiIsRecordLocked (hCursor: hDBICur; var bLocked: Bool): DBIResult
stdcall;

Description
DbiIsRecordLocked is used to check if current record is locked in the current session.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pbLocked Type: pBOOL (Output)
Pointer to the client variable. Set to TRUE if the record is locked; otherwise, FALSE.

Usage
Record locks differ from table locks in that they only have two states: locked or not locked.
Table locks have four states: no lock, read lock, write lock, or exclusive lock.

Prerequisites
The cursor must be positioned on a record.
Completion state
The lock status is returned in pLocked, and indicates whether the record is locked by any
application in the current session.
SQL: For SQL, the lock status returned in pLocked indicates whether the record is locked by
you.
DbiResult return values
DBIERR_NONE The lock status was returned successfully.
DBIERR_NOCURRREC There is no current record.
DBIERR_BOF There is no current record at the beginning of the file.
DBIERR_EOF There is no current record at the end of the file.
DBIERR_KEYORRECDELETED There is no current record.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_INVALIDPARAM pbLocked is NULL.

See also
DbiGetNextRecord, DbiGetPriorRecord, DbiGetRecord, DbiGetRelativeRecord,
DbiRelRecordLock, DbiIsTableLocked, DbiAcqTableLock, DbiRelTableLock

C Examples: DbiIsRecordLocked
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiIsRecordLocked
Checks the lock status of the current record.

This example uses the following input:
 IsRecordLocked(Table1, True);

NOTE: If ByAnyone is true, then the function also checks if any other session has the record
locked. If ByAnyone is false, then only the current session is checked. The function returns
False if not locked, and True if locked.
The function is:
function IsRecordLocked(Table: TTable; ByAnyone: Boolean): Boolean;
var
 Locked: BOOL;
 hCur: hDBICur;
 rslt: DBIResult;
begin
 Table.UpdateCursorPos;
 // Is the record locked by the current session...
 Check(DbiIsRecordLocked(Table.Handle, Locked));
 Result := Locked;
 // If the current session does not have a lock and the ByAnyone varable is
 // set to check all sessions, continue check...
 if (not Result) and (ByAnyone) then begin
 // Get a new cursor to the same record...
 Check(DbiCloneCursor(Table.Handle, False, False, hCur));
 try
 // Try and get the record with a write lock...
 rslt := DbiGetRecord(hCur, dbiWRITELOCK, nil, nil);
 if (rslt <> DBIERR_NONE) then begin
 // if an error occured and it is a lock error, return true...
 if (HiByte(rslt) = ERRCAT_LOCKCONFLICT) then
 Result := True
 else
 // If some other error happened, throw an exception...
 Check(rslt);
 end
 else
 // Release the lock in this session if the function was
successful...

 Check(DbiRelRecordLock(hCur, False));
 finally
 // Close the cloned cursor...
 Check(DbiCloseCursor(hCur));
 end;
 end;
end;

DbiIsTableLocked {button C
Examples,JI(`>example',`exdbiistablelocked')} {button Delphi
Examples,JI(`>example',`dexdbiistablelocked')}
C syntax
DBIResult DBIFN DbiIsTableLocked (hCursor, edbiLock, piLocks);
Delphi syntax
function DbiIsTableLocked (hCursor: hDBICur; epdxLock: DBILockType; var
iLocks: Word): DBIResult stdcall;

Description
DbiIsTableLocked returns the number of locks of type edbiLock acquired on the table
associated with the given session.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
edbiLock Type: DBILockType (Input)
Specifies the lock type to verify.
piLocks Type: pUINT16 (Output)
Pointer to the client variable that receives the number of locks of the given lock type.
Usage
dBASE or FoxPro: For dBASE and FoxPro tables, dbiREADLOCKs are upgraded to
dbiWRITELOCKs. If the value of edbiLock is dbiREADLOCK, then the number of write locks
are returned in piLocks.

DbiResult return values
DBIERR_NONE The number of locks was returned successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_INVALIDPARAM piLocks is NULL.

See also
DbiAcqTableLock, DbiRelTableLock, DbiOpenLockList

edbiLock
edbiLock can be one of the following values:
Value Description
dbiNOLOCK Dirty read
dbiREADLOCK Read lock
dbiWRITELOCK Write lock

C Examples: DbiIsTableLocked
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiIsTableLocked
Return the number of locks of type edbiLock aquired on the table passed to the
function.
You can obtain table locks by calling the LockTable and UnLockTable methods of the TTable
component. This example uses the following input:
 LockTotal:= fDbiIsTableLocked(Table1, dbiWRITELOCK);
The function is:
function fDbiIsTableLocked(Tbl: TTable; Lock: DBILockType): Word;
var
 NumLocks: Word;
begin
 Check(DbiIsTableLocked(Tbl.Handle, Lock, NumLocks));
 Result:= NumLocks;
end;

DbiIsTableShared {button C
Examples,JI(`>example',`exdbiistableshared')} {button Delphi
Examples,JI(`>example',`dexdbiistableshared')}
C syntax
DBIResult DBIFN DbiIsTableShared (hCursor, pbShared);
Delphi syntax
function DbiIsTableShared (hCursor: hDBICur; var bShared: Bool): DBIResult
stdcall;

Description
DbiIsTableShared determines whether the table is physically shared or not.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pbShared Type: pBOOL (Output)
Pointer to the client variable. Set to TRUE if the table is physically shared.

Usage
Standard: The table is physically shared if it is placed on a shared drive (network, or local
drive when LOCALSHARE in the configuration is TRUE), and the table is not opened
exclusively. If a table is shared, dirty data is not buffered. The table is available to all users
in the session, unless acquired table or record locks have been placed since the table was
opened.
DbiResult return values
DBIERR_NONE The table shared status was returned successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_INVALIDPARAM pbShared is NULL.

See also
DbiOpenTable, DbiAcqTableLock, DbiAcqPersistTableLock, DbiRelTableLock,
DbiRelPersistTableLock, DbiForceReread, DbiCheckRefresh

C Examples: DbiIsTableShared
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiIsTableShared
An example for this function is under development and will be provided in an upcoming
Help release.

DbiLinkDetail {button C
Examples,JI(`>example',`exdbilinkdetail')} {button Delphi
Examples,JI(`>example',`dexdbibeginlinkmode')}
C syntax
DBIResult DBIFN DbiLinkDetail (hMstrCursor, hDetlCursor, iLnkFields,
piMstrFields, piDetlFields);

Delphi syntax
function DbiLinkDetail (hMstrCursor: hDBICur; hDetlCursor: hDBICur;
iLnkFields: Word; piMstrFields: PWord; piDetlFields: PWord): DBIResult
stdcall;

Description
DbiLinkDetail establishes a link between two cursors such that the detail cursor has its
record set limited to the set of records matching the linking key values of the master
cursor.

Parameters
hMstrCursor Type: hDBICur (Input)
Specifies the cursor handle associated with the master table. The cursor does not have to
be opened on an index.
hDetlCursor Type: hDBICur (Input)
Specifies the cursor handle associated with the detail table. The cursor must be opened on
an index corresponding to all the link fields.
iLnkFields Type: UINT16 (Input)
Specifies the number of link fields.
piMstrFields Type: pUINT16 (Input)
Pointer to the array of field numbers of link fields in the master table.
piDetlFields Type: pUINT16 (Input)
Pointer to the array of field numbers of link fields in the detail table.

Usage
This function is useful for establishing one-to-one or one-to-many relationships between
tables. A master cursor can have more than one detail cursor; a detail cursor can have only
one master cursor. A detail cursor can also be a master cursor. Links apply to all available
driver types; they can be established between cursors of the same or different driver types.
The effect is equivalent to setting a range using DbiSetRange on the detail table and using
the linking fields of the master table.

Prerequisites
For the cursors to be linked, both cursors must be enabled with DbiBeginLinkMode. The
data types of linked fields in master and detail records must be compatible. The detail
cursor must be opened on an index corresponding to all of the linking fields. For expression
links, see DbiLinkDetailToExp.

Completion state
The linked cursors are modified so that the detail cursor allows access only to the records
that match the linking value of the master record. If the position of the master cursor
changes so that a different linking value is obtained for the linking fields, the detail cursor
is set to a new range of records and is positioned to the beginning of this range.

DbiResult return values
DBIERR_NONE The link between the detail cursor (hDetlCursor) and the master cursor (hMstrCursor)

was successfully established.
DBIERR_INVALIDHNDL One or more of the specified cursor handles is invalid or NULL.

See also
DbiLinkDetailToExp, DbiUnlinkDetail, DbiSetRange

C Examples: DbiLinkDetail
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiLinkDetail
An example for this function is under development and will be provided in an upcoming
Help release.

DbiLinkDetailToExp {button C
Examples,JI(`>example',`exdbilinkdetailtoexp')} {button Delphi
Examples,JI(`>example',`dexdbilinkdetailtoexp')}
C syntax
DBIResult DBIFN DbiLinkDetailToExp (hCursorMstr, hCursorDetl, iKeyLen,
pszMstrExp);

Delphi syntax
function DbiLinkDetailToExp (hCursorMstr: hDBICur; hCursorDetl: hDBICur;
iKeyLen: Word; pszMstrExp: PChar): DBIResult stdcall;

Description
DbiLinkDetailToExp links the detail cursor to the master cursor using a dBASE expression.
Parameters
hCursorMstr Type: hDBICur (Input)
Specifies the cursor handle associated with the master table. Must be a cursor on a dBASE
table. The cursor does not have to be opened on an index.
hCursorDetl Type: hDBICur (Input)
Specifies the cursor handle associated with the detail table. The cursor must be ordered on
an index corresponding to the provided expression, and the cursor must be open on a
dBASE table.
iKeyLen Type: UINT16 (Input)
Specifies the length of the key to match.
pszMstrExp Type: pCHAR (Input)
Pointer to the expression string. Must be a valid dBASE expression whose key type is the
same as the active index of the detail table.
Usage
This function is supported by the dBASE driver only.
dBASE and FoxPro: This function is used to establish one-to-many or one-to-one
relationships, using expressions. This function is used to create linked cursors so that the
master cursor is on a dBASE table and the link is a dBASE-style expression, not a set of
fields.

Prerequisites
hCursorMstr and hCursorDetl must be link cursors. This is done by calling
DbiBeginLinkMode for both master and detail cursor. For the tables to be linked, both
cursor handles must be obtained on a dBASE or FoxPro table.
Completion state
The linked cursors are set up such that the detail cursor shows only records that match the
linking value of the master record.
DbiResult return values
DBIERR_NONE The specified detail cursor was successfully linked to the specified master cursor.
DBIERR_INVALIDHNDL One or more of the specified cursor handles is invalid or NULL.
DBIERR_INVALIDLINKEXPR The expression used was invalid.

See also
DbiLinkDetail, DbiUnlinkDetail

C Examples: DbiLinkDetailToExp
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiLinkDetailToExp
An example for this function is under development and will be provided in an upcoming
Help release.

DbiLoadDriver {button C
Examples,JI(`>example',`exdbiloaddriver')} {button Delphi
Examples,JI(`>example',`dexdbiloaddriver')}
C syntax
DBIResult DBIFN DbiLoadDriver (pszDriverType);
Delphi syntax
function DbiLoadDriver (pszDriverType: PChar): DBIResult stdcall;
Description
DbiLoadDriver loads a given driver. Use DbiOpenDriverList to get list of valid drivers.
Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver name.
DbiResult return values
DBIERR_NONEThe driver has been loaded successfully.

See also
DbiOpenDriverList

C Examples: DbiLoadDriver
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiLoadDriver
Load a given driver.
This example uses the following input:
 fDbiLoadDriver('PARADOX')

The procedure is:
procedure fDbiLoadDriver(DriverType: string);
begin
 Check(DbiLoadDriver(PChar(DriverType)));
end;

DbiMakePermanent {button C
Examples,JI(`>example',`exdbimakepermanent')} {button Delphi
Examples,JI(`>example',`dexdbimakepermanent')}
C syntax
DBIResult DBIFN DbiMakePermanent (hCursor, [pszName], bOverWrite);
Delphi syntax
function DbiMakePermanent (hCursor: hDBICur; pszName: PChar; bOverWrite:
Bool): DBIResult stdcall;

Description
DbiMakePermanent changes a temporary table created by DbiCreateTempTable into a
permanent table, optionally renaming it using pszName.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pszName Type: pCHAR (Input)
Pointer to the name of the permanent table.
bOverWrite Type: BOOL (Input)
If set to TRUE, overwrites the existing file.
Usage
This function is used to change a temporary table, created with DbiCreateTempTable, into a
permanent table, that is, one that will not be deleted when the cursor is closed with
DbiCloseCursor. DbiSaveChanges can also be used to make the temporary table
permanent, but the table is flushed out to disk immediately. With DbiMakePermanent,
buffers are flushed to disk when convenient, or when the cursor is closed. The table is
renamed to pszName if different from NULL.
SQL: This function is not supported by SQL drivers.

Prerequisites
A temporary table must have been created with DbiCreateTempTable.
Completion state
The table is saved to disk when the cursor is closed.

DbiResult return values
DBIERR_NONE The temporary table has been designated as a permanent table.

See also
DbiSaveChanges, DbiCreateTempTable, DbiCloseCursor, DbiQInstantiateAnswer

C Examples: DbiMakePermanent
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiMakePermanent
An example for this function is under development and will be provided in an upcoming
Help release.

DbiModifyRecord {button C
Examples,JI(`>example',`exdbimodifyrecord')} {button Delphi
Examples,JI(`>example',`dexdbimodifyrecord')}
C syntax
DBIResult DBIFN DbiModifyRecord (hCursor, pRecBuf, bFreeLock);
Delphi syntax
function DbiModifyRecord (hCursor: hDBICur; pRecBuf: Pointer; bFreeLock:
Bool): DBIResult stdcall;

Description
DbiModifyRecord modifies the current record of the table associated with hCursor with the
data supplied in pRecBuf.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle for the table. The cursor must be positioned on a valid record.
pRecBuf Type: pBYTE (Input)
Pointer to the client buffer where the modified record is stored.
bFreeLock Type: BOOL (Input)
Specifies whether to release locks on completion. If set to TRUE, the lock is released on the
updated record when DbiModifyRecord completes. If set to FALSE, the lock is not released.

Usage
Paradox: Before the table is updated, any referential integrity requirements or validity
checks in place are verified. If any fail, an error is returned and the operation is canceled.
SQL: Tables must be opened with write access. If the table has no unique index or server
row ID (this includes views), DbiModifyRecord can be used to modify records if the server
supports it. However, if you attempt to modify a record that has a duplicate, you will
receive an error.
If the record is locked (using dbiREADLOCK or dbiWRITELOCK), and the user tries to modify
the record after another user has deleted the record or changed the key value for the
record, DbiModifyRecord returns a DBIERR_KEYORRECDELETED error.
Prerequisites
The cursor must be positioned on a record, not on a crack, beginning of file, or end of file.
The user must have read-write access to the table. The record must not be locked by
another session.

Completion state
The cursor is positioned on the updated record. An error is returned if there is no current
record for the cursor. If the key has changed, DbiModifyRecord is equivalent to calling first
DbiDeleteRecord then DbiInsertRecord. When a record is modified in a table that has an
active index, the position of the modified record may change if the key value was modified.
If the client requests to keep a lock on a modified record, and the record flies outside a
current range or filter condition, the function returns DBIERR_RECLOCKFAILED and the
operation fails.
DbiResult return values
DBIERR_NONE The record was modified successfully.
DBIERR_KEYVIOL The table has a unique index and the modified key value conflicts

with another record's key value.

DBIERR_BOF/EOF The cursor is not positioned on a valid record; it is positioned at the
beginning or the end of the table.

DBIERR_FILELOCKED The table is locked by another user.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified record buffer is NULL.
DBIERR_KEYORRECDELETED The specified cursor is not positioned on a valid record.
DBIERR_FOREIEGNKEYERR The target table is a detail table in a referential integrity link and the

linking value cannot be found in the master table (Paradox only).
DBIERR_MINVALERR The specified data is less than the required minimum value.
DBIERR_MAXVALERR The specified data is greater than the required maximum value.
DBIERR_REQDERR The field cannot be blank.
DBIERR_LOOKUPTABLEERR The specified value cannot be located in the assigned lookup table.
DBIERR_NOTSUFFTABLERIGHTS Insufficient table rights to update table.
DBIERR_TABLEREADONLY The specified cursor is read-only.
DBIERR_RECLOCKFAILED The record lock failed.
DBIERR_MULTIPLUNIQRECS Attempt to modify a record that has a duplicate (SQL).

See also
DbiDeleteRecord, DbiInitRecord, DbiPutField, DbiGetNextRecord, DbiGetRecord,
DbiGetField, DbiAppendRecord, DbiInsertRecord, DbiGetBlob, DbiPutBlob, DbiOpenBlob,
DbiFreeBlob

C Examples: DbiModifyRecord
Modify the current record and remove the record lock (if one exists)
This example uses the following input:

fDbiModifyRecord(hCur, pRecBuf);
DBIResult fDbiModifyRecord(hDBICur hTmpCur, pBYTE pTmpRecBuf)
{
 DBIResult rslt;
 rslt = Chk(DbiModifyRecord(hTmpCur, pTmpRecBuf, TRUE));
 return rslt;
}

Delphi Examples: DbiModifyRecord
Modify the current record and remove the record lock (if one exists)
Delphi programs should use the Post and Edit methods on a dataset to modify a record.
This procedure modifies the current record with the contents of the given record buffer.
procedure fDbiModifyRecord(hCur: hDbiCur; pRecBufModify: pByte);
begin
 Check(DbiModifyRecord(hCur, pRecBufModify, True));
end;

DbiNativeToAnsi {button C
Examples,JI(`>example',`exdbinativetoansi')} {button Delphi
Examples,JI(`>example',`dexdbinativetoansi')}
C syntax
DBIResult DBIFN DbiNativeToAnsi (pLdObj, pAnsiStr, pOemStr, iLen,
pbDataLoss);

Delphi syntax
function DbiNativeToAnsi (LdObj: Pointer; pAnsiStr: PChar; pNativeStr:
PChar; iLen: Word; var bDataLoss: Bool): DBIResult stdcall;

Description
DbiNativeToAnsi translates strings from the language driver's native character set to ANSI.
If the native character set is ANSI, no translation takes place.

Parameters
pLdObj Type: pVOID (Input)
Pointer to the language driver object returned from DbiGetLdObj.
pAnsiStr Type: pCHAR (Output)
Pointer to the client buffer that returns the ANSI data. If pAnsiStr equals pOemStr,
conversion occurs in place.
pOemStr Type: pCHAR (Input)
Pointer to the buffer containing data to be translated.
iLen Type: UINT16 (Input)
If iLen equals 0, assumes null-terminated string; otherwise, iLen specifies the length of the
buffer to convert.
pbDataLoss Type: pBOOL (Output)
Pointer to a client variable. Set to TRUE if a character cannot map to an ANSI character.

Usage
This function works on drivers having both ANSI and OEM native character sets, but it does
not deal with multi-byte character sets such as Japanese ShiftJIS. If the native character set
is ANSI, no translation takes place.
DbiResult return values
DBIERR_NONE Translation completed successfully.

See also
DbiAnsiToNative, DbiGetLdObj

C Examples: DbiNativeToAnsi
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiNativeToAnsi
An example for this function is under development and will be provided in an upcoming
Help release.

DbiOpenBlob {button C Examples,JI(`>example',`exdbigetblob')}
{button Delphi Examples,JI(`>example',`dexdbigetblob')}

C syntax
DBIResult DBIFN DbiOpenBlob (hCursor, pRecBuf, iField, eOpenMode);
Delphi syntax
function DbiOpenBlob (hCursor: hDBICur; pRecBuf: Pointer; iField: Word;
eOpenMode: DBIOpenMode): DBIResult stdcall;

Description
DbiOpenBlob prepares the cursor's record buffer to access a BLOB field. The BLOB is
opened and the BLOB handle is stored in the record buffer, which can then be passed to
DbiGetBlob, DbiPutBlob, and other BLOB functions.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer.
iField Type: UINT16 (Input)
Specifies the ordinal number of the BLOB field within the record.
eOpenMode Type: DBIOpenMode (Input)
Specifies the BLOB open mode.
If dbiREADWRITE is specified, both the database and the table must be opened in
dbiREADWRITE mode.

Usage
DbiOpenBlob opens the BLOB and stores the supplied BLOB handle in pRecBuf so that all or
portions of the BLOB field can be retrieved, modified, deleted, or inserted, and the size of
the field can be determined. The BLOB field can be opened in either read-only or read-write
mode, depending on the value specified in eOpenMode.
DbiOpenBlob must be called prior to calling the BLOB functions DbiGetBlobSize,
DbiGetBlob, DbiPutBlob, DbiTruncateBlob, or DbiFreeBlob.
Standard: It is advisable to lock the record before opening the BLOB in read-write mode.
This ensures that another client application does not lock the record or update the BLOB,
preventing the record from being updated.
SQL: This function is supported by SQL drivers. However, for SQL servers that do not
support BLOB handles for random reads and writes, full BLOB support requires uniquely
identifiable rows. Most SQL servers limit a single sequential BLOB read to less than the
maximum size of a BLOB. In cases with no row uniqueness and without BLOB handles, an
entire BLOB may not be available.

Completion state
DbiOpenBlob fails if the client application does not have sufficient rights to access the
BLOB field. To close a BLOB field after it has been opened with DbiOpenBlob, a call to
DbiFreeBlob must be made.
DbiResult return values
DBIERR_NONE The BLOB field was successfully opened.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified record buffer is NULL.

DBIERR_OUTOFRANGE The specified field number is equal to zero, or is greater than the
number of fields in the table.

DBIERR_BLOBOPENED The specified BLOB field is already open.
DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.
DBIERR_OPENBLOBLIMIT The allowed number of open BLOB handles for the current driver has

been exceeded.
DBIERR_TABLEREADONLY The BLOB cannot be opened in read-write mode; the table is read-

only.

See also
DbiGetBlob, DbiPutBlob, DbiTruncateBlob, DbiFreeBlob, DbiGetBlobSize

DbiOpenCfgInfoList {button C
Examples,JI(`>example',`exdbiopencfginfolist')} {button Delphi
Examples,JI(`>example',`dexdbiopencfginfolist')}
C syntax
DBIResult DBIFN DbiOpenCfgInfoList (hCfg, eOpenMode, eConfigMode,
pszCfgPath, phCur);

Delphi syntax
function DbiOpenCfgInfoList (hCfg: hDBICfg; eOpenMode: DBIOpenMode;
eConfigMode: CFGMode; pszCfgPath: PChar;

 var hCur: hDBICur): DBIResult stdcall;
Description
DbiOpenCfgInfoList returns a handle to a list of all the nodes in the BDE configuration file
accessible by the specified path.
Parameters
hCfg Type: hDBICfg (Input)
Specifies the configuration file handle; must be NULL.
eOpenMode Type: DBIOpenMode (Input)
Specifies the open mode; choose dbiREADWRITE or dbiREADONLY.
eConfigMode Type: CFGMode (Input)
Specifies the configuration mode; only cfgPersistent is supported.
pszCfgPath Type: pCHAR (Input)
Pointer to the configuration file path name used to locate a piece of information within the
configuration file. The path name starts at the root, denoted by a backslash (\). As many
levels as necessary to locate the target piece of information may be specified. Each node
specified in the path name must have at least one subnode or an error results. The path
name must be NULL-terminated. See the Usage section for an example. If the path is a
valid ODBC driver name and data source not stored in the configuration file, the default
parameter settings for that driver and data source are returned.
phCur Type: phDBICur (Output)
Pointer to a cursor handle.
Usage
This function can be used to retrieve information from the configuration file about BDE
drivers, internal buffers, and aliases by supplying a known path in pszConfigPath.
DbiOpenCfgInfoList accesses the same configuration file that was used when BDE was
initialized. If no configuration file was used during DbiInit, an empty table is returned.
The full path name is supplied by pszConfigPath, starting at the root, and then
subsequently specifying the name of a node, a backslash (\), one of the node's subnodes,
and so on until the desired level is reached. For example, to retrieve the values used to
initialize BDE, the pszConfigPath passed in would be:
\system\init

phCur then receives the handle to a table containing a list of records, each representing a
node accessible by the specified path name. The cursor is used by subsequent record
manipulation calls such as DbiGetNextRecord and DbiGetPriorRecord. DbiGetCursorProps
can be used to allocate the proper record size or the client application can allocate the size
of the CFGDesc structure. After the record is retrieved it can be cast with the CFGDesc type
definition and used as if it is a CFGDesc C language structure.
DbiModifyRecord can also be used with the cursor with the following restrictions:

· szValue is the only field that can be updated.
· Only leaf nodes can be modified.
This function can also be used to build a path name to a target piece of information within
the configuration file, when the path name is not known. In that case, the first call to
DbiOpenCfgInfoList is passed with pszConfigPath set to backslash (\). The table returned
lists all the nodes accessible to the root. If these nodes do not contain the target
information (in szText[MAXSCFLDLEN]), subsequent calls to DbiOpenCfgInfoList can be
made, each one extending the path name to access one level deeper in the configuration
file.
You can use the read-only property sesCFGNAME to retrieve the name of the configuration
file used by the active session.
Note: The session property sesCFGMODE2 can affect the list returned by this function.

Prerequisites
The database engine must be initialized with a configuration file.
DbiResult return values
DBIERR_NONE The handle to the table listing configuration file information was returned

successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified record buffer is NULL.

See also
DbiInit, DbiOpenDatabaseList, DbiOpenDriverList

C Examples: DbiOpenCfgInfoList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenCfgInfoList
Returns a handle to an in-memory table listing all the nodes in the configuration
file accessible by the specified path.
WARNING: Be extremely careful when altering the IDAPI.CFG configuration file. Make
absolutely sure that all options and parameters are correct or corruption of the
configuration file can, and more than likely, occur.
Example 1: Retrieve a particular value from the IDAPI.CFG configuration file.
This example uses the following input:
 Edit1.Text := GetConfigParameter(PARADOXLEVEL, @Count);

NOTE: Param (in this case PARADOXLEVEL) must be a string that contains the path to the
node and the node item separated by a semi-colon. At the bottom of this page are some of
the more popular paths and items that are declared as constants for use with all these
examples.
The function is:
function GetConfigParameter(Param: string; Count: pword): string;
var
 hCur: hDBICur;
 rslt: DBIResult;
 Config: CFGDesc;
 Path, Option: string;
 Temp: array[0..255] of char;
begin
 Result := '';
 hCur := nil;
 if (Count <> nil) then
 Count^ := 0;
 try
 if (Pos(';', Param) = 0) then
 raise EDatabaseError.Create('Invalid parameter passed to' +
 'function. There must be a semi-colon delimited sting passed');
 Path := Copy(Param, 0, Pos(';', Param) - 1);
 Option := Copy(Param, Pos(';', Param) + 1, Length(Param) - Pos(';',
Param));

 Check(DbiOpenCfgInfoList(nil, dbiREADONLY, cfgPERSISTENT,
 StrPCopy(Temp, Path), hCur));
 Check(DbiSetToBegin(hCur));
 repeat
 rslt := DbiGetNextRecord(hCur, dbiNOLOCK, @Config, nil);
 if (rslt = DBIERR_NONE) then begin
 if (StrPas(Config.szNodeName) = Option) then
 Result := Config.szValue;
 if (Count <> nil) then
 Inc(Count^);
 end
 else
 if (rslt <> DBIERR_EOF) then
 Check(rslt);
 until (rslt <> DBIERR_NONE);
 finally
 if (hCur <> nil) then
 Check(DbiCloseCursor(hCur));
 end;

end;

DbiOpenDatabase {button C
Examples,JI(`>example',`exdbiopendatabase')} {button Delphi
Examples,JI(`>example',`dexdbiopendatabase')}
C syntax
DBIResult DBIFN DbiOpenDatabase (pszDbName, pszDbType, eOpenMode,
eShareMode, [pszPassword], iOptFlds, pOptFldDesc, pOptParams, phDb);

Delphi syntax
function DbiOpenDatabase (pszDbName: PChar; pszDbType: PChar; eOpenMode:
DBIOpenMode; eShareMode: DBIShareMode; pszPassword: PChar; iOptFlds: Word;
pOptFldDesc: pFLDDesc; pOptParams: Pointer; var hDb: hDBIDb): DBIResult
stdcall;

Description
DbiOpenDatabase is called to open a database in the current session. On success, a
database handle is returned.

Parameters
pszDbName Type: pCHAR (Input)
Pointer to the alias name string defined in the configuration file. Optional. If NULL, the
standard database is opened. If pszDbName specifies a SQL database, pszDbType can be
NULL. If pszDbName specifies an ODBC data source not in the configuration file, the BDE
adds the data source and ODBC driver to the session automatically.
pszDbType Type: pCHAR (Input)
Pointer to the database type string. Optional. If both pszDbName and pszDbType are NULL,
a standard database is opened.
eOpenMode Type: DBIOpenMode (Input)
Specifies the open mode.
eShareMode Type: DBIShareMode (Input)
Specifies the share mode.
pszPassword Type: pCHAR (Input)
Pointer to the password string. Optional. SQL only.
iOptFlds Type: UINT16 (Input)
Specifies the number of optional parameters. Refer to DbiCreateTable for use of optional
parameters.
pOptFldDesc Type: pFLDDesc (Input)
Pointer to an array of field descriptors for the optional parameters. Refer to DbiCreateTable
for use of optional parameters.
pOptParams Type: pBYTE (Input)
Pointer to the optional parameters required by the database. Refer to DbiCreateTable for
use of optional parameters.
phDb Type: phDBIDb (Output)
Pointer to the database handle.
Usage
The database must be opened before a table can be opened in the database.
The database handle is passed into several functions. The values in pszDbName and
pszDbType determine which database is opened. The eOpenMode and eShareMode
parameters determine the access modes of the cursors within each database. For example,
if eOpenMode is set to dbiREADONLY, its associated cursors are also READONLY.
ODBC: DbiOpenDatabase automatically adds ODBC drivers and data sources as BDE

aliases to the active session when they aren't currently stored in the configuration file. The
BDE also supports ODBC 3 drivers.
SQL: SQL configuration file settings might override the eOpenMode setting.
OptFields, pOptFldDesc and pOptParams are the optional parameters. The optional
parameters passed by this function vary depending on the driver. They can be identified by
calling the DbiOpenCfgInfoList function.
Standard: Connecting to a standard database:
· If pszDbName and pszDbType are both set to NULL, the unnamed standard database is

opened.
· If pszDbName specifies an alias for a standard database in the configuration file, this

database is opened.
SQL: Connecting to a SQL database:
· If pszDbName specifies a SQL ALIAS from the configuration file, pszDbType is NULL, and

iOptFlds is 0, a SQL database is opened. (Supply the password if required.)
· If pszDbName is NULL, and pszDbType is one of the SQL driver names (for example,

Oracle, Sybase), a SQL database is opened. If optional parameters are not specified,
driver-specific defaults are used.

Prerequisites
DbiInit must be called prior to calling DbiOpenDatabase. The database must be
successfully opened before any other calls can be made to access or manipulate data. If
the database requires login, a password must be supplied.
DbiResult return values
DBIERR_NONE The database was successfully opened.
DBIERR_UNKNOWNDB The specified database or database type is invalid.
DBIERR_NOCONFIGFILE The configuration file was not found.
DBIERR_INVALIDDBSPEC When using an alias from the configuration file, the specification is

invalid.
DBIERR_DBLIMITThe maximum number of databases have been opened.

See also
DbiOpenTableList, DbiGetDatabaseDesc

Database Types
Examples of database types include:
· STANDARD
· ORACLE
· SYBASE
· INTRBASE
· DB2
· INFORMIX
· MSACCESS

C Examples: DbiOpenDatabase
Example 1: Open a standard database using an alias name.
This example uses the following input:

fDbiOpenDatabase1(&hDb, "MyAlias");
DBIResult fDbiOpenDatabase1(phDBIDb phDb, pCHAR alias)
{
 DBIResult rslt;
 rslt = Chk(DbiOpenDatabase(alias, NULL, dbiREADWRITE, dbiOPENSHARED,
 NULL, 0, NULL, NULL, phDb));
 return rslt;
}

Example 2: Open a standard database with no alias name.
To access tables in a directory other than the current, you must call DbiSetDirectory. This
example uses the following input:

fDbiOpenDatabase2(&hDb, "C:\\MyDir\\Tables");
DBIResult fDbiOpenDatabase2(phDBIDb phDb, pCHAR Directory)
{
 DBIResult rslt;
 rslt = Chk(DbiOpenDatabase(NULL, NULL, dbiREADWRITE, dbiOPENSHARED,
 NULL, 0, NULL, NULL, phDb));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiSetDirectory(*phDb, Directory));
 return rslt;
}

Example 3: Open a remote database with alias and password..
This example uses the following input:

fDbiOpenDatabase3(&hDb, "MyAlias", "MyPswd");
DBIResult fDbiOpenDatabase3(phDBIDb phDb, pCHAR alias, pCHAR password)
{
 DBIResult rslt;
 rslt = Chk(DbiOpenDatabase(alias, NULL, dbiREADWRITE, dbiOPENSHARED,
 password, 0, NULL, NULL, phDb));
 return rslt;
}
Example 4: Open a remote database with a different user name than what is
specified on the alias.
This example uses the following input:

fDbiOpenDatabase4(&hDb, "IBPerfect", "USER1", "password1");
DBIResult fDbiOpenDatabase4(phDBIDb phDb, pCHAR alias, pCHAR UserName, pCHAR
password)

{
 FLDDesc UserNameDesc;

 memset(&UserNameDesc, 0, sizeof(UserNameDesc));
 UserNameDesc.iOffset = 0;
 UserNameDesc.iLen = (UINT16)(strlen(UserName) + 1);
 strcpy(UserNameDesc.szName, "USER NAME");
 return Chk(DbiOpenDatabase(alias, NULL, dbiREADWRITE, dbiOPENSHARED,
 password, 1, &UserNameDesc, (pBYTE)UserName, phDb));

}

Delphi Examples: DbiOpenDatabase
Example 1: Open a local database:
procedure fDbiOpenDatabase1(var hDb: hDbiDb; Alias: String);
begin
 Check(DbiOpenDatabase(PChar(Alias), nil, dbiReadWrite, dbiOpenShared,
 nil, 0, nil, nil, hdb));
end;

Example 2: Open a NULL database (for in-memory or temp tables)
Set the directory for the tables (temp tables only).
procedure fDbiOpenDatabase2(var hDb: hDbiDb; Directory: string);
begin
 Check(DbiOpenDatabase(nil, nil, dbiREADWRITE, dbiOPENSHARED,
 nil, 0, nil, nil, hDb));
Check(DbiSetDirectory(hDb, PChar(Directory)));
end;

Example 3: Open a remote database with alias and password.
procedure fDbiOpenDatabase3(var hDb: hDbiDb; Alias, Password: string);
begin
 Check(DbiOpenDatabase(PChar(Alias), nil, dbiREADWRITE, dbiOPENSHARED,
 PChar(Password), 0, nil, nil, hDb));
end;

Example 4: Open a database with a user name other than the one specified in
the BDE configuration.
This example uses the following input:
 fDbiOpenDatabase3(hDb, 'IBLOCAL', 'sysdba', 'speedy');
The procedure is:
procedure fDbiOpenDatabase3(var hTmpDb: hDBIDb; Alias, UserName, Password:
string);

var
 Options: FLDDesc;
begin
 FillChar(Options, sizeof(Options), #0);
 Options.iOffset := 0;
 Options.iLen := Length(UserName) + 1;
 StrPCopy(Options.szName, 'USER NAME');
 Check(DbiOpenDatabase(PChar(Alias), nil, dbiREADWRITE, dbiOPENSHARED,
 PChar(Password), 1, @Options, PChar(UserName), hTmpDb));
end;

DbiOpenDatabaseList {button C
Examples,JI(`>example',`exdbiopendatabaselist')} {button Delphi
Examples,JI(`>example',`dexdbiopendatabaselist')}
C syntax
DBIResult DBIFN DbiOpenDatabaseList (phCur);
Delphi syntax
function DbiOpenDatabaseList (var hCur: hDBICur): DBIResult stdcall;
Description
DbiOpenDatabaseList returns a cursor on a list of accessible databases (and all aliases)
found in the configuration file.

Parameters
phCur Type: phDBIcur (Output)
Pointer to an in-memory table.

Usage
Accessible databases are those that are defined within the configuration file. The cursor
should be closed after information retrieval is complete. Each of the database records can
be retrieved by using DbiGetNextRecord. DbiGetCursorProps can be used to allocate the
proper record size. After the record is retrieved, it can be cast with the DBDesc type
definition, and used like an DBDesc C language structure.
Completion state
A cursor on a list of accessible databases is returned. The cursor is positioned before the
first record.
Note: The session property sesCFGMODE2 can affect the list returned by this function.

DbiResult return values
DBIERR_NONE The table was created successfully.
DBIERR_INVALIDHNDL phCur is NULL.

See also
DbiGetDatabaseDesc

C Examples: DbiOpenDatabaseList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenDatabaseList
Return a list of of accessible databases and all aliases found in the configuration
file.
This example uses the following input:
 fDbiOpenDatabaseList(DatabaseList);

The procedure is:
procedure fDbiOpenDatabaseList(DatabaseList: TStringList);
var
 TmpCursor: hDbiCur;
 Database: DBDesc;
 rslt: DbiResult;
begin
 DatabaseList.Clear;
 Check(DbiOpenDatabaseList(TmpCursor));
 repeat
 rslt:= DbiGetNextRecord(TmpCursor, dbiNOLOCK, @Database, nil);
 if (rslt <> DBIERR_EOF) then begin
 DatabaseList.Add(StrPas(Database.szName)
 + ' - ' + StrPas(Database.szPhyName)
 + ' - ' + StrPas(Database.szDbType))
 end;
 until (rslt <> DBIERR_NONE);
 Check(DbiCloseCursor(TmpCursor));
end;

DbiOpenDriverList {button C
Examples,JI(`>example',`exdbiopendriverlist')} {button Delphi
Examples,JI(`>example',`dexdbiopendriverlist')}
C syntax
DBIResult DBIFN DbiOpenDriverList (phCur);
Delphi syntax
function DbiOpenDriverList (var hCur: hDBICur): DBIResult stdcal;
Description
DbiOpenDriverList creates a list of driver names available to the client application.
Parameters
phCur Type: phDBICur (Output)
Pointer to the cursor handle.
Usage
The list of drivers is obtained from the Registry and can be used as input to other functions.
If no drivers were configured, an error is returned. The table contains only one CHAR field
(of size DBINAME), the name of the driver. It does not contain all the information contained
in DRVType structure.
Note: The session property sesCFGMODE2 can affect the list returned by this function.

DbiResult return values
DBIERR_NONE The table containing a list of the available drivers was successfully created.
DBIERR_INVALIDHNDL phCur is NULL.
DBIERR_NOCONFIGFILE No configuration file was available at initialization time.
DBIERR_OBJNOTFOUND No drivers were configured at initialization time.

See also
DbiGetDriverDesc

sesCFGMODE2
Replaces sesCFGMODE, letting you specify how aliases and drivers appear in the list
returned by DbiOpenCfgInfoList, DbiOpenDatabaseList and DbiOpenDriverList. You can
combine the following settings using a binary AND:
 Setting Description
cfgmNone Use sesCFGMODE (for backward compatibility).
cfgmVirtual Show only ODBC drivers and data sources, whether they're in the

configuration file or not.
cfgmPersistent Show only aliases and drivers saved in the configuration file.
cfgmSession Show only aliases and drivers added to the current session.
cfgmAll Show all aliases and drivers (shortcut for combining all settings).
For example, set sesCFGMODE2 to cfgmVirtual & cfgmSession to display drivers and
aliases added to the current session in addition to ODBC drivers, data sources.

C Examples: DbiOpenDriverList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenDriverList
Return a list of driver names available to the client application.
This example uses the following input:
 fDbiOpenDriverList(DriverList);

The procedure is:
procedure fDbiOpenDriverList(var DriverList: TStringList);
var
 TmpCursor: hdbicur;
 Driver: DRVType;
 rslt: dbiResult;
begin
 Check(DbiOpenDriverList(TmpCursor));
 DriverList.Clear;
 repeat
 rslt:= DbiGetNextRecord(TmpCursor, dbiNOLOCK, @Driver, nil);
 if (rslt <> DBIERR_EOF) then begin
 DriverList.Add(StrPas(Driver.szType))
 end;
 until rslt <> DBIERR_NONE;
 Check(DbiCloseCursor(TmpCursor));
end;

DbiOpenFamilyList {button C
Examples,JI(`>example',`exdbiopenfamilylist')} {button Delphi
Examples,JI(`>example',`dexdbiopenfamilylist')}
C syntax
DBIResult DBIFN DbiOpenFamilyList (hDb, pszTableName, [pszDriverType],
phFmlCur);

Delphi syntax
function DbiOpenFamilyList (hDb: hDBIDb; pszTableName: PChar; pszDriverType:
PChar; var hFmlCur: hDBICur): DBIResult stdcall;

Description
DbiOpenFamilyList creates a table listing the family members associated with a specified
table. Each of the family records can be retrieved by using DbiGetNextRecord.
DbiGetCursorProps can be used to allocate the proper record size. After the record is
retrieved, it can be cast with the FMLDesc type definition, and used like an FMLDesc C
language structure.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Pointer to the table name. If pszTableName is a fully qualified name of a table, the
pszTableType parameter need not be specified. If the path is not included, the path name is
taken from the current directory of the database associated with hDb.
pszDriverType Type: pCHAR (Input)
Pointer to the table type. Optional. This parameter is required if pszTableName has no
extension. pszDriverType can be one of the following values: szDBASE, szMSACCESS, or
szPARADOX.
phFmlCur Type: phDBICur (Output)
Pointer to the family list table.
Usage
Family members include default members, as specified by the driver, and registered family
members.
dBASE or FoxPro: For dBASE or FoxPro tables, the table can include maintained index
files (.MDX files), compressed index files (.CDX files), BLOBs (.DBT or .FPT files), and tables
(.DBF files).
Paradox: For Paradox tables, the table can include index files (.PX, .X??, .Y?? files), BLOBs
(.MB files), and validity check and referential integrity files (.VAL files).
SQL, Access: This function is not supported with SQL and Access tables. With SQL and
Access databases, this function returns an empty table.

Prerequisites
The user must have full password rights to the table; that is, any required passwords to get
prvFULL rights must have been added to the current session prior to calling this function.

DbiResult return values
DBIERR_NONE The table of family members was successfully created.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phFmlCur is

NULL.
DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_NOSUCHTABLE The specified table is invalid.
DBIERR_UNKNOWNDRIVER The table type or the pointer to the table type is NULL, or the table

type is invalid.

See also
DbiOpenFileList, DbiOpenFieldList, DbiOpenIndexList, DbiOpenRintList, DbiOpenSecurityList

C Examples: DbiOpenFamilyList
Create a table listing all family members associated with a table.
DBIResult fDbiOpenFamilyList(hDBIDb hDb, pCHAR TblName)
{
 DBIResult rslt;
 hDBICur hFmlCur;
 FMLDesc FmlDesc;
 rslt = Chk(DbiOpenFamilyList(hDb, TblName, NULL, &hFmlCur));
 rslt = Chk(DbiGetNextRecord(hFmlCur, dbiNOLOCK,
 (pBYTE)&FmlDesc, NULL));
 return rslt;
}

Delphi Examples: DbiOpenFamilyList
An example for this function is under development and will be provided in an upcoming
Help release.

DbiOpenFieldList {button C
Examples,JI(`>example',`exdbiopenfieldlist')} {button Delphi
Examples,JI(`>example',`dexdbiopenfieldlist')}
C syntax
DBIResult DBIFN DbiOpenFieldList (hDb, pszTableName, [pszDriverType],
bPhyTypes, phCur);

Delphi syntax
function DbiOpenFieldList (hDb: hDBIDb; pszTableName: PChar; pszDriverType:
PChar; bPhyTypes: Bool; var hCur: hDBICur): DBIResult stdcall;

Description
DbiOpenFieldList creates a table listing of fields in a specified table and their descriptions.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Pointer to the table name. For Paradox, FoxPro, and dBASE, if pszTableName is a fully
qualified name of a table, the pszDriverType parameter need not be specified. If the path is
not included, the path name is taken from the current directory of the database associated
with hDb.
For SQL databases, this parameter can be a fully qualified name that includes the owner
name.
pszDriverType Type: pCHAR (Input)
Pointer to the table type. Optional. For Paradox, FoxPro, and dBASE tables, this parameter
is required if pszTableName has no extension. This parameter is ignored if the database
associated with hDb is a SQL database. pszDriverType can be one of the following values:
szDBASE, szMSACCESS, or szPARADOX.
bPhyTypes Type: BOOL (Input)
Specifies whether physical or logical field types are returned. Physical types represent the
data in its native state, specific to each driver. Logical types are the generic, derived BDE
translations of the native data types. bPhyTypes can be set to TRUE or FALSE. TRUE
indicates that native physical types are returned; FALSE indicates that BDE logical types
are returned.
phCur Type: phDBICur (Output)
Pointer to the field list table.
Usage
This function retrieves field information from a closed table, as opposed to DbiGetFldDescs
which uses an opened table. After the record is retrieved, it can be cast with the FLDDesc
type definition, and used like a FLDDesc C language structure.

DbiResult return values
DBIERR_NONE The cursor to the table was returned successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.
DBIERR_UNKNOWNTBLTYPE The specified driver type is not known.
DBIERR_NOSUCHTABLE The specified table is invalid.

See also
DbiOpenFileList, DbiOpenTableList, DbiGetNextRecord, DbiGetPriorRecord,

DbiOpenFamilyList, DbiSetDirectory, DbiGetCursorProps, DbiGetFieldDescs

C Examples: DbiOpenFieldList
Get the field names for the specified table:
For standard tables, the extension must be specified. The Fields variable must have
sufficient space allocated for function to use. This example uses the following input:

fDbiOpenFieldList(hDb, "customer.db", FieldNames);
DBIResult fDbiOpenFieldList(hDBIDb hTmpDb, pCHAR TblName, pCHAR Fields)
{
 FLDDesc FldDesc;
 DBIResult rslt;
 hDBICur hTmpCur = 0;
 Fields[0] = '\0';
 rslt = Chk(DbiOpenFieldList(hTmpDb, TblName, NULL, FALSE, &hTmpCur));
 while (DbiGetNextRecord(hTmpCur, dbiNOLOCK, (pBYTE)&FldDesc, NULL) ==
DBIERR_NONE)

 {
 strcat(Fields, FldDesc.szName);
 strcat(Fields, " ");
 }
 if (hTmpCur != 0)
 DbiCloseCursor(&hTmpCur);
 return rslt;
}

Delphi Examples: DbiOpenFieldList
Display logical or physical field types for a table
This example uses the following input:
 fDbiOpenFieldList(Table1, True, Memo1.Lines);

The procedure is:
procedure fDbiOpenFieldList(Table: TTable; Physical: Boolean; List:
TStrings);

function BDEFieldIntToStr(FieldType: Word): string;
begin
 case FieldType of
 fldUNKNOWN: result := 'unknown';
 fldZSTRING: result := 'string'; { Null terminated string }
 fldDATE: result := 'date'; { Date (32 bit) }
 fldBLOB: result := 'BLOb'; { Blob }
 fldBOOL: result := 'boolean'; { Boolean (16 bit) }
 fldINT16: result := 'integer'; { 16 bit signed number }
 fldINT32: result := 'long integer'; { 32 bit signed number }
 fldFLOAT: result := 'float'; { 64 bit floating point }
 fldBCD: result := 'BCD'; { BCD }
 fldBYTES: result := 'bytes'; { Fixed number of bytes }
 fldTIME: result := 'time'; { Time (32 bit) }
 fldTIMESTAMP: result := 'timestamp'; { Time-stamp (64 bit) }
 fldUINT16: result := 'unsigned int'; { Unsigned 16 bit
integer }

 fldUINT32: result := 'unsigned long int'; { Unsigned 32 bit
integer }

 fldFLOATIEEE: result := 'float IEEE'; { 80-bit IEEE float }
 fldVARBYTES: result := 'varbytes'; { Length prefixed var
bytes }

 fldLOCKINFO: result := 'lockinfo'; { Look for LOCKINFO
typedef }

 fldCURSOR: result := 'Oracle cursor'; { For Oracle Cursor type }

 { Paradox types (Physical) }
 fldPDXCHAR: result := 'alpha'; { Alpha (string) }
 fldPDXNUM: result := 'numeric'; { Numeric }
 fldPDXMONEY: result := 'money'; { Money }
 fldPDXDATE: result := 'date'; { Date }
 fldPDXSHORT: result := 'smallint'; { Short }
 fldPDXMEMO: result := 'Memo BLOb'; { Text Memo (blob) }
 fldPDXBINARYBLOB: result := 'Binary BLOb'; { Binary data (blob) }
 fldPDXFMTMEMO: result := 'formatted BLOb'; { Formatted text (blob) }
 fldPDXOLEBLOB: result := 'OLE BLOb'; { OLE object (blob) }
 fldPDXGRAPHIC: result := 'Graphic BLOb'; { Graphics object (blob) }
 fldPDXLONG: result := 'long integer'; { Long }
 fldPDXTIME: result := 'time'; { Time }
 fldPDXDATETIME: result := 'date time'; { Time Stamp }
 fldPDXBOOL: result := 'boolean'; { Logical }
 fldPDXAUTOINC: result := 'auto increment'; { Auto increment (long) }
 fldPDXBYTES: result := 'bytes'; { Fixed number of bytes }
 fldPDXBCD: result := 'BCD'; { BCD (32 digits) }

 { xBASE types (Physical) }
 fldDBCHAR: result := 'character'; { Char string }
 fldDBNUM: result := 'number'; { Number }
 fldDBMEMO: result := 'Memo BLOb'; { Memo (blob) }
 fldDBBOOL: result := 'logical'; { Logical }
 fldDBDATE: result := 'date'; { Date }
 fldDBFLOAT: result := 'float'; { Float }
 fldDBLOCK: result := 'LOCKINFO'; { Logical type is LOCKINFO
}

 fldDBOLEBLOB: result := 'OLE BLOb'; { OLE object (blob) }
 fldDBBINARY: result := 'Binary BLOb'; { Binary data (blob) }
 fldDBBYTES: result := 'bytes'; { Only for TEMPORARY
tables }

 fldDBLONG: result := 'long integer'; { Long (Integer) }
 fldDBDATETIME: result := 'date time'; { Time Stamp }
 fldDBDOUBLE: result := 'double'; { Double }
 fldDBAUTOINC: result := 'aut increment'; { Auto increment (long) }
 else
 Result := 'not found';
 end;
end;
var
 hFieldCur: hDBICur;
 rslt: DBIResult;
 Field: FLDDesc;
begin
 List.Clear;
 Check(DbiOpenFieldList(Table.DBHandle, PChar(Table.TableName), nil,
 Physical, hFieldCur));
 repeat
 rslt := DbiGetNextRecord(hFieldCur, dbiNOLOCK, @Field, nil);
 if (rslt = DBIERR_NONE) then begin
 List.Add(Format('Field #%d) Name:%s Type:%s', [Field.iFldNum,
 Field.szName, BDEFieldIntToStr(Field.iFldType)]));
 end;
 until (rslt <> DBIERR_NONE);
end;

DbiOpenFieldTypesList {button C
Examples,JI(`>example',`exdbiopenfieldtypeslist')} {button Delphi
Examples,JI(`>example',`dexdbiopenfieldtypeslist')}
C syntax
DBIResult DBIFN DbiOpenFieldTypesList (pszDriverType, [pszTblType], phCur);
Delphi syntax
function DbiOpenFieldTypesList (pszDriverType: PChar; pszTblType: PChar;
hCur: hDBICur): DBIResult stdcall;

Description
DbiOpenFieldTypesList creates a table containing a list of field types supported by the table
type for the driver type.
Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Driver type must be found in the Registry.
pszTblType Type: pCHAR (Input)
Pointer to the table type. Use DbiOpenTableTypesList to retrieve table type information. If
pszTblType is not specified, the default table type is used. Optional.
phCur Type: phDbiCur (Output)
Pointer to the cursor handle.

Usage
This function can be used to determine the legal field types, sizes, and other field-level
attributes for a particular driver and table type. This allows configurable table creation UIs
and allows for validation of field types (FLDType) without creating a table.
DbiResult return values
DBIERR_NONE The table with the list of field types was created successfully.
DBIERR_UNKNOWNDRIVER Invalid pszDriverType passed as input.

See also
DbiGetFieldTypeDesc

C Examples: DbiOpenFieldTypesList
Get the field types for the specified driver.
The Types variable must have sufficient space allocated for function to use. This example
uses the following input:

fDbiOpenFieldTypesList(szDBASE, Buffer);
DBIResult fDbiOpenFieldTypesList(pCHAR Driver, pCHAR Types)
{
 DBIResult rslt;
 hDBICur hTmpCur = 0;
 FLDType FldType;
 Types[0] = '\0';
 rslt = Chk(DbiOpenFieldTypesList(Driver, NULL, &hTmpCur));
 while (DbiGetNextRecord(hTmpCur, dbiNOLOCK, (pBYTE)&FldType, NULL) ==
DBIERR_NONE)

 {
 strcat(Types, FldType.szName);
 strcat(Types, " ");
 }
 if (hTmpCur != 0)
 DbiCloseCursor(&hTmpCur);
 return rslt;
}

Delphi Examples: DbiOpenFieldTypesList
Obtain field types for the driver and append the information to the TStringList
passed in.
This example uses the following input:
 fDbiOpenFieldTypesList(TmpList, szParadox, 'PDOX 7.0');

The procedure is:
procedure fDbiOpenFieldTypesList(FieldTypeList: TStringList; DrvType,
TblType: string);

var
 TmpCursor: hDbiCur;
 FieldType: FLDType;
 result: dbiResult;
begin
 Check(DbiOpenFieldTypesList(PChar(DrvType), PChar(TblType), TmpCursor));
 FieldTypeList.Clear;
 repeat
 result:= DbiGetNextRecord(TmpCursor, dbiNOLOCK, @FieldType, nil);
 if (result <> DBIERR_EOF) then begin
 FieldTypeList.Add('Field Name: ' + FieldType.szName);
 end;
 until (Result <> DBIERR_NONE);
 Check(DbiCloseCursor(TmpCursor));
end;

DbiOpenFieldXlt {button C
Examples,JI(`>example',`exdbiopenfieldxlt')} {button Delphi
Examples,JI(`>example',`dexdbiopenfieldxlt')}
C syntax
DBIResult DBIFN DbiOpenFieldXlt (pszSrcDriverType, pszSrcLangDrv, pfldSrc,
pszDesDriverType, pszDstLangDrv, pfldDest, pbDataLoss, phXlt);

Delphi syntax
function DbiOpenFieldXlt (pszSrcTblType: PChar; pszSrcLangDrv: PChar;
pfldSrc: pFLDDesc; pszDestTblType : PChar; pszDstLangDrv: PChar; pfldDest:
pFLDDesc; var bDataLoss: Bool; var hXlt: hDBIXlt): DBIResult stdcall;

Description
DbiOpenFieldXlt builds a field translation object that can be used to translate a logical or
physical field type into any other compatible logical or physical field type.
Parameters
pszSrcDriverType Type: pCHAR (Input)
Pointer to the source driver type. Set to NULL for logical.
pszSrcLangDrv Type: pCHAR (Input)
Pointer to the language driver name of the source. Set to NULL if no character set
transliteration is desired. Ignored if both source and destination are not character types.
pfldSrc Type: pFLDDesc (Input)
Pointer to the source field descriptor.
pszDesDriverType Type: pCHAR (Input)
Pointer to the destination driver type. Set to NULL for logical.
pszDstLangDrv Type: pCHAR (Input)
Pointer to the language driver name of the destination. Set to NULL if no character set
transliteration is desired. Ignored if both source and destination are not character types.
pfldDest Type: pFLDDesc (Input)
Pointer to the destination field descriptor.
pbDataLoss Type: pBOOL (Output)
Pointer to a client variable used to indicate both the possibility of data loss and actual data
loss for each field translated when DbiTranslateField is called. If NULL, no data loss
detection is done.
phXlt Type: phDBIXlt (Output)
Pointer to the translation object handle.
Usage
This function used in conjunction with DbiTranslateField allows clients to convert any logical
or physical field data to any compatible logical or physical field data. The client supplies a
pair of logical or physical field descriptors. These descriptors can be obtained from a call to
DbiGetFieldDescs or DbiOpenFieldList.
If pbDataLoss is supplied, this client indicator variable is set to TRUE when the translation
object is built if there is the potential for data loss when converting between the source and
destination field types. For example, if the user requests a translation object to convert a
dBASE character field to a BDE logical TIMESTAMP field, the data loss indicator is set to
TRUE, because the character field may not contain a legal TIMESTAMP string according to
the current session's DBIDATE and TIME conventions. Additionally, each time
DbiTranslateField is called this client flag is set to TRUE if that particular field conversion
caused data loss. If supplied, this client variable must remain addressable until the

translation object is closed with DbiCloseFieldXlt. For BLOB fields, this function provides a
translation object that does nothing.
DbiResult return values
DBIERR_NONE The translation object was successfully built.
DBIERR_NOTSUPPORTED The requested field conversion is not considered legal.
DBIERR_INVALIDPARAM One of the required pointers is NULL.
DBIERR_INVALID_FIELDDESC One of the field descriptors is invalid.
DBIERR_NO_MEMORY More space is needed in pbDataLoss.

See also
DbiTranslateField, DbiCloseFieldXlt

C Examples: DbiOpenFieldXlt
Build a field descriptor object for field translation (physical/logical):
DBIResult fDbiOpenFieldXlt(hDBICur hSrcCur, hDBICur hDesCur, phDBIXlt pXlt)
{
 DBIResult rslt;
 pFLDDesc psrcFldDesc;
 pFLDDesc pdesFldDesc;
 CURProps sCurProps;
 CURProps dCurProps;
 BOOL bDataLoss;

 Chk(DbiGetCursorProps(hSrcCur, &sCurProps));
 Chk(DbiGetCursorProps(hDesCur, &dCurProps));
 psrcFldDesc =(pFLDDesc)malloc((sizeof(FLDDesc))*(sCurProps.iFields));
 pdesFldDesc =(pFLDDesc)malloc((sizeof(FLDDesc))*(dCurProps.iFields));
 Chk(DbiGetFieldDescs(hSrcCur, psrcFldDesc));
 Chk(DbiGetFieldDescs(hDesCur, pdesFldDesc));
 rslt = Chk(DbiOpenFieldXlt(szPARADOX, "hebrew", &psrcFldDesc[1],
 szDBASE, "hebrew", &pdesFldDesc[1],
 &bDataLoss, pXlt));
 if(bDataLoss == TRUE)
 //Data Loss Possible
 return rslt;
}

Delphi Examples: DbiOpenFieldXlt
An example for this function is under development and will be provided in an upcoming
Help release.

DbiOpenFileList {button C
Examples,JI(`>example',`exdbiopenfilelist')} {button Delphi
Examples,JI(`>example',`dexdbiopenfilelist')}
C syntax
DBIResult DBIFN DbiOpenFileList (hDb, [pszWild], phCur);
Delphi syntax
function DbiOpenFileList (hDb: hDBIDb; pszWild: PChar; var hCur: hDBICur):
DBIResult stdcall;

Description
DbiOpenFileList opens a cursor on a list of files contained within the database.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszWild Type: pCHAR (Input)
Pointer to the search string for retrieving a selective list of tables. Two wildcard characters
can be used: the asterisk (*) and the question mark (?). The asterisk expands to any
number of characters; the question mark expands to a single character.
phCur Type: phDBICur (Output)
Pointer to the file list table.

Usage
Each of the file records can be retrieved by using DbiGetNextRecord. DbiGetCursorProps
can be used to allocate the proper record size. After the record is retrieved, it can be cast
with the FILEDesc type definition, and used like an FILEDesc C language structure.
Access: This function is not supported.
Standard: DbiOpenFileList provides an efficient way to retrieve all the names of files in a
database directory. This function returns a list of all files that match the wildcard criteria, if
any.
SQL: This function returns information similar to that returned by DbiOpenTableList. Some
fields, such as szExt, bDir, and iSize, are not applicable for SQL databases.
Synonyms: Many server vendors (including Oracle) provide objects called synonyms.
Synonyms are alternate names for other objects, such as tables or views. SQL Links
provides the option to include synonyms in the table lists returned from DbiOpenTableList
and DbiOpenFileList. See SQL Links Guide
DbiResult return values
DBIERR_NONE The cursor on the table was opened successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phCur is NULL.
DBIERR_INVALIDPARAM The specified record buffer is NULL.

See also
DbiOpenDatabase, DbiOpenTableList

pszWild
SQL: The search string has the following format: <ownername>.<objectname>. If no
period is embedded in the wildcard string, it is assumed that pszWild represents a search
for the object name only, and that the requested tables are for the current owner.
The following table provides examples of wildcard use for SQL databases:
Setting Retrieves
NULL All tables.
. All tables for all owners. The default if NULL is passed.
* All tables for the current owner.
*.EMP All tables named EMP for all owners.
*CUST All tables for the current owner ending in CUST.

Standard: For standard databases, search conventions are those used by DOS.

C Examples: DbiOpenFileList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenFileList
Return a list of files contained within the database.
This example uses the following input:
 fDbiOpenFileList(Database1.handle, '*.*', MyFileList);

The procedure is:
procedure fDbiOpenFileList(hDB: hDbiDb; Wild: string; var FileList:
TStringList);

var
 TmpCursor: hdbicur;
 TmpFileDesc: FileDesc;
 rslt: dbiResult;
begin
 Check(DbiOpenFileList(hDB, PChar(Wild), TmpCursor));
 FileList.Clear;
 repeat
 rslt:= DbiGetNextRecord(TmpCursor, dbiNOLOCK, @TmpFileDesc, nil);
 if (rslt <> DBIERR_EOF) then begin
 FileList.Add(StrPas(TmpFileDesc.szfilename) + '.' +
 StrPas(TmpFileDesc.szext))
 end;
 until (rslt <> DBIERR_NONE);
 Check(DbiCloseCursor(TmpCursor));
end;

DbiOpenFunctionArgList {button C
Examples,JI(`>example',`exdbiopenfunctionarglist')} {button
Delphi Examples,JI(`>example',`dexdbiopenfunctionarglist')}
C syntax
DBIResult DBIFN DbiOpenFunctionArgList (hDb, pszFuncName, uOverload, phCur);
Delphi syntax
function DbiOpenFunctionArgList (hDb: hDBIDb; pszFuncName: PChar; uOverload:
Word; var hCur: hDBICur): DBIResult stdcall;

Description
DbiOpenFunctionArgList opens a cursor to a schema table for the data source function
defined by pszFunctionName for the driver associated with the hDb. Record description is
of type DBIFUNCArgDesc.

Parameters
hDb Type: hDBIDb (Input)
Specifies the universal database handle.
pszFuncName Type: pCHAR (Input)
Name of data source function.
uOverload Type: UINT16 (Input)
Overload number, used with functions that take different sets of arguments.
phCur Type: phDBICur (Output)
Specifies returned cursor on the schema table "Arguments"

Usage
Use DbiOpenFunctionArgList to retrieve the arguments to functions supported by the data
source. This information can be useful for clients developing a visual query builder.
When you call DbiOpenFunctionList, you get the number of overloads it can have. By
passing the corresponding overload number (uOverload) to DbiOpenFunctionArgList you
get the list of arguments that function takes with that particular overload number.

typedef struct {
 DBINAME szName; // Function name
 CHAR szDesc[255]; // Short description
 UINT16 uOverload; // Number of function overloads
 DBISTDFuncs eStdFn; // Corresponding to DBI standard
function

 } DBIFUNCDesc;
typedef DBIFUNCDesc far *pDBIFUNCDesc;

typedef struct {
 UINT16 uArgNum; // Argument position num; 0 for fn
return

 UINT16 uFldType; // Field type
 UINT16 uSubType; // Field subtype (if applicable)
 UNIT16 ufuncFlags; // Functions Flags
 } DBIFUNCArgDesc;
typedef DBIFUNCArgDesc far *pDBIFUNCArgDesc;

Prerequisites
DbiInit must be called, and hDB must reference a SQL data source.

Completion state
Returns a cursor with the function argument data, which must be closed by using
DbiCloseCursor. If pszFunctionName is not a valid function associated for the driver
asssociated with hDb, the cursor points to an empty table. It returns a 'not applicable' error
if the hDb is associated with a local table.
DbiResult return values
DBIERR_NONE The cursor on the table was opened successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phCur is NULL.

See also
DbiOpenFunctionList

C Examples: DbiOpenFunctionArgList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenFunctionArgList
An example for this function is under development and will be provided in an upcoming
Help release.

DbiOpenFunctionList {button C
Examples,JI(`>example',`exdbiopenfunctionlist')} {button Delphi
Examples,JI(`>example',`dexdbiopenfunctionlist')}
C syntax
DBIResult DBIFN DbiOpenFunctionList (hDb, eUserDefined, phCur);
Delphi syntax
function DbiOpenFunctionList (hDb: hDBIDb; eoptBits: DBIFUNCOpts; var hCur:
hDBICur): DBIResult stdcall;

Description
DbiOpenFunctionList opens a cursor to a schema table containing a list of all the functions
for the driver associated with hDb. Record description is of type DBIFUNCDesc. For SQL
data source only.

Parameters
hDb Type: hDBIDb (Input)
Specifies the universal database handle.
eUserDefined Type: DBIFUNCOpts (Input)
Set to fnListINCL_USER_DEF (the only setting included in the enumeration) to include user-
defined functions. For InterBase only.
phCur Type: phDBICur (Output)
Specifies returned cursor on functions
Usage
Use DbiOpenFunctionList to retrieve the list of functions supported by the data source. This
information can be useful for clients developing a visual query builder.
Prerequisites
DbiInit must be called, and hDb must reference a SQL data source.

Completion state
Returns a cursor to a schema table that lists all functions supported by the database. When
building a SQL query this cursor must be closed with a call to DbiCloseCursor.

DbiResult return values
DBIERR_NOTSUPPORTED DbiOpenFunctionList returns an error if hDb is associated with a local

table.

See also
DbiOpenFunctionArgList

C Examples: DbiOpenFunctionList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenFunctionList
An example for this function is under development and will be provided in an upcoming
Help release.

DbiOpenIndex {button C
Examples,JI(`>example',`exdbiopenindex')} {button Delphi
Examples,JI(`>example',`dexdbiopenindex')}
C syntax
DBIResult DBIFN DbiOpenIndex (hCursor, pszIndexName, iIndexId);
Delphi syntax
function DbiOpenIndex (hCursor: hDBICur; pszIndexName: PChar; iIndexId:
Word): DBIResult stdcall;

Description
DbiOpenIndex opens the specified index or indexes for the table associated with the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pszIndexName Type: pCHAR (Input)
Pointer to the index name.
iIndexId Type: UINT16 (Input)
Specifies the index number. Used only with Paradox and Access tables.

Usage
dBASE and FoxPro: This function is used to open non-production dBASE and FoxPro
indexes. The open index is maintained, but only in the context of this cursor. That is, only
updates applied during the use of this cursor maintain the index. If the index is an .MDX
or .CDX index, all tags in that index are opened and maintained.
Paradox: This function can be used only to verify that the specified index exists; it does
not open the index. If the index does not exist, an error is returned. With Paradox tables,
indexes are automatically opened when the table is opened.
Prerequisites
A valid cursor must be obtained, and the index must exist.

Completion state
DbiOpenIndex does not alter the current record order of the result set or the currency of
the cursor. To change the current index order, use DbiSwitchToIndex.

DbiResult return values
DBIERR_NONE The index was successfully opened on a dBASE table; the index exists on a Paradox

table.
DBIERR_INVALIDHNDL The specified handle is invalid or NULL.
DBIERR_INDEXOPEN The index is already opened, either implicitly or explicitly.
DBIERR_NOSUCHINDEX No such index exists for the table.

See also
DbiAddIndex, DbiCloseIndex, DbiSwitchToIndex

C Examples: DbiOpenIndex
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenIndex
An example for this function is under development and will be provided in an upcoming
Help release.

DbiOpenIndexList {button C
Examples,JI(`>example',`exdbiopenindexlist')} {button Delphi
Examples,JI(`>example',`dexdbiopenindexlist')}
C syntax
DBIResult DBIFN DbiOpenIndexList (hDb, pszTableName, [pszDriverType],
phCur);

Delphi syntax
function DbiOpenIndexList (hDb: hDBIDb; pszTableName: PChar; pszDriverType:
PChar; var hCur: hDBICur): DBIResult stdcall;

Description
DbiOpenIndexList opens a cursor on a table listing the indexes on a specified table, along
with their descriptions.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Pointer to the table name for which indexes are to be listed. For Paradox, FoxPro, and
dBASE, if pszTableName is a fully qualified name of a table, the pszDriverType parameter
need not be specified. If the path is not included, the path name is taken from the current
directory of the database associated with hDb.
For SQL databases, this parameter can be a fully qualified name that includes the owner
name.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. For Paradox, FoxPro, and dBASE tables, this parameter
is required if pszTableName has no extension. This parameter is ignored if the database
associated with hDb is a SQL database. pszTableType can be one of the following values:
szDBASE, szMSACCESS, or szPARADOX.
phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
If there are no indexes, a cursor to an empty table is returned.
Oracle: For performance reasons, bPrimary is not set in the FLDDesc structure.    To
determine if a primary index exists on a table, use DbiSetProp    with the
curGETEXTENDEDINFO property before calling DbiGetIndexDescs.

Completion state
Each of the index description records can be retrieved using DbiGetNextRecord.
DbiGetCursorProps can be used to allocate the proper record size. After the record is
retrieved, it can be cast with the IDXDesc type definition, and used like an IDXDesc C
language structure. This function retrieves index information from a closed table, as
opposed to DbiGetIndexDescs and DbiGetIndexDesc that use an open table.
DbiResult return values
DBIERR_NONE The table listing indexes for the table has been created.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phCur is NULL.
DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.
DBIERR_NOSUCHTABLE The specified table name is invalid.
DBIERR_UNKNOWNTBLTYPE The specified driver type is invalid.

See also
DbiGetNextRecord, DbiGetCursorProps, DbiGetIndexDesc, DbiGetIndexDescs

C Examples: DbiOpenIndexList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenIndexList
Return a list of indexes on a specific table.
This example uses the following input:
 fDbiOpenIndexList(DBASEANIMALS, IndexList);

The procedure is:
procedure fDbiOpenIndexList(Tbl: TTable; var IndexList: TStringList);
var
 TmpCursor: hdbicur;
 rslt: dbiResult;
 IndexDesc: IDXDesc;
begin
 Check(DbiOpenIndexList(Tbl.dbhandle, PChar(Tbl.TableName), nil,
TmpCursor));

 IndexList.Clear;
 repeat
 rslt:= DbiGetNextRecord(TmpCursor, dbiNOLOCK, @IndexDesc, nil);
 if (rslt <> DBIERR_EOF) then begin
 IndexList.Add(StrPas(IndexDesc.szName))
 end;
 until (rslt <> DBIERR_NONE);
 Check(DbiCloseCursor(TmpCursor));
end;

DbiOpenIndexTypesList {button C
Examples,JI(`>example',`exdbiopenindextypeslist')}{button Delphi
Examples,JI(`>example',`dexdbiopenindextypeslist')}
C syntax
DBIResult DBIFN DbiOpenIndexTypesList (pszDriverType, phCur);
Delphi syntax
function DbiOpenIndexTypesList (pszDriverType: PChar; var hCur: hDBICur):
DBIResult stdcall;

Description
DbiOpenIndexTypesList creates a table containing a list of all supported index types for the
driver type.
Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type.
phCur Type: phDBICur (Output)
Pointer to the cursor handle.
Completion state
Each of the index type description records can be retrieved using DbiGetNextRecord.
DbiGetCursorProps can be used to allocate the proper record size. After the record is
retrieved, it can be cast with the IDXType type definition, and used like an IDXType C
language structure.
DbiResult return values
DBIERR_NONE The list of all supported index types was returned successfully.
DBIERR_UNKNOWNTBLTYPE The specified driver type is unknown.
DBIERR_INVALIDHNDL The specified handle is invalid.

See also
DbiGetIndexDesc

C Examples: DbiOpenIndexTypesList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenIndexTypesList
An example for this function is under development and will be provided in an upcoming
Help release.

DbiOpenLdList {button C
Examples,JI(`>example',`exdbiopenldlist')} {button Delphi
Examples,JI(`>example',`dexdbiopenldlist')}
C syntax
DBIResult DBIFN DbiOpenLdList (phCur);
Delphi syntax
function DbiOpenLdList (var hCur: hDBICur): DBIResult stdcall;
Description
DbiOpenLdList creates a table containing a list of available language drivers.
Parameters
phCur Type: phDBICur (Output)
Pointer to the cursor handle.
Usage
Each of the language driver records can be retrieved by using DbiGetNextRecord.
DbiGetCursorProps can be used to allocate the proper record size. After the record is
retrieved, it can be cast with the LDDesc type definition, and used like an LDDesc C
language structure.
DbiResult return values
DBIERR_NONE The list of available language drivers was returned successfully.
DBIERR_INVALIDHNDL phCur is NULL.

C Examples: DbiOpenLdList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenLdList
Example 1: Return all language driver information for the system
This example uses the following input:
 GetLdList(Memo1.Lines);

The function is defined as follows:
procedure GetLdList(Lines: TStrings);
var
 hCur: hDBICur;
 LD: LDDesc;
begin
 // get a cursor to the in-mem table containing language driver
information...

 Check(DbiOpenLdList(hCur));
 try
 while (DbiGetNextRecord(hCur, dbiNOLOCK, @LD, nil) = DBIERR_NONE) do
begin

 // add the name, code page, and description to the result...
 Lines.Add('Name: ' + LD.szName + ' Code Page: ' +
IntToStr(LD.iCodePage));

 Lines.Add(' Description: ' + LD.szDesc);
 end;
 finally
 Check(DbiCloseCursor(hCur));
 end;
end;

DbiOpenLockList {button C
Examples,JI(`>example',`exdbiopenlocklist')} {button Delphi
Examples,JI(`>example',`dexdbiopenlocklist')}
C syntax
DBIResult DBIFN DbiOpenLockList (hCursor, bAllUsers, bAllLockTypes,
phLocks);

Delphi syntax
function DbiOpenLockList (hCursor: hDBICur; bAllUsers: Bool; bAllLockTypes:
Bool; var hLocks: hDBICur): DBIResult stdcall;

Description
DbiOpenLockList creates an in-memory table containing a list of locks acquired on the table
associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
bAllUsers Type: BOOL (Input)
Specifies whether to list locks acquired in the current session only, or to list locks acquired
by all sessions. For Paradox tables, bAllUsers can be either TRUE or FALSE. If bAllUsers is
set to TRUE, users for all sessions are listed; if it is set to FALSE, only users for the current
session are listed. For dBASE, FoxPro, and SQL tables, bAllUsers must be set to FALSE. For
dBASE and FoxPro, only users for the current session are listed. For SQL, only locks for the
current database connection are listed. Access does not support bAllUsers.
bAllLockTypes Type: BOOL (Input)
Specifies whether to include all locks of all types, or record locks only. If set to FALSE, only
record locks are listed. If set to TRUE, locks of all types are listed.
phLocks Type: phDBICur (Output)
Pointer to the cursor handle of a table containting the list of locks.

Usage
Retrieve each table lock by using DbiGetNextRecord. After the record is retrieved, it can be
cast with the LOCKDesc type definition.
Paradox: For Paradox tables, the locks on the table are returned, including those placed by
the current session and those placed by other users, depending on the value of bAllUsers.
dBASE or FoxPro: For dBASE and FoxPro tables, only the locks placed by the current
session are returned.
SQL: For SQL tables, only the locks placed by the current database connection are
returned.

Prerequisites
A valid cursor handle must be obtained on a base table; this function is not applicable to
query cursors or in-memory or temporary table cursors.

Completion state
The cursor is returned in phLocks. Lock types returned can include both table and record
locks or only record locks, as specified in bAllLockTypes.

DbiResult return values
DBIERR_NONE The requested lock list was returned successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL, or phLocks is NULL.

See also
DbiOpenTable, DbiAcqTableLock, DbiAcqPersistTableLock

C Examples: DbiOpenLockList
Retrieve all users on a particular table:   
Note: pLockInfo must be large enough to hold data. This example using the following input:

char        Buffer[500];
fDbiOpenLockList(hCur, Buffer);

DBIResult fDbiOpenLockList(hDBICur hTmpCur, pCHAR pLockInfo)
{
 DBIResult rslt;
 LOCKDesc LDesc;
 hDBICur hLockCur = 0;

 strcpy(pLockInfo, "\0");
 rslt = Chk(DbiOpenLockList(hTmpCur, TRUE, TRUE, &hLockCur));
 if (rslt != DBIERR_NONE)
 return rslt;
 while (rslt == DBIERR_NONE)
 {
 rslt = DbiGetNextRecord(hLockCur, dbiNOLOCK, (pBYTE)&LDesc, NULL);
 if (rslt == DBIERR_NONE)
 wsprintf(pLockInfo, "%s\r\nUSER: %s", pLockInfo, LDesc.szUserName);
 }
 if (rslt == DBIERR_EOF)
 rslt = DBIERR_NONE;
 else
 Chk(rslt);
 return rslt;
}

Delphi Examples: DbiOpenLockList
Return a list of locks acquired on a specific table.
This example uses the following input:
 fDbiOpenLockList(Table1, LockList);

The procedure is:
procedure fDbiOpenLockList(Tbl: TTable; var LockList: TStringList);
var
 TmpCursor: hdbicur;
 Lock: LOCKDesc;
 rslt: dbiResult;
begin
 Check(DbiOpenLockList(Tbl.handle, True, True, TmpCursor));
 Check(DbiSetToBegin(TmpCursor));
 LockList.Clear;
 repeat
 rslt:= DbiGetNextRecord(TmpCursor, dbiNOLOCK, @Lock, nil);
 if (rslt <> DBIERR_EOF) then begin
 LockList.Add('Lock Type: ' + IntToStr(Lock.iType));
 LockList.Add('User Name: ' + StrPas(Lock.szUserName));
 LockList.Add('Net Session: ' + IntToStr (Lock.iNetSession));
 LockList.Add('Session: ' + IntToStr (Lock.iSession));
 LockList.Add('Record Number: ' + IntToStr (Lock.iRecNum));
 end;
 until (rslt <> DBIERR_NONE);
 Check(DbiCloseCursor(TmpCursor));
end;

DbiOpenRef
C syntax
DBIResult DBIFN DbiOpenRef (hDBICur hCursor, UINT16 iField, BOOL bReadOnly,
BOOL bUniDirectional, phDBICur phCursor);

Delphi syntax
function DbiOpenRef(hCursor: hDBICur; iFieldNo: Word; bReadOnly: Bool;
bUniDirectional: Bool; var hRefCursor: hDBICur): DBIResult; stdcall;

Description
DbiOpenRef creates a new cursor for the REF field.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle of the parent cursor.
iField Type: UNINT16 (Input)
Specifies the ordinal number of the REF field within the record buffer.
bReadOnly BOOL (Input)
If True, the REF field is opened in dbiREADONLY mode and cannot be modified.
bUniDirectional BOOL (Input)
TRUE if this cursor is unidirectional (SQL only).
phCursor phDBICur (Output)
Pointer to the cursor handle for the REF.
Prerequisites
Parent cursor must be opened by a DbiOpenTable or by executing a live query.

DbiResult return values
DBIERR_NONE The REF was opened successfully.
DBIERR_NA The iField specified is not a REF field.

See also
DbiCloseCursor, DbiDatabaseFlush

DbiOpenNestedTable
C syntax
DBIResult DBIFN DbiOpenNestedTable(hDBICur hCursor UINT16 iFieldNo BOOL
bReadOnly BOOL bUniDirectional, phDBICur);

Delphi syntax
function DbiOpenNestedTable(hCursor: hDBICur; iFieldNo: Word; bReadOnly:
Bool; bUniDirectional: Bool; var hCursorNested: hDBICur): DBIResult;
stdcall;

Description
DbiOpenNestedTable creates a new cursor for the nested table field.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle of the table.
iFieldNo Type: UNINT16 (Input)
Specifies the ordinal number of the nested table field within the record buffer.
bReadOnly BOOL (Input)
If True, the nested table is opened in dbiREADONLY mode and cannot be modified.
bUniDirectional BOOL (Input)
TRUE if this cursor is unidirectional (SQL only).
hCursorNested hDBICur (Output)
Cursor handle for the nested table.

Prerequisites
Parent cursor must be opened by a DbiOpenTable or by executing a live query.
DbiResult return values
DBIERR_NONE The nested table was opened successfully.
DBIERR_NA The iFieldNo specified is not a nested table column.

See also
DbiOpenRef

DbiDatabaseFlush
C syntax
DBIResult DBIFN DbiDatabaseFlush (hDBIDb hDb);
Delphi syntax
function DbiDatabaseFlush(hDb: hDBIDb): DBIResult;

Description
Flushes all record changes (insert/modify/delete) from the client to the Oracle server. Only
meaningful for Oracle8.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

Usage
Use when curAUTOFLUSHREF is set to False.
DbiResult return values
DBIERR_NONE The database specified by phDb was flushed successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

See also
DbiOpenRef

DbiOpenRintList {button C
Examples,JI(`>example',`exdbiopenrintlist')} {button Delphi
Examples,JI(`>example',`dexdbiopenrintlist')}
C syntax
DBIResult DBIFN DbiOpenRintList (hDb, pszTableName, [pszDriverType],
phChkCur);

Delphi syntax
function DbiOpenRintList (hDb: hDBIDb; pszTableName: PChar; pszDriverType:
PChar; var hChkCur: hDBICur): DBIResult stdcall;

Description
DbiOpenRintList creates a table listing the referential integrity links for a specified table,
along with their descriptions.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Pointer to the table name. If pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name
is taken from the current directory of the database associated with hDb.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type; required only if no extension is specified by pszTableName.
Currently, the only valid type is szPARADOX.
phChkCur Type: phDBICur (Output)
Pointer to the cursor handle.
Usage
Retrieve each of the referential integrity records by using DbiGetNextRecord. Use
DbiGetCursorProps to allocate the proper record size. After the record is retrieved, it can be
cast with the RINTDesc type definition, and used like a RINTDesc C language structure.
Currently, this function is supported only with Paradox, dBASE, and Access tables.
DbiResult return values
DBIERR_NONE The cursor to the table was successfully returned.
DBIERR_INVALIDPARAM The specified table name or pointer to the table name is NULL.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phChkCur is

NULL.
DBIERR_UNKNOWNTBLTYPE The specified table type is invalid.
DBIERR_NOSUCHTABLE The specified table does not exist.

See also
DbiOpenVchkList, DbiCreateTable, DbiGetRintDesc

C Examples: DbiOpenRintList
Creates a string containing all the names of referential integrity constraints on
the specified table.
This example uses the following inputs:

fDbiOpenRintList(hDb, "ORDERS.DB", Buffer);
DBIResult fDbiOpenRintList(hDBIDb hDb, pCHAR TblName, pCHAR RIntList)
{
 DBIResult rslt;
 hDBICur hTmpCur = 0;
 RINTDesc RIDesc;
 RIntList[0] = '\0';
 rslt = Chk(DbiOpenRintList(hDb, TblName, szPARADOX, &hTmpCur));
 if (rslt == DBIERR_NONE)
 {
 while (DbiGetNextRecord(hTmpCur, dbiNOLOCK, (pBYTE)&RIDesc, NULL) ==
DBIERR_NONE)

 {
 strcat(RIntList, RIDesc.szRintName);
 strcat(RIntList, " ");
 }
 }
 return rslt;
}

Delphi Examples: DbiOpenRintList
Example 1: Return all Referential Integrity information in a list for the specified
table.

This example uses the following input:
 procedure GetRintDesc(Table1, Memo1.Lines)

procedure GetRintDesc(Table: TTable; Lines: TStrings);
var
 hCur: hDBICur;
 RIDesc: RINTDesc;
 rslt: DBIResult;
 B: Byte;
 Temp: string;
begin
 // Get a cursor to the RI information...
 Check(DbiOpenRIntList(Table.DBHandle, PChar(Table.TableName), nil, hCur));
 try
 Lines.Clear;
 Check(DbiSetToBegin(hCur));
 rslt := DBIERR_NONE;
 // While there are no errors, get RI information...
 while (rslt = DBIERR_NONE) do begin
 // Get the next RI record...
 rslt := DbiGetNextRecord(hCur, dbiNOLOCK, @RIDesc, nil);
 if (rslt <> DBIERR_EOF) then begin
 // Make sure nothing out of the ordinary happened...
 Check(rslt);
 // Display information...
 Lines.Add('RI Number: ' + IntToStr(RIDesc.iRintNum));
 Lines.Add('RI Name: ' + RIDesc.szRintName);
 case RIDesc.eType of
 rintMASTER: Lines.Add('RI Type: MASTER');
 rintDEPENDENT: Lines.Add('RI Type: DEPENDENT');
 else
 Lines.Add('RI Type: UNKNOWN');
 end;
 Lines.Add('RI Other Table Name: ' + RIDesc.szTblName);
 case RIDesc.eModOp of
 rintRESTRICT: Lines.Add('RI Modify Qualifier: RESTRICT');
 rintCASCADE: Lines.Add('RI Modify Qualifier: CASCADE');
 else
 Lines.Add('RI Modify Qualifier: UNKNOWN');
 end;
 case RIDesc.eDelOp of
 rintRESTRICT: Lines.Add('RI Delete Qualifier: RESTRICT');
 rintCASCADE: Lines.Add('RI Delete Qualifier: CASCADE');
 else
 Lines.Add('RI Delete Qualifier: UNKNOWN');
 end;
 Lines.Add('RI Fields in Linking Key: ' +
IntToStr(RIDesc.iFldCount));

 Temp := '';
 for B := 0 to (RIDesc.iFldCount – 1) do

 Temp := Temp + IntToStr(RIDesc.aiThisTabFld[B]) + ', ';
 SetLength(Temp, Length(Temp) - 2);
 Lines.Add('RI Key Field Numbers in Table: ' + Temp);
 Temp := '';
 for B := 0 to RIDesc.iFldCount - 1 do
 Temp := Temp + IntToStr(RIDesc.aiOthTabFld[B]) + ', ';
 SetLength(Temp, Length(Temp) - 2);
 Lines.Add('RI Key Field Numbers in Other Table: ' + Temp);
 Lines.Add('');
 end;
 end;
 finally
 // All information was retrieved, close the in-memory table...
 Check(DbiCloseCursor(hCur));
 end;
end;

DbiOpenSecurityList{button C
Examples,JI(`>example',`exdbiopensecuritylist')} {button Delphi
Examples,JI(`>example',`dexdbiopensecuritylist')}
C syntax
DBIResult DBIFN DbiOpenSecurityList (hDb, pszTableName, [pszDriverType],
phSecCur);

Delphi syntax
function DbiOpenSecurityList (hDb: hDBIDb; pszTableName: PChar;
pszDriverType: PChar; var hSecCur: hDBICur): DBIResult stdcall;

Description
DbiOpenSecurityList creates a table listing record-level security information about a
specified table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Pointer to the table name. If pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name
is taken from the current directory of the database associated with hDb.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Required only if pszTableName did not specify an extension.
Currently, the only valid driver type is szPARADOX.
phSecCur Type: phDBICur (Output)
Pointer to the cursor handle.
Usage
Table- and field-level security is applied with the functions DbiDoRestructure and
DbiCreateTable. Currently, supported only with Paradox tables.
Completion state
Each of the security information records can be retrieved via DbiGetNextRecord.
DbiGetCursorProps can be used to allocate the proper record size. After the record is
retrieved, it can be cast with the SECDesc type definition, and used like an SECDesc C
language structure.
DbiResult return values
DBIERR_NONE The cursor was returned successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phSecCur is

NULL.
DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.
DBIERR_NOSUCHTABLE The specified table name does not exist.
DBIERR_UNKNOWNTBLTYPE The specified table type is invalid.

See also
DbiCreateTable, DbiDoRestructure

C Examples: DbiOpenSecurityList
Get security information for the specified table.
SecInfo must be allocated large enough to hold security information. This example uses the
following input:

fDbiOpenSecurityList(hDb, "MYSECTBL.DB", Buffer);
DBIResult fDbiOpenSecurityList(hDBIDb hDb, pCHAR TblName, pCHAR SecInfo)
{
 DBIResult rslt;
 SECDesc SecDesc;
 hDBICur hTmpCur;
 CHAR Buffer[200], Priv[20];
 SecInfo[0] = '\0';
 rslt = Chk(DbiOpenSecurityList(hDb, TblName, szPARADOX, &hTmpCur));
 if (rslt == DBIERR_NONE)
 {
 while (DbiGetNextRecord(hTmpCur, dbiNOLOCK, (pBYTE)&SecDesc, NULL) ==
DBIERR_NONE)

 {
 switch (SecDesc.eprvTable)
 {
 case prvNONE: strcpy(Priv, "None"); break;
 case prvREADONLY: strcpy(Priv, "Read Only"); break;
 case prvMODIFY: strcpy(Priv, "Modify"); break;
 case prvINSERT: strcpy(Priv, "Insert"); break;
 case prvINSDEL: strcpy(Priv, "Insert/Delete"); break;
 case prvFULL: strcpy(Priv, "Full"); break;
 case prvUNKNOWN: strcpy(Priv, "Unknown"); break;
 }
 wsprintf(Buffer, "\r\nID: %d, Privileges: %s, Password: %s",
 SecDesc.iSecNum, Priv, SecDesc.szPassword);
 strcat(SecInfo, Buffer);
 }
 }
 return rslt;
}

Delphi Examples: DbiOpenSecurityList
Return the record-level security (password) information about a specified
Paradox table and append it to the TStringList passed in.
This example uses the following input:
 fDbiOpenSecurityList(SecurityTable, SecurityList);

The procedure is:
procedure fDbiOpenSecurityList(Tbl: TTable; SecurityList: TStringList);
var
 TmpCursor: hdbicur;
 Security: SECDesc;
 result: dbiResult;
begin
 Check(DbiOpenSecurityList(Tbl.dbhandle, PChar(Tbl.TableName), nil,
TmpCursor));

 repeat
 result:= DbiGetNextRecord(TmpCursor, dbiNOLOCK, @Security, nil);
 if (result <> DBIERR_EOF) then begin
 SecurityList.Add('Security Descriptor: ' +
IntToStr(Security.iSecNum));

 case Security.eprvTable of
 prvNone: SecurityList.Add('No privilege');
 prvREADONLY: SecurityList.Add('Read only Table or Field');
 prvMODIFY: SecurityList.Add('Read and Modify fields (non-key)');
 prvINSERT: SecurityList.Add('Insert + All of above');
 prvINSDEL: SecurityList.Add('Delete + All of above');
 prvFULL: SecurityList.Add('Full Writes');
 prvUNKNOWN: SecurityList.Add('Unknown');
 end;
 SecurityList.Add('Family Rights: ' + IntToStr (Security.iFamRights));
 SecurityList.Add('Session: ' + Security.szPassword);
 end;
 until (Result <> DBIERR_NONE);
 Check(DbiCloseCursor(TmpCursor));
end;

DbiOpenSPList {button C
Examples,JI(`>example',`exdbiopensplist')} {button Delphi
Examples,JI(`>example',`dexdbiopensplist')}
C syntax
DBIResult DBIFN DbiOpenSPList (hdb, bExtended, bSystem, pszQual, phCur);

Delphi syntax
function DbiOpenSPList (hDb: hDBIDb; bExtended: Bool; bSystem: Bool;
pszQual: PChar; var hCur: hDBICur): DBIResult stdcall;

Description
The function DbiOpenSPList creates a table containing information about the stored
procedures associated with the database. Records in the table are described by SPDesc.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle associated with the database where the stored procedure
exists.
bExtended Type: BOOL (Input)
Not currently used.
bSystem Type: BOOL (Input)
True to include system procedures
pszQual Type: pCHAR (Input)
Must be null.
phCur Type: phDBICur (Output)
Pointer to the cursor handle
Completion state
The parameter phCur points to the returned cursor handle. The table contains information
about all stored procedures in the database associated with the specified database handle.
If the associated database is a standard database, only the stored procedures in the
current directory of the database are listed in the table. The record description for the table
is SPDesc.

DbiResult return values
DBIERR_NONE The cursor to the table was successfully returned.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_NOTSUPPORTED The driver does not support stored procedures.

C Examples: DbiOpenSPList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenSPList
An example for this function is under development and will be provided in an upcoming
Help release.

DbiOpenSPParamList {button C
Examples,JI(`>example',`exdbiopenspparamlist')} {button Delphi
Examples,JI(`>example',`dexdbiopenspparamlist')}
C syntax
DBIResult DBIFN DbiOpenSPParamList (hdb, pszSPName, bPhyTypes, uOverload,
phCur);

Delphi syntax
function DbiOpenSPParamList (hDb: hDBIDb; pszSPName: PChar; bPhyTypes: Bool;
uOverload: Word; var hCur: hDBICur): DBIResult stdcall;

Description
The function DbiOpenSPParamList creates a table listing the parameters associated with a
specified stored procedure. Records in the table are described by SPParamDesc.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle associated with the database where the stored procedure
exists.
pszSPName Type: pCHAR (Input)
Pointer to the stored procedure name.
bPhyTypes Type: BOOL (Input)
Specifies whether parameter field types are returned in physical or logical datatypes.
uOverload Type: UINT16 (Input)
Overload number. Not available for all drivers. This value is 0 unless the driver supports it
and has overloaded functions. For an example, see uOverload
phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
Standard: Not Supported.
Access: The SPParamDesc structure fields iUnits1, uOffset, uLen and uNullOffset are not
used. When bPhySypes is False, uFldType and uSubType are not used.
SQL: Supported.
Sybase: DbiOpenSPParamList returns the parameters, but eParamType is always equal to
paramUNKNOWN.
Oracle: For full stored procedure support, your server must be a production Oracle7 server
set up with the Procedural option. If it has not been set up properly, you might get the
following error from DbiOpenSPParamList: "DBMS_DESCRIBE is not defined ...".
Completion state
Returns list of the parameters associated with a specified stored procedure. The record
description for the table is SPParamDesc.
DbiResult return values
DBIERR_NONE The cursor to the table was successfully returned.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_NOTSUPPORTED The driver does not support stored procedures.

See also
DbiOpenSPList

uOverload
The uOverload param in DbiOpenSPParamList allows specification of an overload number if
the server supports overloading of procedure and function names. For example, using
Oracle 7, you might have this package specification:
 create package EMP_RECS as
 procedure get_sal_info (
 name in emp.ename%type,
 salary out emp.sal%type);

 procedure get_sal_info (
 ID_num in emp.empno%type,
 salary out emp.sal%type);

 function get_sal_info (
 name emp.ename%type) return emp.sal%type;

 end EMP_RECS;

DbiOpenSPParamList with uOverload=1 would return the name and salary parameters for
procedure 1. If uOverload = 2, then ID_num and salary would be returned.
If a procedure is not overloaded, then uOverload should be set to 0. Otherwise uOverload
should be set to 1..n for n overloadings of the name.

C Examples: DbiOpenSPParamList
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiOpenSPParamList
An example for this function is under development and will be provided in an upcoming
Help release.

DbiOpenTable {button C
Examples,JI(`>example',`exdbiopentable')} {button Delphi
Examples,JI(`>example',`dexdbiopentable')}
C syntax
DBIResult DBIFN DbiOpenTable (hDb, pszTableName, [pszDriverType],
pszIndexName, pszIndexTagName, iIndexId, eOpenMode, eShareMode, exltMode,
[bUniDirectional], [pOptParams], phCursor);

Delphi syntax
function DbiOpenTable (hDb: hDBIDb; pszTableName: PChar; pszDriverType:
PChar; pszIndexName: PChar; pszIndexTagName: PChar; iIndexId: Word;
eOpenMode: DBIOpenMode; eShareMode: DBIShareMode; exltMode: XLTMode;
bUniDirectional: Bool; pOptParams: Pointer; var hCursor: hDBICur):
DBIResult stdcall;

Description
DbiOpenTable opens the given table for access and associates a cursor handle with the
opened table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle associated with the database where the table exists.
pszTableName Type: pCHAR (Input)
Pointer to the table name. For Paradox, FoxPro, and dBASE, if pszTableName is a fully
qualified name of a table, the pszDriverType parameter need not be specified. If the path is
not included, the path name is taken from the current directory of the database associated
with hDb.
For SQL databases, pszTableName can be a fully qualified name that includes the owner
name, in the form <owner>.<tablename>.
If not specified, <owner> is supplied from the database handle. Extensions are not valid for
SQL table names.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. pszDriverType can be one of the following values:
szDBASE, szMSACCESS, szPARADOX, or szASCII (for importing or exporting data to/from
text files; see the Usage section).
For Paradox, FoxPro, and dBASE tables, this parameter is required if pszTableName has no
extension, or if the client application wants to overwrite the default file extension, including
the situation where pszTableName is terminated with a period(.). If pszTableName does not
supply the default extension, and pszDriverType is NULL, DbiOpenTable tries to open the
table with the default file extension of all file-based drivers listed in the configuration file in
the order that the drivers are listed.
This parameter is ignored if the database associated with hDb is a SQL or Access database.
pszIndexName Type: pCHAR (Input)
Pointer to the name of the index or pseudo-index to be used to order the records in the
result set. Optional. For SQL tables, the index name does not have to be qualified with the
owner for servers supporting naming conventions with owner qualification. The
pszIndexName string is limited to 127 bytes in length.
pszIndexTagName Type: pCHAR (Input)
Pointer to the tag name of the index in a .MDX or .CDX file used to order the records in the
result set. Optional; used for dBASE and FoxPro tables only. This parameter is ignored if the
index given by pszIndexName is a .NDX index.

iIndexId Type: UINT16 (Input)
Specifies the index identifier, which is the number of the index to be used to order the
records in the result set. Optional; used for Paradox, Access, and SQL tables only.
Paradox: For Paradox tables, the range for the index identifier is 1 to 511. This parameter
is ignored if pszIndexName is specified.
SQL: For SQL tables, this field is used only to specify that the table should be opened with
no default index. This is done by setting iIndexId to NODEFAULTINDEX and is useful when
opening a table read-only to speed up record access time.
Access: For Access tables, the range for the index identifier is 1 to the number of valid
indexes. This parameter is ignored if pszIndexName is specified.
eOpenMode Type: DBIOpenMode (Input)
Specifies the table open mode. If the mode is read-only, updates to the table are not
permitted.
eShareMode Type: DBIShareMode (Input)
Specifies the table share mode, and determines whether other users or other cursors are
able to open the table.
exltMode Type: XLTMode (Input)
Specifies the data translation mode.
bUniDirectional Type: BOOL (Input)
Specifies the scan mode of the cursor for SQL only.
pOptParams Type: pBYTE (Input)
Not currently used.
phCursor Type: phDBICur (Output)
Pointer to the cursor handle for the opened table.
Usage
Text: The DbiOpenTable call can be used to open a text file for import/export of data. The
pszDriverType argument is used differently to indicate whether the fields in the text file are
fixed length or delimited. The field separator and delimiter are passed through the
pszDriverType argument.
dBASE: If no index is specified, the table is opened in physical order. If pszIndexTagName
specifies an index tag, the table is opened with that tag active. The index name and the
tag name are specified to open the index.
FoxPro: If no index is specified, the table is opened in physical order. If pszIndexTagName
specifies an index tag, the table is opened with that tag active. The index name and the
tag name are specified to open the index. To see if a cursor is referencing a FoxPro table,
retrieve CURProps using DbiGetCursorProps.
Access: If a cursor is opened exclusively in the active session, no other cursors may be
opened in that session.
Paradox: If all index parameters are NULL, the table is opened in primary key order, if a
primary key exists. If a secondary key is specified, the table is opened in that key. Either
pszIndexName or iIndexId can be used to specify a composite or non-composite secondary
index. A single-field index that is case-insensitive is classified as a composite index. See
also: szName
SQL: An index can be specified only in pszIndexName. The index name can be qualified or
unqualified. SQL provides limited support for exclusive opens, depending on the level of
server explicit lock support.
Pseudo-indexes: To describe a pseudo-index rather than an existing physical index,
replace the pszIndexName parameter with a string composed of field names. The marker

character @ denotes the use of a pseudo-index. For example, "@Customer Number@Order
Number" describes a pseudo-index on a key formed by concatenating the Customer
Number field with the Order Number field.
Each field identifier in the pseudo-index name must be preceded by the @ character. This
character is illegal in "true" index names. No new index is generated at the server; the
behavior of the pseudo-index is simulated entirely by use of the proper ORDER BY clauses
on the query populating the local BDE record cache.
Fields can be identified by field numbers as well as by field names. For example,    the string
"@2@3@11" describes a pseudo-index consisting of the second, third, and eleventh field of
the table, concatenated to make up a single key.
Each of the component fields within a pszIndexName is assumed to be in ASCENDING
order. Ordering is case-sensitive (unless case-sensitivity is not supported on the specific
server). If the fields in the pszIndexName represent a real unique index on the server, the
pseudo-index becomes unique; otherwise, it is non-unique.
Note: Access does not support pseudo-indexes.
Referential integrity descriptions: By default, DbiOpenTable does not retrieve
referential integrity information (primary keys, foreign keys, and so on) when opening a
table. This improves performance. To retrieve referential integrity information, use
DbiSetProp to set curGETEXTENDEDINFO to True, then call DbiGetCursorProps.

Prerequisites
If the database is opened read-only, the table cannot be opened read-write.
Completion state
After the table has been successfully opened, the cursor is opened and positioned on the
crack at the beginning of the file. A valid cursor is returned.
DbiResult return values
DBIERR_NONE The table was successfully opened.
DBIERR_INVALIDFILENAME The specified file name is not valid.
DBIERR_NOSUCHFILE The specified file could not be found.
DBIERR_TABLEREADONLY This table cannot be opened for read-write access.
DBIERR_NOTSUFFTABLERIGHTS The client application does not have sufficient rights to open this

table.
DBIERR_INVALIDINDEXNAME The specified index name is invalid.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL, or

phCursor is NULL.
DBIERR_UNKNOWNTBLTYPE The specified table type is invalid.
DBIERR_NOSUCHTABLE The specified table name is invalid.
DBIERR_NOSUCHINDEX The specified index is not available.
DBIERR_LOCKEDThe table is locked by another user.
DBIERR_DIRBUSY Invalid attempt to open a table in private directory (Paradox only).
DBIERR_OPENTBLLIMIT The maximum number of tables is already opened.

See also
DbiCloseCursor

C Examples: DbiOpenTable
Open the specified table.
If the table is local (Paradox, FoxPro, Access, or dBASE), the table name must also have the
extension. This function uses the following input:

fDbiOpenTable(hDb, "CUSTOMER.DB", &hCur, &CurProps);

DBIResult fDbiOpenTable(hDBIDb hTmpDb, pCHAR pszTableName, phDBICur phTmpCur,
pCURProps pCurProps)

{
 DBIResult rslt;
 rslt = Chk(DbiOpenTable (hTmpDb, pszTableName, NULL, NULL, NULL, 0,
dbiREADWRITE,

 dbiOPENSHARED, xltFIELD, TRUE, NULL, phTmpCur));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (pCurProps != NULL)
 rslt = Chk(DbiGetCursorProps(*phTmpCur, pCurProps));
 return rslt;
}

Delphi Examples: DbiOpenTable
Open a table:   
Delphi users should use the Open method associated with the TTable component rather
than directly calling DbiOpenTable. This method is defined as:
 procedure Open;
The Open method opens the dataset, putting it in Browse state.
Table1.Open;

pseudo-index
For SQL data sources, a current index can be defined as any group of fields from a specific
table, whether or not a corresponding index exists on the server. BDE creates a pseudo-
index by using one or more user-specified SQL fields to define the requested order.
You can specify the pseudo-index even if there is a real index matching the behavior of the
pseudo-index. When specifying the pseudo-index, BDE behavior is the same as it would be
if the physical index existed on the server. In particular, DbiSetRange and
DbiGetRecordForKey are allowed on a pseudo-index. DbiSetToBegin, DbiGetNextRecord,
and so on, walk through records in the order implied by a pseudo-index.
For information on implementing pseudo-indexes, see DbiOpenTable or DbiSwitchToIndex.

Database Open Mode
The following table shows the interaction between the database open mode and
eOpenMode:
Database eOpenMode Result
Read-only Read-only Read-only
Read-only Read-write Error
Read-write Read-only Read-only
Read-write Read-write Read-write

Database Share Mode
For Paradox, FoxPro, Access, and dBASE tables, if eShareMode is set to dbiOPENEXCL, then
only this session can open the table. If the table is already opened (shared or exclusive) by
another session, an attempt to open the table exclusively results in an error. The following
table shows the results of different combinations of the database share mode and
eShareMode:
Database eShareMode Result
Exclusive Exclusive Exclusive
Exclusive Share Exclusive
Share Exclusive Exclusive
Share Share Share

Scan Mode
This parameter can be one of the following values:
bUniDirectional value Scan mode of SQL table cursor
TRUE Unidirectional. The cursor can only be advanced forward.
FALSE Bidirectional. The cursor can be advanced forward and backward.

DbiOpenTableList {button C
Examples,JI(`>example',`exdbiopentablelist')} {button Delphi
Examples,JI(`>example',`dexdbiopentablelist')}
C syntax
DBIResult DBIFN DbiOpenTableList (hDb, bExtended, bSystem, pszWild, phCur);
Delphi syntax
function DbiOpenTableList (hDb: hDBIDb; bExtended: Bool; bSystem: Bool;
pszWild: PChar; var hCur: hDBICur): DBIResult stdcall;

Description
DbiOpenTableList creates a table with information about all the tables associated with the
database.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
bExtended Type: BOOL (Input)
The bExtended parameter specifies whether to return only the standard table information,
or to return extended table information as well. (The default is standard information only).
bSystem Type: BOOL (Input)
The bSystem parameter specifies whether to include system tables or not. SQL only.
pszWild Type: pCHAR (Input)
Pointer to the search string for retrieving a selective list of tables. Two wildcard characters
can be used: the asterisk (*) and the question mark (?). The asterisk expands to any
number of characters; the question mark expands to a single character.
phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
The client application can request either standard or extended information for the table.
The bExtended parameter must be set to TRUE to request extended information.
Standard: The table includes tables in the directory associated with hDb.
SQL: For SQL servers, bSystem must be set to TRUE to include system tables.
Synonyms: Many server vendors (including Oracle) provide objects called synonyms.
Synonyms are alternate names for other objects, such as tables or views. SQL Links
provides the option to include synonyms in the table lists returned from DbiOpenTableList
and DbiOpenFileList. See SQL Links Guide

Completion state
phCur points to the returned cursor handle. The table contains information about all the
tables in the database associated with the specified database handle. If the associated
database is a standard database, only the tables in the current directory of the database
are listed in the table. The record description for the table is TBLBaseDesc or TBLFullDesc.

DbiResult return values
DBIERR_NONE The cursor to the table was returned successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

See also
DbiOpenCfgInfoList, DbiOpenDriverList, DbiOpenFieldTypesList, DbiOpenIndexTypesList,
DbiOpenLdList, DbiOpenTableTypesList, DbiOpenUserList

C Examples: DbiOpenTableList
Return a string containing all tables meeting the search criteria (in WildCard).
This example uses the following input:

fDbiOpenTableList(hDb, &hCursor);
DBIResult fDbiOpenTableList(hDBIDb hTmpDb, pCHAR TblList, pCHAR WildCard)
{
 DBIResult rslt;
 TBLBaseDesc ListDesc; // structure to hold information about the
table list.

 hDBICur hCur;
 CHAR Buffer[DBIMAXTBLNAMELEN + 1];
 UINT16 Count = 1;
 TblList[0] = '\0';
 rslt = Chk(DbiOpenTableList(hTmpDb, FALSE, FALSE, WildCard, &hCur));
 if (rslt != DBIERR_NONE)
 return rslt;
 while ((DbiGetNextRecord(hCur, dbiNOLOCK, (pBYTE)&ListDesc, NULL)) !=
DBIERR_EOF)

 {
 wsprintf(Buffer, "\r\nTable %d: %s", Count++, ListDesc.szName);
 strcat(TblList, Buffer);
 }
 return rslt;
}

Delphi Examples: DbiOpenTableList
Create a table with information about all tables associated with database.
This example retrieves all tables in the databse with the .DB extension and puts the
tablenames into a string list object, such as the Lines property of a TMemo. The example
uses the following input:
 fDbiOpenTableList(Table1.DBHandle, Memo1.Lines);

The procedure is:
procedure fDbiOpenTableList(hTmpDb: hDBIDb; TableList: TStrings);
var
 hCursor : hDBICur;
 ListDesc : TBLBaseDesc;
begin
 Check(DbiOpenTableList(hTmpDb, False, False, '*.DB', hCursor));
 TableList.Clear;
 while (DbiGetNextRecord(hCursor, dbiNOLOCK, @ListDesc, nil) = dbiErr_None)
do

 TableList.Add(ListDesc.szName);
end;

bExtended
bExtended value Type of table info returned
TRUE Extended
FALSE Standard

bSystem
bSystem value System table included?
TRUE Yes
FALSE No

DbiOpenTableTypesList {button C
Examples,JI(`>example',`exdbiopentabletypeslist')} {button Delphi
Examples,JI(`>example',`dexdbiopentabletypeslist')}
C syntax
DBIResult DBIFN DbiOpenTableTypesList (pszDriverType, phCur);
Delphi syntax
function DbiOpenTableTypesList (pszDriverType: PChar; var hCur: hDBICur):
DBIResult stdcall;

Description
DbiOpenTableTypesList creates a table listing table type names for the given driver.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type.
phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Completion state
Each of the table type records can be retrieved via DbiGetNextRecord. DbiGetCursorProps
can be used to allocate the proper record size. After the record is retrieved, it can be cast
with the TBLType type definition, and used like a TBLType C language structure.
DbiResult return values
DBIERR_NONE The list of table type names was returned successfully.
DBIERR_INVALIDHNDL The specified handle is invalid.
DBIERR_DRIVERNOTLOADED The driver was not initialized.

See also
DbiGetTableTypeDesc

C Examples: DbiOpenTableTypesList
Display in a MessageBox all table types supported by a driver:
The following input is used in this example:
 fDbiOpenTableTypesList(szPARADOX);

DBIResult fDbiOpenTableTypesList(pCHAR Driver)
{
 DBIResult rslt;
 hDBICur hTypeCur = 0;
 TBLType Tbltype;
 CHAR Buffer[500] = {'\0'};

 rslt = Chk(DbiOpenTableTypesList(Driver, &hTypeCur));
 if (rslt != DBIERR_NONE)
 return rslt;
 while (DbiGetNextRecord(hTypeCur, dbiNOLOCK, (pBYTE)&Tbltype, NULL) ==
DBIERR_NONE)

 wsprintf(Buffer, "%sTable Name: %s, Maximum Record Size: %d\n",
 Buffer, Tbltype.szName, Tbltype.iMaxRecSize);

 MessageBox(0, Buffer, Driver, MB_OK);
 return rslt;
}

Delphi Examples: DbiOpenTableTypesList
Display in a MessageBox all table types supported by a driver.
This example uses the following input:
 fDbiOpenTableTypesList(szDBASE);

The procedure is:
procedure fDbiOpenTableTypesList(Driver: string);
var
 hTypeCur: hDBICur;
 TblTypes: TBLType;
 BufStr: string;
begin
 hTypeCur:= nil;
 Check(DbiOpenTableTypesList(PChar(Driver), hTypeCur));
 while (DbiGetNextRecord(hTypeCur, dbiNOLOCK, @TblTypes, nil) =
DBIERR_NONE) do

 begin
 BufStr:= format('Name: %s, TableLevel: %d',
[Tbltypes.szName,Tbltypes.iTblLevel]);

 MessageBox(0, PChar(BufStr), PChar(Driver), MB_OK);
 end;
end;

DbiOpenUserList {button C
Examples,JI(`>example',`exdbiopenuserlist')} {button Delphi
Examples,JI(`>example',`dexdbiopenuserlist')}
C syntax
DBIResult DBIFN DbiOpenUserList (phUsers);
Delphi syntax
function DbiOpenUserList (var hUsers: hDBICur): DBIResult stdcall;
Description
DbiOpenUserList creates a table containing a list of users sharing the same network file.
Parameters
phUsers Type: phDBICur (Output)
Pointer to the cursor handle.
Usage
DbiOpenUserList is supported for Paradox only.

Completion state
Each of the user records can be retrieved using DbiGetNextRecord. DbiGetCursorProps can
be used to allocate the proper record size. After the record is retrieved, it can be cast with
the USERDesc type definition, and used like a USERDesc C language structure.
DbiResult return values
DBIERR_NONE The user list was returned successfully.
DBIERR_INVALIDHNDL phUsers is NULL.

C Examples: DbiOpenUserList
Get information on users using the current network file.
UserInfo must be allocated large enough to hold security information. This example uses
the following input:

fDbiOpenUserList(Buffer);
DBIResult fDbiOpenUserList(pCHAR UserInfo)
{
 DBIResult rslt;
 USERDesc UserDesc;
 hDBICur hTmpCur;
 CHAR Buffer[500];
 UserInfo[0] = '\0';
 rslt = Chk(DbiOpenUserList(&hTmpCur));
 if (rslt == DBIERR_NONE)
 {
 while (DbiGetNextRecord(hTmpCur, dbiNOLOCK, (pBYTE)&UserDesc, NULL) ==
DBIERR_NONE)

 {
 wsprintf(Buffer, "\r\nName: %s, Session: %d, Class: %d, SerialNum:
%s",

 UserDesc.szUserName, UserDesc.iNetSession,
UserDesc.iProductClass,

 UserDesc.szSerialNum);
 strcat(UserInfo, Buffer);
 }
 }
 return rslt;
}

Delphi Examples: DbiOpenUserList
Return a list of users sharing the same network file
The returned list is appended it to the string list object specified in the UserList parameter.
This example uses the following input:
 fDbiOpenUserList(ListBox1.Items);

The procedure is:
procedure fDbiOpenUserList(UserList: TStrings);
var
 TmpCursor: hDbiCur;
 rslt: dbiResult;
 UsrDesc: USERDesc;
begin
 Check(DbiOpenUserList(TmpCursor));
 repeat
 rslt:= DbiGetNextRecord(TmpCursor, dbiNOLOCK, @UsrDesc, nil);
 if (rslt <> DBIERR_EOF) then begin
 UserList.Add('User name: ' + UsrDesc.szUserName);
 UserList.Add('Net Session: ' + IntToStr(UsrDesc.iNetSession));
 UserList.Add('Product Class: ' + IntToStr (UsrDesc.iProductClass));
 end;
 until (rslt <> DBIERR_NONE);
 Check(DbiCloseCursor(TmpCursor));
end;

DbiOpenVchkList {button C
Examples,JI(`>example',`exdbiopenvchklist')} {button Delphi
Examples,JI(`>example',`dexdbiopenvchklist')}
C syntax
DBIResult DBIFN DbiOpenVchkList (hDb, pszTableName, [pszDriverType],
phChkCur);

Delphi syntax
function DbiOpenVchkList (hDb: hDBIDb; pszTableName: PChar; pszDriverType:
PChar; var hChkCur: hDBICur): DBIResult stdcall;

Description
DbiOpenVchkList creates a table containing records with information about validity checks
for fields within the specified table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Pointer to the table name. If pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name
is taken from the current directory of the database associated with hDb.
For SQL databases, this parameter can be a fully qualified name that includes the owner
name.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. For Paradox, required only if no extension is specified by
pszTableName. The only valid type is szPARADOX. This parameter is ignored if the database
associated with hDb is a SQL database.
phChkCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
Paradox: This function returns information about validity checks including required fields,
minimum/maximum settings for fields, lookup tables, picture specifications, and default
values.
SQL: The only validity check that can be created for SQL tables is bRequired (required
fields). However, some drivers support reporting of fields with default values.
dBASE, FoxPro, Access: This function is not supported.

Prerequisites
A valid database handle must be obtained.
Completion state
phChkCur points to the returned cursor handle on the table. Once the cursor is returned,
the client application can retrieve information about validity checks from the table. The
cursor is read-only.

DbiResult return values
DBIERR_NONE The cursor to the table was returned successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phChkCur is

NULL.
DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_NOSUCHTABLE The specified table name does not exist.
DBIERR_UNKNOWNTBLTYPE The specified driver type is invalid.

See also
DbiOpenRintList, DbiCreateTable, DbiGetVchkDesc

C Examples: DbiOpenVchkList
Get validity check information for the specified table.
VchkList must be allocated large enough to hold security information. This example uses
the following input:

fDbiOpenVchkList(hDb, "ORDERS.DB", ValidityChecks);
DBIResult fDbiOpenVchkList(hDBIDb hTmpDb, pCHAR TblName, pCHAR VchkList)
{
 DBIResult rslt;
 hDBICur hVchkCur = 0;
 VCHKDesc Vchk;
 CHAR Buffer[200], Required[4];
 VchkList[0] = '\0';
 rslt = Chk(DbiOpenVchkList(hTmpDb, TblName, NULL, &hVchkCur));
 if (rslt == DBIERR_NONE)
 {
 while (DbiGetNextRecord(hVchkCur, dbiNOLOCK, (pBYTE)&Vchk, NULL) ==
DBIERR_NONE)

 {
 if (Vchk.bRequired == FALSE)
 strcpy(Required, "False");
 else
 strcpy(Required, "True");
 wsprintf(Buffer, "\r\nField Number: %d, Required: %s",
Vchk.iFldNum, Required);

 strcat(VchkList, Buffer);
 }
 }
 if (hVchkCur != 0)
 DbiCloseCursor(&hVchkCur);
 return rslt;
}

Delphi Examples: DbiOpenVchkList
Create a table containing information about validity checks for fields within the
specified table:
Returns information about validity checks for fields in the dataset specified in the Tbl
parameter. The information is appended to the string list object specified in the VchkList
parameter.
This example uses the following input:
 fDbiOpenVchkList(OrdersTable, ListBox1.Items);

The procedure is:
procedure fDbiOpenVchkList(Tbl: TTable; var VCheckList: TStrings);
var
 TmpCursor: hdbicur;
 VCheck: VCHKDesc;
 rslt: dbiResult;
begin
 Check(DbiOpenVchkList(Tbl.DbHandle, PChar(Tbl.TableName), nil,
TmpCursor));

 Check(DbiSetToBegin(TmpCursor));
 VCheckList.Clear;
 repeat
 rslt := DbiGetNextRecord(TmpCursor, dbiNOLOCK, @VCheck, nil);
 if (rslt <> DBIERR_EOF) then begin
 VCheckList.Add('Field Number: ' + IntToStr(VCheck.ifldNum));
 If VCheck.bRequired = True then
 VCheckList.Add('Field is required: TRUE')
 else
 VCheckList.Add('Field is required: FALSE');
 If VCheck.bHasMinVal = True then
 VCheckList.Add('Has Minimum Value: TRUE')
 else
 VCheckList.Add('Has Minimum Value: FALSE');
 If VCheck.bHasMaxVal = True then
 VCheckList.Add('Has Maximum Value: TRUE')
 else
 VCheckList.Add('Has Maximum Value: FALSE');
 If VCheck.bHasDefVal = True then
 VCheckList.Add('Has Default Value: TRUE')
 else
 VCheckList.Add('Has Default Value: FALSE');
 end;
 until rslt <> DBIERR_NONE;
 Check(DbiCloseCursor(TmpCursor));
end;

DbiPackTable {button C
Examples,JI(`>example',`exdbideleterecord')} {button Delphi
Examples,JI(`>example',`dexdbipacktable')}
C syntax
DBIResult DBIFN DbiPackTable (hDb, hCursor, pszTableName, [pszDriverType],
bRegenIdxs);

Delphi syntax
function DbiPackTable (hDb: hDBIDb; hCursor: hDBICur; pszTableName: PChar;
pszDriverType: PChar; bRegenIdxs: Bool): DBIResult stdcall;

Description
DbiPackTable optimizes table space by rebuilding the table associated with hCursor and
releasing any free space.

Parameters
hDb Type: hDBIDb (Input)
Specifies the valid database handle.
hCursor Type: hDBICur (Input)
Specifies the cursor on the table to be packed. Optional. If hCursor is specified, the
operation is performed on the table associated with the cursor. If hCursor is NULL,
pszTableName and pszDriverType determine the table to be used.
pszTableName Type: pCHAR (Input)
Pointer to the table name. Optional. If hCursor is NULL, pszTblName and pszTblType
determine the table to be used. (If both pszTableName and hCursor are specified,
pszTableName is ignored.) If pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name
is taken from the current directory of the database associated with hDb.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. This parameter is required if pszTableName has no
extension. The only valid pszDriverType is szDBASE.
bRegenIdxs Type: BOOL (Input)
Specifies whether or not to regenerate out-of-date table indexes. If TRUE, all out-of-date
table indexes are regenerated (applies to maintained indexes only). Otherwise, out-of-date
indexes are not regenerated.
Usage
dBASE or FoxPro: dBASE and FoxPro let users mark a record for deletion (as opposed to
actually removing it from the table). The only way to permanently remove marked records
is with DbiPackTable.
Paradox: This function is not valid for Paradox tables. Use DbiDoRestructure with the
bPack option, instead.
SQL, Access: This function is not valid for SQL or Access tables.
Prerequisites
Exclusive access to the table is required.

DbiResult return values
DBIERR_NONE The table was successfully rebuilt.
DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.
DBIERR_INVALIDHNDL The specified database handle or cursor handle is invalid or NULL.

DBIERR_NOSUCHTABLE Table name does not exist.
DBIERR_UNKNOWNTBLTYPE Table type is unknown.
DBIERR_NEEDEXCLACCESS The table is not open in exclusive mode.

See also
DbiOpenTable, DbiDeleteRecord, DbiDoRestructure

Delphi Examples: DbiPackTable
Example 1: Pack a Paradox or dBASE table.

This example will pack a Paradox or dBASE table therfore removing already deleted rows in
a table. This function will also regenerate all out-of-date indexes (maintained indexes). This
example uses the following input:
 PackTable(Table1)

The function is defined as follows:

// Pack a Paradox or dBASE table
// The table must be opened execlusively before calling this function...
procedure PackTable(Table: TTable);
var
 Props: CURProps;
 hDb: hDBIDb;
 TableDesc: CRTblDesc;
begin
 // Make sure the table is open exclusively so we can get the db handle...
 if not Table.Active then
 raise EDatabaseError.Create('Table must be opened to pack');
 if not Table.Exclusive then
 raise EDatabaseError.Create('Table must be opened exclusively to pack');
 // Get the table properties to determine table type...
 Check(DbiGetCursorProps(Table.Handle, Props));

 // If the table is a Paradox table, you must call DbiDoRestructure...
 if Props.szTableType = szPARADOX then begin
 // Blank out the structure...
 FillChar(TableDesc, sizeof(TableDesc), 0);
 // Get the database handle from the table's cursor handle...
 Check(DbiGetObjFromObj(hDBIObj(Table.Handle), objDATABASE,
hDBIObj(hDb)));

 // Put the table name in the table descriptor...
 StrPCopy(TableDesc.szTblName, Table.TableName);
 // Put the table type in the table descriptor...
 StrPCopy(TableDesc.szTblType, Props.szTableType);
 // Set the Pack option in the table descriptor to TRUE...
 TableDesc.bPack := True;
 // Close the table so the restructure can complete...
 Table.Close;
 // Call DbiDoRestructure...
 Check(DbiDoRestructure(hDb, 1, @TableDesc, nil, nil, nil, False));
 end
 else
 // If the table is a dBASE table, simply call DbiPackTable...
 if (Props.szTableType = szDBASE) then
 Check(DbiPackTable(Table.DBHandle, Table.Handle, nil, szDBASE, True))
 else
 // Pack only works on PAradox or dBASE; nothing else...
 raise EDatabaseError.Create('Table must be either of Paradox or dBASE
' +

 'type to pack');

 Table.Open;
end;

DbiPutBlob {button C Examples,JI(`>example',`exdbiputblob')}
{button Delphi Examples,JI(`>example',`dexdbiputblob')}

C syntax
DBIResult DBIFN DbiPutBlob (hCursor, pRecBuf, iField, iOffSet, iLen, pSrc);
Delphi syntax
function DbiPutBlob (hCursor: hDBICur; pRecBuf: Pointer; iField: Word;
iOffSet: Longint; iLen: Longint; pSrc: Pointer): DBIResult stdcall;

Description
DbiPutBlob writes data into an open BLOB field.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer.
iField Type: UINT16 (Input)
Specifies the ordinal number of a BLOB field within the record buffer.
iOffSet Type: UINT32 (Input)
Specifies the starting position, offset from the beginning of the BLOB, where the data is to
be written. This value must not exceed the length of the BLOB. Valid values of iOffset range
from 0 to the BLOB field's length. If iOffset is less than the BLOB field's length, part of the
existing BLOB field is overwritten. If iOffset is equal to the length of the BLOB field, the data
is appended to the existing BLOB field.
If the BLOB field also has a BLOB header (BLOB tuple area), and iOffset falls within that
header area, the information in the tuple is also updated when DbiModifyRecord,
DbiAppendRecord, or DbiInsertRecord is called.
iLen Type: UINT32 (Input)
Specifies the number of bytes to write to the BLOB field. iLen can be greater than 64K.
pSrc Type: pBYTE (Input)
Pointer to the data to be written to the BLOB field.
Usage
The block of data supplied in pSrc is transferred to the BLOB field, based on the values
specified in iOffset and iLen. DbiPutBlob can access data in blocks larger than 64Kb,
depending on the size you allocate for the buffer.
Note: This does not update the underlying table. The client application must call

DbiAppendRecord, DbiModifyRecord, or DbiInsertRecord, using this record buffer, to
update the table with the BLOB field.

Prerequisites
The BLOB field must be opened in read-write mode.

Completion state
Performs the equivalent of DbiPutField, for a BLOB field.
DbiResult return values
DBIERR_NONE The data was successfully written to the BLOB field.
DBIERR_BLOBNOTOPENED The specified BLOB field was not opened via a call to DbiOpenBlob.
DBIERR_INVALIDBLOBHANDLE The record buffer supplied contains an invalid BLOB handle.

DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.
DBIERR_INVALIDBLOBOFFSET The specified iOffSet is greater than the length of the BLOB field.
DBIERR_READONLYFLD The BLOB field was opened in dbiREADONLY mode and cannot be

modified.

See also
DbiAppendRecord, DbiModifyRecord, DbiInsertRecord, DbiGetBlob, DbiOpenBlob,
DbiTruncateBlob, DbiFreeBlob, DbiGetBlobSize

C Examples: DbiPutBlob
Modify the current record and Blob:   
The field specified must be a valid memo blob. pTmpRecBuf must have valid record
information. This example uses the following input:

fBlobExample1(hCur, pRecBuf, 7, "Blob text goes here!!");
DBIResult fBlobExample2 (hDBICur hTmpCur, pBYTE pTmpRecBuf, UINT16 uFldNum,
 char *Text)
{
 DBIResult rslt;
 rslt = Chk(DbiOpenBlob(hTmpCur, pTmpRecBuf, uFldNum, dbiREADWRITE));
 if (rslt != DBIERR_NONE)
 return rslt;
 if (Chk(DbiPutBlob(hTmpCur, pTmpRecBuf, uFldNum, 0, strlen(Text) + 1,
 (pBYTE)Text)) == DBIERR_NONE)
 rslt = Chk(DbiModifyRecord(hTmpCur, pTmpRecBuf, TRUE));
 Chk(DbiFreeBlob(hTmpCur, pTmpRecBuf, uFldNum));
 return rslt;
}

Delphi Examples: DbiPutBlob
Modify the current record and blob.
The field specified must be a valid memo blob. The pointer pTmpRecBuf must have valid
record information. This example uses the following input:
 fBlobExample1(hCur, pRecBuf, 7, "Blob text goes here!!");

The procedure is:
procedure fBlobExample2(hTmpCur: hDBICur; pTmpRecBuf: pBYTE;uFldNum:
LongInt;NewText: string);

begin
 Check(DbiOpenBlob(hTmpCur, pTmpRecBuf, uFldNum, dbiREADWRITE));
 Check(DbiPutBlob(hTmpCur, pTmpRecBuf, uFldNum, 0, StrLen(PChar(NewText))
+ 1, PChar(NewText)));

 Check(DbiModifyRecord(hTmpCur, pTmpRecBuf, True));
 Check(DbiFreeBlob(hTmpCur, pTmpRecBuf, uFldNum));
end;

DbiPutField {button C Examples,JI(`>example',`exdbiputfield')}
{button Delphi Examples,JI(`>example',`dexdbiputfield')}

C syntax
DBIResult DBIFN DbiPutField (hCursor, iField, pRecBuf, pSrc);
Delphi syntax
function DbiPutField (hCursor: hDBICur; iField: Word; pRecBuff: Pointer;
pSrc: Pointer): DBIResult stdcall;

Description
DbiPutField writes the field value to the correct location in the supplied record buffer.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iField Type: UINT16 (Input)
Specifies the ordinal number of the field to be updated.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer, which is updated upon success.
pSrc Type: pBYTE (Input)
Pointer to the new field value.

Usage
This function is used to update a record one field at a time. If a NULL pointer is supplied,
the field is set to NULL or blank.
If the xltMODE for the cursor is xltFIELD, pSrc is assumed to contain field data in BDE
logical format. This data is translated to the driver's physical type by this function. If
xltMODE is xltNONE, pSrc is assumed to contain field data in physical format.
DbiPutField is not supported with BLOB fields.
Oracle8: DbiPutField on an ADT field is only supported if the value put is NULL.    This will
have the effect of nulling out all of the child fields of the ADT. DbiPutField of a non-NULL
value on an ADT member sets all parent ADT fields to not NULL. DbiPutField with NULL on
an ADT member does not set ADT parents to NULL, even if all siblings are NULL.

Prerequisites
DbiVerifyField may be called to test for field level integrity violations.
Completion state
After using DbiPutField one or more times, the client application must call DbiInsertRecord,
DbiAppendRecord, or DbiModifyRecord to update the table with the record buffer. If the
function fails, the record buffer is not affected.

DbiResult return values
DBIERR_NONE The field was updated successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_OUTOFRANGE iField is equal to zero, or is greater than the number of fields in the

table.
DBIERR_INVALIDXLATION A translation error has occurred.

See also
DbiVerifyField, DbiAppendRecord, DbiInsertRecord, DbiModifyRecord, DbiSetToKey,
DbiGetField, DbiPutBlob

C Examples: DbiPutField
Example 1: Put the field value by field number.
This example uses the following input:

fDbiPutField1(hPXCur, pPXRecBuf, 1, (pBYTE)&DFloat);
DBIResult fDbiPutField1(hDBICur hTmpCur, pBYTE pTmpRecBuf, INT16 FldNum,
pBYTE Info)

{
 DBIResult rslt;
 rslt = Chk(DbiPutField(hTmpCur, FldNum, pTmpRecBuf, Info));
 return rslt;
}

Example 2: Put the field value specified by a field name..
If an invalid field name is given, an error is returned. This example uses the following input:

fDbiPutField2(hPXCur, pPXRecBuf, "STOCK NO", (pBYTE)&DFloat);
DBIResult fDbiPutField2(hDBICur hTmpCur, pBYTE pTmpRecBuf, pCHAR FldName,
pBYTE Info)

{
 DBIResult rslt;
 CURProps CurProps;
 pFLDDesc pFldDesc;
 UINT16 Field;
 BOOL Found = FALSE;
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 pFldDesc = (pFLDDesc)malloc(CurProps.iFields * sizeof(FLDDesc));
 if (pFldDesc == NULL)
 return DBIERR_NOMEMORY;
 rslt = Chk(DbiGetFieldDescs(hTmpCur, pFldDesc));
 if (rslt != DBIERR_NONE)
 {
 free(pFldDesc);
 return rslt;
 }
 for(Field = 0; Field < CurProps.iFields; Field++)
 {
 if (strcmpi(pFldDesc[Field].szName, FldName) == 0)
 {
 Found = TRUE;
 if (Info != NULL)
 rslt = Chk(DbiPutField(hTmpCur, pFldDesc[Field].iFldNum,
pTmpRecBuf, Info));

 }
 }
 if (Found == FALSE)
 rslt = DBIERR_INVALIDFIELDNAME;
 free(pFldDesc);
 return rslt;
}

Delphi Examples: DbiPutField
An example for this function is under development and will be provided in an upcoming
Help release.

DbiQAlloc {button C Examples,JI(`>example',`exdbiqsetparams')}
{button Delphi Examples,JI(`>example',`dexdbiqexec')}

C syntax
DBIResult DBIFN DbiQAlloc (hDb, eQryLang, phStmt);
Delphi syntax
function DbiQAlloc (hDb: hDBIDb; eQryLang: DBIQryLang; var hStmt: hDBIStmt):
DBIResult stdcall;

Description
DbiQAlloc allocates a statement handle required by query prepare functions.

Parameters
hDb Type: hDBIDb (Input
Specifies the database handle
eQryLang Type: DBIQryLang (Input)
Specifies the query language, "qrylangSQL" or "qrylangQBE".
phStmt Type: phDBIStmt (Output)
Provides the pointer to the statement handle.

Usage
This function must be called before calling DbiQPrepare in order to obtain a new statement
handle. It allows you to set properties to control the query execution process before calling
the next function. All query process procedures must follow this pattern:

DbiQAlloc
... // Other query preparation and execution functions.
DbiQFree

This is the only way to do query process procedures.
If you want the query to return an updateable record set, use the following sequence of
calls:

DbiQAlloc(hDb, eQryLang, &phStmt);
DbiSetProp(hStmt, stmtLIVENESS, wantLIVE (or wantCANNED));
DbiQPrepare(hStmt, pszQuery);

In every case, after you have prepared and executed the query, call DbiQFree to free the
resources allocated to this query (right after DbiQExec).
DbiResult return values
DBIERR_NONE The statement handle was returned.

See also
DbiQPrepare, DbiQExec, DbiQFree, DbiQSetParams

DbiQExec {button C Examples,JI(`>example',`exdbiqsetparams')}
{button Delphi Examples,JI(`>example',`dexdbiqexec')}

C syntax
DBIResult DBIFN DbiQExec (hStmt, phCur);
Delphi syntax
function DbiQExec (hStmt: hDBIStmt; phCur: phDBICur): DBIResult stdcall;
Description
DbiQExec executes the previously prepared query identified by the supplied statement
handle and returns a cursor to the result set, if one is generated.

Parameters
hStmt Type: hDBIStmt (Input)
Specifies the statement handle.
phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
This function is used to execute a prepared query. If the query returns a result set, the
cursor handle to the result set is returned into the address given by phCur. If the query
does not generate a result set, the returned cursor handle is zero. If no cursor handle
address is given and a result set would be returned, the result set is discarded.
The same prepared query can be executed several times, but only after the returned cursor
has been closed.

DbiResult return values
DBIERR_NONE The prepared query was executed successfully.
DBIERR_MULTIRESULTS Query returned multiple result sets.

See also
DbiQAlloc, DbiQPrepare, DbiQExecDirect, DbiQFree, DbiQSetParams

Delphi Examples: DbiQExec
Create a table on disk by using a given SQL statement.
The filename is also passed as the parameter TblName. The function returns the number of
rows in the result table. This example uses the following input:
 fDbiQExec(Database1.Handle, 'QUERY.DB', 'SELECT * FROM TEST;');
 fDbiQExec(Table1.DBHandle, 'QUERY2.DB', 'SELECT * FROM CUSTOMER');

The function is:
function fDbiQExec(hTmpDb: hDBIDB; TblName, SQL: string): Longint;
var
 hStmt: hDBIStmt;
 hQryCur, hNewCur: hDBICur;
 iRecCount: LongInt;
begin
 hQryCur := nil;
 hNewCur := nil;
 hStmt := nil;
 try
 Check(DbiQAlloc(hTmpDb, qrylangSQL, hStmt));
 Check(DbiQPrepare(hStmt, PChar(SQL)));
 Check(DbiQExec(hStmt, @hQryCur));
 Check(DbiQInstantiateAnswer(hStmt, hQryCur, PChar(TblName), szPARADOX,
 True, @hNewCur));
 Check(DbiGetRecordCount(hNewCur, iRecCount));
 Result := iRecCount;
 finally
 if (hStmt <> nil) then
 Check(DbiQFree(hStmt));
 if (hNewCur <> nil) then
 Check(DbiCloseCursor(hNewCur));
 end;
end;

DbiQExecDirect {button C
Examples,JI(`>example',`exdbiqexecdirect')} {button Delphi
Examples,JI(`>example',`dexdbiqexecdirect')}
C syntax
DBIResult DBIFN DbiQExecDirect (hDb, eQryLang, pszQuery, phCur);
Delphi syntax
function DbiQExecDirect (hDb: hDBIDb; eQryLang: DBIQryLang; pszQuery: PChar;
phCur: phDBICur): DBIResult stdcall;

Description
DbiQExecDirect executes a SQL or QBE query and returns a cursor to the result set, if one is
generated.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
eQryLang Type: DBIQryLang (Input)
Specifies the query language, QBE or SQL.
pszQuery Type: pCHAR (Input)
Pointer to the query, formulated in the appropriate language.
phCur Type: phDBICur (Output)
Pointer to the cursor handle.
Usage
This function is used to immediately prepare and execute a query. If the query returns a
result set, the cursor handle to the result set is returned into the address given by phCur. If
the query does not generate a result set, the returned cursor handle is zero. If no cursor
handle address is given and a result set would be returned, the result set is discarded.
SQL: For SQL language queries, if the database handle given does not refer to a server
database, the BDE SQL dialect is recognized. Otherwise, the appropriate server dialect is
expected. Heterogeneous data access and cross-server data access can be achieved by
using the BDE SQL dialect and referencing tables qualified with database alias names.
QBE: For QBE language queries, the BDE QBE Syntax is expected. Heterogeneous data
access and cross-server data access can be achieved.
DbiResult return values
DBIERR_NONE The query was successfully prepared and executed.
DBIERR_MULTIRESULTS Query returned multiple result sets.

See also
DbiQAlloc, DbiQExec, DbiQFree, DbiQPrepare, DbiQSetParams

C Examples: DbiQExecDirect
Execute a SQL Statement and return the numbers in the result set if applicable:
Note that Count will be 0 if a result set is not created. The following input is used in this
example: fDbiQExecDirect("Select * from 'CUST.DBF'", hDb, &hTmpCur, &Count);

DBIResult fDbiQExecDirect(pCHAR QryStr, hDBIDb hTmpDb, phDBICur phTmpCur,
pUINT32 Count)

{
 DBIResult rslt;

 *Count = 0;
 rslt = Chk(DbiQExecDirect(hTmpDb, qrylangSQL, QryStr, phTmpCur));
 if (rslt == DBIERR_NONE)
 {
 if (*phTmpCur != 0)
 Chk(DbiGetRecordCount(*phTmpCur, Count));
 }
 return rslt;
}

Delphi Examples: DbiQExecDirect
Execute a SQL statement and return the numbers in the result set if applicable.
Count will be 0 if a result set is not created. The function also returns the number of rows in
the result table. This example uses the following input:
 fDbiQExecDirect('Select * from CUSTOMER', Database1.Handle, hTmpCur);

The function is:
function fDbiQExecDirect(QryStr: string; hTmpDb: hDBIDb; var hTmpCur:
hDBICur): Longint;

var
 Count: Longint;
begin
 Check(DbiQExecDirect(hTmpDb, qrylangSQL, PChar(QryStr), @hTmpCur));
 if (hTmpCur <> nil) then begin
 Check(DbiGetRecordCount(hTmpCur, Count));
 Result := Count;
 end
 else
 Result := 0;
end;

DbiQExecProcDirect {button C
Examples,JI(`>example',`exdbiqexecprocdirect')} {button Delphi
Examples,JI(`>example',`dexdbiqexecprocdirect')}
C syntax
DBIResult DBIFN DbiQExecProcDirect (hDb, pszProc, uParamDescs, paParamDescs,
pRecBuf, phCur);

Delphi syntax
function DbiQExecProcDirect (hDb: hDBIDb; pszProc: PChar; uParamDescs: Word;
paParamDescs: pSPParamDesc; pRecBuff: Pointer; var hCur: hDBICur):
DBIResult stdcall;

Description
DbiQExecProcDirect executes a stored procedure and returns a cursor to the result set, if
one is generated.

Usage
You must set all parameters (including output parameters) before statement execution.
After execution, output parameter values are placed in the specified offset of the client-
supplied pRecBuf. If the output parameter value is NULL or TRUNCATED, then indNULL or
indTRUNC is placed in the iNulloffset of the client-supplied pRecBuf. Note that indNULL and
indTRUNC are enums defined by eINDValues.
Sybase: Output parameter values are not available until after all rows have been fetched
from the result set.
InterBase: When calling DbiQExecProcDirect, all input parameters must be specified
before output parameters.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszProc Type: pCHAR (Input)
Stored procedure name.
uParamDescs Type: UINT16 (Input)
Number of parameter descriptors.
paParamDescs Type: pSPParamDesc (Input)
Array of parameter descriptors.
pRecBuf Type: pBYTE (Input)
Record buffer.
phCur Type: phDBICur (Output)
Pointer to the cursor handle.
DbiResult return values
DBIERR_NONE The stored procedure was successfully prepared and executed.
DBIERR_MULTIRESULTS Query returned multiple result sets.

See also
DbiQAlloc, DbiQPrepareProc, DbiQSetProcParams, DbiOpenSPList, DbiOpenSPParamList

C Examples: DbiQExecProcDirect
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiQExecProcDirect
An example for this function is under development and will be provided in an upcoming
Help release.

DbiQGetBaseDescs {button C
Examples,JI(`>example',`exdbiqgetbasedescs')} {button Delphi
Examples,JI(`>example',`dexdbiqgetbasedescs')}
C syntax
DBIResult DBIFN DbiQGetBaseDescs (hStmt, phCur);
Delphi syntax
function DbiQGetBaseDescs (hStmt: hDBIStmt; phCur: phDBICur): DBIResult
stdcall;

Description
DbiQGetBaseDescs returns the original database, table, and field names of the fields that
make up the result set of a query.
Parameters
hStmt Type: hDBIStmt (Input)
Statement handle.
phCur Type: phDBICur (Input)
Cursor of type STMTBaseDesc.
Usage
This function gives the client the original columns upon which the result set is based; in
other words, the original columns from the SQL select list along with their table and
database names. By associating the base or original field attributes with the result set,
Delphi users can obtain a complete picture.
As with other BDE functions that return a cursor, the cursor must be closed by the client.
The normal calling sequence to use is:    DbiQAlloc, DbiQPrepare, DbiQGetBaseDescs,
DbiQExec, DbiQFree, DbiCloseCursor(pStmtBaseCur).

DbiResult return values
DBIERR_NONE The query's resources were released successfully.
DBIERR_NOTSUPPORTED A QBE language query could processed.

See also
DbiQAlloc, DbiQPrepare, DbiQExec, DbiQFree, DbiCloseCursor

C Examples: DbiQGetBaseDescs
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiQGetBaseDescs
Return the original database, table, and field names for a query.
The query from which the base descriptions come is specified in the Query parameter.
Descriptions are added to the string list object specified in the List parameter. This example
uses the following input:
 GetBaseDescs(Query2, Memo1.Lines);

procedure GetBaseDescs(Query: TQuery; List: TStrings);
var
 hCur: hDBICur;
 rslt: DBIResult;
 Descs: STMTBaseDesc;
begin
 hCur := nil;
 try
 // Look at DbiQGetBaseDescs in the BDE32.HLP for more information...
 Check(DbiQGetBaseDescs(Query.STMTHandle, hCur));
 repeat
 rslt := DbiGetNextRecord(hCur, dbiNOLOCK, @Descs, nil);
 if (rslt = DBIERR_NONE) then
 // Look at STMTBaseDescs in the BDE32.HLP for more information...
 List.Add(Format('DB Name: %s Table Name: %s Field Name: %s',
 [Descs.szDatabase, Descs.szTableName, Descs.szFieldName]))
 else
 if (rslt <> DBIERR_EOF) then
 Check(rslt);
 until (rslt <> DBIERR_NONE);
 finally
 if (hCur <> nil) then
 check(DbiCloseCursor(hCur));
 end;
end;

DbiQFree {button C Examples,JI(`>example',`exdbiqsetparams')}
{button Delphi Examples,JI(`>example',`dexdbiqexec')}

C syntax
DBIResult DBIFN DbiQFree (phStmt);
Delphi syntax
function DbiQFree (var hStmt: hDBIStmt): DBIResult stdcall;
Description
DbiQFree frees the resources associated with a previously allocated query identified by the
supplied statement handle.

Parameters
phStmt Type: phDBIStmt (Input)
Pointer to the statement handle.

Usage
This function is used to release the resources acquired during the query execution process.
If cursors are associated with an outstanding result set produced by execution of the
statement, the cursors remain valid and the dependent statement resources are not
released until the last cursor has been closed or the result set is read to completion,
whichever happens first.
DbiResult return values
DBIERR_NONE The query's resources were released successfully.

See also
DbiQAlloc, DbiQExec, DbiQExecDirect, DbiQPrepare,

DbiQInstantiateAnswer {button C
Examples,JI(`>example',`exdbiqsetparams')} {button Delphi
Examples,JI(`>example',`dexdbiqexec')}
C syntax
DBIResult DBIFN DbiQInstantiateAnswer (hStmt, [hCursor],
pszAnswerName,pszAnswerType, bOverWrite, phDstCursor)

Delphi syntax
function DbiQInstantiateAnswer (hStmt: hDBIStmt; hCur: hDBICur;
pszAnswerName: PChar; pszAnswerType : PChar; bOverWrite: Bool; var phCur:
phDBICur): DBIResult stdcall;

Description
DbiQInstantiateAnswer creates an ANSWER table of type PARADOX or DBASE. The flags
pszAnswerName and pszAnswerType may be used in renaming and changing the type
respectively. If the flag bOverWrite is set to TRUE, then it will overwrite the existing
pszAnswerTable.
Parameters
hStmt Type: hDBIStmt (Input)
Specifies the statement handle
hCursor Type: hDBICur (Input)
Specifies the cursor handle. Optional.
pszAnswerName Type: pCHAR (Input)
Pointer to the name of the permanent table.
pszAnswerType Type: pCHAR (Input)
Pointer to the name of the driver type.
bOverWrite Type: BOOL (Input)
If set to TRUE, overwrites the existing file.
phDstCursor Type: phDBICur (Output)
Pointer to the cursor handle.
Usage
DbiQInstantiateAnswer is used to create a permanent table from a cursor handle. The table
name is ANSWER.DB by default or it will create pszAnswerName with pszAnswerType. You
can use the bOverWrite flag to overwrite the existing pszAnswerTable.

Prerequisites
A statement handle must be allocated with DbiQAlloc.
Completion state
The table is saved to disk when the cursor is closed.

DbiResult return values
DBIERR_NONE The temporary table has been designated as a permanent table.

See also
DbiSaveChanges, DbiCreateTempTable, DbiCloseCursor

DbiQPrepare {button C
Examples,JI(`>example',`exdbiqsetparams')} {button Delphi
Examples,JI(`>example',`dexdbiqexec')}
C syntax
DBIResult DBIFN DbiQPrepare (hStmt, pszQuery);

Delphi syntax
function DbiQPrepare (hStmt: hDBIStmt; pszQuery: PChar): DBIResult stdcall;
Description
DbiQPrepare prepares a SQL or QBE query for execution, and accepts a handle to a
statement containing the prepared query.
Parameters
hStmt Type: hDBIStmt (Input)
Specifies the statement handle
pszQuery Type: pCHAR (Input)
Pointer to the query, formulated in the appropriate language.

Usage
This function is used to prepare a query for subsequent execution.
SQL: For SQL language queries, if the database handle given does not refer to a server
database, the BDE SQL dialect is recognized. Otherwise, the appropriate server dialect is
expected. Heterogeneous data access and cross-server data access can be achieved by
using the BDE SQL dialect and referencing tables qualified with database alias names.
QBE: For QBE language queries, the BDE QBE Syntax is expected. Heterogeneous data
access and cross-server data access can be achieved.
DbiResult return values
DBIERR_NONE The query was successfully prepared for execution.
DBIERR_ALIASNOTOPEN One of the aliases used in the query was not opened prior to

preparing the query. The alias name can be found on the error
context stack.

See also
DbiQAlloc, DbiQExec, DbiQExecDirect, DbiQFree, DbiQSetParams

DbiQPrepareProc {button C
Examples,JI(`>example',`exdbiqprepareproc')} {button Delphi
Examples,JI(`>example',`dexdbiqprepareproc')}
C syntax
DBIResult DBIFN DbiQPrepareProc (hDb, pszProc, uParamDescs, paParamDescs,
pRecBuf, phStmt);

Delphi syntax
function DbiQPrepareProc (hDb: hDBIDb; pszProc: PChar; uParamDescs: Word;
paParamDescs: pSPParamDesc; pRecBuff: Pointer; var hStmt: hDBIStmt):
DBIResult stdcall;

Description
DbiQPrepareProc prepares and optionally binds parameters for a stored procedure.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszProc Type: pCHAR (Input)
Stored procedure name.
uParamDescs Type: UINT16 (Input)
Specifies the number of parameter descriptors.
paParamDescs Type: pSPParamDesc (Input)
Pointer to the array of parameter descriptors.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer (or NULL if parameters are not to be bound.)
phStmt Type: phDBIStmt (Output)
Specifies the returned statement handle.

Usage
Use with the existing functions DbiQExec and DbiQFree. If pRecBuf is NULL, then the
parameters are not bound.

DbiResult return values
DBIERR_NONE The stored procedure was successfully prepared for execution.

See also
DbiQExecProcDirect, DbiQSetProcParams, DbiQExec, DbiQExecDirect, DbiQFree,
DbiOpenSPList, DbiOpenSPParamList

C Examples: DbiQPrepareProc
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiQPrepareProc
An example for this function is under development and will be provided in an upcoming
Help release.

DbiQSetParams {button C
Examples,JI(`>example',`exdbiqsetparams')} {button Delphi
Examples,JI(`>example',`dexdbiqsetparams')}
C syntax
DBIResult DBIFN DbiQSetParams (hStmt, uFldDescs, paFldDescs, pRecBuf);
Delphi syntax
function DbiQSetParams (hStmt: hDBIStmt; uFldDescs: Word; paFldDescs:
pFLDDesc; pRecBuff: Pointer): DBIResult stdcall;

Description
DbiQSetParams associates data with parameter markers embedded within a prepared
query.
Parameters
hStmt Type: hDBIStmt (Input)
Specifies the statement handle.
uFldDescs Type: UINT16 (Input)
Specifies the number of parameter field descriptors given.
paFldDescs Type: pFLDDesc (Input)
Pointer to the array of parameter field descriptors.
pRecBuf Type: pBYTE (Input)
Pointer to the client buffer containing data for the specified fields.
Usage
This function is used to set the value of parameter markers in a prepared query before the
query execution.
The field descriptor array and record buffer is constructed by the client and passed to BDE,
which uses each specified field, along with the record buffer, to locate the data and set the
specified parameter. Each field may be either a BDE type or a driver type for the database
that the query is prepared for.
Parameter markers are "?", ":name", or "~name" (tilde, used only with QBE queries). The
field descriptor for a "?" parameter marker must contain no name, and must contain a field
number that matches the position of the "?" marker within the query, beginning with
marker number one. The field descriptor for a ":name" marker must contain the name of
the marker, and a field number of zero.
Parameter settings are retained from statement execution to statement execution.
However, all parameters must be set before execution can occur.
To bind BLOBs and strings longer than 255 characters you must use BLOBParamDesc to
describe the parameter in a FLDDesc structure. Clients need to allocate and set up a
BLOBParamDesc structure for each blob or long string that will be passed as a parameter.
For BLOBs, iFldType in FLDDesc is set to fldBLOB and iSubType is set to fldstMEMO or
fldstBINARY. For long strings, iFldType should be set to fldZSTRING and the length should
specified in iUnits1 as normal. The BLOBParamDesc structure is copied into the parameter
buffer at the specifed iOffset, then DbiQSetParams and DbiQExec are called as normal. You
can determine if a field is a BLOB or long string by checking iUnits1. If iUnits1 is 1, it is a
BLOB; if it is greater than one, it is a long string. This test does not work on servers that
don't maintain a distinction between BLOBs and long strings, like Sybase.

DbiResult return values
DBIERR_NONE The value of parameter markers was successfully set.
DBIERR_OBJNOTFOUND A field descriptor references a parameter marker that does not exist.

DBIERR_INVALIDHNDL DbiQSetParams was called without first having called DbiQPrepare.

See also
DbiQExec, DbiQFree, DbiQPrepare, DbiQAlloc

C Examples: DbiQSetParams
Create a Query result set table.
This example uses the following input:

fQFunction1(hDb, "Result");
DBIResult fQFunction1(hDBIDb hTmpDb, pCHAR TblName)
{
 DBIResult rslt;
 hDBIStmt hStmt;
 hDBICur hQryCur = 0, hNewCur = 0;
 FLDDesc FldDesc;
 CHAR SQL[] = "select c.cust_no, c.name, c.state_prov, "
 " o.'Sale Date', o.'Month' "
 "from 'cust.dbf' c, orders o "

 "where (c.cust_no between ? and 4999) "
 " and (c.cust_no = o.'customer no') "
 " and c.state_prov is not null "
 "order by c.name desc, o.'Month' asc; ";
 DFLOAT Cust = 2000.00;

 // Create a Field Descriptor for the parameter
 memset(&FldDesc, 0, sizeof(FLDDesc));
 FldDesc.iFldNum = 1;
 FldDesc.iFldType = fldFLOAT;
 FldDesc.iUnits1 = 1;
 FldDesc.iLen = sizeof(Cust);
 // Allocate a statment handle
 rslt = Chk(DbiQAlloc(hTmpDb, qrylangSQL, &hStmt));
 if (rslt != DBIERR_NONE)
 return rslt;
 // Prepare the SQL statment
 rslt = Chk(DbiQPrepare(hStmt, SQL));
 if (rslt != DBIERR_NONE)
 {
 DbiQFree(&hStmt);
 return rslt;
 }
 // Since only one parameter is used, there is no need for a record
buffer.

 // Use the Cust variable itsself.
 rslt = Chk(DbiQSetParams(hStmt, 1, &FldDesc, (pBYTE)&Cust));
 if (rslt != DBIERR_NONE)
 {
 DbiQFree(&hStmt);
 return rslt;
 }
 // Execute the SQL statment
 rslt = Chk(DbiQExec(hStmt, &hQryCur));
 if (rslt != DBIERR_NONE)
 {
 DbiQFree(&hStmt);
 return rslt;
 }
 // Save the Result set to disk and close the result query(hQryCur)
 // Now there is an open cursor on the result set on disk.
 rslt = Chk(DbiQInstantiateAnswer(hStmt, hQryCur, TblName, szPARADOX,

 TRUE, &hNewCur));
 if (rslt != DBIERR_NONE)
 {
 DbiQFree(&hStmt);
 return rslt;
 }
 // Close the cursor
 if (hNewCur != 0)
 Chk(DbiCloseCursor(&hNewCur));

 return rslt;
}
DBIResult fQFunction1(hDBIDb hTmpDb, pCHAR TblName)
{
 DBIResult rslt;
 hDBIStmt hStmt;
 hDBICur hQryCur = 0, hNewCur = 0;
 FLDDesc FldDesc;
 CHAR SQL[] = "select c.cust_no, c.name, c.state_prov, "
 " o.'Sale Date', o.'Month' "
 "from 'cust.dbf' c, orders o "

 "where (c.cust_no between ? and 4999) "
 " and (c.cust_no = o.'customer no') "
 " and c.state_prov is not null "

 "order by c.name desc, o.'Month' asc; ";
 DFLOAT Cust = 2000.00;

 // Create a Field Descriptor for the parameter
 memset(&FldDesc, 0, sizeof(FLDDesc));
 FldDesc.iFldNum = 1;
 FldDesc.iFldType = fldFLOAT;
 FldDesc.iUnits1 = 1;
 FldDesc.iLen = sizeof(Cust);
 // Allocate a statment handle
 rslt = DbiQAlloc(hTmpDb, qrylangSQL, &hStmt);
 if (rslt != DBIERR_NONE)
 return rslt;
 // Prepare the SQL statment

 rslt = DbiQPrepare(hStmt, SQL);
 if (rslt != DBIERR_NONE)
 {
 DbiQFree(&hStmt);
 return rslt;
 }
 // Since only one parameter is used, there is no need for a record
buffer.

 // Use the Cust variable itsself.
 rslt = DbiQSetParams(hStmt, 1, &FldDesc, (pBYTE)&Cust);
 if (rslt != DBIERR_NONE)
 {
 DbiQFree(&hStmt);
 return rslt;
 }
 // Execute the SQL statment
 rslt = DbiQExec(hStmt, &hQryCur);

 if (rslt != DBIERR_NONE)

 {
 DbiQFree(&hStmt);
 return rslt;
 }
 // Save the Result set to disk and close the result query(hQryCur)
 // Now there is an open cursor on the result set on disk.
 rslt = DbiQInstantiateAnswer(hStmt, hQryCur, TblName, szPARADOX,
 TRUE, &hNewCur);
 if (rslt != DBIERR_NONE)
 {
 DbiQFree(&hStmt);
 return rslt;
 }
 // Close the cursors
 if (hNewCur != 0)
 DbiCloseCursor(&hNewCur);
 if (hQryCur != 0)
 DbiCloseCursor(&hQryCur);

 return rslt;
}
Inserts GIF image into a Sybase table with a column of type Image
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <assert.h>
#include <memory.h>
#include <malloc.h>
#include <string.h>
#include <idapi.h>

int main()
{
 hDBIDb hDb;
 hDBIStmt hStmt;
 char *pszQuery = "insert into blobs values (?, ?)";
 FLDDesc params[2];
 BLOBParamDesc blob;
 BYTE pParamBuf[10 + sizeof (BLOBParamDesc)+ 2];
 pBYTE pBlobBuf;
 pBYTE p = NULL;
 DBIResult rc;
 int fHandle;
 int size;
 FILE *infile;

 // get the file size.
 fHandle = open("c:\\temp\\cs1.gif", O_BINARY);
 assert (fHandle);
 size = filelength(fHandle);
 close(fHandle);

 pBlobBuf = (pBYTE)malloc(size);
 assert(pBlobBuf);

 memset(pBlobBuf, 0x0, size);

 // Read the blob
 infile = fopen("c:\\temp\\cs1.gif", "r");
 assert(infile);
 rc = fread (pBlobBuf, size, 1, infile);
 fclose(infile);

 rc = DbiInit(NULL);

 if (rc == DBIERR_NONE)
 rc = DbiOpenDatabase("sybase_database", NULL, dbiREADWRITE,
 dbiOPENSHARED, "sybpass", NULL, NULL, NULL,
&hDb);

 if (rc == DBIERR_NONE)
 rc = DbiQAlloc(hDb, qrylangSQL, &hStmt);

 if (rc == DBIERR_NONE)
 rc = DbiQPrepare(hStmt, pszQuery);

 if (rc == DBIERR_NONE)
 {
 memset (¶ms, 0x0, sizeof(params));
 memset (&blob, 0x0, sizeof(blob));
 memset (pParamBuf, 0x0, sizeof (pParamBuf));

 params[0].iFldNum = 1;
 params[0].iFldType = fldFLOAT;
 params[0].iOffset = 0;
 params[0].iLen = 8;
 params[0].iNullOffset = 8;

 params[1].iFldNum = 2;
 params[1].iFldType = fldBLOB;
 params[1].iSubType = fldstBINARY;
 params[1].iOffset = 10;
 params[1].iLen = sizeof(BLOBParamDesc);
 params[1].iNullOffset = params[1].iOffset + sizeof(BLOBParamDesc);
 params[1].iUnits1 = 0;
 params[1].iUnits2 = 0;

 p = pParamBuf;
 *(pDFLOAT)p = 7;
 p = pParamBuf+params[0].iNullOffset;
 *(pINT16)p = 8;

 blob.pBlobBuffer = pBlobBuf;
 blob.ulBlobLen = size;

 p = pParamBuf+params[1].iOffset;
 *(pBLOBParamDesc)p = blob;

 p = pParamBuf+params[1].iNullOffset;
 *(pINT16)p = 1;

 rc = DbiQSetParams(hStmt, 2,params, pParamBuf);
 }

 if (rc == DBIERR_NONE)
 rc = DbiQExec(hStmt, NULL);

 rc = DbiQFree(&hStmt);

 rc = DbiCloseDatabase(&hDb);

 rc = DbiExit();

 if (pBlobBuf)
 free(pBlobBuf);

 return (rc);
}
Inserts a long character string into an Informix table
#include <memory.h>
#include <malloc.h>
#include <string.h>
#include <idapi.h>

int main()
{
 hDBIDb hDb;
 hDBIStmt hStmt;
 char *pszQuery = "insert into longstrings values (?, ?)";
 FLDDesc params[2];
 BLOBParamDesc blob;
 BYTE pParamBuf[10 + sizeof (BLOBParamDesc)+ 2];
 BYTE pBlobBuf[32511];
 pBYTE p = NULL;
 DBIResult rc;

 rc = DbiInit(NULL);

 if (rc == DBIERR_NONE)
 rc = DbiOpenDatabase("informix_database", NULL, dbiREADWRITE,
 dbiOPENSHARED, "infpass", NULL, NULL, NULL,
&hDb);

 if (rc == DBIERR_NONE)
 rc = DbiQAlloc(hDb, qrylangSQL, &hStmt);

 if (rc == DBIERR_NONE)
 rc = DbiQPrepare(hStmt, pszQuery);

 if (rc == DBIERR_NONE)
 {
 memset (¶ms, 0x0, sizeof(params));
 memset (&blob, 0x0, sizeof(blob));
 memset (pParamBuf, 0x0, sizeof (pParamBuf));
 memset (pBlobBuf, 0x0, 32511);

 params[0].iFldNum = 1;
 params[0].iFldType = fldFLOAT;
 params[0].iOffset = 0;
 params[0].iLen = 8;
 params[0].iNullOffset = 8;

 params[1].iFldNum = 2;
 params[1].iFldType = fldZSTRING;
 params[1].iSubType = 0;
 params[1].iOffset = 10;
 params[1].iLen = sizeof(BLOBParamDesc);
 params[1].iNullOffset = params[1].iOffset + sizeof(BLOBParamDesc);
 params[1].iUnits1 = 32511;
 params[1].iUnits2 = 0;

 p = pParamBuf;
 *(pDFLOAT)p = 2;
 p = pParamBuf+params[0].iNullOffset;
 *(pINT16)p = 8;

 blob.pBlobBuffer = pBlobBuf;
 blob.ulBlobLen = 0;

 p = pParamBuf+params[1].iOffset;
 *(pBLOBParamDesc)p = blob;

 p = pParamBuf+params[1].iNullOffset;
 *(pINT16)p = 1;

 p = pBlobBuf;

 for (int i = 0; i < 32511; i++)
 *(p+i) = '3';

 rc = DbiQSetParams(hStmt, 2,params, pParamBuf);
 }

 if (rc == DBIERR_NONE)
 rc = DbiQExec(hStmt, NULL);

 rc = DbiQFree(&hStmt);

 rc = DbiCloseDatabase(&hDb);

 rc = DbiExit();

 return (rc);
}

Delphi Examples: DbiQSetParams
An example for this function is under development and will be provided in an upcoming
Help release.

DbiQSetProcParams {button C
Examples,JI(`>example',`exdbiqsetprocparams')} {button Delphi
Examples,JI(`>example',`dexdbiqsetprocparams')}
C syntax
DBIResult DBIFN DbiQSetProcParams (hStmt, uParamDescs, paParamDescs, pRecBuf
);

Delphi syntax
function DbiQSetProcParams (hStmt: hDBIStmt; uParamDescs: Word;
paParamDescs: pSPParamDesc; pRecBuff: Pointer): DBIResult stdcall;

Description
DbiQSetProcParams binds parameters for a stored procedure prepared with
DbiQPrepareProc.

Parameters
hStmt Type: hDBIStmt (Input)
Specifies the statement handle.
uParamDescs Type: UINT16 (Input)
Specifies the number of parameter descriptors.
paParamDescs Type: pSPParamDesc (Input)
Pointer to the array of parameter descriptors.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer. (Or NULL if parameters are not to be bound.)

Usage
You must set all parameters (including output parameters) before statement execution.
After execution, output parameter values are placed in the specified offset of the client-
supplied pRecBuf. If the output parameter value is NULL or TRUNCATED, then indNULL or
indTRUNC is placed in the iNulloffset of the client-supplied pRecBuf. Note that indNULL and
indTRUNC are enums defined by eINDValues.
Sybase: Output parameter values are not available until after all rows have been fetched
from the result set.
InterBase: When calling DbiQSetProcParams and DbiQPrepareProc, all input parameters
must be specified before output parameters.
Prerequisites
The function DbiQPrepareProc must be called before calling DbiQSetProcParams.
These function calls assume that the client knows the stored procedure parameters,
parameter types (such as INPUT, OUTPUT, INPUT/OUTPUT), and parameter datatypes.

DbiResult return values
DBIERR_NONE The value of parameter markers was successfully set.
DBIERR_OBJNOTFOUND A field descriptor references a parameter marker that does not exist.

See also
DbiQPrepareProc, DbiQExecProcDirect, DbiOpenSPList, DbiOpenSPParamList

C Examples: DbiQSetProcParams
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiQSetProcParams
An example for this function is under development and will be provided in an upcoming
Help release.

DbiReadBlock {button C
Examples,JI(`>example',`exdbireadblock')} {button Delphi
Examples,JumpID(>example, dexdbiwriteblock)}
C syntax
DBIResult DBIFN DbiReadBlock (hCursor, piRecords, pBuf);
Delphi syntax
function DbiReadBlock (hCursor: hDBICur; var iRecords: Longint; pBuf:
Pointer): DBIResult stdcall;

Description
DbiReadBlock reads a specified number of records (starting from the current position of the
cursor) into a buffer.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle to the table.
piRecords Type: pUINT32 (Input/Output)
On input, specifies the number of records to read. On output, pointer to the client variable
that receives the number of actual records that were read.
pBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the record data.

Usage
This function is equivalent to doing a loop with DbiGetNextRecord for the specified number
in piRecords, though it can be considered significantly faster than a DbiGetNextRecord
loop.
If filters are active, DbiReadBlock reads only the records that meet filter criteria; all others
are skipped. The records are not locked. The number of records read may differ from the
number of records requested due to conditions such as end of table.
DbiReadBlock can access data in blocks larger than 64Kb, depending on the size you
allocate for the buffer.

Completion state
The variable, piRecords, contains the number of actual records read after the function
completes. The cursor position is updated according to the actual number of records read.

DbiResult return values
DBIERR_NONE The block of records was successfully read.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL, or piRecords is NULL,

or pBuf is NULL.
DBIERR_EOF An attempt was made to read beyond the end of the file. The cursor is positioned in

the crack at the end of the file. piRecords contains the number of
records, if any, that were read before the end of file was reached.

See also
DbiWriteBlock, DbiGetNextRecord

C Examples: DbiReadBlock
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiReadBlock
An example for this function is under development and will be provided in an upcoming
Help release.

DbiRegenIndex{button C
Examples,JI(`>example',`exdbiregenindex')} {button Delphi
Examples,JI(`>example',`dexdbiregenindex')}
C syntax
DBIResult DBIFN DbiRegenIndex (hDb, [hCursor], [pszTableName],
[pszDriverType], pszIndexName, pszIndexTagName, iIndexId);

Delphi syntax
function DbiRegenIndex (hDb: hDBIDb; hCursor: hDBICur; pszTableName: PChar;
pszDriverType: PChar; pszIndexName: PChar; pszIndexTagName: PChar;
iIndexId: Word): DBIResult stdcall;

Description
DbiRegenIndex regenerates an index to ensure that it is up to date (all records currently in
the table are included in the index and are in the index order). It can also be used to pack
the index on disk.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle associated with the database where the table exists.
hCursor Type: hDBICur (Input)
Specifies the cursor on the table. Optional. If hCursor is specified, the operation is
performed on the table associated with the cursor. If hCursor is NULL, pszTblName and
pszDriverType determine the table to be used.
pszTableName Type: pCHAR (Input)
Pointer to the table name. Optional. If hCursor is NULL, pszTableName and pszDriverType
determine the table to be used. If both pszTableName and hCursor are specified,
pszTableName is ignored.
For Paradox, FoxPro, and dBASE, if pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name
is taken from the current directory of the database associated with hDb.
pszDriverType Type: pCHAR (Input)
Pointer to the table type. Optional. For Paradox, FoxPro, and dBASE tables, this parameter
is required if pszTableName has no extension. pszDriverType can be one of the following
values: szDBASE or szPARADOX.
pszIndexName Type: pCHAR (Input)
Pointer to the name of the index. See rules for naming indexes in the IDXDesc section.
pszIndexTagName Type: pCHAR (Input)
Pointer to the tag name of the index in a .MDX or .CDX file. Used for dBASE and FoxPro
tables only. This parameter is ignored if the index given by pszIndexName is not a .MDX
or .CDX index.
iIndexId Type: UINT16 (Input)
Specifies the index number.
Usage
iIndexId, pszIndexName, and pszIndexTagName are used in various combinations to specify
the index to regenerate.
Important: A maintained index is automatically updated when the table is updated. A

non-maintained index must use DbiRegenIndex to update the index after the
table is modified before it can be used to access data.

Paradox: The effect of regenerating a maintained index is that it becomes more efficient

and compact. (Frequent updates can fragment an index.)
SQL, Access: SQL and Access indexes cannot be regenerated.
dBASE and FoxPro: DbiRegenIndex is normally used to update a non-maintained dBASE
or FoxPro index. However, there may be situations when a maintained index needs to be
regenerated. Since a non-production index is maintained only when it is in use, it is not
actually maintained at all times. If the index is not up to date, DbiRegenIndex can be used
to synchronize the index with the current data.

Prerequisites
The table name must be provided and the index must already exist. When regenerating a
maintained index, the table must be opened exclusively. When regenerating a non-
maintained index, BDE must be able to obtain a write lock on the table.
DbiResult return values
DBIERR_NONE The index specified by pszIdxName was successfully regenerated.
DBIERR_NOSUCHINDEX The given index (pszIdxName) does not exist.
DBIERR_INVALIDPARAM A cursor was not provided for the table, and the table name is either

empty or not provided.
DBIERR_INVALIDHNDL The specified handle was invalid or NULL.
DBIERR_NEEDEXCLACCESS A cursor was provided for the table, but it was not opened in

exclusive mode when regenerating a maintained index.
DBIERR_FILEBUSY Exclusive access could not be obtained on table.
DBIERR_FILELOCKED Write lock could not be obtained on table.
DBIERR_NOTSUPPORTED A SQL index cannot be regenerated.

See also
DbiRegenIndexes

C Examples: DbiRegenIndex
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiRegenIndex
Regenerate an index to ensure that it is up to date.
This example uses the following input:
 fDbiRegenIndex(Table1, 'ByCompany', '', 1);

The procedure is:
procedure fDbiRegenIndex(Tbl: TTable; IndexName, TagName: string; IndexNum:
Word);

begin
 Check(DbiRegenIndex(Tbl.DBHandle, nil, PChar(Tbl.TableName), nil,
 PChar(IndexName), PChar(TagName), IndexNum));
end;

DbiRegenIndexes {button C
Examples,JI(`>example',`exdbiregenindexes')} {button Delphi
Examples,JI(`>example',`dexdbiregenindexes')}
C syntax
DBIResult DBIFN DbiRegenIndexes (hCursor);
Delphi syntax
function DbiRegenIndexes (hCursor: hDBICur): DBIResult stdcall;
Description
DbiRegenIndexes regenerates all indexes associated with a cursor.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle for the table to be regenerated.
Usage
A maintained index is automatically updated when the table is updated.
dBASE or FoxPro: All open indexes are regenerated.
Paradox: All maintained and non-maintained indexes are regenerated.
SQL, Access: SQL and Access indexes cannot be regenerated.
Prerequisites
There can be more than one index open on a table. A valid cursor handle must be obtained,
the table must be opened exclusively, and the index must already exist.
DbiResult return values
DBIERR_NONE All of the indexes for the table associated with the specified cursor have been

successfully regenerated.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_NEEDEXCLACCESS The table associated with hCursor is opened in open shared mode.
DBIERR_NOTSUPPORTED SQL indexes cannot be regenerated.

See also
DbiRegenIndex

C Examples: DbiRegenIndexes
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiRegenIndexes
Regenerate all indexes associated with a cursor.
This function regenerates the indexes associated with the Ttable specified in the TblName
parameter. This example uses the following input:
 fDbiRegenIndexes(BIOLIFE_TABLE);

The procedure is:
procedure fDbiRegenIndexes(TblName: TTable);
begin
 Check(DbiRegenIndexes(TblName.Handle));
end;

DbiRegisterCallBack {button C
Examples,JI(`>example',`exdbiregistercallback')} {button Delphi
Examples,JI(`>example',`dexdbiregistercallback')}
C syntax
DBIResult DBIFN DbiRegisterCallBack (hCursor, ecbType, iClientData,
iCbBufLen, pCbBuf, pfCb);

Delphi syntax
function DbiRegisterCallBack (hCursor: hDBICur; ecbType: CBType;
iClientData: Longint; iCbBufLen: Word; CbBuf: Pointer; pfCb:
pfDBICallBack): DBIResult stdcall;

Description
DbiRegisterCallBack registers a callback function for the client application.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle to which the callback is being registered. Optional. If hCursor is
NULL, the callback is registered to the current session.
ecbType Type: CBType (Input)
Specifies the type of callback. ecbType can be cbGENPROGRESS, cbBATCHRESULT,
cbRESTRUCTURE, cbINPUTREQ, cbTABLECHANGED, cbDELAYEDUPD, or cbDBASELOGIN.
(See "Usage" below.)
iClientData Type: UINT32 (Input)
Passthrough data specified by the client. This is used to help the client establish the
context of the callback (such as a pointer to a client structure, a window handle, and so
on.) This data is passed back to the client as a parameter to the callback function.
iCbBufLen Type: UINT16 (Input)
Specifies the callback buffer length.
pCbBuf Type: pVOID (Input)
Pointer to the buffer where the callback data is to be returned. Points to an instantiated
callback descriptor, which varies depending upon the type of callback. For example, the
cbGENPROGRESS callback type creates a pointer to the CBPROGRESSDesc structure.
The data that is written to pCbBuf is the percentage completed or a message string.
pfCb Type: pfDBICallBack (Input)
Pointer to the desired callback function. Optional. If pfCb is NULL, DbiRegisterCallBack
unregisters the previously registered callback function.
Usage
Callbacks are used when a client application needs clarification about a given BDE function
before completing an operation or to return information to the client. DbiRegisterCallBack
allows the client to instruct BDE about what further actions should be taken by BDE upon
the occurrence of an event. BDE calls the client-registered function when the pertinent
event occurs, and the client responds to the callback by telling BDE what to do with the
appropriate return code (cbrABORT, cbrCONTINUE, and so on). Advantages of this
mechanism are that clients do not have to check every return code on every function call,
and BDE can get a user's response without interrupting the normal client process flow.
Callback function declarations and associated parameter lists, function return types, and
callback data types are defined in the file IDAPI.H, which is the client interface to BDE.
All callback functions use the following prototype:
typedef CBRType far *pCBRType;

typedef CBRType (DBIFN * pfDBICallBack)
(
CBType ecbType, // Callback type
UINT32 iClientData, // Client callback data
pVOID pCbInfo // Call back info/Client
Input
);

For each different callback type, the pCbInfo parameter serves a different purpose:
Callback Description
cbGENPROGRESS Informs applications about the progress made during large

batch operations.
cbRESTRUCTURE Supplies information about an impending action and requests

a response from
the caller.

cbBATCHRESULT Batch processing results.
cbTABLECHANGED Notifies user that table has changed.
cbCANCELQRY Allows user to cancel a Sybase query.
cbINPUTREQ A BDE driver requests input from user.
cbDBASELOGIN Enables clients to access encrypted dBASE tables.
cbFIELDRECALC Field(s) recalculation
cbTRACE Trace
cbDBLOGIN Database login
cbDELAYEDUPD Cached updates callback
cbNBROFCBS Number of callbacks
Prerequisites
The client application is responsible for the following actions:
· Allocating memory for pCbBuf.
· Declaring the callback function with an associated predefined parameter list.

Completion state
If a cursor is supplied, any previous callbacks for the given cursor are overwritten. All
callbacks are applicable to the current session only. The callback is valid only while the
cursor is open; when the cursor is closed, any cursor-specific callbacks are automatically
unregistered. If hCursor is NULL, then the callback applies to all cursors in the current
session that do not have an explicit callback of their own. Supplying a NULL function
pointer unregisters the callback.

DbiResult return values
DBIERR_NONE The callback was registered successfully.
DBIERR_OBJIMPLICITLYDROPPED The field name was modified.
DBIERR_OBJMAYBETRUNCATED The field width was reduced.
DBIERR_VALFIELDMODIFIED Inserted field in position pointed to by an existing VCHKDesc.
DBIERR_VALIDATEDATE An existing VCHKDesc was modified.
DBIERR_INVALIDFLDXFORM The field type was modified.
DBIERR_KEYVIOL An existing IDXDesc was modified.
DBIERR_NOMEMORY Insufficient memory was allocated for pCbBuf.

See also
DbiGetCallBack, DbiBatchMove, DbiDoRestructure, DbiForceReread

C Examples: DbiRegisterCallBack
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiRegisterCallBack
Example 1: Create a callback that handles the condition of a missing .MDX file
for a dBASE file or a missing .CDX file for a FoxPro file:

//Function called by DbiRegisterCallBack
function myfunc(ecbType : CBType; iClientData : LongInt;
 pCbInfo : pCBInputDesc): CBRType; stdcall;
const
 READONLY = 'Read Only';
 FAILOPEN = 'Fail Open'; //The default
 OPENANDDETACH = 'Open and Detach';
var
 counter : Integer;
begin
 case ecbtype of
 cbINPUTREQ: //It's a callback of cbINPUTREQ type
 if (pcbInfo.eCbInputId = cbiMDXMIssing) then begin
 for counter:=0 to (pcbInfo.iCount – 1) do
 if (pcbInfo.acbEntry[counter].szKeyword = OPENANDDETACH) then
begin

 pcbInfo.iSelection := counter + 1;
 pcbInfo.bSave := False;
 break;
 end;
 end
 else //if
 ShowMessage('Unexpected eCbInputId');
 else //case
 ShowMessage('Unexpected ecbType')
 end;
end;
//Register the callback and open the table
procedure TForm1.Button2Click(Sender: TObject);
var
 cbinfo : CBInputDesc;
begin
 Session.Open;
 Check(DbiRegisterCallBack(
 nil, //Cursor (Optional)
 cbINPUTREQ, //Type of Callback
 LongInt(0), //Pass-through client data
 sizeof(CBInputDesc), //Callback buffer len
 cbinfo, //Pointer to callback function
 @myfunc //Call back fn being registered
));
 Table1.Open;
 //Unregister the callback
 Check(DbiRegisterCallBack(nil, cbINPUTREQ, 0,
 sizeof(CBInputDesc), nil , nil));
end;

DbiRelPersistTableLock {button C
Examples,JI(`>example',`exdbirelpersisttablelock')} {button Delphi
Examples,JI(`>example',`dexdbirelpersisttablelock')}
C syntax
DBIResult DBIFN DbiRelPersistTableLock (hDb, pszTableName, [pszDriverType]);
Delphi syntax
function DbiRelPersistTableLock (hDb: hDBIDb; pszTableName: PChar;
pszDriverType: PChar): DBIResult stdcall;

Description
DbiRelPersistTableLock releases the persistent table lock on the specified table for the
associated session.
Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszTableName Type: pCHAR (Input)
Pointer to the name of the table. For Paradox, if pszTableName is a fully qualified name of a
table, the pszDriverType parameter need not be specified. If the path is not included, the
path name is taken from the current directory of the database associated with hDb.
For SQL databases, this parameter can be a fully qualified name that includes the owner
name.
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. For Paradox tables, this parameter is required if
pszTableName has no extension. pszDriverType must be szPARADOX. This parameter is
ignored if the database associated with hDb is a SQL database.
Usage
This function is valid only with Paradox and SQL tables, since only Paradox and SQL tables
can have persistent locks placed on them.
dBASE, FoxPro, Access: This function is not supported with dBASE, FoxPro, and Access
tables.
Completion state
The number of persistent locks on the table is decremented. If this is the last persistent
lock on the table, the lock is released.
DbiResult return values
DBIERR_NONE The lock was released successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.
DBIERR_NOTLOCKED The specified table does not have a persistent lock placed on it.

See also
DbiAcqPersistTableLock

C Examples: DbiRelPersistTableLock
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiRelPersistTableLock
Place and release persistent lock on the TTable T.
The function AcqAndRelPersistentTableLock, below, acquires a persistent table lock on the
table used by the TTable specified in the T parameter. This example uses the following
input:
 AcqAndRelPersistTableLock(Table1);

The procedure is:
procedure AcqAndRelPersistTableLock(T: TTable);
var
 Drv: PChar;
begin
 with T do begin
 if (TableType = ttParadox) then
 Drv := StrNew(szParadox)
 else if (TableType = ttdBASE) then
 Drv := StrNew(szdBASE)
 else Drv := nil;
 try
 Check(DbiAcqPersistTableLock(DBHandle, PChar(TableName), Drv));
 Check(DbiRelPersistTableLock(DBHandle, PChar(TableName), Drv));
 finally
 if Assigned(Drv) then StrDispose(Drv);
 end;
 end;
end;

DbiRelRecordLock {button C
Examples,JI(`>example',`exdbirelrecordlock')} {button Delphi
Examples,JI(`>example',`dexdbirelrecordlock')}
C syntax
DBIResult DBIFN DbiRelRecordLock (hCursor, bAll);
Delphi syntax
function DbiRelRecordLock (hCursor: hDBICur; bAll: Bool): DBIResult stdcall;
Description
DbiRelRecordLock releases the record lock on either the current record of hCursor or all the
record locks acquired in the current session.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
bAll Type: BOOL (Input)
Specifies which record locks to release. If set to TRUE, all record locks acquired in the
current session are released. If set to FALSE, hCursor must be positioned on a record in
order to release the lock for that record.

Usage
SQL: Optimistic locks are released by this function. The SQL drivers always perform
optimistic record locking; therefore, a record lock request does not explicitly attempt to
lock the record on the server.
Completion state
The specified record locks are removed.

DbiResult return values
DBIERR_NONE Locks were successfully released.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_NOTLOCKED The current record is not locked (this error is returned only when bAll

is FALSE).
DBIERR_NOCURREC The cursor is not positioned on a record.

See also
DbiGetNextRecord, DbiGetPriorRecord, DbiGetRecord, DbiGetRelativeRecord,
DbiIsRecordLocked

C Examples: DbiRelRecordLock
Release all record locks on the table associated with a cursor.
Note: To release only the one record pointed to by the cursor, set bAll to FALSE.
DBIResult fDbiRelRecordLock(hDBICur hCur)
{
 DBIResult rslt;
 BOOL bAll;
 bAll = TRUE;
 rslt = Chk(DbiRelRecordLock(hCur, bAll));
 return rslt;
}

Delphi Examples: DbiRelRecordLock
Release the record lock on either the current record or all the record locks in the
current session.
This example uses the following input:
 fDbiRelRecordLock(Table1.Handle, True);

The procedure is:
procedure fDbiRelRecordLock(hTmpHandle:hDBICur; bAll: Boolean);
begin
 Check(DbiRelRecordLock(hTmpHandle, bAll));
end;

DbiRelTableLock {button C
Examples,JI(`>example',`exdbireltablelock')} {button Delphi
Examples,JI(`>example',`dexdbireltablelock')}
C syntax
DBIResult DBIFN DbiRelTableLock (hCursor, bAll, eLockType);
Delphi syntax
function DbiRelTableLock (hCursor: hDBICur; bAll: Bool; eLockType:
DBILockType): DBIResult stdcall;

Description
DbiRelTableLock releases table locks of the specified type associated with the session in
which hCursor was created.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
bAll Type: BOOL (Input)
Determines which table locks to release. If set to TRUE, all locks on the table associated
with hCursor are released, and eLockType is ignored.
eLockType Type: DBILockType (Input)
Specifies the table lock type. eLockType is ignored if bAll is TRUE.
For dBASE, FoxPro, and SQL tables, dbiREADLOCK is upgraded to dbiWRITELOCK. In that
case, if eLockType specifies dbiREADLOCK, the write lock is released.

Usage
Only locks acquired by calling DbiAcqTableLock can be released. A separate call to
DbiRelTableLock is required to release each lock acquired by DbiAcqTableLock, if bAll is not
set to TRUE.
dBASE or FoxPro: See the eLockType parameter description.
SQL: See the eLockType parameter description.
Prerequisites
There must be an existing table lock of the type specified in eLockType. However, an
existing table lock is not required if all locks are being released (bAll is TRUE).
DbiResult return values
DBIERR_NONE Locks were successfully released.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_NOTLOCKED The table is not locked with the specified lock type (this error is

returned only when bAll is FALSE).

See also
DbiAcqTableLock, DbiIsTableLocked, DbiOpenLockList

eLockType
eLockType can be one of the following values:
eLockType value Table lock type
dbiWRITELOCKWrite lock
dbiREADLOCK Read lock

C Examples: DbiRelTableLock
Release all locks placed on a table by DbiAcqTableLock.
DBIResult fDbiRelTableLock(hDBICur hCur)
{
 DBIResult rslt;
 rslt = Chk(DbiRelTableLock(hCur, TRUE, NULL));
 return rslt;
}

Delphi Examples: DbiRelTableLock
Release all locks placed on a table by DbiAcqTableLock.
Delphi users can use the TTable.UnLockTable method rather than directly calling
DbiRelTableLock. This method is defined as: Procedure TTable.UnLockTable(LockType:
TLockType); This example uses the following input:
 fDbiRelTableLock(Table1, True, dbiWRITELOCK);

The procedure is:
procedure fDbiRelTableLock(TblName: TTable; All: Boolean; Lock:
DBILockType);

var
 hNewCur: hDbiCur;
begin
 Check(DbiGetCursorForTable(TblName.DBHandle,
 PChar(TblName.TableName), '', hNewCur));
 Check(DbiRelTableLock(hNewCur, All, Lock));
end;
Release all locks on the specified table.
Delphi users can use the TTable.UnlockTable method rather than directly calling
DbiRelTableLock. This example uses the following input:
 fDbiRelTableLock(Table1);

The procedure is:
procedure fDbiRelTableLock(TblName: TTable);
begin
 Check(DbiRelTableLock(TblName.Handle, True, dbiWRITELOCK));
end;

DbiRenameTable {button C
Examples,JI(`>example',`exdbirenametable')} {button Delphi
Examples,JI(`>example',`dexdbirenametable')}
C syntax
DBIResult DBIFN DbiRenameTable (hDb, pszOldName, [pszDriverType],
pszNewName);

Delphi syntax
function DbiRenameTable (hDb: hDBIDb; pszOldName: PChar; pszDriverType:
PChar; pszNewName: PChar): DBIResult stdcall;

Description
DbiRenameTable renames the table given in pszOldName and all its resources to the new
name specified by pszNewName.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.
pszOldName Type: pCHAR (Input)
Pointer to the name of existing table. For Paradox, FoxPro, and dBASE tables only, if
pszOldName contains an extension, pszDriverType is not needed. The source driver type
determines the destination driver type.
pszDriverType Type: pCHAR (Input)
Pointer to the table type. Optional. For Paradox, FoxPro, and dBASE tables, this parameter
is required if pszOldName has no extension. This parameter is ignored if the database
associated with hDb is a SQL database. pszTableType can be one of the following values:
szDBASE, szMSACCESS, or szPARADOX.
pszNewName Type: pCHAR (Input)
Pointer to the new name for the table.
Usage
When the table is renamed, other resources are also renamed, depending on the database
driver.
Paradox: The following files are renamed:

· The table (.DB extension)
· BLOB files (.MB extension)
· All indexes
· Validity check and referential integrity files (.VAL extension)

If the table is encrypted, the master password must be specified, or the DbiRenameTable
call fails. A master table in a referential integrity link, the table cannot be renamed. If it is a
detail table and the table is renamed into the same directory, the function automatically
maintains the link to its master table. If it is a detail table and the table is renamed into the
different directory, referential integrity is dropped. Exclusive access to the master table is
required.
dBASE or FoxPro: The following files are renamed:

· The table (.DBF extension)
· BLOB files (.DBT or .FPT extension)
· The production index (.MDX extension)
· The compressed index (.CDX extension)

Access: Access tables do not have supporting files.

SQL: All indexes become associated with the new table name. Some SQL servers do not
support DbiRenameTable.
Prerequisites
The client application must have permission to lock the table exclusively.

DbiResult return values
DBIERR_NONE The table was renamed successfully.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_NOSUCHTABLE The source table does not exist.
DBIERR_UNKNOWNTBLTYPE The driver type is unknown.
DBIERR_NOTSUFFTABLERIGHTS The client application has insufficient rights to the table (Paradox

only).
DBIERR_NOTSUFFFAMILYRIGHTS The client application has insufficient rights to family members

(Paradox only).
DBIERR_LOCKEDThe table is already in use.

See also
DbiAddPassword, DbiCopyTable, DbiDeleteTable

C Examples: DbiRenameTable
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiRenameTable
Rename the table to the new table name. If ReOpen is True, reset the table's
TableName and reopen the table.
Note: Most Delphi users should use TTable.RenameTable method.
procedure fDbiRenameTable(Table: TTable; NewName: string; ReOpen: Boolean);
var
 hDb: hDBIDb;
 Props: CURProps;
begin
 if not Table.Active then
 EDatabaseError.Create('Table must be open to complete operation');
 if not Table.Exclusive then
 EDBEngineError.Create(DBIERR_NEEDEXCLACCESS);
 Check(DbiGetCursorProps(Table.Handle, Props));
 // Get the Database Handle from the table cursor since Table.DBHandle will
 // be invalid once the table is closed
 Check(DbiGetObjFromObj(hDBIObj(Table.Handle), objDATABASE, hDBIObj(hDb)));
 Table.Close;
 Check(DbiRenameTable(hDb, PChar(Table.TableName), Props.szTableType,
PChar(NewName)));

 if ReOpen then begin
 Table.TableName := NewName;
 Table.Open;
 end;
end;

DbiResetRange{button C
Examples,JI(`>example',`exdbiresetrange')} {button Delphi
Examples,JI(`>example',`dexdbiresetrange')}
C syntax
DBIResult DBIFN DbiResetRange (hCursor);
Delphi syntax
function DbiResetRange (hCursor: hDBICur): DBIResult stdcall;
Description
DbiResetRange removes the specified cursor's limited range previously established by the
function DbiSetRange.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle of the table with the range to be removed.

Usage
DbiResetRange preserves the current position of the cursor.
Prerequisites
The cursor must be opened on an index.

Completion state
The function has no effect on existing filters.
If the cursor was positioned on a valid record before the call, it is left on the same record. If
it was positioned on a crack, it is positioned there after the call.
DbiResult return values
DBIERR_NONE The range was reset successfully.
DBIERR_INVAIDHNDL hCursor is not valid.
DBIERR_NOASSOCINDEX The specified table does not have an index open.

See also
DbiSetRange

C Examples: DbiResetRange
Reset the range of a table after using DbiSetRange.
This example removes constraints on a result set.
DBIResult fDbiResetRange(hDBICur hCur)
{
 DBIResult rslt;
 rslt = Chk(DbiResetRange(hCur));
 return rslt;
}

Delphi Examples: DbiResetRange
Reset the range of a table after using DbiSetRange.
This example removes constraints on a result set.
function fDbiResetRange(Handle: hDBICur): DBIResult;
begin
 Return := DbiResetRange(Handle); { remove range }
 Check(Return); { raise an exception if that failed }
end;

DbiSaveChanges {button C
Examples,JI(`>example',`exdbisavechanges')} {button Delphi
Examples,JI(`>example',`dexdbisetrange')}
C syntax
DBIResult DBIFN DbiSaveChanges (hCursor);
Delphi syntax
function DbiSaveChanges (hCursor: hDBICur): DBIResult stdcall;
Description
DbiSaveChanges forces all updated records associated with hCursor to disk.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
Usage
If the table associated with hCursor is a temporary table (created with
DbiCreateTempTable), DbiSaveChanges saves all buffered changes to disk and makes the
table permanent. This table will not be removed when the cursor is closed.
SQL: This function is not supported with SQL tables.
DbiResult return values
DBIERR_NONE All changes have been saved successfully.
DBIERR_INVALIDHNDL The specified cursor is invalid or NULL.
DBIERR_NODISKSPACE The changes could not be saved because there is no disk space

available.
DBIERR_NOTSUPPORTED This function is not supported for SQL tables.

See also
DbiMakePermanent

C Examples: DbiSaveChanges
Save changes to the specified table name.
Save changes to the specified table name. The table must be open on the current session.
This example uses the following input:

fDbiSaveChanges(hCursor);
DBIResult fDbiSaveChanges (pCHAR TblName)
{
 DBIResult rslt;
 hDBICur hTmpCur = 0;
 rslt = Chk(DbiGetObjFromName(objCURSOR, TblName, &hTmpCur));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiSaveChanges(hTmpCur));
 return rslt;
}

Delphi Examples: DbiSaveChanges
Save all updated records associated with hTmpHandle to disk.
This example uses the following input
 fDbiSaveChanges(Table1.Handle);

The procedure is:
procedure fDbiSaveChanges(hTmpHandle:hDBICur);
begin
 Check(DbiSaveChanges(hTmpHandle));
end;

DbiSetCurrSession {button C
Examples,JI(`>example',`exdbisetcurrsession')} {button Delphi
Examples,JI(`>example',`dexdbisetcurrsession')}
C syntax
DBIResult DBIFN DbiSetCurrSession (hSes);
Delphi syntax
function DbiSetCurrSession (hSes: hDBISes): DbiResult stdcall;
Description
DbiSetCurrSession sets the current session of the client application to the session
associated with hSes.

Parameters
hSes Type: hDBISes (Input)
Specifies the session handle. If hSes is NULL, DbiSetCurrSession sets the current session to
the default session.
Completion state
All subsequent operations that do not require an object handle (such as cursor, database,
or statement) are associated with this session. Any functions that take an explicit database,
query, or cursor handle as an argument are not affected by DbiSetCurrSession. Any
resources required by these functions are allocated in the context of the session set by
DbiSetCurrSession.

DbiResult return values
DBIERR_NONE The session has been successfully set to the session associated with hSes.
DBIERR_INVALIDSESHANDLE The specified session handle is invalid.

See also
DbiGetCurrSession, DbiStartSession, DbiCloseSession, DbiGetSysInfo, DbiGetSesInfo

C Examples: DbiSetCurrSession
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSetCurrSession
Set the current session.
Note: Most Delphi users should use Sessions (TSessionList) and Session (TSession) to alter
the current session.
This example uses the following input:
 fDbiSetCurrSession(Session.Handle);

The procedure is:
procedure fDbiSetCurrSession(hSes: hDBISes);
begin
 Check(DbiSetCurrSession(hSes));
end;

DbiSetDateFormat {button C
Examples,JI(`>example',`exdbisetdateformat')} {button Delphi
Examples,JI(`>example',`dexdbisetdateformat')}
C syntax
DBIResult DBIFN DbiSetDateFormat (pfmtDate);
Delphi syntax
function DbiSetDateFormat (var fmtDate: FMTDate): DBIResult stdcall;
Description
DbiSetDateFormat sets the date format for the current session.
Parameters
pfmtDate Type: pFMTDate (Input)
Pointer to the date format structure.
Usage
The date format is used by QBE (Query By Example language) for input and wildcard
character matching. It is also used by batch operations (such as DbiDoRestructure and
DbiBatchMove) to handle data type coercion between character and date types.

DbiResult return values
DBIERR_NONE The date format was successfully set.
DBIERR_INVALIDHNDL The pointer to the date format structure is NULL.
DBIERR_INVALIDPARAM Data within the date format structure is invalid.

See also
DbiGetDateFormat

C Examples: DbiSetDateFormat
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSetDateFormat
Set the date format for the current session.
This example uses the following input:
 fDbiSetDateFormat;

The procedure is:
procedure fDbiSetDateFormat;
var
 fDate : FMTDate;
begin
 // Specifies date separator character
 fDate.szDateSeparator := '/'; { }
 // Date format. 0 = MDY, 1 = DMY, 2 = YMD
 fDate.iDateMode := 0;
 // If TRUE, write year as four digits
 fDate.bFourDigitYear := False;
 // On input add 1900 to year if True
 fDate.bYearBiased := False;
 // Month displayed with a leading zero if True
 fDate.bMonthLeadingZero := False;
 //. Day displayed with leading zero if True
 fDate.bDayLeadingZero := False;
 Check(DbiSetDateFormat(fDate));
end;

DbiSetDirectory {button C
Examples,JI(`>example',`exdbisetdirectory')} {button Delphi
Examples,JI(`>example',`dexdbisetdirectory')}
C syntax
DBIResult DBIFN DbiSetDirectory (hDb, pszDir);
Delphi syntax
function DbiSetDirectory (hDb: hDBIDb; pszDir: PChar): DBIResult stdcall;
Description
DbiSetDirectory sets the current directory for a standard database.
Parameters
hDb Type: hDBIDb (Input)
Specifies a standard database handle.
pszDir Type: pCHAR (Input)
Pointer to the client buffer specifying the new current directory path. If set to NULL,
DbiSetDirectory sets the current directory to the default directory.

Usage
SQL, Access: DbiSetDirectory is not applicable to SQL and Access databases.
Prerequisites
If DbiSetDirectory has not been called, the directory is set to whatever was specified as the
working directory in the DBIEnv structure in DbiInit. If pszDir is set to NULL, the directory
reverts to the default directory. The default directory is the application's start-up directory.
If an alias was used to open the database, the path that was specified in the alias is used
as the current directory.

Completion state
After setting the directory, any TblList or FileList cursors opened on this handle are
restricted to this directory, and any call to DbiOpenTable without a specified path is limited
to searching to this directory. Any resources acquired before DbiSetDirectory is called, such
as opened tables, are not affected by the change.

DbiResult return values
DBIERR_NONE The current directory has been successfully set.
DBIERR_NOTSUPPORTED This function is not supported with a non-standard database.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

See also
DbiGetDirectory, DbiInit, DbiOpenTable

C Examples: DbiSetDirectory
Set the working directory for the specified database.
If the main directory cannot be set, the function attempts to set a backup directory. This
example uses the following input:

fDbiSetDirectory(hDb, "c:\bde\\examples\\tables", "c:\\bde32\\examples\\tables", &Main);
DBIResult fDbiSetDirectory(hDBIDb hTmpDb, pCHAR MainDir, pCHAR BackupDir,
pBOOL Main)

{
 DBIResult rslt;
 rslt = Chk(DbiSetDirectory(hTmpDb, MainDir));
 if (rslt == DBIERR_NONE)
 *Main = TRUE;
 else
 {
 rslt = Chk(DbiSetDirectory(hTmpDb, BackupDir));
 if (rslt == DBIERR_NONE)
 *Main = FALSE;
 }
 return rslt;
}

Delphi Examples: DbiSetDirectory
Set the current working directory.
The function fDbiSetDirectory for the database specified in the hdb parameter to the
directory in the Dir parameter. This example uses the following input:
 fDbiSetDirectory(Database1.Handle, 'C:\Tables');

The procedure is:
procedure fDbiSetDirectory(hdb: hDbiDb; Dir: string);
begin
 Check(DbiSetDirectory(hdb, PChar(Dir)));
end;

DbiSetFieldMap {button C
Examples,JI(`>example',`exdbisetfieldmap')} {button Delphi
Examples,JI(`>example',`dexdbisetfieldmap')}
C syntax
DBIResult DBIFN DbiSetFieldMap (hCur, iFields, pFldDesc);
Delphi syntax
function DbiSetFieldMap (hCur: hDBICur; iFields: Word; pFldDesc: pFLDDesc):
DBIResult stdcall;

Description
DbiSetFieldMap sets a field map of the table associated with the given cursor.

Parameters
hCur Type: hDBICur (Input)
Specifies the cursor handle.
iFields Type: UINT16 (Input)
Specifies the number of fields to map.
pFldDesc Type: pFLDDesc (Input)
Pointer to an array of FLDDesc structures.

Usage
A field map allows the user to effectively reorder the fields of a table or to drop some of the
fields from view. This function does not produce a new cursor, but modifies the existing
one. The client application specifies a field map by building an array of field descriptors.
The order of field descriptors in the array specifies the order in which the cursor presents
the fields.
For Paradox, FoxPro, Access, and dBASE, all data retrieval functions map the returned
records as specified in the field description; no type conversions are allowed. When a
record is updated in a table with a field map, the unmapped fields are left unchanged.
When a record is inserted in a table with a field map, the unmapped fields are set to blank.
Paradox: When a record is inserted in a table with a field map, the unmapped fields are
set to blank or set to any defined default value.
Text: Since no description of the fields are available when the text file is created with
DbiCreateTable, it is a good practice to set a field map on the cursor that is opened on that
text file. The text driver uses this field map to interpret the data types of the fields in that
text file. The DbiTranslateRecordStructure call can be used to convert the logical or physical
fields of a given driver type (such as Paradox or dBASE) to the physical fields of the text
driver. These resulting physical text fields can be used in the DbiSetFieldMap call. When a
field map is set on a text table, iFldType, iFldNum, iUnits1, and iUnits2 must be set
correctly in all the field descriptors.
Prerequisites
DbiGetFieldDescs must be called to retrieve the array of field descriptors for the table.

Completion state
The underlying table is not affected. All the original fields still exist; they are simply not
visible. (To drop fields in the underlying table, use DbiDoRestructure.) Setting iFields to 0
removes any existing field map and allows the underlying fields to become visible again.
DbiResult return values
DBIERR_NONE The field map was set successfully.

DBIERR_NA The field number in the field descriptor is greater than the number of fields in the
table, or the specified field name does not exist. Some drivers
return this error if the user tried to set a field map on a table that
already has a field map set.

See also
DbiGetFieldDescs

C Examples: DbiSetFieldMap
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSetFieldMap
Set a field map for the current table.
Note: Most Delphi users should use the Fields Editor of a TTable to set the field mapping.
This example uses the following input:
 fDbiSetFieldMap(CustomerTbl, [CustomerTbl.FieldByName('Company'),
 CustomerTbl.FieldByName('City')]);

The procedure is:
procedure fDbiSetFieldMap(Table: TTable; const Fields: array of TField);
var
 CurrentElement, Elements, FldNum: Integer;
 pFields, pOrigFields, pF, pOF: pFLDDesc;
begin
 Elements := sizeof(Fields) div sizeof(TField);
 pFields := AllocMem(Elements * sizeof(FLDDesc));
 pOrigFields := AllocMem(Table.FieldCount * sizeof(FLDDesc));
 pF := pFields;
 try
 // Get the original field descriptors
 Check(DbiGetFieldDescs(Table.Handle, pOrigFields));
 // Iterate through the original fields and create a pFLDDesc structure
 // for the new field map structure
 for CurrentElement := 0 to (Elements – 1) do begin
 pOF := pOrigFields;
 for FldNum := 1 to Table.FieldCount do begin
 // Add only the field names that match
 if (StrIComp(PChar(Fields[CurrentElement].FieldName), pOF.szName) =
0)

 then begin
 // Move the original FLDDesc to the new FLDDesc
 move(pOF^, pF^, sizeof(FLDDesc));
 Inc(pF);
 break;
 end
 else
 Inc(pOF);
 end;
 end;
 Check(DbiSetFieldMap(Table.Handle, Elements, pFields));
 finally
 FreeMem(pFields, Elements * sizeof(FLDDesc));
 FreeMem(pOrigFields, Table.FieldCount * sizeof(FLDDesc));
 end;
end;

DbiSetLockRetry {button C
Examples,JI(`>example',`exdbisetlockretry')} {button Delphi
Examples,JI(`>example',`dexdbisetlockretry')}
C syntax
DBIResult DBIFN DbiSetLockRetry (iWait);
Delphi syntax
function DbiSetLockRetry (iWait: SmallInt): DBIResult stdcall;
Description
DbiSetLockRetry sets the table and record lock retry time for the current session.
Parameters
iWait Type: INT16 (Input)
Specifies the lock retry time in seconds. The default setting is five seconds.
Value Description
<= -1 Any negative value causes infinite retries
= 0 No retry is attempted
>= 1 Number of seconds to retry

Usage
DbiSetLockRetry functions only with Paradox, FoxPro, Access, and dBASE tables. Whenever
table or record lock fails, the lock is repeatedly attempted until the retry time expires. If
iWait is 0, no retry is performed, resulting in the immediate failure of any unsuccessful lock
request. The default setting is five seconds. The following functions retry locking if the lock
fails:

Record locks:
· DbiGetNextRecord
· DbiGetRelativeRecord
· DbiGetPriorRecord
· DbiGetRecord
Table locks:
· DbiAcqTableLock
(Persistent table locks are not affected.)
The following functions do not retry locking if the lock fails:
· DbiOpenDatabase
· DbiOpenTable
· DbiSetDirectory
· DbiSetPrivateDir

SQL: This function is not supported with SQL tables.

Completion state
The number of retry seconds is set. Whenever a Paradox, FoxPro, Access, or dBASE table or
record lock fails, the lock will be attempted until the retry time limit is reached.

DbiResult return values
DBIERR_NONE The lock retry time was successfully set for the session.

See also

DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord, DbiGetRecord,
DbiAcqTableLock, DbiAcqPersistTableLock, DbiSetPrivateDir, DbiSetDirectory, DbiOpenTable

C Examples: DbiSetLockRetry
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSetLockRetry
Set the specified session's lock retry time. This example uses the following input:
 fDbiSetLockRetry(Session, 100);

The procedure is:
procedure fDbiSetLockRetry(LockSession: TSession; Wait: Integer);
var
 OriginalSession: TSession;
begin
 // Save the current session
 OriginalSession := Sessions.CurrentSession;
 // Set the current session to the specified session
 Sessions.CurrentSession := LockSession;
 // Set the lock retry time
 Check(DbiSetLockRetry(Wait));
 // Set the current session back to the original session
 Sessions.CurrentSession := OriginalSession;
end;

DbiSetNumberFormat {button C
Examples,JI(`>example',`exdbisetnumberformat')} {button Delphi
Examples,JI(`>example',`dexdbisetnumberformat')}
C syntax
DBIResult DBIFN DbiSetNumberFormat (pfmtNumber);
Delphi syntax
function DbiSetNumberFormat (var fmtNumber: FMTNumber): DBIResult stdcall;
Description
DbiSetNumberFormat sets the number format for the current session.
Parameters
pfmtNumber Type: pFMTNumber (Input)
Pointer to the client-allocated FMTNumber structure.
Usage
The number format is used by QBE for input and wildcard character matching. It is also
used by batch operations (such as DbiDoRestructure and DbiBatchMove) to handle data
type coercion between character and numeric types.

DbiResult return values
DBIERR_NONE The number format was set successfully.
DBIERR_INVALIDHNDL The pointer to the number format structure is NULL.
DBIERR_INVALIDPARAM Data within the number format structure is invalid.

See also
DbiGetNumberFormat

C Examples: DbiSetNumberFormat
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSetNumberFormat
An example for this function is under development and will be provided in an upcoming
Help release.

DbiSetPrivateDir {button C
Examples,JI(`>example',`exdbisetprivatedir')} {button Delphi
Examples,JI(`>example',`dexdbisetprivatedir')}
C syntax
DBIResult DBIFN DbiSetPrivateDir (pszDir);
Delphi syntax
function DbiSetPrivateDir (pszDir: PChar): DbiResult stdcall;
Description
DbiSetPrivateDir sets the private directory for the current session.
Parameters
pszDir Type: pCHAR (Input)
Pointer to the full path name of the new private directory. Optional. If NULL, then the
private directory is reset to the default startup directory.

Usage
Although DbiSetPrivateDir is specific to Paradox tables, it has one important use for all
drivers: all temporary or auxiliary files are created in this directory by default. If no private
directory is specified, then all temporary or auxiliary tables are created in the default
startup directory. Examples of functions that may create temporary or auxiliary tables are
DbiDoRestructure and DbiBatchMove.
If you want the private directory to be the same as the default working directory, you must
explicitly set first the private directory, then set the default directory by using
DbiSetDirectory.

Prerequisites
The directory must be available for exclusive access. No other BDE users can access the
private directory.

DbiResult return values
DBIERR_NONE The private directory was successfully set.
DBIERR_DIRBUSY The specified directory is currently in use.

See also
DbiGetSesInfo

C Examples: DbiSetPrivateDir
Set the private directory.
If the main directory cannot be set, the function attempts to set a backup directory. This
example uses the following input:

fDbiSetPrivateDir("c:\\temp", "c:\temp", &Main);
DBIResult fDbiSetPrivateDir(pCHAR MainDir, pCHAR BackupDir, pBOOL Main)
{
 DBIResult rslt;
 rslt = Chk(DbiSetPrivateDir(MainDir));
 if (rslt == DBIERR_NONE)
 *Main = TRUE;
 else
 {
 rslt = Chk(DbiSetPrivateDir(BackupDir));
 if (rslt == DBIERR_NONE)
 *Main = FALSE;
 }
 return rslt;
}

Delphi Examples: DbiSetPrivateDir
Set the private directory.
Delphi programs should use the TSession, PrivateDir property rather than using the dbi
function directly. This sets the private directory for Paradox tables. For all drivers, all
temporary or auxiliary files are created/kept in this directory. This example uses the
following input:
 fDbiSetPrivateDir('C:\Temp');

The procedure is:
procedure fDbiSetPrivateDir(Dir: string);
begin
 Check(DbiSetPrivateDir(PChar(Dir)));
end;

DbiSetProp {button C Examples,JI(`>example',`exdbisetprop')}
{button Delphi Examples,JI(`>example',`dexdbisetprop')}

C syntax
DBIResult DBIFN DbiSetProp (hObj, iProp, iPropValue);
Delphi syntax
function DbiSetProp (hObj: hDBIObj; iProp: Longint; iPropValue: Longint):
DBIResult stdcall;

Description
DbiSetProp sets the specified properties of an object to a given value. See Getting and
Setting Properties.
Parameters
hObj Type: hDBIObj (Input)
Specifies the object handle to a system, client, session, driver, database, cursor, or
statement object.
iProp Type: UINT32 (Input)
Specifies the property to set.
iPropValue Type: UINT32 (Input)
Specifies the value of the property.

Usage
The specified object does not necessarily have to match the type of property as long as the
object is associated with the object type of the property. For example, the property
drvDRIVERTYPE assumes an object of type objDRIVER, but because a cursor is derived from
a driver, a cursor handle (objCURSOR) could also be specified. See DbiGetObjFromObj for
details about associated objects.
Example
To set the translation mode of a cursor to xltNONE (see DbiOpenTable), use:
DbiSetProp (hCursor, curXLTMODE, (UINT32) xltNONE);

For properties wider than 32-bits, pass a pointer to the property, and cast the pointer to
(UINT32).
Example
The following example shows how you can use DbiSetProp to specify your preference for
live or canned result sets during query execution. A canned result set is like a snapshot or a
copy of the original data selected by the query. In contrast, a live result set is a view of the
original data; specifically, if you modify a live result set, the changes are reflected in the
original data.
DbiSetProp(hSt, stmtLIVENESS, (UINT32) wantLIVE);

DbiResult return values
DBIERR_NONE The property of the object was successfully set.
DBIERR_NOTSUPPORTED Property is not supported for this object.
DBIERR_INVALIDPARAM hObj is null or invalid.

See also
DbiOpenTable, DbiGetProp

C Examples: DbiSetProp
Execute a SQL statement and return a live cursor (if possible).
Note: If a live cursor cannot be created, the SQL statement will not be executed. This
example uses the following input:

fDbiSetProp1("SELECT * FROM 'CUST.DBF'", hDb, &hTmpCur)
DBIResult fDbiSetProp1(pCHAR QryStr, hDBIDb hTmpDb, phDBICur phTmpCur)
{
 DBIResult rslt;
 hDBIStmt hStmt;

 rslt = Chk(DbiQAlloc(hTmpDb, qrylangSQL, &hStmt));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiQPrepare(hStmt, QryStr));
 if (rslt != DBIERR_NONE)
 {
 Chk(DbiQFree(&hStmt));
 return rslt;
 }
 rslt = Chk(DbiSetProp(hStmt, stmtLIVENESS, (UINT32)wantLIVE));
 if (rslt != DBIERR_NONE)
 {
 Chk(DbiQFree(&hStmt));
 return rslt;
 }
 rslt = Chk(DbiQExec(hStmt, phTmpCur));
 Chk(DbiQFree(&hStmt));
 return rslt;
}

Delphi Examples: DbiSetProp
Example1: Enable or disable soft deletes.
Set soft deletes to True or False depending on the Boolean parameter SoftDelete in the
TTable specified in the Table parameter. This example uses the following input:
 fDbiSetProp1(AnimalTbl, True);

The procedure is:
procedure fDbiSetProp1(Table: TTable; SoftDelete: Boolean);
var
 rslt: DBIResult;
 Props: CURProps;
begin
 Check(DbiGetCursorProps(Table.Handle, Props));
 if (Props.szTableType <> szDBASE) then
 raise EDBEngineError.Create(DBIERR_NOTSUPPORTED);
 // Make sure that the property can be set
 rslt := DbiValidateProp(hDBIObj(Table.Handle), curSOFTDELETEON, True);
 if (rslt = DBIERR_NONE) then
 // Set the property
 Check(DbiSetProp(hDBIObj(Table.Handle), curSOFTDELETEON,
Longint(SoftDelete)))

 else
 raise EDBEngineError.Create(rslt);
end;

Example 2: Specify the maximum number of rows to be fetched from an SQL
statement.
Set the maximum rows fetched in the parameter MaxRows, for the SQL table specified in
the Table parameter. This example uses the following input:
 fDbiSetProp2(IBTable, 100);

The procedure is:
procedure fDbiSetProp2(Table: TTable; MaxRows: Longint);
var
 rslt: DBIResult;
 DBType: string;
 Len: Word;
begin
 SetLength(DBType, DBIMAXNAMELEN);
 Check(DbiGetProp(hDBIObj(Table.DBHandle), dbDATABASETYPE,
 PChar(DBType), DBIMAXNAMELEN, Len));
 SetLength(DBType, StrLen(PChar(DBType)));
 // Make sure the table type is not dBASE or Paradox (must be SQL based)
 if (DBType = 'STANDARD') then
 raise EDBEngineError.Create(DBIERR_NOTSUPPORTED);
 // Make sure that the property can be set
 rslt := DbiValidateProp(hDBIObj(Table.Handle), curMAXROWS, True);
 if (rslt = DBIERR_NONE) then
 // Set the property
 Check(DbiSetProp(hDBIObj(Table.Handle), curMAXROWS, MaxRows))
 else
 raise EDBEngineError.Create(rslt);

end;

DbiSetRange {button C
Examples,JI(`>example',`exdbisetrange')} {button Delphi
Examples,JI(`>example',`dexdbisetrange')}
C syntax
DBIResult DBIFN DbiSetRange (hCursor, bKeyItself, [iFields1], [iLen1],
[pKey1], bKey1Incl, iFields2, iLen2, [pKey2], bKey2Incl);

Delphi syntax
function DbiSetRange (hCursor: hDBICur; bKeyItself: Bool; iFields1: Word;
iLen1: Word; pKey1: Pointer; bKey1Incl: Bool; iFields2: Word; iLen2: Word;
pKey2: Pointer; bKey2Incl: Bool): DBIResult stdcall;

Description
DbiSetRange constrains the result set to the subset bounded by two keys.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
bKeyItself Type: BOOL (Input)
Defines the key buffer type. If set to TRUE, pKey1 and pKey2 contain the keys directly; if
set to FALSE, pKey1 and pKey2 point to record buffers from which the keys can be
extracted.
iFields1 Type: UINT16 (Input)
Specifies the number of fields to be used for composite keys, for the beginning of the
range. Optional. The iFields1 and iLen1 parameters together indicate how much of the key
is to be used for matching. If both are zero, the entire key is used. If a partial match is
required on a given field of the key, all the key fields preceding it in the composite key
must be included. Only character fields can be matched for a partial key; all other field
types must be fully matched.
For partial key matches, iFields1 must be equal to the number (if any) of key fields
preceding the field being partially matched. iLen1 specifies the number of characters in the
partial key to be matched.
iLen1 Type: UINT16 (Input)
Specifies the length into the last field to be used for composite keys. If not zero, the last
field to be used must be a character type.
pKey1 Type: pBYTE (Input)
Pointer to the key value or record buffer for the beginning of the range. Optional. If NULL,
no low limit is set.
bKey1Incl Type: BOOL (Input)
Specifies whether to include the beginning key value in the range. bKey1Incl can be either
TRUE or FALSE.
iFields2 Type: UINT16 (Input)
Specifies the number of fields to be used for composite keys, for the end of the range.
Optional. The iFields2 and iLen2 parameters together indicate how much of the key is to be
used for matching. If both are zero, the entire key is used. If a match is required on a given
field of the key, all the key fields preceding it in the composite key must also be supplied.
Only character fields can be matched for a partial key; all other field types must be fully
matched.
For partial key matches, iFields2 must be equal to the number (if any) of key fields
preceding the field being partially matched. iLen2 specifies the number of characters in the
partial key to be matched.

iLen2 Type: UINT16 (Input)
Specifies the length into the last field to be used for composite keys. If not zero, the last
field to be used must be a character type.
pKey2 Type: pBYTE (Input)
Pointer to the key value or record buffer for the end of the range. Optional. If NULL, no high
limit is set.
bKey2Incl Type: BOOL (Input)
Specifies whether to include the end key value in the range. bKey2Incl can be either TRUE
or FALSE.

Prerequisites
There must be an active index.
Completion state
DbiSetRange positions the cursor at the beginning of the range, not on the first record in
the range.
After this function is called, the cursor allows access only to records in the table that fall
within the defined range. Any attempt to reference records outside the range results in a
BOF or EOF error condition.
Paradox: DbiGetRecordCount now reflects only the records in the range. DbiGetSeqNo is
relative to the beginning of the range, rather than the beginning of the table.

DbiResult return values
DBIERR_NONE The range was set successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_OUTOFRANGE (iField    iLen) is less than the whole key.
DBIERR_NOASSOCINDEX The specified cursor does not have an active index.

See also
DbiResetRange, DbiExtractKey, DbiSetToKey, DbiGetRecordCount, DbiGetSeqNo

C Examples: DbiSetRange
Set the range for the specified cursor and return the amount of records in the
range.
For this example to operate, the first field of the table must be numeric, such as STOCK.DB.
This example uses the following input:

fDbiSetRange(hPXCur, &Count);
DBIResult fDbiSetRange(hDBICur hTmpCur, pUINT32 Count)
{
 DBIResult rslt;
 pBYTE pMinBuf, pMaxBuf;
 DFLOAT key_min = 1000.00, key_max = 2000.00;
 CURProps CurProps;
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 pMinBuf = (pBYTE)malloc(CurProps.iRecBufSize * sizeof(BYTE));
 if (pMinBuf == NULL)
 return DBIERR_NOMEMORY;
 pMaxBuf = (pBYTE)malloc(CurProps.iRecBufSize * sizeof(BYTE));
 if (pMaxBuf == NULL)
 return DBIERR_NOMEMORY;
 rslt = Chk(DbiPutField(hTmpCur, 1, pMinBuf, (pBYTE)&key_min));
 if (rslt != DBIERR_NONE)
 {
 free(pMinBuf); free(pMaxBuf);
 return rslt;
 }
 rslt = Chk(DbiPutField(hTmpCur, 1, pMaxBuf, (pBYTE)&key_max));
 if (rslt != DBIERR_NONE)
 {
 free(pMinBuf); free(pMaxBuf);
 return rslt;
 }
 rslt = Chk(DbiSetRange(hTmpCur, FALSE, 0, 0, (pBYTE)pMinBuf, FALSE,
 0, 0, (pBYTE)pMaxBuf, TRUE));
 *Count = 0L;
 Chk(DbiGetRecordCount(hTmpCur, Count));
 free(pMinBuf); free(pMaxBuf);
 return rslt;
}

Delphi Examples: DbiSetRange
Set the range for the specified cursor and return the amount of records in the
range.
Delphi programs should call the SetRange, ApplyRange, ResetRange methods of a TTable.
This example sets the range for the specified cursor and returns the amount of records in
the range. For this example to operate, the first field of the table must be numeric. such as,
STOCK.DB.
This example uses the following input:
 fDbiSetRange(Table1.Handle, Count);

The procedure is:
procedure fDbiSetRange(hTmpCur: hDBICur; var Count: LongInt);
var
 pMinBuf, pMaxBuf: PByte;
 key_min, key_max: double;
 CurProp: CURProps;
begin
 pMinBuf := nil;
 pMaxBuf := nil;
 key_min := 1000.00;
 key_max := 2000.00;

 Check(DbiGetCursorProps(hTmpCur, CurProp));

 GetMem(pMinBuf,CurProp.iRecBufSize);
 if (pMinBuf = nil) then
 Check(DBIERR_NOMEMORY);

 GetMem(pMaxBuf,CurProp.iRecBufSize);
 if (pMaxBuf = nil) then
 Check(DBIERR_NOMEMORY);
 try
 Check(DbiPutField(hTmpCur, 1, pMinBuf, @key_min));
 Check(DbiPutField(hTmpCur, 1, pMaxBuf, @key_max));

 Check(DbiSetRange(hTmpCur, False, 0, 0, pMinBuf, False,
 0, 0, pMaxBuf, True));

 // Set the return count for the number of records in the limited range
 Count := 0;
 Check(DbiGetRecordCount(hTmpCur, Count));

 Check(DbiResetRange(hTmpCur));
 finally
 FreeMem(pMinBuf);
 FreeMem(pMaxBuf);
 end;
end;

DbiSetTimeFormat {button C
Examples,JI(`>example',`exdbisettimeformat')} {button Delphi
Examples,JI(`>example',`dexdbisettimeformat')}
C syntax
DBIResult DBIFN DbiSetTimeFormat (pfmtTime);
Delphi syntax
function DbiSetTimeFormat (var fmtTime: FMTTime): DBIResult stdcall;
Description
DbiSetTimeFormat sets the time format for the current session.
Parameters
pfmtTime Type: pFMTTime (Input)
Pointer to the client-allocated FMTTime structure.
Usage
The time format is used by QBE for input and wildcard character matching. It is also used
by batch operations (such as DbiDoRestructure and DbiBatchMove) to handle data type
coercion between character and time or datetime types.

DbiResult return values
DBIERR_NONE The time format was successfully set.
DBIERR_INVALIDHNDL The pointer to the time format structure is NULL.
DBIERR_INVALIDPARAM Data within the time format structure is invalid.

See also
DbiGetTimeFormat

C Examples: DbiSetTimeFormat
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSetTimeFormat
An example for this function is under development and will be provided in an upcoming
Help release.

DbiSetToBegin {button C
Examples,JI(`>example',`exdbisettobegin')} {button Delphi
Examples,JI(`>example',`dexdbisettobegin')}
C syntax
DBIResult DBIFN DbiSetToBegin (hCursor);
Delphi syntax
function DbiSetToBegin (hCursor: hDBICur): DBIResult stdcall;
Description
DbiSetToBegin positions the cursor to the beginning of the result set.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
Usage
This function is used to reposition the cursor to the beginning of the result set.
DbiGetNextRecord or DbiGetRelativeRecord can then be called to position the cursor on the
first valid record of the result set.

Completion state
The cursor is positioned on the crack before the first record. There is no current record after
DbiSetToBegin completes. (DbiGetRecord returns DBIERR_BOF.)

DbiResult return values
DBIERR_NONE The cursor was successfully set to BOF.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord, DbiSetToEnd, DbiSetToCursor

C Examples: DbiSetToBegin
Position the cursor at the beginning of the table.
The beginning of the table means the crack before the first record.
DBIResult fDbiSetToBegin(hDBICur hCur)
{
 DBIResult rslt;
 rslt = Chk(DbiSetToBegin(hCur));
 return rslt;
}

Delphi Examples: DbiSetToBegin
Position the cursor at the beginning of the table.
Delphi programs should use the First method from a TDataset object. This method positions
the cursor at the beginning of the result set.
This example uses the following input:
 fDbiSetToBegin(hCur);

The procedure is:
procedure fDbiSetToBegin(hTmpCur: hDbiCur);
begin
 Check(DbiSetToBegin(hTmpCur));
end;

DbiSetToBookMark {button C
Examples,JI(`>example',`exdbisettobookmark')} {button Delphi
Examples,JI(`>example',`dexdbisettobookmark')}
C syntax
DBIResult DBIFN DbiSetToBookMark (hCur, pBookMark);
Delphi syntax
function DbiSetToBookMark (hCur: hDBICur; pBookMark: Pointer): DBIResult
stdcall;

Description
DbiSetToBookMark positions the cursor to the position saved in the specified bookmark.

Parameters
hCur Type: hDBICur (Input)
Specifies the cursor handle. hCur must be compatible with the cursor used when the
bookmark was obtained.
pBookMark Type: pBYTE (Input)
Pointer to the bookmark. The bookmark is obtained by a prior call to DbiGetBookMark.
Usage
This function is used to position the cursor to a saved position. To determine if the
bookmark is stable, call DbiGetCursorProps and examine the bBookMarkStable property.
Prerequisites
DbiGetBookMark must have been called to retrieve a valid bookmark. The supplied cursor
can be different from the one used to retrieve the bookmark information, but the cursor
must be opened on the same table, with the same index order, if any.
Note: DbiSwitchToIndex may make bookmarks obtained under a different index order

unusable with the new order.

Completion state
The cursor is positioned at the bookmark location. If the record pointed to by the bookmark
has been deleted, the cursor is positioned on a crack where the original record was.
Note: If the bookmark is unstable, the cursor may be in an unexpected position.
DbiResult return values
DBIERR_NONE The call was successful; however, the position may not be the expected one if the

record has been deleted, or if the bookmark was unstable.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL, or the pointer to the

bookmark is NULL, or the specified bookmark is NULL.
DBIERR_INVALIDBOOKMARK The specified bookmark is not from the same table, or the bookmark

is corrupt.

See also
DbiOpenTable, DbiGetCursorProps, DbiGetBookMark, DbiCompareBookMarks

C Examples: DbiSetToBookMark
Set the cursor to the bookmark position.
If the bookmark is unstable, the cursor will not be moved. This example uses the following
input:

fDbiSetToBookMark(hPXCur, pBook);
DBIResult fDbiSetToBookMark(hDBICur hCur, pBYTE pBookMark)
{
 DBIResult rslt;
 CURProps CurProps;
 rslt = Chk(DbiGetCursorProps(hCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 if(CurProps.bBookMarkStable != TRUE)
 return DBIERR_INVALIDBOOKMARK;
 rslt = Chk(DbiSetToBookMark(hCur, pBookMark));
 return rslt;
}

Delphi Examples: DbiSetToBookMark
Set the cursor to the bookmark position:
Delphi users should use the GoToBookmark method associated with descendents of
TDataSet including TTable, TQuery, and TStoredProc rather than directly calling
DbiSetToBookmark. This method is defined as:
 procedure GotoBookmark(Bookmark: TBookmark);
The following code moves the the cursor to the record within Table1 to the corresponding
bookmark obtained through a call to GetBookmark.
Table1.GoToBookmark(SetBookMark);

DbiSetToCursor{button C
Examples,JI(`>example',`exdbisettocursor')} {button Delphi
Examples,JI(`>example',`dexdbisettocursor')}
C syntax
DBIResult DBIFN DbiSetToCursor (hDest, hSrc);
Delphi syntax
function DbiSetToCursor (hDest: hDBICur; hSrc: hDBICur): DBIResult stdcall;
Description
DbiSetToCursor sets the position of one cursor (the destination cursor) to the position of the
source cursor.

Parameters
hDest Type: hDBICur (Input)
Specifies the destination cursor handle.
hSrc Type: hDBICur (Input)
Specifies the source cursor handle.

Usage
This function synchronizes the position of two cursors on the same table.
Prerequisites
Source and destination cursors must be opened on the same table in the same session,
and both must be valid. If both cursors are opened on a single table, they do not have to
have the same current index. The source cursor must have a current record if the index
order is different.
Completion state
After DbiSetToCursor executes, the destination cursor is positioned on the same record as
the source cursor. They remain independent of each other, they do not track each other.
DbiResult return values
DBIERR_NONE The destination cursor was successfully set to the record of the source cursor.
DBIERR_INVALIDHNDL The specified source cursor or destination cursor is invalid or NULL.
DBIERR_NOCURRREC The source cursor has no current record.
DBIERR_NOTSAMESESSION The source and destination cursors are not opened in the same

session.

See also
DbiGetBookMark, DbiSetToBookMark, DbiCloneCursor, DbiOpenTable

C Examples: DbiSetToCursor
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSetToCursor
Set the position of the destination cursor to the position of the source cursor
Delphi users should use the GoToCurrent method associated the TTable component rather
than directly calling DbiSetToCursor. This method is defined as:
 procedure GoToCurrent(Table: TTable);
The following is an example:
Table1.GotoCurrent(Table2);

DbiSetToEnd {button C
Examples,JI(`>example',`exdbisettoend')} {button Delphi
Examples,JI(`>example',`dexdbisettoend')}
C syntax
DBIResult DBIFN DbiSetToEnd (hCursor);
Delphi syntax
function DbiSetToEnd (hCursor: hDBICur): DBIResult stdcall;
Description
DbiSetToEnd positions the cursor at the end of the result set.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
Usage
This function is used to reposition the cursor at the end of the result set. DbiGetPriorRecord
or DbiGetRelativeRecord can be called to position the cursor on the last valid record of the
result set.

Completion state
The cursor is positioned on the crack after the end of the result set. There is no current
record after DbiSetToEnd completes. (DbiGetRecord returns DBIERR_EOF.)

DbiResult return values
DBIERR_NONE The cursor was successfully set to the EOF position.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiSetToBegin, DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord,
DbiSetToCursor

C Examples: DbiSetToEnd
Move the cursor to the end of the table.
The end of the table means the crack after the last record.
DBIResult fDbiSetToEnd(hDBICur hCur)
{
 DBIResult rslt;
 rslt = Chk(DbiSetToEnd(hCur));
 return rslt;
}

Delphi Examples: DbiSetToEnd
Position the cursor at the end of the result set.
Delphi programs should use the Last method from a TDataset object.
This example uses the following input:
 fDbiSetToEnd(hCur);

The procedure is:
procedure fDbiSetToEnd(hTmpCur: hDbiCur);
begin
 Check(DbiSetToEnd(hTmpCur));
end;

DbiSetToKey {button C Examples,JI(`>example',`exdbisettokey')}
{button Delphi Examples,JI(`>example',`dexdbisettokey')}

C syntax
DBIResult DBIFN DbiSetToKey (hCursor, eSearchCond, bDirectKey, [iFields],
[iLen], pBuf);

Delphi syntax
function DbiSetToKey (hCursor: hDBICur; eSearchCond: DBISearchCond;
bDirectKey: Bool; iFields: Word; iLen: Word; pBuff: Pointer): DBIResult
stdcall;

Description
DbiSetToKey positions an ordered cursor based on the given key value.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
eSearchCond Type: DBISearchCond (Input)
Specifies the search condition: keySEARCHEQ, keySEARCHGT, or keySEARCHGEQ.
bDirectKey Type: BOOL (Input)
Specifies whether the key is supplied directly in pBuff or not. If set to TRUE, pBuf specifies
the pointer to the key in physical format; if set to FALSE, pBuf specifies the pointer to the
record buffer.
iFields Type: UINT16 (Input)
Specifies the number of complete fields to be used for composite keys. Optional. If iFields
and iLen are both 0, the entire key is used.
iLen Type: UINT16 (Input)
Specifies the length into the last field to be used for composite keys. If not zero, the last
field to be used must be a character type.
pBuf Type: pBYTE (Input)
Pointer to either the record buffer or the key itself, determined by bDirectKey.

Usage
If no index is currently associated with the cursor, an error is generated and no cursor
movement occurs.
There are three possible search conditions: keySEARCHEQ, keySEARCHGT, and
keySEARCHGEQ. Searches always result in the cursor being positioned on the crack before
the record of the specified key value. Assuming all the arguments are specified correctly,
only the (=) search condition can return a DBIERR_RECNOTFOUND error.
(> or >=) always succeeds.
You can specify the key either by setting the key fields in a record buffer and supplying the
record buffer or by specifying the key buffer directly as a string of bytes. To construct the
key buffer, use DbiExtractKey.
The iFields and iLen parameters together indicate how much of the key is to be used for
matching. If both are 0, the entire key is used. If a partial match is required on a given field
of the key, all the key fields preceding it in the composite key must also be specified for
match. Only character fields can be matched for a partial key; all other field types must be
fully matched.
Prerequisites
A cursor handle must be ordered using an index.

Completion state
A search using keySEARCHEQ or keySEARCHGEQ positions the cursor on the crack just prior
to the specified key; using keySEARCHGT positions the cursor on the crack just after the
specified key.

DbiResult return values
DBIERR_NONE The record was successfully found.
DBIERR_NOASSOCINDEX There is no index to search on.
DBIERR_INVALIDPARAM One of the specified parameters is invalid (for example, iLen is

invalid for the current index).
DBIERR_RECNOTFOUND No record matches the key value.

See also
DbiSetRange, DbiSwitchToIndex, DbiSetToBookMark, DbiGetNextRecord, DbiGetPriorRecord

C Examples: DbiSetToKey
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSetToKey
Find the specified value in the table and return the record and record buffer
This example works with the STOCK.DB table open on the primary key and uses the
following input:
 fDbiSetToKey(hCur, pRecBuf);

The function is:
function fDbiSetToKey(hTmpCur: hDBICur; pTmpRecBuf: PByte): Longint;
var
 key: Double;
 RecProp: RecProps;
begin
 key:= 1330.00;
 Check(DbiInitRecord(hTmpCur, pTmpRecBuf));
 Check(DbiPutField(hTmpCur, 1, pTmpRecBuf, @key));
 Check(DbiSetToKey(hTmpCur, keySEARCHEQ, False, 0, 0, pTmpRecBuf));
 Check(DbiGetNextRecord(hTmpCur, dbiNoLock, pTmpRecBuf, @RecProp));
 Result := RecProp.iSeqNum;
end;

DbiSetToRecordNo {button C
Examples,JI(`>example',`exdbisettorecordno')} {button Delphi
Examples,JI(`>example',`dexdbisettorecordno')}
C syntax
DBIResult DBIFN DbiSetToRecordNo (hCursor, iRecNo);
Delphi syntax
function DbiSetToRecordNo (hCursor: hDBICur; iRecNo: Longint): DBIResult
stdcall;

Description
DbiSetToRecordNo positions the cursor to the given physical record number.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iRecNo Type: UINT32 (Input)
Specifies the physical record number.

Usage
This function is currently valid only with dBASE and FoxPro tables. The physical record
number can be retrieved from the iPhyRecNum field of the RECProps structure in calls to
DbiGetRecord, DbiGetNextRecord, DbiGetPriorRecord, or DbiGetRelativeRecord.
If the given record number is beyond the valid range for the cursor, the cursor is set to the
beginning or end of the file (BOF/EOF).
DbiResult return values
DBIERR_NONE The cursor was successfully set to the record specified by iRecNo.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_BOF The specified record number is zero.
DBIERR_EOF The specified record number is greater than the number of records in the table.
DBIERR_NOTSUPPORTED This function is not supported for Paradox and SQL tables.

See also
DbiSetToSeqNo

C Examples: DbiSetToRecordNo
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSetToRecordNo
Position the cursor to the given physical record number.
Valid only for dBASE and FoxPro tables. The function fDbiSetToRecordNo, below, positions
the cursor in the TTable specified in the Tbl parameter to the record number specified in
RecordNum. Call the TTable component’s Resync method after repositioning the record
pointer with DbiSetToRecordNo to synchronize the TTable with the underlying dataset.
This example uses the following input:
 fDbiSetToRecordNum(DBASEANIMALS, 20);

The procedure is:
procedure fDbiSetToRecordNo(Tbl: TTable; RecordNum: LongInt);
var
 rslt: dbiResult;
begin
 rslt:= DbiSetToRecordNo(Tbl.handle, RecordNum);
 if (rslt <> DBIERR_NONE) then begin
 if (rslt = DBIERR_EOF) then
 tbl.last;
 if (rslt = DBIERR_BOF) then
 tbl.first;
 end;
 Tbl.Resync([]);
end;

DbiSetToSeqNo{button C
Examples,JI(`>example',`exdbisettoseqno')} {button Delphi
Examples,JI(`>example',`dexdbisettoseqno')}
C syntax
DBIResult DBIFN DbiSetToSeqNo (hCursor, iSeqNo);
Delphi syntax
function DbiSetToSeqNo (hCursor: hDBICur; iSeqNo: Longint): DBIResult
stdcall;

Description
DbiSetToSeqNo positions the cursor to the specified sequence number of a table. Currently
supported by Paradox only.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iSeqNo Type: UINT32 (Input)
Specifies the logical record number.
Usage
This function is currently valid only with Paradox tables. The sequence number can be
retrieved by calling DbiGetSeqNo or from the iSeqNo field of the RECProps structure in calls
to DbiGetRecord, DbiGetNextRecord, DbiGetPriorRecord, or DbiGetRelativeRecord.
A sequence number is the position of a record in the result set associated with hCursor. If
the given sequence number is beyond the valid sequence number for the cursor, the cursor
is set to the beginning or end of the file (BOF/EOF). For example, if the table is empty, this
function leaves the cursor positioned at BOF and returns DBIERR_BOF. If the table is not
empty and the user attempts to position the cursor beyond a valid sequence number, the
cursor is set to EOF, and DBIERR_EOF is returned.
Note: The sequence number for a given record is not stable. If a record is inserted or

deleted before the given index order, the sequence number for the record changes.

DbiResult return values
DBIERR_NONE The Paradox cursor was successfully set to the sequence number specified by

iSeqNo.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_EOF The specified record number is greater than the number of records in the table.
DBIERR_BOF The specified record number is zero.
DBIERR_NOTSUPPORTED This function is not supported for SQL or dBASE drivers.

See also
DbiGetSeqNo, DbiSetToRecordNo

C Examples: DbiSetToSeqNo
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSetToSeqNo
Position the cursor to the specified sequence number of the table.
If the table is not a Paradox type, the cursor is not moved. Call the TTable component’s
Resync method after repositioning the record pointer with DbiSetToRecordNo to
synchronize the TTable with the underlying dataset.
This example uses the following input:
 fDbiSetToSeqNo(Table1, 40);

The procedure is:
procedure fDbiSetToSeqNo(var Tbl: TTable; RecNum: Longint);
var
 Props: CurProps;
begin
 Check(DbiGetCursorProps(Tbl.Handle, Props));
 if (StrComp(Props.szTableType, szPARADOX) = 0) then
 Check(DbiSetToSeqNo(Tbl.Handle, RecNum));
 Tbl.Resync([]);
end;

DbiSortTable {button C
Examples,JI(`>example',`exdbisorttable')} {button Delphi
Examples,JI(`>example',`dexdbisorttable')}
C syntax
DBIResult DBIFN DbiSortTable (hDb, pszTableName, pszDriverType, hSrcCur,
pszSortedName, phSortedCur, hDstCur, iSortFields, piFieldNum,
[pbCaseInsensitive], [pSortOrder], [*ppfsortFn], bRemoveDups,
[hDuplicatesCur], [plRecsSort]);

Delphi syntax
function DbiSortTable (hDb: hDBIDb; pszTableName: PChar; pszDriverType:
PChar; hSrcCur: hDBICur; pszSortedName: PChar; phSortedCur: phDBICur;
hDstCur: hDBICur; iSortFields: Word; piFieldNum: PWord; pbCaseInsensitive:
PBool; pSortOrder: pSORTOrder; ppfSortFn: ppfSORTCompFn; bRemoveDups: Bool;
hDuplicatesCur: hDBICur; var lRecsSort: Longint): DBIResult stdcall;

Description
DbiSortTable sorts an opened or closed table, either into itself or into a destination table.
There are options to remove duplicates, to enable case-insensitive sorts and special sort
functions, and to control the number of records sorted.

Parameters
hDb Type: hDBIDb (Input)
Optional. Specifies the database handle when pszTableName and pszDriverType are used
to identify the source table (not used when hSrcCur is supplied). Must be a valid database
handle.
pszTableName Type: pCHAR (Input)
Optional. Pointer to the table name. Must be a defined table name and the table must exist.
If hDb, pszTableName, and pszTableType are supplied, hSrcCur should be NULL. A valid
extension may be specified.
pszDriverType Type: pCHAR (Input)
Optional. Supplied only when hDb and pszTableName are supplied. Pointer to the driver
type. Must be a defined driver type.
hSrcCur Type: hDBICur (Input)
Optional. This parameter is supplied when an opened source table is to be sorted to a
destination table, as specified in pszSortedName. When the table is to be sorted into itself,
hDb, pszTableName, and pszDriverType must be used to identify the table instead of
hSrcCur.
pszSortedName Type: pCHAR (Input)
Optional. Pointer to the file name to be used as the sorted destination table. The table must
be closed. The extension must match that of the source table. (To specify a destination
table of a different driver type, hDstCur must be used.) If this parameter, phSortedCur, and
hDstCur are all NULL, the source table is sorted into itself.
phSortedCur Type: phDBICur (Output)
Optional. Pointer to a cursor handle on the sorted destination table, with the name
specified by pszSortedName. If NULL, the cursor handle is not returned.
hDstCur Type: hDBICur (Input)
Optional. Used instead of pszSortedName to specify the sorted destination table. In this
case, the destination table is already open, and the cursor handle is specified. If this
parameter and phSortedName are NULL, the source table is sorted into itself.
iSortFields Type: UINT16 (Input)
Specifies the number of sort fields to be used.

piFieldNum Type: pUINT16 (Input)
Pointer to an array of the field numbers on which to sort. The number of elements in the
array must equal the number specified in iSortFields.
pbCaseInsensitive Type: pBOOL (Input)
Optional. Pointer to an array of values indicating whether the sort is to be case-insensitive
for each sort field. TRUE specifies case-insensitive. The number of elements in the array
must equal the number specified in iSortFields.
If a NULL pointer is given, the default is case-sensitive. Only text fields are affected.
pSortOrder Type: pSORTOrder (Input)
Optional. Pointer to an array of the sort order for each field, either ascending or
descending. If a NULL pointer is given, the order is ascending. The number of elements in
the array must equal the number specified in iSortFields.
*ppfsortFn Type: pfSORTCompFn (Input)
Optional. Pointer to an array of pointers to client-supplied compare functions. The number
of elements in the array must be equal to the number specified in iSortFields.
bRemoveDups Type: BOOL (Input)
Specifies whether duplicates are to be removed during sorting or not. If TRUE, duplicates
are removed from the destination table. Duplicates may be written to a table associated
with hDuplicatesCur.
hDuplicatesCur Type: hDBICur (Input)
Optional. If specified, duplicates removed from the table are placed in a Duplicates table
associated with the specified cursor. The structure of this table must be the same as the
source table.
plRecsSort Type: pUINT32 (Input/Output)
Optional. Used only when the source table is identified by hSrcCur. On input, pointer to the
number of records to sort, from the current position of the source table cursor. On output,
pointer to the client variable that receives the actual number of records sorted into the
destination table.
Usage
As the table is sorted, the records are physically ordered according to the specified sort
criteria. Source and destination tables can be of different driver types; if so, the destination
table must be specified by hDstCur.
Paradox: A Paradox table with a primary key cannot be sorted into itself. Autoincrement
fields cannot be sorted.
SQL: DbiSortTable is not supported with SQL tables as the destination.
Completion state
The records in the destination table are ordered according to the sort criteria. If plRecSort
is specified, only plRecSort records are sorted, starting from the current position in the
table, otherwise the whole table is sorted.

DbiResult return values
DBIERR_NONE The sort was successful.
DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.
DBIERR_INVALIDFILENAME The source table name was not provided.
DBIERR_UNKNOWNTBLTYPE The source driver type was not provided.
DBIERR_INVALIDPARAM The specified number of sort fields is invalid.
DBIERR_NOTSUPPORTED This function is not supported for sort to self on a Paradox table with

a primary index.

See also
DbiBatchMove, DbiCreateTable, DbiDoRestructure, DbiCopyTable

C Examples: DbiSortTable
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiSortTable
Sort the source table into the destination table on the given field.
This example uses the following input:
 fDbiSortTable(CustomerTbl, CustomerTbl2,
CustomerTbl.FieldByName('COMPANY'));

The function is:
function fDbiSortTable(SrcTbl, DestTbl: TTable; SortField: TField): Longint;
var
 Field: Word;
 CaseIns: Boolean;
 Recs: Longint;
begin
 Recs := SrcTbl.RecordCount;
 CaseIns := True;
 Field := SortField.Index + 1;
 if not DestTbl.Active then
 raise EDatabaseError.Create('Cannot complete operation with ' +
 'destination table closed');
 Check(DbiSortTable(SrcTbl.DBHandle, nil, nil, SrcTbl.Handle, nil, nil,
 DestTbl.Handle, 1, @Field, @CaseIns, nil, nil, False, nil, Recs));
 Result := Recs;
end;

DbiStartSession {button C
Examples,JI(`>example',`exdbistartsession')} {button Delphi
Examples,JI(`>example',`dexdbistartsession')}
C syntax
DBIResult DBIFN DbiStartSession ([pszName], phSes, [pNetDir]);
Delphi syntax
function DbiStartSession (pszName: PChar; var hSes: hDBISes; pNetDir:
PChar): DbiResult stdcall;

Description
DbiStartSession starts a new session for the client application.

Parameters
pszName Type: pCHAR (Input)
Pointer to the session name. Allows you to name the newly created session; if NULL, BDE
names the session. Optional.
phSes Type: phDBISes (Output)
Pointer to the session handle. Used to identify the session.
pNetDir Type: pCHAR (Input)
Pointer to the network file directory for the session. This directory is used for Paradox
locking. Use of this pointer allows you to have different NETDIRs for distinct sessions.

Usage
Use DbiStartSession to create different concurrency schemes.
Completion state
DbiStartSession makes the new session the current session.

DbiResult return values
DBIERR_NONE The session was successfully started.
DBIERR_INVALIDHNDL phSes is NULL.
DBIERR_SESSIONSLIMIT The maximum number of sessions are open.

See also
DbiSetCurrSession, DbiCloseSession

C Examples: DbiStartSession
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiStartSession
Example 1: Start a new session for the client application.
Delphi programs can use the TSession object in the component library.
procedure fDbiStartSession(pName: string; var hSes: hDBISes; pNetDir:
string);

begin
 Check(DbiStartSession(PChar(pName), hSes, PChar(pNetDir)));
end;
Example 2: Create a new session and return the session number.
Most Delphi users can use TSession.Open, TSessionList.OpenSession or the TSession
component.
This example uses the following input:
 SesNo := fDbiStartSession('NewSession', hSes, 'C:\Netdir');

The function is:
function fDbiStartSession(pName: string; var hSes: hDBISes; pNetDir:
string): Word;

var
 Ses: SESInfo;
begin
 Check(DbiStartSession(PChar(pName), hSes, PChar(pNetDir)));
 Check(DbiGetSesInfo(Ses));
 Result := Ses.iSession;
end;

DbiSwitchToIndex {button C
Examples,JI(`>example',`exdbiswitchtoindex')} {button Delphi
Examples,JI(`>example',`dexdbiswitchtoindex')}
C syntax
DBIResult DBIFN DbiSwitchToIndex (phCursor, pszIndexName, pszTagName,
iIndexId, bCurrRec);

Delphi syntax
function DbiSwitchToIndex (var hCursor: hDBICur; pszIndexName: PChar;
pszTagName: PChar; iIndexId: Word; bCurrRec: Bool): DBIResult stdcall;

Description
DbiSwitchToIndex changes the active index order of the given cursor.
Parameters
phCursor Type: phDBICur (Input/Output)
On input, phCursor specifies the original cursor handle; on output, pointer to the new
cursor handle.
pszIndexName Type: pCHAR (Input)
Pointer to the name of the index or pseudo-index. The pszIndexName string is limited to
127 bytes in length.
pszTagName Type: pCHAR (Input)
Pointer to the tag name string. Used for dBASE and FoxPro tables only.
iIndexId Type: UINT16 (Input)
Specifies the index ID.
bCurrRec Type: BOOL (Input)
If TRUE, positions the new cursor on the current record of the original cursor.
Usage
This function allows the user to change the index order of a cursor without closing the
cursor and opening another cursor. The original cursor is passed into the function, and a
new cursor handle is returned with the new ordering. The original cursor handle becomes
invalid and cannot be used.
Setting pszIndexName, pszTagName, and iIndexId to NULL is equivalent to changing the
order to the default order. As a result, the cursor is set to one of the following orders:
· Relational order for dBASE, FoxPro and SQL tables.
· Natural order for Access tables.
· Primary index order for a keyed Paradox table or physical order for a Paradox heap table.
If bCurrRec is set to TRUE, the new cursor is positioned on the same record as the original
cursor. If bCurrRec is set to FALSE, the new cursor is positioned at BOF. If the original cursor
is not positioned on a valid record (for example, the current record has been deleted and
the cursor has not been advanced), this function with bCurrRec set to TRUE fails. If this
function is used to switch to the same index, then no action is taken.
Note: The size of a bookmark buffer may change after a call to DbiSwitchToIndex.
Pseudo-indexes: To describe a pseudo-index rather than an existing physical index,
replace the pszIndexName parameter with a string composed of field names. The marker
character @ denotes the use of a pseudo-index. For example, "@Customer Number@Order
Number" describes a pseudo-index on a key formed by concatenating the Customer
Number field with the Order Number field.
Each field identifier in the pseudo-index name must be preceded by the @ character. This

character is illegal in "true" index names. No new index is generated at the server; the
behavior of the pseudo-index is simulated entirely by use of the proper ORDER BY clauses
on the query populating the local BDE record cache.
Fields can be identified by field numbers as well as by field names. For example,    the string
"@2@3@11" describes a pseudo-index consisting of the second, third, and eleventh field of
the table, concatenated to make up a single key.
Each of the component fields within a pszIndexName is assumed to be in ASCENDING
order. Ordering is case-sensitive (unless case-sensitivity is not supported on the specific
server). If the fields in the pszIndexName represent a real unique index on the server, the
pseudo-index becomes unique; otherwise, it is non-unique.
Prerequisites
A valid cursor handle must be obtained on a table; not on a query or an in-memory table. If
the given index is not open, it is automatically opened by this function before switching to
that index order. (Therefore, all error return codes for DbiOpenIndex apply.)

Completion state
Switching the index may change some properties of the cursor, such as bookmark size and
the key buffer size. Existing bookmarks on the original cursor cannot be used in the new
cursor, so any saved positions will no longer be applicable to the new cursor.
DbiResult return values
DBIERR_NONE The index was successfully changed.
DBIERR_NOCURRREC Cannot position to the current record because the original cursor is

not positioned on a valid record. (Applicable only if bCurrRec is set
to TRUE.)

DBIERR_NOSUCHINDEX No such index exists for the table.
DBIERR_INVALIDHNDL The specified handle was invalid or NULL.
DBIERR_INDEXOUTOFDATE An attempt was made to switch to a non-maintained index that is out

of date.

See also
DbiAddIndex, DbiOpenIndex, DbiRegenIndex, DbiRegenIndexes, DbiOpenTable

C Examples: DbiSwitchToIndex
Set cursor to the specified index name:
This examples uses the following input:
 fDbiSwitchToIndex(&hPXCur, "Vendor No", FALSE);

DBIResult fDbiSwitchToIndex(phDBICur phTmpCur, pCHAR IdxName, BOOL SavePos)
{
 DBIResult rslt;
 rslt = Chk(DbiSwitchToIndex(phTmpCur, IdxName, NULL, NULL, SavePos));
 return rslt;
}

Delphi Examples: DbiSwitchToIndex
Set cursor to the specified index name:
Users of TTable objects should use the IndexName property to change indexes. Set cursor
to the specified index name and keep the cursor on the same record.
This example uses the following input:
 fDbiSwitchToIndex(Table1.Handle, 'VendorNo');

The procedure is:
procedure fDbiSwitchToIndex(hTmpCur: hDbiCur; IdxName: string);
begin
 Check(DbiSwitchToIndex(hTmpCur, PChar(IdxName), nil, 0, True));
end;

DbiTimeDecode {button C
Examples,JI(`>example',`exdbitimedecode')} {button Delphi
Examples,JI(`>example',`dexdbitimedecode')}
C syntax
DBIResult DBIFN DbiTimeDecode (timeT, piHour, piMin, piMilSec);
Delphi syntax
function DbiTimeDecode (timeT: Time; var iHour: Word; var iMin: Word; var
iMilSec: Word): DBIResult stdcall;

Description
DbiTimeDecode decodes TIME into separate components (hours, minutes, milliseconds).

Parameters
timeT Type: TIME (Input)
Specifies the encoded time.
piHour Type: pUINT16 (Output)
Pointer to the client variable that receives the decoded hours. Valid values range from 0
through 23.
piMin Type: pUINT16 (Output)
Pointer to the client variable that receives the decoded minutes. Valid values range from 0
through 59.
piMilSec Type: pUINT16 (Output)
Pointer to the client variable that receives the decoded milliseconds. Valid values range
from 0 through 59999.
Usage
This function enables the client application to interpret time values obtained from
DbiGetField. This function is a non-driver related service function; it works for all drivers.
DbiResult return values
DBIERR_NONE The time was decoded successfully.
DBIERR_INVALIDHNDL The pointer to the decoded hours, minutes, or milliseconds is NULL.
DBIERR_INVALIDTIME The specified encoded time is invalid.

See also
DbiTimeEncode, DbiDateDecode, DbiDateEncode, DbiTimeStampDecode,
DbiTimeStampEncode

C Examples: DbiTimeDecode
Decode a TIME variable into hour, minutes, and seconds.
This example uses the following input:

fDbiTimeDecode(MyTime, &Hour, &Minute, &Sec);
DBIResult fDbiTimeDecode(TIME Time, pUINT16 Hour, pUINT16 Minute, pUINT16
Seconds)

{
 DBIResult rslt;
 UINT16 MSeconds;
 rslt = Chk(DbiTimeDecode(Time, Hour, Minute, &MSeconds));
 if (rslt == DBIERR_NONE)
 *Seconds = (UINT16)(MSeconds / 1000);
 return rslt;
}

Delphi Examples: DbiTimeDecode
Decode a TIME variable into hour, minutes, and seconds.
This example decodes Hour, Minute, and Seconds fields from a the TIME value specified in
the TimeT parameter and returns the time value as a string.
This example uses the following input:
 TimeStr := fDbiTimeDecode(MyTime, MyHour, MyMin, MyMilSec);

The function is:
function fDbiTimeDecode(TimeT: Time; var iHour, iMin, iSec: Word): string;
begin
 Check(DbiTimeDecode(TimeT, iHour, iMin, iSec));
 iSec := iSec div 1000;
 SetLength(Result, 12);
 if (iHour < 12) then begin
 if (iHour = 0) then
 iHour := 12;
 Result := Format('%d:%d:%d AM', [iHour, iMin, iSec]);
 end
 else begin
 if (iHour > 12) then
 dec(iHour, 12);
 Result := Format('%d:%d:%d PM', [iHour, iMin, iSec]);
 end;
 SetLength(Result, StrLen(PChar(Result)));
end;

DbiTimeEncode{button C
Examples,JI(`>example',`exdbitimeencode')} {button Delphi
Examples,JI(`>example',`dexdbitimeencode')}
C syntax
DBIResult DBIFN DbiTimeEncode (iHour, iMin, iMilSec, ptimeT);
Delphi syntax
function DbiTimeEncode (iHour: Word; iMin: Word; iMilSec: Word; var timeT:
Time): DBIResult stdcall;

Description
DbiTimeEncode encodes separate time components into TIME for use by DbiPutField and
other functions.
Parameters
iHour Type: UINT16 (Input)
Specifies hours. Valid values range from 0 through 23.
iMin Type: UINT16 (Input)
Specifies minutes. Valid values range from 0 through 59.
iMilSec Type: UINT16 (Input)
Specifies milliseconds. Valid values range from 0 through 59999.
ptimeT Type: pTIME (Output)
Pointer to the client variable that receives the encoded time.
Usage
This function enables the client application to construct a time value for use by DbiPutField.
This function is a non-driver related service function; it works for all drivers.
DbiResult return values
DBIERR_NONE The time was successfully encoded.
DBIERR_INVALIDHNDL ptimeT is NULL.
DBIERR_INVALIDTIME Ranges of hour, minute, and millisecond parameters are invalid.

See also
DbiDateEncode, DbiDateDecode, DbiTimeStampDecode, DbiTimeStampEncode, DbiPutField

C Examples: DbiTimeEncode
Encode Hour, Minute, and Seconds into a TIME variable.
This example uses the following input:

fDbiTimeEncode(10, 50, 15, &MyTime);
DBIResult fDbiTimeEncode(UINT16 Hour, UINT16 Minute, UINT16 Seconds, pTIME
Time)

{
 DBIResult rslt;
 UINT16 MSeconds;
 MSeconds = (UINT16)(Seconds * 1000);
 if (MSeconds > 59999)
 return DBIERR_INVALIDTIME;
 else
 rslt = Chk(DbiTimeEncode(Hour, Minute, MSeconds, Time));
 return rslt;
}

Delphi Examples: DbiTimeEncode
Encode Hour, Minute, and Seconds into a TIME variable.
This example uses the following input:
 fDbiTimeEncode(4,20,42, MyTime);

The procedure is:
procedure fDbiTimeEncode(iHour: Word; iMin: Word; iSec: Word; var TimeT:
Time);

begin
 if (iSec > 59) then
 Check(dbiErr_InvalidTime);
 iSec := iSec * 1000;
 Check(DbiTimeEncode(iHour, iMin, iSec, TimeT));
end;

DbiTimeStampDecode {button C
Examples,JI(`>example',`exdbitimestampdecode')} {button Delphi
Examples,JI(`>example',`dexdbitimestampdecode')}
C syntax
DBIResult DBIFN DbiTimeStampDecode (tsTS, pdateD, ptimeT);
Delphi syntax
function DbiTimeStampDecode (tsTS: TIMESTAMP; var dateD: DbiDate; var timeT:
Time): DBIResult stdcall;

Description
DbiTimeStampDecode extracts separate encoded DBIDATE and TIME components from the
TIMESTAMP.
Parameters
tsTS Type: TIMESTAMP (Input)
Specifies the encoded DATETIME timestamp.
pdateD Type: pDBIDATE (Output)
Pointer to the client variable that receives the encoded DBIDATE component.
ptimeT Type: pTIME (Output)
Pointer to the client variable that receives the encoded TIME component.
Usage
This function enables the client to interpret TIMESTAMP values obtained from
DbiGetField.This function is a non-driver related service function; it works for all drivers.
Completion state
DateDecode and TimeDecode must be called in order to further decode the date and time
elements into their individual components (for example, month, day, year/hours, minutes,
milliseconds).

DbiResult return values
DBIERR_OK The timestamp was successfully decoded.
DBIERR_INVALIDHNDL pdateD or ptimeT is NULL.

See also
DbiTimeStampEncode, DbiGetField

C Examples: DbiTimeStampDecode
Decode a TimeStamp variable into a string including all information.
This example uses the following input:

fDbiTimeStampDecode(TS, Buffer);
DBIResult fDbiTimeStampDecode(TIMESTAMP TS, pCHAR TSStr)
{
 DBIResult rslt;
 DBIDATE Date;
 TIME Time;
 UINT16 h, m, ms, M, D;
 INT16 Y;
 CHAR AMPM[3] = "AM";

 rslt = Chk(DbiTimeStampDecode(TS, &Date, &Time));
 if (rslt != DBIERR_NONE)
 return rslt;

 rslt = Chk(DbiTimeDecode(Time, &h, &m, &ms));
 if (rslt != DBIERR_NONE)
 return rslt;

 rslt = Chk(DbiDateDecode(Date, &M, &D, &Y));
 if (rslt != DBIERR_NONE)
 return rslt;

 if (h > 12)
 {
 strcpy(AMPM, "PM");
 h -= (UINT16)12;
 }

 wsprintf(TSStr, "%d:%d:%d %s, %d/%d/%d", h, m, (ms / 1000), AMPM, M, D,
Y);

 return rslt;
}

Delphi Examples: DbiTimeStampDecode
Decode a TimeStamp variable into a string including all information
This example uses the following input:
 fDbiTimeStampDecode(TS, Buffer);

The function is:
function fDbiTimeStampDecode(timestampTS: TimeStamp): string;
var
 DateVar: dbiDATE;
 TimeVar: TIME;
 hour, min, millsec, Month, Day: Word;
 Year: SmallInt;
begin
 SetLength(Result, 100);
 Check(DbiTimeStampDecode(timestampTS, DateVar, TimeVar));
 Check(DbiTimeDecode(TimeVar, hour, min, millsec));
 Check(DbiDateDecode(DateVar, Month, Day, Year));
 if (hour > 12) then
 Result := Format('Time: %d:%d:%d PM, Date: %d/%d/%d',
 [hour - 12, min, millsec div 1000, Month, Day, Year])
 else
 Result := Format('Time: %d:%d:%d AM, Date: %d/%d/%d',
 [hour, min, millsec div 1000, Month, Day, Year]);
 SetLength(Result, StrLen(PChar(Result)));
end;

DbiTimeStampEncode {button C
Examples,JI(`>example',`exdbitimestampencode')} {button Delphi
Examples,JI(`>example',`dexdbitimestampencode')}
C syntax
DBIResult DBIFN DbiTimeStampEncode (dateD, timeT, ptsTS);
Delphi syntax
function DbiTimeStampEncode (dateD: DbiDate; timeT: Time; var tsTS:
TimeStamp): DBIResult stdcal;

Description
DbiTimeStampEncode encodes the encoded DBIDATE and encoded TIME into a TIMESTAMP.

Parameters
dateD Type: DBIDATE (Input)
Specifies the encoded date.
timeT Type: TIME (Input)
Specifies the encoded time.
ptsTS Type: pTIMESTAMP (Output)
Pointer to the client variable that receives the encoded timestamp.

Usage
This function enables the client application to construct a TIMESTAMP value for use in
DbiPutField. This function is a non-driver related service function; it works for all drivers.

DbiResult return values
DBIERR_NONE The timestamp was successfully encoded.
DBIERR_INVALIDHNDL ptsTS is NULL.
DBIERR_INVALIDTIMESTAMP The range of date and time parameters is invalid.

See also
DbiTimeStampDecode, DbiPutField

C Examples: DbiTimeStampEncode
Encode a TimeStamp variable from a DBIDATE and TIME variable.
This example uses the following input:

fDbiTimeStampEncode(MyDate, MyTime, &TS);
DBIResult fDbiTimeStampEncode(DBIDATE Date, TIME Time, pTIMESTAMP TS)
{
 DBIResult rslt;
 rslt = Chk(DbiTimeStampEncode(Date, Time, TS));
 return rslt;
}

Delphi Examples: DbiTimeStampEncode
Encode a TimeStamp variable from a DBIDATE and TIME variable.
This example uses the following input:
 fDbiTimeStampEncode(MyDate, MyTime, TS);

The procedure is:
procedure fDbiTimeStampEncode(ADate: dbiDate; timeT: TIME; var timestampTS:
TimeStamp);

begin
 Check(DbiTimeStampEncode(ADate, timeT, timestampTS));
end;

DbiTranslateField {button C
Examples,JI(`>example',`exdbitranslatefield')} {button Delphi
Examples,JI(`>example',`dexdbitranslatefield')}
C syntax
DBIResult DBIFN DbiTranslateField (hXlt, pSrc, pDest);
Delphi syntax
function DbiTranslateField (hXlt: hDBIXlt; pSrc: Pointer; pDest: Pointer):
DBIResult stdcall;

Description
DbiTranslateField translates a logical or physical field value to any compatible logical or
physical field value.
Parameters
hXlt Type: hDBIXlt (Input)
Specifies the translate handle.
pSrc Type: pBYTE (Input)
Pointer to the source field.
pDest Type: pBYTE (Output)
Pointer to the destination field.
Usage
This function reads the source field and places the data in the destination field after
converting the data to the type of the destination field.
SQL: This function can be used only on fields that are contained with a valid SQL record
buffer. You must build the translation object by using a BDE-supplied field descriptor
because each field descriptor contains an offset to a NULL indicator and each field
translation must read or write this NULL indicator. The offset from the field buffer to the
NULL indicator is stored when the translation object is built.

DbiResult return values
DBIERR_NONE The field was translated successfully.
DBIERR_FIELDISBLANK The source field is blank.

See also
DbiOpenFieldXlt, DbiCloseFieldXlt

C Examples: DbiTranslateField
Translate a field from IDAPI Logical format to its physical format equivalent or
vice versa.
DBIResult fDbiTranslateField(hDBICur hCur, hDBIXlt hXlt, pBYTE pTransField)
{
 DBIResult rslt;
 pBYTE pFieldBuf;
 pBYTE pRecBuf;
 CURProps CurProps;
 Chk(DbiGetCursorProps(hCur, &CurProps));
 pRecBuf = (pBYTE)malloc(CurProps.iRecBufSize);
 pFieldBuf = (pBYTE)malloc(1024);
 pTransField = (pBYTE)malloc(1024);
 Chk(DbiSetToBegin(hCur));
 Chk(DbiGetNextRecord(hCur, dbiNOLOCK, pRecBuf, NULL));
 Chk(DbiGetField(hCur, 1, pRecBuf, pFieldBuf, NULL));
 rslt = Chk(DbiTranslateField(hXlt, pFieldBuf, pTransField));
 return rslt;
}

Delphi Examples: DbiTranslateField
An example for this function is under development and will be provided in an upcoming
Help release.

DbiTranslateRecordStructure {button C
Examples,JI(`>example',`exdbitranslaterecordstructure')}

{button Delphi
Examples,JI(`>example',`dexdbitranslaterecordstructure')}
C syntax
DBIResult DBIFN DbiTranslateRecordStructure (pszSrcDriverType, iFlds,
pfldsSrc, pszDstDriverType, pszLangDriver, pfldsDst, bCreatable);

Delphi syntax
function DbiTranslateRecordStructure (pszSrcDriverType: PChar; iFlds: Word;
pfldsSrc: pFLDDesc; pszDstDriverType: PChar; pszLangDriver: PChar;
pfldsDst: pFLDDesc; bCreateable: Bool): DBIResult stdcall;

Description
DbiTranslateRecordStructure translates the source driver's physical or logical fields to
equivalent physical or logical fields of the destination driver.
Parameters
pszSrcDriverType Type: pCHAR (Input)
Pointer to the source driver type. If NULL, it is assumed that the source fields are logical
with a NULL driver type.
iFlds Type: UINT16 (Input)
Specifies the number of fields.
pfldsSrc Type: pFLDDesc (Input)
Pointer to an array of the logical or physical types of the source fields.
pszDstDriverType Type: pCHAR (Input)
Pointer to the destination driver type. If NULL, it is assumed that the destination fields are
logical with a NULL driver type.
pszLangDriver Type: pCHAR (Input)
Pointer to the destination driver's language driver name. This language driver is used to
validate the destination field names after the translation.
pfldsDst Type: pFLDDesc (Output)
Pointer to an array of the destination fields.
bCreatable Type: BOOL (Input)
If True, map to creatable fields only

Usage
This function takes the logical or physical fields of the source driver and attempts to map
them to equivalent logical or physical fields of the destination driver. If an exact match is
not found, the function attempts to map to the closest possible logical or physical fields of
the destination driver. If a close match is not found, this returns the error
DBIERR_NOTSUPPORTED.
DbiResult return values
DBIERR_NONE The translation was successfully completed.
DBIERR_NOTSUPPORTED Returned if source fields cannot be translated into equivalent

destination fields.

C Examples: DbiTranslateRecordStructure
Create a new table of the specified type by borrowing a field structure from
another table.
The new table is created in the same directory or server as the source table. Return the
cursor to the newly created table. This example uses the following input:

fDbiTranslateRecordStructure(hIBCur, "NEWCUST", "INTRBASE", &hTmpCur);
DBIResult fDbiTranslateRecordStructure(hDBICur hSrcCur, pCHAR NewTblName,
 pCHAR DrvType, phDBICur phDstCur)
{
 DBIResult rslt;
 pFLDDesc SrcFldDesc, DestFldDesc;
 CURProps CurProps;
 CRTblDesc TblDesc;
 hDBIDb hTmpDb;

 rslt = Chk(DbiGetCursorProps(hSrcCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 SrcFldDesc = (pFLDDesc)malloc(CurProps.iFields * sizeof(FLDDesc));
 DestFldDesc = (pFLDDesc)malloc(CurProps.iFields * sizeof(FLDDesc));
 rslt = Chk(DbiGetFieldDescs(hSrcCur, SrcFldDesc));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiTranslateRecordStructure(NULL, CurProps.iFields,
 SrcFldDesc, DrvType, NULL, DestFldDesc, FALSE));
 if (rslt != DBIERR_NONE)
 {
 free(SrcFldDesc); free(DestFldDesc);
 return rslt;
 }
 memset((void *) &TblDesc , 0, sizeof(CRTblDesc));
 strcpy(TblDesc.szTblName, NewTblName);
 strcpy(TblDesc.szTblType, DrvType);
 TblDesc.iFldCount = CurProps.iFields;
 TblDesc.pfldDesc = DestFldDesc;
 rslt = Chk(DbiGetObjFromObj(hSrcCur, objDATABASE, &hTmpDb));
 if (rslt != DBIERR_NONE)
 {
 free(SrcFldDesc); free(DestFldDesc);
 return rslt;
 }
 rslt = Chk(DbiCreateTable(hTmpDb, TRUE, &TblDesc));
 if (rslt != DBIERR_NONE)
 {
 free(SrcFldDesc); free(DestFldDesc);
 return rslt;
 }
 rslt = Chk(DbiOpenTable(hTmpDb, NewTblName, DrvType, NULL, NULL, 0,
dbiREADWRITE,

 dbiOPENSHARED, xltFIELD, FALSE, NULL, phDstCur));
 free(SrcFldDesc); free(DestFldDesc);
 return rslt;
}

Delphi Examples: DbiTranslateRecordStructure
Creates an empty version of SrcTbl to DestTbl. This will convert from any source type to
any destination type--Paradox to InterBase and so on. The Table does not have any indexes.
This example uses the following input:
 fDbiTranslateRecordStructure(AnimalTbl, NewTbl, AnimalTbl.DBHandle);

The procedure is:
procedure fDbiTranslateRecordStructure(SrcTbl, DestTbl: TTable; DestDB:
hDBIDb);

var
 pSrcFlds, pDestFlds: pFLDDesc;
 TblDesc: CRTblDesc;
 DBType: string;
 W: Word;
begin
 pSrcFlds := AllocMem(SrcTbl.FieldCount * sizeof(FLDDesc));
 pDestFlds := AllocMem(SrcTbl.FieldCount * sizeof(FLDDesc));
 try
 SetLength(DBType, DBIMAXNAMELEN);
 // Get the destination database type
 Check(DbiGetProp(hDBIObj(DestDb), dbDATABASETYPE,
 PChar(DBType), DBIMAXNAMELEN, W));
 SetLength(DBType, StrLen(PChar(DBType)));
 if (DBType = 'STANDARD') then begin
 if (UpperCase(ExtractFileExt(DestTbl.TableName)) = '.DB') then
 DBType := szParadox
 else if (UpperCase(ExtractFileExt(DestTbl.TableName)) = '.DBF') then
 DBType := szDbase
 else if (UpperCase(ExtractFileExt(DestTbl.TableName)) = '.') then
 DBType := szParadox
 else
 raise EDBEngineError.Create(DBIERR_UNKNOWNDRIVER);
 end;
 // Get the source field information
 Check(DbiGetFieldDescs(SrcTbl.Handle, pSrcFlds));
 // Translate the source fields into the destination fields
 Check(DbiTranslateRecordStructure(nil, SrcTbl.FieldCount, pSrcFlds,
 PChar(DBType), nil, pDestFlds, False));
 FillChar(TblDesc, sizeof(TblDesc), #0);
 StrPCopy(TblDesc.szTblName, DestTbl.TableName);
 StrPCopy(TblDesc.szTblType, DBType);
 TblDesc.iFldCount := SrcTbl.FieldCount;
 TblDesc.pFldDesc := pDestFlds;
 // Create the destination table
 Check(DbiCreateTable(DestDB, True, TblDesc));
 finally
 FreeMem(pSrcFlds, SrcTbl.FieldCount * sizeof(FLDDesc));
 FreeMem(pDestFlds, SrcTbl.FieldCount * sizeof(FLDDesc));
 end;
end;

DbiTruncateBlob {button C
Examples,JI(`>example',`exdbitruncateblob')} {button Delphi
Examples,JI(`>example',`dexdbitruncateblob')}
C syntax
DBIResult DBIFN DbiTruncateBlob (hCursor, pRecBuf, iField, iLen);
Delphi syntax
function DbiTruncateBlob (hCursor: hDBICur; pRecBuf: Pointer; iField: Word;
iLen: Longint): DBIResult stdcall;

Description
DbiTruncateBlob is used to shorten the size of the contents of a BLOB field, or to delete the
contents of a BLOB field from the record, by shortening it to zero.
Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
pRecBuf Type: pBYTE (Input)
Pointer to the record buffer.
iField Type: UINT16 (Input)
Specifies the ordinal number of BLOB field within the record buffer.
iLen Type: UINT32 (Input)
Specifies the new shorter length of the BLOB. If zero is specified, the whole BLOB is
truncated.

Usage
This is the only way to delete a BLOB without deleting the entire record.
Standard, Access: It is advisable to lock the record before opening the BLOB in read-write
mode to ensure that another client application does not lock the record.
Prerequisites
The current record must contain a BLOB field. The BLOB field must be open in
dbiREADWRITE mode by a call to DbiOpenBlob.
Completion state
After shortening the BLOB field, DbiModifyRecord must be called to post the altered record
to the table.
DbiResult return values
DBIERR_NONE The BLOB field was successfully truncated.
DBIERR_BLOBNOTOPENED The specified BLOB field was not opened via a call to DbiOpenBlob.
DBIERR_INVALIDBLOBHANDLE The BLOB handle supplied in the record buffer is invalid.
DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.
DBIERR_INVALIDBLOBOFFSET The specified iOffSet is greater than the length of the BLOB field.
DBIERR_READONLYFLD The BLOB field was opened in dbiREADONLY mode and cannot be

modified.

See also
DbiGetBlob, DbiOpenBlob, DbiPutBlob, DbiFreeBlob, DbiModifyRecord

C Examples: DbiTruncateBlob
Copy a table from the specified cursor and empty all the blob fields.
Packing the newly created table will free up space. This example uses the following input:

fDbiTruncateBlob(hPXBlobCur, "NEWBIO", &hTmpCur)
DBIResult fDbiTruncateBlob(hDBICur hTmpCur, pCHAR NewTblName, phDBICur
phTmpCur)

{
 DBIResult rslt;
 hDBIDb hTmpDb;
 CURProps CurProps;
 pFLDDesc pFldDesc;
 UINT16 FldCount;
 pBYTE pRecBuf;

 rslt = Chk(DbiGetObjFromObj(hTmpCur, objDATABASE, &hTmpDb));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiGetCursorProps(hTmpCur, &CurProps));
 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiCopyTable(hTmpDb, TRUE, CurProps.szName,
CurProps.szTableType, NewTblName));

 if (rslt != DBIERR_NONE)
 return rslt;
 rslt = Chk(DbiOpenTable(hTmpDb, NewTblName, CurProps.szTableType, NULL,
NULL, 0,

 dbiREADWRITE, dbiOPENSHARED, xltFIELD, FALSE, NULL,
phTmpCur));

 if (rslt != DBIERR_NONE)
 return rslt;
 pFldDesc = (pFLDDesc)malloc(CurProps.iFields * sizeof(FLDDesc));
 pRecBuf = (pBYTE)malloc(CurProps.iRecBufSize * sizeof(BYTE));
 rslt = Chk(DbiGetFieldDescs(*phTmpCur, pFldDesc));
 if (rslt != DBIERR_NONE)
 {
 free(pFldDesc); free(pRecBuf);
 return rslt;
 }
 while (DbiGetNextRecord(*phTmpCur, dbiWRITELOCK, pRecBuf, NULL) ==
DBIERR_NONE)

 {
 for (FldCount = 0; FldCount < CurProps.iFields; FldCount++)
 {
 if (pFldDesc[FldCount].iFldType == fldBLOB)
 {
 rslt = Chk(DbiOpenBlob(*phTmpCur, pRecBuf,
pFldDesc[FldCount].iFldNum,

 dbiREADWRITE));
 if (rslt != DBIERR_NONE)
 {
 free(pFldDesc); free(pRecBuf);
 return rslt;
 }
 rslt = Chk(DbiTruncateBlob(*phTmpCur, pRecBuf,
pFldDesc[FldCount].iFldNum, 0));

 if (rslt != DBIERR_NONE)
 {
 free(pFldDesc); free(pRecBuf);
 return rslt;
 }
 rslt = Chk(DbiModifyRecord(*phTmpCur, pRecBuf, TRUE));
 if (rslt != DBIERR_NONE)
 {
 free(pFldDesc); free(pRecBuf);
 return rslt;
 }
 rslt = Chk(DbiFreeBlob(*phTmpCur, pRecBuf,
pFldDesc[FldCount].iFldNum));

 if (rslt != DBIERR_NONE)
 {
 free(pFldDesc); free(pRecBuf);
 return rslt;
 }
 }
 }
 }
 rslt = Chk(DbiSetToBegin(*phTmpCur));
 free(pFldDesc); free(pRecBuf);
 return rslt;
}

Delphi Examples: DbiTruncateBlob
Truncate all BLOBs in the specified field to zero. If any error occurs while removing BLOB
information, stop at that record.
This example uses the following input:
 fDbiTruncateBlob(BiotestTbl, BiotestTbl.FieldByName('Notes').Index);

The procedure is:
procedure fDbiTruncateBlob(BlobTbl: TTable; Index: Word);
var
 hCur: hDBICur;
 pRecBuf: pBYTE;
begin
 hCur := nil;
 // Make sure the field specified is a BLOb type
 if (BlobTbl.Fields[Index] is TblobField) then begin
 pRecBuf := AllocMem(BlobTbl.RecordSize);
 try
 // Clone a cursor to the table so data aware controls keep their place
 Check(DbiCloneCursor(BlobTbl.Handle, False, False, hCur));
 Check(DbiSetToBegin(hCur));
 // Iterate throuth the table removing BLOb information
 while (DbiGetNextRecord(hCur, dbiWRITELOCK, pRecBuf, nil) =
DBIERR_NONE)

 do begin
 // BDE funcstions use a 1 for the first field vs. Delphi's 0;
 // add 1 to the index
 Check(DbiOpenBlob(hCur, pRecBuf, Index + 1, dbiREADWRITE));
 Check(DbiTruncateBlob(hCur, pRecBuf, Index + 1, 0));
 Check(DbiModifyRecord(hCur, pRecBuf, True));
 Check(DbiFreeBlob(hCur, pRecBuf, Index + 1));
 end;
 finally // Close cloned cursor and free record buffer memory
 if (hCur <> nil) then
 Check(DbiCloseCursor(hCur));
 FreeMem(pRecBuf, BlobTbl.RecordSize);
 end;
 end
 else
 raise EDatabaseError.Create('Field: ' +
 BlobTbl.Fields[Index].FieldName + ', is not a blob type');
end;

DbiUndeleteRecord {button C
Examples,JI(`>example',`exdbiundeleterecord')} {button Delphi
Examples,JI(`>example',`dexdbiundeleterecord')}
C syntax
DBIResult DBIFN DbiUndeleteRecord (hCursor);
Delphi syntax
function DbiUndeleteRecord (hCursor: hDBICur): DBIResult stdcall;
Description
DbiUndeleteRecord undeletes a dBASE or FoxPro record that has been marked for deletion
(a soft delete).

Parameters
hCursor Type: hDBICur (Input)
Specifies the dBASE or FoxPro cursor handle.

Usage
dBASE or FoxPro: This function is supported with dBASE or FoxPro tables only.
Paradox, Access: This function is not supported with Paradox and Access tables.
SQL: This function is not supported with SQL tables.
Prerequisites
The cursor must be positioned on a record. The cursor must have the property bDeletedOn
set to TRUE.
Completion state
The current record is recalled if it was marked for deletion.

DbiResult return values
DBIERR_NONE The dBASE or FoxPro record was successfully undeleted.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.
DBIERR_BOF The cursor is positioned on the crack at the beginning of the file.
DBIERR_EOF The cursor is positioned on the crack at the end of the file.
DBIERR_NA The specified record was not deleted; cannot undelete the record.
DBIERR_TABLEREADONLY The specified table is read-only; cannot undelete the record.
DBIERR_FILELOCKED The table is locked by another user; cannot undelete the record.
DBIERR_NOTSUPPORTED The function is supported only for dBASE or FoxPro tables.
DBIERR_NOCURRREC The cursor is not positioned on a valid record.

See also
DbiDeleteRecord, DbiPackTable

C Examples: DbiUndeleteRecord
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiUndeleteRecord
Undeletes a dBASE record if it is supported.
This example uses the following input:
 fDbiUndeleteRecord(AnimalTbl);

The procedure is:
procedure fDbiUndeleteRecord(dBASETbl: TTable);
var
 CProps: CurProps;
begin
 Check(DbiGetCursorProps(dBASETbl.Handle, CProps));
 // Raise an EDBEngineError exception if the table is not dBASE
 if (StrIComp(CProps.szTableType, szDBASE) <> 0) then
 raise EDBEngineError.Create(DBIERR_NOTSUPPORTED);
 // Raise an EDatabaseError exception if the cursor does not have soft
deletes on

 if (CProps.bDeletedOn = False) then
 raise EDatabaseError.Create('Soft deletes is not on');
 Check(DbiUndeleteRecord(dBASETbl.Handle));
end;

DbiUnlinkDetail {button C
Examples,JI(`>example',`exdbiunlinkdetail')} {button Delphi
Examples,JI(`>example',`dexdbiendlinkmode')}
C syntax
DBIResult DBIFN DbiUnlinkDetail (hDetlCursor);
Delphi syntax
function DbiUnlinkDetail (hDetlCursor: hDBICur): DBIResult stdcall;
Description
DbiUnlinkDetail removes the link from a detail cursor and its master.
Parameters
hDetlCursor Type: hDBICur (Input)
Specifies the detail cursor handle.
Usage
Links should be removed before calling DbiEndLinkMode.

Prerequisites
A call to DbiLinkDetail or DbiLinkDetailToExp.
Completion state
The cursors are no longer related to each other, but remain in the linked cursor mode. The
function unlinks hDetlCursor from its master table, leaving hDetlCursor as a linked cursor
associated with no master cursor. Thus, the detail cursor is not constrained by its master.

DbiResult return values
DBIERR_NONE The link between the detail and master cursors was removed successfully.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiLinkDetail, DbiLinkDetailToExp, DbiBeginLinkMode, DbiEndLinkMode

C Examples: DbiUnlinkDetail
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiUnlinkDetail
An example for this function is under development and will be provided in an upcoming
Help release.

DbiUseIdleTime
C syntax
DBIResult DBIFN DbiUseIdleTime (VOID);
Delphi syntax
function DbiUseIdleTime: DBIResult stdcall;
Description
This function is no longer supported. Use DbiSaveChanges instead.

DbiValidateProp {button C
Examples,JI(`>example',`exdbivalidateprop')} {button Delphi
Examples,JI(`>example',`dexdbisetprop')}
C syntax
DBIResult DBIFN DbiValidateProp (hObj, iProp, bSetting);
Delphi syntax
function DbiValidateProp (hObj: hDBIObj; iProp: Longint; bSetting: Bool):
DBIResult stdcall;

Description
DbiValidateProp validates a property for a specified object handle.

Parameters
hObj Type: hDBIObj (Input)
Specifies the object handle.
iProp Type: UINT32 (Input)
Specifies the property to validate.
bSetting Type: BOOL (Input)
Set to TRUE if DbiValidateProp is setting the property; to FALSE if DbiValidateProp is getting
the property.
Usage
Use DbiValidateProp to determine whether a given property can be changed or retrieved
from the supplied object handle. You can call DbiValidateProp before DbiSetProp and
DbiGetProp to determine if a property is valid for a given object.

DbiResult return values
DBIERR_NONE The data meets all the requirements for the specified property.
DBIERR_NOTSUPPORTED The property is invalid for the given object.

See also
DbiSetProp, DbiGetProp

C Examples: DbiValidateProp
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiValidateProp
An example for this function is under development and will be provided in an upcoming
Help release.

DbiVerifyField {button C
Examples,JI(`>example',`exdbiverifyfield')} {button Delphi
Examples,JI(`>example',`dexdbiverifyfield')}
C syntax
DBIResult DBIFN DbiVerifyField (hCursor, iField, pSrc, [pbBlank]);
Delphi syntax
function DbiVerifyField (hCursor: hDBICur; iField: Word; pSrc: Pointer; var
bBlank: Bool): DBIResult stdcall;

Description
DbiVerifyField verifies that the data specified in pSrc is a valid data type for the field
specified by iField, and that all validity checks specified for the field are satisfied. It can
also be used to check if a field is blank.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.
iField Type: UINT16 (Input)
Specifies the ordinal number of the field in the record.
pSrc Type: pBYTE (Input)
Pointer to the buffer containing the data to be verified. If NULL, the function verifies
whether a blank value is allowed.
pbBlank Type: pBOOL (Output)
Pointer to the client variable that is set to TRUE if the field is blank; otherwise, it is set to
FALSE.

Usage
If the translation mode of the cursor is xltFIELD, pSrc is assumed to contain field data in
BDE logical format, otherwise it is considered to be the driver's physical format. The
validity checking aspect of this function enables the client application to report errors
without actually attempting to write the data. It can also be used to check if a field is blank.
If pSrc is NULL, the function verifies whether or not a blank value is allowed.
DbiVerifyField is not supported with BLOB fields.
dBASE or FoxPro: For dBASE and FoxPro tables, this function can be used only to
determine if a field is blank.
Paradox: For Paradox tables, this function evaluates field-level validity checks; it does not
evaluate referential integrity constraints.

Completion state
If the field is blank, the variable pointed to by pbBlank is set to TRUE. If any field-level
validity check has failed, an error message is returned, indicating which type of validity
check the field has failed.
DbiResult return values
DBIERR_NONE The data meets all the requirements for the specified field.
DBIERR_MINVALERR The data is less than the required minimum value.
DBIERR_MAXVALERR The data is greater than the required maximum value.
DBIERR_REQDERR The field cannot be blank.
DBIERR_LOOKUPTABLEERR The value cannot be located in the assigned lookup table.

See also
DbiOpenTable, DbiPutField, DbiInsertRecord, DbiModifyRecord, DbiAppendRecord

C Examples: DbiVerifyField
Verify that a given field is valid.
Information was placed into the field buffer by using DbiPutField or DbiGetField.
DBIResult fDbiVerifyField(hDBICur hCur, INT16 FldNum, pBYTE FldBuf)
{
 DBIResult rslt;
 rslt = Chk(DbiVerifyField(hCur, FldNum, FldBuf, NULL));
 return rslt;
}

Delphi Examples: DbiVerifyField
Verifiy that the data specified is valid for the first field.
In this example, the field must be of type double. Blank is set to True if the field is blank.
This example uses the following input:
 fDbiVerifyField(Table1.Handle, Blank);

The function is:
function fDbiVerifyField(hTmpCur: hDBICur; var Blank: Boolean): DbiResult;
var
 Key: Double;
begin
 Key:= 20000.00;
 Result := DbiVerifyField(hTmpCur, 1, @key, Blank);
end;

DbiWriteBlock {button C
Examples,JI(`>example',`exdbiwriteblock')} {button Delphi
Examples,JI(`>example',`dexdbiwriteblock')}
C syntax
DBIResult DBIFN DbiWriteBlock (hCursor, piRecords, pBuf);
Delphi syntax
function DbiWriteBlock (hCursor: hDBICur; var iRecords: Longint; pBuf:
Pointer): DBIResult stdcall;

Description
DbiWriteBlock writes a block of records to the table associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle to the table.
piRecords Type: pUINT32 (Input/Output)
On input, piRecords is a pointer to the number of records to write. On output, pointer to the
client variable that receives the actual number of records written. The number actually
written may be less than requested if an integrity violation or other error occurred.
pBuf Type: pBYTE (Input)
Pointer to the buffer containing the records to be written.

Usage
This function is similar to calling DbiAppendRecord for the specified number of piRecords.
DbiWriteBlock can access data in blocks larger than 64Kb, depending on the size you
allocate for the buffer.
Note: This function cannot be used if the records contain non-empty BLOBs.
Paradox: This function verifies any referential integrity requirements or validity checks
that may be in place. If either fails, the write operation is canceled.

Completion state
The cursor is positioned at the last record that was inserted.
DbiResult return values
DBIERR_NONE The block of records contained in pBuf has been successfully written to the table

specified by hCursor.
DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL, or piRecords is NULL,

or pBuf is NULL.
DBIERR_TABLEREADONLY The table is opened read-only; cannot write to it.
DBIERR_NOTSUFFTABLERIGHTS Insufficient table rights to insert a record. (Paradox only.)
DBIERR_NODISKSPACE Insertion failed due to insufficient disk space.

See also
DbiReadBlock, DbiAppendRecord, DbiInsertRecord

C Examples: DbiWriteBlock
An example for this function is under development and will be provided in an upcoming
Help release.

Delphi Examples: DbiWriteBlock
Add multiple records to a table
This example assumes that the Customer TTable object is the Customer.DB table.
It uses the following input:
 fDbiWriteBlock(Table1; NumRecs);

The procedure is:
procedure fDbiWriteBlock(Customer: TTable; var RecordsToInsert: Longint);
var
 pRecordsBuf, pTmpBuf: pBYTE;
 Rec: Longint;
 CustNo: Double;
begin
 Randomize;
 GetMem(pRecordsBuf, Customer.RecordSize * RecordsToInsert);
 pTmpBuf := pRecordsBuf;
 try
 for Rec := 1 to RecordsToInsert do begin
 CustNo := Random(1000000);
 // Iterate through the entire record buffer filling each
 // individual record with information
 with Customer do begin
 Check(DbiInitRecord(Handle, pTmpBuf));
 Check(DbiPutField(Handle, FieldByName('CustNo').Index + 1, pTmpBuf,
 pBYTE(@CustNo)));
 Check(DbiPutField(Handle, FieldByName('Company').Index + 1, pTmpBuf,
 PChar('INPRISE Corporation')));
 Inc(pTmpBuf, RecordSize);
 end;
 end;
 Check(DbiWriteBLock(Customer.Handle, RecordsToInsert, pRecordsBuf));
 finally
 FreeMem(pRecordsBuf, Customer.RecordSize * RecordsToInsert);
 end;
end;

Data structures
This topic is an overview of various data structures used by BDE or its drivers, and
miscellaneous data structures defined in the BDE header file IDAPI.H.
For topics on other data structures, click here:
{button ,AL(`types')} Other data structure topics
Major data structures used in BDE are listed in this table:
Structure Description
BATTblDesc Batch table definition
CANExpr Expression tree descriptor
CANHdr Header for all filter node classes
CBPROGRESSDesc Progress callback
CBRESTcbDescRestructure callback
CFGDesc Configuration descriptor
CLIENTInfo Describes a client/application
CRTblDesc Defines the general attributes of a table
CURProps Describes the most commonly used cursor properties
DBDesc Database descriptor
DBIEnumFld Defines an enumerated field
DBIEnv Defines the BDE environment
DBIErrInfo Provides error information
DBIFUNCArgDesc Returns arguments for a remote data source function,

including field type
and sub type.

DBIFUNCDesc Describes a remote data source function, including name, overloads, and
flags.

DBIQryProgress Describes the status of a query
DRVType Describes the driver and its capabilities
FILEDesc File descriptor
FILTERInfo Provides filter information
FLDDesc Field descriptor
FLDType Describes a field type
FMLDesc Describes family of files in language driver descriptor
FMTBcd Provides binary coded decimal format
FMTDate Provides date format
FMTNumber Provides number format
FMTTime Provides time format
IDXDesc Index descriptor
IDXType Describes an index type
LDDesc Describes a language driver
LOCKDesc Lock descriptor
RECProps Describes the record properties

RINTDesc Provides referential integrity options
SECDesc Describes each security descriptor
SESInfo Provides session information
SPDesc Describes a stored procedure
SPParamDesc Describes the parameters to a stored procedure
SYSConfig Provides basic system configuration information
SYSInfo Provides BDE system status
SYSVersion Provides BDE system version information
TBLBaseDesc Provides basic information about a table
TBLExtDesc Provides additional information about a table
TBLFullDesc Provides a complete description of the table
TBLType Describes a table's capabilities
USERDesc Describes a user
VCHKDesc Provides information about validity checking constraints
XInfo Transaction descriptor

BATTblDesc (batch table definition)
The BATTblDesc structure defines a batch table, using the following fields:
Field Type Description
hDb hDBIDb Specifies the database handle.
szTblName DBIPATH Specifies the table name.
szTblType DBINAME Specifies the driver type; optional.
szUserName DBINAME Not currently used.
szPassword DBINAME Not currently used.

CANHdr (filter descriptor)
The CANHdr structure is the header for all filter node classes. It contains the following
fields:

nodeClass Type: NODEClass
The following node classes are valid:
Node Class Description
nodeUNARY Node is a unary operator.
nodeBINARY Node is a binary operator.
nodeCOMPARENode is a compare operator.
nodeFIELD Node is a field.
nodeCONST Node is a constant.
nodeTUPLE Node is a record. Not currently used.
nodeCONTINUE Node is a continue node.

CANExpr (expression tree descriptor)
For details on usage of this descriptor, see Using an expression tree.
Nodes and literals are in this structure:
Type Name Description
UINT16 iVer Version tag of expression
UINT16 iTotalSize Size of this structure
UINT16 iNodes Number of nodes
UINT16 iNodeStart Starting offset of nodes
UINT16 iLiteralStart Starting offset of literals
canOP Type: CANOp
The following operators are valid:
Relational operators
canNOTDEFINED Make this the first one
canISBLANK Unary; is operand blank
canNOTBLANK Unary; is operand not blank
canEQ Binary; equal
canNE Binary; not equal
canGT Binary; greater than
canLT Binary; less than
canGE Binary; greater or equal
canLE Binary; less or equal
Logical operators
canNOT Unary; NOT
canAND Binary; AND
canOR Binary; OR
Operators identifying leaf operands
canTUPLE Unary; entire record is operand
canFIELD Unary; operand is field
canCONST Unary; operand is constant
Miscellaneous operators
canCONTINUE Unary; Stops evaluating records when operand evaluates to false. This is

provided as a stop
at high range filter
value

CBPROGRESSDesc (progress callback)
The progress callback enables the client to be kept up to date as to the progress of a
potentially long-running operation (such as DbiBatchMove or DbiQExec). When the client
registers the callback, a callback buffer must be supplied. The buffer must be at least as
large as sizeof(CBPROGRESSDesc). During query execution, the supplied callback function
is called after certain milestones have been reached, giving the client an update on how
execution is progressing. The CBPROGRESSDesc structure is stored in the client's call back
buffer.
The CBPROGRESSDesc structure contains the following fields:
Field Type Description
iPercentDone UINT16 Any number from -1 to 100 is valid. A value between 1 and

100 specifies the percentage done; for example, the value 50
indicates that the execution is half complete. If the value is -
1, the progress of execution is indicated via the string szMsg,
rather than with a percentage.

szMsg DBIMSG Specifies a string containing a message. This message serves
as a progress report; for example, "Steps completed: 5." The
message is displayed when iPercentDone is -1.

CBRESTcbDesc (restructure callback)
The CBRESTcbDesc structure contains the following fields:
Field Type Description
iErrCode DBIResult Specifies the error code number.
iTblNum UINT16 Specifies the table number.
iObjNum UINT16 For old objects iObjNum is the sequence or field number; for

new objects iObjNum is the order in CRTblDesc.
eRestrObjType RESTErrObjType Specifies the object type.

eRestrObjType
Object type is a union of the following structures:
Structure Type Description
fldDesc FLDDesc Field descriptor
idxDesc IDXDesc Index descriptor
vchkDesc VCHKDesc Validity check descriptor
rintDesc RINTDesc Referential integrity descriptor
secDesc SECDesc Security descriptor

CFGDesc (configuration descriptor)
The CFGDesc structure describes the BDE configuration. It contains the following fields:
Field Type Description
szNodeName DBINAME Specifies the name of the leaf node.
szDescription DBINAME Specifies detailed information about the configuration leaf

node.
iDataType UINT16 Specifies the data type, which is always a string.
szValue CHAR Specifies a value large enough to hold any value

[DBIMAXSCFLDLEN].
bHasSubnodes BOOL TRUE, if not a leaf node.

CLIENTInfo (client information)
The CLIENTInfo structure describes a client/application. It contains the following fields:
Field Type Description
szName DBINAME Specifies the documentary name.
iSessions UINT16 Specifies the number of sessions.
szWorkDir DBIPATH Specifies the working directory.
szLang DBINAME Specifies the language of the client (for messages). See

szLang

CRTblDesc (table descriptor)
DbiDoRestructure and DbiCreateTable both use the CRTblDesc structure, but the way they
use the structure is quite different. Some of the fields within CRTblDesc are not specified at
create time for use with DbiCreateTable; they are specified only with DbiDoRestructure to
modify the table.

CRTblDesc for creating a table
The CRTblDesc structure defines the general attributes of the table and supplies pointers to
arrays of field, index, and other descriptors. The following CRTblDesc structure defines the
table structure:
Field Type Description
szTblName DBITBLNAME Specifies the table name, including optional path and

extension.
szTblType DBINAME Specifies the driver type.
szErrTblName DBIPATH Reserved.
szUserName DBINAME Reserved.
szPassword DBINAME Specifies the master password (if bProtected is TRUE).

(Paradox only.)
bProtected BOOL TRUE if encryption is desired (Paradox only).
iFldCount UINT16 Specifies the number of field definitions supplied.
pfldDesc pFLDDesc Specifies the array of field descriptors.
iIdxCount UINT16 Specifies the number of index definitions supplied.
pidxDesc pIDXDesc Specifies the array of index descriptors.
iSecRecCount UINT16 Specifies the number of security definitions given

(Paradox only).
psecDesc pSECDesc Specifies the array of security descriptors

(Paradox only).
iValChkCount UINT16 Specifies the number of validity checks

(Paradox and SQL only).
pvchkDesc pVCHKDesc Specifies the array of validity check descriptors (Paradox

and SQL only).
iRintCount UINT16 Specifies the number of referential integrity

specifications (Paradox and SQL only).
printDesc pRINTDesc Specifies the array of referential integrity specifications

(Paradox, dBASE and SQL only).
iOptParams UINT16 Specifies the number of optional parameters.
pfldOptParams pFLDDesc Specifies the array of field descriptors for optional

parameters.
pOptData pBYTE Specifies the values of optional parameters.

CRTblDesc for restructuring a table
A complete description of CRTblDesc, as used to restructure a table is described below.
Type Name Description
DBITBLNAME szTblName Required; specifies the source table name. The table

name can contain an extension.

DBINAME szTblType If specified, it must match the driver type associated
with the source table.

DBIPATH szErrTblName Not currently used.
DBINAME szUserName Not currently used.
DBINAME szPassword Optional; if bProtected is set to TRUE, specifies the

password of the destination table.
BOOL bProtected Optional; If TRUE, specifies that a master password is

supplied for the destination table. Paradox only.
BOOL bPack Optional; If TRUE, specifies packing for restructure.

iFldCount, pecrFldOp, and pfldDesc are required to describe the new record structure:
UINT16 iFldCount Optional; used if the record structure is changing.

Specifies the number of field operators and field
descriptors passed in pecrFldOp and pFldDesc for the
new record structure.

pCROpType pecrFldOp* Optional; pointer to an array of CROpType structures,
one for each field in the record; used if the record
structure is changing, it indicates how the fields are
rearranged. For each changed field, set it to crADD if the
field is added, crMODIFY if the field is modified, or
crCOPY if the field is moved.

pFLDDesc pfldDesc Optional; used if the record structure is changing.
Specifies an array of physical field descriptors for the
new record structure. ifldNum in each pfldDesc must be
0 if the field is added. Otherwise, it must contain the
field position (1 to n) in the old record structures. If a
field is dropped, its descriptor is simply left out of the
new record structure. Additionally, any changes to
dependent objects are made automatically (that is, all
single field indexes, validity checks, and auxiliary
passwords are dropped).

For all the following objects, only the changes must be input:
UINT16 IdxCount Optional; specifies the number of index operators and

index descriptors passed in pIdxDesc.
pCROpType pecrIdxOp Optional; to change an index, specify crADD, crMODIFY,

crREDO, or crDROP.
pIDXDesc pidxDesc Optional; specifies an array of index descriptors.
UINT16 iSecRecCount Optional; for Paradox only; specifies the number of

security definitions passed in psecDesc.
pCROpType pecrSecOp Optional; to change a security definition, specify crADD,

crMODIFY, or crDROP.
pSECDesc psecDesc Optional; for Paradox only; specifies an array of security

descriptors.
UINT16 iValChkCount Optional; for Paradox only; specifies the number of

validity checks passed in pecrValChkOp and pvchkDesc.
pCROpType pecrValChkOp Optional; for Paradox only; to change a validity check,

specify crADD, crMODIFY, or crDROP.
pVCHKDesc pvchkDesc Optional; for Paradox only; specifies an array of validity

check descriptors.

UINT16 iRintCount Optional; for Paradox only; specifies the number of
referential integrity operators passed in printDesc.

pCROpType pecrRintOp Optional; for Paradox only; to change a referential
integrity operator, specify crADD, crMODIFY, or crDROP.
crMODIFY cannot be used to change the name of a
referential integrity constraint. To modify the name, use
crDROP and crADD.

pRINTDesc printDesc Optional; for Paradox only; specifies an array of
referential integrity specifications.

UINT16 iOptParams Optional; specifies the number of optional parameters
(for example, language driver information).

pFLDDesc pfldOptParams Optional; specifies an array of field descriptors for
optional parameters.

pBYTE pOptData Optional; specifies values of optional parameters.
The following operation types are valid only for restructuring the table:
Operation typeValue Description
crNOOP 0 Perform no operation
crADD 1 Add a new element
crCOPY 2 Copy an existing element
crMODIFY 3 Modify an element
crDROP 4 Removes an element

CURProps (cursor properties)
The cursor properties (CURProps) structure describes the most commonly used cursor
properties, using the following fields:
Field Type Description
szName DBITBLNAME Specifies the table name.
iFNameSize UINT16 Specifies the size of the buffer needed to retrieve full

table name (including extension and path, if applicable).
szTableType DBINAME Specifies the driver type.
iFields UINT16 Specifies the number of fields in the table. The client

must allocate a buffer whose size is: [iFields *
sizeof(FLDDesc)] in order to get the field descriptors for
the table.

iRecSize UINT16 Specifies the record size, depending on the xltMODE for
the cursor. If the xltMODE is xltFIELD, iRecSize specifies
the logical record size. In other words, it is the size of
the record if all fields were represented as BDE logical
types. If the xltMODE is xltNONE, iRecSize specifies the
physical record size.

iRecBufSize UINT16 Specifies the physical record size. This is the size of the
record buffer that the client must allocate in order to
retrieve the records using DbiGetNextRecord,
DbiGetPriorRecord, and other functions. This size can
change if DbiSetFieldMap is called.

iKeySize UINT16 Specifies the key size of the current active index (if
any). This is the size of the key buffer that the client
must allocate in order to retrieve a key using
DbiExtractKey. This size changes if DbiSwitchToIndex is
called.

iIndexes UINT16 Specifies the number of currently open indexes for this
cursor. The client can call DbiGetIndexDesc with
iIndexSeqNo set from 1 to iIndexes, to have all the index
descriptors returned. The client could also allocate a
buffer whose size is [iIndexes * sizeof(IDXDesc)] and
have all the index descriptors returned by calling
DbiGetIndexDescs.

iValChecks UINT16 Specifies the number of validity checks existing for this
table.

iRefIntChecks UINT16 Specifies the number of referential integrity constraints
existing for this table.

iBookMarkSize UINT16 Specifies the size of the bookmark. Bookmarks are
always allocated by the client before DbiGetBookMark is
called. Note that the size of the bookmark could change
if DbiSwitchToIndex is called.

bBookMarkStable BOOL TRUE, if this cursor supports stable bookmarks. Stable
bookmarks are those that remain unchanged after
another user has modified the table. For example, this
value is TRUE for Paradox tables having a primary key,
but FALSE for Paradox heap tables.

eOpenMode DBIOpenMode Specifies the open mode that this cursor was opened

with.
eShareMode DBIShareMode Specifies the share mode that this cursor was opened

with:
bIndexed BOOL This value is TRUE if there is a current active index for

this cursor. In other words, it is TRUE if there is a non-
default order associated with this cursor.

iSeqNums INT16 This is an enumerated value which is interpreted as
follows:
1 This cursor supports the

sequence number concept (Paradox).
0 This cursor supports the

record number concept (dBASE and FoxPro).
< 0 (-1, -2. . .): None (SQL and Access)

bSoftDeletes BOOL This value is set to TRUE if this cursor supports soft
deletes (dBASE and FoxPro only).

bDeletedOn BOOL This value is set to TRUE if the curSOFTDELETEON
property is TRUE. This field makes sense only if the
cursor supports the soft delete concept. If TRUE, deleted
records can be seen while using this cursor (dBASE and
FoxPro only).

iRefRange UINT16 Not currently used.
exltMode XLTMode Specifies the value of the translate mode property for

this cursor.
iRestrVersion UINT16 Specifies the restructure version number for the table.

(Paradox only.)
bUniDirectional BOOL This value is set to TRUE if this cursor is unidirectional

(SQL only.)
eprvRights PRVType Specifies an enumerated value that gives the table-level

rights for the user who opened the table.
iFmlRights UINT16 Reserved.
iPasswords UINT16 Specifies the number of auxiliary passwords for this

table. (Paradox only).
iCodePage UINT16 Specifies the code page associated with the table. If the

code page is unknown, the value is 0.
bProtected BOOL This value is set to TRUE if the table is protected by a

password.
iTblLevel UINT16 Specifies the table level. This value is driver dependent.
szLangDriver DBINAME Specifies the name of the language driver associated

with the table.
bFieldMap BOOL This value is set to TRUE if a field map is active for this

cursor.
iBlockSize UINT16 Specifies the value of the BLOCKSIZE for the table, in

bytes.
bStrictRefInt BOOL This value applies only to Paradox for DOS tables and

the Paradox engine. If TRUE, it means that a referential
integrity check has been specified and that the STRICT
bit is set in the header, which makes the table
inaccessible using Paradox for DOS.

iFilters UINT16 Specifies the number of filters currently on the cursor.
bTempTable BOOL TRUE, if the cursor is on a temporary table. For queries,

this means the result set is canned, rather than live.
This field can be examined to determine whether the
requested preference for LIVENESS in the DbiSetProp
call were honored.

eOpenMode
The following open modes are valid:
Open Mode Description
Read and write (default)
Read-only

eShareMode
The following share modes are valid:
Share Mode Description
Open shared (default)
Open exclusive
Note: This might not always be the same value used by the client to call DbiOpenTable. In

particular, dbiOPENSHARED can be promoted to dbiOPENEXCL in some cases.

exltMode
The translate mode values supported are:
Translate Mode Description
No translation; use physical types
Field-level translation; use logical types

eprvRights
The table-level rights supported are:
Privilege Description
No privileges
Read-only table or field
Read and modify fields
Insert    all of above
Delete    all of above
Full rights
Unknown

DBDesc (database descriptor)
The DBDesc structure describes a database, using the following fields:
Field Type Description
szName DBINAME Specifies the database alias name.
szText DBINAME Descriptive text.
szPhyName DBIPATH Specifies the physical name/path.
szDbType DBINAME Specifies the database type.

DBIEnumFld (enumerated field information)
The DBIEnumFld structure defines an enumerated field, using the following fields:
Field Type Description
szDisplayStr DBINAME Specifies the display string for the value
abVal [DBIMAXENUMFLDLEN+1] BYTE Specifies the data value

DBIEnv (environment information)
The DBIEnv structure defines the BDE environment, using the following fields:
Field Type Description
szWorkDir DBIPATH Specifies the working directory.
szIniFile DBIPATH Specifies the fully qualified file name of the configuration

file.
bForceLocalInit BOOL If TRUE, forces local initialization.
szLang DBINAME Specifies the language of the client. This value is the

primary language ID from WIN32 (as shown in WINNT.H).
szClientName DBINAME Specifies the client name.

szLang
szLang is part of the DBIEnv structure which is passed to DbiInit. The language of the client
is specified as the primary language ID from WIN32 (as shown in WINNT.H).
Note: You must add two leading zero's to this value.
For example, the primary language ID for French is "0c". Thus, to start BDE so that it uses
French messages and French QBE keywords, you would add two leading zero's to 0c and
set szLang equal to "000c".
Here is a table of possible szlang values :
Language szLang value
Danish 0006
English 0009
French 000c
German 0007
Italian 0010
Norwegian 0014
Portuguese 0016
Spanish 000a
Swedish 001d

DBIErrInfo (error information)
The DBIErrInfo structure describes error information, using the following fields:
Field Type Description
iError DBIResult Specifies the last error code returned.
szErrCode DBIMSG Specifies the error code.
szContext1 DBIMSG Specifies the context-dependent information at the top level of

the error stack.
szContext2 DBIMSG Specifies the context-dependent information at the second

level of the error stack.
szContext3 DBIMSG Specifies the context-dependent information at the third level

of the error stack.
szContext4 DBIMSG Specifies the context-dependent information at the fourth level

of the error stack.

DBIQryProgress (query progress)
The DBIQryProgress structure describes the status of a query, using the following fields:
Field Type Description
stepsInQry UINT16 Specifies the total number of steps in the query.
stepsCompleted UINT16 Specifies the number of steps completed out of the total.
totElemInStep UINT32 Specifies the total number of elements in the current step.
elemCompleted UINT32 Specifies the number of elements completed in the current

step.

DRVType (driver capabilities)
The DRVType structure describes the driver and its capabilities, using the following fields:
Field Type Description
szType DBINAME Specifies the symbolic name identifying the driver.
szText DBINAME Descriptive text.
edrvCat DRVCat Specifies the driver category.
bTrueDb BOOL If TRUE, the driver supports the true database concept.
szDbType DBINAME Specifies the database type.
bMultiUser BOOL If TRUE, the driver supports multiuser access.
bReadWrite BOOL If TRUE, the driver supports read-write access; otherwise, the

driver supports only read-only access.
bTrans BOOL If TRUE, the driver supports transactions.
bPassThruSQL BOOL If TRUE, the driver supports passthrough SQL.
bLogIn BOOL If TRUE, the driver requires explicit login.
bCreateDb BOOL If TRUE, the driver can create a database.
bDeleteDb BOOL If TRUE, the driver can drop a database.

edrvCat
The following driver categories are valid:
Driver Category Description
drvFILE File-based (Paradox, dBASE, FoxPro, Access, Text)
drvOTHERSERVER Other kind of server
drvSQLBASEDSERVER SQL-based server

FILEDesc (file descriptor)
The FILEDesc structure describes a file, using the following fields:
Field Type Description
szFileName DBIPATH File name (no directory or extension).
szExt DBIEXT Specifies the file extension.
bDir BOOL If TRUE, this file is a directory.
iSize UINT32 Specifies the file size in bytes.
dtDate DBIDATE Specifies the date on the file.
tmTime TIME Specifies the time on the file.

FILTERInfo (filter information descriptor)
The FILTERInfo structure describes a filter using the following fields:
Field Type Description
iFilterId UINT16 Specifies the ID for the filter.
hFilter hBBIFilter Specifies the filter handle.
iClientData UINT32 Not used.
iPriority UINT16 Not used.
bCanAbort BOOL Not used.
pfFilter pfGENFilter Not used.
pCanExpr pVOID Specifies the supplied expression.
bActive BOOL TRUE, if the filter is active.

FLDDesc (field descriptor)
The FLDDesc structure defines a field in a table, using the properties in the following table:
Note: The same descriptor structure is used both in creating a table and in inquiring about

the table structure after it is opened. The application developer does not specify the
last five properties in the field descriptor structure when a table is created.

Field Type Description
iFldNum UINT16 On input, specifies the field number. This value can be from 1

to curProps.iFields. On output, this is the invariant field
ID. Note: Do not use this value as a field number.

szName DBINAME Specifies the name of the field. Note: ADT field names do not
include the parent names. For exampe,
‘ID.BIRTHDAY.NAME’ will be “NAME’. Use DbiGetProp()
with curFULLFIELDNAME to obtain the full name of an
ADT field.

iFldType UINT16 Specifies the type of the field. In output mode, if translate
mode is set to xltNONE, field types represent the
physical types of that driver type, otherwise, the types
are BDE logical types.

iSubType UINT16 Specifies the subtype of the field. This could be a BDE logical
subtype or a driver physical subtype depending on the
translate mode setting.

iUnits1 INT16 Specifies the number of characters, digits, and so on. The
interpretation of this field can be dependent on the
driver and also on the specific field type. For most
drivers, if the field is of the numeric type, iUnits1 is the
precision and iUnits2 is the scale.

iUnits2 INT16 Specifies the number of decimal places, and so on. The
interpretation of this field can depend on the driver and
also on the specific field type. For most drivers, if the
field is of the numeric type, iUnits1 is the precision and
iUnits2 is the scale.

iOffset UINT16 Reports the offset of this field in the record buffer. This offset
depends on the translation mode; it could be the offset
in the physical or logical representation of the record.
This field applies only to existing tables; it is not
applicable when a table is created.

iLen UINT16 Reports the length in bytes of this field. The length depends on
the translation mode; that is, it could be the length of
the logical or physical representation of the field. The
application developer uses this value to allocate a buffer
in which to retrieve the field value. This field applies only
to existing tables; it is not applicable when a table is
created.

iNullOffset UINT16 Reports the offset of the NULL indicator for this field in the
record buffer. If zero, there is no NULL indicator.
Otherwise, iNullOffset is the offset to an INT16 value,
which is -1 if the field is NULL. This field applies only to
existing tables; it is not specified when a table is
created.

efldvVchk FLDVchk Reports the types of validity checks associated with this field

(this field applies only to existing tables; it is not
specified when a table is created). The following validity
check types can be reported: fldvNOCHECKS,
fldvHASCHECKS, or fldvUNKOWN.

efldrRights FLDRights Reports the field level rights for this user (this field applies
only to existing tables; it is not specified when a table is
created). Field rights can be one of the following values:
fldrREADWRITE, fldrREADONLY, fldrNONE, or
fldrUNKOWN.

bCalcField BOOL16 TRUE, if field is a calculated field (computed).
iUnUsed3 UINT16 Reserved for future use

BLOBParamDesc (BLOB or long string descriptor)
The BLOBParamDesc structure is used with FLDDesc to bind a BLOB or long string (greater
than 255 characters) parameter in a query, using the properties in the following table:
Field Type Description
pBlobBuffer pBYTE Pointer to a client-allocated buffer containing the BLOB or long

string to bind.
ulBlobLen UINT32 Specifies the length of the buffer referenced by pBlobBuffer.
iUnUsed4 UINT16 Reserved for future use.

FLDType (field types)
The FLDType structure describes a field type using the following fields:
Field Type Description
iId UINT16 Specifies the ID of the field type.
szName DBINAME Specifies the symbolic name of field type; for example, ALPHA.
szNativeName DBINAME Name used in SQL DDL statements.
szText DBINAME Descriptive text.
iPhyType UINT16 Specifies the physical/native type.
iXltType UINT16 Specifies the default translated type.
iXltSubType UINT16 Specifies the default translated subtype.
iMaxUnits1 UINT16 Specifies the maximum units allowed (1).
iMaxUnits2 UINT16 Specifies the maximum units allowed (2).
iPhySize UINT16 Specifies the physical size in bytes (per unit).
bRequired BOOLIf TRUE, supports required option.
bDefaultVal BOOLIf TRUE, supports user-specified default.
bMinVal BOOLIf TRUE, the field supports the minimum validity constraint.
bMaxVal BOOLIf TRUE, the field supports the maximum validity constraint.
bRefIntegrity BOOLIf TRUE, the field can participate in referential integrity.
bOtherChecks BOOLIf TRUE, the field supports other kinds of checks.
bKeyed BOOLIf TRUE, the field type can be keyed.
bMultiplePerTable BOOL If TRUE, the table can have more than one of this type.
iMinUnits1 UINT16 Specifies the minimum units required (1).
iMinUnits2 UINT16 Specifies the minimum units required (2).
bCreateable BOOLIf TRUE, the field type can be created.

FMLDesc (family language driver descriptor)
Files belonging to a given table are considered a "family" that must be kept together.
FMLDesc returns the filenames of the files in a language driver family.
Field Type Description
szName DBINAME Member name (documentary)
iId UINT16 Id (if applicable)
eType FMLType Member type
szFileName DBIPATH File name of member

FMTBcd (binary coded decimal format)
The FMTBcd structure describes the format for binary coded decimal, using the following
fields:
Field Type Description
iPrecision BYTE Any specified number between 1 to 64 is considered valid.
iSignSpecialPlaces BYTE Specifies the following values:

sign bit on: negative number
special bit on: number is blank
places: number of decimals (0 to iPrecision).

iFraction[32] BYTE Specifies an array of BCD nibbles, 00 to 99 per byte, high nibble first.
The number of significant nibbles in iFraction is
iPrecision; the rest are ignored.

See Also
DbiBcdToFloat, DbiBcdFromFloat

FMTDate (date format)
The FMTDate structure describes the date format for the session, using the following fields:
Field Type Description
szDateSeparator[4] CHAR Specifies the date separator character.
iDateMode INT8 Specifies the date format: 0 = MDY, 1 = DMY, 2=YMD.
bFourDigitYear INT8 If TRUE, write year as four digits.
bYearBiased INT8 If TRUE, on input add 1900 to year.
bMonthLeadingZero INT8 If TRUE, the month is displayed with a leading zero.
bDayLeadingZero INT8 If TRUE, the day is displayed with a leading zero.

FMTNumber (number format)
The FMTNumber structure describes the number format for the current session, using the
following fields:
Field Type Description
cDecimalSeparator CHAR Specifies the character to be used as the decimal separator

(for example, ".").
cThousandSeparator CHARSpecifies the character to be used as the thousands

separator (for example, ",").
iDecimalDigits INT8 Specifies the number of decimal digits.
bLeadingZero INT8 If TRUE, use leading zeros.

FMTTime (time format)
The FMTTime structure describes the time format for the current session, using the
following fields:
Field Type Description
cTimeSeparator CHAR Specifies the time separator character (for example, ".").
bTwelveHour INT8 If TRUE, represent as 12-hour time.
szAmString[6] CHARSpecifies the string to use for designating AM time (only for 12-hour

time).
szPmString[6] CHARSpecifies the string to use for designating PM time (only for 12-hour

time).
bSeconds INT8 If TRUE, show seconds.
bMilSeconds INT8 If TRUE, show milliseconds.

DBIFUNCArgDesc (argument descriptor)
The DBIFUNCArgDesc structure describes the arguments to a remote data source function,
using the following fields:
Field Type Description
uArgNum UINT16 Argument position number. 0 for fn return
uFldType UINT16 Field type
uSubType UINT16 Field subtype. if applicable.
ufuncFlags UNIT16 Function flags

DBIFUNCDesc (function descriptor)
The DBIFUNCDesc structure describes a remote data source function, using the following
fields:
Field Type Description
szName DBINAME Remote function name
szDesc[255] CHARShort description
uOverload UINT16 Number of function overloads
eStdFn DBISTDFuncs Corresponding to DBI standard function

IDXDesc (index descriptor)
The IDXDesc structure describes each index in a table. The same structure is used both in
creating an index and inquiring about the index after a cursor is opened. The application
does not specify the following fields in the index descriptor structure when creating an
index: iRestrNum, bOutofDate, and iKeyLen.
The fields required in this structure vary by driver type and index type.
Note: The first three fields, szName, iIndexId, and szTagName are used to identify the

index. A different combination of these three fields is used, depending on the driver
type and on the specific index type. The rules are given below:

Driver Type Index Type
Access Either iIndexId or szName identifies the index.
dBASE .NDX style: szName alone identifies the index.

.MDX style: szName and szTagName together identify the index.
FoxPro .CDX style: szName and szTagName together identify the index.
Paradox Either iIndexId or szName identifies the index.
Text driver Indexing not supported.
All SQL drivers szName alone identifies the index. pszIndexName may be used to identify a

pseudo-index.
Field Type Description
szName DBITBLNAME Specifies the index name.
iIndexId UINT16 Specifies the number identifying the index.
szTagName DBINAME Specifies the index tag name. Supported for dBASE and FoxPro

only.
szFormat DBINAME Currently, for information only. Describes the physical index

format type (for example, BTREE or HASH).
bPrimary BOOL16 TRUE, if the key is primary.
bUnique BOOL16 TRUE, if the key is unique.
abDescending BOOL16 An array of booleans describing whether the corresponding

field in aiKeyFld is descending. Used only when
bDescending is set to TRUE.

bDescending BOOL16 TRUE, if the key is descending.
bMaintained BOOL16 TRUE, if the key is maintained.
bSubset BOOL16 TRUE, if the index is a subset index. Supported for dBASE and

FoxPro only.
bExpIdx BOOL16 TRUE, if the index is an expression index. Supported for dBASE

and FoxPro only.
iCost UINT16 Reserved.
iFldsInKey UINT16 Specifies the number of key fields in a composite index. If the

index is an expression, set to 0.
iKeyLen UINT16 Not specified while index is created. Specifies the physical

length of the key in bytes. The application developer
needs to allocate a buffer of iKeyLen bytes to use as a
key buffer. A key buffer is used with functions such as
DbiExtractKey and DbiSetToKey.

bOutofDate BOOL16 Not specified while index is created; TRUE, if the index is out-
of-date.

iKeyExpType UINT16 Specifies the type of the key expression (dBASE and FoxPro
only). This value can be one of the following: fldDBCHAR,
fldDBKEYNUM, or fldDBKEYBCD.

aiKeyFld DBIKEY Specifies an array of field numbers in the key.
szKeyExp DBIKEYEXP Specifies the key expression for an expression index (dBASE

and FoxPro only). This field is used only if bExpIdx =
TRUE. The expression is stated as a dBASE expression.

szKeyCond DBIKEYEXP Specifies the expression that defines the subset condition
(dBASE and FoxPro only). This field is used only if
bSubset = TRUE. The expression is stated as a dBASE
expression.

bCaseInsensitive BOOL16 TRUE, if the index is case-insensitive.
iBlockSize UINT16 Specifies the internal block size in bytes for this index.
iRestrNum UINT16 Not specified while index is created. Specifies the internal

restructure number for this index. This number is set
when the index descriptor is retrieved and should not be
changed when passing the descriptor back to
DbiDoRestructure.

Note: The following four fields, explained in detail above, are used to describe the key for
an index: iFldsInKey, aiKeyFld, bExpIdx, szKeyExp. The key is described by specifying
either one of the following combinations:

For traditional indexes For expression indexes
iFldsInKey and aiKeyFld bExpIdx and szKeyExp

See Also
IDXDesc characteristics by driver

szName
The following table describes how to name Paradox indexes:
Index ID Param Non-composite index Composite index
szName Same as field name (only if theCan be any legal name not used as

secondary index is a a field name; must be unique
case-sensitive index)

iIndexID Same as field number (1 to 255) Valid ID (256 to 511) Output only;
not specified while index is created

IDXDesc characteristics by driver
dBASE and FoxPro
For dBASE production .MDX indexes, the IDXDesc structure requires the following elements:
Type Name Value Description
DBITBLNAME szName Ignored
UINT16 iIndexId Ignored
DBINAME szTagName 10 character name Name for index; required
DBINAME szFormat Ignored
BOOL bPrimary FALSE Is primary; required
BOOL bUnique TRUE/FALSE Is unique; required
BOOL bDescending TRUE/FALSE Is descending; required
BOOL bMaintained TRUE Is maintained; required
BOOL bSubset TRUE/FALSE Is subset; required
BOOL bExpIdx TRUE/FALSE Is expression; must be TRUE if

iFldsInKey is not supplied
UINT16 iCost Ignored
UINT16 iFldsInKey 1 Number of fields in composite

index; required if bExpIdx is
FALSE

UINT16 iKeyLen Ignored
BOOL bOutofDate Ignored
UINT16 iKeyExpType Ignored
DBIKEY aiKeyFld Field number; required if iFldsInKey is    supplied

and bExpIdx is FALSE
DBIKEYEXP szKeyExp Expression for expression index; required if

bExpIdx is set to TRUE
DBIKEYEXP szKeyCond Condition for subset index; required if bSubset is

set to TRUE
BOOL bCaseInsensitive FALSE Case-insensitive index;

required
UINT16 iBlockSize Block size in bytes; optional
UINT16 iRestrNum Ignored
UINT16 iUnUsed[16] Unused space

dBASE production .MDX indexes have the following general characteristics:
A production index is considered part of the family.
Up to 47 indexes are allowed in a production .MDX file.
A production index is always maintained.
A production index can be ascending or descending.
If szName is NULL and bMaintained is TRUE, reference to the production index is

assumed.
For dBASE non-maintained .NDX style indexes, the IDXDesc structure requires the following
elements:

Type Name Value Description
DBITBLNAME szName Any 8-character Index name; required

name and extension.
Extension is usually
.NDX.

UINT16 iIndexId Ignored
DBINAME szTagName Ignored
DBINAME szFormat Ignored
BOOL bPrimary FALSE Is primary; required
BOOL bUnique TRUE/FALSE Is unique; required
BOOL bDescending FALSE Is descending; required
BOOL bMaintained FALSE Is maintained; required
BOOL bSubset Ignored
BOOL bExpIdx TRUE/FALSE Is expression; must be TRUE if

iFldsInKey is not supplied
UINT16 iFldsInKey 1 Number of fields in composite

index; required if bExpIdx is
FALSE

UINT16 iKeyExpType Ignored
DBIKEY aiKeyFld Field number; required if iFldsInKey is given and

bExpIdx is FALSE
DBIKEYEXP szKeyExp Expression for expression index; required if

bExpIdx is TRUE
DBIKEYEXP szKeyCond Ignored
BOOL bCaseInsensitive FALSE Case-insensitive index; required
UINT16 iBlockSize Ignored
UINT16 iRestrNum Restructure number
UINT16 iUnUsed[16] Unused space

dBASE non-maintained .NDX style indexes have the following general characteristics:
The non-maintained index cannot have the same file name and extension as the

production index.
Only one index is allowed per index file.
Only ascending order is allowed.
The index is maintained only when the index is opened.
Only the index name is required to use the index.

Naming convention: any file name and extension can be used except <tbl_name>.MDX. Or,
if the table is named <tbl_name>.111, the index cannot be named <tbl_name>.11X (this
name is reserved for production indexes).

For dBASE non-maintained .MDX-style indexes and FoxPro .CDX-style compressed indexes
(version 2.0, 2.5, and 2.6), the IDXDesc structure has the following elements:
Type Name Value Description
DBITBLNAME szName <any_name>.MDX Index name; required

except
<tbl_name>.MDX
      or
<any_name>.CDX
except
<tbl_name>.CDX

UINT16 iIndexId Ignored
DBINAME szTagName Name for index; required
DBINAME szFormat Ignored
BOOL bPrimary FALSE Is primary; required
BOOL bUnique TRUE/FALSE Is unique; required
BOOL bDescending TRUE/FALSE Is descending; required
BOOL bMaintained FALSE Is maintained; required
BOOL bSubset TRUE/FALSE Is subset; required
BOOL bExpIdx TRUE/FALSE Is expression; must be TRUE if

iFldsInKey is not supplied
UINT16 iFldsInKey 1 Number of fields in composite

index; required if bExpIdx is
FALSE

UINT16 iKeyExpType Ignored
DBIKEY aiKeyFld Field number in composite index; required if

iFldsInKey is supplied and
bExpIdx is FALSE

DBIKEYEXP szKeyExp Expression for expression index; required if
bExpIdx is set to TRUE

DBIKEYEXP szKeyCond Condition for subset index; required if bSubset is
set to TRUE

BOOL bCaseInsensitive FALSE Case insensitive index;
required

UINT16 iBlockSize Block size in bytes; optional
UINT16 iRestrNum Restructure number
UINT16 iUnUsed[16] Unused space

Special case, non-maintained dBASE .MDX indexes have the following characteristics:
Up to 47 indexes are allowed in a single .MDX file.
All indexes are maintained when the .MDX file is opened.
Both ascending and descending order may be used.
Index subset conditions are available.
Both the index name and the tag name are required to use the index.

Naming convention: <any_name>.MDX, except <tbl_name>.MDX, or <tbl_name>.11X
where the table is called <tbl_name>.111.

Paradox
For Paradox primary indexes (bPrimary = TRUE), the IDXDesc structure has the following
elements:

Type Name Value Description
DBITBLNAME szName Ignored
UINT16 iIndexId Must be 0
DBINAME szTagName Ignored
DBINAME szFormat Ignored
BOOL bPrimary TRUE Is primary; required
BOOL bUnique TRUE Is unique; required
BOOL bDescending FALSE Is descending; required
BOOL bMaintained TRUE Is maintained; required
BOOL bSubset FALSE Is subset; required
BOOL bExpIdx FALSE Is expression; required
UINT16 iFldsInKey 1 to 16 Number of fields in composite

index; required
UINT16 iKeyExpType Ignored
DBIKEY aiKeyFld Array of field numbers in composite index;

required
DBIKEYEXP szKeyExp Ignored
DBIKEYEXP szKeyCond Ignored
BOOL bCaseInsensitive FALSE Case-insensitive index;

required
UINT16 iBlockSize Block size in bytes
UINT16 iRestrNum Restructure number
UINT16 iUnUsed[16] Unused space

Paradox primary indexes have the following general characteristics:
The index must start from the first field.
The index is always case-sensitive, maintained, and unique.

The following invalid settings for Paradox primary indexes (bPrimary = TRUE) return an
error message to the application:
Setting Solution
iIndexId is not set to 0 Primary ID must be is set to 0.
bUnique is set to FALSE Must be TRUE.
bDescending is set to TRUE Must be FALSE.
bMaintained is set to      FALSE Must be TRUE.
bSubset is set to      TRUE Must be FALSE.
bExpIdx is set to      TRUE Must be FALSE.
iFldsInKey is 0 or greater than 16 Must be 1 to 16.
aiKeyFld BLOB fields can’t be indexed; defined fields must be available; field

cannot be used more than once in index.
szKeyCond is not set to NULL Not available.
bCaseInsensitive is set to TRUE Must be FALSE.

For Paradox 3.5-style indexes, the IDXDesc structure has the following elements:
Type Name Value Description
DBITBLNAME szName Ignored
UINT16 iIndexId Ignored
DBINAME szTagName Ignored
DBINAME szFormat Ignored
BOOL bPrimary FALSE Is primary; required
BOOL bUnique FALSE Is unique; required
BOOL bDescending FALSE Is descending; required
BOOL bMaintained TRUE/FALSE Is maintained; required
BOOL bSubset FALSE Is subset; required
BOOL bExpIdx FALSE Is expression; required
UINT16 iFldsInKey 1 Number of fields in index;

single field only; required
UINT16 iKeyExpType Ignored
DBIKEY aiKeyFld 1 Array of field numbers in index;

single field only; required
DBIKEYEXP szKeyExp Ignored
DBIKEYEXP szKeyCond Ignored
BOOL bCaseInsensitive TRUE/FALSE Case-insensitive index;

required
UINT16 iBlockSize Block size in bytes
UINT16 iRestrNum Restructure number
UINT16 iUnUsed[16] Unused space

Paradox 3.5 style indexes have the following general characteristics:
Each index can have only one field.
Up to 255 indexes are allowed.
Indexes can be maintained (primary is required) or non-maintained.
The index name becomes the field name.
The index ID is used to reference the index or the field name.
If the index is maintained, it is maintained at all times. All indexes are opened when

the table is opened.
The following invalid settings for Paradox 3.5 style indexes return an error message to the
application:
Setting Solution
bUnique is set to TRUE Must be FALSE.
bDescending is set to TRUE Must be FALSE.
bSubset is set to TRUE Must be FALSE.
bExpIdx is set to TRUE Must be FALSE.
iFldsInKey is 0 or greater than 1 Must be 1.
aiKeyFld BLOB fields can’t be indexed; defined fields must be available; field

cannot be used more than once in index.

bCaseInsensitive is set to TRUE Must be FALSE.

For Paradox 4.0, 5.0, and 7.0 style indexes, the IDXDesc structure has the following
elements:
Type Name Value Description
DBITBLNAME szName Index name; required
UINT16 iIndexId Ignored
DBINAME szTagName Ignored
DBINAME szFormat Ignored
BOOL bPrimary FALSE Is primary; required
BOOL bUnique FALSE Is unique; required
BOOL bDescending TRUE/FALSE Is descending; required (TRUE

valid for Paradox 7.0 indexes
only)

BOOL bMaintained TRUE/FALSE Is maintained; required
BOOL bSubset FALSE Is subset; required
BOOL bExpIdx FALSE Is expression; required
UINT16 iFldsInKey 1 Number of fields in index;

single field only; required
UINT16 iKeyExpType Ignored
DBIKEY aiKeyFld 1 Array of field numbers in index;

single field only; required
DBIKEYEXP szKeyExp Ignored
DBIKEYEXP szKeyCond Ignored
BOOL bCaseInsensitive TRUE/FALSE Case-insensitive index;

required
UINT16 iBlockSize Block size in bytes
UINT16 iRestrNum Restructure number
UINT16 iUnUsed[16] Unused space

Paradox 4.0 and 5.0 style indexes have the following general characteristics:
Both maintained (primary is required) and non-maintained indexes are allowed.
Indexes may be case-sensitive, or case-insensitive.
A composite index can have more than one field.
Only the index name is required to reference the index
Up to 320 indexes are allowed.
If the index is maintained, it is maintained at all times. All indexes are opened when

the table is opened.
The following invalid settings for Paradox 4.0 and 5.0 style indexes return an error message
to the application:
Setting Solution
szName is set to NULL Name required to find index.
bUnique is set to TRUE Must be FALSE.

bDescending is set to TRUE Must be FALSE.
bSubset is set to TRUE Must be FALSE.
bExpIdx is set to TRUE Must be FALSE.
iFldsInKey is 0 or greater than 16 Must be 1 to 16.
aiKeyFld BLOB fields can’t be indexed; defined fields must be available; field

cannot be used more than once in index.

The following naming conventions must be followed for Paradox indexes:
Index Type Naming convention
Non-composite Same as field name.
Non-composite, case-insensitive Any legal name. Must be unique. A field name can be

used if not already used by a non-composite index.
Composite Any legal name not used as a field name. Must be unique. A field name

can be used if not already used by a non-composite
index.

Paradox 7.0 style indexes follow the same conventions as Paradox 4.0 and 5.0 style indexes
except bDescending can be TRUE or FALSE.

IDXType (index types)
The IDXType structure describes an index type, using the following fields:
Field Type Description
iId UINT16 Specifies the ID of the index type.
szName DBINAME Specifies the symbolic name of the index type.
szText DBINAME Descriptive text.
szFormat DBINAME Optional. Information only about the format (for example,

BTREE, HASH).
bComposite BOOLIf TRUE, supports composite keys.
bPrimary BOOLIf TRUE, this index type supports a primary index.
bUnique BOOLIf TRUE, this index type supports unique indexes.
bKeyDescending BOOL If TRUE, the key can be descending.
bFldDescending BOOL If TRUE, the key can be descending at the field level.
bMaintained BOOLIf TRUE, this index type supports the maintained option.
bSubset BOOLIf TRUE, this index type supports the subset expression (dBASE and

FoxPro only).
bKeyExpr BOOLIf TRUE, the key can be an expression (dBASE and FoxPro only).
bCaseInsensitive BOOL If TRUE, this index type supports case-insensitive keys.

LDDesc (language driver descriptor)
The LDDesc structure describes a language driver, using the following fields:
Field Type Description
szName DBINAME Specifies the driver's symbolic name.
szDesc DBINAME Specifies the driver description.
iCodePage UINT16 Specifies the code page number.
PrimaryCpPlatform UINT16 Unused.
AlternateCpPlatform UINT16 Unused.

PrimaryCpPlatform
The following table shows valid values:
Value Description

1 DOS (OEM) platform
2 Windows (ANSI) platform
6 HP UNIX (ROMAN8) platform

LOCKDesc (lock descriptor)
The LOCKDesc structure describes a lock, using the following fields:
Field Type Description
iType UINT16 Specifies the lock type (0 for record lock).
szUserName DBIUSERNAME Specifies the user name.
iNetSession UINT16 Specifies the net level session number.
iSession UINT16 Specifies the BDE session number, if BDE lock.
iRecNum UINT32 Specifies the record number for the record lock, if this is a

record lock.
iInfo UINT16 Specifies information for table locks (Paradox only).

iType
The following table shows valid values:
Value Description

0 Record lock
4 No table lock
5 Table read lock
6 Table write lock
7 Table opened exclusively

Note: Record write lock and record lock are the same. Record write lock is more descriptive.

RECProps (record properties)
The RECProps structure describes the record properties, using the following fields:
Field Type Description
iSeqNum UINT32 Specifies the sequence number of the record. Applicable if the

cursor supports sequence numbers (Paradox only).
iPhyRecNum UINT32 Specifies the record number of the record. Applicable only

when physical record numbers are supported (dBASE
and FoxPro only).

bRecChanged UINT16 Determine the currenct status of a record in delayed update
mode (i.e. Unmodified = 0, Modified = 1, Inserted = 2,
Deleted = 3).

bSeqNumChanged BOOLNot currently used.
bDeleteFlag BOOL Specifies if the record is deleted. Applicable only when soft

delete is supported (dBASE and FoxPro only).

RINTDesc (referential integrity)
The RINTDesc structure describes the referential integrity options for a table (currently
Paradox and dBASE only), using the following fields:
Field Type Description
iRintNum UINT16 Specifies the referential integrity number.
szRintName DBINAME Specifies the referential integrity name.
eType RINTType Specifies the type, either rintMASTER or rintDEPENDENT.
szTblName DBIPATH Specifies the other table name.
eModOp RINTQual Specifies the modify qualifier, either rintRESTRICT or

rintCASCADE.
eDelOp RINTQual Specifies the delete qualifier, either rintRESTRICT or

rintCASCADE.
iFldCount UINT16 Specifies the number of fields in the linking key.
aiThisTabFld DBIKEY For Paradox, specifies the field numbers that make up this

referential integrity constraint in this table. For dBASE,
specfies the index ID that make up the referential
integrity constraint in this table.

aiOthTabFld DBIKEY For Paradox, specifies the number of fields in the other table.
For dBASE, specfies the index ID in the other table.

For more information on referential integrity options, see Integrity Constraints

SECDesc (security descriptor)
The SECDesc structure describes each security descriptor in the table (currently, Paradox
only), using the following fields:
Field Type Description
iSecNum UINT16 Specifies the number identifying the descriptor.
eprvTable PRVType Specifies the table privileges: prvNONE, prvREADONLY,

prvMODIFY, prvINSERT, prvINSDEL, prvFULL,
prvUNKNOWN.

iFamRights UINT16 Specifies the family rights: NOFAMRIGHTS, FORMRIGHTS,
RPTRIGHTS, VALRIGHTS, SETRIGHTS, ALLFAMRIGHTS.

szPassword DBINAME Specifies a NULL terminated string.
aprvFld PRVType Specifies the field privileges: prvNONE, prvREADONLY,

prvFULL. [DBIMAXFLDSINSEC]

SESInfo (session information)
The SESInfo structure provides information about a session, using the following fields:
Field Type Description
iSession UINT16 Specifies the session ID (1 to n).
szName DBINAME Specifies the documentary name of the session.
iDatabases UINT16 Specifies the number of open databases.
iCursors UINT16 Specifies the number of open cursors.
iLockWait INT16 Specifies the lock wait time (in seconds).
szNetDir DBIPATH Specifies the directory location for the network control file.
szPrivDir DBIPATH Specifies the private directory.

SPDesc (stored procedure information)
The SPDesc structure provides information about a stored procedure, using the following
fields:
Field Type Description
szName DBISPNAME Specifies the documentary name of the stored procedure.
dtDate DBIDATE Specifies the date on the stored procedure.
tmTime TIME Specifies the time on the stored procedure.
MaxSPNameLen UINT16 Specifies the maximum stored procedure field name length.

SPParamDesc (stored procedure parameters)
The SPParamDesc structure describes the parameters of a stored procedure, using the
following fields:
Field Type Description
uParamNum UINT16 Specifies the parameter number.
szName DBINAME Specifies the name of the parameter.
eParamType STMTParamType Specifies the type of the parameter.
uFldType UINT16 Specifies the field type.
uSubType UINT16 Specifies the sub-type (if applicable).
iUnits1 INT16 Specifies the number of characters and digits.
iUnits2 INT16 Specifies the number of decimal places.
uOffset UINT16 Specifies the computed offset.
uLen UINT16 Specifies the computed length in bytes.
uNullOffset UINT16 Specifies the computed offset for NULL bits.

SYSConfig (system configuration)
The SYSConfig structure provides basic system configuration information, using the
following fields:
Field Type Description
bLocalShare BOOL TRUE, if local files will be shared with non-BDE applications.
iNetProtocol UINT16 Not currently used.
bNetShare BOOL Not currently used.
szNetType DBINAME Specifies the network type.
szUserName DBIUSERNAME Specifies the network user name.
szIniFile DBIPATH Specifies the fully qualified configuration file name.
szLangDriver DBINAME Specifies the system language driver.

SYSInfo (system status and information)
The SYSInfo structure provides BDE system status and information, using the following
fields:
Field Type Description
iBufferSpace UINT16 Specifies the size of the buffer space in kilobytes.
iHeapSpace UINT16 Specifies the size of the heap space in kilobytes.
iDrivers UINT16 Specifies the number of currently loaded drivers.
iClients UINT16 Specifies the number of active clients.
iSessions UINT16 Specifies the number of sessions (for all clients).
iDatabases UINT16 Specifies the number of open databases (for all clients).
iCursors UINT16 Specifies the number of cursors (for all clients).

SYSVersion (system version information)
The SYSVersion structure provides the BDE system version information, using the following
fields:
Field Type Description
iVersion UINT16 Specifies the BDE version.
iIntfLevel UINT16 Specifies the client interface level.
dateVer DBIDATE Specifies the version date.
timeVer TIME Specifies the version time.

STMTBaseDesc (statement base table descriptor)
The STMTBaseDesc structure provides basic information about the original columns upon
which the result set is based, using the following fields:
Field Type Description
szDatabaseName DBINAME Specifies the database name.
szTableName DBITBLNAME Specifies the table name (no extension or directory).
szFieldName DBINAME Specifies the field name.
bExpression BOOL When the SQL query has an expression (Select Col1+5...)

bExpression is set to TRUE and the field is the first field
encountered in the expression. Thus the following SQL:
(SelectCol1 + Col2 from ':alias:Table') would return a
record looking like "alias    Table Col1    1    0    0".

bConstant BOOL When the SQL query has a constant (Select 'test'...) bConstant
is set to TRUE and field is the constant value.

bAggregate BOOL If the SQL has an aggregate, bAggregate is set to TRUE. The
order of the records in the cursor represents the order of
the items in the select list.

The following SQL, (Select Col3, Col2, Col1...) would result in a table with
the records in this order:    Col3, Col2, Col1.

TBLBaseDesc (base table descriptor)
The TBLBaseDesc structure provides basic information about a table, using the following
fields:
Field Type Description
szName DBITBLNAME Specifies the table name (no extension or directory).
szFileName DBITBLNAME Specifies the file name.
szExt DBIEXT Specifies the file extension.
szType DBINAME Specifies the driver type.
dtDate DBIDATE Specifies the date on the table.
tmTime TIME Specifies the time on the table.
iSize UINT32 Specifies the size in bytes.
bView BOOL TRUE, if this a view (SQL only).
bSynonym BOOL16 TRUE, if the object is a synonym

bSynonym
Synonyms are supported by a new field in the TBLBaseDesc structure called bSynonym.
The field bSynonym is a BOOL16, which is set to TRUE if the object is a synonym.
The BDE configuration option LIST SYNONYMS can be found in the Registry's DB OPEN
section for Oracle DRIVERS and DATABASES. See BDE Administrator Help
The value of LIST SYNONYMS determines whether or not to include synonyms in the
schema table returned from DbiOpenTableList and DbiOpenFileList, as shown in the
following table.
Value Meaning
NONE Do not include any synonyms (Default)
PRIVATE Only include private synonyms
ALL Include both private and public synonyms
Oracle: Oracle has PUBLIC synonyms that show up in the table list when the value of LIST
SYNONYMS = ALL. However, to open a PUBLIC synonym, the user must also have SELECT
privileges on the base object of the synonym. If the user does not have SELECT privileges
and tries to open the PUBLIC SYNONYM, Oracle returns the error "Table or view does not
exist".
Oracle has PUBLIC synonyms to a set of dynamic performance tables. Even though these
are PUBLIC synonyms, they are accessible only to the DBA user SYS, by default (other
users can be granted privileges). These synonym names are in the format, V$... (that is,
V$DATABASE, V$ACCESS, and so on).

TBLExtDesc (extended table descriptor)
The TBLExtDesc structure provides additional information about a table, using the following
fields:
Field Type Description
szStruct DBINAME Specifies the physical structure.
iRestrVersion UINT16 Specifies the version number.
iRecSize UINT16 Specifies the physical record size.
iFields UINT16 Specifies the number of fields.
iIndexes UINT16 Specifies the number of indexes.
iValChecks UINT16 Specifies the number of field validity checks.
iRintChecks UINT16 Specifies the number of referential integrity checks.
iRecords UINT32 Specifies the number of records in table.
bProtected BOOL TRUE, if the table is protected.
bValidInfo BOOL If FALSE, all or some of the extended data is not available.

TBLFullDesc (full table descriptor)
The TBLFullDesc structure provides a complete description of the table (base extended),
using the following fields:
Field Type Description
tblBase TBLBaseDesc Specifies the base description.
tblExt TBLExtDesc Specifies the extended description.

TBLType (table capabilities)
The TBLType structure describes the table's capabilities, using the following fields
Field Type Description
iId UINT16 Specifies the ID of the table type.
szName DBINAME Specifies the descriptive name of the table type; for example,

dBASE5.
szText DBINAME Descriptive text.
szFormat DBINAME Specifies the format; for example, HEAP.
bReadWrite BOOL If TRUE, the user can read and write.
bCreate BOOL If TRUE, the user can create new tables of this type.
bRestructure BOOL If TRUE, BDE can restructure a table of this type.
bValChecks BOOL If TRUE, the user can specify validity checks for this table

type.
bSecurity BOOL If TRUE, a table of this type can be protected.
bRefIntegrity BOOL If TRUE, a table of this type can participate in referential

integrity.
bPrimaryKey BOOL If TRUE, a table of this type supports the primary key concept.
bIndexing BOOL If TRUE, a table of this type can have indexes.
iFldTypes UINT16 Specifies the number of physical field types supported.
iMaxRecSize UINT16 Specifies the maximum record size.
iMaxFldsInTable UINT16 Specifies the maximum fields in a table.
iMaxFldNameLen UINT16 Specifies the maximum field name length.
iTblLevel UINT16 Specifies the driver dependent table level (version).

USERDesc (user information descriptor)
The USERDesc structure describes a user, using the following fields:
Field Type Description
szUserName DBIUSERNAME Specifies the user name.
iNetSession UINT16 Specifies the net level session number.
iProductClass UINT16 Specifies the product class of the user (Paradox only).
szSerialNum[22] CHAR Specifies the serial number (Paradox only).

VCHKDesc (validity check)
The VCHKDesc structure provides information about validity checking constraints on a field
(Paradox, dBASE, and SQL tables only), using the following fields (bRequired is the only
option supported by the SQL):
Field Type Description
iFldNum UINT16 Specifies the field number (1 to n). For dBASE, can be zero,

where the szPict will then be checked for an expression to be
used in the validity check.

bRequired BOOL Specifies whether or not the    field is required: TRUE, FALSE.
bHasMinVal BOOL Has minimum value: TRUE, FALSE, or TODAYVAL.
bHasMaxVal BOOL Has maximum value: TRUE, FALSE, or TODAYVAL.
bHasDefVal BOOL Has default value: TRUE, FALSE, or TODAYVAL.
aMinVal DBIVCHK Specifies the minimum value.
aMaxVal DBIVCHK Specifies the maximum value.
aDefVal DBIVCHK Specifies the default value.
szPict DBIPICT Specifies the picture string.
elkupType LKUPType Specifies the lookup type. (Only for Paradox)
szLkupTblName DBIPATH Specifies the lookup table name; for information only.

elkupType
The following lookup and fill types are valid for Paradox tables:
Lookup Type Description
lkupNONE The table has no lookup.
lkupPRIVATE Only current field    private.
lkupALLCORRESP All corresponding    no help.
lkupHELP Only current field    help and fill.
lkupALLCORRESPHELP All corresponding    help.

Xinfo (Information Transactions)
The XInfo structure describes a transaction, using the following fields:
Field Type Description
exState eXState Specifies the transaction state: xsACTIVE or xsINACTIVE.
eXIL eXILType Specifies the transaction isolation level.
uNests UINT16 Specifies the transaction children.

eXIL
The following transaction isolation levels are valid:
Isolation Level Description
xilDIRTYREAD Uncommitted changes; no phantoms
xilREADCOMMITTED Committed changes; no phantoms
xilREPEATABLEREAD Full read repeatability

CANUnary (unary node descriptor)
Type Name Description
NODEClass nodeClass Unary node
CANOp canOp Operator
UINT16 iOperand1 Byte offset of operand

CANBinary (binary node descriptor)
Type Name Description
NODEClass nodeClass Binary node
CANOp canOp Operator
UINT16 iOperand1 Byte offset of operand 1
UINT16 iOperand2 Byte offset of operand 2

CANCompare (extended compare node descriptor)
Type Name Description
NODEClass nodeClass Extended compare node
CANOp canOp Operator
BOOL bCaseInsensitive 3 values: UNKNOWN, "fastest", "native"
UINT16 iOperand1 Byte offset of Operand1
UINT16 iOperand2 Byte offset of Operand2

CANField (field node descriptor)
Type Name Description
NODEClass nodeClass Field node
CANOp canOp Operator
UINT16 iFieldNum Field number
UINT16 iNameOffset Name offset in literal pool

CANConst (constant node descriptor)
Type Name Description
NODEClass nodeClass Constant
CANOp canOp Operator
UINT16 iType Constant type
UINT16 iSize Constant size (in bytes)
UINT16 iOffset Offset in literal pool

CANTuple (tuple node descriptor)
Type Name Description
NODEClass nodeClass Tuple (record)
CANOp canOp Operator
UINT16 iSize Constant size (in bytes)

CANContinue (break node descriptor)
Type Name Description
NODEClass nodeClass Break node
CANOp canOp Operator
UINT16 iContOperand Continue if operand is TRUE;

otherwise, stop evaluating records.

Callback definitions
The following callbacks are defined in the header file IDAPI.H:
Callback Description
cbGENPROGRESS Informs applications about the progress made during large

batch operations.
cbRESTRUCTURE Supplies information about an impending action and requests

a response from
the caller.

cbBATCHRESULT Batch processing results.
cbTABLECHANGED Notifies user that table has changed.
cbCANCELQRY Allows user to cancel a Sybase query.
cbINPUTREQ A BDE driver requests input from user.
cbDBASELOGIN Enables clients to access encrypted dBASE tables.
cbFIELDRECALC Field(s) recalculation
cbTRACE Trace
cbDBLOGIN Database login
cbDELAYEDUPD Cached updates callback
cbNBROFCBS Number of callbacks

{button ,AL(`types')} Other data type topics

cbGENPROGRESS
pCbBuf is assumed to be of the type cbPROGRESSDesc. This callback is issued by BDE to
inform applications about the progress made during large batch operations, such as
DbiBatchMove. The Generic Progress Report callback allows the client to obtain progress
reports during an operation, and to cancel the operation, if desired. The client registers a
progress callback function using cbGENPROGRESS as the value for ecbType. The body of
the progress callback function (written by the client) should cast the callback buffer as a
structure of type cbPROGRESSDesc.
The BDE returns either a percentage done (returned in the iPercentDone parameter of the
cbPROGRESSDesc structure), or a message string to display on the status bar. The client
should assume the following: if the iPercentDone value is negative, then the message
string is valid; otherwise, the iPercentDone value should be considered. The message string
format should always be <Text String><:><Value> to allow easy international
translations. For example,

Records copied: 250
In the message string, the value and colon fields are optional. Possible return values are:
cbrABORT (stop processing), or cbrCONTINUE (continue processing).

cbRESTRUCTURE
pCbBuf is assumed to be of the type RESTCbDesc. This callback may be issued several
times during a call to DbiDoRestructure. Each time it is issued, BDE supplies information
about an impending action and requests a response from the caller. The iErrCode in the
CBRESTCbDesc structure is used to inform the caller about the different actions. Other
fields of CBRESTCbDesc describes, if applicable, the object (for example, field, index, or
validity check) to which this callback refers. Any callback may return with a cbrABORT that
aborts the restructure. The batch result callback would be issued in the following different
situations:
· When iErrCode == DBIERR_OBJMAYBETRUNCATED, a YES response forces data trimming.

A NO response forces record that would be trimmed to a problems table.
· When iErrCode ==DBIERR_TABLELEVELCHANGED, a YES response allows the table level

to change. A NO response aborts the restructure operation.
· When iErrCode == DBIERR_VALIDATEDATA, a YES force validity checks to be applied to

existing data. A NO response applies validity checks to new data only.
· When iErrCode == DBIERR_OBJIMPLICITLYMODIFIED, this is a warning that an object was

implicitly modified. For example, when a field that is part of a composite secondary index
restructure is dropped, that field is implicitly dropped from the index.

· When iErrCode == DBIERR_OBJIMPLICITLYDROPPED, this is a warning that an object was
dropped.

· When iErrCode == DBIERR_VALFIELDMODIFIED, this is a warning that the type or size of
a field containing a validity check was modified.

· When iErrCode == DBIERR_VCHKMAYNOTBEENFORCED, this is a warning that because of
referential integrity constraints on fields in the master table, new validity checks on
these fields cannot be enforced on existing data.

cbBATCHRESULT
pCbBuf is assumed to be of the type RESTCbDesc. See (CBRESTCbDesc) This callback may
be issued several times during a call to DbiBatchMove.

cbTABLECHANGED
pCbBuf is not used for this callback. The Table Changed callback is used to inform
applications about changes to the table associated with a cursor. This callback is supported
only by the Paradox driver.

cbCANCELQRY
Allows the user to cancel a long running Sybase query. The installed callback function is
called periodically, and the user can return cbrABORT to cancel.
Any other return code will have no affect. No other BDE API calls are allowed from within
the callback function.

cbINPUTREQ
The cbINPUTREQ callback is used when a BDE driver needs to communicate with the end
user. This callback is used in the following cases:
a) a dBASE BLOB (.MDX) file is missing: cbiMDXMISSING
b) a Paradox BLOB (.MB) file is missing: cbiPDXBLOB
c) a Paradox lookup table is missing: cbiPDXLOOKUP
d) a dBASE (.DBT) file is missing: cbiDBTMISSING

The structure passed to the callback function is defined as follows:
typedef struct {
 CBInputId eCbInputId; // Id for this input request
 INT16 iCount; // Number of entries
 INT16 iSelection; // Selection 1..n (In/Out)
 BOOL16 bSave; // Save this option (In/Out)
 DBIMSG szMsg; // Message to display
 CBEntry acbEntry[MAXCBENTRIES]; // Entries
 } CBInputDesc;

Structure Type Description
eCbInputId CBInputId eCbInputId is an enumerated type indicating what this input

request is for. This will match one of the aforementioned values
(cbiMDXMISSING,...).

iCount INT16 iCount refers to the number of entries in the array acbEntry. (See
below.)

iSelection INT16 iSelection is used as both input to the callback function and output
back to the driver. The input value from the driver indicates what
the default choice in acbEntry should be. The output value is
used to tell    the driver which choice was selected.

bSave BOOL16 The bSave element is used to tell the driver if it encounters a
similar error on a different relation to take the same action as
this time.

szMsg DBIMSG szMsg is a string the client can display to indicate what the
problem is.

acbEntry CBEntry This array contains a list of operations that the driver can take to
remedy the problem (such as Open the base table as read-only
Abort the operation). The array also contains a help string for
each of the choices. The array acbEntry is defined as:

typedef struct { // Entries for input requested
callback
 DBINAME szKeyWord; // Keyword to display
 DBIMSG szHelp; // Help String
 } CBEntry;

Where szKeyWord is a string indicating an operation that the driver can perform for this
case. The szHelp element contains a help string associated with the operation that the
client can display.

cbDBASELOGIN
Use the callback cbDBASELOGIN to enable clients to access encrypted dBASE tables.
The cbDBASELOGIN structure contains the following fields:
Structure Type Description
szUserName DBINAME Login name of user
szGroupName DBINAME Group to log in to
szUserPassword DBINAME User password
In some cases, no login may be performed. This may occur when either:

a) the optional login security has been turned off in dBASE; or
b) another client is using secured dBASE tables.

When no login has been performed in dBASE, you can call DbiOpenTable to attempt to open
an encrypted table or you can call DbiCreateTable to create and encrypt a table (with
Security enabled.)
In either case, when no login has been performed, the driver issues a cbDBASELOGIN
callback. The client then displays a login screen with group name, user name, and
password. The data from this screen is returned to the driver, which verifies it and sets the
group name and user name in the session level properties. If the information is invalid
(such as an invalid password, or the GroupName and UserName does not exist),then an
error is returned, and the table is not opened/created.
The structure passed to the callback function is defined as follows:

 // dBASE login callback structure
 typedef struct
 {
 DBINAME szUserName; // Login name of user
 DBINAME szGroupName; // Group to log in to
 DBINAME szUserPassword; // User password
 } CBLoginDesc;

 typedef CBLoginDesc far * pCBLoginDesc;

cbFIELDRECALC
Used for recalculation of fields.

cbTRACE
The cbTRACE is a system-level callback that can be used to retrieve trace information. The
trace string retrieved through the callback is the same as that which goes to the debug
window via OutputDebugString.
This structure is used to return trace info to the callback:

typedef struct // trace callback info
 {
 TRACECat eTraceCat; // trace category
 UINT16 uTotalMsgLen; // total message length
 CHAR pszTrace[]; // trace string
 // (recommended size = DBIMAXTRACELEN
(8192))

} TRACEDesc;

typedef enum // trace categories
 {
 traceUNKNOWN = 0x0000,
 traceQPREPARE = 0x0001, // prepared query statements
 traceQEXECUTE = 0x0002, // executed query statements
 traceERROR = 0x0004, // vendor errors
 traceSTMT = 0x0008, // statement ops (i.e. allocate, free)
 traceCONNECT = 0x0010, // connect / disconnect
 traceTRANSACT = 0x0020, // transaction
 traceBLOB = 0x0040, // blob i/o
 traceMISC = 0x0080, // misc.
 traceVENDOR = 0x0100, // vendor calls
 } TRACECat;

The TRACECat enums have the same bit sequence used to set the TRACE MODE
configuration option, and can also be used (singularly or |'d together) as input to the
dbTRACEMODE database property. The uTotalMsgLen field of the TRACEDesc struct can be
used to determine whether the returned string (in pszTrace) has been truncated.
EXAMPLE of registering the cbTRACE callback:

 DbiRegisterCallBack
 (NULL,
 cbTRACE,
 iClientData,
 sizeof (TRACEDesc) + DBIMAXTRACELEN,
 (pVOID)pTraceInfo, // ptr to client-allocated
TRACEDesc

 (pfDBICallBack) lpfnTrace);

cbDBLOGIN
Database login.

cbDELAYEDUPD
This CallBack mechanism is invoked when the cached updates feature fails to write a
modified record to the database. Because updates are not sent to the underlying table until
the commit time, no errors (such as integrity constraint violation, and so on) are detected
before the commit operation. If an error occurs at the commit time, you are prompted with
an error message indicating what sort of error has happened. The clients should register a
CallBack function for delayed updates by using the DbiRegisterCallBack function (ecbType
for this CallBack is cbDELAYEDUPD) to be notified of the errors during the commit.
Here is the CallBack descriptor, cbDELAYEDUPD, for delayed updates:

// type of delayed update object (delayed updates CallBack)
typedef enum
{
 delayupdNONE = 0,
 delayupdMODIFY = 1,
 delayupdINSERT = 2,
 delayupdDELETE = 3
} DelayUpdErrOpType;

// delayed updates CallBack descriptor.
typedef struct
{
 DBIResult iErrCode;
 DelayUpdErrOpType eDelayUpdErrOpType;
 // Record size (physical record)
 UINT16 iRecBufSize;
 pBYTE pNewRecBuf;
 pBYTE pOldRecBuf;
} DELAYUPDCbDesc;

In the above CallBack descriptor, eDelayUpdErrOpType indicates the operation type , such
as insert, delete or modify and iErrCode indicates what sort of error has occurred during the
eDelayUpdErrOpType operation.
Clients should allocate enough memory for pNewRecBuf and pOldRecBuf. Each record
buffer should be at least the delayed update cursor’s physical record buffer size. The new
(after the update) and old (before the update) record buffers are returned to the clients
through pNewRecBuf and pOldRecBuf record buffers.
Clients can respond to this CallBack function with cbrABORT, cbrSKIP, cbrCONTINUE and
cbrRETRY return codes. The following actions are taken depending on the return codes.
· If the return code is cbrABORT, the entire commit operation is aborted. Rollback of the

committed updates will occur depending on the delayed updates cursor’s property.
· If the return code is cbrSKIP or cbrCONTINUE, the failed update operation is discarded

and the commit process continues with the remaining updates.
· If the return code is cbrRETRY, the failed update operation is tried again.
If no CallBack function is registered, the default return code is cbrABORT.

cbNBROFCBS
Indicates the maximum number of callback types.

Paradox, dBASE, and FoxPro physical types
These two lists show physical types supported by Paradox, dBASE (including FoxPro),
respectively:

Paradox physical types dBASE and FoxPro physical types
fldPDXCHAR fldDBCHAR
fldPDXNUM fldDBNUM
fldPDXMONEY fldDBMEMO
fldPDXDATE fldDBBOOL
fldPDXSHORT fldDBDATE
fldPDXMEMO fldDBFLOAT
fldPDXBINARYBLOB fldDBLOCK (dBASE only)
fldPDXFMTMEMO fldDBBINARY (dBASE only)
fldPDXOLEBLOB fldDBOLEBLOB
fldPDXGRAPHIC fldDBBYTES
fldPDXBLOB fldDBLONG (dBASE 7.0 table format only)
fldPDXLONG fldDBDATETIME (dBASE 7.0 table format only)
fldPDXTIME fldDBDOUBLE (dBASE 7.0 table format only)
fldPDXDATETIME fldDBAUTINC (dBASE 7.0 table format only)
fldPDXBOOL
fldPDXAUTOINC
fldPDXBYTES
fldPDXBCD

{button ,AL(`types')} Other data type topics

Data type translations
When a table is copied or appended to a table of a different driver type, data type
translations take place according to the following tables. (You can widen this Help window
to display the full width of the chart.)
Note: FoxPro uses the same data type translations as dBASE. MS SQL uses the same data

type translations as Sybase.
From Paradox To dBASE To Oracle To Sybase To InterBase

To Informix
Alpha Character VarChar VarChar Varying VarChar
Number Float {20.4} Number Float Double Float
Money Number {20.4} Number Money Double Money {16.2}
Date Date Time DateTime Date Date
Short Number {6.0} Number SmallInt Short SmallInt
Memo Memo Long Text Blob/1 Text
Binary Memo LongRaw Image Blob Byte
Formatted memo Memo LongRaw Image Blob Byte
OLE OLE LongRaw Image Blob Byte
Graphic Binary LongRaw Image Blob Byte
Long Long Number Int Long Integer
Time Character {>8} Character {>8} Character {>8} Character {>8}

Character {>8}
DateTime Date Time Date DateTime Date DateTime
Bool Bool Character {1} Bit Character {1} Character
AutoInc AutoInc Number Int Long Integer
Bytes Memo LongRaw Image Varying Byte
BCD N/A N/A N/A N/A N/A

From Access To Paradox To dBASE To InterBase
Autoincrement Autoincrement Numeric Long
Bit Logical Logical VarChar
Byte Number Numeric Long
Char Alpha Character VarChar
DateTime Timestamp DateTime Date
Double Number Double Double
Float Number Double/Float Double
Long Long Numeric Long
LongBinary Binary Ole N/A
LongText Memo Memo Text Blob
Money Money Numeric Double
Short Short Numeric Short
VarChar Alpha Character VarChar

From Access To Oracle To Sybase To Informix
Autoincrement Number Int Integer
Bit VarChar2 Bit VarChar

Byte Number Int Integer
Char VarChar2 Char VarChar
DateTime Date DateTime DateTime DateTime
Double N/A Float Float
Float Number Float Float
Long Number Int Integer
LongBinary Number Image Byte
LongText Long Text Text
Money Number Money Money
Short Number SmallInt SmallInt
VarChar VarChar2 Char VarChar

From dBASE To Paradox To Oracle To Sybase To InterBase To Informix
Character Alpha Character VarChar Varying VarChar
Number iUnits2=0 &&
iUnits1<5 Short Number SmallInt Short SmallInt
others Number Number Float Double Float
Float Number Number Float Double Float
Date Date DateTime Date Date
Memo Memo Long Text Blob/1 Text
Bool Bool Character {1} Bit Character {1} Character
Lock Alpha {24} Character {24} Character {24} Character {24} Character
OLE OLE LongRaw Image Blob Byte
Binary Binary LongRaw Image Blob Byte
Bytes Bytes LongRaw Image Blob Byte

(temp tables only)
Long Long Number Int Integer
DateTime DateTime DateTime DateTime Date DateTime
Double Number N/A Float Double Float
AutoInc AutoInc Number Int Long Integer

From Oracle To Paradox To dBASE To Sybase To InterBase To Informix
Character Alpha Character VarChar Varying Character
Raw Number Float {20.4} Float Double Float
Date DateTime Date DateTime Date DateTime
Number Number Double Float Double Float
Long Memo Memo Text Blob/1 Text
LongRaw Binary Memo Image Varying Byte

From Sybase To Paradox To dBASE To Oracle To InterBase To Informix
Character Alpha Character Character Varying Character
Var Character Alpha Character Character Varying Character
Int Number Number {11.0} Number Long Integer
Small Int Short Number {6.0} Number Short SmallInt
Tiny Int Short Number {6.0} Number Short SmallInt
Float Number Double Number Double Float

Money Money Number {20.4} Number Double Money {16.2}
Text Memo Memo Long Blob/1 Text
Binary Binary Memo Raw Varying VarChar
Var Binary Binary Memo Raw Varying VarChar
Image Binary Memo LongRaw Blob Byte
Bit Alpha Bool Character Varying Character
DateTime DateTime DateTime Date Date DateTime
TimeStamp Binary Memo Raw Varying VarChar
Float4 Number Double Number Double Float
Money4 Money Number {20.4} Number Double Money {16.2}
DateTime4 DateTime DateTime Date Date DateTime

From InterBase To Paradox To dBASE To Oracle To Sybase To
Informix

Short Short Number {6.0} Number Small Int SmallInt
Long Number Number {11.0} Number Int Integer
Float Number Float {20.4} Number Float Float
Double Number Float {20.4} Number Float Float
Char Alpha Character Character VarChar Character
Varying Alpha Character Character VarChar Character
wDate DateTime Date Date DateTime DateTime
Blob Binary Memo LongRaw Image Byte
Blob/1 Memo Memo Long Text Text

From Informix To Paradox To dBASE To Oracle To Sybase To
InterBase
Char Alpha Character Character VarChar Varying
Smallint Short Number {6.0} Number Small Int Short
Integer Number Number {11.0} Number Int Long
Smallfloat Number Float {20.4} Number Float Double
Float Number Float {20.4} Number Float Double
Money Money Number {20.4} Number Float Double
Decimal Number Float Number Float Double
Date Date Date Date DateTime Date
Datetime DateTime Date Date DateTime Date
Interval Alpha Character Character VarChar Varying
Serial Number Number {11.0} Number Int Long
Byte Binary Memo LongRaw Image Blob
Text Memo Memo Long Text Blob/1
VarChar Alpha Character Character VarChar Varying

{button ,AL(`types')} Other data type topics

Logical types and driver-specific physical types
The following tables show physical types translated into logical types, and then into the
physical type of a different driver. (You might need to widen this Help window to display the
full width of the chart.)
Note: FoxPro uses the same physical types as dBASE.
From Paradox To BDE To dBASE
physical type logical type physical type
fldPDXBINARYBLOBfldBLOB/fldstBINARY fldDBMEMO
fldPDXBLOB fldPDXMEMO fldDBMEMO
fldPDXCHAR fldZSTRING fldDBCHAR
fldPDXDATE fldDATE fldDATE
fldPDXFMTMEMO fldBLOB/fldstFMTMEMO fldDBMEMO
fldPDXGRAPHIC fldBLOB/fldstGRAPHIC fldDBBINARY
fldPDXMEMO fldBLOB/fldstMEMO fldDBMEMO
fldPDXMONEY fldFLOAT/fldstMONEY if dBASE table Level < 7

 fldDBFLOAT {20.4}
else

fldDBDOUBLE
fldPDXNUM fldFLOAT if dBASE table Level < 7

 fldDBFLOAT {20.4}
else

fldDBDOUBLE
fldPDXOLEBLOB fldBLOB/fldstOLEOBJ fldDBOLEBLOB
fldPDXSHORT fldINT16 fldDBNUM {6.0}
Paradox level 5 data types:
fldPDXAUTOINC fldINT32/fldstAUTOINC fldDBAUTOINC
fldPDXBCD fldBCD fldDBCHAR
fldPDXBOOL fldBOOL fldDBBOOL
fldPDXBYTES fldBYTES fldDBMEMO
fldPDXDATETIME fldTIMESTAMP fldDBDATETIME
fldPDXLONG fldINT32 fldDBLONG
fldPDXTIME fldTIME fldDBCHAR {>8}
From dBASE To BDE To Paradox
physical type logical type physical type
fldDBBINARY fldBLOB/fldstTYPEDBINARY fldPDXBINARYBLOB
fldDBLOCK fldLOCKINFO fldPDXCHAR {24}
fldDBBOOL fldBOOL fldPDXBOOL
fldDBBYTES fldBYTES fldPDXBYTES (only for temp tables)
fldDBCHAR fldZSTRING fldPDXCHAR
fldDBDATE fldDATE fldPDXDATE
fldDBFLOAT fldFLOAT fldPDXNUM
fldDBMEMO fldBLOB/fldstMEMO fldPDXMEMO

fldDBNUM if (iUnits2=0 && iUnits1<5)
fldINT16 fldPDXSHORT

else
fldFLOAT fldPDXNUM

fldDBOLEBLOB fldBLOB/fldstDBSOLEOBJ fldPDXOLEBLOB
From Access To BDE To Paradox To dBASE
physical type logical type physical type physical type
fldACCAUTOINC fldINT32/fldstAUTOINC fldPDXLONG fldDBAUTOINC
fldACCBINARY * fldBYTES fldPDXBYTES fldDBBYTES
fldACCBIT fldBOOL fldPDXBOOL fldDBBOOL
fldACCBYTE fldINT16 fldPDXSHORT fldDBNUM {6.0}
fldACCCHAR fldZSTRING fldPDXCHAR fldDBCHAR
fldACCDATETIME fldTIMESTAMP fldPDXDATETIME fldDBDATETIME
fldACCDOUBLE fldFLOAT fldPDXNUM if dBASE table Level <

7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

fldACCFLOAT fldFLOAT fldPDXNUM if dBASE table Level <
7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

fldACCLONG fldINT32 fldPDXLONG fldDBLONG
fldACCLONGBINARY fldBLOB/fldstACCOLEOBJ fldPDXBINARYBLOB fldDBMEMO
fldACCLONGTEXT fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO
fldACCMONEY fldFLOAT/fldstMONEY fldPDXMONEY if dBASE table

Level < 7
 fldDBFLOAT
{20.4}

else
fldDBDOUBLE

fldACCSHORT fldINT16 fldPDXSHORT fldDBNUM {6.0}
fldACCVARCHAR fldZSTRING fldPDXCHAR fldDBCHAR

Note: fldACCBINARY can't be created, but can be read and written to.
From Oracle To BDE To Paradox To dBASE
physical type logical type physical type physical type
fldORACHAR fldZSTRING fldPDXCHAR fldDBCHAR
fldORARAW fldVARBYTES fldPDXBINARYBLOB fldDBMEMO
fldORADATE fldTIMESTAMP fldPDXDATETIME fldDBDATETIME
fldORANUMBER fldFLOAT fldPDXNUM if dBASE table Level <

7
fldDBFLOAT {20.4}

else

fldDBDOUBLE
fldORALONG fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO
fldORALONGRAW fldBLOB/fldstBINARY fldPDXBINARYBLOB fldDBMEMO
fldORAVARCHAR fldZSTRING fldPDXCHAR fldDBCHAR
fldORAVARCHAR2
      iUnits1 <=255 fldSTRING fldPDXCHAR fldDBCHAR
      iUnits1 >255 fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO
fldORAFLOAT fldFLOAT fldPDXNUM if dBASE table Level <

7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

From Sybase To BDE To Paradox To dBASE
physical type logical type physical type physical type
fldSYBBINARY fldBYTES fldPDXBYTES fldDBMEMO
fldSYBBIT fldBOOL fldPDXBOOL fldDBBOOL
fldSYBCHAR fldZSTRING fldPDXCHAR fldDBCHAR
fldSYBDATETIME fldTIMESTAMP fldPDXDATETIME fldDBDATETIME
fldSYBDATETIME4 fldTIMESTAMP fldPDXDATETIME fldDBDATETIME
fldSYBFLOAT fldFLOAT fldPDXNUM if dBASE table Level <

7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

fldSYBFLOAT4 fldFLOAT fldPDXNUM if dBASE table Level <
7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

fldSYBIMAGE fldBLOB/fldstBINARY fldPDXBINARYBLOB fldDBMEMO
fldSYBINT fldINT32 fldPDXLONG fldDBLONG
fldSYBMONEY fldFLOAT/fldstMONEY fldPDXMONEY if dBASE table

Level < 7
 fldDBFLOAT
{20.4}

else
fldDBDOUBLE

fldSYBMONEY4 fldFLOAT/fldstMONEY fldPDXMONEY if dBASE table
Level < 7
 fldDBFLOAT
{20.4}

else
fldDBDOUBLE

fldSYBSMALLINT fldINT16 fldPDXSHORT fldDBNUM {6.0}
fldSYBTEXT fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO

fldSYBTIMESTAMP fldVARBYTES fldPDXBINARYBLOB fldDBMEMO
fldSYBTINYINT fldINT16 fldPDXSHORT fldDBNUM {6.0}
fldSYBVARBINARY fldVARBYTES fldPDXBINARYBLOB fldDBMEMO
fldSYBVARCHAR fldZSTRING fldPDXCHAR fldDBCHAR

If you are using Sybase System 10, the following additional Sybase physical types are
available:
From Sybase To BDE To Paradox To dBASE
physical type logical type physical type physical type
fldSYBDECIMAL fldFLOAT fldPDXNUM fldDBFLOAT(20,4)
fldSYBNUMERIC fldFLOAT fldPDXNUM fldDBFLOAT(20,4)
From MS SQL To BDE To Paradox To dBASE
physical type logical type physical type physical type
fldMSSBINARY fldBYTES fldPDXBYTES fldDBMEMO
fldMSSBIT fldBOOL fldPDXBOOL fldDBBOOL
fldMSSCHAR fldZSTRING fldPDXCHAR fldDBCHAR
fldMSSDATETIME fldTIMESTAMP fldPDXDATETIME fldDBDATETIME
fldMSSDATETIME4 fldTIMESTAMP fldPDXDATETIME fldDBDBDATETIME
fldMSSDECIMAL fldFLOAT fldPDXNUM fldDBFLOAT(20,4)
fldMSSFLOAT fldFLOAT fldPDXNUM fldDBFLOAT {20.4}
fldMSSFLOAT4 fldFLOAT fldPDXNUM fldDBFLOAT {20.4}
fldMSSIMAGE fldBLOB/fldstBINARY fldPDXBINARYBLOB fldDBMEMO
fldMSSINT fldINT32 fldPDXLONG fldLONG
fldMSSMONEY fldFLOAT/fldstMONEY fldPDXMONEY if dBASE table

Level < 7
 fldDBFLOAT
{20.4}

else
fldDBDOUBLE

fldMSSMONEY4 fldFLOAT/fldstMONEY fldPDXMONEY if dBASE table
Level < 7
 fldDBFLOAT
{20.4}

else
fldDBDOUBLE

fldMSSNUMERIC fldFLOAT fldPDXNUM if dBASE table Level <
7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

fldMSSSMALLINT fldINT16 fldPDXSHORT fldDBNUM {6.0}
fldMSSTEXT fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO
fldMSSTIMESTAMP fldVARBYTES fldPDXBINARYBLOB fldDBMEMO
fldMSSTINYINT fldINT16 fldPDXSHORT fldDBNUM {6.0}
fldMSSVARBINARY fldVARBYTES fldPDXBINARYBLOB fldDBMEMO

fldMSSVARCHAR fldZSTRING fldPDXCHAR fldDBCHAR
From InterBase To BDE To Paradox To dBASE
physical type logical type physical type physical type
fldIBBLOB fldBLOB fldPDXBINARYBLOB fldDBMEMO
fldIBBLOB/1 fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO
fldIBCHAR
      iUnits 1 <=255 fldZSTRING fldPDXCHAR fldDBCHAR
      iUnits1 > 255 fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO
fldIBDATE fldTIMESTAMP fldPDXDATETIME fldDBDATETIME
fldIBDOUBLE fldFLOAT fldPDXNUM if dBASE table Level <

7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

fldIBFLOAT fldFLOAT fldPDXNUM if dBASE table Level <
7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

fldIBLONG fldINT32 fldPDXLONG fldDBLONG
fldIBSHORT fldINT16 fldPDXSHORT fldDBNUM {6.0}
fldIBVARYING
      iUnits1 <= 255 fldSTRING fldPDXCHAR fldDBCHAR
      iUnits1 >255 fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO
From Informix To BDE To Paradox To dBASE
physical type logical type physical type physical type
fldINFBYTE fldBLOB/fldstBINARY fldPDXBINARYBLOB fldDBMEMO
fldINFCHAR
      iUnits1 <=255 fldZSTRING fldPDXCHAR fldDBCHAR
      iUnits1 > 255 fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO
fldINFDATE fldDATE fldPDXDATE fldDBDATE
fldINFDATETIME fldTIMESTAMP fldPDXDATETIME fldDBDATETIME
fldINFDECIMAL fldFLOAT fldPDXNUM if dBASE table Level <

7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

fldINFFLOAT fldFLOAT fldPDXNUM if dBASE table Level <
7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

fldINFINTEGER fldINT32 fldPDXLONG fldDBLONG
fldINFINTERVAL fldZSTRING fldPDXCHAR fldDBCHAR

fldINFMONEY fldFLOAT/fldstMONEY fldPDXMONEY if dBASE table
Level < 7
 fldDBFLOAT
{20.4}

else
fldDBDOUBLE

fldINFSERIAL fldINT32 fldPDXLONG fldDBLONG
fldINFSMALLFLOAT fldFLOAT fldPDXNUM if dBASE table Level <

7
fldDBFLOAT {20.4}

else
fldDBDOUBLE

fldINFSMALLINT fldINT16 fldPDXSHORT fldDBNUM {6.0}
fldINFTEXT fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO
fldINFVARCHAR fldZSTRING fldPDXCHAR fldDBCHAR

{button ,AL(`types')} Other data type topics

International compatibility
The following sections describe considerations that may be encountered for international
applications:
· Character Sets
· Sorting and Uppercasing Rules
· Language Drivers
· Date, Time, and Number Formats

Character sets
The shapes of characters that appear onscreen depend on an operating system's
conventions for associating these shapes to internal binary values. Such conventions are
called character sets, or code pages. The 8-bit code pages supported by BDE have 256
characters, numbered from 0 to 255 (using decimal values).
While most code pages use exactly the same numeric values (code points) for characters
that are important in the United States, many of the symbols that are important to non-
English-speaking countries map to different code points, depending on the particular code
page. For example, the accented letter ‘á' maps to 160 on many DOS code pages, but in
the Windows (ANSI) character set the same letter maps to code point 225. If an attempt is
made to pass this character from an environment that uses the ANSI character set (used by
most Windows programs) to a DOS environment, without translating the internal code
point, the character appears under DOS as 'ß' (the German double-s) and may be
misinterpreted in indexing, sorting, and so on. Character set identification and translation is
therefore a very important issue if data loss is to be avoided internationally.
Characters whose code points are less than 128 are said to fall in the standard ASCII range;
all the special international characters, located above code point 127, are known as
extended characters.
BDE does not have a native character set. Usually, it operates with the binary values of
characters. Strings should be passed to BDE in their default character set. The following
table summarizes the default character sets for different character strings:.
Use For
DOS code page Local file names and pathnames, local user names and database

aliases, names for table lookup and referential integrity, non-
maintained index names

SQL server's character set SQL data and metadata (table, field and index
names, passwords and user names)

Table's character set Table field names, data, validity checks, and secondary and
maintained index names

ANSI All SQL scripts (for local or SQL tables)
For QBE scripts, use the DOS character set for local table names and aliases. Use the ANSI
character set for keywords and the table's character set for remaining characters in the
script.
To translate character data between a table's native character set and Windows ANSI, use
the functions DbiNativeToAnsi and DbiAnsiToNative. BDE returns error messages in the
Windows ANSI character set.

Sorting and uppercasing rules
When character data is sorted in English-speaking countries, the sort sequence is usually
based on the numeric values of the characters defined by the code page. This kind of
sorting is known as binary collation. The approach is reasonable for English because most
code pages define English letters in a neat, ascending numeric order.
However, binary sorting is not reasonable for other languages, because most code pages
assign higher, fairly arbitrary values for their special characters (that is, the characters
occur out of sequence with the standard ASCII characters among which they must be
sorted). For similar reasons, uppercasing can be based on binary values for English, but not
for other languages. To provide support for country-, code page-, and language-specific
sorting and uppercasing rules, BDE uses information stored in language drivers.

Language drivers
A language driver (LD) specifies a particular primary (or native) character set, as well as a
country/language-dependent set of rules for character manipulation, such as sorting,
upper- and lowercasing, and the set of characters that are considered alphabetic. A
language driver's primary character set is the character set in which its rules are defined. It
specifies sorting and uppercasing in terms of the code points used by that particular code
page. It also defines the character translation mapping between its primary character set
and the ANSI code page, when necessary. (For a complete list of available language drivers
and their primary character sets, use DbiOpenLdList.)

Long name Short name Character set Collation sequence
'ascii' ANSI DBWINUS0 1252 (ANSI) Binary
'Spanish' ANSI DBWINES0 1252 (ANSI) Spanish
'WEurope' ANSI DBWINWE0 1252 (ANSI) Multilingual Western Europe
Access General ACCGEN 1252 (ANSI) Access Western Europe
Access Nord/Danish ACCNRDAN 1252 (ANSI) Access Norwegian/Danish
Access Swed/Finnish ACCSWFIN 1252 (ANSI) Access Swedish/Finnish
Access Japanese ACCJAPAN DOS 932 Access Japanese
Borland DAN Latin-1 BLLT1DA0 1252 (ANSI) Danish
Borland DEU Latin-1 BLLT1DE0 1252 (ANSI) German
Borland ENG Latin-1 BLLT1UK0 1252 (ANSI) English/UK
Borland ENU Latin-1 BLLT1US0 1252 (ANSI) Binary
Borland ESP Latin-1 BLLT1ES0 1252 (ANSI) Spanish
Borland FIN Latin-1 BLLT1FI0 1252 (ANSI) Finnish
Borland FRA Latin-1 BLLT1FR0 1252 (ANSI) French
Borland FRC Latin-1 BLLT1CA0 1252 (ANSI) French Canadian
Borland ISL Latin-1 BLLT1IS0 1252 (ANSI) Isalandic
Borland ITA Latin-1 BLLT1IT0 1252 (ANSI) Italian
Borland NLD Latin-1 BLLT1NL0 1252 (ANSI) Dutch
Borland NOR Latin-1 BLLT1NO0 1252 (ANSI) Norwegian
Borland PTG Latin-1 BLLT1PT0 1252 (ANSI) Portogese
Borland SVE Latin-1 BLLT1SV0 1252 (ANSI) Swedish
dBASE CHS cp936 DB936CN0 DOS CODE PAGE 936 dBASE China
dBASE CHT cp950 DB950TW0 DOS CODE PAGE 950 dBASE Taiwan
dBASE CSY cp852 DB852CZ0 DOS CODE PAGE 852 dBASE Czech852
dBASE CSY cp867 DB867CZ0 DOS CODE PAGE 867 dBASE Czech867
dBASE DAN cp865 DB865DA0 DOS CODE PAGE 865 dBASE Danish
dBASE DEU cp437 DB437DE0 DOS CODE PAGE 437 dBASE German
dBASE DEU cp850 DB850DE0 DOS CODE PAGE 850 dBASE German850
dBASE ELL GR437 DB437GR0 DOS CODE PAGE 737 dBASE Greek
dBASE ENG cp437 DB437UK0 DOS CODE PAGE 437 dBASE English/UK
dBASE ENG cp850 DB850UK0 DOS CODE PAGE 850 dBASE English850/UK

dBASE ENU cp437 DB437US0 DOS CODE PAGE 437 dBASE English/US
dBASE ENU cp850 DB850US0 DOS CODE PAGE 850 dBASE English/US
dBASE ESP cp437 DB437ES1 DOS CODE PAGE 437 dBASE Spanish
dBASE ESP cp850 DB850ES0 DOS CODE PAGE 850 dBASE Spanish850
dBASE FIN cp437 DB437FI0 DOS CODE PAGE 437 dBASE Finnish
dBASE FRA cp437 DB437FR0 DOS CODE PAGE 437 dBASE French
dBASE FRA cp850 DB850FR0 DOS CODE PAGE 850 dBASE French850
dBASE FRC cp863 DB863CF1 DOS CODE PAGE 863 dBASE Canadian-French863
dBASE HUN cp852 DB852HDC DOS CODE PAGE 852 dBASE Hungarian
dBASE ITA cp437 DB437IT0 DOS CODE PAGE 437 dBASE Italian
dBASE ITA cp850 DB850IT1 DOS CODE PAGE 850 dBASE Italian850
dBASE JPN cp932 DB932JP0 DOS CODE PAGE 932 dBASE Japan932
dBASE JPN Dic932 DB932JP1 DOS CODE PAGE 932 dBASE JapanDic932
dBASE KOR cp949 DB949KO0 DOS CODE PAGE 949 dBASE Korea
dBASE NLD cp437 DB437NL0 DOS CODE PAGE 437 dBASE Dutch
dBASE NLD cp850 DB850NL0 DOS CODE PAGE 850 dBASE Dutch850
dBASE NOR cp865 DB865NO0 DOS CODE PAGE 865 dBASE Norwegian
dBASE PLK cp852 DB852PO0 DOS CODE PAGE 852 dBASE Polish852
dBASE PTB cp850 DB850PT0 DOS CODE PAGE 850 dBASE Brazilian Portuguese

850
dBASE PTG cp860 DB860PT0 DOS CODE PAGE 860 dBASE Brazilian Portuguese

860
dBASE RUS cp866 DB866ru0 DOS CODE PAGE 866 dBASE Russian
dBASE SLO cp852 DB852SL0 DOS CODE PAGE 852 dBASE Slovac
dBASE SVE cp437 DB437SV0 DOS CODE PAGE 437 dBASE Swedish
dBASE SVE cp850 DB850SV1 DOS CODE PAGE 850 dBASE Swedish850
dBASE THA cp874 DB874TH0 DOS CODE PAGE 874 dBASE Thai
dBASE TRK cp857 DB857TR0 DOS CODE PAGE 857 dBASE Turkish
DB2 SQL ANSI DB2ANDEU 1252 (ANSI) Dictionary
FoxPro German 437 FOXDE437 DOS CODE PAGE 437 FoxPro German
FoxPro Nordic 437 FOXNO437 DOS CODE PAGE 437 FoxPro Nordic
FoxPro Nordic 850 FOXNO850 DOS CODE PAGE 850 FoxPro German
FoxPro German 1252 FOXDEWIN 1252 (ANSI) FoxPro German
FoxPro Nordic FOXNOWIN 1252 (ANSI)
Hebrew dBASE DBHEBREW dBASE Hebrew
Oracle SQL WE850 ORAWE850 DOS CODE PAGE 850 Multilingual Western Europe
Paradox 'ascii' ascii DOS CODE PAGE 437 Binary
Paradox 'hebrew' hebrew DOS CODE PAGE 862 Hebrew
Paradox 'intl' intl DOS CODE PAGE 437 Multilingual Western Europe

Paradox 'intl' 850 intl850 DOS CODE PAGE 850 Brazilian Portuguese, French
Canadian

Paradox 'nordan' nordan DOS CODE PAGE 865 Norwegian/Danish (Paradox
3.5)

Paradox 'nordan40' nordan40 DOS CODE PAGE 865 Norwegian/Danish (Paradox
4.0, 5.0, 5.5, 7.0)

Paradox 'japan' japan DOS CODE PAGE 932 Japanese
Paradox 'swedfin' swedfin DOS CODE PAGE 437 Swedish/Finnish
Paradox 'turk' turk Turkish
Paradox ANSI
HEBREW

ANHEBREW 1255(ANSI) HebrewAnsi

Paradox China 936 china DOS CODE PAGE 936 China
Paradox Cyrr 866 cyrr DOS CODE PAGE 866 Cyrillic
Paradox Czech 852 czech DOS CODE PAGE 852 Czech852
Paradox Czech 867 cskamen DOS CODE PAGE 867 Czech867
Paradox ESP 437 SPANISH DOS CODE PAGE 437 Spanish
Paradox Greek GR437 grcp437 DOS CODE PAGE 737 Greek
Paradox Hun 852 DC hun852dc DOS CODE PAGE 852 Hungarian
Paradox ISL 861 iceland DOS CODE PAGE 861 Icelandic
Paradox Korea 949 korea DOS CODE PAGE 949 Korea
Paradox Polish 852 polish DOS CODE PAGE 852 Polish
Paradox Slovene 852 slovene DOS CODE PAGE 852 Slovene
Paradox Taiwan 950 taiwan DOS CODE PAGE 950 Taiwan
Paradox Thai 874 thai DOS CODE PAGE 874 Thai
Pdox ANSI ISO L_2 CZ ANIL2CZW 1250 (ANSI)
Pdox ANSI Cyrillic ancyrr 1251 (ANSI) Compatible with Paradox

"cyrr"
Pdox ANSI Czech anczech 1250 (ANSI) Compatible with Paradox

"czech"
Pdox ANSI Greek angreek1 1253 (ANSI) Compatible with Paradox

"greek"
Pdox ANSI Hun. DC anhundc 1250 (ANSI) Compatible with Paradox

"hung"
Pdox ANSI Intl ANSIINTL 1252 (ANSI) Compatible with Paradox "intl"
Pdox ANSI Intl850 ANSII850 DOS CODE PAGE 850 Compatible with Paradox

"intl850"
Pdox ANSI Nordan4 ANSINOR4 1252 (ANSI) Compatible with Paradox

"nordan40"
Pdox ANSI Polish anpolish 1250(ANSI) Compatible with Paradox

"polish"
Pdox ANSI Slovene ansislov 1250(ANSI) Compatible with Paradox

"slovene"
Pdox ANSI Spanish ANSISPAN 1252(ANSI) Compatible with Paradox

"SPANISH"
Pdox ANSI Swedfin ANSISWFN 1252(ANSI) Compatible with Paradox

"swedfin"
Pdox ANSI Turkish ANTURK 1254(ANSI) Compatible with Paradox

"turk"
SQL Link ROMAN8 BLROM800 Roman-8 Binary
Sybase SQL Dic437 SYDC437 DOS CODE PAGE 437 Sybase 437 dict. with case-

sensitivity
Sybase SQL Dic850 SYDC850 DOS CODE PAGE 850 Sybase 850 dict. with case-

sensitivity
pdx Czech 852 'CH' czechw DOS CODE PAGE 852
pdx Czech 867 'CH' cskamenw DOS CODE PAGE 867
pdx ANSI Czech 'CH' anczechw 1250 (ANSI)
pdx ISO L_2 Czech il2czw ISO8859-2

Default language driver settings are defined in the BDE configuration file (IDAPI.CFG). You
can change these defaults using the BDE Administrator. If you can be certain that your
application will not need to support character sets other than Windows ANSI, you can
reduce the need for extra processing, such as character translation, by changing your
language driver defaults to ANSI-based ones. Additionally, if your application will be
working exclusively with data from a particular SQL server, it may be advantageous to
reset local language driver defaults to the driver you have associated with the SQL
database alias.
When a Paradox, dBASE, or FoxPro table is created, the default language driver's
identification is stored in the table file header. The default language driver setting can be
overridden at creation by specifying optional parameters to DbiCreateTable. The table's
language driver will be used by BDE functions that manipulate character data, such as
DbiSortTable, DbiAddIndex, and a variety of other functions such as DbiGetNextRecord,
DbiGetPriorRecord, DbiSetRange, DbiSetToKey, DbiInsertRecord, and so on. A table's
language driver can be changed after creation by using DbiDoRestructure.
DbiDoRestructure does not translate table data or metadata to the character set of the new
language driver, in cases where the character sets of the old and new language drivers
differ. However, table data is transliterated between differing character sets by
DbiBatchMove.
For SQL table driver types, such as Sybase or Oracle, language driver settings are defined
with the database alias in the BDE configuration file (IDAPI.CFG). All of the above
operations when applied to SQL tables are governed by this setting.
To obtain the name of a table's language driver or the name of the default LD for a specific
table driver, use the function DbiGetLdName.
The following table summarizes the default settings for language drivers.
Language driver for Default Setting
System System language driver setting current in IDAPI.CFG.
Access driver Access language driver setting current in IDAPI.CFG.
Paradox driver Paradox language driver setting current in IDAPI.CFG.
dBASE driver dBASE language driver setting current in IDAPI.CFG.

Text driver System language driver.
SQL database LANGDRIVER setting for this database current in IDAPI.CFG.
SQL drivers LANGDRIVER setting in DB OPEN section of IDAPI.CFG for this driver.
Table cursor Language driver associated with this table at the time it was created.
Database handle Language driver of the database this handle represents.
Note: You can override all defaults by using DbiSetProp.

Date, time, and number formats
Default settings for date, time, and number formats are defined in the Registry. (See the
Date, Time, and Number pages in the BDE Administrator.) These settings are used by BDE
anywhere conversion must be performed between strings (such as "15/12/94") and internal
representations of dates, times, and numbers (for example, when parsing a date found in a
query string). For best results, the BDE default settings should be kept in synchronization
with the Windows Control Panel. The default settings can be overridden at any time with
DbiSetDateFormat, DbiSetTimeFormat, and DbiSetNumberFormat.

Credits

Sara Anderson
Richard Army
Gretel Bailey
Gareth Bowles
Laxman Chinnakotla
Cliff Cormier
Nick Derpich
Mike Destein
Susanne Edgerton
Anne Fletcher
Scott Frolich
Rajamohan Gandhasri
Barbara Gentry
Micael Gomez
Kurt Hansen
Brian Henry
Niel Henry
Sarah Huang
Jonathan Lin
John Keegan
Robin Kennedy
Jan Kraski
Klaus Krietsch
Marilyn Lem
Emeli Marcondes
William Morris
Michael Morrison
Rick Nadler
Chris Ohlsen
Don Phan
Kris Ramberg
Eric Roth
Aparna Srikanth
Ramesh Theivendran
Steve Todd
Devendra Vamathevan
Narayanan Vijaykumar
Ken Vodicka
Ginger Wilsbacher

