

#Const Directive Example

This example uses the #Const directive to declare conditional compiler constants for use in
#If...#Else...#End If constructs.
#Const DebugVersion = 1 ' Will evaluate true in #If block.

#If...Then...#Else Example

This example references conditional compiler constants in an #If...Then...#Else construct to
determine whether to compile certain statements.
' If Mac evaluates as true, do the statements following the #If.
#If Mac Then

'. Place exclusively Mac statements here.
'.
'.

' Otherwise, if it is a 32-bit Windows program, do this:
#ElseIf Win32 Then

'. Place exclusively 32-bit Windows statements here.
'.
'.

' Otherwise, if it is neither, do this:
#Else

'. Place other platform statements here.
'.
'.

#End If

#Const Directive
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadirConstC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadirConstX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadirConstS"}

Used to define conditional compiler constants for Visual Basic.

Syntax
#Const constname = expression
The #Const compiler directive syntax has these parts:

Part Description
constname Required; Variant (String). Name of the constant; follows

standard variable naming conventions.
expression Required. Literal, other conditional compiler constant, or any

combination that includes any or all arithmetic or logical
operators except Is.

Remarks
Conditional compiler constants are always Private to the module in which they appear. It is not
possible to create Public compiler constants using the #Const directive. Public compiler constants
can only be created in the user interface.

Only conditional compiler constants and literals can be used in expression. Using a standard constant
defined with Const, or using a constant that is undefined, causes an error to occur. Conversely,
constants defined using the #Const keyword can only be used for conditional compilation.

Conditional compiler constants are always evaluated at the module level, regardless of their
placement in code.

#If...Then...#Else Directive
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadirIfC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vadirIfX":1}               
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadirIfS"}

Conditionally compiles selected blocks of Visual Basic code.

Syntax
#If expression Then

statements
[#ElseIf expression-n Then

[elseifstatements]]
[#Else

[elsestatements]]
#End If
The #If...Then...#Else directive syntax has these parts:

Part Description
expression Required. Any expression, consisting exclusively of one

or more conditional compiler constants, literals, and
operators, that evaluates to True or False.

statements Required. Visual Basic program lines or compiler
directives that are evaluated if the associated
expression is True.

expression-n Optional. Any expression, consisting exclusively of one
or more conditional compiler constants, literals, and
operators, that evaluates to True or False.

elseifstatements Optional. One or more program lines or compiler
directives that are evaluated if expression-n is True.

elsestatements Optional. One or more program lines or compiler
directives that are evaluated if no previous expression
or expression-n is True.

Remarks
The behavior of the #If...Then...#Else directive is the same as the If...Then...Else statement, except
that there is no single-line form of the #If, #Else, #ElseIf, and #End If directives; that is, no other
code can appear on the same line as any of the directives. Conditional compilation is typically used to
compile the same program for different platforms. It is also used to prevent debugging code from
appearing in an executable file. Code excluded during conditional compilation is completely omitted
from the final executable file, so it has no size or performance effect.

Regardless of the outcome of any evaluation, all expressions are evaluated. Therefore, all constants
used in expressions must be defined—any undefined constant evaluates as Empty.

Note      The Option Compare statement does not affect expressions in #If and #ElseIf statements.
Expressions in a conditional-compiler directive are always evaluated with Option Compare Text.

Visual Basic Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscTypeLibConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscTypeLibConstantsS"}

Visual Basic for Applications defines constants to simplify your programming. The following constants
can be used anywhere in your code in place of the actual values:

Calendar Constants

Color Constants

Compiler Constants

Date Constants

Dir , GetAttr , and SetAttr Constants
IMEStatus Constants
Instr , StrComp Constants
Keycode Constants

Miscellaneous Constants

MsgBox Constants

QueryClose Constants
Shell Constants

StrConv Constants

System Color Constants

VarType Constants

Calendar Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscCalendarConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscCalendarConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

Constant Value Description
   

vbCalGreg 0 Indicates that the Gregorian calendar is used
vbCalHijri 1 Indicates that the Hijri calendar is used.

Compiler Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscCompilerConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscCompilerConstantsS"}

Visual Basic for Applications defines constants for exclusive use with the #If...Then...#Else directive.
These constants are functionally equivalent to constants defined with the #If...Then...#Else directive
except that they are global in scope; that is, they apply everywhere in a project.

On 16-bit development platforms, the compiler constants are defined as follows:

Constant Value Description
     

Win16 True Indicates development environment is 16-bit.
Win32 False Indicates that the development environment is not 32-

bit.

On 32-bit development platforms, the compiler constants are defined as follows:

Constant Value Description
     

Win16 False Indicates that the development environment is not 16-
bit.

Win32 True Indicates that the development environment is 32-bit.

Note      These constants are provided by Visual Basic, so you cannot define your own constants with
these same names at any level.

Date Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscDateConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscDateConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

Argument Values
The firstdayofweek argument has the following values:

Constant Value Description      

vbUseSystem 0 Use NLS API setting.
vbSunday 1 Sunday (default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

The firstdayofyear argument has the following values:

Constant Value Description      

vbUseSystem 0 Use NLS API setting.
VbFirstJan1 1 Start with week in which January 1 occurs

(default).
vbFirstFourDays 2 Start with the first week that has at least four

days in the new year.
vbFirstFullWeek 3 Start with the first full week of the year.

Return Values
Constant Value Description      

vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Dir, GetAttr, and SetAttr Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscDirGetAttrSetAttrConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscDirGetAttrSetAttrConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

Constant Value Description      

vbNormal 0 Normal (default for Dir and SetAttr)
vbReadOnly 1 Read-only
vbHidden 2 Hidden
vbSystem 4 System file
vbVolume 8 Volume label
vbDirectory 16 Directory or folder
vbArchive 32 File has changed since last backup

IMEStatus Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscIMEStatusConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscIMEStatusConstantsS"}

The following constants can be used anywhere in your code in place of the actual values.

The constants for the Japanese locale are as follows:

Constant Value Description      

vbIMENoOp 0 No IME installed
vbIMEOn 1 IME on
vbIMEOff 2 IME off
vbIMEDisable 3 IME disabled
vbIMEHiragana 4 Hiragana double-byte characters (DBC)
vbIMEKatakanaDbl 5 Katakana DBC
vbIMEKatakanaSng 6 Katakana single-byte characters (SBC)
vbIMEAlphaDbl 7 Alphanumeric DBC
vbIMEAlphaSng 8 Alphanumeric SBC

The constants for the Chinese (traditional and simplified) locale are as follows:

Constant Value Description      

vbIMENoOp 0 No IME installed
vbIMEOn 1 IME on
vbIMEOff 2 IME off

For the Korean locale, the first five bits of the return value are set as follows:

Bit Value Description Value Description
0 0 No IME installed 1 IME installed
1 0 IME disabled 1 IME enabled
2 0 IME English mode 1 Hangeul mode
3 0 Banja mode (SBC) 1 Junja mode (DBC)
4 0 Normal mode 1 Hanja conversion mode

Instr, StrComp Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscInstrStrCompConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscInstrStrCompConstantsS"}

The following constants are defined in the Visual Basic for Applications type library and can be used
anywhere in your code in place of the actual values:

Constant Value Description      

vbBinaryCompare 0 Perform a binary comparison
vbTextCompare 1 Perform a textual comparison
vbDatabaseCompare 2 For Microsoft Access, perform a

comparison based on information
contained in your database.

Miscellaneous Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscMiscellaneousConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscMiscellaneousConstantsS"}

The following constants are defined in the Visual Basic for Applications type library and can be used
anywhere in your code in place of the actual values:

Constant Equivalent Description
vbCrLf Chr(13) + Chr(10) Carriage return–linefeed

combination
vbCr Chr(13) Carriage return character
vbLf Chr(10) Linefeed character
vbNewLine Chr(13) + Chr(10)

or Chr(13)
Platform-specific new line character;
whichever is appropriate for current
platform

vbNullChar Chr(0) Character having value 0
vbNullString String having

value 0
Not the same as a zero-length string
(""); used for calling external
procedures

vbTab Chr(9) Tab character
vbBack Chr(8) Backspace character
vbFormFeed Chr(12) Not useful in Microsoft Windows
vbVerticalTab Chr(11) Not useful in Microsoft Windows

MsgBox Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscmsgboxConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscMsgBoxConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

MsgBox Arguments
Constant Value Description      

vbOKOnly 0 OK button only (default)
vbOKCancel 1 OK and Cancel buttons
vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons
vbYesNoCancel 3 Yes, No, and Cancel buttons
vbYesNo 4 Yes and No buttons
vbRetryCancel 5 Retry and Cancel buttons
vbCritical 16 Critical message
vbQuestion 32 Warning query
vbExclamation 48 Warning message
vbInformation 64 Information message
vbDefaultButton1 0 First button is default (default)
vbDefaultButton2 256 Second button is default
vbDefaultButton3 512 Third button is default
vbDefaultButton4 768 Fourth button is default
vbApplicationModal 0 Application modal message box (default)
vbSystemModal 4096 System modal message box

MsgBox Return Values
Constant Value Description      

vbOK 1 OK button pressed
vbCancel 2 Cancel button pressed
vbAbort 3 Abort button pressed
vbRetry 4 Retry button pressed
vbIgnore 5 Ignore button pressed
vbYes 6 Yes button pressed
vbNo 7 No button pressed

Shell Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscShellConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscShellConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

Constant Value Description      

vbHide 0 Window is hidden and focus is passed to
the hidden window.

vbNormalFocus 1 Window has focus and is restored to its
original size and position.

vbMinimizedFocus 2 Window is displayed as an icon with
focus.

vbMaximizedFocus 3 Window is maximized with focus.
vbNormalNoFocus 4 Window is restored to its most recent size

and position. The currently active window
remains active.

vbMinimizeNoFocus 6 Window is displayed as an icon. The
currently active window remains active.

StrConv Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscStrConvConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscStrConvConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

Constant Value Description      

vbUpperCase 1 Converts the string to uppercase characters.
vbLowerCase 2 Converts the string to lowercase characters.
vbProperCase 3 Converts the first letter of every word in string

to uppercase.
vbWide 4 Converts narrow (single-byte) characters in

string to wide (double-byte) characters.
Applies to Far East locales.

vbNarrow 8 Converts wide (double-byte) characters in
string to narrow (single-byte) characters.
Applies to Far East locales.

vbKatakana 16 Converts Hiragana characters in string to
Katakana characters. Applies to Japan only.

vbHiragana 32 Converts Katakana characters in string to
Hiragana characters. Applies to Japan only.

vbUnicode 64 Converts the string to Unicode using the
default code page of the system.

vbFromUnicode 128 Converts the string from Unicode to the
default code page of the system.

VarType Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVarTypeConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVarTypeConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

Constant Value Description      

vbEmpty 0 Uninitialized (default)
vbNull 1 Contains no valid data
vbInteger 2 Integer
vbLong 3 Long integer
vbSingle 4 Single-precision floating-point number
vbDouble 5 Double-precision floating-point number
vbCurrency 6 Currency
vbDate 7 Date
vbString 8 String
vbObject 9 Object
vbError 10 Error
vbBoolean 11 Boolean
vbVariant 12 Variant (used only for arrays of variants)
vbDataObject 13 Data access object
vbDecimal 14 Decimal
vbByte 17 Byte
vbArray 8192 Array

Color Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscColorConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscColorConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

Constant Value Description      

vbBlack 0x0 Black
vbRed 0xFF Red
vbGreen 0xFF00 Green
vbYellow 0xFFFF Yellow
vbBlue 0xFF0000 Blue
vbMagenta 0xFF00FF Magenta
vbCyan 0xFFFF00 Cyan
vbWhite 0xFFFFFF White

Keycode Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscKeycodeConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscKeycodeConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

Constant Value Description      

vbKeyLButton 0x1 Left mouse button
vbKeyRButton 0x2 Right mouse button
vbKeyCancel 0x3 CANCEL key
vbKeyMButton 0x4 Middle mouse button
vbKeyBack 0x8 BACKSPACE key
vbKeyTab 0x9 TAB key
vbKeyClear 0xC CLEAR key
vbKeyReturn 0xD ENTER key
vbKeyShift 0x10 SHIFT key
vbKeyControl 0x11 CTRL key
vbKeyMenu 0x12 MENU key
vbKeyPause 0x13 PAUSE key
vbKeyCapital 0x14 CAPS LOCK key
vbKeyEscape 0x1B ESC key
vbKeySpace 0x20 SPACEBAR key
vbKeyPageUp 0x21 PAGE UP key
vbKeyPageDown 0x22 PAGE DOWN key
vbKeyEnd 0x23 END key
vbKeyHome 0x24 HOME key
vbKeyLeft 0x25 LEFT ARROW key
vbKeyUp 0x26 UP ARROW key
vbKeyRight 0x27 RIGHT ARROW key
vbKeyDown 0x28 DOWN ARROW key
vbKeySelect 0x29 SELECT key
vbKeyPrint 0x2A PRINT SCREEN key
vbKeyExecute 0x2B EXECUTE key
vbKeySnapshot 0x2C SNAPSHOT key
vbKeyInsert 0x2D INSERT key
vbKeyDelete 0x2E DELETE key
vbKeyHelp 0x2F HELP key
vbKeyNumlock 0x90 NUM LOCK key

The A key through the Z key are the same as the ASCII equivalents A – Z:

Constant Value Description
vbKeyA 65 A key
vbKeyB 66 B key
vbKeyC 67 C key
vbKeyD 68 D key
vbKeyE 69 E key
vbKeyF 70 F key

vbKeyG 71 G key
vbKeyH 72 H key
vbKeyI 73 I key
vbKeyJ 74 J key
vbKeyK 75 K key
vbKeyL 76 L key
vbKeyM 77 M key
vbKeyN 78 N key
vbKeyO 79 O key
vbKeyP 80 P key
vbKeyQ 81 Q key
vbKeyR 82 R key
vbKeyS 83 S key
vbKeyT 84 T key
vbKeyU 85 U key
vbKeyV 86 V key
vbKeyW 87 W key
vbKeyX 88 X key
vbKeyY 89 Y key
vbKeyZ 90 Z key

The 0 key through 9 key are the same as their ASCII equivalents 0 – 9:

Constant Value Description      

vbKey0 48 0 key
vbKey1 49 1 key
vbKey2 50 2 key
vbKey3 51 3 key
vbKey4 52 4 key
vbKey5 53 5 key
vbKey6 54 6 key
vbKey7 55 7 key
vbKey8 56 8 key
vbKey9 57 9 key

The following constants represent keys on the numeric keypad:

Constant Value Description
vbKeyNumpad0 0x60 0 key
vbKeyNumpad1 0x61 1 key
vbKeyNumpad2 0x62 2 key
vbKeyNumpad3 0x63 3 key
vbKeyNumpad4 0x64 4 key
vbKeyNumpad5 0x65 5 key
vbKeyNumpad6 0x66 6 key
vbKeyNumpad7 0x67 7 key
vbKeyNumpad8 0x68 8 key

vbKeyNumpad9 0x69 9 key
vbKeyMultiply 0x6A MULTIPLICATION SIGN (*) key
vbKeyAdd 0x6B PLUS SIGN (+) key
vbKeySeparator 0x6C ENTER key
vbKeySubtract 0x6D MINUS SIGN (–) key
vbKeyDecimal 0x6E DECIMAL POINT (.) key
vbKeyDivide 0x6F DIVISION SIGN (/) key

The following constants represent function keys:

Constant Value Description      

vbKeyF1 0x70 F1 key
vbKeyF2 0x71 F2 key
vbKeyF3 0x72 F3 key
vbKeyF4 0x73 F4 key
vbKeyF5 0x74 F5 key
vbKeyF6 0x75 F6 key
vbKeyF7 0x76 F7 key
vbKeyF8 0x77 F8 key
vbKeyF9 0x78 F9 key
vbKeyF10 0x79 F10 key
vbKeyF11 0x7A F11 key
vbKeyF12 0x7B F12 key
vbKeyF13 0x7C F13 key
vbKeyF14 0x7D F14 key
vbKeyF15 0x7E F15 key
vbKeyF16 0x7F F16 key

QueryClose Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscQueryCloseConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscQueryCloseConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

Constant Value Description      

vbFormControlMenu 0 The user chose the Close command
from the Control menu on the form.

vbFormCode 1 The Unload statement is invoked from
code.

vbAppWindows 2 The current Microsoft Windows operating
environment session is ending.

vbAppTaskManager 3 The Windows Task Manager is closing
the application.

vbFormMDIForm 4 An MDI child form is closing because the
MDI form is closing. Not supported for
UserForm.

System Color Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscSystemColorConstantsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscSystemColorConstantsS"}

The following constants can be used anywhere in your code in place of the actual values:

Constant Value Description
vbScrollBars 0x80000000 Scroll bar color

vbDesktop 0x80000001 Desktop color

vbActiveTitleBar 0x80000002 Color of the title bar for the
active window

vbInactiveTitleBar 0x80000003 Color of the title bar for the
inactive window

vbMenuBar 0x80000004 Menu background color

vbWindowBackground 0x80000005 Window background color

vbWindowFrame 0x80000006 Window frame color

vbMenuText 0x80000007 Color of text on menus

vbWindowText 0x80000008 Color of text in windows

vbTitleBarText 0x80000009 Color of text in caption, size
box, and scroll arrow

vbActiveBorder 0x8000000A Border color of active
window

vbInactiveBorder 0x8000000B Border color of inactive
window

vbApplicationWorkspace 0x8000000C Background color of
multiple-document interface
(MDI) applications

vbHighlight 0x8000000D Background color of items
selected in a control

vbHighlightText 0x8000000E Text color of items selected
in a control

vbButtonFace 0x8000000F Color of shading on the face
of command buttons

vbButtonShadow 0x80000010 Color of shading on the edge
of command buttons

vbGrayText 0x80000011 Grayed (disabled) text

vbButtonText 0x80000012 Text color on push buttons

vbInactiveCaptionText 0x80000013 Color of text in an inactive
caption

vb3DHighlight 0x80000014 Highlight color for 3-D
display elements

vb3DDKShadow 0x80000015 Darkest shadow color for 3-
D display elements

vb3DLight 0x80000016 Second lightest 3-D color

after vb3DHighlight
vbInfoText 0x80000017 Color of text in ToolTips

 vbInfoBackground 0x80000018 Background color of ToolTips

Call Statement Example

This example illustrates how the Call statement is used to transfer control to a Sub procedure, an
intrinsic function, a dynamic-link library (DLL) procedure, and a procedure in a Macintosh code
resource.
' Call a Sub procedure.
Call PrintToDebugWindow("Hello World")
' The above statement causes control to be passed to the following
' Sub procedure.
Sub PrintToDebugWindow(AnyString)

Debug.Print AnyString ' Print to Debug window.
End Sub
' Call an intrinsic function. The return value of the function is
' discarded.
Call Shell(AppName, 1) ' AppName contains the path of the

' executable file.
' Call a Microsoft Windows DLL procedure. The Declare statement must be
' Private in a Class Module, but not in a standard Module.
Private Declare Sub MessageBeep Lib "User" (ByVal N As Integer)
Sub CallMyDll()

Call MessageBeep(0) ' Call Windows DLL procedure.
MessageBeep 0 ' Call again without Call keyword.

End Sub
' Call a Macintosh code resource.
Declare Sub MessageAlert Lib "MyHd:MyAlert" Alias "MyAlert" (ByVal N _
As Integer)
Sub CallMyCodeResource()

Call MessageAlert(0) ' Call Macintosh code resource.
MessageAlert 0 ' Call again without Call keyword.

End Sub

Choose Function Example

This example uses the Choose function to display a name in response to an index passed into the
procedure in the Ind parameter.

Function GetChoice(Ind As Integer)
GetChoice = Choose(Ind, "Speedy", "United", "Federal")

End Function

DoEvents Function Example

This example uses the DoEvents function to cause execution to yield to the operating system once
every 1000 iterations of the loop. DoEvents returns the number of open Visual Basic forms, but only
when the host application is Visual Basic.
' Create a variable to hold number of Visual Basic forms loaded
' and visible.
Dim I, OpenForms
For I = 1 To 150000 ' Start loop.

If I Mod 1000 = 0 Then ' If loop has repeated 1000 times.
OpenForms = DoEvents ' Yield to operating system.

End If
Next I' Increment loop counter.

Do...Loop Statement Example

This example shows how Do...Loop statements can be used. The inner Do...Loop statement loops
10 times, sets the value of the flag to False, and exits prematurely using the Exit Do statement. The
outer loop exits immediately upon checking the value of the flag.
Dim Check, Counter
Check = True: Counter = 0 ' Initialize variables.
Do ' Outer loop.

Do While Counter < 20 ' Inner loop.
Counter = Counter + 1 ' Increment Counter.
If Counter = 10 Then ' If condition is True.

Check = False ' Set value of flag to False.
Exit Do ' Exit inner loop.

End If
Loop

Loop Until Check = False' Exit outer loop immediately.

End Statement Example

This example uses the End Statement to end code execution if the user enters an invalid password.
Sub Form_Load

Dim Password, Pword
PassWord = "Swordfish"
Pword = InputBox("Type in your password")
If Pword <> PassWord Then

MsgBox "Sorry, incorrect password"
End

End If
End Sub

Exit Statement Example

This example uses the Exit statement to exit a For...Next loop, a Do...Loop, and a Sub procedure.
Sub ExitStatementDemo()
Dim I, MyNum

Do ' Set up infinite loop.
For I = 1 To 1000 ' Loop 1000 times.

MyNum = Int(Rnd * 1000) ' Generate random numbers.
Select Case MyNum ' Evaluate random number.

Case 7: Exit For ' If 7, exit For...Next.
Case 29: Exit Do ' If 29, exit Do...Loop.
Case 54: Exit Sub ' If 54, exit Sub procedure.

End Select
Next I

Loop
End Sub

For Each...Next Statement Example

This example uses the For Each...Next statement to search the Text property of all elements in a
collection for the existence of the string "Hello". In the example, MyObject is a text-related object and
is an element of the collection MyCollection. Both are generic names used for illustration purposes
only.
Dim Found, MyObject, MyCollection
Found = False ' Initialize variable.
For Each MyObject In MyCollection ' Iterate through each element.

If MyObject.Text = "Hello" Then ' If Text equals "Hello".
Found = True ' Set Found to True.
Exit For ' Exit loop.

End If
Next

For...Next Statement Example

This example uses the For...Next statement to create a string that contains 10 instances of the
numbers 0 through 9, each string separated from the other by a single space. The outer loop uses a
loop counter variable that is decremented each time through the loop.
Dim Words, Chars, MyString
For Words = 10 To 1 Step -1 ' Set up 10 repetitions.

For Chars = 0 To 9 ' Set up 10 repetitions.
MyString = MyString & Chars ' Append number to string.

Next Chars ' Increment counter
MyString = MyString & " " ' Append a space.

Next Words

GoSub...Return Statement Example

This example uses GoSub to call a subroutine within a Sub procedure. The Return statement causes
the execution to resume at the statement immediately following the GoSub statement. The Exit Sub
statement is used to prevent control from accidentally flowing into the subroutine.
Sub GosubDemo()
Dim Num
' Solicit a number from the user.

Num = InputBox("Enter a positive number to be divided by 2.")
' Only use routine if user enters a positive number.

If Num > 0 Then GoSub MyRoutine
Debug.Print Num
Exit Sub ' Use Exit to prevent an error.

MyRoutine:
Num = Num/2 ' Perform the division.
Return ' Return control to statement.

End Sub ' following the GoSub statement.

GoTo Statement Example

This example uses the GoTo statement to branch to line labels within a procedure.
Sub GotoStatementDemo()
Dim Number, MyString

Number = 1 ' Initialize variable.
' Evaluate Number and branch to appropriate label.
If Number = 1 Then GoTo Line1 Else GoTo Line2

Line1:
MyString = "Number equals 1"
GoTo LastLine ' Go to LastLine.

Line2:
' The following statement never gets executed.
MyString = "Number equals 2"

LastLine:
Debug.Print MyString ' Print "Number equals 1" in

' Debug window.
End Sub

If...Then...Else Statement Example

This example shows both the block and single-line forms of the If...Then...Else statement. It also
illustrates the use of If TypeOf...Then...Else.
Dim Number, Digits, MyString
Number = 53 ' Initialize variable.
If Number < 10 Then

Digits = 1
ElseIf Number < 100 Then
' Condition evaluates to True so the next statement is executed.

Digits = 2
Else

Digits = 3
End If
' Assign a value using the single-line form of syntax.
If Digits = 1 Then MyString = "One" Else MyString = "More than one"
Use If TypeOf construct to determine whether the Control passed into a procedure is a text box.
Sub ControlProcessor(MyControl As Control)

If TypeOf MyControl Is CommandButton Then
Debug.Print "You passed in a " & TypeName(MyControl)

ElseIf TypeOf MyControl Is CheckBox Then
Debug.Print "You passed in a " & TypeName(MyControl)

ElseIf TypeOf MyControl Is TextBox Then
Debug.Print "You passed in a " & TypeName(MyControl)

End If
End Sub

IIf Function Example

This example uses the IIf function to evaluate the TestMe parameter of the CheckIt procedure and
returns the word "Large" if the amount is greater than 1000; otherwise, it returns the word "Small".
Function CheckIt (TestMe As Integer)

CheckIt = IIf(TestMe > 1000, "Large", "Small")
End Function

On...GoSub, On...GoTo Statements Example

This example uses the On...GoSub and On...GoTo statements to branch to subroutines and line
labels, respectively.
Sub OnGosubGotoDemo()
Dim Number, MyString

Number = 2 ' Initialize variable.
' Branch to Sub2.
On Number GoSub Sub1, Sub2 ' Execution resumes here after

' On...GoSub.
On Number GoTo Line1, Line2 ' Branch to Line2.
' Execution does not resume here after On...GoTo.
Exit Sub

Sub1:
MyString = "In Sub1" : Return

Sub2:
MyString = "In Sub2" : Return

Line1:
MyString = "In Line1"

Line2:
MyString = "In Line2"

End Sub

Partition Function Example

This example assumes you have an Orders table that contains a Freight field. It creates a select
procedure that counts the number of orders for which freight cost falls into each of several ranges.
The Partition function is used first to establish these ranges, then the SQL Count function counts the
number of orders in each range. In this example, the arguments to the Partition function are start = 0,
stop = 500, interval = 50. The first range would therefore be 0:49, and so on up to 500.

SELECT DISTINCTROW Partition([freight],0, 500, 50) AS Range,
Count(Orders.Freight) AS Count
FROM Orders
GROUP BY Partition([freight],0,500,50);

Select Case Statement Example

This example uses the Select Case statement to evaluate the value of a variable. The second Case
clause contains the value of the variable being evaluated, and therefore only the statement
associated with it is executed.
Dim Number
Number = 8 ' Initialize variable.
Select Case Number' Evaluate Number.
Case 1 To 5 ' Number between 1 and 5.

Debug.Print "Between 1 and 5"
' The following is the only Case clause that evaluates to True.
Case 6, 7, 8' Number between 6 and 8.

Debug.Print "Between 6 and 8"
Case Is > 8 And Number < 11' Number is 9 or 10.
Debug.Print "Greater than 8"
Case Else' Other values.

Debug.Print "Not between 1 and 10"
End Select

Shell Function Example

This example uses the Shell function to run an application specified by the user. On the Macintosh,
using the MacID function ensures that the application can be launched even if the file name of the
application has been changed. The Shell function is not available on Macintosh versions earlier than
System 7.0.
' In Microsoft Windows:
' Specifying 1 as the second argument opens the application in
' normal size and gives it the focus.
Dim RetVal
RetVal = Shell("C:\WINDOWS\CALC.EXE", 1) ' Run Calculator.
' On the Macintosh:
' Both statements launch Microsoft Excel.
RetVal = Shell("Microsoft Excel") ' Specify filename.
RetVal = Shell(MacID("XCEL"))' Specify signature.

Stop Statement Example

This example uses the Stop statement to suspend execution for each iteration through the For...Next
loop.
Dim I
For I = 1 To 10' Start For...Next loop.

Debug.Print I ' Print I to Debug window.
Stop ' Stop during each iteration.

Next I

Switch Function Example

This example uses the Switch function to return the name of a language that matches the name of a
city.
Function MatchUp (CityName As String)

Matchup = Switch(CityName = "London", "English", CityName _
= "Rome", "Italian", CityName = "Paris", "French")

End Function

While...Wend Statement Example

This example uses the While...Wend statement to increment a counter variable. The statements in
the loop are executed as long as the condition evaluates to True.
Dim Counter
Counter = 0 ' Initialize variable.
While Counter < 20' Test value of Counter.

Counter = Counter + 1 ' Increment Counter.
Wend ' End While loop when Counter > 19.
Debug.Print Counter ' Prints 20 in Debug window.

With Statement Example

This example uses the With statement to execute a series of statements on a single object. The
object MyObject and its properties are generic names used for illustration purposes only.

With MyObject
.Height = 100 ' Same as MyObject.Height = 100.
.Caption = "Hello World" ' Same as MyObject.Caption = "Hello World".
With .Font

.Color = Red ' Same as MyObject.Font.Color = Red.

.Bold = True ' Same as MyObject.Font.Bold = True.
End With

End With

Call Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmCallC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmCallX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmCallS"}

Transfers control to a Sub procedure, Function procedure, or dynamic-link library (DLL) procedure.

Syntax
[Call] name [argumentlist]
The Call statement syntax has these parts:

Part Description
Call Optional; keyword. If specified, you must enclose

argumentlist in parentheses. For example:
Call MyProc(0)

name Required. Name of the procedure to call.
argumentlist Optional. Comma-delimited list of variables, arrays, or

expressions to pass to the procedure. Components of
argumentlist may include the keywords ByVal or ByRef to
describe how the arguments are treated by the called
procedure. However, ByVal and ByRef can be used with
Call only when calling a DLL procedure.

Remarks
You are not required to use the Call keyword when calling a procedure. However, if you use the Call
keyword to call a procedure that requires arguments, argumentlist must be enclosed in parentheses.
If you omit the Call keyword, you also must omit the parentheses around argumentlist. If you use
either Call syntax to call any intrinsic or user-defined function, the function's return value is discarded.

To pass a whole array to a procedure, use the array name followed by empty parentheses.

Choose Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctChooseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctChooseX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctChooseS"}

Selects and returns a value from a list of arguments.

Syntax
Choose(index, choice-1[, choice-2, ... [, choice-n]])
The Choose function syntax has these parts:

Part Description
index Required. Numeric expression or field that results in a value

between 1 and the number of available choices.
choice Required. Variant expression containing one of the possible

choices.

Remarks
Choose returns a value from the list of choices based on the value of index. If index is 1, Choose
returns the first choice in the list; if index is 2, it returns the second choice, and so on.

You can use Choose to look up a value in a list of possibilities. For example, if index evaluates to 3
and choice-1 = "one", choice-2 = "two", and choice-3 = "three", Choose returns "three". This
capability is particularly useful if index represents the value in an option group.

Choose evaluates every choice in the list, even though it returns only one. For this reason, you
should watch for undesirable side effects. For example, if you use the MsgBox function as part of an
expression in all the choices, a message box will be displayed for each choice as it is evaluated, even
though Choose returns the value of only one of them.

The Choose function returns a Null if index is less than 1 or greater than the number of choices
listed.

If index is not a whole number, it is rounded to the nearest whole number before being evaluated.

DoEvents Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctDoEventsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctDoEventsX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctDoEventsS"}

Yields execution so that the operating system can process other events.

Syntax
DoEvents()
Remarks
The DoEvents function returns an Integer representing the number of open forms in stand-alone
versions of Visual Basic, such as Visual Basic, Standard Edition. DoEvents returns zero in all other
applications.

DoEvents passes control to the operating system. Control is returned after the operating system has
finished processing the events in its queue and all keys in the SendKeys queue have been sent.

DoEvents is most useful for simple things like allowing a user to cancel a process after it has started,
for example a search for a file. For long-running processes, yielding the processor is better
accomplished by using a Timer or delegating the task to an ActiveX EXE component. In the latter
case, the task can continue completely independent of your application, and the operating system
takes case of multitasking and time slicing.

Caution      Any time you temporarily yield the processor within an event procedure, make sure the
procedure    is not executed again from a different part of your code before the first call returns; this
could cause unpredictable results. In addition, do not use DoEvents if other applications could
possibly interact with your procedure in unforeseen ways during the time you have yielded control.

Do...Loop Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmDoC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmDoX":1}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmDoS"}

Repeats a block of statements while a condition is True or until a condition becomes True.

Syntax
Do [{While | Until} condition]

[statements]
[Exit Do]
[statements]

Loop
Or, you can use this syntax:

Do
[statements]
[Exit Do]
[statements]

Loop [{While | Until} condition]
The Do Loop statement syntax has these parts:

Part Description
condition Optional. Numeric expression or string expression that is

True or False. If condition is Null, condition is treated as
False.

statements One or more statements that are repeated while, or until,
condition is True.

Remarks
Any number of Exit Do statements may be placed anywhere in the Do…Loop as an alternate way to
exit a Do…Loop. Exit Do is often used after evaluating some condition, for example, If…Then, in
which case the Exit Do statement transfers control to the statement immediately following the Loop.

When used within nested Do…Loop statements, Exit Do transfers control to the loop that is one
nested level above the loop where Exit Do occurs.

End Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmEndC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmEndX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmEndS"}

Ends a procedure or block.

Syntax
End
End Function
End If
End Property
End Select
End Sub
End Type
End With
The End statement syntax has these forms:

Statement Description
End Terminates execution immediately. Never required by

itself but may be placed anywhere in a procedure to end
code execution, close files opened with the Open
statement and to clear variables.

End Function Required to end a Function statement.
End If Required to end a block If…Then…Else statement.
End Property Required to end a Property Let, Property Get, or

Property Set procedure.
End Select Required to end a Select Case statement.
End Sub Required to end a Sub statement.
End Type Required to end a user-defined type definition (Type

statement).
End With Required to end a With statement.

Remarks
When executed, the End statement resets all module-level variables and all static local variables in all
modules. To preserve the value of these variables, use the Stop statement instead. You can then
resume execution while preserving the value of those variables.

Note      The End statement stops code execution abruptly, without invoking the Unload, QueryUnload,
or Terminate event, or any other Visual Basic code. Code you have placed in the Unload,
QueryUnload, and Terminate events of forms and class modules is not executed. Objects created
from class modules are destroyed, files opened using the Open statement are closed, and memory
used by your program is freed. Object references held by other programs are invalidated.
The End statement provides a way to force your program to halt. For normal termination of a Visual
Basic program, you should unload all forms. Your program closes as soon as there are no other
programs holding references to objects created from your public class modules and no code
executing.

Exit Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmExitC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmExitX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmExitS"}

Exits a block of Do…Loop, For...Next, Function, Sub, or Property code.

Syntax
Exit Do
Exit For
Exit Function
Exit Property
Exit Sub
The Exit statement syntax has these forms:

Statement Description
Exit Do Provides a way to exit a Do...Loop statement. It can be

used only inside a Do...Loop statement. Exit Do
transfers control to the statement following the Loop
statement. When used within nested Do...Loop
statements, Exit Do transfers control to the loop that is
one nested level above the loop where Exit Do occurs.

Exit For Provides a way to exit a For loop. It can be used only in a
For...Next or For Each...Next loop. Exit For transfers
control to the statement following the Next statement.
When used within nested For loops, Exit For transfers
control to the loop that is one nested level above the loop
where Exit For occurs.

Exit Function Immediately exits the Function procedure in which it
appears. Execution continues with the statement following
the statement that called the Function.

Exit Property Immediately exits the Property procedure in which it
appears. Execution continues with the statement following
the statement that called the Property procedure.

Exit Sub Immediately exits the Sub procedure in which it appears.
Execution continues with the statement following the
statement that called the Sub procedure.

Remarks
Do not confuse Exit statements with End statements. Exit does not define the end of a structure.

For Each...Next Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmForEachC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmForEachX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmForEachS"}

Repeats a group of statements for each element in an array or collection.

Syntax
For Each element In group

[statements]
[Exit For]
[statements]

Next [element]
The For...Each...Next statement syntax has these parts:

Part Description
element Required. Variable used to iterate through the elements of

the collection or array. For collections, element can only be a
Variant variable, a generic object variable, or any specific
object variable. For arrays, element can only be a Variant
variable.

group Required. Name of an object collection or array (except an
array of user-defined types).

statements Optional. One or more statements that are executed on
each item in group.

Remarks
The For...Each block is entered if there is at least one element in group. Once the loop has been
entered, all the statements in the loop are executed for the first element in group. If there are more
elements in group, the statements in the loop continue to execute for each element. When there are
no more elements in group, the loop is exited and execution continues with the statement following
the Next statement.

Any number of Exit For statements may be placed anywhere in the loop as an alternative way to exit.
Exit For is often used after evaluating some condition, for example If…Then, and transfers control to
the statement immediately following Next.
You can nest For...Each...Next loops by placing one For...Each...Next loop within another. However,
each loop element must be unique.

Note      If you omit element in a Next statement, execution continues as if element is included. If a
Next statement is encountered before its corresponding For statement, an error occurs.

You can't use the For...Each...Next statement with an array of user-defined types because a Variant
can't contain a user-defined type.

For...Next Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmForC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmForX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmForS"}

Repeats a group of statements a specified number of times.

Syntax
For counter = start To end [Step step]

[statements]
[Exit For]
[statements]

Next [counter]
The For…Next statement syntax has these parts:

Part Description
counter Required. Numeric variable used as a loop counter. The

variable can't be a Boolean or an array element.
start Required. Initial value of counter.
end Required. Final value of counter.
step Optional. Amount counter is changed each time through the

loop. If not specified, step defaults to one.
statements Optional. One or more statements between For and Next

that are executed the specified number of times.

Remarks
The step argument can be either positive or negative. The value of the step argument determines
loop processing as follows:

Value Loop executes if
Positive or 0 counter <= end
Negative counter >= end

After all statements in the loop have executed, step is added to counter. At this point, either the
statements in the loop execute again (based on the same test that caused the loop to execute
initially), or the loop is exited and execution continues with the statement following the Next
statement.

Tip      Changing the value of counter while inside a loop can make it more difficult to read and debug
your code.

Any number of Exit For statements may be placed anywhere in the loop as an alternate way to exit.
Exit For is often used after evaluating of some condition, for example If...Then, and transfers control
to the statement immediately following Next.
You can nest For...Next loops by placing one For...Next loop within another. Give each loop a unique
variable name as its counter. The following construction is correct:
For I = 1 To 10

For J = 1 To 10
For K = 1 To 10

...
Next K

Next J
Next I
Note      If you omit counter in a Next statement, execution continues as if counter is included. If a

Next statement is encountered before its corresponding For statement, an error occurs.

GoSub...Return Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmGoSubC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmGoSubX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmGoSubS"}

Branches to and returns from a subroutine within a procedure.

Syntax
GoSub line
...
line
...

Return
The line argument can be any line label or line number.

Remarks
You can use GoSub and Return anywhere in a procedure, but GoSub and the corresponding Return
statement must be in the same procedure. A subroutine can contain more than one Return
statement, but the first Return statement encountered causes the flow of execution to branch back to
the statement immediately following the most recently executed GoSub statement.

Note      You can't enter or exit Sub procedures with GoSub...Return.

Tip      Creating separate procedures that you can call may provide a more structured alternative to
using GoSub...Return.

GoTo Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmGoToC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmGoToX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmGoToS"}

Branches unconditionally to a specified line within a procedure.

Syntax
GoTo line
The required line argument can be any line label or line number.

Remarks
GoTo can branch only to lines within the procedure where it appears.

Note      Too many GoTo statements can make code difficult to read and debug. Use structured control
statements (Do...Loop, For...Next, If...Then...Else, Select Case) whenever possible.

If...Then...Else Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmIfC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmIfX":1}           
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmIfS"}

Conditionally executes a group of statements, depending on the value of an expression.

Syntax
If condition Then [statements] [Else elsestatements]
Or, you can use the block form syntax:

If condition Then
[statements]

[ElseIf condition-n Then
[elseifstatements] ...

[Else
[elsestatements]]

End If
The If...Then...Else statement syntax has these parts:

Part Description
condition Required. One or more of the following two types of

expressions:
A numeric expression or string expression that
evaluates to True or False. If condition is Null,
condition is treated as False.
An expression of the form TypeOf objectname Is
objecttype. The objectname is any object reference and
objecttype is any valid object type. The expression is
True if objectname is of the object type specified by
objecttype; otherwise it is False.

statements Optional in block form; required in single-line form that
has no Else clause. One or more statements separated
by colons; executed if condition is True.

condition-n Optional. Same as condition.
elseifstatements Optional. One or more statements executed if

associated condition-n is True.
elsestatements Optional. One or more statements executed if no

previous condition or condition-n expression is True.

Remarks
You can use the single-line form (first syntax) for short, simple tests. However, the block form (second
syntax) provides more structure and flexibility than the single-line form and is usually easier to read,
maintain, and debug.

Note      With the single-line form, it is possible to have multiple statements executed as the result of
an If...Then decision. All statements must be on the same line and separated by colons, as in the
following statement:
If A > 10 Then A = A + 1 : B = B + A : C = C + B

A block form If statement must be the first statement on a line. The Else, ElseIf, and End If parts of
the statement can have only a line number or line label preceding them. The block If must end with an
End If statement.

To determine whether or not a statement is a block If, examine what follows the Then keyword. If
anything other than a comment appears after Then on the same line, the statement is treated as a
single-line If statement.

The Else and ElseIf clauses are both optional. You can have as many ElseIf clauses as you want in
a block If, but none can appear after an Else clause. Block If statements can be nested; that is,
contained within one another.

When executing a block If (second syntax), condition is tested. If condition is True, the statements
following Then are executed. If condition is False, each ElseIf condition (if any) is evaluated in turn.
When a True condition is found, the statements immediately following the associated Then are
executed. If none of the ElseIf conditions are True (or if there are no ElseIf clauses), the statements
following Else are executed. After executing the statements following Then or Else, execution
continues with the statement following End If.

Tip      Select Case may be more useful when evaluating a single expression that has several possible
actions. However, the TypeOf objectname Is objecttype clause can't be used with the Select Case
statement.

IIf Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIIfC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctIIfX":1}             
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctIIFS"}

Returns one of two parts, depending on the evaluation of an expression.

Syntax
IIf(expr, truepart, falsepart)
The IIf function syntax has these named arguments:

Part Description
expr Required. Expression you want to evaluate.
truepart Required. Value or expression returned if expr is True.
falsepart Required. Value or expression returned if expr is False.

Remarks
IIf always evaluates both truepart and falsepart, even though it returns only one of them. Because of
this, you should watch for undesirable side effects. For example, if evaluating falsepart results in a
division by zero error, an error occurs even if expr is True.

On...GoSub, On...GoTo Statements
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmOnGoSubC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmOnGoSubX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmOnGoSubS"}

Branch to one of several specified lines, depending on the value of an expression.

Syntax
On expression GoSub destinationlist
On expression GoTo destinationlist
The On...GoSub and On...GoTo statement syntax has these parts:

Part Description
expression Required. Any numeric expression that evaluates to a

whole number between 0 and 255, inclusive. If expression
is any number other than a whole number, it is rounded
before it is evaluated.

destinationlist Required. List of line numbers or line labels separated by
commas.

Remarks
The value of expression determines which line is branched to in destinationlist. If the value of
expression is less than 1 or greater than the number of items in the list, one of the following results
occurs:

If expression is Then
Equal to 0 Control drops to the statement following

On...GoSub or On...GoTo.
Greater than number
of items in list

Control drops to the statement following
On...GoSub or On...GoTo.

Negative An error occurs.
Greater than 255 An error occurs.

You can mix line numbers and line labels in the same list. You can use as many line labels and line
numbers as you like with On...GoSub and On...GoTo. However, if you use more labels or numbers
than fit on a single line, you must use the line-continuation character to continue the logical line onto
the next physical line.

Tip      Select Case provides a more structured and flexible way to perform multiple branching.

Partition Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctPartitionC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctPartitionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctPartitionS"}

Returns a Variant (String) indicating where a number occurs within a calculated series of ranges.

Syntax
Partition(number, start, stop, interval)
The Partition function syntax has these named arguments:

Part Description
number Required. Whole number that you want to evaluate against the

ranges.
start Required. Whole number that is the start of the overall range of

numbers. The number can't be less than 0.
stop Required. Whole number that is the end of the overall range of

numbers. The number can't be equal to or less than start.
interval Required. Whole number that is the interval spanned by each

range in the series from start to stop. The number can't be less
than 1.

Remarks
The Partition function identifies the particular range in which number falls and returns a Variant
(String) describing that range. The Partition function is most useful in queries. You can create a
select query that shows how many orders fall within various ranges, for example, order values from 1
to 1000, 1001 to 2000, and so on.

The following table shows how the ranges are determined using three sets of start, stop, and
interval parts. The First Range and Last Range columns show what Partition returns. The ranges
are represented by lowervalue:uppervalue, where the low end (lowervalue) of the range is separated
from the high end (uppervalue) of the range with a colon (:).

start stop interval Before First First Range Last Range After Last
0 99 5 "      :-1" "            0:    4" "          95: 99" "      100:      "
20 199 10 "      :    19" "        20:    29" "      190: 199" "      200:      "
100 1010 20 "      :      99" "    100:    119" " 1000: 1010" " 1011:      "

In the table shown above, the third line shows the result when start and stop define a set of numbers
that can't be evenly divided by interval. The last range extends to stop (11 numbers) even though
interval is 20.

If necessary, Partition returns a range with enough leading spaces so that there are the same
number of characters to the left and right of the colon as there are characters in stop, plus one. This
ensures that if you use Partition with other numbers, the resulting text will be handled properly during
any subsequent sort operation.

If interval is 1, the range is number:number, regardless of the start and stop arguments. For
example, if interval is 1, number is 100 and stop is 1000, Partition returns "    100:    100".

If any of the parts is Null, Partition returns a Null.

Select Case Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmSelectCaseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmSelectCaseX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmSelectCaseS"}

Executes one of several groups of statements, depending on the value of an expression.

Syntax
Select Case testexpression

[Case expressionlist-n
[statements-n]] ...

[Case Else
[elsestatements]]

End Select
The Select Case statement syntax has these parts:

Part Description
testexpression Required. Any numeric expression or string expression.
expressionlist-n Required if a Case appears. Delimited list of one or

more of the following forms: expression, expression To
expression, Is comparisonoperator expression. The To
keyword specifies a range of values. If you use the To
keyword, the smaller value must appear before To. Use
the Is keyword with comparison operators (except Is and
Like) to specify a range of values. If not supplied, the Is
keyword is automatically inserted.

statements-n Optional. One or more statements executed if
testexpression matches any part of expressionlist-n.

elsestatements Optional. One or more statements executed if
testexpression doesn't match any of the Case clause.

Remarks
If testexpression matches any Case expressionlist expression, the statements following that Case
clause are executed up to the next Case clause, or, for the last clause, up to End Select. Control
then passes to the statement following End Select. If testexpression matches an expressionlist
expression in more than one Case clause, only the statements following the first match are executed.

The Case Else clause is used to indicate the elsestatements to be executed if no match is found
between the testexpression and an expressionlist in any of the other Case selections. Although not
required, it is a good idea to have a Case Else statement in your Select Case block to handle
unforeseen testexpression values. If no Case expressionlist matches testexpression and there is no
Case Else statement, execution continues at the statement following End Select.
You can use multiple expressions or ranges in each Case clause. For example, the following line is
valid:
Case 1 To 4, 7 To 9, 11, 13, Is > MaxNumber
Note      The Is comparison operator is not the same as the Is keyword used in the Select Case
statement.

You also can specify ranges and multiple expressions for character strings. In the following example,
Case matches strings that are exactly equal to everything, strings that fall between nuts and
soup in alphabetic order, and the current value of TestItem:   

Case "everything", "nuts" To "soup", TestItem

Select Case statements can be nested. Each nested Select Case statement must have a matching
End Select statement.

Shell Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctShellC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctShellX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctShellS"}

Runs an executable program and returns a Variant (Double) representing the program's task ID if
successful, otherwise it returns zero.

Syntax
Shell(pathname[,windowstyle])
The Shell function syntax has these named arguments:

Part Description
pathname Required; Variant (String). Name of the program to

execute and any required arguments or command-line
switches; may include directory or folder and drive.

windowstyle Optional. Variant (Integer) corresponding to the style of
the window in which the program is to be run. If
windowstyle is omitted, the program is started minimized
with focus.

The windowstyle named argument has these values:

Constant Value Description    

vbHide 0 Window is hidden and focus is passed
to the hidden window.

vbNormalFocus 1 Window has focus and is restored to its
original size and position.

vbMinimizedFocus 2 Window is displayed as an icon with
focus.

vbMaximizedFocus 3 Window is maximized with focus.
vbNormalNoFocus 4 Window is restored to its most recent

size and position. The currently active
window remains active.

vbMinimizedNoFocus 6 Window is displayed as an icon. The
currently active window remains active.

Remarks
If the Shell function successfully executes the named file, it returns the task ID of the started
program. The task ID is a unique number that identifies the running program. If the Shell function
can't start the named program, an error occurs. If you use the MacID function with Shell in Microsoft
Windows, an error occurs.

Note      The Shell function runs other programs asynchronously. This means that a program started
with Shell might not finish executing before the statements following the Shell function are executed.

Stop Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmStopC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmStopX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmStopS"}

Suspends execution.

Syntax
Stop
Remarks
You can place Stop statements anywhere in procedures to suspend execution. Using the Stop
statement is similar to setting a breakpoint in the code.

The Stop statement suspends execution, but unlike End, it doesn't close any files or clear variables,
unless it is in a compiled executable (.exe) file.

Switch Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctSwitchC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctSwitchX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctSwitchS"}

Evaluates a list of expressions and returns a Variant value or an expression associated with the first
expression in the list that is True.

Syntax
Switch(expr-1, value-1[, expr-2, value-2 … [, expr-n,value-n]])
The Switch function syntax has these parts:

Part Description
expr Required. Variant expression you want to evaluate.
value Required. Value or expression to be returned if the corresponding

expression is True.

Remarks
The Switch function argument list consists of pairs of expressions and values. The expressions are
evaluated from left to right, and the value associated with the first expression to evaluate to True is
returned. If the parts aren't properly paired, a run-time error occurs. For example, if expr-1 is True,
Switch returns value-1. If expr-1 is False, but expr-2 is True, Switch returns value-2, and so on.

Switch returns a Null value if:

· None of the expressions is True.
· The first True expression has a corresponding value that is Null.

Switch evaluates all of the expressions, even though it returns only one of them. For this reason, you
should watch for undesirable side effects. For example, if the evaluation of any expression results in a
division by zero error, an error occurs.

While...Wend Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmWhileC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmWhileX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmWhileS"}

Executes a series of statements as long as a given condition is True.

Syntax
While condition

[statements]
Wend
The While...Wend statement syntax has these parts:

Part Description
condition Required. Numeric expression or string expression that

evaluates to True or False. If condition is Null, condition is
treated as False.

statements Optional. One or more statements executed while condition is
True.

Remarks
If condition is True, all statements are executed until the Wend statement is encountered. Control
then returns to the While statement and condition is again checked. If condition is still True, the
process is repeated. If it is not True, execution resumes with the statement following the Wend
statement.

While...Wend loops can be nested to any level. Each Wend matches the most recent While.

Tip      The Do...Loop statement provides a more structured and flexible way to perform looping.

With Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmWithC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmWithX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmWithS"}

Executes a series of statements on a single object or a user-defined type.

Syntax
With object

[statements]
End With
The With statement syntax has these parts:

Part Description
object Required. Name of an object or a user-defined type.
statements Optional. One or more statements to be executed on object.

Remarks
The With statement allows you to perform a series of statements on a specified object without
requalifying the name of the object. For example, to change a number of different properties on a
single object, place the property assignment statements within the With control structure, referring to
the object once instead of referring to it with each property assignment. The following example
illustrates use of the With statement to assign values to several properties of the same object.
With MyLabel

.Height = 2000

.Width = 2000

.Caption = "This is MyLabel"
End With
Note      Once a With block is entered, object can't be changed. As a result, you can't use a single
With statement to affect a number of different objects.

You can nest With statements by placing one With block within another. However, because members
of outer With blocks are masked within the inner With blocks, you must provide a fully qualified object
reference in an inner With block to any member of an object in an outer With block.

Important      Do not jump into or out of With blocks. If statements in a With block are executed, but
either the With or End With statement is not executed, you may get errors or unpredictable behavior.

Asc Function Example

This example uses the Asc function to return a character code corresponding to the first letter in the
string.
Dim MyNumber
MyNumber = Asc("A") ' Returns 65.
MyNumber = Asc("a") ' Returns 97.
MyNumber = Asc("Apple") ' Returns 65.

CBool Function Example
This example uses the CBool function to convert an expression to a Boolean. If the expression
evaluates to a nonzero value, CBool returns True; otherwise, it returns False.
Dim A, B, Check
A = 5: B = 5' Initialize variables.
Check = CBool(A = B) ' Check contains True.
A = 0 ' Define variable.
Check = CBool(A) ' Check contains False.

CByte Function Example

This example uses the CByte function to convert an expression to a Byte.
Dim MyDouble, MyByte
MyDouble = 125.5678 ' MyDouble is a Double.
MyByte = CByte(MyDouble)' MyByte contains 126.

CDate Function Example

This example uses the CDate function to convert a string to a Date. In general, hard-coding dates
and times as strings (as shown in this example) is not recommended. Use date literals and time
literals, such as #2/12/1969# and #4:45:23 PM#, instead.
Dim MyDate, MyShortDate, MyTime, MyShortTime
MyDate = "February 12, 1969" ' Define date.
MyShortDate = CDate(MyDate)' Convert to Date data type.
MyTime = "4:35:47 PM"' Define time.
MyShortTime = CDate(MyTime)' Convert to Date data type.

CCur Function Example

This example uses the CCur function to convert an expression to a Currency.
Dim MyDouble, MyCurr
MyDouble = 543.214588' MyDouble is a Double.
MyCurr = CCur(MyDouble * 2)' Convert result of MyDouble * 2

' (1086.429176) to a
' Currency (1086.4292).

CDbl Function Example

This example uses the CDbl function to convert an expression to a Double.
Dim MyCurr, MyDouble
MyCurr = CCur(234.456784) ' MyCurr is a Currency.
MyDouble = CDbl(MyCurr * 8.2 * 0.01) ' Convert result to a Double.

CInt Function Example

This example uses the CInt function to convert a value to an Integer.
Dim MyDouble, MyInt
MyDouble = 2345.5678 ' MyDouble is a Double.
MyInt = CInt(MyDouble) ' MyInt contains 2346.

CLng Function Example

This example uses the CLng function to convert a value to a Long.
Dim MyVal1, MyVal2, MyLong1, MyLong2
MyVal1 = 25427.45: MyVal2 = 25427.55 ' MyVal1, MyVal2 are Doubles.
MyLong1 = CLng(MyVal1) ' MyLong1 contains 25427.
MyLong2 = CLng(MyVal2) ' MyLong2 contains 25428.

CSng Function Example

This example uses the CSng function to convert a value to a Single.
Dim MyDouble1, MyDouble2, MySingle1, MySingle2
' MyDouble1, MyDouble2 are Doubles.
MyDouble1 = 75.3421115: MyDouble2 = 75.3421555
MySingle1 = CSng(MyDouble1)' MySingle1 contains 75.34211.
MySingle2 = CSng(MyDouble2)' MySingle2 contains 75.34216.

CStr Function Example

This example uses the CStr function to convert a numeric value to a String.
Dim MyDouble, MyString
MyDouble = 437.324' MyDouble is a Double.
MyString = CStr(MyDouble) ' MyString contains "437.324".

CVar Function Example

This example uses the CVar function to convert an expression to a Variant.
Dim MyInt, MyVar
MyInt = 4534' MyInt is an Integer.
MyVar = CVar(MyInt & "000")' MyVar contains the string

' 4534000.

CVErr Function Example

This example uses the CVErr function to return a Variant whose VarType is vbError (10). The user-
defined function CalculateDouble returns an error if the argument passed to it isn't a number. You
can use CVErr to return user-defined errors from user-defined procedures or to defer handling of a
run-time error. Use the IsError function to test if the value represents an error.
' Call CalculateDouble with an error-producing argument.
Sub Test()

Debug.Print CalculateDouble("345.45robert")
End Sub
' Define CalculateDouble Function procedure.
Function CalculateDouble(Number)

If IsNumeric(Number) Then
CalculateDouble = Number * 2 ' Return result.

Else
CalculateDouble = CVErr(2001) ' Return a user-defined error

End If ' number.
End Function

Val Function Example

This example uses the Val function to return the numbers contained in a string.
Dim MyValue
MyValue = Val("2457")' Returns 2457.
MyValue = Val(" 2 45 7")' Returns 2457.
MyValue = Val("24 and 57") ' Returns 24.

Conversion Functions
Asc Function
CBool Function
CByte Function
CCur Function
CDate Function
CDec Function
CDbl Function
Chr Function
CInt Function
CLng Function
CSng Function
CStr Function
CVar Function
CVErr Function
Format Function
Hex Function
Oct Function
Str Function
Val Function

Asc Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctAscC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctAscX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctAscS"}

Returns an Integer representing the character code corresponding to the first letter in a string.

Syntax
Asc(string)
The required string argument is any valid string expression. If the string contains no characters, a run-
time error occurs.

Remarks
The range for returns is 0 – 255 on non-DBCS systems, but -32768 – 32767 on DBCS systems.

Note      The AscB function is used with byte data contained in a string. Instead of returning the
character code for the first character, AscB returns the first byte. The AscW function returns the
Unicode character code except on platforms where Unicode is not supported, in which case, the
behavior is identical to the Asc function.

CVErr Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctCVErrC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctCVErrX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctCVErrS"}

Returns a Variant of subtype Error containing an error number specified by the user.

Syntax
CVErr(errornumber)
The required errornumber argument is any valid error number.

Remarks
Use the CVErr function to create user-defined errors in user-created procedures. For example, if you
create a function that accepts several arguments and normally returns a string, you can have your
function evaluate the input arguments to ensure they are within acceptable range. If they are not, it is
likely your function will not return what you expect. In this event, CVErr allows you to return an error
number that tells you what action to take.

Note that implicit conversion of an Error is not allowed. For example, you can't directly assign the
return value of CVErr to a variable that is not a Variant. However, you can perform an explicit
conversion (using CInt, CDbl, and so on) of the value returned by CVErr and assign that to a variable
of the appropriate data type.

Val Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctValC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctValX":1}         
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctValS"}

Returns the numbers contained in a string as a numeric value of appropriate type.

Syntax
Val(string)
The required string argument is any valid string expression.

Remarks
The Val function stops reading the string at the first character it can't recognize as part of a number.
Symbols and characters that are often considered parts of numeric values, such as dollar signs and
commas, are not recognized. However, the function recognizes the radix prefixes &O (for octal) and
&H (for hexadecimal). Blanks, tabs, and linefeed characters are stripped from the argument.

The following returns the value 1615198:
Val(" 1615 198th Street N.E.")
In the code below, Val returns the decimal value -1 for the hexadecimal value shown:
Val("&HFFFF")
Note      The Val function recognizes only the period (.) as a valid decimal separator. When different
decimal separators can be used, for example, in international applications, use CDbl instead to
convert a string to a number.

Type Conversion Functions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaGrpTypeConversionC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaGrpTypeConversionX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vagrpTypeConversionS"}

Each function coerces an expression to a specific data type.

Syntax
CBool(expression)
CByte(expression)
CCur(expression)
CDate(expression)
CDbl(expression)
CDec(expression)
CInt(expression)
CLng(expression)
CSng(expression)
CVar(expression)
CStr(expression)
The required expression argument is any string expression or numeric expression.

Return Types
The function name determines the return type as shown in the following:

Function Return Type Range for expression argument
CBool Boolean Any valid string or numeric expression.
CByte Byte 0 to 255.
CCur Currency -922,337,203,685,477.5808 to

922,337,203,685,477.5807.
CDate Date Any valid date expression.
CDbl Double -1.79769313486232E308 to

-4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values.

CDec Decimal +/-79,228,162,514,264,337,593,543,950,335
for zero-scaled numbers, that is, numbers
with no decimal places. For numbers with 28
decimal places, the range is
+/-7.9228162514264337593543950335. The
smallest possible non-zero number is
0.0000000000000000000000000001.

CInt Integer -32,768 to 32,767; fractions are rounded.
CLng Long -2,147,483,648 to 2,147,483,647; fractions

are rounded.
CSng Single -3.402823E38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E38 for
positive values.

CVar Variant Same range as Double for numerics. Same
range as String for non-numerics.

CStr String Returns for CStr depend on the expression
argument.

Remarks
If the expression passed to the function is outside the range of the data type being converted to, an
error occurs.

In general, you can document your code using the data-type conversion functions to show that the
result of some operation should be expressed as a particular data type rather than the default data
type. For example, use CCur to force currency arithmetic in cases where single-precision, double-
precision, or integer arithmetic normally would occur.

You should use the data-type conversion functions instead of Val to provide internationally aware
conversions from one data type to another. For example, when you use CCur, different decimal
separators, different thousand separators, and various currency options are properly recognized
depending on the locale setting of your computer.

When the fractional part is exactly 0.5, CInt and CLng always round it to the nearest even number.
For example, 0.5 rounds to 0, and 1.5 rounds to 2. CInt and CLng differ from the Fix and Int
functions, which truncate, rather than round, the fractional part of a number. Also, Fix and Int always
return a value of the same type as is passed in.

Use the IsDate function to determine if date can be converted to a date or time. CDate recognizes
date literals and time literals as well as some numbers that fall within the range of acceptable dates.
When converting a number to a date, the whole number portion is converted to a date. Any fractional
part of the number is converted to a time of day, starting at midnight.

CDate recognizes date formats according to the locale setting of your system. The correct order of
day, month, and year may not be determined if it is provided in a format other than one of the
recognized date settings. In addition, a long date format is not recognized if it also contains the day-
of-the-week string.

A CVDate function is also provided for compatibility with previous versions of Visual Basic. The syntax
of the CVDate function is identical to the CDate function, however, CVDate returns a Variant whose
subtype is Date instead of an actual Date type. Since there is now an intrinsic Date type, there is no
further need for CVDate. The same effect can be achieved by converting an expression to a Date,
and then assigning it to a Variant. This technique is consistent with the conversion of all other intrinsic
types to their equivalent Variant subtypes.

Note The CDec function does not return a discrete data type; instead, it always returns a Variant
whose value has been converted to a Decimal subtype.

Returns for CStr
If expression is CStr returns
Boolean A string containing True or False
Date A string containing a date in the short date format of

your system
Null A run-time error
Empty A zero-length string ("")
Error A string containing the word Error followed by the error

number
Other numeric A string containing the number

Boolean Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatBooleanC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatBooleanX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vadatBooleanS"}

Boolean variables are stored as 16-bit (2-byte) numbers, but they can only be True or False.
Boolean variables display as either True or False (when Print is used) or #TRUE# or #FALSE#
(when Write # is used). Use the keywords True and False to assign one of the two states to Boolean
variables.

When other numeric types are converted to Boolean values, 0 becomes False and all other values
become True. When Boolean values are converted to other data types, False becomes 0 and True
becomes -1.

Byte Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatByteC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vadatByteX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadatByteS"}

Byte variables are stored as single, unsigned, 8-bit (1-byte) numbers ranging in value from 0–255.

The Byte data type is useful for containing binary data.

Currency Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatCurrencyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatCurrencyX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vadatCurrencyS"}

Currency variables are stored as 64-bit (8-byte) numbers in an integer format, scaled by 10,000 to
give a fixed-point number with 15 digits to the left of the decimal point and 4 digits to the right. This
representation provides a range of -922,337,203,685,477.5808 to 922,337,203,685,477.5807. The
type-declaration character for Currency is the at sign (@).

The Currency data type is useful for calculations involving money and for fixed-point calculations in
which accuracy is particularly important.

Data Type Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vagrpDataTypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vagrpDataTypeS"}

The following table shows the supported data types, including storage sizes and ranges.

Data type Storage size Range
Byte 1 byte 0 to 255
Boolean 2 bytes True or False
Integer 2 bytes -32,768 to 32,767
Long
(long integer)

4 bytes -2,147,483,648 to 2,147,483,647

Single
(single-precision
floating-point)

4 bytes -3.402823E38 to -1.401298E-45 for negative
values; 1.401298E-45 to 3.402823E38 for
positive values

Double
(double-precision
floating-point)

8 bytes -1.79769313486232E308 to
-4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values

Currency
(scaled integer)

8 bytes -922,337,203,685,477.5808 to
922,337,203,685,477.5807

Decimal 14 bytes +/-79,228,162,514,264,337,593,543,950,335
with no decimal point;
+/-7.9228162514264337593543950335 with
28 places to the right of the decimal; smallest
non-zero number is
+/-0.0000000000000000000000000001

Date 8 bytes January 1, 100 to December 31, 9999
Object 4 bytes Any Object reference
String
(variable-length)

10 bytes +
string length

0 to approximately 2 billion

String
(fixed-length)

Length of
string

1 to approximately 65,400

Variant
(with numbers)

16 bytes Any numeric value up to the range of a
Double

Variant
(with characters)

22 bytes +
string length

Same range as for variable-length String

User-defined
(using Type)

Number
required by
elements

The range of each element is the same as
the range of its data type.

Note      Arrays of any data type require 20 bytes of memory plus 4 bytes for each array dimension
plus the number of bytes occupied by the data itself. The memory occupied by the data can be
calculated by multiplying the number of data elements by the size of each element. For example, the
data in a single-dimension array consisting of 4 Integer data elements of 2 bytes each occupies 8
bytes. The 8 bytes required for the data plus the 24 bytes of overhead brings the total memory
requirement for the array to 32 bytes.
A Variant containing an array requires 12 bytes more than the array alone.

Date Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatDateC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vadatDateX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadatDateS"}

Date variables are stored as IEEE 64-bit (8-byte) floating-point numbers that represent dates ranging
from 1 January 100 to 31 December 9999 and times from 0:00:00 to 23:59:59. Any recognizable
literal date values can be assigned to Date variables. Date literals must be enclosed within number
signs (#), for example, #January 1, 1993# or #1 Jan 93#.

Date variables display dates according to the short date format recognized by your computer. Times
display according to the time format (either 12-hour or 24-hour) recognized by your computer.

When other numeric types are converted to Date, values to the left of the decimal represent date
information while values to the right of the decimal represent time. Midnight is 0 and midday is 0.5.
Negative whole numbers represent dates before 30 December 1899.

Decimal Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatDecimalC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatDecimalX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vadatDecimalS"}

Decimal variables are stored as 96-bit (12-byte) unsigned integers scaled by a variable power of 10.
The power of 10 scaling factor specifies the number of digits to the right of the decimal point, and
ranges from 0 to 28. With a scale of 0 (no decimal places), the largest possible value is +/-
79,228,162,514,264,337,593,543,950,335. With a 28 decimal places, the largest value is +/-
7.9228162514264337593543950335 and the smallest, non-zero value is +/-
0.0000000000000000000000000001.

Note      At this time the Decimal data type can only be used within a Variant, that is, you cannot
declare a variable to be of type Decimal. You can, however, create a Variant whose subtype is
Decimal using the CDec function.

Double Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatDoubleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatDoubleX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadatDoubleS"}

Double (double-precision floating-point) variables are stored as IEEE 64-bit (8-byte) floating-point
numbers ranging in value from -1.79769313486232E308 to -4.94065645841247E-324 for negative
values and from 4.94065645841247E-324 to 1.79769313486232E308 for positive values. The type-
declaration character for Double is the number sign (#).

Integer Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatIntegerC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatIntegerX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadatIntegerS"}

Integer variables are stored as 16-bit (2-byte) numbers ranging in value from -32,768 to 32,767. The
type-declaration character for Integer is the percent sign (%).

You can also use Integer variables to represent enumerated values. An enumerated value can
contain a finite set of unique whole numbers, each of which has special meaning in the context in
which it is used. Enumerated values provide a convenient way to select among a known number of
choices, for example, black = 0, white = 1, and so on. It is good programming practice to define
constants using the Const statement for each enumerated value.

Long Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatLongC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatLongX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadatLongS"}

Long (long integer) variables are stored as signed 32-bit (4-byte) numbers ranging in value from -
2,147,483,648 to 2,147,483,647. The type-declaration character for Long is the ampersand (&).

Object Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatObjectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatObjectX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadatObjectS"}

Object variables are stored as 32-bit (4-byte) addresses that refer to objects. Using the Set
statement, a variable declared as an Object can have any object reference assigned to it.

Note      Although a variable declared with Object type is flexible enough to contain a reference to any
object, binding to the object referenced by that variable is always late (run-time binding). To force
early binding (compile-time binding), assign the object reference to a variable declared with a specific
class name.

Single Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatSingleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatSingleX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadatSingleS"}

Single (single-precision floating-point) variables are stored as IEEE 32-bit (4-byte) floating-point
numbers, ranging in value from -3.402823E38 to -1.401298E-45 for negative values and from
1.401298E-45 to 3.402823E38 for positive values. The type-declaration character for Single is the
exclamation point (!).

String Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatStringX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadatStringS"}

There are two kinds of strings: variable-length and fixed-length strings.

· A variable-length string can contain up to approximately 2 billion (2^31) characters.
· A fixed-length string can contain 1 to approximately 64K (2^16) characters.
Note      A Public fixed-length string can't be used in a class module.

The codes for String characters range from 0–255. The first 128 characters (0–127) of the character
set correspond to the letters and symbols on a standard U.S. keyboard. These first 128 characters
are the same as those defined by the ASCII character set. The second 128 characters (128–255)
represent special characters, such as letters in international alphabets, accents, currency symbols,
and fractions.The type-declaration character for String is the dollar sign ($).

User-Defined Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatUserDefinedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatUserDefinedX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vadatUserDefinedS"}

Any data type you define using the Type statement. User-defined data types can contain one or more
elements of a data type, an array, or a previously defined user-defined type. For example:
Type MyType

MyName As String ' String variable stores a name.
MyBirthDate As Date ' Date variable stores a birthdate.
MySex As Integer ' Integer variable stores sex (0 for

End Type ' female, 1 for male).

Variant Data Type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadatVariantC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vadatVariantX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadatVariantS"}

The Variant data type is the data type for all variables that are not explicitly declared as some other
type (using statements such as Dim, Private, Public, or Static). The Variant data type has no type-
declaration character.

A Variant is a special data type that can contain any kind of data except fixed-length String data and
user-defined types. A Variant can also contain the special values Empty, Error, Nothing, and Null.
You can determine how the data in a Variant is treated using the VarType function or TypeName
function.

Numeric data can be any integer or real number value ranging from -1.797693134862315E308 to -
4.94066E-324 for negative values and from 4.94066E-324 to 1.797693134862315E308 for positive
values. Generally, numeric Variant data is maintained in its original data type within the Variant. For
example, if you assign an Integer to a Variant, subsequent operations treat the Variant as an
Integer. However, if an arithmetic operation is performed on a Variant containing a Byte, an Integer,
a Long, or a Single, and the result exceeds the normal range for the original data type, the result is
promoted within the Variant to the next larger data type. A Byte is promoted to an Integer, an Integer
is promoted to a Long, and a Long and a Single are promoted to a Double. An error occurs when
Variant variables containing Currency, Decimal, and Double values exceed their respective ranges.

You can use the Variant data type in place of any data type to work with data in a more flexible way. If
the contents of a Variant variable are digits, they may be either the string representation of the digits
or their actual value, depending on the context. For example:
Dim MyVar As Variant
MyVar = 98052
In the preceding example, MyVar contains a numeric representation—the actual value 98052.
Arithmetic operators work as expected on Variant variables that contain numeric values or string data
that can be interpreted as numbers. If you use the + operator to add MyVar to another Variant
containing a number or to a variable of a numeric type, the result is an arithmetic sum.

The value Empty denotes a Variant variable that hasn't been initialized (assigned an initial value). A
Variant containing Empty is 0 if it is used in a numeric context and a zero-length string ("") if it is used
in a string context.

Don't confuse Empty with Null. Null indicates that the Variant variable intentionally contains no valid
data.

In a Variant, Error is a special value used to indicate that an error condition has occurred in a
procedure. However, unlike for other kinds of errors, normal application-level error handling does not
occur. This allows you, or the application itself, to take some alternative action based on the error
value. Error values are created by converting real numbers to error values using the CVErr function.

Date Function Example

This example uses the Date function to return the current system date.
Dim MyDate
MyDate = Date ' MyDate contains the current system date.

Date Statement Example

This example uses the Date statement to set the computer system date. In the development
environment, the date literal is displayed in short date format using the locale settings of your code.
Dim MyDate
MyDate = #February 12, 1985# ' Assign a date.
Date = MyDate ' Change system date.

DateAdd Function Example

This example takes a date and, using the DateAdd function, displays a corresponding date a
specified number of months in the future.
Dim FirstDate As Date' Declare variables.
Dim IntervalType As String
Dim Number As Integer
Dim Msg
IntervalType = "m"' "m" specifies months as interval.
FirstDate = InputBox("Enter a date")
Number = InputBox("Enter number of months to add")
Msg = "New date: " & DateAdd(IntervalType, Number, FirstDate)
MsgBox Msg

DateDiff Function Example

This example uses the DateDiff function to display the number of days between a given date and
today.
Dim TheDate As Date ' Declare variables.
Dim Msg
TheDate = InputBox("Enter a date")
Msg = "Days from today: " & DateDiff("d", Now, TheDate)
MsgBox Msg

DatePart Function Example

This example takes a date and, using the DatePart function, displays the quarter of the year in which
it occurs.
Dim TheDate As Date ' Declare variables.
Dim Msg
TheDate = InputBox("Enter a date:")
Msg = "Quarter: " & DatePart("q", TheDate)
MsgBox Msg

DateSerial Function Example

This example uses the DateSerial function to return the date for the specified year, month, and day.
Dim MyDate
' MyDate contains the date for February 12, 1969.
MyDate = DateSerial(1969, 2, 12) ' Return a date.

DateValue Function Example

This example uses the DateValue function to convert a string to a date. You can also use date literals
to directly assign a date to a Variant or Date variable, for example, MyDate = #2/12/69#.
Dim MyDate
MyDate = DateValue("February 12, 1969") ' Return a date.

Day Function Example

This example uses the Day function to obtain the day of the month from a specified date. In the
development environment, the date literal is displayed in short format using the locale settings of your
code.
Dim MyDate, MyDay
MyDate = #February 12, 1969# ' Assign a date.
MyDay = Day(MyDate) ' MyDay contains 12.

Hour Function Example

This example uses the Hour function to obtain the hour from a specified time. In the development
environment, the time literal is displayed in short time format using the locale settings of your code.
Dim MyTime, MyHour
MyTime = #4:35:17 PM#' Assign a time.
MyHour = Hour(MyTime)' MyHour contains 16.

Minute Function Example

This example uses the Minute function to obtain the minute of the hour from a specified time. In the
development environment, the time literal is displayed in short time format using the locale settings of
your code.
Dim MyTime, MyMinute
MyTime = #4:35:17 PM#' Assign a time.
MyMinute = Minute(MyTime) ' MyMinute contains 35.

Month Function Example

This example uses the Month function to obtain the month from a specified date. In the development
environment, the date literal is displayed in short date format using the locale settings of your code.
Dim MyDate, MyMonth
MyDate = #February 12, 1969# ' Assign a date.
MyMonth = Month(MyDate) ' MyMonth contains 2.

Now Function Example

This example uses the Now function to return the current system date and time.
Dim Today
Today = Now ' Assign current system date and time.

Second Function Example

This example uses the Second function to obtain the second of the minute from a specified time. In
the development environment, the time    literal is displayed in short time format using the locale
settings of your code.
Dim MyTime, MySecond
MyTime = #4:35:17 PM#' Assign a time.
MySecond = Second(MyTime) ' MySecond contains 17.

Time Function Example

This example uses the Time function to return the current system time.
Dim MyTime
MyTime = Time ' Return current system time.

Time Statement Example

This example uses the Time statement to set the computer system time to a user-defined time.
Dim MyTime
MyTime = #4:35:17 PM#' Assign a time.
Time = MyTime ' Set system time to MyTime.

Timer Function Example

This example uses the Timer function to pause the application. The example also uses DoEvents to
yield to other processes during the pause.
Dim PauseTime, Start, Finish, TotalTime
If (MsgBox("Press Yes to pause for 5 seconds", 4)) = vbYes Then

PauseTime = 5 ' Set duration.
Start = Timer ' Set start time.
Do While Timer < Start + PauseTime

DoEvents ' Yield to other processes.
Loop
Finish = Timer ' Set end time.
TotalTime = Finish - Start ' Calculate total time.
MsgBox "Paused for " & TotalTime & " seconds"

Else
End

End If

TimeSerial Function Example

This example uses the TimeSerial function to return a time for the specified hour, minute, and
second.
Dim MyTime
MyTime = TimeSerial(16, 35, 17) ' MyTime contains serial

' representation of 4:35:17 PM.

TimeValue Function Example

This example uses the TimeValue function to convert a string to a time. You can also use date literals
to directly assign a time to a Variant or Date variable, for example, MyTime = #4:35:17 PM#.
Dim MyTime
MyTime = TimeValue("4:35:17 PM") ' Return a time.

Weekday Function Example

This example uses the Weekday function to obtain the day of the week from a specified date.
Dim MyDate, MyWeekDay
MyDate = #February 12, 1969# ' Assign a date.
MyWeekDay = Weekday(MyDate)' MyWeekDay contains 4 because

' MyDate represents a Wednesday.

Year Function Example

This example uses the Year function to obtain the year from a specified date. In the development
environment, the date literal is displayed in short date format using the locale settings of your code.
Dim MyDate, MyYear
MyDate = #February 12, 1969# ' Assign a date.
MyYear = Year(MyDate)' MyYear contains 1969.

Date Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctDateC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctDateX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctDateS"}

Returns a Variant (Date) containing the current system date.

Syntax
Date
Remarks
To set the system date, use the Date statement.

Date Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmDateC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmDateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmDateS"}

Sets the current system date.

Syntax
Date = date
For systems running Microsoft Windows 95, the required date specification must be a date from
January 1, 1980 through December 31, 2099. For systems running Microsoft Windows NT, date must
be a date from January 1, 1980 through December 31, 2079.

DateAdd Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctDateAddC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctDateAddX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctDateAddS"}

Returns a Variant (Date) containing a date to which a specified time interval has been added.

Syntax
DateAdd(interval, number, date)
The DateAdd function syntax has these named arguments:

Part Description
interval Required. String expression that is the interval of time you want

to add.
number Required. Numeric expression that is the number of intervals

you want to add. It can be positive (to get dates in the future) or
negative (to get dates in the past).

date Required. Variant (Date) or literal representing date to which the
interval is added.

Settings
The interval argument has these settings:

Setting Description
yyyy Year
q Quarter
m Month
y Day of year
d Day
w Weekday
ww Week
h Hour
n Minute
s Second

Remarks
You can use the DateAdd function to add or subtract a specified time interval from a date. For
example, you can use DateAdd to calculate a date 30 days from today or a time 45 minutes from
now.

To add days to date, you can use Day of Year ("y"), Day ("d"), or Weekday ("w").

The DateAdd function won't return an invalid date. The following example adds one month to January
31:
DateAdd("m", 1, "31-Jan-95")
In this case, DateAdd returns 28-Feb-95, not 31-Feb-95. If date is 31-Jan-96, it returns 29-Feb-96
because 1996 is a leap year.

If the calculated date would precede the year 100 (that is, you subtract more years than are in date),
an error occurs.

If number isn't a Long value, it is rounded to the nearest whole number before being evaluated.

DateDiff Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctDateDiffC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctDateDiffX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctDateDiffS"}

Returns a Variant (Long) specifying the number of time intervals between two specified dates.

Syntax
DateDiff(interval, date1, date2[, firstdayofweek[, firstweekofyear]])
The DateDiff function syntax has these named arguments:

Part Description
interval Required. String expression that is the interval of time

you use to calculate the difference between date1 and
date2.

date1, date2 Required; Variant (Date). Two dates you want to use in
the calculation.

firstdayofweek Optional. A constant that specifies the first day of the
week. If not specified, Sunday is assumed.

firstweekofyear Optional. A constant that specifies the first week of the
year. If not specified, the first week is assumed to be
the week in which January 1 occurs.

Settings
The interval argument has these settings:

Setting Description
yyyy Year
q Quarter
m Month
y Day of year
d Day
w Weekday
ww Week
h Hour
n Minute
s Second

The firstdayofweek argument has these settings:

Constant Value Description
   

vbUseSystem 0 Use the NLS API setting.
vbSunday 1 Sunday (default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

The firstweekofyear argument has these settings:

Constant Value Description
   

vbUseSystem 0 Use the NLS API setting.
vbFirstJan1 1 Start with week in which January 1 occurs

(default).
vbFirstFourDays 2 Start with the first week that has at least four

days in the new year.
vbFirstFullWeek 3 Start with first full week of the year.

Remarks
You can use the DateDiff function to determine how many specified time intervals exist between two
dates. For example, you might use DateDiff to calculate the number of days between two dates, or
the number of weeks between today and the end of the year.

To calculate the number of days between date1 and date2, you can use either Day of year ("y") or
Day ("d"). When interval is Weekday ("w"), DateDiff returns the number of weeks between the two
dates. If date1 falls on a Monday, DateDiff counts the number of Mondays until date2. It counts
date2 but not date1. If interval is Week ("ww"), however, the DateDiff function returns the number of
calendar weeks between the two dates. It counts the number of Sundays between date1 and date2.
DateDiff counts date2 if it falls on a Sunday; but it doesn't count date1, even if it does fall on a
Sunday.

If date1 refers to a later point in time than date2, the DateDiff function returns a negative number.

The firstdayofweek argument affects calculations that use the "w" and "ww" interval symbols.

If date1 or date2 is a date literal, the specified year becomes a permanent part of that date. However,
if date1 or date2 is enclosed in double quotation marks (" "), and you omit the year, the current year is
inserted in your code each time the date1 or date2 expression is evaluated. This makes it possible to
write code that can be used in different years.

When comparing December 31 to January 1 of the immediately succeeding year, DateDiff for Year
("yyyy") returns 1 even though only a day has elapsed.

DatePart Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctDatePartC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctDatePartX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctDatePartS"}

Returns a Variant (Integer) containing the specified part of a given date.

Syntax
DatePart(interval, date[,firstdayofweek[, firstweekofyear]])
The DatePart function syntax has these named arguments:

Part Description
interval Required. String expression that is the interval of time

you want to return.
date Required. Variant (Date) value that you want to

evaluate.
firstdayofweek Optional. A constant that specifies the first day of the

week. If not specified, Sunday is assumed.
firstweekofyear Optional. A constant that specifies the first week of the

year. If not specified, the first week is assumed to be
the week in which January 1 occurs.

Settings
The interval argument has these settings:

Setting Description
yyyy Year
q Quarter
m Month
y Day of year
d Day
w Weekday
ww Week
h Hour
n Minute
s Second

The firstdayofweek argument has these settings:

Constant Value Description
   

vbUseSystem 0 Use the NLS API setting.
vbSunday 1 Sunday (default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

The firstweekofyear argument has these settings:

Constant Value Description
   

vbUseSystem 0 Use the NLS API setting.
vbFirstJan1 1 Start with week in which January 1 occurs

(default).
vbFirstFourDays 2 Start with the first week that has at least four

days in the new year.
vbFirstFullWeek 3 Start with first full week of the year.

Remarks
You can use the DatePart function to evaluate a date and return a specific interval of time. For
example, you might use DatePart to calculate the day of the week or the current hour.

The firstdayofweek argument affects calculations that use the "w" and "ww" interval symbols.

If date is a date literal, the specified year becomes a permanent part of that date. However, if date is
enclosed in double quotation marks (" "), and you omit the year, the current year is inserted in your
code each time the date expression is evaluated. This makes it possible to write code that can be
used in different years.

DateSerial Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctDateSerialC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctDateSerialX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctDateSerialS"}

Returns a Variant (Date) for a specified year, month, and day.

Syntax
DateSerial(year, month, day)
The DateSerial function syntax has these named arguments:

Part Description
year Required; Integer. Number between 100 and 9999, inclusive, or a

numeric expression.
month Required; Integer. Any numeric expression.
day Required; Integer. Any numeric expression.

Remarks
To specify a date, such as December 31, 1991, the range of numbers for each DateSerial argument
should be in the accepted range for the unit; that is, 1–31 for days and 1–12 for months. However,
you can also specify relative dates for each argument using any numeric expression that represents
some number of days, months, or years before or after a certain date.

The following example uses numeric expressions instead of absolute date numbers. Here the
DateSerial function returns a date that is the day before the first day (1 - 1), two months before
August (8 - 2), 10 years before 1990 (1990 - 10); in other words, May 31, 1980.

DateSerial(1990 - 10, 8 - 2, 1 - 1)
For the year argument, values between 0 and 99, inclusive, are interpreted as the years 1900–1999.
For all other year arguments, use a four-digit year (for example, 1800).

When any argument exceeds the accepted range for that argument, it increments to the next larger
unit as appropriate. For example, if you specify 35 days, it is evaluated as one month and some
number of days, depending on where in the year it is applied. If any single argument is outside the
range -32,768 to 32,767, an error occurs. If the date specified by the three arguments falls outside the
acceptable range of dates, an error occurs.

DateValue Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctDateValueC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctDateValueX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctDateValueS"}

Returns a Variant (Date).

Syntax
DateValue(date)
The required date argument is normally a string expression representing a date from January 1, 100
through December 31, 9999. However, date can also be any expression that can represent a date, a
time, or both a date and time, in that range.

Remarks
If date is a string that includes only numbers separated by valid date separators, DateValue
recognizes the order for month, day, and year according to the Short Date format you specified for
your system. DateValue also recognizes unambiguous dates that contain month names, either in long
or abbreviated form. For example, in addition to recognizing 12/30/1991 and 12/30/91, DateValue
also recognizes December 30, 1991 and Dec 30, 1991.

If the year part of date is omitted, DateValue uses the current year from your computer's system date.

If the date argument includes time information, DateValue doesn't return it. However, if date includes
invalid time information (such as "89:98"), an error occurs.

Day Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctDayC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctDayX":1}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctDayS"}

Returns a Variant (Integer) specifying a whole number between 1 and 31, inclusive, representing the
day of the month.

Syntax
Day(date)
The required date argument is any Variant, numeric expression, string expression, or any
combination, that can represent a date. If date contains Null, Null is returned.

Hour Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctHourC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctHourX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctHourS"}

Returns a Variant (Integer) specifying a whole number between 0 and 23, inclusive, representing the
hour of the day.

Syntax
Hour(time)
The required time argument is any Variant, numeric expression, string expression, or any
combination, that can represent a time. If time contains Null, Null is returned.

Minute Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctMinuteC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctMinuteX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctMinuteS"}

Returns a Variant (Integer) specifying a whole number between 0 and 59, inclusive, representing the
minute of the hour.

Syntax
Minute(time)
The required time argument is any Variant, numeric expression, string expression, or any
combination, that can represent a time. If time contains Null, Null is returned.

Month Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctMonthC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctMonthX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctMonthS"}

Returns a Variant (Integer) specifying a whole number between 1 and 12, inclusive, representing the
month of the year.

Syntax
Month(date)
The required date argument is any Variant, numeric expression, string expression, or any
combination, that can represent a date. If date contains Null, Null is returned.

Now Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctNowC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctNowX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctNowS"}

Returns a Variant (Date) specifying the current date and time according your computer's system date
and time.

Syntax
Now

Second Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctSecondC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctSecondX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctSecondS"}

Returns a Variant (Integer) specifying a whole number between 0 and 59, inclusive, representing the
second of the minute.

Syntax
Second(time)
The required time argument is any Variant, numeric expression, string expression, or any
combination, that can represent a time. If time contains Null, Null is returned.

Time Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctTimeC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctTimeX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctTimeS"}

Returns a Variant (Date) indicating the current system time.

Syntax
Time
Remarks
To set the system time, use the Time statement.

Time Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmTimeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmTimeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmTimeS"}

Sets the system time.

Syntax
Time = time
The required time argument is any numeric expression, string expression, or any combination, that
can represent a time.

Remarks
If time is a string, Time attempts to convert it to a time using the time separators you specified for
your system. If it can't be converted to a valid time, an error occurs.

Timer Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctTimerC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctTimerX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctTimerS"}

Returns a Single representing the number of seconds elapsed since midnight.

Syntax
Timer

TimeSerial Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctTimeSerialC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctTimeSerialX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctTimeSerialS"}

Returns a Variant (Date) containing the time for a specific hour, minute, and second.

Syntax
TimeSerial(hour, minute, second)
The TimeSerial function syntax has these named arguments:

Part Description
hour Required; Variant (Integer). Number between 0 (12:00 A.M.)

and 23 (11:00 P.M.), inclusive, or a numeric expression.
minute Required; Variant (Integer). Any numeric expression.
second Required; Variant (Integer). Any numeric expression.

Remarks
To specify a time, such as 11:59:59, the range of numbers for each TimeSerial argument should be in
the normal range for the unit; that is, 0–23 for hours and 0–59 for minutes and seconds. However, you
can also specify relative times for each argument using any numeric expression that represents some
number of hours, minutes, or seconds before or after a certain time. The following example uses
expressions instead of absolute time numbers. The TimeSerial function returns a time for 15 minutes
before (-15) six hours before noon (12 - 6), or 5:45:00 A.M.

TimeSerial(12 - 6, -15, 0)
When any argument exceeds the normal range for that argument, it increments to the next larger unit
as appropriate. For example, if you specify 75 minutes, it is evaluated as one hour and 15 minutes. If
any single argument is outside the range -32,768 to 32,767, an error occurs. If the time specified by
the three arguments causes the date to fall outside the acceptable range of dates, an error occurs.

TimeValue Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctTimeValueC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctTimeValueX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctTimeValueS"}

Returns a Variant (Date) containing the time.

Syntax
TimeValue(time)
The required time argument is normally a string expression representing a time from 0:00:00
(12:00:00 A.M.) to 23:59:59 (11:59:59 P.M.), inclusive. However, time can also be any expression that
represents a time in that range. If time contains Null, Null is returned.

Remarks
You can enter valid times using a 12-hour or 24-hour clock. For example, "2:24PM" and "14:24"
are both valid time arguments.

If the time argument contains date information, TimeValue doesn't return it. However, if time includes
invalid date information, an error occurs.

Weekday Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctWeekdayC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctWeekdayX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctWeekdayS"}

Returns a Variant (Integer) containing a whole number representing the day of the week.

Syntax
Weekday(date, [firstdayofweek])
The Weekday function syntax has these named arguments:

Part Description
date Required. Variant, numeric expression, string

expression, or any combination, that can represent a
date. If date contains Null, Null is returned.

firstdayofweek Optional. A constant that specifies the first day of the
week. If not specified, vbSunday is assumed.

Settings
The firstdayofweek argument has these settings:

Constant Value Description
   

vbUseSystem 0 Use the NLS API setting.
vbSunday 1 Sunday (default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Return Values
The Weekday function can return any of these values:

Constant Value Description
   

vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Year Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctYearC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctYearX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctYearS"}

Returns a Variant (Integer) containing a whole number representing the year.

Syntax
Year(date)
The required date argument is any Variant, numeric expression, string expression, or any
combination, that can represent a date. If date contains Null, Null is returned.

Array Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctArrayC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctArrayX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctArrayS"}

Returns a Variant containing an array.

Syntax
Array(arglist)
The required arglist argument is a comma-delimited list of values that are assigned to the elements of
the array contained within the Variant. If no arguments are specified, an array of zero length is
created.

Remarks
The notation used to refer to an element of an array consists of the variable name followed by
parentheses containing an index number indicating the desired element. In the following example, the
first statement creates a variable named A as a Variant. The second statement assigns an array to
variable A. The last statement assigns the value contained in the second array element to another
variable.
Dim A As Variant
A = Array(10,20,30)
B = A(2)
The lower bound of an array created using the Array function is always zero. Unlike other types of
arrays, it is not affected by the lower bound specified with the Option Base statement.

Note      A Variant that is not declared as an array can still contain an array. A Variant variable can
contain an array of any type, except fixed-length strings and user-defined types. Although a Variant
containing an array is conceptually different from an array whose elements are of type Variant, the
array elements are accessed in the same way.

Const Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmConstC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmConstX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmConstS"}

Declares constants for use in place of literal values.

Syntax
[Public | Private] Const constname [As type] = expression
The Const statement syntax has these parts:

Part Description
Public Optional. Keyword used at module level to declare constants

that are available to all procedures in all modules. Not
allowed in procedures.

Private Optional. Keyword used at module level to declare constants
that are available only within the module where the
declaration is made. Not allowed in procedures.

constname Required. Name of the constant; follows standard variable
naming conventions.

type Optional. Data type of the constant; may be Byte, Boolean,
Integer, Long, Currency, Single, Double, Decimal (not
currently supported), Date, String, or Variant. Use a
separate As type clause for each constant being declared.

expression Required. Literal, other constant, or any combination that
includes all arithmetic or logical operators except Is.

Remarks
Constants are private by default. Within procedures, constants are always private; their visibility can't
be changed. In standard modules, the default visibility of module-level constants can be changed
using the Public keyword. In class modules, however, constants can only be private and their visibility
can't be changed using the Public keyword.

To combine several constant declarations on the same line, separate each constant assignment with
a comma. When constant declarations are combined in this way, the Public or Private keyword, if
used, applies to all of them.

You can't use variables, user-defined functions, or intrinsic Visual Basic functions (such as Chr) in
expressions assigned to constants.

Note      Constants can make your programs self-documenting and easy to modify. Unlike variables,
constants can't be inadvertently changed while your program is running.

If you don't explicitly declare the constant type using As type, the constant has the data type that is
most appropriate for expression.

Constants declared in a Sub, Function, or Property procedure are local to that procedure. A
constant declared outside a procedure is defined throughout the module in which it is declared. You
can use constants anywhere you can use an expression.

CreateObject Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctCreateObjectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctCreateObjectX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctCreateObjectS"}

Creates and returns a reference to an ActiveX object.

Syntax
CreateObject(class)
The class argument uses the syntax appname.objecttype and has these parts:

Part Description
appname Required; Variant (String). The name of the application

providing the object.
objecttype Required; Variant (String). The type or class of object to

create.

Remarks
Every application that supports Automation provides at least one type of object. For example, a word
processing application may provide an Application object, a Document object, and a Toolbar object.

To create an ActiveX object, assign the object returned by CreateObject to an object variable:
‘ Declare an object variable to hold the object
‘ reference. Dim as Object causes late binding.
Dim ExcelSheet As Object
Set ExcelSheet = CreateObject("Excel.Sheet")
This code starts the application creating the object, in this case, a Microsoft Excel spreadsheet. Once
an object is created, you reference it in code using the object variable you defined. In the following
example, you access properties and methods of the new object using the object variable,
ExcelSheet, and other Microsoft Excel objects, including the Application object and the Cells
collection.
' Make Excel visible through the Application object
ExcelSheet.Application.Visible = True
' Place some text in the first cell of the sheet
ExcelSheet.Cells(1, 1).Value = "This is column A, row 1"
' Save the sheet to C:\test.doc directory
ExcelSheet.SaveAs "C:\ TEST.DOC"
' Close Excel with the Quit method on the Application object
ExcelSheet.Application.Quit
' Release the object variable
Set ExcelSheet = Nothing
Declaring an object variable with the As Object clause creates a variable that can contain a
reference to any type of object. However, access to the object through that variable is late bound; that
is, the binding occurs when your program is run. To create an object variable that results in early
binding; that is, binding when the program is compiled, declare the object variable with a specific
class ID. For example, you can declare and create the following Microsoft Excel references:
Dim xlApp As Excel.Application
Dim xlBook As Excel.Workbook
Dim xlSheet As Excel.WorkSheet
Set xlApp = CreateObject("Excel.Application")
Set xlBook = xlApp.Workbooks.Add

Set xlSheet = xlBook.Worksheets(1)
The reference through an early-bound variable can give better performance, but can only contain a
reference to the class specified in the declaration.

You can pass an object returned by the CreateObject function to a function expecting an object as an
argument. For example, the following code creates and passes a reference to a Excel.Application
object:
Call MySub (CreateObject("Excel.Application"))
Note      Use CreateObject when there is no current instance of the object. If an instance of the object
is already running, a new instance is started, and an object of the specified type is created. To use the
current instance, or to start the application and have it load a file, use the GetObject function.
If an object has registered itself as a single-instance object, only one instance of the object is created,
no matter how many times CreateObject is executed.

Declare Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmDeclareC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmDeclareX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmDeclareS"}

Used at module level to declare references to external procedures in a dynamic-link library (DLL).

Syntax 1
[Public | Private] Declare Sub name Lib "libname" [Alias "aliasname"] [([arglist])]
Syntax 2
[Public | Private] Declare Function name Lib "libname" [Alias "aliasname"] [([arglist])] [As type]
The Declare statement syntax has these parts:

Part Description
Public Optional. Used to declare procedures that are available to

all other procedures in all modules.
Private Optional. Used to declare procedures that are available only

within the module where the declaration is made.
Sub Optional (either Sub or Function must appear). Indicates

that the procedure doesn't return a value.
Function Optional (either Sub or Function must appear). Indicates

that the procedure returns a value that can be used in an
expression.

name Required. Any valid procedure name. Note that DLL entry
points are case sensitive.

Lib Required. Indicates that a DLL or code resource contains
the procedure being declared. The Lib clause is required for
all declarations.

libname Required. Name of the DLL or code resource that contains
the declared procedure.

Alias Optional. Indicates that the procedure being called has
another name in the DLL. This is useful when the external
procedure name is the same as a keyword. You can also
use Alias when a DLL procedure has the same name as a
public variable, constant, or any other procedure in the
same scope. Alias is also useful if any characters in the
DLL procedure name aren't allowed by the DLL naming
convention.

aliasname Optional. Name of the procedure in the DLL or code
resource. If the first character is not a number sign (#),
aliasname is the name of the procedure's entry point in the
DLL. If (#) is the first character, all characters that follow
must indicate the ordinal number of the procedure's entry
point.

arglist Optional. List of variables representing arguments that are
passed to the procedure when it is called.

type Optional. Data type of the value returned by a Function
procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently
supported), Date, String (variable length only), or Variant, a
user-defined type, or an object type.

The arglist argument has the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type]

Part Description
Optional Optional. Indicates that an argument is not required. If used,

all subsequent arguments in arglist must also be optional
and declared using the Optional keyword. Optional can't
be used for any argument if ParamArray is used.

ByVal Optional. Indicates that the argument is passed by value.
ByRef Indicates that the argument is passed by reference. ByRef

is the default in Visual Basic.
ParamArray Optional. Used only as the last argument in arglist to

indicate that the final argument is an Optional array of
Variant elements. The ParamArray keyword allows you to
provide an arbitrary number of arguments. The ParamArray
keyword can't be used with ByVal, ByRef, or Optional.

varname Required. Name of the variable representing the argument
being passed to the procedure; follows standard variable
naming conventions.

() Required for array variables. Indicates that varname is an
array.

type Optional. Data type of the argument passed to the
procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently
supported), Date, String (variable length only), Object,
Variant, a user-defined type, or an object type.

Remarks
For Function procedures, the data type of the procedure determines the data type it returns. You can
use an As clause following arglist to specify the return type of the function. Within arglist, you can use
an As clause to specify the data type of any of the arguments passed to the procedure. In addition to
specifying any of the standard data types, you can specify As Any in arglist to inhibit type checking
and allow any data type to be passed to the procedure.

Empty parentheses indicate that the Sub or Function procedure has no arguments and that Visual
Basic should ensure that none are passed. In the following example, First takes no arguments. If
you use arguments in a call to First, an error occurs:

Declare Sub First Lib "MyLib" ()
If you include an argument list, the number and type of arguments are checked each time the
procedure is called. In the following example, First takes one Long argument:

Declare Sub First Lib "MyLib" (X As Long)
Note      You can't have fixed-length strings in the argument list of a Declare statement; only variable-
length strings can be passed to procedures. Fixed-length strings can appear as procedure
arguments, but they are converted to variable-length strings before being passed.

Note      The vbNullString constant is used when calling external procedures, where the external
procedure requires a string whose value is zero. This is not the same thing as a zero-length string ("").

Deftype Statements
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vagrpDeftypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vagrpDeftypeX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vagrpDefTypeS"}

Used at module level to set the default data type for variables, arguments passed to procedures, and
the return type for Function and Property Get procedures whose names start with the specified
characters.

Syntax
DefBool letterrange[, letterrange] . . .
DefByte letterrange[, letterrange] . . .
DefInt letterrange[, letterrange] . . .
DefLng letterrange[, letterrange] . . .
DefCur letterrange[, letterrange] . . .
DefSng letterrange[, letterrange] . . .
DefDbl letterrange[, letterrange] . . .
DefDec letterrange[, letterrange] . . .
DefDate letterrange[, letterrange] . . .
DefStr letterrange[, letterrange] . . .
DefObj letterrange[, letterrange] . . .
DefVar letterrange[, letterrange] . . .
The required letterrange argument has the following syntax:

letter1[-letter2]
The letter1 and letter2 arguments specify the name range for which you can set a default data type.
Each argument represents the first letter of the variable, argument, Function procedure, or Property
Get procedure name and can be any letter of the alphabet. The case of letters in letterrange isn't
significant.

Remarks
The statement name determines the data type:

Statement Data Type
DefBool Boolean
DefByte Byte
DefInt Integer
DefLng Long
DefCur Currency
DefSng Single
DefDbl Double
DefDec Decimal (not currently supported)
DefDate Date
DefStr String
DefObj Object
DefVar Variant

For example, in the following program fragment, Message is a string variable:

DefStr A-Q
. . .
Message = "Out of stack space."

A Deftype statement affects only the module where it is used. For example, a DefInt statement in one
module affects only the default data type of variables, arguments passed to procedures, and the
return type for Function and Property Get procedures declared in that module; the default data type
of variables, arguments, and return types in other modules is unaffected. If not explicitly declared with
a Deftype statement, the default data type for all variables, all arguments, all Function procedures,
and all Property Get procedures is Variant.
When you specify a letter range, it usually defines the data type for variables that begin with letters in
the first 128 characters of the character set. However, when you specify the letter range A – Z, you
set the default to the specified data type for all variables, including variables that begin with
international characters from the extended part of the character set (128 – 255).

Once the range A – Z has been specified, you can't further redefine any subranges of variables using
Deftype statements. Once a range has been specified, if you include a previously defined letter in
another Deftype statement, an error occurs. However, you can explicitly specify the data type of any
variable, defined or not, using a Dim statement with an As type clause. For example, you can use the
following code at module level to define a variable as a Double even though the default data type is
Integer:
DefInt A-Z
Dim TaxRate As Double
Deftype statements don't affect elements of user-defined types because the elements must be
explicitly declared.

Dim Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmDimC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmDimX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmDimS"}

Declares variables and allocates storage space.

Syntax
Dim [WithEvents] varname[([subscripts])] [As [New] type] [, [WithEvents] varname[([subscripts])]

[As [New] type]] . . .
The Dim statement syntax has these parts:

Part Description
WithEvents Optional. Keyword that specifies that varname is an object

variable used to respond to events triggered by an ActiveX
object. Valid only in class modules. You can declare as
many individual variables as you like using WithEvents, but
you can't create arrays with WithEvents. You can't use New
with WithEvents.

varname Required. Name of the variable; follows standard variable
naming conventions.

subscripts Optional. Dimensions of an array variable; up to 60 multiple
dimensions may be declared. The subscripts argument uses
the following syntax:
[lower To] upper [, [lower To] upper] . . .
When not explicitly stated in lower, the lower bound of an
array is controlled by the Option Base statement. The lower
bound is zero if no Option Base statement is present.

New Optional. Keyword that enables implicit creation of an
object. If you use New when declaring the object variable, a
new instance of the object is created on first reference to it,
so you don't have to use the Set statement to assign the
object reference. The New keyword can't be used to declare
variables of any intrinsic data type, can't be used to declare
instances of dependent objects, and can’t be used with
WithEvents.

type Optional. Data type of the variable; may be Byte, Boolean,
Integer, Long, Currency, Single, Double, Decimal (not
currently supported), Date, String (for variable-length
strings), String * length (for fixed-length strings), Object,
Variant, a user-defined type, or an object type. Use a
separate As type clause for each variable you declare.

Remarks
Variables declared with Dim at the module level are available to all procedures within the module. At
the procedure level, variables are available only within the procedure.

Use the Dim statement at module or procedure level to declare the data type of a variable. For
example, the following statement declares a variable as an Integer.
Dim NumberOfEmployees As Integer
Also use a Dim statement to declare the object type of a variable. The following declares a variable
for a new instance of a worksheet.
Dim X As New Worksheet

If the New keyword is not used when declaring an object variable, the variable that refers to the object
must be assigned an existing object using the Set statement before it can be used. Until it is assigned
an object, the declared object variable has the special value Nothing, which indicates that it doesn't
refer to any particular instance of an object.

You can also use the Dim statement with empty parentheses to declare a dynamic array. After
declaring a dynamic array, use the ReDim statement within a procedure to define the number of
dimensions and elements in the array. If you try to redeclare a dimension for an array variable whose
size was explicitly specified in a Private, Public, or Dim statement, an error occurs.

If you don't specify a data type or object type, and there is no Deftype statement in the module, the
variable is Variant by default.

When variables are initialized, a numeric variable is initialized to 0, a variable-length string is
initialized to a zero-length string (""), and a fixed-length string is filled with zeros. Variant variables are
initialized to Empty. Each element of a user-defined type variable is initialized as if it were a separate
variable.

Note      When you use the Dim statement in a procedure, you generally put the Dim statement at the
beginning of the procedure.

Enum Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmEnumC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmEnumX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmEnumS"}

Syntax
 [Public|Private] Enum name

membername [= constantexpression]
membername [= constantexpression]

. . .
End Enum
The Enum statement has these parts:

Part Description
Public Optional. Specifies that the Enum type is visible

throughout the project. Enum types are Public by
default.

Private Optional. Specifies that the Enum type is visible only
within the module in which it appears.

name Required. The name of the Enum type. The name,
which must be a valid Visual Basic identifier, is
specified as the type when declaring variables or
parameters of the Enum type.

membername Required. A valid Visual Basic identifier specifying
the name by which a constituent element of the
Enum type will be known.

constantexpression Optional. Value of the element (evaluates to a
Long). Can be another Enum type. If no
constantexpression is specified, the value assigned
is either zero (if it is the first membername), or 1
greater than the value of the immediately preceding
membername.

Remarks
Enumeration variables are variables declared with an Enum type. Both variables and parameters can
be declared with an Enum type. The elements of the Enum type are initialized to constant values
within the Enum statement. The assigned values cannot be modified at run time and can include both
positive and negative numbers. For example:
Enum SecurityLevel

IllegalEntry = -1
SecurityLevel1 = 0
SecurityLevel2 = 1

End Enum
An Enum statement can appear only at module level. Once the Enum type is defined, it can be used
to declare variables, parameters, or procedures returning its type. You cannot qualify an Enum type
name with a module name. Public Enum types in a class module are not members of the class,
however they are written to the type library. Enum types defined in standard modules aren’t written to
type libraries. Public Enum types of the same name cannot be defined in both standard modules and
class modules, since they share the same name space. When two Enum types in different type
libraries have the same name, but different elements, a reference to a variable of the type depends on
which type library has higher priority in the References.

You cannot use an Enum type as the target in a With block.

Erase Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmEraseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmEraseX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmEraseS"}

Reinitializes the elements of fixed-size arrays and releases dynamic-array storage space.

Syntax
Erase arraylist
The required arraylist argument is one or more comma-delimited array variables to be erased.

Remarks
Erase behaves differently depending on whether an array is fixed-size (ordinary) or dynamic. Erase
recovers no memory for fixed-size arrays. Erase sets the elements of a fixed array as follows:

Type of Array Effect of Erase on Fixed-Array Elements
Fixed numeric array Sets each element to zero.
Fixed string array
(variable length)

Sets each element to a zero-length string ("").

Fixed string array
(fixed length)

Sets each element to zero.

Fixed Variant array Sets each element to Empty.
Array of user-
defined types

Sets each element as if it were a separate variable.

Array of objects Sets each element to the special value Nothing.

Erase frees the memory used by dynamic arrays. Before your program can refer to the dynamic array
again, it must redeclare the array variable's dimensions using a ReDim statement.

Event Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmEventC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmEventX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmEventS"}

Declares a user-defined event.

Syntax
[Public] Event procedurename [(arglist)]
The Event statement has these parts:

Part Description
Public Optional. Specifies that the Event visible throughout

the project. Events types are Public by default.   
Note that events can only be raised in the module in
which they are declared.

procedurename Required. Name of the event; follows standard
variable naming conventions.

The arglist argument has the following syntax and parts:

[ByVal|ByRef] varname [()] [As type]

Part Description
ByVal Optional. Indicates that the argument is passed by

value.
ByRef Optional. Indicates that the argument is passed by

reference. ByRef is the default in Visual Basic.
varname Required. Name of the variable representing the

argument being passed to the procedure; follows
standard variable naming conventions.

type Optional. Data type of the argument passed to the
procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently
supported), Date, String (variable length only),
Object, Variant, a user-defined type, or an object
type.

Remarks
Once the event has been declared, use the RaiseEvent statement to fire the event. A syntax error
occurs if an Event declaration appears in a standard module. An event cannot be declared to return a
value. A typical event might be declared and raised as shown in the following fragments:
‘ Declare an event at module level of a class module

Event LogonCompleted (UserName as String)

Sub
RaiseEvent LogonCompleted(“AntoineJan”)

End Sub

Function Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmFunctionC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmFunctionX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmFunctionS"}

Declares the name, arguments, and code that form the body of a Function procedure.

Syntax
[Public | Private | Friend] [Static] Function name [(arglist)] [As type]

[statements]
[name = expression]
[Exit Function]
[statements]
[name = expression]

End Function
The Function statement syntax has these parts:

Part Description
Public Optional. Indicates that the Function procedure is

accessible to all other procedures in all modules. If used in a
module that contains an Option Private, the procedure is
not available outside the project.

Private Optional. Indicates that the Function procedure is
accessible only to other procedures in the module where it
is declared.

Friend Optional. Used only in a class module. Indicates that the
Function procedure is visible throughout the project, but not
visible to a controller of an instance of an object.

Static Optional. Indicates that the Function procedure's local
variables are preserved between calls. The Static attribute
doesn't affect variables that are declared outside the
Function, even if they are used in the procedure.

name Required. Name of the Function; follows standard variable
naming conventions.

arglist Optional. List of variables representing arguments that are
passed to the Function procedure when it is called. Multiple
variables are separated by commas.

type Optional. Data type of the value returned by the Function
procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently
supported), Date, String, or (except fixed length), Object,
Variant, or any user-defined type. Arrays of any type can't
be returned, but a Variant containing an array can.

statements Optional. Any group of statements to be executed within the
Function procedure.

expression Optional. Return value of the Function.

The arglist argument has the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

Part Description
Optional Optional. Indicates that an argument is not required. If used,

all subsequent arguments in arglist must also be optional

and declared using the Optional keyword. Optional can't
be used for any argument if ParamArray is used.

ByVal Optional. Indicates that the argument is passed by value.
ByRef Optional. Indicates that the argument is passed by

reference. ByRef is the default in Visual Basic.
ParamArray Optional. Used only as the last argument in arglist to

indicate that the final argument is an Optional array of
Variant elements. The ParamArray keyword allows you to
provide an arbitrary number of arguments. It may not be
used with ByVal, ByRef, or Optional.

varname Required. Name of the variable representing the argument;
follows standard variable naming conventions.

type Optional. Data type of the argument passed to the
procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently
supported) Date, String (variable length only), Object,
Variant. If the parameter is not Optional, a user-defined
type or an object type may also be specified.

defaultvalue Optional. Any constant or constant expression. Valid for
Optional parameters only. If the type is an Object, an
explicit default value can only be Nothing.

Remarks
If not explicitly specified using Public, Private, or Friend, Function procedures are public by default.
If Static is not used, the value of local variables is not preserved between calls. The Friend keyword
can only be used in class modules. However, Friend procedures can be accessed by procedures in
any module of a project. A Friend procedure does not appear in the type library of its parent class,
nor can a Friend procedure be late bound.

Caution      Function procedures can be recursive; that is, they can call themselves to perform a
given task. However, recursion can lead to stack overflow. The Static keyword is usually not used
with recursive Function procedures.

All executable code must be in procedures. You can't define a Function procedure inside another
Function, Sub, or Property procedure.

The Exit Function statement causes an immediate exit from a Function procedure. Program
execution continues with the statement following the statement that called the Function procedure.
Any number of Exit Function statements can appear anywhere in a Function procedure.

Like a Sub procedure, a Function procedure is a separate procedure that can take arguments,
perform a series of statements, and change the values of its arguments. However, unlike a Sub
procedure, you can use a Function procedure on the right side of an expression in the same way you
use any intrinsic function, such as Sqr, Cos, or Chr, when you want to use the value returned by the
function.

You call a Function procedure using the function name, followed by the argument list in parentheses,
in an expression. See the Call statement for specific information on how to call Function procedures.

To return a value from a function, assign the value to the function name. Any number of such
assignments can appear anywhere within the procedure. If no value is assigned to name, the
procedure returns a default value: a numeric function returns 0, a string function returns a zero-length
string (""), and a Variant function returns Empty. A function that returns an object reference returns
Nothing if no object reference is assigned to name (using Set) within the Function.

The following example shows how to assign a return value to a function named BinarySearch. In
this case, False is assigned to the name to indicate that some value was not found.

Function BinarySearch(. . .) As Boolean
. . .

' Value not found. Return a value of False.
If lower > upper Then

BinarySearch = False
Exit Function

End If
. . .
End Function
Variables used in Function procedures fall into two categories: those that are explicitly declared
within the procedure and those that are not. Variables that are explicitly declared in a procedure
(using Dim or the equivalent) are always local to the procedure. Variables that are used but not
explicitly declared in a procedure are also local unless they are explicitly declared at some higher
level outside the procedure.

Caution      A procedure can use a variable that is not explicitly declared in the procedure, but a
naming conflict can occur if anything you defined at the module level has the same name. If your
procedure refers to an undeclared variable that has the same name as another procedure, constant,
or variable, it is assumed that your procedure refers to that module-level name. Explicitly declare
variables to avoid this kind of conflict. You can use an Option Explicit statement to force explicit
declaration of variables.

Caution      Visual Basic may rearrange arithmetic expressions to increase internal efficiency. Avoid
using a Function procedure in an arithmetic expression when the function changes the value of
variables in the same expression.

GetObject Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctGetObjectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctGetObjectX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctGetObjectS"}

Returns a reference to an ActiveX object from a file.

Syntax
GetObject([pathname] [, class])
The GetObject function syntax has these named arguments:

Part Description
pathname Optional; Variant (String). The full path and name of the file

containing the object to retrieve. If pathname is omitted,
class is required.

class Optional; Variant (String). A string representing the class of
the object.

The class argument uses the syntax appname.objecttype and has these parts:

Part Description
appname Required; Variant (String). The name of the application

providing the object.
objecttype Required; Variant (String). The type or class of object to

create.

Remarks
Use the GetObject function to access an ActiveX object from a file and assign the object to an object
variable. Use the Set statement to assign the object returned by GetObject to the object variable. For
example:
Dim CADObject As Object
Set CADObject = GetObject("C:\CAD\SCHEMA.CAD")
When this code is executed, the application associated with the specified pathname is started and
the object in the specified file is activated.

If pathname is a zero-length string (""), GetObject returns a new object instance of the specified
type. If the pathname argument is omitted, GetObject returns a currently active object of the
specified type. If no object of the specified type exists, an error occurs.

Some applications allow you to activate part of a file. Add an exclamation point (!) to the end of the file
name and follow it with a string that identifies the part of the file you want to activate. For information
on how to create this string, see the documentation for the application that created the object.

For example, in a drawing application you might have multiple layers to a drawing stored in a file. You
could use the following code to activate a layer within a drawing called SCHEMA.CAD:

Set LayerObject = GetObject("C:\CAD\SCHEMA.CAD!Layer3")
If you don't specify the object's class, Automation determines the application to start and the object to
activate, based on the file name you provide. Some files, however, may support more than one class
of object. For example, a drawing might support three different types of objects: an Application
object, a Drawing object, and a Toolbar object, all of which are part of the same file. To specify which
object in a file you want to activate, use the optional class argument. For example:
Dim MyObject As Object
Set MyObject = GetObject("C:\DRAWINGS\SAMPLE.DRW", "FIGMENT.DRAWING")

In the above example, FIGMENT is the name of a drawing application and DRAWING is one of the
object types it supports.

Once an object is activated, you reference it in code using the object variable you defined. In the
preceding example, you access properties and methods of the new object using the object variable
MyObject. For example:

MyObject.Line 9, 90
MyObject.InsertText 9, 100, "Hello, world."
MyObject.SaveAs "C:\DRAWINGS\SAMPLE.DRW"
Note      Use the GetObject function when there is a current instance of the object or if you want to
create the object with a file already loaded. If there is no current instance, and you don't want the
object started with a file loaded, use the CreateObject function.
If an object has registered itself as a single-instance object, only one instance of the object is created,
no matter how many times CreateObject is executed. With a single-instance object, GetObject
always returns the same instance when called with the zero-length string ("") syntax, and it causes an
error if the pathname argument is omitted. You can't use GetObject to obtain a reference to a class
created with Visual Basic.

Implements Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmImplementsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmImplementsX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmImplementsS"}

Specifies an interface or class that will be implemented in the class module in which it appears.

Syntax
Implements [InterfaceName | Class]
The required InterfaceName or Class is the name of an interface or class in a type library whose
methods will be implemented by the corresponding methods in the Visual Basic class.

Remarks
An interface is a collection of prototypes representing the members (methods and properties) the
interface encapsulates; that is, it contains only the declarations for the member procedures. A class
provides an implementation of all of the methods and properties of one or more interfaces. Classes
provide the code they want used when each of the functions is called by a controller of the class. All
classes implement at least one interface, which is considered the default interface of the class. In
Visual Basic, any member that is not explicitly a member of an implemented interface is implicitly a
member of the default interface.

When a Visual Basic class implements an interface, the Visual Basic class provides its own versions
of all the Public procedures specified in the type library of the Interface. In addition to providing a
mapping between the interface prototypes and your procedures, the Implements statement causes
the class to accept COM QueryInterface calls for the specified interface ID.

When you implement an interface or class, you must include all the Public procedures involved. A
missing member in an implementation of an interface or class causes an error. If you do not place
code in one of the procedures in a class you are implementing, you can raise the appropriate error
(Const E_NOTIMPL = &H80004001) so a user of your implementation understands that member is
not implemented.

The Implements statement cannot appear in a standard module.

LBound Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctLBoundC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctLBoundX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctLBoundS"}

Returns a Long containing the smallest available subscript for the indicated dimension of an array.

Syntax
LBound(arrayname[, dimension])
The LBound function syntax has these parts:

Part Description
arrayname Required. Name of the array variable; follows standard

variable naming conventions.
dimension Optional; Variant (Long). Whole number indicating which

dimension's lower bound is returned. Use 1 for the first
dimension, 2 for the second, and so on. If dimension is
omitted, 1 is assumed.

Remarks
The LBound function is used with the UBound function to determine the size of an array. Use the
UBound function to find the upper limit of an array dimension.

LBound returns the values in the following table for an array with the following dimensions:
Dim A(1 To 100, 0 To 3, -3 To 4)

Statement Return Value
LBound(A, 1) 1
LBound(A, 2) 0
LBound(A, 3) -3

The default lower bound for any dimension is either 0 or 1, depending on the setting of the Option
Base statement. The base of an array created with the Array function is zero; it is unaffected by
Option Base.

Arrays for which dimensions are set using the To clause in a Dim, Private, Public, ReDim, or Static
statement can have any integer value as a lower bound.

Let Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmLetC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmLetX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmLetS"}

Assigns the value of an expression to a variable or property.

Syntax
[Let] varname = expression
The Let statement syntax has these parts:

Part Description
Let Optional. Explicit use of the Let keyword is a matter of style,

but it is usually omitted.
varname Required. Name of the variable or property; follows standard

variable naming conventions.
expression Required. Value assigned to the variable or property.

Remarks
A value expression can be assigned to a variable or property only if it is of a data type that is
compatible with the variable. You can't assign string expressions to numeric variables, and you can't
assign numeric expressions to string variables. If you do, an error occurs at compile time.

Variant variables can be assigned either string or numeric expressions. However, the reverse is not
always true. Any Variant except a Null can be assigned to a string variable, but only a Variant whose
value can be interpreted as a number can be assigned to a numeric variable. Use the IsNumeric
function to determine if the Variant can be converted to a number.

Caution      Assigning an expression of one numeric type to a variable of a different numeric type
coerces the value of the expression into the numeric type of the resulting variable.

Let statements can be used to assign one record variable to another only when both variables are of
the same user-defined type. Use the LSet statement to assign record variables of different user-
defined types. Use the Set statement to assign object references to variables.

Option Base Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmOptionBaseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmOptionBaseX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmOptionBaseS"}

Used at module level to declare the default lower bound for array subscripts.

Syntax
Option Base {0 | 1}

Remarks
Because the default base is 0, the Option Base statement is never required. If used, the statement
must appear in a module before any procedures. Option Base can appear only once in a module and
must precede array declarations that include dimensions.

Note      The To clause in the Dim, Private, Public, ReDim, and Static statements provides a more
flexible way to control the range of an array's subscripts. However, if you don't explicitly set the lower
bound with a To clause, you can use Option Base to change the default lower bound to 1.    The base
of an array created with the Array function or the ParamArray keyword is zero; Option Base does
not affect Array or ParamArray.

The Option Base statement only affects the lower bound of arrays in the module where the statement
is located.

Option Compare Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmOptionCompareC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmOptionCompareX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmOptionCompareS"}

Used at module level to declare the default comparison method to use when string data is compared.

Syntax
Option Compare {Binary | Text | Database}

Remarks
If used, the Option Compare statement must appear in a module before any procedures.

The Option Compare statement specifies the string comparison method (Binary, Text, or Database)
for a module. If a module doesn't include an Option Compare statement, the default text comparison
method is Binary.

Option Compare Binary results in string comparisons based on a sort order derived from the internal
binary representations of the characters. In Microsoft Windows, sort order is determined by the code
page. A typical binary sort order is shown in the following example:
A < B < E < Z < a < b < e < z < À < Ê < Ø < à < ê < ø
Option Compare Text results in string comparisons based on a case-insensitive text sort order
determined by your system's locale. When the same characters are sorted using Option Compare
Text, the following text sort order is produced:

(A=a) < (À=à) < (B=b) < (E=e) < (Ê=ê) < (Z=z) < (Ø=ø)
Option Compare Database can only be used within Microsoft Access. This results in string
comparisons based on the sort order determined by the locale ID of the database where the string
comparisons occur.

Option Explicit Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmOptionExplicitC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmOptionExplicitX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmOptionExplicitS"}

Used at module level to force explicit declaration of all variables in that module.

Syntax
Option Explicit
Remarks
If used, the Option Explicit statement must appear in a module before any procedures.

When Option Explicit appears in a module, you must explicitly declare all variables using the Dim,
Private, Public, ReDim, or Static statements. If you attempt to use an undeclared variable name, an
error occurs at compile time.

If you don't use the Option Explicit statement, all undeclared variables are of Variant type unless the
default type is otherwise specified with a Deftype statement.

Note      Use Option Explicit to avoid incorrectly typing the name of an existing variable or to avoid
confusion in code where the scope of the variable is not clear.

Option Private Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmOptionPrivateC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmOptionPrivateX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmOptionPrivateS"}

When used in host applications that allow references across multiple projects, Option Private
Module prevents a module’s contents from being referenced outside its project. In host applications
that don’t permit such references, for example, standalone versions of Visual Basic, Option Private
has no effect.

Syntax
Option Private Module
Remarks
If used, the Option Private statement must appear at module level, before any procedures.

When a module contains Option Private Module, the public parts, for example, variables, objects,
and user-defined types declared at module level, are still available within the project containing the
module, but they are not available to other applications or projects.

Note      Option Private is only useful for host applications that support simultaneous loading of
multiple projects and permit references between the loaded projects. For example, Microsoft Excel
permits loading of multiple projects and Option Private Module can be used to restrict cross-project
visibility. Although Visual Basic permits loading of multiple projects, references between projects are
never permitted in Visual Basic.

Private Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmPrivateC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmPrivateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmPrivateS"}

Used at module level to declare private variables and allocate storage space.

Syntax
Private [WithEvents] varname[([subscripts])] [As [New] type] [,[WithEvents] varname[([subscripts])]

[As [New] type]] . . .
The Private statement syntax has these parts:

Part Description
WithEvents Optional. Keyword that specifies that varname is an object

variable used to respond to events triggered by an ActiveX
object. Valid only in class modules. You can declare as
many individual variables as you like using WithEvents, but
you can't create arrays with WithEvents. You can't use New
with WithEvents.

varname Required. Name of the variable; follows standard variable
naming conventions.

Subscripts Optional. Dimensions of an array variable; up to 60 multiple
dimensions may be declared. The subscripts argument uses
the following syntax:
[lower To] upper [,[lower To] upper] . . .
When not explicitly stated in lower, the lower bound of an
array is controlled by the Option Base statement. The lower
bound is zero if no Option Base statement is present.

New Optional. Keyword that enables implicit creation of an
object. If you use New when declaring the object variable, a
new instance of the object is created on first reference to it,
so you don't have to use the Set statement to assign the
object reference. The New keyword can't be used to declare
variables of any intrinsic data type, can't be used to declare
instances of dependent objects, and can’t be used with
WithEvents.

type Optional. Data type of the variable; may be Byte, Boolean,
Integer, Long, Currency, Single, Double, Decimal (not
currently supported), Date, String (for variable-length
strings), String * length (for fixed-length strings), Object,
Variant, a user-defined type, or an object type. Use a
separate As type clause for each variable being defined.

Remarks
Private variables are available only to the module in which they are declared.

Use the Private statement to declare the data type of a variable. For example, the following
statement declares a variable as an Integer:
Private NumberOfEmployees As Integer
You can also use a Private statement to declare the object type of a variable. The following statement
declares a variable for a new instance of a worksheet.
Private X As New Worksheet

If the New keyword is not used when declaring an object variable, the variable that refers to the object
must be assigned an existing object using the Set statement before it can be used. Until it is assigned
an object, the declared object variable has the special value Nothing, which indicates that it doesn't
refer to any particular instance of an object.

If you don't specify a data type or object type, and there is no Deftype statement in the module, the
variable is Variant by default.

You can also use the Private statement with empty parentheses to declare a dynamic array. After
declaring a dynamic array, use the ReDim statement within a procedure to define the number of
dimensions and elements in the array. If you try to redeclare a dimension for an array variable whose
size was explicitly specified in a Private, Public, or Dim statement, an error occurs.

When variables are initialized, a numeric variable is initialized to 0, a variable-length string is
initialized to a zero-length string (""), and a fixed-length string is filled with zeros. Variant variables are
initialized to Empty. Each element of a user-defined type variable is initialized as if it were a separate
variable.

Note      When you use the Private statement in a procedure, you generally put the Private statement
at the beginning of the procedure.

Property Get Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmPropertyGetC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmPropertyGetX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmPropertyGetS"}

Declares the name, arguments, and code that form the body of a Property procedure, which gets the
value of a property.

Syntax
[Public | Private | Friend] [Static] Property Get name [(arglist)] [As type]

[statements]
[name = expression]
[Exit Property]
[statements]
[name = expression]

End Property
The Property Get statement syntax has these parts:

Part Description
Public Optional. Indicates that the Property Get procedure is

accessible to all other procedures in all modules. If used in a
module that contains an Option Private statement, the
procedure is not available outside the project.

Private Optional. Indicates that the Property Get procedure is
accessible only to other procedures in the module where it
is declared.

Friend Optional. Used only in a class module. Indicates that the
Property Get procedure is visible throughout the project,
but not visible to a controller of an instance of an object.

Static Optional. Indicates that the Property Get procedure's local
variables are preserved between calls. The Static attribute
doesn't affect variables that are declared outside the
Property Get procedure, even if they are used in the
procedure.

name Required. Name of the Property Get procedure; follows
standard variable naming conventions, except that the name
can be the same as a Property Let or Property Set
procedure in the same module.

arglist Optional. List of variables representing arguments that are
passed to the Property Get procedure when it is called.
Multiple arguments are separated by commas. The name
and data type of each argument in a Property Get
procedure must be the same as the corresponding
argument in a Property Let procedure (if one exists).

type Optional. Data type of the value returned by the Property
Get procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently
supported), Date, String (except fixed length), Object,
Variant, or user-defined type. Arrays of any type can't be
returned, but a Variant containing an array can.
The return type of a Property Get procedure must be the
same data type as the last (or sometimes the only)
argument in a corresponding Property Let procedure (if one

exists) that defines the value assigned to the property on the
right side of an expression.

statements Optional. Any group of statements to be executed within the
body of the Property Get procedure.

expression Optional. Value of the property returned by the procedure
defined by the Property Get statement.

The arglist argument has the following syntax and parts:

[Optional] [ByVal | ByRef] varname[()] [As type] [= defaultvalue]

Part Description
Optional Optional. Indicates that an argument is not required. If used,

all subsequent arguments in arglist must also be optional
and declared using the Optional keyword.

ByVal Optional. Indicates that the argument is passed by value.
ByRef Optional. Indicates that the argument is passed by

reference. ByRef is the default in Visual Basic.
ParamArray Optional. Used only as the last argument in arglist to

indicate that the final argument is an Optional array of
Variant elements. The ParamArray keyword allows you to
provide an arbitrary number of arguments. It may not be
used with ByVal, ByRef, or Optional.

varname Required. Name of the variable representing the argument;
follows standard variable naming conventions.

type Optional. Data type of the argument passed to the
procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently
supported), Date, String (variable length only), Object,
Variant. If the parameter is not Optional, a user-defined
type or an object type may also be specified.

defaultvalue Optional. Any constant or constant expression. Valid for
Optional parameters only. If the type is an Object, an
explicit default value can only be Nothing.

Remarks
If not explicitly specified using Public, Private, or Friend, Property procedures are public by default.
If Static is not used, the value of local variables is not preserved between calls. The Friend keyword
can only be used in class modules. However, Friend procedures can be accessed by procedures in
any module of a project. A Friend procedure does not appear in the type library of its parent class,
nor can a Friend procedure be late bound.

All executable code must be in procedures. You can't define a Property Get procedure inside another
Property, Sub, or Function procedure.

The Exit Property statement causes an immediate exit from a Property Get procedure. Program
execution continues with the statement following the statement that called the Property Get
procedure. Any number of Exit Property statements can appear anywhere in a Property Get
procedure.

Like a Sub and Property Let procedure, a Property Get procedure is a separate procedure that can
take arguments, perform a series of statements, and change the values of its arguments. However,
unlike a Sub or Property Let procedure, you can use a Property Get procedure on the right side of
an expression in the same way you use a Function or a property name when you want to return the
value of a property.

Property Let Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmPropertyLetC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmPropertyLetX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmPropertyLetS"}

Declares the name, arguments, and code that form the body of a Property Let procedure, which
assigns a value to a property.

Syntax
[Public | Private | Friend] [Static] Property Let name ([arglist,] value)

[statements]
[Exit Property]
[statements]

End Property
The Property Let statement syntax has these parts:

Part Description
Public Optional. Indicates that the Property Let procedure is

accessible to all other procedures in all modules. If used in a
module that contains an Option Private statement, the
procedure is not available outside the project.

Private Optional. Indicates that the Property Let procedure is
accessible only to other procedures in the module where it
is declared.

Friend Optional. Used only in a class module. Indicates that the
Property Let procedure is visible throughout the project, but
not visible to a controller of an instance of an object.

Static Optional. Indicates that the Property Let procedure's local
variables are preserved between calls. The Static attribute
doesn't affect variables that are declared outside the
Property Let procedure, even if they are used in the
procedure.

name Required. Name of the Property Let procedure; follows
standard variable naming conventions, except that the name
can be the same as a Property Get or Property Set
procedure in the same module.

arglist Required. List of variables representing arguments that are
passed to the Property Let procedure when it is called.
Multiple arguments are separated by commas. The name
and data type of each argument in a Property Let
procedure must be the same as the corresponding
argument in a Property Get procedure.

value Required. Variable to contain the value to be assigned to the
property. When the procedure is called, this argument
appears on the right side of the calling expression. The data
type of value must be the same as the return type of the
corresponding Property Get procedure.

statements Optional. Any group of statements to be executed within the
Property Let procedure.

The arglist argument has the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

Part Description
Optional Optional. Indicates that an argument is not required. If used,

all subsequent arguments in arglist must also be optional
and declared using the Optional keyword. Note that it is not
possible for the right side of a Property Let expression to
be Optional.

ByVal Optional. Indicates that the argument is passed by value.
ByRef Optional. Indicates that the argument is passed by

reference. ByRef is the default in Visual Basic.
ParamArray Optional. Used only as the last argument in arglist to

indicate that the final argument is an Optional array of
Variant elements. The ParamArray keyword allows you to
provide an arbitrary number of arguments. It may not be
used with ByVal, ByRef, or Optional.

varname Required. Name of the variable representing the argument;
follows standard variable naming conventions.

type Optional. Data type of the argument passed to the
procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently
supported), Date, String (variable length only), Object,
Variant. If the parameter is not Optional, a user-defined
type, or an object type may also be specified.

defaultvalue Optional. Any constant or constant expression. Valid for
Optional parameters only. If the type is an Object, an
explicit default value can only be Nothing.

Note      Every Property Let statement must define at least one argument for the procedure it defines.
That argument (or the last argument if there is more than one) contains the actual value to be
assigned to the property when the procedure defined by the Property Let statement is invoked. That
argument is referred to as value in the preceding syntax.

Remarks
If not explicitly specified using Public, Private, or Friend, Property procedures are public by default.
If Static is not used, the value of local variables is not preserved between calls. The Friend keyword
can only be used in class modules. However, Friend procedures can be accessed by procedures in
any module of a project. A Friend procedure does not appear in the type library of its parent class,
nor can a Friend procedure be late bound.

All executable code must be in procedures. You can't define a Property Let procedure inside another
Property, Sub, or Function procedure.

The Exit Property statement causes an immediate exit from a Property Let procedure. Program
execution continues with the statement following the statement that called the Property Let
procedure. Any number of Exit Property statements can appear anywhere in a Property Let
procedure.

Like a Function and Property Get procedure, a Property Let procedure is a separate procedure that
can take arguments, perform a series of statements, and change the value of its arguments.
However, unlike a Function and Property Get procedure, both of which return a value, you can only
use a Property Let procedure on the left side of a property assignment expression or Let statement.

Property Set Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmPropertySetC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmPropertySetX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmPropertySetS"}

Declares the name, arguments, and code that form the body of a Property procedure, which sets a
reference to an object.

Syntax
[Public | Private | Friend] [Static] Property Set name ([arglist,] reference)

[statements]
[Exit Property]
[statements]

End Property
The Property Set statement syntax has these parts:

Part Description
Optional Optional. Indicates that the argument may or may not be

supplied by the caller.
Public Optional. Indicates that the Property Set procedure is

accessible to all other procedures in all modules. If used in a
module that contains an Option Private statement, the
procedure is not available outside the project.

Private Optional. Indicates that the Property Set procedure is
accessible only to other procedures in the module where it
is declared.

Friend Optional. Used only in a class module. Indicates that the
Property Set procedure is visible throughout the project, but
not visible to a controller of an instance of an object.

Static Optional. Indicates that the Property Set procedure's local
variables are preserved between calls. The Static attribute
doesn't affect variables that are declared outside the
Property Set procedure, even if they are used in the
procedure.

name Required. Name of the Property Set procedure; follows
standard variable naming conventions, except that the name
can be the same as a Property Get or Property Let
procedure in the same module.

arglist Required. List of variables representing arguments that are
passed to the Property Set procedure when it is called.
Multiple arguments are separated by commas.

reference Required. Variable containing the object reference used on
the right side of the object reference assignment.

statements Optional. Any group of statements to be executed within the
body of the Property procedure.

The arglist argument has the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

Part Description
Optional Optional. Indicates that an argument is not required. If used,

all subsequent arguments in arglist must also be optional
and declared using the Optional keyword. Note that it is not

possible for the right side of a Property Set expression to
be Optional.

ByVal Optional. Indicates that the argument is passed by value.
ByRef Optional. Indicates that the argument is passed by

reference. ByRef is the default in Visual Basic.
ParamArray Optional. Used only as the last argument in arglist to

indicate that the final argument is an Optional array of
Variant elements. The ParamArray keyword allows you to
provide an arbitrary number of arguments. It may not be
used with ByVal, ByRef, or Optional.

varname Required. Name of the variable representing the argument;
follows standard variable naming conventions.

type Optional. Data type of the argument passed to the
procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently
supported), Date, String (variable length only), Object,
Variant. If the parameter is not Optional, a user-defined
type, or an object type may also be specified.

defaultvalue Optional. Any constant or constant expression. Valid for
Optional parameters only. If the type is an Object, an
explicit default value can only be Nothing.

Note      Every Property Set statement must define at least one argument for the procedure it defines.
That argument (or the last argument if there is more than one) contains the actual object reference for
the property when the procedure defined by the Property Set statement is invoked. It is referred to as
reference in the preceding syntax. It can't be Optional.

Remarks
If not explicitly specified using Public, Private, or Friend, Property procedures are public by default.
If Static is not used, the value of local variables is not preserved between calls. The Friend keyword
can only be used in class modules. However, Friend procedures can be accessed by procedures in
any module of a project. A Friend procedure does not appear in the type library of its parent class,
nor can a Friend procedure be late bound.

All executable code must be in procedures. You can't define a Property Set procedure inside another
Property, Sub, or Function procedure.

The Exit Property statement causes an immediate exit from a Property Set procedure. Program
execution continues with the statement following the statement that called the Property Set
procedure. Any number of Exit Property statements can appear anywhere in a Property Set
procedure.

Like a Function and Property Get procedure, a Property Set procedure is a separate procedure
that can take arguments, perform a series of statements, and change the value of its arguments.
However, unlike a Function and Property Get procedure, both of which return a value, you can only
use a Property Set procedure on the left side of an object reference assignment (Set statement).

Public Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmPublicC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmPublicX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmPublicS"}

Used at module level to declare public variables and allocate storage space.

Syntax
Public [WithEvents] varname[([subscripts])] [As [New] type] [,[WithEvents] varname[([subscripts])]

[As [New] type]] . . .
The Public statement syntax has these parts:

Part Description
WithEvents Optional. Keyword specifying that varname is an object

variable used to respond to events triggered by an ActiveX
object. Valid only in class modules. You can declare as
many individual variables as you like using WithEvents, but
you can't create arrays with WithEvents. You can't use New
with WithEvents.

varname Required. Name of the variable; follows standard variable
naming conventions.

subscripts Optional. Dimensions of an array variable; up to 60 multiple
dimensions may be declared. The subscripts argument uses
the following syntax:
[lower To] upper [,[lower To] upper] . . .
When not explicitly stated in lower, the lower bound of an
array is controlled by the Option Base statement. The lower
bound is zero if no Option Base statement is present.

New Optional. Keyword that enables implicit creation of an
object. If you use New when declaring the object variable, a
new instance of the object is created on first reference to it,
so you don't have to use the Set statement to assign the
object reference. The New keyword can't be used to declare
variables of any intrinsic data type, can't be used to declare
instances of dependent objects, and can't be used with
WithEvents.

type Optional. Data type of the variable; may be Byte, Boolean,
Integer, Long, Currency, Single, Double, Decimal (not
currently supported), Date, String, (for variable-length
strings), String * length (for fixed-length strings), Object,
Variant, a user-defined type, or an object type. Use a
separate As type clause for each variable being defined.

Remarks
Variables declared using the Public statement are available to all procedures in all modules in all
applications unless Option Private Module is in effect; in which case, the variables are public only
within the project in which they reside.

Caution      The Public statement can't be used in a class module to declare a fixed-length string
variable.

Use the Public statement to declare the data type of a variable. For example, the following statement
declares a variable as an Integer:

Public NumberOfEmployees As Integer
Also use a Public statement to declare the object type of a variable. The following statement declares
a variable for a new instance of a worksheet.
Public X As New Worksheet
If the New keyword is not used when declaring an object variable, the variable that refers to the object
must be assigned an existing object using the Set statement before it can be used. Until it is assigned
an object, the declared object variable has the special value Nothing, which indicates that it doesn't
refer to any particular instance of an object.

You can also use the Public statement with empty parentheses to declare a dynamic array. After
declaring a dynamic array, use the ReDim statement within a procedure to define the number of
dimensions and elements in the array. If you try to redeclare a dimension for an array variable whose
size was explicitly specified in a Private, Public, or Dim statement, an error occurs.

If you don't specify a data type or object type and there is no Deftype statement in the module, the
variable is Variant by default.

When variables are initialized, a numeric variable is initialized to 0, a variable-length string is
initialized to a zero-length string (""), and a fixed-length string is filled with zeros. Variant variables are
initialized to Empty. Each element of a user-defined type variable is initialized as if it were a separate
variable.

ReDim Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmReDimC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmReDimX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmReDimS"}

Used at procedure level to reallocate storage space for dynamic array variables.

Syntax
ReDim [Preserve] varname(subscripts) [As type] [, varname(subscripts) [As type]] . . .
The ReDim statement syntax has these parts:

Part Description
Preserve Optional. Keyword used to preserve the data in an existing

array when you change the size of the last dimension.
varname Required. Name of the variable; follows standard variable

naming conventions.
subscripts Required. Dimensions of an array variable; up to 60 multiple

dimensions may be declared. The subscripts argument uses
the following syntax:
[lower To] upper [,[lower To] upper] . . .
When not explicitly stated in lower, the lower bound of an
array is controlled by the Option Base statement. The lower
bound is zero if no Option Base statement is present.

type Optional. Data type of the variable; may be Byte, Boolean,
Integer, Long, Currency, Single, Double, Decimal (not
currently supported), Date, String (for variable-length
strings), String * length (for fixed-length strings), Object,
Variant, a user-defined type, or an object type. Use a
separate As type clause for each variable being defined. For
a Variant containing an array, type describes the type of
each element of the array, but doesn't change the Variant to
some other type.

Remarks
The ReDim statement is used to size or resize a dynamic array that has already been formally
declared using a Private, Public, or Dim statement with empty parentheses (without dimension
subscripts).

You can use the ReDim statement repeatedly to change the number of elements and dimensions in
an array. However, you can't declare an array of one data type and later use ReDim to change the
array to another data type, unless the array is contained in a Variant. If the array is contained in a
Variant, the type of the elements can be changed using an As type clause, unless you’re using the
Preserve keyword, in which case, no changes of data type are permitted.

If you use the Preserve keyword, you can resize only the last array dimension and you can't change
the number of dimensions at all. For example, if your array has only one dimension, you can resize
that dimension because it is the last and only dimension. However, if your array has two or more
dimensions, you can change the size of only the last dimension and still preserve the contents of the
array. The following example shows how you can increase the size of the last dimension of a dynamic
array without erasing any existing data contained in the array.
ReDim X(10, 10, 10)
. . .
ReDim Preserve X(10, 10, 15)
Similarly, when you use Preserve, you can change the size of the array only by changing the upper

bound; changing the lower bound causes an error.

If you make an array smaller than it was, data in the eliminated elements will be lost. If you pass an
array to a procedure by reference, you can't redimension the array within the procedure.
When variables are initialized, a numeric variable is initialized to 0, a variable-length string is
initialized to a zero-length string (""), and a fixed-length string is filled with zeros. Variant variables are
initialized to Empty. Each element of a user-defined type variable is initialized as if it were a separate
variable. A variable that refers to an object must be assigned an existing object using the Set
statement before it can be used. Until it is assigned an object, the declared object variable has the
special value Nothing, which indicates that it doesn't refer to any particular instance of an object.

Caution      The ReDim statement acts as a declarative statement if the variable it declares doesn't
exist at module level or procedure level. If another variable with the same name is created later, even
in a wider scope, ReDim will refer to the later variable and won't necessarily cause a compilation
error, even if Option Explicit is in effect. To avoid such conflicts, ReDim should not be used as a
declarative statement, but simply for redimensioning arrays.

Note      To resize an array contained in a Variant, you must explicitly declare the Variant variable
before attempting to resize its array.

Rem Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmRemC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmRemX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmRemS"}

Used to include explanatory remarks in a program.

Syntax
Rem comment
You can also use the following syntax:

' comment
The optional comment argument is the text of any comment you want to include. A space is required
between the Rem keyword and comment.

Remarks
If you use line numbers or line labels, you can branch from a GoTo or GoSub statement to a line
containing a Rem statement. Execution continues with the first executable statement following the
Rem statement. If the Rem keyword follows other statements on a line, it must be separated from the
statements by a colon (:).
You can use a apostrophe (') instead of the Rem keyword. When you use a apostrophe, the colon is
not required after other statements.

Set Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmSetC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmSetX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmSetS"}

Assigns an object reference to a variable or property.

Syntax
Set objectvar = {[New] objectexpression | Nothing}
The Set statement syntax has these parts:

Part Description
objectvar Required. Name of the variable or property; follows

standard variable naming conventions.
New Optional. New is usually used during declaration to

enable implicit object creation. When New is used with
Set, it creates a new instance of the class. If objectvar
contained a reference to an object, that reference is
released when the new one is assigned. The New
keyword can't be used to create new instances of any
intrinsic data type and can't be used to create
dependent objects.

objectexpression Required. Expression consisting of the name of an
object, another declared variable of the same object
type, or a function or method that returns an object of
the same object type.

Nothing Optional. Discontinues association of objectvar with
any specific object. Assigning Nothing to objectvar
releases all the system and memory resources
associated with the previously referenced object when
no other variable refers to it.

Remarks
To be valid, objectvar must be an object type consistent with the object being assigned to it.

The Dim, Private, Public, ReDim, and Static statements only declare a variable that refers to an
object. No actual object is referred to until you use the Set statement to assign a specific object.

The following example illustrates how Dim is used to declare an array with the type Form1. No
instance of Form1 actually exists. Set then assigns references to new instances of Form1 to the
myChildForms variable. Such code might be used to create child forms in an MDI application.

Dim myChildForms(1 to 4) As Form1
Set myChildForms(1) = New Form1
Set myChildForms(2) = New Form1
Set myChildForms(3) = New Form1
Set myChildForms(4) = New Form1
Generally, when you use Set to assign an object reference to a variable, no copy of the object is
created for that variable. Instead, a reference to the object is created. More than one object variable
can refer to the same object. Because such variables are references to the object rather than copies
of the object, any change in the object is reflected in all variables that refer to it. However, when you
use the New keyword in the Set statement, you are actually creating an instance of the object.

Static Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmStaticC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmStaticX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmStaticS"}

Used at procedure level to declare variables and allocate storage space. Variables declared with the
Static statement retain their values as long as the code is running.

Syntax
Static varname[([subscripts])] [As [New] type] [, varname[([subscripts])] [As [New] type]] . . .
The Static statement syntax has these parts:

Part Description
varname Required. Name of the variable; follows standard variable

naming conventions.
subscripts Optional. Dimensions of an array variable; up to 60 multiple

dimensions may be declared. The subscripts argument uses
the following syntax:
[lower To] upper [,[lower To] upper] . . .
When not explicitly stated in lower, the lower bound of an
array is controlled by the Option Base statement. The lower
bound is zero if no Option Base statement is present.

New Optional. Keyword that enables implicit creation of an object. If
you use New when declaring the object variable, a new
instance of the object is created on first reference to it, so you
don't have to use the Set statement to assign the object
reference. The New keyword can't be used to declare
variables of any intrinsic data type and can't be used to
declare instances of dependent objects.

type Optional. Data type of the variable; may be Byte, Boolean,
Integer, Long, Currency, Single, Double, Decimal (not
currently supported), Date, String, (for variable-length
strings), String * length (for fixed-length strings), Object,
Variant, a user-defined type, or an object type. Use a separate
As type clause for each variable being defined.

Remarks
Once module code is running, variables declared with the Static statement retain their value until the
module is reset or restarted. Use the Static statement in nonstatic procedures to explicitly declare
variables that are visible only within the procedure, but whose lifetime is the same as the module in
which the procedure is defined.

Use a Static statement within a procedure to declare the data type of a variable that retains its value
between procedure calls. For example, the following statement declares a fixed-size array of integers:
Static EmployeeNumber(200) As Integer
The following statement declares a variable for a new instance of a worksheet:
Static X As New Worksheet
If the New keyword

 is not used when declaring an object variable, the variable that refers to the object must be assigned
an existing object using the Set statement before it can be used. Until it is assigned an object, the
declared object variable has the special value Nothing, which indicates that it doesn't refer to any
particular instance of an object. When you use the New keyword in the declaration, an instance of the

object is created on the first reference to the object.

If you don't specify a data type or object type, and there is no Deftype statement in the module, the
variable is Variant by default.

Note      The Static statement and the Static keyword are similar, but used for different effects. If you
declare a procedure using the Static keyword (as in Static Sub CountSales ()), the storage
space for all local variables within the procedure is allocated once, and the value of the variables is
preserved for the entire time the program is running. For nonstatic procedures, storage space for
variables is allocated each time the procedure is called and released when the procedure is exited.
The Static statement is used to declare specific variables within nonstatic procedures to preserve
their value for as long as the program is running.

When variables are initialized, a numeric variable is initialized to 0, a variable-length string is
initialized to a zero-length string (""), and a fixed-length string is filled with zeros. Variant variables are
initialized to Empty. Each element of a user-defined type variable is initialized as if it were a separate
variable.

Note      When you use Static statements within a procedure, put them at the beginning of the
procedure with other declarative statements such as Dim.

Sub Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmSubC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmSubX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmSubS"}

Declares the name, arguments, and code that form the body of a Sub procedure.

Syntax
[Private | Public | Friend] [Static] Sub name [(arglist)]

[statements]
[Exit Sub]
[statements]

End Sub
The Sub statement syntax has these parts:

Part Description
Public Optional. Indicates that the Sub procedure is accessible to

all other procedures in all modules. If used in a module that
contains an Option Private statement, the procedure is not
available outside the project.

Private Optional. Indicates that the Sub procedure is accessible
only to other procedures in the module where it is declared.

Friend Optional. Used only in a class module. Indicates that the
Sub procedure is visible throughout the project, but not
visible to a controller of an instance of an object.

Static Optional. Indicates that the Sub procedure's local variables
are preserved between calls. The Static attribute doesn't
affect variables that are declared outside the Sub, even if
they are used in the procedure.

name Required. Name of the Sub; follows standard variable
naming conventions.

arglist Optional. List of variables representing arguments that are
passed to the Sub procedure when it is called. Multiple
variables are separated by commas.

statements Optional. Any group of statements to be executed within the
Sub procedure.

The arglist argument has the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

Part Description
Optional Optional. Keyword indicating that an argument is not

required. If used, all subsequent arguments in arglist must
also be optional and declared using the Optional keyword.
Optional can't be used for any argument if ParamArray is
used.

ByVal Optional. Indicates that the argument is passed by value.
ByRef Optional. Indicates that the argument is passed by

reference. ByRef is the default in Visual Basic.
ParamArray Optional. Used only as the last argument in arglist to

indicate that the final argument is an Optional array of
Variant elements. The ParamArray keyword allows you to
provide an arbitrary number of arguments. ParamArray

can't be used with ByVal, ByRef, or Optional.
varname Required. Name of the variable representing the argument;

follows standard variable naming conventions.
type Optional. Data type of the argument passed to the

procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently
supported), Date, String (variable-length only), Object,
Variant. If the parameter is not Optional, a user-defined
type, or an object type may also be specified.

defaultvalue Optional. Any constant or constant expression. Valid for
Optional parameters only. If the type is an Object, an
explicit default value can only be Nothing.

Remarks
If not explicitly specified using Public, Private, or Friend, Sub procedures are public by default. If
Static is not used, the value of local variables is not preserved between calls. The Friend keyword
can only be used in class modules. However, Friend procedures can be accessed by procedures in
any module of a project. A Friend procedure does not appear in the type library of its parent class,
nor can a Friend procedure be late bound.

Caution      Sub procedures can be recursive; that is, they can call themselves to perform a given
task. However, recursion can lead to stack overflow. The Static keyword usually is not used with
recursive Sub procedures.

All executable code must be in procedures. You can't define a Sub procedure inside another Sub,
Function, or Property procedure.

The Exit Sub keywords cause an immediate exit from a Sub procedure. Program execution
continues with the statement following the statement that called the Sub procedure. Any number of
Exit Sub statements can appear anywhere in a Sub procedure.

Like a Function procedure, a Sub procedure is a separate procedure that can take arguments,
perform a series of statements, and change the value of its arguments. However, unlike a Function
procedure, which returns a value, a Sub procedure can't be used in an expression.

You call a Sub procedure using the procedure name followed by the argument list. See the Call
statement for specific information on how to call Sub procedures.

Variables used in Sub procedures fall into two categories: those that are explicitly declared within the
procedure and those that are not. Variables that are explicitly declared in a procedure (using Dim or
the equivalent) are always local to the procedure. Variables that are used but not explicitly declared in
a procedure are also local unless they are explicitly declared at some higher level outside the
procedure.

Caution      A procedure can use a variable that is not explicitly declared in the procedure, but a
naming conflict can occur if anything you defined at the module level has the same name. If your
procedure refers to an undeclared variable that has the same name as another procedure, constant
or variable, it is assumed that your procedure is referring to that module-level name. To avoid this kind
of conflict, explicitly declare variables. You can use an Option Explicit statement to force explicit
declaration of variables.

Note      You can't use GoSub, GoTo, or Return to enter or exit a Sub procedure.

Type Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmTypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmTypeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmTypeS"}

Used at module level to define a user-defined data type containing one or more elements.

Syntax
[Private | Public] Type varname

 elementname [([subscripts])] As type
[elementname [([subscripts])] As type]
. . .

End Type
The Type statement syntax has these parts:

Part Description
Public Optional. Used to declare user-defined types that are

available to all procedures in all modules in all projects.
Private Optional. Used to declare user-defined types that are

available only within the module where the declaration is
made.

varname Required. Name of the user-defined type; follows standard
variable naming conventions.

elementname Required. Name of an element of the user-defined type.
Element names also follow standard variable naming
conventions, except that keywords can be used.

subscripts Optional. Dimensions of an array element. Use only
parentheses when declaring an array whose size can
change. The subscripts argument uses the following
syntax:
[lower To] upper [,[lower To] upper] . . .
When not explicitly stated in lower, the lower bound of an
array is controlled by the Option Base statement. The
lower bound is zero if no Option Base statement is
present.

type Required. Data type of the element; may be Byte,
Boolean, Integer, Long, Currency, Single, Double,
Decimal (not currently supported), Date, String(for
variable-length strings), String * length (for fixed-length
strings), Object, Variant, another user-defined type, or an
object type.

Remarks
The Type statement can be used only at module level. Once you have declared a user-defined type
using the Type statement, you can declare a variable of that type anywhere within the scope of the
declaration. Use Dim, Private, Public, ReDim, or Static to declare a variable of a user-defined type.

In standard modules, user-defined types are public by default. This visibility can be changed using the
Private keyword. In class modules, however, user-defined types can only be private and the visibility
can't be changed using the Public keyword.

Line numbers and line labels aren't allowed in Type...End Type blocks.

User-defined types are often used with data records, which frequently consist of a number of related
elements of different data types.

The following example shows the use of fixed-size arrays in a user-defined type:
Type StateData

CityCode (1 To 100) As Integer ' Declare a static array.
County As String * 30

End Type
Dim Washington(1 To 100) As StateData
In the preceding example, StateData includes the CityCode static array, and the record
Washington has the same structure as StateData.

When you declare a fixed-size array within a user-defined type, its dimensions must be declared with
numeric literals or constants rather than variables.

The setting of the Option Base statement determines the lower bound for arrays within user-defined
types.

UBound Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctUBoundC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctUBoundX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctUBoundS"}

Returns a Long containing the largest available subscript for the indicated dimension of an array.

Syntax
UBound(arrayname[, dimension])
The UBound function syntax has these parts:

Part Description
arrayname Required. Name of the array variable; follows standard

variable naming conventions.
dimension Optional; Variant (Long). Whole number indicating which

dimension's upper bound is returned. Use 1 for the first
dimension, 2 for the second, and so on. If dimension is
omitted, 1 is assumed.

Remarks
The UBound function is used with the LBound function to determine the size of an array. Use the
LBound function to find the lower limit of an array dimension.

UBound returns the following values for an array with these dimensions:
Dim A(1 To 100, 0 To 3, -3 To 4)

Statement Return Value
UBound(A, 1) 100
UBound(A, 2) 3
UBound(A, 3) 4

Array Function Example

This example uses the Array function to return a Variant containing an array.
Dim MyWeek, MyDay
MyWeek = Array("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
' Return values assume lower bound set to 1 (using Option Base
' statement).
MyDay = MyWeek(2) ' MyDay contains "Tue".
MyDay = MyWeek(4) ' MyDay contains "Thu".

Const Statement Example

This example uses the Const statement to declare constants for use in place of literal values. Public
constants occur in a the General section of a standard module, rather than a class module. Private
constants can go in the General section of any type of module.
' Constants are Private by default.
Const MyVar = 459
' Declare Public constant.
Public Const MyString = "HELP"
' Declare Private Integer constant.
Private Const MyInt As Integer = 5
' Declare multiple constants on same line.
Const MyStr = "Hello", MyDouble As Double = 3.4567

CreateObject Function Example

This example uses the CreateObject function to set a reference (xlApp) to Microsoft Excel. It uses
the reference to access the Visible property of Microsoft Excel, then uses the Quit method of
Microsoft Excel to close it. Finally, the reference itself is released.
Dim xlApp As Object ' Declare variable to hold the reference.

Set xlApp = CreateObject("excel.application")
' You may have to set Visible property to True
' if you want to see the application.

xlApp.Visible = True
' Use xlApp to access Microsoft Excel's
' other objects.

xlApp.Quit ' When you finish, use the Quit method to close
Set xlApp = Nothing ' the application, then release the reference.

Declare Statement Example

This example shows how the Declare statement is used at the module level of a standard module to
declare a reference to an external procedure in a dynamic-link library (DLL) or Macintosh code
resource. You can place the Declare statements in class modules if the Declare statements are
Private.
' In Microsoft Windows (16-bit):
Declare Sub MessageBeep Lib "User" (ByVal N As Integer)
' Assume SomeBeep is an alias for the procedure name.
Declare Sub MessageBeep Lib "User" Alias "SomeBeep"(ByVal N As Integer)
' Use an ordinal in the Alias clause to call GetWinFlags.
Declare Function GetWinFlags Lib "Kernel" Alias "#132"() As Long
' In 32-bit Microsoft Windows systems, specify the library USER32.DLL,
' rather than USER.DLL. You can use conditional compilation to write
' code that can run on either Win32 or Win16.
#If Win32 Then

Declare Sub MessageBeep Lib "User32" (ByVal N As Long)
#Else

Declare Sub MessageBeep Lib "User" (ByVal N As Integer)
#End If
' On the Macintosh:
Declare Sub MessageAlert Lib "MyHd:MyAlert" Alias "MyAlert" (ByVal N _
As Integer)
' Use a code resource in the Alias clause.
Declare Sub MessageAlert Lib "MyHd:MyAlert" Alias "XTST$MyAlert" _
(ByVal N As Integer)
' If the code-resource type specifier has only 3 characters, be sure to
' leave a blank space where the final character would normally be.
Declare Sub MessageAlert Lib "MyHd:AnAlert" Alias "COD $AnAlert" _
(ByVal N As Integer)

Deftype Statements Example

This example shows various uses of the Deftype statements to set default data types of variables and
function procedures whose names start with specified characters. The default data type can be
overridden only by explicit assignment using the Dim statement. Deftype statements can only be
used at the module level (that is, not within procedures).
' Variable names beginning with A through K default to Integer.
DefInt A-K
' Variable names beginning with L through Z default to String.
DefStr L-Z
CalcVar = 4 ' Initialize Integer.
StringVar = "Hello there" ' Initialize String.
AnyVar = "Hello" ' Causes "Type mismatch" error.
Dim Calc As Double' Explicitly set the type to Double.
Calc = 2.3455 ' Assign a Double.

' Deftype statements also apply to function procedures.
CalcNum = ATestFunction(4) ' Call user-defined function.
' ATestFunction function procedure definition.
Function ATestFunction(INumber)

ATestFunction = INumber * 2 ' Return value is an integer.
End Function

Dim Statement Example

This example shows various uses of the Dim statement to declare variables. It also shows the Dim
statement being used to declare arrays. The default lower bound for array subscripts is 0 and can be
overridden at the module level using the Option Base statement.
' AnyValue and MyValue are declared as Variant by default with values
' set to Empty.
Dim AnyValue, MyValue
' Explicitly declare a variable of type Integer.
Dim Number As Integer
' Multiple declarations on a single line. AnotherVar is of type Variant
' because its type is omitted.
Dim AnotherVar, Choice As Boolean, BirthDate As Date
' DayArray is an array of Variants with 51 elements indexed, from
' 0 thru 50, assuming Option Base is set to 0 (default) for
' the current module.
Dim DayArray(50)
' Matrix is a two-dimensional array of integers.
Dim Matrix(3, 4) As Integer
' MyMatrix is a three-dimensional array of doubles with explicit
' bounds.
Dim MyMatrix(1 To 5, 4 To 9, 3 To 5) As Double
' BirthDay is an array of dates with indexes from 1 to 10.
Dim BirthDay(1 To 10) As Date
' MyArray is a dynamic array of variants.
Dim MyArray()

Erase Statement Example

This example uses the Erase statement to reinitialize the elements of fixed-size arrays and deallocate
dynamic-array storage space.
' Declare array variables.
Dim NumArray(10) As Integer' Integer array.
Dim StrVarArray(10) As String' Variable-string array.
Dim StrFixArray(10) As String * 10 ' Fixed-string array.
Dim VarArray(10) As Variant' Variant array.
Dim DynamicArray() As Integer' Dynamic array.
ReDim DynamicArray(10) ' Allocate storage space.
Erase NumArray ' Each element set to 0.
Erase StrVarArray ' Each element set to zero-length

' string ("").
Erase StrFixArray ' Each element set to 0.
Erase VarArray ' Each element set to Empty.
Erase DynamicArray' Free memory used by array.

Function Statement Example

This example uses the Function statement to declare the name, arguments, and code that form the
body of a Function procedure. The last example uses hard-typed, initialized Optional arguments.
' The following user-defined function returns the square root of the
' argument passed to it.
Function CalculateSquareRoot(NumberArg As Double) As Double

If NumberArg < 0 Then ' Evaluate argument.
Exit Function ' Exit to calling procedure.

Else
CalculateSquareRoot = Sqr(NumberArg) ' Return square root.

End If
End Function
Using the ParamArray keyword enables a function to accept a variable number of arguments. In the
following definition, FirstArg is passed by value.
Function CalcSum(ByVal FirstArg As Integer, ParamArray OtherArgs())
Dim ReturnValue
' If the function is invoked as follows:
ReturnValue = CalcSum(4, 3 ,2 ,1)
' Local variables are assigned the following values: FirstArg = 4,
' OtherArgs(1) = 3, OtherArgs(2) = 2, and so on, assuming default
' lowerbound for arrays = 1.
Optional arguments can now have default values and types other than Variant.
' If a function's arguments are defined as follows:
Function MyFunc(MyStr As String, Optional MyArg1 As _ Integer = 5, Optional
MyArg2 = “Dolly”)
Dim RetVal
' The function can be invoked as follows:
RetVal = MyFunc("Hello", 2, "World") ' All 3 arguments supplied.
RetVal = MyFunc("Test", , 5) ' Second argument omitted.
' Arguments one and three using named-arguments.
RetVal = MyFunc(MyStr:="Hello ", MyArg1:=7)

GetObject Function Example

This example uses the GetObject function to get a reference to a specific Microsoft Excel worksheet
(MyXL). It uses the worksheet's Application property to make Microsoft Excel visible, to close it, and
so on. The first call to GetObject causes an error if Microsoft Excel is not already running. In the
example, the error causes the ExcelWasNotRunning flag to be set to True. The second call to
GetObject specifies a file to open. If Microsoft Excel is not already running, this second call starts it,
and returns a reference to the worksheet represented by the specified file. The file, mytest.xls in the
example, must exist in the specified location; otherwise the Visual Basic error Automation error is
generated. Next, the example code makes both Microsoft Excel and the window containing the
specified worksheet visible. Finally, if there was no previous version of Microsoft Excel running, the
code uses the Application object's Quit method to close Microsoft Excel. If the application was
already running, no attempt is made to close it. The reference itself is released by setting it to
Nothing.

This example uses the GetObject function to get a reference to a specific Microsoft Excel worksheet
(MyXL). It uses the worksheet's Application property to make Microsoft Excel visible, to close it, and
so on. First, using two API calls, the DetectExcel Sub procedure looks for Excel and if it is running,
enters it in the Running Object Table. Then, the first call to GetObject causes an error if Microsoft
Excel is not already running. In the example, the error causes the ExcelWasNotRunning flag to be set
to True. The second call to GetObject specifies a file to open. If Microsoft Excel is not already
running, this second call starts it, and returns a reference to the worksheet represented by the
specified file. The file, mytest.xls in the example, must exist in the specified location; otherwise the
Visual Basic error Automation error is generated. Next, the example code makes both Microsoft Excel
and the window containing the specified worksheet visible. Finally, if there was no previous version of
Microsoft Excel running, the code uses the Application object's Quit method to close Microsoft
Excel. If the application was already running, no attempt is made to close it. The reference itself is
released by setting it to Nothing.
' Declare necessary API routines:
Declare Function FindWindow Lib “user32” Alias _
“FindWindowA” (ByVal lpClassName as String, _

ByVal lpWindowName As Long) As Long

Declare Function SendMessage Lib “user32” Alias _
“SendMessageA” (ByVal hWnd as Long,ByVal wMsg as Long _

ByVal wParam as Long _
ByVal lParam As Long) As Long

Sub GetExcel()
Dim MyXL As Object ' Variable to hold reference
' to Microsoft Excel.
Dim ExcelWasNotRunning As Boolean ' Flag for final release.

' Test to see if there is a copy of Microsoft Excel already running.
On Error Resume Next ' Defer error trapping.

' Getobject function called without the first argument returns a
' reference to an instance of the application. If the application isn't
' running, an error occurs. Note the comma used as the first argument
' placeholder.

Set MyXL = Getobject(, "Excel.Application")
If Err.Number <> 0 Then ExcelWasNotRunning = True
Err.Clear ' Clear Err object in case error occurred.

' Check for Excel. If Excel is running,
' enter it into the Running Object table.

DetectExcel

Set the object variable to reference the file you want to see.
Set MyXL = Getobject("c:\vb4\MYTEST.XLS")

' Show Microsoft Excel through its Application property. Then
' show the actual window containing the file using the Windows
' collection of the MyXL object reference.

MyXL.Application.Visible = True
MyXL.Parent.Windows(1).Visible = True
' Do manipulations of your

 ' file here.
' ...

' If this copy of Microsoft Excel was not already running when you
' started, close it using the Application property's Quit method.
' Note that when you try to quit Microsoft Excel, the Microsoft Excel
' title bar blinks and Microsoft Excel displays a message asking if you
' want to save any loaded files.

If ExcelWasNotRunning = True Then
MyXL.Application.Quit

End IF

Set MyXL = Nothing ' Release reference to the
' application and spreadsheet.

End Sub

Sub DetectExcel()
' Procedure dectects a running Excel and registers it.

Const WM_USER = 1024
Dim hWnd As Long

' If Excel is running this API call returns its handle.
hWnd = FindWindow(“XLMAIN”, 0)
If hWnd = 0 Then ' 0 means Excel not running.

Exit Sub
Else
' Excel is running so use the SendMessage API
' function to enter it in the Running Object Table.

SendMessage hWnd, WM_USER + 18, 0, 0
End If

End Sub

LBound Function Example

This example uses the LBound function to determine the smallest available subscript for the
indicated dimension of an array. Use the Option Base statement to override the default base array
subscript value of 0.
Dim Lower
Dim MyArray(1 To 10, 5 To 15, 10 To 20) ' Declare array variables.
Dim AnyArray(10)
Lower = Lbound(MyArray, 1) ' Returns 1.
Lower = Lbound(MyArray, 3) ' Returns 10.
Lower = Lbound(AnyArray)' Returns 0 or 1, depending on

' setting of Option Base.

Let Statement Example

This example assigns the values of expressions to variables using both the explicit and implicit Let
statement.
Dim MyStr, MyInt
' The following variable assignments use the Let statement.
Let MyStr = "Hello World"
Let MyInt = 5
The following are the same assignments without the Let statement.
Dim MyStr, MyInt
MyStr = "Hello World"
MyInt = 5

Option Base Statement Example

This example uses the Option Base statement to override the default base array subscript value of 0.
The LBound function returns the smallest available subscript for the indicated dimension of an array.
The Option Base statement is used at the module level only.
Option base 1 ' Set default array subscripts to 1.
Dim Lower
Dim MyArray(20), TwoDArray(3, 4) ' Declare array variables.
Dim ZeroArray(0 To 5)' Override default base subscript.
' Use LBound function to test lower bounds of arrays.
Lower = LBound(MyArray) ' Returns 1.
Lower = LBound(TwoDArray, 2) ' Returns 1.
Lower = LBound(ZeroArray) ' Returns 0.

Option Compare Statement Example

This example uses the Option Compare statement to set the default string comparison method. The
Option Compare statement is used at the module level only.
' Set the string comparison method to Binary.
Option compare Binary ' That is, "AAA" is less than "aaa"
' Set the string comparison method to Text.
Option compare Text ' That is, "AAA" is equal to "aaa".

Option Explicit Statement Example

This example uses the Option Explicit statement to force you to explicitly declare all variables.
Attempting to use an undeclared variable causes an error at compile time. The Option Explicit
statement is used at the module level only.
Option explicit' Force explicit variable declaration.
Dim MyVar' Declare variable.
MyInt = 10 ' Undeclared variable generates error.
MyVar = 10 ' Declared variable does not generate error.

Option Private Statement Example

This example demonstrates the Option Private statement, which is used at the module level to
indicate that the entire module is private. With Option Private Module, module-level symbols not
declared Private are still available to other modules in the project, but not to other projects or
applications.
Option private Module' Indicate that module is private.

Private Statement Example

This example shows the Private statement being used at the module level to declare variables as
private; that is, they are available only to the module in which they are declared.
Private Number As Integer ' Private Integer variable.
Private NameArray(1 To 5) As String' Private array variable.
' Multiple declarations, two Variants and one Integer, all Private.
Private MyVar, YourVar, ThisVar As Integer

Property Get Statement Example

This example uses the Property Get statement to define a property procedure that gets the value of
a property. The property identifies, as a string, the current color of a pen in a drawing package.
Dim CurrentColor As Integer
Const BLACK = 0, RED = 1, GREEN = 2, BLUE = 3

' Returns the current color of the pen as a string.
Property Get PenColor() As String

Select Case CurrentColor
Case RED

PenColor = "Red"
Case GREEN

PenColor = "Green"
Case BLUE

PenColor = "Blue"
End Select

End Property
' The following code gets the color of the pen
' calling the Property get procedure.
ColorName = PenColor

Property Let Statement Example

This example uses the Property Let statement to define a procedure that assigns a value to a
property. The property identifies the pen color for a drawing package.
Dim CurrentColor As Integer
Const BLACK = 0, RED = 1, GREEN = 2, BLUE = 3

' Set the pen color property for a Drawing package.
' The module-level variable CurrentColor is set to
' a numeric value that identifies the color used for drawing.
Property Let PenColor(ColorName As String)

Select Case ColorName ' Check color name string.
Case "Red"

CurrentColor = RED ' Assign value for Red.
Case "Green"

CurrentColor = GREEN ' Assign value for Green.
Case "Blue"

CurrentColor = BLUE ' Assign value for Blue.
Case Else

CurrentColor = BLACK ' Assign default value.
End Select

End Property
' The following code sets the PenColor property for a drawing package
' by calling the Property let procedure.
PenColor = "Red"

Property Set Statement Example

This example uses the Property Set statement to define a property procedure that sets a reference
to an object.
' The Pen property may be set to different Pen implementations.
Property Set Pen(P As Object)

Set CurrentPen = P ' Assign Pen to object.
End Property

Public Statement Example

This example uses the Public statement at the module level (General section) of a standard module
to explicitly declare variables as public; that is, they are available to all procedures in all modules in all
applications unless Option Private Module is in effect.
Public Number As Integer' Public Integer variable.
Public NameArray(1 To 5) As String ' Public array variable.
' Multiple declarations, two Variants and one Integer, all Public.
Public MyVar, YourVar, ThisVar As Integer

ReDim Statement Example

This example uses the ReDim statement to allocate and reallocate storage space for dynamic-array
variables. It assumes the Option Base is 1.
Dim MyArray() As Integer' Declare dynamic array.
Redim MyArray(5) ' Allocate 5 elements.
For I = 1 To 5 ' Loop 5 times.

MyArray(I) = I ' Initialize array.
Next I
The next statement resizes the array and erases the elements.
Redim MyArray(10) ' Resize to 10 elements.
For I = 1 To 10' Loop 10 times.

MyArray(I) = I ' Initialize array.
Next I
The following statement resizes the array but does not erase elements.
Redim Preserve MyArray(15) ' Resize to 15 elements.

Rem Statement Example

This example illustrates the various forms of the Rem statement, which is used to include explanatory
remarks in a program.
Rem This is the first form of the syntax.
The following shows the second form of the syntax.
Dim MyStr1, MyStr2
MyStr1 = "Hello": Rem Comment after a statement separated by a colon.
MyStr2 = "Goodbye" ' This is also a comment; no colon is needed.

Set Statement Example

This example uses the Set statement to assign object references to variables. YourObject is assumed
to be a valid object with a Text property.
Dim YourObject, MyObject, MyStr
Set MyObject = YourObject ' Assign object reference.
' MyObject and YourObject refer to the same object.
YourObject.Text = "Hello World" ' Initialize property.
MyStr = MyObject.Text' Returns "Hello World".
' Discontinue association. MyObject no longer refers to YourObject.
Set MyObject = Nothing ' Release the object.

Static Statement Example

This example uses the Static statement to retain the value of a variable for as long as module code is
running.
' Function definition.
Function KeepTotal(Number)

' Only the variable Accumulate preserves its value between calls.
Static Accumulate
Accumulate = Accumulate + Number
KeepTotal = Accumulate

End Function
' Static function definition.
Static Function MyFunction(Arg1, Arg2, Arg3)

' All local variables preserve value between function calls.
Accumulate = Arg1 + Arg2 + Arg3
Half = Accumulate / 2
MyFunction = Half

End Function

Sub Statement Example

This example uses the Sub statement to define the name, arguments, and code that form the body of
a Sub procedure.
' Sub procedure definition.
' Sub procedure with two arguments.
Sub SubComputeArea(Length, TheWidth)

Dim Area As Double ' Declare local variable.
If Length = 0 Or TheWidth = 0 Then
' If either argument = 0.

Exit Sub ' Exit Sub immediately.
End If
Area = Length * TheWidth ' Calculate area of rectangle.
Debug.Print Area ' Print Area to Debug window.

End Sub

Type Statement Example

This example uses the Type statement to define a user-defined data type. The Type statement is
used at the module level only. If it appears in a class module, a Type statement must be preceded by
the keyword Private.
Type EmployeeRecord ' Create user-defined type.

ID As Integer ' Define elements of data type.
Name As String * 20
Address As String * 30
Phone As Long
HireDate As Date

End Type
Sub CreateRecord()

Dim MyRecord As EmployeeRecord ' Declare variable.
' Assignment to EmployeeRecord variable must occur in a procedure.
MyRecord.ID = 12003 ' Assign a value to an element.

End Sub

UBound Function Example

This example uses the UBound function to determine the largest available subscript for the indicated
dimension of an array.
Dim Upper
Dim MyArray(1 To 10, 5 To 15, 10 To 20) ' Declare array variables.
Dim AnyArray(10)
Upper = UBound(MyArray, 1) ' Returns 10.
Upper = UBound(MyArray, 3) ' Returns 20.
Upper = UBound(AnyArray)' Returns 10.

As
The As keyword is used in these contexts:

Const Statement

Declare Statement

Dim Statement

Function Statement

Name Statement

Open Statement

Private Statement

Property Get Statement
Property Let Statement
Property Set Statement
Public Statement

ReDim Statement

Static Statement

Sub Statement

Type Statement

Binary
The Binary keyword is used in these contexts:

Open Statement

Option Compare Statement

ByRef
The ByRef keyword is used in these contexts:

Call Statement

Declare Statement

Function Statement

Property Get Statement
Property Let Statement
Property Set Statement
Sub Statement

ByVal
The ByVal keyword is used in these contexts:

Call Statement

Declare Statement

Function Statement

Property Get Statement
Property Let Statement
Property Set Statement
Sub Statement

Date
The Date keyword is used in these contexts:

Date Data Type

Date Function

Date Statement

Else
The Else keyword is used in these contexts:

If...Then...Else Statement
Select Case Statement

Error
The Error keyword is used in these contexts:

Error Function

Error Statement

On Error Statement

For
The For keyword is used in these contexts:

For...Next Statement
For Each...Next Statement
Open Statement

Get
The Get keyword is used in these contexts:

Get Statement

Property Get Statement

Input
The Input keyword is used in these contexts:

Input Function

Input # Statement

Line Input # Statement
Open Statement

Is
The Is keyword is used in these contexts:

If...Then...Else Statement
Is Operator

Select Case Statement

Len
The Len keyword is used in these contexts:

Len Function

Open Statement

Let
The Let keyword is used in these contexts:

Let Statement

Property Let Statement

Lock
The Lock keyword is used in these contexts:

Lock, Unlock Statements
Open Statement

Mid
The Mid keyword is used in these contexts:

Mid Function

Mid Statement

New
The New keyword is used in these contexts:

Dim Statement

Private Statement

Public Statement

Set Statement

Static Statement

Next
The Next keyword is used in these contexts:

For...Next Statement
For Each...Next Statement
On Error Statement

Resume Statement

On
The On keyword is used in these contexts:

On Error Statement

On...GoSub Statement
On...GoTo Statement

Option
The Option keyword is used in these contexts:

Option Base Statement
Option Compare Statement
Option Explicit Statement
Option Private Statement

Optional
The Optional keyword is used in these contexts:

Declare Statement

Function Statement

Property Get Statement
Property Let Statement
Property Set Statement
Sub Statement

ParamArray
The ParamArray keyword is used in these contexts:

Declare Statement

Function Statement

Sub Statement

Print
The Print keyword is used in these contexts:

Print Method

Print # Statement

Private
The Private keyword is used in these contexts:

Const Statement

Declare Statement

Function Statement

Option Private Statement
Private Statement

Property Get Statement
Property Let Statement
Property Set Statement
Sub Statement

Type Statement

Property
The Property keyword is used in these contexts:

Property Get Statement
Property Let Statement
Property Set Statement

Public
The Public keyword is used in these contexts:

Const Statement

Declare Statement

Function Statement

Property Get Statement
Property Let Statement
Property Set Statement
Public Statement

Sub Statement

Type Statement

Resume
The Resume keyword is used in these contexts:

On Error Statement

Resume Statement

Seek
The Seek keyword is used in these contexts:

Seek Function

Seek Statement

Set
The Set keyword is used in these contexts:

Set Statement

Property Set Statement

Static
The Static keyword is used in these contexts:

Function Statement

Property Get Statement
Property Let Statement
Property Set Statement
Static Statement

Sub Statement

Step
The Step keyword is used in these contexts:

For...Next Statement
For Each...Next Statement

String
The String keyword is used in these contexts:

String Data Type

String Function

Then
The Then keyword is used in these contexts:

#If...Then...#Else Directive
If...Then...Else Statement

Time
The Time keyword is used in these contexts:

Time Function

Time Statement

To
The To keyword is used in these contexts:

Dim Statement

For...Next Statement
Lock, Unlock Statements
Private Statement

Public Statement

ReDim Statement

Select Case Statement
Static Statement

Type Statement

WithEvents
The WithEvents keyword is used in these contexts:

Dim Statement

Private Statement

Public Statement

Document Conventions

Visual Basic documentation uses the following typographic conventions.

Convention Description
Sub, If, ChDir, Print,
True, Debug

Words in bold with initial letter capitalized
indicate language-specific keywords.

setup Words you are instructed to type appear in
bold.

object, varname, arglist Italic, lowercase letters indicate placeholders for
information you supply.

pathname, filenumber Bold, italic, and lowercase letters indicate
placeholders for arguments where you can use
either positional or named-argument syntax.

[expressionlist] In syntax, items inside brackets are optional.
{While | Until} In syntax, braces and a vertical bar indicate a

mandatory choice between two or more items.   
You must choose one of the items unless all of
the items are also enclosed in brackets. For
example:
[{This | OrThat}]

ESC, ENTER Words in small capital letters indicate key
names and key sequences.

ALT+F1, CTRL+R A plus sign (+) between key names indicates a
combination of keys. For example, ALT+F1
means hold down the ALT key while pressing
the F1 key.

Code Conventions
The following code conventions are used:

Sample Code Description
MyString = "Hello, world!" This font is used for code,

variables, and error message
text.

' This is a comment. An apostrophe (') introduces
code comments.

MyVar = "This is an " _
& "example" _
& " of how to continue code."

A space and an underscore (_)
continue a line of code.

Error Function Example

This example uses the Error function to print error messages that correspond to the specified error
numbers.
Dim ErrorNumber
For ErrorNumber = 61 To 64 ' Loop through values 61 - 64.

Debug.Print Error(ErrorNumber) ' Print error to Debug window.
Next ErrorNumber

Error Statement Example

This example uses the Error statement to simulate error number 11.
On Error Resume Next ' Defer error handling.
Error 11 ' Simulate the "Division by zero" error.

On Error Statement Example

This example first uses the On Error GoTo statement to specify the location of an error-handling
routine within a procedure. In the example, an attempt to delete an open file generates error number
55. The error is handled in the error-handling routine, and control is then returned to the statement
that caused the error. The On Error GoTo 0 statement turns off error trapping. Then the On Error
Resume Next statement is used to defer error trapping so that the context for the error generated by
the next statement can be known for certain. Note that Err.Clear is used to clear the Err object's
properties after the error is handled.
Sub OnErrorStatementDemo()

On Error GoTo ErrorHandler ' Enable error-handling routine.
Open "TESTFILE" For Output As #1 ' Open file for output.
Kill "TESTFILE" ' Attempt to delete open

' file.
On Error Goto 0 ' Turn off error trapping.
On Error Resume Next ' Defer error trapping.
ObjectRef = GetObject("MyWord.Basic") ' Try to start nonexistent

' object, then test for
'Check for likely Automation errors.

If Err.Number = 440 Or Err.Number = 432 Then
' Tell user what happened. Then clear the Err object.
Msg = "There was an error attempting to open the Automation object!"
MsgBox Msg, , "Deferred Error Test"
Err.Clear ' Clear Err object fields

End If
Exit Sub ' Exit to avoid handler.
ErrorHandler: ' Error-handling routine.

Select Case Err.Number ' Evaluate error number.
Case 55 ' "File already open" error.

Close #1 ' Close open file.
Case Else

' Handle other situations here...
End Select
Resume ' Resume execution at same line

' that caused the error.
End Sub

Resume Statement Example

This example uses the Resume statement to end error handling in a procedure, and then resume
execution with the statement that caused the error. Error number 55 is generated to illustrate using
the Resume statement.
Sub ResumeStatementDemo()

On Error GoTo ErrorHandler ' Enable error-handling routine.
Open "TESTFILE" For Output As #1 ' Open file for output.
Kill "TESTFILE" ' Attempt to delete open file.
Exit Sub ' Exit Sub to avoid error handler.

ErrorHandler: ' Error-handling routine.
Select Case Err.Number ' Evaluate error number.

Case 55 ' "File already open" error.
Close #1 ' Close open file.

Case Else
' Handle other situations here....

End Select
Resume ' Resume execution at same line
' that caused the error.

End Sub

Error Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctErrorC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctErrorX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctErrorS"}

Returns the error message that corresponds to a given error number.

Syntax
Error[(errornumber)]
The optional errornumber argument can be any valid error number. If errornumber is a valid error
number, but is not defined, Error returns the string "Application-defined or object-defined error." If
errornumber is not valid, an error occurs. If errornumber is omitted, the message corresponding to the
most recent run-time error is returned. If no run-time error has occurred, or errornumber is 0, Error
returns a zero-length string ("").

Remarks
Examine the property settings of the Err object to identify the most recent run-time error. The return
value of the Error function corresponds to the Description property of the Err object.

Error Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmErrorX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmErrorS"}

Simulates the occurrence of an error.

Syntax
Error errornumber
The required errornumber can be any valid error number.

Remarks
The Error statement is supported for backward compatibility. In new code, especially when creating
objects, use the Err object's Raise method to generate run-time errors.

If errornumber is defined, the Error statement calls the error handler after the properties of Err object
are assigned the following default values:

Property Value
Number Value specified as argument to Error statement. Can be

any valid error number.
Source Name of the current Visual Basic project.
Description String expression corresponding to the return value of the

Error function for the specified Number, if this string
exists. If the string doesn't exist, Description contains a
zero-length string ("").

HelpFile The fully qualified drive, path, and file name of the
appropriate Visual Basic Help file.

HelpContext The appropriate Visual Basic Help file context ID for the
error corresponding to the Number property.

LastDLLError Zero.

If no error handler exists or if none is enabled, an error message is created and displayed from the
Err object properties.

Note      Not all Visual Basic host applications can create objects. See your host application's
documentation to determine whether it can create classes and objects.

On Error Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmOnErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmOnErrorX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmOnErrorS"}

Enables an error-handling routine and specifies the location of the routine within a procedure; can
also be used to disable an error-handling routine.

Syntax
On Error GoTo line
On Error Resume Next
On Error GoTo 0
The On Error statement syntax can have any of the following forms:

Statement Description
On Error GoTo line Enables the error-handling routine that starts at line

specified in the required line argument. The line
argument is any line label or line number. If a run-
time error occurs, control branches to line, making
the error handler active. The specified line must be in
the same procedure as the On Error statement;
otherwise, a compile-time error occurs.

On Error Resume
Next

Specifies that when a run-time error occurs, control
goes to the statement immediately following the
statement where the error occurred where execution
continues. Use this form rather than On Error GoTo
when accessing objects.

On Error GoTo 0 Disables any enabled error handler in the current
procedure.

Remarks
If you don't use an On Error statement, any run-time error that occurs is fatal; that is, an error
message is displayed and execution stops.

An "enabled" error handler is one that is turned on by an On Error statement; an "active" error
handler is an enabled handler that is in the process of handling an error. If an error occurs while an
error handler is active (between the occurrence of the error and a Resume, Exit Sub, Exit Function,
or Exit Property statement), the current procedure's error handler can't handle the error. Control
returns to the calling procedure. If the calling procedure has an enabled error handler, it is activated to
handle the error. If the calling procedure's error handler is also active, control passes back through
previous calling procedures until an enabled, but inactive, error handler is found. If no inactive,
enabled error handler is found, the error is fatal at the point at which it actually occurred. Each time
the error handler passes control back to a calling procedure, that procedure becomes the current
procedure. Once an error is handled by an error handler in any procedure, execution resumes in the
current procedure at the point designated by the Resume statement.

Note      An error-handling routine is not a Sub procedure or Function procedure. It is a section of
code marked by a line label or line number.

Error-handling routines rely on the value in the Number property of the Err object to determine the
cause of the error. The error-handling routine should test or save relevant property values in the Err
object before any other error can occur or before a procedure that might cause an error is called. The
property values in the Err object reflect only the most recent error. The error message associated with
Err.Number is contained in Err.Description.

On Error Resume Next causes execution to continue with the statement immediately following the
statement that caused the run-time error, or with the statement immediately following the most recent
call out of the procedure containing the On Error Resume Next statement. This statement allows
execution to continue despite a run-time error. You can place the error-handling routine where the
error would occur, rather than transferring control to another location within the procedure. An On
Error Resume Next statement becomes inactive when another procedure is called, so you should
execute an On Error Resume Next statement in each called routine if you want inline error handling
within that routine.

Note      The On Error Resume Next construct may be preferable to On Error GoTo when handling
errors generated during access to other objects. Checking Err after each interaction with an object
removes ambiguity about which object was accessed by the code. You can be sure which object
placed the error code in Err.Number, as well as which object originally generated the error (the object
specified in Err.Source).

On Error GoTo 0 disables error handling in the current procedure. It doesn't specify line 0 as the start
of the error-handling code, even if the procedure contains a line numbered 0. Without an On Error
GoTo 0 statement, an error handler is automatically disabled when a procedure is exited.

To prevent error-handling code from running when no error has occurred, place an Exit Sub, Exit
Function, or Exit Property statement immediately before the error-handling routine, as in the
following fragment:
Sub InitializeMatrix(Var1, Var2, Var3, Var4)

On Error GoTo ErrorHandler
. . .
Exit Sub

ErrorHandler:
. . .
Resume Next

End Sub
Here, the error-handling code follows the Exit Sub statement and precedes the End Sub statement
to separate it from the procedure flow. Error-handling code can be placed anywhere in a procedure.

Untrapped errors in objects are returned to the controlling application when the object is running as
an executable file. Within the development environment, untrapped errors are only returned to the
controlling application if the proper options are set. See your host application's documentation for a
description of which options should be set during debugging, how to set them, and whether the host
can create classes.

If you create an object that accesses other objects, you should try to handle errors passed back from
them unhandled. If you cannot handle such errors, map the error code in Err.Number to one of your
own errors, and then pass them back to the caller of your object. You should specify your error by
adding your error code to the vbObjectError constant. For example, if your error code is 1052,
assign it as follows:
Err.Number = vbObjectError + 1052
Note      System errors during calls to dynamic-link libraries (DLL) do not raise exceptions and cannot
be trapped with Visual Basic error trapping. When calling DLL functions, you should check each
return value for success or failure (according to the API specifications), and in the event of a failure,
check the value in the Err object's LastDLLError property.

Resume Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmResumeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmResumeX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmResumeS"}

Resumes execution after an error-handling routine is finished.

Syntax
Resume [0]
Resume Next
Resume line
The Resume statement syntax can have any of the following forms:

Statement Description
Resume If the error occurred in the same procedure as the error

handler, execution resumes with the statement that
caused the error. If the error occurred in a called
procedure, execution resumes at the statement that last
called out of the procedure containing the error-handling
routine.

Resume Next If the error occurred in the same procedure as the error
handler, execution resumes with the statement
immediately following the statement that caused the error.
If the error occurred in a called procedure, execution
resumes with the statement immediately following the
statement that last called out of the procedure containing
the error-handling routine (or On Error Resume Next
statement).

Resume line Execution resumes at line specified in the required line
argument. The line argument is a line label or line number
and must be in the same procedure as the error handler.

Remarks
If you use a Resume statement anywhere except in an error-handling routine, an error occurs.

#Else clause must be preceded by a matching #If
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgLbElseNoMatchingIfC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLbElseNoMatchingIfS"}

#Else is a conditional compilation directive. This error has the following cause and solution:

· An #Else clause was detected that isn't preceded by a matching #If or #ElseIf.
Check to see if a preceding #If has been separated from this #Else by an #End If. Note that only
one #Else is permitted in each #If block, so two successive #Else clauses cause this error.

For additional information, select the item in question and press F1.

#Else If, #Else, or #End If must be preceded by a matching #If
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgLbNoMatchingIfC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLbNoMatchingIfS"}

#Else If, #Else, and #End If are conditional compilation directives. This error has the following cause
and solution:

· An #Else If, #Else, or #End If was detected that isn't preceded by a matching #If clause.
Check to see if the intended #If has been separated from the clause in question by an intervening
block or if the intended #If is preceded by a number sign (#) sign. If everything else is in order,
place an #If clause in the appropriate position.

For additional information, select the item in question and press F1.

#ElseIf must be preceded by a matching #If or #ElseIf and followed
by an #ElseIf, #Else, or #End If
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgLbBadElseIfC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLbBadElseIfS"}

#ElseIf is a conditional compilation directive. This error has the following causes and solutions:

· An #ElseIf has been detected that isn't preceded by an #If or #ElseIf.
Place an #If statement before the #ElseIf or remove an incorrectly placed preceding #End If.

· An #ElseIf has been detected that is preceded by an #Else or #End If.
Appropriately terminate the preceding #If block, or change the preceding #Else to an #ElseIf.

For additional information, select the item in question and press F1.

A compatible ActiveX component must be a Visual Basic
executable or a DLL
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidCompatibleServerS"}

A compatible ActiveX component is one that you specify as a compatible ActiveX component. This
error has the following cause and solution:

· Visual Basic tried to access an object you specified as a compatible ActiveX component, but the
file specified wasn't an executable file or dynamic-link library (DLL) created by Visual Basic.
Only .exe files and DLLs created by Visual Basic are valid entries in the Compatible ActiveX
Component field of the Project Properties dialog box accessed through the Project menu. If
possible, load the project into Visual Basic and choose the Make Project.exe File command from
the File menu to create a Visual Basic executable file. If the file is already an executable file that
wasn't created by Visual Basic, or if the file can't be loaded into Visual Basic, consult the
documentation of the file to find out if it can be converted to a Visual Basic executable file or if the
vendor can supply an executable file created by Visual Basic.

For additional information, select the item in question and press F1.

Add-in can't reference project
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantRefProjectS"}

Projects are dynamic, but add-ins are static. This error has the following cause and solution:

· You tried to create an add-in from a project that references another project.
The semantics of projects can change in a way that affects referencing projects and add-ins.
Therefore, you can't create an add-in from a project that references projects.

For additional information, select the item in question and press F1.

A module is not a valid type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgModuleAsTypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgModuleAsTypeS"}

A standard module doesn't represent a class and can't be instantiated in the form of a variable. This
error has the following cause and solution:

· You used the name of a standard module in a Dim or Set declaration.
Check the spelling of the module name and make sure it corresponds to a form, MDI form, or class
module.

For additional information, select the item in question and press F1.

A procedure with a ParamArray argument can't be called with
named arguments
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgParamArrayNamedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgParamArrayNamedS"}

All arguments in a call to a procedure defined with a ParamArray must be positional. This error has
the following cause and solution:

· Named-argument syntax appears in a procedure call.
The named-argument calling syntax can't be used to call a procedure that includes a ParamArray
parameter. To supply only some elements of the ParamArray, use commas as placeholders for
those elements you want to omit. For example, in the following call, if the ParamArray arguments
begin after Arg2, values are being passed only for the first, third, and sixth values in the
ParamArray:
MySub Arg1, Arg2, 7,, 44,,,3

Note      The ParamArray always represents the last items in the argument list.

For additional information, select the item in question and press F1.

Ambiguous name detected
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgAmbiguousNameC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgAmbiguousNameS"}

The identifier conflicts with another identifier or requires qualification. This error has the following
causes and solutions:

· More than one object in the same scope may have elements with the same name.
Qualify the element name by including the object name and a period. For example:
object.property
Module-level identifiers and project-level identifiers (module names and referenced project names)
may be reused in a procedure, although it makes programs harder to maintain and debug.
However, if you want to refer to both items in the same procedure, the item having wider scope
must be qualified. For example, if MyID is declared at the module level of MyModule, and then a
procedure-level variable is declared with the same name in the module, references to the module-
level variable must be appropriately qualified:
Dim MyID As String
Sub MySub

MyModule.MyID = "This is module-level variable"
Dim MyID As String
MyID = "This is the procedure-level variable"
Debug.Print MyID
Debug.Print MyModule.MyID

End Sub
· An identifier declared at module-level conflicts with a procedure name. For example, this error

occurs if the variable MyID is declared at module level, and then a procedure is defined with the
same name:
Public MyID
Sub MyID

. . .
End Sub
In this case, you must change one of the names because qualification with a common module
name would not resolve the ambiguity. Procedure names are Public by default, but variable names
are Private unless specified as Public.

For additional information, select the item in question and press F1.

AppleScript error
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgAppleScriptErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgAppleScriptErrorS"}

An error occurred during processing of your script. This error has the following causes and solutions:

· The error could be related to the target application.
Check whether identifiers in the script match those in the application.

· The error could be related to AppleScript.
Make sure the syntax used in your script is valid AppleScript syntax.

For additional information, select the item in question and press F1.

Application-defined or object-defined error
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsguserdefinedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgUserDefinedS"}

This message is displayed when an error generated with the Raise method or Error statement
doesn't correspond to an error defined by Visual Basic for Applications. It is also returned by the Error
function for arguments that don't correspond to errors defined by Visual Basic for Applications. Thus it
may be an error you defined, or one that is defined by an object, including host applications like
Microsoft Excel, Visual Basic, and so on. For example, Visual Basic forms generate form-related
errors that can't be generated from code simply by specifying a number as an argument to the Raise
method or Error statement. This message has the following causes and solutions:

· Your application executed an Err.Raise n or Error n statement, but the number n isn't defined by
Visual Basic for Applications.
If this was what was intended, you must use Err.Raise and specify additional arguments so that an
end user can understand the nature of the error. For example, you can include a description string,
source, and help information. To regenerate an error that you trapped, this approach will work if
you don't execute Err.Clear before regenerating the error. If you execute Err.Clear first, you must
fill in the additional arguments to the Raise method. Look at the context in which the error
occurred, and make sure you are regenerating the same error.

· It may be that in accessing objects from other applications, an error was propagated back to your
program that can't be mapped to a Visual Basic error.
Check the documentation for any objects you have accessed. The Err object's Source property
should contain the programmatic ID of the application or object that generated the error. To
understand the context of an error returned by an object, you may want to use the On Error
Resume Next construct in code that accesses objects, rather than the On Error GoTo line syntax.

Note      In the past, programmers often used a loop to print out a list of all trappable error message
strings. Typically this was done with code such as the following:
For index = 1 to 500

Debug.Print Error$(index)
Next index

Such code still lists all the Visual Basic for Applications error messages, but displays "Application-
defined or object-defined error" for host-defined errors, for example those in Visual Basic that relate to
forms, controls, and so on. Many of these are trappable run-time errors. You can use the Help Search
dialog box to find the list of trappable errors specific to your host application. Click Search, type
Trappable in the first text box, and then click Show Topics. Select Trappable Errors in the lower list
box and click Go To.

For additional information, select the item in question and press F1.

Argument required for Property Let or Property Set
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgPropByValC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPropByvalS"}

The purpose of Property Let and Property Set procedures is to give a new value to a property. This
error has the following causes and solutions:

· In setting the property, the value doesn't appear in the right place.
Place the value to which you want to set the property on the right side of the expression setting the
property value.

· In the procedure definition, the parameter defined to receive the value passed on the right side of
the expression is missing or misplaced.
Specify a parameter for the value argument list in the procedure definition. If the procedure takes
more than one argument, the property-value parameter must appear last in the list.

For additional information, select the item in question and press F1.

Array already dimensioned
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgArrayAlreadyDimC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgArrayAlreadyDimS"}

A static array can only be dimensioned once. This error has the following causes and solutions:

· You attempted to change the dimensions of a static array with a ReDim statement; only dynamic
arrays can be redimensioned.
Either remove the redimensioning or use a dynamic array. To define a dynamic array, use a Dim,
Public, Private, or Static statement with empty parentheses. For example:
Dim MyArray()
In a procedure, you can define a dynamic array with the ReDim or Static statement using a
variable for the number of elements:
ReDim MyArray(n)

· An Option Base statement occurs after array dimensions are set.
Make sure any Option Base statement precedes all array declarations.

For additional information, select the item in question and press F1.

Array argument must be ByRef
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgArrayMustBeByRefC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgArrayMustBeByrefS"}

Arrays declared with Dim, ReDim, or Static can't be passed ByVal. This error has the following
cause and solution:

· You tried to pass a whole array ByVal.
An individual element of an array can be passed ByVal (by value), but a whole array must be
passed ByRef (by reference). Note that ByRef is the default. If you must pass an array ByVal to
prevent changes to the array's elements from being propagated back to the caller, you can pass
the array argument in its own set of parentheses, or you can place it into a Variant, and then pass
the Variant to the ByVal parameter, as follows:
Dim MyVar As Variant
MyVar = OldArray()

For additional information, select the item in question and press F1.

Beginning of search scope has been reached; do you want to
continue from the end?
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSearchLowerBoundS"}

Your search was unsuccessful. This condition has the following cause and solution:

· Your upward search has reached the beginning of the specified scope.
You can continue searching from the end of the search scope, or cancel and change the scope of
the search.

Block If without End If
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedEndifC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedEndIfS"}

An error occurred due to an incomplete statement. This error has the following cause and solution:

· An If statement is used without a corresponding End If statement.
A multiline If statement must terminate with a matching End If statement. For nested If...End If
statements, make sure there is a correctly matched If...End If structure inside each enclosing
If...End If structure.

For additional information, select the item in question and press F1.

Breakpoint not allowed on this line
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgNOBpCaseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoBpCaseS"}

Breakpoints can only be placed on certain parts of statements. This error has the following causes:

· You tried to place a breakpoint on a line that can't accept a breakpoint, for example:
· A line that contains only comments.
· A line that contains only line labels.
· A line that contains only declarations (Const, Dim, Static, Type, and so on).
· Any line in a hidden module.
· Any line in the Immediate window.

For additional information, select the item in question and press F1.

ByRef argument type mismatch
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgArgTypeMismatchC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgArgTypeMismatchS"}

An argument passed ByRef (by reference), the default, must have the precise data type expected in
the procedure. This error has the following cause and solution:

· You passed an argument of one type that could not be coerced to the type expected.
For example, this error occurs if you try to pass an Integer variable when a Long is expected. If
you want coercion to occur, even if it causes information to be lost, you can pass the argument in
its own set of parentheses. For example, to pass the Variant argument MyVar to a procedure that
expects an Integer argument, you can write the call as follows:
Dim MyVar
MyVar = 3.1415
Call SomeSub((MyVar))

Sub SomeSub (MyNum As Integer)
MyNum = MyNum + MyNum

End Sub
Placing the argument in its own set of parentheses forces evaluation of it as an expression. During
this evaluation, the fractional portion of the number is rounded (not truncated) to make it conform to
the expected argument type. The result of the evaluation is placed in a temporary location, and a
reference to the temporary location is received by the procedure. Thus, the original MyVar retains
its value.

Note      If you don't specify a type for a variable, the variable receives the default type, Variant. This
isn't always obvious. For example, the following code declares two variables, the first, MyVar, is a
Variant; the second, AnotherVar, is an Integer.
Dim MyVar, AnotherVar As Integer
For additional information, select the item in question and press F1.

Calling convention not supported by Visual Basic
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidVtableCcS"}

Visual Basic doesn't support all procedure calling conventions, which specify the order in which
arguments must be passed and the way that argument types must be specified. This error has the
following cause and solution:

· The procedure was called using a calling convention that Visual Basic doesn't support. For
example, Visual Basic doesn't support the Pascal calling convention in a 16-bit version of the
Microsoft Windows environment.
If the calling convention isn't supported by Visual Basic, the procedure can't be called from Visual
Basic. Check the object's documentation to see if an alternative is provided.

For additional information, select the item in question and press F1.

Can't add a reference to the specified file
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCannotAddReferenceS"}

Not all object libraries or type libraries can be accessed by Visual Basic. This error has the following
cause and solution:

· You tried to use the Add References dialog box to add a reference to a type library or object
library that can't be used by Visual Basic.
Check the documentation for the object represented by the library to see if it's available in some
other form that Visual Basic can use.

For additional information, select the item in question and press F1.

Can't assign or coerce array of fixed-length string or user-defined
type to Variant
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgAssignArrayVariantC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgAssignArrayVariantS"}

A Variant can only accept assignment of data having a valid VarType. This error has the following
causes and solutions:

· You tried to pass an array of fixed-length strings. When a single fixed-length string is assigned to a
Variant, it's coerced to a variable-length string, but this can't be done for an array of fixed-length
strings.
If you must pass the array, use a loop to assign the individual elements of the array to the elements
of a temporary array of variable-length strings. You can then assign the array to a variant and use
Erase to deallocate the temporary array. However, you can't deallocate a fixed-size array with
Erase.

· You tried to pass a fixed-length string or user-defined type to the VarType function or TypeName
function.
An argument to the VarType or TypeName function must be a valid Variant type.

· You tried to assign a user-defined type to a Variant variable.
Although you can't directly assign a whole variable of user-defined type to a Variant, you can use
the Array function to assign the individual elements of a variable of user-defined type to a Variant.
This produces a Variant containing an array of variants. The VarType of each element in this array
of variants corresponds to the original type of each element of the user-defined type.

· You tried to pass an array of fixed-length strings or user-defined types as an argument in a
procedure call that requires a Variant argument. Note that any time a procedure is late bound, that
is, when the call must be constructed at run time, all arguments must be passed as Variant types.
For example, the following code causes this error:
Dim MyForm As Object ' Because MyForm is Object, binding is late.
Set MyForm = New Form1
Dim StringArray(10) As String * 12
' The next line generates the error.
MyForm.MyProc StringArray
For the string array, use a loop to assign each individual member of the array to a temporary array
of variable-length strings. You can then assign that array to a Variant to pass to the procedure. For
an array of user-defined types, you can use the Array function to assign the individual elements of
a variable of user-defined type to a Variant. This produces a Variant containing an array of
variants. The VarType of each element in this array of variants corresponds to the original type of
each element of the user-defined type.

For additional information, select the item in question and press F1.

Can't assign to an array
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgAssignArrayC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgAssignArrayS"}

Each element of an array must have its value assigned individually. This error has the following
causes and solutions:

· You inadvertently tried to assign a single value to an array variable without specifying the element
to which the value should be assigned.
To assign a single value to an array element, you must specify the element in a subscript. For
example, if MyArray is an integer array, the expression MyArray = 5 is invalid, but the following
expression is valid:
MyArray(UBound(MyArray)) = 5

· You tried to assign a whole array to another array. For example, if Arr1 is an array and Arr2 is
another array, the following two assignments are both invalid:
Arr1 = Arr2 ' Invalid assignment.
Arr1() = Arr2()' Invalid assignment.
To assign one array to another, you must individually assign the elements. For example:
For count = LBound(Arr2) to UBound(Arr2)

Arr1(count) = Arr2(count)
Next count
Note that you can place a whole array in a Variant, resulting in a single variant variable containing
the whole array:
Dim MyArr As Variant
MyVar = Arr2()
You then reference the elements of the array in the variant with the same subscript notation as for
a normal array, for example:
MyVar(3) = MyVar(1) + MyVar(5)

For additional information, select the item in question and press F1.

Can't change data types of array elements
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgRedimTypeMismatchC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgRedimTypeMismatchS"}

ReDim can only be used to change the number of elements in an array. This error has the following
cause and solution:

· You tried to redeclare the data type of an array using ReDim.
Declare a new array of the type you want, and then use the conversion functions to assign each
element of the old array to the corresponding element of the new array.
You can also place the array in a Variant variable. This can be done with a simple assignment:
Dim MyVar As Variant
MyVar = MyIntegerArray()
This creates a Variant containing an array tagged as the type of the original array. You can then
assign variables of any valid VarType to the elements of the array within a variant.

For additional information, select the item in question and press F1.

Can't define a Public user-defined type within an object module
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgRecordDefInClassC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgRecordDefInClassS"}

A user-defined type that appears within an object module can't be Public. This error has the following
cause and solution:

· You tried to define a Public user-defined type in an object module.
Move the user-defined type definition to a standard module, and then declare variables of the type
in the object module or other modules, as appropriate. If you only want the type to be available in
the module in which it appears, you can place its Type...End Type definition in the object module
and precede its definition with the Private keyword.

For additional information, select the item in question and press F1.

Can't display hidden procedure
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgProcInHiddenModuleS"}

Everything in a hidden module is hidden. This error has the following cause and solution:

· You tried to view a procedure in a hidden module.
Unhide the module to view the procedure. To view a line that generated an error in a hidden
procedure, run the code after unhiding the module to view the error.

For additional information, select the item in question and press F1.

Can't edit module
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCannotEditS"}

Modules marked as protected can be viewed, but not edited. This error has the following cause and
solution:

· You tried to edit a protected module.
Remove the protection from the module, and then try editing again.

For additional information, select the item in question and press F1.

Can't enter break mode at this time
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgCantDebugProjChangedAtRunC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantDebugProjChangedAtRunS"}

Break mode is the state in which a program is still running, but its activity is suspended. This error has
the following cause and solution:

· You tried to enter break mode, for example, by pressing CTRL+BREAK, pressing the Break button on
the Standard toolbar or the Debug toolbar, or by executing a breakpoint in the running code.
A change was made programmatically to the project using the extensibility (add-in) object model.
This prevents the program from having execution suspended. You can continue running, or end
execution, but can't suspend execution.

For additional information, select the item in question and press F1.

Can't execute immediate statements in design mode
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantExecImmedInWaitModeS"}

Design time is any time that your code isn't being executed, or is suspended and waiting to be
continued. This error has the following cause and solution:

· You tried to execute a statement in the Immediate window, but your code isn't in a running mode.
Start your code running, and then suspend program execution. You can then execute code in the
Immediate window.

For additional information, place the cursor in the Immediate window and press F1.

Can't find project or library
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBrokenLibRefS"}

You can't run your code until all missing references are resolved. This error has the following causes
and solutions:

· A referenced project could not be found, or a referenced object library corresponding to the
language of the project could not be found.
Unresolved references are prefixed with MISSING in the References dialog box. Select the
missing reference to display the path and language of the missing project or library. Follow these
steps to resolve the reference or references:

To resolve the references
1 Display the References dialog box.
2 Select the missing reference.
3 Start the Object Browser.
4 Use the Browse dialog box to find the missing reference.
5 Click OK.
6 Repeat the preceding steps until all missing references are resolved.
Once you find a missing item, the MISSING prefix is removed to indicate that the link is
reestablished. If the file name of a referenced project has changed, a new reference is added, and
the old reference must be removed.
To remove a reference that is no longer required, simply clear the check box next to the
unnecessary reference. Note that the references to the Visual Basic object library    and host-
application object library can't be removed.
Applications may support different language versions of their object libraries. To find out which
language version is required, click the reference and check the language indicated at the bottom of
the dialog box.
Object libraries may be standalone files with the extension .OLB or they can be integrated into a
dynamic-link library (DLL) They can exist in different versions for each platform. Therefore, when
projects are moved across platforms, for example, from Macintosh to Microsoft Windows, the
correct language version of the referenced library for that platform must be available in the location
specified in your host application documentation.

Object library file names are generally constructed as follows:

· Windows (version 3.1 and earlier): Application Code + Language Code + [Version].OLB. For
example:
The object library for French Visual Basic for Applications, Version 2 was vafr2.olb.
The French Microsoft Excel 5.0 object library was xlfr50.olb.

· Macintosh: Application Name Language Code [Version] OLB. For example:
The object library for French Visual Basic for Applications, Version 2 was VA FR 2 OLB.
The French Microsoft Excel 5.0 object library was MS Excel FR 50 OLB.

If you can't find a missing project or library on your system, contact the referencing project's author. If
the missing library is a Microsoft application object library, you can obtain it as follows:

· If you have access to Microsoft electronic technical support services, refer to the technical support
section of this Help file. Under electronic services, you will find instructions on how to use the
appropriate service option.

· If you don't have access to Microsoft electronic technical support services, Microsoft object libraries
are available upon request as an application note from Microsoft. Information on how to contact
your local Microsoft product support organization is also available in the technical support section
of this Help file.

For additional information, select the item in question and press F1.

Can't Get or Put an object reference variable or a variable of user-
defined type containing an object reference
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgGetPutObjRecordc"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgGetPutObjRecordS"}

An object reference is temporary and can easily become invalid between closing and opening a file.
This error has the following cause and solution:

· The variable in your Get or Put statement contains, or is declared to contain, a reference to an
object.
If the variable is an object reference you can't use it with Get and Put statements. To place the
value of some or all of the object's properties in the file, each property must be individually
specified.

· The user-defined type variable in your Get or Put statement contains an element that is an object
reference.
If the variable's Type statement contains an element representing an object (for example, it is
defined in a class module, has Object data type , is a form or a control, and so on), remove it from
the definition, or define a new type for use with the Get and Put statements that has no Object
type element in its definition.
If you have elements in the user-defined type with Variant type, make sure no object reference is
assigned to that element. A Variant can accept such an assignment, but will cause this error if its
user-defined type is used in a Get or Put.
Note that you can use Input #, Line Input #, Print #, or Write # to write the default property of an
object to disk.

For additional information, select the item in question and press F1.

Can't load module; invalid format
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantLoadModuleS"}

A module must be in text format. This error has the following cause and solution:

· You attempted to load a binary format file as a module.
Some versions of Visual Basic permit you to save code in both binary and text formats. If possible,
reload the file in the application in which it was last saved and save it as text.

For additional information, select the item in question and press F1.

Can't make an assignment to a read-only property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgReadOnlyPropertyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgReadOnlyPropertyS"}

Some properties can't accept assignments. This error has the following cause and solution:

· You tried to assign a value to a property that can't accept assignment.
In some cases, a property can accept assignment only at specific times. For example, a property
might accept assignments at design time, but not at run time. Check the Help for the specific
property to see when it can accept assignments, if ever.

For additional information, select the item in question and press F1.

Can't perform requested operation since the module is hidden
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgCantOperateOnHiddenModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantOperateOnHiddenModuleS"}

This error pertains to the Visual Basic extensibility (add-in) object model. This error has the following
cause and solution:

· The module is hidden. You can't modify a hidden module or obtain information from a hidden
module.
Unhide the module and try the operation again.

For additional information, select the item in question and press F1.

Can't place conditional breakpoint on an array
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgConditionalWatchOnArrayC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgConditionalWatchOnArrayS"}

An array has no single value associated with it. This error has the following cause and solution:

· You tried to set a conditional breakpoint (sometimes called a watchpoint) that would suspend
program execution when the value of a whole array changed.
Set the conditional breakpoint on a specific element of the array.

For additional information, select the item in question and press F1.

Can't record into running module
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgRecordModCantChangeS"}

You must end execution to begin recording. This error has the following cause and solution:

· You tried to record a macro while executing module code.
Stop execution or press CTRL+BREAK, and then turn on recording.

For additional information, select the item in question and press F1.

Can't remove default reference
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgCantRemoveReferenceC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantRemoveReferenceS"}

A default reference always exists. This error has the following cause and solution:

· You tried to remove a reference that must always be available, for example, a type-library or
object-library reference.
Don’t attempt to remove the reference.

For additional information, select the item in question and press F1.

Case Else outside Select Case
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgCaseElseNoSelectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCaseElseNoSelectS"}

A Case Else statement can only occur between matching Select Case and End Select statements.
This error has the following cause and solution:

· You placed a Case Else statement outside the Select Case...End Select block.
Move the Case Else statement within a Select Case...End Select block.

For additional information, select the item in question and press F1.

Case without Select Case
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgCaseNoSelectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCaseNoSelectS"}

A Case statement must occur within a Select Case...End Select Block. This error has the following
cause and solution:

· A Case statement can't be matched with a preceding Select Case statement.
Check other control structures within the Select Case...Case structure and verify that they are
correctly matched. For example, an If without a matching End If inside the Select Case...End
Select structure generates this error.

For additional information, select the item in question and press F1.

Circular dependencies between modules
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgcirculartypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCircularTypeS"}

Circular references between modules, constants, and user-defined types aren't allowed. This error
has the following cause and solution:

· A user-defined type or constant in one module references a user-defined type or constant in a
second module, which in turn references another user-defined type or constant in the first module.
Remove the dependent references.

For additional information, select the item in question and press F1.

Class must implement all procedures in interface
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInterfaceIncompleteC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInterfaceIncompleteS"}

An interface is a collection of unimplemented procedure prototypes. This error has the following cause
and solution:

· You specified an interface in an Implements statement, but you didn't add code for all the
procedures in the interface.
You must write code for each of the procedures specified in the interface. An empty procedure is
not adequate. You can avoid this error by putting a comment in a procedure; the procedure should
implement the required behavior.

For additional information, select the item in question and press F1.

Code execution has been interrupted
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBreakModeInterruptS"}

Code execution can be suspended when necessary. This condition has the following cause and
solution:

· A CTRL+BREAK (Microsoft Windows), ESC (Microsoft Excel) or COMMAND+PERIOD (Macintosh) key
combination has been encountered.
In the error dialog box, click Debug to enter break mode, Continue to resume, or End to stop
execution.

For additional information, select the item in question and press F1.

Compile error in hidden module: <module name>
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCompErrInHiddenModuleS"}

A protected module can't be displayed. This error has the following cause and solution:

· There is a compilation error in the code of the specified module, but it can't be displayed because
the project is protected.
Unprotect the project, and then run the code again to view the error.

For additional information, select the item in question and press F1.

Constant expression required
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgRequiredConstExprC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgRequiredConstExprS"}

A constant must be initialized. This error has the following causes and solutions:

· You tried to initialize a constant with a variable, an instance of a user-defined type, an object, or the
return value of a function call.
Initialize constants with literals, previously declared constants, or literals and constants joined by
operators (except the Is logical operator).

· You tried to declare an array using a variable to specify the number of elements.
To declare a dynamic array within a procedure, declare the array with ReDim and specify the
number of elements with a variable.

For additional information, select the item in question and press F1.

Constants, fixed-length strings, arrays, and Declare statements not
allowed as Public members of an object module
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgBadClassMemberC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadClassMemberS"}

Not all variables in an object module can be declared as Public. However, procedures are Public by
default, and Property procedures can be used to simulate variables syntactically. This error has the
following causes and solutions:

· You declared a Public constant in an object module.
Although you can't declare a Public constant in an object module, you can create a Property Get
procedure with the same name. If you don't create a Property Let or Property Set procedure with
that name, you are in effect creating a read-only property that can be used the same way you
would use a constant.

· You declared a Public fixed-length string in an object module.
You can simulate fixed-length strings with a set of Property procedures that either truncate the
string data when it exceeds the permitted length, or notify the user that the length has been
exceeded.

· You declared a Public array in an object module.
Although a procedure can't return an array, it can return a Variant that contains an array. To
simulate a Public array in a class module, use a set of Property procedures that accept and return
a Variant containing an array.

· You placed a Declare statement in an object module.
Declare statements are implicitly public. Precede the Declare statement with the Private keyword.

For additional information, select the item in question and press F1.

Current module doesn't support Print method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgNotIOBPrintC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNotIOBPrintS"}

Not all methods and properties are appropriate in all modules. This error has the following causes and
solutions:

· You tried to use the Print method on an object that can't display anything. For example, you can't
use the Print method without qualification in a standard module.
Remove the reference to the Print method, or qualify it with an appropriate object. For example,
qualify it with the Debug object to display its arguments in the Immediate window during
debugging.

· You tried to use the Line, Circle, PSet, or Scale method on an object that can't accept them. For
example, they can't appear unqualified in a standard module or an Automation class module.

For additional information, select the item in question and press F1.

Cyclic reference of projects not allowed
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCycleDetectedS"}

Circular references to projects aren't allowed. For example, if MyProj references YourProj, then
YourProj (or a project that references YourProj) can't reference MyProj. This error has the
following cause and solution:

· You tried to add a reference to a project that is already part of the project.
Remove the circular reference or references.

For additional information, select the item in question and press F1.

Definitions of property procedures for the same property are
inconsistent or contain optional parameters or a ParamArray
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInconsistentPropFuncsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInconsistentPropFuncsS"}

The parameters for Property Get, Property Let, and Property Set procedures for the same property
must match exactly, except that the Property Let has one extra parameter, whose type must match
the return type of the corresponding Property Get, and the Property Set has one more parameter
than the corresponding Property Get, whose type is either Variant, Object, a class name, or an
object library type specified in an object library. This error has the following causes and solutions:

· The number of parameters for the Property Get procedure isn't one less than the number of
parameters for the matching Property Let or Property Set procedure.
Add a parameter to Property Let or Property Set or remove a parameter from Property Get, as
appropriate.

· The parameter types of Property Get must exactly match the corresponding parameters of
Property Let or Property Set, except for the extra Property Set parameter.
Modify the parameter declarations in the corresponding procedure definitions so they are
appropriately matched.

· The parameter type of the extra parameter of the Property Let must match the return type of the
corresponding Property Get procedure.
Modify either the extra parameter declaration in the Property Let or the return type of the
corresponding Property Get so they are appropriately matched.

· The parameter type of the extra parameter of the Property Set can differ from the return type of
the corresponding Property Get, but it must be either a Variant, Object, class name, or a valid
object library type.
Make sure the extra parameter of the Property Set procedure is either a Variant, Object, class
name, or object library type.

· You defined a Property procedure with an Optional or a ParamArray parameter.
ParamArray and Optional parameters aren't permitted in Property procedures. Redefine the
procedures without using these keywords.

For additional information, select the item in question and press F1.

Deftype statements must precede declarations
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgDefTypeInvC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDefTypeInvS"}

Deftype statements include DefInt, DefDbl, DefCur, and so on. This error has the following causes
and solutions:

· A variable declaration precedes a Deftype statement at module level.
Move the Deftype statement to precede all variable declarations.

· A Deftype statement appears in a procedure.
Move the Deftype statement to module level, preceding all variable declarations.

For additional information, select the item in question and press F1.

Destination label too far away; loop, Select Case, or block If too
large
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgBranchToOBigC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBranchTooBigS"}

Procedures can be as large as 64K from beginning to end, but because branching can occur either
forward or backward within a procedure, such branching is limited to 32,767 bytes in either direction.
This error has the following causes and solutions:

· You have a branching statement (GoTo, GoSub) whose destination label is farther away than
32,767 bytes from the source branching statement.
Move the label closer, or make the procedure smaller.

· You have a very large loop structure that occupies more than 32K of memory from beginning to
end.
Make the loop smaller.

· You have a very large block If structure that contains a Then or Else clause that occupies more
than 32K of memory from beginning to end.
Reduce the size of the offending portion of the structure.

For additional information, select the item in question and press F1.

Do without Loop
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedLoopC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedLoopS"}

Each Do must be matched with a terminating Loop. This error has the following cause and solution:

· A Do statement was used without a terminating Loop statement.
Check that other control structures within the Do...Loop structure are correctly matched. For
example, a block If without a matching End If inside the Do...Loop structure may generate this
error.

For additional information, select the item in question and press F1.

Duplicate declaration in current scope
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgMultiplyDefinedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMultiplyDefinedS"}

The specified name is already used at this level of scope. For example, two variables can have the
same name if they are defined in different procedures, but not if they are defined within the same
procedure. This error has the following causes and solutions:

· A new variable or procedure has the same name as an existing variable or procedure. For
example:
Sub MySub()

Dim A As Integer
Dim A As Variant
. . . ' Other declarations or procedure code here.

End Sub
Check the current procedure, module, or project and remove any duplicate declarations.

· A Const statement uses the same name as an existing variable or procedure.
Remove or rename the constant in question.

· You declared a fixed array more than once.
Remove or rename one of the arrays.

Search for the duplicate name. When specifying the name to search for, omit any type-declaration
character because a conflict occurs if the names are the same and the type-declaration characters
are different.

Note that a module-level variable can have the same name as a variable declared in a procedure, but
when you want to refer to the module-level variable within the procedure, you must qualify it with the
module name. Module names and the names of referenced projects can be reused as variable names
within procedures and can also be qualified.

For additional information, select the item in question and press F1.

Duplicate definition
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDuplicateDefnS"}

You can only define a conditional compiler constant to have one value. This error has the following
cause and solution:

· You specified two different values for the same conditional compiler constant, for example:
#Const Mac = 0
#Const Mac = 1
Remove one of the definitions.

For additional information, select the item in question and press F1.

Duplicate Deftype statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgDupDefTypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDupDefTypeS"}

Deftype statements in the same scope must specify unique letter ranges. This error has the following
cause and solution:

· Part or all of the letter range for this Deftype statement is already included in another Deftype
statement.
Rewrite the statement so there is no overlap in the letter ranges.

For additional information, select the item in question and press F1.

Duplicate Option statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgDupOptionC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDupOptionS"}

Only one Option statement of each kind may occur in each module. This error has the following
cause and solution:

· You defined more than one Option Base, Option Compare, Option Explicit, or Option Private
statement in this module.
Remove any duplicates in the module.

For additional information, select the item in question and press F1.

Edit can't be undone — proceed anyway?
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgAskCantUndoS"}

You won't be able to choose the Undo command to restore the current state after you perform this
edit. This error has the following cause and solution:

· This typically occurs when an edit is simply too large to be saved.
Try performing the edit in smaller increments.

For additional information, select the item in question and press F1.

Else without If
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgElseNoMatchingIfC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgElseNoMatchingIfS"}

An Else must be preceded by an If. This error has the following cause and solution:

· An Else statement was used without a corresponding If statement.
Check other control structures within the If...End If structure and verify that they are correctly
matched. Also check that the block If is correctly formatted.

For additional information, select the item in question and press F1.

Empty Enum type not allowed
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgEmptyEnumC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEmptyEnumS"}

An Enum type specifies the name and members for an enumeration. This error has the following
cause and solution:

· You named an enumeration in an Enum…End Enum block, but failed to specify any members.
Add at least one member to the Enum…End Enum block.

For additional information, select the item in question and press F1.

Empty watch expression
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEmptyWatchExprS"}

The Add Watch dialog box requires entry of an expression. This error has the following cause and
solution:

· You didn't supply a watch expression in the Add Watch dialog box.
Add an expression to the Add Watch dialog box or press the ESC key.

For additional information, select the item in question and press F1.

End If without block If
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgEndifnomatchingifC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEndIfNoMatchingIfS"}

An End If statement must have a corresponding If statement. This error has the following cause and
solution:

· The If clause was omitted or is separated from the End If.
Check other control structures within the If...End If structure and verify that they are correctly
matched. Also check that the block If is correctly formatted.

For additional information, select the item in question and press F1.

End of search scope has been reached; do you want to continue
from the beginning?
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSearchUpperBoundS"}

Your search was unsuccessful. This error has the following cause and solution:

· Your downward search has reached the end of the specified scope.
You can continue searching from the beginning of the search scope, or cancel and change the
scope of the search.

End Select without Select Case
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgEndSelectNoSelectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEndSelectNoSelectS"}

End Select must be matched with a preceding Select Case. This error has the following cause and
solution:

· You used an End Select statement without a corresponding Select Case statement.
This is usually due to an extra End Select below a Select Case block, or leaving behind the End
Select statement when copying a Select Case block from one procedure to another. Check each
End Select statement to make sure it terminates a Select Case structure.

For additional information, select the item in question and press F1.

End With without With
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgEndWithWithoutWithC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEndWithWithoutWithS"}

End With must be matched with a preceding With. This error has the following cause and solution:

· You used an End With statement without a corresponding With statement.
Check other control structures within the With...End With structure and verify that they are
correctly matched. For example, an If without a matching End If inside the With...End With
structure can cause this error.

For additional information, select the item in question and press F1.

Error accessing the system registry
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgRegistryAccessS"}

Some operations must access your system's registration database. This error has the following cause
and solution:

· The registration database for your system has been corrupted.
Run the Setup program for the host application again.

For additional information, select the item in question and press F1.

Event handler is invalid
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgCantInsertEventHandlerC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantInsertEventHandlerS"}

The parameter list of an event-handling procedure must precisely match the declaration of the event.
This error has the following cause and solution:

· Your event-handling procedure has the wrong number of parameters.
Eliminate extra parameters or add the missing ones.

· One or more of your event-handling procedure parameters has the wrong data type.
Make the parameter types match those of the event declaration.

· Your event-handling procedure is a Function rather than a Sub.
Make your procedure a Sub. An event handler can't return a value.

· Another type library uses the event name for a type of its own.
Qualify the name with the name of the proper type library to avoid the ambiguity.

For additional information, select the item in question and press F1.

Event procedure declaration doesn't match description of event
having same name
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEventProcSigMismatchS"}

Your class module has a procedure name that conflicts with the name of an event. This error has the
following cause and solution:

· A procedure has the same name as an event, but does not have the same signature (that is, the
number and types of the parameters). This can occur if you do something such as add a new
parameter to an event procedure. For example, if you modify the definition of a form's Form_Load
event procedure as follows, this error will occur:
Sub Form_Load (MyParam As Integer)
. . .
End Sub
If the procedure isn't the event procedure corresponding to the event, change its name. If the
procedure corresponds to the event, make the parameter list agree with that required by the event
(if any).

For additional information, select the item in question and press F1.

Exit Do not within Do...Loop
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExitDoNotWithinDoC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExitDoNotWithinDoS"}

Exit Do is only valid within a Do...Loop statement. This error has the following cause and solution:

· You used an Exit Do statement outside a Do...Loop statement.
Make sure a valid Do statement precedes the Exit Do.

For additional information, select the item in question and press F1.

Exit For not within For...Next
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExitForNotWithinForC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExitForNotWithinForS"}

Exit For is only valid within a For...Next loop. This error has the following cause and solution:

· You used an Exit For statement outside a For...Next statement.
Make sure a valid For statement precedes the Exit For.

For additional information, select the item in question and press F1.

Exit Function not allowed in Sub or Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExitFuncofSubC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExitFuncOfSubS"}

An Exit statement must match the procedure in which it occurs. This error has the following cause
and solution:

· You used Exit Function in a Sub or Property procedure.
Use Exit Sub or Exit Property for these types of procedures.

For additional information, select the item in question and press F1.

Exit Property not allowed in Function or Sub
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExitPropNotC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExitPropNotS"}

An Exit statement must match the procedure in which it occurs. This error has the following cause
and solution:

· You used Exit Property in a Sub or Function procedure.
Use the proper Exit statement for this type of procedure.

For additional information, select the item in question and press F1.

Exit Sub not allowed in Function or Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExitSubofFuncC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExitSubOfFuncS"}

An Exit statement must match the procedure in which it occurs. This error has the following cause
and solution:

· You used Exit Sub in a Function or Property procedure.
Use the proper Exit statement for this type of procedure.

For additional information, select the item in question and press F1.

Expected array
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedArrayC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedArrayS"}

A variable name with a subscript indicates the variable is an array. This error has the following cause
and solution:

· The syntax you specified is appropriate for an array, but no array with this name is in scope.
Check to make sure the name of the variable is spelled correctly. Unless the module contains
Option Explicit, a variable is created on first use. If you misspell the name of an array variable, the
variable may be created, but not as an array.

For additional information, select the item in question and press F1.

Expected End Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgEndFuncNotEndSubC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEndFuncNotEndSubS"}

An End procedure statement must match the procedure in which it occurs. This error has the
following cause and solution:

· You used End Property or End Sub to end a Function procedure.
Use End Function for this type of procedure.

For additional information, select the item in question and press F1.

Expected End Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgEndPropC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEndPropS"}

An End procedure statement must match the procedure in which it occurs. This error has the
following cause and solution:

· You used End Function or End Sub to end a Property procedure.
Use End Property for this type of procedure.

For additional information, select the item in question and press F1.

Expected End Sub
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgEndSubNotEndFuncC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEndSubNotEndFuncS"}

An End procedure statement must match the procedure in which it occurs. This error has the
following cause and solution:

· You used End Function or End Property to end a Sub procedure.
Use End Sub for this type of procedure.

For additional information, select the item in question and press F1.

Expected End With
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedEndWithC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedEndWithS"}

A With block must be terminated. This error has the following cause and solution:

· You did not properly terminate a With block.
Place an End With statement at the end of the block.

For additional information, select the item in question and press F1.

Expected Function or variable
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedFuncC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedFuncS"}

The syntax of your statement indicates a variable or function call. This error has the following cause
and solution:

· The name isn't that of a known variable or Function procedure.
Check the spelling of the name. Make sure that any variable or function with that name is visible in
the portion of the program from which you are referencing it. For example, if a function is defined
as Private or a variable isn't defined as Public, it's only visible within its own module.

· You are trying to inappropriately assign a value to a procedure name. For example if MySub is a
Sub procedure, the following code generates this error:
MySub = 237 ' Causes Expected Function or variable error
Although you can use assignment syntax with a Property Let procedure or with a Function that
returns an object or a Variant containing an object, you can't use assignment syntax with a Sub,
Property Get, or Property Set procedure.

For additional information, select the item in question and press F1.

Expected procedure, not module
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedFuncNotModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedFuncNotModuleS"}

There is no procedure by this name in the current scope, but there is a module by this name. You can
call a procedure, but not a module. This error has the following cause and solution:

· The name of a module is used as a procedure call.
Check the spelling of the procedure name, and make sure the procedure you are trying to call isn't
private to another module.

For additional information, select the item in question and press F1.

Expected procedure, not project or library
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedFuncnotprojectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedFuncNotProjectS"}

There is no procedure by this name in the current scope, but there is a project by this name. You can
call a procedure, but not a project. This error has the following cause and solution:

· The name of a project is used as a procedure call.
Check the spelling of the procedure name, and make sure the procedure you are trying to call isn't
private to another module.

For additional information, select the item in question and press F1.

Expected procedure, not user-defined type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedFuncNotRecordC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedFuncNotRecordS"}

There is no procedure by this name in the current scope, but there is a user-defined type by this
name. You can call a procedure, but not a user-defined type. This error has the following cause and
solution:

· The name of a user-defined type is used as a procedure call.
Check the spelling of the procedure name, and make sure the procedure you are trying to call isn't
private to another module.

For additional information, select the item in question and press F1.

Expected procedure, not variable
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedFuncNotVarC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedFuncNotVarS"}

There is no procedure by this name in the current scope, but there is a variable by this name. You can
call a procedure, but not a variable. This error has the following cause and solution:

· The name of a variable is used as a procedure call.
The error may also be caused by misspelling the name of a valid procedure, because that can be
misconstrued as an implicitly defined variable. Check the spelling of the procedure name, and
make sure the procedure you are trying to call isn't private to another module.

For additional information, select the item in question and press F1.

Expected Sub, Function, or Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedSubC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedSubS"}

The syntax of your statement indicates a Sub, Function, or Property procedure invocation. This
error has the following cause and solution:

· The specified name isn't that of a Sub, Function, or Property procedure in scope in this part of
your program.
Check the spelling of the name. Note that if the procedure is defined as Private, it can only be
called from within its module.

For additional information, select the item in question and press F1.

Expected user-defined type, not project
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedTypeNotProjC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedTypeNotProjS"}

There is no user-defined type by this name in the current scope, but there is a project by this name.
You can define a variable as having user-defined type, but not project type. This error has the
following cause and solution:

· The name of a project is used as a user-defined type.
Check the spelling of the name of the user-defined type, and make sure the user-defined type isn't
private to another module.

For additional information, select the item in question and press F1.

Expected variable or procedure, not Enum type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgEnumExpectedVarC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEnumExpectedVarS"}

The name of an Enum type only appears in a statement declaring an enumeration of the type or as a
qualifier. This error has the following cause and solution:

· An Enum type name is used instead of the name of an enumeration variable of the type.
Declare a variable of the Enum type or find a previous declaration in the current scope and use
that variable.

· An Enum type name is used instead of a variable or procedure name.
Check the spelling of the identifier that caused the error. Use the name of a variable or procedure
where you specified an Enum type.

For additional information, select the item in question and press F1.

Expected variable or procedure, not module
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgModuleExpectedVarC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgModuleExpectedVarS"}

There is no variable or procedure by this name in the current scope, but there is a module by this
name. This error has the following cause and solution:

· The name of a module is used as a variable or procedure.
Check the spelling of the variable or procedure name, and make sure the name you want to refer
to isn't private to another module. A module name can be a qualifier, but can't stand alone.

For additional information, select the item in question and press F1.

Expected variable or procedure, not project
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgProjectExpectedVarC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgProjectExpectedVarS"}

There is no variable or procedure by this name in the current scope, but there is a project by this
name. This error has the following cause and solution:

· The name of a project is used as a variable or procedure.
Check the spelling of the variable or procedure name, and make sure the name you want to refer
to isn't private to another module. A project name can be a qualifier, but can't stand alone.

For additional information, select the item in question and press F1.

Expected: <various>
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedTokensS"}

An expected part of the syntax was not found. The error is usually located to the left of the selected
item, but isn't always obvious. For example, you can invoke a Sub procedure with or without the Call
keyword. However, if you use the Call keyword, you must enclose the argument list in parentheses.
This error has the following causes and solutions:

· Expected: End of Statement. Improper use of parentheses in a procedure invocation:
X = Workbook.Add F:= 5 ' Error due to no parentheses.
Call MySub 5 ' Error due to no parentheses.
Use parentheses in a function call that specifies arguments or with a Sub procedure invocation that
uses the Call keyword.

· Expected:). Incorrect syntax for a procedure call. For example, a function call can't stand by itself,
and Sub procedure calls sometimes require the Call keyword, depending on how you specify their
arguments.
Workbook.Add (X:=5, Y:=7) ' Function call without expression.
YourSub(5, 7) ' Sub invocation without Call.
Always use function calls in expressions. If you have multiple arguments enclosed in parentheses
in a Sub procedure call, you must use the Call keyword.

· Expected: Expression. For example, when pasting code from the Object Browser, you may have
forgotten to specify a value for a named argument.
Workbook.Add (X:=) ' Error because no value assigned to

' named argument.
Either add a value for the argument, or delete the argument if it's optional.

· Expected: Variable. For example, you may have used restricted keywords for variable names. In
the following example, the Input # statement expects a variable as the second argument. Since
Type is a restricted keyword, it can't be used as a variable name.
Input # 1, Type' Type keyword invalidly used as

' variable name.
Rename the variable so it doesn't conflict with restricted keywords.

For additional information, select the item in question and press F1.

External name not defined
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExtNameUndefS"}

You can indicate external names by enclosing them in brackets ([]). This error has the following
cause and solution:

· The identifier specified within brackets has no meaning to the host application.
Check the spelling of the name to be sure it's consistent with that expected by the host.

For additional information, select the item in question and press F1.

File format no longer supported
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgUnsupFormatS"}

Not all file formats are readable under all circumstances. This error has the following cause and
solution:

· You are trying to load a binary file created with an earlier version of Visual Basic.
Load the file into the version of Visual Basic with which the file was created, save it in text format,
then try to load it again.

For additional information, select the item in question and press F1.

Fixed or static data can't be larger than 64K
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSizeTooBigS"}

Fixed and static data include nonautomatic variables, fixed-length strings, and fixed arrays. This error
has the following causes and solutions:

· You attempted to allocate more than 64K of module-level data.
Reduce the amount of declared data. Note that although the size limit for module-level data is 64K,
module-level variable-length strings and arrays can exceed this limit.

· You attempted to allocate more than 64K of static procedure-level data in the module.
Reduce the amount of this type of data declared. Static data from all procedures in a module is
limited to a total of 64K (not 64K per procedure). Note that static variable-length strings and arrays
can exceed this limit.

· The size of a user-defined type exceeds 64K.
Reduce the size of the user-defined type. Generally the size of a user-defined type equals the sum
of the sizes specified for its elements. On some platforms there may be padding between the
elements to keep them aligned on word boundaries. If you nest one user-defined type in another,
the size of the nested type must be included in the size of the new type.

· In a procedure, you tried to declare a variable of user-defined type that requires more than 32K.
Although the size limit of a variable of user-defined type is 64K at module level, variables of user-
defined type in procedures can't exceed 32K. Reduce the size required for the user-defined type,
or use a module-level variable.

· The size of a fixed-length string declared within a procedure exceeds 65,464.
Reduce the length of the fixed-length string. Note that variable-length strings can exceed this limit.

For additional information, select the item in question and press F1.

For control variable already in use
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgForIndexInUseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgForIndexInUseS"}

When you nest For...Next loops, you must use different control variables in each one. This error has
the following cause and solution:

· An inner For loop uses the same counter as an enclosing For loop.
Check nested loops for repetition. For example, if the outer loop uses For Count = 1 To 25,
the inner loops can't use Count as the control variables.

For additional information, select the item in question and press F1.

For Each control variable must be Variant or Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgForEachVariantC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgForEachVariantS"}

A control variable is the element part of the For Each...Next statement syntax. This error has the
following causes and solutions:

· A collection has a control variable that isn't a Variant or Object type.
Make sure the element part of the For Each...Next is a Variant or Object.

· An array has a control variable that isn't a Variant.
Make sure the element part of the For Each...Next is a Variant.

For additional information, select the item in question and press F1.

For Each control variable on arrays must be Variant
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgForEachAryVariantC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgForEachAryVariantS"}

A control variable is the element part of the For Each...Next statement syntax. This error has the
following cause and solution:

· An array has a control variable that isn't a Variant.
Make sure the group part of the For Each...Next is a Variant type variable.

· For additional information, select the item in question and press F1.

For Each may not be used on array of user-defined type or fixed-
length strings
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgForEachAryTypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgForEachAryTypeS"}

For Each constructs are only valid for collections and arrays of intrinsic types, including arrays of
objects. Also, arrays of fixed-length strings can't be iterated using For Each. This error has the
following causes and solutions:

· The elements of the array in your For Each construct have a user-defined type.
Use an ordinary For...Next loop to iterate the elements of the array.

· The elements of the array in your For Each construct have a fixed-length string type.
Use an ordinary For...Next loop to iterate the elements of the array.

For additional information, select the item in question and press F1.

For Each can only iterate over a collection object or an array
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgForEachCollAryC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgForEachCollAryS"}

The For Each construct can only be used with collections and arrays. This error has the following
cause and solution:

· You specified an object that isn't a collection or array as the group part of the For Each syntax.
Check the spelling of the item over which you want to iterate to make sure it corresponds to a
collection or array in scope in this part of your code.

For additional information, select the item in question and press F1.

For without Next
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedNextC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedNextS"}

Every For statement must have a matching Next statement. This error has the following cause and
solution:

· A For statement is used without a corresponding Next statement.
Check for an incorrectly matched For...Next structure inside the outer For...Next structure.

For additional information, select the item in question and press F1.

Forward reference to user-defined type
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgForwardTypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgForwardTypeS"}

A user-defined type must be defined before it can be referenced. This error has the following causes
and solutions:

· You declared a variable with a user-defined type before the definition of the user-defined type
appears. In the following example, the variable OtherVar is declared before its type (OtherType)
is known:
Type MyType

OtherVar As OtherType
End Type

Type OtherType
WholeVar As Integer
RealVar As Double

End Type
Reposition the type definitions so that the forward reference doesn't occur.

· You nested a user-defined type within itself.
Type MyType

MyVar As Integer
OtherVar As MyType

End Type
Remove the self-referencing nested type. This may occur indirectly if you nest a type within
another type in which the first is already declared. Check the definition of each nested type to
eliminate duplication.

For additional information, select the item in question and press F1.

Function call on left side of assignment must return Variant or
Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgFunctionLHSC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFunctionLHSS"}

A function call can appear on the left side of an assignment, but only if the return value of the function
is an Object or Variant. This error has the following cause and solution:

· The return type of the function on the left side of the assignment isn't a Variant or Object.
Change the return type. Note that if the return value is an object or a Variant that contains an
object, the assignment is to the default property of the object. If the Variant returned isn't an object,
the assignment has no effect.

· Everything in the call is correct, however, it can't be completed. For example, you may be trying to
set a property that can only be set at design time.
Enter design mode and set the property in the Property window. Remove the code that tried to set
the property programmatically.

For additional information, select the item in question and press F1.

Function marked as restricted or uses a type not supported in
Visual Basic
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidTypeLibFunctionS"}

Not every procedure that appears in a type library or object library can be accessed by every
programming language. The creator of a type or object library can designate some functions as
restricted to prevent their use by macro languages. This error has the following causes and solutions:

· You tried to use a function with a restricted specification.
You can't use the function in your program. If you have documentation for the object represented
by the library, check to see if a method is provided that gives equivalent functionality.

· You tried to use a function that requires a parameter type or has a return type that isn't available in
Visual Basic.
Sometimes you can simulate return types with Visual Basic equivalents. Check the subtypes of the
Variant data type . This may also work for non-Basic parameter types that are expected as
references. However, you can't pass a Variant data type by value in an effort to simulate a non-
Basic type.

For additional information, select the item in question and press F1.

Identifier too long
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIdTooLongS"}

Identifiers can't be more than 255 characters long. This error has the following cause and solution:

· The identifier exceeds 255 characters.
Reduce the length of the identifier.

For additional information, select the item in question and press F1.

Identifier under cursor isn't a procedure name
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgViewProcNotProcNameS"}

You tried to view a procedure, but the identifier at the insertion point was not a procedure name. This
error has the following cause and solution:

· Identifier isn't a procedure name.
Check the spelling of the identifier.

For additional information, select the item in question and press F1.

Incorrect DLL version
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIncorrectVersionS"}

Each version of Visual Basic works only with its corresponding dynamic-link library (DLL). This error
has the following cause and solution:

· Your version of the Visual Basic dynamic-link library doesn't match the version expected by this
host application. The program is attempting to call routines in a DLL, but the version of the library is
inconsistent with either Visual Basic or the host application
Obtain the correct version of the library, and make sure earlier versions don't precede the proper
one on your path.

For additional information, select the item in question and press F1.

Incorrect OLE version
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIncorrectOleVersionS"}

Your versions of the OLE dynamic-link libraries (DLL) don't match those expected by the host
application. In Microsoft Windows, the application searches for the DLLs first in the current directory,
then along your path settings, and then in the WINDOWS\SYSTEM directory. This error has the
following cause and solution:

· Earlier OLE DLLs were encountered in the search before the DLLs expected by the host
application.
You should not try to use both versions of the DLLs.

Note that on the Macintosh, OLE files are normally only found in the Extensions folder so it is unlikely
that this error will occur.

For additional information, select the item in question and press F1.

Insufficient Immediate window memory to create variable
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgVarInNestedPaneS"}

Memory in the Immediate window is limited. This error has the following cause and solution:

· You specified a variable in the Immediate window that must be instantiated, since it wasn't created
in the program's code context.
Delete the reference to the variable in the Immediate window, or declare the variable in the
program's code context so that it doesn't have to be created in the Immediate window.

For additional information, select the item in question and press F1.

Insufficient memory to save Undo information
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantSaveUndoInfoS"}

You won't be able to choose the Undo command to restore the current state after you perform this
edit. This error has the following cause and solution:

· The edit is too large to save for Undo.
Try performing the edit in smaller increments.

For additional information, select the item in question and press F1.

Insufficient project information to load project on platform or with
version now being used
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgCantLoadFromCanonicalC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantLoadFromCanonicalS"}

When you save a project, extra information is saved to permit loading the project with a later version
or on a different platform. This error has the following cause and solution:

· When you saved this project, you received an error indicating that insufficient memory was
available to save all the information that might be necessary to load the project with a different
version or to load it on a different platform.
Load the file using the Visual Basic version in which it was previously saved, or on the platform in
which it was previously saved, and then save it again. If you don't receive any error messages
during that save, you should be able to load it in the current version or on the current platform.

For additional information, select the item in question and press F1.

Interface not valid for Implements
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvalInterfForImplementsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalInterfForImplementsS"}

Not all interfaces can be implemented in Visual Basic. This error has the following cause and solution:

· The interface contains some element that can't be supported by Visual Basic. For example, Visual
Basic has no equivalent to the unsigned long integer type, Visual Basic can't designate a
procedure parameter as "out-only." Although Visual Basic supports the use of the underscore
character (_) in Visual Basic identifiers, it can't implement an interface that uses underscore
characters in the names of its members.
You can't implement the interface in Visual Basic.

For additional information, select the item in question and press F1.

Invalid Access mode
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgWrongAccessC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgWrongAccessS"}

In your Open statement, you specified a type of access that was invalid for the specified file type. This
error has the following causes and solutions:

· You attempted to open a file for Input, but specified an illegal access mode.
You can omit the access mode specification when opening a file for input, but if you specify it, the
access mode must be Read. Both Write and Read Write are invalid access modes on a file
opened for Input.

· You attempted to open a file for Append, but specified an invalid access mode.
You can omit the access mode specification when opening a file for append, but if you specify it,
the access mode must be Write. Both Read and Read Write are invalid access modes on a file
opened for Append.

· You attempted to open a file for Output, but specified an invalid access mode.
You can omit the access mode specification when opening a file for output, but if you specify it, the
access mode must be Write. Both Read and Read Write are invalid access modes on a file
opened for Output.

For additional information, select the item in question and press F1.

Invalid attribute in Sub, Function, or Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvalidAttrInSubC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidAttrInSubS"}

Some attributes are invalid within procedures. This error has the following cause and solution:

· A Public or Private attribute appears within the body of a procedure definition.
Remove the attribute from the procedure. To give the variable wider scope, move the declaration to
module level. Variables declared within procedures are always Private.

For additional information, select the item in question and press F1.

Invalid character
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIllegalCharS"}

The character can't be used in the current context. This error has the following cause and solution:

· You probably used an invalid character, such as a bracket or hyphen, as part of a variable name.
Compare the spelling of the name with its declaration.

For additional information, select the item in question and press F1.

Invalid data format
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvDataReadS"}

The data read from a file wasn't in the expected format. This error has the following causes and
solutions:

· A project file or object library file is either corrupted or in a format that can't be understood.
Get a new version of the project file or object library file.

· You may have attempted to load an .exe file into a module.
Load the source code instead.

· You may have used the References dialog box and Object Browser to add a reference to a file
that isn't a valid object library or contains a Basic project in a format not supported by the host
application. For example, Microsoft Excel can't understand .bas or .frm files, or Microsoft Project
files containing Basic code.
Load the questionable file into the application in which it was created, and then save it in a
compatible format. For example, object library source code can be processed through MkTypLib;
and QuickBasic, and Visual Basic code can be saved in text format, and so on.

For additional information, select the item in question and press F1.

Invalid data type for constant
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgConstTypeErrorS"}

Not all types of data can be assigned to constants. This error has the following cause and solution:

· You tried to declare the type of a constant to be a user-defined type, an object, or an array.
Remove the declaration or redeclare as a variable.

For additional information, select the item in question and press F1.

Invalid in Immediate window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgILLImmedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIllImmedS"}

Not all statements are permitted in the Immediate window. This error has the following causes and
solutions:

· A declarative statement was used. For example, Const, Declare, Deftype, Dim, Function, Option
Base, Option Explicit, Option Compare, Option Private, Private, Public, property procedure
declaration statements (Property Let, Property Set, and Property Get), ReDim, Static, Sub, and
Type are not allowed in the Immediate window.
Remove the declarative statements from the Immediate window.

· A control flow statement was used, for example, Sub, Function, Property, GoSub, GoTo, Return,
and Resume.
Remove these statements from the Immediate window.

· There is no logical connection made between separated physical lines in the Immediate window,
so statements formatted as multiple physical lines, such as a block If statement, can't be properly
executed.
Such blocks can be typed on a single physical line, with each statement separated from the next by
a colon (:). Conversely, you can extend a single statement across physical lines in the Immediate
window by using the line-continuation character, which is a space followed by an underscore (_).

· You tried to execute some code in the Immediate window that invalidates the current state of your
program and requires you to reinitialize the program.
Remove the code in question from the Immediate window.

For additional information, select the item in question and press F1.

Invalid inside procedure
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvInsideProcC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvInsideProcS"}

The statement can't occur in a Sub or Function procedure. This error has the following cause and
solution:

· One of the following statements appears in a procedure: Declare, Deftype, Private, Public,
Option Base, Option Compare, Option Explicit, Option Private, and Type.
Remove the statement from the procedure. The statements can be placed at module level.

For additional information, select the item in question and press F1.

Invalid length for fixed-length string
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgIllegalFixedStringLenC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIllegalFixedStringLenS"}

This error has the following causes and solutions:

· A fixed-length string is declared with zero length.
A fixed-length string must have at least one character.

· A fixed-length string exceeds the limit of 65,526.
Reduce the length specified for the fixed-length string.

Note      Variable-length strings can exceed the upper limit and can have zero length.

For additional information, select the item in question and press F1.

Invalid Next control variable reference
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgNextForMatchC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNextForMatchS"}

The numeric variable in the Next part of a For...Next loop must match the variable in the For part.
This error has the following cause and solution:

· The variable in the Next part of a For...Next loop differs from the variable in the For part. For
example:
For Counter = 1 To 10

MyVar = Counter
Next Count
Check the spelling of the variable in the Next part to be sure it matches the For part. Also, be sure
you haven't inadvertently deleted parts of the enclosing loop that used the variable.

For additional information, select the item in question and press F1.

Invalid or unqualified reference
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgBadWithRefC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadWithRefS"}

An identifier beginning with a period is valid only within a With block. This error has the following
cause and solution:

· The identifier begins with a period.
Complete the qualification of the identifier or remove the period.

For additional information, select the item in question and press F1.

Invalid outside procedure
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvOutsideProcC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvOutsideProcS"}

The statement must occur within a Sub or Function, or a property procedure (Property Get,
Property Let, Property Set). This error has the following cause and solution:

· An executable statement, Static or ReDim, appears at module level.
Static is unnecessary at module level, since all module-level variables are static. Use Dim instead
of ReDim at module level. To create a dynamic array at module level, declare it with Dim using
empty parentheses.

Note      At module level, you can use only comments and declarative statements, such as Const,
Declare, Deftype, Dim, Option Base, Option Compare, Option Explicit, Option Private, Private,
Public, and Type. The Sub, Function, and Property statements occur outside the body of their
procedures, but within the procedure declaration.

For additional information, select the item in question and press F1.

Invalid ParamArray use
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgillegalparamarrayuseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIllegalParamArrayUseS"}

The parameter defined as ParamArray is used incorrectly in the procedure. This error has the
following causes and solutions:

· You attempted to pass ParamArray as an argument to another procedure that expects an array or
a ByRef Variant.
Assign the ParamArray parameter to a Variant, and then pass the variant.

· You attempted to use an Erase or ReDim statement with a ParamArray parameter within its
procedure.
Remove the Erase or ReDim. These operations can't be performed on the ParamArray
parameter.

For additional information, select the item in question and press F1.

Invalid procedure name
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidProcNameS"}

There are restrictions in procedure-naming beyond the rules for naming identifiers. This error has the
following cause and solution:

· You attempted to define a procedure, but the name used for the procedure is invalid because the
host already uses that identifier for another purpose. For example, if the host application is
Microsoft Excel, you can't define a procedure with the name R1C1 because that identifier is already
used by Microsoft Excel.
Choose another name for the procedure.

· Your procedure name is that of a restricted keyword, exceeds 255 characters, or doesn’t begin with
a letter.
Choose a different name for the procedure.

For additional information, select the item in question and press F1.

Invalid qualifier
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgQualNotObjectRecordC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgQualNotObjectRecordS"}

Qualifiers are used for disambiguation. This error has the following cause and solution:

· The qualifier does not identify a project, module, object, or a variable of user-defined type within
the current scope.
Check the spelling of the qualifier. Make sure that the qualifying identifier is within the current
scope. For example, a variable of user-defined type in a Private module is visible only within that
module.

For additional information, select the item in question and press F1.

Invalid ReDim
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvalidReDimC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidRedimS"}

Not every array can be redimensioned. This error has the following causes and solutions:

· A variable was implicitly declared a Variant, and you attempted to use ReDim to change it to an
array.
A Variant can contain an array, but if it isn't explicitly declared, you can't use ReDim to make it into
an array. Declare the Variant before using ReDim to specify the number of elements it can contain.
For example, in the following code, ReDim AVar(10) causes an invalid ReDim error, but ReDim
BVar(10) does not:
AVar = 1 ' Implicit declaration of AVar.
ReDim AVar(10) ' Causes invalid ReDim error.
.
.
.
Dim BVar ' Explicit declaration of BVar.
ReDim BVar(10) ' No error.

· You tried to use ReDim to change more than one dimension of an array contained within a Variant.
You can only use ReDim to change the size of the last dimension of an array in a Variant. To
create an array with multiple dimensions that can be redimensioned, the array can't be contained
within a Variant, and you have to declare it the normal way.

· You can use ReDim only to change the number of elements in a normal array, not the type of those
elements.
If you want an array in which you can change the types of the elements, use an array contained
within a Variant. If you declare the array first, changing the types and the number of its elements
can be accomplished as follows:
Dim MyVar As Variant ' Declare the variable.
ReDim MyVar(10) As String ' ReDim it as array of String subtypes.
ReDim MyVar(20) As Integer ' ReDim it as array of Integer subtypes.
ReDim MyVar(5) As Variant ' ReDim it as array of Variant subtypes.

· You attempted to use ReDim with an array that is a member of an Automation object.
Remove the ReDim.

Note      If you don't specify a type for a variable, the variable receives the default type, Variant. This
isn't always obvious. For example, the following code declares two variables, the first, MyVar, is a
Variant; the second, AnotherVar, is an Integer.
Dim MyVar, AnotherVar As Integer

For additional information, select the item in question and press F1.

Invalid syntax for conditional compiler constant declarations
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidConstValSyntaxS"}

Entering conditional compiler constants in an Options dialog box differs from declaring constants in
code. This error has the following cause and solution:

· You used improper syntax when entering a constant declaration in the in an Options dialog box.
The only valid syntax is a simple assignment of an integer value to the identifier. Make sure the
syntax for the entry is as follows, with each constant separated by a colon (:):
constantname = [{+ | – }]integervalue : [{+ | – }]constantname =
integervalue [...]

For additional information, select the item in question and press F1.

Invalid type-declaration character
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgIncorrectTypeCharC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIncorrectTypeCharS"}

Type-declaration characters are valid, but don't exist for all data types; they aren't permitted in some
situations. This error has the following causes and solutions:

· A type-declaration character is appended to a variable declared in a Private, Public, or Static
statement with an As clause.
Remove the type-declaration character.

· A type-declaration character is appended to an inconsistent literal. For example, since the
ampersand (&) is the type-declaration character for a Long integer, appending it to a literal of a
different type causes this error:
10.253&
Remove the type-declaration character or replace it with the correct one.

For additional information, select the item in question and press F1.

Invalid use of AddressOf operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvalidAddressOfUseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidAddressOfUseS"}

The AddressOf operator modifies an argument to pass the address of a function rather than passing
the result of the function call. This error has the following cause and solution:

· You tried to use AddressOf with the name of a class method.
Only the names of Visual Basic procedures in a .bas module can be modified with AddressOf. You
can't specify a class method.

· The procedure name modified by AddressOf is defined in a module in a different project.
· You tried to modify the name a DLL function or a function defined in a type library with AddressOf.
· DLL and type library functions can't be modified with AddressOf.

The procedure definition must be in a module in the current project. Move the definition to a
module in this project or include its current module in the project.

For additional information, select the item in question and press F1.

Invalid use of Me keyword
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvalidMeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidMeS"}

The Me keyword can appear in class modules. This error has the following causes and solutions:

· The Me keyword appeared in a standard module.
The Me keyword can't appear in a standard module because a standard module doesn't represent
an object. If you copied the code in question from a class module, you have to replace the Me
keyword with the specific object or form name to preserve the original reference.

· The Me keyword appeared on the left side of a Set assignment, for example:
Set Me = MyObject ' Causes "Invalid use of Me keyword" message.
Remove the Set assignment.

Note      The Me keyword can appear on the left side of a Let assignment, in which case the default
property of the object represented by Me is set. For example:
Let Me = MyObject ' Valid assignment with explicit Let.
Me = MyObject ' Valid assignment with implicit Let.
For additional information, select the item in question and press F1.

Invalid use of New keyword
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvalidNewC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidNewS"}

The New keyword can only be applied to a creatable object (an instance of a class or Automation
object). This error has the following causes and solutions:

· You tried to instantiate something that can have only one instance. For example, you tried to create
a new instance of a module by specifying Module1 in a statement like the following:
Dim MyMod As New Module1
You can't create the new instance, since a module can have only one instance.

· You tried to instantiate an Automation object, but it was not a creatable object. For example, you
tried to create a new instance of a list box by specifying ListBox in a statement like the following:
' Valid syntax to create the variable.
Dim MyListBox As ListBox
Dim MyFormInst As Form
' Invalid syntax to instantiate the object.
Set MyFormInst = New Form
Set MyListBox = New ListBox
ListBox and Form are class names, not specific object names. You can use them to specify that a
variable will be a reference to a certain object type, as with the valid Dim statements above. But
you can't use them to instantiate the objects themselves in a Set statement. You must specify a
specific object, rather than the generic class name, in the Set statement:
' Valid syntax to create new instance of a form or list box.
Set MyFormInst = New Form1
Set MyListBox = New List1

For additional information, select the item in question and press F1.

Invalid use of object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgConstQualC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgConstQualS"}

You tried to use an object in an incorrect way. This error has the following causes and solutions:

· You tried to discontinue an object reference by assigning Nothing to it but omitted the Set
keyword:
MyObject = Nothing
Use the Set statement to set an object to Nothing. Assuming MyObject is an object, you must set
it to Nothing with the Set statement:
Set MyObject = Nothing
Omitting the Set keyword is an implicit use of Let, which causes an attempt to perform a value
assignment, rather than a reference assignment. Nothing can't be used in a value assignment.

· You attempted to use Nothing in an expression.
Rewrite the expression without the Nothing.

For additional information, select the item in question and press F1.

Invalid use of Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgUnsuitablefuncpropmatchC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgUnsuitableFuncPropMatchS"}

You are using one kind of Property procedure where a different kind is expected. This error has the
following causes and solutions:

· You are trying to write to a property that is read-only.
If the only property procedure defined for the property is a Property Get, you can't assign a value
to the property. Either write an appropriate Property Let procedure, or don't attempt to write to the
property.

· You are trying to read a property that is write-only.
If the only property procedure defined for the property is a Property Let, you can't read the value
of the property. Either write an appropriate Property Get procedure, or don't attempt to write to the
property.

· You are trying to set a reference but the property has only Property Get or Property Let
procedures.
Either write a Property Set procedure for the property, or don't try to set a reference to it.

For additional information, select the item in question and press F1.

Invalid watch expression
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadWatchExprS"}

The specified watch expression isn't a valid expression. This error has the following cause and
solution:

· The watch expression is syntactically incorrect.
Check the syntax of all components in the expression. Note that the syntax for a watch expression
corresponds to the locale of the project in which the expression being watched is defined.

For additional information, select the item in question and press F1.

Label not defined
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgLabelNotDefinedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLabelNotDefinedS"}

This error has the following cause and solution:

· A line label or line number is referred to (for example in a GoTo statement), but doesn't occur
within the scope of the reference.
The label must be within the procedure that contains the reference. Line labels are visible only in
their own procedures.

For additional information, select the item in question and press F1.

Language/country setting has changed
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDefaultLCIDChangeS"}

This error has the following cause and solution:

· You changed the default language/country setting for the Visual Basic environment.
Be aware that this may cause problems, although by itself it is legal.

For additional information, select the item in question and press F1.

Line isn't an executable statement
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoExecStmtS"}

Declarations and comments are not executable statements. This error has the following cause and
solution:

· You chose the Step To Cursor command, but the cursor was not on a line containing an
executable statement.
Place the cursor on an executable statement near the current line.

For additional information, choose the Step To Cursor command on the Run menu and press F1.

Line too long
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLineTooLongS"}

A physical line of Visual Basic code can contain up to 1023 characters. This error has the following
cause and solution:

· A line contains too many characters.
You can create a longer logical line by joining physical lines with a line-continuation character, a
space followed by an underscore (_). Up to 10 physical lines can be joined with line-continuation
characters to form a single logical line. Thus, a logical line could potentially contain a total of
10,230 characters. Beyond that, you must break the line into individual statements or assign some
expressions to intermediate variables.

For additional information, select the item in question and press F1.

Loop without Do
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgLoopNoMatchingDoC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLoopNoMatchingDoS"}

A Do loop must begin with a Do statement. This error has the following cause and solution:

· You have an unterminated loop block nested within another loop.
Check to verify that the correct Do...Loop syntax is used.

For additional information, select the item in question and press F1.

LSet allowed only on strings and user-defined types
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgLsetTypeErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLsetTypeErrorS"}

LSet is used to left align data within strings and variables of user-defined type. This error has the
following causes and solutions:

· The specified variable isn't a string or user-defined type.
If you are trying to block assign one array to another, LSet does not work. You must use a loop to
assign each element individually.

· You tried to use LSet with an object.
LSet can also be used to assign the elements of a user-defined type variable to the elements of a
different, but compatible, user-defined type. Although objects are similar to user-defined types, you
can't use LSet on them. Similarly, you can't use LSet on variables of user-defined types that
contain strings, objects, or variants.

For additional information, select the item in question and press F1.

LSet not allowed
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgLsetOwnerRecordC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLsetOwnerRecordS"}

LSet is used to left-align data within strings and variables of user-defined type. This error has the
following cause and solution:

· You tried to use LSet on a user-defined type containing strings, objects, or variants.
You must assign the elements individually from this variable of user-defined type to another.

For additional information, select the item in question and press F1.

Maximum number of watch expressions added
There is a limit to the number of watch expressions the Watch window can contain. This error has the
following cause and solution:

· You added the maximum number of watch expressions to the Watch window.
Remove one watch expression for each new one you want to add, or display the value you want to
know about in the Immediate window.

Method or data member not found
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgIdentNotMemberC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIdentNotMemberS"}

The collection, object, or user-defined type doesn't contain the referenced member. This error has the
following causes and solutions:

· You misspelled the object or member name.
Check the spelling of the names and check the Type statement or the object documentation to
determine what the members are and the proper spelling of the object or member names.

· You specified a collection index that's out of range.
Check the Count property to determine whether a collection member exists. Note that collection
indexes begin at 1 rather than zero, so the Count property returns the highest possible index
number.

For additional information, select the item in question and press F1.

Member identifier already exists in object module from which this   
object module derives
Identifiers used for object module members can't conflict with names already used in an object
module from which they derive. This error has the following cause and solution:

· A procedure or data member identifier in your object module uses an identifier already used in the
object module from which it derives. For example, a form has a BackColor property, so the
following code would cause this error:
' Form already has a BackColor property.
Dim BackColor As Integer' Generates the error.
Function BackColor() ' Generates the error.
End Function
Change the identifier that conflicts with the member identifier in your object module.

For additional information, select the item in question and press F1.

Method not valid without suitable object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgIllegalMethodC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIllegalMethodS"}

Not all methods can be performed by all objects. This error has the following cause and solution:

· You called a method without specifying an object, and the method isn't valid for the implicit object.
For example, you can't use the Line method in a standard module without a valid object qualifier
because a standard module can't display the output of the Line method.
Explicitly qualify the method call with an object that can accept the method. For example, you can
specify a form or picture box with the Line method.

Note      Other methods that need an explicit object qualifier when used in a standard module include
Circle, Print, and PSet.

For additional information, select the item in question and press F1.

Missing end bracket
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMissingEndBrackS"}

Brackets in a statement must occur in matching pairs. This error has the following cause and solution:

· An opening bracket isn't matched by a closing bracket.
Place a closing bracket at the end of the material to be bracketed.

For additional information, select the item in question and press F1.

Module not found
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgModuleNotFoundS"}

Modules aren't loaded from a code reference — they must be part of the project. This error has the
following cause and solution:

· The requested module doesn't exist in the specified project. For example, the statement
MyModule.SomeVar = 5 generates this error when MyModule isn't visible in the project
MyProject.
See your host application documentation for information on including the module in the project.

Module too large
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgModTooLargeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgModTooLargeS"}

A module contains code within the project. This error has the following cause and solution:

· There is too much code in the module.
Create a new module and move some of the procedures from this module to the new one. If the
current module contains module-level declarations of data that must be visible to the procedures in
the new module, declare that data as Public.

Note      Comments aren't counted as lines of code. Therefore, deleting comments doesn't prevent this
error.

For additional information, select the item in question and press F1.

Must be first statement on the line
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgMustbe1stStatementC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMustBe1stStatementS"}

Not all keywords can appear at the beginning of a line of code. This error has the following causes
and solutions:

· You preceded a Sub, Function, or Property statement with another statement on the same line.
A Sub, Function, or Property statement must always be the first statement on any line in which it
appears (unless preceded by the keyword Public, Private, or Static).

· You preceded an End If, Else, or ElseIf statement with another statement on the same line.
An End If, Else, or ElseIf (only when used in a block If structure) statement must always be the
first statement on any line in which it appears.

For additional information, select the item in question and press F1.

Name conflicts with existing module, project, or object library
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgModNameConflictS"}

Modules, object libraries, and referenced projects must be uniquely named within a project. This error
has the following causes and solutions:

· There is already a module, project, or object library with this name referenced in this project. A file
name extension isn't considered part of the name, so different extensions can't be used to
distinguish one file from another.
Use a different name for one of the duplicate module, project, or object library references.

· You attempted to add a reference to a project or object library whose file name (without an
extension) is the same as the name of one of the current project's modules.
Change either the module name or the name of the file that could not be added.

For additional information, select the item in question and press F1.

Named argument already specified
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNamedAlreadySpecifiedS"}

You can use a named argument only once in the argument list of each procedure invocation. This
error has the following causes and solutions:

· You specified the same named argument more than once in a single call. For example, if the
procedure MySub expects the named arguments Arg1 and Arg2, the following call would generate
this error:
Call MySub(Arg1 := 3, Arg1 := 5)
Remove one of the duplicate specifications.

· You specified the same argument both by position and with a named argument, for example:
Call MySub(1, Arg1 := 3)
Remove one of the duplicate specifications.

For additional information, select the item in question and press F1.

Named arguments not allowed
Named arguments aren't permitted in all situations. This error has the following causes and solutions:

· You tried to specify a named argument as an array index, for example:
MyVar = MyArray(MyNamedArg := 1)
Use an ordinary variable or constant expression as an array index.

· You tried to specify a named argument with an object, for example:
MyVar = MyObject(MyNamedArg := 1)
Use a variable or constant expression if the object requires an argument. For example, if the
default for an object is a method, the object's name represents the default method. If it needs
arguments, specify them positionally.

· You tried to specify a named argument with an external name:
MyVar = [MyName](MyNamedArg := 1)
Use an ordinary variable or constant expression if the external name needs an argument.

· You tried to specify a named argument with a data member of an object, for example:
MyVar = [MyObject].MyProperty(MyNamedArg := 1)
Use an ordinary variable or constant expression if the data member needs an argument.

For additional information, select the item in question and press F1.

Next without For
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgNextnomatchingforC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNextNoMatchingForS"}

A Next statement must have a preceding For statement that matches. This error has the following
cause and solution:

· A Next statement is used without a corresponding For statement.
Check other control structures within the For...Next structure and verify that they are correctly
matched. For example, an If without a matching End If inside the For...Next structure generates
this error.

For additional information, select the item in question and press F1.

No text selected
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoSelectionS"}

You must select some text to perform this operation. This error has the following cause and solution:

· You didn't select any text prior to initiating a Find or Replace operation.
Some host applications permit you to specify selection scope when searching for and replacing
text, even though no text is actually selected. To select text, place the pointer at the beginning of
the desired selection, then hold down the SHIFT key and use either the arrow keys or click the end
of the text to complete the selection. If you don't want to search selected text, undo the Selection
option.

For additional information, select the item in question and press F1.

Not enough memory to completely save project
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgOOmemForCanonicalSaveC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOOmemForCanonicalSaveS"}

When a project is saved, extra information is usually saved to make it possible to load the project in a
later version or on a different platform. This error has the following cause and solution:

· Memory available is insufficient to save information that will be necessary if you attempt to load the
project in a later version of Visual Basic or on a different platform.
If you plan to open the project in a later version of Visual Basic or on another platform, close some
applications and try to save again.

For additional information, select the item in question and press F1.

No watch expression selected
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEmptyInstWatchExprS"}

You must have an expression selected when you choose the Instant Watch command. This error has
the following cause and solution:

· You didn't select an expression to watch before choosing Instant Watch.
Highlight the watch expression in the Code window before choosing Instant Watch.

For additional information, select the item in question and press F1.

Object library feature not supported
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgUnsupportedTypeLibFeatureS"}

It's possible to have features in an object library that have no equivalent in Visual Basic. This error
has the following cause and solution:

· An attempt was made to access an object library data type or function that can't be supported by
Visual Basic.
Contact the creator of the object library for more information on when it is appropriate to use the
object library, and the tools with which it should be used.

For additional information, select the item in question and press F1.

Object library for Visual Basic for Applications not found
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMissingVBATypelibS"}

The Visual Basic for Applications object library is no longer a standalone file; it is integrated into the
dynamic-link library (DLL).

Under unusual circumstances a previous version of the object library (vaxxx.olb or vaxxxx.olb)
corresponding to the language of the project might be needed, but not found. This error has the
following causes and solutions:

· The object library is missing completely, isn't in the expected directory, or is an incorrect version.
Search your disk to make sure the object library is in the correct directory, as specified in the host-
application documentation.

If the missing library is a language version that is installed by the host application, it may be easiest to
simply rerun the setup program. If a project requires a different language object library than the one
that accompanies your host application (for example, if someone sends you a project written on a
machine set up for a different language), make sure the correct language version of the Visual Basic
object library is included with the project and it is installed in the expected location.

Applications may support different language versions of their object libraries. To find out which
language version is required, display the References dialog box, and see which language is indicated
at the bottom of the dialog box.

Object libraries exist in different versions for each platform. Therefore, when projects are moved
across platforms, for example, from Macintosh to Microsoft Windows, the correct language version of
the referenced library for that platform must be available in the location specified in your host
application documentation. Note that some language codes are two characters while others are three
characters.

The Visual Basic object library file name is constructed as follows:

· Windows: Application Code + Language Code + [Version].OLB. For example:
The French Visual Basic for Applications object library for version 2 was vafr2.olb.

· Macintosh: Application Name Language Code [Version] OLB. For example:
The French Visual Basic for Applications object library for version 2 was VA FR 2 OLB.

If you can't find a missing project or object library on your system, contact the referencing project's
author. If the missing library is a Microsoft application object library, you can obtain it as follows:

· If you have access to Microsoft electronic technical support services, refer to the technical support
section of this Help file. Under electronic services, you will find instructions on how to use the
appropriate service option.

· If you don't have access to Microsoft electronic technical support services, Microsoft object libraries
are available upon request as an application note from Microsoft. Information on how to contact
your local Microsoft product support organization is also available in the technical support section
of this Help file.

For additional information, select the item in question and press F1.

Object library not registered
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLibNotRegisteredS"}

The Visual Basic for Applications object library is no longer a standalone file; it is integrated into the
dynamic-link library (DLL).

In earlier versions, when you started an application that uses Visual Basic for Applications, certain
object libraries were loaded. This error has the following cause and solution:

· An attempt was made to load a previous version of the Visual Basic for Applications object library
(vaxxx.olb) or host-application object libraries. However, the correct language version of these
object libraries could not be found in the system registry.
Reregister your application. On the Macintosh, delete the vba.ini file from the Macintosh
Preferences folder, and restart your application.

For additional information, select the item in question and press F1.

Object library's language setting incompatible with current project
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLangMismatchS"}

The reference couldn't be added. This error has the following cause and solution:

· You attempted to add a reference to an object library whose locale isn't compatible with the locale
of the current project. The reference was not added. To use that object library, a project whose
locale is compatible with it must be created.
Try registering both Visual Basic for Applications and the host application for the given language.
The object library then becomes available in the References dialog box.
Note      When Visual Basic is the host application, it isn't possible to change a project's language
setting. Any object libraries used must be compatible with the English/U.S. setting.

Type not supported in Visual Basic
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvalidTypeInfoKindC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidTypeInfoKindS"}

Not all types are supported in Visual Basic. This error has the following cause and solution:

· You tried to use a type in your program that has no equivalent in Visual Basic for Applications. For
example, Visual Basic has no pointer or unsigned integer type, so if you try to create a variable of
one of those types from an object library, this error occurs. In the following example that follows,
even though Rainbow may be a valid structure, Visual Basic can't create a variable of that type if it
contains a type Visual Basic doesn't recognize:
Dim MyVar As Rainbow ' Causes error.
If the type is a valid parameter type for a function in an object library, this error means only that you
can't create a variable of that type in your own code. Although you can't always declare variables
with a data type specified in an object's documentation, there is often a Visual Basic equivalent.
For example, although Visual Basic has no pointer type, you can pass a pointer to a function to an
API function by using the AddressOf operator. Also, check the Variant type's subtypes. You can
often use them as equivalents of types not offered directly in Visual Basic. In some cases,
however, Visual Basic simply has no equivalent. For example, data pointers aren't available.

For additional information, select the item in question and press F1.

Only comments may appear after End Sub, End Function, or End
Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgStmtBetweenProcsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgStmtBetweenProcsS"}

Only comments, directives, and declarations are permitted outside procedures. This error has the
following cause and solution:

· You placed executable code outside a procedure.
Any nondeclarative lines outside a procedure must begin with a comment delimiter ('). Declarative
statements must appear before the first procedure declaration. Comments are ignored when the
code executes.

For additional information, select the item in question and press F1.

Optional argument must be Variant
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgOptParamMustBeVariantC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOptParamMustBeVariantS"}

Optional arguments can have any intrinsic data type, but it must be a type with a single default value.
This error has the following cause and solution:

· You tried to specify Optional with a parameter that has no default value, for example, an array.
Make sure any argument specified as Optional has a default value.

For additional information, select the item in question and press F1.

Option Private Module not permitted in object module
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgOptPrivModInClassC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOptPrivModInClassS"}

Option Private Module makes the contents of a module unavailable to other projects, while
preserving their availability to your project. This error has the following cause and solution:

· The statement Option Private Module appears in an object module.
Remove the Option Private Module statement from the module. Object modules have the
characteristic of Option Private Module by default. Changing the default can't be done from code.
See your host application's documentation for information on giving object module members wider
visibility.

For additional information, select the item in question and press F1.

Out of memory; some watches might have been deleted
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOOMemWatchesDeletedS"}

When your system runs out of memory, watch expressions are deleted to make enough memory
available to permit recovery from the condition. This error has the following cause and solution:

· You have too many applications, projects, or modules loaded.
To continue working, remove any dispensable elements from memory, including unnecessary
applications, projects, or modules that may be loaded.

For additional information, select the item in question and press F1.

Out of resources
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOutOfHandlesS"}

Certain types of resources called "handles" are used internally for many operations. This error has the
following cause and solution:

· Your code has reached a resource limit.
Try saving, closing, and reloading your code. If you still receive this error message, reduce the
number of objects referenced in the code.

For additional information, select the item in question and press F1.

ParamArray must be declared as an array of Variant
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgparamarraynotarrayC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgParamArrayNotArrayS"}

Each argument to a ParamArray parameter can be of a different data type. Therefore, the parameter
itself must be declared as an array of Variant type. You can also supply any number of arguments to
a ParamArray. When the call is made, each argument supplied in the call becomes a corresponding
element of the Variant array. For example:
Sub MySub(ParamArray VarArg())

. . .
End Sub
Call MySub ("First arg", 2, 3.54)
This error has the following causes and solutions:

· In the definition of the procedure, the ParamArray parameter is defined as an array of a type other
than Variant.
Redeclare the parameter type as an array of Variant elements.

· No data type was specified for the ParamArray parameter, but the procedure definition is within
the scope of a Deftype statement, so the parameter is implicitly declared as having a type other
than Variant.
Use an explicit As Variant clause in the specification of the ParamArray parameter.

For additional information, select the item in question and press F1.

Please see the Readme file for more information on this error
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSeeReadmeS"}

Some topics were added to this product after Help was completed. Help explanations for these can
be found in the host application's Readme file.

For additional information, select the item in question and press F1.

Only public Enum types in public class modules can be used as
parameter or return types for public procedures, or as public data
members
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgPrivEnumInPublicFuncC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPrivEnumInPublicFuncS"}

A Public procedure is visible to all modules in a project, while a Private Enum type is not visible
outside its own module. This error has the following cause and solution:

· Your Public procedure is in a Public class, but it returns a value or has a parameter that is defined
in a standard module or in a Private class.
Declare the Enum Public. It must be in a class module.

For additional information, select the item in question and press F1.

Procedure too large
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgProcedureTooLargeS"}

When compiled, the code for a procedure can't exceed 64K. This error has the following cause and
solution:

· Code for this procedure exceeds 64K when compiled.
Break this, and any other large procedures, into two or more smaller procedures.

For additional information, select the item in question and press F1.

Project contains too many procedure, variable, and constant names
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTooManySymbolsS"}

A project's procedure, variable, constant, and parameter names are stored in a name table. This error
has the following cause and solution:

· The number of names in the project's name table exceeds 32,768.
The name table may contain some temporary duplicates. You can compact the name table by
saving the project to a disk, and then closing it. If the problem persists after you reopen the project,
reduce the number of names by reusing local variable names in multiple procedures, and then
recompact the table by saving the project, closing it, and reopening it.

For additional information, select the item in question and press F1.

Project not found
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgProjectNotFoundS"}

The project was not found. This error has the following cause and solution:

· You specified a project name that can't be found.
Check the way you specified the project for any errors.

For additional information, select the item in question and press F1.

Qualified name disallowed in module scope
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgQualifiedNameDisallowedS"}

Under some circumstances, some host applications don't permit procedure calls that include qualified
names. This error has the following cause and solution:

· You specified a module name in a procedure call using dot notation (qualifier.item).
If you are receiving this error it is probably because the host application already knows the
specified qualifier and doesn't need that information in the procedure call. In such a case, you can
simply omit the qualifier altogether and the host application will make the procedure call correctly.
Check the host application's documentation to find the reason for any other restrictions on qualified
names.

For additional information, select the item in question and press F1.

Qualifier must be collection
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgQualNotObjectS"}

The use of an exclamation point between two identifiers is specific to collections. This error has the
following cause and solution:

· You used a name on the left side of the exclamation point (!) that isn't the name of a collection.
If the name is supposed to represent a collection, check to make sure the name is spelled
correctly. Note that the exclamation point is also the type-declaration character for the Single data
type. If the name in question isn't supposed to be a collection, perhaps the ! type-declaration
character appended to a variable name has been concatenated with another name.

For additional information, select the item in question and press F1.

Range has no values
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIllegalArrayBoundS"}

There are limitations on the way you can specify the number of elements in an array. This error has
the following cause and solution:

· You specified your array boundaries incorrectly. For example, the following ranges are invalid:
Dim MyArray(10 To -5)' Descending order not permitted.
Dim MyArray(0 To 0) ' No elements in the array.
Check to be sure your syntax is correct. For example, the following range is valid:
Dim MyArray(-5 To 10)

For additional information, select the item in question and press F1.

RSet allowed only on strings
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgRsetTypeErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgRsetTypeErrorS"}

RSet is used to right align string data within fixed-length or variable-length strings. This error has the
following cause and solution:

· You tried to use the RSet statement on a variable that isn't a string.
If appropriate, try converting the variable to a string. Otherwise, don't use RSet.

Note      Although the LSet statement can be used to assign the elements of one user-defined type
variable to the elements of a different, but compatible, user-defined type, such assignments are
discouraged because they can't be guaranteed to be portable.

For additional information, select the item in question and press F1.

Run-time error <number>:
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgRunTimeErrorS"}

This error is user-defined, and has the following cause and solution:

· An error was generated that doesn't correspond to a Visual Basic error.
Handle the error as indicated in the documentation for the object or object library that generated
the error.

For additional information, select the item in question and press F1.

Search string too long or complex
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgSearchTooLongC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSearchTooLongS"}

Visual Basic pattern-matching capabilities aren't unlimited. This error has the following cause and
solution:

· The search string specified is too long, or the combination of wildcard character specifications can't
be understood.
Reduce the length or complexity of the search string and retry the search.

For additional information, select the item in question and press F1.

Search string must be specified
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgEmptySearchStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEmptySearchStringS"}

You have to specify a search string. This error has the following cause and solution:

· You tried to perform a search operation without a string for comparison.
You must specify the search string. While you can specify a zero-length string ("") as a replacement
string, a zero-length string has no meaning as a search string.

For additional information, select the item in question and press F1.

Search text isn't found
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgSrchNotFoundC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSrchNotFoundS"}

No search text was found. This error has the following causes and solutions:

· There is no matching text between the start point and end point of the specified search scope.
You can widen the scope of the search if you want to continue searching.

· You failed to provide a left bracket when using a pattern-matching expression.
Provide the left bracket.

For additional information, select the item in question and press F1.

Seek failed: can't read/write from the disk
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgseekerrC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSeekErrS"}

Seek statements are carried out directly to disk. This error has the following causes and solutions:

· You attempted to read from a disk or file that is write-protected, read-only, or locked.
Remove the write-protected attribute or change the read-only attribute or lock. Note that if the file is
locked by another process, you can't remove the lock.

· The file has become unavailable, for example, if a removable disk has been physically changed.
If the file has been moved to another disk, access it from there. Otherwise, you can't access the
file.

· You attempted to read from a project file, an object library, or a type library, but the file has been
corrupted.
Obtain a new copy of the library or project file.

For additional information, select the item in question and press F1.

Select Case without End Select
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedEndSelectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedEndSelectS"}

Each Select Case construct must be terminated with an End Select statement. This error has the
following cause and solution:

· You used a Select Case statement without a corresponding End Select statement.
Check if there is an incorrectly matched Select Case...End Select structure inside an outer Select
Case...End Select structure. If you have nested Select Case statements, each must have a
matching End Select.

For additional information, select the item in question and press F1.

Selected watch expression invalid
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgBadInstWatchExprC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadInstWatchExprS"}

It isn't always possible to select a valid watch expression. This error has the following causes and
solutions:

· You chose the Instant Watch command, but the selected expression isn't a valid expression. For
example, you can't watch a comment or a Sub procedure call.
Select the expression in such a way that it is valid, or choose Add Watch and type in a valid
expression.

· The watch expression must have code syntax corresponding to the locale of the project that
defines the expression being watched.
Rewrite the expression in a way that is valid for the locale.

For additional information, select the item in question and press F1.

Set Next Statement can only apply to executable lines within
current procedure
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalLineForNextStmtS"}

You can choose the Set Next Statement command to indicate where a suspended program should
begin when execution is continued. This error has the following causes and solutions:

· When you chose the command, the cursor was on a line that didn't contain an executable
statement.
Place the cursor on a line with an executable statement and try again. Declarations, line labels,
and comments aren't executable, so lines with only declarations, labels, and comments can't be
the targets of the Set Next Statement command.

· When you chose the command, the cursor was on a line outside the currently executing procedure.
Place the cursor on a line within the currently executing procedure.

SHARE.EXE required
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgShareRequiredS"}

The program share.exe must be running when you start Visual Basic. This error has the following
cause and solution:

· You didn't start share.exe before starting Visual Basic.
Close your application, start share.exe, then restart your application. To avoid this problem in the
future, place an invocation of share.exe in your autoexec.bat file so share.exe automatically starts
when you turn on your machine.

For additional information, select the item in question and press F1.

Specified library or project already referenced
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLibAlreadyAvailS"}

The Add References dialog box displays referenced libraries and projects. This error has the
following cause and solution:

· You chose the Browse button in the Add References dialog box, then selected a type library or
project that was already listed in the Available References section of the Add References dialog
box.
To make a project or type library part of your project, display the References dialog box and make
sure the type library or project name is checked.

For additional information, select the item in question and press F1.

Statement invalid inside Type block
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvInsideTypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvInsideTypeS"}

Only element names, their As type clauses, and comments are allowed within a Type...End Type
statement block. This error has the following cause and solution:

· You placed an invalid statement in a user-defined type definition.
Remove anything that isn't a comment, an element name, or an As type clause.

For additional information, select the item in question and press F1.

Statement invalid outside Type block
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsginvoutsidetypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvOutsideTypeS"}

The syntax for declaring variables outside a Type...End Type statement block is different from the
syntax for declaring the elements of the user-defined type. This error has the following causes and
solutions:

· You tried to declare a variable outside a Type...End Type block or outside a statement.
When declaring a variable with an As clause outside a Type...End Type block, use one of the
declaration statements, Dim, ReDim, Static, Public, or Private. For example, the first declaration
of MyVar in the following code generates this error; the second and third declarations of MyVar are
valid:
MyVar As Double' Invalid declaration syntax.
Dim MyVar As Double
Type AType

MyVar As Double ' This is valid declaration syntax
End Type ' because it's inside a Type block.

· You used an End Type statement without a corresponding Type statement.
Check for an unmatched End Type, and either precede its block with a Type statement, or delete
the End Type statement if it isn't needed.

For additional information, select the item in question and press F1.

Statement too complex
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgstatementtoocomplexC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgStatementTooComplexS"}

Visual Basic is unable to analyze this statement. This error has the following causes and solutions:

· Your statement can't be parsed due to its complexity.
Try breaking the statement into several smaller components or replace complex conditional
clauses with a combination of logical operators and If...Then...Else statements.

· Your statement or function uses too many nested function calls.
Make function calls earlier and assign the results to specific variables; then use the variables in the
statement that is causing the complexity error.

For additional information, select the item in question and press F1.

Statements or labels invalid between Select Case and first Case
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgExpectedCaseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedCaseS"}

You can place nothing but a comment between the Select Case statement and the first Case clause.
This error has the following cause and solution:

· You placed a statement between Select Case and its first Case clause. For example:
Select Case SomeVar

' This is a comment and is valid.
Stop ' Even a Stop statement is invalid here.
Case SomeValue
. . .

End Select
The Select Case statement must be immediately followed by its first Case statement. If the
intervening expression is a comment, precede it with a comment delimiter ('). Otherwise, place the
expression where it belongs or delete it.

For additional information, select the item in question and press F1.

Syntax error
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgsyntaxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSyntaxS"}

Visual Basic can't determine what action to take. This error has the following causes and solutions:

· A keyword or argument is misspelled.
Keywords and the names of named arguments must exactly match those specified in their syntax
specifications. Check online Help, and then correct the spelling.

· Punctuation is incorrect.
For example, when you omit optional arguments positionally, you must substitute a comma (,) as a
placeholder for the omitted argument.

· A procedure isn't defined.
Check the spelling of the procedure name.

· You tried to specify both Optional and ParamArray in the same procedure declaration.
A ParamArray argument can't be Optional. Choose one and delete the other.

For additional information, select the item in question and press F1.

The edit may make the object module incompatible with the
previously specified compatible ActiveX component
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIncompatibleSrvrS"}

If a Compatible ActiveX component already exists as a previously distributed executable file or
dynamic-link library (DLL), you must be careful not to change its interface. This warning has the
following cause and solution:

· You are trying to edit the code of a object module that already is represented by an executable file.
If you make changes that affect the interface to the object, the class will not be upward compatible
with the previous version and so it will not be possible to use the new version in place of the old
version for compiled code.
In Visual Basic, the name of the Compatible ActiveX component appears in the dialog box
displayed when you choose Project Options from the Tools menu.
Important      To accept the edit, click OK in the error message dialog box. If you want to undo the
edit, click the Cancel button.

For additional information, select the item in question and press F1.

The specified region has been searched
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoMoreSrchTextFoundS"}

When you click the Find Next and Replace buttons in the Replace dialog box, the total number of
replacements isn't specified. This condition has the following cause and effect:

· When doing a search and replace operation, you can specify the region to be covered — selection,
procedure, module, or project.
If a region is selected, it is the default search region. If no region is selected, the current module is
the default search region. To change the scope of a search, select a different option in the Replace
dialog box.

For additional information, select the item in question and press F1.

The specified region has been searched and 1 replacement was
made
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgReplacementDoneS"}

When you click the Replace All button in the Replace dialog box, this message specifies the total
number of replacements. This condition has the following cause and effect:

· During the search and replace operation, only one instance of the specified text was found, and the
replacement was made. You can specify the region to be covered — selection, procedure, module,
or project.
If a region is selected, it is the default search region. If no region is selected, the current module is
the default search region. To change the scope of a search, select a different option in the Replace
dialog box.

For additional information, select the item in question and press F1.

The specified region has been searched and the replacements
were made
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgReplaceDoneS"}

When you click the Replace All button in the Replace dialog box, this message specifies the total
number of replacements. This condition has the following cause and effect:

· When doing a search and replace operation, you can specify the region to be covered — selection,
procedure, module, or project.
If a region is selected, it is the default search region. If no region is selected, the current module is
the default search region. To change the scope of a search, select a different option in the Replace
dialog box.

For additional information, select the item in question and press F1.

The .vbp file for this project contains an invalid or corrupted library
reference ID
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgBadLibIDC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadLibIDS"}

When you save a project for which a reference has been selected from the References dialog box,
an entry is made in the project's .vbp file (called the .mak file in earlier versions of Visual Basic). For
example, the entry for a data access object is:
Reference=*\G{00025E01-0000-0000-C000-000000000046}#0.0#0#C:\WINDOWS\
SYSTEM\DAO2516.DLL#Microsoft
DAO 2.5 Object Library
This error occurs when such a reference has been edited or corrupted. This error has the following
cause and solution:

· A reference in the .vbp file has become invalid.
Delete the incorrect line from the .vbp file and check the appropriate object library in the
References dialog box from the Tools menu. Then save the project, and the correct information
will be entered in the .vbp file.

For additional information, select the item in question and press F1.

This component doesn't raise any events
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgObjectDoesNotFireEventsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgObjectDoesNotFireEventsS"}

An event procedure must correspond to an event that can be raised by an object. This error has the
following cause and solution:

· You wrote an event procedure for an object that doesn’t raise events.
You can't write an event procedure that doesn’t correspond to an event.

· You tried to use WithEvents on a class that doesn’t raise events.
You can't use WithEvents on a class that doesn’t raise events.

For additional information, select the item in question and press F1.

Too many arguments
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgTooManyArgsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTooManyArgsS"}

A procedure can have only 60 arguments. This error has the following cause and solution:

· You specified more than 60 arguments.
If you must specify more arguments, define a user-defined type to collect multiple arguments of
different types, or use a ParamArray as the final argument and pass multiple values to it. You can
also pass multiple arguments by placing them in an array.

For additional information, select the item in question and press F1.

Too many dimensions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgTooManyDimsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTooManyDimsS"}

Arrays can have no more than 60 dimensions. This error has the following causes and solutions:

· You tried to declare an array with more than 60 dimensions.
Reduce the number of dimensions.

· Your array declaration is within the specified limits, but there isn't enough memory to actually
create the array.
Either make more memory available or reduce the number of dimensions.If your array is an array
of Variant type or an array contained within a Variant, you may be able to create the array with the
same number of dimensions by redeclaring it with the data type of its elements. For example, if it
contains only integers, declaring it as an array of Integer type uses less memory than if each
element is a Variant.

For additional information, select the item in question and press F1.

Too many line continuations
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTooManyLineContsS"}

There is a limit to the number of lines you can join with line-continuation characters. This error has the
following cause and solution:

· Your code has more than 10 consecutive lines joined with line-continuation characters.
Make some of the constituent lines physically longer to reduce the number of line-continuation
characters needed, or break the construct into more than one statement.

For additional information, select the item in question and press F1.

Too many local, nonstatic variables
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInsufficientLocalSpaceC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInsufficientLocalSpaceS"}

Local, nonstatic variables are variables that are defined within a procedure and reinitialized each time
the procedure is called. This error has the following cause and solution:

· The sum of the memory requirements for this procedure's local, nonstatic variables and compiler-
generated temporary variables exceeds 32K.
Declare some of your variables with the Static statement where appropriate. Static variables retain
their value between procedure invocations because they are allocated from different memory
resources than nonstatic variables.

For additional information, select the item in question and press F1.

Too many module-level variables
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInsufficientModSpaceC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInsufficientModSpaceS"}

Module-level variables are those declared in the Declarations section of a module, before the
module's procedures. This error has the following cause and solution:

· The sum of the memory requirements for all module-level variables in this module exceeds 64K.
This is the storage limit for this module. If appropriate, you can declare some of your variables as
Public in another module, or if some module-level variables are used only in one procedure, you
can declare them within that procedure. If you declared variables at module level because you
want them to retain their value between procedure invocations, you can instead declare them as
Static within the procedure in which they are referenced.

Note      Available space can vary among operating systems.

For additional information, select the item in question and press F1.

Type-declaration character doesn't match declared data type
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTypecharNoMatchS"}

The data type of a variable can't be changed by appending the type-declaration character for another
type. This error has the following cause and solution:

· You declared a variable of a specific type, referenced a variable of the same name in the same
scope, and then appended an inconsistent type-declaration character.
If you want to be able to change the type of data assigned to a variable, declare the variable as a
Variant. If you simply appended an incorrect type-declaration character, delete or change it.

For additional information, select the item in question and press F1.

Type-declaration character not allowed
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgtypecharnotallowedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTypecharNotallowedS"}

While using type-declaration characters is valid in Visual Basic, some data types (including Byte,
Boolean, Date, Object, and Variant) have no associated type-declaration characters. This error has
the following causes and solutions:

· You tried to use a type-declaration character in the declaration of a variable that uses the As
clause, for example, with Dim, Static, Public, and so on.
Either remove the type-declaration character or remove the As clause.

· You tried to use a type-declaration character in reference to a variable that was implicitly declared
without a type-declaration character:
MyVar = 20 ' Implicit declaration.
MyVar% = 25 ' Generates an error.
Either remove the type-declaration character or redeclare the original variable.

Note      If an explicit variable declaration contains a type-declaration character, inclusion of the
character is optional in later references. For example:
Dim MyStr$
MyStr = "Because it was explicitly declared, the $ is optional."

For additional information, select the item in question and press F1.

Type-declaration character required
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTypecharRequiredS"}

The necessity of using type-declaration characters depends on the form of the identifier's declaration.
This error has the following cause and solution:

· A variable that was originally implicitly declared with a type-declaration characters was referenced
without a type-declaration character. For example:
MyStr$ = "Implicit declaration"
MyStr = "Trying to refer to MyStr$, but error results" _
 & "from calling it MyStr."
Either make the declaration explicit, or add the type-declaration character to later references.

Note      If an explicit variable declaration contains a type-declaration character, inclusion of the
character is optional in later references. For example:
Dim MyStr$
MyStr = "Because it was explicitly declared, the $ is optional."

For additional information, select the item in question and press F1.

Type mismatch: array or user-defined type expected
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgaggregateparamtypemismatchC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgaggregateParamTypeMismatchS"}

The type of an argument or parameter includes whether or not it is an array or a user-defined type.
This error has the following cause and solution:

· Your argument specified a single element of an array or user-defined type, or a simple variable,
literal, or constant. However, it is being passed to a parameter that expects a whole array or user-
defined type.
Either change the argument or change the definition of the parameter.

· Your argument specified an array or user-defined type, but it was not of the same type as the
parameter.
Either pass an array of the expected type or change the definition of the parameter declaration.

For additional information, select the item in question and press F1.

Unable to read from the disk
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgReadFaultS"}

There is a general problem reading from a disk. This error has the following causes and solutions:

· The disk drive door is improperly closed.
If the disk is removable, check the drive door. Close it properly if necessary.

· The disk may be inserted upside down.
Reinsert the disk right-side up.

· The disk may not be properly formatted.
Reformat the disk if you are willing to lose the data it currently contains.

· You are experiencing network problems.
Try restarting your network.

· You placed a disk of a certain density in a drive that can't read it.
Use a different drive or copy the material you want to a disk that can be read on your drive.

For additional information, select the item in question and press F1.

Unable to write to the disk
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgWriteFaultS"}

There is a general problem writing to a disk. This error has the following causes and solutions:

· The disk drive door is improperly closed.
If the disk is removable, check the drive door. Close it properly if necessary.

· The disk may be inserted upside down.
Reinsert the disk right-side up.

· The disk may not be properly formatted.
Reformat the disk if you are willing to lose the data it currently contains.

· You are experiencing network problems.
Try restarting your network.

· You placed a disk of a certain density in a drive that can't write to it.
Use a different drive or copy the material you want to a disk that can be read on your drive.

For additional information, select the item in question and press F1.

Unexpected error; please contact Microsoft Technical Support
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgUnexpectedErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgUnexpectedErrorS"}

This condition may or may not be serious. This error has the following cause and solution:

· An unanticipated error occurred in the host application or in Visual Basic.
You don't have to assume that this error is serious. However, you should note the number of the
error and report it to Microsoft Technical Support.

For additional information, select the item in question and press F1.

Unmatched brackets in search string
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadSearchStringS"}

An opening bracket must be matched by a closing bracket. This error has the following cause and
solution:

· You opened a bracket pair in a search string, but did not close it with a matching closing bracket.
Place a closing bracket in the appropriate place.

For additional information, select the item in question and press F1.

Unrecognized project language
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgUnknownLcidS"}

The specified code locale for the project to be loaded isn't currently supported by this application. This
error has the following causes and solutions:

· The project was created on a system that supports the code locale, but was then moved to a
system where that code locale isn't recognized. For example, the ole2nls.dll on the current
machine may be a version that doesn't recognize the code locale.
Install the proper dynamic-link library (DLL) on the current system.

· The correct object library for the project was not found.
Make sure the correct object libraries are available, for example, make sure your path includes
their directories.

For additional information, select the item in question and press F1.

User-defined type can't be passed ByVal
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgrecordmustbebyrefC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgRecordMustBeByrefS"}

User-defined types can only be passed by reference (the default), not by value. The error may not be
reported until the call is made. This error has the following cause and solution:

· You placed a ByVal keyword in the definition of a parameter that represented a user-defined type.
Remove the ByVal keyword. To keep changes from being propagated back to the caller, Dim a
temporary variable of the type and pass the temporary variable into the procedure.

For additional information, select the item in question and press F1.

User-defined types and fixed-length strings not allowed as the type
of a Public member of an object module; Private object modules not
allowed as the type of a public member of a public object modules
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgRecordUsedInClassC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgRecordUsedInClassS"}

You can't create Public members of Private user-defined types. This error has the following causes
and solutions:

· You declared a Public variable in an object module with the name of a Private user-defined type.
Declare the variable Private, move the Type...End Type statement defining the user-defined type
to a standard module, or remove the declaration altogether.

· You tried to define a Public procedure in an object module with a return type or parameter of user-
defined type.
Declare the procedure Private.

For additional information, select the item in question and press F1.

User-defined type not defined
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgundefinedtypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgUndefinedTypeS"}

You can create your own data types in Visual Basic, but they must be defined first in a Type...End
Type statement or in a properly registered object library or type library. This error has the following
causes and solutions:

· You tried to declare a variable or argument with an undefined data type or you specified an
unknown class or object name.
Use the Type statement in a module to define a new data type. If you are trying to create a
reference to a class, the class must be visible to the project. If you are referring to a class in your
program, you must have a class module of the specified name in your project. Check the spelling
of the type name or name of the object.

· The type you want to declare is in another module but has been declared Private.
Move the definition of the type to a standard module where it can be Public.

· The type is a valid type, but the object library or type library in which it is defined isn't registered in
Visual Basic.
Display the References dialog box, and then select the appropriate object library or type library.
For example, if you don't check the Data Access Object in the References dialog box, types like
Database, Recordset, and TableDef aren't recognized and references to them in code cause this
error.

For additional information, select the item in question and press F1.

User-defined type without members not allowed
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgzerolenrecordsdisallowedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgZeroLenRecordsDisallowedS"}

User-defined types must have at least one element. This error has the following cause and solution:

· You specified an empty user-defined type in a Type...End Type definition.
Check the Type statement for unintended comment delimiters.

For additional information, select the item in question and press F1.

Variable not defined
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgimplicitvarnotallowedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgImplicitVarNotAllowedS"}

You use the Option Explicit statement to protect your modules from having undeclared variables and
to eliminate the possibility of inadvertently creating new variables when typographical errors occur.
This error has the following cause and solution:

· You used an Option Explicit statement to require the explicit declaration of variables, but you
used a variable without declaring it.
Explicitly declare the variable, or change the spelling of the variable to match that of the intended
variable.

For additional information, select the item in question and press F1.

Variable not yet created in this context
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgVariableNotInstantiatedS"}

A variable has to be created before it can be displayed in the Watch window or the Immediate
window, and before it can have values assigned to it in the Immediate window. This error has the
following causes and solutions:

· You tried to display the value of a local variable that you just entered in your code before executing
at least a Single Step command in break mode.
Step into the code to force compilation of the new statement.

· You tried to display the value of a local variable that you just added in a procedure farther down the
call chain by moving to the procedure using the Calls dialog box.
You have to actually return to the procedure before you can display the variable in its context.

For additional information, select the item in question and press F1.

Variable required — can't assign to this expression
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsglvaluerequiredC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLvalueRequiredS"}

This error typically occurs when you attempt to assign a value to something that can't accept the
assignment. This error has the following causes and solutions:

· You attempted to use a numeric expression as an argument to the Len function.
The Len function doesn't accept a numeric expression, a numeric literal, or a binary numeric
expression, but it does accept either a string or numeric variable, a string expression, or a variable
of user-defined type.

· You used a function call or an expression as an argument to Input #, Let, Get, or Put. For
example, you may have used an argument that appears to be a valid reference to an array
variable, but instead is a call to a function of the same name.
Input #, Let, Get, and Put don't accept function calls as arguments.

· You attempted to assign a value to an identifier previously declared as a constant.
Choose another name for the identifier.

· You tried to use a nonvariable as a loop counter in a For...Next construction.
Use a variable as the counter.

· You tried to assign a value to a read-only property or to an expression that consists of more than
one variable (such as X + Y). An assignment places a value at a memory location. The specified
expression must represent a single, writable location.
Rewrite the assignment to a single variable name that can accept the data.

· You tried to use an undeclared variable that is defined as a constant in a type library.
Either use a different name for the variable, or declare it explicitly.

For additional information, select the item in question and press F1.

Warning: custom language settings not portable
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCustomLCIDChangeS"}

Not all language settings are portable. This warning has the following cause and solution:

· You used a custom language setting in your code.
When you choose a custom language/country setting for your code, the language conventions
used in your code match those set in the Control Panel of your system. You can use custom code
locale settings, but your code may not work in other locales or on other systems with different
settings. The host application parses some strings based on the Control Panel settings of the
machine on which it is running.
If the Control Panel settings on the target machine aren't the same as those on the machine on
which the code was written, strings parsed by a host application don't work, for example, code that
depends on a locale-specific decimal separator. Therefore, you should not use a custom language
setting unless you don't intend to send your code to other users. If you plan to send your code to
other users, select a predefined locale.

For additional information, select the item in question and press F1.

Wend without While
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgwendwithoutwhileC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgWendWithoutWhileS"}

Every Wend statement must be preceded by a matching While statement. This error has the
following cause and solution:

· You used a Wend statement without a preceding While statement.
Check for an unterminated loop nested within the While...Wend loop that's causing the error.

For additional information, select the item in question and press F1.

While without Wend
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgexpectedwendC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgExpectedWendS"}

A While statement is used without a corresponding Wend statement. This error has the following
cause and solution:

· You opened a While...Wend construct, but did not close it.
Check for an incorrectly matched While...Wend structure inside the outer While...Wend structure.

For additional information, select the item in question and press F1.

With object must be user-defined type, Object, or Variant
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgbadwithoperandC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadWithOperandS"}

The With...End With block can't be used with all variable types. This error has the following cause
and solution:

· You tried to use a variable that was not of Object type, user-defined type, or Variant type
containing an object within a With block.
Check to see if you misspelled the name of the object, user-defined type, or Variant variable.

For additional information, select the item in question and press F1.

Wrong number of dimensions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgarrayaritymismatchC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgArrayArityMismatchS"}

You must reference an array with indexes corresponding to the same number of dimensions as
appear in the array's declaration. This error has the following cause and solution:

· You referred to an array with a different number of dimensions than it actually contains. For
example, referring to an array as X(2,4) (an array with two dimensions) when it has been defined
as Dim X(5) (an array with one), generates this error.
Check the declaration of the array and, in the reference, include one index for each dimension in
the declaration.

For additional information, select the item in question and press F1.

You'll have to restart your program after this edit — proceed
anyway?
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCannotEditInBreakModeS"}

You can edit code in break mode, but some edits prevent continuing execution. This error has the
following cause and solution:

· You attempted an edit that prevents continued execution, for example, you declared a static
variable.
If you choose Yes, execution will terminate and you can edit your code. If you choose No, you can
continue running the code from the point at which it was suspended.

For additional information, select the item in question and press F1.

You must terminate the #If block with an #End If
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgLbExpectedEndIfC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLbExpectedEndIfS"}

#If is a conditional compilation directive. This error has the following cause and solution:

· An #If block was detected that isn't terminated by an #End If.
Add an #End If in the appropriate position.

For additional information, select the item in question and press F1.

Argument not optional (Error 449)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgParameterNotOptionalC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgParameterNotOptionalS"}

The number and types of arguments must match those expected. This error has the following causes
and solutions:

· Incorrect number of arguments.
Supply all necessary arguments. For example, the Left function requires two arguments; the first
representing the character string being operated on, and the second representing the number of
characters to return from the left side of the string. Because neither argument is optional, both must
be supplied.

· Omitted argument isn't optional.
An argument can only be omitted from a call to a user-defined procedure if it was declared
Optional in the procedure declaration. Either supply the argument in the call or declare the
parameter Optional in the definition.

For additional information, select the item in question and press F1.

Bad DLL calling convention (Error 49)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgDLLBadCallingConvC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDLLBadCallingConvS"}

Arguments passed to a dynamic-link library (DLL) routine must exactly match those expected by the
routine. Calling conventions deal with number, type, and order of arguments. This error has the
following causes and solutions:

· Your program is calling a routine in a DLL that's being passed the wrong type of arguments.
Make sure all argument types agree with those specified in the declaration of the routine you are
calling.

· Your program is calling a routine in a DLL that's being passed the wrong number of arguments.
Make sure you are passing the same number of arguments indicated in the declaration of the
routine you are calling.

· Your program is calling a routine in a DLL, but isn't using the StdCall calling convention.
If the DLL routine expects arguments by value, then make sure ByVal is specified for those
arguments in the declaration for the routine.

· Your Declare statement includes CDecl.
The CDecl keyword applies only to the Macintosh.

For additional information, select the item in question and press F1.

Bad file mode (Error 54)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgBadFileModeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadFileModeS"}

Statements used in manipulating file contents must be appropriate to the mode in which the file was
opened. This error has the following causes and solutions:

· A Put or Get statement is specifying a sequential file.
Put and Get can only refer to files opened for Random or Binary access.

· A Print # statement specifies a file opened for an access mode other than Output or Append.
Use a different statement to place data in the file or reopen the file in an appropriate mode.

· An Input # statement specifies a file opened for an access mode other than Input.
Use a different statement to place data in the file or reopen the file in Input mode.

· You attempted to write to a read-only file.
Change the read/write status of the file or don't try to write to it.

For additional information, select the item in question and press F1.

Bad file name or number (Error 52)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgBadFileNameorNumberC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadFileNameOrNumberS"}

An error occurred trying to access the specified file. This error has the following causes and solutions:

· A statement refers to a file with a file number or file name that is:
· Not specified in the Open statement or was specified in an Open statement, but has since been

closed.
Specify the file name in an Open statement. Note that if you invoked the Close statement
without arguments, you may have inadvertently closed all currently open files, invalidating all file
numbers.

· Out of the range of file numbers (1 – 511).
If your code is generating file numbers algorithmically, make sure the numbers are valid.

· There is an invalid name or number.
File names must conform to operating system conventions as well as Basic file-naming
conventions. In Microsoft Windows, use the following conventions for naming files and directories:
· The name of a file or directory can have two parts: a name and an optional extension. The two

parts are separated by a period, for example, myfile.new.
· The name can contain up to 255 characters.
· The name must start with either a letter or number. It can contain any uppercase or lowercase

characters (file names aren't case-sensitive) except the following characters: quotation mark ("),
apostrophe ('), slash (/), backslash (\), colon (:), and vertical bar (|).

· The name can contain spaces.
· The following names are reserved and can't be used for files or directories: CON, AUX, COM1,

COM2, COM3, COM4, LPT1, LPT2, LPT3, PRN, and NUL. For example, if you try to name a file
PRN in an Open statement, the default printer will simply become the destination for Print # and
Write # statements directed to the file number specified in the Open statement.

· The following are examples of valid Microsoft Windows file names:
LETTER.DOC
My Memo.Txt
BUDGET.92
12345678.901
Second Try.Rpt

· On the Macintosh, a file name can include any character except the colon (:), and can contain
spaces. Null characters (Chr(0)) aren't allowed in any file names.

For additional information, select the item in question and press F1.

Bad record length (Error 59)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgBadRecordLengthC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadRecordLenS"}

The length of a record variable in a Get or Put statement must be the length specified in its
corresponding Open statement. This error has the following causes and solutions:

· The record variable's length differs from the length specified in the corresponding Open statement.
Make sure the sum of the sizes of fixed-length variables in the user-defined type defining the
record variable's type is the same as the value stated in the Open statement's Len clause. In the
following example, assume RecVar is a variable of the appropriate type. You can use the Len
function to specify the length, as follows:
Open MyFile As #1 Len = Len(RecVar)

· The variable in a Put statement is (or includes) a variable-length string.
Because a 2-byte descriptor is always added to a variable-length string placed in a random access
file with Put, the variable-length string must be at least 2 characters shorter than the record length
specified in the Len clause of the Open statement.

· The variable in a Put statement is (or includes) a Variant.
Like variable-length strings, Variant data types also require a 2-byte descriptor. Variants containing
variable-length strings require a 4-byte descriptor. Therefore, for variable-length strings in a
Variant, the string must be at least 4 bytes shorter than the record length specified in the Len
clause.

For additional information, select the item in question and press F1.

Bad record number (Error 63)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgBadRecordNumberC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadRecordNumS"}

An error occurred during the attempted file access. This error has the following cause and solution:

· The record number in a Put or Get statement is less than or equal to zero.
Check the calculations used in generating the record number. Make sure that the variables
containing the record number or used in calculating record numbers are spelled correctly. A
misspelled variable name is implicitly declared and initialized to zero, unless you have properly
placed Option Explicit in the module.

For additional information, select the item in question and press F1.

Can't create necessary temporary file (Error 322)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantCreateTempFileS"}

Creating an executable file requires creation of temporary files. This error has the following cause and
solution:

· The drive that contains the directory specified by the TEMP environment variable is full.
Delete files from the full drive or specify a different drive in the TEMP environment variable.

· The TEMP environment variable specifies an invalid or read-only drive or directory.
Specify a valid drive for the TEMP environment variable or remove the read-only restriction from
the currently specified drive or directory.

For additional information, select the item in question and press F1.

Can't perform requested operation (Error 17)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantContinueS"}

An operation can't be carried out if it would invalidate the current state of the project. This error has
the following cause and solution:

· The requested operation would invalidate the current state of the project. For example, the error
occurs if you use the References dialog box to add a reference to a new project or object library
while a program is in break mode.
Stop execution of the current code, and then retry the operation.

· An attempt was made to programmatically modify currently running code. For example, your code
may have tried to read code from a disk file into a currently running module.
Although you can modify modules in the project while they aren't actually running, you can't make
modifications to a running module. To make such changes, you must stop the module from
running, make the additions or changes, and then restart execution.

For additional information, select the item in question and press F1.

Can't rename with different drive (Error 74)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgDifferentDriveC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDifferentDriveS"}

The Name statement must rename the file to the current drive. This error has the following cause and
solution:

· You tried to move a file to a different drive using the Name statement.
Use FileCopy to write the file to another drive, and then delete the old file with a Kill statement.

For additional information, select the item in question and press F1.

Can't save file to TEMP directory (Error 735)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgCantSaveFileToTEMPC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantSaveFileToTEMPS"}

Components often need to save temporary information to disk. This error has the following cause and
solution:

· Component can't find a directory named TEMP.
Create a directory named TEMP and set the TEMP environment variable equal to its path.

· The drive or partition containing the TEMP directory lacks sufficient space to save information.
Make some space on the drive by erasing unnecessary files, or create a TEMP directory on
another partition and set the TEMP environment variable equal to its path.

For additional information, select the item in question and press F1.

Class doesn't support Automation (Error 430)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgOLENotSupportedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOLENotSupportedS"}

Not all objects expose an Automation interface. This error has the following cause and solution:

· The class you specified in the GetObject or CreateObject function call was found, but has not
exposed a programmability interface.
You can't write code to control an object's behavior unless it has been exposed for Automation.
Check the documentation of the application that created the object for limitations on the use of
Automation with this class of object.

For additional information, select the item in question and press F1.

Code resource lock error (Error 455)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCodeResourceLockErrorS"}

When you access a code resource, you must lock it. This error has the following cause and solution:

· A call was made to a procedure in a code resource. The code resource was found, but an error
occurred when an attempt was made to lock the resource.
Check for an error returned by Hlock, for example, "Illegal on empty handle" or "Illegal
on free block". This error can only occur on the Macintosh.

For additional information, select the item in question and press F1.

Code resource not found (Error 454)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCodeResourceNotFoundS"}

This error can only occur on the Macintosh. This error has the following cause and solution:

· A call was made to a procedure in a code resource, but the code resource could not be found.
Check to be sure the resource is available and properly referenced.

For additional information, select the item in question and press F1.

Connection to type library or object library for remote process has
been lost (Error 442)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgLostTLBC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLostTLBS"}

During remote access (that is, when accessing an object that is part of another process or is running
on another machine), the connection to the library containing object information was broken. This
error has the following cause and solution:

· You lost your connection to the remote process's object library or type library.
To reconnect, follow these steps:
1 Restart the Application object.
2 In the error dialog box through which you entered this Help topic, click OK to display the

References dialog box.
3 The lost reference appears with the word MISSING to its left.
4 Remove the lost reference.
5 In the References dialog box, click the check box for the object you started in step 1.

For additional information, select the item in question and press F1.

Device I/O error (Error 57)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIOErrorS"}

External devices are sometimes subject to unanticipated errors. This error has the following cause
and solution:

· An input or output error occurred while your program was using a device such as a printer or disk
drive.
Make sure the device is operating properly, and then retry the operation.

For additional information, select the item in question and press F1.

Device unavailable (Error 68)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDevUnavailableS"}

This error has the following causes and solutions:

· The device you are trying to access either is not online or doesn't exist.
Check power to the device and any cables connecting your computer to the device. If you are
trying to access a printer over a network, make sure there is a logical connection between your
computer and the printer, for example, a connection associating LPT1 with the network printer ID.

· Your network connection may have been broken.
Reconnect to the network and try the operation again.

For additional information, select the item in question and press F1.

Disk full (Error 61)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgDiskFullC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDiskFullS"}

This error has the following causes and solutions:

· There isn't enough room on the disk for the completion of a Print #, Write #, or Close operation.
Move some files to another disk or delete some files.

· There isn't enough room on the disk to create required files.
Move some files to another disk or delete some files.

For additional information, select the item in question and press F1.

Disk not ready (Error 71)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDiskNotReadyS"}

This error has the following causes and solutions:

· There is no disk in the specified drive.
Put a disk in the drive and retry the operation.

· The drive door of the specified drive is open.
Close the drive door and retry the operation.

For additional information, select the item in question and press F1.

Division by zero (Error 11)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDivByZeroS"}

Division by zero isn't possible. This error has the following cause and solution:

· The value of an expression being used as a divisor is zero.
Check the spelling of variables in the expression. A misspelled variable name can implicitly create
a numeric variable that is initialized to zero. Check previous operations on variables in the
expression, especially those passed into the procedure as arguments from other procedures.

For additional information, select the item in question and press F1.

Error in loading DLL (Error 48)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgDLLLoadErrC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDLLLoadErrS"}

A dynamic link library (DLL) is a library specified in the Lib clause of a Declare statement. This error
has the following causes and solutions:

· The file isn't DLL-executable.
If the file is a source-text file, it must be compiled and linked to DLL executable form.

· The file isn't a Microsoft Windows DLL.
Obtain the Microsoft Windows DLL equivalent of the file.

· The file is an early Microsoft Windows DLL that is incompatible with Microsoft Windows protect
mode.
Obtain an updated version of the DLL.

· The DLL references another DLL that isn't present.
Obtain the referenced DLL and make it available to the other DLL.

· The DLL or one of the referenced DLLs isn't in a directory specified by your path.
Move the DLL to a referenced directory or place its current directory on the path.

For additional information, select the item in question and press F1.

File already exists (Error 58)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgFileAlreadyExistsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFileAlreadyExistsS"}

This error has the following causes and solutions:

· This error occurs at run time when the new file name, for example, one specified in a Name
statement, is identical to a file name that already exists.
Specify a new file name in the Name statement or delete the old file before specifying it in a Name
statement.

· You used the Save As command to save a currently loaded project, but the project name already
exists.
Use a different project name if you don't want to replace the other project.

For additional information, select the item in question and press F1.

File already open (Error 55)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgFileAlreadyOpenC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFileAlreadyOpenS"}

Sometimes a file must be closed before another Open or other operation can occur. This error has
the following causes and solutions:

· A sequential-output mode Open statement was executed for a file that is already open.
You must close a file opened for one type of sequential access before opening it for another. For
example, you must close a file opened for Input before opening it for Output.

· A statement, for example, Kill, SetAttr, or Name, refers to an open file.
Close the file before executing the statement.

For additional information, select the item in question and press F1.

Can't find specified file
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFileNotFoundS"}

The file was not found where specified. This error has the following causes and solutions:

· A statement, for example, Kill, Name, or Open, refers to a file that doesn't exist.
Check the spelling of the file name and the path specification.

· An attempt has been made to call a procedure in a dynamic-link library (DLL), but the library file
name specified in the Lib clause of the Declare statement can't be found.
Check the spelling of the file name and the path specification.

· In the development environment, this error occurs if you attempt to open a project or load a text file
that doesn't exist.
Check the spelling of the project name or file name and the path specification.

For additional information, select the item in question and press F1.

For loop not initialized (Error 92)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgIllegalForC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIllegalForS"}

For loop counters must be initialized. This error has the following cause and solution:

· You jumped into the middle of a For...Next loop.
Remove the jump into the loop. Placing labels inside a For...Next loop isn't recommended.

For additional information, select the item in question and press F1.

Input past end of file (Error 62)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgEndofFileC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgEndOfFileS"}

You can't read past the end-of-file position. This error has the following cause and solution:

· An Input # or Line Input # statement is reading from a file in which all data has been read or from
an empty file.
Use the EOF function immediately before the Input # statement to detect the end of file.

· You used the EOF function with a file opened for Binary access.
EOF only works with files opened for sequential Input access. Use Seek and Loc with files opened
for Binary access.

For additional information, select the item in question and press F1.

Internal error (Error 51)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInternalErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInternalErrorS"}

Make sure this error wasn't generated by the Error statement or Raise method. This error has the
following cause and solution:

· An internal malfunction has occurred in Visual Basic.
Unless this call was generated by the Error statement or Raise method, contact Microsoft Product
Support Services to report the conditions under which the message appeared.

For additional information, select the item in question and press F1.

Invalid Clipboard format (Error 460)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidClipboardFormatS"}

The Clipboard only accepts data in certain specified formats. This error has the following cause and
solution:

· You tried to place data from a component on the Clipboard, but the data is in a format incompatible
with the Clipboard.
Consult the documentation for the component to determine whether you can use the Clipboard for
transferring data from the component.

For additional information, select the item in question and press F1.

Invalid file format (Error 321)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvalidFileFormatErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidFileFormatErrorS"}

Disk files often have data stored in proprietary formats. This error has the following cause and
solution:

· You tried to load a file into a component, but the format of the data in the file was incompatible with
the component.
Consult the documentation for the component to determine the proper format for disk file data and
whether the component provides support for converting from one format to another.

· You tried to save component data to a file, but the format of the data was incompatible with the
format of the file.
Consult the documentation for the component to determine whether it provides support for
converting from one format to another.

For additional information, select the item in question and press F1.

Invalid ordinal (Error 452)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidOrdinalS"}

Your call to a dynamic-link library (DLL) indicated to use a number instead of a procedure name,
using the #num syntax. This error has the following causes and solutions:

· An attempt to convert the num expression to an ordinal failed.
Make sure the expression represents a valid number or call the procedure by name.

· The num specified doesn't specify any function in the DLL.
Make sure num identifies a valid function in the DLL.

· A type library has an invalid declaration resulting in internal use of an invalid ordinal number.
Comment out code to isolate the procedure call causing the problem. Write a Declare statement
for the procedure and report the problem to the type library vendor.

For additional information, select the item in question and press F1.

Invalid pattern string (Error 93)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgBadPatStrC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadPatStrS"}

The pattern string specified in the Like operation of a search is invalid. This error has the following
cause and solution:

· A common example of an invalid character list expression is [a-b , where the right bracket is
missing.
Review the valid characters for list expressions.

For additional information, select the item in question and press F1.

Invalid procedure call or argument (Error 5)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgillegalfunccallC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIllegalFuncCallS"}

Some part of the call can't be completed. This error has the following causes and solutions:

· An argument probably exceeds the range of permitted values. For example, the Sin function can
only accept values within a certain range. Positive arguments less than 2,147,483,648 are
accepted, while 2,147,483,648 generates this error.
Check the ranges permitted for arguments.

· This error can also occur if an attempt is made to call a procedure that isn't valid on the current
platform. For example, some procedures may only be valid for Microsoft Windows, or for the
Macintosh, and so on.
Check platform-specific information about the procedure.

For additional information, select the item in question and press F1.

Invalid property-array index (Error 381)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvalidPropertyArrayIndexC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidPropertyArrayIndexS"}

A property value may consist of an array of values. This error has the following cause and solution:

· A component's property array could have a lower bound of zero and an upper bound equal to the
number of elements in the array minus 1. Alternatively, the lower bound could be 1 and the upper
bound could equal the number of elements in the array.
Check the component's documentation to make sure your index is within the valid range for the
specified property.

For additional information, select the item in question and press F1.

Invalid use of Null (Error 94)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgCantUseNullC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantUseNullS"}

Null is a Variant subtype used to indicate that a data item contains no valid data. This error has the
following cause and solution:

· You are trying to obtain the value of a Variant variable or an expression that is Null. For example:
MyVar = Null
For Count = 1 To MyVar

. . .
Next Count
Make sure the variable contains a valid value.

For additional information, select the item in question and press F1.

Named argument not found (Error 448)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNamedParamNotFoundS"}

A named argument may not be used in a procedure invocation unless it appears in the procedure
definition. This error has the following cause and solution:

· You specified a named argument, but the procedure was not defined to accept an argument by that
name.
Check the spelling of the argument name.

For additional information, select the item in question and press F1.

Need property-array index (Error 385)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgNeedPropertyarrayIndexC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNeedPropertyarrayIndexS"}

This property value consists of an array rather than a single value. This error has the following cause
and solution:

· You didn't specify the index for the property array you tried to access.
Check the component's documentation to find the range for the indexes appropriate to the array.
Specify an appropriate index in your property access statement.

For additional information, select the item in question and press F1.

Object doesn't support current locale setting (Error 447)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLocaleSettingNotSupportedS"}

Not all objects support all locale settings. This error has the following causes and solutions:

· You attempted to access an object that doesn't support the locale setting for the current project.
For example, if your current project has the locale setting Canadian French, the object you are
trying to access must support that locale setting.
Check which locale settings the object supports.

· The object relies on national language support in a dynamic-link library (DLL), for example,
OLE2NLS.DLL, that may be out of date.
Obtain a more recent version of the DLL, one that supports the current project locale.

For additional information, select the item in question and press F1.

Object doesn't support named arguments (Error 446)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNamedArgsNotSupportedS"}

Not all objects support named arguments. This error has the following cause and solution:

· You tried to access an object whose methods don't support named arguments.
Specify arguments positionally when performing methods on this object. See the object's
documentation for more information on argument positions and types.

For additional information, select the item in question and press F1.

Object doesn't support this action (Error 445)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgActionNotSupportedS"}

Not all objects support all actions. This error has the following cause and solution:

· You referenced a method or property that isn't supported by this object.
See the object's documentation for more information on the object and check the spellings of
properties and methods.

For additional information, select the item in question and press F1.

Object not a collection (Error 451)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgNotEnumC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNotEnumS"}

Certain properties, methods, and operations can only apply to Collection objects. This error has the
following cause and solution:

· You specified an operation or property that is exclusive to collections, but the object isn't a
collection.
Check the spelling of the object or property name, or verify that the object is a Collection object.
Also look at the Add method used to add the object to the collection to be sure the syntax is
correct and that any identifiers were spelled correctly.

For additional information, select the item in question and press F1.

Object required (Error 424)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgNotObjectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNotObjectS"}

References to properties and methods often require an explicit object qualifier. This error has the
following causes and solutions:

· You referred to an object property or method, but didn't provide a valid object qualifier.
Specify an object qualifier if you didn't provide one. For example, although you can omit an object
qualifier when referencing a form property from within the form's own module, you must explicitly
specify the qualifier when referencing the property from a standard module.

· You supplied an object qualifier, but it isn't recognized as an object.
Check the spelling of the object qualifier and make sure the object is visible in the part of the
program in which you are referencing it. In the case of Collection objects, check any occurrences
of the Add method to be sure the syntax and spelling of all the elements are correct.

· You supplied a valid object qualifier, but some other portion of the call contained an error.
An incorrect path as an argument to a host application's File Open command could cause the
error. Check arguments.

· You didn't use the Set statement in assigning an object reference.
If you assign the return value of a CreateObject call to a Variant variable, an error doesn't
necessarily occur if the Set statement is omitted. In the following code example, an implicit
instance of Microsoft Excel is created, and its default property (the string "Microsoft Excel") is
returned and assigned to the Variant RetVal. A subsequent attempt to use RetVal as an object
reference causes this error:
Dim RetVal ' Implicitly a Variant.
' Default property is assigned to Type 8 Variant RetVal.
RetVal = CreateObject("Excel.Application")
RetVal.Visible = True ' Error occurs here.
Use the Set statement when assigning an object reference.

· In rare cases, this error occurs when you have a valid object but are attempting to perform an
invalid action on the object. For example, you may receive this error if you try to assign a value to a
read-only property.
Check the object's documentation and make sure the action you are trying to perform is valid.

For additional information, select the item in question and press F1.

Object variable or With block variable not set (Error 91)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgObjNotSetC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgObjNotSetS"}

There are two steps to creating an object variable. First you must declare the object variable. Then
you must assign a valid reference to the object variable using the Set statement. Similarly, a
With...End With block must be initialized by executing the With statement entry point. This error has
the following causes and solutions:

· You attempted to use an object variable that isn't yet referencing a valid object.
Specify or respecify a reference for the object variable. For example, if the Set statement is omitted
in the following code, an error would be generated on the reference to MyObject:
Dim MyObject As Object ' Create object variable.
Set MyObject = Sheets(1)' Create valid object reference.
MyCount = MyObject.Count' Assign Count value to MyCount.

· You attempted to use an object variable that has been set to Nothing.
Set MyObject = Nothing ' Release the object.
MyCount = MyObject.Count' Make a reference to a released object.
Respecify a reference for the object variable. For example, use a new Set statement to set a new
reference to the object.

· The object is a valid object, but it wasn't set because the object library in which it is described
hasn't been selected in the References dialog box.
Select the object library in the Add References dialog box.

· The target of a GoTo statement is inside a With block.
Don't jump into a With block. Make sure the block is initialized by executing the With statement
entry point.

· You specified a line inside a With block when you chose the Set Next Statement command.
The With block must be initialized by executing the With statement.

For additional information, select the item in question and press F1.

Automation error (Error 440)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgOLEAutomationErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOLEAutomationErrorS"}

When you access Automation objects, specific types of errors can occur. This error has the following
cause and solution:

· An error occurred while executing a method or getting or setting a property of an object variable.
The error was reported by the application that created the object.
Check the properties of the Err object to determine the source and nature of the error. Also try
using the On Error Resume Next statement immediately before the accessing statement, and
then check for errors immediately following the accessing statement.

For additional information, select the item in question and press F1.

Object doesn't support this property or method (Error 438)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOLENoPropOrMethodS"}

Not all objects support all properties and methods. This error has the following cause and solution:

· You specified a method or property that doesn't exist for this Automation object.
See the object's documentation for more information on the object and check the spellings of
properties and methods.

· You specified a Friend procedure to be called late bound.
The name of a Friend procedure must be known at compile time. It can't appear in a late-bound
call.

For additional information, select the item in question and press F1.

Out of memory (Error 7)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOutOfMemoryS"}

More memory was required than is available, or a 64K segment boundary was encountered. This
error has the following causes and solutions:

· You have too many applications, documents, or source files open.
Close any unnecessary applications, documents, or source files that are open.

· You have a module or procedure that's too large.
Break large modules or procedures into smaller ones. This doesn't save memory, but it can prevent
hitting 64K segment boundaries.

· You are running Microsoft Windows in standard mode.
Restart Microsoft Windows in enhanced mode.

· You are running Microsoft Windows in enhanced mode, but have run out of virtual memory.
Increase virtual memory by freeing some disk space, or at least ensure that some space is
available.

· You have terminate-and-stay-resident programs running.
Eliminate terminate-and-stay-resident programs.

· You have many device drivers loaded.
Eliminate unnecessary device drivers.

· You have run out of space for Public variables.
Reduce the number of Public variables.

For additional information, select the item in question and press F1.

Out of stack space (Error 28)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgOutofStackC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOutOfStackS"}

The stack is a working area of memory that grows and shrinks dynamically with the demands of your
executing program. This error has the following causes and solutions:

· You have too many active Function, Sub, or Property procedure calls.
Check that procedures aren't nested too deeply. This is especially true with recursive procedures,
that is, procedures that call themselves. Make sure recursive procedures terminate properly. Use
the Calls dialog box to view which procedures are active (on the stack).

· Your local variables require more local variable space than is available.
Try declaring some variables at the module level instead. You can also declare all variables in the
procedure static by preceding the Property, Sub, or Function keyword with Static. Or you can
use the Static statement to declare individual Static variables within procedures.

· You have too many fixed-length strings.
Fixed-length strings in a procedure are more quickly accessed, but use more stack space than
variable-length strings, because the string data itself is placed on the stack. Try redefining some of
your fixed-length strings as variable-length strings. When you declare variable-length strings in a
procedure, only the string descriptor (not the data itself) is placed on the stack. You can also define
the string at module level where it requires no stack space. Variables declared at module level are
Public by default, so the string is visible to all procedures in the module.

· You have too many nested DoEvents function calls.
Use the Calls dialog box to view which procedures are active on the stack.

· Your code triggered an event cascade.
An event cascade is caused by triggering an event that calls an event procedure that's already on
the stack. An event cascade is similar to an unterminated recursive procedure call, but it's less
obvious, since the call is made by Visual Basic rather than by an explicit call in your code. Use the
Calls dialog box to view which procedures are active (on the stack).

To display the Calls dialog box, select the Calls button to the right of the Procedure box in the
Debug window or choose the Calls command. For additional information, select the item in question
and press F1.

Out of string space (Error 14)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOutOfStrSpaceS"}

Visual Basic permits you to use very large strings. However, the requirements of other programs and
the way you manipulate your strings may cause this error. This error has the following causes and
solutions:

· Expressions requiring that temporary strings be created for evaluation may cause this error. For
example, the following code causes an Out of string space error on some operating
systems:
MyString = "Hello"
For Count = 1 To 100

MyString = MyString & MyString
Next Count
Assign the string to a variable of another name.

· Your system may have run out of memory, which prevented a string from being allocated.
Remove any unnecessary applications from memory to create more space.

For additional information, select the item in question and press F1.

Overflow (Error 6)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOverflowS"}

An overflow results when you try to make an assignment that exceeds the limitations of the target of
the assignment. This error has the following causes and solutions:

· The result of an assignment, calculation, or data type conversion is too large to be represented
within the range of values allowed for that type of variable.
Assign the value to a variable of a type that can hold a larger range of values.

· An assignment to a property exceeds the maximum value the property can accept.
Make sure your assignment fits the range for the property to which it is made.

For additional information, select the item in question and press F1.

Path not found (Error 76)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgPathNotFoundC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPathNotFoundS"}

The path to a file includes the drive specification plus the directories and subdirectories that must be
traversed to locate the file. A path can be relative or absolute. This error has the following cause and
solution:

· During a file-access or disk-access operation, for example, Open, MkDir, ChDir, or RmDir, the
operating system was unable to find the specified path.
Respecify the path.

For additional information, select the item in question and press F1.

Path/File access error (Error 75)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgPathFileAccessC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPathFileAccessS"}

During a file-access or disk-access operation, for example, Open, MkDir, ChDir, or RmDir, the
operating system couldn't make a connection between the path and the file name. This error has the
following causes and solutions:

· The file specification isn't correctly formatted.
A file name can contain a fully qualified (absolute) or relative path. A fully qualified path starts with
the drive name (if the path is on another drive) and lists the explicit path from the root to the file.
Any path that isn't fully qualified is relative to the current drive and directory.

· You attempted to save a file that would replace an existing read-only file.
Change the read-only attribute of the target file or save the file with a different file name.

· You attempted to open a read-only file in sequential Output or Append mode.
Open the file in Input mode or change the read-only attribute of the file.

For additional information, select the item in question and press F1.

Permission denied (Error 70)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgpermissiondeniedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPermissionDeniedS"}

An attempt was made to write to a write-protected disk or to access a locked file. This error has the
following causes and solutions:

· You tried to open a write-protected file for sequential Output or Append.
Open the file for Input or change the write-protection attribute of the file.

· You tried to open a file on a disk that is write-protected for sequential Output or Append.
Remove the write-protection device from the disk or open the file for Input.

· You tried to write to a file that another process locked.
Wait to open the file until the other process releases it.

· You attempted to access the registry, but your user permissions don't include this type of registry
access.
On 32-bit Microsoft Windows systems, a user must have the correct permissions for access to the
system registry. Change your permissions or have them changed by the system administrator.

For additional information, select the item in question and press F1.

Printer error (Error 482)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgPrinterErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPrinterErrorS"}

This error has the following cause and solution:

· An error occurred at the printer, but no other information was returned to the computer that sent the
file.
You must physically examine the printer. Make sure all connections between computer and printer
are solid. Most printers provide a display for error information such as "Out of paper," "Offline," and
so on.

For additional information, select the item in question and press F1.

Property Get can't be executed at run time (Error 393)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgGetNotSupportedAtRuntimeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgGetNotSupportedAtRuntimeS"}

Not all properties return run-time information. This error has the following cause and solution:

· The property you are trying to access is read-only at run time.
Terminate execution and view the property in design time.

For additional information, select the item in question and press F1.   

Property Get can't be executed on write-only property (Error 394)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgGetNotSupportedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgGetNotSupportedS"}

Not all properties return information. This error has the following cause and solution:

· The property you are trying to access doesn't return information.
You can't determine the state of the property.

For additional information, select the item in question and press F1.

Property or method not found (Error 423)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoSuchControlOrPropertyS"}

The spelling of an object name must exactly match the definition in its object library. This error has the
following cause and solution:

· You referred to an object.method or object.property, but method or property isn't defined.
You may have misspelled the name of the object. To see what properties and methods are defined
for an object, display the Object Browser. Select the appropriate object library to view a list of
available properties and methods.

For additional information, select the item in question and press F1.

Property not found (Error 422)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgPropertyNotFoundC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPropertyNotFoundS"}

Not all objects support the same set of properties. This error has the following cause and solution:

· This object doesn't support the specified property.
Check the spelling of the property name. Also, you may be trying to access something like a "text"
property when the object actually supports a "caption" or some similarly named property. Check the
object's documentation.

For additional information, select the object in question and press F1.

Property Set can't be executed at run time (Error 382)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgSetNotSupportedAtRunTimeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSetNotSupportedAtRunTimeS"}

It may not be possible to obtain a reference to a property at run time.This error has the following
cause and solution:

· You tried to get a reference to a property that's either read-only or write-only at run time.
Since you can use a reference for both reading and writing, the property must provide run-time
support for both operations for a reference to be obtained at run time.

For additional information, select the item in question and press F1.

Property Set can't be used with a read-only property (Error 383)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgSetNotSupportedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSetNotSupportedS"}

It may not be possible to obtain a reference to a property at run time.This error has the following
cause and solution:

· You tried to get a reference to a property that's read-only at run time.
Since you can use a reference for both reading and writing, the property must provide run-time
support for both operations for a reference to be obtained at run time. You can only use a Property
Get with this property.

For additional information, select the item in question and press F1.

Property Set not permitted (Error 387)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgSetNotPermittedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSetNotPermittedS"}

Not all properties support returning a reference. This error has the following cause and solution:

· You tried to get a reference to a property that doesn't return a reference.
Restrict your access to this property to Property Let and Property Get.

For additional information, select the item in question and press F1.

Replacements too long (Error 746)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgReplacementsTooLongC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgReplacementsTooLongS"}

A replacement may not exceed a specified maximum length. This error has the following cause and
solution:

· You specified a replacement that exceeded the length permitted.
Consult the component documentation for maximum length restriction.

For additional information, select the item in question and press F1.

Resume without error (Error 20)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgResumewoerrC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgResumeWOErrS"}

A Resume statement can only appear within an error handler and can only be executed in an active
error handler. This error has the following causes and solutions:

· You placed a Resume statement outside error-handling code.
Move the statement into an error handler, or delete it.

· Your code jumped into an error handler even though there was no error.
Perhaps you misspelled a line label. Jumps to labels can't occur across procedures, so search the
procedure for the label that identifies the error handler. If you find a duplicate label specified as the
target of a GoTo statement that isn't an On Error GoTo statement, change the line label to agree
with its intended target.

For additional information, select the item in question and press F1.

Return without GoSub (Error 3)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgReturnwoGoSubC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgReturnWOGoSubS"}

A Return statement must have a corresponding GoSub statement. This error has the following cause
and solution:

· You have a Return statement that can't be matched with a GoSub statement.
Make sure your GoSub statement wasn't inadvertently deleted.

Unlike For...Next, While...Wend, and Sub...End Sub, which are matched at compile time, GoSub
and Return are matched at run time.

For additional information, select the item in question and press F1.

Specified DLL function not found (Error 453)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidDllFunctionNameS"}

The dynamic-link library (DLL) in a user library reference was found, but the DLL function specified
wasn't found within the DLL. This error has the following causes and solutions:

· You specified an invalid ordinal in the function declaration.
Check for the proper ordinal or call the function by name.

· You gave the right DLL name, but it isn't the version that contains the specified function.
You may have the correct version on your machine, but if the directory containing the wrong
version precedes the directory containing the correct one in your path, the wrong DLL is accessed.
Check your machine for different versions. If you have an early version, contact the supplier for a
later version.

· If you are working on a 32-bit Microsoft Windows platform, both the DLL name and alias (if used)
must be correct.
Make sure the DLL name and alias are correct.

· Some 32-bit DLLs contain functions with slightly different versions to accommodate both Unicode
and ANSI strings. An "A" at the end of the function name specifies the ANSI version. A "W" at the
end of the function name specifies the Unicode version.
If the function takes string-type arguments, try appending an "A" to the function name.

For additional information, select the item in question and press F1.

Expression too complex (Error 16)
{ewc HLP95EN.DLL,DYNALINK,"See Also":""}

The number of subexpressions allowed in a floating-point expression varies among platforms. For
example, on 32-bit Microsoft Windows operating systems, the limit is 8 levels of nested floating-point
expressions. This error has the following cause and solution:

· A floating-point expression contains too many nested subexpressions.
Break the expression into as many separate expressions as necessary to prevent the error from
occurring.

Note      In earlier versions of Visual Basic, Error 16 was "String expression too complex." That error
condition can no longer occur. However, if you have early code that traps and handles that error, you
should remove it to prevent confusion with this new error.

For additional information, select the item in question and press F1.

Search text not found (Error 744)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgSearchTextNotFoundC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgSearchTextNotFoundS"}

This error has the following cause and solution:

· The text you specified wasn't found.
The text doesn't exist.

For additional information, select the item in question and press F1.

Sub, Function, or Property not defined (Error 35)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgundefinedprocC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgUndefinedProcS"}

A Sub, Function, or Property procedure must be defined to be called. This error has the following
causes and solutions:

· You misspelled the name of your procedure.
Check the spelling and correct it.

· You tried to call a procedure from another project without explicitly adding a reference to that
project in the References dialog box.

To add a reference
1 Display the References dialog box.
2 Find the name of the project containing the procedure you want to call. If the project name

doesn't appear in the References dialog box, click the Browse button to search for it.
3 Click the check box to the left of the project name.
4 Click OK.

· The specified procedure isn't visible to the calling procedure.
Procedures declared Private in one module can't be called from procedures outside the module. If
Option Private Module is in effect, procedures in the module aren't available to other projects.
Search to locate the procedure.

· You declared a dynamic-link library (DLL) routine, but the routine isn't in the specified library.
· Check the ordinal (if you used one) or the name of the routine. Make sure your version of the DLL

is the correct one. The routine may only exist in later versions of the DLL. If the directory containing
the wrong version precedes the directory containing the correct one in your path, the wrong DLL is
accessed. You gave the right DLL name, but it isn't the version that contains the specified function.

For additional information, select the item in question and press F1.

Subscript out of range (Error 9)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgOutOfBoundsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOutOfBoundsS"}

Elements of arrays and members of collections can only be accessed within their defined ranges. This
error has the following causes and solutions:

· You referenced a nonexistent array element.
The subscript may be larger or smaller than the range of possible subscripts, or the array may not
have dimensions assigned at this point in the application. Check the declaration of the array to
verify its upper and lower bounds. Use the UBound and LBound functions to condition array
accesses if you're working with arrays that are redimensioned. If the index is specified as a
variable, check the spelling of the variable name.

· You declared an array but didn't specify the number of elements. For example, the following code
causes this error:
Dim MyArray() As Integer
MyArray(8) = 234 ' Causes Error 9.
Visual Basic doesn't implicitly dimension unspecified array ranges as 0 – 10. Instead, you must use
Dim or ReDim to specify explicitly the number of elements in an array.

· You referenced a nonexistent collection member.
Try using the For Each...Next construct instead of specifying index elements.

· You used a shorthand form of subscript that implicitly specified an invalid element.
For example, when you use the ! operator with a collection, the ! implicitly specifies a key. For
example, object!keyname.value is equivalent to object.item(keyname).value. In this case, an error
is generated if keyname represents an invalid key in the collection. To fix the error, use a valid key
name or index for the collection.

For additional information, select the item in question and press F1.

This component doesn't support events (Error 459)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgObjDoesNotSupportEventsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgObjDoesNotSupportEventsS"}

Not every component supports the declaring and raising of events. This error has the following cause
and solution:

· You tried to declare, raise, or write an event procedure for a component that doesn't support any
type of events.
You can't declare, raise, or write event procedures for a component that doesn't support events.

For additional information, select the item in question and press F1.

Too many DLL application clients (Error 47)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTooManyClientsS"}

The dynamic-link library (DLL) for Visual Basic can only accommodate access by 50 host applications
at a time. This error has the following cause and solution:

· Your application and other applications that are Visual Basic hosts (some of which may be
accessed by your application) are all attempting to access the Visual Basic DLL at the same time.
Reduce the number of open applications accessing Visual Basic.

For additional information, select the item in question and press F1.

Too many files (Error 67)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTooManyFilesS"}

There is a limit to the number of disk files that can be open at one time. This error has the following
causes and solutions:

· MS-DOS operating system: More files have been created in the root directory than the operating
system permits.
The MS-DOS operating system limits the number of files that can be in the root directory, usually
512. If your program is opening, closing, or saving files in the root directory, change your program
so that it uses a subdirectory.

· MS-DOS operating system: More files have been opened than the number specified in the files=
setting in your CONFIG.SYS file.
Increase the number specified in the files= setting in your CONFIG.SYS file and restart your
computer.

· Macintosh: Your program tried to open more than 40 files.
On the Macintosh, the standard limit is 40 files. This limit can be changed using a utility to modify
the MaxFiles parameter of the boot block.

For additional information, select the item in question and press F1.

Type mismatch (Error 13)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgTypeMismatchC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTypeMismatchS"}

Visual Basic is able to convert and coerce many values to accomplish data type assignments that
weren't possible in earlier versions. However, this error can still occur and has the following causes
and solutions:

· The variable or property isn't of the correct type. For example, a variable that requires an integer
value can't accept a string value unless the whole string can be recognized as an integer.
Try to make assignments only between compatible data types. For example, an Integer can
always be assigned to a Long, a Single can always be assigned to a Double, and any type
(except a user-defined type) can be assigned to a Variant.

· An object was passed to a procedure that is expecting a single property or value.
Pass the appropriate single property or call a method appropriate to the object.

· A module or project name was used where an expression was expected, for example:
Debug.Print MyModule
Specify an expression that can be displayed.

· You attempted to mix traditional Basic error handling with Variant values having the Error subtype
(10, vbError), for example:
Error CVErr(n)
To regenerate an error, you must map it to an intrinsic Visual Basic or a user-defined error, and
then generate that error.

· A CVErr value can't be converted to Date. For example:
MyVar = CDate(CVErr(9))
Use a Select Case statement or some similar construct to map the return of CVErr to such a
value.

· At run time, this error typically indicates that a Variant used in an expression has an incorrect
subtype, or a Variant containing an array appears in a Print # statement.
To print arrays, create a loop that displays each element individually.

For additional information, select the item in question and press F1.

User interrupt occurred (Error 18)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgUserInterruptS"}

The process of breaking execution is useful, but if left unhandled, it results in termination of the
application. This error has the following cause and solution:

· A user pressed CTRL+BREAK or another interrupt key.
In the development environment, continue execution. To provide for the occurrence of this
condition at run time, handle the error in an appropriate way.

For additional information, select the item in question and press F1.

Variable uses a type not supported in Visual Basic (Error 458)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidTypeLibVariableS"}

Not every variable that appears in a type library or object library can be used by every programming
language. This error has the following cause and solution:

· You tried to use a variable defined in a type library or object library that has a data type that isn't
supported by Visual Basic.
You can't use a variable of a type not recognized by Visual Basic in a Visual Basic program.

For additional information, select the item in question and press F1.

Wrong number of arguments or invalid property assignment (Error
450)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgfuncaritymismatchC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFuncArityMismatchS"}

The number of arguments to a procedure must match the number of parameters in the procedure's
definition. This error has the following causes and solutions:

· The number of arguments in the call to the procedure wasn't the same as the number of required
arguments expected by the procedure.
Check the argument list in the call against the procedure declaration or definition.

· You specified an index for a control that isn't part of a control array.
The index specification is interpreted as an argument but neither an index nor an argument is
expected, so the error occurs. Remove the index specification, or follow the procedure for creating
a control array. Set the Index property to a nonzero value in the control's property sheet or property
window at design time.

· You tried to assign a value to a read-only property, or you tried to assign a value to a property for
which no Property Let procedure exists.
Assigning a value to a property is the same as passing the value as an argument to the object's
Property Let procedure. Properly define the Property Let procedure; it must have one more
argument than the corresponding Property Get procedure. If the property is meant to be read-only,
you can't assign a value to it.

For additional information, select the item in question and press F1.

ActiveX component can't create object or return reference to this
object (Error 429)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgCantCreateObjectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantCreateObjectS"}

Creating objects requires that the object's class be registered in the system registry and that any
associated dynamic-link libraries (DLL) be available. This error has the following causes and
solutions:

· The class isn't registered. For example, the system registry has no mention of the class, or the
class is mentioned, but specifies either a file of the wrong type or a file that can't be found.
If possible, try to start the object's application. If the registry information is out of date or wrong, the
application should check the registry and correct the information. If starting the application doesn't
fix the problem, rerun the application's setup program.

· A DLL required by the object can't be used, either because it can't be found, or it was found but
was corrupted.
Make sure all associated DLLs are available. For example, the Data Access Object (DAO) requires
supporting DLLs that vary among platforms. You may have to rerun the setup program for such an
object if that is what is causing this error.

· The object is available on the machine, but it is a licensed Automation object, and can't verify the
availability of the license necessary to instantiate it.
Some objects can be instantiated only after the component finds a license key, which verifies that
the object is registered for instantiation on the current machine. When a reference is made to an
object through a properly installed type library or object library, the correct key is supplied
automatically.
If the attempt to instantiate is the result of a CreateObject or GetObject call, the object must find
the key. In this case, it may search the system registry or look for a special file that it creates when
it is installed, for example, one with the extension .lic. If the key can't be found, the object can't be
instantiated. If an end user has improperly set up the object's application, inadvertently deleted a
necessary file, or changed the system registry, the object may not be able to find its key. If the key
can't be found, the object can't be instantiated. In this case, the instantiation may work on the
developer's system, but not on the user's system. It may be necessary for the user to reinstall the
licensed object.

· You are trying to use the GetObject function to retrieve a reference to class created with Visual
Basic.
GetObject can't be used to obtain a reference to a class created with Visual Basic.

· Access to the object has explicitly been denied.
For example, you may be trying to access a data object that's currently being used and is locked to
prevent deadlock situations. If that's the case, you may be able to access the object at another
time.

For additional information, select the item in question and press F1.

Invalid property value (Error 380)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidPropertyValueS"}

Most properties only accept values of a certain type, within a certain range. This error has the
following cause and solution:

· An inappropriate value has been assigned to a property.
See the property's Help topic to determine what types and range of values are appropriate for the
property.

For additional information, select the property in question and press F1.

Invalid picture (Error 481)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvalidPictureC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidPictureS"}

Only a picture can be assigned to the Picture property or Picture object. This error has the following
cause and solution:

· You attempted to assign something to a Picture property or a Picture object that isn't recognized
as an icon, bitmap, or Microsoft Windows metafile.
See the Help topics for the Picture object or Picture property of the object you're using to
determine the acceptable picture types.

For additional information, select the item in question and press F1.

Invalid format in resource file (Error 325)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidResourceFormatS"}

When accessing a resource file, the resource you are trying to retrieve must have a valid format. This
error has the following cause and solution:

· The resource file you're trying to retrieve has an invalid format, or a specific resource in the file has
an invalid format.
If the file contents have been damaged, reinstall the file from its original disk. If the error continues,
contact the provider of the resource for a new file or a version of the resource with the expected
format.

For additional information, select the item in question and press F1.

This key is already associated with an element of this collection
(Error 457)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgDuplicateKeyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDuplicateKeyS"}

A key is a string specified in the Add method that uniquely identifies a specific member of a collection.
This error has the following cause and solution:

· You specified a key for a collection member that already identifies another member of the
collection.
Choose a different key for this member.

For additional information, select the item in question and press F1.

This array is fixed or temporarily locked (Error 10)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgArrayLockedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgArrayLockedS"}

Not all arrays can be redimensioned. Even arrays specifically declared to be dynamic and arrays
within Variant variables are sometimes locked temporarily. This error has the following causes and
solutions:

· You tried to use ReDim to change the number of elements of a fixed-size array . For example, in
the following code, the fixed array FixedArr is received by SomeArr in the NextOne procedure,
and then an attempt is made to resize SomeArr:
Sub FirstOne

Dim FixedArr(25) As Integer ' Create a fixed-size array and
NextOne FixedArr() ' pass it to another procedure.

End Sub

Sub NextOne(SomeArr() As Integer)
ReDim SomeArr(35) ' Error 10 occurs here.
. . .

End Sub
Make the original array dynamic rather than fixed by declaring it with ReDim (if the array is
declared within a procedure), or by declaring it without specifying the number of elements (if the
array is declared at module level).

· You tried to redimension a module-level dynamic array, in which one element has been passed as
an argument to a procedure. For example, in the following code, ModArray is a dynamic, module-
level array whose forty-fifth element is being passed by reference to the Test procedure:
Dim ModArray () As Integer ' Create a module-level dynamic array.

. . .

Sub AliasError()
ReDim ModArray (1 To 73) As Integer
Test ModArray (45) ' Pass an element of the module-level

' array to the Test procedure.
End Sub

Sub Test(SomeInt As Integer)
ReDim ModArray (1 To 40) As Integer ' Error occurs here.

End Sub
There is no need to pass an element of the module-level array in this case, since it's visible within
all procedures in the module. However, if an element is passed, the array is locked to prevent a
deallocation of memory for the reference parameter within the procedure, causing unpredictable
behavior when the procedure returns.

· You attempted to assign a value to a Variant variable containing an array, but the Variant is
currently locked. For example, if your code uses a For Each...Next loop to iterate over a variant
containing an array, the array is locked on entry into the loop, and then released at the termination
of the loop:
SomeArray = Array(9,8,7,6,5,4,3,2,1)

For Each X In SomeArray
SomeArray = 301 ' Causes error since array is locked.

Next X
Use a For...Next rather than a For Each...Next loop to iterate. When an array is the object of a For
Each...Next loop, you can read the array, but not write to it.

For additional information, select the item in question and press F1.

File name or class name not found during Automation operation
(Error 432)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgOLEFileNotFoundC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOLEFileNotFoundS"}

The GetObject function requires either a valid file name with a path specification, or the name of a
class that is registered with the system. This error has the following cause and solution:

· The name specified for file name or class in a call to the GetObject function could not be found.
Check the names and try again. Make sure the name used for the class parameter matches that
registered with the system.

For additional information, select the item in question and press F1.

Automation object doesn't have a default value (Error 443)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgOLENoDefaultC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOLENoDefaultS"}

When you specify an object name without a property or method, Visual Basic assumes you are
referencing the object's default member (property or method). However, not all objects expose a
default member. This error has the following cause and solution:

· Visual Basic can't determine the default member for the specified object.
Check the object's documentation and give an explicit specification for the property or method.

For additional information, select the item in question and press F1.

Unexpected error; quitting
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantBootS"}

An unexpected error occurred, and Visual Basic was unable to continue. This may be a hardware
problem or an effect of other software in your system.

Valid values are whole numbers from 1 to 32
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPREFTabstopsErrorS"}

You attempted to set the TabStop Width beyond the permitted range. A number between 1 and 32
(inclusive) is acceptable for this field.

Valid values are whole numbers from 2 to 60
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPrefGridErrorS"}

You attempted to set the Grid Width or Grid Height beyond the permitted range. A number between
2 and 60 (inclusive) is acceptable for this field.

Specified item is a binary form and can't be loaded into Visual Basic
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCANTLOADVB1FRMS"}

Binary forms created with earlier versions of Visual Basic can't be loaded into this version of Visual
Basic. Only Visual Basic versions 2.0 and 3.0 support converting binary forms to ASCII. If you have a
copy of Visual Basic 2.0 or 3.0, you can load the form created with version 1.0 and those versions and
save it as text. Then you can import the form in Visual Basic.

Project file is read-only
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgProjectFileIsReadonlyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgProjectFileIsReadonlyS"}

The project file is not writable. To change it, you must save it under a different name or remove the
read-only attribute.

File is read-only
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgFileIsReadonlyvb5C"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgFileIsReadonlyvb5S"}

The file is not writable. To change it, you must save it under a different name or remove the read-only
attribute.

A procedure of that name already exists
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNEWPROCEXISTSS"}

Procedure names within the same scope must be unique. Change the name of the procedure.

The project file specified contains an invalid key value. Valid range
is 0 to 'item3'
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgINVALIDRANGEYVALUES"}

The range of key values is restricted. Keep the key value within the range specified.

The project name is too long. Name has been truncated
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectNameIsTooLongNameHasBeenTruncatedC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectNameIsTooLongNameHasBeenTruncatedS"}

If a project name exceeds permitted length, it is truncated to the maximum permitted length.

The project file specified contains an invalid key. The project can't
be loaded
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgVBPCORRUPTKEYINVALIDS"}

You can't load the project while the project file contains the invalid key.

Specified item is an invalid key. The specified file can't be loaded
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgINVALIDFILEKEYS"}

You can't load the file while it contains the invalid key.

Can't find specified file
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFileNotFoundS"}

The specified file could not be found. Please correct the path or file name.

The project file specified contains invalid key value
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgINVALIDPROJKEYVALUES"}

The specified key value is invalid. Please change it.

Not enough memory to run; quitting
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOOMBootS"}

Visual Basic couldn't obtain enough memory to run. Close other applications and try again.

Wrong version of operating system; requires specified build of
Windows NT 3.51 or specified build of Windows 95
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgWrongBADOSVERS"}

To run this version of Visual Basic, you must be running the specified build of Windows 95 or
Windows NT version 3.51.

The specified system error occurred
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgHRESULTS"}

Visual Basic encountered an error that was generated by the system or an external component.

The file specified is marked as a version not supported by the
current version of Visual Basic and won't be loaded
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFORMVERNOTRECOGNIZEDS"}

You tried to load a form from Visual Basic version 1.0 or a form from a version later than this version
of Visual Basic. This is not supported.

The project file specified is corrupt and can't be loaded
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgVBPCORRUPTS"}

Visual Basic can't read the project file. This can occur if the file has been modified by an editor
outside of Visual Basic. To fix the problem, undo any changes made to the file.

Unable to write specified Designer cache file; will just use regular
files on Load
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNODESIGNERCACHES"}

Your ActiveX designer was unable to write information to a cache file, so the designer will load using
uncached information.

To improve performance the next time you start Visual Basic, an ActiveX designer writes a cache file.
The designer couldn't write to the cache file due to low disk space or invalid permissions on the drive.
Make sure you have enough disk space available and that you have write permissions to the drive. If
the problem persists, contact the ActiveX designer's vendor.

Not enough memory to load file
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoMemS"}

Visual Basic couldn't obtain enough memory to load the file. Close other applications and try again.

Duplicate procedure name
                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamsgDupProcA"}

You defined (or are attempting to define) more than one version of a procedure with the same name.
Rename one of the procedures. Ensure that duplicate Declare statements for the same procedure
have the same Alias clause.

Can't find Windows Help .exe file
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgHelpLoadFailedS"}

The Windows Help application isn't available. If winhelp.exe is on your computer, make sure it is on
your path. If it isn't on your computer, run Microsoft Windows 95 or Microsoft Windows NT setup to
install it.

Can't display system information
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantDisplaySysInfoS"}

Visual Basic can't display system information when you choose System Info from the About
Microsoft Visual Basic dialog box. Your system may not have enough memory, or a required file
may be corrupted or missing.

Invalid procedure name
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidProcNameS"}

There are restrictions in procedure-naming beyond the rules for naming identifiers. This error has the
following cause and solution:

· You attempted to define a procedure, but the name used for the procedure is invalid because the
host already uses that identifier for another purpose. For example, if the host application is
Microsoft Excel, you can't define a procedure with the name R1C1 because that identifier is already
used by Microsoft Excel.
Choose another name for the procedure.

· Your procedure name is a restricted keyword, exceeds 255 characters, or doesn’t begin with a
letter.
Choose a different name for the procedure.

For additional information, select the item in question and press F1.

TThe application description can't be more than 2000 characters
long

You can't have an application description longer than 2000 characters long. Delete some characters
from the description.

Must specify which item(s) to print
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMustSpecifyPrintS"}

You haven't specified what to print. Check at least one of the Form or Code check boxes in the Print
dialog box after choosing Print from the File menu.

Specified name is not a legal object name
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgIllegalNameS"}

Form and control names must start with a letter and can be a maximum of 40 characters — including
letters, numbers, and underscores (_).

Note that the Name property of a form or control is different from the Label properties — Caption,
Text, and Value — that label or display the contents of a control at run time. These properties can be
restricted keywords, can begin with a number, and can contain nonalphanumeric characters.

Name specified conflicts with existing module, project, or object
library
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCLASSNAMES"}

This error has the following causes:

· You loaded a form, User Control , User Document, or Property Page that contains objects with
conflicting names. This can occur if the file was edited outside of Visual Basic.

· This error can occur when you rename a form to the same name as the project, another form, or a
module. It can also occur when you rename the project to the same name as a form or module.

Can't set the project name at this time
The project name can't be set at this time.

The application description can't be more than 2000 characters
long

Specified ActiveX component not correctly registered or not found
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgREGBADFILES"}

A component should be registered in the system registry. This error has the following cause and
solution:

· The component's registry information is incorrect, so the component can't be found.
Correct the registry. Reinstall the component, if necessary.

· The component was removed by deleting it instead of using an uninstall program.
Replace the component files in the directory specified in the registry.

For additional information, select the item in question and press F1.

Can't perform operation because the project is protected
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPROJECTPROTECTEDS"}

When a project is protected, certain actions are prohibited. This error has the following cause and
solution:

· The project was inadvertently protected.
Remove the protection, and then try the action again.

· The project was intentionally protected.
Don't attempt the action until the protection is removed by the person that applied it in the first
place.

For additional information, select the item in question and press F1.

Can't start new recording until current session is ended
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgALREADYRECORDINGS"}

You can't "nest" recordings. This error has the following cause and solution:

· You already have the recorder running.
Terminate the current recording before beginning a new one

For additional information, select the item in question and press F1.

Do you want to export specified object before removing it?
                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamsgEXPORTBEFOREREMOVEA"}

You can export forms and modules, and reload them at another time. This error has the following
cause and solution:

· You are removing a form or module from the project.
To preserve the module, export it. You can then import it at a future time.

For additional information, select the item in question and press F1.

The form class contained in the specified file is not supported in
Visual Basic for Applications; the file can't be loaded.
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFormCorruptS"}

Visual Basic for Applications only supports UserForm form objects. This error has the following cause
and solution:

· You are trying to load a form from an earlier version of Visual Basic or a form from a current
standalone version of Visual Basic.
It is probably easiest to redesign the form using the UserForm tools within Visual Basic for
Applications. If you can save the form in ASCII format, you may be able to modify the form and
import it. However, you must completely understand the formats and limitations of the various form
packages.

For additional information, select the item in question and press F1.

The specified file could not be loaded.
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCouldntLoadFileS"}

Not all files can be loaded in Visual Basic for Applications. This error has the following cause and
solution:

· The file you are trying to load has a format that Visual Basic can't interpret, or the file is corrupt.
You can't load the file.

For additional information, select the item in question and press F1.

This command will stop the debugger.
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCLOSEINBREAKMODES"}

Some commands and actions cause Visual Basic to stop analyzing code. This error has the following
cause and solution:

· Some edits, like declaring a Static variable, and some commands, like those for adding a new
module or form, cause running or suspended code to stop.
If you don't want to stop running code, don't add or execute the command.

For additional information, select the item in question and press F1.

You must save a project before you can reference it.
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCANTREFUNSAVEDPROJS"}

You can't add a reference to an unsaved project. This error has the following cause and solution:

· You tried to add a reference while the project was unsaved.
Save the project before adding the reference.

For additional information, select the item in question and press F1.

Invalid object use (Error 425)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOBJILLEGALUSES"}

Most objects can only be used in specific ways, usually when trying to use an object outside the
scope for which it is relevant. For example, an object reference passed into a drag-and-drop event
can probably only be used in the context of that event.

Can't print form image to this type of printer (Error 486)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgGFXFORMPRINTERRORS"}

You must have a graphics-capable printer to print a form image.

The specified object can't be used as an owner form for Show()
(Error 371)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgINVALIDOWNERFORMS"}

You must use an appropriate object with the Show method.

Specified ActiveX control was not found (Error 363)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLDNOSUCHMODELS"}

The form being loaded contains an ActiveX control that isn't part of the current project. This error has
the following causes and solutions:

· You may have manually edited the project's .vbp file to add a form containing an ActiveX control
that isn't already part of the project.
After the project loads, use the Add File command on the File menu to add the ActiveX control to
the project.

· You may have manually edited the project's .vbp file to add a form containing an earlier version of
an ActiveX control than the ActiveX control that is already part of the project.
After the project loads, delete the earlier version from the form and put the later version of the
control on the form.

ActiveX component not correctly registered (Error 336)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgREGBADREGISTRATIONS"}

The ActiveX component has not been properly registered in the system registry.

Data value named not found (Error 327)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgPBAGELEMENTNOTFOUNDS"}

The data value could not be found.

Invalid picture (Error 481)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsggfxInvalidPictureS"}

An invalid graphics format was assigned to the Picture property. This error has the following cause
and solution:

· You tried to assign a graphics format other than a bitmap, icon, or Windows metafile to the Picture
property of a form or control.
Ensure that the file you are trying to load into the Picture property is a valid graphics file supported
by Visual Basic.

Printer error (Error 482)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsggfxPrinterErrorS"}

There is some problem that prevents printing. This error has the following causes and solutions:

· You don't have a printer installed from the Windows Control Panel.
Open the Control Panel, double-click the Printers icon, and click Add Printer to install a printer.

· Your printer isn't online.
Physically switch the printer online.

· Your printer is jammed or out of paper.
Physically correct the problem.

· You tried to print a form to a printer that can accept only text.
Switch to an installed printer that can print graphics.

Printer driver does not support specified property (Error 483)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsggfxDriverNotSupportPropS"}

The printer driver for the printer in use doesn't support this property of the Printer object. This error
has the following cause and solution:

· The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings
may all have the same effect. Settings outside the accepted range may or may not produce an
error.
For more information, see the manufacturer's documentation for the specific driver.

Problem getting printer information from the system; make sure the
printer is set up correctly. (Error 484)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsggfxDriverOrWinINIErrorS"}

There is some problem that prevents getting printer information from the system. This error has the
following causes and solutions:

· You don't have a printer installed from the Windows Control Panel.
Open the Control Panel, double-click the Printers icon, and click Add Printer to install a printer.

· Your printer isn't online.
Physically switch the printer online.

· Your printer is jammed or out of paper.
Physically correct the problem.

Invalid picture type (Error 485)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsggfxInvalidPictureTypeS"}

The resource file picture format you tried to load doesn't match the specified property of the object.
This error has the following causes and solutions:

· You tried to use the LoadResPicture method to load a bitmap resource as the Icon property of a
form.
Change the property to the Picture property or change the format argument of LoadResPicture to
vbResIcon.

· You tried to use the LoadResPicture method to load a cursor resource as some property of an
object or control other than the MousePointer property.
Change the property reference to MousePointer.

Can't empty Clipboard (Error 520)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgclip2CantEmptyS"}

The Clipboard was opened but could not be emptied. This error has the following cause and solution:

· Another application is using the Clipboard and won't release it to your application.
Set an error trap for this situation in your code and provide a message box with Retry and Cancel
buttons to allow the user to try again after a short pause.

Can't open Clipboard (Error 521)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgclip2CantOpenS"}

The Clipboard has already been opened by another application. This error has the following cause
and solution:

· Another application is using the Clipboard and won't release it to your application.
Set an error trap for this situation in your code and provide a message box with Retry and Cancel
buttons to allow the user to try again after a short pause.

Specified format doesn't match format of data (Error 461)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgclipWrongFormatS"}

The specified Clipboard format is incompatible with the method being executed. This error has the
following causes and solutions:

· You tried to use the GetText method or SetText method with a Clipboard format other than
vbCFText or vbCFLink.
Before using these methods, use the GetFormat method to test whether the current contents of
the Clipboard matches the specified format.

· You tried to use the GetData method or SetData method with a Clipboard format other than
vbCFBitmap, vbCFDIB, or vbCFMetafile.
Before using these methods, use the GetFormat method to test whether the current contents of
the Clipboard matches the specified graphics format.

Invalid Clipboard format (Error 460)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgclipInvalidFormatS"}

The specified Clipboard format is incompatible with the method being executed. This error has the
following causes and solutions:

· You tried to use the GetText method or SetText method with a Clipboard format other than
vbCFText or vbCFLink.
Remove the invalid format and specify one of the two valid formats.

· You tried to use the GetData or SetData method with a Clipboard format other than vbCFBitmap,
vbCFDIB, or vbCFMetafile.
Remove the invalid format and specify one of the three valid graphics formats.

License information for this component not found. You don't have
an appropriate license to use this functionality in the design
environment (Error 429)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgobjNoLicenseS"}

You are not a licensed user of the ActiveX control. This error has the following cause and solution:

· You tried to place an ActiveX control on a form at design time or tried to add a form with an ActiveX
control on it to a project, but the associated information in the registry could not be found.
The information in the registry may have been deleted or become corrupted. Reinstall the ActiveX
control or contact the control vendor.

Form already displayed; can't show modally (Error 400)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgmodShowingFormS"}

You can't use the Show method to display a visible form as modal. This error has the following cause
and solution:

· You tried to use Show, with the style argument set to 1 – vbModal, on an already visible form.
Use either the Unload statement or the Hide method on the form before trying to show it as a
modal form.

Must close or hide topmost modal form first (Error 402)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgmodNotTopModalS"}

The modal form you are trying to close or hide isn't on top of the z-order. This error has the following
cause and solution:

· Another modal form is higher in the z-order than the modal form you tried to close or hide.
First use either the Unload statement or the Hide method on any modal form higher in the z-order.
A modal form is a form displayed by the Show method, with the style argument set to 1 –
vbModal.

Can't load or unload this object (Error 361)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgldNotLoadableS"}

A Load statement or Unload statement has referenced an invalid object or control. This error has the
following causes and solutions:

· You tried to load or unload an object that isn't a loadable object, such as Screen, Printer, or
Clipboard.
Delete the erroneous statement from your code.

· You tried to load or unload an existing control that isn't part of a control array. For example,
assuming that a TextBox with the Name property Text1 exists, Load Text1 will cause this error.
Delete the erroneous statement from your code or change the reference to a control in a control
array.

· You tried to unload a Menu control in the Click event of its parent menu.
Unload the Menu control with some other procedure.

· You tried to unload the last visible menu item of a Menu control.
Check the setting of the Visible property for the other menu items in the control array before trying
to unload a menu item, or delete the erroneous statement from your code.

Object already loaded (Error 360)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgldAlreadyLoadedS"}

The control in the control array has already been loaded. This error has the following cause and
solution:

· You tried to add a control to a control array at run time with the Load statement but the index value
you referred to already exists.
Change the index reference to a new value or check whether your code is executing the same
Load statement with the same index value reference more than once.

Form not found (Error 424)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOBJNOSUCHFORMS"}

The form was not found. This error has the following cause and solution:

· You tried to add a form to the UserForms collection using the Add method, but there is no form
class of that name. For example, UserForms.Add "MyForm", where MyForm doesn't exist.
Make sure that the class name is available to your project.

Unable to unload within this context (Error 365)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgldCantUnloadHereS"}

In some situations you are not allowed to unload a form or a control on a form. This error has the
following causes and solutions:

· There is an Unload statement in the Paint event for the form or for a control on the form that has
the Paint event.
Remove the Unload statement from the Paint event.

· There is an Unload statement in the Change, Click, or DropDown events of a ComboBox.
Remove the Unload statement from the event.

· There is an Unload statement in the Scroll event of an HScrollBar or VScrollBar control.
Remove the Unload statement from the event.

· There is an Unload statement in the Resize event of a Data, Form, MDIForm, or PictureBox
control.
Remove the Unload statement from the event.

· There is an Unload statement in the Resize event of an MDIForm that is trying to unload an MDI
child form.
Remove the Unload statement from the event.

· There is an Unload statement in the RePosition event or Validate event of a Data control.
Remove the Unload statement from the event.

· There is an Unload statement in the ObjectMove event of an OLE Container control.
Remove the Unload statement from the event.

Specified system DLL could not be loaded (Error 298)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgddeDllNotLoadedS"}

A .dll file provided by the operating system; for example, DDEML.DLL, VERSION.DLL, or
WINSPOOL.DRV couldn't be found. This error has the following causes and solutions:

· The file isn't on the proper path.
Ensure that the DLL is on the Windows System path.

· The DLL is corrupted or was deleted.
Reload the DLL.

· There isn't enough memory or swap space.
Try to free up some memory by closing other applications.

Can't use character device names in file names (Error 320)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgfileCharDevInvalidS"}

From within Visual Basic, you can't give a file the same name as a character device driver. This error
has the following cause and solution:

· You tried to use a file name such as AUX, CON, COM1, COM2, LPT1, LPT2, LPT3, LPT4, or NUL.
Give the file another name.

Invalid file format (Error 321)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgfileCorruptS"}

A Visual Basic form file is damaged. This error has the following causes and solutions:

· The form has a damaged ActiveX control.
Try replacing the ActiveX control on the form.

· The number of properties in the current version of the ActiveX control doesn't match the expected
number of properties.
Try replacing the ActiveX control with an earlier version or later version.

Illegal parameter. Can't write arrays (Error 328)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCANTWRITEARRAYSS"}

An illegal parameter was passed to the method. This error has the following cause and solution:

· In the WriteProperties event of your User Control, you tried to do a PropBag.WriteProperty X,
where X is an array. This isn't supported.
You must write out each element of the array individually.

Could not access system registry (Error 335)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgregBadAccessS"}

An attempt to read from or write to the system registry failed.

ActiveX Component not found (Error 337)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgregServerNotFoundS"}

The required .exe or .dll file can't be found.

ActiveX Component did not run correctly (Error 338)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgregBadServerS"}

The ActiveX component's .exe file failed to run correctly. There may be a problem with the information
in the registry.

Object was unloaded (Error 364)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgldUnloadedS"}

A form was unloaded from its own _Load procedure. This error has the following cause and solution:

· A form with an Unload statement in its _Load procedure was implicitly loaded. For example, the
following will implicitly load YourForm if it isn't already loaded:
MyForm.BackColor = YourForm.BackColor.
Remove the Unload statement from the Form_Load procedure.

The file specified is out of date. This program requires a later
version (Error 368)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgldBadVBXVersionS"}

An ActiveX control was found to be out of date. This error has the following cause and solution:

· The number of properties in the current version of the ActiveX control don't match the expected
number of properties.
Replace the ActiveX control with a later version.

Invalid property value (Error 380)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgpropIllegalValueS"}

An inappropriate value is assigned to a property. This error has the following cause and solution:

· You tried to set one of the properties of an object or control to a value outside its permissible range.
Change the property value to a valid setting. For example, the MousePointer property must be set
to an integer from 0 – 15 or 99.

Specified property can't be set at run time (Error 382)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgpropNoWriteRunS"}

The property is read-only at run time. This error has the following cause and solution:

· You tried to set or change a property whose value can only be set at design time.
Remove the reference to the property from your code or change the reference to only return the
value of the property at run time.

Specified property is read-only (Error 383)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgpropNoWriteS"}

The property is read-only at both design time and run time. This error has the following cause and
solution:

· You tried to set or change a property whose value can only be read.
Remove the reference to the property from your code or change the reference to only return the
value of the property at run time.

Specified property can't be read at run time (Error 393)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgpropNoReadRunS"}

The property is only available at design time. This error has the following cause and solution:

· You tried to read a property at run time that is only accessible at design time.
Change your code and remove the reference to the property.

Specified property is write-only (Error 394)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgpropNoReadS"}

The property can't be read. This error has the following cause and solution.

· A property can't be read; for example, ctl.property = 3 might be legal, but
"Print ctl.property" would generate this error.
Change your code and remove the reference to the property.

Permission to use object denied (Error 419)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgobjAccessDeniedS"}

You don't have the necessary permissions for the specified object. This error has the following cause
and solution:

· You don't currently have the authority to access this object.
To change your permission assignments, see your system administrator or the object's creator.

Can't create AutoRedraw image (Error 480)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsggfxCantMakeBitmapS"}

Visual Basic can't create a persistent bitmap for automatic redraw of the form or picture. This error
has the following cause and solution:

· There isn't enough available memory for the AutoRedraw property to be set to True.
Set the AutoRedraw property to False and perform your own redraw in the Paint event procedure,
or make the PictureBox control or Form object smaller and try the operation again with
AutoRedraw set to True.

Out of memory (Error 31001)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOutOfMemS"}

Your system could not allocate or access enough memory or disk space for the specified operation.

No object (Error 31004)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoObjectS"}

You tried to perform an action on an object that doesn't exist.

Class is not set (Error 31018)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoClassS"}

If you don't specify a source document (SourceDoc property) when setting Action = 0
(CreateEmbed method), the Class property must be set to the name of a class available on your
system.

To display a list of the available class names at design time, right-click the OLE container control and
choose the Insert Object command.

Unable to activate object (Error 31027)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantActivateS"}

The object's source document can't be loaded, or the application that created the object isn't
available.

This error occurs when you try to activate a linked object (set Action = 7) and the file specified in the
SourceDoc property has been deleted or no longer exists.

This error also occurs when you activate an object (set Action = 7), and the action specified by the
Verb property isn't valid. Some applications that provide objects may support different verbs,
depending on the state of the application. All the verbs supported by an application are listed in the
ObjectVerbs property list. However, some verbs may not be valid for the application's current state.

Unable to create embedded object (Error 31032)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantEmbedS"}

The application that is creating the object can't create the object as specified in the SourceDoc
property.

For example, this error occurs if you try to embed a spreadsheet object and SourceDoc specifies a
spreadsheet that is too large to be loaded by the spreadsheet application.

Error saving to file (Error 31036)
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgErrorSavingFileS"}

Visual Basic can't write the object to the specified file (set Action = 11 or 18). Possible causes:

· The FileNumber property is invalid.
· The specified file wasn't opened in Binary mode.
· There isn't enough disk space.

Error loading from file (Error 31037)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgErrorLoadingFileC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vamsgErrorLoadingFileA"}

An error occurred while attempting to read the specified file (set Action = 12). Possible causes:

· The FileNumber property is invalid.
· The file wasn't opened in Binary mode.
· The file wasn't saved properly (set Action = 11).
· The file is corrupted.
· The file position isn't located at the beginning of a valid OLE object.

At line specified: The Form name specified is not valid; can't load
this form
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidFormNameS"}

The ASCII file contains a form name that isn't a valid string in Visual Basic. The form isn't loaded.

At line specified: Can't create embedded object specified
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgLineitem1CannotCreateEmbeddedObjectInitem2C"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgLineitem1CannotCreateEmbeddedObjectInitem2S"}

An embedded object could not be created while loading a form, User Control, User Document, or
Property Page from a text file. For example, you would get this error if you previously inserted a
Microsoft Word document onto the form, and then removed Microsoft Word from your system. This
message is written to the error log file.

At line specified: Can't create embedded object specified; license
not found
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOBJNOTLICENSEDS"}

An embedded object could not be created during the load of a form, User Control, User Document, or
Property Page from a text file, due to the license file not being found. You must have a license to use
this object. Check with the object's vendor for more information. This message is written to the error
log file.

At line specified: Maximum nesting level for controls exceeded
specified item.
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMaxNestLevelS"}

The ASCII file contains controls nested more than 7 levels deep.

At line specified: All controls must precede menus; can't load
specified control
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMenusOnlyS"}

A control appeared in an incorrect location in the ASCII form file. All controls must be loaded before
menus.

At line specified: Parent menu specified can't be loaded as a
separator
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgParentIsSeparatorS"}

The ASCII file contains a Menu control whose parent or top-level menu is defined as a menu
separator. Top-level menus can't be menu separators. The separator won't be set.

At line specified: Can't set checked property in menu specified.   
Parent menu can't be checked
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoCheckTopLevelS"}

A top-level Menu control appeared in the ASCII form file with its Checked property set to True. Top-
level menus can't be checked. The Menu control will be loaded, but its Checked property won't be
set.

At line specified: Can't set Shortcut property in menu specified.   
Parent menu cannot have a shortcut key
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoShortCutKeyS"}

A top-level Menu control appeared in the ASCII form file with a shortcut key defined. Top-level menus
can't have a shortcut key. The Menu control will be loaded, but its Shortcut property won't be set.

At line specified: The form    name specified is already in use; can't
load this form
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFormNameInUseS"}

The ASCII file contains a form with a name that is already being used in the application. The form isn't
loaded.

Conflicting attributes were found in specified item. The defaults will
be used
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCONFLICTFLAGSS"}

Some of the attribute statements in a form, User Control, Property Page, User Document, or Class
Module conflict with the required settings for their type. For example, forms must always have the
VB_PredeclaredId attribute equal to True. This error can occur if the file was modified by an editor
other than Visual Basic.

Specified item is a read-only file
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFileIsReadOnlyS"}

You asked to save to a file that is read-only. Read-only files are shown in the Project Explorer as .
You can't save to read-only files. Use Save As instead.

At line specified: Could not create specified reference
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgINVALIDREFERENCES"}

The reference indicated at the specified line could not be created.

At line specified: The file specified could not be loaded
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgFileNotLoadedS"}

Syntax errors are preventing Visual Basic from parsing and loading a file, or form name conflicts
prevent loading of an ASCII form. The form won't be loaded and the form name won't be displayed in
the Project Explorer.
Make sure that the file causing this error is a valid ASCII form in the correct format and that no
conflicts exist among the different forms in the project.

Errors occurred during load
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgERRORLOGOTHERS"}

Check the error log for more descriptive information.

Specified item could not be loaded. Remove it from the list of
available add-ins?
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgAddInCantLoadS"}

Visual Basic couldn't load the add-in that you tried to select from the Available Add-Ins list in the
Add-In Manager dialog box. Click Yes to remove it from the list or click No to leave it on the list. In
either case, you can't load it.

Visual Basic can't load the specified item because it is not in the
system registry. Please ensure that all add-ins have been installed
correctly.
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgAddInBadRegS"}

Visual Basic couldn't load the add-in that you tried to select from the Available Add-Ins list in the
Add-In Manager dialog box, because it was not registered properly or is no longer registered in the
system registry.

Display more load errors?
                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamsgDISPLAYMORELOADERRA"}

Click OK to see more errors, otherwise click Cancel.

Specified item could not be loaded
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoFileLoadS"}

Syntax errors are preventing Visual Basic from parsing and loading a file, or form name conflicts
prevent loading of an ASCII form. The form won't be loaded and the form name won't be displayed in
the Project Explorer.
Make sure that the file causing this error is a valid ASCII form in the correct format and that no
conflicts exist among the different forms in the project.

Version number missing or invalid
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgVersionMissingS"}

The version signature was not found, or the specified version isn't recognized. Make sure that the first
line that is not blank or a comment in the ASCII form specifies the correct version.

Specified item is referenced by specified project and cannot be
updated
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCONTROLREFERENCEDS"}

The specified control is referenced by more than one project. Updating it for one project might
invalidate it for another.

Can't remove control or reference; in use
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCCDLLInUseS"}

The ActiveX control or reference that you tried to remove, is being used by one of the forms in the
project. First delete the control or referenced object from the form, and then cancel the selction in the
list.

Can't quit at this time
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantExitDlgS"}

You can't quit Windows while Visual Basic is in run mode or break mode. You also can't quit Windows
while a dialog box or message box is displayed.

Error loading the specified item. An error was encountered loading
a property. Continue?
                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamsgBadPropContLoadQSA"}

You may have tried to load a form with controls whose names conflict with forms already in the
project. For example, loading Form2 that contains a Form1 control triggers this error.

Error loading the specified item. A control could not be loaded due
to load error. Continue?
                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamsgBadCtlContLoadQSA"}

This error message appears after another error has occurred. After you've taken the appropriate
action for that error, you will see this error message. To load the control anyway, click Yes; to cancel
the loading, click No.

Specified item has an old file format. When saved, it will be saved
in a newer format.
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOldRevS"}

This file was created with an earlier version of Visual Basic. When you save it, it will be saved in the
file format of the current version.

Specified item already exists in project
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgProjFileExistsS"}

The file you specified is already part of the project. You can't add the same file to a project more than
once. You can't save a file with the same name as another file in the project.

Errors during load. Refer to specified item for details
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgErrorLogS"}

Something unexpected appeared in the ASCII form file. Visual Basic created a log file to provide more
detail about the errors. You should examine the log file to determine the severity of the problem.
Sometimes you can safely ignore the errors (for example, Version number missing or
invalid...). Other times, however, the errors could cause the form not to run as expected (for
example, Class MyClass in control MyControl was not a loaded control class).

String value too long to process; form load aborted
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgValueTooLongS"}

A string embedded in the form being loaded was too long to process.

One or more files in the project have changed. Do you want to save
the changes now?
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDirtyFilesS"}

One of the property settings or a code statement has changed for one or more of the files in the
project, and the changes have not yet been saved. This is your last chance to save the changes
before loading another project.

Specified item could not be registered
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoFileRegisterS"}

The specified file couldn't be registered in the system registry. The error is related to type libraries
used by components of the Visual Basic development environment and indicates that the specified
file's entry in the system registry is corrupted, or that the DLL itself is missing or corrupted.

Other applications are currently accessing an object in your
program. Ending the program now could cause errors in those
programs. End program at this time?
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgServerRunningS"}

An Automation object in the Visual Basic program you are currently running is being accessed by at
least one other application. Terminating your program could cause an error in the other application.
Click Yes to quit your program or click No to continue it.

One or more of the properties in the specified item was bad. Some
or all of the properties might not be set correctly
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgUnhappyMakPropsS"}

The specified project file has one or more invalid property settings. This error occurs only in regard to
a project file.

Conflicting names were found in the specified item. The specified
name will be used
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCONFLICTNAMESS"}

The name of a form occurs twice in the source file for a form, User Control, Property Page, or User
Document. This error can occur if the file was modified by an editor other than Visual Basic.

At line specified: The control name specified is invalid
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidCtlNameS"}

The ASCII file contains a control name that isn't a valid string in Visual Basic. The control isn't loaded.

At line specified: The property name s[ecified is invalid
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidPropNameS"}

The ASCII file contains a property name that isn't a valid property for that control.

The item at the specified line has a quoted string where the
property name should be.
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgQuotedStringS"}

A quoted string appeared in the ASCII form file where the property name was expected. Property
names are not placed inside quotation marks (" ").

At line specified: Property specified had an invalid property index
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidIndexS"}

The ASCII file contains a property name with a property index greater than 255.

At line specified: Property specified could not be loaded
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCannotLoadPropS"}

The ASCII file contains an unknown property. The property will be skipped when loading the form.

At line specified: Property specified must be a quoted string.
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMustBeQuotedS"}

The ASCII file contains a property that should appear inside quotation marks (" "), but the quotation
marks are missing. This line in the form description is ignored.

At line specified: Property specified had an invalid value
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidPropValueS"}

The ASCII file contains a property with a value that isn't correct for this control. The property is set
with its default value.

At line specified: Property specified had an invalid file reference
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalidFileRefS"}

The ASCII file contains a reference to a file that Visual Basic couldn't find in the specified directory.

At line specified: Property specified could not be set
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCouldNotSetS"}

Visual Basic can't set the property of the specified control as indicated by the form description in the
ASCII file.

At line specified:    Class specified of specified control was not a
loaded control class
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadClassNameS"}

The ASCII file contains a control class that Visual Basic doesn't recognize. Add the custom control
with this class to your project.

At line specified: Did not find an index property, and control
specified already exists
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoIndexFoundS"}

The control can't be loaded because there is no index, and it has the same name as a previously
loaded control.

At line specified: Control name too long; truncated as specified
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCtlNameTooLongS"}

The ASCII file contains a control name longer than 40 characters. The control will be loaded with the
name truncated to 40 characters.

At line specified: Class name too long; truncated as specified
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgClassNameTooLongS"}

The ASCII file contains a class name longer than 40 characters. The class will be loaded with the
name truncated to 40 characters.

At line specified: Syntax error: property specified was missing an
equal sign (=).
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMissingEqualS"}

The ASCII file contains a property name and value without an equal sign (=) between them. The
property isn't loaded.

At line specified: Can't load control specified; containing control not
a valid container
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvalContainerS"}

You attempted to load a control into a control which isn't a valid container.

At line specified: Can't load control specified; name already in use
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCtlClsMismatchS"}

The control named in the ASCII text file couldn't be loaded because its name is already in use in the
application.

At line specified: Missing or invalid control class in file specified
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMissingControlClassS"}

The ASCII file contains an unknown control class in the form description, or the class name isn't a
valid string in Visual Basic.

At line specified: Missing or invalid control name in file specified
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgMissingControlNameS"}

The ASCII file contains an unknown control name in the form description, or the control name isn't a
valid string in Visual Basic.

At line specified: Can't load control specified; license not found
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCTLNOTLICENSEDS"}

An ActiveX control could not be created while loading a form, User Control, User Document, or
Property Page from a text file. The control may be missing or corrupted. Reinstall the control and try
again. This message is written to the error log file.

At line specified: The CLSID specified is invalid.
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgINVALIDCLSIDS"}

An object could not be loaded while loading a Form, User Control, User Document, or Property Page
from a text file. The CLSID specified in the file is not valid. Applies only to objects that are properties,
such as the Font object. This message is written to the error log file.

Could not create reference to specified item
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBADREFERENCESTRS"}

There was an error establishing a reference while loading the file, so the reference was not added.

Specified item will not be loaded. Name is already in use
                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDUPLICATENAMES"}

You can't have two items of the specified kind loaded at the same time.

Specified item is referenced by specified project and cannot be
updated

ChDir Statement Example

This example uses the ChDir statement to change the current directory or folder.
' Change current directory or folder to "MYDIR".
ChDir "MYDIR"
' In Microsoft Windows:
' Assume "C:" is the current drive. The following statement changes
' the default directory on drive "D:". "C:" remains the current drive.
ChDir "D:\WINDOWS\SYSTEM"
' On the Macintosh:
' Changes default folder and default drive.
ChDir "HD:MY FOLDER"

ChDrive Statement Example

This example uses the ChDrive statement to change the current drive.
' In Microsoft Windows:
ChDrive "D" ' Make "D" the current drive.
' On the Macintosh:
' Make "MY DRIVE" the current drive.
ChDrive "MY DRIVE:"
' Make "MY DRIVE" the current drive and current folder because
' it's the root.
ChDrive "MY DRIVE:MY FOLDER"

CurDir Function Example

This example uses the CurDir function to return the current path.
' In Microsoft Windows:
' Assume current path on C drive is "C:\WINDOWS\SYSTEM".
' Assume current path on D drive is "D:\EXCEL".
' Assume C is the current drive.
Dim MyPath
MyPath = CurDir' Returns "C:\WINDOWS\SYSTEM".
MyPath = CurDir("C") ' Returns "C:\WINDOWS\SYSTEM".
MyPath = CurDir("D") ' Returns "D:\EXCEL".
' On the Macintosh:
' Drive letters are ignored. Path for current drive is returned.
' Assume current path on HD Drive is "HD:MY FOLDER".
' Assume HD is the current drive. Drive MD also exists on the machine.
Dim MyPath
MyPath = CurDir' Returns "HD:MY FOLDER".
MyPath = CurDir("HD")' Returns "HD:MY FOLDER".
MyPath = CurDir("MD")' Returns "HD:MY FOLDER".

Dir Function Example

This example uses the Dir function to check if certain files and directories exist. The MacID function
may be used on the Macintosh to specify the file type.
Dim MyFile, MyPath, MyName
' In Microsoft Windows:
' Returns "WIN.INI" if it exists.
MyFile = Dir("C:\WINDOWS\WIN.INI")
' Returns filename with specified extension. If more than one *.ini
' file exists, the first file found is returned.
MyFile = Dir("C:\WINDOWS*.INI")
' Call Dir again without arguments to return the next *.INI file in the
' same directory.
MyFile = Dir
' Return first *.TXT file with a set hidden attribute.
MyFile = Dir("*.TXT", vbHidden)

' Display the names in C:\ that represent directories.
MyPath = "c:\" ' Set the path.
MyName = Dir(MyPath, vbDirectory) ' Retrieve the first entry.
Do While MyName <> ""' Start the loop.

' Ignore the current directory and the encompassing directory.
If MyName <> "." And MyName <> ".." Then

' Use bitwise comparison to make sure MyName is a directory.
If (GetAttr(MyPath & MyName) And vbDirectory) = vbDirectory Then

Debug.Print MyName ' Display entry only if it
End If ' it represents a directory.

End If
MyName = Dir ' Get next entry.

Loop

' On the Macintosh:
' Use the MacID function to specify file type.
' The following statement returns the first "TEXT" file found in the
' specified directory or folder.
MyFile = Dir("HD:MY FOLDER:", MacID("TEXT"))

Environ Function Example

This example uses the Environ function to supply the entry number and length of the PATH statement
from the environment-string table.

Dim EnvString, Indx, Msg, PathLen ' Declare variables.
Indx = 1 ' Initialize index to 1.
Do

EnvString = Environ(Indx) ' Get environment
' variable.

If Left(EnvString, 5) = "PATH=" Then ' Check PATH entry.
PathLen = Len(Environ("PATH")) ' Get length.
Msg = "PATH entry = " & Indx & " and length = " & PathLen
Exit Do

Else
Indx = Indx + 1 ' Not PATH entry,

End If ' so increment.
Loop Until EnvString = ""
If PathLen > 0 Then

MsgBox Msg ' Display message.
Else

MsgBox "No PATH environment variable exists."
End If

FileCopy Statement Example

This example uses the FileCopy statement to copy one file to another. For purposes of this example,
assume that SRCFILE is a file containing some data.

Dim SourceFile, DestinationFile
SourceFile = "SRCFILE" ' Define source file name.
DestinationFile = "DESTFILE" ' Define target file name.
FileCopy SourceFile, DestinationFile ' Copy source to target.

FileDateTime Function Example

This example uses the FileDateTime function to determine the date and time a file was created or
last modified. The format of the date and time displayed is based on the locale settings of your
system.
Dim MyStamp
' Assume TESTFILE was last modified on February 12, 1993 at 4:35:47 PM.
' Assume English/U.S. locale settings.
MyStamp = FileDateTime("TESTFILE") ' Returns "2/12/93 4:35:47 PM".

FileLen Function Example

This example uses the FileLen function to return the length of a file in bytes. For purposes of this
example, assume that TESTFILE is a file containing some data.

Dim MySize
MySize = FileLen("TESTFILE") ' Returns file length (bytes).

GetAttr Function Example

This example uses the GetAttr function to determine the attributes of a file and directory or folder.
Dim MyAttr
' Assume file TESTFILE has hidden attribute set.
MyAttr = GetAttr("TESTFILE") ' Returns 2.
' Returns nonzero if hidden attribute is set on TESTFILE.
Debug.Print MyAttr And vbHidden
' Assume file TESTFILE has hidden and read-only attributes set.
MyAttr = GetAttr("TESTFILE") ' Returns 3.
' Returns nonzero if hidden attribute is set on TESTFILE.
Debug.Print MyAttr And (vbHidden + vbReadOnly)
' Assume MYDIR is a directory or folder.
MyAttr = GetAttr("MYDIR") ' Returns 16.

Kill Statement Example

This example uses the Kill statement to delete a file from a disk. Since the Macintosh doesn't support
wildcards, you can use the MacID function to specify the file type instead of the file name.
' Assume TESTFILE is a file containing some data.
Kill "TestFile"' Delete file.
' In Microsoft Windows:
' Delete all *.TXT files in current directory.
Kill "*.TXT"
' On the Macintosh:
' Use the MacID function to delete all PICT files in current folder
Kill MacID("PICT")

MacID Function Example

This example shows various uses of the MacID function. The MacID function is not available in
Microsoft Windows.
Dim filename, ReturnValue
' Return the first text file in folder HD:MY FOLDER.
FileName = Dir("HD:MY FOLDER:", MacId("TEXT"))
' Deletes all "TEXT" files in the current folder.
Kill MacId("TEXT")
' Run Microsoft Excel.
ReturnValue = Shell(MacId("XCEL"))
' Activate Microsoft Word.
AppActivate MacId("MSWD")

MkDir Statement Example

This example uses the MkDir statement to create a directory or folder. If the drive is not specified, the
new directory or folder is created on the current drive.
MkDir "MYDIR" ' Make new directory or folder.

Name Statement Example

This example uses the Name statement to rename a file. For purposes of this example, assume that
the directories or folders that are specified already exist.
Dim OldName, NewName
OldName = "OLDFILE": NewName = "NEWFILE" ' Define filenames.
Name OldName As NewName ' Rename file.
' In Microsoft Windows:
OldName = "C:\MYDIR\OLDFILE": NewName = "C:\YOURDIR\NEWFILE"
Name OldName As NewName ' Move and rename file.
' On the Macintosh:
OldName = "HD:MY FOLDER:OLDFILE": NewName = "HD:YOUR FOLDER:NEWFILE"
Name OldName As NewName ' Move and rename file.

QBColor Function Example

This example uses the QBColor function to change the BackColor property of the form passed in as
MyForm to the color indicated by ColorCode. QBColor accepts integer values between 0 and 15.

Sub ChangeBackColor (ColorCode As Integer, MyForm As Form)
MyForm.BackColor = QBColor(ColorCode)

End Sub

RGB Function Example

This example shows how the RGB function is used to return a whole number representing an RGB
color value. It is used for those application methods and properties that accept a color specification.
The object MyObject and its property are used for illustration purposes only. If MyObject does not
exist, or if it does not have a Color property, an error occurs.
Dim RED, I, RGBValue, MyObject
Red = RGB(255, 0, 0) ' Return the value for Red.
I = 75' Initialize offset.
RGBValue = RGB(I, 64 + I, 128 + I) ' Same as RGB(75, 139, 203).
MyObject.Color = RGB(255, 0, 0) ' Set the Color property of

' MyObject to Red.

RmDir Statement Example

This example uses the RmDir statement to remove an existing directory or folder.
' Assume that MYDIR is an empty directory or folder.
RmDir "MYDIR" ' Remove MYDIR.

SetAttr Statement Example

This example uses the SetAttr statement to set attributes for a file.
SetAttr "TESTFILE", vbHidden ' Set hidden attribute.
SetAttr "TESTFILE", vbHidden + vbReadOnly' Set hidden and read-only

' attributes.

ChDir Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmChDirC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmChDirX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmChDirS"}

Changes the current directory or folder.

Syntax
ChDir path
The required path argument is a string expression that identifies which directory or folder becomes
the new default directory or folder. The path may include the drive. If no drive is specified, ChDir
changes the default directory or folder on the current drive.

Remarks
The ChDir statement changes the default directory but not the default drive. For example, if the
default drive is C, the following statement changes the default directory on drive D, but C remains the
default drive:
ChDir "D:\TMP"

ChDrive Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmChDriveC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmChDriveX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmChDriveS"}

Changes the current drive.

Syntax
ChDrive drive
The required drive argument is a string expression that specifies an existing drive. If you supply a
zero-length string (""), the current drive doesn't change. If the drive argument is a multiple-character
string, ChDrive uses only the first letter.

CurDir Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctCurDirC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctCurDirX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctCurDirS"}

Returns a Variant (String) representing the current path.

Syntax
CurDir[(drive)]
The optional drive argument is a string expression that specifies an existing drive. If no drive is
specified or if drive is a zero-length string (""), CurDir returns the path for the current drive.

Dir Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctDirC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctDirX":1}           
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctDirS"}

Returns a String representing the name of a file, directory, or folder that matches a specified pattern
or file attribute, or the volume label of a drive.

Syntax
Dir[(pathname[, attributes])]
The Dir function syntax has these parts:

Part Description
pathname Optional. String expression that specifies a file name—may

include directory or folder, and drive. A zero-length string ("") is
returned if pathname is not found.

attributes Optional. Constant or numeric expression, whose sum
specifies file attributes. If omitted, all files are returned that
match pathname.

Settings
The attributes argument settings are:

Constant Value Description
   

vbNormal 0 Normal
vbHidden 2 Hidden
vbSystem 4 System file
vbVolume 8 Volume label; if specified, all other attributes are

ignored
vbDirectory 16 Directory or folder

Note      These constants are specified by Visual Basic for Applications and can be used anywhere in
your code in place of the actual values.

Remarks
Dir supports the use of multiple-character (*) and single-character (?) wildcards to specify multiple
files.

You must specify pathname the first time you call the Dir function, or an error occurs. If you also
specify file attributes, pathname must be included.

Dir returns the first file name that matches pathname. To get any additional file names that match
pathname, call Dir again with no arguments. When no more file names match, Dir returns a zero-
length string (""). Once a zero-length string is returned, you must specify pathname in subsequent
calls or an error occurs. You can change to a new pathname without retrieving all of the file names
that match the current pathname. However, you can't call the Dir function recursively. Calling Dir with
the vbDirectory attribute does not continually return subdirectories.

Tip      Because file names are retrieved in no particular order, you may want to store returned file
names in an array and then sort the array.

Environ Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctEnvironC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctEnvironX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctEnvironS"}

Returns the String associated with an operating system environment variable.

Syntax
Environ({envstring | number})
The Environ function syntax has these named arguments:

Part Description
envstring Optional. String expression containing the name of an

environment variable.
number Optional. Numeric expression corresponding to the numeric

order of the environment string in the environment-string table.
The number argument can be any numeric expression, but is
rounded to a whole number before it is evaluated.

Remarks
If envstring can't be found in the environment-string table, a zero-length string ("") is returned.
Otherwise, Environ returns the text assigned to the specified envstring; that is, the text following the
equal sign (=) in the environment-string table for that environment variable.

If you specify number, the string occupying that numeric position in the environment-string table is
returned. In this case, Environ returns all of the text, including envstring. If there is no environment
string in the specified position, Environ returns a zero-length string.

FileCopy Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmFileCopyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmFileCopyX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmFileCopyS"}

Copies a file.

Syntax
FileCopy source, destination
The FileCopy statement syntax has these named arguments:

Part Description
source Required. String expression that specifies the name of the

file to be copied. The source may include directory or folder,
and drive.

destination Required. String expression that specifies the target file
name. The destination may include directory or folder, and
drive.

Remarks
If you try to use the FileCopy statement on a currently open file, an error occurs.

FileDateTime Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctFileDateTimeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctFileDateTimeX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctFileDateTimeS"}

Returns a Variant (Date) that indicates the date and time when a file was created or last modified.

Syntax
FileDateTime(pathname)
The required pathname argument is a string expression that specifies a file name. The pathname may
include the directory or folder, and the drive.

FileLen Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctFileLenC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctFileLenX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctFileLenS"}

Returns a Long specifying the length of a file in bytes.

Syntax
FileLen(pathname)
The required pathname argument is a string expression that specifies a file. The pathname may
include the directory or folder, and the drive.

Remarks
If the specified file is open when the FileLen function is called, the value returned represents the size
of the file immediately before it was opened.

Note      To obtain the length of an open file, use the LOF function.

GetAttr Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctGetAttrC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctGetAttrX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctGetAttrS"}

Returns an Integer representing the attributes of a file, directory, or folder.

Syntax
GetAttr(pathname)
The required pathname argument is a string expression that specifies a file name. The pathname may
include the directory or folder, and the drive.

Return Values
The value returned by GetAttr is the sum of the following attribute values:

Constant Value Description
     

vbNormal 0 Normal
vbReadOnly 1 Read-only
vbHidden 2 Hidden
vbSystem 4 System
vbDirectory 16 Directory or folder
vbArchive 32 File has changed since last backup

Note      These constants are specified by Visual Basic for Applications. The names can be used
anywhere in your code in place of the actual values.

Remarks
To determine which attributes are set, use the And operator to perform a bitwise comparison of the
value returned by the GetAttr function and the value of the individual file attribute you want. If the
result is not zero, that attribute is set for the named file. For example, the return value of the following
And expression is zero if the Archive attribute is not set:
Result = GetAttr(FName) And vbArchive
A nonzero value is returned if the Archive attribute is set.

Kill Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmKillC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmKillX":1}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmKillS"}

Deletes files from a disk.

Syntax
Kill pathname
The required pathname argument is a string expression that specifies one or more file names to be
deleted. The pathname may include the directory or folder, and the drive.

Remarks
Kill supports the use of multiple-character (*) and single-character (?) wildcards to specify multiple
files.

An error occurs if you try to use Kill to delete an open file.

Note      To delete directories, use the RmDir statement.

MkDir Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmMkDirC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmMkDirX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmMkDirS"}

Creates a new directory or folder.

Syntax
MkDir path
The required path argument is a string expression that identifies the directory or folder to be created.
The path may include the drive. If no drive is specified, MkDir creates the new directory or folder on
the current drive.

Name Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmNameC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmNameX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmNameS"}

Renames a disk file, directory, or folder.

Syntax
Name oldpathname As newpathname
The Name statement syntax has these parts:

Part Description
oldpathname Required. String expression that specifies the existing file

name and location—may include directory or folder, and
drive.

newpathname Required. String expression that specifies the new file
name and location—may include directory or folder, and
drive. The file name specified by newpathname can't
already exist.

Remarks
Both newpathname and oldpathname must be on the same drive. If the path in newpathname exists
and is different from the path in oldpathname, the Name statement moves the file to the new directory
or folder and renames the file, if necessary. If newpathname and oldpathname have different paths
and the same file name, Name moves the file to the new location and leaves the file name
unchanged. Using Name, you can move a file from one directory or folder to another, but you can't
move a directory or folder.

Using Name on an open file produces an error. You must close an open file before renaming it. Name
arguments cannot include multiple-character (*) and single-character (?) wildcards.

QBColor Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctQBColorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctQBColorX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctQBColorS"}

Returns a Long representing the RGB color code corresponding to the specified color number.

Syntax
QBColor(color)
The required color argument is a whole number in the range 0–15.

Settings
The color argument has these settings:

Number Color Number Color
0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Yellow 14 Light Yellow
7 White 15 Bright White

Remarks
The color argument represents color values used by earlier versions of Basic (such as Microsoft
Visual Basic for MS-DOS and the Basic Compiler). Starting with the least-significant byte, the
returned value specifies the red, green, and blue values used to set the appropriate color in the RGB
system used by Visual Basic for Applications.

RGB Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctRGBC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctRGBX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctRGBS"}

Returns a Long whole number representing an RGB color value.

Syntax
RGB(red, green, blue)
The RGB function syntax has these named arguments:

Part Description
red Required; Variant (Integer). Number in the range 0–255,

inclusive, that represents the red component of the color.
green Required; Variant (Integer). Number in the range 0–255,

inclusive, that represents the green component of the color.
blue Required; Variant (Integer). Number in the range 0–255,

inclusive, that represents the blue component of the color.

Remarks
Application methods and properties that accept a color specification expect that specification to be a
number representing an RGB color value. An RGB color value specifies the relative intensity of red,
green, and blue to cause a specific color to be displayed.

The value for any argument to RGB that exceeds 255 is assumed to be 255.

The following table lists some standard colors and the red, green, and blue values they include:

Color Red Value Green Value Blue Value
Black 0 0 0
Blue 0 0 255
Green 0 255 0
Cyan 0 255 255
Red 255 0 0
Magenta 255 0 255
Yellow 255 255 0
White 255 255 255

RmDir Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmRmDirC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmRmDirX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmRmDirS"}

Removes an existing directory or folder.

Syntax
RmDir path
The required path argument is a string expression that identifies the directory or folder to be removed.
The path may include the drive. If no drive is specified, RmDir removes the directory or folder on the
current drive.

Remarks
An error occurs if you try to use RmDir on a directory or folder containing files. Use the Kill statement
to delete all files before attempting to remove a directory or folder.

SetAttr Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmSetAttrC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmSetAttrX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmSetAttrS"}

Sets attribute information for a file.

Syntax
SetAttr pathname, attributes
The SetAttr statement syntax has these named arguments:

Part Description
pathname Required. String expression that specifies a file name—may

include directory or folder, and drive.
attributes Required. Constant or numeric expression, whose sum

specifies file attributes.

Settings
The attributes argument settings are:

Constant Value Description
     

vbNormal 0 Normal (default)
vbReadOnly 1 Read-only
vbHidden 2 Hidden
vbSystem 4 System file
vbArchive 32 File has changed since last backup

Note      These constants are specified by Visual Basic for Applications. The names can be used
anywhere in your code in place of the actual values.

Remarks
A run-time error occurs if you try to set the attributes of an open file.

Close Statement Example

This example uses the Close statement to close all three files opened for Output.
Dim I, FileName
For I = 1 To 3 ' Loop 3 times.

FileName = "TEST" & I ' Create file name.
Open FileName For Output As #I ' Open file.
Print #I, "This is a test." ' Write string to file.

Next I
Close ' Close all 3 open files.

EOF Function Example

This example uses the EOF function to detect the end of a file. This example assumes that MYFILE is
a text file with a few lines of text.
Dim InputData
Open "MYFILE" For Input As #1' Open file for input.
Do While Not EOF(1) ' Check for end of file.

Line Input #1, InputData ' Read line of data.
Debug.Print InputData ' Print to Debug window.

Loop
Close #1 ' Close file.

FileAttr Function Example

This example uses the FileAttr function to return the file mode and file handle of an open file.
Dim FileNum, Mode, Handle
FileNum = 1 ' Assign file number.
Open "TESTFILE" For Append As FileNum ' Open file.
Mode = FileAttr(FileNum, 1)' Returns 8 (Append file mode).
Handle = FileAttr(FileNum, 2)' Returns file handle.
Close FileNum ' Close file.

FreeFile Function Example

This example uses the FreeFile function to return the next available file number. Five files are opened
for output within the loop, and some sample data is written to each.
Dim MyIndex, FileNumber
For MyIndex = 1 To 5 ' Loop 5 times.

FileNumber = FreeFile ' Get unused file
' number.

Open "TEST" & MyIndex For Output As #FileNumber ' Create filename.
Write #FileNumber, "This is a sample." ' Output text.
Close #FileNumber ' Close file.

Next MyIndex

Get Statement Example

This example uses the Get statement to read data from a file into a variable. This example assumes
that TESTFILE is a file containing five records of the user-defined type Record.

Type Record ' Define user-defined type.
ID As Integer
Name As String * 20

End Type
Dim MyRecord As Record, Position ' Declare variables.
' Open sample file for random access.
Open "TESTFILE" For Random As #1 Len = Len(MyRecord)
' Read the sample file using the Get statement.
Position = 3' Define record number.
Get #1, Position, MyRecord ' Read third record.
Close #1 ' Close file.

Input # Statement Example

This example uses the Input # statement to read data from a file into two variables. This example
assumes that TESTFILE is a file with a few lines of data written to it using the Write # statement; that
is, each line contains a string in quotations and a number separated by a comma, for example,
("Hello", 234).
Dim MyString, MyNumber
Open "TESTFILE" For Input As #1 ' Open file for input.
Do While Not EOF(1) ' Loop until end of file.

Input #1, MyString, MyNumber ' Read data into two variables.
Debug.Print MyString, MyNumber ' Print data to Debug window.

Loop
Close #1 ' Close file.

Input Function Example

This example uses the Input function to read one character at a time from a file and print it to the
Debug window. This example assumes that TESTFILE is a text file with a few lines of sample data.

Dim MyChar
Open "TESTFILE" For Input As #1 ' Open file.
Do While Not EOF(1) ' Loop until end of file.

MyChar = Input(1, #1) ' Get one character.
Debug.Print MyChar ' Print to Debug window.

Loop
Close #1 ' Close file.

Line Input # Statement Example

This example uses the Line Input # statement to read a line from a sequential file and assign it to a
variable. This example assumes that TESTFILE is a text file with a few lines of sample data.

Dim TextLine
Open "TESTFILE" For Input As #1 ' Open file.
Do While Not EOF(1) ' Loop until end of file.

Line Input #1, TextLine ' Read line into variable.
Debug.Print TextLine ' Print to Debug window.

Loop
Close #1 ' Close file.

Loc Function Example

This example uses the Loc function to return the current read/write position within an open file. This
example assumes that TESTFILE is a text file with a few lines of sample data.

Dim MyLocation, MyLine
Open "TESTFILE" For Binary As #1 ' Open file just created.
Do While MyLocation < LOF(1) ' Loop until end of file.

MyLine = MyLine & Input(1, #1) ' Read character into variable.
MyLocation = Loc(1) ' Get current position within file.

' Print to Debug window.
Debug.Print MyLine; Tab; MyLocation

Loop
Close #1 ' Close file.

Lock, Unlock Statements Example

This example illustrates the use of the Lock and Unlock statements. While a record is being
modified, access by other processes to the record is denied. This example assumes that TESTFILE
is a file containing five records of the user-defined type Record.

Type Record ' Define user-defined type.
ID As Integer
Name As String * 20

End Type
Dim MyRecord As Record, RecordNumber ' Declare variables.
' Open sample file for random access.
Open "TESTFILE" For Random Shared As #1 Len = Len(MyRecord)
RecordNumber = 4 ' Define record number.
Lock #1, RecordNumber' Lock record.
Get #1, RecordNumber, MyRecord ' Read record.
MyRecord.ID = 234 ' Modify record.
MyRecord.Name = "John Smith"
Put #1, RecordNumber, MyRecord ' Write modified record.
Unlock #1, RecordNumber ' Unlock current record.
Close #1 ' Close file.

LOF Function Example

This example uses the LOF function to determine the size of an open file. This example assumes that
TESTFILE is a text file containing sample data.

Dim FileLength
Open "TESTFILE" For Input As #1 ' Open file.
FileLength = LOF(1) ' Get length of file.
Close #1 ' Close file.

Open Statement Example

This example illustrates various uses of the Open statement to enable input and output to a file.

The following code opens the file TESTFILE in sequential-input mode.

Open "TESTFILE" For Input As #1
' Close before reopening in another mode.
Close #1
This example opens the file in Binary mode for writing operations only.
Open "TESTFILE" For Binary Access Write As #1
' Close before reopening in another mode.
Close #1
The following example opens the file in Random mode. The file contains records of the user-defined
type Record.

Type Record ' Define user-defined type.
ID As Integer
Name As String * 20

End Type
Dim MyRecord As Record ' Declare variable.
Open "TESTFILE" For Random As #1 Len = Len(MyRecord)
' Close before reopening in another mode.
Close #1
This code example opens the file for sequential output; any process can read or write to file.
Open "TESTFILE" For Output Shared As #1
' Close before reopening in another mode.
Close #1
This code example opens the file in Binary mode for reading; other processes can't read file.
Open "TESTFILE" For Binary Access Read Lock Read As #1

Print # Statement Example

This example uses the Print # statement to write data to a file.
Open "TESTFILE" For Output As #1 ' Open file for output.
Print #1, "This is a test" ' Print text to file.
Print #1,' Print blank line to file.
Print #1, "Zone 1"; Tab ; "Zone 2" ' Print in two print zones.
Print #1, "Hello" ; " " ; "World" ' Separate strings with space.
Print #1, Spc(5) ; "5 leading spaces " ' Print five leading spaces.
Print #1, Tab(10) ; "Hello"' Print word at column 10.

' Assign Boolean, Date, Null and Error values.
Dim MyBool, MyDate, MyNull, MyError
MyBool = False : MyDate = #February 12, 1969# : MyNull = Null
MyError = CVErr(32767)
' True, False, Null, and Error are translated using locale settings of
' your system. Date literals are written using standard short date
' format.
Print #1, MyBool ; " is a Boolean value"
Print #1, MyDate ; " is a date"
Print #1, MyNull ; " is a null value"
Print #1, MyError ; " is an error value"
Close #1 ' Close file.

Put Statement Example

This example uses the Put statement to write data to a file. Five records of the user-defined type
Record are written to the file.

Type Record ' Define user-defined type.
ID As Integer
Name As String * 20

End Type
Dim MyRecord As Record, RecordNumber ' Declare variables.
' Open file for random access.
Open "TESTFILE" For Random As #1 Len = Len(MyRecord)
For RecordNumber = 1 To 5 ' Loop 5 times.

MyRecord.ID = RecordNumber ' Define ID.
MyRecord.Name = "My Name" & RecordNumber ' Create a string.
Put #1, RecordNumber, MyRecord ' Write record to file.

Next RecordNumber
Close #1 ' Close file.

Reset Statement Example

This example uses the Reset statement to close all open files and write the contents of all file buffers
to disk. Note the use of the Variant variable FileNumber as both a string and a number.

Dim FileNumber
For FileNumber = 1 To 5 ' Loop 5 times.

' Open file for output. FileNumber is concatenated into the string
' TEST for the filename, but is a number following a #.
Open "TEST" & FileNumber For Output As #FileNumber
Write #FileNumber, "Hello World" ' Write data to file.

Next FileNumber
Reset ' Close files and write contents

' to disk.

Seek Function Example

This example uses the Seek function to return the current file position. The example assumes
TESTFILE is a file containing records of the user-defined type Record.

Type Record ' Define user-defined type.
ID As Integer
Name As String * 20

End Type
For files opened in Random mode, Seek returns number of next record.
Dim MyRecord As Record ' Declare variable.
Open "TESTFILE" For Random As #1 Len = Len(MyRecord)
Do While Not EOF(1) ' Loop until end of file.

Get #1, , MyRecord ' Read next record.
Debug.Print Seek(1) ' Print record number to Debug

' window.
Loop
Close #1 ' Close file.
For files opened in modes other than Random mode, Seek returns the byte position at which the next
operation takes place. Assume TESTFILE is a file containing a few lines of text.

Dim MyChar
Open "TESTFILE" For Input As #1 ' Open file for reading.
Do While Not EOF(1) ' Loop until end of file.

MyChar = Input(1, #1) ' Read next character of data.
Debug.Print Seek(1) ' Print byte position to Debug

' window.
Loop
Close #1 ' Close file.

Seek Statement Example

This example uses the Seek statement to set the position for the next read or write within a file. This
example assumes TESTFILE is a file containing records of the user-defined type Record.

Type Record ' Define user-defined type.
ID As Integer
Name As String * 20

End Type
For files opened in Random mode, Seek sets the next record.
Dim MyRecord As Record, MaxSize, RecordNumber ' Declare variables.
' Open file in random-file mode.
Open "TESTFILE" For Random As #1 Len = Len(MyRecord)
MaxSize = LOF(1) \ Len(MyRecord) ' Get number of records in file.
' The loop reads all records starting from the last.
For RecordNumber = MaxSize To 1 Step - 1

Seek #1, RecordNumber ' Set position.
Get #1, , MyRecord ' Read record.

Next RecordNumber
Close #1 ' Close file.
For files opened in modes other than Random mode, Seek sets the byte position at which the next
operation takes place. Assume TESTFILE is a file containing a few lines of text.

Dim MaxSize, NextChar, MyChar
Open "TESTFILE" For Input As #1 ' Open file for input.
MaxSize = LOF(1) ' Get size of file in bytes.
' The loop reads all characters starting from the last.
For NextChar = MaxSize To 1 Step -1

Seek #1, NextChar ' Set position.
MyChar = Input(1, #1) ' Read character.

Next NextChar
Close #1 ' Close file.

Spc Function Example

This example uses the Spc function to position output in a file and in the Debug window.
' The Spc function can be used with the Print # statement.
Open "TESTFILE" For Output As #1 ' Open file for output.
Print #1, "10 spaces between here"; Spc(10); "and here."
Close #1 ' Close file.
The following statement causes the text to be printed in the Debug window (using the Print method),
preceded by 30 spaces.
Debug.Print Spc(30); "Thirty spaces later..."

Tab Function Example

This example uses the Tab function to position output in a file and in the Debug window.
' The Tab function can be used with the Print # statement.
Open "TESTFILE" For Output As #1 ' Open file for output.
' The second word prints at column 20.
Print #1, "Hello"; Tab(20); "World."
' If the argument is omitted, cursor is moved to the next print zone.
Print #1, "Hello"; Tab; "World"
Close #1 ' Close file.
The Tab function can also be used with the Print method. The following statement prints text starting
at column 10.
Debug.Print Tab(10); "10 columns from start."

Width # Statement Example

This example uses the Width # statement to set the output line width for a file.
Dim I
Open "TESTFILE" For Output As #1 ' Open file for output.
Width #1, 5 ' Set output line width to 5.
For I = 0 To 9 ' Loop 10 times.

Print #1, Chr(48 + I); ' Prints five characters per line.
Next I
Close #1 ' Close file.

Write # Statement Example

This example uses the Write # statement to write raw data to a sequential file.
Open "TESTFILE" For Output As #1 ' Open file for output.
Write #1, "Hello World", 234 ' Write comma-delimited data.
Write #1,' Write blank line.

Dim MyBool, MyDate, MyNull, MyError
' Assign Boolean, Date, Null, and Error values.
MyBool = False : MyDate = #February 12, 1969# : MyNull = Null
MyError = CVErr(32767)
' Boolean data is written as #TRUE# or #FALSE#. Date literals are
' written in universal date format, for example, #1994-07-13#
 'represents July 13, 1994. Null data is written as #NULL#.
' Error data is written as #ERROR errorcode#.
Write #1, MyBool ; " is a Boolean value"
Write #1, MyDate ; " is a date"
Write #1, MyNull ; " is a null value"
Write #1, MyError ; " is an error value"
Close #1 ' Close file.

Close Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmCloseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmCloseX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmCloseS"}

Concludes input/output (I/O) to a file opened using the Open statement.

Syntax
Close [filenumberlist]

The optional filenumberlist argument can be one or more file numbers using the following syntax,
where filenumber is any valid file number:

[[#]filenumber] [, [#]filenumber] . . .

Remarks
If you omit filenumberlist, all active files opened by the Open statement are closed.

When you close files that were opened for Output or Append, the final buffer of output is written to
the operating system buffer for that file. All buffer space associated with the closed file is released.

When the Close statement is executed, the association of a file with its file number ends.

EOF Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctEOFC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctEOFX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctEOFS"}

Returns an Integer containing the Boolean value True when the end of a file opened for Random or
sequential Input has been reached.

Syntax
EOF(filenumber)
The required filenumber argument is an Integer containing any valid file number.

Remarks
Use EOF to avoid the error generated by attempting to get input past the end of a file.

The EOF function returns False until the end of the file has been reached. With files opened for
Random or Binary access, EOF returns False until the last executed Get statement is unable to read
an entire record.

With files opened for Binary access, an attempt to read through the file using the Input function until
EOF returns True generates an error. Use the LOF and Loc functions instead of EOF when reading
binary files with Input, or use Get when using the EOF function. With files opened for Output, EOF
always returns True.

FileAttr Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctFileAttrC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctFileAttrX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctFileAttrS"}

Returns a Long representing the file mode for files opened using the Open statement.

Syntax
FileAttr(filenumber, returntype)
The FileAttr function syntax has these named arguments:

Part Description
filenumber Required; Integer. Any valid file number.
returntype Required; Integer. Number indicating the type of information

to return. Specify 1 to return a value indicating the file mode.
On 16-bit systems only, specify 2 to retrieve an operating
system file handle. Returntype 2 is not supported in 32-bit
systems and causes an error.

Return Values
When the returntype argument is 1, the following return values indicate the file access mode:

Mode Value
Input 1
Output 2
Random 4
Append 8
Binary 32

FreeFile Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctFreeFileC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctFreeFileX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctFreeFileS"}

Returns an Integer representing the next file number available for use by the Open statement.

Syntax
FreeFile[(rangenumber)]
The optional rangenumber argument is a Variant that specifies the range from which the next free file
number is to be returned. Specify a 0 (default) to return a file number in the range 1 – 255, inclusive.
Specify a 1 to return a file number in the range 256 – 511.

Remarks
Use FreeFile to supply a file number that is not already in use.

Get Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmGetC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmGetX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmGetS"}

Reads data from an open disk file into a variable.

Syntax
Get [#]filenumber, [recnumber], varname

The Get statement syntax has these parts:

Part Description
filenumber Required. Any valid file number.
recnumber Optional. Variant (Long). Record number (Random mode

files) or byte number (Binary mode files) at which reading
begins.

varname Required. Valid variable name into which data is read.

Remarks
Data read with Get is usually written to a file with Put.
The first record or byte in a file is at position 1, the second record or byte is at position 2, and so on. If
you omit recnumber, the next record or byte following the last Get or Put statement (or pointed to by
the last Seek function) is read. You must include delimiting commas, for example:
Get #4,,FileBuffer
For files opened in Random mode, the following rules apply:

· If the length of the data being read is less than the length specified in the Len clause of the Open
statement, Get reads subsequent records on record-length boundaries. The space between the
end of one record and the beginning of the next record is padded with the existing contents of the
file buffer. Because the amount of padding data can't be determined with any certainty, it is
generally a good idea to have the record length match the length of the data being read.

· If the variable being read into is a variable-length string, Get reads a 2-byte descriptor containing
the string length and then reads the data that goes into the variable. Therefore, the record length
specified by the Len clause in the Open statement must be at least 2 bytes greater than the actual
length of the string.

· If the variable being read into is a Variant of numeric type, Get reads 2 bytes identifying the
VarType of the Variant and then the data that goes into the variable. For example, when reading a
Variant of VarType 3, Get reads 6 bytes: 2 bytes identifying the Variant as VarType 3 (Long) and
4 bytes containing the Long data. The record length specified by the Len clause in the Open
statement must be at least 2 bytes greater than the actual number of bytes required to store the
variable.
Note      You can use the Get statement to read a Variant array from disk, but you can't use Get to
read a scalar Variant containing an array. You also can't use Get to read objects from disk.

· If the variable being read into is a Variant of VarType 8 (String), Get reads 2 bytes identifying the
VarType, 2 bytes indicating the length of the string, and then reads the string data. The record
length specified by the Len clause in the Open statement must be at least 4 bytes greater than the
actual length of the string.

· If the variable being read into is a dynamic array, Get reads a descriptor whose length equals 2
plus 8 times the number of dimensions, that is, 2 + 8 * NumberOfDimensions. The record length
specified by the Len clause in the Open statement must be greater than or equal to the sum of all
the bytes required to read the array data and the array descriptor. For example, the following array
declaration requires 118 bytes when the array is written to disk.

Dim MyArray(1 To 5,1 To 10) As Integer
The 118 bytes are distributed as follows: 18 bytes for the descriptor (2 + 8 * 2), and 100 bytes for
the data (5 * 10 * 2).

· If the variable being read into is a fixed-size array, Get reads only the data. No descriptor is read.
· If the variable being read into is any other type of variable (not a variable-length string or a

Variant), Get reads only the variable data. The record length specified by the Len clause in the
Open statement must be greater than or equal to the length of the data being read.

· Get reads elements of user-defined types as if each were being read individually, except that there
is no padding between elements. On disk, a dynamic array in a user-defined type (written with Put)
is prefixed by a descriptor whose length equals 2 plus 8 times the number of dimensions, that is, 2
+ 8 * NumberOfDimensions. The record length specified by the Len clause in the Open statement
must be greater than or equal to the sum of all the bytes required to read the individual elements,
including any arrays and their descriptors.

For files opened in Binary mode, all of the Random rules apply, except:

· The Len clause in the Open statement has no effect. Get reads all variables from disk
contiguously; that is, with no padding between records.

· For any array other than an array in a user-defined type, Get reads only the data. No descriptor is
read.

· Get reads variable-length strings that aren't elements of user-defined types without expecting the
2-byte length descriptor. The number of bytes read equals the number of characters already in the
string. For example, the following statements read 10 bytes from file number 1:
VarString = String(10," ")
Get #1,,VarString

Input # Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmInputC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmInputX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmInputS"}

Reads data from an open sequential file and assigns the data to variables.

Syntax
Input #filenumber, varlist

The Input # statement syntax has these parts:

Part Description
filenumber Required. Any valid file number.
varlist Required. Comma-delimited list of variables that are assigned

values read from the file¾can't be an array or object variable.
However, variables that describe an element of an array or
user-defined type may be used.

Remarks
Data read with Input # is usually written to a file with Write #. Use this statement only with files
opened in Input or Binary mode.

When read, standard string or numeric data is assigned to variables without modification. The
following table illustrates how other input data is treated:

Data Value assigned to variable
Delimiting comma or
blank line

Empty

#NULL# Null
#TRUE# or #FALSE# True or False
#yyyy-mm-dd hh:mm:ss# The date and/or time represented by the

expression
#ERROR errornumber# errornumber (variable is a Variant tagged as

an error)

Double quotation marks (" ") within input data are ignored.

Data items in a file must appear in the same order as the variables in varlist and match variables of
the same data type. If a variable is numeric and the data is not numeric, a value of zero is assigned to
the variable.

If you reach the end of the file while you are inputting a data item, the input is terminated and an error
occurs.

Note      To be able to correctly read data from a file into variables using Input #, use the Write #
statement instead of the Print # statement to write the data to the files. Using Write # ensures each
separate data field is properly delimited.

Input Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctInputC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctInputX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctInputS"}

Returns String containing characters from a file opened in Input or Binary mode.

Syntax
Input(number, [#]filenumber)

The Input function syntax has these parts:

Part Description
number Required. Any valid numeric expression specifying the number

of characters to return.
filenumber Required. Any valid file number.

Remarks
Data read with the Input function is usually written to a file with Print # or Put. Use this function only
with files opened in Input or Binary mode.

Unlike the Input # statement, the Input function returns all of the characters it reads, including
commas, carriage returns, linefeeds, quotation marks, and leading spaces.

With files opened for Binary access, an attempt to read through the file using the Input function until
EOF returns True generates an error. Use the LOF and Loc functions instead of EOF when reading
binary files with Input, or use Get when using the EOF function.

Note      Use the InputB function for byte data contained within text files. With InputB, number
specifies the number of bytes to return rather than the number of characters to return.

Line Input # Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmLineInputC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmLineInputX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmLineInputS"}

Reads a single line from an open sequential file and assigns it to a String variable.

Syntax
Line Input #filenumber, varname

The Line Input # statement syntax has these parts:

Part Description
filenumber Required. Any valid file number.
varname Required. Valid Variant or String variable name.

Remarks
Data read with Line Input # is usually written from a file with Print #.

The Line Input # statement reads from a file one character at a time until it encounters a carriage
return (Chr(13)) or carriage return–linefeed (Chr(13) + Chr(10)) sequence. Carriage return–linefeed
sequences are skipped rather than appended to the character string.

Loc Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctLocC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctLocX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctLocS"}

Returns a Long specifying the current read/write position within an open file.

Syntax
Loc(filenumber)
The required filenumber argument is any valid Integer file number.

Remarks
The following describes the return value for each file access mode:

Mode Return Value
Random Number of the last record read from or written to the file.
Sequential Current byte position in the file divided by 128. However,

information returned by Loc for sequential files is neither
used nor required.

Binary Position of the last byte read or written.

Lock, Unlock Statements
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmLockC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmLockX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmLockS"}

Controls access by other processes to all or part of a file opened using the Open statement.

Syntax
Lock [#]filenumber[, recordrange]

. . .
Unlock [#]filenumber[, recordrange]

The Lock and Unlock statement syntax has these parts:

Part Description
filenumber Required. Any valid file number.
recordrange Optional. The range of records to lock or unlock.

Settings
The recordrange argument settings are:

recnumber | [start] To end

Setting Description
recnumber Record number (Random mode files) or byte number

(Binary mode files) at which locking or unlocking begins.
start Number of the first record or byte to lock or unlock.
end Number of the last record or byte to lock or unlock.

Remarks
The Lock and Unlock statements are used in environments where several processes might need
access to the same file.

Lock and Unlock statements are always used in pairs. The arguments to Lock and Unlock must
match exactly.

The first record or byte in a file is at position 1, the second record or byte is at position 2, and so on. If
you specify just one record, then only that record is locked or unlocked. If you specify a range of
records and omit a starting record (start), all records from the first record to the end of the range (end)
are locked or unlocked. Using Lock without recnumber locks the entire file; using Unlock without
recnumber unlocks the entire file.

If the file has been opened for sequential input or output, Lock and Unlock affect the entire file,
regardless of the range specified by start and end.

Caution      Be sure to remove all locks with an Unlock statement before closing a file or quitting your
program. Failure to remove locks produces unpredictable results.

LOF Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctLOFC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctLOFX":1}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctLOFS"}

Returns a Long representing the size, in bytes, of a file opened using the Open statement.

Syntax
LOF(filenumber)
The required filenumber argument is an Integer containing a valid file number.

Note      Use the FileLen function to obtain the length of a file that is not open.

Open Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmOpenC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmOpenX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmOpenS"}

Enables input/output (I/O) to a file.

Syntax
Open pathname For mode [Access access] [lock] As [#]filenumber [Len=reclength]

The Open statement syntax has these parts:

Part Description
pathname Required. String expression that specifies a file name¾may

include directory or folder, and drive.
mode Required. Keyword specifying the file mode: Append, Binary,

Input, Output, or Random. If unspecified, the file is opened
for Random access.

access Optional. Keyword specifying the operations permitted on the
open file: Read, Write, or Read Write.

lock Optional. Keyword specifying the operations permitted on the
open file by other processes: Shared, Lock Read, Lock
Write, and Lock Read Write.

filenumber Required. A valid file number in the range 1 to 511, inclusive.
Use the FreeFile function to obtain the next available file
number.

reclength Optional. Number less than or equal to 32,767 (bytes). For
files opened for random access, this value is the record
length. For sequential files, this value is the number of
characters buffered.

Remarks
You must open a file before any I/O operation can be performed on it. Open allocates a buffer for I/O
to the file and determines the mode of access to use with the buffer.

If the file specified by pathname doesn't exist, it is created when a file is opened for Append, Binary,
Output, or Random modes.

If the file is already opened by another process and the specified type of access is not allowed, the
Open operation fails and an error occurs.

The Len clause is ignored if mode is Binary.

Important      In Binary, Input, and Random modes, you can open a file using a different file number
without first closing the file. In Append and Output modes, you must close a file before opening it
with a different file number.

Print # Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmPrintC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmPrintX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmPrintS"}

Writes display-formatted data to a sequential file.

Syntax
Print #filenumber, [outputlist]

The Print # statement syntax has these parts:

Part Description
filenumber Required. Any valid file number.
outputlist Optional. Expression or list of expressions to print.

Settings
The outputlist argument settings are:

[{Spc(n) | Tab[(n)]}] [expression] [charpos]

Setting Description
Spc(n) Used to insert space characters in the output, where n is the

number of space characters to insert.
Tab(n) Used to position the insertion point to an absolute column

number, where n is the column number. Use Tab with no
argument to position the insertion point at the beginning of the
next print zone.

expression Numeric expressions or string expressions to print.
charpos Specifies the insertion point for the next character. Use a

semicolon to position the insertion point immediately after the
last character displayed. Use Tab(n) to position the insertion
point to an absolute column number. Use Tab with no
argument to position the insertion point at the beginning of the
next print zone. If charpos is omitted, the next character is
printed on the next line.

Remarks
Data written with Print # is usually read from a file with Line Input # or Input.
If you omit outputlist and include only a list separator after filenumber, a blank line is printed to the file.
Multiple expressions can be separated with either a space or a semicolon. A space has the same
effect as a semicolon.

For Boolean data, either True or False is printed. The True and False keywords are not translated,
regardless of the locale.

Date data is written to the file using the standard short date format recognized by your system. When
either the date or the time component is missing or zero, only the part provided gets written to the file.

Nothing is written to the file if outputlist data is Empty. However, if outputlist data is Null, Null is
written to the file.

For Error data, the output appears as Error errorcode. The Error keyword is not translated
regardless of the locale.

All data written to the file using Print # is internationally aware; that is, the data is properly formatted
using the appropriate decimal separator.

Because Print # writes an image of the data to the file, you must delimit the data so it prints correctly.
If you use Tab with no arguments to move the print position to the next print zone, Print # also writes
the spaces between print fields to the file.

Note      If, at some future time, you want to read the data from a file using the Input # statement, use
the Write # statement instead of the Print # statement to write the data to the file. Using Write #
ensures the integrity of each separate data field by properly delimiting it, so it can be read back in
using Input #. Using Write # also ensures it can be correctly read in any locale.

Put Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmPutC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmPutX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmPutS"}

Writes data from a variable to a disk file.

Syntax
Put [#]filenumber, [recnumber], varname

The Put statement syntax has these parts:

Part Description
filenumber Required. Any valid file number.
recnumber Optional. Variant (Long). Record number (Random mode

files) or byte number (Binary mode files) at which writing
begins.

varname Required. Name of variable containing data to be written to
disk.

Remarks
Data written with Put is usually read from a file with Get.
The first record or byte in a file is at position 1, the second record or byte is at position 2, and so on. If
you omit recnumber, the next record or byte after the last Get or Put statement or pointed to by the
last Seek function is written. You must include delimiting commas, for example:
Put #4,,FileBuffer
For files opened in Random mode, the following rules apply:

· If the length of the data being written is less than the length specified in the Len clause of the
Open statement, Put writes subsequent records on record-length boundaries. The space between
the end of one record and the beginning of the next record is padded with the existing contents of
the file buffer. Because the amount of padding data can't be determined with any certainty, it is
generally a good idea to have the record length match the length of the data being written. If the
length of the data being written is greater than the length specified in the Len clause of the Open
statement, an error occurs.

· If the variable being written is a variable-length string, Put writes a 2-byte descriptor containing the
string length and then the variable. The record length specified by the Len clause in the Open
statement must be at least 2 bytes greater than the actual length of the string.

· If the variable being written is a Variant of a numeric type, Put writes 2 bytes identifying the
VarType of the Variant and then writes the variable. For example, when writing a Variant of
VarType 3, Put writes 6 bytes: 2 bytes identifying the Variant as VarType 3 (Long) and 4 bytes
containing the Long data. The record length specified by the Len clause in the Open statement
must be at least 2 bytes greater than the actual number of bytes required to store the variable.

Note      You can use the Put statement to write a Variant array to disk, but you can't use Put to write
a scalar Variant containing an array to disk. You also can't use Put to write objects to disk.

· If the variable being written is a Variant of VarType 8 (String), Put writes 2 bytes identifying the
VarType, 2 bytes indicating the length of the string, and then writes the string data. The record
length specified by the Len clause in the Open statement must be at least 4 bytes greater than the
actual length of the string.

· If the variable being written is a dynamic array, Put writes a descriptor whose length equals 2 plus
8 times the number of dimensions, that is, 2 + 8 * NumberOfDimensions. The record length
specified by the Len clause in the Open statement must be greater than or equal to the sum of all

the bytes required to write the array data and the array descriptor. For example, the following array
declaration requires 118 bytes when the array is written to disk.
Dim MyArray(1 To 5,1 To 10) As Integer

· The 118 bytes are distributed as follows: 18 bytes for the descriptor (2 + 8 * 2), and 100 bytes for
the data (5 * 10 * 2).

· If the variable being written is a fixed-size array, Put writes only the data. No descriptor is written to
disk.

· If the variable being written is any other type of variable (not a variable-length string or a Variant),
Put writes only the variable data. The record length specified by the Len clause in the Open
statement must be greater than or equal to the length of the data being written.

· Put writes elements of user-defined types as if each were written individually, except there is no
padding between elements. On disk, a dynamic array in a user-defined type written with Put is
prefixed by a descriptor whose length equals 2 plus 8 times the number of dimensions, that is, 2 +
8 * NumberOfDimensions. The record length specified by the Len clause in the Open statement
must be greater than or equal to the sum of all the bytes required to write the individual elements,
including any arrays and their descriptors.

For files opened in Binary mode, all of the Random rules apply, except:

· The Len clause in the Open statement has no effect. Put writes all variables to disk contiguously;
that is, with no padding between records.

· For any array other than an array in a user-defined type, Put writes only the data. No descriptor is
written.

· Put writes variable-length strings that are not elements of user-defined types without the 2-byte
length descriptor. The number of bytes written equals the number of characters in the string. For
example, the following statements write 10 bytes to file number 1:
VarString$ = String$(10," ")
Put #1,,VarString$

Reset Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmResetC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmResetX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmResetS"}

Closes all disk files opened using the Open statement.

Syntax
Reset

Remarks
The Reset statement closes all active files opened by the Open statement and writes the contents of
all file buffers to disk.

Seek Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctSeekC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctSeekX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctSeekS"}

Returns a Long specifying the current read/write position within a file opened using the Open
statement.

Syntax
Seek(filenumber)
The required filenumber argument is an Integer containing a valid file number.

Remarks
Seek returns a value between 1 and 2,147,483,647 (equivalent to 2^31 – 1), inclusive.

The following describes the return values for each file access mode.

Mode Return Value
Random Number of the next record read or written
Binary,
Output,
Append,
Input

Byte position at which the next operation takes place. The first
byte in a file is at position 1, the second byte is at position 2,
and so on.

Seek Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmSeekC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmSeekX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmSeekS"}

Sets the position for the next read/write operation within a file opened using the Open statement.

Syntax
Seek [#]filenumber, position

The Seek statement syntax has these parts:

Part Description
filenumber Required. Any valid file number.
position Required. Number in the range 1 – 2,147,483,647, inclusive,

that indicates where the next read/write operation should
occur.

Remarks
Record numbers specified in Get and Put statements override file positioning performed by Seek.

Performing a file-write operation after a Seek operation beyond the end of a file extends the file. If you
attempt a Seek operation to a negative or zero position, an error occurs.

Spc Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctSpcC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctSpcX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctSpcS"}

Used with the Print # statement or the Print method to position output.

Syntax
Spc(n)
The required n argument is the number of spaces to insert before displaying or printing the next
expression in a list.

Remarks
If n is less than the output line width, the next print position immediately follows the number of spaces
printed. If n is greater than the output line width, Spc calculates the next print position using the
formula:

currentprintposition + (n Mod width)

For example, if the current print position is 24, the output line width is 80, and you specify Spc(90),
the next print will start at position 34 (current print position + the remainder of 90/80). If the difference
between the current print position and the output line width is less than n (or n Mod width), the Spc
function skips to the beginning of the next line and generates spaces equal to
n – (width – currentprintposition).

Note      Make sure your tabular columns are wide enough to accommodate wide letters.

When you use the Print method with a proportionally spaced font, the width of space characters
printed using the Spc function is always an average of the width of all characters in the point size for
the chosen font. However, there is no correlation between the number of characters printed and the
number of fixed-width columns those characters occupy. For example, the uppercase letter W
occupies more than one fixed-width column and the lowercase letter i occupies less than one fixed-
width column.

Tab Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctTabC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctTabX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctTabS"}

Used with the Print # statement or the Print method to position output.

Syntax
Tab[(n)]
The optional n argument is the column number moved to before displaying or printing the next
expression in a list. If omitted, Tab moves the insertion point to the beginning of the next print zone.
This allows Tab to be used instead of a comma in locales where the comma is used as a decimal
separator.

Remarks
If the current print position on the current line is greater than n, Tab skips to the nth column on the
next output line. If n is less than 1, Tab moves the print position to column 1. If n is greater than the
output line width, Tab calculates the next print position using the formula:

n Mod width

For example, if width is 80 and you specify Tab(90), the next print will start at column 10 (the
remainder of 90/80). If n is less than the current print position, printing begins on the next line at the
calculated print position. If the calculated print position is greater than the current print position,
printing begins at the calculated print position on the same line.

The leftmost print position on an output line is always 1. When you use the Print # statement to print
to files, the rightmost print position is the current width of the output file, which you can set using the
Width # statement.

Note      Make sure your tabular columns are wide enough to accommodate wide letters.

When you use the Tab function with the Print method, the print surface is divided into uniform, fixed-
width columns. The width of each column is an average of the width of all characters in the point size
for the chosen font. However, there is no correlation between the number of characters printed and
the number of fixed-width columns those characters occupy. For example, the uppercase letter W
occupies more than one fixed-width column and the lowercase letter i occupies less than one fixed-
width column.

Width # Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmWidthC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmWidthX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmWidthS"}

Assigns an output line width to a file opened using the Open statement.

Syntax
Width #filenumber, width

The Width # statement syntax has these parts:

Part Description
filenumber Required. Any valid file number.
width Required. Numeric expression in the range 0–255, inclusive,

that indicates how many characters appear on a line before a
new line is started. If width equals 0, there is no limit to the
length of a line. The default value for width is 0.

Write # Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmWriteC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmWriteX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmWriteS"}

Writes data to a sequential file.

Syntax
Write #filenumber, [outputlist]

The Write # statement syntax has these parts:

Part Description
filenumber Required. Any valid file number.
outputlist Optional. One or more comma-delimited numeric expressions

or string expressions to write to a file.

Remarks
Data written with Write # is usually read from a file with Input #.

If you omit outputlist and include a comma after filenumber, a blank line is printed to the file. Multiple
expressions can be separated with a space, a semicolon, or a comma. A space has the same effect
as a semicolon.

When Write # is used to write data to a file, several universal assumptions are followed so the data
can always be read and correctly interpreted using Input #, regardless of locale:

· Numeric data is always written using the period as the decimal separator.
· For Boolean data, either #TRUE# or #FALSE# is printed. The True and False keywords are not

translated, regardless of locale.
· Date data is written to the file using the universal date format. When either the date or the time

component is missing or zero, only the part provided gets written to the file.
· Nothing is written to the file if outputlist data is Empty. However, for Null data, #NULL# is written.
· If outputlist data is Null data, #NULL# is written to the file.
· For Error data, the output appears as #ERROR errorcode#. The Error keyword is not translated,

regardless of locale.

Unlike the Print # statement, the Write # statement inserts commas between items and quotation
marks around strings as they are written to the file. You don't have to put explicit delimiters in the list.
Write # inserts a newline character, that is, a carriage return–linefeed (Chr(13) + Chr(10)), after it has
written the final character in outputlist to the file.

DDB Function Example

This example uses the DDB function to return the depreciation of an asset for a specified period given
the initial cost (InitCost), the salvage value at the end of the asset's useful life (SalvageVal), the
total life of the asset in years (LifeTime), and the period in years for which the depreciation is
calculated (Depr).

Dim Fmt, InitCost, SalvageVal, MonthLife, LifeTime, DepYear, Depr
Const YRMOS = 12 ' Number of months in a year.
Fmt = "###,##0.00"
InitCost = InputBox("What's the initial cost of the asset?")
SalvageVal = InputBox("Enter the asset's value at end of its life.")
MonthLife = InputBox("What's the asset's useful life in months?")
Do While MonthLife < YRMOS ' Ensure period is >= 1 year.

MsgBox "Asset life must be a year or more."
MonthLife = InputBox("What's the asset's useful life in months?")

Loop
LifeTime = MonthLife / YRMOS ' Convert months to years.
If LifeTime <> Int(MonthLife / YRMOS) Then

LifeTime = Int(LifeTime + 1) ' Round up to nearest year.
End If
DepYear = CInt(InputBox("Enter year for depreciation calculation."))
Do While DepYear < 1 Or DepYear > LifeTime

MsgBox "You must enter at least 1 but not more than " & LifeTime
DepYear = InputBox("Enter year for depreciation calculation.")

Loop
Depr = DDB(InitCost, SalvageVal, LifeTime, DepYear)
MsgBox "The depreciation for year " & DepYear & " is " & _
Format(Depr, Fmt) & "."

FV Function Example

This example uses the FV function to return the future value of an investment given the percentage
rate that accrues per period (APR / 12), the total number of payments (TotPmts), the payment
(Payment), the current value of the investment (PVal), and a number that indicates whether the
payment is made at the beginning or end of the payment period (PayType). Note that because
Payment represents cash paid out, it's a negative number.

Dim Fmt, Payment, APR, TotPmts, PayType, PVal, FVal
Const ENDPERIOD = 0, BEGINPERIOD = 1 ' When payments are made.
Fmt = "###,###,##0.00" ' Define money format.
Payment = InputBox("How much do you plan to save each month?")
APR = InputBox("Enter the expected interest annual percentage rate.")
If APR > 1 Then APR = APR / 100 ' Ensure proper form.
TotPmts = InputBox("For how many months do you expect to save?")
PayType = MsgBox("Do you make payments at the end of month?", vbYesNo)
If PayType = vbNo Then PayType = BEGINPERIOD Else PayType = ENDPERIOD
PVal = InputBox("How much is in this savings account now?")
FVal = FV(APR / 12, TotPmts, -Payment, -PVal, PayType)
MsgBox "Your savings will be worth " & Format(FVal, Fmt) & "."

IPmt Function Example

This example uses the IPmt function to calculate how much of a payment is interest when all the
payments are of equal value. Given are the interest percentage rate per period (APR / 12), the
payment period for which the interest portion is desired (Period), the total number of payments
(TotPmts), the present value or principal of the loan (PVal), the future value of the loan (FVal), and
a number that indicates whether the payment is due at the beginning or end of the payment period
(PayType).

Dim FVal, Fmt, PVal, APR, TotPmts, PayType, Period, IntPmt, TotInt, Msg
Const ENDPERIOD = 0, BEGINPERIOD = 1 ' When payments are made.
FVal = 0 ' Usually 0 for a loan.
Fmt = "###,###,##0.00" ' Define money format.
PVal = InputBox("How much do you want to borrow?")
APR = InputBox("What is the annual percentage rate of your loan?")
If APR > 1 Then APR = APR / 100 ' Ensure proper form.
TotPmts = InputBox("How many monthly payments?")
PayType = MsgBox("Do you make payments at end of the month?", vbYesNo)
If PayType = vbNo Then PayType = BEGINPERIOD Else PayType = ENDPERIOD
For Period = 1 To TotPmts ' Total all interest.

IntPmt = IPmt(APR / 12, Period, TotPmts, -PVal, FVal, PayType)
TotInt = TotInt + IntPmt

Next Period
Msg = "You'll pay a total of " & Format(TotInt, Fmt)
Msg = Msg & " in interest for this loan."
MsgBox Msg ' Display results.

IRR Function Example

In this example, the IRR function returns the internal rate of return for a series of 5 cash flows
contained in the array Values(). The first array element is a negative cash flow representing
business start-up costs. The remaining 4 cash flows represent positive cash flows for the subsequent
4 years. Guess is the estimated internal rate of return.

Dim Guess, Fmt, RetRate, Msg
Static Values(5) As Double ' Set up array.
Guess = .1 ' Guess starts at 10 percent.
Fmt = "#0.00" ' Define percentage format.
Values(0) = -70000' Business start-up costs.
' Positive cash flows reflecting income for four successive years.
Values(1) = 22000 : Values(2) = 25000
Values(3) = 28000 : Values(4) = 31000
RetRate = IRR(Values(), Guess) * 100 ' Calculate internal rate.
Msg = "The internal rate of return for these five cash flows is "
Msg = Msg & Format(RetRate, Fmt) & " percent."
MsgBox Msg ' Display internal return rate.

MIRR Function Example

This example uses the MIRR function to return the modified internal rate of return for a series of cash
flows contained in the array Values(). LoanAPR represents the financing interest, and InvAPR
represents the interest rate received on reinvestment.
Dim LoanAPR, InvAPR, Fmt, RetRate, Msg
Static Values(5) As Double ' Set up array.
LoanAPR = .1' Loan rate.
InvAPR = .12' Reinvestment rate.
Fmt = "#0.00" ' Define money format.
Values(0) = -70000' Business start-up costs.
' Positive cash flows reflecting income for four successive years.
Values(1) = 22000 : Values(2) = 25000
Values(3) = 28000 : Values(4) = 31000
RetRate = MIRR(Values(), LoanAPR, InvAPR)' Calculate internal rate.
Msg = "The modified internal rate of return for these five cash flows is"
Msg = Msg & Format(Abs(RetRate) * 100, Fmt) & "%."
MsgBox Msg ' Display internal return

' rate.

NPer Function Example

This example uses the NPer function to return the number of periods during which payments must be
made to pay off a loan whose value is contained in PVal. Also provided are the interest percentage
rate per period (APR / 12), the payment (Payment), the future value of the loan (FVal), and a
number that indicates whether the payment is due at the beginning or end of the payment period
(PayType).

Dim FVal, PVal, APR, Payment, PayType, TotPmts
Const ENDPERIOD = 0, BEGINPERIOD = 1 ' When payments are made.
FVal = 0 ' Usually 0 for a loan.
PVal = InputBox("How much do you want to borrow?")
APR = InputBox("What is the annual percentage rate of your loan?")
If APR > 1 Then APR = APR / 100 ' Ensure proper form.
Payment = InputBox("How much do you want to pay each month?")
PayType = MsgBox("Do you make payments at the end of month?", vbYesNo)
If PayType = vbNo Then PayType = BEGINPERIOD Else PayType = ENDPERIOD
TotPmts = NPer(APR / 12, -Payment, PVal, FVal, PayType)
If Int(TotPmts) <> TotPmts Then TotPmts = Int(TotPmts) + 1
MsgBox "It will take you " & TotPmts & " months to pay off your loan."

NPV Function Example

This example uses the NPV function to return the net present value for a series of cash flows
contained in the array Values(). RetRate represents the fixed internal rate of return.

Dim Fmt, Guess, RetRate, NetPVal, Msg
Static Values(5) As Double ' Set up array.
Fmt = "###,##0.00"' Define money format.
Guess = .1 ' Guess starts at 10 percent.
RetRate = .0625' Set fixed internal rate.
Values(0) = -70000' Business start-up costs.
' Positive cash flows reflecting income for four successive years.
Values(1) = 22000 : Values(2) = 25000
Values(3) = 28000 : Values(4) = 31000
NetPVal = NPV(RetRate, Values()) ' Calculate net present value.
Msg = "The net present value of these cash flows is "
Msg = Msg & Format(NetPVal, Fmt) & "."
MsgBox Msg ' Display net present value.

Pmt Function Example

This example uses the Pmt function to return the monthly payment for a loan over a fixed period.
Given are the interest percentage rate per period (APR / 12), the total number of payments
(TotPmts), the present value or principal of the loan (PVal), the future value of the loan (FVal), and
a number that indicates whether the payment is due at the beginning or end of the payment period
(PayType).
Dim Fmt, FVal, PVal, APR, TotPmts, PayType, Payment
Const ENDPERIOD = 0, BEGINPERIOD = 1 ' When payments are made.
Fmt = "###,###,##0.00" ' Define money format.
FVal = 0 ' Usually 0 for a loan.
PVal = InputBox("How much do you want to borrow?")
APR = InputBox("What is the annual percentage rate of your loan?")
If APR > 1 Then APR = APR / 100 ' Ensure proper form.
TotPmts = InputBox("How many monthly payments will you make?")
PayType = MsgBox("Do you make payments at the end of month?", vbYesNo)
If PayType = vbNo Then PayType = BEGINPERIOD Else PayType = ENDPERIOD
Payment = Pmt(APR / 12, TotPmts, -PVal, FVal, PayType)
MsgBox "Your payment will be " & Format(Payment, Fmt) & " per month."

PPmt Function Example

This example uses the PPmt function to calculate how much of a payment for a specific period is
principal when all the payments are of equal value. Given are the interest percentage rate per period
(APR / 12), the payment period for which the principal portion is desired (Period), the total number
of payments (TotPmts), the present value or principal of the loan (PVal), the future value of the loan
(FVal), and a number that indicates whether the payment is due at the beginning or end of the
payment period (PayType).

Dim NL, TB, Fmt, FVal, PVal, APR, TotPmts, PayType, Payment, Msg,
MakeChart, Period, P, I
Const ENDPERIOD = 0, BEGINPERIOD = 1 ' When payments are made.
NL = Chr(13) & Chr(10) ' Define newline.
TB = Chr(9) ' Define tab.
Fmt = "###,###,##0.00" ' Define money format.
FVal = 0 ' Usually 0 for a loan.
PVal = InputBox("How much do you want to borrow?")
APR = InputBox("What is the annual percentage rate of your loan?")
If APR > 1 Then APR = APR / 100 ' Ensure proper form.
TotPmts = InputBox("How many monthly payments do you have to make?")
PayType = MsgBox("Do you make payments at the end of month?", vbYesNo)
If PayType = vbNo Then PayType = BEGINPERIOD Else PayType = ENDPERIOD
Payment = Abs(-Pmt(APR / 12, TotPmts, PVal, FVal, PayType))
Msg = "Your monthly payment is " & Format(Payment, Fmt) & ". "
Msg = Msg & "Would you like a breakdown of your principal and "
Msg = Msg & "interest per period?"
MakeChart = MsgBox(Msg, vbYesNo) ' See if chart is desired.
If MakeChart <> vbNo Then

If TotPmts > 12 Then MsgBox "Only first year will be shown."
Msg = "Month Payment Principal Interest" & NL
For Period = 1 To TotPmts

If Period > 12 Then Exit For ' Show only first 12.
P = PPmt(APR / 12, Period, TotPmts, -PVal, FVal, PayType)
P = (Int((P + .005) * 100) / 100) ' Round principal.
I = Payment - P
I = (Int((I + .005) * 100) / 100) ' Round interest.
Msg = Msg & Period & TB & Format(Payment, Fmt)
Msg = Msg & TB & Format(P, Fmt) & TB & Format(I, Fmt) & NL

Next Period
MsgBox Msg ' Display amortization table.

End If

PV Function Example

In this example, the PV function returns the present value of an $1,000,000 annuity that will provide
$50,000 a year for the next 20 years. Provided are the expected annual percentage rate (APR), the
total number of payments (TotPmts), the amount of each payment (YrIncome), the total future value
of the investment (FVal), and a number that indicates whether each payment is made at the
beginning or end of the payment period (PayType). Note that YrIncome is a negative number
because it represents cash paid out from the annuity each year.
Dim Fmt, APR, TotPmts, YrIncome, FVal, PayType, PVal
Const ENDPERIOD = 0, BEGINPERIOD = 1 ' When payments are made.
Fmt = "###,##0.00"' Define money format.
APR = .0825 ' Annual percentage rate.
TotPmts = 20' Total number of payments.
YrIncome = 50000 ' Yearly income.
FVal = 1000000 ' Future value.
PayType = BEGINPERIOD' Payment at beginning of month.
PVal = PV(APR, TotPmts, -YrIncome, FVal, PayType)
MsgBox "The present value is " & Format(PVal, Fmt) & "."

Rate Function Example

This example uses the Rate function to calculate the interest rate of a loan given the total number of
payments (TotPmts), the amount of the loan payment (Payment), the present value or principal of
the loan (PVal), the future value of the loan (FVal), a number that indicates whether the payment is
due at the beginning or end of the payment period (PayType), and an approximation of the expected
interest rate (Guess).

Dim Fmt, FVal, Guess, PVal, Payment, TotPmts, PayType, APR
Const ENDPERIOD = 0, BEGINPERIOD = 1 ' When payments are made.
Fmt = "##0.00" ' Define percentage format.
FVal = 0 ' Usually 0 for a loan.
Guess = .1 ' Guess of 10 percent.
PVal = InputBox("How much did you borrow?")
Payment = InputBox("What's your monthly payment?")
TotPmts = InputBox("How many monthly payments do you have to make?")
PayType = MsgBox("Do you make payments at the end of the month?", _
vbYesNo)
If PayType = vbNo Then PayType = BEGINPERIOD Else PayType = ENDPERIOD
APR = (Rate(TotPmts, -Payment, PVal, FVal, PayType, Guess) * 12) * 100
MsgBox "Your interest rate is " & Format(CInt(APR), Fmt) & " percent."

SLN Function Example

This example uses the SLN function to return the straight-line depreciation of an asset for a single
period given the asset's initial cost (InitCost), the salvage value at the end of the asset's useful life
(SalvageVal), and the total life of the asset in years (LifeTime).

Dim Fmt, InitCost, SalvageVal, MonthLife, LifeTime, PDepr
Const YEARMONTHS = 12' Number of months in a year.
Fmt = "###,##0.00"' Define money format.
InitCost = InputBox("What's the initial cost of the asset?")
SalvageVal = InputBox("What's the asset's value at the end of its useful
life?")
MonthLife = InputBox("What's the asset's useful life in months?")
Do While MonthLife < YEARMONTHS ' Ensure period is >= 1 year.

MsgBox "Asset life must be a year or more."
MonthLife = InputBox("What's the asset's useful life in months?")

Loop
LifeTime = MonthLife / YEARMONTHS ' Convert months to years.
If LifeTime <> Int(MonthLife / YEARMONTHS) Then

LifeTime = Int(LifeTime + 1) ' Round up to nearest year.
End If
PDepr = SLN(InitCost, SalvageVal, LifeTime)
MsgBox "The depreciation is " & Format(PDepr, Fmt) & " per year."

SYD Function Example

This example uses the SYD function to return the depreciation of an asset for a specified period given
the asset's initial cost (InitCost), the salvage value at the end of the asset's useful life
(SalvageVal), and the total life of the asset in years (LifeTime). The period in years for which the
depreciation is calculated is PDepr.

Dim Fmt, InitCost, SalvageVal, MonthLife, LifeTime, DepYear, PDepr
Const YEARMONTHS = 12' Number of months in a year.
Fmt = "###,##0.00"' Define money format.
InitCost = InputBox("What's the initial cost of the asset?")
SalvageVal = InputBox("What's the asset's value at the end of its life?")
MonthLife = InputBox("What's the asset's useful life in months?")
Do While MonthLife < YEARMONTHS ' Ensure period is >= 1 year.

MsgBox "Asset life must be a year or more."
MonthLife = InputBox("What's the asset's useful life in months?")

Loop
LifeTime = MonthLife / YEARMONTHS ' Convert months to years.
If LifeTime <> Int(MonthLife / YEARMONTHS) Then

LifeTime = Int(LifeTime + 1) ' Round up to nearest year.
End If
DepYear = CInt(InputBox("For which year do you want depreciation?"))
Do While DepYear < 1 Or DepYear > LifeTime

MsgBox "You must enter at least 1 but not more than " & LifeTime
DepYear = CInt(InputBox("For what year do you want depreciation?"))

Loop
PDepr = SYD(InitCost, SalvageVal, LifeTime, DepYear)
MsgBox "The depreciation for year " & DepYear & " is " & Format(PDepr, Fmt)
& "."

DDB Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctDDBC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctDDBX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctDDBS"}

Returns a Double specifying the depreciation of an asset for a specific time period using the double-
declining balance method or some other method you specify.

Syntax
DDB(cost, salvage, life, period[, factor])
The DDB function has these named arguments:

Part Description
cost Required. Double specifying initial cost of the asset.
salvage Required. Double specifying value of the asset at the end of its

useful life.
life Required. Double specifying length of useful life of the asset.
period Required. Double specifying period for which asset

depreciation is calculated.
factor Optional. Variant specifying rate at which the balance declines.

If omitted, 2 (double-declining method) is assumed.

Remarks
The double-declining balance method computes depreciation at an accelerated rate. Depreciation is
highest in the first period and decreases in successive periods.

The life and period arguments must be expressed in the same units. For example, if life is given in
months, period must also be given in months. All arguments must be positive numbers.

The DDB function uses the following formula to calculate depreciation for a given period:

Depreciation / period = ((cost – salvage) * factor) / life

FV Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctFVC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctFVX":1}           
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctFVS"}

Returns a Double specifying the future value of an annuity based on periodic, fixed payments and a
fixed interest rate.

Syntax
FV(rate, nper, pmt[, pv[, type]])
The FV function has these named arguments:

Part Description
rate Required. Double specifying interest rate per period. For example,

if you get a car loan at an annual percentage rate (APR) of 10
percent and make monthly payments, the rate per period is 0.1/12,
or 0.0083.

nper Required. Integer specifying total number of payment periods in the
annuity. For example, if you make monthly payments on a four-year
car loan, your loan has a total of 4 * 12 (or 48) payment periods.

pmt Required. Double specifying payment to be made each period.
Payments usually contain principal and interest that doesn't change
over the life of the annuity.

pv Optional. Variant specifying present value (or lump sum) of a series
of future payments. For example, when you borrow money to buy a
car, the loan amount is the present value to the lender of the
monthly car payments you will make. If omitted, 0 is assumed.

type Optional. Variant specifying when payments are due. Use 0 if
payments are due at the end of the payment period, or use 1 if
payments are due at the beginning of the period. If omitted, 0 is
assumed.

Remarks
An annuity is a series of fixed cash payments made over a period of time. An annuity can be a loan
(such as a home mortgage) or an investment (such as a monthly savings plan).

The rate and nper arguments must be calculated using payment periods expressed in the same
units. For example, if rate is calculated using months, nper must also be calculated using months.

For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers;
cash received (such as dividend checks) is represented by positive numbers.

IPmt Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIPmtC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctIPmtX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctIPmtS"}

Returns a Double specifying the interest payment for a given period of an annuity based on periodic,
fixed payments and a fixed interest rate.

Syntax
IPmt(rate, per, nper, pv[, fv[, type]])
The IPmt function has these named arguments:

Part Description
rate Required. Double specifying interest rate per period. For example,

if you get a car loan at an annual percentage rate (APR) of 10
percent and make monthly payments, the rate per period is 0.1/12,
or 0.0083.

per Required. Double specifying payment period in the range 1 through
nper.

nper Required. Double specifying total number of payment periods in the
annuity. For example, if you make monthly payments on a four-year
car loan, your loan has a total of 4 * 12 (or 48) payment periods.

pv Required. Double specifying present value, or value today, of a
series of future payments or receipts. For example, when you
borrow money to buy a car, the loan amount is the present value to
the lender of the monthly car payments you will make.

fv Optional. Variant specifying future value or cash balance you want
after you've made the final payment. For example, the future value
of a loan is $0 because that's its value after the final payment.
However, if you want to save $50,000 over 18 years for your child's
education, then $50,000 is the future value. If omitted, 0 is
assumed.

type Optional. Variant specifying when payments are due. Use 0 if
payments are due at the end of the payment period, or use 1 if
payments are due at the beginning of the period. If omitted, 0 is
assumed.

Remarks
An annuity is a series of fixed cash payments made over a period of time. An annuity can be a loan
(such as a home mortgage) or an investment (such as a monthly savings plan).

The rate and nper arguments must be calculated using payment periods expressed in the same
units. For example, if rate is calculated using months, nper must also be calculated using months.

For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers;
cash received (such as dividend checks) is represented by positive numbers.

IRR Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIRRC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctIRRX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctIRRS"}

Returns a Double specifying the internal rate of return for a series of periodic cash flows (payments
and receipts).

Syntax
IRR(values()[, guess])
The IRR function has these named arguments:

Part Description
values() Required. Array of Double specifying cash flow values. The

array must contain at least one negative value (a payment) and
one positive value (a receipt).

guess Optional. Variant specifying value you estimate will be returned
by IRR. If omitted, guess is 0.1 (10 percent).

Remarks
The internal rate of return is the interest rate received for an investment consisting of payments and
receipts that occur at regular intervals.

The IRR function uses the order of values within the array to interpret the order of payments and
receipts. Be sure to enter your payment and receipt values in the correct sequence. The cash flow for
each period doesn't have to be fixed, as it is for an annuity.

IRR is calculated by iteration. Starting with the value of guess, IRR cycles through the calculation
until the result is accurate to within 0.00001 percent. If IRR can't find a result after 20 tries, it fails.

MIRR Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctMIRRC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctMIRRX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctMIRRS"}

Returns a Double specifying the modified internal rate of return for a series of periodic cash flows
(payments and receipts).

Syntax
MIRR(values(), finance_rate, reinvest_rate)
The MIRR function has these named arguments:

Part Description
values() Required. Array of Double specifying cash flow values.

The array must contain at least one negative value (a
payment) and one positive value (a receipt).

finance_rate Required. Double specifying interest rate paid as the cost
of financing.

reinvest_rate Required. Double specifying interest rate received on
gains from cash reinvestment.

Remarks
The modified internal rate of return is the internal rate of return when payments and receipts are
financed at different rates. The MIRR function takes into account both the cost of the investment
(finance_rate) and the interest rate received on reinvestment of cash (reinvest_rate).

The finance_rate and reinvest_rate arguments are percentages expressed as decimal values. For
example, 12 percent is expressed as 0.12.

The MIRR function uses the order of values within the array to interpret the order of payments and
receipts. Be sure to enter your payment and receipt values in the correct sequence.

NPer Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctNPerC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctNPerX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctNPerS"}

Returns a Double specifying the number of periods for an annuity based on periodic, fixed payments
and a fixed interest rate.

Syntax
NPer(rate, pmt, pv[, fv[, type]])
The NPer function has these named arguments:

Part Description
rate Required. Double specifying interest rate per period. For example,

if you get a car loan at an annual percentage rate (APR) of 10
percent and make monthly payments, the rate per period is 0.1/12,
or 0.0083.

pmt Required. Double specifying payment to be made each period.
Payments usually contain principal and interest that doesn't change
over the life of the annuity.

pv Required. Double specifying present value, or value today, of a
series of future payments or receipts. For example, when you
borrow money to buy a car, the loan amount is the present value to
the lender of the monthly car payments you will make.

fv Optional. Variant specifying future value or cash balance you want
after you've made the final payment. For example, the future value
of a loan is $0 because that's its value after the final payment.
However, if you want to save $50,000 over 18 years for your child's
education, then $50,000 is the future value. If omitted, 0 is
assumed.

type Optional. Variant specifying when payments are due. Use 0 if
payments are due at the end of the payment period, or use 1 if
payments are due at the beginning of the period. If omitted, 0 is
assumed.

Remarks
An annuity is a series of fixed cash payments made over a period of time. An annuity can be a loan
(such as a home mortgage) or an investment (such as a monthly savings plan).

For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers;
cash received (such as dividend checks) is represented by positive numbers.

NPV Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctNPVC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctNPVX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctNPVS"}

Returns a Double specifying the net present value of an investment based on a series of periodic
cash flows (payments and receipts) and a discount rate.

Syntax
NPV(rate, values())
The NPV function has these named arguments:

Part Description
rate Required. Double specifying discount rate over the length of

the period, expressed as a decimal.
values() Required. Array of Double specifying cash flow values. The

array must contain at least one negative value (a payment) and
one positive value (a receipt).

Remarks
The net present value of an investment is the current value of a future series of payments and
receipts.

The NPV function uses the order of values within the array to interpret the order of payments and
receipts. Be sure to enter your payment and receipt values in the correct sequence.

The NPV investment begins one period before the date of the first cash flow value and ends with the
last cash flow value in the array.

The net present value calculation is based on future cash flows. If your first cash flow occurs at the
beginning of the first period, the first value must be added to the value returned by NPV and must not
be included in the cash flow values of values().
The NPV function is similar to the PV function (present value) except that the PV function allows cash
flows to begin either at the end or the beginning of a period. Unlike the variable NPV cash flow
values, PV cash flows must be fixed throughout the investment.

Pmt Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctPmtC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctPmtX":1}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctPmtS"}

Returns a Double specifying the payment for an annuity based on periodic, fixed payments and a
fixed interest rate.

Syntax
Pmt(rate, nper, pv[, fv[, type]])
The Pmt function has these named arguments:

Part Description
rate Required. Double specifying interest rate per period. For example,

if you get a car loan at an annual percentage rate (APR) of 10
percent and make monthly payments, the rate per period is 0.1/12,
or 0.0083.

nper Required. Integer specifying total number of payment periods in the
annuity. For example, if you make monthly payments on a four-year
car loan, your loan has a total of 4 * 12 (or 48) payment periods.

pv Required. Double specifying present value (or lump sum) that a
series of payments to be paid in the future is worth now. For
example, when you borrow money to buy a car, the loan amount is
the present value to the lender of the monthly car payments you will
make.

fv Optional. Variant specifying future value or cash balance you want
after you've made the final payment. For example, the future value
of a loan is $0 because that's its value after the final payment.
However, if you want to save $50,000 over 18 years for your child's
education, then $50,000 is the future value. If omitted, 0 is
assumed.

type Optional. Variant specifying when payments are due. Use 0 if
payments are due at the end of the payment period, or use 1 if
payments are due at the beginning of the period. If omitted, 0 is
assumed.

Remarks
An annuity is a series of fixed cash payments made over a period of time. An annuity can be a loan
(such as a home mortgage) or an investment (such as a monthly savings plan).

The rate and nper arguments must be calculated using payment periods expressed in the same
units. For example, if rate is calculated using months, nper must also be calculated using months.

For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers;
cash received (such as dividend checks) is represented by positive numbers.

PPmt Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctPPmtC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctPPmtX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctPPmtS"}

Returns a Double specifying the principal payment for a given period of an annuity based on periodic,
fixed payments and a fixed interest rate.

Syntax
PPmt(rate, per, nper, pv[, fv[, type]])
The PPmt function has these named arguments:

Part Description
rate Required. Double specifying interest rate per period. For example,

if you get a car loan at an annual percentage rate (APR) of 10
percent and make monthly payments, the rate per period is 0.1/12,
or 0.0083.

per Required. Integer specifying payment period in the range 1 through
nper.

nper Required. Integer specifying total number of payment periods in the
annuity. For example, if you make monthly payments on a four-year
car loan, your loan has a total of 4 * 12 (or 48) payment periods.

pv Required. Double specifying present value, or value today, of a
series of future payments or receipts. For example, when you
borrow money to buy a car, the loan amount is the present value to
the lender of the monthly car payments you will make.

fv Optional. Variant specifying future value or cash balance you want
after you've made the final payment. For example, the future value
of a loan is $0 because that's its value after the final payment.
However, if you want to save $50,000 over 18 years for your child's
education, then $50,000 is the future value. If omitted, 0 is
assumed.

type Optional. Variant specifying when payments are due. Use 0 if
payments are due at the end of the payment period, or use 1 if
payments are due at the beginning of the period. If omitted, 0 is
assumed.

Remarks
An annuity is a series of fixed cash payments made over a period of time. An annuity can be a loan
(such as a home mortgage) or an investment (such as a monthly savings plan).

The rate and nper arguments must be calculated using payment periods expressed in the same
units. For example, if rate is calculated using months, nper must also be calculated using months.

For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers;
cash received (such as dividend checks) is represented by positive numbers.

PV Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctPVC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctPVX":1}         
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctPVS"}

Returns a Double specifying the present value of an annuity based on periodic, fixed payments to be
paid in the future and a fixed interest rate.

Syntax
PV(rate, nper, pmt[, fv[, type]])
The PV function has these named arguments:

Part Description
rate Required. Double specifying interest rate per period. For example,

if you get a car loan at an annual percentage rate (APR) of 10
percent and make monthly payments, the rate per period is 0.1/12,
or 0.0083.

nper Required. Integer specifying total number of payment periods in the
annuity. For example, if you make monthly payments on a four-year
car loan, your loan has a total of 4 * 12 (or 48) payment periods.

pmt Required. Double specifying payment to be made each period.
Payments usually contain principal and interest that doesn't change
over the life of the annuity.

fv Optional. Variant specifying future value or cash balance you want
after you've made the final payment. For example, the future value
of a loan is $0 because that's its value after the final payment.
However, if you want to save $50,000 over 18 years for your child's
education, then $50,000 is the future value. If omitted, 0 is
assumed.

type Optional. Variant specifying when payments are due. Use 0 if
payments are due at the end of the payment period, or use 1 if
payments are due at the beginning of the period. If omitted, 0 is
assumed.

Remarks
An annuity is a series of fixed cash payments made over a period of time. An annuity can be a loan
(such as a home mortgage) or an investment (such as a monthly savings plan).

The rate and nper arguments must be calculated using payment periods expressed in the same
units. For example, if rate is calculated using months, nper must also be calculated using months.

For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers;
cash received (such as dividend checks) is represented by positive numbers.

Rate Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctRateC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctRateX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctRateS"}

Returns a Double specifying the interest rate per period for an annuity.

Syntax
Rate(nper, pmt, pv[, fv[, type[, guess]]])
The Rate function has these named arguments:

Part Description
nper Required. Double specifying total number of payment periods in

the annuity. For example, if you make monthly payments on a
four-year car loan, your loan has a total of 4 * 12 (or 48) payment
periods.

pmt Required. Double specifying payment to be made each period.
Payments usually contain principal and interest that doesn't
change over the life of the annuity.

pv Required. Double specifying present value, or value today, of a
series of future payments or receipts. For example, when you
borrow money to buy a car, the loan amount is the present value
to the lender of the monthly car payments you will make.

fv Optional. Variant specifying future value or cash balance you
want after you make the final payment. For example, the future
value of a loan is $0 because that's its value after the final
payment. However, if you want to save $50,000 over 18 years for
your child's education, then $50,000 is the future value. If omitted,
0 is assumed.

type Optional. Variant specifying a number indicating when payments
are due. Use 0 if payments are due at the end of the payment
period, or use 1 if payments are due at the beginning of the
period. If omitted, 0 is assumed.

guess Optional. Variant specifying value you estimate will be returned
by Rate. If omitted, guess is 0.1 (10 percent).

Remarks
An annuity is a series of fixed cash payments made over a period of time. An annuity can be a loan
(such as a home mortgage) or an investment (such as a monthly savings plan).

For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers;
cash received (such as dividend checks) is represented by positive numbers.

Rate is calculated by iteration. Starting with the value of guess, Rate cycles through the calculation
until the result is accurate to within 0.00001 percent. If Rate can't find a result after 20 tries, it fails. If
your guess is 10 percent and Rate fails, try a different value for guess.

SLN Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctSLNC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctSLNX":1}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctSLNS"}

Returns a Double specifying the straight-line depreciation of an asset for a single period.

Syntax
SLN(cost, salvage, life)
The SLN function has these named arguments:

Part Description
cost Required. Double specifying initial cost of the asset.
salvage Required. Double specifying value of the asset at the end of its

useful life.
life Required. Double specifying length of the useful life of the

asset.

Remarks
The depreciation period must be expressed in the same unit as the life argument. All arguments must
be positive numbers.

SYD Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctSYDC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctSYDX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctSYDS"}

Returns a Double specifying the sum-of-years' digits depreciation of an asset for a specified period.

Syntax
SYD(cost, salvage, life, period)
The SYD function has these named arguments:

Part Description
cost Required. Double specifying initial cost of the asset.
salvage Required. Double specifying value of the asset at the end of its

useful life.
life Required. Double specifying length of the useful life of the

asset.
period Required. Double specifying period for which asset

depreciation is calculated.

Remarks
The life and period arguments must be expressed in the same units. For example, if life is given in
months, period must also be given in months. All arguments must be positive numbers.

IsArray Function Example

This example uses the IsArray function to check if a variable is an array.
Dim MyArray(1 To 5) As Integer, YourArray, MyCheck ' Declare array
variables.
YourArray = Array(1, 2, 3) ' Use Array function.
MyCheck = IsArray(MyArray) ' Returns True.
MyCheck = IsArray(YourArray) ' Returns True.

IsDate Function Example

This example uses the IsDate function to determine if an expression can be converted to a date.
Dim MyDate, YourDate, NoDate, MyCheck
MyDate = "February 12, 1969": YourDate = #2/12/69#: NoDate = "Hello"
MyCheck = IsDate(MyDate)' Returns True.
MyCheck = IsDate(YourDate) ' Returns True.
MyCheck = IsDate(NoDate)' Returns False.

IsEmpty Function Example

This example uses the IsEmpty function to determine whether a variable has been initialized.
Dim MyVar, MyCheck
MyCheck = IsEmpty(MyVar)' Returns True.
MyVar = Null' Assign Null.
MyCheck = IsEmpty(MyVar)' Returns False.
MyVar = Empty ' Assign Empty.
MyCheck = IsEmpty(MyVar)' Returns True.

IsError Function Example

This example uses the IsError function to check if a numeric expression is an error value. The CVErr
function is used to return an Error Variant from a user-defined function. Assume UserFunction is a
user-defined function procedure that returns an error value; for example, a return value assigned with
the statement UserFunction = CVErr(32767), where 32767 is a user-defined number.

Dim ReturnVal, MyCheck
ReturnVal = UserFunction()
MyCheck = IsError(ReturnVal) ' Returns True.

IsMissing Function Example

This example uses the IsMissing function to check if an optional argument has been passed to a
user-defined procedure. Note that Optional arguments can now have default values and types other
than Variant.
Dim ReturnValue
' The following statements call the user-defined function procedure.
ReturnValue = ReturnTwice()' Returns Null.
ReturnValue = ReturnTwice(2) ' Returns 4.

' Function procedure definition.
Function ReturnTwice(Optional A)

If IsMissing(A) Then
' If argument is missing, return a Null.
ReturnTwice = Null

Else
' If argument is present, return twice the value.
ReturnTwice = A * 2

End If
End Function

IsNull Function Example

This example uses the IsNull function to determine if a variable contains a Null.
Dim MyVar, MyCheck
MyCheck = IsNull(MyVar) ' Returns False.
MyVar = ""
MyCheck = IsNull(MyVar) ' Returns False.
MyVar = Null
MyCheck = IsNull(MyVar) ' Returns True.

IsNumeric Function Example

This example uses the IsNumeric function to determine if a variable can be evaluated as a number.
Dim MyVar, MyCheck
MyVar = "53"' Assign value.
MyCheck = IsNumeric(MyVar) ' Returns True.
MyVar = "459.95" ' Assign value.
MyCheck = IsNumeric(MyVar) ' Returns True.
MyVar = "45 Help" ' Assign value.
MyCheck = IsNumeric(MyVar) ' Returns False.

IsObject Function Example

This example uses the IsObject function to determine if an identifier represents an object variable.
MyObject and YourObject are object variables of the same type. They are generic names used for
illustration purposes only.
Dim MyInt As Integer, YourObject, MyCheck' Declare variables.
Dim MyObject As Object
Set YourObject = MyObject ' Assign an object reference.
MyCheck = IsObject(YourObject) ' Returns True.
MyCheck = IsObject(MyInt) ' Returns False.

TypeName Function Example

This example uses the TypeName function to return information about a variable.
' Declare variables.
Dim NullVar, MyType, StrVar As String, IntVar As Integer, CurVar As
Currency
Dim ArrayVar (1 To 5) As Integer
NullVar = Null ' Assign Null value.
MyType = TypeName(StrVar) ' Returns "String".
MyType = TypeName(IntVar) ' Returns "Integer".
MyType = TypeName(CurVar) ' Returns "Currency".
MyType = TypeName(NullVar) ' Returns "Null".
MyType = TypeName(ArrayVar)' Returns "Integer()".

VarType Function Example

This example uses the VarType function to determine the subtype of a variable.
Dim IntVar, StrVar, DateVar, MyCheck
' Initialize variables.
IntVar = 459: StrVar = "Hello World": DateVar = #2/12/69#
MyCheck = VarType(IntVar) ' Returns 2.
MyCheck = VarType(DateVar) ' Returns 7.
MyCheck = VarType(StrVar) ' Returns 8.

IsArray Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIsArrayC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctIsArrayX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctIsArrayS"}

Returns a Boolean value indicating whether a variable is an array.

Syntax
IsArray(varname)
The required varname argument is an identifier specifying a variable.

Remarks
IsArray returns True if the variable is an array; otherwise, it returns False. IsArray is especially
useful with variants containing arrays.

IsDate Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIsDateC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctIsDateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctIsDateS"}

Returns a Boolean value indicating whether an expression can be converted to a date.

Syntax
IsDate(expression)
The required expression argument is a Variant containing a date expression or string expression
recognizable as a date or time.

Remarks
IsDate returns True if the expression is a date or can be converted to a valid date; otherwise, it
returns False. In Microsoft Windows, the range of valid dates is January 1, 100 A.D. through
December 31, 9999 A.D.; the ranges vary among operating systems.

IsEmpty Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIsEmptyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctIsEmptyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctIsEmptyS"}

Returns a Boolean value indicating whether a variable has been initialized.

Syntax
IsEmpty(expression)
The required expression argument is a Variant containing a numeric or string expression. However,
because IsEmpty is used to determine if individual variables are initialized, the expression argument
is most often a single variable name.

Remarks
IsEmpty returns True if the variable is uninitialized, or is explicitly set to Empty; otherwise, it returns
False. False is always returned if expression contains more than one variable. IsEmpty only returns
meaningful information for variants.

IsError Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIsErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctIsErrorX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctIsErrorS"}

Returns a Boolean value indicating whether an expression is an error value.

Syntax
IsError(expression)
The required expression argument must be a Variant of VarType vbError.

Remarks
Error values are created by converting real numbers to error values using the CVErr function. The
IsError function is used to determine if a numeric expression represents an error. IsError returns
True if the expression argument indicates an error; otherwise, it returns False. IsError only returns
meaningful information for variants of VarType vbError.

IsMissing Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIsMissingC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctIsMissingX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctIsMissingS"}

Returns a Boolean value indicating whether an optional Variant argument has been passed to a
procedure.

Syntax
IsMissing(argname)
The required argname argument contains the name of an optional Variant procedure argument.

Remarks
Use the IsMissing function to detect whether or not optional Variant arguments have been provided
in calling a procedure. IsMissing returns True if no value has been passed for the specified
argument; otherwise, it returns False. If IsMissing returns True for an argument, use of the missing
argument in other code may cause a user-defined error. If IsMissing is used on a ParamArray
argument, it always returns False. To detect an empty ParamArray, test to see if the array’s upper
bound is less than its lower bound.

IsNull Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIsNullC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctIsNullX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctIsNullS"}

Returns a Boolean value that indicates whether an expression contains no valid data (Null).

Syntax
IsNull(expression)
The required expression argument is a Variant containing a numeric expression or string expression.

Remarks
IsNull returns True if expression is Null; otherwise, IsNull returns False. If expression consists of
more than one variable, Null in any constituent variable causes True to be returned for the entire
expression.

The Null value indicates that the Variant contains no valid data. Null is not the same as Empty,
which indicates that a variable has not yet been initialized. It is also not the same as a zero-length
string (""), which is sometimes referred to as a null string.

Important      Use the IsNull function to determine whether an expression contains a Null value.
Expressions that you might expect to evaluate to True under some circumstances, such as If Var
= Null and If Var <> Null, are always False. This is because any expression containing a Null
is itself Null and, therefore, False.

IsNumeric Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIsNumericC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctIsNumericX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctIsNumericS"}

Returns a Boolean value indicating whether an expression can be evaluated as a number.

Syntax
IsNumeric(expression)
The required expression argument is a Variant containing a numeric expression or string expression.

Remarks
IsNumeric returns True if the entire expression is recognized as a number; otherwise, it returns
False.

IsNumeric returns False if expression is a date expression.

IsObject Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIsObjectC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctIsObjectX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctIsObjectS"}

Returns a Boolean value indicating whether an identifier represents an object variable.

Syntax
IsObject(identifier)
The required identifier argument is a variable name.

Remarks
IsObject is useful only in determining whether a Variant is of VarType vbObject. This could occur if
the Variant actually references (or once referenced) an object, or if it contains Nothing.

IsObject returns True if identifier is a variable declared with Object type or any valid class type, or if
identifier is a Variant of VarType vbObject, or a user-defined object; otherwise, it returns False.
IsObject returns True even if the variable has been set to Nothing.

Use error trapping to be sure that an object reference is valid. You can use the IsNothing function
determine if an object reference has been set to Nothing.

TypeName Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctTypeNameC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctTypeNameX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctTypeNameS"}

Returns a String that provides information about a variable.

Syntax
TypeName(varname)
The required varname argument is a Variant containing any variable except a variable of a user-
defined type.

Remarks
The string returned by TypeName can be any one of the following:

String returned Variable
object type An object whose type is objecttype
Byte Byte value
Integer Integer
Long Long integer
Single Single-precision floating-point number
Double Double-precision floating-point number
Currency Currency value
Decimal Decimal value
Date Date value
String String
Boolean Boolean value
Error An error value
Empty Uninitialized
Null No valid data
Object An object
Unknown An object whose type is unknown
Nothing Object variable that doesn't refer to an object

If varname is an array, the returned string can be any one of the possible returned strings (or Variant)
with empty parentheses appended. For example, if varname is an array of integers, TypeName
returns "Integer()".

VarType Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctVarTypeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctVarTypeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctVarTypeS"}

Returns an Integer indicating the subtype of a variable.

Syntax
VarType(varname)
The required varname argument is a Variant containing any variable except a variable of a user-
defined type.

Return Values
Constant Value Description
vbEmpty 0 Empty (uninitialized)
vbNull 1 Null (no valid data)
vbInteger 2 Integer
vbLong 3 Long integer
vbSingle 4 Single-precision floating-point number
vbDouble 5 Double-precision floating-point number
vbCurrency 6 Currency value
vbDate 7 Date value
vbString 8 String
vbObject 9 Object
vbError 10 Error value
vbBoolean 11 Boolean value
vbVariant 12 Variant (used only with arrays of variants)
vbDataObject 13 A data access object
vbDecimal 14 Decimal value
vbByte 17 Byte value
vbArray 8192 Array

Note      These constants are specified by Visual Basic for Applications. The names can be used
anywhere in your code in place of the actual values.

Remarks
The VarType function never returns the value for vbArray by itself. It is always added to some other
value to indicate an array of a particular type. The constant vbVariant is only returned in conjunction
with vbArray to indicate that the argument to the VarType function is an array of type Variant. For
example, the value returned for an array of integers is calculated as vbInteger + vbArray, or 8194. If
an object has a default property, VarType (object) returns the type of the object's default property.

Empty
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakeyEmptyC"}

The Empty keyword is used as a Variant subtype. It indicates an uninitialized variable value.

False
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakeyFalseC"}

The False keyword has a value equal to 0.

Me
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakeyMeC"}

The Me keyword behaves like an implicitly declared variable. It is automatically available to every
procedure in a class module. When a class can have more than one instance, Me provides a way to
refer to the specific instance of the class where the code is executing. Using Me is particularly useful
for passing information about the currently executing instance of a class to a procedure in another
module. For example, suppose you have the following procedure in a module:
Sub ChangeFormColor(FormName As Form)

FormName.BackColor = RGB(Rnd * 256, Rnd * 256, Rnd * 256)
End Sub
You can call this procedure and pass the current instance of the Form class as an argument using the
following statement:
ChangeFormColor Me

Nothing
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakeyNothingC"}

The Nothing keyword is used to disassociate an object variable from an actual object. Use the Set
statement to assign Nothing to an object variable. For example:
Set MyObject = Nothing
Several object variables can refer to the same actual object. When Nothing is assigned to an object
variable, that variable no longer refers to an actual object. When several object variables refer to the
same object, memory and system resources associated with the object to which the variables refer
are released only after all of them have been set to Nothing, either explicitly using Set, or implicitly
after the last object variable set to Nothing goes out of scope.

Null
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakeyNullC"}

The Null keyword is used as a Variant subtype. It indicates that a variable contains no valid data.

True
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakeyTrueC"}

The True keyword has a value equal to -1.

Abs Function Example

This example uses the Abs function to compute the absolute value of a number.
Dim MyNumber
MyNumber = Abs(50.3) ' Returns 50.3.
MyNumber = Abs(-50.3)' Returns 50.3.

Atn Function Example

This example uses the Atn function to calculate the value of pi.
Dim pi
pi = 4 * Atn(1)' Calculate the value of pi.

Cos Function Example

This example uses the Cos function to return the cosine of an angle.
Dim MyAngle, MySecant
MyAngle = 1.3 ' Define angle in radians.
MySecant = 1 / Cos(MyAngle)' Calculate secant.

Exp Function Example

This example uses the Exp function to return e raised to a power.
Dim MyAngle, MyHSin
' Define angle in radians.
MyAngle = 1.3
' Calculate hyperbolic sine.
MyHSin = (Exp(MyAngle) - Exp(-1 * MyAngle)) / 2

Int Function, Fix Function Example

This example illustrates how the Int and Fix functions return integer portions of numbers. In the case
of a negative number argument, the Int function returns the first negative integer less than or equal to
the number; the Fix function returns the first negative integer greater than or equal to the number.
Dim MyNumber
MyNumber = Int(99.8) ' Returns 99.
MyNumber = Fix(99.2) ' Returns 99.
MyNumber = Int(-99.8)' Returns -100.
MyNumber = Fix(-99.8)' Returns -99.
MyNumber = Int(-99.2)' Returns -100.
MyNumber = Fix(-99.2)' Returns -99.

Log Function Example

This example uses the Log function to return the natural logarithm of a number.
Dim MyAngle, MyLog
' Define angle in radians.
MyAngle = 1.3
' Calculate inverse hyperbolic sine.
MyLog = Log(MyAngle + Sqr(MyAngle * MyAngle + 1))

Randomize Statement Example

This example uses the Randomize statement to initialize the random-number generator. Because the
number argument has been omitted, Randomize uses the return value from the Timer function as the
new seed value.
Dim MyValue
Randomize' Initialize random-number generator.
MyValue = Int((6 * Rnd) + 1) ' Generate random value between 1 and 6.

Rnd Function Example

This example uses the Rnd function to generate a random integer value from 1 to 6.
Dim MyValue
MyValue = Int((6 * Rnd) + 1) ' Generate random value between 1 and 6.

Sgn Function Example

This example uses the Sgn function to determine the sign of a number.
Dim MyVar1, MyVar2, MyVar3, MySign
MyVar1 = 12: MyVar2 = -2.4: MyVar3 = 0
MySign = Sgn(MyVar1) ' Returns 1.
MySign = Sgn(MyVar2) ' Returns -1.
MySign = Sgn(MyVar3) ' Returns 0.

Sin Function Example

This example uses the Sin function to return the sine of an angle.
Dim MyAngle, MyCosecant
MyAngle = 1.3 ' Define angle in radians.
MyCosecant = 1 / Sin(MyAngle)' Calculate cosecant.

Sqr Function Example

This example uses the Sqr function to calculate the square root of a number.
Dim MySqr
MySqr = Sqr(4) ' Returns 2.
MySqr = Sqr(23)' Returns 4.79583152331272.
MySqr = Sqr(0) ' Returns 0.
MySqr = Sqr(-4)' Generates a run-time error.

Tan Function Example

This example uses the Tan function to return the tangent of an angle.
Dim MyAngle, MyCotangent
MyAngle = 1.3 ' Define angle in radians.
MyCotangent = 1 / Tan(MyAngle) ' Calculate cotangent.

Math Functions
Abs Function

Atn Function

Cos Function

Exp Function

Fix Function

Int Function

Log Function

Rnd Function

Sgn Function

Sin Function

Sqr Function

Tan Function

Derived Math Functions

Abs Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctAbsC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctAbsX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctAbsS"}

Returns a value of the same type that is passed to it specifying the absolute value of a number.

Syntax
Abs(number)
The required number argument can be any valid numeric expression. If number contains Null, Null is
returned; if it is an uninitialized variable, zero is returned.

Remarks
The absolute value of a number is its unsigned magnitude. For example, ABS(-1) and ABS(1) both
return 1.

Atn Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctAtnC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctAtnX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctAtnS"}

Returns a Double specifying the arctangent of a number.

Syntax
Atn(number)
The required number argument is a Double or any valid numeric expression.

Remarks
The Atn function takes the ratio of two sides of a right triangle (number) and returns the
corresponding angle in radians. The ratio is the length of the side opposite the angle divided by the
length of the side adjacent to the angle.

The range of the result is -pi/2 to pi/2 radians.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply
radians by 180/pi.

Note      Atn is the inverse trigonometric function of Tan, which takes an angle as its argument and
returns the ratio of two sides of a right triangle. Do not confuse Atn with the cotangent, which is the
simple inverse of a tangent (1/tangent).

Cos Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctCosC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctCosX":1}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctCosS"}

Returns a Double specifying the cosine of an angle.

Syntax
Cos(number)
The required number argument is a Double or any valid numeric expression that expresses an angle
in radians.

Remarks
The Cos function takes an angle and returns the ratio of two sides of a right triangle. The ratio is the
length of the side adjacent to the angle divided by the length of the hypotenuse.

The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply
radians by 180/pi.

Exp Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctExpC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctExpX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctExpS"}

Returns a Double specifying e (the base of natural logarithms) raised to a power.

Syntax
Exp(number)
The required number argument is a Double or any valid numeric expression.

Remarks
If the value of number exceeds 709.782712893, an error occurs. The constant e is approximately
2.718282.

Note      The Exp function complements the action of the Log function and is sometimes referred to as
the antilogarithm.

Int, Fix Functions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIntC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctIntX":1}           
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctIntS"}

Returns a value of the type passed to it containing the integer portion of a number.

Syntax
Int(number)
Fix(number)
The required number argument is a Double or any valid numeric expression. If number contains Null,
Null is returned.

Remarks
Both Int and Fix remove the fractional part of number and return the resulting integer value.

The difference between Int and Fix is that if number is negative, Int returns the first negative integer
less than or equal to number, whereas Fix returns the first negative integer greater than or equal to
number. For example, Int converts -8.4 to -9, and Fix converts -8.4 to -8.

Fix(number) is equivalent to:
Sgn(number) * Int(Abs(number))

Log Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctLogC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctLogX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctLogS"}

Returns a Double specifying the natural logarithm of a number.

Syntax
Log(number)
The required number argument is a Double or any valid numeric expression greater than zero.

Remarks
The natural logarithm is the logarithm to the base e. The constant e is approximately 2.718282.

You can calculate base-n logarithms for any number x by dividing the natural logarithm of x by the
natural logarithm of n as follows:

Logn(x) = Log(x) / Log(n)

The following example illustrates a custom Function that calculates base-10 logarithms:
Static Function Log10(X)

Log10 = Log(X) / Log(10#)
End Function

Randomize Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmRandomizeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmRandomizeX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmRandomizeS"}

Initializes the random-number generator.

Syntax
Randomize [number]
The optional number argument is a Variant or any valid numeric expression.

Remarks
Randomize uses number to initialize the Rnd function's random-number generator, giving it a new
seed value. If you omit number, the value returned by the system timer is used as the new seed
value.

If Randomize is not used, the Rnd function (with no arguments) uses the same number as a seed
the first time it is called, and thereafter uses the last generated number as a seed value.

Note      To repeat sequences of random numbers, call Rnd with a negative argument immediately
before using Randomize with a numeric argument. Using Randomize with the same value for
number does not repeat the previous sequence.

Rnd Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctRndC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctRndX":1}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctRndS"}

Returns a Single containing a random number.

Syntax
Rnd[(number)]
The optional number argument is a Single or any valid numeric expression.

Return Values
If number is Rnd generates
Less than zero The same number every time, using number as the

seed.
Greater than zero The next random number in the sequence.
Equal to zero The most recently generated number.
Not supplied The next random number in the sequence.

Remarks
The Rnd function returns a value less than 1 but greater than or equal to zero.

The value of number determines how Rnd generates a random number:

For any given initial seed, the same number sequence is generated because each successive call to
the Rnd function uses the previous number as a seed for the next number in the sequence.

Before calling Rnd, use the Randomize statement without an argument to initialize the random-
number generator with a seed based on the system timer.

To produce random integers in a given range, use this formula:
Int((upperbound - lowerbound + 1) * Rnd + lowerbound)
Here, upperbound is the highest number in the range, and lowerbound is the lowest number in the
range.

Note      To repeat sequences of random numbers, call Rnd with a negative argument immediately
before using Randomize with a numeric argument. Using Randomize with the same value for
number does not repeat the previous sequence.

Sgn Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctSgnC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctSgnX":1}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctSgnS"}

Returns a Variant (Integer) indicating the sign of a number.

Syntax
Sgn(number)
The required number argument can be any valid numeric expression.

Return Values
If number is Sgn returns
Greater than zero 1
Equal to zero 0
Less than zero -1

Remarks
The sign of the number argument determines the return value of the Sgn function.

Sin Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctSinC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctSinX":1}         
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctSinS"}

Returns a Double specifying the sine of an angle.

Syntax
Sin(number)
The required number argument is a Double or any valid numeric expression that expresses an angle
in radians.

Remarks
The Sin function takes an angle and returns the ratio of two sides of a right triangle. The ratio is the
length of the side opposite the angle divided by the length of the hypotenuse.

The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply
radians by 180/pi.

Sqr Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctSqrC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctSqrX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctSqrS"}

Returns a Double specifying the square root of a number.

Syntax
Sqr(number)
The required number argument is a Double or any valid numeric expression greater than or equal to
zero.

Tan Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctTanC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctTanX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctTanS"}

Returns a Double specifying the tangent of an angle.

Syntax
Tan(number)
The required number argument is a Double or any valid numeric expression that expresses an angle
in radians.

Remarks
Tan takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of the
side opposite the angle divided by the length of the side adjacent to the angle.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply
radians by 180/pi.

Derived Math Functions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vagrpderivedmathc"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vagrpDerivedMathS"}

The following is a list of nonintrinsic math functions that can be derived from the intrinsic math
functions:

Function Derived equivalents
Secant Sec(X) = 1 / Cos(X)
Cosecant Cosec(X) = 1 / Sin(X)
Cotangent Cotan(X) = 1 / Tan(X)
Inverse Sine Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse Cosine Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)
Inverse Secant Arcsec(X) = Atn(X / Sqr(X * X – 1)) + Sgn((X) – 1) *

(2 * Atn(1))
Inverse Cosecant Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) – 1) *

(2 * Atn(1))
Inverse Cotangent Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine HSin(X) = (Exp(X) – Exp(-X)) / 2
Hyperbolic Cosine HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent HTan(X) = (Exp(X) – Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic
Cosecant

HCosec(X) = 2 / (Exp(X) – Exp(-X))

Hyperbolic
Cotangent

HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) – Exp(-X))

Inverse Hyperbolic
Sine

HArcsin(X) = Log(X + Sqr(X * X + 1))

Inverse Hyperbolic
Cosine

HArccos(X) = Log(X + Sqr(X * X – 1))

Inverse Hyperbolic
Tangent

HArctan(X) = Log((1 + X) / (1 – X)) / 2

Inverse Hyperbolic
Secant

HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)

Inverse Hyperbolic
Cosecant

HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) /
X)

Inverse Hyperbolic
Cotangent

HArccotan(X) = Log((X + 1) / (X – 1)) / 2

Logarithm to base
N

LogN(X) = Log(X) / Log(N)

Add Method Example

This example uses the Add method to add Inst objects (instances of a class called Class1
containing a Public variable InstanceName) to a collection called MyClasses. To see how this
works, insert a class module and declare a public variable called InstanceName at module level of
Class1 (type Public InstanceName) to hold the names of each instance. Leave the default name
as Class1. Copy and paste the following code into the Form_Load event procedure of a form
module.
Dim MyClasses As New Collection ' Create a Collection object.
Dim Num As Integer' Counter for individualizing keys.
Dim Msg
Dim TheName ' Holder for names user enters.
Do

Dim Inst As New Class1 ' Create a new instance of Class1.
Num = Num + 1 ' Increment Num, then get a name.
Msg = "Please enter a name for this object." & Chr(13) _
 & "Press Cancel to see names in collection."
TheName = InputBox(Msg, "Name the Collection Items")
Inst.InstanceName = TheName ' Put name in object instance.
' If user entered name, add it to the collection.
If Inst.InstanceName <> "" Then

' Add the named object to the collection.
MyClasses.Add item := Inst, key := CStr(Num)

End If
' Clear the current reference in preparation for next one.
Set Inst = Nothing

Loop Until TheName = ""
For Each x In MyClasses

MsgBox x.instancename, , "Instance Name"
Next

Clear Method Example

This example uses the Err object's Clear method to reset the numeric properties of the Err object to
zero and its string properties to zero-length strings. If Clear were omitted from the following code, the
error message dialog box would be displayed on every iteration of the loop (after an error occurs)
whether or not a successive calculation generated an error. You can single-step through the code to
see the effect.
Dim Result(10) As Integer ' Declare array whose elements

' will overflow easily.
Dim indx
On Error Resume Next ' Defer error trapping.
Do Until indx = 10

' Generate an occasional error or store result if no error.
Result(indx) = Rnd * indx * 20000
If Err.Number <> 0 Then

MsgBox Err, , "Error Generated: ", Err.HelpFile, Err.HelpContext
Err.Clear ' Clear Err object properties.

End If
indx = indx + 1

Loop

Item Method Example

This example uses the Item method to retrieve a reference to an object in a collection. Assuming
Birthdays is a Collection object, the following code retrieves from the collection references to the
objects representing Bill Smith's birthday and Adam Smith's birthday, using the keys "SmithBill" and
"SmithAdam" as the index arguments. Note that the first call explicitly specifies the Item method, but
the second does not. Both calls work because the Item method is the default for a Collection object.
The references, assigned to SmithBillBD and SmithAdamBD using Set, can be used to access the
properties and methods of the specified objects. To run this code, create the collection and populate it
with at least the two referenced members.
Dim SmithBillBD As Object
Dim SmithAdamBD As Object
Dim Birthdays
Set SmithBillBD = Birthdays.Item("SmithBill")
Set SmithAdamBD = Birthdays("SmithAdam")

Print Method Example

Using the Print method, this example displays the value of the variable MyVar in the Immediate
pane of the Debug window. Note that the Print method only applies to objects that can display text.
Dim MyVar
MyVar = "Come see me in the Immediate pane."
Debug.Print MyVar

Raise Method Example

This example uses the Err object's Raise method to generate an error within an Automation object
written in Visual Basic. It has the programmatic ID MyProj.MyObject.

Const MyContextID = 1010407' Define a constant for contextID.
Function TestName(CurrentName, NewName)

If Instr(NewName, "bob") Then ' Test the validity of NewName.
' Raise the exception
Err.Raise vbObjectError + 27, "MyProj.MyObject", _
"No ""bob"" allowed in your name", "c:\MyProj\MyHelp.Hlp", _
MyContextID

End If
End Function

Remove Method Example

This example illustrates the use of the Remove method to remove objects from a Collection object,
MyClasses. This code removes the object whose index is 1 on each iteration of the loop.

Dim Num, MyClasses
For Num = 1 To MyClasses.Count

MyClasses.Remove 1 ' Remove the first object each time
' through the loop until there are
' no objects left in the collection.

Next Num

Add Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthAddC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vamthAddX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamthAddA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthAddS"}

Adds a member to a Collection object.

Syntax
object.Add item, key, before, after
The Add method syntax has the following object qualifier and named arguments:

Part Description
object Required. An object expression that evaluates to an object in the

Applies To list.
item Required. An expression of any type that specifies the member to

add to the collection.
key Optional. A unique string expression that specifies a key string

that can be used, instead of a positional index, to access a
member of the collection.

before Optional. An expression that specifies a relative position in the
collection. The member to be added is placed in the collection
before the member identified by the before argument. If a
numeric expression, before must be a number from 1 to the value
of the collection's Count property. If a string expression, before
must correspond to the key specified when the member being
referred to was added to the collection. You can specify a before
position or an after position, but not both.

after Optional. An expression that specifies a relative position in the
collection. The member to be added is placed in the collection
after the member identified by the after argument. If numeric,
after must be a number from 1 to the value of the collection's
Count property. If a string, after must correspond to the key
specified when the member referred to was added to the
collection. You can specify a before position or an after position,
but not both.

Remarks
Whether the before or after argument is a string expression or numeric expression, it must refer to an
existing member of the collection, or an error occurs.

An error also occurs if a specified key duplicates the key for an existing member of the collection.

Clear Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthClearC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthClearX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamthClearA"}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthClearS"}

Clears all property settings of the Err object.

Syntax
object.Clear
The object is always the Err object.

Remarks
Use Clear to explicitly clear the Err object after an error has been handled, for example, when you
use deferred error handling with On Error Resume Next. The Clear method is called automatically
whenever any of the following statements is executed:

· Any type of Resume statement
· Exit Sub, Exit Function, Exit Property
· Any On Error statement

Note      The On Error Resume Next construct may be preferable to On Error GoTo when handling
errors generated during access to other objects. Checking Err after each interaction with an object
removes ambiguity about which object was accessed by the code. You can be sure which object
placed the error code in Err.Number, as well as which object originally generated the error (the object
specified in Err.Source).

Item Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthItemC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthItemX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamthItemA"}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthItemS"}

Returns a specific member of a Collection object either by position or by key.

Syntax
object.Item(index)
The Item method syntax has the following object qualifier and part:

Part Description
object Required. An object expression that evaluates to an object in the

Applies To list.
index Required. An expression that specifies the position of a member of

the collection. If a numeric expression, index must be a number
from 1 to the value of the collection's Count property. If a string
expression, index must correspond to the key argument specified
when the member referred to was added to the collection.

Remarks
If the value provided as index doesn’t match any existing member of the collection, an error occurs.

The Item method is the default method for a collection. Therefore, the following lines of code are
equivalent:
Print MyCollection(1)
Print MyCollection.Item(1)

Print Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthPrintC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthPrintX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamthPrintA"}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthprintS"}

Prints text in the Immediate pane of the Debug window.

Syntax
object.Print [outputlist]
The Print method syntax has the following object qualifier and part:

Part Description
object Optional. An object expression that evaluates to an object in

the Applies To list.
outputlist Optional. Expression or list of expressions to print. If omitted,

a blank line is printed.

The outputlist argument has the following syntax and parts:

{Spc(n) | Tab(n)} expression charpos

Part Description
Spc(n) Optional. Used to insert space characters in the output, where

n is the number of space characters to insert.
Tab(n) Optional. Used to position the insertion point at an absolute

column number where n is the column number. Use Tab with
no argument to position the insertion point at the beginning of
the next print zone.

expression Optional. Numeric expression or string expression to print.
charpos Optional. Specifies the insertion point for the next character.

Use a semicolon (;) to position the insertion point immediately
following the last character displayed. Use Tab(n) to position
the insertion point at an absolute column number. Use Tab
with no argument to position the insertion point at the
beginning of the next print zone. If charpos is omitted, the
next character is printed on the next line.

Remarks
Multiple expressions can be separated with either a space or a semicolon.

All data printed to the Immediate window is properly formatted using the decimal separator for the
locale settings specified for your system. The keywords are output in the appropriate language for the
host application.

For Boolean data, either True or False is printed. The True and False keywords are translated
according to the locale setting for the host application.

Date data is written using the standard short date format recognized by your system. When either the
date or the time component is missing or zero, only the data provided is written.

Nothing is written if outputlist data is Empty. However, if outputlist data is Null, Null is output. The
Null keyword is appropriately translated when it is output.

For error data, the output is written as Error errorcode. The Error keyword is appropriately
translated when it is output.

The object is required if the method is used outside a module having a default display space. For

example an error occurs if the method is called in a standard module without specifying an object, but
if called in a form module, outputlist is displayed on the form.

Note      Because the Print method typically prints with proportionally-spaced characters, there is no
correlation between the number of characters printed and the number of fixed-width columns those
characters occupy. For example, a wide letter, such as a "W", occupies more than one fixed-width
column, and a narrow letter, such as an "i", occupies less. To allow for cases where wider than
average characters are used, your tabular columns must be positioned far enough apart. Alternatively,
you can print using a fixed-pitch font (such as Courier) to ensure that each character uses only one
column.

Raise Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthRaiseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthRaiseX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamthRaiseA"} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthRaiseS"}

Generates a run-time error.

Syntax
object.Raise number, source, description, helpfile, helpcontext
The Raise method has the following object qualifier and named arguments:

Argument Description
object Required. Always the Err object.
number Required. Long integer that identifies the nature of the

error. Visual Basic errors (both Visual Basic-defined and
user-defined errors) are in the range 0–65535. When
setting the Number property to your own error code in a
class module, you add your error code number to the
vbObjectError constant. For example, to generate the error
number 1050, assign vbObjectError + 1050 to the Number
property.

source Optional. String expression naming the object or application
that generated the error. When setting this property for an
object, use the form project.class. If source is not specified,
the programmatic ID of the current Visual Basic project is
used.

description Optional. String expression describing the error. If
unspecified, the value in Number is examined. If it can be
mapped to a Visual Basic run-time error code, the string
that would be returned by the Error function is used as
Description. If there is no Visual Basic error corresponding
to Number, the "Application-defined or object-defined error"
message is used.

helpfile Optional. The fully qualified path to the Microsoft Windows
Help file in which help on this error can be found. If
unspecified, Visual Basic uses the fully qualified drive, path,
and file name of the Visual Basic Help file.

helpcontext Optional. The context ID identifying a topic within helpfile
that provides help for the error. If omitted, the Visual Basic
Help file context ID for the error corresponding to the
Number property is used, if it exists.

Remarks
All of the arguments are optional except number. If you use Raise without specifying some
arguments, and the property settings of the Err object contain values that have not been cleared,
those values serve as the values for your error.

Raise is used for generating run-time errors and can be used instead of the Error statement. Raise is
useful for generating errors when writing class modules, because the Err object gives richer
information than is possible if you generate errors with the Error statement. For example, with the
Raise method, the source that generated the error can be specified in the Source property, online
Help for the error can be referenced, and so on.

Remove Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthRemoveC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthRemoveX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vamthRemoveA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthRemoveS"}

Removes a member from a Collection object.

Syntax
object.Remove index
The Remove method syntax has the following object qualifier and part:

Part Description
object Required. An object expression that evaluates to an object in the

Applies To list.
index Required. An expression that specifies the position of a member of

the collection. If a numeric expression, index must be a number
from 1 to the value of the collection's Count property. If a string
expression, index must correspond to the key argument specified
when the member referred to was added to the collection.

Remarks
If the value provided as index doesn’t match an existing member of the collection, an error occurs.

AppActivate Statement Example

This example illustrates various uses of the AppActivate statement to activate an application window.
The Shell statements assume the applications are in the paths specified. On the Macintosh, you can
use the MacID function to specify the application's signature instead of the application's name. The
AppActivate statement is available with Macintosh System 7.0 or later.
Dim MyAppID, ReturnValue
' In Microsoft Windows:
AppActivate "Microsoft Word" ' Activate Microsoft

' Word.
' AppActivate can also use the return value of the Shell function.
MyAppID = Shell("C:\WORD\WINWORD.EXE", 1)' Run Microsoft Word.
AppActivate MyAppID ' Activate Microsoft

' Word.

' You can also use the return value of the Shell function.
ReturnValue = Shell("c:\EXCEL\EXCEL.EXE",1) ' Run Microsoft Excel.
AppActivate ReturnValue ' Activate Microsoft

' Excel.

Beep Statement Example

This example uses the Beep statement to sound three consecutive tones through the computer's
speaker.
Dim I
For I = 1 To 3 ' Loop 3 times.

Beep ' Sound a tone.
Next I

Command Function Example

This example uses the Command function to get the command line arguments in a function that
returns them in a Variant containing an array.
Function GetCommandLine(Optional MaxArgs)

'Declare variables.
Dim C, CmdLine, CmdLnLen, InArg, I, NumArgs
'See if MaxArgs was provided.
If IsMissing(MaxArgs) Then MaxArgs = 10
'Make array of the correct size.
ReDim ArgArray(MaxArgs)
NumArgs = 0: InArg = False
'Get command line arguments.
CmdLine = Command()
CmdLnLen = Len(CmdLine)
'Go thru command line one character
'at a time.
For I = 1 To CmdLnLen

C = Mid(CmdLine, I, 1)
'Test for space or tab.
If (C <> " " And C <> vbTab) Then

'Neither space nor tab.
'Test if already in argument.
If Not InArg Then
'New argument begins.
'Test for too many arguments.

If NumArgs = MaxArgs Then Exit For
NumArgs = NumArgs + 1
InArg = True

End If
'Add character to current argument.
ArgArray(NumArgs) = ArgArray(NumArgs) + C

Else
'Found a space or tab.
'Set InArg flag to False.
InArg = False

End If
Next I
'Resize array just enough to hold arguments.
ReDim Preserve ArgArray(NumArgs)
'Return Array in Function name.
GetCommandLine = ArgArray()

End Function

InputBox Function Example

This example shows various ways to use the InputBox function to prompt the user to enter a value. If
the x and y positions are omitted, the dialog box is automatically centered for the respective axes. The
variable MyValue contains the value entered by the user if the user clicks OK or presses the ENTER
key . If the user clicks Cancel, a zero-length string is returned.
Dim Message, Title, Default, MyValue
Message = "Enter a value between 1 and 3"' Set prompt.
Title = "InputBox Demo" ' Set title.
Default = "1" ' Set default.
' Display message, title, and default value.
MyValue = InputBox(Message, Title, Default)

' Use Helpfile and context. The Help button is added automatically.
MyValue = InputBox(Message, Title, , , , "DEMO.HLP", 10)

' Display dialog box at position 100, 100.
MyValue = InputBox(Message, Title, Default, 100, 100)

MsgBox Function Example

This example uses the MsgBox function to display a critical-error message in a dialog box with Yes
and No buttons. The No button is specified as the default response. The value returned by the
MsgBox function depends on the button chosen by the user. This example assumes that DEMO.HLP
is a Help file that contains a topic with a Help context number equal to 1000.

Dim Msg, Style, Title, Help, Ctxt, Response, MyString
Msg = "Do you want to continue ?" ' Define message.
Style = vbYesNo + vbCritical + vbDefaultButton2' Define buttons.
Title = "MsgBox Demonstration" ' Define title.
Help = "DEMO.HLP" ' Define Help file.
Ctxt = 1000 ' Define topic

' context.
' Display message.

Response = MsgBox(Msg, Style, Title, Help, Ctxt)
If Response = vbYes Then' User chose Yes.

MyString = "Yes" ' Perform some action.
Else ' User chose No.

MyString = "No" ' Perform some action.
End If

SendKeys Statement Example

This example uses the Shell function to run the Calculator application included with Microsoft
Windows.It uses the SendKeys statement to send keystrokes to add some numbers, and then quit
the Calculator. The SendKeys statement is not available on the Macintosh. (To see the example,
paste it into a procedure, then run the procedure. Because AppActivate changes the focus to the
Calculator application, you can't single step through the code.)
Dim ReturnValue, I
ReturnValue = Shell("CALC.EXE", 1) ' Run Calculator.
AppActivate ReturnValue ' Activate the Calculator.
For I = 1 To 100 ' Set up counting loop.

SendKeys I & "{+}", True ' Send keystrokes to Calculator
Next I' to add each value of I.
SendKeys "=", True' Get grand total.
SendKeys "%{F4}", True ' Send ALT+F4 to close Calculator.

AppActivate Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmAppActivateC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmAppActivateX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmAppActivateS"}

Activates an application window.

Syntax
AppActivate title[, wait]

The AppActivate statement syntax has these named arguments:

Part Description
title Required. String expression specifying the title in the title bar of the

application window you want to activate. The task ID returned by the
Shell function can be used in place of title to activate an
application.

wait Optional. Boolean value specifying whether the calling application
has the focus before activating another. If False (default), the
specified application is immediately activated, even if the calling
application does not have the focus. If True, the calling application
waits until it has the focus, then activates the specified application.

Remarks
The AppActivate statement changes the focus to the named application or window but does not
affect whether it is maximized or minimized. Focus moves from the activated application window
when the user takes some action to change the focus or close the window. Use the Shell function to
start an application and set the window style.

In determining which application to activate, title is compared to the title string of each running
application. If there is no exact match, any application whose title string begins with title is activated.
If there is more than one instance of the application named by title, one instance is arbitrarily
activated.

Beep Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmBeepC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmBeepX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmBeepS"}

Sounds a tone through the computer's speaker.

Syntax
Beep
Remarks
The frequency and duration of the beep depend on your hardware and system software, and vary
among computers.

Command Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctCommandC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctCommandX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctCommandS"}

Returns the argument portion of the command line used to launch Microsoft Visual Basic or an
executable program developed with Visual Basic.

Syntax
Command
Remarks
When Visual Basic is launched from the command line, any portion of the command line that follows
/cmd is passed to the program as the command-line argument. In the following example,
cmdlineargs represents the argument information returned by the Command function.

VB /cmd cmdlineargs
For applications developed with Visual Basic and compiled to an .exe file, Command returns any
arguments that appear after the name of the application on the command line. For example:
MyApp cmdlineargs
To find how command line arguments can be changed in the user interface of the application you're
using, search Help for "command line arguments."

InputBox Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctInputBoxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"VAFCTInputBoxX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctInputBoxS"}

Displays a prompt in a dialog box, waits for the user to input text or click a button, and returns a
String containing the contents of the text box.

Syntax
InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])
The InputBox function syntax has these named arguments:

Part Description
prompt Required. String expression displayed as the message in the

dialog box. The maximum length of prompt is approximately
1024 characters, depending on the width of the characters used.
If prompt consists of more than one line, you can separate the
lines using a carriage return character (Chr(13)), a linefeed
character (Chr(10)), or carriage return–linefeed character
combination (Chr(13) & Chr(10)) between each line.

title Optional. String expression displayed in the title bar of the dialog
box. If you omit title, the application name is placed in the title
bar.

default Optional. String expression displayed in the text box as the
default response if no other input is provided. If you omit default,
the text box is displayed empty.

xpos Optional. Numeric expression that specifies, in twips, the
horizontal distance of the left edge of the dialog box from the left
edge of the screen. If xpos is omitted, the dialog box is
horizontally centered.

ypos Optional. Numeric expression that specifies, in twips, the vertical
distance of the upper edge of the dialog box from the top of the
screen. If ypos is omitted, the dialog box is vertically positioned
approximately one-third of the way down the screen.

helpfile Optional. String expression that identifies the Help file to use to
provide context-sensitive Help for the dialog box. If helpfile is
provided, context must also be provided.

context Optional. Numeric expression that is the Help context number
assigned to the appropriate Help topic by the Help author. If
context is provided, helpfile must also be provided.

Remarks
When both helpfile and context are provided, the user can press F1 to view the Help topic
corresponding to the context. Some host applications, for example, Microsoft Excel, also
automatically add a Help button to the dialog box. If the user clicks OK or presses ENTER, the
InputBox function returns whatever is in the text box. If the user clicks Cancel, the function returns a
zero-length string ("").

Note      To specify more than the first named argument, you must use InputBox in an expression. To
omit some positional arguments, you must include the corresponding comma delimiter.

MsgBox Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctMsgBoxC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctMsgBoxX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctMsgBoxS"}

Displays a message in a dialog box, waits for the user to click a button, and returns an Integer
indicating which button the user clicked.

Syntax
MsgBox(prompt[, buttons] [, title] [, helpfile, context])
The MsgBox function syntax has these named arguments:

Part Description
prompt Required. String expression displayed as the message in the

dialog box. The maximum length of prompt is approximately
1024 characters, depending on the width of the characters
used. If prompt consists of more than one line, you can
separate the lines using a carriage return character (Chr(13)), a
linefeed character (Chr(10)), or carriage return – linefeed
character combination (Chr(13) & Chr(10)) between each line.

buttons Optional. Numeric expression that is the sum of values
specifying the number and type of buttons to display, the icon
style to use, the identity of the default button, and the modality
of the message box. If omitted, the default value for buttons is
0.

title Optional. String expression displayed in the title bar of the
dialog box. If you omit title, the application name is placed in
the title bar.

helpfile Optional. String expression that identifies the Help file to use to
provide context-sensitive Help for the dialog box. If helpfile is
provided, context must also be provided.

context Optional. Numeric expression that is the Help context number
assigned to the appropriate Help topic by the Help author. If
context is provided, helpfile must also be provided.

Settings
The buttons argument settings are:

Constant Value Description
   

vbOKOnly 0 Display OK button only.
vbOKCancel 1 Display OK and Cancel buttons.
vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore

buttons.
vbYesNoCancel 3 Display Yes, No, and Cancel buttons.
vbYesNo 4 Display Yes and No buttons.
vbRetryCancel 5 Display Retry and Cancel buttons.
vbCritical 16 Display Critical Message icon.
vbQuestion 32 Display Warning Query icon.
vbExclamation 48 Display Warning Message icon.
vbInformation 64 Display Information Message icon.
vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.
vbDefaultButton3 512 Third button is default.
vbDefaultButton4 768 Fourth button is default.
vbApplicationModal 0 Application modal; the user must respond

to the message box before continuing
work in the current application.

vbSystemModal 4096 System modal; all applications are
suspended until the user responds to the
message box.

The first group of values (0–5) describes the number and type of buttons displayed in the dialog box;
the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256, 512) determines
which button is the default; and the fourth group (0, 4096) determines the modality of the message
box. When adding numbers to create a final value for the buttons argument, use only one number
from each group.

Note      These constants are specified by Visual Basic for Applications. As a result, the names can be
used anywhere in your code in place of the actual values.

Return Values
Constant Value Description
vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbIgnore 5 Ignore
vbYes 6 Yes
vbNo 7 No

Remarks
When both helpfile and context are provided, the user can press F1 to view the Help topic
corresponding to the context. Some host applications, for example, Microsoft Excel, also
automatically add a Help button to the dialog box.

If the dialog box displays a Cancel button, pressing the ESC key has the same effect as clicking
Cancel. If the dialog box contains a Help button, context-sensitive Help is provided for the dialog box.
However, no value is returned until one of the other buttons is clicked.

Note      To specify more than the first named argument, you must use MsgBox in an expression. To
omit some positional arguments, you must include the corresponding comma delimiter.

SendKeys Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmSendKeysC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmSendKeysX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmSendKeysS"}

Sends one or more keystrokes to the active window as if typed at the keyboard.

Syntax
SendKeys string[, wait]

The SendKeys statement syntax has these named arguments:

Part Description
string Required. String expression specifying the keystrokes to send.
Wait Optional. Boolean value specifying the wait mode. If False

(default), control is returned to the procedure immediately after
the keys are sent. If True, keystrokes must be processed before
control is returned to the procedure.

Remarks
Each key is represented by one or more characters. To specify a single keyboard character, use the
character itself. For example, to represent the letter A, use "A" for string. To represent more than
one character, append each additional character to the one preceding it. To represent the letters A, B,
and C, use "ABC" for string.

The plus sign (+), caret (^), percent sign (%), tilde (~), and parentheses () have special meanings to
SendKeys. To specify one of these characters, enclose it within braces ({}). For example, to specify
the plus sign, use {+}. Brackets ([]) have no special meaning to SendKeys, but you must enclose
them in braces. In other applications, brackets do have a special meaning that may be significant
when dynamic data exchange (DDE) occurs. To specify brace characters, use {{} and {}}.

To specify characters that aren't displayed when you press a key, such as ENTER or TAB, and keys that
represent actions rather than characters, use the codes shown below:

Key Code
BACKSPACE {BACKSPACE}, {BS}, or {BKSP}
BREAK {BREAK}
CAPS LOCK {CAPSLOCK}
DEL or DELETE {DELETE} or {DEL}
DOWN ARROW {DOWN}
END {END}
ENTER {ENTER}or ~
ESC {ESC}
HELP {HELP}
HOME {HOME}
INS or INSERT {INSERT} or {INS}
LEFT ARROW {LEFT}
NUM LOCK {NUMLOCK}
PAGE DOWN {PGDN}
PAGE UP {PGUP}
PRINT SCREEN {PRTSC}
RIGHT ARROW {RIGHT}

SCROLL LOCK {SCROLLLOCK}
TAB {TAB}
UP ARROW {UP}
F1 {F1}
F2 {F2}
F3 {F3}
F4 {F4}
F5 {F5}
F6 {F6}
F7 {F7}
F8 {F8}
F9 {F9}
F10 {F10}
F11 {F11}
F12 {F12}
F13 {F13}
F14 {F14}
F15 {F15}
F16 {F16}

To specify keys combined with any combination of the SHIFT, CTRL, and ALT keys, precede the key
code with one or more of the following codes:

Key Code
SHIFT +
CTRL ^
ALT %

To specify that any combination of SHIFT, CTRL, and ALT should be held down while several other keys
are pressed, enclose the code for those keys in parentheses. For example, to specify to hold down
SHIFT while E and C are pressed, use "+(EC)". To specify to hold down SHIFT while E is pressed,
followed by C without SHIFT, use "+EC".

To specify repeating keys, use the form {key number}. You must put a space between key and
number. For example, {LEFT 42} means press the LEFT ARROW key 42 times; {h 10} means
press H 10 times.

Note      You can't use SendKeys to send keystrokes to an application that is not designed to run in
Microsoft Windows. Sendkeys also can't send the PRINT SCREEN key {PRTSC} to any application.

Character Set (0–127)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscANSITableC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscANSITableS"}

 0 · 32 [space] 64 @ 96 `

 1 · 33 ! 65 A 97 a

 2 · 34 " 66 B 98 b

 3 · 35 # 67 C 99 c

 4 · 36 $ 68 D 100 d

 5 · 37 % 69 E 101 e

 6 · 38 & 70 F 102 f

 7 · 39 ' 71 G 103 g

 8 * * 40 (72 H 104 h

 9 * * 41) 73 I 105 i

 10 * * 42 * 74 J 106 j

 11 · 43 + 75 K 107 k

 12 · 44 , 76 L 108 l

 13 * * 45 - 77 M 109 m

 14 · 46 . 78 N 110 n

 15 · 47 / 79 O 111 o

 16 · 48 0 80 P 112 p

 17 · 49 1 81 Q 113 q

 18 · 50 2 82 R 114 r

 19 · 51 3 83 S 115 s

 20 · 52 4 84 T 116 t

 21 · 53 5 85 U 117 u

 22 · 54 6 86 V 118 v

 23 · 55 7 87 W 119 w

 24 · 56 8 88 X 120 x

 25 · 57 9 89 Y 121 y

 26 · 58 : 90 Z 122 z

 27 · 59 ; 91 [123 {

 28 · 60 < 92 \ 124 |

 29 · 61 = 93] 125 }

 30 · 62 > 94 ^ 126 ~

 31 · 63 ? 95 _ 127 ·

· These characters aren't supported by Microsoft Windows.
* * Values 8, 9, 10, and 13 convert to backspace, tab, linefeed, and carriage return characters, respectively. They have no

graphical representation but, depending on the application, can affect the visual display of text.

IMEStatus Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctIMEStatusC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctIMEStatusX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctIMEStatusS"}

Returns an Integer specifying the current Input Method Editor (IME) mode of Microsoft Windows;
available in Far East versions only.

Syntax
IMEStatus

Return Values
The return values for the Japanese locale are as follows:

Constant Value Description    

vbIMENoOP 0 No IME installed
vbIMEOn 1 IME on
vbIMEOff 2 IME off
vbIMEDisable 3 IME disabled
vbIMEHiragana 4 Hiragana double-byte characters (DBC)
vbIMEKatakanaDbl 5 Katakana DBC
vbIMEKatakanaSng 6 Katakana single-byte characters (SBC)
vbIMEAlphaDbl 7 Alphanumeric DBC
vbIMEAlphaSng 8 Alphanumeric SBC

The return values for the Chinese (traditional and simplified) locale are as follows:

Constant Value Description    

vbIMENoOP 0 No IME installed
vbIMEOn 1 IME on
vbIMEOff 2 IME off

For the Korean locale, the first five bits of the return are set as follows:
Bit Value Description Value Description
0 0 No IME installed 1 IME installed
1 0 IME disabled 1 IME enabled
2 0 IME English mode 1 Hangeul mode
3 0 Banja mode (SB) 1 Junja mode (DB)
4 0 Normal mode 1 Hanja conversion mode

Can't execute code in break mode
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantExecCodeInBreakModeS"}

Break mode occurs when you suspend execution of code. This error has the following causes and
solutions:

· You tried to run code from the Macro dialog box, but Visual Basic was already running code,
although suspended in break mode.
Continue running the current code, or terminate its execution before running code from the Macro
dialog box. You may have entered break mode without knowing it, for example, if a syntax error or
run-time error occurred in your code. You can fix the error and then choose Continue, rather than
returning to the Macro dialog box and restarting the macro.

For additional information, select the item in question and press F1.

Can't call Friend procedure on an object that isn't an instance of the
defining class (Error 97)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgBadCallToFriendFunctionS"}

A Friend procedure is callable from modules that are outside the class, but are part of the project
within which the class is defined. This error has the following causes and solutions:

· You tried to call the Friend procedure of a class, but although your reference variable is of the
proper type, it's pointing to an instance that isn't an instance of the class.
For example, this can occur if there are two classes, classics and classy (that implements classy),
but you mistakenly assign the instance of classy to the instance of classics.

For additional information, select the item in question and press F1.

Can't exit design mode because control can't be created
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCannotExitDesignModeS"}

All controls must be instantiated before you can leave design mode. This error has the following
causes and solutions:

· The control specified in the error message dialog box could not be created.
Runnable state can only be achieved after all controls are instantiated and properly connected.
Make sure every file needed for the control is available before trying again.

For additional information, select the item in question and press F1.

Object does not source Automation events
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoDefaultSourceS"}

An object must provide a default source interface so that you can write event procedures for its
events. This error has the following causes and solutions:

· You tried to write an event procedure for an event of an object, but that event isn't available outside
the object.
Check the object’s documentation. There may be some less direct way to deal with the event you
are interested in.

For additional information, select the item in question and press F1.

Operation not allowed in DLL
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgOperationNotAllowedInDLLC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgOperationNotAllowedInDLLS"}

Not all Visual Basic statements are legal within a dynamic-link library (DLL). This error has the
following causes and solutions:

· You tried to create a DLL from a class that contains a statement that can't be executed from a DLL.
Check your class for statements that can't be executed within a DLL, for example, End. Remove
any such statements.

For additional information, select the item in question and press F1.

Invalid outside Enum
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgInvOutsideEnumC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgInvOutsideEnumS"}

An Enum is a data type that can be used to create groups of manifest constants (called
enumerations) that are related. This error has the following causes and solutions:

· You used an End Enum in a place where it wasn't part of an Enum definition.
Check for any text that may have come between the Enum definition body and the End Enum.

For additional information, select the item in question and press F1.

This document was opened with Macros Disabled
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantExitVirusDesignModeS"}

A host application may disable or enable macros. This error has the following causes and solutions:

· You opened the document with Macros Disabled.
Close the document, and then reopen it, choosing Enable Macros.

For additional information, select the item in question and press F1.

The library containing this symbol is not referenced by the current
project, so the symbol is undefined. Would you like to add a
reference to the containing library now?
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLibNotReferencedS"}

Type and object information is contained in libraries. This error has the following causes and
solutions:

· A definition for this symbol exists in a type library.
If you want to define the symbol as contained in the library mentioned, click OK to add the reference
to the library.

For additional information, select the item in question and press F1.

Object does not have a Property Let procedure
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgLetNotSupportedS"}

You can't assign a value to a property unless it has exposed a Property Let method. This error has
the following causes and solutions:

· You tried to assign a value to a property that hasn't exposed a Property Let method.
You can't directly assign a value to this property. If you created the class, you can modify the interface
by exposing a Property Let method. Otherwise, check the component’s documentation to determine
if there is an indirect method for assigning the value.

For additional information, select the item in question and press F1.

No Help available
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgNoHelpS"}

Not all errors have an associated help topic. This error has the following causes and solutions:

· You have generated an error for which no Help exists.
Check the Readme file. Help for late-breaking errors is often available through the Readme file.

Can't sink this object's events because it's already firing events to
the maximum number of supported event recipients (Error 96)
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgAdviseLimitS"}

Each object specifies the maximum number of simultaneous recipients to which it can fire events.
This error has the following causes and solutions:

· You tried to use Set for a WithEvents variable for a control on a form.
You can't use Set for a WithEvents variable in this case because the number of recipients for these
events is limited.

For additional information, select the item in question and press F1.

Can't find DLL entry point ~ in ~
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantFindDLLEntryPointS"}

An entry point is the name of a DLL procedure or the ordinal representing the procedure. This error
has the following causes and solutions:

· A type library incorrectly described the entry point, perhaps misspelling the name or specifying the
ordinal incorrectly.

Contact the vendor for a corrected type library.

For additional information, select the item in question and press F1.

Could not execute specified program
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgCantExecuteProgramS"}

When you make a native-code executable, it is necessary to run some extra programs. This error has
the following causes and solutions:

· Memory or system resources were insufficient to run the code generator or linker.
Close as many running applications as possible to free memory and other system resources.

· Visual Basic was installed incorrectly.
Reinstall Visual Basic.

For additional information, select the item in question and press F1.

Duplicate resources with same type and name
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamsgDuplicateResourceS"}

A Windows resource file typically contains bitmaps, text strings, and other similar data used by an
application. This error has the following causes and solutions:

· The Windows resource file you are trying to use in your project contains two or more resources
with the same type and name, or the file contains a resource that Visual Basic automatically
creates.

Use another resource file or recreate the invalid resource file and delete one of the duplicate
resources.

For additional information, select the item in question and press F1.

Activate, Deactivate Events
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaevtActivateC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaevtActivateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaevtActivateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaevtActivateS"}

The Activate event occurs when an object becomes the active window. The Deactivate event occurs
when an object is no longer the active window.

Syntax
Private Sub object_Activate()
Private Sub object_Deactivate()
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
An object can become active by using the Show method in code.

The Activate event can occur only when an object is visible. A UserForm loaded with Load isn't
visible unless you use the Show method.

The Activate and Deactivate events occur only when you move the focus within an application.
Moving the focus to or from an object in another application doesn't trigger either event.

The Deactivate event doesn't occur when unloading an object.

Initialize Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaevtInitializeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaevtInitializeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaevtInitializeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaevtInitializeS"}

Occurs after an object is loaded, but before it's shown.

Syntax
Private Sub object_Initialize()
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The Initialize event is typically used to prepare an application or UserForm for use. Variables are
assigned initial values, and controls may be moved or resized to accommodate initialization data.

QueryClose Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaevtQueryCloseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaevtQueryCloseX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaevtQueryCloseA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaevtQueryCloseS"}

Occurs before a UserForm closes.

Syntax
Private Sub UserForm_QueryClose(cancel As Integer, closemode As Integer)
The QueryClose event syntax has these parts:

Part Description
cancel An integer. Setting this argument to any value other than 0

stops the QueryClose event in all loaded user forms and
prevents the UserForm and application from closing.

closemode A value or constant indicating the cause of the QueryClose
event.

Return Values
The closemode argument returns the following values:

Constant Value Description
     

vbFormControlMenu 0 The user has chosen the Close
command from the Control menu on
the UserForm.

vbFormCode 1 The Unload statement is invoked from
code.

vbAppWindows 2 The current Windows operating
environment session is ending.

vbAppTaskManager 3 The Windows Task Manager is closing
the application.

These constants are listed in the Visual Basic for Applications object library in the Object Browser.
Note that vbFormMDIForm is also specified in the Object Browser, but is not yet supported.

Remarks
This event is typically used to make sure there are no unfinished tasks in the user forms included in
an application before that application closes. For example, if a user hasn't saved new data in any
UserForm, the application can prompt the user to save the data.

When an application closes, you can use the QueryClose event procedure to set the Cancel property
to True, stopping the closing process.

Resize Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaevtResizeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaevtResizeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vaevtResizeA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaevtResizeS"}

Occurs when a user form is resized.

Syntax
Private Sub UserForm_Resize()
Remarks
Use a Resize event procedure to move or resize controls when the parent UserForm is resized. You
can also use this event procedure to recalculate variables or properties.

Terminate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaevtTerminateC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaevtTerminateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaevtTerminateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaevtTerminateS"}

Occurs when all references to an instance of an object are removed from memory by setting all
variables that refer to the object to Nothing or when the last reference to the object goes out of
scope.

Syntax
Private Sub object_Terminate()
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The Terminate event occurs after the object is unloaded. The Terminate event isn't triggered if the
instances of the UserForm or class are removed from memory because the application terminated
abnormally. For example, if your application invokes the End statement before removing all existing
instances of the class or UserForm from memory, the Terminate event isn't triggered for that class or
UserForm.

Activate, Deactivate Events Example

The following code uses two UserForms: UserForm1 and UserForm2. Copy these procedures into
the UserForm1 module, then add UserForm2. UserForm1’s caption is created in its Activate event
procedure. When the user clicks the client area of UserForm1, UserForm2 is loaded, and shown,
triggering UserForm1’s Deactivate event, changing their captions.
' Activate event for UserForm1
Private Sub UserForm_Activate()
 UserForm1.Caption = "Click my client area"
End Sub

' Click event for UserForm1
Private Sub UserForm_Click()
 Load UserForm2
 UserForm2.StartUpPosition = 3
 UserForm2.Show
End Sub

' Deactivate event for UserForm1
Private Sub UserForm_Deactivate()
 UserForm1.Caption = "I just lost the focus!"
 UserForm2.Caption = "Focus just left UserForm1 and came to me"
End Sub

Initialize Event Example

The following example assumes two UserForms in a program. In UserForm1’s Initialize event,
UserForm2 is loaded and shown. When the user clicks UserForm2, it is hidden and UserForm1
appears. When UserForm1 is clicked, UserForm2 is shown again.
' This is the Initialize event procedure for UserForm1
Private Sub UserForm_Initialize()

Load UserForm2
UserForm2.Show

End Sub
' This is the Click event of UserForm2
Private Sub UserForm_Click()

UserForm2.Hide
End Sub

' This is the click event for UserForm1
Private Sub UserForm_Click()

UserForm2.Show
End Sub

QueryClose Event Example

The following code forces the user to click the UserForm’s client area to close it. If the user tries to
use the Close box in the title bar, the Cancel parameter is set to a nonzero value, preventing
termination. However, if the user has clicked the client area, CloseMode has the value 1 and the
Unload Me is completed.
Private Sub UserForm_Activate()
 UserForm1.Caption = "You must Click me to kill me!"
End Sub

Private Sub UserForm_Click()
 Unload Me
End Sub

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
 'Prevent user from closing with the Close box in the title bar.
 If CloseMode <> 1 Then Cancel = 1
 UserForm1.Caption = "The Close box won't work! Click me!"
End Sub

Resize Event Example

The following example uses the Activate and Click events to illustrate triggering of the UserForm’s
Resize event. As the user clicks the client area of the form, it grows or shrinks and the new height is
specified in the title bar. Note that the Tag property is used to store the UserForm’s initial height.
' Activate event for UserForm1
Private Sub UserForm_Activate()

UserForm1.Caption = "Click me to make me taller!"
Tag = Height ' Save the initial height.

End Sub

' Click event for UserForm1
Private Sub UserForm_Click()

Dim NewHeight As Single
NewHeight = Height
' If the form is small, make it tall.
If NewHeight = Val(Tag) Then

Height = Val(Tag) * 2
Else
' If the form is tall, make it small.

Height = Val(Tag)
End If

End Sub

' Resize event for UserForm1
Private Sub UserForm_Resize()

UserForm1.Caption = "New Height: " & Height & " " & "Click to resize
me!"
End Sub

Terminate Event Example

The following event procedures cause a UserForm to beep for a few seconds after the user clicks the
client area to dismiss the form.
Private Sub UserForm_Activate()
 UserForm1.Caption = "Click me to kill me!"
End Sub

Private Sub UserForm_Click()
 Unload Me
End Sub

Private Sub UserForm_Terminate()
 Dim Count As Integer
 For Count = 1 To 100
 Beep
 Next
End Sub

Hide Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthHideC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthHideX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamthHideA"}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthHideS"}

Hides an object but doesn't unload it.

Syntax
object.Hide
The object placeholder represents an object expression that evaluates to an object in the Applies To
list. If object is omitted, the UserForm with the focus is assumed to be object.

Remarks
When an object is hidden, it's removed from the screen and its Visible property is set to False. A
hidden object's controls aren't accessible to the user, but they are available programmatically to the
running application, to other processes that may be communicating with the application through
dynamic data exchange (DDE) or Automation, and to Timer control events.

When a UserForm is hidden, the user can't interact with the application until all code in the event
procedure that caused the UserForm to be hidden has finished executing.

If the UserForm isn't loaded when the Hide method is invoked, the Hide method loads the UserForm
but doesn't display it.

Load Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmLoadC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmLoadX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmLoadS"}

Loads an object but doesn't show it.

Syntax
Load object
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
When an object is loaded, it is placed in memory, but isn't visible. Use the Show method to make the
object visible. Until an object is visible, a user can't interact with it. The object can be manipulated
programatically in its Initialize event procedure.

PrintForm Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthPrintFormC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthPrintFormX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vamthPrintFormA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthPrintFormS"}

Sends a bit-by-bit image of a UserForm object to the printer.

Syntax
object.PrintForm
The object placeholder represents an object expression that evaluates to an object in the Applies To
list. If object is omitted, the UserForm with the focus is assumed to be object.

Remarks
PrintForm prints all visible objects and bitmaps of the UserForm object. PrintForm also prints
graphics added to a UserForm object.

The printer used by PrintForm is determined by the operating system's Control Panel settings.

Show Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthShowC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthShowX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamthShowA"} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthShowS"}

Displays a UserForm object.

Syntax
[object.]Show
The optional object is an object expression that evaluates to an object in the Applies To list. If object is
omitted, the UserForm associated with the active UserForm module is assumed to be object.

Remarks
If the specified object isn't loaded when the Show method is invoked, Visual Basic automatically
loads it.

A UserForm is always modal; therefore, the user must respond before using any other part of the
application. No subsequent code is executed until the UserForm is hidden or unloaded.

Although other forms in the application are disabled when a UserForm is displayed, other
applications are not.

Unload Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmUnloadC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmUnloadX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmUnloadS"}

Removes an object from memory.

Syntax
Unload object

The required object placeholder represents an object expression that evaluates to an object in the
Applies To list.

Remarks
When an object is unloaded, it's removed from memory and all memory associated with the object is
reclaimed. Until it is placed in memory again using the Load statement, a user can't interact with an
object, and the object can't be manipulated programmatically.

WhatsThisMode Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthWhatsThisModeC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthWhatsThisModeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vamthWhatsThisModeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthWhatsThisModeS"}

Causes the mouse pointer to change to the What's This pointer and prepares the application to
display Help on a selected object.

Syntax
object.WhatsThisMode
The object placeholder represents an object expression that evaluates to an object in the Applies To
list. If object is omitted, the UserForm with the focus is assumed to be object.

Remarks
Executing the WhatsThisMode method places the application in the same state as clicking the
What's This button on the title bar. The mouse pointer changes to the What's This pointer. When the
user clicks an object, the WhatsThisHelpID property of the clicked object is used to invoke the
context-sensitive Help.

Hide Method Example

The following example assumes two UserForms in a program. In UserForm1's Initialize event,
UserForm2 is loaded and shown. When the user clicks UserForm2, it is hidden and UserForm1
appears. When UserForm1 is clicked, UserForm2 is shown again.
' This is the Initialize event procedure for UserForm1
Private Sub UserForm_Initialize()

Load UserForm2
UserForm2.Show

End Sub
' This is the Click event of UserForm2
Private Sub UserForm_Click()

UserForm2.Hide
End Sub

' This is the click event for UserForm1
Private Sub UserForm_Click()

UserForm2.Show
End Sub

Load Statement Example

In the following example, UserForm2 is loaded during UserForm1's Initialize event. Subsequent
clicking on UserForm2 reveals UserForm1.
' This is the Initialize event procedure for UserForm1
Private Sub UserForm_Initialize()

Load UserForm2
UserForm2.Show

End Sub
' This is the Click event of UserForm2
Private Sub UserForm_Click()

UserForm2.Hide
End Sub

' This is the click event for UserForm1
Private Sub UserForm_Click()

UserForm2.Show
End Sub

PrintForm Method Example

In the following example, the client area of the form is printed when the user clicks the form.
' This is the click event for UserForm1
Private Sub UserForm_Click()

UserForm1.PrintForm
End Sub

Show Method Example

The following example assumes two UserForms in a program. In UserForm1's Initialize event,
UserForm2 is loaded and shown. When the user clicks UserForm2, it is hidden and UserForm1
appears. When UserForm1 is clicked, UserForm2 is shown again.
' This is the Initialize event procedure for UserForm1
Private Sub UserForm_Initialize()

Load UserForm2
UserForm2.Show

End Sub
' This is the Click event for UserForm2
Private Sub UserForm_Click()

UserForm2.Hide
End Sub

' This is the click event for UserForm1
Private Sub UserForm_Click()

UserForm2.Show
End Sub

Unload Statement Example

The following example assumes two UserForms in a program. In UserForm1's Initialize event,
UserForm2 is loaded and shown. When the user clicks UserForm2, it is unloaded and UserForm1
appears. When UserForm1 is clicked, it is unloaded in turn.
' This is the Initialize event procedure for UserForm1
Private Sub UserForm_Initialize()

Load UserForm2
UserForm2.Show

End Sub
' This is the Click event for UserForm2
Private Sub UserForm_Click()

Unload UserForm2
End Sub

' This is the click event for UserForm1
Private Sub UserForm_Click()

Unload UserForm1
End Sub

WhatsThisMode Method Example

The following example changes the mouse pointer to the What's This (question mark) pointer when
the user clicks the UserForm.If neither the WhatsThisHelp or the WhatsThisButton property is set
to True in the Properties window, the following invocation has no effect.
Private Sub UserForm_Click()
' Turn mouse pointer to What's This question mark.

WhatsThisMode
End Sub

UserForm Object, UserForms Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaobjUserFormC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaobjUserFormX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vaobjUserFormP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vaobjUserFormM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"vaobjUserFormE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vaobjUserFormS"}

A UserForm object is a window or dialog box that makes up part of an application's user interface.

The UserForms collection is a collection whose elements represent each loaded UserForm in an
application. The UserForms collection has a Count property, an Item property, and an Add method.
Count specifies the number of elements in the collection; Item (the default member) specifies a
specific collection member; and Add places a new UserForm element in the collection.

Syntax
UserForm
UserForms[.Item](index)
The placeholder index represents an integer with a range from 0 to UserForms.Count – 1. Item is
the default member of the UserForms collection and need not be specified.

Remarks
You can use the UserForms collection to iterate through all loaded user forms in an application. It
identifies an intrinsic global variable named UserForms. You can pass UserForms(index) to a
function whose argument is specified as a UserForm class.

User forms have properties that determine appearance such as position, size, and color; and aspects
of their behavior.

User forms can also respond to events initiated by a user or triggered by the system. For example,
you can write code in the Initialize event procedure of the UserForm to initialize module-level
variables before the UserForm is displayed.

In addition to properties and events, you can use methods to manipulate user forms using code. For
example, you can use the Move method to change the location and size of a UserForm.

When designing user forms, set the BorderStyle property to define borders, and set the Caption
property to put text in the title bar. In code, you can use the Hide and Show methods to make a
UserForm invisible or visible at run time.

UserForm is an Object data type . You can declare variables as type UserForm before setting them
to an instance of a type of UserForm declared at design time. Similarly, you can pass an argument to
a procedure as type UserForm. You can create multiple instances of user forms in code by using the
New keyword in Dim, Set, and Static statements.

You can access the collection of controls on a UserForm using the Controls collection. For example,
to hide all the controls on a UserForm, use code similar to the following:
For Each Control in UserForm1.Controls

Control.Visible = False
Next Control

Calendar Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproCalendarC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproCalendarX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproCalendarA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproCalendarS"}

Returns or sets a value specifying the type of calendar to use with your project.

You can use one of two settings for Calendar:
Setting Value Description
vbCalGreg 0 Use Gregorian calendar (default).
vbCalHijri 1 Use Hijri calendar.

Remarks
You can only set the Calendar property programmatically. For example, to use the Hijri calendar, use:
Calendar = vbCalHijri

StartUpPosition Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproStartupPositionC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproStartupPositionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproStartupPositionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproStartupPositionS"}

Returns or sets a value specifying the position of a UserForm when it first appears.

You can use one of four settings for StartUpPosition:

Setting Value Description
Manual 0 No initial setting specified.
CenterOwner 1 Center on the item to which the UserForm

belongs.
CenterScreen 2 Center on the whole screen.
Windows Default 3 Position in upper-left corner of screen.

Remarks
You can set the StartUpPosition property programmatically or from the Properties window.

WhatsThisButton Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproWhatsThisButtonC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproWhatsThisButtonX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproWhatsThisButtonA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproWhatsThisButtonS"}

Returns a Boolean value that determines whether the What's This button appears on the title bar of
a UserForm object. Read-only at run time.

Remarks
The settings for the WhatsThisButton property are:

Setting Description
True Turns on display of the What's This Help button.
False (Default) Turns off display of the What's This Help button.

Remarks
The WhatsThisHelp property must be True for the WhatsThisButton property to be True.

WhatsThisHelp Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproWhatsThisHelpC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproWhatsThisHelpX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproWhatsThisHelpA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproWhatsThisHelpS"}

Returns a Boolean value that determines whether context-sensitive Help uses the pop-up window
provided by Windows 95 Help or the main Help window. Read-only at run time.

Remarks
The settings for the WhatsThisHelp property are:

Setting Description
True The application uses one of the What's This access techniques

to start Windows Help and load a topic identified by the
WhatsThisHelpID property.

False (Default) The application uses the F1 key to start Windows Help
and load the topic identified by the HelpContextID property.

Remarks
There are two access techniques for providing What's This Help in an application. The
WhatsThisHelp property must be set to True for any of these techniques to work.

· Providing a What's This button on the title bar of the UserForm using the WhatsThisButton
property. The mouse pointer changes to the What's This state (arrow with question mark). The
topic displayed is identified by the WhatsThisHelpID property of the control clicked by the user.

· Invoking the WhatsThisMode method of a UserForm. This produces the same behavior as
clicking the What's This button without using a button. For example, you can invoke this method
from a command on a menu in the menu bar of the application.

StartUpPosition Property Example

The following example uses the Load statement and the Show method in UserForm1’s Click event to
load UserForm2 with the StartUpPosition property set to 3 (the Windows default position). The
Show method then makes UserForm2 visible.
Private Sub UserForm_Click()

Load UserForm2
UserForm2.StartUpPosition = 3
UserForm2.Show

End Sub

Keyword Not Found
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscKeywordNotFoundC"}

The keyword you selected can't be found in Visual Basic Help. You may have misspelled the keyword,
selected too much or too little text, or asked for help on a word that isn't a valid Visual Basic keyword.

They keyword you want help on may be contained within an object library that is not referenced.
Make sure references are set to the appropriate object libraries for all objects used in your code.

The easiest way to get help on a specific keyword is to position the insertion point anywhere within
the keyword and press F1. You don't have to select the keyword. In fact, if you select only a portion of
the keyword, or more than a single word, Help won't find what you're looking for.

The Value property topic is displayed when you press F1 with the insertion point between the "a" and
the "l" in the Value keyword as shown in the following example.
Worksheets(1).Range ("A2").value=3.14159
To use the built-in Help Search dialog box, click Contents and Index on the Help menu.

Collection (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscCollectionModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscCollectionModuleS"}

The Collection module contains procedures used to perform operations on the Collection object.
These constants can be used anywhere in your code.

To get Help on a particular procedure
1 Select the procedure from the Members Of 'Collection' list.

2 Click the button.

ColorConstants (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscColorConstantsBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscColorConstantsBrowserStringS"}

The ColorConstants module contains predefined color constants. These constants can be used
anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members Of 'ColorConstants' list.

2 Click the button.

Constants (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscConstantsModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscConstantsModuleS"}

The Constants module contains miscellaneous constants.    These constants can be used anywhere
in your code.

To get Help on a particular constant
1 Select the constant from the Members Of 'Constants' list.

2 Click the button.

Conversion (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscConversionModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscConversionModuleS"}

The Conversion module contains the procedures used to perform various conversion operations.
These constants can be used anywhere in your code.

To get Help on a particular procedure
1 Select the procedure from the Members Of 'Conversion' list.

2 Click the button.

Note      When you use Variant variables, explicit data-type conversions are unnecessary.

DateTime (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscDateTimeModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscDateTimeModuleS"}

The DateTime module contains the procedures and properties used in date and time operations.
These constants can be used anywhere in your code.

To get Help on a particular procedure or property
1 Select the procedure from the Members Of 'DateTime' list.

2 Click the button.

ErrObject (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscErrObjectModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscErrObjectModuleS"}

The ErrObject module contains properties and procedures used to identify and handle run-time
errors using the Err object. These constants can be used anywhere in your code.

To get Help on a particular property or procedure
1 Select the property or procedure from the Members of 'ErrObject' list.

2 Click the button.

FileSystem (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscFileSystemModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscFileSystemModuleS"}

The FileSystem module contains the procedures used to perform file, directory or folder, and system
operations. These constants can be used anywhere in your code.

To get Help on a particular procedure
1 Select the procedure from the Members of 'FileSystem' list.

2 Click the button.

Financial (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscFinancialModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscFinancialModuleS"}

The Financial module contains procedures used to perform financial operations. These constants
can be used anywhere in your code.

To get Help on a particular procedure
1 Select the procedure from the Members of 'Financial' list.

2 Click the button.

Global (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscGlobalModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscGlobalModuleS"}

The Global module contains procedures and properties used to perform operations on the UserForm
object. These constants can be used anywhere in your code.

To get Help on a particular property or procedure
1 Select the procedure from the Members Of 'Global' list.

2 Click the button.

Information (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscInformationModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscInformationModuleS"}

The Information module contains the procedures used to return, test for, or verify information. These
constants can be used anywhere in your code.

To get Help on a particular procedure
1 Select the procedure from the Members Of 'Information' list.

2 Click the button.

Interaction (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscInteractionModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscInteractionModuleS"}

The Interaction module contains procedures used to interact with objects, applications, and systems.
These constants can be used anywhere in your code.

To get Help on a particular procedure
1 Select the procedure from the Members of 'Interaction' list.

2 Click the button.

KeycodeConstants (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscKeyCodeConstantsBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscKeyCodeConstantsBrowserStringS"}

The KeyCodeConstants module contains predefined keycode constants that can be used anywhere
in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'KeyCodeConstants' list.

2 Click the button.

Math (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscMathModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscMathModuleS"}

The Math module contains procedures used to perform mathematical operations. These constants
can be used anywhere in your code.

To get Help on a particular procedure
1 Select the procedure from the Members of 'Math' list.

2 Click the button.

String (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscStringModuleC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscStringModuleS"}

The String module contains procedures used to perform string operations.    These constants can be
used anywhere in your code.

To get Help on a particular procedure
1 Select the procedure from the Members of 'String' list.

2 Click the button.

SystemColorConstants (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscSystemColorConstantsBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscSystemColorConstantsBrowserStringS"}

The SystemColorConstants module contains constants that identify various parts of the graphical
user interface. These constants can be used anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'SystemColorConstants' list.

2 Click the button.

VbAppWinStyle (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbAppWinStyleBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbAppWinStyleBrowserStringS"}

The VbAppWinStyle enumeration contains constants used by the Shell function to control the style
of an application window. These constants can be used anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbAppWinStyle' list.

2 Click the button.

VbCalendar (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbCalendarBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbCalendarBrowserStringS"}

The VbCalendar enumeration contains constants used to determine the type of calendar used by
Visual Basic. These constants can be used anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbCalendar' list.

2 Click the button.

VbCompareMethod (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbCompareMethodBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbCompareMethodBrowserStringS"}

The VbCompareMethod enumeration contains constants used to determine the way strings are
compared when using the Instr and StrComp functions. These constants can be used anywhere in
your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbCompareMethod' list.

2 Click the button.

VbDayOfWeek (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbDayOfWeekBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbDayOfWeekBrowserStringS"}

The VbDayOfWeek enumeration contains constants used to identify specific days of the week when
using the DateDiff, DatePart, and Weekday functions. These constants can be used anywhere in
your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbDayOfWeek' list.

2 Click the button.

VbFileAttribute (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbFileAttributeBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbFileAttributeBrowserStringS"}

The VbFileAttribute enumeration contains constants used to identify file attributes used in the Dir,
GetAttr, and SetAttr functions. These constants can be used anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbFileAttribute' list.

2 Click the button.

VbFirstWeekOfYear (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbFirstWeekOfYearBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbFirstWeekOfYearBrowserStringS"}

The VbFirstWeekOfYear enumeration contains constants used to identify how the first week of a
year is determined when using the DateDiff and DatePart functions. These constants can be used
anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbFirstWeekOfYear' list.

2 Click the button.

VbIMEStatus (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbIMEStatusBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbIMEStatusBrowserStringS"}

Available only in Far East versions, the VbIMEStatus enumeration contains constants used to identify
the Input Method Editor (IME) when using the IMEStatus function. These constants can be used
anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbIMEStatus' list.

2 Click the button.

VbMsgBoxResult (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbMsgBoxResultBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbMsgBoxResultBrowserStringS"}

The VbMsgBoxResult enumeration contains constants used to identify which button was pressed on
a message box displayed using the MsgBox function. These constants can be used anywhere in your
code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbMsgBoxResult' list.

2 Click the button.

VbMsgBoxStyle (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbMsgBoxStyleBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbMsgBoxStyleBrowserStringS"}

The VbMsgBoxStyle enumeration contains constants used to specify the behavior of a message
box, along with symbols and buttons that appear on it, when displayed using the MsgBox function.
These constants can be used anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbMsgBoxStyle' list.

2 Click the button.

VbQueryClose (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbQueryCloseBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbQueryCloseBrowserStringS"}

The VbQueryClose enumeration contains constants used to identify what caused the QueryClose
event to occur. These constants can be used anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbQueryClose' list.

2 Click the button.

VbStrConv (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbStrConvBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbStrConvBrowserStringS"}

The VbStrConv enumeration contains constants used to identify the type of string conversion to be
performed by the StrConv function. These constants can be used anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbStrConv' list.

2 Click the button.

VbVarType (Object Browser)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscVbVarTypeBrowserStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscVbVarTypeBrowserStringS"}

The VbVarType enumeration contains constants used to identify the various types of data that can be
contained in a Variant. These constants match the return values of the VarType function and can be
used anywhere in your code.

To get Help on a particular constant
1 Select the constant from the Members of 'VbVarType' list.

2 Click the button.

Collection Object Example

This example creates a Collection object (MyClasses), and then creates a dialog box in which users
can add objects to the collection. To see how this works, choose the Class Module command from
the Insert menu and declare a public variable called InstanceName at module level of Class1 (type
Public InstanceName) to hold the names of each instance. Leave the default name as Class1.
Copy and paste the following code into the General section of another module, and then start it with
the statement ClassNamer in another procedure. (This example only works with host applications
that support classes.)
Sub ClassNamer()

Dim MyClasses As New Collection ' Create a Collection object.
Dim Num ' Counter for individualizing keys.
Dim Msg As String ' Variable to hold prompt string.
Dim TheName, MyObject, NameList ' Variants to hold information.
Do

Dim Inst As New Class1 ' Create a new instance of Class1.
Num = Num + 1 ' Increment Num, then get a name.
Msg = "Please enter a name for this object." & Chr(13) _
 & "Press Cancel to see names in collection."
TheName = InputBox(Msg, "Name the Collection Items")
Inst.InstanceName = TheName ' Put name in object instance.
' If user entered name, add it to the collection.
If Inst.InstanceName <> "" Then

' Add the named object to the collection.
MyClasses.Add item := Inst, key := CStr(Num)

End If
' Clear the current reference in preparation for next one.
Set Inst = Nothing

Loop Until TheName = ""
For Each MyObject In MyClasses ' Create list of names.

NameList = NameList & MyObject.InstanceName & Chr(13)
Next MyObject
' Display the list of names in a message box.
MsgBox NameList, , "Instance Names In MyClasses Collection"
For Num = 1 To MyClasses.Count ' Remove name from the collection.

MyClasses.Remove 1 ' Since collections are reindexed
' automatically, remove the first

Next ' member on each iteration.
End Sub

Err Object Example

This example uses the properties of the Err object in constructing an error-message dialog box. Note
that if you use the Clear method first, when you generate a Visual Basic error with the Raise method,
Visual Basic's default values become the properties of the Err object.
Dim Msg
' If an error occurs, construct an error message
On Error Resume Next ' Defer error handling.
Err.Clear
Err.Raise 6 ' Generate an "Overflow" error.
' Check for error, then show message.
If Err.Number <> 0 Then

Msg = "Error # " & Str(Err.Number) & " was generated by " _
& Err.Source & Chr(13) & Err.Description

MsgBox Msg, , "Error", Err.Helpfile, Err.HelpContext
End If

Collection Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaobjCollectionC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaobjCollectionX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vaobjCollectionP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vaobjCollectionM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"vaobjCollectionE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vaobjCollectionS"}

A Collection object is an ordered set of items that can be referred to as a unit.

Remarks
The Collection object provides a convenient way to refer to a related group of items as a single
object. The items, or members, in a collection need only be related by the fact that they exist in the
collection. Members of a collection don't have to share the same data type.

A collection can be created the same way other objects are created. For example:
Dim X As New Collection
Once a collection is created, members can be added using the Add method and removed using the
Remove method. Specific members can be returned from the collection using the Item method, while
the entire collection can be iterated using the For Each...Next statement.

Debug Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaobjDebugC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaobjDebugX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Properties":"vaobjDebugP"} 
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vaobjDebugM"}                  {ewc HLP95EN.DLL,DYNALINK,"Events":"vaobjDebugE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaobjDebugS"}

The Debug object sends output to the Immediate window at run time.

Err Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaobjErrC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaobjErrX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Properties":"vaobjErrP"}                  {ewc HLP95EN.DLL,DYNALINK,"Methods":"vaobjErrM"}       
{ewc HLP95EN.DLL,DYNALINK,"Events":"vaobjErrE"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaobjErrS"}

Contains information about run-time errors.

Remarks
The properties of the Err object are set by the generator of an error—Visual Basic, an object, or the
Visual Basic programmer.

The default property of the Err object is Number. Because the default property can be represented by
the object name Err, earlier code written using the Err function or Err statement doesn't have to be
modified.

When a run-time error occurs, the properties of the Err object are filled with information that uniquely
identifies the error and information that can be used to handle it. To generate a run-time error in your
code, use the Raise method.

The Err object's properties are reset to zero or zero-length strings ("") after any form of the Resume
or On Error statement and after an Exit Sub, Exit Function, or Exit Property statement within an
error-handling routine. The Clear method can be used to explicitly reset Err.
Use the Raise method, rather than the Error statement, to generate run-time errors for a class
module. Using the Raise method in other code depends on the richness of the information you want
to return. In code that uses Error statements instead of the Raise method to generate errors, the
properties of the Err object are assigned the following default values when Error is executed:

Property Value
Number Value specified as argument to Error statement. Can be

any valid error number.
Source Name of the current Visual Basic project.
Description A string corresponding to the return of the Error function

for the specified Number, if this string exists. If the string
doesn't exist, Description contains "Application-defined
or object-defined error".

HelpFile The fully qualified drive, path, and file name of the Visual
Basic Help file.

HelpContext The Visual Basic Help file context ID for the error
corresponding to the Number property.

LastDLLError On 32-bit Microsoft Windows operating systems only,
contains the system error code for the last call to a
dynamic-link library (DLL). The LastDLLError property is
read-only.

You don't have to change existing code that uses the Err object and the Error statement. However,
using both the Err object and the Error statement can result in unintended consequences. For
example, even if you fill in properties for the Err object, they are reset to the default values indicated
in the preceding table as soon as the Error statement is executed. Although you can still use the
Error statement to generate Visual Basic run-time errors, it is retained principally for compatibility with
existing code. Use the Err object, the Raise method, and the Clear method for system errors and in
new code, especially for class modules.

The Err object is an intrinsic object with global scope. There is no need to create an instance of it in
your code.

^ Operator Example

This example uses the ^ operator to raise a number to the power of an exponent.
Dim MyValue
MyValue = 2 ^ 2' Returns 4.
MyValue = 3 ^ 3 ^ 3 ' Returns 19683.
MyValue = (-5) ^ 3' Returns -125.

+ Operator Example

This example uses the + operator to sum numbers. The + operator can also be used to concatenate
strings. However, to eliminate ambiguity, you should use the & operator instead. If the components of
an expression created with the + operator include both strings and numerics, the arithmetic result is
assigned. If the components are exclusively strings, the strings are concatenated.
Dim MyNumber, Var1, Var2
MyNumber = 2 + 2 ' Returns 4.
MyNumber = 4257.04 + 98112 ' Returns 102369.04.
Var1 = "34": Var2 = 6' Initialize mixed variables.
MyNumber = Var1 + Var2 ' Returns 40.
Var1 = "34": Var2 = "6" ' Initialize variables with strings.
MyNumber = Var1 + Var2 ' Returns "346" (string concatenation).

- Operator Example

This example uses the - operator to calculate the difference between two numbers.
Dim MyResult
MyResult = 4 - 2 ' Returns 2.
MyResult = 459.35 - 334.90 ' Returns 124.45.

* Operator Example

This example uses the * operator to multiply two numbers.
Dim MyValue
MyValue = 2 * 2' Returns 4.
MyValue = 459.35 * 334.90 ' Returns 153836.315.

/ Operator Example

This example uses the / operator to perform floating-point division.
Dim MyValue
MyValue = 10 / 4 ' Returns 2.5.
MyValue = 10 / 3 ' Returns 3.333333.

\ Operator Example

This example uses the \ operator to perform integer division.
Dim MyValue
MyValue = 11 \ 4 ' Returns 2.
MyValue = 9 \ 3' Returns 3.
MyValue = 100 \ 3 ' Returns 33.

Mod Operator Example

This example uses the Mod operator to divide two numbers and return only the remainder. If either
number is a floating-point number, it is first rounded to an integer.
Dim MyResult
MyResult = 10 Mod 5 ' Returns 0.
MyResult = 10 Mod 3 ' Returns 1.
MyResult = 12 Mod 4.3' Returns 0.
MyResult = 12.6 Mod 5' Returns 3.

& Operator Example

This example uses the & operator to force string concatenation.
Dim MyStr
MyStr = "Hello" & " World" ' Returns "Hello World".
MyStr = "Check " & 123 & " Check" ' Returns "Check 123 Check".

Comparison Operators Example

This example shows various uses of comparison operators, which you use to compare expressions.
Dim MyResult, Var1, Var2
MyResult = (45 < 35) ' Returns False.
MyResult = (45 = 45) ' Returns True.
MyResult = (4 <> 3) ' Returns True.
MyResult = ("5" > "4") ' Returns True.
Var1 = "5": Var2 = 4 ' Initialize variables.
MyResult = (Var1 > Var2)' Returns True.
Var1 = 5: Var2 = Empty
MyResult = (Var1 > Var2)' Returns True.
Var1 = 0: Var2 = Empty
MyResult = (Var1 = Var2)' Returns True.

And Operator Example

This example uses the And operator to perform a logical conjunction on two expressions.
Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = A > B And B > C ' Returns True.
MyCheck = B > A And B > C ' Returns False.
MyCheck = A > B And B > D ' Returns Null.
MyCheck = A And B ' Returns 8 (bitwise comparison).

Eqv Operator Example

This example uses the Eqv operator to perform logical equivalence on two expressions.
Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = A > B Eqv B > C ' Returns True.
MyCheck = B > A Eqv B > C ' Returns False.
MyCheck = A > B Eqv B > D ' Returns Null.
MyCheck = A Eqv B ' Returns -3 (bitwise comparison).

Imp Operator Example

This example uses the Imp Operator to perform logical implication on two expressions.
Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = A > B Imp B > C ' Returns True.
MyCheck = A > B Imp C > B ' Returns False.
MyCheck = B > A Imp C > B ' Returns True.
MyCheck = B > A Imp C > D ' Returns True.
MyCheck = C > D Imp B > A ' Returns Null.
MyCheck = B Imp A ' Returns -1 (bitwise comparison).

Not Operator Example

This example uses the Not operator to perform logical negation on an expression.
Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = Not(A > B) ' Returns False.
MyCheck = Not(B > A) ' Returns True.
MyCheck = Not(C > D) ' Returns Null.
MyCheck = Not A' Returns -11 (bitwise comparison).

Or Operator Example

This example uses the Or operator to perform logical disjunction on two expressions.
Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = A > B Or B > C' Returns True.
MyCheck = B > A Or B > C' Returns True.
MyCheck = A > B Or B > D' Returns True.
MyCheck = B > D Or B > A' Returns Null.
MyCheck = A Or B ' Returns 10 (bitwise comparison).

Xor Operator Example

This example uses the Xor operator to perform logical exclusion on two expressions.
Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = A > B Xor B > C ' Returns False.
MyCheck = B > A Xor B > C ' Returns True.
MyCheck = B > A Xor C > B ' Returns False.
MyCheck = B > D Xor A > B ' Returns Null.
MyCheck = A Xor B ' Returns 2 (bitwise comparison).

Like Operator Example

This example uses the Like operator to compare a string to a pattern.
Dim MyCheck
MyCheck = "aBBBa" Like "a*a" ' Returns True.
MyCheck = "F" Like "[A-Z]" ' Returns True.
MyCheck = "F" Like "[!A-Z]"' Returns False.
MyCheck = "a2a" Like "a#a" ' Returns True.
MyCheck = "aM5b" Like "a[L-P]#[!c-e]" ' Returns True.
MyCheck = "BAT123khg" Like "B?T*" ' Returns True.
MyCheck = "CAT123khg" Like "B?T*" ' Returns False.

Is Operator Example

This example uses the Is operator to compare two object references. The object variable names are
generic and used for illustration purposes only.
Dim MyObject, YourObject, ThisObject, OtherObject, ThatObject, MyCheck
Set YourObject = MyObject ' Assign object references.
Set ThisObject = MyObject
Set ThatObject = OtherObject
MyCheck = YourObject Is ThisObject ' Returns True.
MyCheck = ThatObject Is ThisObject ' Returns False.
' Assume MyObject <> OtherObject
MyCheck = MyObject Is ThatObject ' Returns False.

Operator Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vagrpOperatorSummaryC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vagrpOperatorSummaryS"}

Operators Description
Arithmetic
Operators

Operators used to perform mathematical calculations.

Comparison
Operators

Operators used to perform comparisons.

Concatenation
Operators

Operators used to combine strings.

Logical
Operators

Operators used to perform logical operations.

Operator Precedence
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vagrpOperatorPrecedenceC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vagrpOperatorPrecedenceX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vagrpOperatorPrecedenceS"}

When several operations occur in an expression, each part is evaluated and resolved in a
predetermined order called operator precedence.

When expressions contain operators from more than one category, arithmetic operators are evaluated
first, comparison operators are evaluated next, and logical operators are evaluated last. Comparison
operators all have equal precedence; that is, they are evaluated in the left-to-right order in which they
appear. Arithmetic and logical operators are evaluated in the following order of precedence:

Arithmetic Comparison Logical
Exponentiation (^) Equality (=) Not
Negation (–) Inequality (<>) And
Multiplication and
division (*, /)

Less than (<) Or

Integer division (\) Greater than (>) Xor
Modulus arithmetic
(Mod)

Less than or
equal to (<=)

Eqv

Addition and
subtraction (+, –)

Greater than or
equal to (>=)

Imp

String
concatenation (&)

Like
Is

When multiplication and division occur together in an expression, each operation is evaluated as it
occurs from left to right. When addition and subtraction occur together in an expression, each
operation is evaluated in order of appearance from left to right. Parentheses can be used to override
the order of precedence and force some parts of an expression to be evaluated before others.
Operations within parentheses are always performed before those outside. Within parentheses,
however, operator precedence is maintained.

The string concatenation operator (&) is not an arithmetic operator, but in precedence, it does follow
all arithmetic operators and precede all comparison operators.

The Like operator is equal in precedence to all comparison operators, but is actually a pattern-
matching operator.

The Is operator is an object reference comparison operator. It does not compare objects or their

values; it checks only to determine if two object references refer to the same object.

Arithmetic Operators
^ Operator

* Operator

/ Operator

\ Operator

Mod Operator

+ Operator

- Operator

Concatenation Operators
& Operator

+ Operator

Logical Operators
And Operator

Eqv Operator

Imp Operator

Not Operator

Or Operator

Xor Operator

^ Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprExponentiationC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaoprExponentiationX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vaoprExponentiationS"}

Used to raise a number to the power of an exponent.

Syntax
result = number^exponent
The ^ operator syntax has these parts:

Part Description
result Required; any numeric variable.
number Required; any numeric expression.
exponent Required; any numeric expression.

Remarks
A number can be negative only if exponent is an integer value. When more than one exponentiation is
performed in a single expression, the ^ operator is evaluated as it is encountered from left to right.

Usually, the data type of result is a Double or a Variant containing a Double. However, if either
number or exponent is a Null expression, result is Null.

+ Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprAddC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaoprAddX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprAddS"}

Used to sum two numbers.

Syntax
result = expression1+expression2
The + operator syntax has these parts:

Part Description
result Required; any numeric variable.
expression1 Required; any expression.
expression2 Required; any expression.

Remarks
When you use the + operator, you may not be able to determine whether addition or string
concatenation will occur. Use the & operator for concatenation to eliminate ambiguity and provide
self-documenting code.

If at least one expression is not a Variant, the following rules apply:

If Then
Both expressions are numeric data
types (Byte, Boolean, Integer, Long,
Single, Double, Date, Currency, or
Decimal)

Add.

Both expressions are String Concatenate.
One expression is a numeric data
type and the other is any Variant
except Null

Add.

One expression is a String and the
other is any Variant except Null

Concatenate.

One expression is an Empty Variant Return the remaining expression
unchanged as result.

One expression is a numeric data
type and the other is a String

A Type mismatch error occurs.

Either expression is Null result is Null.

If both expressions are Variant expressions, the following rules apply:

If Then
Both Variant expressions are numeric Add.
Both Variant expressions are strings Concatenate.
One Variant expression is numeric
and the other is a string

Add.

For simple arithmetic addition involving only expressions of numeric data types, the data type of result
is usually the same as that of the most precise expression. The order of precision, from least to most
precise, is Byte, Integer, Long, Single, Double, Currency, and Decimal. The following are
exceptions to this order:

If Then result is

A Single and a Long are added, a Double.
The data type of result is a Long,
Single, or Date variant that overflows
its legal range,

converted to a Double variant.

The data type of result is a Byte
variant that overflows its legal range,

converted to an Integer variant.

The data type of result is an Integer
variant that overflows its legal range,

converted to a Long variant.

A Date is added to any data type, a Date.

If one or both expressions are Null expressions, result is Null. If both expressions are Empty, result
is an Integer. However, if only one expression is Empty, the other expression is returned unchanged
as result.

Note      The order of precision used by addition and subtraction is not the same as the order of
precision used by multiplication.

– Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprSubtractC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaoprSubtractX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vaoprSubtractS"}

Used to find the difference between two numbers or to indicate the negative value of a numeric
expression.

Syntax 1
result = number1–number2

Syntax 2
–number
The – operator syntax has these parts:

Part Description
result Required; any numeric variable.
number Required; any numeric expression.
number1 Required; any numeric expression.
number2 Required; any numeric expression.

Remarks
In Syntax 1, the – operator is the arithmetic subtraction operator used to find the difference between
two numbers. In Syntax 2, the – operator is used as the unary negation operator to indicate the
negative value of an expression.

The data type of result is usually the same as that of the most precise expression. The order of
precision, from least to most precise, is Byte, Integer, Long, Single, Double, Currency, and
Decimal. The following are exceptions to this order:

If Then result is
Subtraction involves a Single and a
Long,

converted to a Double.

The data type of result is a Long,
Single, or Date variant that overflows
its legal range,

converted to a Variant containing
a Double.

The data type of result is a Byte
variant that overflows its legal range,

converted to an Integer variant.

The data type of result is an Integer
variant that overflows its legal range,

converted to a Long variant.

Subtraction involves a Date and any
other data type,

a Date.

Subtraction involves two Date
expressions,

a Double.

One or both expressions are Null expressions, result is Null. If an expression is Empty, it is treated
as 0.
Note      The order of precision used by addition and subtraction is not the same as the order of
precision used by multiplication.

* Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprMultiplyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaoprMultiplyX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vaoprMultiplyS"}

Used to multiply two numbers.

Syntax
result = number1*number2
The * operator syntax has these parts:

Part Description
result Required; any numeric variable.
number1 Required; any numeric expression.
number2 Required; any numeric expression.

Remarks
The data type of result is usually the same as that of the most precise expression. The order of
precision, from least to most precise, is Byte, Integer, Long, Single, Currency, Double, and
Decimal. The following are exceptions to this order:

If Then result is
Multiplication involves a Single and a
Long,

converted to a Double.

The data type of result is a Long,
Single, or Date variant that overflows
its legal range,

converted to a Variant containing a
Double.

The data type of result is a Byte
variant that overflows its legal range,

converted to an Integer variant.

the data type of result is an Integer
variant that overflows its legal range,

converted to a Long variant.

If one or both expressions are Null expressions, result is Null. If an expression is Empty, it is treated
as 0.

Note      The order of precision used by multiplication is not the same as the order of precision used by
addition and subtraction.

/ Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprDivideC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaoprDivideX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprDivideS"}

Used to divide two numbers and return a floating-point result.

Syntax
result = number1/number2
The / operator syntax has these parts:

Part Description
result Required; any numeric variable.
number1 Required; any numeric expression.
number2 Required; any numeric expression.

Remarks
The data type of result is usually a Double or a Double variant. The following are exceptions to this
rule:

If Then result is
Both expressions are Byte, Integer,
or Single expressions,

a Single unless it overflows its legal
range; in which case, an error occurs.

Both expressions are Byte, Integer,
or Single variants,

a Single variant unless it overflows
its legal range; in which case, result is
a Variant containing a Double.

Division involves a Decimal and any
other data type,

a Decimal data type.

One or both expressions are Null expressions, result is Null. Any expression that is Empty is treated
as 0.

\ Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprIntegerDivideC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaoprIntegerDivideX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vaoprIntegerDivideS"}

Used to divide two numbers and return an integer result.

Syntax
result = number1\number2
The \ operator syntax has these parts:

Part Description
result Required; any numeric variable.
number1 Required; any numeric expression.
number2 Required; any numeric expression.

Remarks
Before division is performed, the numeric expressions are rounded to Byte, Integer, or Long
expressions.

Usually, the data type of result is a Byte, Byte variant, Integer, Integer variant, Long, or Long
variant, regardless of whether result is a whole number. Any fractional portion is truncated. However,
if any expression is Null, result is Null. Any expression that is Empty is treated as 0.

Mod Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprModC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaoprModX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprModS"}

Used to divide two numbers and return only the remainder.

Syntax
result = number1 Mod number2
The Mod operator syntax has these parts:

Part Description
result Required; any numeric variable.
number1 Required; any numeric expression.
number2 Required; any numeric expression.

Remarks
The modulus, or remainder, operator divides number1 by number2 (rounding floating-point numbers
to integers) and returns only the remainder as result. For example, in the following expression, A
(result) equals 5.
A = 19 Mod 6.7
Usually, the data type of result is a Byte, Byte variant, Integer, Integer variant, Long, or Variant
containing a Long, regardless of whether or not result is a whole number. Any fractional portion is
truncated. However, if any expression is Null, result is Null. Any expression that is Empty is treated
as 0.

& Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprConcatenationC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaoprConcatenationX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vaoprConcatenationS"}

Used to force string concatenation of two expressions.

Syntax
result = expression1 & expression2
The & operator syntax has these parts:

Part Description
result Required; any String or Variant variable.
expression1 Required; any expression.
expression2 Required; any expression.

Remarks
If an expression is not a string, it is converted to a String variant. The data type of result is String if
both expressions are string expressions; otherwise, result is a String variant. If both expressions are
Null, result is Null. However, if only one expression is Null, that expression is treated as a zero-
length string ("") when concatenated with the other expression. Any expression that is Empty is also
treated as a zero-length string.

Comparison Operators
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vagrpComparisonC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vagrpComparisonX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vagrpComparisonS"}

Used to compare expressions.

Syntax
result = expression1 comparisonoperator expression2
result = object1 Is object2
result = string Like pattern
Comparison operators have these parts:

Part Description
result Required; any numeric variable.
expression Required; any expression.
comparisonoperator Required; any comparison operator.
object Required; any object name.
string Required; any string expression.
pattern Required; any string expression or range of

characters.

Remarks
The following table contains a list of the comparison operators and the conditions that determine
whether result is True, False, or Null:

Operator True if False if Null if
< (Less than) expression1 <

expression2
expression1 >=
expression2

expression1 or
expression2 = Null

<= (Less than
or equal to)

expression1 <=
expression2

expression1 >
expression2

expression1 or
expression2 = Null

> (Greater
than)

expression1 >
expression2

expression1 <=
expression2

expression1 or
expression2 = Null

>= (Greater
than or equal
to)

expression1 >=
expression2

expression1 <
expression2

expression1 or
expression2 = Null

= (Equal to) expression1 =
expression2

expression1 <>
expression2

expression1 or
expression2 = Null

<> (Not equal
to)

expression1 <>
expression2

expression1 =
expression2

expression1 or
expression2 = Null

Note      The Is and Like operators have specific comparison functionality that differs from the
operators in the table.
When comparing two expressions, you may not be able to easily determine whether the expressions
are being compared as numbers or as strings. The following table shows how the expressions are
compared or the result when either expression is not a Variant:

If Then
Both expressions are numeric data
types (Byte, Boolean, Integer,
Long, Single, Double, Date,
Currency, or Decimal)

Perform a numeric comparison.

Both expressions are String Perform a string comparison.
One expression is a numeric data
type and the other is a Variant that
is, or can be, a number

Perform a numeric comparison.

One expression is a numeric data
type and the other is a string Variant
that can't be converted to a number

A Type Mismatch error occurs.

One expression is a String and the
other is any Variant except a Null

Perform a string comparison.

One expression is Empty and the
other is a numeric data type

Perform a numeric comparison,
using 0 as the Empty expression.

One expression is Empty and the
other is a String

Perform a string comparison,
using a zero-length string ("") as
the Empty expression.

If expression1 and expression2 are both Variant expressions, their underlying type determines how
they are compared. The following table shows how the expressions are compared or the result from
the comparison, depending on the underlying type of the Variant:

If Then
Both Variant expressions are
numeric

Perform a numeric comparison.

Both Variant expressions are strings Perform a string comparison.
One Variant expression is numeric
and the other is a string

The numeric expression is less
than the string expression.

One Variant expression is Empty
and the other is numeric

Perform a numeric comparison,
using 0 as the Empty
expression.

One Variant expression is Empty
and the other is a string

Perform a string comparison,
using a zero-length string ("") as
the Empty expression.

Both Variant expressions are Empty The expressions are equal.

When a Single is compared to a Double, the Double is rounded to the precision of the Single.

If a Currency is compared with a Single or Double, the Single or Double is converted to a
Currency. Similarly, when a Decimal is compared with a Single or Double, the Single or Double is
converted to a Decimal. For Currency, any fractional value less than .0001 may be lost; for Decimal,
any fractional value less than 1E-28 may be lost, or an overflow error can occur. Such fractional value
loss may cause two values to compare as equal when they are not.

And Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprAndC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaoprAndX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprAndS"}

Used to perform a logical conjunction on two expressions.

Syntax
result = expression1 And expression2
The And operator syntax has these parts:

Part Description
result Required; any numeric variable.
expression1 Required; any expression.
expression2 Required; any expression.

Remarks
If both expressions evaluate to True, result is True. If either expression evaluates to False, result is
False. The following table illustrates how result is determined:

If expression1 is And expression2 is The result is
True True True
True False False
True Null Null
False True False
False False False
False Null False
Null True Null
Null False False
Null Null Null

The And operator also performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in
expression1 is

And bit in
expression2 is

The result is

0 0 0
0 1 0
1 0 0
1 1 1

Eqv Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprEqvC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaoprEqvX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprEqvS"}

Used to perform a logical equivalence on two expressions.

Syntax
result = expression1 Eqv expression2
The Eqv operator syntax has these parts:

Part Description
result Required; any numeric variable.
expression1 Required; any expression.
expression2 Required; any expression.

Remarks
If either expression is Null, result is also Null. When neither expression is Null, result is determined
according to the following table:

If expression1 is And expression2 is The result is
True True True
True False False
False True False
False False True

The Eqv operator performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in
expression1 is

And bit in
expression2 is

The result is

0 0 1
0 1 0
1 0 0
1 1 1

Imp Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprImpC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaoprImpX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprImpS"}

Used to perform a logical implication on two expressions.

Syntax
result = expression1 Imp expression2
The Imp operator syntax has these parts:

Part Description
result Required; any numeric variable.
expression1 Required; any expression.
expression2 Required; any expression.

Remarks
The following table illustrates how result is determined:

If expression1 is And expression2
is

The result is

True True True
True False False
True Null Null
False True True
False False True
False Null True
Null True True
Null False Null
Null Null Null

The Imp operator performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in
expression1 is

And bit in
expression2 is

The result is

0 0 1
0 1 1
1 0 0
1 1 1

Not Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprNotC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaoprNotX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprNotS"}

Used to perform logical negation on an expression.

Syntax
result = Not expression
The Not operator syntax has these parts:

Part Description
result Required; any numeric variable.
expression Required; any expression.

Remarks
The following table illustrates how result is determined:

If expression is Then result is
True False
False True
Null Null

In addition, the Not operator inverts the bit values of any variable and sets the corresponding bit in
result according to the following table:

If bit in
expression is

Then bit in
result is

0 1
1 0

Or Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprOrC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaoprOrX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprOrS"}

Used to perform a logical disjunction on two expressions.

Syntax
result = expression1 Or expression2
The Or operator syntax has these parts:

Part Description
result Required; any numeric variable.
expression1 Required; any expression.
expression2 Required; any expression.

Remarks
If either or both expressions evaluate to True, result is True. The following table illustrates how result
is determined:

If expression1 is And expression2 is Then result is
True True True
True False True
True Null True
False True True
False False False
False Null Null
Null True True
Null False Null
Null Null Null

The Or operator also performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in
expression1 is

And bit in
expression2 is

Then result is

0 0 0
0 1 1
1 0 1
1 1 1

Xor Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprXorC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaoprXorX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprXorS"}

Used to perform a logical exclusion on two expressions.

Syntax
[result =] expression1 Xor expression2
The Xor operator syntax has these parts:

Part Description
result Optional; any numeric variable.
expression1 Required; any expression.
expression2 Required; any expression.

Remarks
If one, and only one, of the expressions evaluates to True, result is True. However, if either
expression is Null, result is also Null. When neither expression is Null, result is determined according
to the following table:

If expression1 is And expression2 is Then result is
True True False
True False True
False True True
False False False

The Xor operator performs as both a logical and bitwise operator. A bit-wise comparison of two
expressions using exclusive-or logic to form the result, as shown in the following table:

If bit in
expression1 is

And bit in
expression2 is

Then result is

0 0 0
0 1 1
1 0 1
1 1 0

Is Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprIsC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaoprIsX":1}           
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprIsS"}

Used to compare two object reference variables.

Syntax
result = object1 Is object2
The Is operator syntax has these parts:

Part Description
result Required; any numeric variable.
object1 Required; any object name.
object2 Required; any object name.

Remarks
If object1 and object2 both refer to the same object, result is True; if they do not, result is False. Two
variables can be made to refer to the same object in several ways.

In the following example, A has been set to refer to the same object as B:
Set A = B
The following example makes A and B refer to the same object as C:
Set A = C
Set B = C

Like Operator
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaoprLikeC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vaoprLikeX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaoprLikeS"}

Used to compare two strings.

Syntax
result = string Like pattern
The Like operator syntax has these parts:

Part Description
result Required; any numeric variable.
string Required; any string expression.
pattern Required; any string expression conforming to the pattern-

matching conventions described in Remarks.

Remarks
If string matches pattern, result is True; if there is no match, result is False. If either string or pattern
is Null, result is Null.
The behavior of the Like operator depends on the Option Compare statement. The default string-
comparison method for each module is Option Compare Binary.

Option Compare Binary results in string comparisons based on a sort order derived from the internal
binary representations of the characters. In Microsoft Windows, sort order is determined by the code
page. In the following example, a typical binary sort order is shown:

A < B < E < Z < a < b < e < z < À < Ê < Ø < à < ê < ø
Option Compare Text results in string comparisons based on a case-insensitive, textual sort order
determined by your system's locale. When you sort The same characters using Option Compare
Text, the following text sort order is produced:

(A=a) < (À=à) < (B=b) < (E=e) < (Ê=ê) < (Z=z) < (Ø=ø)
Built-in pattern matching provides a versatile tool for string comparisons. The pattern-matching
features allow you to use wildcard characters, character lists, or character ranges, in any
combination, to match strings. The following table shows the characters allowed in pattern and what
they match:

Characters
in pattern

Matches in string

? Any single character.
* Zero or more characters.
Any single digit (0–9).
[charlist] Any single character in charlist.
[!charlist] Any single character not in charlist.

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to match any
single character in string and can include almost any character code, including digits.

Note      To match the special characters left bracket ([), question mark (?), number sign (#), and
asterisk (*), enclose them in brackets. The right bracket (]) can't be used within a group to match
itself, but it can be used outside a group as an individual character.

By using a hyphen (–) to separate the upper and lower bounds of the range, charlist can specify a
range of characters. For example, [A-Z] results in a match if the corresponding character position in

string contains any uppercase letters in the range A–Z. Multiple ranges are included within the
brackets without delimiters.

The meaning of a specified range depends on the character ordering valid at run time (as determined
by Option Compare and the locale setting of the system the code is running on). Using the Option
Compare Binary example, the range [A–E] matches A, B and E. With Option Compare Text, [A–
E] matches A, a, À, à, B, b, E, e. The range does not match Ê or ê because accented characters fall
after unaccented characters in the sort order.

Other important rules for pattern matching include the following:

· An exclamation point (!) at the beginning of charlist means that a match is made if any character
except the characters in charlist is found in string. When used outside brackets, the exclamation
point matches itself.

· A hyphen (–) can appear either at the beginning (after an exclamation point if one is used) or at the
end of charlist to match itself. In any other location, the hyphen is used to identify a range of
characters.

· When a range of characters is specified, they must appear in ascending sort order (from lowest to
highest). [A-Z] is a valid pattern, but [Z-A] is not.

· The character sequence [] is considered a zero-length string ("").

In some languages, there are special characters in the alphabet that represent two separate
characters. For example, several languages use the character "æ" to represent the characters "a"
and "e" when they appear together. The Like operator recognizes that the single special character
and the two individual characters are equivalent.

When a language that uses a special character is specified in the system locale settings, an
occurrence of the single special character in either pattern or string matches the equivalent 2-
character sequence in the other string. Similarly, a single special character in pattern enclosed in
brackets (by itself, in a list, or in a range) matches the equivalent 2-character sequence in string.

Count Property Example

This example uses the Collection object's Count property to specify how many iterations are
required to remove all the elements of the collection called MyClasses. When collections are
numerically indexed, the base is 1 by default. Since collections are reindexed automatically when a
removal is made, the following code removes the first member on each iteration.
Dim Num, MyClasses
For Num = 1 To MyClasses.Count ' Remove name from the collection.

MyClasses.Remove 1 ' Default collection numeric indexes
Next ' begin at 1.

Description Property Example

This example assigns a user-defined message to the Description property of the Err object.
Err.Description = "It was not possible to access an object necessary " _
& "for this operation."

HelpContext Property Example

This example uses the HelpContext property of the Err object to show the Visual Basic Help topic for
the Overflow error.

Dim Msg
Err.Clear
On Error Resume Next
Err.Raise 6 ' Generate "Overflow" error.
If Err.Number <> 0 Then

Msg = "Press F1 or Help to see " & Err.HelpFile & " topic for" & _
" the following HelpContext: " & Err.HelpContext
MsgBox Msg, , "Error: " & Err.Description, Err.HelpFile, _

Err.HelpContext
End If

HelpFile Property Example

This example uses the HelpFile property of the Err object to start the Microsoft Windows Help
system. By default, the HelpFile property contains the name of the Visual Basic Help file.
Dim Msg
Err.Clear
On Error Resume Next ' Suppress errors for demonstration purposes.
Err.Raise 6 ' Generate "Overflow" error.
Msg = "Press F1 or Help to see " & Err.HelpFile & _
" topic for this error"
MsgBox Msg, , "Error: " & Err.Description,Err.HelpFile, Err.HelpContext

LastDLLError Property Example

When pasted into a UserForm module, the following code causes an attempt to call a DLL function.
The call fails because the argument that is passed in (a null pointer) generates an error, and in any
event, SQL can’t be cancelled if it isn’t running. The code following the call checks the return of the
call, and then prints at the LastDLLError property of the Err object to reveal the error code.

 Private Declare Function SQLCancel Lib "ODBC32.dll" _
 (ByVal hstmt As Long) As Integer

Private Sub UserForm_Click()
Dim RetVal
' Call with invalid argument.
RetVal = SQLCancel(myhandle&)
' Check for SQL error code.
If RetVal = -2 Then

'Display the information code.
MsgBox "Error code is :" & Err.LastDllError

 End If
End Sub

Number Property Example

The first example illustrates a typical use of the Number property in an error-handling routine. The
second example examines the Number property of the Err object to determine whether an error
returned by an Automation object was defined by the object, or whether it was mapped to an error
defined by Visual Basic. Note that the constant vbObjectError is a very large negative number that
an object adds to its own error code to indicate that the error is defined by the server. Therefore,
subtracting it from Err.Number strips it out of the result. If the error is object-defined, the base
number is left in MyError, which is displayed in a message box along with the original source of the
error. If Err.Number represents a Visual Basic error, then the Visual Basic error number is displayed
in the message box.
' Typical use of Number property
Sub test()

On Error GoTo out

Dim x, y
x = 1 / y ' Create division by zero error
Exit Sub
out:
MsgBox Err.Number
MsgBox Err.Description
' Check for division by zero error
If Err.Number = 11 Then

y = y + 1
End If
Resume

End Sub

' Using Number property with an error from an
' Automation object
Dim MyError, Msg
' First, strip off the constant added by the object to indicate one
' of its own errors.
MyError = Err.Number - vbObjectError
' If you subtract the vbObjectError constant, and the number is still
' in the range 0-65,535, it is an object-defined error code.
If MyError > 0 And MyError < 65535 Then

Msg = "The object you accessed assigned this number to the error: " _
 & MyError & ". The originator of the error was: " _

& Err.Source & ". Press F1 to see originator's Help topic."
' Otherwise it is a Visual Basic error number.
Else

Msg = "This error (# " & Err.Number & ") is a Visual Basic error" & _
" number. Press Help button or F1 for the Visual Basic Help" _
& " topic for this error."

End If
MsgBox Msg, , "Object Error", Err.HelpFile, Err.HelpContext

Source Property Example

This example assigns the Programmatic ID of an Automation object created in Visual Basic to the
variable MyObjectID, and then assigns that to the Source property of the Err object when it
generates an error with the Raise method. When handling errors, you should not use the Source
property (or any Err properties other than Number) programatically. The only valid use of properties
other than Number is for displaying rich information to an end user in cases where you can't handle
an error. The example assumes that App and MyClass are valid references.

Dim MyClass, MyObjectID, MyHelpFile, MyHelpContext
' An object of type MyClass generates an error and fills all Err object
' properties, including Source, which receives MyObjectID, which is a
' combination of the Title property of the App object and the Name
' property of the MyClass object.
MyObjectID = App.Title & "." & MyClass.Name
Err.RaiseNumber := vbObjectError + 894, Source := MyObjectID, _

Description := "Was not able to complete your task", _
HelpFile := MyHelpFile, HelpContext := MyHelpContext

Count Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproCountC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproCountX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vaproCountA"}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproCountS"}

Returns a Long (long integer) containing the number of objects in a collection. Read-only.

Description Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproDescriptionC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproDescriptionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproDescriptionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproDescriptionS"}

Returns or sets a string expression containing a descriptive string associated with an object.
Read/write.

For the Err object, returns or sets a descriptive string associated with an error.

Remarks
The Description property setting consists of a short description of the error. Use this property to alert
the user to an error that you either can't or don't want to handle. When generating a user-defined
error, assign a short description of your error to the Description property. If Description isn’t filled in,
and the value of Number corresponds to a Visual Basic run-time error, the string returned by the
Error function is placed in Description when the error is generated.

HelpContext Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproHelpContextC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproHelpContextX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproHelpContextA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproHelpContextS"}

Returns or sets a string expression containing the context ID for a topic in a Microsoft Windows Help
file. Read/write.

Remarks
The HelpContext property is used to automatically display the Help topic specified in the HelpFile
property. If both HelpFile and HelpContext are empty, the value of Number is checked. If Number
corresponds to a Visual Basic run-time error value, then the Visual Basic Help context ID for the error
is used. If the Number value doesn’t correspond to a Visual Basic error, the contents screen for the
Visual Basic Help file is displayed.

Note      You should write routines in your application to handle typical errors. When programming with
an object, you can use the object's Help file to improve the quality of your error handling, or to display
a meaningful message to your user if the error isn’t recoverable.

HelpFile Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproHelpFileC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproHelpFileX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproHelpFileA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproHelpFileS"}

Returns or sets a string expression the fully qualified path to a Microsoft Windows Help file.
Read/write.

Remarks
If a Help file is specified in HelpFile, it is automatically called when the user presses the Help button
(or the F1 key) in the error message dialog box. If the HelpContext property contains a valid context
ID for the specified file, that topic is automatically displayed. If no HelpFile is specified, the Visual
Basic Help file is displayed.

Note      You should write routines in your application to handle typical errors. When programming with
an object, you can use the object's Help file to improve the quality of your error handling, or to display
a meaningful message to your user if the error isn’t recoverable.

LastDLLError Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproLastDLLErrorC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproLastDLLErrorX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproLastDLLErrorA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproLastDLLErrorS"}

Returns a system error code produced by a call to a dynamic-link library (DLL). Read-only.

Remarks
The LastDLLError property applies only to DLL calls made from Visual Basic code. When such a call
is made, the called function usually returns a code indicating success or failure, and the
LastDLLError property is filled. Check the documentation for the DLL's functions to determine the
return values that indicate success or failure. Whenever the failure code is returned, the Visual Basic
application should immediately check the LastDLLError property. No exception is raised when the
LastDLLError property is set.

Number Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproNumberC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproNumberX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproNumberA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproNumberS"}

Returns or sets a numeric value specifying an error. Number is the Err object's default property.
Read/write.

Remarks
When returning a user-defined error from an object, set Err.Number by adding the number you
selected as an error code to the vbObjectError constant. For example, you use the following code to
return the number 1051 as an error code:
Err.Raise Number := vbObjectError + 1051, Source:= "SomeClass"

Source Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproSourceC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vaproSourceX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproSourceA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vaproSourceS"}

Returns or sets a string expression specifying the name of the object or application that originally
generated the error. Read/write.

Remarks
The Source property specifies a string expression representing the object that generated the error;
the expression is usually the object's class name or programmatic ID. Use Source to provide
information when your code is unable to handle an error generated in an accessed object. For
example, if you access Microsoft Excel and it generates a Division by zero error, Microsoft Excel
sets Err.Number to its error code for that error and sets Source to Excel.Application.

When generating an error from code, Source is your application’s programmatic ID. For class
modules, Source should contain a name having the form project.class. When an unexpected error
occurs in your code, the Source property is automatically filled in. For errors in a standard module,
Source contains the project name. For errors in a class module, Source contains a name with the
project.class form.

DeleteSetting Statement Example

The following example first uses the SaveSetting statement to make entries in the Windows registry
(or .ini file on 16-bit Windows platforms) for the MyApp application, and then uses the DeleteSetting
statement to remove them. Because no key argument is specified, the whole section is deleted,
including the section name and all its keys.
' Place some settings in the registry.
SaveSetting appname := "MyApp", section := "Startup", _
 key := "Top", setting := 75
SaveSetting "MyApp","Startup", "Left", 50
' Remove section and all its settings from registry.
DeleteSetting "MyApp", "Startup"

GetAllSettings Function Example

This example first uses the SaveSetting statement to make entries in the Windows registry (or .ini file
on 16-bit Windows platforms) for the application specified as appname, then uses the
GetAllSettings function to display the settings. Note that application names and section names can't
be retrieved with GetAllSettings. Finally, the DeleteSetting statement removes the application's
entries.
' Variant to hold 2-dimensional array returned by GetAllSettings
' Integer to hold counter.
Dim MySettings As Variant, intSettings As Integer
' Place some settings in the registry.
SaveSetting appname := "MyApp", section := "Startup", _
key := "Top", setting := 75
SaveSetting "MyApp","Startup", "Left", 50
' Retrieve the settings.
MySettings = GetAllSettings(appname := "MyApp", section := "Startup")

For intSettings = LBound(MySettings, 1) To UBound(MySettings, 1)
Debug.Print MySettings(intSettings, 0), MySettings(intSettings, 1)

Next intSettings
DeleteSetting "MyApp", "Startup"

GetSetting Function Example

This example first uses the SaveSetting statement to make entries in the Windows registry (or .ini file
on 16-bit Windows platforms) for the application specified as appname, and then uses the
GetSetting function to display one of the settings. Because the default argument is specified, some
value is guaranteed to be returned. Note that section names can't be retrieved with GetSetting.
Finally, the DeleteSetting statement removes all the application's entries.
' Variant to hold 2-dimensional array returned by GetSetting.
Dim MySettings As Variant
' Place some settings in the registry.
SaveSetting "MyApp","Startup", "Top", 75
SaveSetting "MyApp","Startup", "Left", 50

Debug.Print GetSetting(appname := "MyApp", section := "Startup", _
 key := "Left", default := "25")

DeleteSetting "MyApp", "Startup"

SaveSetting Statement Example

The following example first uses the SaveSetting statement to make entries in the Windows registry
(or .ini file on 16-bit Windows platforms) for the MyApp application, and then uses the DeleteSetting
statement to remove them.
' Place some settings in the registry.
SaveSetting appname := "MyApp", section := "Startup", _
 key := "Top", setting := 75
SaveSetting "MyApp","Startup", "Left", 50
' Remove section and all its settings from registry.
DeleteSetting "MyApp", "Startup"

DeleteSetting Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmDeleteSettingC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmDeleteSettingX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmDeleteSettingS"}

Deletes a section or key setting from an application's entry in the Windows registry.

Syntax
DeleteSetting appname, section[, key]
The DeleteSetting statement syntax has these named arguments:

Part Description
appname Required. String expression containing the name of the

application or project to which the section or key setting
applies.

section Required. String expression containing the name of the section
where the key setting is being deleted. If only appname and
section are provided, the specified section is deleted along
with all related key settings.

key Optional. String expression containing the name of the key
setting being deleted.

Remarks
If all arguments are provided, the specified key setting is deleted. However, the DeleteSetting
statement does nothing if the specified section or key setting does not exist.

GetAllSettings Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctGetAllSettingsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctGetAllSettingsX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctGetAllSettingsS"}

Returns a list of key settings and their respective values (originally created with SaveSetting) from an
application's entry in the Windows registry.

Syntax
GetAllSettings(appname, section)
The GetAllSettings function syntax has these named arguments:

Part Description
appname Required. String expression containing the name of the

application or project whose key settings are requested.
section Required. String expression containing the name of the section

whose key settings are requested. GetAllSettings returns a
Variant whose contents is a two-dimensional array of strings
containing all the key settings in the specified section and their
corresponding values.

Remarks
GetAllSettings returns an uninitialized Variant if either appname or section does not exist.

GetSetting Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctGetSettingC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctGetSettingX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctGetSettingS"}

Returns a key setting value from an application's entry in the Windows registry.

Syntax
GetSetting(appname, section, key[, default])
The GetSetting function syntax has these named arguments:

Part Description
appname Required. String expression containing the name of the

application or project whose key setting is requested.
section Required. String expression containing the name of the section

where the key setting is found.
key Required. String expression containing the name of the key

setting to return.
default Optional. Expression containing the value to return if no value

is set in the key setting. If omitted, default is assumed to be a
zero-length string ("").

Remarks
If any of the items named in the GetSetting arguments do not exist, GetSetting returns the value of
default.

SaveSetting Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmSaveSettingC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmSaveSettingX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vastmSaveSettingS"}

Saves or creates an application entry in the Windows registry.

Syntax
SaveSetting appname, section, key, setting
The SaveSetting statement syntax has these named arguments:

Part Description
appname Required. String expression containing the name of the

application or project to which the setting applies.
section Required. String expression containing the name of the section

where the key setting is being saved.
key Required. String expression containing the name of the key

setting being saved.
setting Required. Expression containing the value that key is being

set to.

Remarks
An error occurs if the key setting can’t be saved for any reason.

Chr Function Example

This example uses the Chr function to return the character associated with the specified character
code.
Dim MyChar
MyChar = Chr(65) ' Returns A.
MyChar = Chr(97) ' Returns a.
MyChar = Chr(62) ' Returns >.
MyChar = Chr(37) ' Returns %.

Format Function Example

This example shows various uses of the Format function to format values using both named formats
and user-defined formats. For the date separator (/), time separator (:), and AM/ PM literal, the actual
formatted output displayed by your system depends on the locale settings on which the code is
running. When times and dates are displayed in the development environment, the short time format
and short date format of the code locale are used. When displayed by running code, the short time
format and short date format of the system locale are used, which may differ from the code locale. For
this example, English/U.S. is assumed.

MyTime and MyDate are displayed in the development environment using current system short time
setting and short date setting.
Dim MyTime, MyDate, MyStr
MyTime = #17:04:23#
MyDate = #January 27, 1993#

' Returns current system time in the system-defined long time format.
MyStr = Format(Time, "Long Time")

' Returns current system date in the system-defined long date format.
MyStr = Format(Date, "Long Date")

MyStr = Format(MyTime, "h:m:s") ' Returns "17:4:23".
MyStr = Format(MyTime, "hh:mm:ss AMPM") ' Returns "05:04:23 PM".
MyStr = Format(MyDate, "dddd, mmm d yyyy") ' Returns "Wednesday,

' Jan 27 1993".
' If format is not supplied, a string is returned.
MyStr = Format(23)' Returns "23".

' User-defined formats.
MyStr = Format(5459.4, "##,##0.00")' Returns "5,459.40".
MyStr = Format(334.9, "###0.00") ' Returns "334.90".
MyStr = Format(5, "0.00%") ' Returns "500.00%".
MyStr = Format("HELLO", "<") ' Returns "hello".
MyStr = Format("This is it", ">") ' Returns "THIS IS IT".

Hex Function Example

This example uses the Hex function to return the hexadecimal value of a number.
Dim MyHex
MyHex = Hex(5) ' Returns 5.
MyHex = Hex(10)' Returns A.
MyHex = Hex(459) ' Returns 1CB.

InStr Function Example

This example uses the InStr function to return the position of the first occurrence of one string within
another.
Dim SearchString, SearchChar, MyPos
SearchString ="XXpXXpXXPXXP" ' String to search in.
SearchChar = "P" ' Search for "P".
' A textual comparison starting at position 4. Returns 6.
MyPos = Instr(4, SearchString, SearchChar, 1)
' A binary comparison starting at position 1. Returns 9.
MyPos = Instr(1, SearchString, SearchChar, 0)
' Comparison is binary by default (last argument is omitted).
MyPos = Instr(SearchString, SearchChar) ' Returns 9.
MyPos = Instr(1, SearchString, "W")' Returns 0.

LCase Function Example

This example uses the LCase function to return a lowercase version of a string.
Dim UpperCase, LowerCase
Uppercase = "Hello World 1234" ' String to convert.
Lowercase = Lcase(UpperCase) ' Returns "hello world 1234".

Left Function Example

This example uses the Left function to return a specified number of characters from the left side of a
string.
Dim AnyString, MyStr
AnyString = "Hello World" ' Define string.
MyStr = Left(AnyString, 1) ' Returns "H".
MyStr = Left(AnyString, 7) ' Returns "Hello W".
MyStr = Left(AnyString, 20)' Returns "Hello World".

Len Function Example

This example uses the Len function to return the number of characters in a string or the number of
bytes required to store a variable. The Type...End Type block defining CustomerRecord must be
preceded by the keyword Private if it appears in a class module. In a standard module, a Type
statement can be Public.
Type CustomerRecord ' Define user-defined type.

ID As Integer ' Place this definition in a
Name As String * 10 ' standard module.
Address As String * 30

End Type

Dim Customer As CustomerRecord ' Declare variables.
Dim MyInt As Integer, MyCur As Currency
Dim MyString, MyLen
MyString = "Hello World"' Initialize variable.
MyLen = Len(MyInt)' Returns 2.
MyLen = Len(Customer)' Returns 42.
MyLen = Len(MyString)' Returns 11.
MyLen = Len(MyCur)' Returns 8.

LSet Statement Example

This example uses the LSet statement to left align a string within a string variable. Although LSet can
also be used to copy a variable of one user-defined type to another variable of a different, but
compatible, user-defined type, this practice is not recommended. Due to the varying implementations
of data structures among platforms, such a use of LSet can't be guaranteed to be portable.
Dim MyString
MyString = "0123456789" ' Initialize string.
Lset MyString = "<-Left"' MyString contains "<-Left ".

LTrim, RTrim, and Trim Functions Example

This example uses the LTrim function to strip leading spaces and the RTrim function to strip trailing
spaces from a string variable. It uses the Trim function to strip both types of spaces.
Dim MyString, TrimString
MyString = " <-Trim-> " ' Initialize string.
TrimString = LTrim(MyString) ' TrimString = "<-Trim-> ".
TrimString = RTrim(MyString) ' TrimString = " <-Trim->".
TrimString = LTrim(RTrim(MyString))' TrimString = "<-Trim->".
' Using the Trim function alone achieves the same result.
TrimString = Trim(MyString)' TrimString = "<-Trim->".

Mid Function Example

This example uses the Mid function to return a specified number of characters from a string.
Dim MyString, FirstWord, LastWord, MidWords
MyString = "Mid Function Demo" ' Create text string.
FirstWord = Mid(MyString, 1, 3) ' Returns "Mid".
LastWord = Mid(MyString, 14, 4) ' Returns "Demo".
MidWords = Mid(MyString, 5)' Returns "Function Demo".

Mid Statement Example

This example uses the Mid statement to replace a specified number of characters in a string variable
with characters from another string.
Dim MyString
MyString = "The dog jumps" ' Initialize string.
Mid(MyString, 5, 3) = "fox"' MyString = "The fox jumps".
Mid(MyString, 5) = "cow"' MyString = "The cow jumps".
Mid(MyString, 5) = "cow jumped over" ' MyString = "The cow jumpe".
Mid(MyString, 5, 3) = "duck" ' MyString = "The duc jumpe".

Oct Function Example

This example uses the Oct function to return the octal value of a number.
Dim MyOct
MyOct = Oct(4) ' Returns 4.
MyOct = Oct(8) ' Returns 10.
MyOct = Oct(459) ' Returns 713.

Right Function Example

This example uses the Right function to return a specified number of characters from the right side of
a string.
Dim AnyString, MyStr
AnyString = "Hello World" ' Define string.
MyStr = Right(AnyString, 1)' Returns "d".
MyStr = Right(AnyString, 6)' Returns " World".
MyStr = Right(AnyString, 20) ' Returns "Hello World".

RSet Statement Example

This example uses the RSet statement to right align a string within a string variable.
Dim MyString
MyString = "0123456789" ' Initialize string.
Rset MyString = "Right->" ' MyString contains " Right->".

Space Function Example

This example uses the Space function to return a string consisting of a specified number of spaces.
Dim MyString
' Returns a string with 10 spaces.
MyString = Space(10)
' Insert 10 spaces between two strings.
MyString = "Hello" & Space(10) & "World"

Str Function Example

This example uses the Str function to return a string representation of a number. When a number is
converted to a string, a leading space is always reserved for its sign.
Dim MyString
MyString = Str(459) ' Returns " 459".
MyString = Str(-459.65) ' Returns "-459.65".
MyString = Str(459.001) ' Returns " 459.001".

StrComp Function Example

This example uses the StrComp function to return the results of a string comparison. If the third
argument is 1, a textual comparison is performed; if the third argument is 0 or omitted, a binary
comparison is performed.
Dim MyStr1, MyStr2, MyComp
MyStr1 = "ABCD": MyStr2 = "abcd" ' Define variables.
MyComp = StrComp(MyStr1, MyStr2, 1)' Returns 0.
MyComp = StrComp(MyStr1, MyStr2, 0)' Returns -1.
MyComp = StrComp(MyStr2, MyStr1) ' Returns 1.

String Function Example

This example uses the String function to return repeating character strings of the length specified.
Dim MyString
MyString = String(5, "*") ' Returns "*****".
MyString = String(5, 42)' Returns "*****".
MyString = String(10, "ABC") ' Returns "AAAAAAAAAA".

UCase Function Example

This example uses the UCase function to return an uppercase version of a string.
Dim LowerCase, UpperCase
LowerCase = "Hello World 1234" ' String to convert.
UpperCase = UCase(LowerCase) ' Returns "HELLO WORLD 1234".

Chr Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctChrC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctChrX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctChrS"}

Returns a String containing the character associated with the specified character code.

Syntax
Chr(charcode)
The required charcode argument is a Long that identifies a character.

Remarks
Numbers from 0 – 31 are the same as standard, nonprintable ASCII codes. For example, Chr(10)
returns a linefeed character. The normal range for charcode is 0 – 255. However, on DBCS systems,
the actual range for charcode is -32768 to 65536.

Note      The ChrB function is used with byte data contained in a String. Instead of returning a
character, which may be one or two bytes, ChrB always returns a single byte. The ChrW function
returns a String containing the Unicode character except on platforms where Unicode is not
supported, in which case, the behavior is identical to the Chr function.

Format Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctFormatC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctFormatX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctFormatS"}

Returns a Variant (String) containing an expression formatted according to instructions contained in
a format expression.

Syntax
Format(expression[, format[, firstdayofweek[, firstweekofyear]]])
The Format function syntax has these parts:

Part Description
expression Required. Any valid expression.
format Optional. A valid named or user-defined format

expression.
firstdayofweek Optional. A constant that specifies the first day of the

week.
firstweekofyear Optional. A constant that specifies the first week of the

year.

Settings
The firstdayofweek argument has these settings:

Constant Value Description
vbUseSystem 0 Use NLS API setting.
VbSunday 1 Sunday (default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

The firstweekofyear argument has these settings:

Constant Value Description
vbUseSystem 0 Use NLS API setting.
vbFirstJan1 1 Start with week in which January 1 occurs

(default).
vbFirstFourDays 2 Start with the first week that has at least four

days in the year.
vbFirstFullWeek 3 Start with the first full week of the year.

Remarks
To Format Do This
Numbers Use predefined named numeric formats or create

user-defined numeric formats.
Dates and times Use predefined named date/time formats or create

user-defined date/time formats.
Date and time Use date and time formats or numeric formats.

serial numbers
Strings Create your own user-defined string formats.

If you try to format a number without specifying format, Format provides functionality similar to the Str
function, although it is internationally aware. However, positive numbers formatted as strings using
Format don’t include a leading space reserved for the sign of the value; those converted using Str
retain the leading space.

Named Numeric Formats (Format Function)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafmtNamedNumericFormatsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafmtNamedNumericFormatsX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafmtNamedNumericFormatsS"}

The following table identifies the predefined numeric format names:

Format name Description
General Number Display number with no thousand separator.
Currency Display number with thousand separator, if

appropriate; display two digits to the right of the
decimal separator. Output is based on system locale
settings.

Fixed Display at least one digit to the left and two digits to
the right of the decimal separator.

Standard Display number with thousand separator, at least one
digit to the left and two digits to the right of the decimal
separator.

Percent Display number multiplied by 100 with a percent sign
(%) appended to the right; always display two digits to
the right of the decimal separator.

Scientific Use standard scientific notation.
Yes/No Display No if number is 0; otherwise, display Yes.
True/False Display False if number is 0; otherwise, display True.
On/Off Display Off if number is 0; otherwise, display On.

User-Defined Numeric Formats (Format Function)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafmtUserDefinedNumericFormatsC@veendf3.hlp"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafmtUserDefinedNumericFormatsX@veendf3.hlp":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafmtUserDefinedNumericFormatsS@veendf3.hlp"}

The following table identifies characters you can use to create user-defined number formats:

Character Description
None Display the number with no formatting.
(0) Digit placeholder. Display a digit or a zero. If the expression

has a digit in the position where the 0 appears in the format
string, display it; otherwise, display a zero in that position.
If the number has fewer digits than there are zeros (on either
side of the decimal) in the format expression, display leading
or trailing zeros. If the number has more digits to the right of
the decimal separator than there are zeros to the right of the
decimal separator in the format expression, round the number
to as many decimal places as there are zeros. If the number
has more digits to the left of the decimal separator than there
are zeros to the left of the decimal separator in the format
expression, display the extra digits without modification.

(#) Digit placeholder. Display a digit or nothing. If the expression
has a digit in the position where the # appears in the format
string, display it; otherwise, display nothing in that position.
This symbol works like the 0 digit placeholder, except that
leading and trailing zeros aren't displayed if the number has
the same or fewer digits than there are # characters on either
side of the decimal separator in the format expression.

(.) Decimal placeholder. In some locales, a comma is used as the
decimal separator. The decimal placeholder determines how
many digits are displayed to the left and right of the decimal
separator. If the format expression contains only number signs
to the left of this symbol, numbers smaller than 1 begin with a
decimal separator. To display a leading zero displayed with
fractional numbers, use 0 as the first digit placeholder to the
left of the decimal separator. The actual character used as a
decimal placeholder in the formatted output depends on the
Number Format recognized by your system.

(%) Percentage placeholder. The expression is multiplied by 100.
The percent character (%) is inserted in the position where it
appears in the format string.

(,) Thousand separator. In some locales, a period is used as a
thousand separator. The thousand separator separates
thousands from hundreds within a number that has four or
more places to the left of the decimal separator. Standard use
of the thousand separator is specified if the format contains a
thousand separator surrounded by digit placeholders (0 or #).
Two adjacent thousand separators or a thousand separator
immediately to the left of the decimal separator (whether or
not a decimal is specified) means "scale the number by
dividing it by 1000, rounding as needed." For example, you
can use the format string "##0,," to represent 100 million as
100. Numbers smaller than 1 million are displayed as 0. Two
adjacent thousand separators in any position other than

immediately to the left of the decimal separator are treated
simply as specifying the use of a thousand separator. The
actual character used as the thousand separator in the
formatted output depends on the Number Format recognized
by your system.

(:) Time separator. In some locales, other characters may be
used to represent the time separator. The time separator
separates hours, minutes, and seconds when time values are
formatted. The actual character used as the time separator in
formatted output is determined by your system settings.

(/) Date separator. In some locales, other characters may be
used to represent the date separator. The date separator
separates the day, month, and year when date values are
formatted. The actual character used as the date separator in
formatted output is determined by your system settings.

(E- E+ e-
e+)

Scientific format. If the format expression contains at least one
digit placeholder (0 or #) to the right of E-, E+, e-, or e+, the
number is displayed in scientific format and E or e is inserted
between the number and its exponent. The number of digit
placeholders to the right determines the number of digits in
the exponent. Use E- or e- to place a minus sign next to
negative exponents. Use E+ or e+ to place a minus sign next
to negative exponents and a plus sign next to positive
exponents.

- + $ () Display a literal character. To display a character other than
one of those listed, precede it with a backslash (\) or enclose it
in double quotation marks (" ").

(\) Display the next character in the format string. To display a
character that has special meaning as a literal character,
precede it with a backslash (\). The backslash itself isn't
displayed. Using a backslash is the same as enclosing the
next character in double quotation marks. To display a
backslash, use two backslashes (\\).
Examples of characters that can't be displayed as literal
characters are the date-formatting and time-formatting
characters (a, c, d, h, m, n, p, q, s, t, w, y, / and :), the
numeric-formatting characters (#, 0, %, E, e, comma, and
period), and the string-formatting characters (@, &, <, >,
and !).

("ABC") Display the string inside the double quotation marks (" "). To
include a string in format from within code, you must use
Chr(34) to enclose the text (34 is the character code for a
quotation mark (")).

Different Formats for Different Numeric Values (Format Function)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafmtMultipleNumSectionsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafmtMultipleNumSectionsS"}

A user-defined format expression for numbers can have from one to four sections separated by
semicolons. If the format argument contains one of the named numeric formats, only one section is
allowed.

If you use The result is
One section only The format expression applies to all values.
Two sections The first section applies to positive values and zeros,

the second to negative values.
Three sections The first section applies to positive values, the second

to negative values, and the third to zeros.
Four sections The first section applies to positive values, the second

to negative values, the third to zeros, and the fourth to
Null values.

The following example has two sections: the first defines the format for positive values and zeros; the
second section defines the format for negative values.
"$#,##0;($#,##0)"
If you include semicolons with nothing between them, the missing section is printed using the format
of the positive value. For example, the following format displays positive and negative values using
the format in the first section and displays "Zero" if the value is zero.
"$#,##0;;\Z\e\r\o"

User-Defined Numeric Format Expressions Example
The following table contains some sample format expressionss for numbers. (These examples all
assume that your system's locale setting is English-U.S.) The first column contains the format strings;
the other columns contain the resulting output if the formatted data has the value given in the column
headings.

Format
(format)

Positive 5 Negative 5 Decimal .5 Null

Zero-length
string ("")

5 -5 0.5

0 5 -5 1
0.00 5.00 -5.00 0.50
#,##0 5 -5 1
#,##0.00;;;
Nil

5.00 -5.00 0.50 Nil

$#,##0;
($#,##0)

$5 ($5) $1

$#,##0.00;
($#,##0.00)

$5.00 ($5.00) $0.50

0% 500% -500% 50%
0.00% 500.00% -500.00% 50.00%
0.00E+00 5.00E+00 -

5.00E+00
5.00E-01

0.00E-00 5.00E00 -5.00E00 5.00E-01

Named Date/Time Formats (Format Function)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafmtNamedDateFormatsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafmtNamedDateFormatsX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafmtNamedDateFormatsS"}

The following table identifies the predefined date and time format names:

Format Name Description
General Date Display a date and/or time. For real numbers, display a

date and time, for example, 4/3/93 05:34 PM. If there is
no fractional part, display only a date, for example, 4/3/93.
If there is no integer part, display time only, for example,
05:34 PM. Date display is determined by your system
settings.

Long Date Display a date according to your system's long date
format.

Medium Date Display a date using the medium date format appropriate
for the language version of the host application.

Short Date Display a date using your system's short date format.
Long Time Display a time using your system's long time format;

includes hours, minutes, seconds.
Medium Time Display time in 12-hour format using hours and minutes

and the AM/PM designator.
Short Time Display a time using the 24-hour format, for example,

17:45.

User-Defined Date/Time Formats (Format Function)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafmtUserDefinedDateFormatsC@veendf3.hlp"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafmtUserDefinedDateFormatsX@veendf3.hlp":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafmtUserDefinedDateFormatsS@veendf3.hlp"}

The following table identifies characters you can use to create user-defined date/time formats:

Character Description
(:) Time separator. In some locales, other characters may be

used to represent the time separator. The time separator
separates hours, minutes, and seconds when time values are
formatted. The actual character used as the time separator in
formatted output is determined by your system settings.

(/) Date separator. In some locales, other characters may be
used to represent the date separator. The date separator
separates the day, month, and year when date values are
formatted. The actual character used as the date separator in
formatted output is determined by your system settings.

c Display the date as ddddd and display the time as
ttttt, in that order. Display only date information if there is
no fractional part to the date serial number; display only time
information if there is no integer portion.

d Display the day as a number without a leading zero (1 – 31).
dd Display the day as a number with a leading zero (01 – 31).
ddd Display the day as an abbreviation (Sun – Sat).
dddd Display the day as a full name (Sunday – Saturday).
ddddd Display the date as a complete date (including day, month,

and year), formatted according to your system's short date
format setting. For Microsoft Windows, the default short date
format is m/d/yy.

dddddd Display a date serial number as a complete date (including
day, month, and year) formatted according to the long date
setting recognized by your system. For Microsoft Windows,
the default long date format is mmmm dd, yyyy.

w Display the day of the week as a number (1 for Sunday
through 7 for Saturday).

ww Display the week of the year as a number (1 – 54).
m Display the month as a number without a leading zero

(1 – 12). If m immediately follows h or hh, the minute rather
than the month is displayed.

mm Display the month as a number with a leading zero (01 – 12).
If m immediately follows h or hh, the minute rather than the
month is displayed.

mmm Display the month as an abbreviation (Jan – Dec).
mmmm Display the month as a full month name

(January – December).
q Display the quarter of the year as a number (1 – 4).
y Display the day of the year as a number (1 – 366).
yy Display the year as a 2-digit number (00 – 99).
yyyy Display the year as a 4-digit number (100 – 9999).
h Display the hour as a number without leading zeros (0 – 23).

hh Display the hour as a number with leading zeros (00 – 23).
n Display the minute as a number without leading zeros

(0 – 59).
nn Display the minute as a number with leading zeros (00 – 59).
s Display the second as a number without leading zeros

(0 – 59).
ss Display the second as a number with leading zeros (00 – 59).
t t t t t Display a time as a complete time (including hour, minute, and

second), formatted using the time separator defined by the
time format recognized by your system. A leading zero is
displayed if the leading zero option is selected and the time is
before 10:00 A.M. or P.M. For Microsoft Windows, the default
time format is h:mm:ss.

AM/PM Use the 12-hour clock and display an uppercase AM with any
hour before noon; display an uppercase PM with any hour
between noon and 11:59 P.M.

am/pm Use the 12-hour clock and display a lowercase AM with any
hour before noon; display a lowercase PM with any hour
between noon and 11:59 P.M.

A/P Use the 12-hour clock and display an uppercase A with any
hour before noon; display an uppercase P with any hour
between noon and 11:59 P.M.

a/p Use the 12-hour clock and display a lowercase A with any
hour before noon; display a lowercase P with any hour
between noon and 11:59 P.M.

AMPM Use the 12-hour clock and display the AM string literal as
defined by your system with any hour before noon; display the
PM string literal as defined by your system with any hour
between noon and 11:59 P.M. AMPM can be either uppercase
or lowercase, but the case of the string displayed matches the
string as defined by your system settings. For Microsoft
Windows, the default format is AM/PM.

User-Defined Date/Time Formats Example
The following are examples of user-defined date and time formats for December 7, 1958:

Format Display
m/d/yy 12/7/58
d-mmm 7-Dec
d-mmmm-yy 7-December-58
d mmmm 7 December
mmmm yy December 58
hh:mm AM/PM 08:50 PM
h:mm:ss a/p 8:50:35 p
h:mm 20:50
h:mm:ss 20:50:35
m/d/yy h:mm 12/7/58 20:50

User-Defined String Formats (Format Function)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafmtStringFormatsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafmtStringFormatsX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafmtStringFormatsS"}

You can use any of the following characters to create a format expression for strings:

Character Description
@ Character placeholder. Display a character or a space. If the

string has a character in the position where the at symbol (@)
appears in the format string, display it; otherwise, display a
space in that position. Placeholders are filled from right to left
unless there is an exclamation point character (!) in the format
string.

& Character placeholder. Display a character or nothing. If the
string has a character in the position where the ampersand (&)
appears, display it; otherwise, display nothing. Placeholders
are filled from right to left unless there is an exclamation point
character (!) in the format string.

< Force lowercase. Display all characters in lowercase format.
> Force uppercase. Display all characters in uppercase format.
! Force left to right fill of placeholders. The default is to fill

placeholders from right to left.

Different Formats for Different String Values (Format Function)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafmtMultipleStringSectionsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafmtMultipleStringSectionsS"}

A format expression for strings can have one section or two sections separated by a semicolon (;).
If you use The result is
One section only The format applies to all string data.
Two sections The first section applies to string data, the second to

Null values and zero-length strings ("").

Hex Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctHexC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctHexX":1}     
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctHexS"}

Returns a String representing the hexadecimal value of a number.

Syntax
Hex(number)

The required number argument is any valid numeric expression or string expression.

Remarks
If number is not already a whole number, it is rounded to the nearest whole number before being
evaluated.

If number is Hex returns
Null Null
Empty Zero (0)
Any other number Up to eight hexadecimal characters

You can represent hexadecimal numbers directly by preceding numbers in the proper range with &H.
For example, &H10 represents decimal 16 in hexadecimal notation.

InStr Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctInstrC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctInStrX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctInStrS"}

Returns a Variant (Long) specifying the position of the first occurrence of one string within another.

Syntax
InStr([start,]string1, string2[, compare])
The InStr function syntax has these arguments:

Part Description
start Optional. Numeric expression that sets the starting position for

each search. If omitted, search begins at the first character
position. If start contains Null, an error occurs. The start
argument is required if compare is specified.

string1 Required. String expression being searched.
string2 Required. String expression sought.
compare Optional. Specifies the type of string comparison. The compare

argument can be omitted, or it can be 0, 1or 2. Specify 0
(default) to perform a binary comparison. Specify 1 to perform
a textual, noncase-sensitive comparison. For Microsoft Access
only, specify 2 to perform a comparison based on information
contained in your database. If compare is Null, an error occurs.
If compare is omitted, the Option Compare setting determines
the type of comparison.

Return Values
If InStr returns
string1 is zero-
length

0

string1 is Null Null
string2 is zero-
length

start

string2 is Null Null
string2 is not
found

0

string2 is found
within string1

Position at which match is found

start > string2 0

Remarks
The InStrB function is used with byte data contained in a string. Instead of returning the character
position of the first occurrence of one string within another, InStrB returns the byte position.

LCase Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctLCaseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctLCaseX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctLCaseS"}

Returns a String that has been converted to lowercase.

Syntax
LCase(string)
The required string argument is any valid string expression. If string contains Null, Null is returned.

Remarks
Only uppercase letters are converted to lowercase; all lowercase letters and nonletter characters
remain unchanged.

Left Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctLeftC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctLeftX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctLeftS"}

Returns a Variant (String) containing a specified number of characters from the left side of a string.

Syntax
Left(string, length)
The Left function syntax has these named arguments:

Part Description
string Required. String expression from which the leftmost characters

are returned. If string contains Null, Null is returned.
length Required; Variant (Long). Numeric expression indicating how

many characters to return. If 0, a zero-length string ("") is
returned. If greater than or equal to the number of characters in
string, the entire string is returned.

Remarks
To determine the number of characters in string, use the Len function.

Note      Use the LeftB function with byte data contained in a string. Instead of specifying the number
of characters to return, length specifies the number of bytes.

Len Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctLenC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctLenX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctLenS"}

Returns a Long containing the number of characters in a string or the number of bytes required to
store a variable.

Syntax
Len(string | varname)
The Len function syntax has these parts:

Part Description
string Any valid string expression. If string contains Null, Null is

returned.
Varname Any valid variable name. If varname contains Null, Null is

returned. If varname is a Variant, Len treats it the same as a
String and always returns the number of characters it contains.

Remarks
One (and only one) of the two possible arguments must be specified. With user-defined types, Len
returns the size as it will be written to the file.

Note      Use the LenB function with byte data contained in a string. Instead of returning the number of
characters in a string, LenB returns the number of bytes used to represent that string. With user-
defined types, LenB returns the in-memory size, including any padding between elements.

Note      Len may not be able to determine the actual number of storage bytes required when used
with variable-length strings in user-defined data types.

LSet Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmLSetC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmLSetX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmLSetS"}

Left aligns a string within a string variable, or copies a variable of one user-defined type to another
variable of a different user-defined type.

Syntax
LSet stringvar = string
LSet varname1 = varname2
The LSet statement syntax has these parts:

Part Description
stringvar Required. Name of string variable.
string Required. String expression to be left-aligned within stringvar.
varname1 Required. Variable name of the user-defined type being copied

to.
varname2 Required. Variable name of the user-defined type being copied

from.

Remarks
LSet replaces any leftover characters in stringvar with spaces.

If string is longer than stringvar, LSet places only the leftmost characters, up to the length of the
stringvar, in stringvar.

Warning      Using LSet to copy a variable of one user-defined type into a variable of a different user-
defined type is not recommended. Copying data of one data type into space reserved for a different
data type can cause unpredictable results.
When you copy a variable from one user-defined type to another, the binary data from one variable is
copied into the memory space of the other, without regard for the data types specified for the
elements.

LTrim, RTrim, and Trim Functions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctLTrimC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctLTrimX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctLTrimS"}

Returns a Variant (String) containing a copy of a specified string without leading spaces (LTrim),
trailing spaces (RTrim), or both leading and trailing spaces (Trim).

Syntax
LTrim(string)
RTrim(string)
Trim(string)
The required string argument is any valid string expression. If string contains Null, Null is returned.

Mid Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctMidC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctMidX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctMidS"}

Returns a Variant (String) containing a specified number of characters from a string.

Syntax
Mid(string, start[, length])
The Mid function syntax has these named arguments:

Part Description
string Required. String expression from which characters are returned. If

string contains Null, Null is returned.
start Required; Long. Character position in string at which the part to

be taken begins. If start is greater than the number of characters
in string, Mid returns a zero-length string ("").

length Optional; Variant (Long). Number of characters to return. If
omitted or if there are fewer than length characters in the text
(including the character at start), all characters from the start
position to the end of the string are returned.

Remarks
To determine the number of characters in string, use the Len function.

Note      Use the MidB function with byte data contained in a string. Instead of specifying the number
of characters, the arguments specify numbers of bytes.

Mid Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmMidC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vastmMidX":1}   
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmMidS"}

Replaces a specified number of characters in a Variant (String) variable with characters from another
string.

Syntax
Mid(stringvar, start[, length]) = string
The Mid statement syntax has these parts:

Part Description
stringvar Required. Name of string variable to modify.
start Required; Variant (Long). Character position in stringvar where

the replacement of text begins.
length Optional; Variant (Long). Number of characters to replace. If

omitted, all of string is used.
string Required. String expression that replaces part of stringvar.

Remarks
The number of characters replaced is always less than or equal to the number of characters in
stringvar.

Note      Use the MidB statement with byte data contained in a string. In the MidB statement, start
specifies the byte position within stringvar where replacement begins and length specifies the
numbers of bytes to replace.

Oct Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctOctC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctOctX":1}       
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctOctS"}

Returns a Variant (String) representing the octal value of a number.

Syntax
Oct(number)
The required number argument is any valid numeric expression or string expression.

Remarks
If number is not already a whole number, it is rounded to the nearest whole number before being
evaluated.

If number is Oct returns
Null Null
Empty Zero (0)
Any other number Up to 11 octal characters

You can represent octal numbers directly by preceding numbers in the proper range with &O. For
example, &O10 is the octal notation for decimal 8.

Right Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctRightC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctRightX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctRightS"}

Returns a Variant (String) containing a specified number of characters from the right side of a string.

Syntax
Right(string, length)
The Right function syntax has these named arguments:

Part Description
string Required. String expression from which the rightmost characters

are returned. If string contains Null, Null is returned.
length Required; Variant (Long). Numeric expression indicating how

many characters to return. If 0, a zero-length string ("") is
returned. If greater than or equal to the number of characters in
string, the entire string is returned.

Remarks
To determine the number of characters in string, use the Len function.

Note      Use the RightB function with byte data contained in a string. Instead of specifying the number
of characters to return, length specifies the number of bytes.

RSet Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vastmRSetC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmRSetX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vastmRSetS"}

Right aligns a string within a string variable.

Syntax
RSet stringvar = string
The RSet statement syntax has these parts:

Part Description
stringvar Required. Name of string variable.
string Required. String expression to be right-aligned within stringvar.

Remarks
If stringvar is longer than string, RSet replaces any leftover characters in stringvar with spaces, back
to its beginning.

Note      RSet can't be used with user-defined types.

Space Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctSpaceC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctSpaceX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctSpaceS"}

Returns a Variant (String) consisting of the specified number of spaces.

Syntax
Space(number)
The required number argument is the number of spaces you want in the string.

Remarks
The Space function is useful for formatting output and clearing data in fixed-length strings.

Str Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctStrC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vafctStrX":1}           
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctStrS"}

Returns a Variant (String) representation of a number.

Syntax
Str(number)
The required number argument is a Long containing any valid numeric expression.

Remarks
When numbers are converted to strings, a leading space is always reserved for the sign of number. If
number is positive, the returned string contains a leading space and the plus sign is implied.

Use the Format function to convert numeric values you want formatted as dates, times, or currency
or in other user-defined formats. Unlike Str, the Format function doesn't include a leading space for
the sign of number.

Note      The Str function recognizes only the period (.) as a valid decimal separator. When different
decimal separators may be used (for example, in international applications), use CStr to convert a
number to a string.

StrComp Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctStrCompC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctStrCompX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vafctStrCompS"}

Returns a Variant (Integer) indicating the result of a string comparison.

Syntax
StrComp(string1, string2[, compare])
The StrComp function syntax has these named arguments:

Part Description
string1 Required. Any valid string expression.
string2 Required. Any valid string expression.
compare Optional. Specifies the type of string comparison. The

compare argument can be omitted, or it can be 0, 1 or 2.
Specify 0 (default) to perform a binary comparison. Specify 1
to perform a textual comparison. For Microsoft Access only,
specify 2 to perform a comparison based on information
contained in your database. If compare is Null, an error
occurs. If compare is omitted, the Option Compare setting
determines the type of comparison.

Return Values
If StrComp returns
string1 is less than
string2

-1

string1 is equal to
string2

 0

string1 is greater
than string2

 1

string1 or string2
is Null

Null

StrConv Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctStrConvC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctStrConvX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctStrConvS"}

Returns a Variant (String) converted as specified.

Syntax
StrConv(string, conversion)
The StrConv function syntax has these named arguments:

Part Description
string Required. String expression to be converted.
conversion Required; Integer. The sum of values specifying the type of

conversion to perform.

Settings
The conversion argument settings are:

Constant Value Description
     

vbUpperCase 1 Converts the string to uppercase characters.
vbLowerCase 2 Converts the string to lowercase characters.
vbProperCase 3 Converts the first letter of every word in string

to uppercase.
vbWide* 4* Converts narrow (single-byte) characters in

string to wide (double-byte) characters.
vbNarrow* 8* Converts wide (double-byte) characters in

string to narrow (single-byte) characters.
vbKatakana** 16** Converts Hiragana characters in string to

Katakana characters.
vbHiragana** 32** Converts Katakana characters in string to

Hiragana characters.
vbUnicode 64 Converts the string to Unicode using the

default code page of the system.
vbFromUnicode 128 Converts the string from Unicode to the default

code page of the system.
* Applies to Far East locales.
** Applies to Japan only.

Note      These constants are specified by Visual Basic for Applications. As a result, they may be used
anywhere in your code in place of the actual values. Most can be combined, for example,
vbUpperCase + vbWide, except when they are mutually exclusive, for example, vbUnicode +
vbFromUnicode. The constants vbWide, vbNarrow, vbKatakana, and vbHiragana cause run-time
errors when used in locales where they do not apply.

The following are valid word separators for proper casing: Null (Chr$(0)), horizontal tab (Chr$(9)),
linefeed (Chr$(10)), vertical tab (Chr$(11)), form feed (Chr$(12)), carriage return (Chr$(13)), space
(SBCS) (Chr$(32)). The actual value for a space varies by country for DBCS.

String Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctStringC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctStringX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctStringS"}

Returns a Variant (String) containing a repeating character string of the length specified.

Syntax
String(number, character)
The String function syntax has these named arguments:

Part Description
number Required; Long. Length of the returned string. If number

contains Null, Null is returned.
character Required; Variant. Character code specifying the character or

string expression whose first character is used to build the
return string. If character contains Null, Null is returned.

Remarks
If you specify a number for character greater than 255, String converts the number to a valid
character code using the formula:

character Mod 256

UCase Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vafctUCaseC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vafctUcaseX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vafctUcaseS"}

Returns a Variant (String) containing the specified string, converted to uppercase.

Syntax
UCase(string)
The required string argument is any valid string expression. If string contains Null, Null is returned.

Remarks
Only lowercase letters are converted to uppercase; all uppercase letters and nonletter characters
remain unchanged.

Keywords by Task
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Category Description
Arrays Creating, defining, and using arrays.
Compiler Directives Controlling compiler behavior.
Control Flow Looping and controlling procedure flow.
Conversion Converting numbers and data types.
Data Types Data types and variant subtypes.
Dates and Times Converting and using date and time expressions.
Directories and Files Controlling the file system and processing files.
Errors Trapping and returning error values.
Financial Performing financial calculations.
Input and Output Receiving input and displaying or printing output.
Math Performing trigonometric and other mathematical

calculations.
Miscellaneous Starting other applications and processing events.
Operators Comparing expressions and other operations.
String Manipulation Manipulating strings and string type data.
Variables and
Constants

Declaring and defining variables and constants.

Arrays Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Verify an array. IsArray
Create an array. Array
Change default
lower limit.

Option Base

Declare and
initialize an array.

Dim, Private, Public, ReDim, Static

Find the limits of an
array.

LBound, UBound

Reinitialize an
array.

Erase, ReDim

Collection Object Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Create a
Collection object.

Collection

Add an object to a
collection.

Add

Remove an object
from a collection.

Remove

Reference an item
in a collection.

Item

Compiler Directive Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Define compiler
constant.

#Const

Compile selected
blocks of code.

#If...Then...#Else

Control Flow Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Branch. GoSub...Return, GoTo, On Error, On...GoSub,

On...GoTo
Exit or pause the
program.

DoEvents, End, Exit, Stop

Loop. Do...Loop, For...Next, For Each...Next,
While...Wend, With

Make decisions. Choose, If...Then...Else, Select Case, Switch
Use procedures. Call, Function, Property Get, Property Let,

Property Set, Sub

Conversion Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
ANSI value to
string.

Chr

String to lowercase
or uppercase.

Format, LCase, UCase

Date to serial
number.

DateSerial, DateValue

Decimal number to
other bases.

Hex, Oct

Number to string. Format, Str
One data type to
another.

CBool, CByte, CCur, CDate, CDbl, CDec, CInt,
CLng, CSng, CStr, CVar, CVErr, Fix, Int

Date to day, month,
weekday, or year.

Day, Month, Weekday, Year

Time to hour,
minute, or second.

Hour, Minute, Second

String to ASCII
value.

Asc

String to number. Val
Time to serial
number.

TimeSerial, TimeValue

Data Types Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Convert between
data types.

CBool, CByte, CCur, CDate, CDbl, CDec, CInt,
CLng, CSng, CStr, CVar, CVErr, Fix, Int

Set intrinsic data
types.

Boolean, Byte, Currency, Date, Double, Integer,
Long, Object, Single, String, Variant (default)

Verify data types. IsArray, IsDate, IsEmpty, IsError, IsMissing,
IsNull, IsNumeric, IsObject

Dates and Times Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Get the current date
or time.

Date, Now, Time

Perform date
calculations.

DateAdd, DateDiff, DatePart

Return a date. DateSerial, DateValue
Return a time. TimeSerial, TimeValue
Set the date or
time.

Date, Time

Time a process. Timer

Directories and Files Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Change directory or
folder.

ChDir

Change the drive. ChDrive
Copy a file. FileCopy
Make directory or
folder.

MkDir

Remove directory
or folder.

RmDir

Rename a file,
directory, or folder.

Name

Return current path. CurDir
Return file
date/time stamp.

FileDateTime

Return file,
directory, label
attributes.

GetAttr

Return file length. FileLen
Return file name or
volume label.

Dir

Set attribute
information for a
file.

SetAttr

Errors Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Generate run-time
errors.

Clear, Error, Raise

Get error
messages.

Error

Provide error
information.

Err

Return Error
variant.

CVErr

Trap errors during
run time.

On Error, Resume

Type verification. IsError

Financial Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Calculate
depreciation.

DDB, SLN, SYD

Calculate future
value.

FV

Calculate interest
rate.

Rate

Calculate internal
rate of return.

IRR, MIRR

Calculate number
of periods.

NPer

Calculate
payments.

IPmt, Pmt, PPmt

Calculate present
value.

NPV, PV

Input and Output Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Access or create a
file.

Open

Close files. Close, Reset
Control output
appearance.

Format, Print, Print #, Spc, Tab, Width #

Copy a file. FileCopy
Get information
about a file.

EOF, FileAttr, FileDateTime, FileLen, FreeFile,
GetAttr, Loc, LOF, Seek

Manage files. Dir, Kill, Lock, Unlock, Name
Read from a file. Get, Input, Input #, Line Input #
Return length of a
file.

FileLen

Set or get file
attributes.

FileAttr, GetAttr, SetAttr

Set read-write
position in a file.

Seek

Write to a file. Print #, Put, Write #

Math Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Derive
trigonometric
functions.

Atn, Cos, Sin, Tan

General
calculations.

Exp, Log, Sqr

Generate random
numbers.

Randomize, Rnd

Get absolute value. Abs
Get the sign of an
expression.

Sgn

Perform numeric
conversions.

Fix, Int

Miscellaneous Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Process pending events. DoEvents
Run other programs. AppActivate, Shell
Send keystrokes to an
application.

SendKeys

Sound a beep from
computer.

Beep

System. Environ
Provide a command-line
string.

Command

Macintosh. MacID, MacScript
Automation. CreateObject, GetObject
Color. QBColor, RGB

Operators Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Arithmetic. ^, – , *,    /, \, Mod, +, &
Comparison. =, <>, <, >, <=, >=, Like, Is
Logical operations. Not, And, Or, Xor, Eqv, Imp

Registry Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Delete program
settings.

DeleteSetting

Read program
settings.

GetSetting, GetAllSettings

Save program
settings.

SaveSetting

String Manipulation Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Compare two
strings.

StrComp

Convert strings. StrConv
Convert to
lowercase or
uppercase.

Format, LCase, UCase

Create string of
repeating character.

Space, String

Find length of a
string.

Len

Format a string. Format
Justify a string. LSet, RSet
Manipulate strings. InStr, Left, LTrim, Mid, Right, RTrim, Trim
Set string
comparison rules.

Option Compare

Work with ASCII
and ANSI values.

Asc, Chr

Variables and Constants Keyword Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaidxkeywordsbytaskC"}

Action Keywords
Assign value. Let
Declare variables or
constants.

Const, Dim, Private, Public, New, Static

Declare module as
private.

Option Private Module

Get information
about a variant.

IsArray, IsDate, IsEmpty, IsError, IsMissing,
IsNull, IsNumeric, IsObject, TypeName, VarType

Refer to current
object.

Me

Require explicit
variable
declarations.

Option Explicit

Set default data
type.

Def type

Trappable Errors
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamsgTrappableErrorsC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamsgTrappableErrorsS"}

Trappable errors can occur while an application is running. Some trappable errors can also occur
during development or compile time. You can test and respond to trappable errors using the On Error
statement and the Err object. Unused error numbers in the range 1 – 1000 are reserved for future use
by Visual Basic.

Code Message
3 Return without GoSub
5 Invalid procedure call
6 Overflow
7 Out of memory
9 Subscript out of range
10 This array is fixed or temporarily locked
11 Division by zero
13 Type mismatch
14 Out of string space
16 Expression too complex
17 Can't perform requested operation
18 User interrupt occurred
20 Resume without error
28 Out of stack space
35 Sub, Function, or Property not defined
47 Too many DLL application clients
48 Error in loading DLL
49 Bad DLL calling convention
51 Internal error
52 Bad file name or number
53 File not found
54 Bad file mode
55 File already open
57 Device I/O error
58 File already exists
59 Bad record length
61 Disk full
62 Input past end of file
63 Bad record number
67 Too many files
68 Device unavailable
70 Permission denied
71 Disk not ready
74 Can't rename with different drive
75 Path/File access error
76 Path not found
91 Object variable or With block variable not set

92 For loop not initialized
93 Invalid pattern string
94 Invalid use of Null
97 Can't call Friend procedure on an object that is not an instance of

the defining class
298 System DLL could not be loaded
320 Can't use character device names in specified file names
321 Invalid file format
322 Can’t create necessary temporary file
325 Invalid format in resource file
327 Data value named not found
328 Illegal parameter; can't write arrays
335 Could not access system registry
336 ActiveX component not correctly registered
337 ActiveX component not found
338 ActiveX component did not run correctly
360 Object already loaded
361 Can't load or unload this object
363 ActiveX control specified not found
364 Object was unloaded
365 Unable to unload within this context
368 The specified file is out of date. This program requires a later

version
371 The specified object can't be used as an owner form for Show
380 Invalid property value
381 Invalid property-array index
382 Property Set can't be executed at run time
383 Property Set can't be used with a read-only property
385 Need property-array index
387 Property Set not permitted
393 Property Get can't be executed at run time
394 Property Get can't be executed on write-only property
400 Form already displayed; can't show modally
402 Code must close topmost modal form first
419 Permission to use object denied
422 Property not found
423 Property or method not found
424 Object required
425 Invalid object use
429 ActiveX component can't create object or return reference to this

object
430 Class doesn't support Automation
432 File name or class name not found during Automation operation
438 Object doesn't support this property or method
440 Automation error
442 Connection to type library or object library for remote process has

been lost
443 Automation object doesn't have a default value
445 Object doesn't support this action
446 Object doesn't support named arguments
447 Object doesn't support current locale setting
448 Named argument not found
449 Argument not optional or invalid property assignment
450 Wrong number of arguments or invalid property assignment
451 Object not a collection
452 Invalid ordinal
453 Specified DLL function not found
454 Code resource not found
455 Code resource lock error
457 This key is already associated with an element of this collection
458 Variable uses a type not supported in Visual Basic
459 This component doesn't support events
460 Invalid Clipboard format
461 Specified format doesn't match format of data
480 Can't create AutoRedraw image
481 Invalid picture
482 Printer error
483 Printer driver does not support specified property
484 Problem getting printer information from the system. Make sure

the printer is set up correctly
485 Invalid picture type
486 Can't print form image to this type of printer
520 Can't empty Clipboard
521 Can't open Clipboard
735 Can't save file to TEMP directory
744 Search text not found
746 Replacements too long
31001 Out of memory
31004 No object
31018 Class is not set
31027 Unable to activate object
31032 Unable to create embedded object
31036 Error saving to file
31037 Error loading from file

Character Set (128 – 255)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscANSITable2C"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscANSITable2S"}

 128 · 160 [space] 192 À 224 à
 129 · 161 ¡ 193 Á 225 á
 130 · 162 ¢ 194 Â 226 â
 131 · 163 £ 195 Ã 227 ã
 132 · 164 ¤ 196 Ä 228 ä
 133 · 165 ¥ 197 Å 229 å
 134 · 166 ¦ 198 Æ 230 æ
 135 · 167 § 199 Ç 231 ç
 136 · 168 ¨ 200 È 232 è
 137 · 169 © 201 É 233 é
 138 · 170 ª 202 Ê 234 ê
 139 · 171 « 203 Ë 235 ë
 140 · 172 ¬ 204 Ì 236 ì
 141 · 173 205 Í 237 í
 142 · 174 ® 206 Î 238 î
 143 · 175 ¯ 207 Ï 239 ï
 144 · 176 ° 208 Ð 240 ð
 145 ‘ 177 ± 209 Ñ 241 ñ
 146 ’ 178 ² 210 Ò 242 ò
 147 · 179 ³ 211 Ó 243 ó
 148 · 180 ´ 212 Ô 244 ô
 149 · 181 µ 213 Õ 245 õ
 150 · 182 ¶ 214 Ö 246 ö
 151 · 183 · 215 × 247 ÷
 152 · 184 ¸ 216 Ø 248 ø
 153 · 185 ¹ 217 Ù 249 ù
 154 · 186 º 218 Ú 250 ú
 155 · 187 » 219 Û 251 û
 156 · 188 ¼ 220 Ü 252 ü
 157 · 189 ½ 221 Ý 253 ý
 158 · 190 ¾ 222 Þ 254 þ
 159 · 191 ¿ 223 ß 255 ÿ

· These characters aren't supported by Microsoft Windows.

AddressOf Operator (VB 5 only)

A unary operator that causes the address of the procedure it precedes to be passed to an API
procedure that expects a function pointer at that position in the argument list

Syntax
AddressOf procedurename
The required procedurename specifies the procedure whose address is to be passed. It must
represent a procedure in a standard module module in the project in which the call is made.

Remarks
Normally when a procedure name appears in an argument list, the procedure is evaluated, and the
address of the procedure’s return value is passed. AddressOf permits the address of the procedure,
rather than its return value, to be passed to a Windows API function in a dynamic-link library (DLL).
The API function can then use the address to call the Basic procedure, a process known as a
callback.The AddressOf operator appears only in the call to the API procedure. (However, in the
Declare statement that describes the API function to which the pointer is to be passed, the procedure
address argument must be declared As Any).

Although you can use AddressOf to pass procedure pointers among Basic procedures, you cannot
call a function through such a pointer from within Basic. This means, for example, that a class written
in Basic cannot make a callback to its controller using such a pointer. When using AddressOf to pass
a procedure pointer among procedures within Basic, the parameter of the called procedure must be
typed As Long.

Warning
Using AddressOf may cause unpredictable results if you do not completely understand the concept
of function callbacks. You need to understand not only how the Basic portion of the callback works,
but also the code of the DLL into which you are passing your function address. Debugging such
interactions is very difficult since the program runs in the same process as the development
environment. In some cases, systematic debugging may not be possible

Assert Method (VB5 only)

Conditionally suspends execution at the line on which the method appears.

Syntax
object.Assert booleanexpression
The Assert method syntax has the following object qualifier and argument:

Part Description
object Required. Always the Debug object.
booleanexpression Required. An expression that evaluates to either

True or False.

Remarks
Assert invocations work only within the development environment. When the module is compiled into
an executable, the method calls on the Debug object are omitted.

All of booleanexpression is always evaluated. For example, even if the first part of an And expression
evaluates False, the whole expression is evaluated.

friend keyword

Modifies the definition of a procedure in a class module to make the procedure callable from modules
that are outside the class, but are part of the project within which the class is defined.

Syntax
[Private | Friend | Public] [Static] [Sub | Function | Property] procedurename
The required procedurename is the name of the procedure to be made visible throughout the project,
but not to controllers of the class.

Remarks
Public procedures in a class can be called from anywhere, even by controllers of instances of the
class. Declaring a procedure Private prevents controllers of the object from calling them, but also
prevents them from being called from within the project in which the class itself is defined. Friend
makes the procedure visible throughout the project, but not to a controller of an instance of the object.
Friend can appear only in class modules, and can only modify procedure names, not variables or
types. Procedures in a class can access the Friend procedures of all other classes in a project.
Friend procedures do not appear in the type library of their class.    A Friend procedure cannot be late
bound.

RaiseEvent Statement (VB5 only)

Fires an event declared at module level within a class, form, or document.

Syntax
RaiseEvent eventname [(argumentlist)]
The required eventname is the name of an event declared within the module and follows Basic
variable-naming conventions.

The RaiseEvent statement syntax has these parts:

Part Description
eventname Required. Name of the event to fire.
argumentlist Optional. Comma-delimited list of variables, arrays, or

expressions    The argumentlist must be enclosed by
parentheses, but if there are no arguments, the
parentheses must be omitted.

Remarks
If the event has not been declared within the module in which it is raised, an error occurs. The
following fragment illustrates an event declaration and a procedure in which the event is raised.
‘ Declare an event at module level of a class module
Event LogonCompleted (UserName as String)

Sub
‘ Raise the event.
RaiseEvent LogonCompleted (“AntoineJan”)

End Sub

If the event has no arguments, including empty parentheses in the RaiseEvent invocation of the
event causes an error. You cannot use RaiseEvent to fire events that are not explicitly declared in the
module.    For example, if a form has a click event, you cannot fire its click event using RaiseEvent. If
you declare a click event in the form module, it shadows the form’s own click event. You can still
invoke the form’s click event using normal syntax for calling the event, but not using the RaiseEvent
statement.

Event firing is done in the order that the connections were established. Since events can have ByRef
parameters, a process that connected late may receive parameters that have been changed by an
earlier event handler.

AddressOf Operator Example

The following example creates a form with a list box containing an alphabetically sorted list of the
fonts in your system.

To run this example, you must first create a form and put a list box on it.

The code for the form is as follows:
Option Explicit

Private Sub Form_Load()
 Module1.FillListWithFonts List1
End Sub

Place the following code in a module.    In this code, the third argument in the definition of the
EnumFontFamilies function is a Long that represents a procedure. In other words, that argument
must contain the address of the procedure, rather than the value that the procedure returns.
Therefore, in the call to EnumFontFamilies, the third argument requires the AddressOf operator to
return the address of the EnumFontFamProc procedure, which <THIS LOOKS INCOMPLETE>….
'Font enumeration types
Public Const LF_FACESIZE = 32
Public Const LF_FULLFACESIZE = 64

Type LOGFONT
 lfHeight As Long
 lfWidth As Long
 lfEscapement As Long
 lfOrientation As Long
 lfWeight As Long
 lfItalic As Byte
 lfUnderline As Byte
 lfStrikeOut As Byte
 lfCharSet As Byte
 lfOutPrecision As Byte
 lfClipPrecision As Byte
 lfQuality As Byte
 lfPitchAndFamily As Byte
 lfFaceName(LF_FACESIZE) As Byte
End Type

Type NEWTEXTMETRIC
 tmHeight As Long
 tmAscent As Long
 tmDescent As Long
 tmInternalLeading As Long
 tmExternalLeading As Long
 tmAveCharWidth As Long
 tmMaxCharWidth As Long
 tmWeight As Long
 tmOverhang As Long
 tmDigitizedAspectX As Long
 tmDigitizedAspectY As Long
 tmFirstChar As Byte
 tmLastChar As Byte
 tmDefaultChar As Byte
 tmBreakChar As Byte

 tmItalic As Byte
 tmUnderlined As Byte
 tmStruckOut As Byte
 tmPitchAndFamily As Byte
 tmCharSet As Byte
 ntmFlags As Long
 ntmSizeEM As Long
 ntmCellHeight As Long
 ntmAveWidth As Long
End Type

' ntmFlags field flags
Public Const NTM_REGULAR = &H40&
Public Const NTM_BOLD = &H20&
Public Const NTM_ITALIC = &H1&

' tmPitchAndFamily flags
Public Const TMPF_FIXED_PITCH = &H1
Public Const TMPF_VECTOR = &H2
Public Const TMPF_DEVICE = &H8
Public Const TMPF_TRUETYPE = &H4

Public Const ELF_VERSION = 0
Public Const ELF_CULTURE_LATIN = 0

' EnumFonts Masks
Public Const RASTER_FONTTYPE = &H1
Public Const DEVICE_FONTTYPE = &H2
Public Const TRUETYPE_FONTTYPE = &H4

Declare Function EnumFontFamilies Lib "gdi32" Alias _
 "EnumFontFamiliesA" _
 (ByVal hDC As Long, ByVal lpszFamily As String, _
 ByVal lpEnumFontFamProc As Long, LParam As Any) As Long

Declare Function GetDC Lib "user32" (ByVal hWnd As Long) As Long
Declare Function ReleaseDC Lib "user32" (ByVal hWnd As Long, _

 ByVal hDC As Long) As Long

Function EnumFontFamProc(lpNLF As LOGFONT, lpNTM As NEWTEXTMETRIC, _
ByVal FontType As Long, LParam As ListBox) As Long
Dim FaceName As String
Dim FullName As String
 FaceName = StrConv(lpNLF.lfFaceName, vbUnicode)
 LParam.AddItem Left$(FaceName, InStr(FaceName, vbNullChar) - 1)
 EnumFontFamProc = 1
End Function

Sub FillListWithFonts(LB As ListBox)
Dim hDC As Long
 LB.Clear
 hDC = GetDC(LB.hWnd)
 EnumFontFamilies hDC, vbNullString, AddressOf EnumFontFamProc, LB
 ReleaseDC LB.hWnd, hDC
End Sub

Assert Method Example

The following example shows how to use the Assert method. The example requires a form with two
button controls on it. The buttons still have their default names Command1 and Command2.

When the example runs, clicking the Command1 button toggles the text on the button between 0 and
1. Clicking Command2 either does nothing or causes an assertion, depending upon the value
displayed on Command1. The assertion stops execution, with the last statement executed, namely
the Debug.Assert line, highlighted.
Option Explicit
Private blnAssert As Boolean
Private intNumber As Integer

Private Sub Command1_Click()
 blnAssert = Not blnAssert
 intNumber = IIf(intNumber <> 0, 0, 1)
 Command1.Caption = intNumber
End Sub

Private Sub Command2_Click()
 Debug.Assert blnAssert
End Sub

Private Sub Form_Load()
 Command1.Caption = intNumber
 Command2.Caption = "Assert Tester"
End Sub

Enum Statement Example

The following example shows how you can use the Enum statement to define a collection of named
constants. In this case, the constants are colors, such as the ones you might find yourself choosing
each time you design data entry forms for a database.
Public Enum InterfaceColors

icMistyRose = &HE1E4FF&
icSlateGray = &H908070&
icDodgerBlue = &HFF90IE&
icDeepSkyBlue = &HFFBF00&
icSpringGreen = &H7FFF00&
icForestGreen = &H228B22&
icGoldenrod = &H20A5DA&
icFirebrick = &H2222B2&

End Enum

Event Statement Example

The following example uses events to count off seconds during a demonstration of the time taken to
run the fastest 100 meter race. The code illustrates all of the event-related methods, properties, and
statements, including the Event statement.

The supporting cast consists of a form (Form1) with a button (Command1), a label (Label1), and two
text boxes (Text1 and Text2). When you click the button, the first text box says “From Now” and the
second starts to count seconds. When the full time (9.84 seconds) has elapsed, the first text box
displays “Until Now” and the second displays “9.84.”

The code for Form1 specifies the initial and terminal states of the form. It also contains the code to be
executed when events are raised.
Option Explicit

Private WithEvents mText As TimerState

Private Sub Command1_Click()
Text1.Text = "From Now"
 Text1.Refresh
 Text2.Text = "0"
 Text2.Refresh
Call mText.TimerTask(9.84)
End Sub

Private Sub Form_Load()
 Command1.Caption = "Click to Start Timer"
 Text1.Text = ""
 Text2.Text = ""
 Label1.Caption = "The fastest 100 meters ever run took this long:"
 Set mText = New TimerState
 End Sub

Private Sub mText_ChangeText()
 Text1.Text = "Until Now"
 Text2.Text = "9.84"
End Sub

Private Sub mText_UpdateTime(ByVal dblJump As Double)
 Text2.Text = Str(Format(dblJump, "0"))
 DoEvents
End Sub

The remaining code is in a separate module. Included among the commands in this module are the
Event statements, which declare the procedures that are to be initiated when events are raised.
Option Explicit
Public Event UpdateTime(ByVal dblJump As Double)
Public Event ChangeText()

Public Sub TimerTask(ByVal Duration As Double)
 Dim dblStart As Double
 Dim dblSecond As Double
 Dim dblSoFar As Double
 dblStart = Timer
 dblSoFar = dblStart

 Do While Timer < dblStart + Duration
 If Timer - dblSoFar >= 1 Then
 dblSoFar = dblSoFar + 1
 RaiseEvent UpdateTime(Timer - dblStart)
 End If
 Loop

 RaiseEvent ChangeText

End Sub

Implements Statement Example

The following example show how to use the Implements statement to make a set of declarations
available to multiple classes. By sharing the declarations through the Implements statement, neither
class has to make any of the declarations itself.

To round out the example and further illustrate the sharing that is available to the classes, assume
that there are two forms. One form, the Selector form, has two buttons, one labeled Customer Data
and the other labeled Supplier Data. The other form, the Data Entry form, has two text fields, one
labeled Name and the other labeled Address.

A user, who wants to enter name and address information for either a customer or a supplier, clicks
either the Customer or Supplier button on the Selector form and then enters the name and address of
the customer or supplier using the Data Entry form.

The code for the shared declarations resides in a class called PersonalData, as follows:
Public Name As String
Public Address As String

The code supporting the customer data and its entry is in a class module called Customer, as follows:
Implements PersonalData
Private Property Get PersonalData_Address() As String
PersonalData_Address = "CustomerAddress"
End Property

Private Property Let PersonalData_Address(ByVal RHS As String)
'
End Property

Private Property Let PersonalData_Name(ByVal RHS As String)
'
End Property

Private Property Get PersonalData_Name() As String
PersonalData_Name = "CustomerName"
End Property

The code supporting the supplier data and its entry is in a class module called Supplier, as follows:
Implements PersonalData

Private Property Get PersonalData_Address() As String
PersonalData_Address = "SupplierAddress"
End Property

Private Property Let PersonalData_Address(ByVal RHS As String)
'
End Property

Private Property Let PersonalData_Name(ByVal RHS As String)
'
End Property

Private Property Get PersonalData_Name() As String
PersonalData_Name = "SupplierName"
End Property

The code supporting the Selector form:
Private cust As New Customer
Private sup As New Supplier

Private Sub Command1_Click()
Dim frm2 As New Form2
 Set frm2.PD = cust
 frm2.Show 1
End Sub

Private Sub Command2_Click()
Dim frm2 As New Form2
 Set frm2.PD = sup
 frm2.Show 1
End Sub

The code for the Data Entry form is as follows:
Private m_pd As PersonalData
Private Sub Form_Load()
 With m_pd
 Text1 = .Name
 Text2 = .Address
 End With
End Sub
Public Property Set PD(Data As PersonalData)
 Set m_pd = Data
End Property

Friend Keyword Example

The following code, when placed in a code module, makes the value of the dblBalance variable
available to any user, but only code within the module can set the value of that variable.
Private dblBalance As Double

Property Public Get Balance() As Double
 Balance = dblBalance
End Property

Property Friend Set Balance(dblNewBalance As Double)
 dblBalance = dblNewBalance
End Property

RaiseEvent Statment Example

The following example uses events to count off seconds during a demonstration of the time taken to
run the fastest 100 meter race. The code illustrates all of the event-related methods, properties, and
statements, including the RaiseEvent statement.

The supporting cast consists of a form (Form1) with a button (Command1), a label (Label1), and two
text boxes (Text1 and Text2). When you click the button, the first text box says “From Now” and the
second begins counting seconds. When the full time (9.84 seconds) has elapsed, the first text box
displays “Until Now” and the second displays “9.84.”

The code for Form1 specifies the initial and terminal states of the form. It also contains the code to be
executed when events are raised.
Option Explicit

Private WithEvents mText As TimerState

Private Sub Command1_Click()
 Text1.Text = "From Now"
 Text1.Refresh
 Text2.Text = "0"
 Text2.Refresh
 Call mText.TimerTask(9.84)
End Sub

Private Sub Form_Load()
 Command1.Caption = "Click to Start Timer"
 Text1.Text = ""
 Text2.Text = ""
 Label1.Caption = "The fastest 100 meters ever run took this long:"
 Set mText = New TimerState
 End Sub

Private Sub mText_ChangeText()
 Text1.Text = "Until Now"
 Text2.Text = "9.84"
End Sub

Private Sub mText_UpdateTime(ByVal dblJump As Double)
 Text2.Text = Str(Format(dblJump, "0"))
 DoEvents
End Sub

The remaining code is in a separate module. Included among the commands in this module are the
Raise Event statements.
Option Explicit
Public Event UpdateTime(ByVal dblJump As Double)
Public Event ChangeText()

Public Sub TimerTask(ByVal Duration As Double)
 Dim dblStart As Double
 Dim dblSecond As Double
 Dim dblSoFar As Double
 dblStart = Timer
 dblSoFar = dblStart

 Do While Timer < dblStart + Duration
 If Timer - dblSoFar >= 1 Then
 dblSoFar = dblSoFar + 1
 RaiseEvent UpdateTime(Timer - dblStart)
 End If
 Loop

 RaiseEvent ChangeText

End Sub

