

OLERequestPendingMsgText Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLERequestPendingMsgTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLERequestPendingMsgTextX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLERequestPendingMsgTextA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLERequestPendingMsgTextS"}

Returns or sets the text of the alternate "busy" message displayed when mouse or keyboard input is
received while an automation request is pending. Not available at design time.

Syntax
object.OLERequestPendingMsgText [= string]
The OLERequestPendingMsgText property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression that evaluates to the message

text that will be displayed in the alternate message
box for the ActiveX request pending condition.

Remarks
Visual Basic displays a default Server Busy dialog box when mouse or keyboard input is received
while an automation request is pending. This dialog box includes text and a Switch To button which
are intended for use with visible ActiveX components such as Microsoft Excel. There are situations in
which the default dialog box may not meet your needs:

· Your program may call a method of an object provided by an ActiveX component that has no user
interface. ActiveX components created using Visual Basic Professional edition, for example, may
run in the background without any visible forms.

· The ActiveX component you call may have been created using the Remote Automation features of
Visual Basic, Enterprise edition, and may be running on another computer located at some
distance from the user.

· If your program has loaded a Microsoft Excel workbook using the GetObject function, the
workbook will not be visible when the user switches to Microsoft Excel. In fact, Microsoft Excel itself
may not be visible, in which case the Switch To button does nothing.

In these situations, the default text and Switch To button are inappropriate and may confuse the user
of your program.

The OLERequestPendingMsgText property allows you to replace the default Server Busy dialog box
with an alternate message box. Setting OLERequestPendingMsgText to your own message string
causes the default Server Busy dialog box to be replaced by a simple message box containing your
message text and an OK button.

Note Once an automation request has been accepted by an ActiveX component, there is no way to
cancel it.

If OLERequestPendingMsgText is equal to an empty string (""), the default Server Busy dialog is
displayed.

Important When you know that an automation request may take more than a few seconds, and
you are using a hidden or remote ActiveX component, you should set an alternate message. For
remote ActiveX components, the alternate message is recommended for all requests. Network traffic
may occasionally cause even a very short ActiveX request to take several seconds.

OLERequestPendingMsgTitle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLERequestPendingMsgTitleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLERequestPendingMsgTitleX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLERequestPendingMsgTitleA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLERequestPendingMsgTitleS"}

Returns or sets the caption of the alternate "busy" message displayed when mouse or keyboard input
is received while an automation request is pending. Not available at design time.

Syntax
object.OLERequestPendingMsgTitle [= string]
The OLERequestPendingMsgTitle property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression that evaluates to the caption of

the alternate message box for the ActiveX request
pending condition.

Remarks
If the OLERequestPendingMsgText property has been set, the value of the
OLERequestPendingMsgTitle property is used as the caption of the alternate "busy" message box.
The default value of the OLERequestPendingMsgTitle property is the current value of the Title
property of the App object. This is the recommended setting.

If the OLERequestPendingMsgText property is set to an empty string (""), the
OLERequestPendingMsgTitle property is ignored.

OLERequestPendingTimeout Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLERequestPendingTimeoutC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLERequestPendingTimeoutX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLERequestPendingTimeoutA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLERequestPendingTimeoutS"}

Returns or sets the number of milliseconds that must elapse before a "busy" message can be
triggered by mouse or keyboard input received while an automation request is pending. Not available
at design time.

Syntax
object.OLERequestPendingTimeout [= milliseconds]
The OLERequestPendingTimeout property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
milliseconds A Long integer representing the number of

milliseconds that must elapse before a busy
message can be triggered.

Remarks
The default value of this property is 5000 milliseconds (five seconds).

Important This time-out value also affects documents you link or embed using the OLE Container
control or the Toolbox. If you are using linked or embedded documents and you change this property
before an automation request, it is a good idea to reset the value afterward.

OLEServerBusyMsgText Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLEServerBusyMsgTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEServerBusyMsgTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOLEServerBusyMsgTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEServerBusyMsgTextS"}

Returns or sets the text of the alternate "busy" message which is displayed if an ActiveX component
rejects an automation request. Not available at design time.

Syntax
object.OLEServerBusyMsgText [= string]
The OLEServerBusyMsgText property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression that evaluates to the message

text that will be displayed in the alternate message
box for the ActiveX component busy condition.

Remarks
Visual Basic continues to retry an automation request for the number of milliseconds specified by the
OLEServerBusyTimeout property. If the ActiveX component has not accepted the request in that
interval, Visual Basic displays a default Server Busy dialog box. This dialog box includes text and a
Switch To button which are intended for use with visible ActiveX components such as Microsoft Excel.
There are situations in which the default dialog box may not meet your needs:

· Your program may call a method of an object provided by an ActiveX component that has no user
interface. ActiveX components created using Visual Basic Professional edition, for example, may
run in the background without any visible forms.

· The ActiveX component you call may have been created using the Remote automation features of
Visual Basic, Enterprise edition, and may be running on another computer located at some
distance from the user.

· If your program has loaded a Microsoft Excel workbook using the GetObject function, the
workbook will not be visible when the user switches to Microsoft Excel. In fact, Microsoft Excel itself
may not be visible, in which case the Switch To button does nothing.

In these situations, the default text and Switch To button are inappropriate and may confuse the user
of your program.

The OLEServerBusyMsgText property allows you to replace the default Server Busy dialog box with
an alternate message box. Setting OLEServerBusyMsgText to your own message string causes the
default Server Busy dialog box to be replaced by a simple message box containing your message
text, an OK button, and a Cancel button.

If OLERequestPendingMsgText is equal to an empty string (""), the default Server Busy dialog is
displayed.

If the user presses the Cancel button of the default Server Busy dialog box or the alternate message
box, the ActiveX error -2147418111 (&H80010001) is raised in the procedure that made the
automation request.

Important When you know that an automation request may take more than a few seconds and you
are using a hidden or remote ActiveX component, you should set an alternate message. For remote
ActiveX components, the alternate message is recommended for all requests. Network traffic may
occasionally cause even a very short ActiveX request to take several seconds.

OLEServerBusyMsgTitle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLEServerBusyMsgTitleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEServerBusyMsgTitleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOLEServerBusyMsgTitleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEServerBusyMsgTitleS"}

Returns or sets the caption of the alternate "busy" message which is displayed when an ActiveX
component rejects an automation request. Not available at design time.

Syntax
object.OLEServerBusyMsgTitle [= string]
The OLEServerBusyMsgTitle property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression that evaluates to the caption of

the alternate message box for the ActiveX
component busy condition.

Remarks
If the OLEServerBusyMsgText property has been set, the value of the OLEServerBusyMsgTitle
property is used as the caption of the alternate busy message. The default value of the
OLEServerBusyMsgTitle property is the current value of the Title property of the App object. This is
the recommended setting.

If the OLEServerBusyMsgText property is set to an empty string (""), the OLEServerBusyMsgTitle
property is ignored.

OLEServerBusyRaiseError Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLEServerBusyRaiseErrorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEServerBusyRaiseErrorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOLEServerBusyRaiseErrorA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEServerBusyRaiseErrorS"}

Determines whether a rejected automation request raises an error, instead of displaying a "busy"
message. Not available at design time.

Syntax
object.OLEServerBusyRaiseError [= boolean]
The OLEServerBusyRaiseError property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies whether an error

is to be raised, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) An error is raised when the number of

milliseconds specified by the
OLEServerBusyTimeout property have elapsed.

False Depending on the setting of the
OLEServerBusyMsgText property, either the default
Server Busy dialog box or an alternate busy
message will be displayed.

Remarks
Raising an error when an ActiveX component rejects an automation request returns control to your
program, which allows you to provide your own custom dialog box in place of either the default Server
Busy dialog box or the alternate busy message.

The automation error that will be raised is -2147418111 (&H80010001).

OLEServerBusyTimeout Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLEServerBusyTimeoutC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEServerBusyTimeoutX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOLEServerBusyTimeoutA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEServerBusyTimeoutS"}

Returns or sets the number of milliseconds during which an automation request will continue to be
retried, before a "server busy" message is displayed. Not available at design time.

Syntax
object.OLEServerBusyTimeout [= milliseconds]
The OLEServerBusyTimeout property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
milliseconds A Long integer representing the number of

milliseconds during which an automation request will
be retried.

Remarks
The default value of this property is 10000 milliseconds (ten seconds).

Important This time-out value also affects documents you link or embed using the OLE Container
control or the Toolbox. If you are using linked or embedded documents and you change this property
before an automation request, it is a good idea to reset the value afterward.

Copyright © 1991-1995 Microsoft Corp. All rights reserved.

Microsoft, MS, MS-DOS, Windows and the Windows logo are either registered trademarks
or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective
owners.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way
intended to represent any real individual, company, product, or event, unless otherwise
noted. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or information storage
retrieval systems, for any purpose other than the purchaser's personal use, without the
express written permission of Microsoft Corporation. The software and/or databases
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance with
the terms of the agreement. It is against the law to copy the software except as specifically
allowed in the license or nondisclosure agreement.

{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Documents the SetupWizard application. For information
about the Setup Toolkit, see the Visual Basic Help file.

Documents Visual Basic for Windows.

Documents the Data Access application.

Documents the Data Manager application.

Tutorials for learning to use Visual Basic for Windows.

Documents Microsoft Support Services.

Lists the applications written in Visual Basic that demonstrate
techniques discussed in the printed documentation.

Documents the custom controls provided with the
Professional Edition.

Documents the Crystal Reports application.

Documents the segmented hypergraphic editor for creating
hotspots within graphics for use in authoring Help files.

Documents the installation tools for ODBC.

Documents the ODBC driver for SQL Server databases.

Documents the VisData sample application.

Documents Windows functions as used in the C programming language.

Documents the Code Profiler add-in.

Documents Remote Automation, the Component Manager,
Remote Data Objects (RDO), and the RemoteData control
provided with the Enterprise Edition.

Documents the SourceSafe add-in for administrators.

Documents the SourceSafe add-in for users.

Text Files
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Microsoft Visual Basic 4.0 includes additional information in the following files:

Text File Description
APILOD.TXT Describes how to use the API Text Viewer.
LABELS.TXT Contains information about mailing labels.
PACKING.LST Lists all files on the distribution disks provided with

Visual Basic.
VB4DLL.TXT Contains additional information about developing

dynamic link libraries (DLLs) to use with Visual
Basic.

WIN31API.TXT Contains procedure, constant, and type declarations
for 16-bit versions of Windows API functions.

WIN32API.TXT Contains symbolic constants for 32-bit versions of
Windows API functions.

WINMMSYS.TXT Contains procedure, constant, and type declarations
for Windows 3.1 multimedia API functions.

EXEName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproEXENameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproEXENameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproEXENameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproEXENameS"}

Returns the root name of the executable file (without the extension) that is currently running. If
running in the development environment, returns the name of the project.

Syntax
object.EXEName
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Glossary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbidxGlossaryS"}

Glossary

See Also

A
access key

action query

action QueryDef

active window

add-in

aggregate function

alias

ANSI Character Set

append query

application

argument

array

ASCII Character Set

assignment statement

asterisk

attached table

automatic formatting

B
base table

binary format

bit

bit-wise comparison

bitmap

bitmask

bookmark

Boolean

Boolean expression

bound control

break mode

breakpoint

by reference

by value

Byte data type

C
Calls button

Cancel button

Cartesian product

cascade

cascade delete

cascade update

cascading event

case-sensitive

character code

check box

class

class module

Clipboard

code module

collection

collection syntax

column

command line

comment

commit

comparison operator

compile error

compile time

compound document file

conditional compiler constant

connect string

consistent

constant

container

control

control array

Control Panel

Control-menu box

Control-menu commands

controlling application

copy buffer

counter

counter field

criteria

cross hair

crosstab query

Currency data type

current database

current index

current record

current transaction

custom control

D
data access object

Data control

data page

data source

data type (Data Access)

data type

data type ranges

data-definition query

database

database administration

database engine

database management system (DBMS)

Database object

database objects

date expression

date literal

date separators

dates and times

DDL (Data Definition Language)

declaration

default color box

default workspace

delete query

design time

destination

device context

dialog box

domain

domain aggregate function

Double data type

drag-and-drop operation

dynamic data exchange (DDE)

dynamic-link library (DLL)

dynaset

Dynaset object

E
EB data type

editing key

embedded object

Empty

equi-join

error number

error trapping

event

event procedure

exclusive

executable file

expression (Data Access)

expression

external database

external table

F
field

field data types

field properties

file number

filter

flag

focus

foreign key

foreign table

form

form module

forward scroll

forward-only scrolling snapshot

FROM clause

function key

Function procedure

G
general procedure

graphics method

group

H
handle

host application

I
icon

identifier

Immediate pane

in-place activation

inconsistent

index (Data Access)

index

initialization file

inner join

insertable object

insertion point

installable ISAM

instance

Integer data type

internal area

intrinsic constant

J
join

K
keyword

L
left join

left outer join

line label

line number

line-continuation character

linked object

list box

locale

locked

logic error

Long Binary

Long data type

M
make table query

many-only table

master copy

Maximize button

MDI child

MDI form

member

Memo data type

Memo object

memory object

message

metafile

method

Microsoft Jet database engine

Minimize button

modal

modeless

module

module level

module variable

multiuser database

N
named argument

normalize

null (Data Access)

Null

null field

Null propagation

numeric expression

numeric type

O
object

OLE server

Object box

Object Browser

object data type

object expression

object library

object type

object variable

ODBC (Open Database Connectivity)

ODBC data source

ODBC driver

OLE

OLE Automation

OLE Automation controller

OLE Automation object

OLE custom control

OLE Object data type

OLE server

one-to-many relationship

one-to-one relationship

optimistic

option button

outer join

P
page

parameter (Data Access)

parameter

parameter query

parent form

parse

pass-through query

Paste Link command

path

pen

permission

persistent graphic

persistent object

personal identifier (PID)

pessimistic

pi

pixel

point

poke

pop-up menu

position indicator

primary key

primary table

print zone

procedure

Procedure box

procedure call

procedure level

procedure template

project

project file

Project window

Properties button

Properties window

property

Property list

Property procedure

Q
query

query parameter data types

QueryDef object

R
read-only

read-only file

record

recordset

recordset population

recursion

referential integrity

registry

requery

reserved word

resource file

right join

right outer join

row

run time

run-time error

S
SCODE

scope

secure workgroup

security

seed

select query

self-join

separator bar

server

session

shadowing

shortcut key

Single data type

size indicator

snapshot

Snapshot object

sort order

source

split bar

SQL database

SQL statement/string

SQL-specific query

stack

standard control

standard deviation

standard module

standard naming conventions

startup form

statement

Static

string comparison

string constant

String data type

string expression

string literal

string type

Structured Query Language (SQL)

Sub procedure

submenu

syntax

syntax checking

syntax error

system modal

system object

T
tab order

table

Table object

TableDef object

TEMP

temporary disk

Text data type

time expression

title bar

transaction

twip

two's complement

type library

type-declaration character

U
Unicode

union query

universal date format

update

update query

user account

user-defined type

user-interface negotiation

V
validation

validation properties

validation rule

variable

Variant data type

variant expression

VarType

verb

visual editing

W
watch expression

Watch pane

WHERE clause

wildcard characters

Windows API

Windows OpenFile function

workgroup

workgroup administrator

working directory

workspace

Y
Yes/No data type

Z
z-order

zero-length string

See Also
Visual Basic Help

Trappable Errors
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"daidxRealDataAccessErrors;vamsgTrappableErrors;vbidxTrappableErrorsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"idxRealMsgTrapX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"idxRealMsgTrapS"}

Trappable errors can occur while an application is running, either within the Visual Basic environment
or as a stand-alone executable. Some of these can also occur during design time or compile time.
You can test and respond to trappable errors using the On Error statement and the Err object's
Number property. Unused error numbers in the range 1 to 1000 are reserved for future use by Visual
Basic.

Note The description "Application-defined or object-defined error" occurs when an error is
generated using the Err object's Raise method or the Error statement, but the number does not
correspond to an error defined by Visual Basic for applications. Such errors may be defined by the
host application (for example, Microsoft Excel or Visual Basic), but if you want to generate them from
code, you must use the Raise method, and fill in all relevant arguments.

Remember, while developing in Visual Basic you can get information from Help on a message by
pressing F1.

Miscellaneous Messages
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxMiscellaneousMessagesC;vbproBooksOnlineJumpTopic"}

Trappable errors can occur while an application is running. Some of these can also occur during
development or compile time. You can test and respond to trappable errors using the On Error
statement and the Err object. Unused error numbers in the range 1 to 1000 are reserved for future
use by Visual Basic.

Code Message
260 No timer available
282 No foreign application responded to a DDE initiate
285 Foreign application won't perform DDE method or operation
286 Timeout while waiting for DDE response
287 User pressed Escape key during DDE operation
288 Destination is busy
290 Data in wrong format
293 DDE Method invoked with no channel open
294 Invalid DDE Link format
295 Message queue filled; DDE message lost
296 PasteLink already performed on this control
297 Can't set LinkMode; invalid LinkTopic
298 System DLL 'dll' could not be loaded
320 Can't use character device names in file names: 'item'
321 Invalid file format
325 'Item' is not a valid resource file
326 Resource with identifier 'item' not found
327 Data value named 'item' not found
328 Illegal parameter. Can't write arrays
335 Could not access system registry
336 ActiveX component not correctly registered
337 Object server not found
338 Object server did not correctly run
339 Object server 'item' not correctly registered or not found (Error

339)
340 Control array element 'item' doesn't exist
341 Invalid control array index
342 Not enough room to allocate control array 'item'
343 Object not an array
344 Must specify index for object array
345 Reached limit: cannot create any more controls on this form
360 Object already loaded
361 Can't load or unload this object
362 Can't unload controls created at design time
363 ActiveX control 'item' not found
364 Object was unloaded
365 Unable to unload within this context
366 No MDI form available to load

367 Can't load (or register) ActiveX control: 'item'
368 The file 'item' is out of date. This program requires a newer

version
369 Operation not valid in a DLL
370 The ActiveX Designer's Type Information does not match what

was saved. Unable to Load
371 The specified object can't be used as an owner form for Show()
378 'item' cannot be set while loading
379 You can't put a Default or Cancel button on a Property Page
380 Invalid property value
381 Invalid property array index
382 'Item' property cannot be set at run time
383 'Item' property is read-only
384 A form can't be moved or sized while minimized or maximized
385 Must specify index when using property array
387 'Item' property can't be set on this control
388 Can't set Visible property from a parent menu
389 Invalid key
393 'Item' property cannot be read at run time
394 'Item' property is write-only
395 Cannot use separator bar as menu name for this control
396 'Item' property cannot be set within a page
397 Can't load, unload, or set Visible property for top level menus

while they are merged
398 Client Site not available
399 You can't put a Default or Cancel button on a User Control unless

its DefaultCancel property is set
400 Form already displayed; can't show modally
401 Can't show non-modal form when modal form is displayed
402 Must close or hide topmost modal form first
403 MDI forms cannot be shown modally
404 MDI child forms cannot be shown modally
405 Unable to show modal form within this context
406 Non-modal forms cannot be displayed in this host application

from an ActiveX DLL
419 Permission to use object denied
423 Control 'item' not found
424 Form not found
425 Invalid object use
426 Only one MDI Form allowed
427 Invalid object type; Menu control required
428 Popup menu must have at least one submenu
429 License information for this component not found. You do not

have an appropriate license to use this functionality in the design
environment

444 Method not applicable in this context
460 Invalid Clipboard format
461 Specified format doesn't match format of data
480 Can't create AutoRedraw image
481 Invalid picture
482 Printer error
483 Printer driver does not support specified property
484 Problem getting printer information from the system. Make sure

the printer is set up correctly
485 Invalid picture type
486 Can't print form image to this type of printer
490 Top-level or invalid menu specified as PopupMenu default
520 Can't empty Clipboard
521 Can't open Clipboard
523 The data binding DLL, 'item', could not be loaded
524 'item'
525 Data Access Error
527 The given bookmark was invalid
536 Could not lock the database
537 Could not access the desired Column
541 Could not lock the database
542 The row has been deleted since the update was started
545 Unable to bind to field: 'item'
672 DataObject formats list may not be cleared or expanded outside

of the OLEStartDrag event
673 Expected at least one argument
674 Illegal recursive invocation of OLE drag and drop
675 Non-intrinsic OLE drag and drop formats used with SetData

require Byte array data. GetData may return more bytes than
were given to SetData

676 Requested data was not supplied to the DataObject during the
OLESetData event

688 Failure in AsyncRead
689 PropertyName parameter conflicts with the PropertyName of an

AsyncRead in progress
690 Can't find or load the required file urlmon.dll
693 An unknown protocol was specified in Target parameter

OLE Container Control Messages
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxOLEControlMessagesC;vbproBooksOnlineJumpTopic"}

Value Message
31001 Out of memory
31003 Can't open Clipboard
31004 No object
31006 Unable to close object
31007 Can't paste
31008 Invalid property value
31009 Can't copy
31017 Invalid format
31018 Class is not set
31019 Source Document is not set
31021 Invalid Action
31023 Invalid or unknown Class
31024 Unable to create link
31026 Source name is too long
31027 Unable to activate object
31028 Object not running
31029 Dialog already in use
31031 Invalid source for link
31032 Unable to create embedded object
31033 Unable to fetch Link source name
31034 Invalid Verb index
31035 Incorrect Clipboard format
31036 Error saving to file
31037 Error loading from file
31039 Unable to access source document
31040 You cannot set DisplayType while the control contains an

object
31041 Cannot create embedded object. OleTypeAllowed property of

'item' control is set to Linked
31056 Failure in AsyncRead

CommonDialog Control Messages
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxCommonDialogControlMessagesC;vbproBooksOnlineJumpTopic"}

Value Message
20476 The FileName buffer is too small to store the selected file

name(s)
20477 Invalid filename
20478 An attempt to subclass a ListBox failed due to insufficient

memory
24574 No fonts exist
28660 The [devices] section of the file WIN.INI did not contain an

entry for the requested printer
28661 The PrintDlg function failed when it attempted to create an

information context
28662 The data in the DEVMODE and DEVNAMES data structures

describes two different printers
28663 A default printer does not exist
28664 No printer device drivers were found
28665 The PrintDlg function failed during initialization
28666 The printer device driver failed to initialize a DEVMODE data

structure
28667 The PrintDlg function failed to load the specified printer's

device driver
28668 The PD_RETURNDEFAULT flag was set in the Flags member

of the PRINTDLG data structure but either the hDevMode or
hDevNames field were nonzero

28669 The common dialog function failed to parse the strings in the
[devices] section of the file WIN.INI

28670 Load of required resources failed
28671 The PD_RETURNDEFAULT flag was set in the Flags member

of the PRINTDLG data structure, but either the hDevMode or
hDevNames field were nonzero

31001 Out of memory
32751 Help call fail. Check Help properties.
32752 Low on memory! Can't bring up the dialog!
32753 Couldn't determine procedure address(es). \nSelect a different

DLL.
32754 DLL selected couldn't be loaded
32755 Cancel was selected
32756 The ENABLEHOOK flag was set in the Flags member of a

common dialog data structure but the application failed to
provide a pointer to a corresponding hook function

32757 The common dialog function was unable to lock the memory
associated with a handle

32758 The common dialog function was unable to allocate memory
for internal data structures

32759 The common dialog function failed to lock a specified resource
32760 The common dialog function failed to load a specified resource

32761 The common dialog function failed to find a specified resource
32762 The common dialog function failed to load a specified string
32763 The ENABLETEMPLATE flag was set in the Flags member of

a common dialog data structure but the application failed to
provide a corresponding instance handle

32764 The ENABLETEMPLATE flag was set in the Flags member of
a common dialog data structure but the application failed to
provide a corresponding template

32765 The common dialog function failed during initialization
32766 The lStructSize member of the corresponding common dialog

data structure is invalid

Form Window Keys
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbkbdFormWinC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbkbdFormWinS"}

Use these key combinations in the Form window:

Press To
F7 Open the Code window for the selected object.
CTRL+C Copy the selected controls to the Clipboard.
CTRL+X Cut the selected controls to the Clipboard.
DEL Delete the selected controls without placing them on

the Clipboard.
CTRL+V Paste the Clipboard contents on the form.
CTRL+Z Undo a deletion of controls.
TAB Cycle forward through controls in tab order.
SHIFT+TAB Cycle backward through controls in tab order.
CTRL+CLICK Add or remove a control from the selection.
CLICK+DRAG Select multiple controls.
CTRL+CLICK+DRAG Add or remove controls from the current selection.
SHIFT+CLICK Select multiple controls.
CTRL+E Display the Menu Editor (design time only).
F4 Display the Properties window (design time only).
CTRL+J Bring to front (affects overlapping controls at design

time only).
CTRL+K Send to back (affects overlapping controls at design

time only).
CTRL+DOWN ARROW Move the control down one grid unit (if the grid is

turned on) or one pixel (if the grid is turned off).
CTRL+UP ARROW Move the control up one grid unit (if the grid is turned

on) or one pixel (if the grid is turned off).
CTRL+RIGHT ARROW Move the control one grid unit (if the grid is turned

one)or one pixel (if the grid is turned off) to the right.
CTRL+LEFT ARROW Move the control one grid unit (if the grid is turned

on) or one pixel (if the grid is turned off) to the left.

To deselect all controls, click the form. To select controls in a container, first deselect the container
and then CTRL+CLICK+DRAG around the desired controls.

Menu Editor Keys
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbkbdMenuEditorC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbkbdMenuEditorS"}

Use these key combinations in the Menu Editor:

Press To
TAB Cycle forward through the boxes and buttons.
SHIFT+TAB Cycle backward through the boxes and buttons.
ENTER Cycle forward through menu items.
ALT+R Move an item to a lower level in a hierarchical menu.
ALT+L Move an item to a higher level in a hierarchical

menu.
ALT+U Move an item one line up.
ALT+B Move an item one line down.

Use these key combinations when the Shortcut list box has the focus in the Menu Editor:

Press To
F4 Open or close the list.
ALT+DOWN ARROW Open or close the list.
ALT+UP ARROW Open or close the list.
END Move to the last item in the list.
HOME Move to the first item in the list.

Toolbox Keys
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbkbdToolboxKeysC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbkbdToolboxKeysS"}

Use these key combinations in the Toolbox:

Press To
ENTER Place the selected control on the active form.
DOWN ARROW Select the next tool down in the same column as the

selected tool.
UP ARROW Select the next tool up in the same column as the

selected tool.
LEFT ARROW Select the tool to the left of the selected tool.
RIGHT ARROW Select the tool to the right of the selected tool.
TAB Move through the Toolbox from left to right, one tool

at a time.
SHIFT+TAB Move up through the Toolbox from right to left, one

tool at a time.
END Select the last tool in the Toolbox.
HOME Select the pointer tool.
ALT+F4 Close the Toolbox.

TaskVisible Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTaskVisibleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTaskVisibleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTaskVisibleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTaskVisibleS"}

Returns or sets a value that determines if the application appears in the Windows task list.

Syntax
object.TaskVisible [= boolean]
The TaskVisible property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A boolean expression that determines if the

application appears in the task list, as described in
Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) The application appears in the Windows

task list.
False The application does not appear in the Windows task

list.

Remarks
The TaskVisible property can only be set to False in applications that do not display an interface,
such as OLE servers that do not contain or display Form objects. While the application displays an
interface, the TaskVisible property is automatically set to True.

hInstance Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHInstanceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHInstanceX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHInstanceA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHInstanceS"}

Returns a handle to the instance of the application.

Syntax
object.hInstance
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The hInstance property returns a long value.

When working with a project in the Visual Basic development environment, the hInstance property
returns the instance handle of the Visual Basic instance.

Comments Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCommentsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCommentsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCommentsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCommentsS"}

Returns or sets a string containing comments about the running application. Read only at run time.

Syntax
object.Comments
The object placeholder represents an object expression that evaluates to an object in the Applies To

list.

Remarks
You can set this property at design time in the Type box in the Make tab of the Project Properties
dialog box.

CompanyName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCompanyNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCompanyNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCompanyNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCompanyNameS"}

Returns or sets a string value containing the name of the company or creator of the running
application. Read only at run time.

Syntax
object.CompanyName
The object placeholder represents an object expression that evaluates to an object in the Applies To

list.

Remarks
You can set this property at design time in the Type box in the Make tab of the Project Properties
dialog box.

FileDescription Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFileDescriptionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFileDescriptionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFileDescriptionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFileDescriptionS"}

Returns or sets a string value containing file description information about the running application.
Read only at run time.

Syntax
object.FileDescription
The object placeholder represents an object expression that evaluates to an object in the Applies To

list.

Remarks
You can set this property at design time in the Type box in the Make tab of the Project Properties
dialog box.

LegalCopyright Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLegalCopyrightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLegalCopyrightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLegalCopyrightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLegalCopyrightS"}

Returns or sets a string value containing legal copyright information about the running application.
Read only at run time.

Syntax
object.LegalCopyright
The object placeholder represents an object expression that evaluates to an object in the Applies To

list.

Remarks
You can set this property at design time in the Type box in the Make tab of the Project Properties
dialog box.

LegalTrademarks Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLegalTrademarksC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLegalTrademarksX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLegalTrademarksA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLegalTrademarksS"}

Returns or sets a string value containing legal trademark information about the running application.
Read only at run time.

Syntax
object.LegalTrademarks
The object placeholder represents an object expression that evaluates to an object in the Applies To

list.

Remarks
You can set this property at design time in the Type box in the Make tab of the Project Properties
dialog box.

Major Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMajorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMajorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproMajorA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMajorS"}

Returns or sets the major release number of the project. Read only at run time.

Syntax
object.Major
The object placeholder represents an object expression that evaluates to an object in the Applies To

list.

Remarks
The value of the Major property is in the range from 0 to 9999.

This property provides version information about the running application.

You can set this property at design time in the Major box in the Make tab of the Project Properties
dialog box.

Minor Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMinorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMinorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproMinorA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMinorS"}

Returns or sets the minor release number of the project. Read only at run time.

Syntax
object.Minor
The object placeholder represents an object expression that evaluates to an object in the Applies To

list.

Remarks
The value of the Minor property is in the range from 0 to 9999.

This property provides version information about the running application.

You can set this property at design time in the Minor box in the Make tab of the Project Properties
dialog box.

ProductName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproProductNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproProductNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproProductNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproProductNameS"}

Returns or sets a string value containing the product name of the running application. Read only at
run time.

Syntax
object.ProductName
The object placeholder represents an object expression that evaluates to an object in the Applies To

list.

Remarks
You can set this property at design time in the Type box in the Make tab of the Project Properties
dialog box.

Revision Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproRevisionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRevisionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRevisionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRevisionS"}

Returns or sets the revision version number of the project. Read only at run time.

Syntax
object.Revision
The object placeholder represents an object expression that evaluates to an object in the Applies To

list.

Remarks
The value of the Revision property is in the range from 0 to 9999.

This property provides version information about the running application.

You can set this property at design time in the Minor box in the Make tab of the Project Properties
dialog box.

A default printer does not exist (Error 28663)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Check the system for installed printers using the Printers collection. If there are printers installed, set
the Printer object to one of the printers in the Printers collection to define a default printer.

An attempt to subclass a ListBox failed due to insufficient memory
(Error 20478)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

Cancel was selected (Error 32755)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This error occurs when the CancelError property is set to True and the user clicks the Cancel button
in the dialog box. Use this error to execute different code when the Cancel button was selected. For
example, in a File Open dialog box, you might respond to this error by exiting the current procedure
instead of attempting to open a file.

Help call fail. Check Help properties (Error 32751)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Check to make sure the HelpContextID and HelpFile properties are set to proper values for the Help
file used by the application.

Invalid filename (Error 20477)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The specified filename may not exist or may contain illegal characters.

Low on memory! Can't bring up the dialog! (Error 32752)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This error occurs when sufficient memory isn't available. Check for sufficient system memory as well
as available system resources.

No fonts exist (Error 24574)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Before displaying the Choose Font dialog box, you must set one of the following flags:

· ScreenFonts
· PrinterFonts
· Both

No printer device drivers were found (Error 28664)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The system may not have printer drivers installed or the drivers may be missing.

The common dialog function failed during initialization (Error 32765)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This error often occurs when sufficient memory isn't available.

The common dialog function failed to find a specified string (Error
32761)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The common dialog function failed to load a specified resource
(Error 32760)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The common dialog function failed to load a specified string (Error
32762)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The common dialog function failed to lock a specified resource
(Error 32759)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The common dialog function failed to parse the strings in the
[devices] section of the file WIN.INI (Error 28669)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This error occurs when the information in Win.ini can't be read by the CommonDialog control. For
example, the Win.ini entry may contain the string "LDT1" instead of "LPT1" to identify a port.

The common dialog function was unable to allocate memory for
internal data structures (Error 32758)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This error is caused by insufficient memory.

The common dialog function was unable to lock the memory
associated with a handle (Error 32757)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The data in the DEVMODE and DEVNAMES data structures
describes two different printers (Error 28662)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The ENABLETEMPLATE flag was set in the Flags member of a
common dialog data structure but the application failed to provide a
corresponding instance handle (Error 32763)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The ENABLETEMPLATE flag was set in the Flags member of a
common dialog data structure but the application failed to provide a
corresponding template (32764)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The FileName buffer is too small to store the selected file name(s)
(Error 20476)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This error occurs when the MaxFileSize property setting is too small to allocate enough space in
memory for the selected file name(s). Increase the setting of the MaxFileSize property.

The PD_RETURNDEFAULT flag was set in the Flags member of
the PRINTDLG data structure but either the hDevMode or
hDevNames field was nonzero (Error 28668)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The PrintDlg function failed during initialization (Error 28665)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This error is usually caused by insufficient memory.

The PrintDlg function failed to load the specified printer's device
driver (Error 28667)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This error could be caused by a defective printer driver or a corruption in system memory.

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The PrintDlg function failed when it attempted to create an
information context (Error 28661)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The amount of available system resources may be too low.

The printer device driver failed to initialize a DEVMODE data
structure (Error 28666)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

The [devices] section of the file WIN.INI did not contain an entry for
the requested printer (Error 28660)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The CommonDialog control uses specialized functions in the operating system to present the dialog
boxes it displays. When this error occurs, the problem exists at the operating system level and
shouldn't appear as the result of Visual Basic code that uses the control.

{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgInvalidPropertyValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgInvalidPropertyValueS"}

'Item' is in binary format and cannot be loaded into VB5
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Binary format files created with older versions of Visual Basic can't be loaded into Visual Basic 5.0.
Only Visual Basic version 2.0 and 3.0 support converting binary format files. If you have a copy of
Visual Basic 2.0 or 3.0, you can load the file and save it as text. Then you can load the file in Visual
Basic 5.0.

Can't display system information
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic can't display system information when you choose System Info from the About Microsoft
Visual Basic dialog box. Your system may not have enough memory or a required file may be
corrupted or missing.

Separator may not be checked or disabled, or have a shortcut key
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

While working with the Menu Editor tool, you tried to set a separator menu item's Checked property
to True or its Enabled property to False or you tried to assign it a shortcut key. A separator menu item
can't have any of these property settings, but you can set its Visible property to False.

Only Top Level Menus can have non-zero NegotiatePosition
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You tried to set the NegotiatePosition property for a menu item other than a top-level menu.

Project too large to make into an .EXE
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This project exceeded the absolute size for an .EXE file that the operating system can handle. You
must reduce the size of the project or break it up into pieces.

Version numbers must be in the range 0 to 9999
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You tried to assign a negative number, a non-numeric character, or a number greater than 9999, as
the Major, Minor, or Revision component of the Version number for a project in the Make tab of the
Project Properties dialog box. Use a number between 0 and 9999 inclusive.

Only one resource file allowed
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You chose Add File from the Project menu and tried to add a second .RES file to your project, or
the .VBP file lists more than one .RES file. You can only have one Windows resource file in a Visual
Basic project.

Duplicate resources with same type and name
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Windows resource file you are trying to use in your project contains two or more resources with
the same type and name, or the resource file has a resource that Visual Basic automatically creates.

Use another resource file or recreate the invalid resource file and delete one of the duplicate
resources.

Programmatic ID string too long 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ProgID string of the ActiveX component can't be longer than 39 characters. The ProgID is
created by concatenating the project name with the class module name.

ActiveX component could not be created
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An ActiveX component or instance of it couldn't be created with the CreateObject function, or you
tried to compile the project, but Visual Basic couldn't create the file.

The Public property for Class 'item' cannot be set to True. You do
not have an appropriate license to use this functionality in the
design environment.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You can only make Public class modules (ActiveX components accessible from outside the project)
with the Professional and Enterprise editions of Visual Basic 5.0.

The file 'item' does not contain information needed to create a
compatible ActiveX component
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The filename you entered for the Compatible ActiveX Component, in the Component tab of the
Project Options dialog box, isn't a Visual Basic-created .EXE with Public class modules.

Do you want to upgrade all 'item1' objects in this project to 'item2'
objects?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The class of the specified object has changed. Choose Yes to upgrade all instances of the specified
object in this project to reflect the changes made to the class, or choose No if you don't want to
upgrade.

The class name of the newly upgraded 'item1' objects is 'item2'.
Since this is different from their previous name of 'item3', you must
change any declarations of this object that you have in code.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The class name of the specified object you upgraded has changed. You must change any
declarations of the specified object in your code to refer to the new class name.

Could not find Data Access Library. Cannot Create reference.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic tried to create a reference to the Microsoft DAO Object Library through the Data control,
but failed. Verify that all system registry keys are valid and, if they are not, run Visual Basic setup
again.

Can't exit Windows while an OLE object is active for editing
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You tried to exit Windows while an OLE object was active for editing. Deactivate the OLE object
before quitting Windows.

Other applications are currently accessing an object in your
program. Ending the program now could cause errors in those
programs. End program at this time?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An automation object in the Visual Basic program you are currently running is being accessed by at
least one other application. Terminating your program could cause an error in the other application.
Choose Yes to quit your program or choose No to continue.

One or more of the properties in 'item' was bad. Some or all of the
properties might not be set correctly.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The specified .VBP file has one or more invalid property settings. This error occurs only in regard to a
project's .VBP file.

'Item' could not be registered
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The specified file couldn't be registered in the system registry. The error is related to type libraries
used by components of the Visual Basic development environment and indicates that the specified
file's entry in the system registry is corrupted or that the DLL itself is missing or corrupted.

'Item' could not be loaded. Remove it from the list of available
Add-Ins?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic couldn't load the add-in that you tried to select from the Available Add-Ins list in the Add-
In Manager dialog box. Choose Yes to remove it from the list or choose No to leave it on the list. In
either case, you won’t be able to load it.

Visual Basic cannot load 'item' because it is not in the system
registry. Remove it from the list of available Add-Ins?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic couldn't load the add-in that you tried to select from the Available Add-Ins list in the Add-
In Manager dialog box, because it was not registered properly or is no longer registered in the system
registry.

Visual Basic can't upgrade the custom controls to those provided in
the 'item' library. Remove this library from the list of available
upgrades?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic was unable to convert one or more VBX controls to ActiveX controls. Choose Yes to
remove the library reference from the list so that VB won't try to upgrade the specified VBX custom
controls again, or choose No to leave the library in the list.

Not enough memory to run; quitting
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic couldn't obtain enough memory to run. Close other applications and try again.

Not enough memory to load file
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic couldn't obtain enough memory to load the file. Close other applications and try again.

Unexpected error; quitting
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An unexpected error occurred, and Visual Basic was unable to continue. This may be a hardware
problem or an effect of other software in your system.

Wrong version of run-time DLL
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic can't find VBRUN500.DLL, or it is finding the wrong version of one or more of the
ActiveX control .ocx files. Make sure your system contains only one copy of these files (the latest
version) in your \SYSTEM or \SYSTEM32 directory.

Main can't be module, type, project, or form name.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You have the startup form set to Sub Main, and you have a module, form, project, or type named
"Main" which prevents the Sub with the same name from being called.

Rename the module, form, project, or type.

Can't put check mark here.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This is a menu design error indicating that you tried to select Checked on a menu item that does not
support check marks. The following situations can cause this error:

· You tried to select Checked in the Menu Editor for a top-level menu item.
· You selected Checked for some menu item which has a submenu such as a cascading sub-menu.
· You chose some menu such as a MDI Window list menu that cannot be checked.

Wrong version of operating system; requires Windows NT 3.51
(build 'item1' or above), or Windows 95 (build 'item2' or above)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

To run this version of Visual Basic, you must be running the specified build of Windows 95 or
Windows NT version 3.51.

'Item' is a Read-Only file
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You asked to save to a file that is read-only. Read-only files are shown in the Project Explorer as .
You can't save to read-only files. Use Save As instead.

Can't have more than one Window List menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You clicked the Window List check box for more than one menu item and then chose OK to close the
dialog box. For a particular form, only one menu can have the Window List check box checked. To do
this, use the Menu Editor.

Controls without the align property cannot be placed directly on the
MDI form
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You tried to double-click a control to place it on an MDI form, but the control doesn't support the
standard Align property or is not an invisible at run-time control. The PictureBox and Timer controls
are the only intrinsic controls that can be placed on an MDI form.

Duplicate procedure name
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You have defined (or are attempting to define) more than one version of a procedure with the same
name. Rename one of the procedures. Ensure that duplicate Declare statements for the same
procedure have the same Alias clause.

Separator may not be the Window List menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The window menu has to be a menu item that can support being a pop-up menu (one that can have
subitems). A separator can't have subitems.

Valid values are whole numbers from 1 to 32
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You attempted to set the TabStop Width beyond the permitted range. A number between 1 and 32
(inclusive) is acceptable for this field.

Valid values are whole numbers from 24 to 1188
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You attempted to set the Grid Width or Grid Height beyond the permitted range. A number between
24 and 1188 (inclusive) is acceptable for this field.

Errors during load. Refer to 'item' for details
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Something unexpected appeared in the ASCII form file. Visual Basic created a log file to provide more
detail about the errors. You should examine the log file to determine the severity of the problem.
Sometimes you can safely ignore the errors (for example, Version number missing or
invalid...). Other times, however, the errors could cause the form not to run as expected (for
example, Class MyClass in control MyControl was not a loaded control class).

String value too long to process; form load aborted
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A string embedded in the form being loaded was too long to process.

Version number missing or invalid; Visual Basic 5.0 assumed
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Either the version signature was not found, or the specified version isn't recognized. Make sure that
the first line is not blank or a comment. It should read VERSION 5.00 in the ASCII form.

Line 'item1': The file 'item2' could not be loaded.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Syntax errors are preventing Visual Basic from parsing and loading a file, or form name conflicts
prevent loading of an ASCII form. The form won't be loaded and the form name won't be displayed in
the Project Explorer.

Make sure that the file causing this error is a valid ASCII form in the correct format and that no
conflicts exist among the different forms in the project. The correct ASCII form format is:

VERSION 5.00
Begin VB.Form <formname>

Form Properties
Begin VB.<controltype> <controlname>

prop = value
prop = value
[...]

Control Properties
Begin VB.<control type> <control name>

prop = value
[...]
Begin ...

[...]
End

End
End

End
ATTRIBUTE = "<form name>"
[...]

'Item' could not be loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Syntax errors are preventing Visual Basic from parsing and loading a file, or form name conflicts
prevent loading of an ASCII form. The form won't be loaded and the form name won't be displayed in
the Project Explorer.

Make sure that the file causing this error is a valid ASCII form in the correct format and that no
conflicts exist among the different forms in the project. The correct ASCII form format is:

VERSION 5.00
Begin VB.Form <formname>

Form Properties
Begin VB.<controltype> <controlname>

prop = value
prop = value
[...]

Control Properties
Begin VB.<control type> <control name>

prop = value
[...]
Begin ...

[...]
End

End
End

End
ATTRIBUTE = "<form name>"
[...]

Can't remove control or reference; in use
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ActiveX control or reference that you tried to remove is being used by one of the forms in the
project. First delete the control or referenced object from the form and then deselect it from the list.

Must have startup form or Sub Main()
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

No form in the current project is designated as the startup form, and the current project doesn't have a
Sub procedure named Main in any module. You must have one or the other to run a Visual Basic
application.

Can't save file to TEMP
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The directory established by your TEMP environment variable can't be written to. Make sure that your
TEMP environment variable is set to a valid directory and that the disk isn't full.

Can't find Windows Help .EXE file
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Windows Help application isn't available. If Winhelp.Exe is on your machine, make sure it is on
your path. If it isn't on your machine, run Microsoft Windows 95 or Microsoft Windows NT setup to
install it.

Invalid procedure name
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A procedure name can't be a restricted keyword, must start with a letter, must be unique within the
same scope, and can be a maximum of 255 characters — including letters, numbers, and
underscores (_). Function procedure names can include a type declaration character, but Sub
procedure names cannot.

Array already has control at index 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Possible causes:

· You tried to change the index value to a number that is already used by this control array. To
determine which indices have already been assigned, select the Index property in the Properties
window for each control array element.

· You tried to change the Name property of a control in an array to the name of a control array
already using this index value.

Not a legal object name: 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Form and control names must start with a letter and can be a maximum of 40 characters — including
letters, numbers, and underscores (_).

Note that the Name property of a form or control is different from the Label properties — Caption,
Text, and Value — which label or display the contents of a control at run time. These properties can
be restricted keywords, can begin with a number, and can contain nonalphanumeric characters.

Must specify which item(s) to print
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You have not specified what to print. Check at least one of the Form or Code check boxes in the Print
dialog box after choosing Print from the File menu.

Can't assign shortcut key to a top level menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You are trying to assign a key combination to a parent or top-level menu item that isn't a command.
Only commands can have shortcut keys assigned to them.

Shortcut key already assigned
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You tried to assign a shortcut key that has already been assigned to another menu item. Assign a
different shortcut key.

At least one submenu item must be visible
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Visible property can't be set to False for the last remaining visible submenu item. You can't have
a parent menu with no visible submenu items.

Can't quit at this time
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You can't quit Windows while Visual Basic is in run or break mode. You also can't quit Windows while
a dialog box or message box is displayed.

Invalid command line argument 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

There is an invalid argument in the command line used to invoke Visual Basic. Search Help for a list
of command line arguments.

You already have a control named 'item'. Do you want to create a
control array?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You've tried to set the Name property of a control or paste a new control onto the form, and you
already have a control with the indicated name.

If you would like to create a control array, choose Yes. The newly created control array element will
have an Index value one higher than the control previously created with this name. If you don't want
to create a control array, choose No. If you're pasting a control, Visual Basic will generate the name
for the new control.

Error loading 'item'. An error was encountered loading a property.
Continue?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You may have tried to load a form with controls whose names conflict with forms already in the
project. For example, loading Form2 that contains a Form1 control triggers this error.

Error loading 'item'. A control could not be loaded due to load
error. Continue?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This error message appears after another error has occurred. Once you've taken the appropriate
action for that error, you will see this error message. To load the control anyway, choose Yes; to
cancel the loading, choose No.

'Item' already exists in project
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The file you specified is already part of the project. You can't add the same file to a project more than
once. You can't save a file with the same name as another file in the project.

'Item' has an old file format. When saved it will be saved in a
newer format.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This file was created with an earlier version of Visual Basic. When you save it, it will be saved in the
Visual Basic 5.0 file format.

Out of memory (31001)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Could not allocate or access enough memory or disk space for the specified operation.

Can't copy (Error 31009)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You tried to copy an object to the Clipboard (set Action = 4), but the object is corrupted or is no
longer valid.

Can't open Clipboard (Error 31003)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You tried to copy (Action = 4) or paste (Action = 5) an object, but the Clipboard is not currently
available. Find the application that has the Clipboard open, and close it.

Can't paste (Error 31007)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantPasteC;vbproBooksOnlineJumpTopic"}

The Clipboard doesn't contain a valid OLE object.

This error also occurs when you copy an OLE object to the Clipboard and then try to paste the object
back to the same OLE container control.

The PasteOK property returns True when an object can be pasted from the Clipboard.

Note that when you copy an OLE object to the Clipboard (set Action = 4) and then delete the object
(set Action = 10), the object on the Clipboard is also deleted.

Class is not set (Error 31018)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgNoClassC;vbproBooksOnlineJumpTopic"}

When setting Action = 0 (CreateEmbed method) if you don't specify a source document
(SourceDoc property), the Class property must be set to the name of a class available on your
system.

To display a list of the available class names at design time, click the OLE container control with the
right mouse button and choose the Insert Object command.

Dialog already in use (Error 31029)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Only one OLE dialog box (either Insert Object or Paste Special) can be displayed at a time.

Error loading from file (Error 31037)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgErrorLoadingFileC;vbproBooksOnlineJumpTopic"}

An error occurred while attempting to read the specified file (set Action = 12). Possible causes:

· The FileNumber property is invalid.
· The file wasn't opened in Binary mode.
· The file wasn't saved properly (set Action = 11).
· The file is corrupted.
· The file position isn't located at the beginning of a valid OLE object.

Error saving to file (Error 31036)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgErrorSavingFileC;vbproBooksOnlineJumpTopic"}

Visual Basic can't write the object to the specified file (set Action = 11, or 18). Possible causes:

· The FileNumber property is invalid.
· The specified file wasn't opened in Binary mode.
· There isn't enough disk space.

Invalid Action (Error 31021)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgInvActionC;vbproBooksOnlineJumpTopic"}

The Action property has been set to an invalid value.

The values 2, 3, 8, 13, and 16 are reserved for future use and are not valid with this version of the
OLE container control.

Incorrect Clipboard format (Error 31035)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgNoCompatClipFmtC;vbproBooksOnlineJumpTopic"}

The OleTypeAllowed property doesn't match the type of object on the Clipboard.

Invalid format (Error 31017)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgInvFormatC;vbproBooksOnlineJumpTopic"}

You attempted to set or get data with the Data or DataText property using an invalid data format or a
format the object doesn't support.

To determine the set of valid formats for an OLE object, use the ObjectAcceptFormats,
ObjectAcceptFormatsCount, ObjectGetFormats, and ObjectGetFormatsCount properties.

Invalid or unknown Class (Error 31023)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgInvClassC;vbproBooksOnlineJumpTopic"}

The specified Class property isn't valid and the SourceDoc property isn't specified.

To display a list of the available class names on your system, at design time click the OLE container
control with the right mouse button and choose the Insert Object command.

Use extra care when setting the Class property at run time as some class names may be case-
sensitive.

Invalid property value (Error 31008)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You attempted to assign an invalid value to a property.

This error also occurs when you are performing an action that requires several properties to be set,
and one of the properties is set to an invalid value.

Invalid source for link (Error 31031)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgInvalidSourceC;vbproBooksOnlineJumpTopic"}

You attempted to create a linked object (set Action = 1) and the file specified by the SourceDoc
property couldn't be found.

Invalid Verb index (Error 31034)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgInvalidVerbC;vbproBooksOnlineJumpTopic"}

You tried to activate an object (set Action = 7), and the Verb property was set to an invalid value.

Use the ObjectVerbs and ObjectVerbsCount properties to determine the list of verbs an object
supports.

Source name is too long (Error 31026)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgSourceTooLongC;vbproBooksOnlineJumpTopic"}

The combined number of characters in the SourceDoc and SourceItem strings can't exceed 256.

No object (Error 31004)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You tried to perform an action on an object that doesn't exist.

Object not running (Error 31028)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgNotRunningC;vbproBooksOnlineJumpTopic"}

You can't perform the following actions on an object unless the application that created the object is
currently running:

· Copy an object to the Clipboard (set Action = 4).
· Set or read the Data property.
· Set or read the DataText property.
· Read the ObjectAcceptFormats property.
· Read the ObjectAcceptFormatsCount property.
· Read the ObjectGetFormats property.
· Read the ObjectGetFormatsCount property.

Use the AppIsRunning property to determine if the application that created an object is running.

If the object exists, you activate it (and therefore invoke the application that created it) by setting
Action = 7 (Activate). To activate an object without displaying the application that created it, first set
the Verb property to – 3.

Source Document is not set (Error 31019)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgNoSourceDocC;vbproBooksOnlineJumpTopic"}

When creating a linked object, or creating an object from a file (set Action = 1), the SourceDoc
property must be set to a valid file name.

At design time, select the SourceDoc property in the Properties window and click the three dots in
the settings box to browse your disk for a valid filename.

Unable to access source document (Error 31039)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantAccessSourceC;vbproBooksOnlineJumpTopic"}

You attempted to create an embedded object, but the file specified by the SourceDoc property isn't a
valid file.

Unable to activate object (Error 31027)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantActivateC;vbproBooksOnlineJumpTopic"}

The object's source document can't be loaded, or the application that created the object isn't
available.

This error occurs when you try to activate a linked object (set Action = 7) and the file specified in the
SourceDoc property has been deleted, or no longer exists.

This error also occurs when you activate an object (set Action = 7), and the action specified by the
Verb property isn't valid. Some applications that provide objects may support different verbs,
depending on the state of the application. All the verbs supported by an application are listed in the
ObjectVerbs property list. However, some verbs may not be valid for the application's current state.

Unable to close object (Error 31006)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The object can't be closed (Action = 10) in its current state.

Unable to create embedded object (Error 31032)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantEmbedC;vbproBooksOnlineJumpTopic"}

The application that is creating the object can't create the object as specified in the SourceDoc
property.

For example, this error occurs if you try to embed a spreadsheet object and SourceDoc specifies a
spreadsheet that is too large to be loaded by the spreadsheet application.

Unable to create link (Error 31024)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantLinkC;vbproBooksOnlineJumpTopic"}

The application that is creating the object can't create the linked object as specified in the SourceDoc
and SourceItem properties.

For example, this error occurs if you try to link a spreadsheet object and SourceDoc specifies a
spreadsheet that is too large to be loaded by the spreadsheet application.

Unable to fetch link source name (Error 31033)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The OLE container control can't determine the name of the source document for the object you want
to create.

For example, when you attempt to paste a linked object from the Clipboard (set Action = 5), the OLE
container control must determine the name of the source document based on the information
provided by the Clipboard. If the OLE container control can't determine the name of the document to
link to, this error occurs.

Could not access the desired Column (Error 537)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The control could not access the desired column. This error has the following cause and solution:

· The bound control has attempted to access data from a column that is not in the result set.
This error occurs when a control incorrectly accesses data from a Data control. Contact the control
vendor for more information.

Method not applicable in this context (Error 444)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgMethodNotApplicableInThisContextS"}

You cannot use this method in the current event procedure.

No timer available (Error 260)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The number of Timer controls in a project, and the amount of memory each Timer object requires are
limited. This error has the following causes and solutions:

· There are too many active Timer controls. The maximum number varies from environment to
environment.
Remove one or more Timer controls from the project.

· There isn't enough memory to load another Timer control.
Try to free up some memory by closing other applications.

No foreign application responded to a DDE initiate (Error 282)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic could not find an application and topic corresponding to the application name and topic in
the LinkTopic property. This error has the following causes and solutions:

· The application specified in LinkTopic isn't running.
Ensure that the specified application is running.

· The application is running, but doesn't recognize the topic of the link.
Ensure that the specified application actually has a topic with the name specified in LinkTopic.

Foreign application won't perform DDE method or operation (Error
285)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An application refused to perform the DDE method or operation you attempted. This error has the
following causes and solutions:

· You supplied data or commands that the other application did not recognize.
Check the application's documentation to see what data or commands it recognizes.

· The LinkItem property isn't set to an item that the other application recognizes as valid for the
topic of the conversation.
Check the application's documentation to see what items it recognizes.

Timeout while waiting for DDE response (Error 286)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The other application in a DDE conversation did not respond within the time specified by the
LinkTimeout property. This error has the following causes and solutions:

· The other application isn't responding because it is waiting for a response from the user.
Switch to that application, and close the dialog box or take an action corresponding to the message
it displays.

· The LinkTimeout property is set to a value that is too low.
Try increasing the value.

· The other application is too busy to respond to DDE messages.
Try calling the DoEvents function before performing this DDE operation.

User pressed Escape key during DDE operation (Error 287)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You pressed the ESC key while waiting for a DDE operation to be completed. This error has the
following cause and solution:

· The other application in the DDE conversation is taking too long to respond.
Try setting the LinkTimeout property to a lower value.

Destination is busy (Error 288)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The other application in the DDE conversation can't perform a DDE operation. This error has the
following cause and solution:

· The other application is busy responding to other Windows events.
Try calling the DoEvents function and attempt the DDE operation again.

Data in wrong format (Error 290)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An application in a DDE conversation supplied data in an unexpected format. It may not be
performing DDE correctly. This error has the following causes and solutions:

· The application is supplying data in a format that Visual Basic doesn't recognize.
Try initiating the conversation with a different topic.

· The application is supplying text data to a PictureBox or picture data to a TextBox.
Try initiating the conversation with a different control.

DDE Method invoked with no channel open (Error 293)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A DDE method (LinkExecute, LinkPoke, LinkRequest, or LinkSend) was performed on a control
that isn't involved in a valid DDE conversation. This error has the following causes and solutions:

· Changing the LinkTopic property terminates an existing DDE conversation, but doesn't
automatically establish a new conversation.
After changing the LinkTopic property for a control, you must set the LinkMode property of the
form to 1 (Automatic) or 2 (Manual) before executing a DDE method on this control.

· You executed a DDE method on a control with LinkMode set to 0 (None).
Set LinkMode to 1 (Automatic) or 2 (Manual) and try again.

Invalid DDE Link format (Error 294)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The other application in a DDE conversation passed data in an invalid format. This error has the
following cause and solution:

· The application passed data in the vbCFLink Clipboard format but it isn't valid link data.
Fix the data in the other application so that it conforms to the vbCFLink Clipboard format.

Message queue filled; DDE message lost (Error 295)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic can't keep up with the number of DDE operations attempted. This error has the following
causes and solutions:

· Too many DDE conversations are running.
Try terminating one or more DDE conversations.

· Too much code in event procedures is executing because of incoming DDE data.
Reduce the amount of code being called as a result of DDE changes, or try calling the DoEvents
function.

PasteLink already performed on this control (Error 296)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You have already performed a Paste Link on this control. This error has the following cause and
solution:

· You are trying to paste a new link while a prior link is still in effect.
To paste a new link, first set the LinkMode property of this control to 0 (None), and then use the
Paste Link command.

Can't set LinkMode; invalid LinkTopic (Error 297)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You tried and failed to set the LinkMode property of a control. This error has the following cause and
solution:

· You did not specify a LinkTopic property for the control.
First specify a valid LinkTopic property.

System DLL 'dll' could not be loaded (Error 298)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A .DLL file provided by the operating system; for example, Ddeml.dll, Version.dll, or Winspool.drv
couldn't be found. This error has the following causes and solutions:

· The file isn't on the proper path.
Ensure that the DLL is on the Windows System path.

· The DLL is corrupted or was deleted.
Reload the DLL.

· There isn't enough memory or swap space.
Try to free up some memory by closing other applications.

Can't use character device names in filenames: 'item' (Error 320)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

From within Visual Basic, you can't give a file the same name as a character device driver. This error
has the following cause and solution:

· You tried to use a filename such as AUX, CON, COM1, COM2, LPT1, LPT2, LPT3, LPT4, or NUL.
Give the file another name.

Invalid file format (Error 321)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A Visual Basic form file is damaged. This error has the following causes and solutions:

· The form has a damaged ActiveX control.
Try replacing the ActiveX control on the form.

· The number of properties in the current version of the ActiveX control don't match the number
expected.
Try replacing the ActiveX control with an earlier or later version.

'Item' is not a valid resource file (Error 325)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A resource file in your project doesn't follow the standard format for a Windows resource file or there
is a mismatch between the resource file and the Visual Basic project. This error has the following
causes and solutions:

· You tried to use the LoadResString, LoadResPicture, or LoadResData methods on a resource
file with an invalid format.
Recreate the resource source and resource files and adhere to the syntax documented in the
Windows Software Development Kit.

· You tried to make an .EXE file from a project that includes a resource file with an invalid format.
Remove the invalid resource file from the project.

· You tried to use the Project Add File command to add a 16-bit resource file to a project.

Resource with identifier 'item' not found (Error 326)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The resource with the specified ID doesn't exist in the resource file. This error has the following cause
and solution:

· You tried to use the LoadResString, LoadResPicture, or LoadResData methods to load a
resource whose ID doesn't exist in the resource file associated with this project or .EXE file.
Change the reference to the resource ID to one that does exist, or remove the resource file from
the project and add a resource file that contains the specified resource ID.

Could not access system registry (Error 335)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An attempt to read from or write to the system registry failed.

ActiveX component not correctly registered (Error 336)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ActiveX component has not been properly registered in the system registry.

Object server not found (Error 337)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The required EXE or DLL file can't be found.

Object server did not correctly run (Error 338)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ActiveX component's EXE file failed to run correctly. There may be a problem with the information
in the registry.

Control array element 'item' doesn't exist (Error 340)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You used an invalid index value to refer to an element in a control array. This error has the following
cause and solution:

· No control with the index value you referred to is part of the existing control array.
Change the Index property setting for one of the existing elements to the value you referred to. Or
use the Load statement to add a control to the array with an index equal to the value and then
refer to the index value again.

Invalid control array index (Error 341)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You used an invalid index value to refer to an element in a control array. This error has the following
cause and solution:

· The index value you referred to in your code is a negative number.
Change the index value to refer to one of the existing elements of the control array.

Not enough room to allocate control array 'item' (Error 342)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

There isn't enough memory to create all the elements of a control array. This error has the following
causes and solutions:

· An element in a control array with discontiguous index values for its elements, such as 0, 2, 4, was
assigned too large an index value at design time.
Change the Index property’s setting to a smaller value so that Visual Basic doesn't run out of
memory.

· You used the Load statement to add an element with too large an index value to a control array.
Change the index value in your code to a smaller value.

Object not an array (Error 343)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A control that isn't part of a control array is referred to as if it were. This error has the following cause
and solution:

· You tried to refer to an index value for a control that isn't part of an array (for example,
Command1(3).Caption and Command1.Text).
Delete the reference to the index value, or redefine the control as an element in a control array.

Must specify index for object array (Error 344)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A control that isn't part of a control array is referred to as if it were. This error has the following causes
and solutions:

· You referred to an index value for a control that isn't a part of a control array.
Remove the reference to the index value.

· You tried to add a control at run time with the Load statement but no control array with that Name
property exists.
Create the control you are referring to as a control array at design time.

Reached limit: cannot create any more controls on this form (Error
345)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

No more than 255 individual controls are allowed for each form. This error has the following cause
and solution:

· At design time you tried to add a control to a form that resulted in a total of 256 individual controls
for the form (with the form itself counting as one control).
Delete one or more controls from the form or redefine one or more of your controls as part of a
control array.

Object already loaded (Error 360)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The control in the control array has already been loaded. This error has the following cause and
solution:

· You tried to add a control to a control array at run time with the Load statement but the index value
you referred to already exists.
Change the index reference to a new value or check if your code is executing the same Load
statement, with the same index value reference, more than once.

Can't load or unload this object (Error 361)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A Load or Unload statement has referenced an invalid object or control. This error has the following
causes and solutions:

· You tried to load or unload an object that isn't a control or form, such as Screen, Printer, or
Clipboard.
Delete the erroneous statement from your code.

· You tried to load or unload an existing control that isn't part of a control array. For example,
assuming that a TextBox with the Name property Text1 exists, Load Text1 will cause this error.
Delete the erroneous statement from your code or change the reference to a control in a control
array.

· You tried to unload a Menu control in the Click event of its parent menu.
Unload the Menu control with some other procedure.

· You tried to unload the last visible menu item of a Menu control.
Check the setting of the Visible property for the other menu items in the control array before trying
to unload a menu item or delete the erroneous statement from your code.

Can't unload controls created at design time (Error 362)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Only a control array element loaded at run time can be unloaded. This error has the following cause
and solution:

· You used the Unload statement to refer to a control array element that you created at design time.
Change the index value of the control you want to unload to a control array element that was
loaded at run time. Or you can hide any control by setting its Visible property to False.

ActiveX control 'item' not found (Error 363)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The form being loaded contains an ActiveX control that isn't part of the current project. This error has
the following causes and solutions:

· You may have manually edited the project’s .VBP file to add a form containing an ActiveX control
that isn't already part of the project.
After the project loads, select Components from the Project menu and add the ActiveX control to
the project.

· You may have manually edited the project’s .VBP file to add a form containing an ActiveX control
that is an older version than the ActiveX control that is already part of the project.
After the project loads, delete the older version from the form and put the newer version of the
control on the form.

Object was unloaded (Error 364)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A form was unloaded from its own Form_Load procedure. This error has the following cause and
solution:

· A form with an Unload statement in its Form_Load procedure was implicitly loaded. For example,
the following will implicitly load Form2 if it isn't already loaded: Form2.BackColor =
Form1.BackColor.
Remove the Unload statement from the Form_Load procedure.

Unable to unload within this context (Error 365)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

In some situations you are not allowed to unload a form or a control on a form. This error has the
following causes and solutions:

· There is an Unload statement in the Paint event for the form or for a control on the form that has
the Paint event.
Remove the Unload statement from the Paint event.

· There is an Unload statement in the Change, Click, or DropDown events of a ComboBox.
Remove the Unload statement from the event.

· There is an Unload statement in the Scroll event of an HScrollBar or VScrollBar control.
Remove the Unload statement from the event.

· There is an Unload statement in the Resize event of a Data, Form, MDIForm, or PictureBox
control.
Remove the Unload statement from the event.

· There is an Unload statement in the Resize event of an MDIForm that is trying to unload an MDI
child form.
Remove the Unload statement from the event.

· There is an Unload statement in the RePosition or Validate event of a Data control.
Remove the Unload statement from the event.

· There is an Unload statement in the ObjectMove event of an OLE Container control.
Remove the Unload statement from the event.

No MDI form available to load (Error 366)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

There is no MDIForm in your project to load. This error has the following cause and solution:

· You tried to load a form whose MDIChild property is set to True, but at run time there was no
MDIForm in your project to load.
Add a MDIForm to your project or change the MDIChild property setting to False.

The file 'item' is out of date. This program requires a newer version
(Error 368)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An ActiveX control was found to be out of date. This error has the following cause and solution:

· The number of properties in the current version of the ActiveX control doesn't match the number
expected.
Replace the ActiveX control with a newer version.

Invalid property value (Error 380)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An inappropriate value is assigned to a property. This error has the following cause and solution:

· You tried to set one of the properties of an object or control to a value outside its permissible range.
Change the property’s value to a valid setting. For example, the MousePointer property must be
set to an integer from 0 to 15 or 99.

Invalid property array index (Error 381)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An inappropriate property array index value is being used. This error has the following cause and
solution:

· You tried to set a property array index to a value outside its permissible range.
Change the index value of the property array to a valid setting. For example, the index value of the
List property for a ListBox must be from 0 to 32,766.

'Item' property cannot be set at run time (Error 382)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The property is read-only at run time. This error has the following cause and solution:

· You tried to set or change a property whose value can only be set at design time.
Remove the reference to the property from your code or change the reference to only return the
value of the property at run time.

'Item' property is read-only (Error 383)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The property is read-only at both design time and run time. This error has the following cause and
solution:

· You tried to set or change a property whose value can only be read.
Remove the reference to the property from your code or change the reference to only return the
value of the property at run time.

A form can't be moved or sized while minimized or maximized
(Error 384)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Left, Top, Height, and Width properties can't be changed on a minimized or maximized form.
This error has the following causes and solutions:

· You tried to use the Move method or change the Left, Top, Height, or Width of the form while it
was maximized or minimized.
Check the WindowState property of the form before using the Move method or prevent the user
from maximizing or minimizing the form.

· The Resize event occurred while the form was maximized or minimized and code in it tried to
change the Left, Top, Height, or Width of the form.
Rewrite the code in the Resize event procedure to check the WindowState property of the form
and exit the procedure if WindowState is 1 - Minimized or 2 - Maximized.

Must specify index when using property array (Error 385)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You must specify an index value when referring to a property array. This error has the following cause
and solution:

· You tried to refer to an element in a property array but omitted the index value specifying the
element.
Change your code to include the index value. For example, List1.List is invalid but
List1.List(3) is valid.

'Item' property can't be set on this control (Error 387)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The property’s setting can't be set at run time or can only be set under certain conditions. This error
has the following causes and solutions:

· You tried to change the Appearance, ControlBox, MinButton, or MaxButton property settings for
the form at run time.
You may only read these property values at run time.

· You tried to set the Visible property to False for the last remaining visible submenu on a parent
menu.
You can't have a parent menu with no visible submenu items.

Can't set Visible property from a parent menu (Error 388)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Visible property of a submenu item can’t be set from its parent's menu code. This error has the
following cause and solution:

· You tried to set the Visible property of a submenu item from a procedure associated with the
submenu item’s parent Menu.
Place the code reference to the submenu item’s Visible property in some other control’s or
object’s procedure.

Invalid key (Error 389)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The key that was pressed is invalid.

'Item' property cannot be read at run time (Error 393)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The property is only available at design time. This error has the following cause and solution:

· You tried to read a property at run time that is only accessible at design time.
Change your code and remove the reference to the property.

'Item' property is write-only (Error 394)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The property can’t be read. This error has the following cause and solution.

· A property can't be read; for example, ctl.property = 3 might be legal, but
"Print ctl.property" would generate this error.
Change your code and remove the reference to the property.

Cannot use separator bar as menu name for this control (Error 395)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A Menu caption that has submenus can't be changed to a separator bar. This error has the following
causes and solutions:

· At either design time or run time, you tried to change the Caption property on a parent or top-level
Menu to a separator bar.
Remove the dash character from the Caption text box in the Menu Editor dialog or the Caption
property in the Properties window, or change the reference in your code.

· At run time, you tried to change the Caption property on a Menu which is checked, disabled, or
has a shortcut key to a separator bar.
Change the reference in your code or read the setting of the Checked or Enabled properties
before trying to change the Caption property. You can't read the setting of the Shortcut property at
run time.

'Item' property cannot be set within a page (Error 396)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Certain properties of the Printer object can't be changed within a page. This error has the following
cause and solution:

· You tried to change the Height, Width, or PaperSize properties of the Printer object before
advancing the print job to the next page.
Use the NewPage method before changing the Height, Width, or PaperSize properties.

Can't load, unload, or set Visible property for top level menus while
they are merged (Error 397)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Visible property can't be set for a top-level menu while an ActiveX component's menu is merged
with a container form's menu. This error has the following cause and solution:

· You tried to change the Visible property of a top level menu while a Visual Basic container form's
menu and a linked or embedded ActiveX component's menu were sharing the same menu bar.
Test to ensure that menus are not merged before setting Visible for top-level menus.

Form already displayed; can't show modally (Error 400)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You can’t use the Show method to display a form as modal that is already visible. This error has the
following cause and solution:

· You tried to use Show, with the style argument set to 1 - vbModal, on an already visible form.
Use either the Unload statement or the Hide method on the form before trying to show it as a
modal form.

Can't show non-modal form when modal form is displayed (Error
401)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

When a modal form is displayed, you can’t display another non-modal form. This error has the
following cause and solution:

· You tried to use the Show method or set the Visible property to True on a non-modal form when
another form is already displayed as modal.
Use either the Unload statement or the Hide method on the modal form before attempting to use
the Show method on a non-modal form.

Must close or hide topmost modal form first (Error 402)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The modal form you are trying to close or hide isn't on top of the z-order. This error has the following
cause and solution:

· Another modal form is higher in the z-order than the modal form you tried to close or hide.
First use either the Unload statement or the Hide method on any modal form higher in the z-order.
A modal form is a form displayed by the Show method, with the style argument set to 1 - vbModal.

MDI forms cannot be shown modally (Error 403)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You may not set the modal option on an MDIForm. This error has the following cause and solution:

· You tried to use the Show method, with the style argument set to 1 - vbModal, on an MDI parent
form.
Remove the style argument reference from your code.

· You tried to compile an ActiveX DLL project that contains an MDIForm.
MDFforms cannot be put in DLLs. Remove the MDIForm from the project and then re-compile, or
change the Project Type from the Project Properties dialog box to Standard EXE and re-compile.

MDI child forms cannot be shown modally (Error 404)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You may not set the modal option on an MDI child form. This error has the following cause and
solution:

· You tried to use the Show method, with the style argument set to 1 - vbModal, on an MDI child
form.
Remove the style argument reference from your code.

Permission to use object denied (Error 419)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You don't have the necessary permissions for the specified object. This error has the following cause
and solution:

· You don't currently have the authority to access this object.
To change your permission assignments, see your system administrator or the object's creator.

Only one MDI Form allowed (Error 426)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A project can only have one MDIForm. This error has the following causes and solutions:

· You tried to load a file containing an MDIForm into a project that already has an MDIForm in it.
Remove the file containing the loaded MDIForm before loading another.

· You tried to load a second instance of an MDIForm created with a Dim or Set statement.
You can only create one instance of an MDIForm in a project.

Invalid object type; Menu control required (Error 427)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The first argument for the PopupMenu method must be a Menu control. This error has the following
cause and solution:

· You specified some object other than a Menu control as the menuname argument for the
PopupMenu method.
Use the name of a Menu control with at least one submenu as the menuname argument.

Popup menu must have at least one submenu (Error 428)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You have defined a pop-up menu with no submenus. This error has the following cause and solution:

· You specified a Menu control that doesn't have a submenu as the menuname argument for the
PopupMenu method.
Use the name of a Menu control with at least one submenu as the menuname argument.

License information for this component not found. You do not have
an appropriate license to use this functionality in the design
environment (Error 429)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You are not a licensed user of the ActiveX control. This error has the following cause and solution:

· You tried to place an ActiveX control on a form at design time or tried to add a form to a project with
an ActiveX control on it, but the associated information in the registry could not be found.
The information in the registry may have been deleted or become corrupted. Reinstall the ActiveX
control or contact the control vendor.

Invalid Clipboard format (Error 460)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The specified Clipboard format is incompatible with the method being executed. This error has the
following causes and solutions:

· You tried to use the clipboard's GetText or SetText method with a Clipboard format other than
vbCFText or vbCFLink.
Remove the invalid format and specify one of the two valid formats.

· You tried to use the clipboard's GetData or SetData method with a Clipboard format other than
vbCFBitmap, vbCFDIB, or vbCFMetafile.
Remove the invalid format and specify one of the three valid graphics formats.

· You tried to use the DataObject’s GetData or SetData method with a clipboard format in the range
reserved by Windows for registered formats (&HC000-&HFFFF), but that clipboard format has not
been registered with Windows.
Use a clipboard format recognized by Visual Basic, or a clipboard format which has been
registered with Windows through the Windows RegisterClipboardFormat API function.

Specified format doesn't match format of data (Error 461)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The specified Clipboard format is incompatible with the method being executed. This error has the
following causes and solutions:

· You tried to use the clipboard's GetText or SetText method with a Clipboard format other than
vbCFText or vbCFLink.
Before using these methods, use the GetFormat method to test if the current contents of the
Clipboard matches the specified format.

· You tried to use the clipboard's GetData or SetData method with a Clipboard format other than
vbCFBitmap, vbCFDIB, or vbCFMetafile.
Before using these methods, use the GetFormat method to test if the current contents of the
Clipboard matches the specified graphics format.

· You tried to use the DataObject’s GetData or SetData method with a clipboard format
inappropriate to the data, for instance, using vbCFDIB with a metafile.
Before using these methods, use the GetFormat method to test if the current contents of the
DataObject matches the specified data format.

Can't create AutoRedraw image (Error 480)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic can't create a persistent bitmap for automatic redraw of the form or picture. This error
has the following cause and solution:

· There isn't enough available memory for the AutoRedraw property to be set to True.
Set the AutoRedraw property to False and perform your own redraw in the Paint event procedure
or make the PictureBox control or Form object smaller and try the operation again with
AutoRedraw set to True.

Invalid picture (Error 481)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An invalid graphics format was assigned to the Picture property. This error has the following cause
and solution:

· You tried to assign a graphics format other than a bitmap, icon, or Windows metafile to the Picture
property of a form or control.
Ensure that the file you are trying to load into the Picture property is a valid graphics file supported
by Visual Basic.

Printer error (Error 482)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

There is some problem that prevents printing. This error has the following causes and solutions:

· You don't have a printer installed from the Windows Control Panel.
Open the Control Panel, double-click the Printers icon, and choose Add Printer to install a printer.

· Your printer isn't online.
Physically switch the printer online.

· Your printer is jammed or out of paper.
Physically correct the problem.

· You tried to print a form to a printer that can accept only text.
Switch to an installed printer that can print graphics.

Printer driver does not support specified property (Error 483)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The printer driver for the printer in use doesn't support this property of the Printer object. This error
has the following cause and solution:

· The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings
may all have the same effect. Settings outside the accepted range may or may not produce an
error.
For more information, see the manufacturer's documentation for the specific driver.

Problem getting printer information from the system. Make sure the
printer is set up correctly. (Error 484)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

There is some problem that prevents getting printer information from the system. This error has the
following causes and solutions:

· You don't have a printer installed from the Windows Control Panel.
Open the Control Panel, double-click the Printers icon, and choose Add Printer to install a printer.

· Your printer isn't online.
Physically switch the printer online.

· Your printer is jammed or out of paper.
Physically correct the problem.

Invalid picture type (Error 485)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The resource file picture format you tried to load doesn't match the specified property of the object.
This error has the following causes and solutions:

· You tried to use the LoadResPicture method to load a bitmap resource as the Icon property of a
Form.
Change the property of Form to the Picture property or change the format argument of
LoadResPicture to vbResIcon.

· You tried to use the LoadResPicture method to load a cursor resource as some property of an
object or control other than the MousePointer property.
Change the property reference to MousePointer.

Can't empty Clipboard (Error 520)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Clipboard was opened but could not be emptied. This error has the following cause and solution:

· Another application is using the Clipboard and will not release it to your application.
Set an error trap for this situation in your code and provide a message box with Retry and Cancel
buttons to allow the user to try again after a short pause.

Can't open Clipboard (Error 521)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Clipboard has already been opened by another application. This error has the following cause
and solution:

· Another application is using the Clipboard and will not release it to your application.
Set an error trap for this situation in your code and provide a message box with Retry and Cancel
buttons to allow the user to try again after a short pause.

The data binding DLL, 'item', could not be loaded. (Error 523)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Unable to load specified data binding DLL. Make sure the DLL is installed on your system.

'item' (Error 524)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgDAOSpecialErrorC;vbproBooksOnlineJumpTopic"}

The specified error has occurred in the Automation object currently running.

Data Access Error (Error 525)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A Data Access Object error has occurred that was not specifically trapped.

The given bookmark was invalid (Error 527)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You tried to set a bookmark to an invalid string. This error has the following causes and solutions:

· You set the Bookmark property to a string that wasn't saved after reading a record’s Bookmark
property.
Save the string before setting the Bookmark property to it.

· You set the Bookmark property to a string that was saved after reading a record’s Bookmark
property, but that record has since been deleted.
Test that the record with the saved Bookmark property still exists before trying to move to it.

Could not lock the database (Error 536)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The database file could not be locked. This error has the following causes and solutions:

· You tried to lock a table while opening it, but the table can't be locked because it is currently in use.
Wait a moment, and then try the operation again.

· You tried to lock a record that is currently locked by another user.
Wait for the other user to finish working with the record, and then try the operation again.

Could not lock the database (Error 541)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The database file could not be locked. This error has the following causes and solutions:

· You tried to lock a table while opening it, but the table can't be locked because it is currently in use.
Wait a moment, and then try the operation again.

· You tried to lock a record that is currently locked by another user.
Wait for the other user to finish working with the record, and then try the operation again.

The row has been deleted since the update was started (Error 542)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A record can’t be updated because it was previously deleted. This error has the following cause and
solution:

· Because the LockEdits property for the Recordset object was set to False (optimistic locking)
while the record was being edited, another user was able to delete the record before it could be
updated.
Set the LockEdits property to True (pessimistic locking).

Client Site not available (Error 398)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgClientSiteNotAvailableError398C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgClientSiteNotAvailableError398S"}

The User Control or User Document cannot retrieve information from its container. This error has the
following cause and solution:

· The User Control or User Document tried to get information from the container's Ambient
properties or its Extender object before the container attached to it. This can happen if you try to
access these objects before your InitProperties or ReadProperties events get fired, such as in the
Initialize event, or for some containers in the Terminate event.
To solve this problem, wait for an InitProperties or ReadProperties event before accessing these
objects.

You can't put a Default or Cancel button on a User Control unless
its DefaultCancel property is set (Error 399)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgYouCantPutDefaultOrCancelButtonOnUserControlUnlessItsDefaultCancelPropertyIsSetError399C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgYouCantPutDefaultOrCancelButtonOnUserControlUnlessItsDefaultCancelProper
tyIsSetError399S"}

You can't set a control's Default or Cancel property to True on a User Control unless the User
Control's DefaultCancel property is True. This error has the following causes and solutions:

· You tried to set the Default or Cancel property of a control contained by a User Control to True,
but the DefaultCancel property of the User Control was set to False.
Set the DefaultCancel property of the User Control to True. This allows the User Control to
participate in form wide Cancel/Default behavior.

Form not found (Error 424)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgFormNotFoundError424C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgFormNotFoundError424S"}

The form was not found. This error has the following cause and solution:

· You tried to add a form to the Forms collection using the Add method, but there is no form class of
that name. For example, Forms.Add "Form2", where Form2 doesn't exist.
Make sure that the class name is available to your project.

Unable to bind to field: 'item' (Error 545)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgUnableToBindToFielditemC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgUnableToBindToFielditemS"}

The control was unable to bind to the field specified by the DataField property. This error has the
following causes and solutions:

· The DataField property of the bound control was set to a field that is not in the record set provided
by the Data control.
Set the DataField property of the bound control to a valid field. At design time, you can get a list of
available fields by selecting the DataField property drop-down list from the Properties window. At
run time, use the Fields collection of the Data control's Recordset to get a list of fields.

· The RecordSource property of the Data control was changed and the Data control's Refresh
method was executed, but the DataField property of an associated bound control was not updated.
Set the DataField property of the bound control to a valid field. At design time, you can get a list of
available fields by selecting the DataField property drop-down list from the Properties window. At
run time, use the Fields collection of the Data control's Recordset to get a list of fields.

· The Recordset property of the Data control was set to a new Recordset and a bound control was
set to a field that is not in the record set provided by the Data control.
Set the DataField property of the bound control to a valid field. At design time, you can get a list of
available fields by selecting the DataField property drop-down list from the Properties window. At
run time, use the Fields collection of the Data control's Recordset to get a list of fields.

DataObject formats list may not be cleared or expanded outside of
the OLEStartDrag event (Error 672)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgDataObjectFormatsListMayNotBeClearedOrExpandedOutsideOfOLEStartDragEventError672C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgDataObjectFormatsListMayNotBeClearedOrExpandedOutsideOfOLEStartDragE
ventError672S"}

The DataObject formats list may not be cleared or expanded outside of the OLEStartDrag event. This
error has the following cause and solution:

· You tried to clear or expand the DataObject formats list with the SetData method in an event other
than the OLEStartDrag event. This is not supported. For example, you may have placed the code
Data.SetData [value], format, where format was not already supported by that data
object, in some event other than the OLEStartDrag event.
When expanding or clearing the DataObject formats list, make sure that you do it in the
OLEStartDrag event.

Expected at least one argument (Error 673)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgExpectedAtLeastOneArgumentError673C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgExpectedAtLeastOneArgumentError673S"}

The method expected at least one argument. This error has the following cause and solution:

· The user tried to call the DataObject.SetData method without any parameters.
Although both parameters are optional, you must call the DataObject.SetData method with at least
one parameter.

Recursive invocation of OLE drag and drop (Error 674)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgIllegalRecursiveInvocationOfOLEDragDropError674C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgIllegalRecursiveInvocationOfOLEDragDropError674S"}

There was an attempt to recursively invoke an OLE drag and drop operation. This error has the
following cause and solution:

· The user tried to invoke a new OLE drag and drop operation using the OLEDrag method while an
OLE drag and drop operation was currently in process. This is not allowed.
Don't use the OLEDrag method while an OLE drag and drop operation is in process.

Illegal parameter. Can't write arrays (Error 328)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgIllegalParameterCantWriteArraysError328C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgIllegalParameterCantWriteArraysError328S"}

An illegal parameter was passed to the method. This error has the following cause and solution:

· In the WriteProperties event of your User Control, you tried to do a PropBag.WriteProperty X,
where X is an array. This isn't supported.
You must write out each element of the array individually.

The ActiveX Designer's Type Information does not match what was
saved. Unable to Load (Error 370)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgTheActiveXDesignersTypeInformationDoesNotMatchWhatWasSavedUnableToLoadError370C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheActiveXDesignersTypeInformationDoesNotMatchWhatWasSavedUnableToLo
adError370S"}

An ActiveX Designer could not recreate the information that it saved, and won't be loaded. This error
has the following cause and solution:

· The most common reasons for this to occur are – a forms package designer might not be able to
load a control, a control might be missing a license, or a database designer might not be able to
find ODBC.
Re-install the ActiveX Designer to correctly register the designer, or contact the designer's vendor
for more information.

You can't put a Default or Cancel button on a Property Page (Error
379)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgYouCantPutDefaultOrCancelButtonOnPropertyPageError379C"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgYouCantPutDefaultOrCancelButtonOnPropertyPageError379S"}

A Default or Cancel button cannot be put on a Property Page. This error has the following causes and
solutions:

· You tried to set the Default or Cancel property of a control contained by a Property Page to True.
This is not allowed.
Property Pages already have Default/Cancel buttons on them and you're not allowed to override
them.

The specified object can't be used as an owner form for Show()
(Error 371)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheSpecifiedObjectCantBeUsedAsOwnerFormForShowError371C"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheSpecifiedObjectCantBeUsedAsOwnerFormForShowError371S"}

You specified an invalid object for the OwnerForm parameter of the Show method. This error has the
following cause and solution:

· You specified the OwnerForm parameter for the Show method but didn't specify a valid owner.
You must specify a valid Form, MDI Form, or ActiveX Designer for the OwnerForm parameter of
the Show method.

Unable to show modal form within this context (Error 405)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgUnableToShowModalFormWithinThisContextError405C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgUnableToShowModalFormWithinThisContextError405S"}

You tried to show a modal form that would cause the current form to be unloaded. This is not allowed.

Can't load (or register) ActiveX control: 'item' (Error 367)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantLoadorRegisterCustomControlError367C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCantLoadorRegisterCustomControlError367S"}

The specified ActiveX control cannot be loaded or registered. This error has the following cause and
solution:

· You tried to load a form but one of the ActiveX controls on the form is not registered correctly, and
its file cannot be located so it can't be auto-registered.
This error occurs in compiled projects. Make sure that you distribute all necessary files when
distributing your program to another user.

Control 'item' not found (Error 423)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgControlitemNotFoundError423C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgControlitemNotFoundError423S"}

Access to an invalid VBControl (or ControlTemplate) object. The control this object refers to may no
longer exist or may be in an invalid state.

Top-level or invalid menu specified as PopupMenu default (Error
490)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgToplevelOrInvalidMenuSpecifiedAsPopupMenuDefaultError490C"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgToplevelOrInvalidMenuSpecifiedAsPopupMenuDefaultError490S"}

You specified a default item in the PopupMenu method but that item was not a valid menu item.

The default item must be one of the items already listed in the menu.

Can't print form image to this type of printer (Error 486)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantPrintFormImageToThisTypeOfPrinterError486C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCantPrintFormImageToThisTypeOfPrinterError486S"}

The form cannot print to this type of printer. This error has the following cause:

· Your printer doesn't support RASTER capabilities or failed a StartPage during the printing of a
form.

Data value named 'item' not found (Error 327)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgDataValueNameditemNotFoundError327C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgDataValueNameditemNotFoundError327S"}

The specified data value could not be found. This error has the following cause and solution:

· In the ReadProperties event of a UserDocument or UserControl, you passed in the name of a
property to PropBag.ReadProperty that doesn't exist and you didn't specify a default value.
To avoid this error, verify that the specified property exists or use the optional default parameter for
the PropBag.ReadProperty.

Operation not valid in a DLL (Error 369)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgOperationNotValidInDLLError369C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgOperationNotValidInDLLError369S"}

Some operations are not valid in an ActiveX DLL or ActiveX Control project. This error has the
following causes:

· You set the LinkMode property of a form or control.
· You set or accessed the App.TaskVisible property.
· You set or accessed the App.OleRequestPendingTimeout property.
· You set or accessed the App.OleServerBusyRaiseError property.
· You set or accessed the App.OleServerBusyTimeout property.
· You set or accessed the App.OleServerBusyMsgTitle property.
· You set or accessed the App.OleServerBusyMsgText property.
· You set or accessed the App.OleRequestPendingMsgTitle property.
· You set or accessed the App.OleRequestPendingMsgText property.

For additional information, select the item in question and press F1.

Invalid object use (Error 425)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgInvalidObjectUseError425C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgInvalidObjectUseError425S"}

This error has the following causes and solution:

· You called the SetData or Clear methods of DataObject during an OLE drag-and-drop target
event (OLEDragOver or OLEDragDrop).

· You called the GetData method of DataObject during an OLE drag-and-drop source event
(OLEStartDrag, OLECompleteDrag, OLEGiveFeedback, OLESetData).

· You tried to reference a DataObject object outside of the event in which it was passed in.
· You tried to use the PropertyBag object outside of the ReadProperties and WriteProperties events

of a User Control.

In general, this error is caused by an illegal reference to an object. To solve the problem, remove the
reference to that object or try referencing it in a different part of your program.

PropertyName parameter conflicts with the PropertyName of an
AsyncRead in progress (Error 689)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgThePropertyNameConflictsWithAsyncReadInProgressC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgThePropertyNameConflictsWithAsyncReadInProgressS"}

You tried to execute the AsyncRead method with the same PropertyName of an AsyncRead that is
currently in progress. This error has the following cause:

· For example, if you do the following in the UserControl event:
AsyncRead "file:c:\winnt\winnt.bmp", vbAsyncTypePicture, "MyPicture"
AsyncRead "file:c:\winnt\winnt.bmp", vbAsyncTypePicture, "MyPicture"
You would get the error on the second AsyncRead method.

Can't find or load the required file urlmon.dll (Error 690)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantFindOrLoadUrlmondllC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCantFindOrLoadUrlmondllS"}

This error occurs if you try to call the AsyncRead method and don't have the urlmon.dll file. The
Setup Wizard distributes the urlmon.dll file when you distribute your application.

Verify that this file is available in the Windows SYSTEM or SYSTEM32 directory.

An unknown protocol was specified in Target parameter (Error 693)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgUNKNOWNPROTOCOLC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgUNKNOWNPROTOCOLS"}

You must specify a valid protocol in the target parameter for the AsyncRead method. This error has
the following cause and solution:

· You specified an invalid protocol in the target parameter for the AsyncRead method.

From a UserControl or UserDocument, you must specify a known value such as HTTP: or FILE: as
the prefix for the Target parameter of the AsyncRead method. For example,
"http://vbdocs/userdoc1.vbd" or "file:\\vbdocs\userdoc1.vbd".

Object server 'item' not correctly registered or not found (Error 339)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgObjectServeritemNotCorrectlyRegisteredOrNotFoundError339C"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgObjectServeritemNotCorrectlyRegisteredOrNotFoundError339S"}

This error has the following causes and solution:

· The specified file was moved or deleted.
· The specified file was incorrectly registered.

Reinstall the specified file to correctly register it. See the object's vendor for more information.

'item' cannot be set while loading (Error 378)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgitemCannotBeSetWhileLoadingError378C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgitemCannotBeSetWhileLoadingError378S"}

You cannot set the specified value while loading. This error has the following cause and solution:

· You tried to modify a property of the Extender object from a UserControl, but the value cannot be
changed while the container is loading. For example, you tried to change the Extender.Name
property in your ReadProperties event.
To solve this problem, move your code to an event that occurs later in the load process.

Non-modal forms cannot be displayed in this host application from
an ActiveX DLL (Error 406)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgNonmodalFormsCannotBeDisplayedInThisHostApplicationFromActiveXDLLError406C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgNonmodalFormsCannotBeDisplayedInThisHostApplicationFromActiveXDLLError
406S"}

Non-modal forms cannot be displayed from most host applications. This error has the following cause
and solution:

· You have code in your ActiveX DLL that displays a non-modal form.
If you need to display a modal form, change your project type to ActiveX EXE and rebuild your
project.

Non-intrinsic OLE drag and drop formats used with SetData require
Byte array data. GetData may return more bytes than were given to
SetData (Error 675)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgNonintrinsicOLEDragDropFormatsUsedWithSetDataRequireByteArrayDataGetDataMayReturnMoreBytesThanWe
reGivenToSetDataError675C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgNonintrinsicOLEDragDropFormatsUsedWithSetDataRequireByteArrayDataGetD
ataMayReturnMoreBytesThanWereGivenToSetDataError675S"}

You specified a non-intrinsic data format in the SetData method but didn't pass the data in a byte
array. Make sure to pass data to the SetData method in a byte array.

When retrieving the data, GetData may return more bytes (depending on the operating system) than
were actually passed in with SetData. The target should expect this and interpret the data in a
meaningful way.

Requested data was not supplied to the DataObject during the
OLESetData event (Error 676)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgDATANOTSETFORFORMATC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgDATANOTSETFORFORMATS"}

The requested data was not supplied to the DataObject during the OLESetData event. This error has
the following causes:

· The programmer specified a data format but did not specify the data itself during the OLEStartDrag
event and didn't handle the OLESetData event.

· The programmer specified a data format but did not specify the data itself during the OLEStartDrag
event and didn't provide the actual data during the OLESetData event (or else provided the data for
the wrong format).

Failure in AsyncRead (Error 688)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgASYNCREADFAILUREC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgASYNCREADFAILURES"}

A general error occurred during the AsyncRead method but no detailed information was returned.

One or more files in the project have changed. Do you wish to
save the changes now?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

One of the property settings or a code statement has changed for one or more of the files in the
project and the changes have not yet been saved. This is your last chance to save the changes
before loading another project.

Control must be same type as rest of array
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You attempted to give a control the same Name property setting as an existing control array of a
different type. All controls in a control array must be the same type.

Can't clear Index property without changing Name
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This control is part of a control array. If you want to delete its index value, which deletes it from the
control array, you must first rename it with a unique Name property setting.

Item' is a control name
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A control already has this name. A form can't have the same name as a control in the same project.

Menu item skipped a level
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Menu levels must be contiguous. Menus can be cascaded to five levels. An item at level 2 can open a
pop-up menu at level 3, and an item at level 3 can open a pop-up menu at level 4.

In the Menu Editor dialog, make sure menu items are indented only one level beyond the previous
level.

Menu control must have a name
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A menu item has been created without assigning a name to it. Unlike other controls in Visual Basic, a
Menu control requires you to assign names as the control is created, because Visual Basic doesn't
supply a default name for menu items.

Menu control array element must have an index
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An item has been added to a Menu control array without assigning an index value to the item. Unlike
other control arrays in Visual Basic, Menu control arrays require you to assign indices as the item is
created, because Visual Basic doesn't supply a default Index property setting for Menu control array
items.

Menu control array indexes must be in ascending order
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

An index value assigned to an item in a Menu control array is out of order with the other items. The
indices of a Menu control array don't have to be contiguous (for example, they could be 1, 3, and 5),
but they must be in ascending order according to their location on the menu. Get the next available
index number before assigning a number to the index.

Menu control array elements must be contiguous and within the
same submenu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You have tried to add an item to a Menu control array in which the other items in the array are
adjacent to the current item. The indices of the items in a Menu control array don't have to be
contiguous (for example, 2, 3, 4), but they must be in ascending order according to their location on
the menu. The items in a Menu control array, however, must be located next to each other within the
same menu or pop-up menu.

AccessKeyPress Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtAccessKeyPressEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtAccessKeyPressEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtAccessKeyPressEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtAccessKeyPressEventS"}

Occurs when the user of the control presses one of the control’s access keys, or when the Enter key
is pressed when the developer has set the Default property to True, or when the Escape key is
pressed when the developer has set the Cancel property to True. The Default property and the
Cancel property are enabled by the author of the control setting the DefaultCancel property to True.

Syntax
Sub object_AccessKeyPress(KeyAscii As Integer)
The AccessKeyPress event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
KeyAscii An integer that contains the Ascii value of the key (without the ALT) that caused the

AccessKeyPress event to fire, in the same manner as the standard KeyPress event.

Remarks

AccessKeys Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAccessKeysPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAccessKeysPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAccessKeysPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAccessKeysPropertyS"}

Returns or sets a string that contains the keys that will act as the access keys (or hot keys) for the
control.

Syntax
object.AccessKeys [= AccessKeyString]

The AccessKeys property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
AccessKeyString A string containing the keys that will act as the access keys.

Remarks
The AccessKeys property is a string that contains all the access keys for the control. As an
example, to set the letters S and Y as the access keys, the AccessKeys property would be set to
“sy”.

When a user presses one of the access keys in conjunction with the ALT key, the control will get the
focus (depending on the setting of the ForwardFocus property).

Access keys for constituent controls are implicitly included as AccessKeys, although they will not
appear in the AccessKeys property.

Alignable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAlignablePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAlignablePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAlignablePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAlignablePropertyS"}

Returns or sets a value determining if a control is alignable, and can use the extender Align property.
The Alignable property is read/write at the control’s authoring time, and not available at the control’s
run time.

Settings
The settings for Alignable are:

Setting Description
True The control is alignable; the container will add the Align property to the extender

object.
False The control is not alignable. This is the default value.

Remarks
The alignment of the control itself will be handled by the container; the author of the control can use
the Align extender property to decide how to redraw the control and arrange the constituent controls
in response to an alignment.

Not all containers support alignable controls. Error trapping should be used if you access the Align
extender property to determine how your control has been aligned.

AmbientProperties Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjAmbientObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjAmbientObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjAmbientObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjAmbientObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjAmbientObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjAmbientObjectS"}

An AmbientProperties object holds ambient information from a container to suggest behavior to
controls contained within the container.

Remarks
Containers provide ambient properties in order to suggest behavior to controls. As an example,
BackColor is one of the standard ambient properties; the container is suggesting what the well
behaved control should set its back color property to.

The AmbientProperties object’s properties are the ambient properties of the container. These
properties are read-only.

Some ambient properties are standard, while others are specific to certain containers. A control may
access non-standard ambient properties, but this will make the control container-specific. The
control should handle the case where an ambient property is not present in the current container.

When the control is compiled, Visual Basic has no way of knowing what container-specific ambient
properties may be available when the control is run; therefore references to container-specific
ambient properties will always be late bound.

The AmbientProperties object is not available when the Initialize event is raised; but is available
when the InitProperties event or ReadProperties event is raised.

The AmbientProperties object has several standard properties:

The BackColor property, a Color that contains the suggested interior color of the contained control.
The Visual Basic supplied default if the container does not support this property is 0x80000005: the
system color for a window background.

The DisplayAsDefault property, a Boolean that specifies if the control is the default control. The
Visual Basic supplied default if the container does not support this property is False.

The DisplayName property, a String containing the name that the control should display for itself.
The Visual Basic supplied default if the container does not support this property is an empty string: “”.

The Font property, a Font object that contains the suggested font information of the contained
control. The Visual Basic supplied default if the container does not support this property is MS Sans
Serif 8.

The ForeColor property, a Color that contains the suggested foreground color of the contained
control. The Visual Basic supplied default if the container does not support this property is
0x80000008: the system color for window text.

The LocaleID property, a Long that specifies the language and country of the user. The Visual
Basic supplied default if the container does not support this property is the current system locale ID.

The MessageReflect property, a Boolean that specifies if the container supports message
reflection. The Visual Basic supplied default if the container does not support this property is False.

The Palette property, a Picture object who’s palette specifies the suggested palette for the
contained control.

The ScaleUnits property, a String containing the name of the coordinate units being used by the
container. The Visual Basic supplied default if the container does not support this property is an
empty string: “”.

The ShowGrabHandles property, a Boolean that specifies if the container handles the showing of
grab handles. The Visual Basic supplied default if the container does not support this property is
True.

The ShowHatchings property, a Boolean that specifies if the container handles the showing of
hatching. The Visual Basic supplied default if the container does not support this property is True.

The SupportsMnemonics property, a Boolean that specifies if the container handles access keys
for the control. The Visual Basic supplied default if the container does not support this property is
False.

The TextAlign property, an enumeration that specifies how text is to be aligned. The Visual Basic
supplied default if the container does not support this property is 0 - General Align.

The UserMode property, a Boolean that specifies if the environment is in design mode or end user
mode. The Visual Basic supplied default if the container does not support this property is True.

The UIDead property, a Boolean that specifies if the User Interface is nonresponsive. The Visual
Basic supplied default if the container does not support this property is False.

Ambient Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAmbientPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAmbientPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAmbientPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAmbientPropertyS"}

Returns an AmbientProperties object holding the ambient properties of the container. The Ambient
property is not available at the control’s authoring time, and read-only at the control’s run time.

Syntax
object.Ambient
The Ambient property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks

AmbientChanged Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtAmbientChangedEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtAmbientChangedEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtAmbientChangedEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtAmbientChangedEventS"}

Occurs when an ambient property’s value changes.

Syntax
Sub object_AmbientChanged(PropertyName As String)
The AmbientChanged event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
PropertyName A string that identifies the ambient property that has changed.

Remarks
Using PropertyName, the control can access the AmbientProperties object in the Ambient property
to check for the new value of the changed ambient property.

If an instance of the control is placed on a Visual Basic form, and the FontTransparent property of
the form is changed, the AmbientChanged event will not be raised.

ApplyChanges Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtApplyChangesEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtApplyChangesEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtApplyChangesEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtApplyChangesEventS"}

Occurs when the user presses the OK button or the Apply button on the property page, or when
property pages are switched by selecting tabs.

Syntax
Sub object_ApplyChanges()
The ApplyChanges event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
When the ApplyChanges event is raised, the author of the property page needs to handle the setting
of all the new property values to the controls; hopefully the author kept track of which properties were
changed, otherwise all properties will have to be set. To know what controls are to be changed, use
the SelectedControls property.

The ApplyChanges event will be raised only if the Changed property is set to True.

AsyncRead Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAsyncReadC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAsyncReadX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAsyncReadA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAsyncReadS"}

Start the reading in of data by the container from a file or URL asychronously.

Syntax
object.AsyncRead Target, AsyncType [, PropertyName]

The AsyncRead method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
Target A string expression specifying the location of the data. This can be a path or a URL.
AsyncType An integer expression specifying how the data will be presented, as described in

Settings.
PropertyName An optional string expression specifying the name of the property to be loaded.

Settings
The settings for AsyncType are:

Setting Description
vbAsyncFile The data is provided in a file that is created by Visual Basic.
vbAsyncByte The data is provided as a byte array that contains the retrieved data. It is

assumed that the control author will know how to handle the data.
vbAsyncPicture The data is provided in a Picture object.

Remarks
Once the data that is requested by the AsyncRead method is available the AsyncReadComplete
event will be raised in the object. The asyncronous read may be canceled before it is completed by
calling the CancelAsyncRead method.

The PropertyName parameter can be any arbitrary name, since it’s only function is to act as an
identifier for this particular data request. The value in PropertyName is used to identify the particular
asychronous read to cancel in the CancelAsyncRead method, and the value in PropertyName is also
used to identify the particular asynchronous read that has completed in the AsyncReadComplete
event.

AsyncReadComplete Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtAsyncReadCompleteC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtAsyncReadCompleteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtAsyncReadCompleteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtAsyncReadCompleteS"}

Occurs when the container has completed an asychronous read request.

Syntax
Sub object_AsyncReadComplete(PropertyValue As AsyncProperty)
The AsyncReadComplete event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
PropertyValue An AsyncProperty object that contains the following properties:

Value A Variant containing the results of the asychronous read. This is the
default property.

PropertyName A string containing the property name that was passed in the
AsyncRead method.

AsyncType An integer specifying the type of the data in the Value property, as
described in Settings.

Settings
The settings for AsyncType are:

Setting Description
vbAsyncFile The Value property contains a string that is a path to a temporary file that

contains the data.
vbAsyncByte The Value property contains a byte array that contains the data.
vbAsyncPicture The Value property contains a picture object of the correct format.

Remarks
The value in PropertyName specifies the particular asychronous data read request that has
completed, and matches the value given in a previous AsyncRead method invocation.

Error handling code should be placed in the AsyncReadComplete event procedure, because an
error condition may have stopped the download. If this was the case, that error will be raised when
the the Value property of the AsyncProperty object is accessed.

BackStyle Property (UserControl Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBackStylePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBackStylePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBackStylePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBackStylePropertyS"}

Returns or sets a value indicating the type of the control’s background. The BackStyle property is
read/write at the control’s authoring time, and read-only at the control’s run time.

object.BackStyle [= enum]

The BackStyle property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
enum An enumerated value that determines how the background of the control will be

displayed, as described in Settings.

Settings
The settings for enum are:

Setting Description
0-Transparent Transparent background. Controls behind this control and the containing

form’s background will show through this control’s blank areas. The area of
the control’s display can then be divided into two areas: the portion that is part
of a constituent control, and the rest. This latter area of the control display
area cannot be drawn on, and the portions of controls that are placed on the
control by the developer or end user that fall into this latter area will also be
invisible. Mouse events that fall in this latter area will not be given to the
control, but rather to the underlying container.

1-Opaque Opaque background. This is the default.
2-TransparentPaint Transparent background. The difference between this option and 0-

Transparent is that controls behind this control and the containing form’s
background will show through this control’s blank areas, but the entire area of
this control can be drawn upon, controls placed on this control will not be
invisible, and all mouse events that fall within this control will be given to this
control.

Remarks

BorderStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBorderStylePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBorderStylePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBorderStylePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBorderStylePropertyS"}

Returns or sets a value indicating what the control’s border style is. The BorderStyle property is
read/write at the control’s authoring time, and read-only at the control’s run time.

object.BorderStyle [= enum]

The BorderStyle property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
enum An enumerated value that determines what the border style of the control is, as

described in Settings.

Settings
The settings for enum are:

Setting Description
0-None No border. This is the default value.
1-Fixed Single A single line is drawn around the control.

Remarks

CancelAsyncRead Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCancelAsyncReadC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthCancelAsyncReadX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthCancelAsyncReadA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCancelAsyncReadS"}

Cancel an asychronous data request.

Syntax
object.CancelAsyncRead [PropertyName]

The CancelAsyncRead method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
PropertyName An optional string expression specifying the name of the asychronous data request to

cancel.

Remarks
Only the asychronous data read request specified by PropertyName is canceled; all others continue
normally.

The value in PropertyName specifies the particular asychronous data read request to cancel, and
should match the value given in a previous AsyncRead method invocation. If PropertyName is not
given, then the last AsyncRead method invocation that did not give a PropertyName will be canceled.

CanGetFocus Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproCanGetFocusPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCanGetFocusPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCanGetFocusPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCanGetFocusPropertyS"}

Returns or sets a value determining if a control can receive focus. The CanGetFocus property is
read/write at the control’s authoring time, and not available at the control’s run time.

Settings
The settings for CanGetFocus are:

Setting Description
True The control can receive focus. If the control contains constituent controls, the control

itself will be unable to receive the focus unless none of its constituent controls can
receive the focus. It is up to the author of the control to write the code that draws a
focus rectangle on the control when it does receive focus. This is the default value.

False The control cannot receive focus.

Remarks
As long as the control contains at least one constituent control that has been set to receive the focus,
CanGetFocus cannot be set to False. If CanGetFocus is False, then no constituent control can be
set to receive the focus.

CanPropertyChange Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCanPropertyChangeMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthCanPropertyChangeMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthCanPropertyChangeMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCanPropertyChangeMethodS"}

Asks the container if a property bound to a data source can have its value changed. The
CanPropertyChange method is most useful if the property specified in PropertyName is bound to a
data source.

Syntax
object.CanPropertyChange PropertyName

The CanPropertyChange method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
PropertyName A string expression that represents a name of the property that the control is

requesting to change.

Return values
The possible return values for CanPropertyChange are:

Setting Description
True The property specified in PropertyName can be changed at this time.
False The property specified in PropertyName cannot be changed at this time; the container

has the bound data table open as read only. Do not set the property value; doing so
may cause errors in some control containers.

Remarks
The control should always call CanPropertyChange before changing the value of a property that can
be data-bound.

At present, CanPropertyChange always returns True in Visual Basic, even if the bound field is read-
only in the data source. Visual Basic doesn’t raise an error when the control attempts to change a
read-only field; it just doesn’t update the data source.
As an example, the following code shows how the CanPropertyChange method is used:
Public Property Let Address(ByVal cValue As String)
If CanPropertyChange("Address") Then

m_Address = cValue
PropertyChanged "Address"

End If
End Property

Changed Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproChangedPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproChangedPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproChangedPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproChangedPropertyS"}

Returns or sets a value indicating that a value of a property on a property page has changed. The
Changed property is not available at the property page’s authoring time, and read/write at the
property page’s run time.

Syntax
object.Changed [= boolean]

The Changed property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
boolean A boolean value that determines if a property on the property page has been changed,

making the property page dirty.

Settings
The settings for boolean are:

Setting Description
True The property page is now dirty, since a the value of a property on the page has been

changed.
False The property page is not dirty, and no properties on the page have had their value

changed.

Remarks
When the user changes the value of properties on a property page, these changes should not take
effect immediately; instead, the changes should be applied only if the user presses the Apply button,
the OK button, or changes property pages by selecting tabs. This allows the user to easily back out
of any changes that have been made to a property page.

The Changed property should be set to True, for example, when a user changes a property value on
a property page. Setting the Changed property to True would notify the property page to make
available the Apply button.

ContainedControls Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproContainedControlsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproContainedControlsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproContainedControlsPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproContainedControlsPropertyS"}

Returns a collection of the controls that were added to the control by the developer or the end user at
the control’s run-time. The ContainedControls property is not available at the control’s authoring
time, and read-only at the control’s run time.

Syntax
object.ContainedControls
The ContainedControls property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
The ContainedControls collection is filled with all the controls that were added to the control by the
developer or the end-user. The control can use the ContainedControls collection to perform
operations on any of these contained controls.

This collection functions in a similar manner to the Controls collection on a form.

In order to allow contained controls to be placed on the control, the ControlContainer property must
be True.

Contained controls cannot be added or removed through this ContainedControls collection; the
contained controls must be changed in whatever manner the container allows.

The ContainedControls property may not be supported by all containers, even though the container
may support the control having contained controls; Visual Basic forms do support this property. If
this property is not supported, then calls to the ContainedControls collection will cause errors; use
error handling when accessing the collection. Note, however, that if error handling is done while in
an event procedure such as the InitProperties event procedure or the ReadProperties event
procedure, the error handler cannot raise an error event.

The ContainedControls collection is not available when the Initialize event is raised; but is available
when the InitProperties event or ReadProperties event is raised.

Once the ContainedControls collection is present, it may not immediately contain references to the
controls a developer has placed on the control. For example, if the control is on a Visual Basic form,
the Count property of the ContainedControls collection will be zero until after the ReadProperties
event procedure has executed.

ControlContainer Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproControlContainerPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproControlContainerPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproControlContainerPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproControlContainerPropertyS"}

Returns or sets a value determining if a control can contain controls placed on it by the developer or
the end user at the control’s run time; in the same way the PictureBox control can contain other
controls. The ControlContainer property is read/write at the control’s authoring time, and not
available at the control’s run time.

Settings
The settings for ControlContainer are:

Setting Description
True The control can contain controls placed on it. If an instance of this control is placed on

a container that is not aware of ISimpleFrame, support of contained controls will be
disabled. The control will continue to work correctly in all other ways, but developers or
end users will be unable to place controls on an instance of this control.

False The control cannot contain controls placed on it. This is the default value.

Remarks
Contained control support does work on a Visual Basic form.

Contained controls placed on a control with a transparent background are only visible where their
location overlaps any constituent controls. Mouse events will be passed to the contained control only
if they occur where the contained control is visible.

DataBindings Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDataBindingsCollectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjDataBindingsCollectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDataBindingsCollectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDataBindingsCollectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDataBindingsCollectionE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDataBindingsCollectionS"}

The DataBindings collection is an extender property that collects the bindable properties that are
available to the developer and end-user.

Remarks
All bindable properties appear in the DataBindings collection at end user run time. At developer
design time (control run time), only properties marked “Show in DataBindings collection at design
time” will appear when the DataBindings property is accessed in the Properties window.

DefaultCancel Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDefaultCancelPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDefaulltCancelPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDefaultCancelPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDefaultCancelPropertyS"}

Returns or sets a value determining if a control can act as a standard command button. The
DefaultCancel property is read/write at the control’s authoring time, and not available at the control’s
run time.

Settings
The settings for DefaultCancel are:

Setting Description
True The control can act as a default or cancel command button. The container will add

the Default and Cancel properties to the extender object. The presence of the
Default and Cancel properties allow the control to act as a standard command button.
The control can then set these added extender properties.

False The control cannot act as a default or cancel command button. No constituent control
can have its Default or Cancel property set to True. This is the default value.

Remarks
Setting the Default property to True and also having a constituent control with its Default property set
to True will cause the constituent control to be pressed when the Enter key is pressed, otherwise the
control’s AccessKeyPress event will be raised when the Enter key is pressed.

Setting the Cancel property to True and also having a constituent control with its Cancel property set
to True will cause the constituent control to be pressed when the Escape key is pressed, otherwise
the control’s AccessKeyPress event will be raised when the Escape key is pressed.

Important The status of a default or cancel button can change at any time. Code must be placed in
the control’s AmbientChanged event procedure to detect changes in the DisplayAsDefault property,
and the control’s appearance adjusted accordingly.

DisplayAsDefault Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDisplayAsDefaultPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDisplayAsDefaultPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDisplayAsDefaultPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDisplayAsDefaultPropertyS"}

Returns a boolean value to determine if the control is the default button for the container, and
therefore should display itself as the default control.

Syntax
object.DisplayAsDefault
The DisplayAsDefault property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Settings
The possible boolean return values from the DisplayAsDefault property are:

Setting Description
True The control is the default button.
False The control is not the default button. If the container does not implement this ambient

property, this will be the default value.

Remarks
Only one control in a container may be the default control; the container of the control will determine
which control is currently the default control and notify that control through the DisplayAsDefault
ambient property. The notified control should draw itself to show it is the default control. All other
controls will have their DisplayAsDefault ambient property value be False.

Only button type controls may be default controls.

DisplayName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDisplayNamePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDisplayNamePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDisplayNamePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDisplayNamePropertyS"}

Returns a string value that contains the name the control should display to identify itself in error
messages.

Syntax
object.DisplayName
The DisplayName property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
This ambient property is the way the control finds out what the container (such as Visual Basic) is
calling this instance of the control. This string should be used in error messages as the name for the
instance of the control.

If the container does not implement this ambient property, the default value will be an empty string.

EditAtDesignTime Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproEditAtDesignTimePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproEditAtDesignTimePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproEditAtDesignTimePropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproEditAtDesignTimePropertyS"}

Returns or sets a value determining if a control can become active during the developer design time.
The EditAtDesignTime property is read/write at the control’s authoring time, and not available at the
control’s run time.

Settings
The settings for EditAtDesignTime are:

Setting Description
True Allows the control to become active at the developer design time. An Edit verb will

appear on the control’s context menu. When the developer who uses the control
chooses Edit, the control will become active and behave as it does at end user run
time.

False The control cannot become active at developer design time. This is the default value.

Remarks
The control will only remain active while it is selected. When the developer selects another control,
this control will no longer be active, even if the developer clicks back on this control. The developer
must select Edit again from the context menu to make the control active.

When the control is activated in this fashion, the events of the UserControl object will occur, so that
the control can operate normally, but the control will be unable to raise any events. The RaiseEvent
method will simply be ignored; it will not cause an error.

EditProperty Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtEditPropertyEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtEditPropertyEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtEditPropertyEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtEditPropertyEventS"}

Occurs when a property page is opened because of the developer pressing the ellipsis button to
display a particular property for editing.

Syntax
Sub object_EditProperty(PropertyName As String)
The EditProperty event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
PropertyName A string that identifies the property that is to be displayed and edited by the property

page.

Remarks
This event happens when a property is assigned a property page via the Attributes dialog box.
Assigning a property page through the Attributes dialog box means that the property is displayed in
the property window with an ellipsis (…) next to it, and the developer can press the ellipsis button and
the property page is automatically opened; the EditProperty event is then raised, so that the property
page author can put the cursor on the correct field.

EnterFocus Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtEnterFocusEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtEnterFocusEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtEnterFocusEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtEnterFocusEventS"}

Occurs when focus enters the object. The object itself could be receiving focus, or a constituent
control could be receiving focus.

Syntax
Sub object_EnterFocus()
The EnterFocus event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
This event is useful if object needs to know that the focus is now inside of it.

The EnterFocus event is raised before any GotFocus event; the GotFocus event will only be raised
in object or constituent control of object that actually got the focus.

EventsFrozen Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproEventsFrozenPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproEventsFrozenPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproEventsFrozenPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproEventsFrozenPropertyS"}

Returns a value indicating if the container is currently ignoring events being raised by the control.
The EventsFrozen property is not available at the control’s authoring time, and read-only at the
control’s run time.

Syntax
object.EventsFrozen
The EventsFrozen property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
When the EventsFrozen property is True, the container is ignoring any events that are being raised
by the control. If the control wants to raise an event that cannot be lost, it must queue them up until
EventsFrozen is False.

ExitFocus Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtExitFocusC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtExitFocusX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtExitFocusA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtExitFocustS"}

Occurs when focus leaves the object. The object itself could be losing focus, or a constituent control
could be losing focus.

Syntax
Sub object_ExitFocus()
The ExitFocus event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
This event is useful if object needs to know that the focus is now leaving it.

The ExitFocus event is raised after any LostFocus event; the LostFocus event will only be raised in
object or constituent control of object that actually loses the focus.

Extender Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjExtenderObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjExtenderObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjExtenderObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjExtenderObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjExtenderObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjExtenderObjectS"}

An Extender object holds properties of the control that are actually controlled by the container of the
control rather than by the control itself.

Remarks
Some properties of a control are provided by the container rather than the control; these are extender
properties. Examples of extender properties are: Name, Tag and Left. The control still needs to
know what the value of these extender properties are, and sometimes needs to be able to change an
extender property; the Extender object gives the control access to these properties.

Some extender properties are standard, while others are specific to certain containers. A control
may access non-standard extender properties, but this will make the control container-specific. If the
control makes use of an extender property, the control should handle the case where the extender
property is not supported by the current container.

When the control is compiled, Visual Basic has no way of knowing what extender properties may be
available when the control is run; therefore references to extender properties will always be late
bound.

The Extender object is not available when the Initialize event is raised; but is available when the
InitProperties event or ReadProperties event is raised.

The Extender object has several standard properties:

The Name property, a read only String that contains the user-defined name of the control.

The Visible property, a read/write Boolean that specifies if the control is visible or not.

The Parent property, a read only object that represents the container of the control, such as a form
in Visual Basic.

The Cancel property, a read only Boolean that indicates that the control is the default Cancel
button for the container.

The Default property, a read only Boolean that indicates that the control is the default button for the
container.

Visual Basic provides several more extender methods, properties and events; other containers are
not guaranteed to provide these extender methods, properties and events. These Visual Basic
specific extender methods, properties and events are:

The Container property, a read only object that represents the visual container of the control.

The DragIcon property, a read/write Picture that specifies the icon to use when the control is
dragged.

The DragMode property, a read/write Integer that specifies if the control will automatically drag, or if
the user of the control must call the Drag method.

The Enabled property, a read only Boolean that specifies if the control is enabled. This extender
property is not present unless the control also has an Enabled property with the correct procedure ID.
For additional information, refer to the topic “Allowing Your Controls to be Enabled and Disabled” in
Chapter 9: Building ActiveX Controls.

The Height property, a read/write Integer that specifies the height of the control in the container’s
scale units.

The HelpContextID property, a read/write Integer that specifies the context ID to use when the F1
key is pressed when the control has the focus.

The Index property, a read only Integer that specifies the position in a control array this instance of
the control occupies.

The Left property, a read/write Integer that specifies the position of the left edge of the control to
the left edge of the container, specified in the container’s scale units.

The TabIndex property, a read/write Integer that specifies the position of the control in the tab order
of the controls in the container.

The TabStop property, a read/write Boolean that specifies if Tab will stop on the control.

The Tag property, a read/write String that contains a user-defined value.

The ToolTipText property, a read/write String that contains the text to be displayed when the cursor
hovers over the control for more than a second.

The Top property, a read/write Integer that specifies the position of the top edge of the control to
the top edge of the container, specified in the container’s scale units.

The WhatThisHelpID property, a read/write Integer that specifies the context ID to use when the
What’s This pop-up is used on the control.

The Width property, a read/write Integer that specifies the width of the control in the container’s
scale units.

The Drag method, a method to begin, end, or cancel a drag operation of the control.

The Move method, a method to move the position of the control.

The SetFocus method, a method to set the focus to the control.

The ShowWhatsThis method, a method to display a selected topic in a Help file using the What's
This popup provided by Help.

The ZOrder method, a method to place the control at the front or back of the z-order within its
graphical level.

The DragDrop event, an event that is raised when another control on the form is dropped on this
control.

The DragOver event, an event that is raised when another control on the form is dragged over this
control.

The GotFocus event, an event that is raised when this control gets the focus.

The LostFocus event, an event that is raised when this control loses the focus.

Extender Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproExtenderPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproExtenderPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproExtenderPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproExtenderPropertyS"}

Returns the Extender object for this control that holds the properties of the control that are kept track
of by the container. The Extender property is not available at the control’s authoring time, and read-
only at the control’s run time.

Syntax
object.Extender
The Extender property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks

ForwardFocus Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproForwardFocusPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproForwardFocusPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproForwardFocusPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproForwardFocusPropertyS"}

Returns or sets a value determining which control receives focus when one of the access keys for the
control is pressed. The ForwardFocus property is read/write at the control’s authoring time, and not
available at the control’s run time.

Settings
The settings for ForwardFocus are:

Setting Description
True The next control in tab order will receive focus when one of the access keys for the

control is pressed.
False If the CanGetFocus property is true, the control itself will receive focus when one of

the access keys for the control is pressed. This is the default value.

Remarks
The ForwardFocus property allows the control to implement the behavior of a Label control that has
an access key.

Access keys are set through the AccessKeys property. When an access key in conjunction with the
ALT key is pressed, the control’s AccessKeyPress event is raised.

GoBack Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGoBackC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGoBackX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthGoBackA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGoBackS"}

Execute a hyperlink jump back in the history list.

Syntax
object.GoBack
The GoBack method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
If the object is in a container that supports OLE hyperlinking, then the container will jump to the
location that is back in the history list. If the object is in a container that does not support OLE
hyperlinking, then this method will raise an error.

GoForward Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGoForwardC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGoForwardX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthGoForwardA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGoForwardS"}

Execute a hyperlink jump forward in the history list.

Syntax
object.GoForward
The GoForward method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
If the object is in a container that supports OLE hyperlinking, then the container will jump to the
location that is forward in the history list. If the object is in a container that does not support OLE
hyperlinking, then this method will raise an error.

GotFocus Event (UserControl Object and UserDocument Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtGotFocusEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtGotFocusEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtGotFocusEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtGotFocusEventS"}

Occurs in the object or constituent control when focus enters it.

Syntax
Sub object_GotFocus()
The GotFocus event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
This GotFocus event is not the same GotFocus extender event that the developer who uses object
handles. This GotFocus event is for the author of object, and is internal to object.

This event is useful if object needs to know that the focus is now on it.

Object itself can get focus only when the CanGetFocus property is True and there are no constituent
controls that can receive the focus.

The EnterFocus event is raised before the GotFocus event.

Do not raise the GotFocus extender event from this event.

Hide Event (UserControl Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtHideEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtHideEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtHideEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtHideEventS"}

Occurs when the object’s Visible property changes to False.

Syntax
Sub object_Hide()
The Hide event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
In order to draw to the screen in Windows, any object must have a window, temporarily or
permanently; Visual Basic ActiveX controls have permanent windows. Before a control has been sited
on a form, its window is not on the container. The control receives Hide events when the window is
removed.

While the control’s window is on the form, the object receives a Hide event when the control’s Visible
property changes to False.

The control does not receive Hide events if the form is hidden and then shown again, or if the form is
minimized and then restored. The control’s window remains on the form during these operations, and
its Visible property doesn’t change.

If the control is being shown in an internet browser, a Hide event occurs when the page is moved to
the history list.

If the control is used with earlier versions of Visual Basic than 5.0, the control will not receive Hide
events at design time. This is because earlier versions of Visual Basic did not put any visible windows
on a form at design time.

Hide Event (UserDocument Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtHideEventUserDocumentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtHideEventUserDocumentX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtHideEventUserDocumentA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtHideEventUserDocumentS"}

Occurs when the object’s Visible property changes to False.

Syntax
Sub object_Hide()
The Hide event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
In order to draw to the screen in Windows, any object must have a window, temporarily or
permanently. Visual Basic ActiveX documents have permanent windows. The UserDocument object
receives Hide events when the window is removed.

While object’s window is on the container, object receives a Hide event when object’s Visible
property changes to False.

Object does not receive Hide events if the container is hidden and then shown again, or if the
container is minimized and then restored. Object’s window remains on the container during these
operations, and its Visible property doesn’t change.

If object is being shown in an internet browser, a Hide event occurs when the page is moved to the
history list by navigating off object to another document, or when Internet Explorer 3.0 is terminated
while object is being viewed or is still within the cache of active documents. Use the event to destroy
any global object references before navigating to another document.

If object is used with earlier versions of Visual Basic than 5.0, object will not receive Hide events at
design time. This is because earlier versions of Visual Basic did not put any visible windows on a form
at design time.

InitProperties Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtInitPropertiesEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtInitPropertiesEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtInitPropertiesEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtInitPropertiesEventS"}

Occurs when a new instance of an object is created.

Syntax
Sub object_InitProperties()
The InitProperties event syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
This event allows the author of the object to initialize a new instance of the object. This event occurs
only when a new instance of an object is being created; this is to allow the author of the object to
distinguish between creating a new instance of the object and loading an old instance of the object.

By putting in code to initialize new instances in the InitProperties event rather than the Initialize
event, the author can avoid cases where loading data through a ReadProperties event into an old
instance of the object will undo the initialization of the object.

InvisibleAtRuntime Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproInvisibleAtRuntimePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproInvisibleAtRuntimePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproInvisibleAtRuntimePropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproInvisibleAtRuntimePropertyS"}

Returns or sets a value determining if a control should not have a visible window at run time. The
InvisibleAtRuntime property is read/write at the control’s authoring time, and not available at the
control’s run time.

Settings
The settings for InvisibleAtRuntime are:

Setting Description
True Allows the control to not have a visible window at run time. The container of the

control may keep the control invisible during run time, like the Timer control. The
control is still active, and therefore the developer who uses the control can still write
programs that can interact with the control. There will be no Visible property in the
extender object.

False The control acts as a normal control at run time, where the state of the Visible
extender property determines the visibility of the control. This is the default value.

Remarks
Important Don’t use the Visible extender property to make the control invisible at run time. If you
do, the control will still have all the overhead of a visible control at run time. Furthermore, the extender
properties are available to the developer and end user, who may make the control visible.
Some containers may not support the InvisibleAtRuntime property; in this case the control will be
visible at run time.

Before creating a control that is invisible at run time, consider creating an ordinary object provided by
an in-process code component (ActiveX DLL) instead. Objects provided by in-process code
components require fewer resources than controls, even invisible controls. The only reason to
implement an invisible control is to take advantage of a feature that is only available to ActiveX
controls.

LocaleID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLocaleIDPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLocaleIDPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLocaleIDPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLocaleIDPropertyS"}

Returns a long value that contains the Locale identification (language and country) of the user.

Syntax
object.LocaleID
The LocaleID property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
The LocaleID ambient property contains identification of the language and country of the current
user. Using this identification, the control can modify its behavior and appearance to fit the language
and country. This could be as simple as having error notifications in the language of the user, to
more complex modifications of property, method, and event names in the language of the user.

If the container does not implement this ambient property, the default value will be the current System
LocaleID.

LostFocus Event (UserControl Object and UserDocument Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtLostFocusEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtLostFocusEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtLostFocusEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtLostFocusEventS"}

Occurs in the object or constituent control when focus leaves it.

Syntax
Sub object_LostFocus()
The LostFocus event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
This LostFocus event is not the same LostFocus extender event that the developer who uses object
handles. This LostFocus event is for the author of object, and is internal to object.

This event is useful if object needs to know that the focus is now on it.

Object itself can get focus only when the CanGetFocus property is True and there are no constituent
controls that can receive focus.

The LostFocus event is raised before the ExitFocus event.

MessageReflect Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMesageReflectPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMesageReflectPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMesageReflectPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMesageReflectPropertyS"}

Returns a boolean value stating whether the control container handles message reflection
automatically.

Syntax
object.MessageReflect
The MessageReflect property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Settings
The possible boolean return values from the MessageReflect property are:

Setting Description
True The container for the control will reflect messages.
False The container for the control cannot reflect messages. If the container does not

implement this ambient property, this will be the default value.

Remarks
When a control is subclassed, there are certain messages that are normally sent to the parent control.
Under normal conditions, these messages are actually reflected back to the sending control, so that
the control can handle its own message. This message reflection can be handled by the container,
which will reflect the messages back as events. The MessageReflect property tells if the container
for the control does message reflection.

If the control is ever placed in a container that does not reflect messages, the operation of the control
will be severely compromised; much of the operation of a control depends on reflected messages.

NavigateTo Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthNavigateToMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthNavigateToMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthNavigateToMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthNavigateToMethodS"}

Execute a hyperlink jump to the specified target.

Syntax
object.NavigateTo Target [, Location [, FrameName]]

The NavigateTo method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
Target A string expression specifying the location to jump to. This

can be a document or a URL.
Location A string expression specifying the location within the URL

specified in Target to jump to. If Location is not specified,
the default document will be jumped to.

FrameName A string expression specifying the frame within the URL
specified in Target to jump to. If FrameName is not
specified, the default frame will be jumped to.

Remarks
If the object is in a container that supports OLE hyperlinking, then the container will jump to the
specified location. If the object is in a container that does not support OLE hyperlinking, then an
application that is registered as supporting hyperlinking is started to handle the request.

If Target does not specify a valid location, an error is raised.

ParentControls Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproParentControlsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproParentControlsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproParentControlsPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproParentControlsPropertyS"}

Returns a collection of the other controls in the control’s container. The ParentControls property is
not available at the control’s authoring time, and read-only at the control’s run time.

Syntax
object.ParentControls
The ParentControls property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
In most cases, the container of the control will be a form; this collection functions in a similar manner
to the Controls collection on the form, but will also contain the form itself.

This collection is useful if the control wants to perform some action on the controls on the form; the
control can iterate through the collection.

Controls cannot be added or removed by the developer who uses the control through this collection;
the controls must be changed in whatever manner the container allows.

The contents of this collection is determined entirely by the container.

PropertyBag Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjPropertyBagObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjPropertyBagObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjPropertyBagObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjPropertyBagObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjPropertyBagObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjPropertyBagObjectS"}

A PropertyBag object holds information that is to be saved and restored across invocations of an
object.

Remarks
A PropertyBag object is passed into an object through the ReadProperties event and the
WriteProperties event in order to save and restore the state of the object. Using the methods of the
PropertyBag object, the object can read or write properties of itself. The ReadProperty method of
the PropertyBag object is used to read a value for a property, while the WriteProperty method of the
PropertyBag object is used to write a value of a property. The value of a property can itself be an
object; in that case the PropertyBag object will attempt to save it.

PropertyChanged Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthPropertyChangedMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthPropertyChangedMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthPropertyChangedMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthPropertyChangedMethodS"}

Notifies the container that a property’s value has been changed.

Syntax
object.PropertyChanged PropertyName

The PropertyChanged method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
PropertyName A string expression that represents a name of the property that the control has

changed the value of.

Remarks
By notifying the container that a property’s value has changed, the container can synchronize its
property window with the new values of the object’s properties. Also, the container would not know if
an instance of the object needed to be saved (through raising a WriteProperties event) unless the
container was notified that a property’s value had changed.

This method needs to be called, for example, when a user changes a property value on a property
page, or the object itself changes a property value. This method should also be called when a
databound property is modified; otherwise the data source will not be updated.

Properties that are available only at run time do not need to call the PropertyChanged method, unless
they can be data-bound.

As an example, the following code shows how the PropertyChanged method is used:
Public Property Let Address(ByVal cValue As String)
m_Address = cValue
PropertyChanged "Address"

End Property

PropertyPages Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPropertyPagesPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPropertyPagesPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPropertyPagesPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPropertyPagesPropertyS"}

Returns or sets a string that is the name of a property page that is associated with a control.

Syntax
object.PropertyPages(index) [= PropPageName]

The PropertyPages property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
index Index into the string array.
PropPageNameA string containing the name of a property page in the project.

Remarks
PropertyPages property is a string array containing the names of the property pages in the project
that are associated with this control. A property page may be added to the array by setting the last
item in the array (which is always empty). A property page may be deleted from the array by setting
that element in the array to an empty string.

The order of the names of property pages in the array determine the order in which pages appear in
the property page’s dialog box for the control.

Public Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPublicPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPublicPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPublicPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPublicPropertyS"}

Returns or sets a value determining if a control can be shared with other applications. The Public
property is read/write at the control’s authoring time, and not available at the control’s run time.

Settings
The settings for Public are:

Setting Description
True The control can be shared with other applications. This is the default for ActiveX

Control project types.
False The control cannot be shared with other applications. When the control is contained

in an ActiveX Control project, the control cannot be seen outside of the ActiveX Control
project. This means that other controls or other forms in the project can use the
control, but outside applications cannot. This is the only valid value for project types
other than ActiveX Control.

Remarks

ReadProperties Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtReadPropertiesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtReadPropertiesX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtReadPropertiesA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtReadPropertiesS"}

Occurs when loading an old instance of an object that has a saved state.

Syntax
Sub object_ReadProperties(pb As PropertyBag)
The ReadProperties event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
pb An object of the type PropertyBag class that contains the saved data to load.

Remarks
When this event occurs, the object author can load in the saved state from pb. This event occurs
after the Initialize event.

Always include error trapping when handling the ReadProperties event, to protect the control from
invalid property values that may have been entered by users editing the file containing the saved data
with text editors. However, you cannot raise an error in an event, so any error trapping in the
ReadProperties event procedure cannot include raising errors.

ReadProperty Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthReadPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthReadPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthReadPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthReadPropertyS"}

Returns a saved value from a PropertyBag class object.

Syntax
object.ReadProperty(DataName)
The ReadProperty method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
DataName A string expression that represents a data value in the property bag.

Remarks
The ReadProperty method will return the value of the saved data that is represented by the string
expression DataName. DataName should match the string expression that was used to store the
saved data value in the property bag.

ScaleUnits Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproScaleUnitsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproScaleUnitsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproScaleUnitsPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproScaleUnitsPropertyS"}

Returns a string value that is the name of the coordinate units being used by the container.

Syntax
object.ScaleUnits
The ScaleUnits property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
This string represents the coordinates used by the container of the control, such as “twips”. This
string can be used by the control as a units indicator when displaying coordinate values.

If the container does not implement this ambient property, the default value will be an empty string.

SelectedControls Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSelectedControlsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSelectedControlsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSelectedControlsPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelectedControlsPropertyS"}

Returns a collection that contains all the currently selected controls on the form. The
SelectedControls property is not available at the property page’s authoring time, and read-only at the
property page’s run time.

Syntax
object.SelectedControls
The SelectedControls property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
This collection is useful to a property page in determining which controls are currently selected, and
therefore which controls might need properties changed. Some containers only allow one control to
be selected at once; in that case SelectedControls will only contain one control. Other containers
allow more than one control to be selected at once; in that case there may be more than one control
selected, and the property page must iterate through the controls in the SelectedControls collection
and attempt to set the changed properties. Suitable error handling should be written to take care of
the cases when a particular control in the collection does not have the changed property, or when the
control raises an error when the property is set.

SelectionChanged Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtSelectionChangedEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtSelectionChangedEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtSelectionChangedEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtSelectionChangedsEventS"}

Occurs when the selection of controls on the form has changed.

Syntax
Sub object_SelectionChanged()
The SelectionChanged event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
The firing of this event notifies the property page that the selection of controls has changed, and
therefore the display of current property values may need to be updated. The SelectedControls
property should be read to find out the new set of selected controls.

The SelectionChanged event is also raised when the property page is first brought up for a control.

Show Event (UserControl Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtShowEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtShowEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtShowEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtShowEventS"}

Occurs when the object’s Visible property changes to True.

Syntax
Sub object_Show()
The Show event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
In order to draw to the screen in Windows, any object must have a window, temporarily or
permanently. Visual Basic ActiveX controls have permanent windows. Before a control has been sited
on a form, its window is not on the container. The control receives Show events when the window is
added.

While the control’s window is on the form, the control receives a Show event when the control’s
Visible property changes to True.

The control does not receive Show events if the form is hidden and then shown again, or if the form is
minimized and then restored. The control’s window remains on the form during these operations, and
its Visible property doesn’t change.

If the control is being shown in an internet browser, a Show event occurs if the user returns to the
page containing the control.

If the control is used with earlier versions of Visual Basic than 5.0, the control will not receive Show
events at design time. This is because earlier versions of Visual Basic did not put any visible windows
on a form at design time.

Show Event (UserDocument Object)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtShowEventUserDocumentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtShowEventUserDocumentX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtShowEventUserDocumentA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtShowEventUserDocumentS"}

Occurs when the object’s Visible property changes to True.

Syntax
Sub object_Show()
The Show event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Remarks
In order to draw to the screen in Windows, any object must have a window, temporarily or
permanently; Visual Basic ActiveX documents have permanent windows. Before object has been
sited on a form, its window is not on the container. The UserDocument object receives Show events
when the window is added.

While object’s window is on the container, object receives a Show event when object’s Visible
property changes to True.

Object does not receive Show events if the container is hidden and then shown again, or if the
container is minimized and then restored. Object’s window remains on the container during these
operations, and its Visible property doesn’t change.

If object is being shown in an internet browser, a Show event occurs when the user navigates to the
page.

If object is used with earlier versions of Visual Basic than 5.0, object will not receive Show events at
design time. This is because earlier versions of Visual Basic did not put any visible windows on a form
at design time.

ShowGrabHandles Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproShowGrabHandlesPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproShowGrabHandlesPropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproShowGrabHandlesPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproShowGrabHandlesPropertyS"}

Returns a boolean value stating whether the control should show grab handles.

Syntax
object.ShowGrabHandles
The ShowGrabHandles property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Settings
The possible boolean return values from the ShowGrabHandles property are:

Setting Description
True The control should show grab handles, if needed. If the container does not implement

this ambient property, this will be the default value.
False The control should not show grab handles.

Remarks
The default behavior for a control is to automatically show grab handles when the control is in a
container that is in design mode (the control’s run mode.) However, many containers do not want the
control to show grab handles, preferring to handle the indication of control sizing in another way. The
ShowGrabHandles property is how the container notifies the control of who is to display the sizing
indications.

Note that all known containers prefer to handle the indication of control sizing themselves, and
therefore set the ShowGrabHandles property to False. It is probably not necessary to actually
handle the case when ShowGrabHandles is True.

ShowHatching Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproShowHatchingPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproShowHatchingPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproShowHatchingPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproShowHatchingPropertyS"}

Returns a boolean value stating whether the control should show hatching around the control.

Syntax
object.ShowHatching
The ShowHatching property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Settings
The possible boolean return values from the ShowHatching property are:

Setting Description
True The control should show hatch marks, if needed. If the container does not implement

this ambient property, this will be the default value.
False The control should not show hatch marks.

Remarks
The default behavior for a control is to automatically show hatching when the control is in a container
that is in design mode (the control’s run mode) and the control is the one that has focus. However,
many containers do not want the control to show hatching, preferring to handle the indication of
control focus in another way. The ShowHatching property is how the container notifies the control
of who is to display the control focus indications.

Note that Visual Basic forms do not implement this ambient property, and therefore the
ShowHatching property is set to the default value of True when the control is placed in a Visual
Basic form. However, Visual Basic does not expect the control to actually do anything in response to
a ShowHatching value of True, therefore it is probably not necessary to actually handle the case
when ShowHatching is True.

SupportsMnemonics Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSupportsMnemonicsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSupportsMnemonicsPropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproSupportsMnemonicsPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproSupportsMnemonicsPropertyS"}

Returns a boolean value stating whether the control’s container handles access keys for the control.

Syntax
object.SupportsMnemonics
The SupportsMnemonics property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Settings
The possible boolean return values from the SupportsMnemonics property are:

Setting Description
True The container for the control does handle access keys.
False The container for the control does not handle access keys. If the container does not

implement this ambient property, this will be the default value.

Remarks
Most containers of controls are capable of handling all the processing of access keys for the controls
contained within the container. This includes figuring out which control is to be given a particular
access key. If a container is not capable of processing access keys, it is indicated with this
SupportsMnemonics property, and the control can take action, such as not displaying the underlined
character as an indication of keyboard accelerators.

TextAlign Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTextAlignPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTextAlignPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTextAlignPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTextAlignPropertyS"}

Returns an enumerated value of type TextAlignChoices stating what kind of text alignment the
container would like the control to do.

Syntax
object.TextAlign
The TextAlign property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Settings
The possible enumerated return values from the TextAlign property are:

Setting Description
0-General General alignment: text to the left, numbers to the right. If the container does not

implement this ambient property, this will be the default value.
1-Left Align to the left.
2-Center Align in the center.
3-Right Align to the right.
4-FillJustify Fill justify.

Remarks
This ambient property is the way that a container communicates to a contained control how to
perform justification; this is a hint from the container that the control may or may not choose to follow.

ToolboxBitmap Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproToolboxBitmapPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproToolboxBitmapPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproToolboxBitmapPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproToolboxBitmapPropertyS"}

Returns or sets a bitmap that will be used as the picture representation of the control in the toolbox.
The size of the space for the bitmap in the toolbox is 16x15 pixels; the bitmap specified by this
property will be scaled to these dimensions if necessary. The ToolboxBitmap property is read/write
at the control’s authoring time, and not available at the control’s run time.

Remarks
Important Do not assign an icon to the ToolboxBitmap property. Icons do not scale well to
Toolbox bitmap size.
Visual Basic automatically uses the class name of the control as the tool tip text when users hover the
mouse pointer over the icon in the Toolbox.

Tip When creating bitmaps, remember that for many forms of color-blindness, colors with the same
overall level of brightness will appear to be the same. You can avoid this by restricting the bitmap to
white, black, and shades of gray, or by careful color selection.

UIDead Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproUIDeadPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproUIDeadPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproUIDeadPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUIDeadPropertyS"}

Returns a boolean value indicating whether the control should be responsive to the user or not.

Syntax
object.UIDead
The UIDead property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Settings
The possible boolean return values from the UIDead property are:

Setting Description
True The control should not respond to the user.
False The control should respond to the user. If the container does not implement this

ambient property, this will be the default value.

Remarks
This property is typically used to indicate that the container is in break mode: during this mode, the
control should not respond to any user input. That is, the control should ignore mouse clicks and
keystrokes, and not change the mouse cursor even when the mouse is over the control window. A
container such as a Visual Basic form would set this flag to TRUE when the programmer stops the
program during execution—the container is not in design mode, yet not in run mode either; Visual
Basic simply wants the controls to be inoperative.

UserMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproUserModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproUserModePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproUserModePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUserModePropertyS"}

Returns a boolean value indicating whether the control is being used by a form designer or a form
user.

Syntax
object.UserMode
The UserMode property syntax has this part:

Part Description
object An object expression that evaluates to an object in the Applies To list.

Settings
The possible boolean return values from the UserMode property are:

Setting Description
True The control is currently being used by a form user. If the container does not

implement this ambient property, this will be the default value. In Visual Basic, this is
Run Mode.

False The control is currently being used by a form designer (the developer). In Visual
Basic, this is Design Mode.

Remarks

WriteProperties Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtWritePropertiesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtWritePropertiesX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtWritePropertiesA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtWritePropertiesS"}

Occurs when an instance of an object is to be saved. This event signals to the object that the state
of the object needs to be saved, so that the state can be restored later. In most cases, the state of the
object consists only of property values.

Syntax
Sub object_WriteProperties(pb As PropertyBag)
The WriteProperties event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
pb An object of the type PropertyBag class to write the data to.

Remarks
The author of object can have object save the state when the WriteProperties event occurs. The pb
property bag may be different from the pb that was passed to the most recent ReadProperties event.

The WriteProperties event may occur multiple times during the life of an instance of object.

WriteProperty Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthWritePropertyMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthWritePropertyMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthWritePropertyMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthWritePropertyMethodS"}

Writes a value to be saved to a PropertyBag class object.

Syntax
object.WriteProperty(DataName) = Value

The WriteProperty method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
DataName A string expression to represents the data value to be placed in the property bag.
Value The data value to save in the property bag.

Remarks
The WriteProperty method will write a data value in the property bag, and associate it with the string
value in DataName. This string value will be used to access the data value when the ReadProperty
method is called to retrieve a saved data value from the property bag.

Picture Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjPictureC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjPictureX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjPictureP;vbproPictureP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjPictureM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjPictureE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjPictureS"}

The Picture object enables you to manipulate bitmaps, icons, metafiles enhanced metafiles, GIF, and
JPEG images assigned to objects having a Picture property.

Syntax
Picture

Remarks
You frequently identify a Picture object using the Picture property of an object that displays graphics
(such as a Form object or a PictureBox control). If you have a PictureBox control named Picture1,
you can set one Picture object equal to another using the Set statement, as in the following example:
Dim X As Picture
Set X = LoadPicture("PARTY.BMP")
Set Picture1.Picture = X
You can use an array of Picture objects to keep a series of graphics in memory without needing a
form that contains multiple PictureBox or Image controls.

You can not create a Picture object using code like Dim X As New Picture. If you want to create
a Picture object, you must use the StdPicture object like this:
Dim X As New StdPicture

Handle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHandleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHandleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHandleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHandleS"}

Returns a handle to the graphic contained within a Picture object.

Syntax
object.Handle
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Value
The value returned by the Handle property depends on the current setting of the Type property as
shown in the following table:

Type Property Return Value
1 (Bitmap) An HBITMAP handle.
2 (Metafile) An HMETAFILE handle.
3 (Icon) An HICON or an HCURSOR handle.
4 (Enhanced Metafile) An HENHMETAFILE handle.

Remarks
The Handle property is useful when you need to pass a handle to a graphic as part of a call to a
function in a dynamic-link library (DLL) or the Windows API.

hPal Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbprohPalC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbprohPalX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbprohPalA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbprohPalS"}

Returns or sets a handle to the palette of a picture in a Picture object.

Syntax
object.hPal [= value]
The hPal property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value The handle to the palette for the picture (HPAL).

Remarks
The hPal property is useful when you need to pass a handle to a palette as part of a call to a function
in a dynamic-link library (DLL) or the Windows API.

Render Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRenderC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthRenderX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthRenderA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRenderS"}

Draws all or part of a source image to a destination object.

Syntax
object.Render(hdc, xdest, ydest, destwid, desthgt, xsrc, ysrc, srcwid, srchgt, wbounds)
The Render method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an object in

the Applies To list.
hdc Required. The handle to the destination object's device

context.
xdest Required. The x-coordinate of upper left corner of the drawing

region in the destination object. This coordinate is in the scale
units of the destination object.

ydest Required. The y-coordinate of upper left corner of the drawing
region in the destination object. This coordinate is in the scale
units of the destination object.

destwid Required. The width of drawing region in the destination
object, expressed in the scale units of the destination object.

desthgt Required. The height of drawing region in the destination
object, expressed in the scale units of the destination object.

xsrc Required. The x-coordinate of upper left corner of the drawing
region in the source object. This coordinate is in HIMETRIC
units.

ysrc Required. The y-coordinate of upper left corner of the drawing
region in the source object. This coordinate is in HIMETRIC
units.

srcwid Required. The width of drawing region in the source object,
expressed in HIMETRIC units.

srchgt Required. The height of drawing region in the source object,
expressed in HIMETRIC units.

wbounds Required. The world bounds of a metafile. This argument
should be passed a value of Null unless drawing to a metafile,
in which case the argument is passed a user-defined type
corresponding to a RECTL structure.

Remarks
The recommended way to paint part of a graphic into a destination is through the PaintPicture
method.

Setup Wizard
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbconSetupWizardOverviewC;vbproBooksOnlineJumpTopic"}

The Setup Wizard is a tool used with the Visual Basic Setup Toolkit that helps you create application
setup and distribution media. You can also use the Setup Wizard to create dependency (.dep) files.

Note The Setup Wizard is designed for Visual Basic developers and isn't a general Windows Setup
Tool.

Using the Microsoft Setup Wizard provides a number of options for the distribution of your application.
The Setup Wizard supports:

· Multiple floppy disks, and can split files that are too large to fit onto a single floppy.
· Copying your files to a hard disk directory for distribution over a network or on CD-ROM.
· Distribution of your application across the Internet using automatic code download from Microsoft

Internet Explorer, Version 3.0.

You can start the Setup Wizard by choosing either Application Setup Wizard from your Start menu or
Setupwiz.exe from \Setupkit\Kitfil32 directory where you installed Visual Basic.

Based on information you provide, the Setup Wizard creates a special Setup.lst file. This information
is then kept in the Vb5dep.ini file in your Windows directory.

Note The Setup Wizard is not a disk duplication tool. If you want to make copies of your master
distribution disks, use a disk copying application.

Note When you create a new project Visual Basic adds some controls to the Toolbox and a
reference to Data Access Objects (DAO). Setup Wizard recognizes the controls and references
whether or not you use them in your application. If controls that you have not used in your application
appear in the Confirm Dependencies step or if the Data Access step appears and you know you did
not add any references to Data Access, you should clear the unused files. Either remove the tools
and references manually from your source files or clear the checkbox for them in the file list.

Setup Wizard — Missing Dependencies
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbhowSetupWizardStep5C;vbproBooksOnlineJumpTopic"}

The Setup Wizard was unable to find dependency information for the files displayed in the list. Setup
Wizard looks for dependency information in the Vb5def.ini and/or in special dependency files (.dep)
that should exist for each EXE, OCX, and DLL in your application.

If an indicated file(s) comes from a third party, contact that party for dependency information or for the
necessary dependency files (.dep).

If one of the files in the list is a project that you created in Visual Basic, you can use the Setup Wizard
to create a dependency file for that project. Restart the Setup Wizard, select the project file (.vbp) for
this component, and choose the Generate Dependency File Only option. Continue through all the
steps to create the missing dependency file. Then, restart the Setup Wizard and try the current project
again.

If you are certain that a file in the list does not need additional information, select it making sure that a
check mark appears to the left of it. This will let the Setup Wizard know that this file has no
dependencies, and the particular file will not appear in this dialog on your machine in the future.

Note If you leave some files unchecked, a dialog appears asking if you want the Setup Wizard to
ignore the missing dependency information for this session. You can choose Yes and continue. You
can also select not to see the dialog box in the future when you have missing dependency files.

Wizard Options
Missing Dependency Files List Lists the files for which the Setup Wizard can find no dependency

files.
Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Finished!
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbhowSetupWizardStep8C;vbproBooksOnlineJumpTopic"}

The Setup Wizard has collected the information necessary to begin processing your distribution files.

The Setup Wizard notifies you when it has finished creating the distribution media.

Wizard Options
Save Template Displays the Save Template As dialog box where you can name and save your

template in a location of your choosing. A template is a way of saving the current settings so that
you can re-use them later. Load the template in the Select Project and Options step instead of a
project (.vbp) file when you are asked to select a project.

Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Disabled in this step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Remote Connection Details Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizRemoteActiveXComponentDetailsDialogC"}

Allows you to provide the settings necessary for the end user's machine to find and connect to a
remote server. When end users run the setup program, they will be required to provide any
information necessary for the connection that you did not enter here.

Dialog Box Options
Remote Support File Displays the name and path for the selected file. This is read-only, and is

there for your convenience so you can see what file you are working on.
Remote Transport

Distributed COM (DCOM) — Your application uses DCOM to access the component.
Remote Automation — Your application uses Remote Automation to access the component.

Connection Information Provides information needed to connect to the component across the
network.

Network Address — Lets you type the network address of the machine where the server
application will be installed. If you leave this field blank, your users will be asked for this information
when they execute setup.
Network Protocol — Displays a list of the network protocols from which you may choose. Available
only if you selected Remote Automation. If you leave this field blank, your users will be asked for
this information when they execute setup.

Authentication Available only if you chose Remote Automation. Required. For more information,
see RPC Security in your Windows NT documentation.

Safety Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSafetyDialogC"}

Lists the components and lets you mark selected components as safe for initialization and/or safe for
scripting. For Internet installations only. Making a component safe means that you claim it will not do
harm to the end user’s machine.

Warning By marking a component as safe for scripting or safe for initialization, you are
guaranteeing that your component can never corrupt or cause undesirable behavior on an end user’s
machine, even if used in a Web page that you yourself did not author. Marking a component as either
safe for scripting or safe for initialization may imply that you are accepting liability for this guarantee.

Note You must have your .cab files signed in order to take full advantage of these options. For
more information about .cab files, see the Programmer’s Guide.

Dialog Box Options
Components Lists the public UserControls, Classes, and/or UserDocuments within your ActiveX

control, ActiveX EXE, and ActiveX DLL project. Select the item you want to mark as safe, and then
select the appropriate option. You can select only one item at a time.

Note You must mark each item that you want to be safe. Repeat the process for each.

The selected component is:

Safe for initialization — Marks the component as safe for initialization. A control author should mark
a control as "Safe for initializing" if, and only if, the control will not forsake security when initialized
from any data, especially malicious data. This means the control will not produce any behavior that
a reasonable user would deem unacceptable in the context of that user's expectations of the
control's behavior. This is not a statement about the intentions of a control, but rather a promise
from the control author that the control is impervious to damage attempted by malicious data. For
example, a control marked "Safe for initializing" will not corrupt the end user's system regardless of
data passed to the component during initialization. For controls marked "Safe for initializing",
initialization data will not cause the control to create, change or delete arbitrary files, even
temporary ones, or change system settings using this control.
Safe for scripting — Marks the component as safe for scripting. A control author should mark a
control as "Safe for scripting" if, and only if, the control will not forsake security when scripted from
any script, especially malicious scripts. This means the control will not produce any behavior that a
reasonable user would deem unacceptable in the context of that user's expectations of the
control's behavior. This is not a statement about the intentions of a control, but rather a promise
from the control author that the control is impervious to damage attempted by malicious scripts. For
example, a control marked "Safe for scripting", will not corrupt the end user's system no matter
how it is scripted (how it is used programmatically in a Web page). For a control where users do
not expect information to be collected about themselves or their personal computer, the control
could not make such information available to a script. For controls marked "Safe for scripting",
scripts should not be able to create, change or delete arbitrary files, even temporary ones, or
change system settings using this control.

Note You can choose one or both of these options.

Help Displays help for the dialog box.
OK Accepts your selections and closes the dialog box.
Cancel Cancels your actions and closes the dialog box.

Setup Wizard — File Summary
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardFileSummaryC"}

Lists all the files you need to distribute with your application.

You should clear the checkbox of all files for which you do not have distribution rights. List in your
release notes the files whose checkboxes you cleared so that your users can be sure they have all
necessary files.

Wizard Options
File List Lists the files necessary for your application to function properly.
Add Adds a file(s) to the file list box. You can make multiple selections from the Add Files dialog

box.

You can add a file to the distribution list, even if it is not required by the application. However, you
cannot have duplicate filenames in this list even if they are located in different directories. If you try
to add a duplicate file, a message box will notify you of the error.

Note If the Setup Wizard cannot find dependency information in Vb5dep.ini or an
associated .dep file for the file you are trying to add, it displays a message box asking you if you
still want to include the file. If you choose to include the file anyway, any dependency information
needed by this file will not be included in the setup package and, as a result, your setup and
application may not work properly. You can choose not to see this message for this file in the
future.
If you know there are no dependencies, you can continue or you can return to the Select Project
and Options screen and create a dependency file for this file.

File Details Use to display file size, file date and time, and current and destination location for the
file you selected in the file list boxes. Version information is also displayed if available.

You can change the Installed Location for the selected file. However, changing the installed
location of a shared file or remote ActiveX server may adversely affect its functionality.
If you are creating a setup for downloading from the Internet, the Destination Directory option is not
available. Also, .vbl files can be downloaded from the Internet but are not registered. The end user
must register the files using RegEdit.

Caution Changing the shared file status or the Destination Directory of a shared file or remote
ActiveX server may adversely affect that component's capabilities and impair the removal of that
component later. For example, if the same shared ActiveX component is installed to two different
directories, the removal of one of them may result in removal of the registry information that makes
each of them accessible, rendering the remaining component inaccessible.

Summary Details Displays a dialog box listing the number of program and setup files, the total
number of files, the uncompressed bytes for each program and setup file, the total number of
uncompressed bytes, and the path to the setup target.

Dependency Of Indicates the file that is needed by the selected file.
Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — ActiveX Components
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardActiveXServersC"}

Provides you with the means for including additional ActiveX components in your project.

Note You may want to clear the checkbox for files that you know will already exist on the user's
machine. You must also clear the checkbox of any files for which you do not have distribution rights.
List in your release notes the files whose checkboxes you cleared in this screen so that users can be
sure they have all necessary files.

Wizard Options
ActiveX Components List Displays a list of ActiveX components created when the Setup Wizard

searched your project file (.vbp) and found references to ActiveX server components used in your
application.

Add Local Displays the Add Local dialog box where you can locate and choose ActiveX
components (*.dll, *.exe, *ocx) to the list of files to be distributed with your application. The Add
Local dialog box is an Open common dialog box.

Add Remote Displays the Add Remote dialog box where you can locate and choose Remote
ActiveX Components (*.vbr) to add to the list of files to be distributed with your application. The
Add Remote dialog box is an Open common dialog box.

Remote Details Displays the Remote Connection Details dialog box where you can select
Distributed COM (DCOM) or Remote Automation and add the network address, network protocol,
and authentication information needed in order for the remote ActiveX component to function
correctly.

File Details Displays the File Details dialog box where you can view information about your file.
Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Confirm Dependencies
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardConfirmDependenciesC"}

Allows you to confirm additional file dependencies found by the Setup Wizard. The Setup Wizard lists
any additional files, for example ActiveX controls used by or files referenced by your project.

Note You may want to clear the checkbox of any files that you know will already exist on the user's
machine. You must also clear the checkbox of any files for which you do not have distribution rights.
List in your release notes the files whose checkboxes you cleared so that users can be sure they
have all necessary files.

Note When you create a new project, Visual Basic adds some controls to the Toolbox and a
reference to Data Access Objects (DAO). Setup Wizard recognizes the controls and references
whether or not you use them in your application. If controls that you have not used in your application
appear in the Confirm Dependencies step or if the Data Access step appears and you know you did
not add any references to Data Access, you should clear the unused files. Either remove the tools
and references manually from your source files or clear the checkbox for them in the file list.

Wizard Options
File with dependencies list Lists the dependencies found for your application.
File Details Displays the File Details dialog box.
Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Data Access
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardDataAccessC"}

The Setup Wizard has determined that you are using Data Access Objects (DAO) and lets you select
any ISAM database format(s) you are using in your application. The appropriate ISAM engine files will
be included in your setup program. You can also specify the type of workspace, Jet or ODBCDirect,
that your application uses.

Note When you create a new project, Visual Basic adds some controls to the Toolbox and a
reference to Data Access Objects (DAO). Setup Wizard recognizes the controls and references
whether or not you use them in your application. If controls that you have not used in your application
appear in the Confirm Dependencies step or if the Data Access step appears and you know you did
not add any references to Data Access, you should clear the unused files. Either remove the tools
and references manually from your source files or clear the checkbox for them in the file list.

Wizard Options
Installable ISAM's Lists available ISAM database formats you want to include. When you select

one or more of these formats, a special file(s) is added to your distribution list that supports this
format.

What type of Workspaces are you using? Determines which components you ship with Data
Access Objects (DAO).

dbUseJet — Includes the Jet database files with your setup. If you choose any of the ISAM formats
listed in the Installable ISAMs list, dbUseJet is automatically selected and cannot be cleared
because, by using an ISAM (restrictive clause), you need to include the Jet engine files.
dbUseODBC — Includes the Remote Data Objects (RDO) files with your setup. If you use the
ODBCDirect features of Data Access Objects (DAO), select this option.

Note You cannot clear both of these options. You must have one or both of them selected to
proceed to the next step. If your application uses both the Jet engine and ODBCDirect, choose
both options. Jet and RDO will be included in your setup. If you do not access any data through the
Jet engine, and you use ODBCDirect exclusively, choose only dbUseODBC.

Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Distribution Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardDistributionMethodC"}

Allows you to choose the way you want to distribute your application.

Wizard Options
Floppy Disk Copies setup.exe and all of the setup files for your project onto floppy disks.
Single Directory Copies setup.exe and all of the setup files into a single directory from which your

users can run setup.
Disk Directories Creates multiple directories such as \Disk1, \Disk2, and \Disk3, and copies the

files into appropriate directories as if each directory represented a floppy disk in your setup. Your
users can run setup from \Disk1 or make floppies from the disk images.

· You should delete all subdirectories and files in the targeted directory using the Windows
Explorer or File Manager before continuing. Setup Wizard does not do this for you.

· You cannot choose the root drive of a network or local drive unless it is a floppy drive.

Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Floppy Disk
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardFloppyDiskC"}

Gathers information about the local destination and disk size for an application that you want to
distribute on floppy disks.

Wizard Options
Floppy Drive Lists only the disk drives that appear on the current machine.
Disk Size Lists the available disk sizes.
Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Internet Distribution Location
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardInternetDistributionLocationC"}

Gathers information about the directory where you want the Setup Wizard to place the Cabinet (.cab)
file it creates, HTML sample code, any documentation, and additional files, and where it should create
the \Support sub-directory.

Note You have to copy the .cab files from this directory to your web site.

Note The generated .cab file will not contain all of the runtime support files required to run your
component. The .cab file contains an .inf file which points to the required runtime components and
downloads them only as necessary. For example, it will download vbrun500.cab. The runtime .cab
files are available on the Microsoft Web site and may be automatically downloaded from there, or can
be moved to a location within your intranet. The benefit of this approach is that the Setup Wizard-
generated .cab file downloads faster if it does not contain all of the support files that may already exist
on the end user's machine.

The Setup Wizard creates .cab files from ActiveX Control projects and ActiveX EXE and ActiveX DLL
projects that have public classes. This includes projects that contain UserDocuments. The .cab files
can be automatically downloaded, expanded, and installed by Microsoft Internet Explorer, version 3.0,
when referenced from an HTML page using the CODEBASE tag.

Setup Wizard does the following:

· Creates a .cab file for the project's components, leaving additional space to let you digitally sign
your .cab files. This file will be in the directory you specify. For more information on digitally
signing see the ActiveX SDK.

· Creates an .inf file, used within the .cab file, which describes how to download and register the
project's components and describes where and how to download other .cab files containing the
VB runtime, VB supplied ActiveX controls, and other runtime components such as DAO.

· Creates a sample HTML template which includes the OBJECT and CODEBASE tags for the
given component.

· Creates a subdirectory off of the user-specified directory (\Support) which contains all of the
components (namely the .inf and .ddf files) built into the .cab so users can make modifications
and regenerate the .cab file on their own if necessary.

· Provides means for specifying that components are Safe for Scripting and Safe for Initialization.
Places appropriate information into the .inf file so that registry information will be written during
the installation process.

Setup Wizard does not automatically create the .lpk files that are needed if your component requires
licensing. You can use LPK_tool.exe in the \Tools directory on your Visual Basic CD to do this.

Note If you try to place files in a directory that is not empty, Setup Wizard tells you that there are
files and/or subdirectories in that directory. You will be asked if you want to continue. If you choose
Yes to continue, Setup Wizard will place the files in that location. Even if you are creating multiple
disks, the files with the same name will be overwritten, but other existing files will not be automatically
deleted. It is recommended that you delete the contents of the directory before proceeding.

Wizard Options
Destination Lists the destination of the directory where you want the installation files to be placed.

First you select the drive where you want your files placed. Then you select the specific directory. If
the directory does not exist, Setup Wizard will ask you if you want to create one. The last box
allows you to see the tree structure of your path.

Note Use the directory list box to change the path by double-clicking on the drive or folder where
you want the files to go.

Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Introduction
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardIntroductionC"}

Helps you create a setup a program and/or dependency files for your application.

Wizard Options
Skip this screen in the future When selected, the Setup Wizard will not show the Introduction

screen the next time you start it.

If you want to see this screen in the future, click the Back button on the first step of the wizard.

Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Disabled in this step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Out of Date Dependencies
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardOutOfDateDependenciesC"}

Lists the file whose dependency location contains information that thinks the file is out of date. For
example, it lists a file whose information in the dependency file for a file that is older than the current
file. The Setup Wizard uses version information to determine this. If version information cannot be
found, the Setup Wizard uses the date of the file in the format mm/dd/yyyy H/mm/ss to evaluate for
out of date dependencies.

Note The version information in the dependent file must be an exact match. Either older or newer
versions are considered out of date. When the Setup Wizard uses the date information, the newer
date is used for the match.

Having out of date dependency information can cause setup and your application not to work
correctly. If you choose not to rebuild files with out of date dependencies, a dialog box appears asking
you to confirm that you want the Setup Wizard to continue even though the dependency information is
out of date. You can also choose not to see the dialog box in the future.

Note If you see this dialog, one or more dependency files (.dep) are out of date with respect to a
component in the list. This means that the component is newer than the version recorded in the
dependency file. Since it is possible for the component's set of dependency information to have
changed since the dependency file was created, the Setup Wizard cannot be certain that this
dependency information is correct.

If the indicated file(s) comes from a third party, contact that party for updated dependency files (.dep).

If the indicated file(s) is a Visual Basic component that you created, restart the Setup Wizard, select
the project file for this component and the Generate Dependency File Only option, and continue
through all the steps to create the out-of-date dependency file. Then, restart the Setup Wizard and try
the current project again.

Wizard Options
Files With Out of Date Dependencies List Lists the files that have dependency information that is

out of date.
Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Select Project and Options
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardSelectProjectOptionsC"}

Allows you to choose the Visual Basic project (.vbp) file of, or Setup Wizard template (.swt) file for, the
application that you want to distribute and lets you choose to create a setup program – with or without
a dependency file –, an Internet download setup, or a dependency file only. The Setup Wizard reads
the .vbp and source files for information on which objects, references, resources, dynamic-link
libraries, and so forth need to be included in the distribution files, as well as the location of your .exe
or .dll file.

Tip It is good development practice to always provide a dependency (.dep) file with your application
if it is a shared component such as an ActiveX control or ActiveX component, even if the dependency
file simply indicates that there are no dependencies for the component other than the Microsoft Visual
Basic runtime files.

Wizard Options
Project Location Lets you type the name of the project file you want to distribute and its location

on your machine. If the executable (.exe, .dll, or .ocx) file doesn't exist for the specified application,
the Setup Wizard automatically builds it.

Browse Displays the standard Open common dialog box where you can locate and choose the
project file of the application that you want to build. The selected filename is automatically inserted
in the Project Location field.

Rebuild the Project When selected, forces a rebuild of the project's .exe, .dll. or .ocx file whether
or not Setup Wizard finds an existing .exe, .dll, .ocx file for your project.

Choose this option if you want to rebuild before distributing your application. It is selected by
default and it is recommended that you leave it selected.

Note You must build your project and save the project file at least once before using the Setup
Wizard. Not doing so may cause Setup Wizard to fail and your setup distribution may not work
properly.

Options

· Create a Setup Program

Generate Dependency File — Generates a file that contains dependency information and
includes it in the setup.
Dependency files are used for any object of an .ocx, .dll, or .exe, ActiveX component, or a
project that could be used as a component in other projects.
The default install location for the .dep files is the same directory as the install location of
the .ocx. You can change the install location for the .dep in the File Details dialog box from the
File Summary step.

Note Changing the location of the .dep file may prevent Setup Wizard from finding it when it is
part of a subsequent Setup Wizard session on a project using this component.
Note You cannot have two files with the same base name that require dependency files. Each
file must have a unique dependency file and by default the dependency file uses the same name
as the file, but adds to it the .dep extension.

· Create Internet Download Setup — Allows you to create an Internet download setup for only
ActiveX Control projects and ActiveX EXE, and ActiveX DLL projects that have public classes,
including projects that contain UserDocuments. Not available in the Visual Basic Learning Edition.

Note When you select this option, a What's New button appears. Clicking What's New displays
a Microsoft Web page where you can view and download current information on Internet download.

· Generate Dependency File Only — Generates a dependency file with the same name as your

project and a .dep extension, and places it in the same directory as your project.

To correctly create the dependency file, you must provide accurate information (as if you were
actually creating a setup for the application) for all of the remaining steps of the Setup Wizard. The
dependency file will contain dependency information, for example, dependent files, their
destinations, and their versions, necessary to install the project as part of another application.

What's New Takes you to the Microsoft Web site where you can browse for additional information
about the Internet download.

Only available if you chose Create Internet Download Setup.

Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Shared ActiveX Application
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardSharedActiveXApplicationC"}

Determines whether to distribute your application as a separate application in its own directory on the
end user’s machine, or as a shared ActiveX component. If installed as a shared ActiveX component,
this step allows you to determine whether this component will be installed onto a remote server
machine accessed through Remote Automation.

Wizard Options
Install as a stand-alone application Installs the file as a stand-alone file into the application

directory that the end user will specify.
Install as a shared component Installs the component as a shared ActiveX component into the \

Windows\System directory. This is the default.
Will this shared component be installed on a remote server and accessed through Remote

Automation?

Yes — Application is installed on a remote server and accessed through Remote Automation.
No — Application is not accessed through Remote Automation. If your application is accessed
remotely through Distributed COM (DCOM), you should select No.

Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Single Directory
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardSingleDirectoryC"}

Gathers information the Setup Wizard needs to create a setup program that can be installed from a
single directory.

Note If you try to place files in a directory that is not empty, Setup Wizard tells you that there are
files and/or subdirectories in that directory. You will be asked if you want to continue. If you choose
Yes to continue, Setup Wizard will place the files in that location but will not delete any files. Files with
the same name will be overwritten. You will have to delete other files yourself if you want to remove
them.

Wizard Options
Destination Lists the destination of the directory where you want to place the setup program and

installation files. First you select the drive where you want your files placed. Then you type in the
specific directory. If the directory does not exist, Setup Wizard will ask you if you want to create
one. The last box allows you to see the structure of your path.
Note Use the directory list box to change the path by double-clicking on the drive or folder you
want to use as your destination.

Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Setup Wizard — Multiple Directories
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetUpWizardMultipleDirectoriesC"}

Gathers information the Setup Wizard needs to create a setup program that can be installed from
multiple directories, or that can be copied from these directories to multiple floppy disks.

Note If you try to place files in a directory that is not empty, Setup Wizard tells you that there are
files and/or subdirectories in that directory. You will be asked if you want to continue. If you choose
Yes to continue, Setup Wizard will place the files in that location but will not delete any files. Files with
the same name will be overwritten. You will have to delete other files yourself if you want to remove
them.

Wizard Options
Destination Lists the destination of the directory where you want to install the application. First you

select the drive where you want your files placed. Then you type in the specific directory. If the
directory does not exist, Setup Wizard will ask you if you want to create one. The last box allows
you to see the tree structure of your path.

Note You can use the directory list box to change the path by double-clicking on the drive or
folder you want to use as your destination.

Disk Size Lists the available disk sizes.
Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

INF File
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizINFFileC"}

Lists the components required for installing the ActiveX components on your user's machine. The .inf
file contains:

· A list of all file dependencies needed for Internet download setup.
· A list of linked .cab files and their locations.
· Version information.
· Class IDs for components.
· Platform specific information.
· Destination directory specifics.
· Registry information for writing Safe for Initialization and Scripting entries.

Confirm Missing Dependencies Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizConfirmMissingDependenciesDialogBoxC"}

Confirms that you really do want to ignore the missing dependencies.

Dialog Box Options
Yes Tells the Setup Wizard that you do want to proceed without the missing dependencies. Any

additional files that may be needed may not be installed. If you choose Yes, any additional files that
may be needed by the unselected files will not be installed. This may result in setup and your
application not functioning properly.

If you are certain that a particular file does not have any dependencies and does not need to be
registered in the system registry to function correctly, you should choose No.
If the indicated file(s) comes from a third party, contact that party for dependency information or for
the necessary dependency files (.dep).
If the indicated file(s) is a Visual Basic component that you created, restart the Setup Wizard,
select the project file for this component and the Generate Dependency File Only option, and
continue through all the steps to create the missing dependency file. Then, restart the Setup
Wizard and try the current project again.

No Tells the Setup Wizard that you want to correct the missing dependencies.
Do not show this dialog again When selected, this dialog never appears again.

Confirm Out of Date Dependencies Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizConfirmOutOfDateDependenciesDialogBoxC"}

Confirms that you really do want to ignore the dependency information that is out of date.

Dialog Box Options
Yes Tells the Setup Wizard that you do want to proceed with the out of date dependency

information.

If you choose Yes, Setup Wizard attempts to use the out of date dependency information to build
your setup program. This may mean that needed files will not be installed. As a result, setup and
your application may not function properly.
If you are certain that the out of date dependency file contains the correct dependency information,
choose Yes and continue.
If the indicated file(s) comes from a third party, contact that party for dependency information or for
the necessary dependency files (.dep).
If the indicated file(s) is a Visual Basic component that you created, restart the Setup Wizard,
select the project file for this component and the Generate Dependency File Only option, and
continue through all the steps to create the missing dependency file. Then, restart the Setup
Wizard and try the current project again.

No Tells the Setup Wizard that you do not want to proceed but want to update the dependency
information. This is the recommended choice.

Do not show this dialog again When selected, this dialog never appears again.

File Details for ActiveX Server Component Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizFileDetailsForActiveXServerDialogBoxC"}

Displays the following information about your ActiveX server component:

· File information such as the file size and date it was created.
· Installation information is not available at this time because it has not been determined yet.
· Version information such as your company name, a description of the file, the version number,

legal copyrights and trademarks, the product name and the product version number. The version
information is displayed only when Setup Wizard can find it in the selected file.

OK Closes the dialog box.
Help Displays the help topic for this dialog. You can also press F1 for help.

File Details for Confirm Dependencies Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizFileDetailsForConfirmDepsDialogBoxC"}

Displays the following information for the dependencies:

· File information such as the file size and date it was created.
· Installation information is not available at this time because it has not been determined yet.
· Version information such as your company name, a description of the file, the version number,

legal copyrights and trademarks, the product name and the product version number. The version
information is displayed only when Setup Wizard can find it in the selected file.

OK Closes the dialog box.
Help Displays the help topic for this dialog. You can also press F1 for help.

File Details for File Summary Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizFileDetailsForFileSummaryDialogBoxC"}

Displays the following information for the selected file and allows you to change the installation
information.

File information File size and date the file was created.

Installation information
Not available if you are creating an Internet Download setup.

Destination Directory — You can type or choose the directory where this file will be installed on the
end user's machine.

Note If you are creating a setup for downloading from the Internet, the Destination Directory option
is not available.

The format for the destination directory starts with a predefined macro and has optional
subdirectories. For example, if the Program Files directory is located at C:\Program Files, you could
type

$(ProgramFiles)\MyCompany\MyApplication

to install the program files into the C:\Program Files\MyCompany\MyApplication directory. You can
choose to enter an absolute path and ignore the pre-defined macros, but it is not recommended that
you do so.

Install as a shared file — Indicates whether or not to install the file as a system shared component.
If selected, the file will be removed only when the last program to use this file is uninstalled.
Register contained license information on the end user's machine. — Available only if the file is a
Visual Basic ActiveX control license file (.vbl). If selected, the license information contained in the
file will be registered on the end user’s machine. A .vbl file is created by Visual Basic for ActiveX
control projects if you selected the Require License Key option on the General tab of the Project
Properties dialog box.

Note If you have a Visual Basic license file (.vbl), Setup Wizard adds an option, Do not install
this file, to the Destination Directory list and selects it by default. The license file is registered but
not installed on the end user's machine. You can override the default and force the file to be
installed by changing the Destination Directory. Generally, you want the user to have the license
file registered, but not installed on the machine, so that the user can use controls in an application
and distribute the application with only the runtime version of the controls. The end user can
register the .vbl files using RegEdit.

Version information Your company name, a description of the file, the version number, legal
copyrights and trademarks, the product name and the product version number. The Version
information is displayed only when Setup Wizard can find it.

Caution Changing either the shared file status or the Destination Directory of a shared file or
remote ActiveX server may adversely affect the component’s capabilities and impair the removal of
that component later. For example, if the same shared ActiveX component is installed to different
directories, the removal of one of them may result in removal of the registry information that makes
each of them accessible, rendering the remaining component inaccessible.

OK Accepts the changes and closes the dialog box.
Cancel Closes the dialog box without accepting any changes.
Help Displays help for this dialog box.

The ActiveX Component you selected is not Self-Registerable.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizNotOLESelfRegisterErrorC"}

You were attempting to add an ActiveX component using the Add button. However, the component
that you selected does not appear to be capable of registering itself in the system registry.

For an ActiveX EXE server to be added in this step, it needs to support the command-line
parameters, /RegServer and /UnRegServer, which tell the component to self-register and unself-
register itself and then to do so silently.

For an Active X DLL server to be added in this step, it needs to support the DllRegisterServer and
DllUnregisterServer DLL entry points.

The component that you selected does not contain the OLESelfRegister keyword in its version
information. This keyword is normally built into components that are capable of self-registration. Some
components, however, are capable of self-registration but do not have this keyword in their version
information.

Yes Tells Setup Wizard to add the component to the setup and cause it to be self-registered when
installed. Choose Yes if you are certain that the component you selected supports the command-
line parameters or the DLL entry points described here. If you choose Yes, but the component
does not support self-registration, you may have errors in your setup application.

No Tells Setup Wizard not to add the component at this step. You can add the file in the File
Summary step, in which case it will be installed but not self-registered. You may need to modify
your setup program by modifying the setup1.vbp project manually in your \Vb\Setupkit\Setup1
subdirectory to cause the necessary registration information to be added to the end user's
machine.

Help Displays help for this box.

Setup Wizard — Internet Package
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSetupWizardInternetPackageC"}

Allows you to set options regarding the creation of the Internet package. When you choose to create
an Internet Download setup, Setup Wizard creates a single .cab file, known as the primary .cab file,
that contains the components for VB5-created ActiveX controls , ActiveX DLL, ActiveX EXEs, and
ActiveX documents and links them to at least one other .cab file for the Visual Basic runtime.

A .cab file includes:

· The project components such as the ActiveX control, ActiveX DLL, or ActiveX EXE.
· The .inf file which contains safe for scripting and safe for initialization registry information as

defined by the user, and links to other .cab files that contain VB support files and controls. This file
replaces the setup.lst file that the Setup Wizard creates in the standard setup.

· Reserved space for digital signatures.
· All files that are not in other .cab files.

For ActiveX Control projects, ActiveX EXEs, and ActiveX DLLs, all runtime components such as
vbrun500.dll, individual controls, Data Access Objects (DAO), and Remote Data Objects (RDO) are
packaged into separate .cab files, digitally signed by Microsoft, and placed on the Microsoft web site.
You can choose to link your files to the .cab files on the Microsoft web site or you can download local
copies of them.

The benefit of using .cab files from an Internet web site are:

· You do not need to distribute all of the .cab files required by your application. The only file you need
to distribute is the primary .cab file.

The .inf file within the primary .cab file points to the Microsoft web site and downloads the
necessary .cab files based on the needs of the end user.

· They provide an efficient means of delivering updates to your product.

If you cannot or do not want to connect to the Internet, you may place the .cab files on a server within
your intranet. This allows for faster downloading while allowing users to remain on a secured web.

Although Visual Basic, version 5.0, does not include any tools to digitally sign components, the Setup
Wizard-generated .cab files reserve space for you to add a digital signature at a later time. To get your
files signed you can:

· Send them to a service provider such as VerSign, who keeps the private key. The service
provider signs the files and returns them to you.

· Purchase special hardware and/or software which stores your private key locally. When you are
ready to sign your files, run a utility such as CodeSign to sign your files. The ActiveX SDK
includes tools to create text signatures.

· Use the ActiveX SDK to create test digital signatures.

Visual Basic, version 5.0, does not automatically create .lpk files which are required for components
that require licensing if you plan to use them on HTML pages. The Setup Wizard works on a Visual
Basic project level to create the necessary download components. The .lpk file must contain all of the
licensing information for all of the components on a given HTML page. You can run LPK_Tool.exe
from the \Tools directory on your Visual Basic CD after inserting all of the required ActiveX
components on a given HTML page.

Wizard Options
Runtime Components

Download from the Microsoft web site — Links the files to the .cab files found on the Microsoft web
site or any other web sites defined within the dependency (.dep) file. For example, a company

could have a new .dep file for their component which points to their web site. The Setup Wizard
writes the appropriate information into the .inf file in the .cab file it creates.
Use Local Copy — Links the files to a local copy of the .cab files. Requires you to enter the URL or
UNC where you have downloaded the .cab files or to leave the local copy box blank if the .cab files
will be in the same directory as the primary .cab file that the Setup Wizard creates. Blank is the
Default.
This information is placed in the .inf file. If you put invalid information in the local copy box, you can
edit the .inf file that is located in the \Support directory and manually rebuild the .cab file using
Diantz.exe. See your AciveX SDK for additional information.
Safety Displays the Safety dialog box where you can determine which files are safe for
initialization and/or safe for scripting. Microsoft Internet Explorer, version 3.0, has default security
that requires that before any ActiveX component is instantiated on an HTML page, it must be
marked Safe for Scripting and Safe for Initialization.

Help Displays the help topic for this step. You can also press F1 for help.
Cancel Cancels your previous actions and closes the Setup Wizard.
Back Moves you to the previous step.
Next Moves you to the next step.
Finish Creates a setup using the settings you selected and displays a confirmation dialog.

Available only when you have provided enough information for the Setup Wizard to successfully
create a setup package.

Summary Details Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizSummaryDetailsDialogBoxC"}

Displays the summary details for the installation. It lists the following information:

· Number of program files Total number of user files that will be installed.
· Number of setup files Total number of additional files required by the installation, for example

setup.exe.
· Total number of files Total number of files required by the installation.
· Uncompressed bytes of program files Total number of types of user files to be installed by the

installation before compression.
· Uncompressed bytes of setup files Total number of types of additional files required by the

installation before compression.
· Total uncompressed bytes of all files Total number of types to be installed before compression.
· Setup Target The path into which the distribution files will be placed when the Setup Wizard is

finished.

Unable To Locate Dependency Information Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbwizUnableToLocateDepInfoDialogBoxC"}

Displays the name of a file for which no dependency information could be found.

The Setup Wizard has determined that the file is missing dependency information. This means that
you are missing one or more dependency files (.dep) which provide information about other files that
are needed in order to correctly install a component.

If an indicated file(s) comes from a third party, contact that party for dependency information or for the
necessary dependency files (.dep).

If the indicated file(s) is a Visual Basic component that you created, restart the Setup Wizard, select
the project file for this component and the Generate Dependency File Only option, and continue
through all the steps to create the missing dependency file. Then, restart the Setup Wizard and try the
current project again.

If you are certain that a file in the list does not need additional files to run, select it making sure that a
check mark appears to the left of it. This will let the Setup Wizard know that this file has no
dependencies, and the particular file will not appear in this dialog in the future.

Note If you leave some files unchecked, a dialog appears asking if you want the Setup Wizard to
ignore the missing dependency information. You can choose Yes and continue. You can also select
not to see the dialog box in the future when you have missing dependency files.

Dialog Box Options
Yes Include the file anyway.

No Do not include the file.

Help Displays a help topic for this dialog box.

Never warn me about this file's dependency information again If selected does not show this
dialog box again. You should choose this option only if you are certain that this file requires no
other files and does not need to be registered in the system registry to function properly.

Macros for Installing Files
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbwizMacrosForInstallingFilesC"}

You can use macros in the Setup Wizard to indicate a path specified by a user. Listed below are
macros that can be used in the Destination Directory box of the Files Details for File Summary
dialog box.

Note The macro you choose is usually used in the DefaultDir value in Setup.lst, and should not be
used elsewhere. $(AppPath) or subdirectories of $(AppPath) should be the typical installation
destination for application files, since this allows the user to change the installation location.

Macro Installs into the
$(WinSysPath) \Windows\System subdirectory under Windows 95 or the \

Windows\System32 directory under Windows NT.
$(WinPath) \Windows directory.
$(AppPath) Application directory specified by the user, or the DefaultDir value

specified in the [SETUP] section of Setup.lst.
$(AppPath)samples \Samples subdirectory below the application directory.
C:\path Directory identified by path. Not recommended.
$(CommonFiles) Common directory to which shared files are sometimes installed:

c:\Program Files\Common Files\ (Windows 95, Windows NT,
Version 4.0).
c:\Windows (Window NT, Version 3.51).

$(ProgramFiles) Directory to which applications are usually installed:
c:\Program Files (Windows 95 Windows NT, Version 4.0).
c:\(Windows NT, Version 3.51).

$(CommonFiles)\System Subdirectory, System, of the common directory to which shared
files are sometimes installed. Same as $(CommonFiles) with a
subdirectory indicated.

$(MSDAOPath) Location that is stored in the registry for Data Access Objects
(DAO) components. You should not use this for your files.

Add-In Toolbar
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbtbrAddInToolbarC"}

A toolbar which to place add-ins and Wizards for quick and easy user access. To start an add-in or
Wizard, simply click its icon on the toolbar.

The add-ins and Wizards placed on the Add-In toolbar are not activated until their button is clicked.
The Add-In toolbar eliminates the need for activating the add-in through the Add-In Manager dialog
box.

You can add Wizards and add-ins to the Add-In toolbar through the Add/Remove Toolbar Items (+/-)
button. When you click this button, you get the following dialog box:

To add an add-in or Wizard to the list of available add-ins, click the Browse button. Point to an add-in
or Wizard's .Exe or .Dll file in the dialog box, then click Open. It should appear in the Available Add-
Ins list. It will not show up on the Add-In toolbar, however, unless it's box is checked in the Available
Add-Ins list.

The OK button closes the Add/Remove Toolbar Items dialog box and updates the Add-In toolbar with
the checked items.

The Cancel button closes the Add/Remove Toolbar Items dialog box and ignores any changes made
when it was opened.

When you click the Delete button, the currently selected add-in or Wizard is removed from the
Available Add-Ins list. Note that this does not remove the add-in or Wizard from the system, nor its
reference in the Add-In Manager dialog box. The Delete button removes only the entry in the Add-In
toolbar Available Add-Ins list.

AddToAddInToolbar Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddToAddInToolbarMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddToAddInToolbarMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthAddToAddInToolbarMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddToAddInToolbarMethodS"}

Inserts a button on the Add-In toolbar which references an add-in or Wizard.

Syntax
object.AddToAddInToolbar (sfilename As String, sprogid As String, showontoolbar As Boolean,

forceaddintoolbar As Boolean)

Part Description
object An object expression that evaluates to an object in

the Applies To list.
sfilename Required. A string expression specifying the path to

the add-in or Wizard and the name of its .Exe or .Dll
file.

sprogid Required. A string expression specifying the
programmatic ID (ProgID) of the add-in or Wizard.

saddinname Required. A string expression specifying the title of
the add-in or Wizard.

showontoolbar Required. A Boolean expression specifying whether
the add-in or Wizard referred to will appear on the
Add-In toolbar. True = yes, False = no.

forceaddintoolbar Required. A Boolean expression specifying whether
the Add-In toolbar is automatically displayed the next
time Visual Basic is started. True = yes, False = no.

AddToAddInToolbar Method Example
This example uses the AddToAddInToolbar method to add a button to the Add-In toolbar for a
ficticious add-in called MyAdd.Dll. Setting ForceAddInToolbar to True ensures that the Add-In toolbar
is loaded the next time Visual Basic is started.

You could modify the following in a small Visual Basic application to serve as a Setup for your add-in.
Sub Main()
 dim x as Object
 Set x=CreateObject("AddInToolbar.Manager")
 x.AddToAddInToolbar sFileName:="C:\VB5\MyAdd.DLL", _
 sProgID:="MyAddIn.Connect", _
 sAddInName:="MyAddIn Title" _
 ShowOnToolBar:=True, _
 ForceAddInToolbar:=True
End Sub

AmbientProperties Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjAmbientPropertiesObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjAmbientPropertiesObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjAmbientPropertiesObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjAmbientPropertiesObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjAmbientPropertiesObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjAmbientPropertiesObjectS"}

The AmbientProperties object allows access to the ambient properties of the container.

Remarks
The AmbientProperties object is used when creating an ActiveX control.

AsyncProperty Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjAsyncPropertyObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjAsyncPropertyObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjAsyncPropertyObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjAsyncPropertyObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjAsyncPropertyObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjAsyncPropertyObjectS"}

The AsyncProperty object is passed in to the AsyncReadComplete event and contains the results of
the AyncRead method.

AsyncType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAsyncTypePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAsyncTypePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAsyncTypePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAsyncTypePropertyS"}

Returns or sets the type of the data returned by the Value property.

Syntax
object.AsyncType = dataType

Part Description
object An object expression that evaluates to an object in

the Applies To list.
dataType An integer specifying the data type, as shown in

Settings below.

Settings
The settings for dataType are:

Constant Value Description
vbAsyncTypePicture 0 Default. Picture object.
VbAsyncTypeFile 1 The data is provided in a file created

by Visual Basic.
VbAsyncTypeByteArray 2 The data is provided as a byte array

that contains the retrieved data.

ContinuousScroll Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproContinuousScrollPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproContinuousScrollPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproContinuousScrollPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproContinuousScrollPropertyS"}

Returns or sets a value that determines if scrolling is continuous, or if the UserDocument only
redraws when the scroll thumb is released.

Syntax
object.ContinuousScroll = boolean

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies whether

scrolling is continous or not.

Settings
The settings for boolean are:

Setting Description
True Default. Scrolling is continuous.
False The UserDocument redraws only when the thumb is

released.

Controls Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproControlsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproControlsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproControlsPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproControlsPropertyS"}

Returns a reference to a collection of Control objects.

Syntax
object.Controls
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
You can manipulate Control objects using the reference returned by the Controls property.

DataBinding Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDatabindingObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjDatabindingObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDatabindingObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDatabindingObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDatabindingObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDatabindingObjectS"}

The DataBinding object represents a bindable property of a component.

Syntax
DataBinding

Remarks
There is one DataBinding object for each property of a component marked as Bindable in the
Procedure Attributes dialog box.

Visual Basic version 4.0 supported binding only one property of a control to a database at a time.
Visual Basic 5.0, however, gives you the ability to bind multiple properties of a control to a database.
This is used most commonly with User controls. For more information on this, see Chapter 9 in
"Creating ActiveX Components" in the Component Tools Guide.

HScrollSmallChange, VScrollSmallChange Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHScrollSmallChangePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHScrollSmallChangePropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHScrollSmallChangePropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHScrollSmallChangePropertyS"}

Returns or sets the distance the UserDocument will scroll when the user clicks a scroll arrow.

Syntax
object.HScrollSmallChange = single
object.VScrollSmallChange = single

Part Description
object An object expression that evaluates to an object in

the Applies To list.
single The distance in twips the UserDocument will scroll

when the user clicks the scroll arrow.

Remarks
There is no “LargeChange” property counterpart to the HScrollSmallChange and
VScrollSmallChange properties. The “LargeChange” is determined by the ViewPort object’s
ViewPortHeight and ViewPortWidth properties.

Hyperlink Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjHyperlinkObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjHyperlinkObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjHyperlinkObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjHyperlinkObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjHyperlinkObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjHyperlinkObjectS"}

Using the properties and methods of the Hyperlink object, your ActiveX document or ActiveX control
can request a hyperlink-aware container, such as Microsoft Internet Explorer, to jump to a given URL.

Remarks
Use the NavigateTo method to jump to a URL. For example, the following code presumes an ActiveX
document named "axdMyDoc" exists:
UserDocument.Hyperlink.NavigateTo _
"c:\mydocs\axdmydoc.vbd"
If your ActiveX document is contained by a hyperlink-aware container (such as Internet Explorer), and
if the container maintains a history of documents, use the GoBack or GoForward methods to go
backwards or forwards through the list. However, be sure to use error-checking, as shwon in the
example below:
Private Sub cmdGoForward_Click()

On Error GoTo noDocInHistory
UserDocument.Hyperlink.GoForward
Exit Sub

noDocInHistory:
Resume Next

End Sub

Hyperlink Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHyperlinkPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHyperlinkPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHyperlinkPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHyperlinkPropertyS"}

Returns a reference to the Hyperlink object.

Syntax
object.Hyperlink
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

LogEvent Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLogEventMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLogEventMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLogEventMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLogEventMethodS"}

Logs an event in the application's log target (as specified in the LogPath property).

Syntax
object.LogEvent logBuffer
Part Description
object An object expression that evaluates to an object in

the Applies To list.
logBuffer String to be written to the log.

Remarks
If no LogPath is specified, the LogEvent method writes to the NT Application Event Log file.

LogMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLogModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLogModePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLogModePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLogModePropertyS"}

Returns or sets a value which determines how logging (through the LogEvent method) will be carried
out.

Syntax
object.LogMode = mode
Part Description
object An object expression that evaluates to an object in

the Applies To list.
mode Long. Determines the method of logging, as shown

in Settings below.

Settings
The settings for mode are:

Constant Value Description
vbLogAuto 0 If running on Windows 95, this option logs

messages to the file specified in the LogFile
property. If running on Windows NT,
messages are logged to the NT Application
Event Log, with the App.Title string used as
the application source.

VbLogOff 1 Turns all logging off. Messages from UI shunts
as well as from the LogEvent method are
ignored and discarded.

VbLogToFile 2 Forces logging to a file. If no valid filename is
present in LogPath, logging is ignored, and
the property is set to vbLogOff.

VbLogToNT 3 Forces logging to the NT event log. If not
running on Windows NT, or the event log is
unavailable, logging is ignored and the
property is set to vbLogOff.

VbLogOverwrite 0x10 Indicates that the logfile should be recreated
each time the application starts. This value
can be combined with other mode options
using the OR operator. The default action for
logging is to append to the existing file. In the
case of NT event logging, this flag has no
meaning.

VbLogThreadID 0x20 Indicates that the current thread ID be
prepended to the message, in the form
"[T:0nnn] ". This value can be combined with
other mode options using the OR operator.
The default action is to show the thread ID
only when the application is multi-threaded
(either explicitly marked as thread-safe, or
implemented as an implicit multithreaded app,
such as a local server with the instancing
property set to Single-Use, multithreaded).

Return Type
Long

LogPath Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLogPathPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLogPathPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLogPathPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLogPathPropertyS"}

Returns or sets the path and filename of the file used to capture output from the LogEvent method.
Not available at design-time.

Syntax
object.LogPath = path
Part Description
object An object expression that evaluates to an object in

the Applies To list.
path String. The path and filename of a log file.

Remarks
The LogMode property determines how logging will be carried out. If no LogPath is set, the
LogEvent method writes to the NT LogEvent file.

MinHeight, MinWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMinHeightPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMinHeightPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMinHeightPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMinHeightPropertyS"}

Returns or sets the minimum height or width of the Viewport before which scrollbars will appear on
the container.

Syntax
object.MinHeight = single
object.MinWidth = single

Part Description
object An object expression that evaluates to an object in

the Applies To list.
single The height or width of a UserDocument at which

scrollbars will appear on a container.

Remarks
The default values of the MinHeight and MinWidth properties are set by the Height and Width
properties of the UserDocument.
The MinWidth and MinHeight have no effect if the ScrollBars property is set to False.

Moveable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMoveablePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMoveablePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMoveablePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMoveablePropertyS"}

Returns or sets a value which specifies if the object can be moved.

Syntax
object.Moveable = boolean
Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies if the object can

be moved.

Settings
The settings for boolean are:

Constant Value Description
True -1 The object can be moved.
False 0 The object cannot be moved.

NonModalAllowed Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproNonModalAllowedPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNonModalAllowedPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNonModalAllowedPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproNonModalAllowedPropertyS"}

Returns a value which indicates if a form can be shown non-modally (modeless). Not available at
design-time.

Syntax
object.nonModalAllowed
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Type
Boolean

Palette Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPalettePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPalettePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPalettePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPalettePropertyS"}

Returns or sets an image that contains the palette to use for the control.

Syntax
object.Palette = path
Part Description
object An object expression that evaluates to an object in

the Applies To list.
path The path of the bitmap image containing the palette

to be used.

Remarks
You can use a .dib file to set the palette as well as .bmp files.

PaletteMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPaletteModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPaletteModePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPaletteModePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPaletteModePropertyS"}

Returns or sets a value that determines which palette to use for the controls on a object.

Syntax
object.PaletteMode = integer
Part Description
object An object expression that evaluates to an object in

the Applies To list.
integer Determines the palette mode to be used, as

described in Settings, below.

Settings
The settings for integer are:

Constant Value Description
vbPaletteModeHalfTone 0 (Default) Use the Halftone palette.
vbPaletteModeUseZOrder 1 Use the palette from the topmost

control that has a palette.
vbPaletteModeCustom 2 Use the palette specified in the

Palette property.
vbPaletteModeContainer 3 Use the container's palette for

container's that support ambient
Palette property. Applies to
UserControls only.

vbPaletteModeNone 4 Do not use any palette. Applies to
UserControls only.

vbPaletteModeObject 5 Use the ActiveX designer’s palette.
(Applies only to ActiveX designers
which contain a palette.)

Remarks
If no palette is available, the halftone palette becomes the default palette.

PropertyName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPropertyNamePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPropertyNamePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPropertyNamePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPropertyNamePropertyS"}

The behavior of the PropertyName property depends upon the context in which it is being used.

· AsyncRead method — Sets the name of the property that will be associated with the
AsyncProperty object’s Value property.

· AsyncReadComplete event — Specifies the name of the property currently being read.

Syntax
object.PropertyName = string

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string The name of a property to be saved or retrieved.

PropertyPage Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjPropertyPageObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjPropertyPageObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjPropertyPageObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjPropertyPageObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjPropertyPageObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjPropertyPageObjectS"}

The base object used to create an ActiveX Property Page.

Remarks
Property pages provide an alternative to the Properties window for viewing properties. You can group
several related properties on a page, or use a page to provide a dialog-like interface for a property
that’s too complex for the Properties window. A PropertyPage object represents one page, which is to
say one tab in the Property Pages dialog box.

RemoveAddInFromToolbar Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRemoveAddInFromToolbarMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveAddInFromToolbarMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRemoveAddInFromToolbarMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveAddInFromToolbarMethodS"}

Removes a button from the Add-In toolbar which references an add-in or Wizard.

Syntax
object.RemoveAddInFromToolbar (saddinname As String)

Part Description
object An object expression that evaluates to an object in

the Applies To list.
saddinname Required. A string expression specifying the name of

the add-in or Wizard to remove from the Add-In
toolbar (as specified by the saddinname parameter
from the AddToAddInToolbar method).

RemoveAddInFromToolbar Method Example
This example removes an existing button from the Add-In toolbar that references a ficiticious add-in
called MyAddIn Title:
Sub Main()
 dim x as Object
 Set x=CreateObject("AddInToolbar.Manager")
 x.RemoveAddInFromToolbar sAddInName:="MyAddIn Title"
End Sub

SetViewport Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetViewPortMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSetViewPortMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSetViewPortMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetViewPortMethodS"}

Sets the left and top coordinates of the UserDocument that will be visible in the Viewport.

Syntax
object.SetViewPort left, top

Part Description
object An object expression that evaluates to an object in

the Applies To list.
left Required. A value of type Single that specifies the

left coordinate of the UserDocument.
top Required. A value of type Single that specifies the

top coordinate of the UserDocument.

SetViewPort Method Example
The example uses SetViewPort method to automatically place the TextBox control with focus into
the top left corner of the ViewPort of container. To try the example, place an array of three or more
TextBox controls onto a UserDocument object. Paste the code below into the General section.
Press F5 to run the project, then run Internet Explorer (3.0 or later). In Internet Explorer, type the path
and file name of the ActiveX document (UserDocument1.vbd) into the Address box. When the
ActiveX document is displayed, type any distinctive text into the first TextBox control. Press TAB to
move to the next control to see the effect of the SetViewPort method.
Private Sub Text1_GotFocus(Index As Integer)

UserDocument.SetViewport Text1(Index).Left, _
Text1(Index).Top

End Sub

Private Sub UserDocument_Initialize()
' The container must be small enough for scrollbars
' to appear. To assure this, set the MinHeight and
' MinWidth properties to be larger than the
' container.
UserDocument.MinHeight = 10000
UserDocument.MinWidth = 10000

End Sub

Size Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSizeMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSizeMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSizeMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSizeMethodS"}

Changes the width and height of a UserControl object.

Syntax
object.Size width, height
Part Description
object An object expression that evaluates to an object in

the Applies To list.
width Required. The width in twips of the object.
height Required. The height in twips of the object.

Remarks
The Width and Height properties of a UserControl object are always given in Twips, regardless of
ScaleMode.

StartLogging Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproStartLoggingMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStartLoggingMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStartLoggingMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStartLoggingMethodS"}

Sets the log target and log mode of an operation.

Syntax
object.StartLogging logTarget, logMode
Part Description
object An object expression that evaluates to an object in

the Applies To list.
logTarget Path and filename of the file used to capture output

from the LogEvent method.
logMode A value which determines how logging (through the

LogEvent method) will be carried out. See Settings
below.

Settings
The settings for logMode are:

Constant Value Description
vbLogAuto 0 If running on Windows 95, this option logs

messages to the file specified in the LogFile
property. If running on Windows NT,
messages are logged to the NT Application
Event Log, with the App.Title string used as
the application source.

VbLogOff 1 Turns all logging off. Messages from UI shunts
as well as from the LogEvent method are
ignored and discarded.

VbLogToFile 2 Forces logging to a file. If no valid filename is
present in LogPath, logging is ignored, and
the property is set to vbLogOff.

VbLogToNT 3 Forces logging to the NT event log. If not
running on Windows NT, or the event log is
unavailable, logging is ignored and the
property is set to vbLogOff.

VbLogOverwrite 0x10 Indicates that the logfile should be recreated
each time the application starts. This value
can be combined with other mode options
using the OR operator. The default action for
logging is to append to the existing file. In the
case of NT event logging, this flag has no
meaning.

VbLogThreadID 0x20 Indicates that the current thread ID be
prepended to the message, in the form
"[T:0nnn] ". This value can be combined with
other mode options using the OR operator.
The default action is to show the thread ID
only when the application is multi-threaded
(either explicitly marked as thread-safe, or
implemented as an implicit multithreaded app,

such as a local server with the instancing
property set to Single-Use, multithreaded).

TheadID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTheadIDPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTheadIDPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTheadIDPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTheadIDPropertyS"}

Returns the Win32 ID of the executing thread. (Used for Win32 API calls.)

Syntax
object.ThreadID
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Type
Long

UnattendedApp Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproUnattendedAppPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproUnattendedAppPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproUnattendedAppPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUnattendedAppPropertyS"}

Returns or sets a value that determines if an application will run without any user interface.

Syntax
object.UnattendedApp= boolean
Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies if the application

will run without any user interface.

Settings
The settings for boolean are:

Constant Value Description
True -1 The application has no user interface.
False 0 The application has a user interface.

UserControl Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjUserControlObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjUserControlObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjUserControlObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjUserControlObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjUserControlObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjUserControlObjectS"}

The UserControl object is the base object used to create an ActiveX control.

Remarks
An ActiveX control created with Visual Basic is always composed of a UserControl object, plus any
controls — referred to as constituent controls — that you choose to place on the UserControl.
Like Visual Basic forms, UserControl objects have code modules and visual designers. Place
constituent controls on the UserControl object’s designer, just as you would place controls on a form.

UserDocument Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjUserDocumentObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjUserDocumentObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjUserDocumentObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjUserDocumentObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjUserDocumentObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjUserDocumentObjectS"}

The base object of an ActiveX document, the UserDocument object resembles a standard Visual
Basic Form object with some exceptions.

Remarks
The UserDocument object has most, but not all, of the events that are found on a Form object. The
events present on a Form that are not found on the UserDocument include: Activate, Deactivate,
LinkClose, LinkError, LinkExecute, LinkOpen, Load, QueryUnload, and Unload events.

Events present on the UserDocument, but not found on a Form object include: AsycReadComplete,
EnterFocus, ExitFocus, Hide, InitProperties, ReadProperties, Scroll, Show, and WriteProperties
events.

You cannot place embeded objects (such as an Excel or Word document) or an OLE Container
control on a UserDocument.

ViewportHeight, ViewportLeft, ViewportTop, ViewportWidth
Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproViewPortHeightPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproViewPortHeightPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproViewPortHeightPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproViewPortHeightPropertyS"}

Returns the current height, left, top, or width value of the Viewport.

Syntax
object.ViewportHeight
object.ViewportLeft
object.ViewportTop
object.ViewportWidth

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Type
Single

Remarks
The application used to view the ActiveX document controls the size of the Viewport. However, you
can use the MinHeight and MinWidth properties to resize the UserDocument. For example, the
code below resizes a PictureBox control according to the size of the Viewport left height and width
properties.
Private Sub UserDocument_Resize()

Picture1.Width = UserDocument.ViewportWidth - _
Picture1.Left

Picture1.Height = UserDocument.ViewportHeight - _
Picture1.Top

End Sub

Visual Basic Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxVisualBasicConstantsC;vbproBooksOnlineJumpTopic"}

The following constants are specified or recognized by Visual Basic. As a result, they can be used
anywhere in your code in place of the actual values.

· Alignment Constants
· Border Property Constants
· Clipboard Object Constants
· Color Constants
· CommonDialog Control Constants
· CommonDialog Error Constants
· Control Constants
· Data Control Constants
· DBGrid Control Constants
· DBList and DBCombo Controls Constants
· DDE Constants
· Drag-and-Drop Constants
· Drawing Constants
· Form Constants
· Graphics Constants
· Grid Control Constants
· Help Constants
· Key Code Constants
· Menu Accelerator Constants
· Menu Control Constants
· Miscellaneous Constants
· Mouse Pointer Constants
· OLE Container Control Constants
· Picture Object Constants
· Printer Object Constants
· RasterOp Constants
· Variant Type Constants

Use the Object Browser to view the intrinsic constants you can use with methods and properties.
From the View menu, choose Object Browser, select the Visual Basic object library, and then choose
the Constants object. You can scroll through the constants that appear under Methods/Properties.

Miscellaneous Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxMiscellaneousConstantsC"}{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbidxMiscellaneousConstantsC"}

ZOrder Method
Constant Value Description
vbBringToFront 0 Bring to front
vbSendToBack 1 Send to back

QueryUnload Method

Constant Value Description
vbAppWindows 2 Current Windows session ending
vbFormMDIForm 4 MDI child form is closing because

the MDI form is closing
vbFormCode 1 Unload method invoked from code
vbFormControlMenu 0 User has chosen Close command

from the Control-menu box on a
form

vbAppTaskManager 3 Windows Task Manager is closing
the application

Shift Parameter Masks
Constant Value Description
vbShiftMask 1 SHIFT key bit mask
vbCtrlMask 2 CTRL key bit mask
vbAltMask 4 ALT key bit mask

Mouse Button Parameter Masks
Constant Value Description
vbLeftButton 1 Left mouse button
vbRightButton 2 Right mouse button
vbMiddleButton 4 Middle mouse button

Application Start Mode
Constant Value Description
vbSModeStandalone 0 Stand-alone application
vbSModeAutomation 1 OLE automation server

LoadResPicture Method
Constant Value Description
vbResBitmap 0 Bitmap resource
vbResIcon 1 Icon resource
vbResCursor 2 Cursor resource

Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxControlConstantsC;vbproBooksOnlineJumpTopic"}

ComboBox Control
Constant Value Description
vbComboDropdown 0 Dropdown Combo
vbComboSimple 1 Simple Combo
vbComboDropdownList 2 Dropdown List

CheckBox Control
Constant Value Description

vbUnchecked 0 Unchecked
vbChecked 1 Checked
vbGrayed 2 Grayed

ListBox Control
Constant Value Description
vbMultiSelectNone 0 None
vbMultiSelectSimple 1 Simple
vbMultiSelectExtended 2 Extended

ScrollBar Control
Constant Value Description
vbSBNone 0 None
vbHorizontal 1 Horizontal
vbVertical 2 Vertical
vbBoth 3 Both

Shape Control
Constant Value Description
vbShapeRectangle 0 Rectangle
vbShapeSquare 1 Square
vbShapeOval 2 Oval
vbShapeCircle 3 Circle
vbShapeRoundedRectangle 4 Rounded rectangle
vbShapeRoundedSquare 5 Rounded square

Grid Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxGridConstantsC;vbproBooksOnlineJumpTopic"}

ColAlignment, FixedAlignment Properties
Constant Value Description
grdAlignCenter 2 Center data in column
grdAlignLeft 0 Left-align data in column
grdAlignRight 1 Right-align data in column

FillStyle Property
Constant Value Description
grdSingle 0 Changing Text property setting

affects only active cell
grdRepeat 1 Changing Text property setting

affects all selected cells

Picture Object Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxPictureObjectConstantsC;vbproBooksOnlineJumpTopic"}

Constant Value Description
vbPicTypeNone 0 Icon type of Picture object
vbPicTypeBitmap 1 Bitmap type of Picture object
vbPicTypeMetafile 2 Metafile type of Picture object
vbPicTypeIcon 3 Icon type of Picture object
vbPicTypeEMetaFile 4 Enhanced metafile type of Picture

object

Variant Type Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxVariantTypeConstantsC;vbproBooksOnlineJumpTopic"}

Constant Value Description
vbVEmpty 0 Empty (uninitialized)
vbVNull 1 Null (no valid data)
vbVInteger 2 Integer data type
vbVLong 3 Long integer data type
vbVSingle 4 Single-precision floating-point data

type
vbVDouble 5 Double-precision floating-point data

type
vbVCurrency 6 Currency (scaled integer) data type
vbVDate 7 Date data type
vbVString 8 String data type

DDE Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxDDEConstantsC;vbproBooksOnlineJumpTopic"}

linkerr (LinkError Event)
Constant Value Description
vbWrongFormat 1 Another application requested data

in wrong format
vbDDESourceClosed 6 Destination application attempted to

continue after source closed
vbTooManyLinks 7 All source links are in use
vbDataTransferFailed 8 Failure to update data in destination

LinkMode Property (Forms and Controls)
Constant Value Description
vbLinkNone 0 None
vbLinkSource 1 Source (forms only)
vbLinkAutomatic 1 Automatic (controls only)
vbLinkManual 2 Manual (controls only)
vbLinkNotify 3 Notify (controls only)

LinkMode Property (Only for backward compatibility with Visual Basic version 1.0;
use new constants instead)
Constant Value Description
vbHot 1 Hot (controls only)
vbServer 1 Server (forms only)
vbCold 2 Cold (controls only)

Clipboard Object Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxClipboardConstantsC;vbproBooksOnlineJumpTopic"}

Constant Value Description
vbCFLink &HBF00 DDE conversation information
vbCFRTF &HBF01 Rich Text Format (.rtf file)
vbCFText 1 Text (.txt file)
vbCFBitmap 2 Bitmap (.bmp file)
vbCFMetafile 3 Metafile (.wmf file)
vbCFDIB 8 Device-independent bitmap
vbCFPalette 9 Color palette

Drag-and-Drop Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxDragandDropConstantsC;vbproBooksOnlineJumpTopic"}

DragOver Event
Constant Value Description
vbEnter 0 Source control dragged into target
vbLeave 1 Source control dragged out of target
vbOver 2 Source control dragged from one

position in target to another

Drag Method (Controls)
Constant Value Description
vbCancel 0 Cancel drag operation
vbBeginDrag 1 Begin dragging control
vbEndDrag 2 Drop control

DragMode Property
Constant Value Description
vbManual 0 Manual
vbAutomatic 1 Automatic

Form Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxFormConstantsC;vbproBooksOnlineJumpTopic"}

Show Parameters
Constant Value Description
vbModal 1 Modal form
vbModeless 0 Modeless form

Arrange Method for MDI Forms
Constant Value Description
vbCascade 0 Cascade all nonminimized MDI child

forms
vbTileHorizontal 1 Horizontally tile all nonminimized

MDI child forms
vbTileVertical 2 Vertically tile all nonminimized MDI

child forms
vbArrangeIcons 3 Arrange icons for minimized MDI

child forms

WindowState Property
Constant Value Description
vbNormal 0 Normal
vbMinimized 1 Minimized
vbMaximized 2 Maximized

Key Code Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxKeyCodeConstantsC;vbproBooksOnlineJumpTopic"}

Key Codes
Constant Value Description
vbKeyLButton &H1 Left mouse button
vbKeyRButton &H2 Right mouse button
vbKeyCancel &H3 CANCEL key
vbKeyMButton &H4 Middle mouse button
vbKeyBack &H8 BACKSPACE key
vbKeyTab &H9 TAB key
vbKeyClear &HC CLEAR key
vbKeyReturn &HD ENTER key
vbKeyShift &H10 SHIFT key
vbKeyControl &H11 CTRL key
vbKeyMenu &H12 MENU key
vbKeyPause &H13 PAUSE key
vbKeyCapital &H14 CAPS LOCK key
vbKeyEscape &H1B ESC key
vbKeySpace &H20 SPACEBAR key
vbKeyPageUp &H21 PAGE UP key
vbKeyPageDown &H22 PAGE DOWN key
vbKeyEnd &H23 END key
vbKeyHome &H24 HOME key
vbKeyLeft &H25 LEFT ARROW key
vbKeyUp &H26 UP ARROW key
vbKeyRight &H27 RIGHT ARROW key
vbKeyDown &H28 DOWN ARROW key
vbKeySelect &H29 SELECT key
vbKeyPrint &H2A PRINT SCREEN key
vbKeyExecute &H2B EXECUTE key
vbKeySnapshot &H2C SNAPSHOT key
vbKeyInsert &H2D INS key
vbKeyDelete &H2E DEL key
vbKeyHelp &H2F HELP key
vbKeyNumlock &H90 NUM LOCK key

KeyA Through KeyZ Are the Same as Their ASCII Equivalents: 'A' Through 'Z'
Constant Value Description
vbKeyA 65 A key
vbKeyB 66 B key
vbKeyC 67 C key
vbKeyD 68 D key
vbKeyE 69 E key

vbKeyF 70 F key
vbKeyG 71 G key
vbKeyH 72 H key
vbKeyI 73 I key
vbKeyJ 74 J key
vbKeyK 75 K key
vbKeyL 76 L key
vbKeyM 77 M key
vbKeyN 78 N key
vbKeyO 79 O key
vbKeyP 80 P key
vbKeyQ 81 Q key
vbKeyR 82 R key
vbKeyS 83 S key
vbKeyT 84 T key
vbKeyU 85 U key
vbKeyV 86 V key
vbKeyW 87 W key
vbKeyX 88 X key
vbKeyY 89 Y key
vbKeyZ 90 Z key

Key0 Through Key9 Are the Same as Their ASCII Equivalents: '0' Through '9
Constant Value Description
vbKey0 48 0 key
vbKey1 49 1 key
vbKey2 50 2 key
vbKey3 51 3 key
vbKey4 52 4 key
vbKey5 53 5 key
vbKey6 54 6 key
vbKey7 55 7 key
vbKey8 56 8 key
 vbKey9 57 9 key

Keys on the Numeric Keypad
Constant Value Description
vbKeyNumpad0 &H60 0 key
vbKeyNumpad1 &H61 1 key
vbKeyNumpad2 &H62 2 key
vbKeyNumpad3 &H63 3 key
vbKeyNumpad4 &H64 4 key
vbKeyNumpad5 &H65 5 key
vbKeyNumpad6 &H66 6 key
vbKeyNumpad7 &H67 7 key

vbKeyNumpad8 &H68 8 key
vbKeyNumpad9 &H69 9 key
vbKeyMultiply &H6A MULTIPLICATION SIGN (*) key
vbKeyAdd &H6B PLUS SIGN (+) key
vbKeySeparator &H6C ENTER (keypad) key
vbKeySubtract &H6D MINUS SIGN (-) key
vbKeyDecimal &H6E DECIMAL POINT(.) key
vbKeyDivide &H6F DIVISION SIGN (/) key

Function Keys
Constant Value Description
vbKeyF1 &H70 F1 key
vbKeyF2 &H71 F2 key
vbKeyF3 &H72 F3 key
vbKeyF4 &H73 F4 key
vbKeyF5 &H74 F5 key
vbKeyF6 &H75 F6 key
vbKeyF7 &H76 F7 key
vbKeyF8 &H77 F8 key
vbKeyF9 &H78 F9 key
vbKeyF10 &H79 F10 key
vbKeyF11 &H7A F11 key
vbKeyF12 &H7B F12 key
vbKeyF13 &H7C F13 key
vbKeyF14 &H7D F14 key
vbKeyF15 &H7E F15 key
vbKeyF16 &H7F F16 key

Color Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxColorConstantsC;vbproBooksOnlineJumpTopic"}

Colors
Constant Value Description
vbBlack &H0 Black
vbRed &HFF Red
vbGreen &HFF00 Green
vbYellow &HFFFF Yellow
vbBlue &HFF0000 Blue
vbMagenta &HFF00FF Magenta
vbCyan &HFFFF00 Cyan
vbWhite &HFFFFFF White

System Colors
Constant Value Description
vbScrollBars &H80000000 Scroll bar color
vbDesktop &H80000001 Desktop color
vbActiveTitleBar &H80000002 Color of the title bar for

the active window
vbInactiveTitleBar &H80000003 Color of the title bar for

the inactive window
vbMenuBar &H80000004 Menu background color
vbWindowBackground &H80000005 Window background

color
vbWindowFrame &H80000006 Window frame color
vbMenuText &H80000007 Color of text on menus
vbWindowText &H80000008 Color of text in windows
vbTitleBarText &H80000009 Color of text in caption,

size box, and scroll
arrow

vbActiveBorder &H8000000A Border color of active
window

vbInactiveBorder &H8000000B Border color of inactive
window

vbApplicationWorkspace &H8000000C Background color of
multiple-document
interface (MDI)
applications

vbHighlight &H8000000D Background color of
items selected in a
control

vbHighlightText &H8000000E Text color of items
selected in a control

vbButtonFace &H8000000F Color of shading on the
face of command buttons

vbButtonShadow &H80000010 Color of shading on the

edge of command
buttons

vbGrayText &H80000011 Grayed (disabled) text
vbButtonText &H80000012 Text color on push

buttons
vbInactiveCaptionText &H80000013 Color of text in an

inactive caption
vb3DHighlight &H80000014 Highlight color for 3D

display elements
vb3DDKShadow &H80000015 Darkest shadow color for

3D display elements
vb3DLight &H80000016 Second lightest of the 3D

colors after
vb3Dhighlight

vb3DFace &H8000000F Color of text face
vb3DShadow &H80000010 Color of text shadow
vbInfoText &H80000017 Color of text in ToolTips
vbInfoBackground &H80000018 Background color of

ToolTips

Alignment Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxAlignmentConstantsC;vbproBooksOnlineJumpTopic"}

Align Property
Constant Value Description
vbAlignNone 0 Size and location set at design time or

in code
vbAlignTop 1 Align control to top of form
vbAlignBottom 2 Align control to bottom of form
vbAlignLeft 3 Align control to left of form
vbAlignRight 4 Align control to right of form

Alignment Property
Constant Value Description
vbLeftJustify 0 Left align
vbRightJustify 1 Right align
vbCenter 2 Center

Border Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxBorderPropertyConstantsC;vbproBooksOnlineJumpTopic"}

BorderStyle Property (Form)
Constant Value Description
vbBSNone 0 No border
vbFixedSingle 1 Fixed single
vbSizable 2 Sizable (forms only)
vbFixedDouble 3 Fixed double (forms only)

BorderStyle Property (Shape and Line)
Constant Value Description
vbTransparent 0 Transparent
vbBSSolid 1 Solid
vbBSDash 2 Dash
vbBSDot 3 Dot
vbBSDashDot 4 Dash-dot
vbBSDashDotDot 5 Dash-dot-dot
vbBSInsideSolid 6 Inside solid

Mouse Pointer Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxMousePointerConstantsC;vbproBooksOnlineJumpTopic"}

Constant Value Description
vbDefault 0 Default
vbArrow 1 Arrow
vbCrosshair 2 Cross
vbIbeam 3 I beam
vbIconPointer 4 Icon
vbSizePointer 5 Size
vbSizeNESW 6 Size NE, SW
vbSizeNS 7 Size N, S
vbSizeNWSE 8 Size NW, SE
vbSizeWE 9 Size W, E
vbUpArrow 10 Up arrow
vbHourglass 11 Hourglass
vbNoDrop 12 No drop
vbArrowHourglass 13 Arrow and hourglass; (available only

in 32-bit Visual Basic 5.0)
vbArrowQuestion 14 Arrow and question mark; (available

only in 32-bit Visual Basic 5.0)
vbSizeAll 15 Size all; (available only in 32-bit Visual

Basic 5.0)
vbCustom 99 Custom icon specified by the

MouseIcon property

Drawing Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxDrawingConstantsC;vbproBooksOnlineJumpTopic"}

DrawMode Property
Constant Value Description
vbBlackness 1 Black
vbNotMergePen 2 Not Merge pen
vbMaskNotPen 3 Mask Not pen
vbNotCopyPen 4 Not Copy pen
vbMaskPenNot 5 Mask pen Not
vbInvert 6 Invert
vbXorPen 7 Xor pen
vbNotMaskPen 8 Not Mask pen
vbMaskPen 9 Mask pen
vbNotXorPen 10 Not Xor pen
vbNop 11 No operation; output remains

unchanged
vbMergeNotPen 12 Merge Not pen
vbCopyPen 13 Copy pen
vbMergePenNot 14 Merge pen Not
vbMergePen 15 Merge pen
vbWhiteness 16 White

DrawStyle Property
Constant Value Description
vbSolid 0 Solid
vbDash 1 Dash
vbDot 2 Dot
vbDashDot 3 Dash-dot
vbDashDotDot 4 Dash-dot-dot
vbInvisible 5 Invisible
vbInsideSolid 6 Inside solid

Graphics Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxGraphicsConstantsC;vbproBooksOnlineJumpTopic"}

FillStyle Property
Constant Value Description
vbFSSolid 0 Solid
vbFSTransparent 1 Transparent
vbHorizontalLine 2 Horizontal line
vbVerticalLine 3 Vertical line
vbUpwardDiagonal 4 Upward diagonal
vbDownwardDiagonal 5 Downward diagonal
vbCross 6 Cross
vbDiagonalCross 7 Diagonal cross

ScaleMode Property
Constant Value Description
vbUser 0 User
vbTwips 1 Twips
vbPoints 2 Points
vbPixels 3 Pixels
vbCharacters 4 Characters
vbInches 5 Inches
vbMillimeters 6 Millimeters
vbCentimeters 7 Centimeters

OLE Container Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxOLEContainerControlConstantsC;vbproBooksOnlineJumpTopic"}

OLEType Property
Constant Value Description
vbOLELinked 0 OLE container control contains a

linked object
vbOLEEmbedded 1 OLE container control contains an

embedded object
vbOLENone 3 OLE container control doesn't contain

an object

OLETypeAllowed Property
Constant Value Description
vbOLEEither 2 OLE container control can contain

either a linked or an embedded object

UpdateOptions Property
Constant Value Description
vbOLEAutomatic 0 Object is updated each time the linked

data changes
vbOLEFrozen 1 Object is updated whenever the user

saves the linked document from within
the application in which it was created

vbOLEManual 2 Object is updated only when the
Action property is set to 6 (Update)

AutoActivate Property
Constant Value Description
vbOLEActivateManual 0 OLE object isn't automatically

activated
vbOLEActivateGetFocus 1 Object is activated when the OLE

container control gets the focus
vbOLEActivateDoubleclick 2 Object is activated when the OLE

container control is double-
clicked

vbOLEActivateAuto 3 Object is activated based on the
object's default method of
activation

SizeMode Property
Constant Value Description
vbOLESizeClip 0 Object's image is clipped by the OLE

container control's borders
vbOLESizeStretch 1 Object's image is sized to fill the OLE

container control
vbOLESizeAutoSize 2 OLE container control is automatically

resized to display the entire object
vbOLESizeZoom 3 Object's image is stretched but in

proportion

DisplayType Property
Constant Value Description
vbOLEDisplayContent 0 Object's data is displayed in the OLE

container control
vbOLEDisplayIcon 1 Object's icon is displayed in the OLE

container control

Updated Event Constants
Constant Value Description
vbOLEChanged 0 Object's data has changed
vbOLESaved 1 Object's data has been saved by the

application that created the object
vbOLEClosed 2 Application file containing the linked

object's data has been closed
vbOLERenamed 3 Application file containing the linked

object's data has been renamed

Special Verb Values
Constant Value Description
vbOLEPrimary 0 Default action for the object
vbOLEShow -1 Activates the object for editing
vbOLEOpen -2 Opens the object in a separate

application window
vbOLEHide -3 For embedded objects, hides the

application that created the object
vbOLEUIActivate -4 All UI's associated with the object

are visible and ready for use
vbOLEInPlaceActivate -5 Object is ready for the user to click

inside it and start working with it
vbOLEDiscardUndoState -6 For discarding all record of changes

that the object's application can
undo

Verb Flag Bit Masks
Constant Value Description
vbOLEFlagGrayed &H1 Grayed menu item
vbOLEFlagDisabled &H2 Disabled menu item
vbOLEFlagChecked &H8 Checked menu item
vbOLEFlagSeparator &H800 Separator bar in menu item list
vbOLEMiscFlagMem
Storage

&H1 Causes control to use memory to
store the object while it's loaded

vbOLEMiscFlagDisab
leInPlace

&H2 Forces OLE container control to
activate objects in a separate

window

CommonDialog Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxCommonDialogControlConstantsC;vbproBooksOnlineJumpTopic"}

File Open/Save Dialog Box Flags
Constant Value Description
cdlOFNAllowMultiselect &H200 Specifies that the File Name list box allows

multiple selections.
The user can select more than one file at run
time by pressing the SHIFT key and using the
UP ARROW and DOWN ARROW keys to select the
desired files. When this is done, the FileName
property returns a string containing the names
of all selected files. The names in the string
are delimited by spaces.

cdlOFNCreatePrompt &H2000 Specifies that the dialog box prompts the user
to create a file that doesn't currently exist. This
flag automatically sets the
cdlOFNPathMustExist and
cdlOFNFileMustExist flags.

cdlOFNExplorer &H80000 Use the Explorer-like Open A File dialog box
template. Common dialogs that use this flag
do not work under Windows NT using the
Windows 95 shell.

cdlOFNExtensionDifferent &H400 Indicates that the extension of the returned
filename is different from the extension
specified by the DefaultExt property. This flag
isn't set if the DefaultExt property is Null, if
the extensions match, or if the file has no
extension. This flag value can be checked
upon closing the dialog box.

cdlOFNFileMustExist &H1000 Specifies that the user can enter only names
of existing files in the File Name text box. If
this flag is set and the user enters an invalid
filename, a warning is displayed. This flag
automatically sets the cdlOFNPathMustExist
flag.

cdlOFNHelpButton &H10 Causes the dialog box to display the Help
button.

cdlOFNHideReadOnly &H4 Hides the Read Only check box.
cdlOFNLongNames &H200000 Use long filenames.
cdlOFNNoChangeDir &H8 Forces the dialog box to set the current

directory to what it was when the dialog box
was opened.

cdlOFNNoDereferenceLinks &H100000 Do not dereference shell links (also known as
shortcuts). By default, choosing a shell link
causes it to be dereferenced by the shell.

cdlOFNNoReadOnlyReturn &H8000 Specifies that the returned file won't have the
Read Only attribute set and won't be in a
write-protected directory.

cdlOFNNoValidate &H100 Specifies that the common dialog box allows
invalid characters in the returned filename.

cdlOFNOverwritePrompt &H2 Causes the Save As dialog box to generate a
message box if the selected file already
exists. The user must confirm whether to
overwrite the file.

cdlOFNPathMustExist &H800 Specifies that the user can enter only valid
paths. If this flag is set and the user enters an
invalid path, a warning message is displayed.

cdlOFNReadOnly &H1 Causes the Read Only check box to be
initially checked when the dialog box is
created. This flag also indicates the state of
the Read Only check box when the dialog box
is closed.

cdlOFNShareAware &H4000 Specifies that sharing violation errors will be
ignored.

Color Dialog Box Flags
Constant Value Description
cdCClFullOpen &H2 Entire dialog box is displayed, including the

Define Custom Colors section
cdlCCShowHelp &H8 Causes the dialog box to display a Help

button
cdlCCPreventFullOpen &H4 Disables the Define Custom Colors

command button and prevents the user from
defining custom colors

cdlCCRGBInit &H1 Sets the initial color value for the dialog box

Fonts Dialog Box Flags
Constant Value Description
cdlCFANSIOnly &H400 Specifies that the dialog box allows only a

selection of the fonts that use the Windows
character set. If this flag is set, the user won't
be able to select a font that contains only
symbols.

cdlCFApply &H200 Enables the Apply button on the dialog box.
cdlCFBoth &H3 Causes the dialog box to list the available

printer and screen fonts. The hDC property
identifies the device context associated with
the printer.

cdlCFEffects &H100 Specifies that the dialog box enables
strikethrough, underline, and color effects.

cdlCFFixedPitchOnly &H4000 Specifies that the dialog box selects only
fixed-pitch fonts.

cdlCFForceFontExist &H10000 Specifies that an error message box is
displayed if the user attempts to select a font
or style that doesn't exist.

cdlCFHelpButton &H4 Causes the dialog box to display a Help
button.

cdlCFLimitSize &H2000 Specifies that the dialog box selects only font
sizes within the range specified by the Min
and Max properties.

cdlCFNoFaceSel &H80000 No font name selected.
cdlCFNoSimulations &H1000 Specifies that the dialog box doesn't allow

graphic device interface (GDI) font
simulations.

cdlCFNoSizeSel &H200000 No font size selected.
cdlCFNoStyleSel &H100000
cdlCFNoVectorFonts &H800 Specifies that the dialog box doesn't allow

vector-font selections.
cdlCFPrinterFonts &H2 Causes the dialog box to list only the fonts

supported by the printer, specified by the
hDC property.

cdlCFScalableOnly &H20000 Specifies that the dialog box allows only the
selection of fonts that can be scaled.

cdlCFScreenFonts &H1 Causes the dialog box to list only the screen
fonts supported by the system.

cdlCFTTOnly &H40000 Specifies that the dialog box allows only the
selection of TrueType fonts.

cdlCFWYSIWYG &H8000 Specifies that the dialog box allows only the
selection of fonts that are available on both
the printer and on screen. If this flag is set,
the cdlCFBoth and cdlCFScalableOnly
flags should also be set.

Printer Dialog Box Flags
Constant Value Description
cdlPDAllPages &H0 Returns or sets the state of the All Pages

option button.
cdlPDCollate &H10 Returns or sets the state of the Collate check

box.
cdlPDDisablePrintToFile &H80000 Disables the Print To File check box.
cdlPDHelpButton &H800 Causes the dialog box to display the Help

button.
cdlPDHidePrintToFile &H100000 Hides the Print To File check box.
cdlPDNoPageNums &H8 Disables the Pages option button and the

associated edit control.
cdlPDNoSelection &H4 Disables the Selection option button.
cdlPDNoWarning &H80 Prevents a warning message from being

displayed when there is no default printer.
cdlPDPageNums &H2 Returns or sets the state of the Pages option

button.
cdlPDPrintSetup &H40 Causes the system to display the Print Setup

dialog box rather than the Print dialog box.
cdlPDPrintToFile &H20 Returns or sets the state of the Print To File

check box.
cdlPDReturnDC &H100 Returns a device context for the printer

selection made in the dialog box. The device
context is returned in the dialog box's hDC
property.

cdlPDReturnDefault &H400 Returns default printer name.

cdlPDReturnIC &H200 Returns an information context for the printer
selection made in the dialog box. An
information context provides a fast way to get
information about the device without creating
a device context. The information context is
returned in the dialog box's hDC property.

cdlPDSelection &H1 Returns or sets the state of the Selection
option button. If neither cdlPDPageNums
nor cdlPDSelection is specified, the All
option button is in the selected state.

cdlPDUseDevModeCopies &H40000 If a printer driver doesn't support multiple
copies, setting this flag disables the copies
edit control. If a driver does support multiple
copies, setting this flag indicates that the
dialog box stores the requested number of
copies in the Copies property.

Help Constants
Constant Value Description
cdlHelpCommandHelp &H102 Displays Help for a particular command
cdlHelpContents &H3 Displays the contents topic in the current

Help file
cdlHelpContext &H1 Displays Help for a particular topic
cdlHelpContextPopup &H8 Displays a topic identified by a context

number
cdlHelpForceFile &H9 Creates a Help file that displays text in only

one font
cdlHelpHelpOnHelp &H4 Displays Help for using the Help application

itself
cdlHelpIndex &H3 Displays the index of the specified Help file
cdlHelpKey &H101 Displays Help for a particular keyword
cdlHelpPartialKey &H105 Calls the search engine in Windows Help
cdlHelpQuit &H2 Notifies the Help application that the

specified Help file is no longer in use
cdlHelpSetContents &H5 Designates a specific topic as the contents

topic
cdlHelpSetIndex &H5 Sets the current index for multi-index Help

Help Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxHelpConstantsC;vbproBooksOnlineJumpTopic"}

Constant Value Description
cdlHelpContext &H1 Displays Help for a particular topic
cdlHelpQuit &H2 Notifies the Help application that the

specified Help file is no longer in use
cdlHelpIndex &H3 Displays the index of the specified

Help file
cdlHelpContents &H3 Displays the contents topic in the

current Help file
cdlHelpHelpOnHelp &H4 Displays Help for using the Help

application itself
cdlHelpSetIndex &H5 Sets the current index for multi-index

Help
cdlHelpSetContents &H5 Designates a specific topic as the

contents topic
cdlHelpContextPopup &H8 Displays a topic identified by a

context number
cdlHelpForceFile &H9 Creates a Help file that displays text

in only one font
cdlHelpKey &H101 Displays Help for a particular

keyword
cdlHelpCommandHelp &H102 Displays Help for a particular

command
cdlHelpPartialKey &H105 Calls the search engine in Windows

Help

CommonDialog Error Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxCommonDialogErrorConstantsC;vbproBooksOnlineJumpTopic"}

Constant Value Description
cdlAlloc &H7FF0 Couldn't allocate memory for

FileName or Filter property
cdlCancel &H7FF3 Cancel was selected
cdlDialogFailure &H8000 The function failed to load the

dialog box
cdlFindResFailure &H7FF9 The function failed to load a

specified resource
cdlHelp &H7FEF Call to Windows Help failed
cdlInitialization &H7FFD The function failed during

initialization
cdlLoadResFailure &H7FF8 The function failed to load a

specified string
cdlLockResFailure &H7FF7 The function failed to lock a

specified resource
cdlMemAllocFailure &H7FF6 The function was unable to

allocate memory for internal
data structures

cdlMemLockFailure &H7FF5 The function was unable to lock
the memory associated with a
handle

cdlNoFonts &H5FFE No fonts exist
cdlBufferTooSmall &H4FFC The buffer at which the member

lpstrFile points is too small
cdlInvalidFileName &H4FFD Filename is invalid
cdlSubclassFailure &H4FFE An attempt to subclass a list box

failed due to insufficient memory
cdlCreateICFailure &H6FF5 The PrintDlg function failed

when it attempted to create an
information context

cdlDndmMismatch &H6FF6 Data in the DevMode and
DevNames data structures
describe two different printers

cdlGetDevModeFail &H6FFA The printer device driver failed
to initialize a DevMode data
structure

cdlInitFailure &H6FF9 The PrintDlg function failed
during initialization

cdlLoadDrvFailure &H6FFB The PrintDlg function failed to
load the specified printer's
device driver

cdlNoDefaultPrn &H6FF7 A default printer doesn't exist
cdlNoDevices &H6FF8 No printer device drivers were

found
cdlParseFailure &H6FFD The CommonDialog function

failed to parse the strings in the
[devices] section of Win.ini

cdlPrinterCodes &H6FFF The PDReturnDefault flag was
set, but either the hDevMode or
hDevNames field was nonzero

cdlPrinterNotFound &H6FF4 The [devices] section of Win.ini
doesn't contain an entry for the
requested printer

cdlRetDefFailure &H6FFC The PDReturnDefault flag was
set, but either the hDevMode or
hDevNames field was nonzero

cdlSetupFailure &H6FFE Failed to load required
resources

Menu Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxMenuControlConstantsC;vbproBooksOnlineJumpTopic"}

PopupMenu Method Alignment
Constant Value Description
vbPopupMenuLeftAlign 0 Pop-up menu left-aligned
vbPopupMenuCenterAlign 4 Pop-up menu centered
vbPopupMenuRightAlign 8 Pop-up menu right-aligned

PopupMenu Mouse Button Recognition
Constant Value Description
vbPopupMenuLeftButton 0 Pop-up menu recognizes

left mouse button only
vbPopupMenuRightButton 2 Pop-up menu recognizes

right and left mouse buttons

Menu Accelerator Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstMenuAcceleratorC;vbproBooksOnlineJumpTopic"}

Constant Value Description
vbMenuAccelCtrlA 1 User-defined shortcut keystrokes
vbMenuAccelCtrlB 2 User-defined shortcut keystrokes
vbMenuAccelCtrlC 3 User-defined shortcut keystrokes
vbMenuAccelCtrlD 4 User-defined shortcut keystrokes
vbMenuAccelCtrlE 5 User-defined shortcut keystrokes
vbMenuAccelCtrlF 6 User-defined shortcut keystrokes
vbMenuAccelCtrlG 7 User-defined shortcut keystrokes
vbMenuAccelCtrlH 8 User-defined shortcut keystrokes
vbMenuAccelCtrlI 9 User-defined shortcut keystrokes
vbMenuAccelCtrlJ 10 User-defined shortcut keystrokes
vbMenuAccelCtrlK 11 User-defined shortcut keystrokes
vbMenuAccelCtrlL 12 User-defined shortcut keystrokes
vbMenuAccelCtrlM 13 User-defined shortcut keystrokes
vbMenuAccelCtrlN 14 User-defined shortcut keystrokes
vbMenuAccelCtrlO 15 User-defined shortcut keystrokes
vbMenuAccelCtrlP 16 User-defined shortcut keystrokes
vbMenuAccelCtrlQ 17 User-defined shortcut keystrokes
vbMenuAccelCtrlR 18 User-defined shortcut keystrokes
vbMenuAccelCtrlS 19 User-defined shortcut keystrokes
vbMenuAccelCtrlT 20 User-defined shortcut keystrokes
vbMenuAccelCtrlU 21 User-defined shortcut keystrokes
vbMenuAccelCtrlV 22 User-defined shortcut keystrokes
vbMenuAccelCtrlW 23 User-defined shortcut keystrokes
vbMenuAccelCtrlX 24 User-defined shortcut keystrokes
vbMenuAccelCtrlY 25 User-defined shortcut keystrokes
vbMenuAccelCtrlZ 26 User-defined shortcut keystrokes
vbMenuAccelF1 27 User-defined shortcut keystrokes
vbMenuAccelF2 28 User-defined shortcut keystrokes
vbMenuAccelF3 29 User-defined shortcut keystrokes
vbMenuAccelF4 30 User-defined shortcut keystrokes
vbMenuAccelF5 31 User-defined shortcut keystrokes
vbMenuAccelF6 32 User-defined shortcut keystrokes
vbMenuAccelF7 33 User-defined shortcut keystrokes
vbMenuAccelF8 34 User-defined shortcut keystrokes
vbMenuAccelF9 35 User-defined shortcut keystrokes
vbMenuAccelF11 36 User-defined shortcut keystrokes
vbMenuAccelF12 37 User-defined shortcut keystrokes
vbMenuAccelCtrlF1 38 User-defined shortcut keystrokes
vbMenuAccelCtrlF2 39 User-defined shortcut keystrokes
vbMenuAccelCtrlF3 40 User-defined shortcut keystrokes
vbMenuAccelCtrlF4 41 User-defined shortcut keystrokes

vbMenuAccelCtrlF5 42 User-defined shortcut keystrokes
vbMenuAccelCtrlF6 43 User-defined shortcut keystrokes
vbMenuAccelCtrlF7 44 User-defined shortcut keystrokes
vbMenuAccelCtrlF8 45 User-defined shortcut keystrokes
vbMenuAccelCtrlF9 46 User-defined shortcut keystrokes
vbMenuAccelCtrlF11 47 User-defined shortcut keystrokes
vbMenuAccelCtrlF12 48 User-defined shortcut keystrokes
vbMenuAccelShiftF1 49 User-defined shortcut keystrokes
vbMenuAccelShiftF2 50 User-defined shortcut keystrokes
vbMenuAccelShiftF3 51 User-defined shortcut keystrokes
vbMenuAccelShiftF4 52 User-defined shortcut keystrokes
vbMenuAccelShiftF5 53 User-defined shortcut keystrokes
vbMenuAccelShiftF6 54 User-defined shortcut keystrokes
vbMenuAccelShiftF7 55 User-defined shortcut keystrokes
vbMenuAccelShiftF8 56 User-defined shortcut keystrokes
vbMenuAccelShiftF9 57 User-defined shortcut keystrokes
vbMenuAccelShiftF11 58 User-defined shortcut keystrokes
vbMenuAccelShiftF12 59 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF1 60 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF2 61 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF3 62 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF4 63 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF5 64 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF6 65 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF7 66 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF8 67 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF9 68 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF11 69 User-defined shortcut keystrokes
vbMenuAccelShiftCtrlF12 70 User-defined shortcut keystrokes
vbMenuAccelCtrlIns 71 User-defined shortcut keystrokes
vbMenuAccelShiftIns 72 User-defined shortcut keystrokes
vbMenuAccelDel 73 User-defined shortcut keystrokes
vbMenuAccelShiftDel 74 User-defined shortcut keystrokes
vbMenuAccelAltBksp 75 User-defined shortcut keystrokes

Printer Object Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxPrinterObjectConstantsC;vbproBooksOnlineJumpTopic"}

Printer Color Mode
Constant Value Description
vbPRCMMonochrome 1 Monochrome output
vbPRCMColor 2 Color output

Duplex Printing
Constant Value Description
vbPRDPSimplex 1 Single-sided printing
vbPRDPHorizontal 2 Double-sided horizontal printing
vbPRDPVertical 3 Double-sided vertical printing

Printer Orientation
Constant Value Description
vbPRORPortrait 1 Documents print with the top at the

narrow side of the paper
vbPRORLandscape 2 Documents print with the top at the

wide side of the paper

Print Quality
Constant Value Description
vbPRPQDraft -1 Draft print quality
vbPRPQLow -2 Low print quality
vbPRPQMedium -3 Medium print quality
vbPRPQHigh -4 High print quality

PaperBin Property
Constant Value Description
vbPRBNUpper 1 Use paper from the upper bin
vbPRBNLower 2 Use paper from the lower bin
vbPRBNMiddle 3 Use paper from the middle bin
vbPRBNManual 4 Wait for manual insertion of each

sheet of paper
vbPRBNEnvelope 5 Use envelopes from the envelope

feeder
vbPRBNEnvManual 6 Use envelopes from the envelope

feeder, but wait for manual insertion
vbPRBNAuto 7 (Default) Use paper from the current

default bin
vbPRBNTractor 8 Use paper fed from the tractor feeder
vbPRBNSmallFmt 9 Use paper from the small paper

feeder
vbPRBNLargeFmt 10 Use paper from the large paper bin

vbPRBNLargeCapacity 11 Use paper from the large capacity
feeder

vbPRBNCassette 14 Use paper from the attached cassette
cartridge

PaperSize Property
Constant Value Description
vbPRPSLetter 1 Letter, 8 1/2 x 11 in
vbPRPSLetterSmall 2 +A611Letter Small, 8 1/2 x 11 in
vbPRPSTabloid 3 Tabloid, 11 x 17 in
vbPRPSLedger 4 Ledger, 17 x 11 in
vbPRPSLegal 5 Legal, 8 1/2 x 14 in
vbPRPSStatement 6 Statement, 5 1/2 x 8 1/2 in
vbPRPSExecutive 7 Executive, 7 1/2 x 10 1/2 in
vbPRPSA3 8 A3, 297 x 420 mm
vbPRPSA4 9 A4, 210 x 297 mm
vbPRPSA4Small 10 A4 Small, 210 x 297 mm
vbPRPSA5 11 A5, 148 x 210 mm
vbPRPSB4 12 B4, 250 x 354 mm
vbPRPSB5 13 B5, 182 x 257 mm
vbPRPSFolio 14 Folio, 8 1/2 x 13 in
vbPRPSQuarto 15 Quarto, 215 x 275 mm
vbPRPS1&H14 16 10 x 14 in
vbPRPS11x17 17 11 x 17 in
vbPRPSNote 18 Note, 8 1/2 x 11 in
vbPRPSEnv9 19 Envelope #9, 3 7/8 x 8 7/8 in
vbPRPSEnv10 20 Envelope #10, 4 1/8 x 9 1/2 in
vbPRPSEnv11 21 Envelope #11, 4 1/2 x 10 3/8 in
vbPRPSEnv12 22 Envelope #12, 4 1/2 x 11 in
vbPRPSEnv14 23 Envelope #14, 5 x 11 1/2 in
vbPRPSCSheet 24 C size sheet
vbPRPSDSheet 25 D size sheet
vbPRPSESheet 26 E size sheet
vbPRPSEnvDL 27 Envelope DL, 110 x 220 mm
vbPRPSEnvC3 29 Envelope C3, 324 x 458 mm
vbPRPSEnvC4 30 Envelope C4, 229 x 324 mm
vbPRPSEnvC5 28 Envelope C5, 162 x 229 mm
vbPRPSEnvC6 31 Envelope C6, 114 x 162 mm
vbPRPSEnvC65 32 Envelope C65, 114 x 229 mm
vbPRPSEnvB4 33 Envelope B4, 250 x 353 mm
vbPRPSEnvB5 34 Envelope B5, 176 x 250 mm
vbPRPSEnvB6 35 Envelope B6, 176 x 125 mm
vbPRPSEnvItaly 36 Envelope, 110 x 230 mm
vbPRPSEnvMonarch 37 Envelope Monarch, 3 7/8 x 7 1/2

in
vbPRPSEnvPersonal 38 Envelope, 3 5/8 x 6 1/2 in

vbPRPSFanfoldUS 39 U.S. Standard Fanfold, 14 7/8 x
11 in

vbPRPSFanfoldStdGerman 40 German Standard Fanfold, 8 1/2
x 12 in

vbPRPSFanfoldLglGerman 41 German Legal Fanfold, 8 1/2 x 13
in

vbPRPSUser 256 User-defined

RasterOp Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxRasterOpConstantsC;vbproBooksOnlineJumpTopic"}

Constant Value Description
vbDstInvert &H00550009 Inverts the destination bitmap
vbMergeCopy &H00C000CA Combines the pattern and the

source bitmap
vbMergePaint &H00BB0226 Combines the inverted source

bitmap with the destination bitmap
by using Or

vbNotSrcCopy &H00330008 Copies the inverted source bitmap
to the destination

vbNotSrcErase &H001100A6 Inverts the result of combining the
destination and source bitmaps by
using Or

vbPatCopy &H00F00021L Copies the pattern to the
destination bitmap

vbPatInvert &H005A0049L Combines the destination bitmap
with the pattern by using Xor

vbPatPaint &H00FB0A09L Combines the inverted source
bitmap with the pattern by using
Or. Combines the result of this
operation with the destination
bitmap by using Or

vbSrcAnd &H008800C6 Combines pixels of the destination
and source bitmaps by using And

vbSrcCopy &H00CC0020 Copies the source bitmap to the
destination bitmap

vbSrcErase &H00440328 Inverts the destination bitmap and
combines the result with the
source bitmap by using And

vbSrcInvert &H00660046 Combines pixels of the destination
and source bitmaps by using Xor

vbSrcPaint &H00EE0086 Combines pixels of the destination
and source bitmaps by using Or

VBTranslateColor/OLETranslateColor Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxVBTranslateColor"}

Constant Value Description
vbInactiveCaptionText &H80000013 Color of text in an inactive

caption
vb3DHighlight &H80000014 Highlight color for 3-D display

elements
vb3DFace &H8000000F Dark shadow color for 3-D

display elements
vbMsgBox &H80000017 Background color for message

boxes and system dialog boxes
vbMsgBoxText &H80000018 Color of text displayed in

message boxes and system
dialog boxes

vb3DShadow &H80000010 Color of automatic window
shadows

vb3DDKShadow &H80000015 Darkest shadow
vb3DLight &H80000016 Second lightest of the 3-D

colors (after vb3DHighlight)

AddIn Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjAddInObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjAddInObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjAddInObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjAddInObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjAddInObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjAddInObjectS"}

The AddIn object provides information about an add-in to other add-ins.

Syntax
AddIn

Remarks
An AddIn object is created for every add-in that appears in the Vbaddin.Ini file.

AddIns Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolAddInsCollectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolAddInsCollectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolAddInsCollectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolAddInsCollectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolAddInsCollectionE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolAddInsCollectionS"}

Returns a collection of add-ins listed in the Vbaddin.Ini file.

Syntax
AddIns

Remarks
The AddIns collection is accessed through the VBE object. Every add-in listed in the Add-In Manager
in an instance of Visual Basic has an object in the AddIns collection.

This collection replaces the ExternalObjects collection used in Visual Basic version 4.0.

CommandBar Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjCommandBarObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjCommandBarObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjCommandBarObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjCommandBarObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjCommandBarObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjCommandBarObjectS"}

The CommandBar object contains other CommandBar objects which can act as either buttons or
menu commands.

Syntax
CommandBar

FileControlEvents Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjFileControlEventsObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjFileControlEventsObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjFileControlEventsObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjFileControlEventsObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjFileControlEventsObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjFileControlEventsObjectS"}

Represents all events supplied by Visual Basic which support file control.

Syntax
FileControlEvents

Remarks
The FileControlEvents object replaces the FileControl object in Visual Basic version 4.0. It works
the same as before, only its events have been changed to allow multiple project support.

Member Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjMemberObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjMemberObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjMemberObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjMemberObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjMemberObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjMemberObjectS"}

The Member object represents a mixture of code-based properties and type library-based attributes
of members.

Syntax
Member

Remarks
Code-based properties like Name are read-only, so the add-in must modify the code to change these
properties.

Members Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolMembersCollectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolMembersCollectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolMembersCollectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolMembersCollectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolMembersCollectionE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolMembersCollectionS"}

Returns a collection of code module-level members.

Syntax
Members

Remarks
A member of a code module is an identifier that has module-level scope and which can be considered
a property, method, or event of that code module.

Properties Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolPropertiesCollectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolPropertiesCollectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolPropertiesCollectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolPropertiesCollectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolPropertiesCollectionE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolPropertiesCollectionS"}

Returns the available properties of a control or component.

Syntax
Properties

Remarks
This object or collection includes all the properties that can normally be accessed at design time.

The default value for the Properties collection is determined by the Item method.

Use the Properties collection to access the properties displayed in the Properties window. For every
property listed in the Properties window, there is an object in the Properties collection.

SelectedVBControls Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolSelectedVBControlsCollectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolSelectedVBControlsCollectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolSelectedVBControlsCollectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolSelectedVBControlsCollectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolSelectedVBControlsCollectionE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolSelectedVBControlsCollectionS"}

Returns a collection of currently selected controls on a component.

Syntax
SelectedVBControls

Remarks
You can use this collection to access all currently selected controls on a form. The code can step
through the collection of controls or request a specific control.

This collection has the same specifications as the VBControls collection, except this collection
doesn't implement the Add method. The default method for the SelectedVBControls collection is the
Item method and is indexed with integers.

This collection replaces the SelectedControlTemplates collection from Visual Basic version 4.0.

SelectedVBControlsEvents Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjSelectedVBControlsEventsObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjSelectedVBControlsEventsObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjSelectedVBControlsEventsObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjSelectedVBControlsEventsObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjSelectedVBControlsEventsObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjSelectedVBControlsEventsObjectS"}

Represents a source of events supported by all currently selected controls.

Syntax
SelectedVBControlsEvents

VBComponentsEvents Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjVBComponentsEventsObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjVBComponentsEventsObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjVBComponentsEventsObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjVBComponentsEventsObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjVBComponentsEventsObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjVBComponentsEventsObjectS"}

Represents a source of events that occur when an object is added, removed, selected, renamed, or
activated in a Visual Basic project.

Syntax
VBComponentsEvents

VBControl Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjVBControlObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjVBControlObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjVBControlObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjVBControlObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjVBControlObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjVBControlObjectS"}

Represents a control on a component in a project.

Syntax
VBControl

Remarks
A program can access a control through the VBForm object. Using the VBForm object, you can:

· Access all the design time properties of a control.
· Identify the container of the control.
· Change the Z-order of the control.

The VBControl object replaces the ControlTemplate object from Visual Basic version 4.0.

VBControls Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolVBControlsCollectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolVBControlsCollectionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolVBControlsCollectionP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolVBControlsCollectionM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolVBControlsCollectionE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolVBControlsCollectionS"}

Returns a collection all components on a form.

Syntax
VBControls

Remarks
A program can access controls through the VBControls collection. Using the VBControls collection,
you can:

· Access all the controls on a component.
· Step through the collection of controls.
· Return a specific control.
· Add controls to a component.

The Item method determines the default value of the VBControls collection.

The VBControls collection replaces the ControlTemplates collection from Visual Basic version 4.0.

VBControlsEvents Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjVBControlsEventsObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjVBControlsEventsObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjVBControlsEventsObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjVBControlsEventsObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjVBControlsEventsObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjVBControlsEventsObjectS"}

Represents a source of events that occur when a control is added, removed, selected, renamed, or
activated in a Visual Basic project.

Syntax
VBControlsEvents

VBForm Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjVBFormObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjVBFormObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjVBFormObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjVBFormObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjVBFormObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjVBFormObjectS"}

Returns a component in a project.

Syntax
VBForm

Remarks
The ClassName property determines the default value of the VBForm object.

The VBForm object replaces the ControlTemplate object from Visual Basic version 4.0.

VBProjectsEvents Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjVBProjectsEventsObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjVBProjectsEventsObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjVBProjectsEventsObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjVBProjectsEventsObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjVBProjectsEventsObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjVBProjectsEventsObjectS"}

Represents a source of events that occur when projects are added, removed, renamed, or activated
in a Visual Basic project.

Syntax
VBProjectsEvents

AfterAddFile Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtAfterAddFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtAfterAddfileX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtAfterAddFileA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtAfterAddfileS"}

Occurs after a component is added to the current Visual Basic project with the Add File command in
the Project menu.

Syntax
Sub object_AfterAddFile(vbproject As VBProject, filetype As vbext_FileType, filename As String)
The AfterAddFile event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbproject A VBProject object specifying the name of the project in

which the file was added.
filetype An enumerated value (vbext_FileType) specifying the type of

file that was added, as listed in Settings.
filename A string expression specifying the name of the file that was

added.

Settings
The enumerated values for vbext_FileType are:

Constant Value Description
vbext_ft_Form 0 File type is a form.
vbext_ft_Module 1 File type is a basic module.
vbext_ft_Class 2 File type is a class module
vbext_ft_Project 3 File type is a project.
vbext_ft_Exe 4 File type is an executable file.
vbext_ft_Res 6 File type is a resource file.
vbext_ft_UserControl 7 File type is a User control.
vbext_ft_PropertyPage 8 File type is a Property Page.
vbext_ft_DocObject 9 File type is a User Document.
vbext_ft_Binary 10 File type is a binary file.
vbext_ft_GroupProject 11 File type is a group project.
vbext_ft_Designer 12 File type is a designer object.

Remarks
Visual Basic triggers this event only for files you can add from the Project menu. (That is, forms,
classes, User controls, Property Pages, and modules). The AfterAddFile event does not occur if you
select Add object from the Project menu. It also does not occur when an .Frx file is created for the
first time, and doesn't occur twice when a form is added.

This event occurs in all add-ins that are connected to the FileControl object. The add-in cannot
prevent the file from being written to disk because the operation is complete. However, you can use
this event to perform other tasks, such as:

· Log information about the event.
· Update information about the file.

· Backup the file.

AfterChangeFileName Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtAfterChangeFileNameEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtAfterChangeFileNameEventX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtAfterChangeFileNameEventA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtAfterChangeFileNameEventS"}

Occurs after a file in the current project has been saved for the first time, or saved with a new name. It
also occurs when the project is first compiled to an .Exe file, or when compiled to a new .Exe name.

Syntax
Sub object_AfterChangeFileName (vbproject As VBProject, filetype As vbext_FileType, newname

As String, oldname As String)
The AfterChangeFileName event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbproject A VBProject object specifying the name of the project in

which the file was changed.
filetype An enumerated value (vbext_FileType) specifying the type of

file that was changed, as listed in Settings.
newname A string expression specifying the new name of the file.
oldname A string expression specifying the old name of the file.

Settings
The enumerated values for vbext_FileType are:

Constant Value Description
vbext_ft_Form 0 File type is a form.
vbext_ft_Module 1 File type is a basic module.
vbext_ft_Class 2 File type is a class module.
vbext_ft_Project 3 File type is a project.
vbext_ft_Exe 4 File type is an executable file.
vbext_ft_Res 6 File type is a resource file.
vbext_ft_UserControl 7 File type is a User control.
vbext_ft_PropertyPage 8 File type is a Property Page.
vbext_ft_DocObject 9 File type is a User Document.
vbext_ft_Binary 10 File type is a binary file.
vbext_ft_GroupProject 11 File type is a group project.
vbext_ft_Designer 12 File type is a designer object.

AfterCloseFile Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtAfterCloseFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtAfterCloseFileX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtAfterCloseFileA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtAfterCloseFileS"}

Occurs after a project has been closed, either directly by the user, or by Visual Basic when the user
quits the program.

Syntax
Sub object_AfterCloseFile(vbproject As VBProject, filetype As vbext_FileType, filename As

String, wasdirty As Boolean)
The AfterCloseFile event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbproject A VBProject object specifying the name of the project in

which the file was closed.
filetype An enumerated value (vbext_FileType) specifying the type of

file that was closed, as listed in Settings.
filename A string expression specifying the name of the file that was

closed.
wasdirty A Boolean expression that specifies whether changes were

saved to a file prior to it being closed, as listed in Settings.

Settings
The enumerated values for vbext_FileType are:

Constant Value Description
vbext_ft_Form 0 File type is a form.
vbext_ft_Module 1 File type is a basic module.
vbext_ft_Class 2 File type is a class module.
vbext_ft_Project 3 File type is a project.
vbext_ft_Exe 4 File type is an executable file.
vbext_ft_Res 6 File type is a resource file.
vbext_ft_UserControl 7 File type is a User control.
vbext_ft_PropertyPage 8 File type is a Property Page.
vbext_ft_DocObject 9 File type is a User Document.
vbext_ft_Binary 10 File type is a binary file.
vbext_ft_GroupProject 11 File type is a group project.
vbext_ft_Designer 12 File type is a designer object.

The settings for wasdirty are:

Setting Description
True The file was dirty when it was closed. (That is, the user

elected to not save changes made to the file prior to closing
it.)

False The file was not dirty when it was closed (That is, the user
selected to save changes made to the file prior to closing it.)

Remarks
This event can occur once for each add-in connected to the FileControl object in each project; once
for each form, module, class, and control file, and once for the project file.

The AfterCloseFile event does not occur if the form is dirty and the user selects No on the Save
changes to the following files dialog box. Also, this event does not occur for .Frx files when a
project is closed. It occurs when the .Frm file is saved.

This event occurs in all add-ins that are connected to the FileControl object. The add-in cannot
prevent the file from being written to disk because the operation is complete. However, you can use
this event to perform other tasks, such as:

· Log information about the event.
· Update information about the file.
· Back up the file.
· Compare versions of the executable (.EXE) file.

AfterRemoveFile Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtAfterRemoveFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtAfterRemoveFileX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtAfterRemoveFileA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtAfterRemoveFileS"}

Occurs after a file is removed from the active Visual Basic project.

Syntax
Sub object_AfterRemoveFile(vbproject As VBProject, filetype As vbext_FileType, filename As

String)
The AfterRemoveFile event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbproject A VBProject object specifying the name of the project from

which the file was removed.
filetype An enumerated value (vbext_FileType) specifying the type of

file that was removed, as listed in Settings.
filename A string expression specifying the name of the file that was

removed.

Remarks
The AfterRemoveFile event does not occur for components that are removed before they have been
saved.

This event occurs in all add-ins that are connected to the FileControl object. The add-in cannot
prevent the file from being written to disk because the operation is complete. However, you can use
this event to perform other tasks, such as:

· Log information about the event.
· Update information about the file.
· Back up the file.

AfterWriteFile Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtAfterWriteFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtAfterWriteFileX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtAfterWriteFileA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtAfterWriteFileS"}

Occurs after a file is written to disk.

Syntax
Sub object_AfterWriteFile(vbproject As VBProject, filetype As vbext_FileType, filename As String,

result As Integer)
The AfterWriteFile event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbproject A VBProject object specifying the name of the project to

which the file was written.
filetype An enumerated value (vbext_FileType) specifying the type of

file that was written, as listed in Settings.
filename A string expression specifying the name of the file that was

written.
result A numeric expression that specifies the result of the write

operation, as listed in Settings.

Settings
The enumerated values for vbext_FileType are:

Constant Value Description
vbext_ft_Form 0 File type is a form.
vbext_ft_Module 1 File type is a basic module.
vbext_ft_Class 2 File type is a class module.
vbext_ft_Project 3 File type is a project.
vbext_ft_Exe 4 File type is an executable file.
vbext_ft_Res 6 File type is a resource file.
vbext_ft_UserControl 7 File type is a User control.
vbext_ft_PropertyPage 8 File type is a Property Page.
vbext_ft_DocObject 9 File type is a User Document.
vbext_ft_Binary 10 File type is a binary file.
vbext_ft_GroupProject 11 File type is a group project.
vbext_ft_Designer 12 File type is a designer object.

The settings for result are:

Value Description
0 Write was successful.
1 Write was canceled.
2 Write failed.

Remarks
The AfterWriteFile event occurs when the binary data file associated with a component (such as

an .Frx file) is saved for the first time, and occurs in all add-ins that are connected to the FileControl
object. The add-in cannot prevent the file from being written to disk because the operation is
complete. However, you can use this event to perform other tasks, such as:

· Log information about the event.
· Update information about the file.
· Back up the file.
· Compare versions of the executable (.EXE) file.

BeforeLoadFile Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtBeforeLoadFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtBeforeLoadFileX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtBeforeLoadFileA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtBeforeLoadFileS"}

Occurs when a component is added (not opened) to a project, or when a component's associated
binary file (such as an .Frx file) is accessed.

Syntax
Sub object_BeforeLoadFile(vbproject As VBProject, filenames() As String)
The BeforeLoadFile event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbproject A VBProject object specifying the name of the project in

which the file is to be loaded.
filenames A string expression specifying the names of the files to be

loaded.

Remarks
This event occurs in all add-ins that are connected to the FileControl object. This event occurs
several times for a project: once for the project file; once for all the forms, modules, classes, User
controls, Property Pages, and control files; and once for each of the .Frx files. This event occurs if a
form file with an associated .Frx file is saved, because the .Frx is loaded when the .Frm file is saved.

This event occurs in all add-ins that are connected to the FileControl object. The add-in cannot
prevent the file from being written to disk because the operation is complete. However, you can use
this event to perform other tasks, such as:

· Log information about the event.
· Update information about the file.
· Back up the file.

DoGetNewFileName Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDoGetNewFileNameC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtDoGetNewFileNameX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtDoGetNewFileNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDoGetNewFileNameS"}

Occurs whenever a Save As operation is performed on any component or project, whether manually
performed from the File menu, or programmatically performed.

Syntax
Sub DoGetNewFileName(vbproject As VBProject, filetype As vbext_FileType, newname As

String, oldname As String, canceldefault As Boolean)
The DoGetNewFileName event syntax has these parts:

Part Description
vbproject A VBProject object specifying the name of the

project which will be written.
filetype An enumerated value (vbext_FileType) specifying

the type of file to be written, as listed in Settings.
newname A string expression specifying the name of the new

file. The file specification must be relative to the
current LastUsedPath property or a fully qualified
filename.

oldname A string expression specifying the old name of the
file.

canceldefault A Boolean expression that determines the default
Visual Basic action, as described in Settings.

Settings
The enumerated values for vbext_FileType are:

Constant Value Description
vbext_ft_Form 0 File type is a form.
vbext_ft_Module 1 File type is a basic module.
vbext_ft_Class 2 File type is a class module.
vbext_ft_Project 3 File type is a project.
vbext_ft_Exe 4 File type is an executable file.
vbext_ft_Res 6 File type is a resource file.
vbext_ft_UserControl 7 File type is a User control.
vbext_ft_PropertyPage 8 File type is a Property Page.
vbext_ft_DocObject 9 File type is a User Document.
vbext_ft_Binary 10 File type is a binary file.
vbext_ft_GroupProject 11 File type is a group project.
vbext_ft_Designer 12 File type is a designer object.

The settings for canceldefault are:

Setting Description
True Stops triggering this event for any subsequent add-ins

connected to the FileControl object. If newname is a zero-
length string ("") when canceldefault is set to True, the event is
canceled; otherwise, the name entered in newname is used as

the new filename.
False Continues triggering this event for subsequent add-ins

connected to the FileControl object. If no add-in sets
canceldefault to True, the Save File As or Make .Exe dialog
box is displayed with the string you entered in newname
selected.

Remarks
If the canceldefault parameter is set to True, the Save File As dialog box is not displayed. If
canceldefault is set to False, the Save File As dialog box displays. If more than one add-ins is
connected, and canceldefault is set to True at any time during a Save As operation, the Save File As
dialog box will not display for any of the add-ins until the next Save As operation is performed.

The newname argument is initially set to the same value as oldname, but any add-in that receives this
event can change it. One way to do this is through a custom user interface where you obtain the new
name of the file and set newname to the user's selection. However, if canceldefault is True (meaning
that a previous add-in has set it to True), you shouldn't set newname again.

This event occurs in all add-ins that are connected to the FileControl object. The add-in cannot
prevent the file from being written to disk because the operation is complete. However, you can use
this event to perform other tasks, such as:

· Log information about the event.
· Update information about the file.
· Back up the file.

IDTExtensibility Interface
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjIDTExtensibilityInterfaceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjIDTExtensibilityInterfaceX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjIDTExtensibilityInterfaceP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjIDTExtensibilityInterfaceM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjIDTExtensibilityInterfaceE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjIDTExtensibilityInterfaceS"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbobjIDTExtensibilityInterfaceA"}

The IDTExtensibility interface contains methods that Visual Basic calls when an add-in is connected
to it, whether through the Add-In Manager, or some other manner.

The IDTExtensibility interface contains pre-configured procedure templates (which includes their
parameter lists) that you need to manage add-ins in Visual Basic.

Syntax
Implements IDTExtensiblity

Remarks
The usage of interfaces is new to Visual Basic 5.0. Interfaces enable you to choose a pre-configured
procedure template from a module's Procedure drop down list, eliminating parameter list entry errors
and allowing you to program your applications a bit faster.

An interface's methods are exposed through the Implements statement. When the above syntax is
entered in the Declarations section of the Class module that handles an add-in's events, the
interface's methods become available for your use through the module's Procedure and Object drop
down boxes. To add the code to the module, simply select it from the drop down box.

The IDTExtensiblity interface currently contains four methods:

· OnAddinsUpdate Method
· OnConnection Method
· OnDisconnection Method
· OnStartupComplete Method

While these are methods to the IDTExtensibility interface, to you as a Visual Basic programmer,
though, they act and behave like events. In other words, when an add-in is connected to Visual Basic,
the OnConnection method is called automatically, similar to an event firing. When it is disconnected,
the OnDisconnection method is called automatically, and so forth.

Important Since an interface is a contract between an object and Visual Basic, you must be sure to
implement all of the methods in the interface. This means that all four IDTExtensibility interface
methods are present in your Class module, each containing at least one executable statement. This
can consist of as little as a single remark statement, but they must each contain at least one
executable statement to prevent the compiler from removing them as empty procedures.

ItemActivated Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtItemActivatedEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtItemActivatedEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtItemActivatedEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtItemActivatedEventS"}

Occurs when a component is double-clicked in the Project window, and when a project is single-
clicked in a project window when there are multiple projects loaded in the IDE.

Syntax
Sub object_ItemActivated(vbcomponent As VBComponent)
Sub object_ItemActivated(vbproject As VBProject)
The ItemActivated event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbcomponent A VBComponent object specifying the name of the

component that was double-clicked.
vbproject A VBProject object specifying the name of the project which

was double-clicked.

Remarks
The ItemActivated event does not occur when a component is double-clicked in the Project window.

ItemAdded Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtItemAddedEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtItemAddedEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtItemAddedEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtItemAddedEventS"}

Occurs after a project, control, or component is added to the current project.

Syntax
Sub object_ItemAdded (vbproject As VBProject)
Sub object_ItemAdded (vbcomponent As VBComponent)
Sub object_ItemAdded (vbcontrol As VBControl)
The ItemAdded event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbproject A VBProject object specifying the name of the project that

was loaded.
vbcomponent A VBComponent object specifying the name of the

component that was loaded.
vbcontrol A VBControl object specifying the name of the control that

was loaded.

ItemRemoved Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtItemRemovedEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtItemRemovedEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtItemRemovedEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtItemRemovedEventS"}

Occurs after a project, control, or component is removed from the current project.

Syntax
Sub object_ItemRemoved (vbcontrol As VBControl)
Sub object_ItemRemoved (vbproject As VBProject)
Sub object_ItemRemoved (vbcomponent As VBComponent)
The ItemRemoved event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbproject A VBProject object specifying the name of the project that

was removed.
vbcomponent A VBComponent object specifying the name of the

component that was removed.
vbcontrol A VBControl or SelectedVBControl object specifying the

name of the component that was removed.

ItemRenamed Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtItemRenamedEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtItemRenamedEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtItemRenamedEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtItemRenamedEventS"}

Occurs after a project, control, or component is renamed in the current project.

Syntax
Sub object_ItemRenamed (vbproject As VBProject)
Sub object_ItemRenamed (vbcomponent As VBComponent)
Sub object_ItemRenamed (vbcontrol As VBControl)
The ItemRenamed event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbproject A VBProject object specifying the name of the project that

was renamed.
vbcomponent A VBComponent object specifying the name of the

component that was renamed.
vbcontrol A VBControl object specifying the name of the control that

was renamed.

ItemSelected Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtItemSelectedEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtItemSelectedEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtItemSelectedEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtItemSelectedEventS"}

Occurs when a component in the Project window or an open designer-window is clicked.

Syntax
Sub object_ItemSelected (vbcomponent As VBComponent)
The ItemSelected event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbcomponent A VBComponent object specifying the name of the

component that was selected.

RequestChangeFileName Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtRequestChangeFileNameEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtRequestChangeFileNameEventX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtRequestChangeFileNameEventA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtRequestChangeFileNameEventS"}

Occurs after specifying a new filename for a component or project, and the name change is
completed.

Syntax
Sub RequestChangeFileName(vbproject As VBProject, filetype As vbext_FileType, newname As

String, oldname As String, cancel As Boolean)
The RequestChangeFileName event syntax has these parts:

Part Description
vbproject A VBProject object specifying the name of the

project the new file will be added to.
filetype An enumerated value (vbext_FileType) specifying

the type of file that was written, as listed in Settings.
newname A string expression specifying the name given to the

renamed file.
oldname A string expression specifying containing the name

of the file before it was renamed.
cancel A Boolean expression that determines the default

Visual Basic action, as described in Settings.

Settings
The settings for filetype are:

Constant Value Description
vbext_ft_Form 0 File type is a form.
vbext_ft_Module 1 File type is a basic module.
vbext_ft_Class 2 File type is a class module.
vbext_ft_Project 3 File type is a project.
vbext_ft_Exe 4 File type is an executable file.
vbext_ft_Res 6 File type is a resource file.
vbext_ft_UserControl 7 File type is a User control.
vbext_ft_PropertyPage 8 File type is a Property Page.
vbext_ft_DocObject 9 File type is a User Document.
vbext_ft_Binary 10 File type is a binary file.
vbext_ft_GroupProject 11 File type is a group project.
vbext_ft_Designer 12 File type is a designer object.

The settings for cancel are:

Setting Description
True Cancel the renaming of the file. This event won't be triggered

for any subsequent add-ins connected to the FileControl
object.

False Continue triggering this event for subsequent add-ins
connected to the FileControl object.

Remarks
This event allows all the add-ins to examine the new filename that is proposed to be added to the
project, and decide whether to accept or cancel the name change.

This event occurs in all add-ins that are connected to the FileControl object. The add-in cannot
prevent the file from being written to disk because the operation is complete. However, you can use
this event to perform other tasks, such as:

· Log information about the event.
· Update information about the file.
· Back up the file.

RequestWriteFile Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtRequestWriteFileEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtRequestWriteFileEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtRequestWriteFileEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtRequestWriteFileEventS"}

Occurs prior to saving any project component with unsaved changes.

Syntax
Sub RequestWriteFile(vbproject As VBProject, filename As String, cancel As Boolean)
The RequestWriteFile event syntax has these parts:

Part Description
vbproject A VBProject object specifying the name of the

project containing the component.
filename A string expression containing the name of the file to

be saved.
cancel A Boolean expression used as a flag to cancel the

action, as described in Settings.

Settings
The settings for cancel are:

Setting Description
True Does not write the file to disk. This event is not triggered for

any subsequent add-ins connected to the FileControl object.
False Continues triggering this event for subsequent add-ins

connected to the FileControl object.

Remarks
The RequestWriteFile event occurs once for each saved component, and once for each associated
binary data file (such as .Frx or .Pgx files).

This event allows add-ins to prepare the specified file for writing. For example, you could use it to
enable an add-in to check out a file from a source code control project prior to writing to it.

This event occurs in all add-ins that are connected to the FileControl object. The add-in cannot
prevent the file from being written to disk because the operation is complete. However, you can use
this event to perform other tasks, such as:

· Log information about the event.
· Update information about the file.
· Back up the file.

Activate Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthActivateMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthActivateMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthActivateMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthActivateMethodS"}

Causes the currently selected component in the project window to be activated as if it were double-
clicked.

Syntax
object.Activate
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Add Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthAddA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddS"}

· ContainedVBControls collection: Adds a new VBControl object to the ContainedVBControls
collection.

· VBControls collection: Adds a new VBControl object to the VBControls collection.
· VBProjects collection: adds a new, empty project to the set of projects in the VBProjects collection.

Syntax
object.Add (progid As String, [relativevbcontrol As VBControl] [before As Boolean]) As VBControl
object.Add (projecttype As vbext_ProjectType, [exclusive As Boolean]) As VBProject
The Add method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
progid Required. A string expression specifying the ProgID

of the component to be added.
relativevbcontrol Optional. An existing VBControl object specifying

the point where the new component is to be inserted.
before Optional. Default = False. A Boolean expression

specifying whether the new VBControl is to be
placed before or after the relativevbcontrol.

projecttype Required. A VBProject object specifying the type of
the new project. For a list of kinds of projects, see
the Kind property.

exclusive Optional. Default = False. A Boolean expression
specifying whether a new project is added to an
existing set of projects, or added as the only project.

Remarks
If the exclusive parameter is specified as True, then the existing group project is closed and the new
project becomes the only project in the collection.

AddCustom Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddCustomMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddCustomMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAddCustomMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddCustomMethodS"}

Returns a VBComponent object, or creates a new custom component and adds it to the project.

Syntax
object.AddCustom (ByVal progid As String) As VBComponent
The AddCustom method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
progid Required. The ProgID of the custom component to

be created.

AddFile Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddFileMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddFileMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAddFileMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddFileMethodS"}

Returns the newly added component.

Syntax
object.AddFile (ByVal pathname As String, [relateddocument As Boolean]) As VBComponent
The AddFile method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
pathname Required. A string expression specifying the path

and filename of the file to open as a template.
relateddocument Optional (for text files only). Default = False. A

Boolean expression specifying whether the file is to
be treated as a standard module or a document. If
set to True, then the file added is treated as a
document file.

Remarks
Files that are normally Visual Basic project components, such as forms, cause an error if the
relateddocument parameter is set to True. The relateddocument parameter is required only when
adding text files that can be treated as either standard modules or documents.

AddFromFile Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddFromfileMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddFromfileMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAddFromfileMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddFromfileMethodS"}

Adds or opens a project or group project.

Syntax
object.AddFromFile (ByVal pathname As String, [exclusive As Boolean]) As VBNewProjects
The AddFromFile method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
pathname Required. A string expression specifying the path to

the file to use as the template.
exclusive Optional. Default = False. A Boolean expression. If

set to True, then the existing group project is closed
and the new project is created as the only open
project.

Remarks
If the file is a group project file and exclusive is set to False, then all projects in that group project are
added to the current group project. If the file is a group project file and exclusive is set to True, then
the current group project is replaced by the specified one.

AddFromTemplate Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddFromTemplateMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddFromTemplateMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAddFromTemplateMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddFromTemplateMethodS"}

· VBComponents collection: Returns the newly created component, and creates a new component
from a template.

· VBProjects collection: Returns a collection of all projects added as a result of a call to this method,
or creates a new project using an existing project as a template.

Syntax
object.AddFromTemplate (filename As String) As VBComponent
object.AddFromTemplate (ByVal pathname As String, [exclusive As Boolean]) As

VBNewProjects
The AddFromTemplate method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
filename Required. A string expression specifying the path

and filename of the file to open as a template.
exclusive Optional. Default = False. A Boolean expression. If

set to True, then the existing group project is closed
and the new project is created as the only open
project.

pathname Required. A string expression specifying the path to
the file to use as the template.

Remarks
If the file type referenced is a group project file, and exclusive is set to False, then all projects in that
file are created as templates and added to the current set of open projects. If exclusive is set to True,
however, the current group project is closed and a new group project created, and all projects within
the group project template are created as project templates. The object returned by the method is
Nothing.

New project or projects are given the usual default names.

AddToolboxProgID Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddToolboxProgIDMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddToolboxProgIDMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAddToolboxProgIDMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddToolboxProgIDMethodS"}

Places the control or embedded component in the toolbox and adds a control reference to the project.

Syntax
object.AddToolboxProgID (ByVal progid As String, [filename As String])

The AddToolboxProgID method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
progid Required. A string expression specifying the

programmatic identifier (ProgID) of the compound
document object to add to the Visual Basic toolbox.
Either a version-independent or version-dependent
ProgID can be used. If a version-independent progid
is specified, the most recent version is used. If the
compound document object has an associated type
library, this type library is referenced as well.

filename Optional. A string expression specifying the filename
of the desired type library to be added to Visual
Basic. A complete pathname can be used, but if the
file isn't found, the directories searched by the
Windows OpenFile function are searched, even if a
complete pathname is specified.

Item Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthItemAddInC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthItemAddInX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthItemAddInA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthItemAddInS"}

Returns an item from the specified collection by either name or index.

· AddIns collection:
· ContainedVBControls collection:
· Members collection:
· SelectedVBControls collection:
· VBControls collection:
· VBNewProjects collection:

Syntax
object.Item (index)
object.Item (collectionindex, [controlindex]) As VBControl
object.Item (var) As Member
The Item method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index Required. A variant expression specifying the name

or index in the collection of the object to be
accessed.

collectionindex Required. A numeric expression specifying the index
controlindex Optional.
var Required.

Remarks
There is no guarantee that a given index number for a collection will always point to the same item,
because items may be added or deleted from the collection. Using index numbers for the collection is
useful only when iterating through the whole collection and no items are added or deleted during the
iteration.

MakeCompiledFile Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbfctMakeCompiledFileMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbfctMakeCompiledFileMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbfctMakeCompiledFileMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbfctMakeCompiledFileMethodS"}

Causes the current project to be written as an Exe, Dll, or control, depending on project type.

Syntax
object.MakeCompiledFile
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

OnAddinsUpdate Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtUpdateEventC;vbmthUpdateMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtUpdateEventX;vbmthUpdateMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtUpdateEventA;vbmthUpdateMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtUpdateEventS;vbmthUpdateMethodS"} {ewc
HLP95EN.DLL,DYNALINK,"Interfaces":"vbmthUpdateMethodI"}

Occurs automatically when changes to the Vbaddin.Ini file are saved.

Syntax
object.IDTExtensibility_OnAddinsUpdate (custom() As Variant)
The OnAddinsUpdate method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
custom() An array of variant expressions to hold user-defined

data.

Remarks
This method is part of the IDTExtensibility interface, which you should implement in the class that
provides your connection object.

Important Don't directly enter the syntax given above. Instead, use the Implements statement to
generate the appropriate method template for the interface. To do this, in the Declarations section of
the Class module that provides your add-in's connection object, enter:

Implements IDTExtensibility
After adding this line, you can select IDTExtensibility from the module's Object drop down box.
Select each method from the Procedure drop down to get the procedure template shown above in
Syntax. Notice that the necessary code is automatically added to the Class module.

An interface's methods are exposed through the Implements statement. When the above syntax is
entered in the Declarations section of the Class module that handles an add-in's events, the
interface's methods become available for your use through the module's Procedure and Object drop
down boxes. To add the code to the module, select the method from the Procedure drop down box.

Note While the OnAddinsUpdate method is a method to the IDTExtensibility interface, to you as a
Visual Basic programmer it acts and behaves like an event. In other words, when changes made to
the Vbaddin.Ini file are saved, any code in the OnAddinsUpdate method automatically occurs, just
as if it were an event procedure.

Important Since an interface is a contract between an object and Visual Basic, you must be sure to
implement all of the methods in the interface. This means that all four IDTExtensibility interface
methods are present in your Class module, each containing at least one executable statement. This
can consist of as little as a single remark statement, but they must each contain at least one
executable statement to prevent the compiler from removing them as empty procedures.

OnConnection Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOnConnectionEventC;vbmthOnConnectionMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOnConnectionEventX;vbmthOnConnectionMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOnConnectionEventA;vbmthOnConnectionMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOnConnectionEventS;vbmthOnConnectionMethodS"} {ewc
HLP95EN.DLL,DYNALINK,"Interfaces":"vbmthOnConnectionMethodI"}

Occurs when an add-in is connected to the Visual Basic IDE, either through the Add-In Manager
dialog box or another add-in.

Syntax
object. IDTExtensibility_OnConnection (vbinst As Object, connectmode As vbext_ConnectMode,

addininst As AddIn, custom() As Variant)
The OnConnection method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
vbinst An object representing the instance of the current Visual

Basic session.
connectmode An enumerated value of type vbext_ConnectMode, as

specified in Settings.
addininst An AddIn object representing the instance of the add-in.
custom() An array of variant expressions to hold user-defined data.

Settings
The settings for connectmode (vbext_ConnectMode) are:

Constant Value Description
vbext_cm_AfterStartup 0 Add-in was started after the initial Open

Project dialog box was shown.
vbext_cm_Startup 1 Add-in was started before the initial

Open Project dialog box was shown.
vbext_cm_External 2 Add-in was started externally by another

program or component.

Remarks
This method is part of the IDTExtensibility interface, which you should implement in the class that
provides your connection object.

Important Don't directly enter the syntax given above. Instead, use the Implements statement to
generate the appropriate method template for the interface. To do this, in the Declarations section of
the Class module that provides your add-in's connection object, enter:

Implements IDTExtensibility
After adding this line, you can then select IDTExtensibility from the module's Object drop down box.
Select each method from the Procedure drop down to get the procedure template shown above in
Syntax. Notice that the necessary code is automatically added to the Class module.

An interface's methods are exposed through the Implements statement. When the above syntax is
entered in the Declarations section of the Class module that handles an add-in's events, the
interface's methods become available for your use through the module's Procedure and Object drop
down boxes. To add the code to the module, select the method from the Procedure drop down box.

Note While the OnConnection method is a method to the IDTExtensibility interface, to you as a
Visual Basic programmer it acts and behaves like an event. In other words, when an add-in is
connected to the Visual Basic IDE, either through the Add-In Manager dialog box or another add-in,
any code in the OnConnection method automatically occurs, just as if it were an event procedure.

Important Since an interface is a contract between an object and Visual Basic, you must be sure to
implement all of the methods in the interface. This means that all four IDTExtensibility interface
methods are present in your Class module, each containing at least one executable statement. This
can consist of as little as a single remark statement, but they must each contain at least one
executable statement to prevent the compiler from removing them as empty procedures.

OnDisconnection Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOnDisconnectionEventC;vbmthOnDisconnectionMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOnDisconnectionEventX;vbmthOnDisconnectionMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOnDisconnectionEventA;vbmthOnDisconnectionMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOnDisconnectionEventS;vbmthOnDisconnectionMethodS"} {ewc
HLP95EN.DLL,DYNALINK,"Interfaces":"vbmthOnDisconnectionMethodI"}

Occurs when an add-in is disconnected from the Visual Basic IDE, either programmatically or through
the Add-In Manager dialog box.

Syntax
object. IDTExtensibility_OnDisconnection (removemode As vbext_DisconnectMode, custom()As

Variant)
The OnDisconnection method syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
removemode An enumerated value of type vbext_DisconnectMode,

as specified in Settings.
custom() An array of variant expressions to hold user-defined data.

Settings
The settings for removemode (vbext_ConnectMode) are:

Constant Value Description
vbext_dm_HostShutdown 0 Add-in was removed by the add-in's

host being closed.
vbext_dm_UserClosed 1 Add-in was removed by the user

closing it.

Remarks
This method is part of the IDTExtensibility interface, which you should implement in the class that
provides your connection object.

Important Don't directly enter the syntax given above. Instead, use the Implements statement to
generate the appropriate method template for the interface. To do this, in the Declarations section of
the Class module that provides your add-in's connection object, enter:

Implements IDTExtensibility
After adding this line, you can then select IDTExtensibility from the module's Object drop down box.
Select each method from the Procedure drop down to get the procedure template shown above in
Syntax. Notice that the necessary code is automatically added to the Class module.

An interface's methods are exposed through the Implements statement. When the above syntax is
entered in the Declarations section of the Class module that handles an add-in's events, the
interface's methods become available for your use through the module's Procedure and Object drop
down boxes. To add the code to the module, select the method from the Procedure drop down box.

Note While the OnDisconnection method is a method to the IDTExtensibility interface, to you as a
Visual Basic programmer it acts and behaves like an event. In other words, when an add-in is
disconnected from the Visual Basic IDE, either programmatically or through the Add-In Manager
dialog box, any code in the OnDisconnection method automatically occurs, just as if it were an event
procedure.

Important Since an interface is a contract between an object and Visual Basic, you must be sure to
implement all of the methods in the interface. This means that all four IDTExtensibility interface
methods are present in your Class module, each containing at least one executable statement. This
can consist of as little as a single remark statement, but they must each contain at least one
executable statement to prevent the compiler from removing them as empty procedures.

OnStartupComplete Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOnStartupCompleteEventC;vbmthOnStartupCompleteMethodC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtOnStartupCompleteEventX;vbmthOnStartupCompleteMethodX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOnStartupCompleteEventA;vbmthOnStartupCompleteMethodA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOnStartupCompleteEventS;vbmthOnStartupCompleteMethodS"}
{ewc HLP95EN.DLL,DYNALINK,"Interfaces":"vbmthOnStartupCompleteMethodI"}

Occurs when the startup of the Visual Basic IDE is complete.

Syntax
object. IDTExtensibility_OnStartupComplete (custom() As Variant)
The OnStartupComplete method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
custom() An array of variant expressions to hold user-defined

data.

Remarks
This method is part of the IDTExtensibility interface, which you should implement in the class that
provides your connection object.

Important Don't directly enter the syntax given above. Instead, use the Implements statement to
generate the appropriate method template for the interface. To do this, in the Declarations section of
the Class module that provides your add-in's connection object, enter:

Implements IDTExtensibility
After adding this line, you can then select IDTExtensibility from the module's Object drop down box.
Select each method from the Procedure drop down to get the procedure template shown above in
Syntax. Notice that the necessary code is automatically added to the Class module.

An interface's methods are exposed through the Implements statement. When the above syntax is
entered in the Declarations section of the Class module that handles an add-in's events, the
interface's methods become available for your use through the module's Procedure and Object drop
down boxes. To add the code to the module, select the method from the Procedure drop down box.

Note While the OnStartupComplete method is a method to the IDTExtensibility interface, to you
as a Visual Basic programmer it acts and behaves like an event. In other words, when the startup of
the Visual Basic IDE is complete, any code in the OnStartupComplete method automatically occurs,
just as if it were an event procedure.

Important Since an interface is a contract between an object and Visual Basic, you must be sure to
implement all of the methods in the interface. This means that all four IDTExtensibility interface
methods are present in your Class module, each containing at least one executable statement. This
can consist of as little as a single remark statement, but they must each contain at least one
executable statement to prevent the compiler from removing them as empty procedures.

ReadProperty Method
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbfctReadPropertyFunctionC;vbmthReadPropertyFunctionC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbfctReadPropertyFunctionX;vbmthReadPropertyFunctionX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthReadPropertyFunctionA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthReadPropertyFunctionS"}

Returns a string from the specified user-defined section and key in the project's .Vbp or component
file.

· VBComponent object:
· VBProject object:

Syntax
object.ReadProperty (key As String) As String
object.ReadProperty (section As String, key As String) As String
The ReadProperty function syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
section A string expressioncontaining the name of the

section where the key is found.
key A string expressioncontaining the name of the key to

return.

Remarks
If the section or key area in the file is empty or doesn't exist, you'll get run-time error 5: "Illegal
function call."

Reload Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthReloadC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthReloadX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthReloadA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthReloadS"}

Reloads the specified component from disk, discarding any unsaved changes.

Syntax
object.Reload
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Cursor position, code window and form visibility are not affected by the Reload method. Reload
doesn't change the setting which indicates whether the project was edited since the last time it was
saved.

Remove Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRemoveMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthRemoveMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveMethodS"}

Removes an item from a collection.

Syntax
object.Remove (index)
The Item method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index Required. A variant expression specifying the name

or index in the collection of the object to be
accessed.

Remarks
For the LinkedWindows collection, removes a window from the collection of currently linked windows.
The removed window becomes a floating window that has its own LinkedWindowFrame. This is the
point at which LinkedWindowFrame windows are created.

For the VBProjects collection, removes the specified project from the collection.

For the References collection, removes the specified reference from the collection.

SaveAs Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSaveAsMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSaveAsMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSaveAsMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSaveAsMethodS"}

Saves a component or project to a given location using a new filename.

Syntax
object.SaveAs (newfilename As String)
The SaveAs method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
newfilename Required. A string expression specifying the new

filename for the component to be saved.

Remarks
If a new path name is given, it is used. Otherwise, the old path name is used. If the new filename is
invalid or refers to a read-only file, an error occurs.

When a form is saved, newfilename specifies the new name of the form file itself. The .Frx file, if
applicable, is saved automatically with an .Frx extension.

Note Successfully invoking this method causes the associated events from the FileControl object
to be invoked.

BuildFileName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBuildFileNamePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBuildFileNamePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBuildFileNamePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBuildFileNamePropertyS"}

Returns the executable or DLL name that will be used when the project is built.

Syntax
object.BuildFileName
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

CanPaste Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCanPastePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCanPastePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCanPastePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCanPastePropertyS"}

Returns a boolean value indicating whether or not the Clipboard contains appropriate information
(that is, controls) for pasting to the form.

Syntax
object.CanPaste
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

CodeLocation Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproCodeLocationPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCodeLocationPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCodeLocationPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCodeLocationPropertyS"}

Returns the line location in the code module where the member is defined.

Syntax
object.CodeLocation [= propkind]

The CodeLocation property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
propkind An enumerated value of vbext_PropertyKind, as

described in Settings.

Settings
The settings for vbext_PropertyKind are:

Constant Value Description
vbext_PropertyGet 1 (Default) Returns the code location for the

Get element of the property.
vbext_PropertyLet 2 Returns the code location for the Let

element of the property.
vbext_PropertySet 3 Returns the code location for the Set

element of the property.

CompatibleOLEServer Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproCompatibleOleServerPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCompatibleOleServerPropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproCompatibleOleServerPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproCompatibleOleServerPropertyS"}

Returns or sets the compatible ActiveX component of this project.

Syntax
object.CompatibleOLEServer
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Connected Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproConnectedPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproConnectedPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproConnectedPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproConnectedPropertyS"}

Returns or sets the connection state of an add-in.

Syntax
object.Connected
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Returns True if the add-in is registered and currently connected (active).

Returns False if the add-in is registered, but not connected (inactive).

ControlObject Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproControlObjectPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproControlObjectPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproControlObjectPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproControlObjectPropertyS"}

Returns a reference to an instance of the design-time IDispatch pointer provided by the control. If
there isn’t one, this property returns Nothing.

Syntax
object.ControlObject
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
For example, the Toolbar control provides an object through a Property Page's ControlObject
property to set the number of buttons.

ControlType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproControlTypePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproControlTypePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproControlTypePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproControlTypePropertyS"}

Returns the type of run-time window that a control creates.

Syntax
object.ControlType As vbext_ControlType
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The settings for vbext_ControlType are:

Constant Value Description
vbext_ct_Light 1 (Default) No hWnd at run-time.
vbext_ct_Standard 2 hWnd at run-time.
vbext_ct_Container 3 hWnd at run-time, and can contain

other controls.

DisplayModel Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDisplayModelPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDisplayModelPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDisplayModelPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDisplayModelPropertyS"}

Returns or sets the display model used by the system.

Syntax
object.DisplayModel As vbext_VBADisplayModel
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The settings for vbext_VBADisplayModel are:

Constant Value Description
vbext_dm_SDI 0 (Default) Display model is SDI (Single

Document Interface).
vbext_dm_MDI 1 Display model is MDI (Multiple Document

Interface).

FileControlEvents Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFileControlEventsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFileControlEventsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFileControlEventsPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFileControlEventsPropertyS"}

Returns an event object of type FileControlEvents.

Syntax
object.FileControlEvents
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

FileCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFileCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFileCountX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFileCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFileCountS"}

Returns the number of files associated with a given component.

Syntax
object.FileCount
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The primary use for FileCount is to alert you to whether a component has an associated .Frx file.

For most components, this property setting is 1, but it can be greater. For example, if an .FRX file is
associated with a form file, the FileCount property setting is 2.

FileName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFileNamePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFilenamePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFilenamePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFilenamePropertyS"}

Returns the full path name of the group project file.

Syntax
object.Filename
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Group projects have no name other than the file name.

The path name returned will always be provided as an absolute path (for example, "c:\projects\
myproject.vbp"), even if it is shown as a relative path in Visual Basic (such as "..\projects").

FileNames Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFileNamesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFileNamesX"} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFileNamesA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFileNamesS"}

Returns the current path name(s) in which the component will be stored.

Syntax
object.FileNames(index)
The FileNames property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index A long integer specifying the location of the filename

in the indexed string to return.

Remarks
The path name returned will always be provided as an absolute path (for example, "c:\projects\
myproject.vbp"), even if it is shown as a relative path in Visual Basic (such as "..\projects").

The number of entries in the indexed string is determined by the FileCount property setting. The
indexed string for classes and modules contains only one filename, while the indexed string for forms
contains both the .Frm and .Frx filename for the form. The values of the filenames are updated when
the SaveAs method is invoked on the object.

FullName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFullNamePropertyAddInC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFullNamePropertyAddInX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFullNamePropertyAddInA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFullNamePropertyAddInS"}

Returns the full path name of the Visual Basic IDE. (That is, the path where vb5.exe was run.)

Syntax
object.FullName
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The path name returned is always provided as an absolute path (for example, "c:\projects\
myproject.vbp"), even if it is shown as a relative path in Visual Basic (such as "..\projects").

IconState Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIconstateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproIconstateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproIconstateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproIconstateS"}

Returns or sets the source code control icon (or "glyph") for the project in the project window,
indicating its status.

Syntax
object.IconState [= value]

The IconState property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A long integer or constant that determines the file

status, as described in Settings.

Settings
The settings for value are:

Constant Value Description
vbextSCCStatusNotControlled 0 File is not under source

code control.
vbextSCCStatusControlled 1 File is under source code

control.
vbextSCCStatusCheckedOut 2 File is checked out to

current user.
vbextSCCStatusOutOther 4 File is checked out to

another user.
vbextSCCStatusOutOfDate 32 The file is not the most

recent.
vbextSCCStatusShared 512 File is shared between

projects.

Remarks
The IconState property can be logically OR'ed together to form combined states.

IndexedValue Property
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbproBooksOnlineJumpTopic;vbproIndexedValuePropertyAddInC;vbproIndexedValuePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproIndexedValuePropertyAddInX;vbproIndexedValuePropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproIndexedValuePropertyA;vbproIndexedValuePropertyAddInA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndexedValuePropertyS"}

Returns or sets a value in an indexed list or an array.

Syntax
object.IndexedValue [index1, index2,][index3,] [index4]][= value]

The IndexedValue property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
indexn A numeric expression specifying index position. IndexedValue

accepts up to four indices. The number of indices accepted by
IndexedValue is the value for the same property returned by
the NumIndices property.

value An expression that evaluates to a type acceptable to the
control.

Remarks
If the property is a list (as indicated by NumIndices), then IndexedValue returns the element of the
list specified by the index parameters.

IndexedValue is used only if the value of the NumIndices property is greater than zero. Values in
indexed lists, as in the List property of a ListBox control, are set or returned with a single index.

InSelection Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproInSelectionPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproInSelectionPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproInSelectionPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproInSelectionPropertyS"}

Returns or assigns a control's selection state.

Syntax
object.InSelection
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
If the InSelection property of a control contained within another control is set to True, then any
controls not within that control (or any controls within other controls) will be unselected.

LastUsedPath Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLastUsedPathPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLastUsedPathPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLastUsedPathPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLastUsedPathPropertyS"}

Returns or sets the last path used for the file dialog boxes used in Visual Basic, such as the Open
Project dialog box.

Syntax
object.LastUsedPath ([pathname As String])
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

The LastUsedPath property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
pathname (Optional) A string containing the last path name

used for a file dialog box.

NumIndices Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproNumIndicesPropertyAddInC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNumIndicesPropertyAddInX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNumIndicesPropertyAddInA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproNumIndicesPropertyAddInS"}

Returns the number of indices on the property returned by the Property object, which is the number
of indices required to access the value.

Syntax
object.NumIndices
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The value of NumIndices can have a value from 0 to 4. For normal properties, as in the ForeColor
property, NumIndices returns 0. Conventionally indexed properties, such as the List property of a
ListBox control, return 1. Property arrays might return a 2.

ProgID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproProgIDPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproProgIDPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproProgIDPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproProgIDPropertyS"}

Returns the ProgID (programmatic ID) for the control represented by the VBControl object.

Syntax
object.ProgID
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

ReadOnlyMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproReadOnlyModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproReadOnlyModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproReadOnlyModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproReadOnlyModeS"}

Returns or sets a value that determines how the Visual Basic development environment interacts with
read-only files.

Syntax
object.ReadOnlyMode [= value]
The ReadOnlyMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
value A long integer or constant that determines the project status, as

described in Settings.

Settings
The settings for value are:

Value Description
1 Strict. Remove File and Add File commands are not available

if the project file is read-only on the disk. Windows and forms
can be moved, but changes will not be saved. For files which
are also read-only on disk, the Code Window is read-only;
controls cannot be added or removed, control positions are
locked, and custom Properties dialog boxes are disabled.

0 Lenient. Modifications can be made to code, forms, and the
project if files are read-only, but changes can't be saved back to
the files.

Scope Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproScopePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproScopePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproScopePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproScopePropertyS"}

Returns whether a member is public, private, or friend.

Syntax
object.Scope
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

SelectedVBControlsEvents Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSelectedVBControlsEventsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSelectedVBControlsEventsPropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproSelectedVBControlsEventsPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelectedVBControlsEventsPropertyS"}

Returns all events supported by the controls currently selected on a form.

Syntax
object.SelectedVBControlsEvents (vbproject As Variant)
The SelectedVBControlsEvents property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
vbproject A variant expression specifying the project which contains the

form and controls.

Remarks
Returns an event object of type SelectedVBControlsEvents. This event is sourced from a VBForm.

StartMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproStartModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStartModePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStartModePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStartModePropertyS"}

Returns or sets the start mode of the project.

Syntax
object.StartMode
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Returns RunMode if code is currently executing, BreakMode if there is code on the stack but not
running, and DesignMode otherwise.

StartProject Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproStartProjectPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStartProjectPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStartProjectPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStartProjectPropertyS"}

Returns or sets the project that will start when the user selects Start from the Run menu, or presses
the F5 key.

Syntax
object.StartProject
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

StartUpObject Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproStartUpObjectPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStartUpObjectPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStartUpObjectPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStartUpObjectPropertyS"}

Returns or sets the startup component for the project.

Syntax
object.StartUpObject
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
The value that is returned is a variant that contains either an enumerated value of type
vbext_StartupObject, or a VBComponent object that represents the startup object.

The StartUpObject property settings for vbext_StartUpObject are:

Constant Value Description
vbext_so_SubMain 0 Startup object is the sub Main.
vbext_so_None 1 There is no startup object.

Remarks
Only visual at run-time project items can be the startup object.

Static Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproStaticPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStaticPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStaticPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStaticPropertyS"}

Returns whether the referenced variable or method is declared as Static.

Syntax
object.Static
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

TemplatePath Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTemplatePathPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTemplatePathPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTemplatePathPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTemplatePathPropertyS"}

Returns the full pathname where Visual Basic stores template files.

Syntax
object.TemplatePath
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Type Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTypePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTypePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTypePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTypePropertyS"}

Returns the type of the currently selected member or project.

Syntax
object.Type
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
The Type property settings for the Member object (vbext_MemberType) are:

Constant Value Description
vbext_mt_Method 1 Member is a method.
vbext_mt_Property 2 Member is a property.
vbext_mt_Variable 3 Member is a variable.
vbext_mt_Event 4 Member is an event.
vbext_mt_Enum 5 Member is an enumerated value.
vbext_mt_Const 6 Member is a constant.
vbext_mt_EventSink 7 Member is an event sink.

The Type property settings for the Project object (vbext_ProjectType) are:

Constant Value Description
vbext_pt_StandardExe 1 Project type is Standard Exe.
vbext_pt_ActiveXExe 2 Project type is ActiveX Exe.
vbext_pt_ActiveXDll 3 Project type is ActiveX Dll.
vbext_pt_ActiveXControl 4 Project type is ActiveX control.

VBComponentsEvents Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproVBComponentsEventsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVBComponentsEventsPropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproVBComponentsEventsPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproVBComponentsEventsPropertyS"}

Returns an event object of type VBComponentsEvents.

Syntax
object.VBComponentsEvents (vbproject As vbProject)
The VBComponentsEvents property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
vbproject An object of type vbProject which specifies the

project which contains the components.

VBControlsEvents Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproVBControlsEventsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVBControlsEventsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproVBControlsEventsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproVBControlsEventsS"}

Returns all events supported by the controls on a form.

Syntax
object.VBControlsEvents(vbproject As Variant, vbform As VBForm)

The VBControlsEvents property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
vbproject A variant expression specifying the project which

contains the controls.
vbform The form containing the controls.

Remarks
Returns an event object of type VBControlsEvents. This event is sourced from a VBForm or a
control on a VBForm that can contain controls.

VBProjectsEvents Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproVBProjectsEventsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVBProjectsEventsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproVBProjectsEventsPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproVBProjectsEventsPropertyS"}

Returns an event object of type VBProjectsEvents.

Syntax
object.VBProjectsEvents
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
This is identical to using the VBProjects collection events.

Activate, Deactivate Events
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtActivateC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtActivateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtActivateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtActivateS"}

· Activate — occurs when an object becomes the active window.
· Deactivate — occurs when an objectis no longer the active window.

Syntax
Private Sub object_Activate()
Private Sub object_Deactivate()
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
An object can become active by user action, such as clicking it, or by using the Show or SetFocus
methods in code.

The Activate event can occur only when an object is visible. For example, a form loaded with the
Load statement isn't visible unless you use the Show method or set the form's Visible property to
True.

The Activate and Deactivate events occur only when moving the focus within an application. Moving
the focus to or from an object in another application doesn't trigger either event. The Deactivate event
doesn't occur when unloading an object.

The Activate event occurs before the GotFocus event; the LostFocus event occurs before the
Deactivate event.

These events occur for MDI child forms only when the focus changes from one child form to another.
In an MDIForm object with two child forms, for example, the child forms receive these events when
the focus moves between them. However, when the focus changes between a child form and a non-
MDI child form, the parent MDIForm receives the Activate and Deactivate events.

If an .exe file built by Visual Basic displays a dialog box created by a .dll file also built in Visual Basic,
the .exe file's form will get the Deactivate and LostFocus events. This may be unexpected, because
you should not get the Deactivate event:

· If the object is an out-of-process component.
· If the object isn't written in Visual Basic.
· In the development environment when calling a DLL built in Visual Basic.

Change Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtChangeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtChangeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtChangeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtChangeS"}

Indicates the contents of a control have changed. How and when this event occurs varies with the
control:

· ComboBox — changes the text in the text box portion of the control. Occurs only if the Style
property is set to 0 (Dropdown Combo) or 1 (Simple Combo) and the user changes the text or you
change the Text property setting through code.

· DirListBox — changes the selected directory. Occurs when the user double-clicks a new directory
or when you change the Path property setting through code.

· DriveListBox — changes the selected drive. Occurs when the user selects a new drive or when
you change the Drive property setting through code.

· HScrollBar and VScrollBar (horizontal and vertical scroll bars) — move the scroll box portion of
the scroll bar. Occurs when the user scrolls or when you change the Value property setting through
code.

· Label — changes the contents of the Label. Occurs when a DDE link updates data or when you
change the Caption property setting through code.

· PictureBox — changes the contents of the PictureBox. Occurs when a DDE link updates data or
when you change the Picture property setting through code.

· TextBox — changes the contents of the text box. Occurs when a DDE link updates data, when a
user changes the text, or when you change the Text property setting through code.

Syntax
Private Sub object_Change([index As Integer])
The Change event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies a control if it's in a control

array

Remarks
The Change event procedure can synchronize or coordinate data display among controls. For
example, you can use a scroll bar's Change event procedure to update the scroll bar's Value property
setting in a TextBox control. Or you can use a Change event procedure to display data and formulas
in a work area and results in another area.

Change event procedures are also useful for updating properties in file-system controls (DirListBox,
DriveListBox, and FileListBox). For example, you can update the Path property setting for a
DirListBox control to reflect a change in a DriveListBox control's Drive property setting.

Note A Change event procedure can sometimes cause a cascading event. This occurs when the
control's Change event alters the control's contents, for example, by setting a property in code that
determines the control's value, such as the Text property setting for a TextBox control. To prevent a
cascading event:
· If possible, avoid writing a Change event procedure for a control that alters that control's contents.

If you do write such a procedure, be sure to set a flag that prevents further changes while the
current change is in progress.

· Avoid creating two or more controls whose Change event procedures affect each other, for

example, two TextBox controls that update each other during their Change events.
· Avoid using a MsgBox function or statement in this event for HScrollBar and VScrollBar controls.

Click Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtClickC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtClickX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbevtClickA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtClickS"}

Occurs when the user presses and then releases a mouse button over an object. It can also occur
when the value of a control is changed.

For a Form object, this event occurs when the user clicks either a blank area or a disabled control.
For a control, this event occurs when the user:

· Clicks a control with the left or right mouse button. With a CheckBox, CommandButton, Listbox,
or OptionButton control, the Click event occurs only when the user clicks the left mouse button.

· Selects an item in a ComboBox or ListBox control, either by pressing the arrow keys or by
clicking the mouse button.

· Presses the SPACEBAR when a CommandButton, OptionButton, or CheckBox control has the
focus.

· Presses ENTER when a form has a CommandButton control with its Default property set to True.
· Presses ESC when a form has a Cancel button — a CommandButton control with its Cancel

property set to True.
· Presses an access key for a control. For example, if the caption of a CommandButton control is

"&Go", pressing ALT+G triggers the event.

You can also trigger the Click event in code by:

· Setting a CommandButton control's Value property to True.
· Setting an OptionButton control's Value property to True.
· Changing a CheckBox control's Value property setting.

Syntax
Private Sub Form_Click()
Private Sub object_Click([index As Integer])
The Click event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
Typically, you attach a Click event procedure to a CommandButton control, Menu object, or
PictureBox control to carry out commands and command-like actions. For the other applicable
controls, use this event to trigger actions in response to a change in the control.

You can use a control's Value property to test the state of the control from code. Clicking a control
generates MouseDown and MouseUp events in addition to the Click event. The order in which these
three events occur varies from control to control. For example, for ListBox and CommandButton
controls, the events occur in this order: MouseDown, Click, MouseUp. But for FileListBox, Label, or
PictureBox controls, the events occur in this order: MouseDown, MouseUp, and Click. When you're
attaching event procedures for these related events, be sure that their actions don't conflict. If the
order of events is important in your application, test the control to determine the event order.

Note To distinguish between the left, right, and middle mouse buttons, use the MouseDown and
MouseUp events.

If there is code in the Click event, the DlbClick event will never trigger, because the Click event is the
first event to trigger between the two. As a result, the mouse click is intercepted by the Click event, so
the DblClick event doesn't occur.

DragDrop Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDragDropC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtDragDropX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtDragDropA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDragDropS"}

Occurs when a drag-and-drop operation is completed as a result of dragging a control over an object
and releasing the mouse button or using the Drag method with its action argument set to 2 (Drop).

Syntax
Private Sub Form_DragDrop(source As Control, x As Single, y As Single)
Private Sub MDIForm_DragDrop(source As Control, x As Single, y As Single)
Private Sub object_DragDrop([index As Integer,]source As Control, x As Single, y As Single)
The DragDrop event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies a control if it's in a control

array.
source The control being dragged. You can include properties and

methods in the event procedure with this argument — for
example, Source.Visible = 0.

x, y A number that specifies the current horizontal (x) and vertical
(y) position of the mouse pointer within the target form or
control. These coordinates are always expressed in terms of
the target's coordinate system as set by the ScaleHeight,
ScaleWidth, ScaleLeft, and ScaleTop properties.

Remarks
Use a DragDrop event procedure to control what happens after a drag operation is completed. For
example, you can move the source control to a new location or copy a file from one location to
another.

When multiple controls can potentially be used in a source argument:

· Use the TypeOf keyword with the If statement to determine the type of control used with source.
· Use the control's Tag property to identify a control, and then use a DragDrop event procedure.

Note Use the DragMode property and Drag method to specify the way dragging is initiated. Once
dragging has been initiated, you can handle events that precede a DragDrop event with a DragOver
event procedure.

DragOver Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDragOverC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtDragOverX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtDragOverA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDragOverS"}

Occurs when a drag-and-drop operation is in progress. You can use this event to monitor the mouse
pointer as it enters, leaves, or rests directly over a valid target. The mouse pointer position determines
the target object that receives this event.

Syntax
Private Sub Form_DragOver(source As Control, x As Single, y As Single, state As Integer)
Private Sub MDIForm_DragOver(source As Control, x As Single, y As Single, state As Integer)
Private Sub object_DragOver([index As Integer,]source As Control, x As Single, y As Single,

state As Integer)
The DragOver event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies a control if it's in a control

array.
source The control being dragged. You can refer to properties and

methods in the event procedure with this argument — for
example, Source.Visible = False.

x, y A number that specifies the current horizontal (x) and vertical
(y) position of the mouse pointer within the target form or
control. These coordinates are always expressed in terms of
the target's coordinate system as set by the ScaleHeight,
ScaleWidth, ScaleLeft, and ScaleTop properties.

state An integer that corresponds to the transition state of the
control being dragged in relation to a target form or control:
0 = Enter (source control is being dragged within the range of
a target).
1 = Leave (source control is being dragged out of the range of
a target).
2 = Over (source control has moved from one position in the
target to another).

Remarks
Use a DragOver event procedure to determine what happens after dragging is initiated and before a
control drops onto a target. For example, you can verify a valid target range by highlighting the target
(set the BackColor or ForeColor property from code) or by displaying a special drag pointer (set the
DragIcon or MousePointer property from code).

Use the state argument to determine actions at key transition points. For example, you might highlight
a possible target when state is set to 0 (Enter) and restore the object's previous appearance when
state is set to 1 (Leave).

When an object receives a DragOver event while state is set to 0 (Enter):

· If the source control is dropped on the object, that object receives a DragDrop event.
· If the source control isn't dropped on the object, that object receives another DragOver event when

state is set to 1 (Leave).

Note Use the DragMode property and Drag method to specify the way dragging is initiated. For
suggested techniques with the source argument, see Remarks for the DragDrop event topic.

DropDown Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDropDownC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtDropDownX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtDropDownA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDropDownS"}

Occurs when the list portion of a ComboBox control is about to drop down; this event doesn't occur if
a ComboBox control's Style property is set to 1 (Simple Combo).

Syntax
Private Sub object_DropDown([index As Integer])
The DropDown event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
Use a DropDown event procedure to make final updates to a ComboBox list before the user makes a
selection. This enables you to add or remove items from the list using the AddItem or RemoveItem
methods. This flexibility is useful when you want some interplay between controls — for example, if
what you want to load into a ComboBox list depends on what the user selects in an OptionButton
group.

GotFocus Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtGotFocusC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtGotFocusX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtGotFocusA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtGotFocusS"}

Occurs when an object receives the focus, either by user action, such as tabbing to or clicking the
object, or by changing the focus in code using the SetFocus method. A form receives the focus only
when all visible controls are disabled.

Syntax
Private Sub Form_GotFocus()
Private Sub object_GotFocus([index As Integer])
The GotFocus event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
Typically, you use a GotFocus event procedure to specify the actions that occur when a control or
form first receives the focus. For example, by attaching a GotFocus event procedure to each control
on a form, you can guide the user by displaying brief instructions or status bar messages. You can
also provide visual cues by enabling, disabling, or showing other controls that depend on the control
that has the focus.

Note An object can receive the focus only if its Enabled and Visible properties are set to True. To
customize the keyboard interface in Visual Basic for moving the focus, set the tab order or specify
access keys for controls on a form.

KeyDown, KeyUp Events
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtKeyDownC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtKeyDownX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtKeyDownA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtKeyDownS"}

Occur when the user presses (KeyDown) or releases (KeyUp) a key while an object has the focus.
(To interpret ANSI characters, use the KeyPress event.)

Syntax
Private Sub Form_KeyDown(keycode As Integer, shift As Integer)
Private Sub object_KeyDown([index As Integer,]keycode As Integer, shift As Integer)
Private Sub Form_KeyUp(keycode As Integer, shift As Integer)
Private Sub object_KeyUp([index As Integer,]keycode As Integer, shift As Integer)
The KeyDown and KeyUp event syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.
keycode A key code, such as vbKeyF1 (the F1 key) or vbKeyHome

(the HOME key). To specify key codes, use the constants in the
Visual Basic (VB) object library in the Object Browser.

shift An integer that corresponds to the state of the SHIFT, CTRL, and
ALT keys at the time of the event. The shift argument is a bit
field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These
bits correspond to the values 1, 2, and 4, respectively. Some,
all, or none of the bits can be set, indicating that some, all, or
none of the keys are pressed. For example, if both CTRL and
ALT are pressed, the value of shift is 6.

Remarks
For both events, the object with the focus receives all keystrokes. A form can have the focus only if it
has no visible and enabled controls. Although the KeyDown and KeyUp events can apply to most
keys, they're most often used for:

· Extended character keys such as function keys.
· Navigation keys.
· Combinations of keys with standard keyboard modifiers.
· Distinguishing between the numeric keypad and regular number keys.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing and
releasing of a key.

KeyDown and KeyUp aren't invoked for:

· The ENTER key if the form has a CommandButton control with the Default property set to True.
· The ESC key if the form has a CommandButton control with the Cancel property set to True.
· The TAB key.

KeyDown and KeyUp interpret the uppercase and lowercase of each character by means of two
arguments: keycode, which indicates the physical key (thus returning A and a as the same key) and
shift, which indicates the state of shift+key and therefore returns either A or a.

If you need to test for the shift argument, you can use the shift constants which define the bits within
the argument. The constants have the following values:

Constant Value Description
vbShiftMask 1 SHIFT key bit mask.
VbCtrlMask 2 CTRL key bit mask.
VbAltMask 4 ALT key bit mask.

The constants act as bit masks that you can use to test for any combination of keys.

You test for a condition by first assigning each result to a temporary integer variable and then
comparing shift to a bit mask. Use the And operator with the shift argument to test whether the
condition is greater than 0, indicating that the modifier was pressed, as in this example:
ShiftDown = (Shift And vbShiftMask) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If ShiftDown And CtrlDown Then
Note If the KeyPreview property is set to True, a form receives these events before controls on the
form receive the events. Use the KeyPreview property to create global keyboard-handling routines.

KeyPress Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtKeyPressC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtKeyPressX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtKeyPressA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtKeyPressS"}

Occurs when the user presses and releases an ANSI key.

Syntax
Private Sub Form_KeyPress(keyascii As Integer)
Private Sub object_KeyPress([index As Integer,]keyascii As Integer)
The KeyPress event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies a control if it's in a control

array.
keyascii An integer that returns a standard numeric ANSI keycode.

Keyascii is passed by reference; changing it sends a different
character to the object. Changing keyascii to 0 cancels the
keystroke so the object receives no character.

Remarks
The object with the focus receives the event. A form can receive the event only if it has no visible and
enabled controls or if the KeyPreview property is set to True. A KeyPress event can involve any
printable keyboard character, the CTRL key combined with a character from the standard alphabet or
one of a few special characters, and the ENTER or BACKSPACE key. A KeyPress event procedure is
useful for intercepting keystrokes entered in a TextBox or ComboBox control. It enables you to
immediately test keystrokes for validity or to format characters as they're typed. Changing the value of
the keyascii argument changes the character displayed.

You can convert the keyascii argument into a character by using the expression:
Chr(KeyAscii)
You can then perform string operations and translate the character back to an ANSI number that the
control can interpret by using the expression:
KeyAscii = Asc(char)
Use KeyDown and KeyUp event procedures to handle any keystroke not recognized by KeyPress,
such as function keys, editing keys, navigation keys, and any combinations of these with keyboard
modifiers. Unlike the KeyDown and KeyUp events, KeyPress doesn't indicate the physical state of the
keyboard; instead, it passes a character.

KeyPress interprets the uppercase and lowercase of each character as separate key codes and,
therefore, as two separate characters. KeyDown and KeyUp interpret the uppercase and lowercase of
each character by means of two arguments: keycode, which indicates the physical key (thus returning
A and a as the same key), and shift, which indicates the state of shift+key and therefore returns either
A or a.

If the KeyPreview property is set to True, a form receives the event before controls on the form
receive the event. Use the KeyPreview property to create global keyboard-handling routines.

Note The ANSI number for the keyboard combination of CTRL+@ is 0. Because Visual Basic
recognizes a keyascii value of 0 as a zero-length string (""), avoid using CTRL+@ in your applications.

LinkClose Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtLinkCloseC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtLinkCloseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtLinkCloseA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtLinkCloseS"}

Occurs when a DDE conversation terminates. Either application in a DDE conversation may terminate
a conversation at any time.

Syntax
Private Sub Form_LinkClose()
Private Sub MDIForm_LinkClose()
Private Sub object_LinkClose([index As Integer])
The LinkClose event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
Typically, you use a LinkClose event procedure to notify the user that a DDE conversation has been
terminated. You can also include troubleshooting information on reestablishing a connection or where
to go for assistance. For brief messages, use the MsgBox function.

LinkError Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtLinkErrorC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtLinkErrorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtLinkErrorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtLinkErrorS"}

Occurs when there is an error during a DDE conversation. This event is recognized only as the result
of a DDE-related error that occurs when no Visual Basic code is being executed. The error number is
passed as an argument.

Syntax
Private Sub Form_LinkError(linkerr As Integer)
Private Sub MDIForm_LinkError(linkerr As Integer)
Private Sub object_LinkError([index As Integer,]linkerr As Integer)
The LinkError event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
linkerr Error number of the DDE-related error, as described in Return

Values.
index An integer that uniquely identifies a control if it's in a control

array.

Return Values
The following table lists all error numbers returned for the linkerr argument and a brief explanation of
each error:

Value Description
1 The other application has requested data in the wrong format.

This error may occur several times in succession as Visual
Basic tries to find a format the other application recognizes.

6 The destination application attempted to continue a DDE
conversation after you set the LinkMode property on your
source form to 0 (None).

7 All the source links are in use (there is a limit of 128 links per
source).

8 For destination controls: An automatic link or LinkRequest
method failed to update the data in the control.
For source forms: The destination attempted to poke data to a
control and the attempt failed.

11 Not enough memory for DDE.

Remarks
Use a LinkError event procedure to notify the user of the particular error that has occurred. You can
also include code to fix the problem or troubleshooting information on reestablishing a connection or
on where to go for assistance. For brief messages, use the MsgBox function.

LinkExecute Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtLinkExecuteC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtLinkExecuteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtLinkExecuteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtLinkExecuteS"}

Occurs when a command string is sent by a destination application in a DDE conversation. The
destination application expects the source application to perform the operation described by the
string.

Syntax
Private Sub object_LinkExecute(cmdstr As String, cancel As Integer)
The LinkExecute event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
cmdstr The command string expression sent by the destination

application.
cancel An integer that tells the destination whether the command

string was accepted or refused. Setting cancel to 0 informs the
destination that the command string was accepted. Setting
cancel to any nonzero value informs the destination that the
command string was rejected. (The default is set to -1,
indicating cancel.)

Remarks
There is no required syntax for cmdstr. How your application responds to different strings is
completely up to you.

If you haven't created a LinkExecute event procedure, Visual Basic rejects command strings from
destination applications.

LinkNotify Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtLinkNotifyC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtLinkNotifyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtLinkNotifyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtLinkNotifyS"}

Occurs when the source has changed the data defined by the DDE link if the LinkMode property of
the destination control is set to 3 (Notify).

Syntax
Private Sub object_LinkNotify([index As Integer])
The LinkNotify event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
Typically, in the LinkNotify event your code notifies the user, gets the new data immediately, or defers
getting the data until later. You can use the LinkRequest method to obtain the new data from the
source.

LinkOpen Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtLinkOpenC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtLinkOpenX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtLinkOpenA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtLinkOpenS"}

Occurs when a DDE conversation is being initiated.

Syntax
Private Sub Form_LinkOpen(cancel As Integer)
Private Sub MDIForm_LinkOpen(cancel As Integer)
Private Sub object_LinkOpen([index As Integer,]cancel As Integer)
The LinkOpen event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
cancel An integer that determines whether the DDE conversation is

established or not. Leaving cancel set to 0 (the default)
establishes the conversation. Setting cancel to any nonzero
value refuses the conversation.

index An integer that uniquely identifies a control if it's in a control
array.

Remarks
This event occurs for forms when a destination application is initiating a DDE conversation with the
form. It occurs for controls when a control is initiating a DDE conversation with a source application.

Load Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtLoadC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtLoadX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbevtLoadA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtLoadS"}

Occurs when a form is loaded. For a startup form, occurs when an application starts as the result of a
Load statement or as the result of a reference to an unloaded form's properties or controls.

Syntax
Private Sub Form_Load()
Private Sub MDIForm_Load()

Remarks
Typically, you use a Load event procedure to include initialization code for a form — for example,
code that specifies default settings for controls, indicates contents to be loaded into ComboBox or
ListBox controls, and initializes form-level variables.

The Load event occurs after the Initialize event.

When you reference a property of an unloaded form in code, the form is automatically loaded but isn't
automatically made visible unless the MDIChild property is set to True. If an MDIForm object isn't
loaded and an MDI child form is loaded, both the MDIForm and the child form are automatically
loaded and both become visible. Other forms aren't shown until you either use the Show method or
set the Visible property to True.

The following code in an MDIForm Load event automatically loads an MDI child form (assuming
Form1 has its MDIChild property set to True):

Dim NewForm As New Form1
NewForm.Caption = "New Form" ' Loads form by reference.
Because all child forms become visible when loaded, the reference to the Caption property loads the
form and makes it visible.

Note When you create procedures for related events, such as Activate, GotFocus, Paint, and
Resize, be sure that their actions don't conflict and that they don't cause recursive events.

LostFocus Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtLostFocusC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtLostFocusX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtLostFocusA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtLostFocusS"}

Occurs when an object loses the focus, either by user action, such as tabbing to or clicking another
object, or by changing the focus in code using the SetFocus method.

Syntax
Private Sub Form_LostFocus()
Private Sub object_LostFocus([index As Integer])
The LostFocus event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
A LostFocus event procedure is primarily useful for verification and validation updates. Using
LostFocus can cause validation to take place as the user moves the focus from the control. Another
use for this type of event procedure is enabling, disabling, hiding, and displaying other objects as in a
GotFocus event procedure. You can also reverse or change conditions that you set up in the object's
GotFocus event procedure.

If an .exe file built by Visual Basic displays a dialog box created by a .dll file also built in Visual Basic,
the .exe file's form will get Deactivate and LostFocus events. This may be unexpected, because you
should not get the Deactivate event:

· If the object is an out-of-process component.
· If the object isn't written in Visual Basic.
· In the development environment when calling a DLL built in Visual Basic.

MouseDown, MouseUp Events
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtMouseDownC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtMouseDownX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtMouseDownA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtMouseDownS"}

Occur when the user presses (MouseDown) or releases (MouseUp) a mouse button.

Syntax
Private Sub Form_MouseDown(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub MDIForm_MouseDown(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub object_MouseDown([index As Integer,]button As Integer, shift As Integer, x As

Single, y As Single)
Private Sub Form_MouseUp(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub MDIForm_MouseUp(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub object _MouseUp([index As Integer,]button As Integer, shift As Integer, x As Single, y

As Single)
The MouseDown and MouseUp event syntaxes have these parts:

Part Description
object Returns an object expression that evaluates to an object in the

Applies To list.
index Returns an integer that uniquely identifies a control if it's in a

control array.
button Returns an integer that identifies the button that was pressed

(MouseDown) or released (MouseUp) to cause the event. The
button argument is a bit field with bits corresponding to the left
button (bit 0), right button (bit 1), and middle button (bit 2).
These bits correspond to the values 1, 2, and 4, respectively.
Only one of the bits is set, indicating the button that caused the
event.

shift Returns an integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the button
argument is pressed or released. A bit is set if the key is down.
The shift argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and
the ALT key (bit 2). These bits correspond to the values 1, 2,
and 4, respectively. The shift argument indicates the state of
these keys. Some, all, or none of the bits can be set, indicating
that some, all, or none of the keys are pressed. For example, if
both CTRL and ALT were pressed, the value of shift would be 6.

x, y Returns a number that specifies the current location of the
mouse pointer. The x and y values are always expressed in
terms of the coordinate system set by the ScaleHeight,
ScaleWidth, ScaleLeft, and ScaleTop properties of the
object.

Remarks
Use a MouseDown or MouseUp event procedure to specify actions that will occur when a given
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events enable you to distinguish between the left, right, and middle mouse buttons. You can
also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers.

The following applies to both Click and DblClick events:

· If a mouse button is pressed while the pointer is over a form or control, that object "captures" the
mouse and receives all mouse events up to and including the last MouseUp event. This implies
that the x, y mouse-pointer coordinates returned by a mouse event may not always be in the
internal area of the object that receives them.

· If mouse buttons are pressed in succession, the object that captures the mouse after the first press
receives all mouse events until all buttons are released.

If you need to test for the button or shift arguments, you can use constants listed in the Visual Basic
(VB) object library in the Object Browser to define the bits within the argument:

Constant (Button) Value Description
vbLeftButton 1 Left button is pressed
vbRightButton 2 Right button is pressed
vbMiddleButton 4 Middle button is pressed

Constant (Shift) Value Description
vbShiftMask 1 SHIFT key is pressed.
vbCtrlMask 2 CTRL key is pressed.
vbAltMask 4 ALT key is pressed.

The constants then act as bit masks you can use to test for any combination of buttons without having
to figure out the unique bit field value for each combination.

Note You can use a MouseMove event procedure to respond to an event caused by moving the
mouse. The button argument for MouseDown and MouseUp differs from the button argument used for
MouseMove. For MouseDown and MouseUp, the button argument indicates exactly one button per
event, whereas for MouseMove, it indicates the current state of all buttons.

MouseMove Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtMouseMoveC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtMouseMoveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtMouseMoveA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtMouseMoveS"}

Occurs when the user moves the mouse.

Syntax
Private Sub Form_MouseMove(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub MDIForm_MouseMove(button As Integer, shift As Integer, x As Single, y As Single)
Private Sub object_MouseMove([index As Integer,] button As Integer, shift As Integer, x As

Single, y As Single)
The MouseMove event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.
button An integer that corresponds to the state of the mouse buttons

in which a bit is set if the button is down. The button argument
is a bit field with bits corresponding to the left button (bit 0),
right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. It indicates
the complete state of the mouse buttons; some, all, or none of
these three bits can be set, indicating that some, all, or none of
the buttons are pressed.

shift An integer that corresponds to the state of the SHIFT, CTRL, and
ALT keys. A bit is set if the key is down. The shift argument is a
bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These
bits correspond to the values 1, 2, and 4, respectively. The shift
argument indicates the state of these keys. Some, all, or none
of the bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT were
pressed, the value of shift would be 6.

x, y A number that specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of
the coordinate system set by the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties of the object.

Remarks
The MouseMove event is generated continually as the mouse pointer moves across objects. Unless
another object has captured the mouse, an object recognizes a MouseMove event whenever the
mouse position is within its borders.

If you need to test for the button or shift arguments, you can use constants listed in the Visual Basic
(VB) object library in the Object Browser to define the bits within the argument:

Constant (Button) Value Description
vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.

Constant (Shift) Value Description
vbShiftMask 1 SHIFT key is pressed.
vbCtrlMask 2 CTRL key is pressed.
vbAltMask 4 ALT key is pressed.

The constants then act as bit masks you can use to test for any combination of buttons without having
to figure out the unique bit field value for each combination.

You test for a condition by first assigning each result to a temporary integer variable and then
comparing the button or shift arguments to a bit mask. Use the And operator with each argument to
test if the condition is greater than zero, indicating the key or button is pressed, as in this example:
LeftDown = (Button And vbLeftButton) > 0
CtrlDown = (Shift And vbCtrlMask) > 0
Then, in a procedure, you can test for any combination of conditions, as in this example:
If LeftDown And CtrlDown Then
Note You can use MouseDown and MouseUp event procedures to respond to events caused by
pressing and releasing mouse buttons.
The button argument for MouseMove differs from the button argument for MouseDown and MouseUp.
For MouseMove, the button argument indicates the current state of all buttons; a single MouseMove
event can indicate that some, all, or no buttons are pressed. For MouseDown and MouseUp, the
button argument indicates exactly one button per event.
Any time you move a window inside a MouseMove event, it can cause a cascading event.
MouseMove events are generated when the window moves underneath the pointer. A MouseMove
event can be generated even if the mouse is perfectly stationary.

Paint Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtPaintC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtPaintX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbevtPaintA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtPaintS"}

Occurs when part or all of an object is exposed after being moved or enlarged, or after a window that
was covering the object has been moved.

Syntax
Private Sub Form_Paint()
Private Sub object_Paint([index As Integer])
The Paint event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
A Paint event procedure is useful if you have output from graphics methods in your code. With a Paint
procedure, you can ensure that such output is repainted when necessary.

The Paint event is invoked when the Refresh method is used. If the AutoRedraw property is set to
True, repainting or redrawing is automatic, so no Paint events are necessary.

If the ClipControls property is set to False, graphics methods in the Paint event procedure affect only
newly exposed areas of the form; otherwise, the graphics methods repaint all areas of the form not
covered by controls (except Image, Label, Line, and Shape controls).

Using a Refresh method in a Resize event procedure forces repainting of the entire object every time
a user resizes the form.

Note Using a Paint event procedure for certain tasks can cause a cascading event. In general,
avoid using a Paint event procedure to do the following:
· Move or size a form or control.
· Change any variables that affect size or appearance, such as setting an object's BackColor

property.
· Invoke a Refresh method.

A Resize event procedure may be more appropriate for some of these tasks.

PathChange Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtPathChangeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtPathChangeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtPathChangeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtPathChangeS"}

Occurs when the path is changed by setting the FileName or Path property in code.

Syntax
Private Sub object_PathChange([index As Integer])
The PathChange event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
You can use a PathChange event procedure to respond to path changes in a FileListBox control.
When you assign a string containing a new path to the FileName property, the FileListBox control
invokes the PathChange event.

PatternChange Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtPatternChangeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtPatternChangeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtPatternChangeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtPatternChangeS"}

Occurs when the file listing pattern, such as "*.*", is changed by setting the FileName or Pattern
property in code.

Syntax
Private Sub object_PatternChange([index As Integer])
The PatternChange event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
You can use a PatternChange event procedure to respond to pattern changes in a FileListBox
control. When you assign a string containing a new pattern to the FileName property, the FileListBox
invokes the PathChange event.

QueryUnload Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtQueryUnloadC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtQueryUnloadX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtQueryUnloadA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtQueryUnloadS"}

Occurs before a form or application closes. When an MDIForm object closes, the QueryUnload event
occurs first for the MDI form and then in all MDI child forms. If no form cancels the QueryUnload
event, the Unload event occurs first in all other forms and then in an MDI form. When a child form or a
Form object closes, the QueryUnload event in that form occurs before the form's Unload event.

Syntax
Private Sub Form_QueryUnload(cancel As Integer, unloadmode As Integer)
Private Sub MDIForm_QueryUnload(cancel As Integer, unloadmode As Integer)
The QueryUnload event syntax has these parts:

Part Description
cancel An integer. Setting this argument to any value other than 0

stops the QueryUnload event in all loaded forms and stops the
form and application from closing.

unloadmode A value or constant indicating the cause of the QueryUnload
event, as described in Return Values.

Return Values
The unloadmode argument returns the following values:

Constant Value Description
vbFormControlMenu 0 The user chose the Close

command from the Control menu
on the form.

vbFormCode 1 The Unload statement is invoked
from code.

vbAppWindows 2 The current Microsoft Windows
operating environment session is
ending.

vbAppTaskManager 3 The Microsoft Windows Task
Manager is closing the application.

vbFormMDIForm 4 An MDI child form is closing
because the MDI form is closing.

These constants are listed in the Visual Basic (VB) object library in the Object Browser.

Remarks
This event is typically used to make sure there are no unfinished tasks in the forms included in an
application before that application closes. For example, if a user has not yet saved some new data in
any form, your application can prompt the user to save the data.

When an application closes, you can use either the QueryUnload or Unload event procedure to set
the Cancel property to True, stopping the closing process. However, the QueryUnload event occurs
in all forms before any are unloaded, and the Unload event occurs as each form is unloaded.

Resize Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtResizeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtResizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbevtResizeA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtResizeS"}

Occurs when an object is first displayed or when the window state of an object changes. (For
example, a form is maximized, minimized, or restored.)

Syntax
Private Sub Form_Resize()
Private Sub object_Resize(height As Single, width As Single)
The Resize event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
height Number specifying the new height of the control.
width Number specifying the new width of the control.

Remarks
Use a Resize event procedure to move or resize controls when the parent form is resized. You can
also use this event procedure to recalculate variables or properties, such as ScaleHeight and
ScaleWidth, that may depend on the size of the form. If you want graphics to maintain sizes
proportional to the form when it's resized, invoke the Paint event by using the Refresh method in a
Resize event procedure.

Whenever the AutoRedraw property is set to False and the form is resized, Visual Basic also calls
the related events, Resize and Paint, in that order. When you attach procedures for these related
events, be sure their actions don't conflict.

When an OLE container control's SizeMode property is set to 2 (Autosize), the control is
automatically sized according to the display size of the object contained in the control. If the display
size of the object changes, the control is automatically resized to fit the object. When this occurs, the
Resize event is invoked for the object before the OLE container control is resized. The height and
width parts indicate the optimal size for displaying the object (this size is determined by the
application that created the object). You can size the control differently by changing the values of the
height and width parts in the Resize event.

RowColChange Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtRowColChangeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtRowColChangeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtRowColChangeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtRowColChangeS"}

Occurs when the current cell changes to a different cell.

Syntax
Private Sub object_RowColChange ([index As Integer, lastrow As String, lastcol As Integer])
The RowColChange event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it is in a control

array.
lastrow (For DBGrid control) A string expression specifying the

previous row position.
lastcol (For DBGrid control) An integer specifying the previous

column position.

Remarks
This event occurs whenever the user clicks a cell other than the current cell or when you
programmatically change the current cell within a selection using the Col and Row properties.

The SelChange event also occurs when a user clicks a new cell, but doesn't occur when you
programmatically change the selected range without changing the current cell.

For the DBGrid control, the position of the current cell is provided by the Bookmark and ColIndex
properties. The previous cell position is specified by lastrow and lastcol. If you edit data and then
move the current cell position to a new row, the update events for the original row are completed
before another cell becomes the current cell.

Scroll Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtScrollC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtScrollX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbevtScrollA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtScrollS"}

Occurs when the scroll box on a ScrollBar control, or an object which contains a scrollbar, is
repositioned or scrolled horizontally or vertically.

Syntax
Private Sub dbgrid_Scroll([cancel As Integer])
Private Sub object_Scroll()
The Scroll event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
cancel Determines whether the scroll operation succeeds and the

ScrollBar or DBGrid are repainted, as described in Remarks.

Remarks
For a DBGrid control, this event occurs when the user scrolls the grid horizontally or vertically but
before the grid is repainted to display the results of the scroll operation.

For a ComboBox control, this event occurs only when the scrollbars in the dropdown portion of the
control are manipulated.

Setting cancel to True causes the DBGrid scroll operation to fail, and no repaint operation occurs. If
the Refresh method is invoked within this event, the grid is repainted in its new (scrolled)
arrangement even if cancel is set to True. However, in this case, the grid is repainted again because
the scroll operation fails and it snaps back to its previous position.

You can use this event to perform calculations or to manipulate controls that must be coordinated with
ongoing changes in scroll bars. In contrast, use the Change event when you want an update to occur
only once, after a ScrollBar control changes.

Note Avoid using a MsgBox statement or function in this event.

SelChange Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtSelChangeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtRowColChangeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtSelChangeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtSelChangeS"}

Occurs when the current range changes to a different cell or range of cells.

Syntax
Private Sub DBGrid_SelChange ([cancel As Integer])
Private Sub object_SelChange()
The SelChange event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
cancel Determines whether the selection reverts to its position before

the event occurred.

Remarks
The SelChange event occurs whenever a user clicks a cell other than the current cell and as a user
drags to select a new range of cells. A user can also select a range of cells by pressing the SHIFT key
and using the arrow keys.

You can trigger this event in code for a DBGrid control by changing the selected region using the
SelStartCol, SelEndCol, and SelectedRows() properties.

The RowColChange event also occurs when a user clicks a new cell but doesn't occur while a user
drags the selection across the DBGrid control or when you programmatically change the selection
without moving the current cell.

Setting cancel to True in the DBGrid control causes the selection to revert to the cell or range active
before the event occurred.

Timer Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtTimerC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtTimerX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbevtTimerA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtTimerS"}

Occurs when a preset interval for a Timer control has elapsed. The interval's frequency is stored in
the control's Interval property, which specifies the length of time in milliseconds.

Syntax
Private Sub object_Timer([index As Integer])
The Timer event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies

To list.
index An integer that uniquely identifies a control if it's in a control

array.

Remarks
Use this event procedure to tell Visual Basic what to do after each Timer control interval has elapsed.
When you're working with the Timer event:

· The Interval property specifies the interval between Timer events in milliseconds.
· Whenever the Timer control's Enabled property is set to True and the Interval property is greater

than 0, the Timer event waits for the period specified in the Interval property.

Unload Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtUnloadC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtUnloadX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtUnloadA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtUnloadS"}

Occurs when a form is about to be removed from the screen. When that form is reloaded, the
contents of all its controls are reinitialized. This event is triggered by a user closing the form using the
Close command on the Control menu or an Unload statement.

Syntax
Private Sub object_Unload(cancel As Integer)
The Unload event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
cancel Integer that determines whether the form is removed from the

screen. If cancel is 0, the form is removed. Setting cancel to
any nonzero value prevents the form from being removed.

Remarks
Setting cancel to any nonzero value prevents the form from being removed, but doesn't stop other
events, such as exiting from the Microsoft Windows operating environment. Use the QueryUnload
event to stop exiting from Windows.

Use an Unload event procedure to verify that the form should be unloaded or to specify actions that
you want to take place when the form is unloaded. You can also include any form-level validation
code you may need for closing the form or saving the data in it to a file.

The QueryUnload event occurs before the Unload event. The Unload event occurs before the
Terminate event.

The Unload event can be caused by using the Unload statement, or by the user choosing the Close
command on a form's Control menu, exiting the application with the End Task button on the Windows
Task List, closing the MDI form for which the current form is a child form, or exiting the Microsoft
Windows operating environment while the application is running.

Activate, Deactivate Events Example
This example updates the status bar text to display the caption of the active form. To try this
example, create a Form object (Form1) and a new MDIForm object (MDIForm1). On MDIForm1,
draw a PictureBox control containing a Label control. On Form1, set the MDIChild property to
True. Paste the MDIForm_Load event procedure code into the Declarations section of the MDIForm
object. Paste the Form_Activate event procedure code into the Declarations section of the MDI child
form, and then press F5.
Private Sub MDIForm_Load ()

Form1.Caption = "Form #1" ' Set caption of Form1.
Dim NewForm As New Form1 ' Create a new child form.
Load NewForm
NewForm.Caption = "Form #2" ' Set caption of new form.
NewForm.Show ' Display the new form.

End Sub

Private Sub Form_Activate ()
' Set status bar text.

MDIForm1.Label1.Caption = "Current form: " & Me.Caption
End Sub

Change Event Example
This example displays the numeric setting of a horizontal scroll bar's Value property in a TextBox
control. To try this example, create a form with a TextBox control and an HScrollBar control and
then paste the code into the Declarations section of a form that contains a horizontal scroll bar
(HScrollBar control) and a TextBox control. Press F5 and click the horizontal scroll bar.
Private Sub Form_Load ()

HScroll1.Min = 0 ' Set Minimum.
HScroll1.Max = 1000 ' Set Maximum.
HScroll1.LargeChange = 100 ' Set LargeChange.
HScroll1.SmallChange = 1 ' Set SmallChange.

End Sub
Private Sub HScroll1_Change ()

Text1.Text = HScroll1.Value
End Sub

Click Event Example
In this example, each time a PictureBox control is clicked it moves diagonally across a form. To try
this example, paste the code into the Declarations section of a form that contains a PictureBox
control positioned at the lower-left corner of the form, and then press F5 and click the PictureBox.
Private Sub Picture1_Click ()

Picture1.Move Picture1.Left + 750, Picture1.Top - 550
End Sub

DragDrop Event Example
This example demonstrates the visual effect of dropping a PictureBox control onto another
PictureBox control. To try this example, paste the code into the Declarations section of a form that
contains three PictureBox controls. Set the DragMode property for Picture1 and Picture2 to 1
(Automatic). Use the Picture property to assign bitmaps to Picture1 and Picture2, and then press F5
and drag Picture1 or Picture2 over Picture3.
Private Sub Picture3_DragDrop (Source As Control, X as Single, Y As Single)

If TypeOf Source Is PictureBox Then
' Set Picture3 bitmap to same as source control.
Picture3.Picture = Source.Picture

End If
End Sub

DragOver Event Example
This example demonstrates one way to indicate a valid drop target. The pointer changes from the
default arrow to a special icon when a TextBox control is dragged over a PictureBox control. The
pointer returns to the default when the source is dragged elsewhere. To try this example, paste the
code into the Declarations section of a form that contains a small TextBox and a PictureBox. Set
the TextBox control's DragMode property to 1, and then press F5 and drag the TextBox over the
PictureBox.
Private Sub Picture1_DragOver (Source As Control, X As Single, Y As Single,
State As Integer)

Select Case State
Case vbEnter

' Load icon.
Source.DragIcon = LoadPicture("ICONS\ARROWS\POINT03.ICO")

Case vbLeave
Source.DragIcon = LoadPicture() ' Unload icon.

End Select
End Sub
Private Sub Picture1_DragDrop (Source As Control, X As Single, Y As Single)

Source.DragIcon = LoadPicture() ' Unload icon.
End Sub

DropDown Event Example
This example updates a ComboBox control based on the user's selection in an option button group.
To try this example, paste the code into the Declarations section of a form that contains a ComboBox
control and two OptionButton controls. Set the Name property of both OptionButton controls to
OptionGroup, and then press F5 and click the OptionButton controls. The ComboBox control
reflects different carriers depending on the OptionButton selected.
Private Sub Form_Load ()

Combo1.Text = "" ' Clear combo box.
End Sub
Private Sub Combo1_DropDown ()

Combo1.Clear ' Delete existing items.
If OptionGroup(0).Value = True Then

Combo1.AddItem "Gray Goose Express", 0
Combo1.AddItem "Wild Fargo Carriers", 1

Else
Combo1.AddItem "Summit Technologies Overnight"

End If
End Sub

GotFocus Event Example
This example displays a status bar message when a button in an OptionButton group gets the focus.
To try this example, paste the code into the Declarations section of a form that contains two
OptionButton controls and a Label control. Set the Name property for both OptionButton controls
to OptionGroup, and then press F5 and click the OptionButton controls.
Private Sub Form_Load ()

Label1.AutoSize = True
End Sub
Private Sub OptionGroup_GotFocus (Index As Integer)

Select Case Index
Case 0

Label1.Caption = "Option 1 has the focus."
Case 1

Label1.Caption = "Option 2 has the focus."
End Select

End Sub

Private Sub OptionGroup_LostFocus (Index As Integer)
Label1.Caption = ""

End Sub

KeyDown, KeyUp Events Example
This example demonstrates a generic keyboard handler that responds to the F2 key and to all the
associated ALT, SHIFT, and CTRL key combinations. The key constants are listed in the Visual Basic
(VB) object library in the Object Browser. To try this example, paste the code into the Declarations
section of a form that contains a TextBox control, and then press F5 and press F2 with various
combinations of the ALT, SHIFT, and CTRL keys.
Private Sub Text1_KeyDown (KeyCode As Integer, Shift As Integer)

Dim ShiftDown, AltDown, CtrlDown, Txt
ShiftDown = (Shift And vbShiftMask) > 0
AltDown = (Shift And vbAltMask) > 0
CtrlDown = (Shift And vbCtrlMask) > 0
If KeyCode = vbKeyF2 Then ' Display key combinations.

If ShiftDown And CtrlDown And AltDown Then
Txt = "SHIFT+CTRL+ALT+F2."

ElseIf ShiftDown And AltDown Then
Txt = "SHIFT+ALT+F2."

ElseIf ShiftDown And CtrlDown Then
Txt = "SHIFT+CTRL+F2."

ElseIf CtrlDown And AltDown Then
Txt = "CTRL+ALT+F2."

ElseIf ShiftDown Then
Txt = "SHIFT+F2."

ElseIf CtrlDown Then
Txt = "CTRL+F2."
ElseIf AltDown Then

Txt = "ALT+F2."
ElseIf SHIFT = 0 Then

Txt = "F2."
End If

Text1.Text = "You pressed " & Txt
End If

End Sub

KeyPress Event Example
This example converts text entered into a TextBox control to uppercase. To try this example, paste
the code into the Declarations section of a form that contains a TextBox, and then press F5 and enter
something into the TextBox.
Private Sub Text1_KeyPress (KeyAscii As Integer)

Char = Chr(KeyAscii)
KeyAscii = Asc(UCase(Char))

End Sub

LinkError Event Example
This example is attached to a TextBox control, MyTextBox, that handles selected errors. The
procedure displays a message (adapted from the error list in the LinkError event topic) based on the
error number passed as the argument LinkErr. You can adapt this code to a source form by
substituting Form_LinkError for MyTextBox_LinkError. This example is for illustration only.

Private Sub MyTextBox_LinkError (LinkErr As Integer)
Dim Msg
Select Case LinkErr

Case 1
Msg = "Data in wrong format."

Case 11
Msg = "Out of memory for DDE."

End Select
MsgBox Msg, vbExclamation, "MyTextBox"
End Sub

LinkExecute Event Example
This example defines a set of commands for destinations to use in DDE conversations to which your
application will respond. This example is for illustration only.
Private Sub Form_LinkExecute (CmdStr As String, Cancel As Integer)

Cancel = False
Select Case LCase(CmdStr)
Case "{big}"

WindowState = 2 ' Maximize window.
Case "{little}"

WindowState = 1 ' Minimize window.
Case "{hide}"

Visible = False ' Hide form.
Case "{view}"

Visible = True ' Display form.
Case Else

Cancel = True ' Execute not allowed.
End Select

End Sub

LinkNotify Event Example
This example is attached to a PictureBox control, Picture1, that has its LinkTopic and LinkItem
properties set to specify a graphic in the source, and its LinkMode property set to 3 (Notify). When
the source changes this data, the procedure updates the PictureBox control immediately only if the
PictureBox is on the active form; otherwise, it sets a flag variable. This example is for illustration
only.
Private Sub Picture1_LinkNotify ()

If Screen.ActiveForm Is Me Then
Picture1.LinkRequest ' Picture is on active form, so update.
Else

NewDataFlag = True ' Assumed to be a module-level variable.
End If

End Sub

Load Event Example
This example loads items into a ComboBox control when a form is loaded. To try this example,
paste the code into the Declarations section of a form that contains a ComboBox, and then press F5.
Private Sub Form_Load ()

Combo1.AddItem "Mozart" ' Add items to list.
Combo1.AddItem "Beethoven"
Combo1.AddItem "Rock 'n Roll"
Combo1.AddItem "Reggae"
Combo1.ListIndex = 2 ' Set default selection.

End Sub

LostFocus Event Example
This example changes the color of a TextBox control when it receives or loses the focus (selected
with the mouse or TAB key) and displays the appropriate text in the Label control. To try this
example, paste the code into the Declarations section of a form that contains two TextBox controls
and a Label control, and then press F5 and move the focus between Text1 and Text2.
Private Sub Text1_GotFocus ()

' Show focus with red.
Text1.BackColor = RGB(255, 0, 0)
Label1.Caption = "Text1 has the focus."

End Sub

Private Sub Text1_LostFocus ()
' Show loss of focus with blue.
Text1.BackColor = RGB(0, 0, 255)
Label1.Caption = "Text1 doesn't have the focus."

End Sub

MouseDown, MouseUp Events Example
This example demonstrates a simple paint application. The MouseDown event procedure works with
a related MouseMove event procedure to enable painting when any mouse button is pressed and
dragged. The MouseUp event procedure disables painting. To try this example, paste the code into
the Declarations section of a form; and then press F5, click the form, and move the mouse while the
mouse button is pressed.
Dim PaintNow As Boolean
Private Sub Form_MouseDown (Button As Integer, Shift As Integer, X As
Single, Y As Single)

PaintNow = True ' Enable painting.
End Sub

Private Sub Form_MouseUp (Button As Integer, Shift As Integer, X As Single,
Y As Single)

PaintNow = False ' Disable painting.
End Sub

Private Sub Form_MouseMove (Button As Integer, Shift As Integer, X As
Single, Y As Single)

If PaintNow Then
PSet (X, Y) ' Draw a point.

End If
End Sub

Private Sub Form_Load ()
DrawWidth = 10 ' Use wider brush.
ForeColor = RGB(0, 0, 255) ' Set drawing color.

End Sub

MouseMove Event Example
This example demonstrates a simple paint application. The MouseDown event procedure works with
a related MouseMove event procedure to enable painting when any mouse button is pressed. The
MouseUp event procedure disables painting. To try this example, paste the code into the
Declarations section of a form, and then press F5 and click the form and move the mouse while the
mouse button is pressed.
Dim PaintNow As Boolean ' Declare variable.
Private Sub Form_MouseDown (Button As Integer, Shift As Integer, X As
Single, Y As Single)

PaintNow = True ' Brush on.
End Sub
Private Sub Form_MouseUp (Button As Integer, X As Single, Y As Single)

PaintNow = False ' Turn off painting.
End Sub

Private Sub Form_MouseMove (Button As Integer, Shift As Integer, X As
Single, Y As Single)

If PaintNow Then
PSet (X, Y) ' Draw a point.

End If
End Sub

Private Sub Form_Load ()
DrawWidth = 10 ' Use wider brush.
ForeColor = RGB(0, 0, 255) ' Set drawing color.

End Sub

Paint Event Example
This example draws a diamond that intersects the midpoint of each side of a form and adjusts
automatically as the form is resized. To try this example, paste the code into the Declarations section
of a form, and then press F5 and resize the form.
Private Sub Form_Paint ()

Dim HalfX, HalfY ' Declare variables.
HalfX = ScaleLeft + ScaleWidth / 2 ' Set to one-half of width.
HalfY = ScaleTop + ScaleHeight / 2 ' Set to one-half of height.
' Draw a diamond.
Line (ScaleLeft, HalfY) - (HalfX, ScaleTop)
Line -(ScaleWidth + ScaleLeft, HalfY)
Line -(HalfX, ScaleHeight + ScaleTop)
Line -(ScaleLeft, HalfY)

End Sub

Private Sub Form_Resize
Refresh

End Sub

PathChange Event Example
This example demonstrates how to update a Label control to reflect the current path for a
FileListBox control. Double-clicking a directory name displays a list of that directory's files in the
FileListBox; it also displays the directory's complete path in the Label control. To try this example,
paste the code into the Declarations section of a form that contains a Label control, a DirListBox
control, and a FileListBox control, and then press F5. Double-click a directory to change the path.
Private Sub File1_PathChange ()

Label1.Caption = "Path: " & Dir1.Path ' Show path in Label.
End Sub

Private Sub Dir1_Change ()
File1.Path = Dir1.Path ' Set file path.

End Sub

Private Sub Form_Load ()
Label1.Caption = "Path: " & Dir1.Path ' Show path in Label.

End Sub

PatternChange Event Example
This example updates a FileListBox control with files matching the pattern entered in a TextBox
control. If a full path is entered into the TextBox, such as C:\BIN*.EXE, the text is automatically
parsed into path and pattern components. To try this example, paste the code into the Declarations
section of a form that contains a TextBox control, a Label control, a FileListBox control, and a
CommandButton control, and then press F5 and enter a valid file pattern in the TextBox.
Private Sub Form_Load ()

Command1.Default = True ' Set Default property.
Command1.Caption = "OK" ' Set Caption.

End Sub

Private Sub Command1_Click ()' OK button clicked.
' Text is parsed into path and pattern components.
File1.FileName = Text1.Text
Label1.Caption = "Path: " & File1.Path

End Sub
Private Sub File1_PatternChange ()

Text1.Text = File1.Pattern ' Set text to new pattern.
End Sub

QueryUnload Event Example
This example uses an MDIForm object containing two MDI child forms. When you choose the Close
command from the Control menu to close a form, a different message is displayed than if you choose
the Exit command from the File menu. To try this example, create an MDIForm, and then use the
Menu Editor to create a File menu containing an Exit command named FileExit. Make sure that this
menu item is enabled. On Form1, set the MDIChild property to True. Paste the code into the
Declarations sections of the respective forms, and then press F5 to run the program.
' Paste into Declarations section of MDIForm1.
Private Sub MDIForm_Load ()

Dim NewForm As New Form1 ' New instance of Form1.
NewForm.Caption = "Form2" ' Set caption and show.

End Sub
Private Sub FileExit_Click ()

Unload MDIForm1 ' Exit the application.
End Sub
Private Sub MDIForm_QueryUnload (Cancel As Integer, UnloadMode As Integer)

Dim Msg ' Declare variable.
' Set the message text.
Msg = "Do you really want to exit the application?"
' If user clicks the No button, stop QueryUnload.
If MsgBox(Msg, vbQuestion + vbYesNo, Me.Caption) = vbNo Then Cancel =

True
End Sub

' Paste into Declarations section of Form1.
Private Sub Form_QueryUnload (Cancel As Integer, UnloadMode As Integer)

Dim Msg ' Declare variable.
If UnloadMode > 0 Then

' If exiting the application.
Msg = "Do you really want to exit the application?"

Else
' If just closing the form.
Msg = "Do you really want to close the form?"

End If
' If user clicks the No button, stop QueryUnload.
If MsgBox(Msg, vbQuestion + vbYesNo, Me.Caption) = vbNo Then Cancel =

True
End Sub

Resize Event Example
This example automatically resizes a TextBox control to fill the form whenever the form is resized.
To try this example, paste the code into the Declarations section of a form that contains a TextBox.
Set the TextBox control's MultiLine property to True, its ScrollBars property to 3, and its
BorderStyle property to 0, and then press F5 and resize the form.
Private Sub Form_Load ()

Text1.Text = "" ' Clear text.
End Sub
Private Sub Form_Resize ()

Text1.Move 0,0, ScaleWidth, ScaleHeight
End Sub

RowColChange, SelChange Events Example; Cols, Rows
Properties Example
This example displays the location of the current cell and the range of the selection as a user selects
cells or ranges. When selecting a range, the current cell doesn't change. Select a range, and then
click the form to move the current cell around the perimeter of the selection. Notice that the selected
range doesn't change.

To try this example, create a new project, use the Components dialog box to add a Grid control to the
toolbox (from the Project menu, choose Components, and then select Microsoft Grid Control), and
then draw a Grid control and two Label controls. Copy the code into the Declarations section, and
then press F5 to run the program.
Private Sub Form_Load ()

Grid1.Cols = 6 ' Set columns and rows.
Grid1.Rows = 7

End Sub

Private Sub Grid1_RowColChange ()
Msg = "Current Cell: " & Chr(64 + Grid1.Col)
Mst = Msg & Grid1.Row
Label1.Caption = Msg

End Sub

Private Sub Grid1_SelChange ()
Msg = "Selection: " & Chr(64 + Grid1.SelStartCol)
Msg = Msg & Grid1.SelStartRow
Msg = Msg & ":" & Chr(64 + Grid1.SelEndCol)
Msg = Msg & Grid1.SelEndRow
Label2.Caption = Msg

End Sub

Private Sub Form_Click ()
' This procedure moves the current cell around
' the perimeter of the selected range
' of cells with each click on the form.
Dim GR, GC As Integer
If Grid1.Row = Grid1.SelStartRow Then

If Grid1.Col = Grid1.SelEndCol Then
GR = 1: GC = 0

Else
GR = 0: GC = 1

End If
ElseIf Grid1.Row = Grid1.SelEndRow Then

If Grid1.Col = Grid1.SelStartCol Then
GR = -1: GC = 0

Else
GR = 0: GC = -1

End If
Else

If Grid1.Col = Grid1.SelStartCol Then
GR = -1: GC = 0

Else
GR = 1: GC = 0

End If
End If
Grid1.Row = Grid1.Row + GR

Grid1.Col = Grid1.Col + GC
End Sub

Scroll Event Example
This example changes the size of a Shape control to correspond to the value of a horizontal scroll bar
(HScrollBar) as you drag the scroll box on the scroll bar. To try this example, paste the code into the
Declarations section of a form that contains a Shape control, a Label control, and an HScrollBar
control. Set the Index property for the Shape control to 0 to create a control array. Then press F5
and move the scroll bar.
Private Sub Form_Load ()

' Move and size the first Shape control.
Shape1(0).Move HScroll1.Left, HScroll1.Top * 1.5, HScroll1.Width,

HScroll1.Height
Label1.Caption = "" ' Set the Label caption.
Load Shape1(1) ' Create the second Shape.
' Move and size the second Shape control.
Shape1(1).Move Shape1(0).Left, Shape1(0).Top, 1, Shape1(0).Height
Shape1(1).BackStyle = 1 ' Set BackStyle to Opaque.
Shape1(1).Visible = True ' Display the second Shape.
HScroll1.Min = 1 ' Set values of the scroll bar.
HScroll1.Max = HScroll1.Width

End Sub

Private Sub HScroll1_Change ()
Label1.Caption = "Changed" ' Display message after change.

End Sub
Private Sub HScroll1_Scroll ()

Shape1(1).BackColor = &HFF0000 ' Set Shape color to Blue.
Label1.Caption = "Changing" ' Display message while scrolling.
Shape1(1).Width = HScroll1.Value ' Size Shape to Scroll Value.

End Sub

Timer Event Example
This example demonstrates a digital clock. To try this example, paste the code into the Declarations
section of a form that contains a Label control and a Timer control, and then press F5.
Private Sub Form_Load ()

Timer1.Interval = 1000 ' Set Timer interval.
End Sub

Private Sub Timer1_Timer ()
Label1.Caption = Time ' Update time display.

End Sub
This example moves a PictureBox control across a form. To try this example, paste the code into
the Declarations section of a form that contains a Timer control and a PictureBox control, and then
press F5. For a better visual effect you can assign a bitmap to the PictureBox using the Picture
property.
Dim DeltaX, DeltaY As Integer' Declare variables.
Private Sub Timer1_Timer ()

Picture1.Move Picture1.Left + DeltaX, Picture1.Top + DeltaY
If Picture1.Left < ScaleLeft Then DeltaX = 100
If Picture1.Left + Picture1.Width > ScaleWidth + ScaleLeft Then

DeltaX = -100
End If
If Picture1.Top < ScaleTop Then DeltaY = 100
If Picture1.Top + Picture1.Height > ScaleHeight + ScaleTop Then

DeltaY = -100
End If

End Sub

Private Sub Form_Load ()
Timer1.Interval = 1000 ' Set Interval.
DeltaX = 100 ' Initialize variables.
DeltaY = 100

End Sub

Unload Event Example
This example demonstrates a simple procedure to close a form while prompting the user with various
message boxes. In an actual application, you can add calls to general purpose Sub procedures that
emulate the processing of the Exit, Save, and Save As commands on the File menu in Visual Basic.
To try this example, paste the code into the Declarations section of a form, and then press F5. Once
the form is displayed, press ALT+F4 to close the form.
Private Sub Form_Unload (Cancel As Integer)

Dim Msg, Response ' Declare variables.
Msg = "Save Data before closing?"
Response = MsgBox(Msg, vbQuestion + vbYesNoCancel, "Save Dialog")
Select Case Response

Case vbCancel ' Don't allow close.
Cancel = -1
Msg = "Command has been canceled."

Case vbYes
' Enter code to save data here.

Msg = "Data saved."'
Case vbNo

Msg = "Data not saved."
End Select
MsgBox Msg, vbOKOnly, "Confirm" ' Display message.

End Sub

ItemCheck Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtItemCheckEventC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtItemCheckEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtItemCheckEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtItemCheckEventS"}

Occurs when a ListBox control Style property is set to 1 (checkboxes) and an item’s checkbox in the
ListBox control is selected or cleared.

Syntax
Private Sub object_ItemCheck([index As Integer])
The ItemCheck event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index An integer that uniquely identifies the item in the listbox which

was clicked.

Remarks
Note The ItemCheck event does not occur when a list item is only highlighted; rather, it occurs
when the check box of the list item is selected or cleared.

The ItemCheck event can also occur programmatically whenever an element in Selected array of the
ListBox is changed (and its Style property is set to 1.)

The ItemCheck event occurs before the Click event.

Property Pages
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproListOfPropertiesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproListOfPropertiesX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproListOfPropertiesA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproListOfPropertiesS"}

To get Help for the properties contained in a control's Property Page dialog box, click the button below
corresponding to the control in which you are interested.Then click the property name to get Help for
that property.

{button ,JI(`',`propAnimation')}
 Animation control

{button ,JI(`',`propMMMCI')}
 Multimedia MCI control

{button ,JI(`',`propCommonDialog')}
 CommonDialog control

{button ,JI(`',`propPicclip')}
 PictureClip control

{button ,JI(`',`propDBCombo')}
 DBCombo control

{button ,JI(`',`propProgressBar')}
 ProgressBar control

{button ,JI(`',`propDBList')}
 DBList control

{button ,JI(`',`propRTFBox')}
 RichTextBox control

{button ,JI(`',`propImageList')}
 ImageList control

{button ,JI(`',`propSlider')}
 Slider control

{button ,JI(`',`propListView')}
 ListView control

{button ,JI(`',`propSSTab')}
 SSTab control

{button ,JI(`',`propMAPIMessages')}
 MAPIMessages control

{button ,JI(`',`propStatusBar')}
 StatusBar control

{button ,JI(`',`propMAPISession')}
 MAPISession control

{button ,JI(`',`propTabStrip')}
 TabStrip control

{button ,JI(`',`propMasked')}
 MaskedEdit control

{button ,JI(`',`propToolBar')}
 ToolBar control

{button ,JI(`',`propMSChart')}
 MSChart control

{button ,JI(`',`propTreeView')}
 TreeView control

{button ,JI(`',`propMSComm')}
 MSComm control

{button ,JI(`',`propUpDown')}
 UpDown control

{button ,JI(`',`propMSFlexGrid')}
 MSFlexGrid control

{button ,JI(`',`propWinSock')}
 Winsock control

Property Pages
Animation control

AutoPlay AutoPlay
BackStyle BackStyle
Center Center
OLEDropMode OLEDropMode

Common Dialog control

CancelError CancelError
Color Color
Copies Copies

DefaultExt DefaultExt
DialogTitle DialogTitle
FileName FileName
Filter Filter
FilterIndex FilterIndex
Flags Flags
FontName FontName
FontSize FontSize
FromPage FromPage
HelpCommand HelpCommand
HelpContext HelpContext
HelpFile HelpFile
HelpKey HelpKey
InitDir InitDir
Max Max
MaxFileSize MaxFileSize
Min Min
PrinterDefault PrinterDefault
ToPage ToPage

DBCombo control

Appearance Appearance
Enabled Enabled
IntegralHeight IntegralHeight
Locked Locked
MatchEntry MatchEntry
MousePointer MousePointer
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode
Style Style

DBList control

Appearance Appearance
Enabled Enabled
IntegralHeight IntegralHeight
Locked Locked
MatchEntry MatchEntry
MousePointer MousePointer
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode

ImageList control

Height Height
Image Image

Image Count Image Count
Index Index
Key Key
Tag Tag
UseMaskColor UseMaskColor
Width Width

ListView control

Alignment Alignment
Appearance Appearance
Arrange Arrange
BorderStyle BorderStyle
Enabled Enabled pro
HideColumnHeaders HideColumnHeaders
HideSelection HideSelection
ImageList ImageList
Index Index
Key Key
LabelEdit LabelEdit
LabelWrap LabelWrap
MousePointer MousePointer
MultiSelect MultiSelect
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode
Sorted Sorted
SortKey SortKey
SortOrder SortOrder
Tag Tag
Text Text
View View
Width Width

MAPIMessages control

AddressCaption AddressCaption
AddressEditFieldCount AddressEditFieldCount
AddressLabel AddressLabel
AddressModifiable AddressModifiable
AddressResolveUI AddressResolveUI
FetchMsgType FetchMsgType
FetchSorted FetchSorted
FetchUnreadOnly FetchUnreadOnly

MAPISession control

DownloadMail DownloadMail

LogonUI LogonUI
NewSession NewSession
Password Password
UserName UserName

MaskedEdit control

AllowPrompt AllowPrompt
AutoTab AutoTab
BorderStyle BorderStyle
ClipMode ClipMode
Enabled Enabled
Format Format
HideSelection HideSelection
Mask Mask
MaxLength MaxLength
MousePointer MousePointer
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode
PromptChar PromptChar
PromptInclude PromptInclude

MSChart control

2D 2D
3D 3D
Alignment Alignment
Automatic scaling Automatic scaling
Axis Axis
Color Color
Exclude series Exclude series
Font style Font style
Font Font
Hide series Hide series
Major divisions Major divisions
Maximum Maximum
Mean Mean
Minimum Minimum
Minor divisions Minor divisions
Orientation Orientation
Pattern color Pattern color
Pattern Pattern
Plot on 2nd Y axis Plot on 2nd Y axis
Property Name Property Name
Regression Regression
Series in rows Series in rows
Series type Series type

Series type Series type
Series Series
Series Series
Shadow Shadow
Show legend Show legend
Show markers Show markers
Show markers Show markers
Show scale Show scale
Size Size
Stack series Stack series
Standard deviation Standard deviation
Strikeout Strikeout
Style Style
Style Style
Style Style
Style Style
Style Style
Text Text
Underline Underline
Width Width
Width Width
Width Width
Width Width
Width Width

MSComm control

CommPort CommPort
DTREnable DTREnable
EOFEnable EOFEnable
Handshaking Handshaking
InBufferSize InBufferSize
InputLen InputLen
NullDiscard NullDiscard
OutBufferSize OutBufferSize
ParityReplace ParityReplace
Rthreshold RThreshold
RTSEnable RTSEnable
Settings Settings
Sthreshold SThreshold

MSFlexGrid control

AllowBigSelection AllowBigSelection
AllowUserResizing AllowUserResizing
Cols Cols

FillStyle FillStyle
FixedCols FixedCols
FixedRows FixedRows
FocusRect FocusRect
Font Font
Format Format
GridLines GridLines
GridLinesFixed GridLinesFixed
HighLight HighLight
MergeCells MergeCells
MousePointer MousePointer
PictureType PictureType
RowHeightMin RowHeightMin
Rows Rows
ScrollBars ScrollBars
SelectionMode SelectionMode
TextStyle TextStyle
TextStyleFixed TextStyleFixed
WordWrap WordWrap

Multimedia MCI control

AutoEnable AutoEnable
BackEnabled BackEnabled
BackVisible BackVisible
BorderStyle BorderStyle
DeviceType DeviceType
EjectEnabled EjectEnabled
EjectVisible EjectVisible
Enabled Enabled
FileName FileName
Frames Frames
MousePointer MousePointer
NextEnabled NextEnabled
NextVisible NextVisible
OLEDropMode OLEDropMode
Orientation Orientation
PauseEnabled PauseEnabled
PauseVisible PauseVisible
PlayEnabled PlayEnabled
PlayVisible PlayVisible
PrevEnabled PrevEnabled
PrevVisible PrevVisible
RecordEnabled RecordEnabled
RecordMode RecordMode

RecordVisible RecordVisible
Shareable Shareable
Silent Silent
StepEnabled StepEnabled
StepVisible StepVisible
StopEnabled StopEnabled
StopVisible StopVisible
UpdateInterval UpdateInterval

PictureClip control

Cols Cols
Rows Rows

ProgressBar control

Appearance Appearance
BorderStyle BorderStyle
Enabled Enabled
Max Max
Min Min
MousePointer MousePointer
OLEDropMode OLEDropMode

RichTextBox control

Appearance Appearance
AutoVerbMenu AutoVerbMenu
BorderStyle BorderStyle
BulletIndent BulletIndent
DisableNoScroll DisableNoScroll
Enabled Enabled
FileName [load from] FileName [load from]
HideSelection HideSelection
Locked Locked
MaxLength MaxLength
MousePointer MousePointer
MultiLine MultiLine
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode
RightMargin RightMargin
ScrollBars ScrollBars

Slider control

Enabled Enabled
LargeChange LargeChange
Max Max

Min Min
MousePointer MousePointer
OLEDropMode OLEDropMode
Orientation Orientation
SelectRange SelectRange
SelLength SelLength
SelStart SelStart
SmallChange SmallChange
TickFrequency TickFrequency
TickStyle TickStyle

SSTab control

Current Tab CurrentTab
Enabled Enabled
MousePointer MousePointer
OLEDropMode OLEDropMode
Orientation Orientation
ShowFocusRect ShowFocusRect
Style Style
Tab Count Tab Count
TabCaption TabCaption
TabHeight TabHeight
TabMaxWidth TabMaxWidth
TabsPerRow TabsPerRow
WordWrap WordWrap

StatusBar control

Actual Width Actual Width
Alignment Alignment
AutoSize AutoSize
Bevel Bevel
Enabled Enabled
Index Index
Key Key
Minimum Width Minimum Width
MousePointer MousePointer
OLEDropMode OLEDropMode
Picture Picture
ShowTips ShowTips
SimpleText SimpleText
Style Style
Tag Tag
Text Text
ToolTipText ToolTipText

TabStrip control

Caption Caption
Enabled Enabled
Image Image
ImageList ImageList
Index Index
Key Key
MousePointer MousePointer
MultiRow MultiRow
OLEDropMode OLEDropMode
ShowTips ShowTips
Style Style
TabFixedHeight TabFixedHeight
TabFixedWidth TabFixedWidth
TabWidthStyle TabWidthStyle
Tag Tag
ToolTipText ToolTipText

TreeView control

Appearance Appearance
BorderStyle BorderStyle
Enabled Enabled
HideSelection HideSelection
ImageList ImageList
Indentation Indentation
LabelEdit LabelEdit
LineStyle LineStyle
MousePointer MousePointer
OLEDragMode OLEDragMode
OLEDropMode OLEDropMode
PathSeparator PathSeparator
Sorted Sorted
Style Style

ToolBar control

AllowCustomize AllowCustomize
Appearance Appearance
BorderStyle BorderStyle
ButtonHeight ButtonHeight
ButtonWidth ButtonWidth
Caption Caption
Description Description
Enabled Enabled

HelpContextID HelpContextID
HelpFile HelpFile
Image Image
ImageList ImageList
Index Index
Key Key
MixedState MixedState
MousePointer MousePointer
OLEDropMode OLEDropMode
ShowTips ShowTips
Style Style
Tag Tag
ToolTipText ToolTipText
Value Value
Visible Visible
Width Width
Wrappable Wrappable

UpDown control

Alignment Alignment
AutoBuddy AutoBuddy
BuddyControl BuddyControl
BuddyProperty BuddyProperty
Increment Increment
Max Max
Min Min
OLEDropMode OLEDropMode
Orientation Orientation
SyncBuddy SyncBuddy
Value Value
Wrap Wrap

Winsock control

LocalPort LocalPort
Protocol Protocol
RemoteHost RemoteHost
RemotePort RemotePort

Convert a database
The database file you selected isn't a replicable file. To make a replica of your database, you must
first convert it to a Design Master. Converting your database increases the size of your file because
new, hidden system fields and tables are added to your database.

Before you convert your database, remove the database password. Setting user permissions to
access the database doesn't interfere with synchronization.

Make a backup copy
The backup copy is to be used only in emergency cases. Any copy made from the backup copy of the
database, or any replica made from a converted backup copy, will not be able to synchronize with the
existing members of the replica set.

Designate the Design Master
If you want to change the design of your database while working on the Briefcase copy of the file,
make the Briefcase copy the Design Master. It is important to remember, however, that no one will be
able to make changes to the design of the replica remaining on the desktop.

Keyword Not Found
The keyword you've selected can't be found in Visual Basic Help. You may have misspelled the
keyword, selected too much or too little text, or asked for help on a word that is not a valid Visual
Basic keyword.

The easiest way to get help on a specific keyword is to position the insertion point anywhere within
the keyword you want help on and press F1. You do not need to select the keyword. In fact, if you
select only a portion of the keyword, or more than a single word, Help will not find what you're looking
for.

To use the built-in Help search dialog box, press the "Help Topics" button on the toolbar.

Screen Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjScreenC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjScreenX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjScreenP"} {ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjScreenM"}
{ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjScreenE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjScreenS"}

Manipulates forms according to their placement on the screen and controls the mouse pointer outside
your application's forms at run time. The Screen object is accessed with the keyword Screen.

Syntax
Screen

Remarks
The Screen object is the entire Windows desktop. Using the Screen object, you can set the
MousePointer property of the Screen object to the hourglass pointer while a modal form is
displayed.

Refresh Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRefreshC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthRefreshX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthRefreshA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRefreshS"}

Forces a complete repaint of a form or control.

Syntax
object.Refresh
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use the Refresh method when you want to:

· Completely display one form while another form loads.
· Update the contents of a file-system list box, such as a FileListBox control.
· Update the data structures of a Data control.

Refresh can't be used on MDI forms , but can be used on MDI child forms. You can't use Refresh on
Menu or Timer controls.

Generally, painting a form or control is handled automatically while no events are occurring. However,
there may be situations where you want the form or control updated immediately. For example, if you
use a file list box, a directory list box, or a drive list box to show the current status of the directory
structure, you can use Refresh to update the list whenever a change is made to the directory
structure.

You can use the Refresh method on a Data control to open or reopen the database (if the
DatabaseName, ReadOnly, Exclusive, or Connect property settings have changed) and rebuild the
dynaset in the control's Recordset property.

Refresh Method Example
This example uses the Refresh method to update a FileListBox control as test files are created. To
try this example, paste the code into the Declarations section of a form with a FileListBox control
named File1, and then run the example and click the form.
Private Sub Form_Click ()

' Declare variables.
Dim FilName, Msg as String, I as Integer
File1.Pattern = "TestFile.*" ' Set file pattern.
For I = 1 To 8 ' Do eight times.

FilName = "TESTFILE." & I
' Create empty file.
Open FilName For Output As FreeFile
File1.Refresh ' Refresh file list box.
Close ' Close file.

Next I
Msg = "Choose OK to remove the created test files."
MsgBox Msg ' Display message.
Kill "TESTFILE.*" ' Remove test files.
File1.Refresh ' Update file list box.

End Sub

SetFocus Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetFocusC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSetFocusX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSetFocusA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetFocusS"}

Moves the focus to the specified control or form.

Syntax
object.SetFocus
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The object must be a Form object, MDIForm object, or control that can receive the focus. After
invoking the SetFocus method, any user input is directed to the specified form or control.

You can only move the focus to a visible form or control. Because a form and controls on a form aren't
visible until the form's Load event has finished, you can't use the SetFocus method to move the focus
to the form being loaded in its own Load event unless you first use the Show method to show the
form before the Form_Load event procedure is finished.

You also can't move the focus to a form or control if the Enabled property is set to False. If the
Enabled property has been set to False at design time, you must first set it to True before it can
receive the focus using the SetFocus method.

DblClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"formDblClickSee;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtDblClickX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"formDblClickA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDblClickS"}

Occurs when the user presses and releases a mouse button and then presses and releases it again
over an object.

For a form, the DblClick event occurs when the user double-clicks a disabled control or a blank area
of a form. For a control, it occurs when the user:

· Double-clicks a control with the left mouse button.
· Double-clicks an item in a ComboBox control whose Style property is set to 1 (Simple) or in a

FileListBox, ListBox, DBCombo, or DBList control.

Syntax
Private Sub Form_DblClick ()
Private Sub object_DblClick (index As Integer)
Part Description
object An object expression that evaluates to an object in the Applies

To list.
index Identifies the control if it's in a control array.

Remarks
The argument Index uniquely identifies a control if it's in a control array. You can use a DblClick event
procedure for an implied action, such as double-clicking an icon to open a window or document. You
can also use this type of procedure to carry out multiple steps with a single action, such as double-
clicking to select an item in a list box and to close the dialog box.

To produce such shortcut effects in Visual Basic, you can use a DblClick event procedure for a list box
or file list box in tandem with a default button — a CommandButton control with its Default property
set to True. As part of the DblClick event procedure for the list box, you simply call the default button's
Click event.

For those objects that receive Mouse events, the events occur in this order: MouseDown, MouseUp,
Click, DblClick, and MouseUp.

If DblClick doesn't occur within the system's double-click time limit, the object recognizes another
Click event. The double-click time limit may vary because the user can set the double-click speed in
the Control Panel. When you're attaching procedures for these related events, be sure that their
actions don't conflict. Controls that don't receive DblClick events may receive two clicks instead of a
DblClick.

Note To distinguish between the left, right, and middle mouse buttons, use the MouseDown and
MouseUp events.

If there is code in the Click event, the DlbClick event will never trigger.

DblClick Event Example
This example displays a selected list item in a TextBox control when either a CommandButton
control is clicked or a list item is double-clicked. To try this example, paste the code into the
Declarations section of a Form object that contains a ListBox control, a TextBox control, and a
CommandButton control. Then run the example and click the CommandButton control or double-
click an item in the ListBox control.
Private Sub Form_Load ()

List1.AddItem "John" ' Add list box entries.
List1.AddItem "Paul"
List1.AddItem "George"
List1.AddItem "Ringo"

End Sub

Private Sub List1_DblClick ()
Command1.Value = True ' Trigger Click event.

End Sub

Private Sub Command1_Click ()
Text1.Text = List1.Text ' Display selection.

End Sub

HelpFile Property (App, CommonDialog, MenuLine)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHelpFileC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHelpFileX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHelpFileA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHelpFileS"}

Specifies the path and filename of a Microsoft Windows Help file used by your application to display
Help or online documentation.

Syntax
object.HelpFile[= filename]

The HelpFile property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
filename A string expression specifying the path and filename of the

Windows Help file for your application.

Remarks
If you've created a Windows Help file for your application and set the application's HelpFile property,
Visual Basic automatically calls Help when a user presses the F1 key. If there is a context number in
the HelpContextID property for either the active control or the active form, Help displays a topic
corresponding to the current Help context; otherwise it displays the main contents screen.

You can also use the HelpFile property to determine which Help file is displayed when a user
requests Help from the Object Browser for an ActiveX component.

Note Building a Help file requires the Microsoft Windows Help Compiler, which is available with
Visual Basic, Professional Edition.

HelpFile Property Example
This example uses topics in the Visual Basic Help file and demonstrates how to specify context
numbers for Help topics. To try this example, paste the code into the Declarations section of a Form
object that contains a TextBox control and a Frame control with an OptionButton control inside of it.
Run the example. Once the program is running, move the focus to one of the components, and press
F1.
' Actual context numbers from the Visual Basic Help file.
' Define constants.
Const winPictureBox = 2016002
Const winCommandButton = 2007557

Private Sub Form_Load ()
App.HelpFile = "VB5.HLP"
Text1.HelpContextID = winPictureBox
Form1.HelpContextID = winCommandButton

End Sub

Clipboard Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjClipboardC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjClipboardX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjClipboardP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjClipboardM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjClipboardE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjClipboardS"}

Provides access to the system Clipboard.

Syntax
Clipboard

Remarks
The Clipboard object is used to manipulate text and graphics on the Clipboard. You can use this
object to enable a user to copy, cut, and paste text or graphics in your application. Before copying any
material to the Clipboard object, you should clear its contents by as performing a Clear method, such
as Clipboard.Clear.

Note that the Clipboard object is shared by all Windows applications, and thus, the contents are
subject to change whenever you switch to another application.

The Clipboard object can contain several pieces of data as long as each piece is in a different
format. For example, you can use the SetData method to put a bitmap on the Clipboard with the
vbCFDIB format, and then use the SetText method with the vbCFText format to put text on the
Clipboard. You can then use the GetText method to retrieve the text or the GetData method to
retrieve the graphic. Data on the Clipboard is lost when another set of data of the same format is
placed on the Clipboard either through code or a menu command.

Printer Object, Printers Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjPrinterC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjPrinterX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjPrinterP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjPrinterM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjPrinterE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjPrinterS"}

The Printer object enables you to communicate with a system printer (initially the default system
printer).

The Printers collection enables you to gather information about all the available printers on the
system.

Syntax
Printer
Printers(index)
The index placeholder represents an integer with a range from 0 to Printers.Count-1.

Remarks
Use graphics methods to draw text and graphics on the Printer object. Once the Printer object
contains the output you want to print, you can use the EndDoc method to send the output directly to
the default printer for the application.

You should check and possibly revise the layout of your forms if you print them. If you use the
PrintForm method to print a form, for example, graphical images may be clipped at the bottom of the
page and text carried over to the next page.

The Printers collection enables you to query the available printers so you can specify a default printer
for your application. For example, you may want to find out which of the available printers uses a
specific printer driver. The following code searches all available printers to locate the first printer with
its page orientation set to portrait, then sets it as the default printer:
Dim X As Printer
For Each X In Printers

If X.Orientation = vbPRORPortrait Then
' Set printer as system default.
Set Printer = X
' Stop looking for a printer.
Exit For

End If
Next
You designate one of the printers in the Printers collection as the default printer by using the Set
statement. The preceding example designates the printer identified by the object variable X, the
default printer for the application.

Note If you use the Printers collection to specify a particular printer, as in Printers(3), you can
only access properties on a read-only basis. To both read and write the properties of an individual
printer, you must first make that printer the default printer for the application.

Font Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjFontC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjFontX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjFontP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjFontM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjFontE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjFontS"}

The Font object contains information needed to format text for display in the interface of an
application or for printed output.

Syntax
Font

Remarks
You frequently identify a Font object using the Font property of an object that displays text (such as a
Form object or the Printer object).

You cannot create a Font object using code like Dim X As New Font. If you want to create a Font
object, you must use the StdFont object like this:
Dim X As New StdFont
If you put a TextBox control named Text1 on a form, you can dynamically change it’s font Font object
to another using the Set statement, as in the following example:
Dim X As New StdFont
X.Bold = True
X.Name = "Arial"
Set Text1.Font = X

Load Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbstmLoadC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbstmLoadX":1} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbstmLoadS"}

Loads a form or control into memory.

Syntax
Loadobject

The object placeholder is the name of a Form object, MDIForm object, or control array element to
load.

Remarks
You don't need to use the Load statement with forms unless you want to load a form without
displaying it. Any reference to a form (except in a Set or If...TypeOf statement) automatically loads it if
it's not already loaded. For example, the Show method loads a form before displaying it. Once the
form is loaded, its properties and controls can be altered by the application, whether or not the form is
actually visible. Under some circumstances, you may want to load all your forms during initialization
and display them later as they're needed.

When Visual Basic loads a Form object, it sets form properties to their initial values and then
performs the Load event procedure. When an application starts, Visual Basic automatically loads and
displays the application's startup form.

If you load a Form whose MDIChild property is set to True (in other words, the child form) before
loading an MDIForm, the MDIForm is automatically loaded before the child form. MDI child forms
cannot be hidden, and thus are immediately visible after the Form_Load event procedure ends.

The standard dialog boxes produced by Visual Basic functions such as MsgBox and InputBox do
not need to be loaded, shown, or unloaded, but can simply be invoked directly.

Load Statement Example
This example uses the Load statement to load a Form object. To try this example, paste the code into
the Declarations section of a Form object, and then run the example and click the Form object.
Private Sub Form_Click ()

Dim Answer, Msg as String ' Declare variable.
Unload Form1 ' Unload form.
Msg = "Form1 has been unloaded. Choose Yes to load and "
Msg = Msg & "display the form. Choose No to load the form "
Msg = Msg & "and leave it invisible."
Answer = MsgBox(Msg, vbYesNo) ' Get user response.
If Answer = vbYes Then ' Evaluate answer.

Show ' If Yes, show form.
Else

Load Form1 ' If No, just load it.
Msg = "Form1 is now loaded. Choose OK to display it."
MsgBox Msg ' Display message.
Show ' Show form.

End If
End Sub

Unload Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbstmUnloadC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vastmUnloadX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbstmUnloadS"}

Unloads a form or control from memory.

Syntax
Unload object

The object placeholder is the name of a Form object or control array element to unload.

Remarks
Unloading a form or control may be necessary or expedient in some cases where the memory used is
needed for something else, or when you need to reset properties to their original values.

Before a form is unloaded, the Query_Unload event procedure occurs, followed by the Form_Unload
event procedure. Setting the cancel argument to True in either of these events prevents the form from
being unloaded. For MDIForm objects, the MDIForm object's Query_Unload event procedure occurs,
followed by the Query_Unload event procedure and Form_Unload event procedure for each MDI child
form, and finally the MDIForm object's Form_Unload event procedure.

When a form is unloaded, all controls placed on the form at run time are no longer accessible.
Controls placed on the form at design time remain intact; however, any run-time changes to those
controls and their properties are lost when the form is reloaded. All changes to form properties are
also lost. Accessing any controls on the form causes it to be reloaded.

Note When a form is unloaded, only the displayed component is unloaded. The code associated
with the form module remains in memory.

Only control array elements added to a form at run time can be unloaded with the Unload statement.
The properties of unloaded controls are reinitialized when the controls are reloaded.

Unload Statement Example
This example uses the Unload statement to unload a Form object. To try this example, paste the
code into the Declarations section of a Form object, and then run the example and click the Form
object.
Private Sub Form_Click ()

Dim Answer, Msg ' Declare variable.
Unload Form1 ' Unload form.
Msg = "Form1 has been unloaded. Choose Yes to load and "
Msg = Msg & "display the form. Choose No to load the form "
Msg = Msg & "and leave it invisible."
Answer = MsgBox(Msg, vbYesNo) ' Get user response.
If Answer = vbYes Then ' Evaluate answer.

Show ' If Yes, show form.
Else

Load Form1 ' If No, just load it.
Msg = "Form1 is now loaded. Choose OK to display it."
MsgBox Msg ' Display message.
Show ' Show form.

End If
End Sub

LoadPicture Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbfctLoadPictureC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbfctLoadPictureX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbfctLoadPictureS"}

Loads a graphic into a form’s Picture property, a PictureBox control, or Image control.

Syntax
LoadPicture([stringexpression])
The stringexpression argument is the name of a graphics file to be loaded.

Remarks
Graphics formats recognized by Visual Basic include bitmap (.bmp) files, icon (.ico) files, run-length
encoded (.rle) files, metafile (.wmf) files, enhanced metafiles (.emf), GIF files, and JPEG (.jpg) files.

Graphics are cleared from forms, picture boxes, and image controls by assigning LoadPicture with
no argument.

To load graphics for display in a PictureBox control, Image control, or as the background of a form,
the return value of LoadPicture must be assigned to the Picture property of the object on which the
picture is displayed. For example:
Set Picture = LoadPicture("PARTY.BMP")
Set Picture1.Picture = LoadPicture("PARTY.BMP")
To assign an icon to a form, set the return value of the LoadPicture function to the Icon property of
the Form object:
Set Form1.Icon = LoadPicture("MYICON.ICO")
Icons can also be assigned to the DragIcon property of all controls except Timer controls and Menu
controls. For example:
Set Command1.DragIcon = LoadPicture("MYICON.ICO")
Load a graphics file into the system Clipboard using LoadPicture as follows:
Clipboard.SetData LoadPicture("PARTY.BMP")

LoadPicture Function Example
This example uses the LoadPicture function to load a picture into a form’s Picture property and to
clear the picture from the Form object. To try this example, paste the code into the Declarations
section of a Form object, and then run the example and click the Form object.
Private Sub Form_Click ()

Dim Msg as String ' Declare variables.
On Error Resume Next ' Set up error handling.
Height = 3990
Width = 4890 ' Set height and width.
Set Picture = LoadPicture("PAPER.BMP")
' Load bitmap.
If Err Then

Msg = "Couldn't find the .BMP file."
MsgBox Msg ' Display error message.
Exit Sub ' Quit if error occurs.

End If
Msg = "Choose OK to clear the bitmap from the form."
MsgBox Msg
Set Picture = LoadPicture() ' Clear form.

End Sub

SavePicture Statement
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbstmSavePictureC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbstmSavePictureX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbstmSavePictureS"}

Saves a graphic from the Picture or Image property of a Form object, or the Picture property of a
PictureBox control or Image control, to a file.

Syntax
SavePicture picture, stringexpression

The SavePicture statement syntax has these parts:

Part Description
picture Picture or Image control from which the graphics file is

to be created.
stringexpression Filename of the graphics file to save.

Remarks
If a graphic was loaded from a file to the Picture property of an object, either at design time or at run
time, and it’s a bitmap, icon, metafile, or enhanced metafile, it's saved using the same format as the
original file. If it is a GIF or JPEG file, it is saved as a bitmap file.

Graphics in an Image property are always saved as bitmap (.bmp) files regardless of their original
format.

SavePicture Statement Example
This example uses the SavePicture statement to save a graphic drawn into a Form object’s Picture
property. To try this example, paste the code into the Declarations section of a Form object, and then
run the example and click the Form object.
Private Sub Form_Click ()

' Declare variables.
Dim CX, CY, Limit, Radius as Integer, Msg as String
ScaleMode = vbPixels ' Set scale to pixels.
AutoRedraw = True ' Turn on AutoRedraw.
Width = Height ' Change width to match height.
CX = ScaleWidth / 2 ' Set X position.
CY = ScaleHeight / 2 ' Set Y position.
Limit = CX ' Limit size of circles.
For Radius = 0 To Limit ' Set radius.

Circle (CX, CY), Radius, RGB(Rnd * 255, Rnd * 255, Rnd * 255)
DoEvents ' Yield for other processing.

Next Radius
Msg = "Choose OK to save the graphics from this form "
Msg = Msg & "to a bitmap file."
MsgBox Msg
SavePicture Image, "TEST.BMP" ' Save picture to file.

End Sub

Circle Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthCircleC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthCircleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamthCircleA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthCircleS"}

Draws a circle, ellipse, or arc on an object.

Syntax
object.Circle Step (x, y), radius, [color, start, end, aspect]
The Circle method syntax has the following object qualifier and parts.

Part Description
object Optional. Object expression that evaluates to an

object in the Applies To list. If object is omitted, the
Form with the focus is assumed to be object.

Step Optional. Keyword specifying that the center of the
circle, ellipse, or arc is relative to the current
coordinates given by the CurrentX and CurrentY
properties of object.

(x, y) Required. Single values indicating the coordinates
for the center point of the circle, ellipse, or arc. The
ScaleMode property of object determines the units
of measure used.

radius Required. Single value indicating the radius of the
circle, ellipse, or arc. The ScaleMode property of
object determines the unit of measure used.

color Optional. Long integer value indicating the RGB
color of the circle's outline. If omitted, the value of
the ForeColor property is used. You can use the
RGB function or QBColor function to specify the
color.

start, end Optional. Single-precision values. When an arc or
a partial circle or ellipse is drawn, start and end
specify (in radians) the beginning and end positions
of the arc. The range for both is -2 pi radians to 2 pi
radians. The default value for start is 0 radians; the
default for end is 2 * pi radians.

aspect Optional. Single-precision value indicating the
aspect ratio of the circle. The default value is 1.0,
which yields a perfect (non-elliptical) circle on any
screen.

Remarks
To fill a circle, set the FillColor and FillStyle properties of the object on which the circle or ellipse is
drawn. Only a closed figure can be filled. Closed figures include circles, ellipses, or pie slices (arcs
with radius lines drawn at both ends).

When drawing a partial circle or ellipse, if start is negative, Circle draws a radius to start, and treats
the angle as positive; if end is negative, Circle draws a radius to end and treats the angle as positive.
The Circle method always draws in a counter-clockwise (positive) direction.

The width of the line used to draw the circle, ellipse, or arc depends on the setting of the DrawWidth
property. The way the circle is drawn on the background depends on the setting of the DrawMode
and DrawStyle properties.

When drawing pie slices, to draw a radius to angle 0 (giving a horizontal line segment to the right),
specify a very small negative value for start, rather than zero.

You can omit an argument in the middle of the syntax, but you must include the argument's comma
before including the next argument. If you omit an optional argument, omit the comma following the
last argument you specify.

When Circle executes, the CurrentX and CurrentY properties are set to the center point specified by
the arguments.

Circle Method Example
This example uses the Circle method to draw a number of concentric circles in the center of a form.
To try this example, paste the code into the General section of a form. Then press F5 and click the
form.
Sub Form_Click ()

Dim CX, CY, Radius, Limit ' Declare variable.
ScaleMode = 3 ' Set scale to pixels.
CX = ScaleWidth / 2 ' Set X position.
CY = ScaleHeight / 2 ' Set Y position.
If CX > CY Then Limit = CY Else Limit = CX
For Radius = 0 To Limit ' Set radius.

Circle (CX, CY), Radius,RGB(Rnd * 255, Rnd * 255, Rnd * 255)
Next Radius

End Sub

Line Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthLineC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthLineX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamthLineA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthLineS"}

Draws lines and rectangles on an object.

Syntax
object.Line Step (x1, 1) Step (x2, y2), color, BF
The Line method syntax has the following object qualifier and parts:

Part Description
object Optional. Object expression that evaluates to an

object in the Applies To list. If object is omitted, the
Form with the focus is assumed to be object.

Step Optional. Keyword specifying that the starting point
coordinates are relative to the current graphics
position given by the CurrentX and CurrentY
properties.

(x1, y1) Optional. Single values indicating the coordinates
of the starting point for the line or rectangle. The
ScaleMode property determines the unit of measure
used. If omitted, the line begins at the position
indicated by CurrentX and CurrentY.

Step Optional. Keyword specifying that the end point
coordinates are relative to the line starting point.

(x2, y2) Required. Single values indicating the coordinates
of the end point for the line being drawn.

color Optional. Long integer value indicating the RGB
color used to draw the line. If omitted, the
ForeColor property setting is used. You can use
the RGB function or QBColor function to specify the
color.

B Optional. If included, causes a box to be drawn
using the coordinates to specify opposite corners of
the box.

F Optional. If the B option is used, the F option
specifies that the box is filled with the same color
used to draw the box. You cannot use F without B.
If B is used without F, the box is filled with the
current FillColor and FillStyle. The default value
for FillStyle is transparent.

Remarks
To draw connected lines, begin a subsequent line at the end point of the previous line.

The width of the line drawn depends on the setting of the DrawWidth property. The way a line or
box is drawn on the background depends on the setting of the DrawMode and DrawStyle properties.

When Line executes, the CurrentX and CurrentY properties are set to the end point specified by the
arguments.

Line Method Example
This example uses the Line method to draw concentric boxes on a form. To try this example, paste
the code into the General section of a form. Then press F5 and click the form.
Sub Form_Click ()

Dim CX, CY, F, F1, F2, I ' Declare variables
ScaleMode = 3 ' Set ScaleMode to pixels.
CX = ScaleWidth / 2 ' Get horizontal center.
CY = ScaleHeight / 2 ' Get vertical center.
DrawWidth = 8 ' Set DrawWidth.
For I = 50 To 0 Step -2

F = I / 50 ' Perform interim
F1 = 1 - F: F2 = 1 + F ' calculations.
Forecolor = QBColor(I Mod 15) ' Set foreground color.
Line (CX * F1, CY * F1)-(CX * F2, CY * F2), , BF

Next I
DoEvents ' Yield for other processing.
If CY > CX Then ' Set DrawWidth.

DrawWidth = ScaleWidth / 25
Else

DrawWidth = ScaleHeight / 25
End If
For I = 0 To 50 Step 2 ' Set up loop.

F = I / 50 ' Perform interim
F1 = 1 - F: F2 = 1 + F ' calculations.
Line (CX * F1, CY)-(CX, CY * F1) ' Draw upper-left.
Line -(CX * F2, CY) ' Draw upper-right.
Line -(CX, CY * F2) ' Draw lower-right.
Line -(CX * F1, CY) ' Draw lower-left.
Forecolor = QBColor(I Mod 15) ' Change color each time.

Next I
DoEvents ' Yield for other processing.

End Sub

PSet Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamthPSetC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vamthPSetX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vamthPSetA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vamthPSetS"}

Sets a point on an object to a specified color.

Syntax
object.PSet Step (x, y), color
The PSet method syntax has the following object qualifier and parts:

Part Description
object Optional. Object expression that evaluates to an

object in the Applies To list. If object is omitted, the
Form with the focus is assumed to be object.

Step Optional. Keyword specifying that the coordinates
are relative to the current graphics position given by
the CurrentX and CurrentY properties.

(x, y) Required. Single values indicating the horizontal
(x-axis) and vertical (y-axis) coordinates of the point
to set.

color Optional. Long integer value indicating the RGB
color specified for point. If omitted, the current
ForeColor property setting is used. You can use
the RGB function or QBColor function to specify the
color.

Remarks
The size of the point drawn depends on the setting of the DrawWidth property. When DrawWidth is
1, PSet sets a single pixel to the specified color. When DrawWidth is greater than 1, the point is
centered on the specified coordinates.

The way the point is drawn depends on the setting of the DrawMode and DrawStyle properties.

When PSet executes, the CurrentX and CurrentY properties are set to the point specified by the
arguments.

To clear a single pixel with the PSet method, specify the coordinates of the pixel and use the
BackColor property setting as the color argument.

PSet Method Example
This example uses the PSet method to draw confetti on a form. To try this example, paste the code
into the General section of a form. Then press F5 and click the form.
Sub Form_Click ()

Dim CX, CY, Msg, XPos, YPos ' Declare variables.
ScaleMode = 3 ' Set ScaleMode to

' pixels.
DrawWidth = 5 ' Set DrawWidth.
ForeColor = QBColor(4) ' Set foreground to red.
FontSize = 24 ' Set point size.
CX = ScaleWidth / 2 ' Get horizontal center.
CY = ScaleHeight / 2 ' Get vertical center.
Cls ' Clear form.
Msg = "Happy New Year!"
CurrentX = CX - TextWidth(Msg) / 2 ' Horizontal position.
CurrentY = CY - TextHeight(Msg) ' Vertical position.
Print Msg ' Print message.
Do

XPos = Rnd * ScaleWidth ' Get horizontal position.
YPos = Rnd * ScaleHeight ' Get vertical position.
PSet (XPos, YPos), QBColor(Rnd * 15) ' Draw confetti.
DoEvents ' Yield to other

Loop ' processing.
End Sub

You need to fill in the RecordSource property of the Data control to
get a list of field names.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Before you can see a list of possible settings for the DataField property of a bound control, you must
first set the RecordSource property of the Data control.

You need to fill in the DatabaseName and/or Connect properties of
the Data Control to complete this operation
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Before you can see a list of possible settings for the RecordSource property of the Data control, you
must first set at least the DatabaseName property (for Access database .MDB files), and possibly the
Connect property (for all non-Access database files).

Line 'item1': 'item2' has a quoted string where the property name
should be.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A quoted string appeared in the ASCII form file where the property name was expected. Property
names are not placed inside quotation marks.

Line 'item1': All controls must precede menus; cannot load control
'item2'.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A control appeared in an incorrect location in the ASCII form file. All controls must be loaded before
menus.

Line 'item1': Cannot load control 'item2'; containing control not a
valid container.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

You attempted to load a control into a control which isn't a valid container.

Line 'item1': Cannot load control 'item2'; name already in use.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The control named in the ASCII text file couldn't be loaded because its name is already in use
elsewhere in the application.

Line 'item1': Cannot set checked property in menu 'item2'. Parent
menu cannot be checked.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A top-level Menu control appeared in the ASCII form file with its Checked property set to True. Top-
level menus can't be checked. The Menu control will be loaded, but its Checked property won't be
set.

Line 'item1': Cannot set Shortcut property in menu 'item2'. Parent
menu cannot have a shortcut key.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A top-level Menu control appeared in the ASCII form file with a shortcut key defined. Top-level menus
can't have a shortcut key. The Menu control will be loaded, but its Shortcut property won't be set.

Line 'item1': Class 'item2' of control 'item3' was not a loaded control
class.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a control class that Visual Basic doesn't recognize. Add the custom control
with this class to your project.

Line 'item1': Class name too long; truncated to 'item2'.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a class name longer than 40 characters. The class will be loaded with the
name truncated to 40 characters.

Line 'item1': Control name too long; truncated to 'item2'.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a control name longer than 40 characters. The control will be loaded with the
name truncated to 40 characters.

Line 'item1': Did not find an index property and control 'item2'
already exists.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The control can't be loaded because there is no index, and it has the same name as a previously
loaded control.

Line 'item1': Maximum nesting level for controls exceeded with
'item2'.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains controls nested more than seven levels deep.

Line 'item1': Missing or invalid control class in file 'item2'.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains an unknown control class in the form description, or the class name isn't a
valid string in Visual Basic.

Line 'item1': Missing or invalid control name in file 'item2'.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains an unknown control name in the form description, or the control name isn't a
valid string in Visual Basic.

Line 'item1': Parent menu 'item2' cannot be loaded as a separator.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a Menu control whose parent or top-level menu is defined as a menu
separator. Top-level menus can't be menu separators. The separator won't be set.

Line 'item1': Property 'item2' in 'item3' could not be loaded.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains an unknown property. The property will be skipped when loading the form.

Line 'item1': Property 'item2' in 'item3' could not be set.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Visual Basic can't set the property of the specified control as indicated by the form description in the
ASCII file.

Line 'item1': Property 'item2' in 'item3' had an invalid file reference.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a reference to a file that Visual Basic couldn't find in the specified directory.

Line 'item1': Property 'item2' in 'item3' had an invalid value.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a property with a value that isn't correct for this control. The property is set
with its default value.

Line 'item1': Property 'item2' in 'item3' must be a quoted string.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a property that should appear inside quotation marks, but the quotation marks
are missing. This line in the form description is ignored.

Line 'item1': Property 'item2' in control 'item3' had an invalid
property index.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a property name with a property index greater than 255.

Line 'item1': Syntax error: property 'item2' in 'item3' was missing an
'='.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a property name and value without an equal sign between them. The property
isn't loaded.

Line 'item1': The control name 'item2' is invalid.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a control name that isn't a valid string in Visual Basic. The control isn't loaded.

Line 'item1': The Form or MDIForm name 'item2' is already in use;
cannot load this form.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a form with a name that is already being used elsewhere in the application.
The form isn't loaded.

Line 'item1': The Form or MDIForm name 'item2' is not valid; cannot
load this form.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a form name that isn't a valid string in Visual Basic. The form isn't loaded.

Line 'item1': The property name 'item2' in 'item3' is invalid.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The ASCII file contains a property name that isn't a valid property for that control.

A file must be specified in order to create a compatible ActiveX
component.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgAFileMustBeSpecifiedInOrderToCreateCompatibleActiveXServerC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgAFileMustBeSpecifiedInOrderToCreateCompatibleActiveXServerS"}

You must specify a file when you create a version compatible ActiveX component. On the
Components tab of the Project Properties window, type in the name of an ActiveX component in the
text box, or click the ellipse button to browse for one.

A procedure of that name already exists
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgAProcedureOfThatNameAlreadyExistsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgAProcedureOfThatNameAlreadyExistsS"}

You tried to add a procedure but that procedure name already exists. This error has the following
cause and solution:

· In the Add Procedure dialog box, you tried to add a procedure that already exists in the project.
Change the name of your procedure to avoid this problem.

All 'item1' objects in this project will be upgraded to 'item2' objects
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgAllitem1ObjectsInThisProjectWillBeUpgradedToitem2ObjectsC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgAllitem1ObjectsInThisProjectWillBeUpgradedToitem2ObjectsS"}

You're trying to load a project that contains an OLE Embedding (Excel, Word, etc.) and the server
application on your machine is a more recent version than the one used to save the project. Your
project should continue to load correctly.

An error occurred while background loading module 'item'.
Background load will now abort and the code for some modules
may not be loaded. Saving these modules to their current file
name will result in code loss. Please load a new project.
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgAnErrorOccuredWhileBackgroundLoadingModuleitemBackgroundLoadWillNowAbortCodeForSomeModulesMayN
otBeLoadedSavingTheseModulesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgAnErrorOccuredWhileBackgroundLoadingModuleitemBackgroundLoadWillNowA
bortCodeForSomeModulesMayNotBeLoadedSavingTheseModulesS"}

An error occurred while background loading your project. This error has the following causes and
solutions:

· While the source file was loading, it may have been changed or corrupted by an editor other than
Visual Basic.
Do not modify source code from a separate editor while it is being loaded into Visual Basic.

· During the load of your project or projects, the drive containing the source files became
unavailable.
If your source files are on a network, verify that the network is still connected.

If this error persists, turn off the Background Project Load option from the Advanced tab of the
Options dialog box.

An instance of 'item' cannot be created because it's designer
window is open
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgAnInstanceOfitemCannotBeCreatedBecauseItsDesignerWindowIsOpenC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgAnInstanceOfitemCannotBeCreatedBecauseItsDesignerWindowIsOpenS"}

You cannot create an instance of a form when its designer window is open.

Occurs if code running at design time tries to create an instance of a form (such as Form1.Show), and
its designer is open.

Can't find file 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantFindFileitemC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCantFindFileitemS"}

The specified file was not found. This error has the following cause and solution:

· You tried to load a project but the specified file doesn't exist.
You may have moved or deleted a file belonging to this project. Verify that the file is available on
your drive.

Can't run without setting a Startup Project first
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantRunWithoutSettingStartupProjectFirstC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCantRunWithoutSettingStartupProjectFirstS"}

You must set a startup project before running. This error has the following causes and solutions:

· You had a startup project and two or more other projects in the project group that could be a
startup project, but you removed the one that was a startup project.
Make one of the projects a startup project by right clicking the project in the Project Explorer and
selecting the Set as Start Up menu item.

· This error also occurs in any other case where there is more than one project that could be a
startup project after removing the current startup project.
Make one of the projects a startup project by right clicking the project in the Project Explorer and
selecting the Set as Start Up menu item.

Can't set the project name at this time
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCantSetProjectNameAtThisTimeC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCantSetProjectNameAtThisTimeS"}

The project name cannot be set.

Compile Error in File 'item1' : 'item2'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCompileErrorInFileitem1item2C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCompileErrorInFileitem1item2S"}

There was an error compiling the specified source file during a command line build. Check the file and
correct the error.

Compile Error in File 'item1', Line 'item2' : 'item3'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCompileErrorInFileitem1Lineitem2item3C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCompileErrorInFileitem1Lineitem2item3S"}

There was an error compiling the source file at the specified line number during a command line build.
Check the file and correct the error.

Conflicting attributes were found in 'item'. The defaults will be
used
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgConflictingAttributesWereFoundInitemTheDefaultsWillBeUsedC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgConflictingAttributesWereFoundInitemTheDefaultsWillBeUsedS"}

Some of the attribute statements in a Form, User Control, Property Page, User Document, or Class
Module conflict with the required settings for their type. For example, forms must always have the
VB_PredeclaredId attribute equal to True.

This error can occur if the file was modified by an editor other than Visual Basic.

Conflicting names were found in 'item1'. The name 'item2' will be
used
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgConflictingNamesWereFoundInitem1TheNameitem2WillBeUsedC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgConflictingNamesWereFoundInitem1TheNameitem2WillBeUsedS"}

The name of a form occurs twice in the source file for a Form, User Control, Property Page, or User
Document. The names are different ,so the specified name will be used. This error can occur if the file
was modified by an editor other than Visual Basic.

Could not create reference: 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCouldNotCreateReferenceitemC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCouldNotCreateReferenceitemS"}

There was an error establishing a reference while loading the file, so the reference was not added.

Display more load errors?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgDisplayMoreLoadErrorsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgDisplayMoreLoadErrorsS"}

There were errors loading your .VBP project file. Select Yes to display more load errors. Choose No
to close.

Errors occurred during load
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgErrorsOccuredDuringLoadC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgErrorsOccuredDuringLoadS"}

There were problems loading a form at design time.

This error can occur when there is an invalid property value in an .FRM file, however, Visual Basic will
continue loading the form.

File is read-only
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgFileIsReadonlyvb5C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgFileIsReadonlyvb5S"}

The file is read-only and cannot be changed. This error has the following cause and solution:

· You are trying to edit a form whose file attribute is set to read-only. You cannot modify form files
that are read-only.
You must change the file attribute to read-write in order to modify the form.

Invalid Base Address
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgInvalidBaseAddressC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgInvalidBaseAddressS"}

You entered an invalid base address. This error has the following cause and solution:

· On the Compile Tab in the Project Properties dialog, you specified an invalid Base Address.
A valid base address must be a multiple of 64K, greater than 64K, and less than &H7FFF0000.

This error occurs in ActiveX DLL or ActiveX Control projects.

Invalid number of threads. The number of threads should be integer
between 1 and 32767
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgInvalidNumberOfThreadsTheNumberOfThreadsShouldBeIntegerBetween132767C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgInvalidNumberOfThreadsTheNumberOfThreadsShouldBeIntegerBetween132767
S"}

You entered an invalid number of threads for the Thread Pool in the General Tab of the Project
Properties dialog box. The number of threads must be an integer between 1 and 32767.

'item' can not be public in this type of project. The item has been
changed to private
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgitemCanNotBePublicInThisTypeOfProjectTheItemHasBeenChangedToPrivateC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgitemCanNotBePublicInThisTypeOfProjectTheItemHasBeenChangedToPrivateS"}

The item cannot be public in this type of project and will be changed to private.

Visual Basic changes some items to private in order to avoid inconsistencies in the project. For
example, if Visual Basic detects that the project has a public class module but the Project Type is set
to a type that doesn't support public class modules, the public class module will be changed to
private.

This error can occur if any of the files in the project have been modified in an editor other than Visual
Basic. For example, Visual Basic detects that Standard Project Executable owns public class modules
while this type of project allows only private class modules.

'item' can not be public in this type of project. Use Project
Properties to change the project type
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgitemCanNotBePublicInThisTypeOfProjectUseProjectPropertiesToChangeProjectTypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgitemCanNotBePublicInThisTypeOfProjectUseProjectPropertiesToChangeProject
TypeS"}

This occurs when you try to change a User Control's Public property to True when the User Control
is not in an ActiveX control project. Either change the Project Type on the General Tab of the Project
Properties dialog to ActiveX control, or don't set the User Control's Public property to True.

'item' could not be loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgitemCouldNotBeLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgitemCouldNotBeLoadedS"}

The specified file could not be loaded. The file may be corrupt or you may not have rights access to
this file.

'item1' is an invalid key. The file 'item2' can't be loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgitem1IsInvalidKeyTheFileitem2CantBeLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgitem1IsInvalidKeyTheFileitem2CantBeLoadedS"}

Visual Basic did not recognize the specified key in the .VBP file. This error has the following cause
and solution:

· The .VBP file contains a key that Visual Basic doesn't recognize. The file may be corrupt.
Install a backup copy of the specified file or modify the file using a text editor to correct the error.

Warning Modifying a Visual Basic file in an editor other than Visual Basic may corrupt the file. This
is only recommended for advanced users.

'item1' is referenced by 'item2' project and cannot be updated.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgitem1IsReferencedByitem2ProjectCannotBeUpdatedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgitem1IsReferencedByitem2ProjectCannotBeUpdatedS"}

You are trying to modify the specified control but it is shared between two or more projects. This error
has the following cause and solution:

· You have two or more projects in the same project group that use the same control and are trying
to modify the control.
You cannot update a control that is referenced by two or more projects.

'item' will not be loaded. Name is already in use
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgitemWillNotBeLoadedNameIsAlreadyInUseC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgitemWillNotBeLoadedNameIsAlreadyInUseS"}

Form names must be unique for each project. This error has the following cause and solution:

· You tried to load a form with the same name as a form that is already in the project.
To avoid this error, change the Name property of the duplicate form to another name.

Line 'item1': Cannot create embedded object in 'item2'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgLineitem1CannotCreateEmbeddedObjectInitem2C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgLineitem1CannotCreateEmbeddedObjectInitem2S"}

An embedded object could not be created during the load of a Form, User Control, User Document,
or Property Page from a text file. For example, if you had previously inserted a Microsoft Word
Document onto the form, then removed Microsoft Word from your system you would get this error.
This message is written to the error log file.

Line 'item1': Cannot create embedded object in 'item2'; license not
found
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgLineitem1CannotCreateEmbeddedObjectInitem2LicenseNotFoundC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgLineitem1CannotCreateEmbeddedObjectInitem2LicenseNotFoundS"}

An embedded object could not be created during the load of a Form, User Control, User Document,
or Property Page from a text file, due to the license file not being found. You must have a license to
use this object. Check with the object's vendor for more information. This message is written to the
error log file.

Line 'item1': Cannot load control 'item2'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgLineitem1CannotLoadControlitem2C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgLineitem1CannotLoadControlitem2S"}

An ActiveX control could not be created during the load of a Form, User Control, User Document, or
Property Page from a text file. The control may be missing or corrupted. Reinstall the control and try
again or check with the control's vendor for more information. This message is written to the error log
file.

Line 'item1': Cannot load control 'item2'; license not found
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgLineitem1CannotLoadControlitem2LicenseNotFoundC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgLineitem1CannotLoadControlitem2LicenseNotFoundS"}

An ActiveX control could not be created during the load of a Form, User Control, User Document, or
Property Page from a text file, due to the license file not being found. You must have a license to use
this control. Check with the control's vendor for more information. This message is written to the error
log file.

Line 'item1': Could not create reference: 'item2'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgLineitem1CouldNotCreateReferenceitem2C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgLineitem1CouldNotCreateReferenceitem2S"}

The specified reference could not be created.

Line 'item1': The CLSID 'item2' for 'item3' is invalid
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgLineitem1TheCLSIDitem2Foritem3IsInvalidC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgLineitem1TheCLSIDitem2Foritem3IsInvalidS"}

An object could not be loaded during the load of a Form, User Control, User Document, or Property
Page from a text file. The CLSID specified in the file is not valid. Applies only to objects that are
properties, such as the Font object. This message is written to the error log file.

MDI/SDI option change will take effect the next time the
Development Environment is started
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgMDISDIOptionChangeWillTakeEffectNextTimeDevelopmentEnvironmentIsStartedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgMDISDIOptionChangeWillTakeEffectNextTimeDevelopmentEnvironmentIsStarte
dS"}

The SDI Development Environment option on the Advanced tab in the Options dialog box doesn't
take effect until you restart Visual Basic.

MultiSelect must be 0 - None when Style is 1 - Checkbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgMultiSelectMustBe0NoneWhenStyleIs1CheckboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgMultiSelectMustBe0NoneWhenStyleIs1CheckboxS"}

You tried to set the MultiSelect property to something other that 0 (None), when the Style property of
a ListBox control is set to 1 (CheckBox). This is not allowed.

Name 'item' conflicts with existing module, project, or object library
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgNameitemConflictsWithExistingModuleProjectOrObjectLibraryC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgNameitemConflictsWithExistingModuleProjectOrObjectLibraryS"}

This error has the following causes:

· You loaded a Form, User Control , User Document, or Property Page that contains objects with
conflicting names.
This can occur if the file was edited outside of Visual Basic.

· You renamed a form to the same name as the project, another form, or a module.
· You renamed the project to the same name as a form or module.

The OLE client control and OLE embeddings are not allowed on
UserControls, UserDocuments, or PropertyPages
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgOleClientControlsOleEmbeddingsAreNotAllowedOnUserControlsUserDocumentsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgOleClientControlsOleEmbeddingsAreNotAllowedOnUserControlsUserDocuments
S"}

You tried to paste an OLE client control from the Clipboard onto a UserControl, UserDocument, or
PropertyPage. This is not allowed.

Only one property and one event per module can be selected User
Interface Default. 'item' already has this attribute. Selecting this
attribute will void the previous setting.
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgOnlyOnePropertyOneEventPerModuleCanBeMarkedUserInterfaceDefaultitemAlreadyHasThisAttributeC"}
{ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgOnlyOnePropertyOneEventPerModuleCanBeMarkedUserInterfaceDefaultitemAlr
eadyHasThisAttributeS"}

You tried to set the procedure attribute of a property or event to User Interface Default but it was
already set on another property or event. This can occur in the Procedure Attributes dialog box.

Only one property or event is allowed to have the User Interface Default attribute set at once. Click
OK to make the current property or event the User Interface Default or click Cancel to void the
change.

Only one property per module can bind to DataField. Property
'item' already binds to it. Selecting this attribute will void the
previous setting.
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgOnlyOnePropertyPerModuleCanBindToDataFieldPropertyitemAlreadyBindsToItC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgOnlyOnePropertyPerModuleCanBindToDataFieldPropertyitemAlreadyBindsToItS
"}

You tried to set the Data Binding attribute of a property to bind to DataField, but another property has
this attribute set. This can occur in the Procedure Attributes dialog box.

Only one property in a module is allowed to bind to DataField. Click OK to set the current property to
bind to DataField or click Cancel to void the change.

Project file is read-only
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgProjectFileIsReadonlyC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgProjectFileIsReadonlyS"}

A change was attempted that would modify the project file, but the project file is under source code
control and is not checked out.

Project 'item' can not be referenced because its type is Standard
EXE
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgProjectitemCanNotBeReferencedBecauseItsTypeIsStandardEXEC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgProjectitemCanNotBeReferencedBecauseItsTypeIsStandardEXES"}

You tried to reference a project whose Project Type is set to Standard EXE. References to Standard
EXE projects are not allowed. This error can occur if the file was modified by an editor other than
Visual Basic.

RecordSource property of the associated data control is empty
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgRecordSourcePropertyOfAssociatedDataControlIsEmptyC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgRecordSourcePropertyOfAssociatedDataControlIsEmptyS"}

An error has occurred while attempting to retrieve information from the associated data control.

Verify that the data control and any objects that it references are correctly registered. Contact the
control's vendor for more information if the problem persists.

Some project properties and/or items have to be changed in this
type of project. Check Help for details. Are you sure you want to
change the project type?
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgSomeProjectPropertiesAndorItemsHaveToBeChangedInThisTypeOfProjectCheckHelpForDetailsAreYouSureYou
WantToChangeProjectTypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgSomeProjectPropertiesAndorItemsHaveToBeChangedInThisTypeOfProjectChec
kHelpForDetailsAreYouSureYouWantToChangeProjectTypeS"}

You are trying to change the Project Type in the Project Properties dialog to a type that requires
different settings for some properties or items. These properties or items need to be changed in order
to make the project consistent with its new type. Also, the public property of some items in the project,
such as User Controls and Class Modules, may be modified as well, since some Project Types do not
allow public items.

Sub Main() doesn't exist
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgSubMainDoesntExistC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgSubMainDoesntExistS"}

Sub Main is designated as the Startup Object in the Project Properties dialog, however, the current
project doesn't have a Sub procedure named Main in any module.

System Error 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgSystemErroritemC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgSystemErroritemS"}

Visual Basic encountered an error that was generated by the system or an external component and
no other useful information was returned.

The specified error number is returned by the system or external component (usually from an
Application Interface call) and is displayed in hexadecimal and decimal format.

The application description can't be more than 2000 characters
long
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheApplicationDescriptionCantBeMoreThan2000CharactersLongC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheApplicationDescriptionCantBeMoreThan2000CharactersLongS"}

You can't have an application description longer than 2000 characters. Delete some characters from
the description. This error may occur if the .VBP file was modified in an editor other than Visual Basic.

The compatible server file 'item' is in use by another project
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheCompatibleServerFileitemIsInUseByAnotherProjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheCompatibleServerFileitemIsInUseByAnotherProjectS"}

Multiple projects loaded in Visual Basic can't use the same compatible server at the same time. For
example, if Project1's compatible server is set to Test.DLL and you try to add Project2, which also has
its compatible server set to Test.DLL, you will get this error. This is not allowed.

The copy of this file which might have changes is already opened
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheCopyOfThisFileWhichMightHaveChangesIsAlreadyOpenedC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheCopyOfThisFileWhichMightHaveChangesIsAlreadyOpenedS"}

You are trying to access a file that is already open in another project in the project group. For
example, you may have a form that belongs to more than one project in the project group. If that form
is displayed for the first project, you will get this error if you try to display it in the second project in the
project group.

The file 'item' was not registerable as an ActiveX Component.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheFileitemWasNotRegisterableAsActiveXServerC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheFileitemWasNotRegisterableAsActiveXServerS"}

You tried to register a control or DLL which is not a valid ActiveX component. Make sure that you have
the correct control or DLL. Contact the ActiveX component's vendor for more information.

The file 'item' was recognized as a Visual Basic file, but the header
was corrupt and the file can't be loaded
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgTheFileitemWasRecognizedAsVisualBasicFileButHeaderWasCorruptFileCantBeLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheFileitemWasRecognizedAsVisualBasicFileButHeaderWasCorruptFileCantBe
LoadedS"}

There was an error in the header of the specified file and it cannot be loaded. This error has the
following cause and solution:

· Visual Basic could not load the specified file because the header was corrupt. The header contains
lines of code specific to Visual Basic and one or more of the header lines were missing or corrupt.
Install a backup copy of the specified file or modify the file using a text editor to match the header
of an existing file.

Warning Modifying a Visual Basic file in an editor other than Visual Basic may corrupt the file. This
is only recommended for advanced users.

The file 'item' is already open
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheFileNameIsDuplicateToFileNameOfOneOfLoadedProjectsC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheFileNameIsDuplicateToFileNameOfOneOfLoadedProjectsS"}

This error has the following causes and solution:

· You tried to load two project files with the same name in the same project group.
· You tried to save two projects with the same name in the same project group.

Project files cannot have duplicate names in the same project group. You must change the name of
one of the project files.

The file, 'item', is marked as a version not supported by the current
version of Visual Basic, and won't be loaded
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgTheFileitemIsMarkedAsVersionNotSupportedByCurrentVersionOfVisualBasicWontBeLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheFileitemIsMarkedAsVersionNotSupportedByCurrentVersionOfVisualBasicWo
ntBeLoadedS"}

You tried to load a form from Visual Basic version 1.0 or a form from a version greater than this
version of Visual Basic. This is not supported.

The Instancing property for Class 'item' cannot be set to Creatable
SingleUse for an ActiveX DLL
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgTheInstancingPropertyForClassitemCannotBeSetToCreatableSingleUseForDLLC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheInstancingPropertyForClassitemCannotBeSetToCreatableSingleUseForDLLS
"}

The Instancing property for the specified class was set to an invalid setting for an ActiveX DLL. Valid
settings for the Instancing property for an ActiveX DLL are: 1 - Private, 2 - PublicNotCreatable, 5 -
MultiUse, or 6 - GlobalMultiUse.

The project file 'item1' contains invalid 'item2' key value
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectFileitem1ContainsInvaliditem2KeyValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectFileitem1ContainsInvaliditem2KeyValueS"}

Visual Basic did not recognize the specified key value in the .VBP file. This error has the following
cause and solution:

· The .VBP file contains a value for the key that is invalid. The file may be corrupt.
Install a backup copy of the specified file or modify the file using a text editor to correct the error.

Warning Modifying a Visual Basic file in an editor other than Visual Basic may corrupt the file. This
is only recommended for advanced users.

The project file 'item1' contains invalid 'item2' key value. Valid range
is 0 to 'item3'
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgTheProjectFileitem1ContainsInvaliditem2KeyValueValidRangeIs0Toitem3C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectFileitem1ContainsInvaliditem2KeyValueValidRangeIs0Toitem3S"}

The key value specified in the .VBP file was out of range. This error has the following cause and
solution:

· The .VBP file contains a key value that is not in the specified range. The file may be corrupt.
Install a backup copy of the specified file or modify the file using a text editor to correct the error.

Warning Modifying a Visual Basic file in an editor other than Visual Basic may corrupt the file. This
is only recommended for advanced users.

The project file 'item1' contains invalid key 'item2'. The project can't
be loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectFileitem1ContainsInvalidKeyitem2TheProjectCantBeLoadedC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectFileitem1ContainsInvalidKeyitem2TheProjectCantBeLoadedS"}

Visual Basic did not recognize the specified key in the .VBP file. This error has the following cause
and solution:

· The .VBP file contains a key that Visual Basic doesn't recognize. The file may be corrupt.
Install a backup copy of the specified file or modify the file using a text editor to correct the error.

Warning Modifying a Visual Basic file in an editor other than Visual Basic may corrupt the file. This
is only recommended for advanced users.

The project file 'item' is corrupt, and can't be loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectFileitem1IsCorruptCantBeLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectFileitem1IsCorruptCantBeLoadedS"}

Visual Basic cannot read the project file. This can occur if the file has been modified by an editor
outside of Visual Basic. To fix the problem, undo any changes that were made to the file.

The project group file 'item' is read-only
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectGroupFileitemIsReadonlyC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectGroupFileitemIsReadonlyS"}

You tried to save, add, or remove a project from a project group which was marked as read-only. A
project group is read-only if the .VBG to which it belongs has its read-only file attribute set.

The project group file 'item' contains a duplicate value, and can't be
loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectGroupFileitem1ContainsDuplicateValueCantBeLoadedC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectGroupFileitem1ContainsDuplicateValueCantBeLoadedS"}

The project group file (.VBG file) contains a duplicate entry for the StartupProject attribute. This can
occur if the .VBG file was edited outside of Visual Basic. Remove the duplicate entry and reload the
project.

The project group file 'item' is corrupt, and can't be loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectGroupFileitem1IsCorruptCantBeLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectGroupFileitem1IsCorruptCantBeLoadedS"}

A line in the .VBG file is not in the format: <property>=<value>, the <value> string is too big (>260
chars), or <property> is not equal to Project or StartupProject. This can occur if the .VBG file was
edited outside of Visual Basic.

The project group file 'item' is in an unknown format, and can't be
loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectGroupFileitem1IsInUnknownFormatCantBeLoadedC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectGroupFileitem1IsInUnknownFormatCantBeLoadedS"}

This can occur if the version number or header in the .VBG file is not correct. For Visual Basic 5.0, the
version number should be VBGROUP 5.X, where is X can be 0-9.

The project group file 'item' is missing a required value, and can't
be loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectGroupFileitem1IsMissingRequiredValueCantBeLoadedC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectGroupFileitem1IsMissingRequiredValueCantBeLoadedS"}

A required value was missing in the .VBG file. This error can occur if the .VBG file was modified
outside of Visual Basic.

The project name is too long. Name has been truncated
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectNameIsTooLongNameHasBeenTruncatedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectNameIsTooLongNameHasBeenTruncatedS"}

The project name has been truncated because it was too long.

A project with the name 'item' is already loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheProjectWithNameitemIsAlreadyLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheProjectWithNameitemIsAlreadyLoadedS"}

You tried to load a project that has the same name as a project that is already loaded. You cannot
have two projects with the same name.

The wizard file 'item' is corrupt, and can't be loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheWizardFileitemIsCorruptCantBeLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheWizardFileitemIsCorruptCantBeLoadedS"}

A line in the .VBZ file is not in the format: <property>=<value>, the <value> string is too big (>260
chars), or <property> is not equal to Wizard or Param. This can occur if the .VBZ file was edited
outside of Visual Basic.

The wizard file 'item' is in an unknown format, and can't be loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheWizardFileitemIsInUnknownFormatCantBeLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheWizardFileitemIsInUnknownFormatCantBeLoadedS"}

This can occur if the version number or header in the .VBZ file is not correct. For Visual Basic 5.0, the
version number should be VBWIZARD 5.X, where is X can be 0-9.

The wizard file 'item' is missing a required value, and can't be
loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgTheWizardFileitemIsMissingRequiredValueCantBeLoadedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheWizardFileitemIsMissingRequiredValueCantBeLoadedS"}

A required value was missing in the .VBZ file. The Wizard key must be specified. This error can occur
if the .VBZ file was modified outside of Visual Basic.

There is a newer version of 'item1' registered. Do you want to
upgrade to version 'item2' ?
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgThereIsNewerVersionOfitem1RegisteredDoYouWantToUpgradeToVersionitem2C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgThereIsNewerVersionOfitem1RegisteredDoYouWantToUpgradeToVersionitem2S
"}

There is a newer version of the specified ActiveX control registered on your system (in addition to the
original one). This message has the following cause:

· You saved a project with an older version of an ActiveX control, then installed a newer version on
your system.
Select Yes to load the newer one or No to load the original control.

The project 'item1' can not be built because it references project
'item2' that does not have a compatible server set.
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgThisProjectCanNotBeBuiltBecauseItReferencesProjectitemThatDoesNotHaveCompatibleServerSetC"}
{ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgThisProjectCanNotBeBuiltBecauseItReferencesProjectitemThatDoesNotHaveCo
mpatibleServerSetS"}

You cannot build the project because a project did not set a compatible server. For example, if you
build Project1, and Project1 references Project2, but Project2 doesn't have a compatible server set,
you will get this error. You must set a compatible server on the Components tab of the Project
Properties dialog box.

The project 'item1' can not be built because it references project
'item2' that has not been built.
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgThisProjectCanNotBeBuiltBecauseItReferencesProjectitemThatHasNotBeenBuiltC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgThisProjectCanNotBeBuiltBecauseItReferencesProjectitemThatHasNotBeenBuilt
S"}

You tried to build a project that references another project that hasn’t been built. For example, if you
build Project1, and Project1 references Project2, but Project2 does not have a version compatible
component set, you will get this error. This only occurs when the Project2's Version Compatibility
setting is set to Project Compatibility. You can solve this problem by building Project2, which
automatically sets the version compatible component.

This project is referenced from another project. Are you sure you
want to remove it?
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgThisProjectIsReferencedFromAnotherProjectAreYouSureYouWantToRemoveItC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgThisProjectIsReferencedFromAnotherProjectAreYouSureYouWantToRemoveItS"
}

You are trying to remove a project that is referenced by another project in the group. Selecting Yes on
this dialog will cause Visual Basic to try and reference the disk version instead of the in-memory
project. This may cause a missing reference.

This Procedure ID is already assigned to member 'item'. Assigning
it to this member will void the previous setting.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgThisProcedureIDIsAlreadyAssignedToProcedureitemC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgThisProcedureIDIsAlreadyAssignedToProcedureitemS"}

You tried to set the Procedure ID of an item to the same value as another item. This message occurs
in the Procedure Attributes dialog box.

Procedure IDs must be unique within a module. Click OK to apply the Procedure ID to the current
item or Cancel to void the change.

Unable to launch Books Online
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgUnableToLaunchBooksOnlineC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgUnableToLaunchBooksOnlineS"}

You were not able to launch Books Online. Make sure it is correctly installed and try again.

Unable to run a Control Project
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgUnableToRunControlProjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgUnableToRunControlProjectS"}

You tried to run an ActiveX Control project. This is not allowed. An ActiveX control cannot be run as an
independent project.

Unable to write Designer cache file 'item'. Will just use regular files
on Load
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgUnableToWriteDesignerCacheFileitemWillJustUseRegularFilesOnLoadC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgUnableToWriteDesignerCacheFileitemWillJustUseRegularFilesOnLoadS"}

Your ActiveX Designer was not able to write information to a cache file so the designer will load using
uncached information.

In order to improve performance the next time you start Visual Basic, an ActiveX Designer writes a
cache file. The designer couldn't write to the cache file due to low disk space or invalid permissions
on the drive. Make sure you have enough disk space available and that you have write permissions to
the drive. If the problem persists, contact the ActiveX Designer's vendor.

Unattended Project Cannot be visible at runtime
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgUnattendedProjectCannotBeVisibleAtRuntimeC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgUnattendedProjectCannotBeVisibleAtRuntimeS"}

A project marked for Unattended Execution cannot have any visible user interface elements. This
message has the following cause and solution:

· The Unattended flag was manually set in the .VBP file and the project was compiled or executed in
the design environment.
To solve this problem, remove all forms from the project or change the Startup Object in the
Project Properties dialog box to (none) or Sub Main.

Version 'item3' of 'item1' is not registered. The control will be
upgraded to version 'item2'
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgVersionitem3Ofitem1IsNotRegisteredTheControlWillBeUpgradedToVersionitem2C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgVersionitem3Ofitem1IsNotRegisteredTheControlWillBeUpgradedToVersionitem2
S"}

Your project was saved with a version of the specified ActiveX control that is not available on your
system. A newer version of the specified ActiveX control is registered on your system, so your project
will be loaded using the newer version of this control.

Visual Basic found an instance of 'item' in a binary form file. VBX's
cannot be converted from binary form files in the 32-bit version
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgVisualBasicFoundInstanceOfitemInBinaryFormFileVBXsCannotBeConvertedFromBinaryFormFilesIn32bitVersion
C"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgVisualBasicFoundInstanceOfitemInBinaryFormFileVBXsCannotBeConvertedFro
mBinaryFormFilesIn32bitVersionS"}

Visual Basic 5.0 cannot convert VBXs in binary form files to the equivalent ActiveX controls.

You may need an older version of Visual Basic to convert the form file from binary to a text format
form, then load it into Visual Basic 5.0.

Visual Basic was not able to start up due to an invalid system
configuration
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgVisualBasicWasNotAbleToStartUpDueToInvalidSystemConfigurationC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgVisualBasicWasNotAbleToStartUpDueToInvalidSystemConfigurationS"}

Your installation of Visual Basic has not been correctly configured. This error has the following
causes:

· Visual Basic may have been incorrectly installed or the installation not fully completed.
· System files or files required by Visual Basic may have been moved or deleted.
· The registry may be corrupt.

In most cases, when this error occurs, you will need to reinstall your version of Visual Basic to
properly configure it.

You may only load or create projects with two modules (Forms, MDI
Forms, Modules, Classes) in the Visual Basic Working Model.
Projects may contain an unlimited (system dependant) number of
modules in other versions of Visual Basic 5.0.
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgYouMayOnlyLoadOrCreateProjectsWithTwoModulesFormsMDIFormsModulesClassesInVisualBasicWorkingModel
ProjectsMayContainUnlimiteC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgYouMayOnlyLoadOrCreateProjectsWithTwoModulesFormsMDIFormsModulesCl
assesInVisualBasicWorkingModelProjectsMayContainUnlimiteS"}

The Visual Basic Working Model allows only two modules (Forms, MDI Forms, Modules, Classes) for
each project. In order to increase the capacity of your Visual Basic projects, you must purchase a
different version of Visual Basic 5.0 such as the Professional or Enterprise versions.

You specified a command line argument that requires a project, but
no project was specified
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgYouSpecifiedCommandLineArgumentThatRequiresProjectButNoProjectWasSpecifiedC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgYouSpecifiedCommandLineArgumentThatRequiresProjectButNoProjectWasSpec
ifiedS"}

Occurs if you specify a command line argument that requires a project, but don't specify the project
name (as in vb5 /make).

There is a compatibility error between the current project and the
version-compatible component: 'item'
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgThereIsCompatibilityErrorBetweenCurrentProjectCompatibleActiveXServeritemC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgThereIsCompatibilityErrorBetweenCurrentProjectCompatibleActiveXServeritemS
"}

This error occurs if you run into a compatible component error during a command line build.

For more information, search for version compatible in the online Help.

An EXE or DLL name can not be specified for /Make if building a
project group.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgEXENAMEONGROUPC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgEXENAMEONGROUPS"}

You tried to override the default file name of the DLL or EXE being built during a command line build
of a project group file. Project groups may have multiple output files so this is not allowed.

Use the /Outdir command line argument to specify the output directory for a project group.

Can't create a UserControl instance on its own designer
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgUSRCTLONOWNDSGNRC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgUSRCTLONOWNDSGNRS"}

You can't create an instance of UserControl on its own designer. This error has the following cause
and solution:

· You tried to place an instance of a UserControl on its own designer. For example, if you created a
UserControl and copied it to the Clipboard, and then opened the controls designer and pasted the
control onto it, you would get this error.
You are not allowed to have an instance of a UserControl on its own designer.

Can't have child controls capable of receiving focus on a
UserControl whose CanGetFocus property is False
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgNOFOCUSABLECTLSC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgNOFOCUSABLECTLSS"}

A UserControl can't have child controls that are capable of receiving focus when the CanGetFocus
property is False. This error has the following cause and solution:

· You tried to paste a control that can receive focus onto a UserControl that has its CanGetFocus
property set to False. For example, you copied a TextBox control to the Clipboard, set the
CanGetFocus property to False, then tried to paste the TextBox control on the UserControl.
You are not allowed to have controls that can receive focus on a UserControl whose
CanGetFocus property is set to False.

Control 'item' does not have the align property, so it cannot be
placed directly on the MDI form
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgMDINAMEINVALIDCTLC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgMDINAMEINVALIDCTLS"}

The specified control doesn't have an Align property so it can't be put on an MDI form. This error has
the following causes and solution:

· You placed a UserControl on an MDI form, then changed the Alignable property of the
UserControl to False.

· You may have tried to add a control that doesn't have an Align property to the form.

Only controls that have an Align property can be placed on an MDI form.

Device I/O error: 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgEBER_IOEC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgEBER_IOES"}

External devices are sometimes subject to unanticipated errors. This error has the following cause
and solution:

· An input or output error occurred while your program was the specified device.

Make sure the device is operating properly, and then retry the operation.

Device unavailable: 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgEBER_DNAC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgEBER_DNAS"}

This error has the following cause and solution:

· The specified device is not online or doesn't exist.
Check power to the device and any cables connecting your computer to the device. If you are
trying to access a printer over a network, make sure there is a logical connection between your
computer and the printer, for example, a connection associating LPT1 with the network printer ID.

Disk full: 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgEBER_DFLC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgEBER_DFLS"}

This error has the following causes and solution:

· There isn't enough room on the disk to create required files.

Move any unused files to another disk or delete unnecessary files.

File already exists: 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgEBER_FAEC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgEBER_FAES"}

This error has the following causes and solutions:

· You used the Save As command to save a currently loaded project, but the project name already
exists.

Use a different project name if you don't want to replace the other project.

File not found: 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgEBER_FNFC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgEBER_FNFS"}

The file was not found where specified. This error has the following cause and solution:

· In the development environment, this error occurs if you attempt to open a project or load a text file
that doesn't exist.
Check the spelling of the project name or file name and the path specification.

Help Context ID must be a nonnegative number
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgBADHELPCTXIDC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgBADHELPCTXIDS"}

You can't specify a negative number for the Help Context ID.

MDI Forms are not allowed in an ActiveX DLL or ActiveX Control
project
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgMDINOTALLOWEDC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgMDINOTALLOWEDS"}

You cannot add an MDI Form to an ActiveX DLL or ActiveX Control project.

No creatable public class module detected. Press F1 for more
information
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgDLLNOPUBLICCLASSC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgDLLNOPUBLICCLASSS"}

You must have a public creatable class module when creating a project of this type.

ActiveX EXE, ActiveX DLL, and ActiveX Control project types require that you have a least one public
creatable class module.

No public UserControl detected. Press F1 for more information
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgOCXNOPUBLICCONTROLC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgOCXNOPUBLICCONTROLS"}

You tried to build an ActiveX Control project but no UserControl was available in the project.

You must have a UserControl in this type of project.

Procedure ID must be a negative number or zero
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgBADMEMIDC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgBADMEMIDS"}

The Procedure ID must be a negative number or zero. This error has the following cause and
solution:

· You set the Procedure ID in the Procedure Attributes dialog to a number greater than zero.
You are only allowed to enter Standard Procedure IDs that are zero or a negative number.

The ActiveX Control can not be used because it defines an event
named 'item' which conflicts with Visual Basic
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgSHADOWEVENTC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgSHADOWEVENTS"}

An event in the specified ActiveX control conflicts with a Visual Basic Extender event. Visual Basic
automatically adds standard events to ActiveX controls that are added to a project.

When creating your own ActiveX control project, events such as GotFocus and SetFocus are
automatically created (by the Extender object) so they don't need to be added to your control.

For controls not created in Visual Basic, see the control's vendor for more information

This User Control is private and will not be accessible from other
projects. Set public to true to change this
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgPRVCTRLADDEDTOCTRLPROJC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgPRVCTRLADDEDTOCTRLPROJS"}

A private UserControl is only accessible to the project in which it is in. To access the control in other
projects, you must set its Public property to True.

Unexpected error occurred in code generator or linker
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgMAKEEXETOOLFAILC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgMAKEEXETOOLFAILS"}

The code generator or linker caused an unexpected error. Select Yes to display the errors in Notepad.

This error is most commonly caused by low disk space or other disk related issues.

User Documents are not allowed in Standard EXE and User
Control project types
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCANTLOADUSERDOCUMENTC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCANTLOADUSERDOCUMENTS"}

UserDocuments are not allowed in Standard EXE or ActiveX Control project types.

User Documents are not allowed in Standard EXE and User
Control project types. Item(s) not loaded
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgUSERDOCNOTLOADEDC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgUSERDOCNOTLOADEDS"}

UserDocuments are not allowed in Standard EXE or ActiveX Control project types. The items won't be
loaded.

User Documents are not allowed in this type of project. Item(s)
has(ve) to be removed. Are you sure you want to change the
project type?
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgUSERDOCNOTALLOWEDC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgUSERDOCNOTALLOWEDS"}

UserDocuments are not allowed in Standard EXE or ActiveX Control project types. Changing the
Project Type will remove the UserDocuments from the project. Choose Yes to change the Project
Type or No to cancel the change.

The declaration in the Compatible ActiveX Component was: 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgOLDPROTOTYPEC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgOLDPROTOTYPES"}

Informational message. The declaration shown is missing from the component you are attempting to
compile. It has either been deleted or renamed.

Possible remedies: Click OK to return to the Incompatible Component dialog. You can then:

· Click Accept to accept this version incompatible change.
· Click Accept All to accept this and all subsequent version incompatible changes.
· Click Edit to change the member name back to what it was, or add the missing member.

Note Accepting even one incompatible change will render this version of your component
incompatible with all clients compiled using prior versions. It is strongly recommended that you
change the file name and Project Name settings, to avoid potentially serious program errors in those
clients.

The declaration in the Compatible ActiveX Component was: 'item1'
It has been changed to: 'item2'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgBOTHPROTOTYPESC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgBOTHPROTOTYPESS"}

Informational message. Displays the difference between a declaration in the component you are
attempting to compile, and the version-compatible component that is selected on the Components
Tab of the Project Properties dialog box.

Possible remedies: Click OK to return to the Incompatible Component dialog. You can then:

· Click Accept to accept this version incompatible change.
· Click Accept All to accept this and all subsequent version incompatible changes.
· Click Edit to change the declaration back to what it was.

Note Accepting even one incompatible change will render this version of your component
incompatible with all clients compiled using prior versions. It is strongly recommended that you
change the file name and Project Name settings, to avoid potentially serious program errors in those
clients.

Unable to set the version compatible component: 'item'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmsgCANTSETCOMPATIBLEC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgCANTSETCOMPATIBLES"}

The version-compatible component could not be set. This error has the following cause and solution:

· During the load of your project, the version-compatible component could not be set and the Version
Compatibility option in the Components tab of the Project Properties dialog has been reset to No
Compatibility.
In order for Visual Basic to make sure you have a version-compatible project, you must select a
version-compatible component in the Components tab of the Project Properties dialog.

The Visual Basic Development Environment can't provide multiple
instances of a single use class. Consult the documentation for
restrictions on debugging single-use objects
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgTheVisualBasicDevelopmentEnvironmentCantProvideMultipleInstancesOfSingleUseClassConsultDocumentation
ForRestrictionsOnDebugC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgTheVisualBasicDevelopmentEnvironmentCantProvideMultipleInstancesOfSingle
UseClassConsultDocumentationForRestrictionsOnDebugS"}

You are only allowed one instance of a single-use object when debugging in the development
environment.

You are trying to create more than one object marked as single-use from the development
environment. Each instance of a single use object creates a new instance of the component. This is
not allowed in the development environment.

To allow the creation of more than one instance of the object, set the Instancing property of the
object to 5 - MultiUse, or compile the component and use the object from a compiled executable.

Multiple copies of the shared file 'item' have been modified. In the
following dialog, select the copy that should be saved
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmsgMultipleCopiesOfSharedFileitemHaveBeenModifiedInFollowingDialogSelectCopyThatShouldBeSavedC"}
{ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmsgMultipleCopiesOfSharedFileitemHaveBeenModifiedInFollowingDialogSelectCopy
ThatShouldBeSavedS"}

You have modified a file that is shared between two or more projects. Visual Basic doesn't know
which file you want saved. Using the list box in the following dialog, select or deselect the files that
you want saved for this project.

AddItem Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddItemC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddItemX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAddItemA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddItemS"}

Adds an item to a ListBox or ComboBox control or adds a row to a MS Flex Grid control. Doesn't
support named arguments.

Syntax
object.AddItem item, index

The AddItem method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an object in

the Applies To list.
item Required. string expression specifying the item to add to the

object. For the MS Flex Grid control only, use the tab
character (character code 09) to separate multiple strings
you want to insert into each column of a newly added row.

index Optional. Integer specifying the position within the object
where the new item or row is placed. For the first item in a
ListBox or ComboBox control or for the first row in a MS
Flex Grid control, index is 0.

Remarks
If you supply a valid value for index, item is placed at that position within the object. If index is
omitted, item is added at the proper sorted position (if the Sorted property is set to True) or to the end
of the list (if Sorted is set to False).

A ListBox or ComboBox control that is bound to a Data control doesn't support the AddItem
method.

Arrange Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthArrangeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthArrangeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthArrangeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthArrangeS"}

Arranges the windows or icons within an MDIForm object. Doesn't support named arguments.

Syntax
object.Arrange arrangement

The Arrange method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
arrangement Required. A value or constant that specifies how to

arrange windows or icons on an MDIForm object, as
described in Settings.

Settings
The settings for arrangement are:

Constant Value Description
vbCascade 0 Cascades all nonminimized MDI child

forms
vbTileHorizontal 1 Tiles all nonminimized MDI child forms

horizontally
vbTileVertical 2 Tiles all nonminimized MDI child forms

vertically
vbArrangeIcons 3 Arranges icons for minimized MDI

child forms

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

Windows or icons are arranged even if the MDIForm object is minimized. Results are visible when
the MDIForm is maximized.

Clear Method (Clipboard, ComboBox, ListBox)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthClearC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthClearX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthClearA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthClearS"}

Clears the contents of a ListBox, ComboBox, or the system Clipboard.

Syntax
object.Clear
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
A ListBox or ComboBox control bound to a Data control doesn't support the Clear method.

Cls Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthClsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthClsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthClsA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthClsS"}

Clears graphics and text generated at run time from a Form or PictureBox.

Syntax
object.Cls
The object placeholder represents an object expression that evaluates to an object in the Applies To
list. If object is omitted, the Form with the focus is assumed to be object.

Remarks
Cls clears text and graphics generated at run time by graphics and printing statements. Background
bitmaps set using the Picture property and controls placed on a Form at design time aren't affected
by Cls. Graphics and text placed on a Form or PictureBox while the AutoRedraw property is set to
True aren't affected if AutoRedraw is set to False before Cls is invoked. That is, you can maintain
text and graphics on a Form or PictureBox by manipulating the AutoRedraw property of the object
you're working with.

After Cls is invoked, the CurrentX and CurrentY properties of object are reset to 0.

Drag Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthDragC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthDragX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthDragA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthDragS"}

Begins, ends, or cancels a drag operation of any control except the Line, Menu, Shape, Timer, or
CommonDialog controls. Doesn't support named arguments.

Syntax
object.Drag action

The Drag method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list. If object is omitted, the
object whose event procedure contains the Drag
method is assumed.

action Optional. A constant or value that specifies the action
to perform, as described in Settings. If action is
omitted, the default is to begin dragging the object.

Settings
The settings for action are:

Constant Value Description
vbCancel 0 Cancels drag operation
vbBeginDrag 1 Begins dragging object
vbEndDrag 2 Ends dragging and drop object

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

Using the Drag method to control a drag-and-drop operation is required only when the DragMode
property of the object is set to Manual (0). However, you can use Drag on an object whose
DragMode property is set to Automatic (1 or vbAutomatic).

If you want the mouse pointer to change shape while the object is being dragged, use either the
DragIcon or MousePointer property. The MousePointer property is only used if no DragIcon is
specified.

In earlier versions of Visual Basic, Drag was an asynchronous method where subsequent statements
were invoked even though the Drag action wasn't finished. In Visual Basic version 4.0, Drag is a
synchronous method in which subsequent statements aren't invoked until the Drag action is finished.

EndDoc Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthEndDocC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthEndDocX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthEndDocA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthEndDocS"}

Terminates a print operation sent to the Printer object, releasing the document to the print device or
spooler.

Syntax
object.EndDoc
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
If EndDoc is invoked immediately after the NewPage method, no additional blank page is printed.

GetData Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetDataC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetDataX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthGetDataA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetDataS"}

Returns a graphic from the Clipboard object. Doesn't support named arguments.

Syntax
object.GetData (format)
The GetData method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
format Optional. A constant or value that specifies the

Clipboard graphics format, as described in Settings.
Parentheses must enclose the constant or value. If
format is 0 or omitted, GetData automatically uses
the appropriate format.

Settings
The settings for format are:

Constant Value Description
vbCFBitmap 2 Bitmap (.bmp files)
vbCFMetafile 3 metafile (.wmf files)
vbCFDIB 8 Device-independent bitmap (DIB)
vbCFPalette 9 Color palette

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

If no graphic on the Clipboard object matches the expected format, nothing is returned. If only a color
palette is present on the Clipboard object, a minimum size (1 x 1) DIB is created.

GetFormat Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetFormatC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetFormatX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthGetFormatA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetFormatS"}

Returns an integer indicating whether an item on the Clipboard object matches a specified format.
Doesn't support named argument.

Syntax
object.GetFormat (format)
The GetFormat method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
format Required. A value or constant that specifies the

Clipboard object format, as described in Settings.
Parentheses must enclose the constant or value.

Settings
The settings for format are:

Constant Value Description
vbCFLink &HBF00 DDE conversation information
vbCFText 1 Text
vbCFBitmap 2 Bitmap (.bmp files)
vbCFMetafile 3 Metafile (.wmf files)
vbCFDIB 8 Device-independent bitmap (DIB)
 vbCFPalette 9 Color palette

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

The GetFormat method returns True if an item on the Clipboard object matches the specified
format. Otherwise, it returns False.

For vbCFDIB and vbCFBitmap formats, whatever color palette is on the Clipboard is used when the
graphic is displayed.

GetText Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetTextC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthGetTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetTextS"}

Returns a text string from the Clipboard object. Doesn't support named arguments.

Syntax
object.GetText (format)
The GetText method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
format Optional. A value or constant that specifies the

Clipboard object format, as described in Settings.
Parentheses must enclose the constant or value.

Settings
The settings for format are:

Constant Value Description
vbCFLink &HBF00 DDE conversation information
vbCFText 1 (Default) Text
vbCFRTF &HBF01 Rich Text Format (.rtf file)

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

If no text string on the Clipboard object matches the expected format, a zero-length string ("") is
returned.

Hide Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthHideC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthHideX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthHideA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthHideS"}

Hides an MDIForm or Form object but doesn't unload it.

Syntax
object.Hide
The object placeholder represents an object expression that evaluates to an object in the Applies To
list. If object is omitted, the form with the focus is assumed to be object.

Remarks
When a form is hidden, it's removed from the screen and its Visible property is set to False. A hidden
form's controls aren't accessible to the user, but they are available to the running Visual Basic
application, to other processes that may be communicating with the application through DDE, and to
Timer control events.

When a form is hidden, the user can't interact with the application until all code in the event procedure
that caused the form to be hidden has finished executing.

If the form isn't loaded when the Hide method is invoked, the Hide method loads the form but doesn't
display it.

KillDoc Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthKillDocC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthKillDocX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthKillDocA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthKillDocS"}

Immediately terminates the current print job.

Syntax
object.KillDoc
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
If the operating system's Print Manager is handling the print job (the Print Manager is running and has
background printing enabled), KillDoc deletes the current print job and the printer receives nothing.

If Print Manager isn't handling the print job (background printing isn't enabled), some or all of the data
may be sent to the printer before KillDoc can take effect. In this case, the printer driver resets the
printer when possible and terminates the print job.

LinkExecute Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthLinkExecuteC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthLinkExecuteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthLinkExecuteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthLinkExecuteS"}

Sends a command string to the source application in a DDE conversation. Doesn't support named
arguments.

Syntax
object.LinkExecute string

The LinkExecute method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
string Required. String expression containing a command

recognized by the source application.

Remarks
The actual value of string varies depending on the source application. For example, Microsoft Excel
and Microsoft Word for Windows accept command strings that consist of their macro commands
enclosed in square brackets ([]). To see command strings that a source application accepts, consult
documentation for that application.

LinkPoke Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthLinkPokeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthLinkPokeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthLinkPokeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthLinkPokeS"}

Transfers the contents of a Label, PictureBox, or TextBox control to the source application in a DDE
conversation.

Syntax
object.LinkPoke
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The object is the name of a Label, PictureBox, or TextBox involved in a DDE conversation as a
destination. If object is a Label, LinkPoke transfers the contents of the Caption property to the
source. If object is a PictureBox, LinkPoke transfers the contents of the Picture property to the
source. If object is a TextBox, LinkPoke transfers the contents of the Text property to the source.

Typically, information in a DDE conversation flows from source to destination. However, LinkPoke
allows a destination object to supply data to the source. Not all source applications accept information
supplied this way; if the source application doesn't accept the data, an error occurs.

LinkRequest Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthLinkRequestC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthLinkRequestX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthLinkRequestA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthLinkRequestS"}

Asks the source application in a DDE conversation to update the contents of a Label, PictureBox, or
TextBox control.

Syntax
object.LinkRequest
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The object is the name of a Label, PictureBox, or TextBox involved in a DDE conversation as a
destination. LinkRequest causes the source application to send the most current data to object,
updating the Caption property setting if object is a Label, the Picture property setting if object is a
PictureBox, or the Text property setting if object is a TextBox.

If the LinkMode property of object is set to Automatic (1 or vbLinkAutomatic), the source application
automatically updates object and LinkRequest isn't needed. If the LinkMode property of object is set
to Manual (2 or vbLinkManual), the source application updates object only when LinkRequest is
used. If the LinkMode property of object is set to Notify (3 or vbLinkNotify), the source notifies the
destination that data has changed by invoking the LinkNotify event. The destination must then use
LinkRequest to update the data.

LinkSend Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthLinkSendC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthLinkSendX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthLinkSendA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthLinkSendS"}

Transfers the contents of a PictureBox control to the destination application in a DDE conversation.

Syntax
object.LinkSend
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The object must be a PictureBox on a Form object that is a source in a DDE conversation.

When other applications establish automatic links with a Form in your application, Visual Basic
notifies them when the contents of a TextBox or a Label on the Form change. However, Visual Basic
doesn't automatically notify a DDE destination application when the Picture property setting of a
PictureBox on a source Form changes. Because the amount of data in a graphic can be very large
and because it seldom makes sense to update a destination application as each pixel in the picture
changes, Visual Basic requires that you use the LinkSend method to explicitly notify DDE destination
applications when the contents of a PictureBox changes.

LoadResData Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthLoadResDataC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthLoadResDataX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthLoadResDataS"}

Loads data of several possible types from a resource (.res) file and returns a Byte array.

Syntax
LoadResData(index, format)
The LoadResData function syntax has these parts:

Part Description
index Required. Integer or string specifying the identifier

(ID) of the data in the resource file. The resource
whose ID is 1 is reserved for the application icon.

format Required. Value that specifies the original format of
the data being returned, as described in Settings.
Value can also be the string name of a user-defined
resource.

Settings
The settings for format are:

Setting Description
1 Cursor resource
2 Bitmap resource
3 Icon resource
4 Menu resource
5 Dialog box
6 String resource
7 Font directory resource
8 Font resource
9 Accelerator table
10 User-defined resource
12 Group cursor
14 Group icon

Remarks
The data that LoadResData loads from the resource file can be up to 64K.

Using LoadResData with a bitmap, icon, or cursor resource type returns a string containing the actual
bits in the resource. If you want to use the actual bitmap, icon, or resource, use the LoadResPicture
function.

Using LoadResData is useful for localizing a Visual Basic application because the resources that
need to be translated are isolated in one resource file and there is no need to access the source code
or recompile the application.

LoadResPicture Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthLoadResPictureC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthLoadResPictureX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthLoadResPictureS"}

Loads a bitmap, icon, or cursor from a resource (.res) file.

Syntax
LoadResPicture(index, format)
The LoadResPicture function syntax has these parts:

Part Description
index Required. Integer or string specifying the identifier

(ID) of the data in the resource file. The resource
whose ID is 1 is reserved for the application icon.

format Required. Value or constant that specifies the format
of the data being returned, as described in Settings.

Settings
The settings for format are:

Constant Value Description
vbResBitmap 0 Bitmap resource
vbResIcon 1 Icon resource
vbResCursor 2 Cursor resource

Remarks
You can use the LoadResPicture function instead of referring to graphics stored in the Picture
property of a Form or controls.

Storing bitmaps, icons, or cursors in and accessing them from resource files improves load time
because you can load them individually as needed from the resource file, rather than all at once when
a Form is loaded.

Using LoadResPicture is useful for localizing a Visual Basic application because the resources that
need to be translated are isolated in one resource file and there is no need to access the source code
or recompile the application.

LoadResString Function
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthLoadResStringC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthLoadResStringX":1} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthLoadResStringS"}

Loads a string from a resource (.res) file.

Syntax
LoadResString(index)
The LoadResString function syntax has these parts:

Part Description
index Required. Integer specifying the identifier (ID) of the

data in the resource file. The resource whose ID is 1
is reserved for the application icon.

Remarks
You can use the LoadResString function instead of string literals in your code. Storing long strings of
data in and accessing them from resource files improves load time because you can load them
individually as needed from the resource file, rather than all at once when a form is loaded.

Using LoadResString is useful for localizing a Visual Basic application because the resources that
need to be translated are isolated in one resource file and there is no need to access the source code
or recompile the application.

Move Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthMoveC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthMoveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthMoveA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthMoveS"}

Moves an MDIForm, Form, or control. Doesn't support named arguments.

Syntax
object.Move left, top, width, height

The Move method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to an

object in the Applies To list. If object is omitted, the
form with the focus is assumed to be object.

left Required. Single-precision value indicating the
horizontal coordinate (x-axis) for the left edge of
object.

top Optional. Single-precision value indicating the vertical
coordinate (y-axis) for the top edge of object.

width Optional. Single-precision value indicating the new
width of object.

height Optional. Single-precision value indicating the new
height of object.

Remarks
Only the left argument is required. However, to specify any other arguments, you must specify all
arguments that appear in the syntax before the argument you want to specify. For example, you can't
specify width without specifying left and top. Any trailing arguments that are unspecified remain
unchanged.

For forms and controls in a Frame control, the coordinate system is always in twips. Moving a form on
the screen or moving a control in a Frame is always relative to the origin (0,0), which is the upper-left
corner. When moving a control on a Form object or in a PictureBox (or an MDI child form on an
MDIForm object), the coordinate system of the container object is used. The coordinate system or
unit of measure is set with the ScaleMode property at design time. You can change the coordinate
system at run time with the Scale method.

NewPage Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthNewPageC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthNewPageX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthNewPageA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthNewPageS"}

Ends the current page and advances to the next page on the Printer object.

Syntax
object.NewPage
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
NewPage advances to the next printer page and resets the print position to the upper-left corner of
the new page. When invoked, NewPage increments the Printer object's Page property by 1.

PaintPicture Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthPaintPictureMoveC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthPaintPictureX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthPaintPictureA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthPaintPictureS"}

Draws the contents of a graphics file (.bmp, .wmf, .emf, .ico, or .dib) on a Form, PictureBox, or
Printer. Doesn't support named arguments.

Syntax
object.PaintPicture picture, x1, y1, width1, height1, x2, y2, width2, height2, opcode

The PaintPicture method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to an object

in the Applies To list. If object is omitted, the Form object
with the focus is assumed to be object.

Picture Required. The source of the graphic to be drawn onto
object. Must be the Picture property of a Form or
PictureBox.

x1, y1 Required. Single-precision values indicating the
destination coordinates (x-axis and y-axis) on object for
picture to be drawn. The ScaleMode property of object
determines the unit of measure used.

Width1 Optional. Single-precision value indicating the destination
width of picture. The ScaleMode property of object
determines the unit of measure used. If the destination
width is larger or smaller than the source width (width2),
picture is stretched or compressed to fit. If omitted, the
source width is used.

Height1 Optional. Single-precision value indicating the destination
height of picture. The ScaleMode property of object
determines the unit of measure used. If the destination
height is larger or smaller than the source height
(height2), picture is stretched or compressed to fit. If
omitted, the source height is used.

x2, y2 Optional. Single-precision values indicating the
coordinates (x-axis and y-axis) of a clipping region within
picture. The ScaleMode property of object determines the
unit of measure used. If omitted, 0 is assumed.

Width2 Optional. Single-precision value indicating the source
width of a clipping region within picture. The ScaleMode
property of object determines the unit of measure used. If
omitted, the entire source width is used.

Height2 Optional. Single-precision value indicating the source
height of a clipping region within picture. The ScaleMode
property of object determines the unit of measure used. If
omitted, the entire source height is used.

Opcode Optional. Long value or code that is used only with
bitmaps. It defines a bit-wise operation (for example, Not
or Xor operator) that is performed on picture as it's drawn
on object. For a complete list of bit-wise operators, see
the BitBlt topic in the Windows SDK Help file
(Win31wh.hlp).

Remarks
You can flip a bitmap horizontally or vertically by using negative values for the destination height
(height1) and/or the destination width (width1).

You can omit as many optional trailing arguments as you want. If you omit an optional trailing
argument or arguments, don't use any commas following the last argument you specify. If you want to
specify an optional argument, you must specify all optional arguments that appear in the syntax
before it.

Point Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthPointC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthPointX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthPointA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthPointS"}

Returns, as a long integer, the red-green-blue (RGB) color of the specified point on a Form or
PictureBox. Doesn't support named arguments.

Syntax
object.Point(x, y)
The Point method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to an

object in the Applies To list. If object is omitted, the
Form object with the focus is assumed to be object.

x, y Required. Single-precision values indicating the
horizontal (x-axis) and vertical (y-axis) coordinates of
the point in the ScaleMode property of the Form or
PictureBox. Parentheses must enclose the values.

Remarks
If the point referred to by the x and y coordinates is outside object, the Point method returns -1.

PopupMenu Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthPopupMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthPopupMenuX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthPopupMenuA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthPopUpMenuS"}

Displays a pop-up menu on an MDIForm or Form object at the current mouse location or at specified
coordinates. Doesn't support named arguments.

Syntax
object.PopupMenu menuname, flags, x, y, boldcommand

The PopupMenu method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to an

object in the Applies To list. If object is omitted, the
form with the focus is assumed to be object.

Menuname Required. The name of the pop-up menu to be
displayed. The specified menu must have at least
one submenu.

Flags Optional. A value or constant that specifies the
location and behavior of a pop-up menu, as
described in Settings.

X Optional. Specifies the x-coordinate where the pop-
up menu is displayed. If omitted, the mouse
coordinate is used.

Y Optional. Specifies the y-coordinate where the pop-
up menu is displayed. If omitted, the mouse
coordinate is used.

boldcommand Optional. Specifies the name of a menu control in the
pop-up menu to display its caption in bold text. If
omitted, no controls in the pop-up menu appear in
bold.
This argument works only for applications running
under Windows 95. The application will ignore this
argument when running under 16-bit versions of
Windows or Windows NT 3.51 and earlier.

Settings
The settings for flags are:

Constant (location) Value Description
vbPopupMenuLeftAlign 0 (Default) The left side of the pop-

up menu is located at x.
vbPopupMenuCenterAlign 4 The pop-up menu is centered at x.
vbPopupMenuRightAlign 8 The right side of the pop-up menu

is located at x.

Constant (behavior) Value Description
vbPopupMenuLeftButton 0 (Default) An item on the pop-up

menu reacts to a mouse click only
when you use the left mouse
button.

vbPopupMenuRightButton 2 An item on the pop-up menu
reacts to a mouse click when you
use either the right or the left
mouse button.

Note The flags parameter has no effect on applications running under Microsoft Windows version
3.0 or earlier. To specify two flags, combine one constant from each group using the Or operator.

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

You specify the unit of measure for the x and y coordinates using the ScaleMode property. The x and
y coordinates define where the pop-up is displayed relative to the specified form. If the x and y
coordinates aren't included, the pop-up menu is displayed at the current location of the mouse pointer.

When you display a pop-up menu, the code following the call to the PopupMenu method isn't
executed until the user either chooses a command from the menu (in which case the code for that
command's Click event is executed before the code following the PopupMenu statement) or cancels
the menu. In addition, only one pop-up menu can be displayed at a time; therefore, calls to this
method are ignored if a pop-up menu is already displayed or if a pull-down menu is open.

PrintForm Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthPrintFormC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthPrintFormx":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthPrintFormA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthPrintFormS"}

Sends a bit-by-bit image of a Form object to the printer.

Syntax
object.PrintForm
The object placeholder represents an object expression that evaluates to an object in the Applies To
list. If object is omitted, the Form with the focus is assumed to be object.

Remarks
PrintForm prints all visible objects and bitmaps of the Form object. PrintForm also prints graphics
added to a Form object or PictureBox control at run time if the AutoRedraw property is True when
the graphics are drawn.

The printer used by PrintForm is determined by the operating system's Control Panel settings.

RemoveItem Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRemoveItemC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveItemX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthRemoveItemA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveItemS"}

Removes an item from a ListBox or ComboBox control or a row from a MS Flex Grid control.
Doesn't support named arguments.

Syntax
object.RemoveItem index

The RemoveItem method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
index Required. Integer representing the position within the

object of the item or row to remove. For the first item
in a ListBox or ComboBox or for the first row in a
MS Flex Grid control, index = 0.

Remarks
A ListBox or ComboBox that is bound to a Data control doesn't support the RemoveItem method.

Scale Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthScaleC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthScaleEX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthScaleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthScaleS"}

Defines the coordinate system for a Form, PictureBox, or Printer. Doesn't support named
arguments.

Syntax
object.Scale (x1, y1) - (x2, y2)
The Scale method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to an

object in the Applies To list. If object is omitted, the
Form object with the focus is assumed to be object.

x1, y1 Optional. Single-precision values indicating the
horizontal (x-axis) and vertical (y-axis) coordinates
that define the upper-left corner of object.
Parentheses must enclose the values. If omitted, the
second set of coordinates must also be omitted.

x2, y2 Optional. Single-precision values indicating the
horizontal and vertical coordinates that define the
lower-right corner of object. Parentheses must
enclose the values. If omitted, the first set of
coordinates must also be omitted.

Remarks
The Scale method enables you to reset the coordinate system to any scale you choose. Scale affects
the coordinate system for both run-time graphics statements and the placement of controls.

If you use Scale with no arguments (both sets of coordinates omitted), it resets the coordinate system
to twips.

ScaleX, ScaleY Methods
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthScaleXC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthScaleXX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthScaleXA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthScaleXS"}

Converts the value for the width or height of a Form, PictureBox, or Printer from one of the
ScaleMode property's unit of measure to another. Doesn't support named arguments.

Syntax
object.ScaleX (width, fromscale, toscale)
object.ScaleY (height, fromscale, toscale)
The ScaleX and ScaleY method syntaxes have these parts:

Part Description
object Optional. An object expression that evaluates to an

object in the Applies To list. If object is omitted, the
Form object with the focus is assumed to be object.

width Required. Specifies, for object, the number of units
of measure to be converted.

height Required. Specifies, for object, the number of units
of measure to be converted.

fromscale Optional. A constant or value specifying the
coordinate system from which width or height of
object is to be converted, as described in Settings.
The possible values of fromscale are the same as for
the ScaleMode property, plus the new value of
HiMetric.

toscale Optional. A constant or value specifying the
coordinate system to which width or height of object
is to be converted, as described in Settings. The
possible values of toscale are the same as for the
ScaleMode property, plus the new value of HiMetric.

Settings
The settings for fromscale and toscale are:

Constant Value Description
vbUser 0 User-defined: indicates that the width or

height of object is set to a custom value.
vbTwips 1 Twip (1440 twips per logical inch; 567 twips

per logical centimeter).
vbPoints 2 Point (72 points per logical inch).
vbPixels 3 Pixel (smallest unit of monitor or printer

resolution).
vbCharacters 4 Character (horizontal = 120 twips per unit;

vertical = 240 twips per unit).
vbInches 5 Inch
vbMillimeters 6 Millimeter
vbCentimeters 7 Centimeter
N/A 8 HiMetric. If fromscale is omitted, HiMetric

is assumed as the default.

Remarks
The ScaleX and ScaleY methods take a value (width or height), with its unit of measure specified by
fromscale, and convert it to the corresponding value for the unit of measure specified by toscale.

You can also use ScaleX and ScaleY with the PaintPicture method.

SetData Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetDataC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSetDataX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSetDataA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetDataS"}

Puts a picture on the Clipboard object using the specified graphic format. Doesn't support named
arguments.

Syntax
object.SetData data, format

The SetData method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
data Required. A graphic to be placed on the Clipboard

object.
format Optional. A constant or value that specifies one of

the Clipboard object formats recognized by Visual
Basic, as described in Settings. If format is omitted,
SetData automatically determines the graphic
format.

Settings
The settings for format are:

Constant Value Description
vbCFBitmap 2 Bitmap (.bmp files)
vbCFMetafile 3 Metafile (.wmf files)
vbCFDIB 8 Device-independent bitmap (DIB)
vbCFPalette 9 Color palette

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

You set the graphic that is to be placed onto the Clipboard object with either the LoadPicture
function or the Picture property of a Form, Image, or PictureBox.

SetText Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetTextC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSetTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSetTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetTextS"}

Puts a text string on the Clipboard object using the specified Clipboard object format. Doesn't
support named arguments.

Syntax
object.SetText data, format

The SetText method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
data Required. String data to be placed onto the

Clipboard.
Format Optional. A constant or value that specifies one of

the Clipboard formats recognized by Visual Basic, as
described in Settings.

Settings
The settings for format are:

Constant Value Description
vbCFLink &HBF00 DDE conversation

information
vbCFRTF &HBF01 RichText Format
vbCFText 1 (Default) Text

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

Show Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthShowC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthShowX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthShowA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthShowS"}

Displays an MDIForm or Form object. Doesn't support named arguments.

Syntax
object.Show style

The Show method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to an

object in the Applies To list. If object is omitted, the
form associated with the active form module is
assumed to be object.

Style Optional. Integer that determines if the form is modal
or modeless. If style is 0, the form is modeless; if
style is 1, the form is modal.

Remarks
If the specified form isn't loaded when the Show method is invoked, Visual Basic automatically loads
it.

When Show displays a modeless form, subsequent code is executed as it's encountered. When
Show displays a modal form, no subsequent code is executed until the form is hidden or unloaded.

When Show displays a modal form, no input (keyboard or mouse click) can occur except to objects
on the modal form. The program must hide or unload a modal form (usually in response to some user
action) before input to another form can occur. An MDIForm can't be modal.

Although other forms in your application are disabled when a modal form is displayed, other
applications aren't.

The startup form of an application is automatically shown after its Load event is invoked.

TextHeight Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthTextHeightC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthTextHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthTextHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthTextHeightS"}

Returns the height of a text string as it would be printed in the current font of a Form, PictureBox, or
Printer. Doesn't support named arguments.

Syntax
object.TextHeight(string)
The TextHeight method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to an

object in the Applies To list. If object is omitted, the
Form object with the focus is assumed to be object.

String Required. A string expression that evaluates to a
string for which the text height is determined.
Parentheses must enclose the string expression.

Remarks
The height is expressed in terms of the ScaleMode property setting or Scale method coordinate
system in effect for object. Use TextHeight to determine the amount of vertical space required to
display the text. The height returned includes the normal leading space above and below the text, so
you can use the height to calculate and position multiple lines of text within object.

If string contains embedded carriage returns, TextHeight returns the cumulative height of the lines,
including the leading space above and below each line.

TextWidth Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthTextWidthC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthTextWidthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthTextWidthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthTextWidthS"}

Returns the width of a text string as it would be printed in the current font of a Form, PictureBox, or
Printer. Doesn't support named arguments.

Syntax
object.TextWidth(string)
The TextWidth method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to an

object in the Applies To list. If object is omitted, the
Form with the focus is assumed to be object.

String Required. A string expression that evaluates to a
string for which the text height is determined.
Parentheses must surround the string expression.

Remarks
The width is expressed in terms of the ScaleMode property setting or Scale method coordinate
system in effect for object. Use TextWidth to determine the amount of horizontal space required to
display the text. If string contains embedded carriage returns, TextWidth returns the width of the
longest line.

ZOrder Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthZOrderC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthZOrderX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthZOrderA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthZOrderS"}

Places a specified MDIForm, Form, or control at the front or back of the z-order within its graphical
level. Doesn't support named arguments.

Syntax
object.ZOrder position

The ZOrder method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to an

object in the Applies To list. If object is omitted, the
form with the focus is assumed to be object.

Position Optional. Integer indicating the position of object
relative to other instances of the same object. If
position is 0 or omitted, object is positioned at the
front of the z-order. If position is 1, object is
positioned at the back of the z-order.

Remarks
The z-order of objects can be set at design time by choosing the Bring To Front or Send To Back
menu command from the Edit menu.

Within an MDIForm object, ZOrder sends MDI child forms to either the front or the back of the MDI
client area, depending on the value of position. For an MDIForm or Form object, ZOrder sends the
form to either the front or the back of the screen, depending on the value of position. As a result,
forms can be displayed in front of or behind other running applications.

Three graphical layers are associated with forms and containers. The back layer is the drawing space
where the results of the graphics methods are displayed. Next is the middle layer where graphical
objects and Label controls are displayed. The front layer is where all nongraphical controls like
CommandButton, CheckBox, or ListBox are displayed. Anything contained in a layer closer to the
front covers anything contained in the layer(s) behind it. ZOrder arranges objects only within the layer
where the object is displayed.

 AddItem Method Example
This example uses the AddItem method to add 100 items to a list box. To try this example, paste the
code into the Declarations section of a form with a ListBox control named List1, and then press F5
and click the form.
Private Sub Form_Click ()

Dim Entry, I, Msg ' Declare variables.
Msg = "Choose OK to add 100 items to your list box."
MsgBox Msg ' Display message.
For I = 1 To 100 ' Count from 1 to 100.

Entry = "Entry " & I ' Create entry.
List1.AddItem Entry ' Add the entry.

Next I
Msg = "Choose OK to remove every other entry."
MsgBox Msg ' Display message.
For I = 1 To 50 ' Determine how to

List1.RemoveItem I ' remove every other
Next I ' item.
Msg = "Choose OK to remove all items from the list box."
MsgBox Msg ' Display message.
List1.Clear ' Clear list box.

End Sub

Arrange Method Example
This example uses the Arrange method to arrange windows and icons in an MDI form. To try this
example, paste the code into the Declarations section of an MDI form named MDIForm1 that has an
MDI child form (named Form1, with its MDIChild property set to True) and a picture box on the MDI
Form (named Picture1). Press F5 and click anywhere in the picture box to see the effects of the
Arrange method.
Const FORMCOUNT = 5
Dim F(1 To FORMCOUNT) As New Form1
Private Sub MDIForm_Load ()

Dim I ' Declare local variable.
Load Form1 ' Load original Form1.
For I = 1 To FORMCOUNT

F(I).Caption = "Form" & I + 1 ' Change caption on copies.
Next I

End Sub

Private Sub Picture1_Click ()
Static ClickCount ' Declare variables.
Dim I, PrevWidth, Start
ClickCount = ClickCount + 1 ' Increment click counter.
Select Case ClickCount

Case 1
MDIForm1.Arrange 1 ' Tile horizontally.

Case 2
MDIForm1.Arrange 2 ' Tile vertically.

Case 3 ' Minimize each form.
PrevWidth = MDIForm1.Width ' Get MDI form width.
MDIForm1.Width = PrevWidth / 2 ' Divide it in half.
Form1.WindowState = 1 ' Minimize the original.
For I = 1 To FORMCOUNT ' Look at each instance of F.

F(I).WindowState = 1 ' Minimize each copy of F.
Next I
Start = Timer
Do
Loop Until Timer = Start + 5
MDIForm1.Width = PrevWidth ' Resize to original size.
MDIForm1.Arrange 3 ' Arrange icons.

End Select
End Sub

Clear Method Example
This example uses the Clear method to clear all items from a list box. To try this example, paste the
code into the Declarations section of a form with a ListBox control named List1, and then press F5
and click the form.
Private Sub Form_Click ()

Dim Entry, I, Msg ' Declare variables.
Msg = "Choose OK to add 100 items to your list box."
MsgBox Msg ' Display message.
For I = 1 To 100 ' Count from 1 to 100.

Entry = "Entry " & I ' Create entry.
List1.AddItem Entry ' Add the entry.

Next I
Msg = "Choose OK to remove every other entry."
MsgBox Msg ' Display message.
For I = 1 To 50 ' Determine how to

List1.RemoveItem I ' remove every other
Next I ' item.
Msg = "Choose OK to remove all items from the list box."
MsgBox Msg ' Display message.
List1.Clear ' Clear list box.

End Sub
This example uses the Clear method to clear the Clipboard object. To try this example, paste the
code into the Declarations section of a form, and then press F5 and click the form.
Private Sub Form_Click ()

Const CF_BITMAP = 2 ' Define bitmap format.
Dim Msg ' Declare variable.
On Error Resume Next ' Set up error handling.
Msg = "Choose OK to load a bitmap onto the Clipboard."
MsgBox Msg ' Display message.
Clipboard.Clear ' Clear Clipboard.
Clipboard.SetData LoadPicture("PAPER.BMP") ' Get bitmap.
If Err Then

Msg = "Can't find the .BMP file."
MsgBox Msg ' Display error message.
Exit Sub

End If
Msg = "A bitmap is now on the Clipboard. Choose OK to copy "
Msg = Msg & "the bitmap from the Clipboard to the form."
MsgBox Msg ' Display message.
Picture = Clipboard.GetData() ' Copy from Clipboard.
Msg = "Choose OK to clear the picture."
MsgBox Msg ' Display message.
Picture = LoadPicture() ' Clear picture.

End Sub

Cls Method Example
This example uses the Cls method to delete printed information from a form. To try this example,
paste the code into the Declarations section of a form, and then press F5 and click the form.
Private Sub Form_Click ()

Dim Msg ' Declare variable.
AutoRedraw = -1 ' Turn on AutoRedraw.
ForeColor = QBColor(15) ' Set foreground to white.
BackColor = QBColor(1) ' Set background to blue.
FillStyle = 7 ' Set diagonal crosshatch.
Line (0, 0)-(ScaleWidth, ScaleHeight), , B ' Put box on form.
Msg = "This is information printed on the form background."
CurrentX = ScaleWidth / 2 - TextWidth(Msg) / 2 ' Set X position.
CurrentY = 2 * TextHeight(Msg) ' Set Y position.
Print Msg ' Print message to form.
Msg = "Choose OK to clear the information and background "
Msg = Msg & "pattern just displayed on the form."
MsgBox Msg ' Display message.
Cls ' Clear form background.

End Sub

Drag Method Example
This example uses the Drag method to drag the filename of a bitmap (.bmp) file to a picture box
where the bitmap is displayed. To try this example, paste all of the code into the Declarations section
of a form that contains DriveListBox, DirListBox, FileListBox, PictureBox, and Label controls. Use
the default names for all of the controls. Size and position all controls so they can be easily seen and
used. The size and position of the label is unimportant because it's changed at run time. When the
program begins, you can browse your file system and load any bitmaps. Once you've located a
bitmap that you want to display, click the filename of that bitmap, and drag it to the picture box.
Private Sub Form_Load ()

Picture1.AutoSize = -1 ' Turn on AutoSize.
Label1.Visible = 0 ' Make the label invisible.
File1.Pattern = "*.BMP; *.ICO; *.WMF" ' Set file patterns.

End Sub

Private Sub Dir1_Change () ' Any change in Dir1
File1.Path = Dir1.Path ' is reflected in File1.

End Sub

Private Sub Drive1_Change () ' Any change in Drive1
Dir1.Path = Drive1.Drive ' is reflected in Dir1.

End Sub

Private Sub File1_MouseDown (Button As Integer, Shift As Integer, X As
Single, Y As Single)

Dim DY ' Declare variable.
DY = TextHeight("A") ' Get height of one line.
Label1.Move File1.Left, File1.Top + Y - DY /2, File1.Width, DY
Label1.Drag ' Drag label outline.

End Sub

Private Sub Dir1_DragOver (Source As Control, X As Single, Y As Single,
State As Integer)

' Change pointer to no drop.
If State = 0 Then Source.MousePointer = 12
' Use default mouse pointer.
If State = 1 Then Source.MousePointer = 0

End Sub

Private Sub Drive1_DragOver (Source As Control, X As Single, Y As Single,
State As Integer)

' Change pointer to no drop.
If State = 0 Then Source.MousePointer = 12
' Use default mouse pointer.
If State = 1 Then Source.MousePointer = 0

End Sub

Private Sub Form_DragOver (Source As Control, X As Single, Y As Single,
State As Integer)

' Change pointer to no drop.
If State = 0 Then Source.MousePointer = 12
' Use default mouse pointer.
If State = 1 Then Source.MousePointer = 0

End Sub

Private Sub File1_DragOver (Source As Control, X As Single, Y As Single,
State As Integer)

On Error Resume Next
If State = 0 And Right$(File1.Filename,4) = ".ICO" Then

Label1.DragIcon = LoadPicture(File1.Path + "\" + File1.Filename)
If Err Then MsgBox "The icon file can't be loaded."
ElseIf State = 1 Then

Label1.DragIcon = LoadPicture () ' Use no drag icon.
End If

End Sub

Private Sub Picture1_DragDrop (Source As Control, X As Single, Y As Single)
On Error Resume Next
Picture1.Picture = LoadPicture(File1.Path + "\" + File1.Filename)
If Err Then MsgBox "The picture file can't be loaded."

End Sub

EndDoc Method Example
This example uses the EndDoc method to end a document after printing two pages, each with a
centered line of text indicating the page number. To try this example, paste the code into the
Declarations section of a form, and then press F5 and click the form.
Private Sub Form_Click ()

Dim HWidth, HHeight, I, Msg ' Declare variables.
On Error GoTo ErrorHandler ' Set up error handler.
Msg = "This is printed on page"
For I = 1 To 2 ' Set up two iterations.

HWidth = Printer.TextWidth(Msg) / 2 ' Get half width.
HHeight = Printer.TextHeight(Msg) /2 ' Get half height.
Printer.CurrentX = Printer.ScaleWidth / 2 - HWidth
Printer.CurrentY = Printer.ScaleHeight / 2 - HHeight
Printer.Print Msg & Printer.Page & "." ' Print.
Printer.NewPage ' Send new page.

Next I
Printer.EndDoc ' Printing is finished.
Msg = "Two pages, each with a single, centered line of text, "
Msg = Msg & "have been sent to your printer."
MsgBox Msg ' Display message.
Exit Sub

ErrorHandler:
MsgBox "There was a problem printing to your printer."
Exit Sub

End Sub

GetData Method Example
This example uses the GetData method to copy a bitmap from the Clipboard object to a form. To try
this example, paste the code into the Declarations section of a form, and then press F5 and click the
form.
Private Sub Form_Click ()

Const CF_BITMAP = 2 ' Define bitmap format.
Dim Msg ' Declare variable.
On Error Resume Next ' Set up error handling.
Msg = "Choose OK to load a bitmap onto the Clipboard."
MsgBox Msg ' Display message.
Clipboard.Clear ' Clear Clipboard.
Clipboard.SetData LoadPicture("PAPER.BMP") ' Get bitmap.
If Err Then

Msg = "Can't find the .bmp file."
MsgBox Msg ' Display error message.
Exit Sub

End If
Msg = "A bitmap is now on the Clipboard. Choose OK to copy "
Msg = Msg & "the bitmap from the Clipboard to the form "
MsgBox Msg ' Display message.
Picture = Clipboard.GetData() ' Copy from Clipboard.
Msg = "Choose OK to clear the form."
MsgBox Msg ' Display message.
Picture = LoadPicture() ' Clear form.

End Sub

GetFormat Method Example
This example uses the GetFormat method to determine the format of the data on the Clipboard
object. To try this example, paste the code into the Declarations section of a form, and then press F5
and click the form.
Private Sub Form_Click ()

' Define bitmap formats.
Dim ClpFmt, Msg ' Declare variables.
On Error Resume Next ' Set up error handling.
If Clipboard.GetFormat(vbCFText) Then ClpFmt = ClpFmt + 1
If Clipboard.GetFormat(vbCFBitmap) Then ClpFmt = ClpFmt + 2
If Clipboard.GetFormat(vbCFDIB) Then ClpFmt = ClpFmt + 4
If Clipboard.GetFormat(vbCFRTF) Then ClpFmt = ClpFmt + 8
Select Case ClpFmt

Case 1
Msg = "The Clipboard contains only text."

Case 2, 4, 6
Msg = "The Clipboard contains only a bitmap."

Case 3, 5, 7
Msg = "The Clipboard contains text and a bitmap."

Case 8, 9
Msg = "The Clipboard contains only rich text."

Case Else
Msg = "There is nothing on the Clipboard."

End Select
MsgBox Msg ' Display message.

End Sub

GetText Method Example
This example uses the GetText method to copy a text string from the Clipboard object to a string
variable. To try this example, paste the code into the Declarations section of a form with a TextBox
control named Text1, and then press F5 and click the form.
Private Sub Form_Click ()

Dim I, Msg, Temp ' Declare variables.
On Error Resume Next ' Set up error handling.
Msg = "Type anything you like into the text box below."
Text1.Text = InputBox(Msg) ' Get text from user.
Msg = "Choose OK to copy the contents of the text box "
Msg = Msg & "to the Clipboard."
MsgBox Msg ' Display message.
Clipboard.Clear ' Clear Clipboard.
Clipboard.SetText Text1.Text ' Put text on Clipboard.
If Clipboard.GetFormat(vbCFText) Then

Text1.Text = "" ' Clear the text box.
Msg = "The text is now on the Clipboard. Choose OK "
Msg = Msg & "to copy the text from the Clipboard back "
Msg = Msg & "to the text box."
MsgBox Msg ' Display message.
Temp = Clipboard.GetText(vbCFText) ' Get Clipboard text.
For I = Len(Temp) To 1 Step -1 ' Reverse the text.

Text1.Text = Text1.Text & Mid(Temp, I, 1)
Next I

Else
Msg = "There is no text on the Clipboard."
MsgBox Msg ' Display error message.

End If
End Sub

Hide Method Example
This example uses the Hide method to hide a form. To try this example, paste the code into the
Declarations section of a non-MDI form, and then press F5 and click the form.
Private Sub Form_Click ()

Dim Msg ' Declare variable.
Hide ' Hide form.
Msg = "Choose OK to make the form reappear."
MsgBox Msg ' Display message.
Show ' Show form again.

End Sub

KillDoc Method Example
This example uses the KillDoc method to terminate the current print job. To try this example, paste
the code into the Declarations section of a form, and then press F5 and click the form.
Private Sub Form_Click()

For i = 1 To 40
Printer.CurrentX = 1440 ' Set left margin.
Printer.CurrentY = (i * 300) ' Advance page to next line.
Printer.Print "This is line" & Str$(i) & " of text."
On Error Resume Next ' Catch any printer error.
If i = 26 Then

Printer.KillDoc ' Terminate print job abruptly.
Printer.EndDoc
End

End If
Next i

End Sub

LinkExecute Method Example
This example establishes a DDE link with Microsoft Excel, places some values into cells in the first
row of a new worksheet, and charts the values. LinkExecute sends Microsoft Excel the command to
activate a worksheet, select some values, and chart them. To try this example, Microsoft Excel must
be installed on your computer and in the path statement of your Autoexec.bat file. Paste the code into
the Declarations section of a form that has a TextBox control with the default name Text1, and then
press F5 and click the form.
Private Sub Form_Click ()

Dim Cmd, I, Q, Row, Z ' Declare variables.
Q = Chr(34) ' Define quotation marks.
' Create a string containing Microsoft Excel macro commands.
Cmd = "[ACTIVATE(" & Q &"SHEET1" & Q & ")]"
Cmd = Cmd & "[SELECT(" & Q & "R1C1:R5C2" & Q & ")]"
Cmd = Cmd & "[NEW(2,1)][ARRANGE.ALL()]"
If Text1.LinkMode = vbNone Then

Z = Shell("Excel", 4) ' Start Microsoft Excel.
Text1.LinkTopic = "Excel|Sheet1" ' Set link topic.
Text1.LinkItem = "R1C1" ' Set link item.
Text1.LinkMode = vbLinkManual ' Set link mode.

End If
For I = 1 To 5

Row = I ' Define row number.
Text1.LinkItem = "R" & Row & "C1" ' Set link item.
Text1.Text = Chr(64 + I) ' Put value in Text.
Text1.LinkPoke ' Poke value to cell.
Text1.LinkItem = "R" & Row & "C2" ' Set link item.
Text1.Text = Row ' Put value in Text.
Text1.LinkPoke ' Poke value to cell.

Next I
On Error Resume Next
Text1.LinkExecute Cmd ' Carry out Microsoft Excel commands.
MsgBox "LinkExecute DDE demo with Microsoft Excel finished.", 64

 End
End Sub

LinkPoke Method Example
This example establishes a DDE link with Microsoft Excel, places some values into cells in the first
row of a new worksheet, and charts the values. LinkPoke sends the values to be charted to the
Microsoft Excel worksheet. To try this example, Microsoft Excel must be installed and in the path
statement of your Autoexec.bat file. Paste the code into the Declarations section of a form that has a
TextBox control with the default name Text1, and then press F5 and click the form.
Private Sub Form_Click ()

Dim Cmd, I, Q, Row, Z ' Declare variables.
Q = Chr(34) ' Define quotation marks.
' Create a string containing Microsoft Excel macro commands.
Cmd = "[ACTIVATE(" & Q &"SHEET1" & Q & ")]"
Cmd = Cmd & "[SELECT(" & Q & "R1C1:R5C2" & Q & ")]"
Cmd = Cmd & "[NEW(2,1)][ARRANGE.ALL()]"
If Text1.LinkMode = vbNone Then

Z = Shell("Excel", 4) ' Start Microsoft Excel.
Text1.LinkTopic = "Excel|Sheet1" ' Set link topic.
Text1.LinkItem = "R1C1" ' Set link item.
Text1.LinkMode = vbLinkManual ' Set link mode.

End If
For I = 1 To 5

Row = I ' Define row number.
Text1.LinkItem = "R" & Row & "C1" ' Set link item.
Text1.Text = Chr(64 + I) ' Put value in Text.
Text1.LinkPoke ' Poke value to cell.
Text1.LinkItem = "R" & Row & "C2" ' Set link item.
Text1.Text = Row ' Put value in Text.
Text1.LinkPoke ' Poke value to cell.

Next I
Text1.LinkExecute Cmd ' Carry out Microsoft Excel commands.
On Error Resume Next
MsgBox "LinkPoke DDE demo with Microsoft Excel finished.", 64

 End
End Sub

LinkRequest Method Example
This example uses LinkRequest to update the contents of a text box with the values in a Microsoft
Excel worksheet. To try this example, you must have Microsoft Excel running on your computer. Place
some data in the first cells in the first column in the default worksheet (Sheet1.xls). Paste the code
into the Declarations section of a form that has a TextBox control called Text1, and then press F5 and
click the form.
Private Sub Form_Click ()

If Text1.LinkMode = vbNone Then ' Test link mode.
Text1.LinkTopic = "Excel|Sheet1" ' Set link topic.
Text1.LinkItem = "R1C1" ' Set link item.
Text1.LinkMode = vbLinkManual ' Set link mode.
Text1.LinkRequest ' Update text box.

Else
If Text1.LinkItem = "R1C1" Then

Text1.LinkItem = "R2C1"
Text1.LinkRequest ' Update text box.

Else
Text1.LinkItem = "R1C1"
Text1.LinkRequest ' Update text box.

End If
End If

End Sub

Move Method Example
This example uses the Move method to move a form around on the screen. To try this example, paste
the code into the Declarations section of a form, and then press F5 and click the form.
Private Sub Form_Click ()

Dim Inch, Msg ' Declare variables.
Msg = "Choose OK to resize and move this form by "
Msg = Msg & "changing the value of properties."
MsgBox Msg ' Display message.
Inch = 1440 ' Set inch in twips.
Width = 4 * Inch ' Set width.
Height = 2 * Inch ' Set height.
Left = 0 ' Set left to origin.
Top = 0 ' Set top to origin.
Msg = "Now choose OK to resize and move this form "
Msg = Msg & "using the Move method."
MsgBox Msg ' Display message.
Move Screen.Width - 2 * Inch, Screen.Height - Inch, 2 * Inch, Inch

End Sub

NewPage Method Example
This example uses the NewPage method to begin a new printer page after printing a single, centered
line of text on a page. To try this example, paste the code into the Declarations section of a form, and
then press F5 and click the form.
Private Sub Form_Click ()

Dim HWidth, HHeight, I, Msg ' Declare variables.
On Error GoTo ErrorHandler ' Set up error handler.
Msg = "This is printed on page"
For I = 1 To 2 ' Set up two iterations.

HWidth = Printer.TextWidth(Msg) / 2 ' Get one-half width.
HHeight = Printer.TextHeight(Msg) /2 ' Get one-half height.
Printer.CurrentX = Printer.ScaleWidth / 2 - HWidth
Printer.CurrentY = Printer.ScaleHeight / 2 - HHeight
Printer.Print Msg & Printer.Page & "." ' Print.
Printer.NewPage ' Send new page.

Next I
Printer.EndDoc ' Print done.
Msg = "Two pages, each with a single, centered line of text, "
Msg = Msg & "have been sent to your printer."
MsgBox Msg ' Display message.
Exit Sub

ErrorHandler:
MsgBox "There was a problem printing to your printer."
Exit Sub

End Sub

Point Method Example
This example uses the Point method to determine the color of a specific point on a form. To try this
example, paste the code into the Declarations section of a form, and then press F5 and click the form.
Private Sub Form_Click ()

Dim LeftColor, MidColor, Msg, RightColor ' Declare variables.
AutoRedraw = -1 ' Turn on AutoRedraw.
Height = 3 * 1440 ' Set height to 3 inches.
Width = 5 * 1440 ' Set width to 5 inches.
BackColor = QBColor(1) ' Set background to blue.
ForeColor = QBColor(4) ' Set foreground to red.
Line (0, 0)-(Width / 3, Height), , BF ' Red box.
ForeColor = QBColor(15) ' Set foreground to white.
Line (Width / 3, 0)-((Width / 3) * 2, Height), , BF
LeftColor = Point(0, 0) ' Find color of left box,
MidColor = Point(Width / 2, Height / 2) ' middle box, and
RightColor = Point(Width, Height) ' right box.
Msg = "The color number for the red box on the left side of "
Msg = Msg & "the form is " & LeftColor & ". The "
Msg = Msg & "color of the white box in the center is "
Msg = Msg & MidColor & ". The color of the blue "
Msg = Msg & "box on the right is " & RightColor & "."
MsgBox Msg ' Display message.

End Sub

PopupMenu Method Example
This example displays a pop-up menu at the cursor location when the user clicks the right mouse
button over a form. To try this example, create a form that includes a Menu control named mnuFile
(mnuFile must have at least one submenu). Copy the code into the Declarations section of the form,
and press F5.
Private Sub Form_MouseDown (Button As Integer, Shift As Integer, X As
Single, Y As Single)

If Button = 2 Then
PopupMenu mnuFile

End If
End Sub

PrintForm Method Example
This example uses the PrintForm method to print the current form. To try this example, paste the
code into the Declarations section of a form. Place on the form any controls you want to see on the
printed form, and then press F5 and click the form.
Private Sub Form_Click ()

Dim Msg ' Declare variable.
On Error GoTo ErrorHandler ' Set up error handler.
PrintForm ' Print form.
Exit Sub

ErrorHandler:
Msg = "The form can't be printed."
MsgBox Msg ' Display message.
Resume Next

End Sub

RemoveItem Method Example
This example uses the RemoveItem method to remove entries from a list box. To try this example,
paste the code into the Declarations section of a form with a ListBox control named List1, and then
press F5 and click the form.
Private Sub Form_Click ()

Dim Entry, I, Msg ' Declare variables.
Msg = "Choose OK to add 100 items to your list box."
MsgBox Msg ' Display message.
For I = 1 To 100 ' Count from 1 to 100.

Entry = "Entry " & I ' Create entry.
List1.AddItem Entry ' Add the entry.

Next I
Msg = "Choose OK to remove every other entry."
MsgBox Msg ' Display message.
For I = 1 To 50 ' Determine how to

List1.RemoveItem I ' remove every other
Next I ' item.
Msg = "Choose OK to remove all items from the list box."
MsgBox Msg ' Display message.
List1.Clear ' Clear list box.

End Sub

Scale Method Example
This example uses the Scale method to set up a custom coordinate system so that a bar chart can be
drawn on a form. To try this example, paste the code into the Declarations section of a form, and then
press F5 and click the form.
Private Sub Form_Click ()

Dim I, OldFontSize ' Declare variables.
Width = 8640: Height = 5760 ' Set form size in twips.
Move 100,100 ' Move form origin.
AutoRedraw = -1 ' Turn on AutoRedraw.
OldFontSize = FontSize ' Save old font size.
BackColor = QBColor(7) ' Set background to gray.
Scale (0, 110)-(130, 0) ' Set custom coordinate system.
For I = 100 To 10 Step -10

Line (0, I)-(2, I) ' Draw scale marks every 10 units.
CurrentY = CurrentY + 1.5 ' Move cursor position.
Print I ' Print scale mark value on left.
Line (ScaleWidth - 2, I)-(ScaleWidth, I)
CurrentY = CurrentY + 1.5 ' Move cursor position.
CurrentX = ScaleWidth - 9
Print I ' Print scale mark value on right.

Next I
' Draw bar chart.
Line (10, 0)-(20, 45), RGB(0, 0, 255), BF ' First blue bar.
Line (20, 0)-(30, 55), RGB(255, 0, 0), BF ' First red bar.
Line (40, 0)-(50, 40), RGB(0, 0, 255), BF
Line (50, 0)-(60, 25), RGB(255, 0, 0), BF
Line (70, 0)-(80, 35), RGB(0, 0, 255), BF
Line (80, 0)-(90, 60), RGB(255, 0, 0), BF
Line (100, 0)-(110, 75), RGB(0, 0, 255), BF
Line (110, 0)-(120, 90), RGB(255, 0, 0), BF
CurrentX = 18: CurrentY = 100 ' Move cursor position.
FontSize = 14 ' Enlarge font for title.
Print "Widget Quarterly Sales" ' Print title.
FontSize = OldFontSize ' Restore font size.
CurrentX = 27: CurrentY = 93 ' Move cursor position.
Print "Planned Vs. Actual" ' Print subtitle.
Line (29, 86)-(34, 88), RGB(0, 0, 255), BF ' Print legend.
Line (43, 86)-(49, 88), RGB(255, 0, 0), BF

End Sub

SetText Method Example
This example uses the SetText method to copy text from a text box to the Clipboard. To try this
example, paste the code into the Declarations section of a form with a text box named Text1, and then
press F5 and click the form.
Private Sub Form_Click ()

Const CF_TEXT = 1 ' Define bitmap format.
Dim I, Msg, Temp ' Declare variables.
On Error Resume Next ' Set up error handling.
Msg = "Type anything you like into the text box below."
Text1.Text = InputBox(Msg) ' Get text from user.
Msg = "Choose OK to copy the contents of the text box "
Msg = Msg & "to the Clipboard."
MsgBox Msg ' Display message.
ClipBoard.Clear ' Clear Clipboard.
Clipboard.SetText Text1.Text ' Put text on Clipboard.
If Clipboard.GetFormat(CF_TEXT) Then

Text1.Text = "" ' Clear the text box.
Msg = "The text is now on the Clipboard. Choose OK "
Msg = Msg & "to copy the text from the Clipboard back "
Msg = Msg & "to the text box."
MsgBox Msg ' Display message.
Temp = Clipboard.GetText(CF_TEXT) ' Get Clipboard text.
For I = Len(Temp) To 1 Step -1 ' Reverse the text.

Text1.Text = Text1.Text & Mid(Temp, I, 1)
Next I

Else
Msg = "There is no text on the Clipboard."
MsgBox Msg ' Display error message.

End If
End Sub

Show Method Example
This example uses the Show method to show a hidden form. To try this example, paste the code into
the Declarations section of a non-MDI form, and then press F5 and click the form.
Private Sub Form_Click ()

Dim Msg ' Declare variable.
Hide ' Hide form.
Msg = "Choose OK to make the form reappear."
MsgBox Msg ' Display message.
Show ' Show form again.

End Sub

TextHeight Method Example
The TextHeight method is used to center a line of text vertically on a form. To try this example, paste
the code into the Declarations section of a form, and then press F5 and click the form.
Private Sub Form_Click ()

Dim HalfWidth, HalfHeight, Msg ' Declare variable.
AutoRedraw = -1 ' Turn on AutoRedraw.
BackColor = QBColor(4) ' Set background color.
ForeColor = QBColor(15) ' Set foreground color.
Msg = "Visual Basic" ' Create message.
FontSize = 48 ' Set font size.
HalfWidth = TextWidth(Msg) / 2 ' Calculate one-half width.
HalfHeight = TextHeight(Msg) / 2 ' Calculate one-half height.
CurrentX = ScaleWidth / 2 - HalfWidth ' Set X.
CurrentY = ScaleHeight / 2 - HalfHeight ' Set Y.
Print Msg ' Print message.

End Sub

TextWidth Method Example
The TextWidth method is used to center a line of text horizontally on a form. To try this example,
paste the code into the Declarations section of a form, and then press F5 and click the form.
Private Sub Form_Click ()

Dim HalfHeight, HalfWidth, Msg ' Declare variables.
AutoRedraw = -1 ' Turn on AutoRedraw.
BackColor = QBColor(4) ' Set background color.
ForeColor = QBColor(15) ' Set foreground color.
Msg = "Visual Basic" ' Create message.
FontSize = 48 ' Set font size.
HalfWidth = TextWidth(Msg) / 2 ' Calculate one-half width.
HalfHeight = TextHeight(Msg) / 2 ' Calculate one-half height.
CurrentX = ScaleWidth / 2 - HalfWidth ' Set X.
CurrentY = ScaleHeight / 2 - HalfHeight ' Set Y.
Print Msg ' Print message.

End Sub

App Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjAppC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjAppX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjAppP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjAppM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjAppE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjAppS"}

The App object is a global object accessed with the App keyword. It determines or specifies
information about the application's title, version information, the path and name of its executable file
and Help files, and whether or not a previous instance of the application is running.

Syntax
App

Remarks
The App object has no events or methods.

CheckBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjCheckBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjCheckBoxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjCheckBoxP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjCheckBoxM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjCheckBoxE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjCheckBoxS"}

A CheckBox control displays an X when selected; the X disappears when the CheckBox is cleared.
Use this control to give the user a True/False or Yes/No option. You can use CheckBox controls in
groups to display multiple choices from which the user can select one or more. You can also set the
value of a CheckBox programmatically with the Value property.

Syntax
CheckBox

Remarks
CheckBox and OptionButton controls function similarly but with an important difference: Any
number of CheckBox controls on a form can be selected at the same time. In contrast, only one
OptionButton in a group can be selected at any given time.

To display text next to the CheckBox, set the Caption property. Use the Value property to determine
the state of the control—selected, cleared, or unavailable.

ComboBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjComboBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjComboBoxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjComboBoxP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjComboBoxM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjComboBoxE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjComboBoxS"}

A ComboBox control combines the features of a TextBox control and a ListBox control—users can
enter information in the text box portion or select an item from the list box portion of the control.

Syntax
ComboBox
Remarks
To add or delete items in a ComboBox control, use the AddItem or RemoveItem method. Set the
List, ListCount, and ListIndex properties to enable a user to access items in the ComboBox.
Alternatively, you can add items to the list by using the List property at design time.

CommandButton Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjCommandButtonC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjCommandButtonX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjCommandButtonP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjCommandButtonM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjCommandButtonE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjCommandButtonS"}

Use a CommandButton control to begin, interrupt, or end a process. When chosen, a
CommandButton appears pushed in and so is sometimes called a push button.

Syntax
CommandButton

Remarks
To display text on a CommandButton control, set its Caption property. A user can always choose a
CommandButton by clicking it. To allow the user to choose it by pressing ENTER, set the Default
property to True. To allow the user to choose the button by pressing ESC, set the Cancel property of
the CommandButton to True.

Controls Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjControlsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjControlsP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjControlsM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjControlsE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjControlsS"}

A collection whose elements represent each control on a form, including elements of control array.
The Controls collection has a single property, Count, that specifies the number of elements in an
array.

Syntax
object.Controls(index)
The Controls collection syntax has these parts:

Part Description
object An object expression that evaluates to a Form

object.
Index An integer with a range from 0 to Controls.Count

- 1.

Remarks
The Controls collection enumerates loaded controls on a form and is useful for iterating through
them. The Controls collection identifies an intrinsic form-level variable named Controls. If you omit
the optional object placeholder, you must include the Controls keyword. However, if you include
object, you can omit the Controls keyword. For example, the following two lines of code have the
same effect:
MyForm.Controls(6).Top = MyForm.Controls(5).Top + increment
MyForm(6).Top = MyForm(5).Top + increment
You can pass Controls(index) to a function whose argument is specified as a Controls class. You
can also access members using their name. For example:

Controls(“Command1”).Top

DirListBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDirListBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjDirListBoxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDirListBoxP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDirListBoxM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDirListBoxE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDirListBoxS"}

A DirListBox control displays directories and paths at run time. Use this control to display a
hierarchical list of directories. You can create dialog boxes that, for example, enable a user to open a
file from a list of files in all available directories.

Syntax
DirListBox

Remarks
Set the List, ListCount, and ListIndex properties to enable a user to access items in a list. If you
also display the DriveListBox and FileListBox controls, you can write code to synchronize them with
the DirListBox control and with each other.

DriveListBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDriveListBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjDriveListBoxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDriveListBoxP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDriveListBoxM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDriveListBoxE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDriveListBoxS"}

A DriveListBox control enables a user to select a valid disk drive at run time. Use this control to
display a list of all the valid drives in a user's system. You can create dialog boxes that enable the
user to open a file from a list of files on a disk in any available drive.

Syntax
DriveListBox

Remarks
Set the List, ListCount, and ListIndex properties to enable a user to access items in the list. If you
also display the DirListBox and FileListBox controls, you can write code to synchronize them with
the DriveListBox control and with each other.

FileListBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjFileListBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjFileListBoxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjFileListBoxP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjFileListBoxM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjFileListBoxE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjFileListBoxS"}

A FileListBox control locates and lists files in the directory specified by the Path property at run time.
Use this control to display a list of files selected by file type. You can create dialog boxes in your
application that, for example, enable the user to select a file or group of files.

Syntax
FileListBox

Remarks
Set the List, ListCount, and ListIndex properties to enable a user to access items in the list. If you
also display the DirListBox and DriveListBox controls, you can write code to synchronize them with
the FileListBox control and with each other.

Form Object, Forms Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjFormC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjFormsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vaproStartUpPosition;vbobjFormP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjFormM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjFormE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjFormS"}

A Form object is a window or dialog box that makes up part of an application's user interface.

A Forms collection is a collection whose elements represent each loaded form in an application. The
collection includes the application's MDI form, MDI child forms, and non-MDI forms. The Forms
collection has a single property, Count, that specifies the number of elements in the collection.

Syntax
Form
Forms(index)
The placeholder index represents an integer with a range from 0 to Forms.Count - 1.

Remarks
You can use the Forms collection to iterate through all loaded forms in an application. It identifies an
intrinsic global variable named Forms. You can pass Forms(index) to a function. whose argument is
specified as a Forms class.

Forms have properties that determine aspects of their appearance, such as position, size, and color;
and aspects of their behavior, such as whether or not they are resizable.

Forms can also respond to events initiated by a user or triggered by the system. For example, you
could write code in a form's Click event procedure that would enable the user to change the color of a
form by clicking it.

In addition to properties and events, you can use methods to manipulate forms using code. For
example, you can use the Move method to change a form's location and size.

A special kind of form, the MDI form, can contain other forms called MDI child forms. An MDI form is
created with the MDI Form command on the Insert menu; an MDI child form is created by choosing
New Form from the File menu and then setting the MDIChild property to True.

You can create multiple instances of forms in code by using the New keyword in Dim, Set, and Static
statements.

When designing forms, set the BorderStyle property to define a form's border, and set the Caption
property to put text in the title bar. In code, you can use the Hide and Show methods to make forms
invisible or visible at run time.

Note Setting BorderStyle to 0 removes the border. If you want your form to have a border without
the title bar, Control-menu box, Maximize button, and Minimize button, delete any text from the form's
Caption property, and set the form's ControlBox, MaxButton, and MinButton properties to False.

Form is an Object data type. You can declare variables as type Form before setting them to an
instance of a type of form that was declared at design time. Similarly, you can pass an argument to a
procedure as type Form.

Forms also can act as sources in a DDEconversation, with a Label, PictureBox, or TextBox control
furnishing the data.

You can access the collection of controls on a Form using the Controls collection. For example, to
hide all the controls on an Form you can use code similar to the following:
For Each Control in Form1.Controls

Control.Visible = False

Next Control

Frame Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjFrameC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjFrameX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjFrameP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjFrameM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjFrameE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjFrameS"}

A Frame control provides an identifiable grouping for controls. You can also use a Frame to subdivide
a form functionally—for example, to separate groups of OptionButton controls.

Syntax
Frame

Remarks
To group controls, first draw the Frame control, and then draw the controls inside the Frame. This
enables you to move the Frame and the controls it contains together. If you draw a control outside the
Frame and then try to move it inside, the control will be on top of the Frame and you'll have to move
the Frame and controls separately.

To select multiple controls in a Frame, hold down the CTRL key while using the mouse to draw a box
around the controls.

HScrollBar, VScrollBar Controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjHScrollBarC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjHScrollBarX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjHScrollBarP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjHScrollBarM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjHScrollBarE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjHScrollBarS"}

Scroll bars provide easy navigation through a long list of items or a large amount of information. They
can also provide an analog representation of current position. You can use a scroll bar as an input
device or indicator of speed or quantity—for example, to control the volume of a computer game or to
view the time elapsed in a timed process.

Syntax
HScrollBar
VScrollBar

Remarks
When you're using a scroll bar as an indicator of quantity or speed or as an input device, use the Max
and Min properties to set the appropriate range for the control.

To specify the amount of change to report in a scroll bar, use the LargeChange property for clicking
in the scroll bar, and the SmallChange property for clicking the arrows at the ends of the scroll bar.
The scroll bar's Value property increases or decreases by the values set for the LargeChange and
SmallChange properties. You can position the scroll box at run time by setting Value between 0 and
32,767, inclusive.

Image Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjImageC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjImageX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjImageP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjImageM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjImageE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjImageS"}

Use the Image control to display a graphic. An Image control can display a graphic from a bitmap,
icon, or metafile, as well as enhanced metafile, JPEG, or GIF files.

Syntax
Image

Remarks
The Image control uses fewer system resources and repaints faster than a PictureBox control, but it
supports only a subset of the PictureBox properties, events, and methods. Use the Stretch property
to determine whether the graphic is scaled to fit the control or vice versa. Although you can place an
Image control within a container, an Image control can't act as a container.

Label Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjLabelC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjLabelX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjLabelP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjLabelM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjLabelE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjLabelS"}

A Label control is a graphical control you can use to display text that a user can't change directly.

Syntax
Label

Remarks
You can write code that changes the text displayed by a Label control in response to events at run
time. For example, if your application takes a few minutes to commit a change, you can display a
processing-status message in a Label. You can also use a Label to identify a control, such as a
TextBox control, that doesn't have its own Caption property.

Set the AutoSize and WordWrap properties if you want the Label to properly display variable-length
lines or varying numbers of lines.

A Label control can also act as a destination in a DDEconversation. Set the LinkTopic property to
establish a link, set the LinkItem property to specify an item for the conversation, and set the
LinkMode property to activate the link. When these properties have been set, Visual Basic attempts
to initiate the conversation and displays a message if it's unable to do so.

Set the UseMnemonic property to True if you want to define a character in the Caption property of
the Label as an access key. When you define an access key in a Label control, the user can press
and hold down ALT+ the character you designate to move the focus to the next control in the tab
order.

Line Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjLineC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjLineX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjLineP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjLineM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjLineE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjLineS"}

A Line control is a graphical control displayed as a horizontal, vertical, or diagonal line.

Syntax
Line

Remarks
You can use a Line control at design time to draw lines on forms. At run time, you can use a Line
control instead of, or in addition to, the Line method. Lines drawn with the Line control remain on the
form even if the AutoRedraw property setting is False. Line controls can be displayed on forms, in
picture boxes, and in frames. You can't use the Move method to move a Line control at run time, but
you can move or resize it by altering its X1, X2, Y1, and Y2 properties. The effect of setting the
BorderStyle property depends on the setting of the BorderWidth property. If BorderWidth isn't 1
and BorderStyle isn't 0 or 6, BorderStyle is set to 1.

ListBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjListBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjListBoxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjListBoxP"} {ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjListBoxM"}
{ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjListBoxE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjListBoxS"}

A ListBox control displays a list of items from which the user can select one or more. If the number of
items exceeds the number that can be displayed, a scroll bar is automatically added to the ListBox
control.

If no item is selected, the ListIndex property value is -1. The first item in the list is ListIndex 0, and
the value of the ListCount property is always one more than the largest ListIndex value.

Syntax
ListBox

Remarks
To add or delete items in a ListBox control, use the AddItem or RemoveItem method. Set the List,
ListCount, and ListIndex properties to enable a user to access items in the ListBox. Alternatively,
you can add items to the list by using the List property at design time.

MDIForm Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjMDIFormC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjMDIFormX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vaobjMDIFormP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjMDIFormM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjMDIFormE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjMDIFormS"}

An MDI (multiple-document interface) form is a window that acts as the background of an application
and is the container for forms that have their MDIChild property set to True.

Syntax
MDIForm

Remarks
You create an MDIForm object by choosing MDI Form from the Insert menu.

An application can have only one MDIForm object but many MDI child forms. If an MDI child form has
menus, the child form's menu bar automatically replaces the MDIForm object's menu bar when the
MDI child form is active. A minimized MDI child form is displayed as an icon within the MDIForm.

An MDIForm object can contain only Menu and PictureBox controls and custom controls that have
an Align property. To place other controls on an MDIForm, you can draw a picture box on the form,
and then draw other controls inside the picture box. You can use the Print method to display text in a
picture box on an MDIForm, but you can't use this method to display text on the MDIForm itself.

An MDIForm object can't be modal.

MDI child forms are designed independently of the MDIForm, but are always contained within the
MDIForm at run time.

You can access the collection of controls on an MDIForm using the Controls collection. For example,
to hide all the controls on an MDIForm you can use code similar to the following:
For Each Control in MDIForm1.Controls

Control.Visible = False
Next Control
The Count property of the MDIForm tells you the number of controls in the Controls collection.

Menu Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjMenuX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjMenuP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjMenuM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjMenuE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjMenuS"}

A Menu control displays a custom menu for your application. A menu can include commands,
submenus, and separator bars. Each menu you create can have up to four levels of submenus.

Syntax
Menu

Remarks
To create a Menu control, use the Menu Editor. Enter the name of the Menu control in the Caption
box. To create a separator bar, enter a single hyphen (-) in the Caption box. To display a check mark
to the left of a menu item, select the Checked box.

While you can set some Menu control properties using the Menu Editor, all Menu control properties
are displayed in the Properties window. To display the properties of a Menu control, select the menu
name in the Objects list at the top of the Properties window.

When you create an MDI application, the menu bar on the MDI child form replaces the menu bar on
the MDIForm object when the child form is active.

OptionButton Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjOptionButtonC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjOptionButtonX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjOptionButtonP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjOptionButtonM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjOptionButtonE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjOptionButtonS"}

An OptionButton control displays an option that can be turned on or off.

Syntax
OptionButton

Remarks
Usually, OptionButton controls are used in an option group to display options from which the user
selects only one. You group OptionButton controls by drawing them inside a container such as a
Frame control, a PictureBox control, or a form. To group OptionButton controls in a Frame or
PictureBox, draw the Frame or PictureBox first, and then draw the OptionButton controls inside.
All OptionButton controls within the same container act as a single group.

While OptionButton controls and CheckBox controls may appear to function similarly, there is an
important difference: When a user selects an OptionButton, the other OptionButton controls in the
same group are automatically unavailable. In contrast, any number of CheckBox controls can be
selected.

PictureBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjPictureBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjPictureBoxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjPictureBoxP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjPictureBoxM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjPictureBoxE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjPictureBoxS"}

A PictureBox control can display a graphic from a bitmap, icon, or metafile, as well as enhanced
metafile, JPEG, or GIF files. It clips the graphic if the control isn't large enough to display the entire
image.

Syntax
PictureBox

Remarks
You can also use a PictureBox control to group OptionButton controls and to display output from
graphics methods and text written with the Print method.

To make a PictureBox control automatically resize to display an entire graphic, set its AutoSize
property to True.

To create animation or simulation, you can manipulate graphics properties and methods in code.
Graphics properties and events are useful for run-time print operations, such as modifying the format
of a screen form for printing.

A PictureBox control can also act as a destination link in a DDE conversation.

The PictureBox and Data controls are the only standard Visual Basic controls that you can place in
the internal area of an MDI form. You can use it to group controls at the top or bottom of the internal
area to create a toolbar or status bar.

Shape Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjShapeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjShapeX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjShapeP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjShapeM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjShapeE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjShapeS"}

The Shape control is a graphical control displayed as a rectangle, square, oval, circle, rounded
rectangle, or rounded square.

Syntax
Shape

Remarks
Use Shape controls at design time instead of, or in addition to, invoking Circle and Line methods at
run time. You can draw a Shape control in a container, but it can't act as a container. The effect of
setting the BorderStyle property depends on the setting of the BorderWidth property. If
BorderWidth isn't 1 and BorderStyle isn't 0 or 6, BorderStyle is set to 1.

TextBox Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjTextBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjTextBoxX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjTextBoxP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjTextBoxM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjTextBoxE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjTextBoxS"}

A TextBox control, sometimes called an edit field or edit control, displays information entered at
design time, entered by the user, or assigned to the control in code at run time.

Syntax
TextBox

Remarks
To display multiple lines of text in a TextBox control, set the MultiLine property to True. If a multiple-
line TextBox doesn't have a horizontal scroll bar, text wraps automatically even when the TextBox is
resized. To customize the scroll bar combination on a TextBox, set the ScrollBars property.

If you set the MultiLine property to True, you can use the Alignment property to set the alignment of
text within the TextBox. The text is left-justified by default. If the MultiLine property is False, setting
the Alignment property has no effect.

A TextBox control can also act as a destination link in a DDE conversation.

Timer Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjTimerC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjTimerX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbobjTimerP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbobjTimerM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbobjTimerE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbobjTimerS"}

A Timer control can execute code at regular intervals by causing a Timer event to occur.

Syntax
Timer

Remarks
The Timer control, invisible to the user, is useful for background processing.

You can't set the Enabled property of a Timer for a multiple selection of controls other than Timer
controls.

There is no practical limit on the number of active timer controls you can have in Visual Basic 5.0
running under Windows 95 or Windows NT.

Forms Collection Example
This example fills a list box with the captions of all the currently loaded forms.
Private Sub Form_Activate ()

Dim I ' Declare variable.
' Refill list (in case an instance was added or removed).
lstForms.Clear ' Clear list box.
For I = 0 To Forms.Count - 1

lstForms.AddItem Forms(I).Caption
Next I

End Sub

Controls Collection Example
This example enables all currently loaded controls on a form (except menus).
Sub EnableControlsOn (Frm As Form, State As Integer)

Dim I ' Declare variable.
For I = 0 To Frm.Controls.Count - 1

If Not TypeOf Frm.Controls(I) Is Menu Then
Frm.Controls(I).Enabled = State

End If
Next I

End Sub

OLE Container Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjOLEContainerC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjOLEContainerX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjOLEContainerP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjOLEContainerM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjOLEContainerE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjOLEContainerS"}

The OLE container control enables you to add insertable objects to the forms in your Visual Basic
applications. With the OLE container control, you can:

· Create a placeholder in your application for an insertable object. At run time you can create the
object that is displayed within the OLE container control or change an object you placed within the
OLE container control at design time.

· Create a linked object in your application.
· Bind the OLE container control to a database using the Data control.

You either create the object at design time using the Insert Object dialog box (which contains the
commands Insert Object, Paste Special, and so on), or at run time by setting the appropriate
properties.

When you move an OLE container control on a form using the ObjectMove method, the Height and
Width property values of the object may be slightly different after the move. This is because the
parameters to the ObjectMove method are pixel values converted to the current form's scaling mode.
The conversion from pixels to twips and back doesn't always result in identical values.

Using the OLE Container Control's Pop-up Menus
Each time you draw an OLE container control on a form, the Insert Object dialog box is displayed.
Use this dialog box to create a linked or embedded object. If you choose Cancel, no object is created.

At design time, click the OLE container control with the right mouse button to display a pop-up menu.
The commands displayed on this pop-up menu depend on the state of the OLE container control as
shown in the following table:

Command Enabled in pop-up menu when
Insert Object Always enabled.
Paste Special Clipboard object contains a valid object.
Delete Embedded Object OLE container control contains an embedded

object.
Delete Linked Object OLE container control contains a linked object.
Create Link SourceDoc property is set.
Create Embedded Object Class or SourceDoc property is set.

An OLE container control can contain only one object at a time. You can create a linked or embedded
object in several ways:

· Use the Insert Object or Paste Special dialog boxes (run time or design time).
· Set the Class property in the Properties window, click the OLE container control with the right

mouse button, and then select the appropriate command (design time only).
· Use the appropriate method of the OLE container control.

Finding Class Names
You can get a list of the class names available to your application by selecting the Class property in
the Properties window and clicking the Properties button.

Note The Insert Object dialog box doesn't display a list of class names. This dialog box displays

user-friendly names for each class of object, which are generally longer and more easily understood.

Class Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"proClassC;vbproBooksOnlineJumpTopic;vbproClassC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproClassX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"proClassA;vbproClassA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproClassS"}

Returns or sets the class name of an embedded object .

Syntax
object.Class [= string]
The Class property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression specifying the class name.

Remarks
A class name defines the type of an object. Applications that support ActiveX components fully qualify
the class names of their objects using either of the following syntaxes:

application.objecttype.version
objecttype.version
The syntax for ActiveX component class names has the following parts:

Part Description
application The name of the application that supplies the object.
objecttype The object's name as defined in the object library.
version The version number of the object or application that

supplies the object.

For example, Microsoft Excel version 5.0 supports a number of objects, including worksheets and
charts. Their class names are Excel.Sheet.5 and Excel.Chart.5. Microsoft WordArt version 2.0
supports a single object with the class name MSWordArt.2.

Note Some ActiveX component programming documentation refers to the class name syntax as a
programmatic ID.

To view a list of class names available on your system, select the OLE container control, select the
Class property in the Properties window, and then click the builder button.

Copying an object from the system Clipboard updates the control’s Class property. For example, if
you paste a Microsoft Excel chart from the system Clipboard into an OLE container control that
previously contained a Microsoft Excel worksheet, its Class property setting changes from
Excel.Sheet.5 to Excel.Chart.5. You can paste an object from the system Clipboard at run time with
the Paste method or the PasteSpecialDlg method.

ObjectVerbFlags Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproObjectVerbFlagsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproObjectVerbFlagsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproObjectVerbFlagsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproObjectVerbFlagsS"}

Returns the menu state (such as enabled or disabled, checked, and so on) for each verb in a given
ObjectVerbs array.

Syntax
object.ObjectVerbFlags(number)
The ObjectVerbFlags property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression indicating the element in the

array.

Return Values
The ObjectVerbFlags property returns the following values:

Constant Value Description
vbOLEFlagChecked &H0008 The menu item is checked.
vbOLEFlagDisabled &H0002 The menu item is disabled (but not

dimmed).
vbOLEFlagEnabled &H0000 The menu item is enabled.
vbOLEFlagGrayed &H0001 The menu item is dimmed.
vbOLEFlagSeparator &H0800 The menu item is a separator bar.

Note These constants are also listed in the Visual Basic objects and procedures library in the
Object Browser.

Remarks
The first verb in the ObjectVerbs array is the default verb. The ObjectVerbFlags array contains
information about the menu state (such as dimmed, checked, and so on) for each verb in the
ObjectVerbs array.

When displaying a menu containing an object's verbs, check the value of this property to see how the
item is set to be displayed.

SizeMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSizeModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSizeModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSizeModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSizeModeS"}

Returns or sets a value specifying how the OLE container control is sized or how its image is
displayed when it contains an object.

Syntax
object.SizeMode [= value]
The SizeMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer or constant specifying how the control is

sized or how its image is displayed, as described in
Settings.

Settings
The settings for value are:

Constant Value Description
vbOLESizeClip 0 (Default) Clip. The object is displayed

in actual size. If the object is larger
than the OLE container control, its
image is clipped by the control's
borders.

vbOLESizeStretch 1 Stretch. The object's image is sized to
fill the OLE container control. The
image may not maintain the original
proportions of the object.

vbOLESizeAutoSize 2 Autosize. The OLE container control is
resized to display the entire object.

vbOLESizeZoom 3 Zoom. The object is resized to fill the
OLE container control as much as
possible while still maintaining the
original proportions of the object.

Remarks
When SizeMode is set to 2 (Autosize), the OLE container control is automatically resized when the
display size of an object changes. When this occurs, the Resize event is invoked before the OLE
container control is automatically resized. The heightnew and widthnew arguments in the Resize
event procedure indicate the optimal size for displaying the object (this size is determined by the
application that created the object). You can size the control by changing the values of the heightnew
and widthnew arguments in the Resize event procedure.

Data Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDataC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDataX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataS"}

Returns or sets a handle to a memory object or graphical device interface (GDI) object containing
data in a specified format. Not available at design time.

Syntax
object.Data [= number]
The Data property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A Long integer specifying the handle.

Remarks
Set this property to send data to an application that created an object. Before using the Data property,
set the Format property to specify the type of data contained in the memory object or GDI object.

You can get a list of acceptable formats for an object using the ObjectAcceptFormats and
ObjectGetFormats properties.

Setting this property to 0 frees the memory associated with the handle.

Tip Automation provides an easier and more reliable solution for sending data and commands to
and from an object. If an object supports Automation, you can access the object through the Object
property or using the CreateObject and GetObject functions

DataText Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDataTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDataTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDataTextA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataTextS"}

Returns a string from or sets a string for the specified object.

Syntax
object.DataText [= string]
The DataText property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression specifying the string.

Remarks
To send a string to an object, first set the Format property to a format the object supports. Use the
ObjectGetFormats and ObjectAcceptFormats properties to get a list of formats supported by an
object.

When getting data from an object, the DataText property returns the string sent from the object,
ending at the first null character.

The DataText string can be as large as available memory permits.

Tip Automation provides an easier and more reliable solution for sending data and commands to
and from an object. If an object supports Automation, you can access the object through the Object
property or using the CreateObject and GetObject functions.

FileNumber Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFileNumberC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFileNumberX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFileNumberA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFileNumberS"}

Returns or sets the file number to be used when saving or loading an object, or returns the last file
number used. Not available at design time.

Note The FileNumber property is included for compatibility with the Action property in earlier
versions. For current functionality, use the SaveToFile and ReadFromFile methods.

Syntax
object.FileNumber [= number]
The FileNumber property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression specifying the file number.

Remarks
The file number must correspond to an open, binary file.

You can use this property to specify the number of the file to be opened with the ReadFromFile
method or saved with the SaveToFile or SaveToOle1File methods.

HostName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHostNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHostNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHostNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHostNameS"}

Returns or sets the user-readable host name of your Visual Basic application.

Syntax
object.HostName [= name]
The HostName property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
name A string expression specifying the host name.

Remarks
When editing an object, the HostName property setting may be displayed in the object's window title.
However, some applications that provide objects don't display HostName.

lpOleObject Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLpOleObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLpOleObjectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLpOleObjectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLpOleObjectS"}

Returns the address of the object.

Syntax
object.lpOleObject
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Many function calls in the ActiveX DLLs require the address of an object as an argument. Pass the
value specified in the lpOleObject property when making API calls to the ActiveX DLLs. The value is
0 if no object is currently displayed. If a call is made to an API that makes a callback to the OLE
container control, the result is unpredictable.

The address returned by this property is a pointer to the lpOleObject interface for the active object.

ObjectAcceptFormatsCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproObjectAcceptFormatsCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproObjectAcceptFormatsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproObjectAcceptFormatsCountA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproObjectAcceptFormatsCountS"}

Returns the number of formats that can be accepted by an object.

Syntax
object.ObjectAcceptFormatsCount
The object is an object expression that evaluates to an object in the Applies To list.

Remarks
Use this property to get the number of elements in the ObjectAcceptFormats property array.

DisplayType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDisplayTypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDisplayTypeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDisplayTypeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDisplayTypeS"}

Returns or sets a value indicating whether an object displays its contents or an icon.

Syntax
object.DisplayType [= value]
The DisplayType property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer or constant specifying whether an object

displays its contents or an icon, as described in
Settings.

Settings
The settings for value are:

Constant Value Descriptioni
vbOLEDisplayContent 0 (Default) Content. When the OLE

container control contains an object,
the object's data is displayed in the
control.

vbOLEDisplayIcon 1 Icon. When the OLE container control
contains an object, the object's icon is
displayed in the control.

Remarks
This property determines the default setting of the Display As Icon check box in the Insert Object and
Paste Special dialog boxes. When you display these dialog boxes either at run time (with the
InsertObjDlg or PasteSpecialDlg methods) or design time, the Display As Icon check box is
automatically selected if this property is set to 1 (Icon).

When creating an object at run time using the CreateEmbed or CreateLink methods, use the
DisplayType property to determine if the object is displayed as an icon (set DisplayType = 1) or if the
object's data is displayed in the control (set DisplayType = 0).

Once you create an object, you can't change its display type.

ObjectGetFormats Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproObjectGetFormatsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproObjectAcceptFormatsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproObjectGetFormatsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproObjectGetFormatsS"}

Returns the list of formats an object can provide.

Syntax
object.ObjectGetFormats(number)
The ObjectGetFormats property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression indicating the element in the

array.

Remarks
The list is a zero-based string array. Elements of the array can be used to set the Format property
when getting data from an object using the Data and DataText properties.

ObjectGetFormatsCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproObjectGetFormatsCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproObjectAcceptFormatsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproObjectGetFormatsCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproObjectGetFormatsCountS"}

Returns the number of formats an object can provide.

Syntax
object.ObjectGetFormatsCount
The object is an object expression that evaluates to an object in the Applies To list.

Remarks
Use this property to determine the number of elements in the ObjectGetFormats property array.

OLEType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLETypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLETypeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOLETypeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLETypeS"}

Returns the status of the object in an OLE container control.

Syntax
object.OLEType
The object is an object expression that evaluates to an object in the Applies To list.

Return Values
The OLEType property returns the following values:

Constant Value Description
vbOLELinked 0 Linked. The OLE container control

contains a linked object. All the object's
data is managed by the application that
created it. When the object is saved
using the SaveToFile method, only link
information such as SourceDoc,
SourceItem, and so on is saved in the
specified file by your Visual Basic
application.

vbOLEEmbedded 1 Embedded. The OLE container control
contains an embedded object. All the
object's data is managed within the
Visual Basic application. When the
object is saved using the SaveToFile
method, all data associated with the
object is saved in the specified file.

vbOLENone 3 None. The OLE container control
doesn't contain an object.

Remarks
Use this property to determine if the OLE container control contains an object or to determine the type
of object the OLE container control contains.

Use the AppIsRunning property to determine if the application that created the object is running.

When creating an object, use the OLETypeAllowed property to determine the type of object that can
be created.

ObjectVerbs Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproObjectVerbsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproObjectAcceptFormatsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproObjectVerbsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproObjectVerbsS"}

Returns the list of verbs an object supports.

Syntax
object.ObjectVerbs(number)
The ObjectVerbs property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression indicating the element in the

array.

Remarks
ObjectVerbs is a zero-based string array. Use this property along with the ObjectVerbsCount
property to get the verbs supported by an object. These verbs are used to determine an action to
perform when an object is activated with the DoVerb method. The list of verbs in the array varies from
object to object and depends on the current conditions.

Each object can support its own set of verbs. The following values represent standard verbs
supported by every object:

Constant Value Description
vbOLEPrimary 0 The default action for the object.
vbOLEShow -1 Activates the object for editing. If

the application that created the
object supports in-place activation,
the object is activated within the
OLE container control.

vbOLEOpen -2 Opens the object in a separate
application window. If the
application that created the object
supports in-place activation, the
object is activated in its own
window.

vbOLEHide -3 For embedded objects, hides the
application that created the object.

vbOLEUInPlaceUIActivate -4 If the object supports in-place
activation, activates the object for
in-place activation and shows any
user interface tools. If the object
doesn't support in-place activation,
the object doesn't activate, and an
error occurs.

vbOLEInPlaceActivate -5 If the user moves the focus to the
OLE container control, creates a
window for the object and
prepares the object to be edited.
An error occurs if the object
doesn't support activation on a

single mouse click.
vbOLEDiscardUndoState -6 Used when the object is activated

for editing to discard all record of
changes that the object's
application can undo.

Note These verbs may not be listed in the ObjectVerbs property array.

The first verb in the ObjectVerbs array, ObjectVerbs(0), is the default verb. Unless otherwise
specified, this verb activates the object.

The remaining verbs in the array can be displayed on a menu. If it's appropriate to display the default
verb in a menu, the default verb has two entries in the ObjectVerbs array.

Applications that display objects typically include an Object command on the Edit menu. When the
user chooses Edit Object, a menu displays the object's verbs. Use the ObjectVerbs,
ObjectVerbsCount, and ObjectVerbFlags properties to create such a menu at run time.

The list of verbs an object supports may vary, depending on the state of the object. To update the list
of verbs an object supports, use the FetchVerbs method. Be sure to update the list of verbs before
presenting it to the user.

To automatically display the verbs in the ObjectVerbs array in a pop-up menu when the user clicks
an object with the right mouse button, set the AutoVerbMenu property to True.

ObjectVerbsCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproObjectVerbsCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproObjectAcceptFormatsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproObjectVerbsCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproObjectVerbsCountS"}

Returns the number of verbs supported by an object.

Syntax
object.ObjectVerbsCount
The object is an object expression that evaluates to an OLE container control.

Remarks
Use this property to determine the number of elements in the ObjectVerbs property array.

The list of verbs an object supports may vary, depending on the state of the object. To update the list
of verbs an object supports, use the FetchVerbs method.

SourceDoc Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSourceDocC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSourceDocX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSourceDocA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSourceDocS"}

Returns or sets the filename to use when you create an object.

Note You set the SourceDoc property for compatibility with the Action property in earlier versions.
For current functionality, use the CreateEmbed and CreateLink methods.

Syntax
object.SourceDoc [= name]
The SourceDoc property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
name A string expression specifying a filename.

Remarks
Use the SourceDoc property to specify the file to be linked when creating a linked object using the
Action property. Use the SourceItem property to specify data within the file to be linked.

When creating an embedded object using the Action property, if the SourceDoc property is set to a
valid filename, an embedded object is created using the specified file as a template.

When a linked object is created, the SourceItem property is concatenated to the SourceDoc
property. At run time, the SourceItem property returns a zero-length string (""), and the SourceDoc
property returns the entire path to the linked file, followed by an exclamation point (!) or a backslash
(\), followed by the SourceItem. For example:

"C:\WORK\QTR1\REVENUE.XLS!R1C1:R30C15"

SourceItem Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSourceItemC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSourceItemX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSourceItemA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSourceItemS"}

Returns or sets the data within the file to be linked when you create a linked object.

Syntax
object.SourceItem [= string]
The SourceItem property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression specifying the data to be linked.

Remarks
OLETypeAllowed must be set to 0 (Linked) or 2 (Either) when using this property. Use the
SourceDoc property to specify the file to link.

Each object uses its own syntax to describe units of data. To set this property, specify a unit of data
recognized by the object. For example, when you link to Microsoft Excel, specify the SourceItem
using a cell or cell-range reference such as R1C1 or R3C4:R9C22, or a named range such as
Revenues.

To determine the syntax to describe a unit of data for an object, see the documentation for the
application that created the object.

Note You may be able to determine this syntax by creating a linked object at design timeusing the
Paste Special command (click the OLE container control with the right mouse button). Once the
object is created, select the SourceDoc property in the Properties window and look at the string in
the Settings box. For most objects, this string contains a path to the linked file, followed by an
exclamation point (!) or a backslash (\) and the syntax for the linked data.

When a linked object is created, the SourceItem property is concatenated to the SourceDoc
property. At run time, the SourceItem property returns a zero-length string (""), and the SourceDoc
property returns the entire path to the linked file, followed by an exclamation point (!) or a backslash
(\), followed by the SourceItem. For example:
"C:\WORK\QTR1\REVENUE.XLS!R1C1:R30C15"

AppIsRunning Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vaproAppIsRunningC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAppIsRunningX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vaproAppIsRunningA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAppIsRunningS"}

Returns or sets a value that indicates whether the application that created the object in the OLE
container control is running. Not available at design time.

Syntax
object.AppIsRunning [= boolean]
The AppIsRunning property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying whether or not the

application that produced the object in the OLE
container control is running, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The application that produced the object in the OLE

container control is running.
False The application that produced the object in the OLE

container control isn't running.

Remarks
You can set the value of the AppIsRunning property to start the application that produces the object
in the OLE container control. Doing this causes objects to activate more rapidly. You can also set this
property to False to close the application when the object loses the focus.

UpdateOptions Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproUpdateOptionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproUpdateOptionsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproUpdateOptionsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUpdateOptionsS"}

Returns or sets a value specifying how an object is updated when linked data is modified.

Syntax
object.UpdateOptions [= number]
The UpdateOptions property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A integer specifying how an object is updated, as

described in Settings.

Settings
The settings for number are:

Constant Value Description
vbOLEAutomatic 0 (Default) Automatic. The object is updated

each time the linked data changes.
vbOLEFrozen 1 Frozen. The object is updated whenever

the user saves the linked data from within
the application in which it was created.

vbOLEManual 2 Manual. The object is updated only by
using the Update method.

Remarks
This property is useful for linked objects where other users or applications can access and modify the
linked data.

When an object's data is changed, the Updated event is invoked.

Verb Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproVerbC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVerbX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproVerbA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproVerbS"}

Returns or sets a value specifying an operation to perform when an object is activated using the
Action property.

Note The Verb property is included for compatibility with the Action property in earlier versions.
For current functionality, use the DoVerb method.

Syntax
object.Verb [= number]
The Verb property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A value that specifies the operation to perform.

Remarks
Each object can support its own set of verbs. Use the ObjectVerbs and ObjectVerbsCount
properties to access the list of verbs supported by an object. Set Verb = 1 to specify the first verb in
the list, set Verb = 2 to specify the second verb in the list, and so on.

Set AutoActivate to 2 (Double-Click) to automatically activate an object when it's double-clicked by
the user.

Set AutoVerbMenu = True to display a pop-up menu containing the object's verbs when the user
clicks the object with the right mouse button.

Updated Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtUpdatedC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtUpdatedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtUpdatedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtUpdatedS"}

Occurs when an object's data has been modified.

Syntax
Sub object_Updated (code As Integer)
The Updated event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
code An integer that specifies how the object was

updated, as described in Settings.

Settings
The settings for code are:

Constant Value Description
vbOLEChanged 0 The object's data has changed.
vbOLESaved 1 The object's data has been saved by the

application that created the object.
vbOLEClosed 2 The file containing the linked object's data

has been closed by the application that
created the object.

vbOLERenamed 3 The file containing the linked object's data
has been renamed by the application that
created the object.

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser. You can use
this event to determine if an object's data has been changed since it was last saved. To do this, set a
global variable in the Updated event indicating that the object needs to be saved. After you save the
object, reset the variable.

AutoActivate Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAutoActivateC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAutoActivateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAutoActivateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAutoActivateS"}

Returns or sets a value that enables the user to activate an object by double-clicking the OLE
container control or by moving the focus to the OLE container control.

Syntax
object.AutoActivate [= value]
The AutoActivate property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer or constant specifying the technique used

to activate the object within the OLE container
control, as described in Settings.

Settings
The settings for value are:

Constant Value Description
vbOLEActivateManual 0 Manual. The object isn't

automatically activated. You can
activate an object
programmatically using the
DoVerb method.

vbOLEActivateGetFocus 1 Focus. If the OLE container
control contains an object that
supports single click activation,
the application that provides the
object is activated when the OLE
container control receives the
focus.

vbOLEActivateDoubleclick 2 (Default) Double-Click. If the OLE
container control contains an
object, the application that
provides the object is activated
when the user double-clicks the
OLE container control or presses
ENTER when the control has the
focus.

vbOLEActivateAuto 3 Automatic. If the OLE container
control contains an object, the
application that provides the
object is activated based on the
object's normal method of
activation either when the
control receives the focus or when
the user double-clicks the control.

Remarks

You can determine if the OLE container control contains an object by checking the OLEType property.

Note When AutoActivate is set to 2 (Double-Click), the DblClick event doesn't occur when the
user double-clicks an OLE container control.

AutoVerbMenu Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAutoVerbMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAutoVerbMenuX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAutoVerbMenuA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAutoVerbMenuS"}

Returns or sets a value that determines if a pop-up menu containing the object's verbs is displayed
when the user clicks the OLE container control with the right mouse button.

Syntax
object.AutoVerbMenu[= boolean]
The AutoVerbMenu property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying whether a pop-up

menu is displayed, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) When the user clicks the OLE container control with

the right mouse button, a pop-up menu is displayed, showing
the commands the object supports.

False No pop-up menu is displayed.

Remarks
When this property is set to True, Click events and MouseDown events don't occur when the OLE
container control is clicked with the right mouse button.

In order to display your own menus, the AutoVerbMenu property must be set to False.

Object Property (OLE Container)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproObjectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproObjectA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":""}

Returns the object and/or a setting of an object's method or property in an OLE container control.

Syntax
object.Object[.property | .method]
The Object property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
property Property that the object supports.
method Method that the object supports.

Remarks
Use this property to specify an object you want to use in an Automation task.

You use the object returned by the Object property in an Automation task by using the properties and
methods of that object. For information on which properties and methods an object supports, see the
documentation for the application that created the object.

OLETypeAllowed Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOLETypeAllowedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLETypeAllowedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOLETypeAllowedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLETypeAllowedS"}

Returns or sets the type of object the OLE container control can contain.

Syntax
object.OLETypeAllowed [= value]
The OLETypeAllowed property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer or constant that specifies the type of

object, as described in Settings.

Settings
The settings for value are:

Constant Value Description
vbOLELinked 0 Linked. The OLE container control can

contain only a linked object.
vbOLEEmbedded 1 Embedded. The OLE container control

can contain only an embedded object.
vbOLEEither 2 (Default) Either. The OLE container

control can contain either a linked or an
embedded object.

Remarks
This property determines the type of object a user can create:

· When using the Insert Object dialog box, use the InsertObjDlg method to display this dialog box.
· When using the Paste Special dialog box, use the PasteSpecialDlg method to display this dialog

box.
· When pasting an object from the system Clipboard, use the Paste method to paste objects from

the system Clipboard.

Use the OLEType property to determine an object's type (linked, embedded, or none).

PasteSpecialDlg Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthPasteSpecialDlgC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthPasteSpecialDlgX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthPasteSpecialDlgA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthPasteSpecialDlgS"}

Displays the Paste Special dialog box.

Syntax
object.PasteSpecialDlg
The object is an object expression that evaluates to an object in the Applies To list.

Remarks
At run time, you display this dialog box to enable the user to paste an object from the system
Clipboard. This dialog box displays several options to the user, including pasting either a linked or
embedded object.

Use the OLETypeAllowed property to determine the type of object that can be created (linked,
embedded, or either) using this dialog box.

If the PasteOK property setting is True and Visual Basic can't paste the object, the OLE container
control deletes any object already in the control.

Copy Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCopyC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthCopyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthCopyA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCopyS"}

Copies the object within an OLE container control to the system Clipboard.

Syntax
object.Copy
The object is an object expression that evaluates to an object in the Applies To list.

Remarks
When you copy an object onto the system Clipboard, all the data and link information associated with
the object is placed on the system Clipboard. You can copy both linked and embedded objects onto
the system Clipboard.

You can use this method to support an Edit Copy command on a menu.

CreateEmbed Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCreateEmbedC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthCreateEmbedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthCreateEmbedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCreateEmbedS"}

Creates an embedded object. Doesn't support named arguments.

Syntax
object.CreateEmbed sourcedoc, class
The CreateEmbed method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
sourcedoc Required. The filename of a document used as a

template for the embedded object. Must be a zero-
length string ("") if you don't specify a source
document.

 class Optional. The name of the class of the embedded
object. Ignored if you specify a filename for
sourcedoc.

Remarks
To view a list of valid class names available on your system, select a control, such as the OLE
container control, select the Class property in the Properties window, and then click the builder
button.

Note You don't need to set the Class and SourceDoc properties when using the CreateEmbed
method to create an embedded object.

When you create a new object, the application associated with the class name (for example,
Excel.exe) must be correctly registered with the operating system. (The application setup program
should register the application correctly.)

CreateLink Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCreateLinkC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthCreateLinkX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthCreateLinkA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCreateLinkS"}

Creates a linked object from the contents of a file. Doesn't support named arguments.

Syntax
object.CreateLink sourcedoc, sourceitem
The CreateLink method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
sourcedoc Required. The file from which the object is created.
sourceitem Optional. The data within the file to be linked in the

linked object.

Remarks
If you specify values for the arguments of this method, those values override the settings of the
SourceDoc and SourceItem properties. Those properties are updated to reflect the argument values
when the method is invoked.

When an object is created with this method, the OLE container control displays an image of the file
specified by the SourceDoc property. If the object is saved, only the link references are saved
because the OLE container control contains only a metafile image of the data and no actual source
data.

When you create a new object, the application associated with the class name (for example,
Excel.exe) must be correctly registered with the operating system. (The application setup program
should register the application correctly.)

Delete Method (OLE Container)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthDeleteC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthDeleteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthDeleteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthDeleteS"}

Deletes the specified object and frees the memory associated with it.

Syntax
object.Delete
The object is an object expression that evaluates to an object in the Applies To list.

Remarks
This method enables you to explicitly delete an object. Objects are automatically deleted when a form
is closed or when the object is replaced with a new object.

InsertObjDlg Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthObjDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthObjDialogX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthObjDialogA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthObjDialogS"}

Displays the Insert Object dialog box.

Syntax
object.InsertObjDlg
The object is an object expression that evaluates to an object in the Applies To list.

Remarks
At run time, you display this dialog box to enable the user to create a linked or embedded object by
choosing the type of object (linked or embedded) and the application provides the object.

Use the OLETypeAllowed property to determine the type of object that can be created (linked,
embedded, or either) using this dialog box.

When you create a new object, the application associated with the class name (for example,
Excel.exe) must be correctly registered with the operating system. (The application setup program
should register the application correctly.)

Paste Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthPasteC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthPasteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthPasteA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthPasteS"}

Copies data from the system Clipboard to an OLE container control.

Syntax
object.Paste
The object is an object expression that evaluates to an object in the Applies To list

Remarks
To use this method, set the OLETypeAllowed property, and then check the value of the PasteOK
property. You can't paste successfully unless PasteOK returns a value of True.

If the Paste method was carried out, the OLEType property is set to vbOLELinked (0) or
vbOLEEmbedded (1). If the Paste method wasn't carried out, the OLEType property is set to
vbOLENone (3).

You can use this method to support an Edit Paste command on a menu.

If the PasteOK property setting is True and Visual Basic can't paste the object, the OLE container
control deletes any object already in the control.

ReadFromFile Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthReadFromFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthReadFromFileX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthReadFromFileA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthReadFromFileS"}

Loads an object from a data file created using the SaveToFile method. Doesn't support named
arguments.

Syntax
object.ReadFromFile filenumber
The ReadFromFile method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
filenumber Required. A numeric expression specifying the file

number used when loading an object. This number
must correspond to an open, binary file.

Remarks
You can save an object to a data file using the SaveToFile or SaveToOle1File methods.

SaveToFile Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSaveToFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSaveToFileX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSaveToFileA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSaveToFileS"}

Saves an object to a data file. Doesn't support named arguments.

Syntax
object.SaveToFile filenumber
The SaveToFile method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
filenumber Required. A numeric expression specifying the file

number used when saving an object. This number
must correspond to an open, binary file.

Remarks
Use this method to save ActiveX components. To save an ActiveX component in the OLE version 1.0
format, use the SaveToOle1File method instead.

If the object is linked (OLEType = vbOLELinked, 0), only the link information and an image of the
data is saved to the specified file. The object's data is maintained by the application that created the
object. If the object is embedded (OLEType = vbOLEEmbedded, 1), the object's data is maintained
by the OLE container control and can be saved by your Visual Basic application.

You can load an object saved to a data file with the ReadFromFile method.

DoVerb Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthDoVerbC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthDoVerbX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthDoVerbA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthDoVerbS"}

Opens an object for an operation, such as editing. Doesn't support named arguments.

Syntax
object.DoVerb (verb)
The DoVerb method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
verb Optional. The verb to execute of the object within the

OLE container control. If not specified, the default
verb is executed. The value of this argument can be
one of the standard verbs supported by all objects or
an index of the ObjectVerbs property array.

Remarks
If you set the AutoActivate property to 2 (Double-Click), the OLE container control automatically
activates the current object when the user double-clicks the control.

Each object can support its own set of verbs. The following values represent standard verbs every
object should support:

Constant Value Description
vbOLEPrimary 0 The default action for the object.
vbOLEShow -1 Activates the object for editing. If

the application that created the
object supports in-place
activation, the object is activated
within the OLE container control.

vbOLEOpen -2 Opens the object in a separate
application window. If the
application that created the object
supports in-place activation, the
object is activated in its own
window.

vbOLEHide -3 For embedded objects, hides the
application that created the
object.

vbOLEUIActivate -4 If the object supports in-place
activation, activates the object for
in-place activation and shows any
user interface tools. If the object
doesn't support in-place
activation, the object doesn't
activate, and an error occurs.

VbOLEInPlaceActivate -5 If the user moves the focus to the
OLE container control, creates a
window for the object and
prepares the object to be edited.

An error occurs if the object
doesn't support activation on a
single mouse click.

VbOLEDiscardUndoState -6 Used when the object is activated
for editing to discard all record of
changes that the object's
application can undo.

Note These verbs may not be listed in the ObjectVerbs property array.

FetchVerbs Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthFetchVerbsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthFetchVerbsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthFetchVerbsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthFetchVerbsS"}

Updates the list of verbs an object supports.

Syntax
object.FetchVerbs
The object is an object expression that evaluates to an object in the Applies To list.

Remarks
You can read the updated list of verbs using the ObjectVerbs property.

Close Method (OLE Container)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCloseC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthCloseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbmthCloseA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCloseS"}

Closes an object and terminates the connection to the application that provided the object.

Syntax
object.Close
The object is an object expression that evaluates to an object in the Applies To list.

Remarks
This method applies only to embedded objects and is equivalent to closing the object. It has no effect
on linked objects.

Update Method (OLE Container)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthUpdateC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthUpdateS"}

Retrieves the current data from the application that supplied the object and displays that data as a
graphic in the OLE container control.

Syntax
object.Update
The object is an object expression that evaluates to an object in the Applies To list.

Action Property (OLE Container)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproActionOLEC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproActionOLEX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproActionOLEA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproActionOLES"}

Sets a value that determines an action. Not available at design time.

Note The Action property is included for compatibility with earlier versions. For current
functionality, use the methods listed in Settings.

Syntax
object.Action = value
The Action property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A constant or integer specifying the type of action, as

described in Settings.

Settings
The settings for value are:

Value Description Current method
0 Creates an embedded object. CreateEmbed
1 Creates a linked object from the contents of a

file.
CreateLink

4 Copies the object to the system Clipboard. Copy
5 Copies data from the system Clipboard to an

OLE container control.
Paste

6 Retrieves the current data from the application
that supplied the object and displays that data
as a picture in the OLE container control.

Update

7 Opens an object for an operation, such as
editing.

DoVerb

9 Closes an object and terminates the
connection to the application that provided the
object.

Close

10 Deletes the specified object and frees the
memory associated with it.

Delete

11 Saves an object to a data file. SaveToFile
12 Loads an object that was saved to a data file. ReadFromFile
14 Displays the Insert Object dialog box. InsertObjDlg
15 Displays the Paste Special dialog box. PasteSpecialDlg
17 Updates the list of verbs an object supports. FetchVerbs
18 Saves an object to the OLE version 1.0 file

format.
SaveToOle1Fil
e

MiscFlags Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMiscFlagsC"} {ewc

HLP95EN.DLL,DYNALINK,"Example":"vbproMiscFlagsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMiscFlagsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMiscFlagsS"}

Returns or sets a value that determines access to one or more additional features of the OLE
container control.

Syntax
object.MiscFlags [= value]
The MiscFlags property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer or constant specifying access to an

additional feature, as described in Settings.

Settings
The settings for value are:

Constant Value Description
vbOLEMiscFlagMemStorage 1 Causes the control to use

memory to store the object
while it's loaded.

VbOLEMiscFlagDisableInPlace 2 Overrides the control's
default behavior of allowing
in-place activation for objects
that support it.

Remarks
The vbOLEMiscFlagMemStorage flag setting is faster than the object's default action, which is to
store it on disk as a temporary file. This setting can, however, use a great deal of memory for objects
whose data requires a lot of space, such as a bitmap for a paint program.

If an object supports in-place activation, you can use the vbOLEMiscFlagDisableInPlace setting to
force the object to activate in a separate window.

To combine values, use the Or operator. For example, to combine both flags, you could use this code:
Ole1.MiscFlags = vbOLEMiscFlagMemStorage Or _ vbOLEMiscFlagDisableInPlace

SaveToOle1File Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSaveToOle1C;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSaveToOle1X":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSaveToOle1A"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSaveToOle1S"}

Saves an object in the OLE version 1.0 file format. Doesn't support named arguments.

Syntax
object.SaveToOle1File filenumber
The SaveToOle1File method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
filenumber Required. A numeric expression specifying the file

number used when saving or loading an object. This
number must correspond to an open, binary file.

Remarks
If the object is linked (OLEType = vbOLELinked, 0), only the link information and an image of the
data is saved to the specified file. The object's data is maintained by the application that created the
object. If the object is embedded (OLEType = vbOLEEmbedded, 1), the object's data is maintained
by the OLE container control and can be saved by your Visual Basic application.

If you want to save the object in the current ActiveX component format, use the SaveToFile method
instead.

Format Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFormatC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFormatX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFormatA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFormatS"}

Returns or sets the format when sending data to and getting data from an application that created an
object. Not available at design time.

Syntax
object.Format [= format]
The Format property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
format A string expression specifying the format used with

the Data and DataText properties.

Remarks
Use the ObjectAcceptFormats, ObjectAcceptFormatsCount, ObjectGetFormats, and
ObjectGetFormatsCount properties to get a list of the acceptable data formats for a specific class of
object.

Many applications that provide objects support only one or two formats. For example, Microsoft Draw
accepts only the CF_METAFILEPICT format. Although CF_METAFILEPICT resembles the intrinsic
constant vbCFMetafile (numeric value 3) defined in the Visual Basic (VB) object library in the Object
Browser, it's actually a string literal and is assigned as:
Ole1.Format = "CF_METAFILEPICT"
In many cases, the list of formats an object can accept (ObjectAcceptFormats) is different from the
list of formats an object can provide (ObjectGetFormats).

PasteOK Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPasteOKC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPasteOKX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPasteOKA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPasteOKS"}

Returns a value that determines whether the contents of the system Clipboard can be pasted into the
OLE container control.

Syntax
object.PasteOK
The object is an object expression that evaluates to an object in the Applies To list.

Remarks
When this property setting is True, you can paste the contents of the system Clipboard into the OLE
container control.

Use the OLETypeAllowed property to specify the type of object (linked or embedded) you want to
paste into the OLE container control. Once you successfully paste an object into the OLE container
control, you can check the OLEType property setting to determine the type of object that was created.

You can use this property if your application supports a Paste command on an Edit menu. If PasteOK
is False, disable the menu command; otherwise, it can be enabled. Enable and disable menu
commands by setting their Enabled property to True or False, respectively.

You paste an object into the OLE container control with the Paste method.

To provide more flexibility to the user, display a Paste Special dialog box when the user chooses the
Edit Paste command. (Set OLETypeAllowed = 2, and then use the PasteSpecialDlg method.) When
this dialog box is displayed, an object is pasted onto the system Clipboard based on the user's
selections in the dialog box.

DataText Property Example
This example sends data to the Microsoft Graph application, so you must have MS Graph installed
on your system to run the example. (This is installed by most Microsoft Office components.) Create a
form about one-half the size of the screen with a CommandButton control (Command1) in the upper-
left corner of the form and an OLE container control (OLE1) placed below the CommandButton.

When you place the OLE container control on the form, the Insert Object dialog box is displayed.
Choose Cancel and press F5 to run the example.
Private Sub Command1_Click ()
Dim Msg, NL, TB' Declare variables.

TB = Chr(9) ' Tab character.
NL = Chr(10) ' Newline character.
' Create data to replace default Graph data.
Msg = TB + "Drew" & TB & "Teresa" & TB & "Bob"
Msg = Msg + NL & "Eric" & TB & "1" & TB & "2" & TB & "3"
Msg = Msg + NL & "Ted" & TB & "11" & TB & "22" & TB & "33"
Msg = Msg + NL & "Arthur" & TB & "21" & TB & "32" & TB & "23"
' Send the data using the DataText property.
' Activate MSGRAPH as hidden.

Ole1.DoVerb - 3
If Ole1.AppIsRunning Then

Ole1.DataText = Msg
' Update the object.
Ole1.Update

Else
MsgBox "Graph isn't active."

End If
End Sub
Sub Form_Load ()

Ole1.Format = "CF_TEXT" ' Set the file format to text.
Ole1.SizeMode = 2 ' Autosize.
Ole1.CreateEmbed "", "MSGRAPH"

End Sub

ObjectAcceptFormats, ObjectAcceptFormatsCount,
ObjectGetFormats, ObjectGetFormatsCount, ObjectVerbs,
ObjectVerbsCount Properties Example
To run this example, place an OLE container control and three ListBox controls on a form. Paste the
example code into the Declarations section of the form and press F5. When the Insert Object dialog
box is displayed, select an application in the New Object list box and choose OK to create an object.
Private Sub Form_Click ()

Dim I ' Declare variable.
' Display the Insert Object dialog box.
Ole1.InsertObjDlg
' Update the list of available verbs.
Ole1.FetchVerbs ' Fetch verbs.
' Clear the list boxes.
List1.Clear
List2.Clear
List3.Clear
' Fill the verbs list box. Because ObjectVerbs(0) is
' the default verb and is repeated in the ObjectVerbs()
' array, start the count at 1.
For I = 1 To Ole1.ObjectVerbsCount - 1

List1.AddItem Ole1.ObjectVerbs(I)
Next I
'Fill the Accept Formats list box.
For I = 0 To Ole1.ObjectAcceptFormatsCount - 1

List2.AddItem Ole1.ObjectAcceptFormats(I)
Next I
' Fill the Get Formats list box.
For I = 0 To Ole1.ObjectGetFormatsCount - 1

List3.AddItem Ole1.ObjectGetFormats(I)
Next I

End Sub

PasteOK Property Example
This example pastes an object in the OLE container control if the PasteOK property setting is True.
Otherwise, the example displays a message box.
Private Sub mnuEditPaste_Click ()

' Check value of PasteOK.
If Ole1.PasteOK Then

Ole1.Paste ' Enable Paste command if True.
Else ' Otherwise, disable Paste

mnuEditPaste.Enabled = False ' menu command and give
MsgBox "Can't paste." ' appropriate message.

End If
End Sub

ObjectMove Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtObjectMoveC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtObjectMoveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtObjectMoveA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtObjectMoveS"}

Occurs immediately after the object within an OLE container control is moved or resized while the
object is active.

Syntax
Private Sub object_ObjectMove(left As Single, top As Single, width As Single, height As Single)
The ObjectMove event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
left The coordinate of the left edge of the OLE container control

immediately after it’s moved or resized.
top The coordinate of the top edge of the OLE container control

immediately after it’s moved or resized.
width The width of the OLE container control immediately after it's

moved or resized.
height The height of the OLE container control immediately after it's

moved or resized.

Remarks
When a user moves or resizes an OLE container control, your application can use the ObjectMove
event to determine whether to actually change the size and position of the control. If the ObjectMove
event procedure doesn't change the OLE container control's position or size, the object within the
OLE container control returns to its original position and is informed of its new size. The coordinates
passed as arguments to this event include the border of the OLE container control.

The ObjectMove and Resize events are triggered when the OLE container control receives
information about the size of the object it contains. However, the Resize event doesn't receive any
information about the position of the control. If the OLE container control is moved off the form, the
arguments have negative or positive values that represent the position of the object relative to the top
and left of the form.

OLEDropAllowed Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEDropAllowedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDropAllowedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOLEDropAllowedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDropAllowedS"}

Returns or sets a value that determines whether an OLE container control can be a drop target for
OLE drag-and-drop operations.

Syntax
object.OLEDropAllowed [= boolean]
The OLEDropAllowed property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying whether the OLE

container control can be a drop target, as described
in Settings.

Settings
The settings for boolean are:

Setting Description
True When dragging an object that can be linked object or

embedded object, a drop icon appears when the
mouse pointer moves over the OLE container
control. Dropping the object on the OLE container
control has the same effect as pasting the object
from the system Clipboard using the Paste method.

False (Default) No drop icon appears over the OLE
container control when dragging an object that can
be linked or embedded. Dropping the object on the
OLE container control has no effect on the control.

Remarks
The MousePointer property determines the shape of the mouse pointer when the OLEDropAllowed
property is set to True. If the setting of the MousePointer property is 0 (Default), Visual Basic
displays the standard drag-and-drop icon for the action taking place.

The setting of the OLETypeAllowed property must be 1 (vbOLEEmbedded) or 2 (vbOLEEither) to
move or copy the object that can be linked or embedded, or 0 (vbOLELinked) or 2 to link the object.
Dropping an object when OLEDropAllowed is set to True has the same effect on the Class,
SourceDoc, and SourceItem property settings as using the Paste method of the OLE container
control.

If the OLEDropAllowed property is set to True, the OLE container control doesn't receive DragDrop
or DragOver events when dragging an object. Also, the setting of the DragMode property has no
effect on the drag-and-drop behavior of the OLE container control when the OLEDropAllowed
property is set to True.

Instancing Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCreatableC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCreatableX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCreatableA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCreatableS"}

Sets a value that specifies whether you can create instances of a public class outside a project, and if
so, how it will behave. Not available at run time.

Settings
The Instancing property has these settings:

Setting Description
1 (Default) Private. Other applications aren’t allowed access to

type library information about the class, and cannot create
instances of it. Private objects are only for use within your
component.

2 PublicNotCreatable. Other applications can use objects of this
class only if your component creates the objects first. Other
applications cannot use the CreateObject function or the
New operator to create objects from the class.

3 OnNewProcess. Allows other applications to create objects
from the class, but every object of this class that a client
creates starts a new instance of your component.

4 GlobalOnNewProcess. Similar to OnNewProcess, except that
properties and methods of the class can be invoked as if they
were simply global functions.

5 InSameProcess. Allows other applications to create objects
from the class. One instance of your component can provide
any number of objects created in this fashion, regardless of
how many applications request them.

6 GlobalInSameProcess. Similar to InSameProcess, with one
addition: properties and methods of the class can be invoked
as if they were simply global functions. It’s not necessary to
explicitly create an instance of the class first, because one will
automatically be created.

Setting Applies to Project Type
ActiveX
Exe

ActiveX
DLL

ActiveX
Contol

Std.
Exe

Private X X X X
PublicNotCreatable X X X
OnNewProcess X
GlobalOnNewProcess X
InSameProcess X X
GlobalInSameProcess X X

Remarks
The Instancing property has been expanded in Visual Basic 5.0 to incorporate the functionality of the
Visual Basic 4.0 Public property.

When a class is creatable, you can use any of the following techniques to create instances of the
class from other applications:

· Use the CreateObject function, as in:
Set MyInstance = CreateObject("MyProject.MyClass")

· Use the Dim statement within the same project (or outside the project if the Public property is also
set to True), as in:
Dim MyInstance As New MyClass
The New keyword indicates that MyInstance is to be declared as a new instance of MyClass.

If the Public property is False, the setting of the Instancing property is ignored. You can always
create instances of the class within the project that defines the class. If the Public property is True,
the class is visible and therefore can be controlled by other applications once an instance of the class
exists.

Initialize Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtInitializeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtInitializeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtInitializeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtInitializeS"}

Occurs when an application creates an instance of a Form, MDIForm, User control, Property Page,
or class.

Syntax
Private Sub object_Initialize()
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
You trigger the Initialize event when you:

· Use the CreateObject function to create an instance of a class. For example:
Set X = CreateObject("Project1.MyClass")

· Refer to a property or event of an automatically created instance of a form or class in your code.
For example:
MyForm.Caption = "Example"

Use this event to initialize any data used by the instance of the Form, MDIForm, or class. For a Form
or MDIForm, the Initialize event occurs before the Load event.

Terminate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtTerminateC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtTerminateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtTerminateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtTerminateS"}

Occurs when all references to an instance of a Form, MDIForm, User control, Property Page, or
class are removed from memory by setting all the variables that refer to the object to Nothing or
when the last reference to the object falls out of scope.

Syntax
Private Sub object_Terminate()
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
For all objects except classes, the Terminate event occurs after the Unload event.

The Terminate event isn't triggered if the instances of the form or class were removed from memory
because the application terminated abnormally. For example, if your application invokes the End
statement before removing all existing instances of the class or form from memory, the Terminate
event isn't triggered for that class or form.

Negotiate Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproNegotiateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNegotiateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNegotiateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNegotiateS"}

Sets a value that determines whether a control that can be aligned is displayed when an active object
on the form displays one or more toolbars. Not available at run time.

Settings
The Negotiate property has these settings:

Setting Description
True If the control is aligned within the form (the Align property is

set to a nonzero value), the control remains visible when an
active object on the form displays a toolbar.

False (Default) The control isn't displayed when an active object
on the form displays a toolbar. The toolbar of the active
object is displayed in place of the control.

Remarks
The Negotiate property exists for all controls with an Align property. You use the Align property to
align the control within a Form or MDIForm object; however, the toolbar negotiation occurs only on
the MDIForm. The aligned control must be on the MDIForm.

If the NegotiateToolbars property is set to False, the setting of the Negotiate property has no effect.

NegotiateMenus Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproNegotiateMenusC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNegotiateMenusX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNegotiateMenusA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNegotiateMenusS"}

Sets a value that determines whether or not a form incorporates the menus from an object on the
form on the form's menu bar. Not available at run time.

Settings
The NegotiateMenus property has these settings:

Setting Description
True (Default) When an object on the form is active for

editing, the menus of that object are displayed on the
form's menu bar.

False Menus of objects on the form aren't displayed on the
form's menu bar.

Remarks
Using the NegotiateMenus property, you determine if the menu bar of a form will share (or negotiate)
space with the menus of an active object on the form. If you don't want to include the menus of the
active object on the menu bar of your form, set NegotiateMenus to False.

You can't negotiate menus between an MDIForm object and an object on the MDIForm.

If NegotiateMenus is set to True, the form must have a menu bar defined, even if the menu bar isn't
visible. If the MDIChild property of the form is set to True, the menus of the active object are
displayed on the menu bar of the MDI parent window (MDIForm object).

When NegotiateMenus is set to True, you can use the NegotiatePosition property of individual
Menu controls to determine the menus that your form displays along with the menus of the active
object.

NegotiatePosition Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproNegotiatePositionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNegotiatePositionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNegotiatePositionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNegotiatePositionS"}

Sets a value that determines whether or not top-level Menu controls are displayed on the menu bar
while a linked object or embedded object object on a form is active and displaying its menus. Not
available at run time.

Settings
The NegotiatePosition property has these settings:

Setting Description
0 (Default) None. The menu isn't displayed on the

menu bar when the object is active.
1 Left. The menu is displayed at the left end of the

menu bar when the object is active.
2 Middle. The menu is displayed in the middle of the

menu bar when the object is active.
3 Right. The menu is displayed at the right end of the

menu bar when the object is active.

Remarks
Using the NegotiatePosition property, you determine the individual menus on the menu bar of your
form that share (or negotiate) menu bar space with the menus of an active object on the form. Any
menu with NegotiatePosition set to a nonzero value is displayed on the menu bar of the form along
with menus from the active object.

If the NegotiateMenus property is set to False, the setting of the NegotiatePosition property has no
effect.

NegotiateToolbars Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproNegotiateToolbarsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNegotiateToolbarsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNegotiateToolbarsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNegotiateToolbarsS"}

Sets a value that determines whether the toolbars of an object on an MDI child form are displayed on
the MDIForm when the object on the MDI child form is active. Not available at run time.

Settings
The NegotiateToolbars property has these settings:

Setting Description
True (Default) The MDIForm object displays the toolbars of

the active object on the top or bottom of the MDIForm.
The active object determines whether the toolbars are
displayed at the top or bottom of the MDIForm.

False The toolbars of the active object either aren't displayed
at all or are displayed as floating tool palettes, as
determined by the active object.

Remarks
Use the NegotiateToolbars property when creating a multiple-document interface (MDI) application
that includes objects on MDI child forms. With this property, you determine how the active object
displays its toolbars. By setting this property to True, the MDIForm shares (or negotiates) space at
the top or bottom of the form to display the toolbars of the active object.

If the MDIForm also contains a toolbar, use the Negotiate property to determine how the various
toolbars share the available space.

Clear Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthClearMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthClearMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbmthClearMethodP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbmthClearMethodM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbmthClearMethodE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthClearMethodS"}

Deletes the contents of the DataObject object.

Syntax
object.Clear
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
This method is available only for component drag sources. If Clear is called from a component drop
target, an error is generated.

Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

DataObject Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDataObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjDataObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDataObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDataObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDataObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDataObjectS"}

The DataObject object is a container for data being transferred from an component source to an
component target. The data is stored in the format defined by the method using the DataObject
object.

Syntax
DataObject

Remarks
The DataObject, which mirrors the IDataObject interface, allows OLE drag and drop and clipboard
operations to be implemented.

Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

DataObjectFiles Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolDataObjectFilesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolDataObjectFilesX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolDataObjectFilesP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolDataObjectFilesM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolDataObjectFilesE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolDataObjectFilesS"}

A collection whose elements represent a list of all filenames used by a DataObject object (such as
the names of files that a user drags to or from the Windows File Explorer.)

Syntax
object.DataObjectFiles(index)
The DataObjectFiles collection syntax has these parts:

Part Description
object An object expression that evaluates to a DataObject

object.
index An integer with a range from 0 to

DataObjectFiles.Count - 1.

Remarks
Note This collection is used by the Files property only when the data in the DataObject object is in
the vbCFFiles format.
The DataObjectFiles collection is used by the Files property to store filenames in a DataObject
object. It includes the Remove, Add, and Clear methods which allow you to manipulate its contents.

Files Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFilesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFilesX":1} {ewc HLP95EN.DLL,DYNALINK,"Properties":"vbproFilesP"}
{ewc HLP95EN.DLL,DYNALINK,"Methods":"vbproFilesM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"vbproFilesE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFilesS"}

Returns a DataObjectFiles collection, which in turn contains a list of all filenames used by a
DataObject object (such as the names of files that a user drags to or from the Windows File
Explorer.)

Syntax
object.Files(index)
The Files collection syntax has these parts:

Part Description
object An object expression that evaluates to a DataObject

object.
index An integer which is an index to an array of filenames.

Remarks
The Files collection is filled with filenames only when the DataObject object contains data of type
vbCFFiles. (The DataObject object can contain several different types of data.) You can iterate
through the collection to retrieve the list of file names.

The Files collection can be filled to allow Visual Basic applications to act as a drag source for a list of
files.

GetData Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetDataMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetDataMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbmthGetDataMethodP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbmthGetDataMethodM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbmthGetDataMethodE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetDataMethodS"}

Returns data from a DataObject object in the form of a variant.

Syntax
object.GetData (format)
The GetData method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
format A constant or value that specifies the data format, as

described in Settings. Parentheses must enclose the
constant or value. If format is 0 or omitted, GetData
automatically uses the appropriate format.

Settings
The settings for format are:

Constant Value Description
vbCFText 1 Text (.txt files)
vbCFBitmap 2 Bitmap (.bmp files)
vbCFMetafile 3 metafile (.wmf files)
vbCFEMetafile 14 Enhanced metafile (.emf files)
vbCFDIB 8 Device-independent bitmap (DIB)
vbCFPalette 9 Color palette
vbCFFiles 15 List of files
vbCFRTF -16639 Rich text format (.rtf files)

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

It's possible for the GetData and SetData methods to use data formats other than those listed in
Settings, including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. However, there are a few caveats:

· The SetData method requires the data to be in the form of a byte array when it does not recognize
the data format specified.

· The GetData method always returns data in a byte array when it is in a format that it doesn't
recognize, although Visual Basic can transparently convert this returned byte array into other data
types, such as strings.

· The byte array returned by GetData will be larger than the actual data when running on some
operating systems, with arbitrary bytes at the end of the array. The reason for this is that Visual
Basic does not know the data's format, and knows only the amount of memory that the operating
system has allocated for the data. This allocation of memory is often larger than is actually required
for the data. Therefore, there may be extraneous bytes near the end of the allocated memory
segment. As a result, you must use appropriate functions to interpret the returned data in a

meaningful way (such as truncating a string at a particular length with the Left function if the data is
in a text format).

Note Not all applications support vbcfBitmap or vbCFPalette, so it is recommended that you use
vbCFDIB whenever possible.

GetFormat Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetFormatMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetFormatMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbmthGetFormatMethodP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbmthGetFormatMethodM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbmthGetFormatMethodE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetFormatMethodS"}

Returns an boolean value indicating whether an item in the DataObject object matches a specified
format. Doesn't support named arguments.

Syntax
object.GetFormat format

The GetFormat method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
format A constant or value that specifies the data format, as

described in Settings.

Settings
The settings for format are:

Constant Value Description
vbCFText 1 Text (.txt files)
vbCFBitmap 2 Bitmap (.bmp files)
vbCFMetafile 3 metafile (.wmf files)
vbCFEMetafile 14 Enhanced metafile (.emf files)
vbCFDIB 8 Device-independent bitmap (DIB)
vbCFPalette 9 Color palette
vbCFFiles 15 List of files
vbCFRTF -16639 Rich text format (.rtf files)

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

The GetFormat method returns True if an item in the DataObject object matches the specified
format. Otherwise, it returns False.

OLECompleteDrag Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLECompleteDragEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLECompleteDragEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtOLECompleteDragEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLECompleteDragEventS"}

Occurs when a source component is dropped onto a target component, informing the source
component that a drag action was either performed or canceled.

Syntax
Private Sub object_CompleteDrag([effect As Long])
The CompleteDrag event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
effect A long integer set by the source object identifying the action

that has been performed, thus allowing the source to take
appropriate action if the component was moved (such as the
source deleting data if it is moved from one component to
another). The possible values are listed in Settings.

Settings
The settings for effect are:

Constant Value Description
vbDropEffectNone 0 Drop target cannot accept the data, or the

drop operation was cancelled.
vbDropEffectCopy 1 Drop results in a copy of data from the

source to the target. The original data is
unaltered by the drag operation.

vbDropEffectMove 2 Drop results in a link to the original data
being created between drag source and
drop target.

Remarks
The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation. This event
informs the source component of the action that was performed when the object was dropped onto
the target component. The target sets this value through the effect parameter of the OLEDragDrop
event. Based on this, the source can then determine the appropriate action it needs to take. For
example, if the object was moved into the target (vbDropEffectMove), the source needs to delete the
object from itself after the move.

If OLEDragMode is set to Automatic, then Visual Basic handles the default behavior. The event still
occurs, however, allowing the user to add to or change the behavior.

Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

OLEDrag Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthOLEDragMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthOLEDragMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthOLEDragMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthOLEDragMethodS"}

Causes a component to initiate an OLE drag/drop operation.

Syntax
object.OLEDrag
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
When the OLEDrag method is called, the component’s OLEStartDrag event occurs, allowing it to
supply data to a target component.

OLEDragDrop Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEDragDropEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEDragDropEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtOLEDragDropEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEDragDropEventS"}

Occurs when a source component is dropped onto a target component when the source component
determines that a drop can occur.

Note This event occurs only if OLEDropMode is set to 1 (Manual).

Syntax
Private Sub object_OLEDragDrop(data As DataObject, effect As Long, button As Integer, shift As
Integer, x As Single, y As Single)
The OLEDragDrop event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To

list.
data A DataObject object containing formats that the source will

provide and, in addition, possibly the data for those formats. If no
data is contained in the DataObject, it is provided when the
control calls the GetData method. The SetData and Clear
methods cannot be used here.

effect A long integer set by the target component identifying the action
that has been performed (if any), thus allowing the source to take
appropriate action if the component was moved (such as the
source deleting the data). The possible values are listed in
Settings.

button An integer which acts as a bit field corresponding to the state of a
mouse button when it is depressed. The left button is bit 0, the
right button is bit 1, and the middle button is bit 2. These bits
correspond to the values 1, 2, and 4, respectively. It indicates the
state of the mouse buttons; some, all, or none of these three bits
can be set, indicating that some, all, or none of the buttons are
depressed.

shift An integer which acts as a bit field corresponding to the state of
the SHIFT, CTRL, and ALT keys when they are depressed. The SHIFT
key is bit 0, the CTRL key is bit 1, and the ALT key is bit 2. These
bits correspond to the values 1, 2, and 4, respectively. The shift
parameter indicates the state of these keys; some, all, or none of
the bits can be set, indicating that some, all, or none of the keys
are depressed. For example, if both the CTRL and ALT keys were
depressed, the value of shift would be 6.

x,y A number which specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of the
coordinate system set by the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties of the object.

Settings
The settings for effect are:

Constant Value Description
vbDropEffectNone 0 Drop target cannot accept the data.

vbDropEffectCopy 1 Drop results in a copy of data from
the source to the target. The
original data is unaltered by the
drag operation.

vbDropEffectMove 2 Drop results in data being moved
from drag source to drop source.
The drag source should remove the
data from itself after the move.

Remarks
The source ActiveX component should always mask values from the effect parameter to ensure
compatibility with future implementations of ActiveX components. Presently, only three of the 32 bits in
the effect parameter are used. In future versions of Visual Basic, however, these other bits may be
used. Therefore, as a precaution against future problems, drag sources and drop targets should mask
these values appropriately before performing any comparisons.

For example, a source component should not compare an effect against, say, vbDropEffectCopy,
such as in this manner:
If Effect = vbDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as this:
If Effect And vbDropEffectCopy = vbDropEffectCopy...
-or-
If (Effect And vbDropEffectCopy)...
This allows for the definition of new drop effects in future versions of Visual Basic while preserving
backwards compatibility with your existing code.

Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

OLEDragMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEDragModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDragModePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOLEDragModePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDragModePropertyS"}

Returns or sets whether the component or the programmer handles an OLE drag/drop operation.

Syntax
object.OLEDragMode = mode

The OLEDragMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
mode An integer which specifies the method with which an

component handles OLE drag/drop operations, as
described in Settings.

Settings
The settings for mode are:

Constant Value Description
vbOLEDragManual 0 (Default) Manual. The programmer

handles all OLE drag/drop
operations.

vbOLEDragAutomatic 1 Automatic. The component handles
all OLE drag/drop operations.

Remarks
When OLEDragMode is set to Manual, you must call the OLEDrag method to start dragging, which
then triggers the OLEStartDrag event.

When OLEDragMode is set to Automatic, the source component fills the DataObject object with the
data it contains and sets the effects parameter before initiating the OLEStartDrag event (as well as
the OLESetData and other source-level OLE drag/drop events) when the user attempts to drag out of
the control. This gives you control over the drag/drop operation and allows you to intercede by adding
other formats, or by overriding or disabling the automatic data and formats using the Clear or
SetData methods.

If the source’s OLEDragMode property is set to Automatic, and no data is loaded in the
OLEStartDrag event, or aftereffects is set to 0, then the OLE drag/drop operation does not occur.

Note If the DragMode property of a control is set to Automatic, the setting of OLEDragMode is
ignored, because regular Visual Basic drag and drop events take precedence.

OLEDragOver Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEDragOverEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEDragOverEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtOLEDragOverEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEDragOverEventS"}

Occurs when one component is dragged over another.

Syntax
Private Sub object_OLEDragOver(data As DataObject, effect As Long, button As Integer, shift As
Integer, x As Single, y As Single, state As Integer)
The OLEDragOver event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
data A DataObject object containing formats that the source will

provide and, in addition, possibly the data for those formats. If
no data is contained in the DataObject, it is provided when
the control calls the GetData method. The SetData and Clear
methods cannot be used here.

effect A long integer initially set by the source object identifying all
effects it supports. This parameter must be correctly set by
the target component during this event. The value of effect is
determined by logically Or'ing together all active effects (as
listed in Settings). The target component should check these
effects and other parameters to determine which actions are
appropriate for it, and then set this parameter to one of the
allowable effects (as specified by the source) to specify which
actions will be performed if the user drops the selection on
the component. The possible values are listed in Settings.

button An integer which acts as a bit field corresponding to the state
of a mouse button when it is depressed. The left button is bit
0, the right button is bit 1, and the middle button is bit 2.
These bits correspond to the values 1, 2, and 4, respectively.
It indicates the state of the mouse buttons; some, all, or none
of these three bits can be set, indicating that some, all, or
none of the buttons are depressed.

shift An integer which acts as a bit field corresponding to the state
of the SHIFT, CTRL, and ALT keys when they are depressed.
The SHIFT key is bit 0, the CTRL key is bit 1, and the ALT key is
bit 2. These bits correspond to the values 1, 2, and 4,
respectively. The shift parameter indicates the state of these
keys; some, all, or none of the bits can be set, indicating that
some, all, or none of the keys are depressed. For example, if
both the CTRL and ALT keys are depressed, the value of shift
would be 6.

x,y A number that specifies the current horizontal (x) and vertical
(y) position of the mouse pointer within the target form or
control. The x and y values are always expressed in terms of
the coordinate system set by the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties of the object.

state An integer that corresponds to the transition state of the
control being dragged in relation to a target form or control.

The possible values are listed in Settings.

Settings
The settings for effect are:

Constant Value Description
vbDropEffectNone 0 Drop target cannot accept the

data.
vbDropEffectCopy 1 Drop results in a copy of data

from the source to the target.
The original data is unaltered
by the drag operation.

vbDropEffectMove 2 Drop results in data being
moved from drag source to
drop source. The drag source
should remove the data from
itself after the move.

vbDropEffectScroll -2147483648
(&H80000000)

Scrolling is occuring or about
to occur in the target
component. This value is used
in conjunction with the other
values. Note Use only if you
are performing your own
scrolling in the target
component.

The settings for state are:

Constant Value Description
vbEnter 0 Source component is being dragged within the range

of a target.
vbLeave 1 Source component is being dragged out of the range

of a target.
vbOver 2 Source component has moved from one position in

the target to another.

Remarks
Note If the state parameter is vbLeave, indicating that the mouse pointer has left the target, then
the x and y parameters will contain zeros.

The source component should always mask values from the effect parameter to ensure compatibility
with future implementations of ActiveX components. Presently, only three of the 32 bits in the effect
parameter are used. In future versions of Visual Basic, however, these other bits may be used.
Therefore, as a precaution against future problems, drag sources and drop targets should mask these
values appropriately before performing any comparisons.

For example, a source component should not compare an effect against, say, vbDropEffectCopy,
such as in this manner:
If Effect = vbDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as this:
If Effect And vbDropEffectCopy = vbDropEffectCopy...
-or-

If (Effect And vbDropEffectCopy)...
This allows for the definition of new drop effects in future versions of Visual Basic while preserving
backwards compatibility with your existing code.
Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

OLEDropMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEDropModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDropModePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOLEDropModePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDropModePropertyS"}

Returns or sets how a target component handles drop operations.

Syntax
object.OLEDropMode [= mode]

The OLEDropMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
mode An enumerated integer which specifies the method

which a component handles OLE drag/drop
operations, as described in Settings.

Settings
The settings for mode are:

Constant Value Description
vbOLEDropNone 0 (Default) None. The target component

does not accept OLE drops and
displays the No Drop cursor.

vbOLEDropManual 1 Manual. The target component
triggers the OLE drop events,
allowing the programmer to handle
the OLE drop operation in code.

vbOLEDropAutomatic 2 Automatic. The target component
automatically accepts OLE drops if
the DataObject object contains data
in a format it recognizes. No mouse or
OLE drag/drop events on the target
will occur when OLEDropMode is set
to vbOLEDropAutomatic.

Remarks
Note The target component inspects what is being dragged over it in order to determine which
events to trigger; the OLE drag/drop events, or the Visual Basic drag/drop events. There is no
collision of components or confusion about which events are fired, since only one type of object can
be dragged at a time.

OLEGiveFeedback Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEGiveFeedbackEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEGiveFeedbackEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtOLEGiveFeedbackEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEGiveFeedbackEventS"}

Occurs after every OLEDragOver event. OLEGiveFeedback allows the source component to provide
visual feedback to the user, such as changing the mouse cursor to indicate what will happen if the
user drops the object, or provide visual feedback on the selection (in the source component) to
indicate what will happen.

Syntax
Private Sub object_OLEGiveFeedback(effect As Long, defaultcursors As Boolean)
The OLEGiveFeedback event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
effect A long integer set by the target component in the

OLEDragOver event specifying the action to be performed if
the user drops the selection on it. This allows the source to
take the appropriate action (such as giving visual feedback).
The possible values are listed in Settings.

defaultcursors A boolean value which determines whether Visual Basic
uses the default mouse cursor proved by the component, or
uses a user-defined mouse cursor.
True (default) = use default mouse cursor.
False = do not use default cursor. Mouse cursor must be set
with the MousePointer property of the Screen object.

Settings
The settings for effect are:

Constant Value Description
vbDropEffectNone 0 Drop target cannot accept the

data.
vbDropEffectCopy 1 Drop results in a copy of data

from the source to the target.
The original data is unaltered
by the drag operation.

vbDropEffectMove 2 Drop results in data being
moved from drag source to
drop source. The drag source
should remove the data from
itself after the move.

vbDropEffectScroll -2147483648
(&H80000000)

Scrolling is occuring or about
to occur in the target
component. This value is used
in conjunction with the other
values. Note Use only if you
are performing your own
scrolling in the target
component.

Remarks
If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is set to True,
then Visual Basic automatically sets the mouse cursor to the default cursor provided by the
component.

The source component should always mask values from the effect parameter to ensure compatibility
with future implementations of components. Presently, only three of the 32 bits in the effect parameter
are used. In future versions of Visual Basic, however, these other bits may be used. Therefore, as a
precaution against future problems, drag sources and drop targets should mask these values
appropriately before performing any comparisons.

For example, a source component should not compare an effect against, say, vbDropEffectCopy,
such as in this manner:
If Effect = vbDropEffectCopy...
Instead, the source component should mask for the value or values being sought, such as this:
If Effect And vbDropEffectCopy = vbDropEffectCopy...
-or-
If (Effect And vbDropEffectCopy)...
This allows for the definition of new drop effects in future versions of Visual Basic while preserving
backwards compatibility with your existing code.

Most components support manual OLE drag and drop events, and some support automatic OLE drag
and drop events.

OLESetData Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLESetDataEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLESetDataEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtOLESetDataEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLESetDataEventS"}

Occurs on an source component when a target component performs the GetData method on the
source’s DataObject object, but the data for the specified format has not yet been loaded.

Syntax
Private Sub object_OLESetData(data As DataObject, dataformat As Integer)
The OLESetData event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
data A DataObject object in which to place the requested data.

The component calls the SetData method to load the
requested format.

dataformat An integer specifying the format of the data that the target
component is requesting. The source component uses this
value to determine what to load into the DataObject object.

Remarks
In certain cases, you may wish to defer loading data into the DataObject object of a source
component to save time, especially if the source component supports many formats. This event
allows the source to respond to only one request for a given format of data. When this event is called,
the source should check the format parameter to determine what needs to be loaded and then
perform the SetData method on the DataObject object to load the data which is then passed back to
the target component.

OLEStartDrag Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEStartDragEventC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEStartDragEventX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtOLEStartDragEventA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEStartDragEventS"}

Occurs when a component's OLEDrag method is performed, or when a component initiates an OLE
drag/drop operation when the OLEDragMode property is set to Automatic.

This event specifies the data formats and drop effects that the source component supports. It can also
be used to insert data into the DataObject object.

Syntax
Private Sub object_StartDrag(data As DataObject, allowedeffects As Long)
The StartDrag event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
data A DataObject object containing formats that the source will

provide and, optionally, the data for those formats. If no data
is contained in the DataObject, it is provided when the
control calls the GetData method. The programmer should
provide the values for this parameter in this event. The
SetData and Clear methods cannot be used here.

allowedeffects A long integer containing the effects that the source
component supports. The possible values are listed in
Settings. The programmer should provide the values for this
parameter in this event.

Settings
The settings for allowedeffects are:

Constant Value Description
vbDropEffectNone 0 Drop target cannot accept the data.
vbDropEffectCopy 1 Drop results in a copy of data from the

source to the target. The original data is
unaltered by the drag operation.

vbDropEffectMove 2 Drop results in data being moved from
drag source to drop source. The drag
source should remove the data from
itself after the move.

Remarks
The source component should logically Or together the supported values and places the result in the
allowedeffects parameter. The target component can use this value to determine the appropriate
action (and what the appropriate user feedback should be).

The StartDrag event also occurs if the component’s OLEDragMode property is set to Automatic.
This allows you to add formats and data to the DataObject object after the component has done so.
You can also override the default behavior of the component by clearing the DataObject object (using
the Clear method) and then adding your data and formats.

You may wish to defer putting data into the DataObject object until the target component requests it.
This allows the source component to save time by not loading multiple data formats. When the target

performs the GetData method on the DataObject, the source’s OLESetData event will occur if the
requested data is not contained in the DataObject. At this point, the data can be loaded into the
DataObject, which will in turn provide the data to the target.

If the user does not load any formats into the DataObject, then the drag/drop operation is canceled.

SetData Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjSetDataMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjSetDataMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjSetDataMethodP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjSetDataMethodM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjSetDataMethodE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjSetDataMethodS"}

Inserts data into a DataObject object using the specified data format.

Syntax
object.SetData [data], [format]
The SetData method syntax has these parts:

Part Description
object Required. An object expression that evaluates to an

object in the Applies To list.
data Optional A variant containing the data to be passed to

the DataObject object.
format Optional. A constant or value that specifies the format

of the data being passed, as described in Settings.

Settings
The settings for format are:

Constant Value Description
vbCFText 1 Text (.txt files)
vbCFBitmap 2 Bitmap (.bmp files)
vbCFMetafile 3 Metafile (.wmf files)
vbCFEMetafile 14 Enhanced metafile (.emf files)
vbCFDIB 8 Device-independent bitmap (DIB)
vbCFPalette 9 Color palette
vbCFFiles 15 List of files
vbCFRTF -16639 Rich text format (.rtf files)

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

The data argument is optional. This allows you to set several different formats that the source
component can support without having to load the data separately for each format. Multiple formats
are set by calling SetData several times, each time using a different format. If you wish to start fresh,
use the Clear method to clear all data and format information from the DataObject.
The format argument is also optional, but either the data or format argument must be specified. If data
is specified, but not format, then Visual Basic will try to determine the format of the data. If it is
unsuccessful, then an error is generated. When the target requests the data, and a format was
specified, but no data was provided, the source’s OLESetData event occurs, and the source can then
provide the requested data type.

It's possible for the GetData and SetData methods to use data formats other than those listed in
Settings, including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. However, there are a few caveats:

· The SetData method requires the data to be in the form of a byte array when it does not recognize

the data format specified.
· The GetData method always returns data in a byte array when it is in a format that it doesn't

recognize, although Visual Basic can transparently convert this returned byte array into other data
types, such as strings.

· The byte array returned by GetData will be larger than the actual data when running on some
operating systems, with arbitrary bytes at the end of the array. The reason for this is that Visual
Basic does not know the data's format, and knows only the amount of memory that the operating
system has allocated for the data. This allocation of memory is often larger than is actually required
for the data. Therefore, there may be extraneous bytes near the end of the allocated memory
segment. As a result, you must use appropriate functions to interpret the returned data in a
meaningful way (such as truncating a string at a particular length with the Left function if the data is
in a text format).

Jump to Visual Basic 5.0 Books Online
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":""} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

No VB user should ever see this topic in Help. Leave this topic here, however. Every See Also ALink
in the entire VB5 Help system calls this topic to start Books Online.

Visual Basic 5.0 Books Online Not Found
The compact disk or directory where the Visual Basic 5.0 Books Online are located was not found.

If Visual Basic 5.0 Books Online viewer has not been installed, install it and try the See Also link
again.

If the Visual Basic 5.0 CD is not in your CD drive, please insert it in the drive and then try the See Also
link again.

If these do not work, make sure that the location of the VBOnline.exe file that was installed to your
hard drive for Visual Basic 5.0 Books Online is included in the WINHELP.INI file.

BackColor, ForeColor Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBackColorC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBackColorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBackColorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBackColorS"}

· BackColor — returns or sets the background color of an object.
· ForeColor — returns or sets the foreground color used to display text and graphics in an object.

Syntax
object.BackColor [= color]
object.ForeColor [= color]

The BackColor and ForeColor property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
color A value or constant that determines the background

or foreground colors of an object, as described in
Settings.

Settings
Visual Basic uses the Microsoft Windows operating environment red-green-blue (RGB) color scheme.
The settings for color are:

Setting Description
Normal RGB colors Colors specified by using the Color palette or by

using the RGB or QBColor functions in code.
System default
colors

Colors specified by system color constants listed in
the Visual Basic (VB) object library in the Object
Browser. The Windows operating environment
substitutes the user's choices as specified in the
Control Panel settings.

For all forms and controls, the default settings at design time are:

· BackColor — set to the system default color specified by the constant vbWindowBackground.
· ForeColor — set to the system default color specified by the constant vbWindowText.

Remarks
In the Label, and Shape, controls, the BackColor property is ignored if the BackStyle property
setting is 0 (Transparent).

If you set the BackColor property on a Form object or a PictureBox control, all text and graphics,
including the persistent graphics, are erased. Setting the ForeColor property doesn't affect graphics
or print output already drawn. On all other controls, the screen color changes immediately.

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in
this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of
red, green, and blue, respectively. The red, green, and blue components are each represented by a
number between 0 and 255 (&HFF). If the high byte isn't 0, Visual Basic uses the system colors, as
defined in the user's Control Panel settings and by constants listed in the Visual Basic (VB) object
library in the Object Browser.

To display text in the Windows operating environment, both the text and background colors must be
solid. If the text or background colors you've selected aren't displayed, one of the selected colors may

be dithered — that is, comprised of up to three different-colored pixels. If you choose a dithered color
for either the text or background, the nearest solid color will be substituted.

BackStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBackStyleC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBackStyleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBackStyleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBackStyleS"}

Returns or sets a value indicating whether a Label control or the background of a Shape control is
transparent or opaque.

Syntax
object.BackStyle [= number]

The BackStyle property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression specifying transparency, as

described in Settings.

Settings
The settings for number are:

Setting Description
0 Transparent — background color and any graphics

are visible behind the control.
1 (Default) Opaque — the control's BackColor property

setting fills the control and obscures any color or
graphics behind it.

Remarks
You can use the BackStyle property to create transparent controls when you're using a background
color on a Form object or PictureBox control or when you want to place a control over a graphic.
Use an opaque control when you want it to stand out.

A control's BackColor property is ignored if BackStyle = 0.

BorderColor Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproBorderColorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBorderColorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBorderColorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBorderColorS"}

Returns or sets the color of an object's border.

Syntax
object.BorderColor [= color]

The BorderColor property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
color A value or constant that determines the border color,

as described in Settings.

Settings
Visual Basic uses the Microsoft Windows operating environment red-green-blue (RGB) color scheme.
The settings for color are:

Setting Description
Normal RGB colors Colors specified using the Color palette or by using

the RGB or QBColor functions in code.
System default
colors

Colors specified by system color constants listed in
the Visual Basic (VB) object library in the Object
Browser . The system default color is specified by
the vbWindowText constant. The Windows
operating environment substitutes the user's choices
as specified in the Control Panel settings.

Remarks
The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in
this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of
red, green, and blue, respectively. The red, green, and blue components are each represented by a
number between 0 and 255 (&HFF). If the high byte isn't 0, Visual Basic uses the system colors, as
defined in the user's Control Panel settings and by constants listed in the Visual Basic (VB) object
library in the Object Browser.

BorderStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproBorderStyleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBorderStyleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBorderStyleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBorderStyleS"}

Returns or sets the border style for an object. For the Form object and the TextBox control, read-only
at run time.

Syntax
object.BorderStyle = [value]

The BorderStyleColor property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A value or constant that determines the border style,

as described in Settings.

Settings
The BorderStyle property settings for a Form object are:

Constant Setting Description
vbBSNone 0 None (no border or border-related elements).
VbFixedSingle 1 Fixed Single. Can include Control-menu box, title bar, Maximize button, and Minimize button

Maximize and Minimize buttons.
VbSizable 2 (Default) Sizable. Resizable using any of the optional border elements listed for setting 1.
VbFixedDouble 3 Fixed Dialog. Can include Control-menu box and title bar; can't include Maximize or Minimize buttons. Not

resizable.
VbFixedToolWindow 4 Fixed ToolWindow. Under Windows 3.x and Windows NT 3.51 and earlier, behaves like Fixed Single. Does not

display Maximize or Minimize buttons. Not resizable. Under Windows 95, displays the Close button and displays
the title bar text in a reduced font size. The form does not appear in the Windows 95 task bar.

VbSizableToolWindow 5 Sizable ToolWindow. Under Windows 3.x and Windows NT 3.51 and earlier, behaves like Sizable. Does not display
Maximize or Minimize buttons. Resizable. Under Windows 95, displays the Close button and displays the title bar
text in a reduced font size. The form does not appear in the Windows 95 task bar.

The BorderStyle property settings for MS Flex Grid, Image, Label, OLE container, PictureBox,
Frame, and TextBox controls are:

Setting Description
0 (Default for Image and Label controls) None.
1 (Default for MS Flex Grid, PictureBox, TextBox, and OLE

container controls) Fixed Single.

The BorderStyle property settings for Line and Shape controls are:

Constant Setting Description
vbTransparent 0 Transparent
vbBSSolid 1 (Default) Solid. The border is

centered on the edge of the shape.
vbBSDash 2 Dash
vbBSDot 3 Dot
vbBSDashDot 4 Dash-dot

vbBSDashDotDot 5 Dash-dot-dot
vbBSInsideSolid 6 Inside solid. The outer edge of the

border is the outer edge of the
shape.

Remarks
For a form, the BorderStyle property determines key characteristics that visually identify a form as
either a general-purpose window or a dialog box. Setting 3 (Fixed Dialog) is useful for standard dialog
boxes. Settings 4 (Fixed ToolWindow) and 5 (Sizable ToolWindow) are useful for creating toolbox-
style windows.

MDI child forms set to 2 (Sizable) are displayed within the MDI form in a default size defined by the
Windows operating environment at run time. For any other setting, the form is displayed in the size
specified at design time.

Changing the setting of the BorderStyle property of a Form object may change the settings of the
MinButton, MaxButton, and ShowInTaskbar properties. When BorderStyle is set to 1 (Fixed
Single) or 2 (Sizable), the MinButton, MaxButton, and ShowInTaskbar properties are automatically
set to True. When BorderStyle is set to 0 (None), 3 (Fixed Dialog), 4 (Fixed ToolWindow), or 5
(Sizable ToolWindow), the MinButton, MaxButton, and ShowInTaskbar properties are automatically
set to False.

Note If a form with a menu is set to 3 (Fixed Dialog), it is displayed with a setting 1 (Fixed Single)
border instead.
At run time, a form is either modal or modeless, which you specify using the Show method.

BorderWidth Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproBorderWidthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBorderWidthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBorderWidthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBorderWidthS"}

Returns or sets the width of a control's border.

Syntax
object.BorderWidth [= number]

The BorderWidth property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression from 1 to 8192, inclusive.

Remarks
Use the BorderWidth and BorderStyle properties to specify the kind of border you want for a Line or
Shape control. The following table shows the effect of BorderStyle settings on the BorderWidth
property:

BorderStyle Effect on BorderWidth
0 BorderWidth setting is ignored.
1–5 The border width expands from the center of the

border; the height and width of the control are
measured from the center of the border.

6 The border width expands inward on the control from
the outside of the border; the height and width of the
control are measured from the outside of the border.

If the BorderWidth property setting is greater than 1, the only effective settings of BorderStyle are 1
(Solid) and 6 (Inside Solid).

Cancel Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCancelC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCancelX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCancelA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCancelS"}

Returns or sets a value indicating whether a command button is the Cancel button on a form. This
command button can be the CommandButton control or any object within an OLE container control
that behaves as a command button.

Syntax
object.Cancel [= boolean]

The Cancel property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying whether the object

is the Cancel button, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The CommandButton control is the Cancel button.
False (Default) The CommandButton control isn't the

Cancel button.

Remarks
Use the Cancel property to give the user the option of canceling uncommitted changes and returning
the form to its previous state.

Only one CommandButton control on a form can be the Cancel button. When the Cancel property is
set to True for one CommandButton, it's automatically set to False for all other CommandButton
controls on the form. When a CommandButton control's Cancel property setting is True and the
form is the active form, the user can choose the CommandButton by clicking it, pressing the ESC
key, or pressing ENTER when the button has the focus.

For OLE container controls, the Cancel property is provided only for those objects that specifically
behave as command buttons.

Tip For a form that supports irreversible operations, such as deletions, it's a good idea to make the
Cancel button the default button. To do this, set both the Cancel property and the Default property to
True.

Col, Row Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproColC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproColX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproColA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCols"}

Return or set the active cell in a DBGrid control. Not available at design time.

Syntax
object.Col [= number]
object.Row [= number]

The Col and Row property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number The number of the column or row containing the

active cell.

Remarks
Use these properties to specify a cell in a DBGrid control or to find out which column or row contains
the active cell in a selected region. Columns and rows are numbered from zero, beginning at the top
for rows and at the left for columns. Setting these properties at run time doesn't change which cells
are selected. Use the SelEndCol, SelStartCol, SelEndRow, and SelStartRow properties to specify
a selected region.

Note The Col and Row properties aren't the same as the Cols and Rows properties.

Cols, Rows Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproColsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproColX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproColsA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproColsS"}

Return or set the total number of columns or rows in a DBGrid control.

Syntax
object.Cols [= number]
object.Rows [= number]

The Cols and Rows property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number The number of columns or rows in a DBGrid control.

The minimum number of columns is 1, the maximum
is 400; the minimum number of rows is 1, the
maximum is 2000.

Remarks
Use these properties to expand a DBGrid control dynamically at run time. A DBGrid control must
have at least one non-fixed column and one non-fixed row.

Note The Cols and Rows properties aren't the same as the Col and Row properties.

ControlBox Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproControlBoxC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproControlBoxX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproControlBoxA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproControlBoxS"}

Returns or sets a value indicating whether a Control-menu box is displayed on a form at run time.
Read-only at run time.

Syntax
object.ControlBox
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The ControlBox property settings are:

Setting Description
True (Default) Displays the Control-menu box.
False Removes the Control-menu box.

Remarks
To display a Control-menu box, you must also set the form's BorderStyle property to 1 (Fixed Single),
2 (Sizable), or 3 (Fixed Dialog).

Both modal and modeless windows can include a Control-menu box.

The commands available at run time depend on the settings for related properties — for example,
setting MaxButton and MinButton to False disables the Maximize and Minimize commands on the
Control menu, but the Move and Close commands remain available.

Note Settings you specify for the ControlBox, BorderStyle, MaxButton, and MinButton
properties aren't reflected in the form's appearance until run time.

DrawWidth Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDrawWidthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDrawWidthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDrawWidthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDrawWidthS"}

Returns or sets the line width for output from graphics methods.

Syntax
object.DrawWidth [= size]

The DrawWidth property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
size A numeric expression from 1 through 32,767. This

value represents the width of the line in pixels. The
default is 1; that is, 1 pixel wide.

Remarks
Increase the value of this property to increase the width of the line. If the DrawWidth property setting
is greater than 1, DrawStyle property settings 1 through 4 produce a solid line (the DrawStyle
property value isn't changed). Setting DrawWidth to 1 allows DrawStyle to produce the results
shown in the DrawStyle property table.

FontBold, FontItalic, FontStrikethru, FontUnderline Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontBoldC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontBoldX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFontBoldA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontBoldS"}

Return or set font styles in the following formats: Bold, Italic, Strikethru, and Underline.

Note The FontBold, FontItalic, FontStrikethru, and FontUnderline properties are included for
use with the CommonDialog control and for compatibility with earlier versions of Visual Basic. For
additional functionality, use the new Font object properties (not available for the CommonDialog
control).

Syntax
object.FontBold [= boolean]
object.FontItalic [= boolean]
object.FontStrikethru [= boolean]
object.FontUnderline [= boolean]

The FontBold, FontItalic, FontStrikethru, and FontUnderline property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying the font style as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default for FontBold, except with the

CommonDialog control) Turns on the formatting in
that style.

False (Default for FontItalic, FontStrikethru, and
FontUnderline, and FontBold with the
CommonDialog control) Turns off the formatting in
that style.

Remarks
Use these font properties to format text, either at design time using the Properties window or at run
time using code. For PictureBox controls and Form and Printer objects, setting these properties
doesn't affect graphics or text already drawn on the control or object. For all other controls, font
changes take effect on screen immediately.

To use these properties with the CommonDialog control, the Effects flag must be set.

Note Fonts available in Visual Basic vary depending on your system configuration, display devices,
and printing devices. Font-related properties can be set only to values for which actual fonts exist.
In general, you should change the FontName property before you set size and style attributes with
the FontSize, FontBold, FontItalic, FontStrikethru, and FontUnderline properties. However, when
you set TrueType fonts to smaller than 8 points, you should set the point size with the FontSize
property, then set the FontName property, and then set the size again with the FontSize property.
The Microsoft Windows operating environment uses a different font for TrueType fonts that are
smaller than 8 points.

FontName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFontNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontNameS"}

Returns or sets the font used to display text in a control or in a run-time drawing or printing operation.

Note The FontName property is included for use with the CommonDialog control and for
compatibility with earlier versions of Visual Basic. For additional functionality, use the new Font object
properties (not available for the CommonDialog control).

Syntax
object.FontName [= font]

The FontName property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
font A string expression specifying the font name to use.

Remarks
The default for this property is determined by the system. Fonts available with Visual Basic vary
depending on your system configuration, display devices, and printing devices. Font-related
properties can be set only to values for which fonts exist.

In general, you should change FontName before setting size and style attributes with the FontSize,
FontBold, FontItalic, FontStrikethru, and FontUnderline properties.

Note At run time, you can get information on fonts available to the system through the FontCount
and Fonts properties.

FontSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFontSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontSizeS"}

Returns or sets the size of the font to be used for text displayed in a control or in a run-time drawing
or printing operation.

Note The FontSize property is included for use with the CommonDialog control and for
compatibility with earlier versions of Visual Basic. For additional functionality, use the new Font object
properties (not available for the CommonDialog control).

Syntax
object.FontSize [= points]

The FontSize property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
points A numeric expression specifying the font size to use,

in points.

Remarks
Use this property to format text in the font size you want. The default is determined by the system. To
change the default, specify the size of the font in points.

The maximum value for FontSize is 2160 points.

Note Fonts available with Visual Basic vary depending on your system configuration, display
devices, and printing devices. Font-related properties can be set only to values for which fonts exist.
In general, you should change the FontName property before you set size and style attributes with
the FontSize, FontBold, FontItalic, FontStrikethru, and FontUnderline properties. However, when
you set TrueType fonts to smaller than 8 points, you should set the point size with the FontSize
property, then set the FontName property, and then set the size again with the FontSize property.
The Microsoft Windows operating environment uses a different font for TrueType fonts that are
smaller than 8 points.

Height, Width Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproHeightA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHeightS"}

Return or set the dimensions of an object or the width of the Columns object of a DBGrid control. For
the Printer and Screen objects, not available at design time.

Syntax
object.Height [= number]
object.Width [= number]

The Height and Width property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression specifying the dimensions of

an object, as described in Settings.

Settings
Measurements are calculated as follows:

· Form — the external height and width of the form, including the borders and title bar.
· Control — measured from the center of the control's border so that controls with different border

widths align correctly. These properties use the scale units of a control's container.
· Printer object — the physical dimensions of the paper set up for the printing device; not available

at design time. If set at run time, values in these properties are used instead of the setting of the
PaperSize property.

· Screen object — the height and width of the screen; not available at design time and read-only at
run time.

· Picture object — the height and width of the picture in HiMetric units.

Remarks
For Form, Printer, and Screen objects, these properties are always measured in twips. For a form or
control, the values for these properties change as the object is sized by the user or by your code.
Maximum limits of these properties for all objects are system-dependent.

If you set the Height and Width properties for a printer driver that doesn't allow these properties to be
set, no error occurs and the size of the paper remains as it was. If you set Height and Width for a
printer driver that allows only certain values to be specified, no error occurs and the property is set to
whatever the driver allows. For example, you could set Height to 150 and the driver would set it to
144.

Use the Height, Width, Left, and Top properties for operations or calculations based on an object's
total area, such as sizing or moving the object. Use the ScaleLeft, ScaleTop, ScaleHeight, and
ScaleWidth properties for operations or calculations based on an object's internal area, such as
drawing or moving objects within another object.

Note The Height property can't be changed for the DriveListBox control or for the ComboBox
control, whose Style property setting is 0 (Dropdown Combo) or 2 (Dropdown List).

For the Columns object of the DBGrid control, Width is specified in the unit of measure of the object
that contains the DBGrid. The default value for Width is the value of the DefColWidth property of
DBGrid.

For the Picture object, use the ScaleX and ScaleY methods to convert HiMetric units into the scale
you need.

Icon Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIconC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproIconX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproIconA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproIconS"}

Returns the icon displayed when a form is minimized at run time.

Syntax
object.Icon
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use this property to specify an icon for any form that the user can minimize at run time.

For example, you can assign a unique icon to a form to indicate the form's function. Specify the icon
by loading it using the Properties window at design time. The file you load must have the .ico filename
extension and format. If you don't specify an icon, the Visual Basic default icon for forms is used.

You can use the Visual Basic Icon Library (in the Icons subdirectory) as a source for icons. When you
create an executable file, you can assign an icon to the application by using the Icon property of any
form in that application.

Note You can see a form's icon in Windows 95 in the upper left corner of the form, or when the
form is minimized in both Windows 95 and Windows NT. If the form is minimized, the BorderStyle
property must be set to either 1 (Fixed Single) or 2 (Sizable) and the MinButton property must be set
to True for the icon to be visible.
At run time, you can assign an object's Icon property to another object's DragIcon or Icon property.
You can also assign an icon returned by the LoadPicture function. Using LoadPicture without an
argument assigns an empty (null) icon to the form, which enables you to draw on the icon at run time.

Interval Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIntervalC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproIntervalX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproIntervalA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproIntervalS"}

Returns or sets the number of milliseconds between calls to a Timer control's Timer event.

Syntax
object.Interval [= milliseconds]

The Interval property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
milliseconds A numeric expression specifying the number of

milliseconds, as described in Settings.

Settings
The settings for milliseconds are:

Setting Description
0 (Default) Disables a Timer control.
1 to 65,535 Sets an interval (in milliseconds) that takes effect

when a Timer control's Enabled property is set to
True. For example, a value of 10,000 milliseconds
equals 10 seconds. The maximum, 65,535
milliseconds, is equivalent to just over 1 minute.

Remarks
You can set a Timer control's Interval property at design time or run time. When using the Interval
property, remember:

· The Timer control's Enabled property determines whether the control responds to the passage of
time. Set Enabled to False to turn a Timer control off, and to True to turn it on. When a Timer
control is enabled, its countdown always starts from the value of its Interval property setting.

· Create a Timer event procedure to tell Visual Basic what to do each time the Interval has passed.

Left, Top Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLeftC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLeftX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproLeftA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLeftS"}

· Left — returns or sets the distance between the internal left edge of an object and the left edge of
its container.

· Top — returns or sets the distance between the internal top edge of an object and the top edge of
its container.

Syntax
object.Left [= value]
object.Top [= value]

The Left and Top property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A numeric expression specifying distance.

Remarks
For a form, the Left and Top properties are always expressed in twips; for a control, they are
measured in units depending on the coordinate system of its container. The values for these
properties change as the object is moved by the user or by code. For a Timer control, these
properties aren't available at run time.

For both properties, you can specify a single-precision number.

Use the Left, Top, Height, and Width properties for operations based on an object's external
dimensions, such as moving or resizing. Use the ScaleLeft, ScaleTop, ScaleHeight, and
ScaleWidth properties for operations based on an object's internal dimensions, such as drawing or
moving objects that are contained within the object. The scale-related properties apply only to
PictureBox controls and Form and Printer objects.

List Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproListC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproListX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproListA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproListS"}

Returns or sets the items contained in a control's list portion. The list is a string array in which each
element is a list item. Available at design time for ListBox and ComboBox controls through the
property browser; read-only at run time for DirListBox, DriveListBox, and FileListBox controls;
read/write at run time for ComboBox and ListBox controls.

Syntax
object.List(index) [= string]

The List property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index The number of a specific item in the list.
string A string expression specifying the list item.

Remarks
Use this property to access list items.

For all controls except the DirListBox, the index of the first item is 0 and the index of the last item is
ListCount–1.

For a DirListBox control, the index number sequence is based on the current directories and
subdirectories when the control is created at run time. The directory that is currently expanded is
represented using the index–1. Directories above the currently expanded directory are represented by
negative indexes with higher absolute values. For example,–2 is the parent directory of the directory
that is currently expanded and–3 is the directory above that. Directories below the directory that is
currently expanded range from 0 to ListCount–1.

Initially, ComboBox and ListBox controls contain an empty list. For the file-system controls, the list is
based on conditions that exist when the control is created at run time:

· DirListBox — contains a list of all directories, using the range -n to ListCount–1.
· DriveListBox — contains the list of drive connections in effect.
· FileListBox — contains the list of files in the directory that is currently expanded that match the

Pattern property. The path isn't included.

The List property works in conjunction with the ListCount and ListIndex properties.

For all applicable controls except a DirListBox, enumerating a list from 0 to ListCount -1 returns all
items in the list. For a DirListBox control, enumerating the list from–n to ListCount–1 returns a list
containing all directories and subdirectories visible from the directory that is currently expanded. In
this case n is the number of directory levels above the directory that is currently expanded.

Note To specify items you want to display in a ComboBox or ListBox control, use the AddItem
method. To remove items, use the RemoveItem method. To keep items in alphabetic order, set the
control's Sorted property to True before adding items to the list.
Using an Option Base = 1 statement in the Declarations section doesn't affect the enumeration of
elements in Visual Basic controls. The first element is always 0.
When the List index is outside the range of actual entries in the list box, a zero-length string ("") is
returned. For example, List(-1) returns a zero-length string for a ComboBox or ListBox control.

ListCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproListCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproListCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproListCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproListCountS"}

Returns the number of items in the list portion of a control.

Syntax
object.ListCount
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
ListCount provides specific information for each control:

· ComboBox and ListBox controls — the number of items in the list.
· DirListBox control — the number of subdirectories in the current directory.
· DriveListBox control — the number of drive connections.
· FileListBox control — the number of files in the current directory that match the Pattern property

setting.

If no item is selected, the ListIndex property value is –1. The first item in the list is ListIndex = 0, and
ListCount is always one more than the largest ListIndex value.

ListIndex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproListIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproListIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproListIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproListIndexS"}

Returns or sets the index of the currently selected item in the control. Not available at design time.

Syntax
object.ListIndex [= index]

The ListIndex property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index A numeric expression specifying the index of the

current item, as described in Settings.

Settings
The settings for index are:

Setting Description
–1 (Default for ComboBox, DirListBox, and

DriveListBox controls) Indicates no item is currently
selected. For a ComboBox control, indicates the
user has entered new text into the text box portion.
For a DirListBox control, indicates the index of the
current path. For a DriveListBox control, indicates
the index of the current drive when the control is
created at run time.

n (Default for FileListBox and ListBox controls) A
number indicating the index of the currently selected
item.

Remarks
The expression List(List1.ListIndex) returns the string for the currently selected item.

The first item in the list is ListIndex = 0, and ListCount is always one more than the largest
ListIndex value.

For a control in which users can make multiple selections, this property's behavior depends on the
number of items selected. If only one item is selected, ListIndex returns the index of that item. In a
multiple selection, ListIndex returns the index of the item contained within the focus rectangle,
whether or not that item is actually selected.

MaxButton Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMaxButtonC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMaxButtonX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMaxButtonA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMaxButtonS"}

Returns a value indicating whether a form has a Maximize button.

Syntax
object.MaxButton
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The MaxButton property settings are:

Setting Description
True (Default) The form has a Maximize button.
False The form doesn't have a Maximize button.

Remarks
A Maximize button enables users to enlarge a form window to full-screen size. To display a Maximize
button, you must also set the form's BorderStyle property to either 1 (Fixed Single), 2 (Sizable), or 3
(Fixed Double).

A Maximize button automatically becomes a Restore button when a window is maximized. Minimizing
or restoring a window automatically changes the Restore button back to a Maximize button.

The settings you specify for the MaxButton, MinButton, BorderStyle, and ControlBox properties
aren't reflected in the form's appearance until run time.

Note Maximizing a form at run time generates a Resize event. The WindowState property reflects
the current state of the window. If you set the WindowState property to 2 (Maximized), the form is
maximized independently of whatever settings are in effect for the MaxButton and BorderStyle
properties.

MinButton Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMinButtonC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMinButtonX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMinButtonA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMinButtonS"}

Returns a value indicating whether a form has a Minimize button.

Syntax
object.MinButton
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
The MinButton return values are:

Setting Description
True (Default) The form has a Minimize button.
False The form doesn't have a Minimize button.

Remarks
A Minimize button enables users to minimize a form window to an icon. To display a Minimize button,
you must also set the form's BorderStyle property to either 1 (Fixed Single), 2 (Sizable), or 3 (Fixed
Double).

The settings you specify for the MaxButton, MinButton, BorderStyle, and ControlBox properties
aren't reflected in the form's appearance until run time.

Note Minimizing a form to an icon at run time generates a Resize event. The WindowState
property reflects the current state of the window. If you set the WindowState property to 2
(Maximized), the form is maximized independently of whatever settings are in effect for the
MaxButton and BorderStyle properties.

Picture Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPictureC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPictureX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPictureA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPictureS"}

Returns or sets a graphic to be displayed in a control. For the OLE container control, not available at
design time and read-only at run time.

Syntax
object.Picture [= picture]

The Picture property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
picture A string expression specifying a file containing a

graphic, as described in Settings.

Settings
The settings for picture are:

Setting Description
(None) (Default) No picture.
(Bitmap, icon,
metafile)

Specifies a graphic. You can load the graphic from
the Properties window at design time. At run time,
you can also set this property using the LoadPicture
function on a bitmap, icon, or metafile.

Remarks
At design time, you can transfer a graphic with the Clipboard using the Copy, Cut, and Paste
commands on the Edit menu. At run time, you can use Clipboard methods such as GetData,
SetData, and GetFormat with the nontext Clipboard constants vbCFBitmap, vbCFMetafile, and
vbCFDIB, which are listed in the Visual Basic (VB) object library in the Object Browser.

When setting the Picture property at design time, the graphic is saved and loaded with the form. If
you create an executable file, the file contains the image. When you load a graphic at run time, the
graphic isn't saved with the application. Use the SavePicture statement to save a graphic from a form
or picture box into a file.

Note At run time, the Picture property can be set to any other object's DragIcon, Icon, Image, or
Picture property, or you can assign it the graphic returned by the LoadPicture function.

Sorted Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSortedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSortedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproSortedA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSortedS"}

Returns a value indicating whether the elements of a control are automatically sorted alphabetically.

Syntax
object.Sorted
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
The Sorted property return values are:

Setting Description
True List items are sorted alphabetically (case-

insensitive).
False (Default) List items aren't sorted alphabetically.

Remarks
When this property is True, Visual Basic handles almost all necessary string processing to maintain
alphabetic order, including changing the index numbers for items as required by the addition or
removal of items.

Note Using the AddItem method to add an element to a specific location in the list may violate the
sort order, and subsequent additions may not be correctly sorted.

TabIndex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTabIndEXC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTabIndEXX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTabIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTabIndexS"}

Returns or sets the tab order of most objects within their parent form.

Syntax
object.TabIndex [= index]

The TabIndex property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer from 0 to (n–1), where n is the number of

controls on the form that have a TabIndex property.
Assigning a TabIndex value of less than 0 generates
an error.

Remarks
By default, Visual Basic assigns a tab order to controls as you draw them on a form, with the
exception of the Menu, Timer, Data, Image, Line and Shape controls, which are not included in the
tab order. At run time, invisible or disabled controls and controls that can't receive the focus (Frame
and Label controls) remain in the tab order but are skipped during tabbing.

Each new control is placed last in the tab order. If you change the value of a control's TabIndex
property to adjust the default tab order, Visual Basic automatically renumbers the TabIndex of other
controls to reflect insertions and deletions. You can make changes at design time using the Properties
window or at run time in code.

The TabIndex property isn't affected by the ZOrder method.

Note A control's tab order doesn't affect its associated access key. If you press the access key for a
Frame or Label control, the focus moves to the next control in the tab order that can receive the
focus.
When loading forms saved as ASCII text, controls with a TabIndex property that aren't listed in the
form description are automatically assigned a TabIndex value. In subsequently loaded controls, if
existing TabIndex values conflict with earlier assigned values, the controls are automatically assigned
new values.
When you delete one or more controls, you can use the Undo command to restore the controls and
all their properties except for the TabIndex property, which can't be restored. TabIndex is reset to the
end of the tab order when you use Undo.

Tag Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTagC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTagX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproTagA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTagS"}

Returns or sets an expression that stores any extra data needed for your program. Unlike other
properties, the value of the Tag property isn't used by Visual Basic; you can use this property to
identify objects.

Syntax
object.Tag [= expression]

The Tag property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
expression A string expression identifying the object. The

default is a zero-length string ("").

Remarks
You can use this property to assign an identification string to an object without affecting any of its
other property settings or causing side effects. The Tag property is useful when you need to check the
identity of a control or MDIForm object that is passed as a variable to a procedure.

Tip When you create a new instance of a form, assign a unique value to the Tag property.

Text Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTextC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTextX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproTextA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTextS"}

· ComboBox control (Style property set to 0 [Dropdown Combo] or to 1 [Simple Combo]) and
TextBox control — returns or sets the text contained in the edit area.

· ComboBox control (Style property set to 2 [Dropdown List]) and ListBox control — returns the
selected item in the list box; the value returned is always equivalent to the value returned by the
expression List(ListIndex). Read-only at design time; read-only at run time.

Syntax
object.Text [= string]

The Text property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression specifying text.

Remarks
At design time only, the defaults for the Text property are:

· ComboBox and TextBox controls — the control's Name property.
· ListBox control — a zero-length string ("").

For a ComboBox with the Style property set to 0 (Dropdown Combo) or to 1 (Simple Combo) or for a
TextBox, this property is useful for reading the actual string contained in the edit area of the control.
For a ComboBox or ListBox control with the Style property set to 2 (Dropdown List), you can use
the Text property to determine the currently selected item.

The Text setting for a TextBox control is limited to 2048 characters unless the MultiLine property is
True, in which case the limit is about 32K.

Value Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproValueC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproValueX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproValueA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproValueS"}

· CheckBox and OptionButton controls — returns or sets the state of the control.
· CommandButton control — returns or sets a value indicating whether the button is chosen; not

available at design time.
· Field object — returns or sets the content of a field; not available at design time.
· HScrollBar and VScrollBar controls (horizontal and vertical scroll bars) — returns or sets the

current position of the scroll bar, whose return value is always between the values for the Max and
Min properties, inclusive.

Syntax
object.Value [= value]

The Value property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value Value specifying the state, content, or position of a

control, as described in Settings.

Settings
The settings for value are:

· CheckBox control — 0 is Unchecked (default), 1 is Checked, and 2 is Grayed (dimmed).
· CommandButton control — True indicates the button is chosen; False (default) indicates the

button isn't chosen. Setting the Value property to True in code invokes the button's Click event.
· Field object — restricted only by the Field data types.
· HScrollBar and VScrollBar controls — set values between –32,768 and 32,767 to position the

scroll box.
· OptionButton control — True indicates the button is selected; False (default) indicates the button

isn't selected.

Remarks
A default property of an object is assumed, and doesn't need to be specified in code. For example,
Field is the default property of any Recordset, and Value is the default property of a Field object.
This makes the two statements below equivalent:
Dn.Fields("PubID").Value = X
Dn.("PubID") = X
The first statement specifies the default properties; the second statement assumes them.

Visible Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproVisibleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVisibleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproVisibleA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproVisibleS"}

Returns or sets a value indicating whether an object is visible or hidden.

Syntax
object.Visible [= boolean]

The Visible property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying whether the object

is visible or hidden.

Settings
The settings for boolean are:

Setting Description
True (Default) Object is visible.
False Object is hidden.

Remarks
To hide an object at startup, set the Visible property to False at design time. Setting this property in
code enables you to hide and later redisplay a control at run time in response to a particular event.

Note Using the Show or Hide method on a form is the same as setting the form's Visible property
in code to True or False, respectively.

BackColor, ForeColor Properties Example
This example resets foreground and background colors randomly twice each second for a form and
PictureBox control. To try this example, paste the code into the Declarations section of a form that
contains a PictureBox control and a Timer control, and then press F5.
Private Sub Form_Load ()

Timer1.Interval = 500
End Sub

Private Sub Timer1_Timer ()
BackColor = QBColor(Rnd * 15)
ForeColor = QBColor(Rnd * 10)
Picture1.BackColor = QBColor(Rnd * 15)
Picture1.ForeColor = QBColor(Rnd * 10)

End Sub

BorderWidth Property Example
This example uses two ComboBox controls to select different widths and styles for the borders of a
Shape control. To try this example, paste the code into the Declarations section of a form that
contains a Shape control and one ComboBox control. For the ComboBox, set Style = 2 and Index
= 0 (to create a control array), and then press F5 and click the form.
Private Sub Form_Load ()

Combo1(0).Width = 1440 * 1.5
Load Combo1(1)
Combo1(1).Top = Combo1(0).Top + Combo1(0).Height * 1.5
Combo1(1).Visible = True
For I = 0 To 6

Combo1(0).AddItem "BorderStyle = " & I
Next I
For I = 1 To 10

Combo1(1).AddItem "BorderWidth = " & I
Next I
Combo1(0).ListIndex = 1
Combo1(1).ListIndex = 0

End Sub
Private Sub Combo1_Click (Index As Integer)

If Index = 0 Then
Shape1.BorderStyle = Combo1(0).ListIndex

Else
Shape1.BorderWidth = Combo1(1).ListIndex + 1

End If
End Sub

Col, Row Properties Example
This example puts "Here" into the current cell and then changes the active cell to the third cell in the
third row and puts "There" into that cell. To try this example, use the Components dialog box to add
an MS Flex Grid control to the toolbox (from the Project menu, choose Components, and then check
Microsoft Flex Grid Control), and then draw a grid on a new form. To run the program, press F5, and
then click the grid.
Private Sub Form_Load ()

MSFlexGrid1.Rows = 8 ' Set rows and columns.
MSFlexGrid1.Cols = 5

End Sub
Private Sub MSFlexGrid1_Click ()

' Put text in current cell.
MSFlexGrid1.Text = "Here"
' Put text in third row, third column.
MSFlexGrid1.Col = 2
MSFlexGrid1.Row = 2
MSFlexGrid1.Text = "There"

End Sub
The next example displays the location of the active cell and the range of the selection as a user
selects a cell or range of cells. Notice that when selecting a range, the active cell doesn't change.
Select a range, and then click the form to move the active cell around the perimeter of the selection.
Notice that the selected range doesn't change.

To try this example, create a new project, add an MS Flex Grid control using the Components dialog
box (from the Project menu, choose Components, and then check Microsoft Flex Grid Control), and
then draw an MS Flex Grid and two labels. Copy the code into the Declarations section, and then
press F5 to run the program.
Private Sub Form_Load ()

MSFlexGrid1.Cols = 6 ' Set columns and rows.
MSFlexGrid1.Rows = 7

End Sub
Private Sub MSFlexGrid1_RowColChange ()

Msg = "Active Cell: " & Chr(64 + MSFlexGrid1.Col)
Mst = Msg & MSFlexGrid1.Row
Label1.Caption = Msg

End Sub
Private Sub MSFlexGrid1_SelChange ()

Msg = "Selection: " & Chr(64 + MSFlexGrid1.SelStartCol)
Msg = Msg & MSFlexGrid1.SelStartRow
Msg = Msg & ":" & Chr(64 + MSFlexGrid1.SelEndCol)
Msg = Msg & MSFlexGrid1.SelEndRow
Label2.Caption = Msg

End Sub
Private Sub Form_Click ()

' This procedure moves the active cell around
' the perimeter of the selected range
' of cells with each click on the form.
Dim GR, GC As Integer
If MSFlexGrid1.Row = MSFlexGrid1.SelStartRow Then

If MSFlexGrid1.Col = MSFlexGrid1.SelEndCol Then
GR = 1: GC = 0

Else

GR = 0: GC = 1
End If

ElseIf MSFlexGrid1.Row = MSFlexGrid1.SelEndRow Then
If MSFlexGrid1.Col = MSFlexGrid1.SelStartCol Then

GR = -1: GC = 0
Else

GR = 0: GC = -1
End If

Else
If MSFlexGrid1.Col = MSFlexGrid1.SelStartCol Then

GR = -1: GC = 0
Else

GR = 1: GC = 0
End If

End If
MSFlexGrid1.Row = MSFlexGrid1.Row + GR
MSFlexGrid1.Col = MSFlexGrid1.Col + GC

End Sub

DrawWidth Property Example
This example draws a gradually thickening line across a form. To try this example, paste the code into
the Declarations section of a form, and then press F5 and click the form.
Private Sub Form_Click ()

Dim I ' Declare variable.
DrawWidth = 1 ' Set starting pen width.
PSet (0, ScaleHeight / 2) ' Set starting point.
ForeColor = QBColor(5) ' Set pen color.
For I = 1 To 100 Step 10 ' Set up loop.

DrawWidth = I ' Reset pen width.
Line - Step(ScaleWidth / 10, 0) ' Draw a line.

Next I
End Sub

FontBold, FontItalic, FontStrikethru, FontUnderline Properties
Example
This example puts text on a form in one of two combinations of styles with each mouse click. To try
this example, paste the code into the Declarations section of a form, and then press F5 and click the
form.
Private Sub Form_Click ()

FontStrikethru = Not FontStrikethru ' Toggle strikethrough.
FontItalic = Not FontItalic ' Toggle font style.
Print "Now is the time!" ' Print some text.

End Sub

FontName Property Example
This example prints the name of each font using the particular font. To try this example, paste the
code into the Declarations section of a form. Press F5 to run the program, and then click the form.
Each time you click the form, the font name is printed.
Private Sub Form_Click ()

Static I ' Declare variables.
Dim OldFont
OldFont = FontName ' Preserve original font.
FontName = Screen.Fonts(I) ' Change to new font.
Print Screen.Fonts(I) ' Print name of font.
I = I + 1 ' Increment counter.
If I = FontCount Then I = 0 ' Start over.
FontName = OldFont ' Restore original font.

End Sub

FontSize Property Example
This example prints text on your form in two different point sizes with each click of the mouse. To try
this example, paste the code into the Declarations section of a form. Press F5 to run the program, and
then click the form.
Private Sub Form_Click ()

FontSize = 24 ' Set FontSize.
Print "This is 24-point type." ' Print large type.
FontSize = 8 ' Set FontSize.
Print "This is 8-point type." ' Print small type.

End Sub

Height, Width Properties Example
This example sets the size of a form to 75 percent of screen size and centers the form when it is
loaded. To try this example, paste the code into the Declarations section of a form. Then press F5 and
click the form.
Private Sub Form_Click ()

Width = Screen.Width * .75 ' Set width of form.
Height = Screen.Height * .75 ' Set height of form.
Left = (Screen.Width - Width) / 2 ' Center form horizontally.
Top = (Screen.Height - Height) / 2 ' Center form vertically.

End Sub

Icon Property Example
This example creates a blank icon for a form and draws colored dots on the icon as long as the form
is minimized. To try this example, paste the code into the Declarations section of a form, and then
press F5 and minimize the form.

Note This example works only with Windows NT 3.5x.

Private Sub Form_Resize ()
Dim X, Y ' Declare variables.
If Form1.WindowState = vbMinimized Then

Form1.Icon = LoadPicture() ' Load a blank icon.
Do While Form1.WindowState = vbMinimized ' While form is minimized,

Form1.DrawWidth = 10 ' set size of dot.
' Choose random color for dot.
Form1.ForeColor = QBColor(Int(Rnd * 15))
' Set random location on icon.
X = Form1.Width * Rnd
Y = Form1.Height * Rnd
PSet (X, Y) ' Draw dot on icon.
DoEvents ' Allow other events.

Loop
End If

End Sub

Interval Property Example
This example enables you to adjust the speed at which a form switches colors. To try this example,
paste the code into the Declarations section of a form that contains a Timer control, an HScrollBar
control (horizontal scroll bar), and a PictureBox control, and then press F5 and click the scroll bar.
Private Sub Form_Load ()

Timer1.Interval = 900 ' Set interval.
HScroll1.Min = 100 ' Set minimum.
HScroll1.Max = 900 ' Set maximum.

End Sub
Private Sub HScroll1_Change ()

' Set interval according to scroll bar value.
Timer1.Interval = 1000 - HScroll1.Value

End Sub
Private Sub Timer1_Timer ()

' Switch BackColor between red and blue.
If Picture1.BackColor = RGB(255, 0, 0) Then

Picture1.BackColor = RGB(0, 0, 255)
Else

Picture1.BackColor = RGB(255, 0, 0)
End If

End Sub

Left, Top Properties Example
This example sets the size of a form to 75 percent of screen size and centers the form when it's
loaded. To try this example, paste the code into the Declarations section of a form, and then press F5
and click the form.
Private Sub Form_Click ()

Width = Screen.Width * .75 ' Set width of form.
Height = Screen.Height * .75 ' Set height of form.
Left = (Screen.Width - Width) / 2 ' Center form horizontally.
Top = (Screen.Height - Height) / 2 ' Center form vertically.

End Sub

List Property Example
This example loads a ComboBox control with a list of sandwich names and displays the first item in
the list. To try this example, paste the code into the Declarations section of a form that contains a
ComboBox control, and then press F5.
Private Sub Form_Load ()

Combo1.AddItem "Denver Sandwich" ' Add each item to list.
Combo1.AddItem "Reuben Sandwich"
Combo1.AddItem "Turkey Sandwich"
Combo1.Text = Combo1.List(0) ' Display first item.

End Sub

ListCount Property Example
This example loads a list of your printer fonts into a ComboBox control, displays the first item in the
list, and prints the total number of fonts. Each click of the command button changes all items in the list
to uppercase or lowercase. To try this example, paste the code into the Declarations section of a form
that contains a ComboBox control (Style = 2) and a CommandButton control, and then press F5
and click the CommandButton.
Private Sub Form_Load ()

Dim I ' Declare variable.
AutoRedraw = True ' Set AutoRedraw.
For I = 0 To Printer.FontCount - 1 ' Put font names in list.

Combo1.AddItem Printer.Fonts(I)
Next I
Combo1.ListIndex = 0 ' Set text to first item.
' Print ListCount information on form.
Print "Number of printer fonts: "; Combo1.ListCount

End Sub
Private Sub Command1_Click ()

Static UpperCase
Dim I ' Declare variable.
For I = 0 To Combo1.ListCount - 1 ' Loop through list.

If UpperCase Then
Combo1.List(I) = UCase(Combo1.List(I))

Else
Combo1.List(I) = LCase(Combo1.List(I))

End If
Next I
UpperCase = Not UpperCase ' Change case.

End Sub

ListIndex Property Example
This example displays the names of three players in a ListBox control and the corresponding salary
of the selected player in a Label control. To try this example, paste the code into the Declarations
section of a form that contains a ComboBox control and a Label control, and then press F5 and
choose a name from the ComboBox.
Dim Player(0 To 2)' Dimension two arrays.
Dim Salary(0 To 2)
Private Sub Form_Load ()

Dim I ' Declare variable.
AutoSize = True
Player(0) = "Miggey McMoo" ' Enter data into arrays.
Player(1) = "Alf Hinshaw"
Player(2) = "Woofer Dean"
Salary(0) = "$234,500"
Salary(1) = "$158,900"
Salary(2) = "$1,030,500"
For I = 0 To 2 ' Add names to list.

Combo1.AddItem Player(I)
Next I
Combo1.ListIndex = 0 ' Display first item in list.

End Sub

Private Sub Combo1_Click ()
' Display corresponding salary for name.
Label1.Caption = Salary(Combo1.ListIndex)

End Sub

Picture Property Example
This example loads icons from the Visual Basic icon library into two of three PictureBox controls.
When you click the form, the third PictureBox is used to switch the icons. You can use any two icons.
Paste the code into the Declarations section of a form that has three small PictureBox controls (for
Picture3, set Visible = False). Press F5 to run the program, and then click the form.

Private Sub Form_Load ()
' Load the icons.
Picture1.Picture = LoadPicture("ICONS\COMPUTER\TRASH02A.ICO")
Picture2.Picture = LoadPicture("ICONS\COMPUTER\TRASH02B.ICO")

End Sub

Private Sub Form_Click ()
' Switch the icons.
Picture3.Picture = Picture1.Picture
Picture1.Picture = Picture2.Picture
Picture2.Picture = Picture3.Picture
' Clear the third picture (not necessary if not visible).
Picture3.Picture = LoadPicture()

End Sub
This example pastes a bitmap from the Clipboard into a PictureBox control. To find the value of
Clipboard format constants (starting with vbCF), see the Visual Basic (VB) object library in the Object
Browser. To try this example, paste the code into the Declarations section of a form that has a
PictureBox control. Press F5, and then in another application, copy an icon onto the Clipboard, switch
to Visual Basic, and click the form.
Private Sub Form_Click ()

Picture1.Picture = Clipboard.GetData(vbCFDIB)
End Sub

TabIndex Property Example
This example reverses the tab order of a group of buttons by changing the TabIndex property of a
command button array. To try this example, paste the code into the Declarations section of a form that
contains four CommandButton controls. Set the Name property to CommandX for each button to
create the control array, and then press F5 and click the form to reverse the tab order of the buttons.
Private Sub Form_Click ()

Dim I, X ' Declare variables.
' Reverse tab order by setting start value of X.
If CommandX(0).TabIndex = 0 Then X = 4 Else X = 1

For I = 0 To 3
CommandX(I).Caption = X ' Set caption.
CommandX(I).TabIndex = X - 1 ' Set tab order.
If CommandX(0).TabIndex = 3 Then

X = X - 1 ' Decrement X.
Else

X = X + 1 ' Increment X.
End If

Next I
End Sub

Tag Property Example
This example displays a unique icon for each control being dragged. To try this example, paste the
code into the Declarations section of a form that contains three PictureBox controls. Set the
DragMode property to 1 for Picture1 and Picture2, and then press F5. Use the mouse to drag
Picture1 or Picture2 over Picture3 controls.
Private Sub Form_Load ()
 Picture1.Tag = "ICONS\ARROWS\POINT03.ICO"
 Picture2.Tag = "ICONS\ARROWS\POINT04.ICO"
End Sub

Private Sub Picture3_DragOver (Source As Control, X As Single, Y As Single,
State As Integer)

If State = vbEnter Then
' Select based on each PictureBox’s Name property.
Select Case Source.Name
Case "Picture1"

' Load icon for Picture1.
Source.DragIcon = LoadPicture(Picture1.Tag) Case

"Picture2"
' Load icon for Picture2.
Source.DragIcon = LoadPicture(Picture2.Tag)

End Select
ElseIf State = vbLeave Then

' When source isn't over Picture3, unload icon.
Source.DragIcon = LoadPicture ()

End If
End Sub

Text Property Example
This example illustrates the Text property. To try this example, paste the code into the Declarations
section of a form that contains three TextBox controls and a CommandButton control, and then
press F5 and enter text in Text1.
Private Sub Text1_Change ()

Text2.Text = LCase(Text1.Text) ' Display text as lowercase.
Text3.Text = UCase(Text1.Text) ' Display text as uppercase.

End Sub
Private Sub Command1_Click ()' Delete text.

Text1.Text = ""
End Sub

Value Property Example
This example displays an HScrollBar (horizontal scroll bar) control's numeric value in a TextBox
control. To try this example, paste the code into the Declarations section of a form that has a TextBox
control and an HScrollBar control. Press F5 to run the program, and then click the scroll bar.
Private Sub Form_Load ()

HScroll1.Min = 0 ' Initialize scroll bar.
HScroll1.Max = 1000
HScroll1.LargeChange = 100
HScroll1.SmallChange = 1

End Sub

Private Sub HScroll1_Change ()
Text1.Text = Format (HScroll1.Value)

End Sub

Visible Property Example
This example creates animation using two PictureBox controls. To try this example, paste the code
into the Declarations section of a form that contains two icon-sized PictureBox controls. Set the
Name property to FileCab for both PictureBox controls to create an array, and then press F5 and
click the picture to view the animation.
Private Sub Form_Load ()

Dim I ' Declare variable.
FileCab(0).BorderStyle = 0 ' Set BorderStyle.
FileCab(1).BorderStyle = 0
' Load icons into picture boxes.
FileCab(1).Picture = LoadPicture("ICONS\OFFICE\FILES03B.ICO")
FileCab(0).Picture = LoadPicture("ICONS\OFFICE\FILES03A.ICO")
For I = 0 To 1

FileCab(I).Move 400, 400 ' Place graphics at same spot.
Next I
FileCab(1).Visible = False ' Set to invisible.
FileCab(0).Visible = True ' Set to visible.

End Sub

Private Sub FileCab_Click (Index As Integer)
Dim I ' Declare variable.
For I = 0 To 1

' Switch the visibility for both graphics.
FileCab(I).Visible = Not FileCab(I).Visible

Next I
End Sub

Align Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAlignC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAlignX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproAlignA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAlignS"}

Returns or sets a value that determines whether an object is displayed in any size anywhere on a
form or whether it's displayed at the top, bottom, left, or right of the form and is automatically sized to
fit the form's width.

Syntax
object.Align [= number]

The Align property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number An integer that specifies how an object is displayed,

as described in Settings.

Settings
The settings for number are:

Constant Setting Description
vbAlignNone 0 (Default in a non-MDI form) None —

size and location can be set at design
time or in code. This setting is ignored
if the object is on an MDI form.

VbAlignTop 1 (Default in an MDI form) Top — object
is at the top of the form, and its width
is equal to the form's ScaleWidth
property setting.

VbAlignBottom 2 Bottom — object is at the bottom of
the form, and its width is equal to the
form's ScaleWidth property setting.

VbAlignLeft 3 Left — object is at the left of the form,
and its width is equal to the form's
ScaleWidth property setting.

VbAlignRight 4 Right — object is at the right of the
form, and its width is equal to the
form's ScaleWidth property setting.

Remarks
You can use the Align property to quickly create a toolbar or status bar at the top or bottom of a form.
As a user changes the size of the form, an object with Align set to 1 or 2 automatically resizes to fit
the width of the form.

PictureBox and Data controls are the only standard controls that can be placed on an MDI form. The
internal area of an MDI form is defined by the space not covered by controls. When an MDI child form
is maximized within the parent MDI form, it won't cover any controls.

Use number settings 3 and 4 to align toolbars at the left and right sides of a form or MDI form. If there
are two toolbars in a corner of an MDI form, the top- or bottom-aligned one extends to the corner,
taking precedence over the left- or right-aligned one. Left- and right-aligned objects occupy the

internal area on an MDI form, just like top- and bottom-aligned objects.

Alignment Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAlignmentC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAlignmentX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAlignmentA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAlignmentS"}

Returns or sets a value that determines the alignment of a CheckBox or OptionButton control, text
in a control, or values in a column of a DBGrid control. Read-only at run time for CheckBox,
OptionButton, and TextBox controls.

Syntax
object.Alignment [= number]

The Alignment property syntax has these parts:

Part Description
a

object An object expression that evaluates to an object in
the Applies To list.

Number An integer that specifies the type of alignment, as
described in Settings.

Settings
For CheckBox and OptionButton controls, the settings for number are:

Constant Setting Description
vbLeftJustify 0 (Default) Text is left-aligned; control is right-

aligned.
VbRightJustify 1 Text is right-aligned; control is left-aligned.

For Label and TextBox controls, the settings for number are:

Constant Setting Description
vbLeftJustify 0 (Default) Text is left-aligned.
VbRightJustify 1 Text is right-aligned.
VbCenter 2 Text is centered.

For a DBGrid column, the settings for number are:

Constant Setting Description
dbgLeft 0 Text is left-aligned.
DbgRight 1 Text is right-aligned.
DbgCenter 2 Text is centered.
DbgGeneral 3 (Default) General — Text is left-aligned;

numbers are right-aligned.

Remarks
You can display text to the right or left of OptionButton and CheckBox controls. By default, text is
left-aligned.

The MultiLine property in a Textbox control must be set to True for the Alignment property to work
correctly. If the MultiLine property setting of a TextBox control is False, the Alignment property is
ignored.

Archive, Hidden, Normal, System Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproArchiveC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproArchiveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproArchiveA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproArchiveS"}

Return or set a value that determines whether a FileListBox control displays files with Archive,
Hidden, Normal, or System attributes.

Syntax
object.Archive [= boolean]
object.Hidden [= boolean]
object.Normal [= boolean]
object.System [= boolean]

The Archive, Hidden, Normal, and System property syntaxes have these parts:

Part Description
c

object An object expression that evaluates to an object in
the Applies To list.

boolean A Boolean expression that specifies the type of files
displayed, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default for Archive and Normal) Displays files with

the property's attribute in the FileListBox control.
False (Default for Hidden and System) Displays files

without the property's attribute in the FileListBox
control.

Remarks
Use these properties to specify the type of files to display in a FileListBox control, based on standard
file attributes used in the operating environment. Setting any of these properties with code at run time
resets the FileListBox control to display only those files with the specified attributes.

For example, in a find-and-replace operation you could display only system files by setting the
System property to True and the other properties to False. Or, as part of a file backup procedure, you
could set the Archive property to True to list only those files modified since the previous backup.

AutoRedraw Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAutoRedrawC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAutoRedrawX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAutoRedrawA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAutoRedrawS"}

Returns or sets the output from a graphics method to a persistent graphic.

Syntax
object.AutoRedraw [= boolean]

The AutoRedraw property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies how the object is

repainted, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True Enables automatic repainting of a Form object or

PictureBox control. Graphics and text are written to
the screen and to an image stored in memory. The
object doesn't receive Paint events; it's repainted
when necessary, using the image stored in memory.

False (Default) Disables automatic repainting of an object
and writes graphics or text only to the screen. Visual
Basic invokes the object's Paint event when
necessary to repaint the object.

Remarks
This property is central to working with the following graphics methods: Circle, Cls, Line, Point,
Print, and PSet. Setting AutoRedraw to True automatically redraws the output from these methods
in a Form object or PictureBox control when, for example, the object is resized or redisplayed after
being hidden by another object.

You can set AutoRedraw in code at run time to alternate between drawing persistent graphics (such
as a background or grid) and temporary graphics. If you set AutoRedraw to False, previous output
becomes part of the background screen. When AutoRedraw is set to False, background graphics
aren't deleted if you clear the drawing area with the Cls method. Setting AutoRedraw back to True
and then using Cls clears the background graphics.

Note If you set the BackColor property, all graphics and text, including the persistent graphic, are
erased. In general, all graphics should be displayed using the Paint event unless AutoRedraw is set
to True.
To retrieve the persistent graphic created when AutoRedraw is set to True, use the Image property.
To pass the persistent graphic to a Windows API when AutoRedraw is set to True, use the object's
hDC property.
If you set a form's AutoRedraw property to False and then minimize the form, the ScaleHeight and
ScaleWidth properties are set to icon size. When AutoRedraw is set to True, ScaleHeight and
ScaleWidth remain the size of the restored window.

If AutoRedraw is set to False, the Print method will print on top of
graphical controls such as the Image and Shape controls.

AutoShowChildren Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAutoShowChildrenC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAutoShowChildrenX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAutoShowChildrenA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAutoShowChildrenS"}

Returns or sets a value that determines whether MDI child forms are displayed when loaded.

Syntax
object.AutoShowChildren [= boolean]

The AutoShowChildren property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies whether MDI

child forms are automatically visible, as described in
Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) MDI child forms are automatically displayed

when loaded.
False MDI child forms aren't automatically displayed when

loaded.

Remarks
You can use the AutoShowChildren property to load MDI child forms and leave them hidden until
they're displayed using the Show method.

AutoSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbProAutosizeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAutoSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAutoSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAutoSizeS"}

Returns or sets a value that determines whether a control is automatically resized to display its entire
contents.

Syntax
object.AutoSize [= boolean]

The AutoSize property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies whether the

control is resized, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True Automatically resizes the control to display its entire

contents.
False (Default) Keeps the size of the control constant.

Contents are clipped when they exceed the area of
the control.

CellSelected Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCellSelectedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCellSelectedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCellSelectedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCellSelectedS"}

Returns a value that determines whether the cell specified by the Col and Row properties (the active
cell) is within the Grid control's selected region.

Syntax
object.CellSelected
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The settings for CellSelected property are:

Setting Description
True The specified cell is within the selected area.
False The specified cell isn't within the selected area.

Remarks
You can use this property to determine whether the user has selected a specific cell or a specific
range of cells.

At run time, the user can select a range of cells by clicking a cell and then dragging the mouse or by
pressing SHIFT and using the arrow keys.

Use the SelEndCol, SelStartCol, SelEndRow, and SelStartRow properties to determine the
selected region. Use the Col and Row properties to determine the active cell.

Clip Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproClipC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproClipX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproClipA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproClipS"}

Returns or sets the contents of the cells in a selected region of a Grid control. Not available at design
time.

Syntax
object.Clip [= string]

The Clip property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression containing the cell contents.

Remarks
The string can contain the contents of multiple rows and columns. In string, a tab character (ANSI
character 9) indicates a new cell in a row, and a carriage return (ANSI character 13) indicates the
beginning of a new row. Use the Chr function to embed these characters in strings. For example, the
following line of code puts text into a selected area two rows high and two columns wide:
Grid1.Clip = "1st" & Chr(9) & "a" & Chr(13) & "2nd" & Chr(9) & "b"
When you put data into a Grid control, only the selected cells are affected. If there are more cells in
the selected region than are described in string, the remaining cells are set to Null. If there are more
cells described in string than in the selected region, the unused portion of string is ignored.

ClipControls Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproClipControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproClipControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproClipControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproClipControlsS"}

Returns or sets a value that determines whether graphics methods in Paint events repaint the entire
object or only newly exposed areas. Also determines whether the Microsoft Windows operating
environment creates a clipping region that excludes nongraphical controls contained by the object.
Read-only at run time.

Syntax
object.ClipControls
The ClipControls property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies how objects are

repainted, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) Graphics methods in Paint events repaint

the entire object. A clipping region is created around
nongraphical controls on the form before a Paint
event.

False Graphics methods in Paint events repaint only newly
exposed areas. A clipping region isn’t created
around nongraphical controls before a Paint event.
Complex forms usually load and repaint faster when
ClipControls is set to False.

Remarks
Clipping is the process of determining which parts of a form or container, such as a Frame or
PictureBox control, are painted when the form is displayed. An outline of the form and controls is
created in memory. The Windows operating environment uses this outline to paint some parts, such
as the background, without affecting other parts, such as the contents of a TextBox control. Because
the clipping region is created in memory, setting this property to False can reduce the time needed to
paint or repaint a form.

The clipping region includes most controls, but doesn't clip around the Image, Label, Line, or Shape
controls.

Avoid nesting intrinsic controls with ClipControls set to True inside a control with ClipControls set to
False (for instance, a command button inside a picture box). This kind of control nesting causes the
controls to repaint incorrectly. To fix this problem, set the ClipControls property for both the container
control and the nested controls to True.

ColAlignment Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproColAlignmentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproColAlignmentX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproColAlignmentA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproColAlignmentS"}

Returns or sets the alignment of data in a column. Not available at design time.

Syntax
object.ColAlignment(column) [= number]

The ColAlignment property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
column The number of a column.
number An integer that specifies the column alignment, as

described in Settings.

Settings
The settings for number are:

Constant Setting Description
vbLeftJustify 0 (Default) Left-aligned.
VbRightJustify 1 Right-aligned.
VbCenter 2 Centered.

Remarks
Any column can have an alignment that is different from other columns. This property doesn't affect
cells in a fixed column. To set the alignment for a fixed column, use the FixedAlignment property.

ColorMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproColorModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproColorModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproColorModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproColorModeS"}

Returns or sets a value that determines whether a color printer prints output in color or monochrome.
Not available at design time.

Syntax
object.ColorMode [= value]

The ColorMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A constant or integer that specifies the print mode,

as described in Settings.

Settings
The settings for value are:

Setting Value Description
vbPRCMMonochrome 1 Print output in monochrome (usually

shades of black and white).
VbPRCMColor 2 Print output in color.

Remarks
The default value depends on the printer driver and the current printer settings. Monochrome printers
ignore this property.

Note The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. If you set the ColorMode property for a printer which doesn’t support color,
the setting is ignored. If you attempt to reference the ColorMode property, however, you will get an
error message. Settings outside the accepted range may also produce an error. For more information,
see the manufacturer's documentation for the specific driver.

Columns Property (ListBox)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproColumnsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproColumnsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproColumnsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproColumnsS"}

Returns or sets a value that determines whether a ListBox control scrolls vertically or horizontally
and how the items in the columns are displayed. If it scrolls horizontally, the Columns property
determines how many columns are displayed.

Syntax
object.Columns [= number]

The Columns property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number An integer that specifies how a control scrolls and

how items are arranged in columns, as described in
Settings.

Settings
The settings for number are:

Setting Description
0 (Default) Items are arranged in a single column and

the ListBox scrolls vertically.
1 to n Items are arranged in snaking columns, filling the

first column, then the second column, and so on. The
ListBox scrolls horizontally and displays the
specified number of columns.

Remarks
For horizontal-scrolling ListBox controls, the column width is equal to the width of the ListBox
divided by the number of columns.

This property can't be set to 0 or changed from 0 at run time — that is, you can't change a multiple-
column ListBox to a single-column ListBox or a single-column ListBox to a multiple-column
ListBox at run time. However, you can change the number of columns in a multiple-column ListBox
at run time.

ColWidth Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproColWidthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproColWidthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproColWidthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproColWidthS"}

Returns or sets the width of the specified column in twips. Not available at design time.

Syntax
object.ColWidth(column) [= number]

The ColWidth property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
column The number of a column.
number A numeric expression that specifies the column

width.

Remarks
You can use this property to set the width of any column at run time. Users can also change the width
of a column by positioning the mouse pointer between columns and then dragging.

Copies Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCopiesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCopiesX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCopiesA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCopiesS"}

Returns or sets a value that determines the number of copies to be printed. For the Printer object, not
available at design time.

Syntax
object.Copies [= number]

The Copies property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression that specifies the number of

copies to print. This value must be an integer.

Remarks
For the Print dialog box, this property returns the number of copies entered by the user in the Copies
box. If the cdlPDUseDevModeCopies flag is set for the CommonDialog control, this property
always returns 1.

For the Printer object, multiple copies may or may not be collated, depending on the printer driver.
Multiple copies of the entire document or multiple copies of each page may be printed. For printers
that don't support collating, set Copies = 1, and then use a loop in code to print multiple copies of the
entire document.

Note The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. Settings outside the accepted range may produce an error. For more
information, see the manufacturer's documentation for the specific driver.

CurrentX, CurrentY Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCurrentXC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCurrentXX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCurrentXA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCurrentXS"}

Return or set the horizontal (CurrentX) or vertical (CurrentY) coordinates for the next printing or
drawing method. Not available at design time.

Syntax
object.CurrentX [= x]

object.CurrentY [= y]

The CurrentX and CurrentY properties syntax have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
x A number that specifies the horizontal coordinate.
y A number that specifies the vertical coordinate.

Remarks
Coordinates are measured from the upper-left corner of an object. The CurrentX property setting is 0
at an object's left edge, and the CurrentY property setting is 0 at its top edge. Coordinates are
expressed in twips, or the current unit of measurement defined by the ScaleHeight, ScaleWidth,
ScaleLeft, ScaleTop, and ScaleMode properties.

When you use the following graphics methods, the CurrentX and CurrentY settings are changed as
indicated:

This method Sets CurrentX, CurrentY to
Circle The center of the object.
Cls 0, 0.
EndDoc 0, 0.
Line The end point of the line.
NewPage 0, 0.
Print The next print position.
PSet The point drawn.

Default Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDefaultC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDefaultX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDefaultA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDefaultS"}

Returns or sets a value that determines which CommandButton control is the default command
button on a form.

Syntax
object.Default [= boolean]

The Default property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies whether the

command button is the default, as described in
Settings.

Settings
The settings for boolean are:

Setting Description
True The CommandButton is the default command

button.
False (Default) The CommandButton isn't the default

command button.

Remarks
Only one command button on a form can be the default command button. When Default is set to
True for one command button, it's automatically set to False for all other command buttons on the
form. When the command button's Default property setting is True and its parent form is active, the
user can choose the command button (invoking its Click event) by pressing ENTER. Any other control
with the focus doesn't receive a keyboard event (KeyDown, KeyPress, or KeyUp) for the ENTER key
unless the user has moved the focus to another command button on the same form. In this case,
pressing ENTER chooses the command button that has the focus instead of the default command
button.

For a form or dialog box that supports an irreversible action such as a delete operation, make the
Cancel button the default command button by setting its Default property to True.

For OLE container controls, the Default property is provided only for those objects that specifically
behave like CommandButton controls.

DeviceName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDeviceNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDeviceNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDeviceNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDeviceNameS"}

Returns the name of the device a driver supports.

Syntax
object.DeviceName
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Each printer driver supports one or more devices — for example, HP LaserJet IIISi is a device name.

Note The effect of properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. Settings outside the accepted range may produce an error. For more
information, see the manufacturer's documentation for the specific driver.

DragIcon Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDragIconC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDragIconX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDragIconA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDragIconS"}

Returns or sets the icon to be displayed as the pointer in a drag-and-drop operation.

Syntax
object.DragIcon [= icon]

The DragIcon property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
icon Any code reference that returns a valid icon, such as

a reference to a form's icon (Form1.Icon), a
reference to another control's DragIcon property
(Text1.DragIcon), or the LoadPicture function.

Settings
The settings for icon are:

Setting Description
(none) (Default) An arrow pointer inside a rectangle.
Icon A custom mouse pointer. You specify the icon by

setting it using the Properties window at design time.
You can also use the LoadPicture function at run
time. The file you load must have the .ico filename
extension and format.

Remarks
You can use the DragIcon property to provide visual feedback during a drag-and-drop operation —
for example, to indicate that the source control is over an appropriate target. DragIcon takes effect
when the user initiates a drag-and-drop operation. Typically, you set DragIcon as part of a
MouseDown or DragOver event procedure.

Note At run time, the DragIcon property can be set to any object's DragIcon or Icon property, or
you can assign it an icon returned by the LoadPicture function.
When you set the DragIcon property at run time by assigning the Picture property of one control to
the DragIcon property of another control, the Picture property must contain an .ico file, not a .bmp
file.

DragMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDragModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDragModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDragModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDragModeS"}

Returns or sets a value that determines whether manual or automatic drag mode is used for a drag-
and-drop operation.

Syntax
object.DragMode [= number]

The DragMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number An integer that specifies the drag mode, as

described in Settings.

Settings
The settings for number are:

Constant Setting Description
vbManual 0 (Default) Manual — requires using the

Drag method to initiate a drag-and-drop
operation on the source control.

vbAutomatic 1 Automatic — clicking the source control
automatically initiates a drag-and-drop
operation. OLE container controls are
automatically dragged only when they
don't have the focus.

Remarks
When DragMode is set to 1 (Automatic), the control doesn't respond as usual to mouse events. Use
the 0 (Manual) setting to determine when a drag-and-drop operation begins or ends; you can use this
setting to initiate a drag-and-drop operation in response to a keyboard or menu command or to
enable a source control to recognize a MouseDown event prior to a drag-and-drop operation.

Clicking while the mouse pointer is over a target object or form during a drag-and-drop operation
generates a DragDrop event for the target object. This ends the drag-and-drop operation. A drag-and-
drop operation may also generate a DragOver event.

Note While a control is being dragged, it can't recognize other user-initiated mouse or keyboard
events (KeyDown, KeyPress or KeyUp, MouseDown, MouseMove, or MouseUp). However, the
control can receive events initiated by code or by a DDE link.

DrawMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDrawModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDrawModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDrawModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDrawModeS"}

Returns or sets a value that determines the appearance of output from graphics method or the
appearance of a Shape or Line control.

Syntax
object.DrawMode [= number]

The DrawMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number An integer that specifies appearance, as described in

Settings.

Settings
The settings for number are:

Constant Settin
g

Description

vbBlackness 1 Blackness.
vbNotMergePen 2 Not Merge Pen — Inverse of setting 15

(Merge Pen).
vbMaskNotPen 3 Mask Not Pen — Combination of the colors

common to the background color and the
inverse of the pen.

vbNotCopyPen 4 Not Copy Pen — Inverse of setting 13 (Copy
Pen).

vbMaskPenNot 5 Mask Pen Not — Combination of the colors
common to both the pen and the inverse of
the display.

vbInvert 6 Invert — Inverse of the display color.
vbXorPen 7 Xor Pen — Combination of the colors in the

pen and in the display color, but not in both.
vbNotMaskPen 8 Not Mask Pen — Inverse of setting 9 (Mask

Pen).
vbMaskPen 9 Mask Pen — Combination of the colors

common to both the pen and the display.
vbNotXorPen 10 Not Xor Pen — Inverse of setting 7 (Xor Pen).
vbNop 11 Nop — No operation — output remains

unchanged. In effect, this setting turns
drawing off.

vbMergeNotPen 12 Merge Not Pen — Combination of the display
color and the inverse of the pen color.

vbCopyPen 13 Copy Pen (Default) — Color specified by the
ForeColor property.

vbMergePenNot 14 Merge Pen Not — Combination of the pen

color and the inverse of the display color.
vbMergePen 15 Merge Pen — Combination of the pen color

and the display color.
vbWhiteness 16 Whiteness.

Remarks
Use this property to produce visual effects with Shape or Line controls or when drawing with the
graphics methods. Visual Basic compares each pixel in the draw pattern to the corresponding pixel in
the existing background and then applies bit-wise operations. For example, setting 7 (Xor Pen) uses
the Xor operator to combine a draw pattern pixel with a background pixel.

The exact effect of a DrawMode setting depends on the way the color of a line drawn at run time
combines with colors already on the screen. Settings 1, 6, 7, 11, 13, and 16 yield the most predictable
results.

DrawStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDrawStyleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDrawStyleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDrawStyleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDrawStyleS"}

Returns or sets a value that determines the line style for output from graphics methods.

Syntax
object.DrawStyle [= number]

The DrawStyle property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number An integer that specifies line style, as described in

Settings.

Settings
The settings for number are:

Constant Setting Description
vbSolid 0 (Default) Solid
vbDash 1 Dash
vbDot 2 Dot
vbDashDot 3 Dash-Dot
vbDashDotDot 4 Dash-Dot-Dot
vbInvisible 5 Transparent
vbInsideSolid 6 Inside Solid

Remarks
If DrawWidth is set to a value greater than 1, DrawStyle settings 1 through 4 produce a solid line
(the DrawStyle property value isn't changed). If DrawWidth is set to 1, DrawStyle produces the
effect described in the preceding table for each setting.

Drive Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDriveC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDriveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproDriveA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDriveS"}

Returns or sets the selected drive at run time. Not available at design time.

Syntax
object.Drive [= drive]

The Drive property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
drive A string expression that specifies the selected drive.

Remarks
The valid drives for the Drive property include all drives present in or connected to the system when
the control is created or refreshed at run time. The default setting of the Drive property is the current
drive.

When reading this property setting, the selected drive is returned in one of the following formats:

· Floppy disks — "a:" or "b:", and so on
· Fixed media — "c: [volume id]"
· Network connections — "x: \\server\share"

When setting this property:

· Only the first character of the string is significant (the string isn't case-sensitive).
· Changing the setting for the Drive property invokes a Change event.
· Selecting a drive that isn't present causes an error.
· Setting this property also regenerates the drive list, providing a way in code to track network

connections added since the control was created.

If the FileName property is set to a qualified network path without a drive designation, the value of the
Drive property is a zero-length string (""), no drive is selected, and the ListIndex property setting is 1.

Note The Drive property returns a different value from the ListIndex property, which returns the list
box selection.

DriverName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDriverNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDriverNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDriverNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDriverNameS"}

Returns the name of the driver for a Printer object.

Syntax
object.DriverName
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Each driver has a unique name. For example, the DriverName for several of the Hewlett-Packard
printers is HPPCL5MS. The DriverName is typically the driver's filename without an extension.

Note The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. Settings outside the accepted range may produce an error. For more
information, see the manufacturer's documentation for the specific driver.

Duplex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDuplexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDuplexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDuplexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDuplexS"}

Returns or sets a value that determines whether a page is printed on both sides (if the printer
supports this feature). Not available at design time.

Syntax
object.Duplex [= value]

The Duplex property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A value or constant that specifies the type of printing,

as described in Settings.

Settings
The settings for value are:

Constant Value Description
vbPRDPSimplex 1 Single-sided printing with the current

orientation setting.
VbPRDPHorizontal 2 Double-sided printing using a horizontal

page turn.
VbPRDPVertical 3 Double-sided printing using a vertical page

turn.

Remarks
With horizontal duplex printing, the top of both sides of the page are at the same end of the sheet.
With vertical duplex printing, the bottom of one page is at the same end of the sheet as the top of the
next page. The following diagram illustrates horizontal and vertical duplex printing:

Note The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. Settings outside the accepted range may produce an error. For more
information, see the manufacturer's documentation for the specific driver.

FileName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFileNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFileNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFileNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFileNames"}

Returns or sets the path and filename of a selected file. Not available at design time for the
FileListBox control and ProjectTemplate object.

Syntax
object.FileName [= pathname]

The FileName property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
pathname A string expression that specifies the path and

filename.

Remarks
When you create the control at run time, the FileName property is set to a zero-length string (""),
meaning no file is currently selected.

In the CommonDialog control, you can set the FileName property before opening a dialog box to set
an initial filename.

Reading this property returns the currently selected filename from the list. The path is retrieved
separately, using the Path property. The value is functionally equivalent to List(ListIndex). If no file is
selected, FileName returns a zero-length string.

When setting this property:

· Including a drive, path, or pattern in the string changes the settings of the Drive, Path, and Pattern
properties accordingly.

· Including the name of an existing file (without wildcard characters) in the string selects the file.
· Changing the value of this property may also cause one or more of these events: PathChange (if

you change the path), PatternChange (if you change the pattern), or DblClick (if you assign an
existing filename).

· This property setting can be a qualified network path and filename using the following syntax:
\\servername\sharename\pathname

FillColor Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFillColorC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFillColorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFillColorA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFillColorS"}

Returns or sets the color used to fill in shapes; FillColor is also used to fill in circles and boxes
created with the Circle and Line graphics methods.

Syntax
object.FillColor [= value]

The FillColor property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A value or constant that determines the fill color, as

described in Settings.

Settings
The settings for value are:

Setting Description
Normal RGB colors Colors set with the RGB or QBColor functions in

code.
System default
colors

Colors specified with the system color constants in
the Visual Basic (VB) object library in the Object
Browser. The Microsoft Windows operating
environment substitutes the user's choices, as
specified by the user's Control Panel settings.

By default, FillColor is set to 0 (Black).

Remarks
Except for the Form object, when the FillStyle property is set to its default, 1 (Transparent), the
FillColor setting is ignored.

FillStyle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFillStyleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFillStyleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFillStyleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFillStyleS"}

· Grid control — Returns or sets a value that determines whether setting the Text property of a Grid
causes the value to be displayed in all selected cells.

· All other objects — Returns or sets the pattern used to fill Shape controls as well as circles and
boxes created with the Circle and Line graphics methods.

Syntax
object.FillStyle [= number]

The FillStyle property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number An integer that specifies the fill style, as described in

Settings.

Settings
The number settings for a Grid control are:

Constant Setting Description
grdSingle 0 Single — Changing the Text property affects

only the active cell.
grdRepeat 1 Repeat — Changing the Text property affects

all selected cells.

The number settings for other objects are:

Constant Setting Description
vbFSSolid 0 Solid
vbFSTransparent 1 (Default) Transparent
vbHorizontalLine 2 Horizontal Line
vbVerticalLine 3 Vertical Line
vbUpwardDiagonal 4 Upward Diagonal
vbDownwardDiagonal 5 Downward Diagonal
vbCross 6 Cross
vbDiagonalCross 7 Diagonal Cross

Remarks
When FillStyle is set to 1 (Transparent), the FillColor property is ignored, except for the Form object.

FixedAlignment Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFixedAlignmentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFixedAlignmentX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFixedAlignmentA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFixedAlignmentS"}

Returns or sets a value that determines the alignment of data in the fixed cells of a column. Not
available at design time.

Syntax
object.FixedAlignment(column) [= number]

The FixedAlignment property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
column The number of a column.
number An integer that specifies alignment, as described in

Settings.

Settings
The settings for number are:

Constant Setting Description
grdAlignLeft 0 (Default) Left-aligned
grdAlignRight 1 Right-aligned
grdAlignCenter 2 Centered

3 Use the ColAlignment setting for the
column specified by column

Remarks
The FixedAlignment property behaves like the ColAlignment property except that it only affects the
alignment of fixed cells. You can use FixedAlignment to align headings differently from the rest of the
columns.

FixedCols, FixedRows Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFixedColsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFixedColsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFixedColsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFixedColsS"}

Return or set the total number of fixed columns or fixed rows for a Grid control. By default, a Grid has
one fixed column and one fixed row.

Syntax
object.FixedCols [= number]

object.FixedRows [= number]

The FixedCols and FixedRows property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression that specifies the number of

fixed columns or rows.

Remarks
A fixed column is a stationary column on the left side of the Grid control. A fixed row is a stationary
row along the top of the Grid. You can have zero or more fixed columns and zero or more fixed rows.
Fixed columns and rows are displayed in gray and don't move when the other columns or rows in the
Grid are scrolled. You can't change the color of a fixed column or row.

Fixed columns and rows are typically used in spreadsheet applications to display row numbers and
column names or letters.

A Grid control must have at least one nonfixed column and one nonfixed row. The maximum number
of fixed columns or rows allowed in a Grid is one less than the total number of columns or rows.

FontCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFontCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontCountS"}

Returns the number of fonts available for the current display device or active printer.

Syntax
object.FontCount
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use this property with the Fonts property to see a list of available screen or printer fonts. Fonts
available in Visual Basic vary according to your system configuration, display devices, and printing
devices.

Fonts Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontsA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontsS"}

Returns all font names available for the current display device or active printer.

Syntax
object.Fonts(index)
The Fonts property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer from 0 to FontCount 1.

Remarks
The Fonts property works in conjunction with the FontCount property, which returns the number of
font names available for the object. Fonts available in Visual Basic vary according to your system
configuration, display devices, and printing devices. Use both the Fonts and the FontCount
properties to get information about available screen or printer fonts.

GridLines Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproGridLinesC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproGridLinesX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproGridLinesA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproGridLinesS"}

Returns or sets a value that determines whether the lines between cells are visible.

Syntax
object.Gridlines [= boolean]

The Highlight property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A value that specifies the visibility of grid lines, as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) Grid lines are visible
False Grid lines aren't visible

hDC Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbprohDCC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbprohDCX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproHDCA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbprohDCS"}

Returns a handle provided by the Microsoft Windows operating environment to the device context of
an object.

Syntax
object.hDC
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
This property is a Windows operating environment device context handle. The Windows operating
environment manages the system display by assigning a device context for the Printer object and for
each form and PictureBox control in your application. You can use the hDC property to refer to the
handle for an object's device context. This provides a value to pass to Windows API calls.

With a CommonDialog control, this property returns a device context for the printer selected in the
Print dialog box when the cdlReturnDC flag is set or an information context when the cdlReturnIC
flag is set.

Note The value of the hDC property can change while a program is running, so don't store the
value in a variable; instead, use the hDC property each time you need it.
The AutoRedraw property can cause the hDC property setting to change. If AutoRedraw is set to
True for a form or PictureBox container, hDC acts as a handle to the device context of the persistent
graphic (equivalent to the Image property). When AutoRedraw is False, hDC is the actual hDC
value of the Form window or the PictureBox container. The hDC property setting may change while
the program is running regardless of the AutoRedraw setting.

HideSelection Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHideSelectionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHideSelectionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHideSelectionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHideSelectionS"}

Returns a value that determines whether selected text appears highlighted when a control loses the
focus.

Syntax
object.HideSelection
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
The HideSelection property return values are:

Value Description
True (Default) Selected text doesn't appear highlighted

when the control loses the focus.
False Selected text appears highlighted when the control

loses the focus.

Remarks
You can use this property to indicate which text is highlighted while another form or a dialog box has
the focus — for example, in a spell-checking routine.

HighLight Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHighLightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHighLightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHighLightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHighLightS"}

Returns or sets a value that determines whether selected cells appear highlighted.

Syntax
object.Highlight [= boolean]

The Highlight property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A value that specifies selected cells' appearance, as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) Selected cells are highlighted.
False Selected cells aren't highlighted.

Remarks
When this property is set to False and the user selects a range of cells, there is no visual cue that
shows which cells are selected.

hWnd Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbprohWndC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbprohWndX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbprohWndA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbprohWndS"}

Returns a handle to a form or control.

Note This property is not supported for the OLE container control.

Syntax
object.hWnd
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The Microsoft Windows operating environment identifies each form and control in an application by
assigning it a handle, or hWnd. The hWnd property is used with Windows API calls. Many Windows
operating environment functions require the hWnd of the active window as an argument.

Note Because the value of this property can change while a program is running, never store the
hWnd value in a variable.

Image Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproImageC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproImageX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproImageA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproImageS"}

Returns a handle to a persistent graphic; the handle is provided by the Microsoft Windows operating
environment.

Syntax
object.Image
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
An object's AutoRedraw property determines whether the repainting of an object occurs with a
persistent graphics or through Paint events. The Windows operating environment identifies an
object's persistent graphic by assigning a handle to it; you can use the Image property to get this
handle.

An Image value exists regardless of the setting for the AutoRedraw property. If AutoRedraw is True
and nothing has been drawn, the image displays only the color set by the BackColor property and
the picture.

You can assign the value of Image to the Picture property. The Image property also provides a value
to pass to Windows API calls.

The Image, DragIcon, and Picture properties are normally used when assigning values to other
properties, when saving with the SavePicture statement, or when placing something on the
Clipboard. You can't assign these to a temporary variable, other than the Picture data type.

The AutoRedraw property can cause Image, which is a handle to a bitmap, to change. When
AutoRedraw is True, an object's hDC property becomes a handle to a device context that contains
the bitmap returned by Image.

ItemData Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproItemDataC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproItemDataX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproItemDataA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproItemDataS"}

Returns or sets a specific number for each item in a ComboBox or ListBox control.

Syntax
object.ItemData(index) [= number]

The ItemData property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index The number of a specific item in the object.
number The number to be associated with the specified item.

Remarks
The ItemData property is an array of long integer values with the same number of items as a control's
List property. You can use the numbers associated with each item to identify the items. For example,
you can use an employee's identification number to identify each employee name in a ListBox
control. When you fill the ListBox, also fill the corresponding elements in the ItemData array with the
employee numbers.

The ItemData property is often used as an index for an array of data structures associated with items
in a ListBox control.

Note When you insert an item into a list with the AddItem method, an item is automatically inserted
in the ItemData array as well. However, the value isn't reinitialized to zero; it retains the value that
was in that position before you added the item to the list. When you use the ItemData property, be
sure to set its value when adding new items to a list.

KeyPreview Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproKeyPreviewC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproKeyPreviewX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproKeyPreviewA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproKeyPreviewS"}

Returns or sets a value that determines whether keyboard events for forms are invoked before
keyboard events for controls. The keyboard events are KeyDown, KeyUp, and KeyPress.

Syntax
object.KeyPreview [= boolean]

The KeyPreview property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies how events are

received, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The form receives keyboard events first and then the

active control.
False (Default) The active control receives keyboard

events; the form doesn't.

Remarks
You can use this property to create a keyboard-handling procedure for a form. For example, when an
application uses function keys, you'll want to process the keystrokes at the form level rather than
writing code for each control that might receive keystroke events.

If a form has no visible and enabled controls, it automatically receives all keyboard events.

To handle keyboard events only at the form level and not allow controls to receive keyboard events,
set KeyAscii to 0 in the form's KeyPress event, and set KeyCode to 0 in the form's KeyDown event.

Note Some controls intercept keyboard events so that the form can't receive them. Examples
include the ENTER key when focus is on a CommandButton control and arrow keys when focus is on
a ListBox control.

LargeChange, SmallChange Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLargeChangeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLargeChangeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLargeChangeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLargeChangeS"}

· LargeChange — Returns or sets the amount of change to the Value property setting in a scroll bar
control (HScrollBar or VScrollBar) when the user clicks the area between the scroll box and scroll
arrow.

· SmallChange — Returns or sets the amount of change to the Value property setting in a scroll bar
control when the user clicks a scroll arrow.

Syntax
object.LargeChange [= number]

object.SmallChange [= number]

The LargeChange and SmallChange property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number An integer that specifies the amount of change to the

Value property.

Remarks
For both properties, you can specify an integer between 1 and 32,767, inclusive. By default, each
property is set to 1.

The Microsoft Windows operating environment automatically sets proportional scrolling increments for
scroll bars on MDI Form objects, ComboBox controls, and ListBox controls based on the amount of
data in the object. For the HScrollBar and VScrollBar controls, however, you must specify these
increments. Use LargeChange and SmallChange to set scrolling increments appropriate to how the
scroll bar is being used.

Typically, you set LargeChange and SmallChange at design time. You can also reset them in code
at run time when the scrolling increment must change dynamically.

Note You set the maximum and minimum ranges of the HScrollBar and VScrollBar controls with
the Max and Min properties.

LeftCol Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLeftColC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLeftColX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLeftColA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLeftColS"}

Returns or sets the leftmost visible column (other than a fixed column) in a grid. Not available at
design time.

Syntax
object.LeftCol [= number]

The LeftCol property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression that specifies the number of

the leftmost visible column. Default is 0.

Remarks
You can use the LeftCol property in code to scroll a Grid or DBGrid control programmatically. Use
the TopRow property to determine the topmost visible row in the Grid or DBGrid.

LinkItem Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLinkItemC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLinkTopicX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLinkItemA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLinkItemS"}

Returns or sets the data passed to a destination control in a DDE conversation with another
application.

Syntax
object.LinkItem [= string]

The LinkItem property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression that specifies the data to be

passed to the destination control.

Remarks
This property corresponds to the item argument in the standard DDE syntax, with application, topic,
and item as arguments. To set this property, specify a recognizable unit of data in an application as a
reference — for example, a cell reference such as "R1C1" in Microsoft Excel.

Use LinkItem in combination with the LinkTopic property to specify the complete data link for a
destination control to a source application. To activate this link, set the LinkMode property.

You set LinkItem only for a control used as a destination. When a Visual Basic form is a source in a
DDE conversation, the name of any Label, PictureBox, or TextBox control on the form can be the
item argument in the application|topic!item string used by the destination. For example, the following
syntax represents a valid reference from Microsoft Excel to a Visual Basic application:

=VizBasicApplication|MyForm!TextBox1

You could enter the preceding syntax for a destination cell in the Microsoft Excel formula bar.

A DDE control can potentially act as destination and source simultaneously, causing an infinite loop if
a destination-source pair is also a source-destination pair with itself. For instance, a TextBox control
may be both a source (through its parent form) and destination of the same cell in Microsoft Excel.
When data in a Visual Basic TextBox changes, sending data to Microsoft Excel, the cell in Microsoft
Excel changes, sending the change to the TextBox, and so on, causing the loop.

To avoid such loops, use related but not identical items for destination-source and source-destination
links in both directions between applications. For example, in Microsoft Excel, use related cells
(precedents or dependents) to link a worksheet with a Visual Basic control, avoiding use of a single
item as both destination and source. Document any application|topic pairs you establish if you include
a Paste Link command for run-time use.

Note Setting a permanent data link at design time with the Paste Link command from the Edit
menu also sets the LinkMode, LinkTopic, and LinkItem properties. This creates a link that is saved
with the form. Each time the form is loaded, Visual Basic attempts to re-establish the conversation.

LinkMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLinkModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLinkTopicX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLinkModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLinkModeS"}

Returns or sets the type of link used for a DDEconversation and activates the connection as follows:

· Control — Allows a destination control on a Visual Basic form to initiate a conversation, as
specified by the control's LinkTopic and LinkItem properties.

· Form — Allows a destination application to initiate a conversation with a Visual Basic source form,
as specified by the destination application's application|topic!item expression.

Syntax
object.LinkMode [= number]

The LinkMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number An integer that specifies the type of connection, as

described in Settings.

Settings
For controls used as destinations in DDE conversations, the settings for number are:

Constant Setting Description
vbLinkNone 0 (Default) None — No DDE interaction.
vbLinkAutomatic 1 Automatic — Destination control is

updated each time the linked data
changes.

vbLinkManual 2 Manual — {Destination control is updated
only when the LinkRequest method is
invoked.

vbLinkNotify 3 Notify — A LinkNotify event occurs
whenever the linked data changes, but
the destination control is updated only
when the LinkRequest method is
invoked.

For forms used as sources in DDE conversations, the settings for number are:

Constant Setting Description
vbLinkNone 0 (Default) None — No DDE interaction. No

destination application can initiate a
conversation with the source form as the
topic, and no application can poke data to
the form. If LinkMode is 0 (None) at
design time, you can't change it to 1
(Source) at run time.

vbLinkSource 1 Source — Allows any Label, PictureBox,
or TextBox control on a form to supply
data to any destination application that
establishes a DDE conversation with the
form. If such a link exists, Visual Basic

automatically notifies the destination
whenever the contents of a control are
changed. In addition, a destination
application can poke data to any Label,
PictureBox, or TextBox control on the
form. If LinkMode is 1 (Source) at design
time, you can change it to 0 (None) and
back at run time.

Remarks
The following conditions also apply to the LinkMode property:

· Setting LinkMode to a nonzero value for a destination control causes Visual Basic to attempt to
initiate the conversation specified in the LinkTopic and LinkItem properties. The source updates
the destination control according to the type of link specified (automatic, manual, or notify).

· If a source application terminates a conversation with a Visual Basic destination control, the value
for that control's LinkMode setting changes to 0 (None).

· If you leave LinkMode for a form set to the default 0 (None) at design time, you can't change
LinkMode at run time. If you want a form to act as a source, you must set LinkMode to 1 (Source)
at design time. You can then change the value of LinkMode at run time.

Note Setting a permanent data link at design time with the Paste Link command from the Edit
menu also sets the LinkMode, LinkTopic, and LinkItem properties. This creates a link that is saved
with the form. Each time the form is loaded, Visual Basic attempts to re-establish the conversation.

LinkTimeout Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLinkTimeoutC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLinkTimeoutX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLinkTimeoutA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLinkTimeoutS"}

Returns or sets the amount of time a control waits for a response to a DDE message.

Syntax
object.LinkTimeout [= number]

The LinkTimeout property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression that specifies the wait time.

Remarks
By default, the LinkTimeout property is set to 50 (equivalent to 5 seconds). You can specify other
settings in tenths of a second.

DDE response time from source applications varies. Use this property to adjust the time a destination
control waits for a response from a source application. If you use LinkTimeout, you can avoid
generating a Visual Basic error if a given source application takes too long to respond.

Note The maximum length of time that a control can wait is 65,535 tenths of a second, or about 1
hour 49 minutes. Setting LinkTimeout to 1 tells the control to wait the maximum length of time for a
response in a DDE conversation. The user can force the control to stop waiting by pressing the ESC
key.

Locked Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproReadOnlyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproReadOnlyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproReadOnlyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLockedS"}

Returns or sets a value indicating whether a control can be edited.

Syntax
object.Locked [= boolean]

The Locked property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies whether the

control can be edited, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True TextBox control — you can scroll and highlight the

text in the control, but you can't edit it. The program
can still modify the text by changing the Text property.
Column object — you can't edit the values in the
column.
ComboBox object — you can't type in the textbox or
drop down its list.

False TextBox control — you can edit the text in the
control.
Column object — you can edit the values in the
column.
ComboBox object — you can type in the textbox and
drop down its list.

Remarks
For the Column object, the default setting of Locked is the value of the DataUpdatable property for
the underlying field; however, if Column is unbound or the data source doesn't support
DataUpdatable, the default is True. If DataUpdatable in the underlying field is False, you do not
create an error by setting this property to True. However, an error will occur when the control attempts
to write the changed data to the database.

For the ComboBox control, when Locked is set to True, the user cannot change any data, but can
highlight data in the text box and copy it. This property does not affect programmatic access to the
ComboBox.

ReadOnly Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproReadC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproReadX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproReadA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":""}

Returns or sets a value that determines whether a FileListBox control contains files with read-only
attributes.

Syntax
object.ReadOnly [= boolean]

The ReadOnly property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies whether the

control displays files with read-only attributes, as
described in Settings.

Settings
The settings for boolean are:

Setting Description
True The control includes read-only files in the list.
False No read-only files are listed in the control.

Remarks
Use the ReadOnly property with a FileListBox control to specify whether files with read-only
attributes are displayed in the file list or not.

Align Property Example
This example uses a PictureBox control as a toolbar on an MDIForm object, with a
CommandButton control to move the PictureBox from the top to the bottom of the form. To try this
example, create a new MDIForm and set the MDIChild property of Form1 to True. Draw a
PictureBox on the MDIForm, and put a CommandButton on the PictureBox. Paste the code into
the Declarations section of the MDIForm, and then press F5. Click the CommandButton to move the
PictureBox.
Private Sub Command1_Click ()

If Picture1.Align = vbAlignTop Then
Picture1.Align = vbAlignBottom

 ' Align to bottom of form.
Else

Picture1.Align = vbAlignTop
 ' Align to top of form.

End If
End Sub

AutoRedraw Property Example
This example alternately displays two graphics on a PictureBox control: a persistent filled circle and
temporary vertical lines. Click the PictureBox to draw or redraw the lines. Resizing the form requires
the temporary graphic to be redrawn. To try this example, paste the code into the Declarations section
of a form that has a PictureBox control named Picture1. Press F5 to run the program, and click the
graphic each time you resize the form.
Private Sub Form_Load ()

Picture1.ScaleHeight = 100 ' Set scale to 100.
Picture1.ScaleWidth = 100
Picture1.AutoRedraw = True ' Turn on AutoRedraw.
Picture1.ForeColor = 0 ' Set ForeColor.
Picture1.FillColor = QBColor(9) ' Set FillColor.
Picture1.FillStyle = 0 ' Set FillStyle.
Picture1.Circle (50, 50), 30 ' Draw a circle.
Picture1.AutoRedraw = False ' Turn off AutoRedraw.

End Sub

Private Sub Picture1_Click ()
Dim I ' Declare variable.
Picture1.ForeColor = Rgb(Rnd * 255, 0, 0) ' Select random color.
For I = 5 To 95 Step 10 ' Draw lines.

Picture1.Line (I, 0)-(I, 100)
Next

End Sub

AutoShowChildren Property Example
This example presents an MDIForm object with an MDI child form, uses the AutoShowChildren
property to create a hidden form as another instance of the MDI child form, and then creates a visible
MDI child form. To try this example, set the MDIChild property to True on Form1, and then create an
MDIForm with the MDI Form command on the Insert menu. Copy the code into the Declarations
section of the MDIForm, and then press F5 to run the program.
Private Sub MDIForm_Load()

MDIForm1.AutoShowChildren = False ' Set to hide child forms.
Dim HideForm As New Form1 ' Declare new form.
HideForm.Caption = "HideForm" ' Set its caption.
Load HideForm ' Load it; it's hidden.
MDIForm1.AutoShowChildren = True ' Set to show child forms.
Dim ShowForm As New Form1 ' Declare another new form.
ShowForm.Caption = "ShowForm" ' Set its caption.
Load ShowForm ' Load it; it's displayed.

End Sub

CellSelected Example
This example selects a cell at random and displays a message that tells you whether it's selected or
not when the Grid control is clicked. To try this example, use the Components dialog box to add a
Grid control to the toolbox (from the Project menu, choose Components, and then select Microsoft
Grid Control), paste the code into the Declarations section of a new form, and then draw a Grid
control and a Label control. For the Label, set the AutoSize property to True. Press F5 to run the
program.
Dim TRow As Integer
Dim TCol As Integer

Private Sub Form_Load ()
Grid1.Rows = 8 ' Set rows and columns.
Grid1.Cols = 5
Randomize ' Choose a cell at random.
TRow = Int(Rnd * (Grid1.Rows - 1)) + 1
TCol = Int(Rnd * (Grid1.Cols - 1)) + 1

End Sub

Private Sub Grid1_Click ()
Grid1.Row = TRow
Grid1.Col = TCol

' Display message indicating whether clicked cell is selected.
If Grid1.CellSelected Then ' If clicked cell selected,

Label1.Caption = "You found it!" ' message displayed.
Else

Label1.Caption = "Not yet. Try again."
End If

End Sub

Clip Property Example
This example displays the current date and time in the selected area of the Grid control when the
user clicks the form. To try this example, use the Components dialog box to add a Grid control to the
toolbox (from the Project menu, choose OLE Components, and then select Microsoft Grid Control),
paste the code into the Declarations section of a new form, and then draw a Grid. Press F5 to run the
program.
Private Sub Form_Load ()

Grid1.Rows = 8 ' Set rows and columns.
Grid1.Cols = 5

End Sub

Private Sub Form_Click ()
Dim Msg As String
Msg = "Date" & Chr(9) ' Create a text string.
Msg = Msg & Format(Now, "Short Date") & Chr(13)
Msg = Msg & "Time" & Chr(9)
Msg = Msg & Format(Now, "Short Time")
Grid1.Clip = Msg ' Paste string into grid.

End Sub

ClipControls Property Example
This example shows how the ClipControls property affects the repainting of a form. To try this
example, paste the code into the Declarations section of a form, and then press F5. Notice that the
color of the entire form changes each time you resize it or cover part of it with another form or
application. End the program and set ClipControls to False, and then run the program again. Notice
that only newly exposed parts of the form are repainted.
Private Sub Form_Paint ()

' Select a random color for the background.
BackColor = &HFFFFFF * Rnd

End Sub

ColAlignment Property Example
This example fills a Grid control with the letter m and then sets the column alignment to right-aligned
for every other column. To try this example, use the Components dialog box to add a Grid control to
the toolbox (from the Project menu, choose OLE Components, and then select Microsoft Grid
Control), and then draw a Grid on a new form. Press F5 to run the program.
Private Sub Form_Load ()

' Set Cols and Rows.
Grid1.Cols = 5
Grid1.Rows = 8
' Select all cells.
Grid1.SelStartCol = 1
Grid1.SelStartRow = 1
Grid1.SelEndCol = Grid1.Cols - 1
Grid1.SelEndRow = Grid1.Rows - 1
' Fill all cells with a letter.
Grid1.FillStyle = 1 ' Turn on FillStyle.
Grid1.Text = "m"
' Set ColAlignment for even numbered columns.
For I = 2 To 4 Step 2

Grid1.ColAlignment(I) = 1 ' Right align.
Next I
Grid1.FillStyle = 0 ' Turn off FillStyle.

End Sub

Columns Property Example
This example illustrates how the two different kinds of ListBox controls work when they contain the
same data. To try this example, paste the code into the Declarations section of a form that contains
two ListBox controls. Set the Columns property to 2 for List2, and then press F5 and click the form.
Private Sub Form_Load ()

Dim I ' Declare variable.
List1.Move 50, 50, 2000, 1750 ' Arrange list boxes.
List2.Move 2500, 50, 3000, 1750
For I = 0 To Screen.FontCount -1 ' Fill both boxes with

List1.AddItem Screen.Fonts(I) ' names of screen fonts.
List2.AddItem Screen.Fonts(I)

Next I
End Sub

ColWidth Property Example
This example enables the user to increase the column width of selected columns with the > key, and
decrease the column width with the < key. To try this example, use the Components dialog box to add
a Grid control to the toolbox (from the Project menu, choose Components, and then select Microsoft
Grid Control), and then draw a Grid control.
Private Sub Form_Load ()

' Set columns and rows.
Grid1.Cols = 6
Grid1.Rows = 8

End Sub

Private Sub Grid1_KeyPress (KeyAscii As Integer)
Select Case KeyAscii

Case 62 ' > key.
' Get index for each selected column.
For I = Grid1.SelStartCol To Grid1.SelEndCol

' Increase column width.
Grid1.ColWidth(I) = Grid1.ColWidth(I) + 50

Next I
Case 60 ' < key.

'Get index for each selected column.
For I = Grid1.SelStartCol To Grid1.SelEndCol

'Decrease column width.
Grid1.ColWidth(I) = Grid1.ColWidth(I) - 50

Next I
End Select

End Sub

DragIcon Property Example
This example changes the DragIcon property setting each time you drag a PictureBox control. To try
this example, paste the code into the Declarations section of a form that contains a PictureBox
control. Set the DragMode property = 1, and then press F5 and click and drag the PictureBox
control.
Private Sub Form_DragDrop (Source As Control, X As Single, Y As Single)

Dim Pic ' Declare variable.
Source.Move X, Y ' Set position of control.
Pic = "ICONS\OFFICE\CRDFLE01.ICO" ' Get name of icon file.
If Source.DragIcon = False Then ' If no picture loaded,

Source.DragIcon = LoadPicture(Pic) ' load picture.
Else

Source.DragIcon = LoadPicture() ' Unload picture.
End If

End Sub

DragMode Property Example
This example enables and disables the ability to drag a CommandButton control each time a form is
clicked. To try this example, paste the code into the Declarations section of a form that contains a
CommandButton, and then press F5 and click the form.
Private Sub Form_Click ()
 ' Check DragMode.

If Command1.DragMode = vbManual Then
' Turn it on.

 Command1.DragMode = vbAutomatic
Else

' Or turn it off.
 Command1.DragMode = vbManual

End If
End Sub

DrawMode Property Example
This example enables drawing on a form by dragging the mouse pointer. Each mouse click sets a
different value for the DrawMode property. To try this example, paste the code into the Declarations
section of a form, and then press F5 and click the form.
Private Sub Form_Load

DrawWidth = 10 ' Set DrawWidth.
End Sub
Private Sub Form_Click ()

Static M As Integer ' Current DrawMode setting.
ForeColor = QBColor(Int(Rnd * 15)) ' Choose a color.
M = ((M + 1) Mod 16) + 1 ' Keep DrawMode 16 or less.
DrawMode = M ' Set DrawMode.

End Sub
Private Sub Form_MouseMove (Button As Integer, Shift As Integer, X As
Single, Y As Single)

If Button Then ' While button is pressed,
PSet (X, Y) ' draw a big point.

End If
End Sub

DrawStyle Property Example
This example draws seven lines across a form, with each line displaying a different DrawStyle
property. (If you set AutoRedraw = True, the form accumulates a new set of lines each time you
resize it and then click it.) To try this example, paste the code into the Declarations section of a form,
and then press F5 and click the form.
Private Sub Form_Click ()

Dim I ' Declare variable.
ScaleHeight = 8 ' Divide height by 8.
For I = 0 To 6

DrawStyle = I ' Change style.
Line (0, I + 1) - (ScaleWidth, I + 1) ' Draw new line.

Next I
End Sub

Drive Property Example
This example displays a list of files for the current drive and directory. To try this example, paste the
code into the Declarations section of a form that contains a DriveListBox control, a DirListBox
control, and a FileListBox control, and then press F5. Use the mouse to change the drive or directory.
Private Sub Drive1_Change ()

Dir1.Path = Drive1.Drive ' When drive changes, set directory path.
End Sub
Private Sub Dir1_Change ()

File1.Path = Dir1.Path ' When directory changes, set file path.
End Sub

FileName Property Example
This example displays a message in a Label control when a filename in a FileListBox control is
double-clicked. To try this example, paste the code into the Declarations section of a form that
contains a Label control, a DirListBox control, and a FileListBox control, and then press F5 and
double-click any filename in the FileListBox control.
Private Sub Dir1_Change ()

File1.Path = Dir1.Path ' Set File1 path.
End Sub
Private Sub File1_PathChange ()

Dir1.Path = File1.Path ' Set Dir1 path.
End Sub
Private Sub File1_DblClick ()

' Display the selected filename when double-clicked.
Label1.Caption = "Your selection: " +_ File1.FileName

End Sub

FillColor Property Example
This example constructs a circle on your form with random FillColor and FillStyle property settings
as you click the mouse. To try this example, paste the code into the Declarations section of a form,
and then press F5 and click the form.
Private Sub Form_MouseDown (Button As Integer, Shift As Integer, X As
Single, Y As Single)

FillColor = QBColor(Int(Rnd * 15)) ' Choose random FillColor.
FillStyle = Int(Rnd * 8) ' Choose random FillStyle.
Circle (X, Y), 250 ' Draw a circle.

End Sub

FillStyle Property Example
This example displays a circle on a form with random FillColor and FillStyle property settings as you
click the mouse. To try this example, paste the code into the Declarations section, and then press F5
to run the program.
Private Sub Form_MouseDown (Button As Integer, Shift As Integer, X As
Single, Y As Single)

FillColor = QBColor(Rnd * 15) ' Choose random FillColor.
FillStyle = Int(Rnd * 8) ' Choose random FillStyle.
Circle (X, Y), 250 ' Draw a circle.

End Sub

FixedAlignment Property Example
This example creates a spreadsheet with centered column headings and row numbers. To try this
example, use the Components dialog box to add a Grid control to the toolbox (from the Project menu,
choose Components, and then select Microsoft Grid Control), and then draw a Grid control. Press F5
to run the program.
Private Sub Form_Load ()

Grid1.Cols = 5 ' Set rows and columns.
Grid1.Rows = 7
Grid1.Row = 0
Grid1.FixedAlignment(0) = 2 ' Set alignment of row numbers.
For I = 1 To Grid1.Cols - 1 ' Set column letters and alignment.

Grid1.FixedAlignment(I) = 2
Grid1.Col = I
Grid1.Text = Chr(64 + I)

Next I
Grid1.Col = 0
For I = 1 To Grid1.Rows - 1 ' Set row numbers.

Grid1.Row = I
Grid1.Text = I

Next I
End Sub

FixedCols, FixedRows Properties Example
This example illustrates a Grid control with two fixed rows and two fixed columns. To try this example,
create a new project, use the Components dialog box to add a Grid control to the toolbox (from the
Project menu, choose Components, and then select Microsoft Grid Control), and then draw a Grid. To
run the program, press F5.
Private Sub Form_Load ()

Grid1.Rows = 8 ' Set columns and rows.
Grid1.Cols = 6
Grid1.FixedRows = 2 ' Set fixed columns and rows.
Grid1.FixedCols = 2

End Sub

FontCount Property Example
This example prints a list of the printer fonts in a ListBox control. To try this example, paste the code
into the Declarations section of a form that has a ListBox control named List1, and then press F5 and
click the form.
Private Sub Form_Click ()

Dim I ' Declare variable.
For I = 0 To Printer.FontCount -1 ' Determine number of fonts.

List1.AddItem Printer.Fonts (I) ' Put each font into list box.
Next I

End Sub

Fonts Property Example
This example prints a list of the printer fonts in a ListBox control. To try this example, paste the code
into the Declarations section of a form that has a ListBox control named List1. Press F5 to run the
program, and then click the form.
Private Sub Form_Click ()

Dim I ' Declare variable.
For I = 0 To Printer.FontCount -1 ' Determine number of fonts.

List1.AddItem Printer.Fonts (I) ' Put each font into list box.
Next I

End Sub

GridLines Property Example
This example turns the GridLines property on and off as you click the form. To try this example,
create a new project, use the Components dialog box to add a Grid control to the toolbox (from the
Project menu, choose Components, and then select Microsoft Grid Control), and then draw a Grid
control. Copy the code into the Declarations section, and then press F5 to run the program.
Private Sub Form_Load ()

Grid1.Cols = 6 ' Set columns and rows.
Grid1.Rows = 7

End Sub

Private Sub Form_Click () ' Toggle gridlines on and off.
Grid1.GridLines = Not Grid1.GridLines

End Sub

hDC Property Example
This example draws a triangle and then uses a Microsoft Windows function to fill it with color. To try
this example, create a new module using the Add Module command on the Project menu. Paste the
Declare statement into the Declarations section of the new module, being sure that the statement is
on one line with no break or wordwrap. Then paste the Sub procedure into the Declarations section of
a form. Press F5 and click the form.
' Declaration of a Windows routine. This statement is for the module.
Declare Sub FloodFill Lib "GDI" (ByVal hDC As Integer, ByVal X As Integer,
ByVal Y As Integer, ByVal Color As Long)
' The following code is for the form.
Private Sub Form_Click ()

ScaleMode = vbPixels ' Windows draws in pixels.
ForeColor = vbBlack ' Set draw line to black.
Line (100, 50)-(300, 50) ' Draw a triangle.
Line -(200, 200)
Line -(100, 50)
FillStyle = vbFSSolid ' Set FillStyle to solid.
FillColor = RGB(128, 128, 255) ' Set FillColor.

 ' Call Windows API to fill.
FloodFill hDC, 200, 100, ForeColor

End Sub

HideSelection Property Example
This example enables you to select text in each form and switch the focus between forms by clicking
each form's title bar. The selection remains visible even when the form isn't active. To try the example,
create two forms and draw a TextBox control on each. Set the MultiLine property to True for both
TextBox controls, and set the HideSelection property to False for one of the TextBox controls.
Paste the code into the Declarations section of both form modules, and then press F5.
Private Sub Form_Load ()

Open "README.TXT" For Input As 1 ' Load file into text box.
Text1.Text = Input$(LOF(1), 1)
Close 1
Form2.Visible = True ' Load Form2, if not already loaded.
' Position forms side by side.
Form1.Move 0, 1050, Screen.Width / 2, Screen.Height
Form2.Move Screen.Width / 2, 1050, Screen.Width / 2, Screen.Height
' Enlarge text box to fill form.
Text1.Move 0, 0, ScaleWidth, ScaleHeight

End Sub

HighLight Property Example
This example turns highlighting on and off as you click the form. To try this example, create a new
project, use the Components dialog box to add a Grid control to the toolbox (from the Project menu,
choose Components, and then select Microsoft Grid Control), and then draw a Grid control. Copy the
code into the Declarations section, and then press F5 to run the program.
Private Sub Form_Load ()

Grid1.Cols = 6 ' Set columns and rows.
Grid1.Rows = 7

End Sub

Private Sub Form_Click () ' Toggle highlighting on and off.
Grid1.HighLight = Not Grid1.HighLight

End Sub

hWnd Property Example
This example forces a form to always remain on top. To try this example, create a form (not an MDI
child form), and then create a menu for the form called Main. Insert a submenu in it called Always On
Top, and set its Name to mnuTopmost. Create a new module using the Module command on the
Insert menu. Paste the Declare statement into the Declarations section of the new module, being
sure that the statement is on one line with no break or wordwrap. Then paste the Sub procedure into
the Declarations section of the form and press F5.
' Declaration of a Windows routine.
' This statement should be placed in the module.
Declare Function SetWindowPos Lib "user32" Alias_ "SetWindowPos" (ByVal
hwnd As Long, ByVal_ hWndInsertAfter As Long, ByVal x As Long, ByVal y As_
Long, ByVal cx As Long, ByVal cy As Long, ByVal wFlags_ As Long) As Long

' Set some constant values (from WINAPI.TXT).
Const conHwndTopmost = -1
Const conHwndNoTopmost = -2
Const conSwpNoActivate = &H10
Const conSwpShowWindow = &H40

Private Sub mnuTopmost_Click ()
' Add or remove the check mark from the menu.
mnuTopmost.Checked = Not mnuTopmost.Checked
If mnuTopmost.Checked Then

' Turn on the TopMost attribute.
SetWindowPos hWnd, conHwndTopmost, 0, 0, 0, 0,_ conSwpNoActivate Or

conSwpShowWindow
Else

' Turn off the TopMost attribute.
SetWindowPos hWnd, conHwndNoTopmost, 0, 0, 0,_ 0, conSwpNoActivate Or

conSwpShowWindow
End If

End Sub
This example automatically drops down the list portion of a ComboBox control whenever the
ComboBox receives the focus. To try this example, create a new form containing a ComboBox
control and an OptionButton control (used only to receive the focus). Create a new module using the
Module command on the Insert menu. Paste the Declare statement into the Declarations section of
the new module, being sure that the statement is on one line with no break or wordwrap. Then paste
the Sub procedure into the Declarations section of the form, and press F5. Use the TAB key to move
the focus to and from the ComboBox.
Declare Function SendMessage Lib "user32" Alias "SendMessageA" (ByVal hwnd
As Long, ByVal wMsg As Long, ByVal wParam As Long, lParam As Long) As Long

Private Sub Combo1_GotFocus ()
Const CB_SHOWDROPDOWN = &H14F
Dim Tmp
Tmp = SendMessage(Combo1.hWnd, CB_SHOWDROPDOWN, 1, ByVal 0&)

End Sub

Image Property Example
This example draws a circle in the first PictureBox control each time you click it. When you click the
second PictureBox, the graphic from the first PictureBox is copied into it. To try this example, paste
the code into the Declarations section of a form that has two large, equal-sized PictureBox controls.
Press F5 to run the program, and then click the PictureBox controls.
Private Sub Form_Load ()

' Set AutoRedraw to True.
Picture1.AutoReDraw = True

End Sub

Private Sub Picture1_Click ()
 ' Declare variables.

Dim PW, PH
 ' Set FillStyle to Solid.

Picture1.FillStyle = vbFSSolid
 ' Choose random color.

Picture1.FillColor = QBColor(Int(Rnd * 15))
PW = Picture1.ScaleWidth ' Set ScaleWidth.
PH = Picture1.ScaleHeight ' Set ScaleHeight.
' Draw a circle in random location.
Picture1.Circle (Int(Rnd * PW), Int(Rnd * PH)), 250

End Sub

Private Sub Picture2_Click ()
 ' Copy Image to Picture2.

Picture2.Picture = Picture1.Image
End Sub

ItemData Property Example
This example fills a ListBox control with employee names and fills the ItemData property array with
employee numbers using the NewIndex property to keep the numbers synchronized with the sorted
list. A Label control displays the name and number of an item when the user makes a selection. To try
this example, paste the code into the Declarations section of a form that contains a ListBox and a
Label. Set the Sorted property for the ListBox to True, and then press F5 and click the ListBox.
Private Sub Form_Load ()

' Fill List1 and ItemData array with
' corresponding items in sorted order.
List1.AddItem "Judy Phelps"
List1.ItemData(List1.NewIndex) = 42310
List1.AddItem "Chien Lieu"
List1.ItemData(List1.NewIndex) = 52855
List1.AddItem "Mauro Sorrento"
List1.ItemData(List1.NewIndex) = 64932
List1.AddItem "Cynthia Bennet"
List1.ItemData(List1.NewIndex) = 39227

End Sub

Private Sub List1_Click ()
' Append the employee number and the employee name.
Msg = List1.ItemData(List1.ListIndex) & " "
Msg = Msg & List1.List(List1.ListIndex)
Label1.Caption = Msg

End Sub

KeyPreview Property Example
This example creates a form keyboard handler in the KeyDown event. Each of the first four function
keys displays a different message. To try this example, paste the code into the Declarations section of
a form, and then press F5. Once the program is running, press any one of the first four (F1 – F4)
function keys.
Private Sub Form_Load ()

KeyPreview = True
End Sub

Private Sub Form_KeyDown (KeyCode As Integer, Shift As Integer)
Select Case KeyCode

Case vbKeyF1: MsgBox "F1 is your friend."
Case vbKeyF2: MsgBox "F2 could copy text."
Case vbKeyF3: MsgBox "F3 could paste text."
Case vbKeyF4: MsgBox "F4 could format text."

End Select
End Sub

LargeChange, SmallChange Properties Example
This example uses a scroll bar to move a PictureBox control across the form. To try this example,
paste the code into the Declarations section of a form that contains a small PictureBox control and
an HScrollBar control, and then press F5 and click the scroll bar.
Private Sub Form_Load ()

HScroll1.Max = 100 ' Set maximum value.
HScroll1.LargeChange = 20 ' Cross in 5 clicks.
HScroll1.SmallChange = 5 ' Cross in 20 clicks.
Picture1.Left = 0 ' Start picture at left.
Picture1.BackColor = QBColor(3) ' Set color of picture box.

End Sub
Private Sub HScroll1_Change ()

' Move picture according to scroll bar.
Picture1.Left = (HScroll1.Value / 100) * ScaleWidth

End Sub

LeftCol Property Example
This example changes the LeftCol property with each click of the form. To try this example, use the
Components dialog box to add a Grid control to the toolbox (from the Project menu, choose
Components, and then select Microsoft Grid Control), and then draw a Grid control. Copy the code
into the Declarations section, and then press F5 to run the program.
Private Sub Form_Load ()

Grid1.Rows = 8 ' Set columns and rows.
Grid1.Cols = 9
Grid1.Row = 0
For I = 1 To Grid1.Cols - 1 ' Set numbers in column heads.

Grid1.Col = I
Grid1.Text = I

Next I
End Sub

Private Sub Form_Click ()
On Error GoTo LeftColError
' Scroll the grid by one column.
Grid1.LeftCol = Grid1.LeftCol + 1
On Error GoTo 0
Exit Sub

LeftColError:
Grid1.LeftCol = 1 ' Display the first column.
Resume Next

End Sub

LinkItem, LinkMode, LinkTopic Properties Example
In the example, each mouse click causes a cell in a Microsoft Excel worksheet to update the contents
of a Visual Basic TextBox control. To try this example, start Microsoft Excel, open a new worksheet
named Sheet1, and put some data in the first column. In Visual Basic, create a form with a TextBox
control. Paste the code into the Declarations section, and then press F5 to run the program.
Private Sub Form_Click ()

Dim CurRow As String
Static Row ' Worksheet row number.
Row = Row + 1 ' Increment Row.
If Row = 1 Then ' First time only.

' Make sure the link isn't active.
Text1.LinkMode = 0
' Set the application name and topic name.
Text1.LinkTopic = "Excel|Sheet1"
Text1.LinkItem = "R1C1" ' Set LinkItem.
Text1.LinkMode = 1 ' Set LinkMode to Automatic.

Else
' Update the row in the data item.
CurRow = "R" & Row & "C1"
Text1.LinkItem = CurRow ' Set LinkItem.

End If
End Sub

GridLineWidth Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproGridLineWidthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproGridLineWidthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproGridLineWidthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproGridLineWidthS"}

Returns or sets the width in pixels of the gridlines for a Grid control.

Syntax
object.GridLineWidth [= value]

The GridLineWidth property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer specifying the gridline width. The minimum

setting is 1 (default); the maximum setting is 10.

LinkTopic Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLinkTopicC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLinkTopicX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLinkTopicA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLinkTopicS"}

For a destination control — returns or sets the source application and the topic (the fundamental data
grouping used in that application). Use LinkTopic with the LinkItem property to specify the complete
data link.

For a source form — returns or sets the topic that the source form responds to in a DDE
conversation.

Syntax
object.LinkTopic [= value]

The LinkTopic property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A string expression specifying a DDE syntax element.

Remarks
The LinkTopic property consists of a string that supplies part of the information necessary to set up
either a destination link or source link. The string you use depends on whether you're working with a
destination control or a source form. Each string corresponds to one or more elements of standard
DDE syntax, which include application, topic, and item.

Note While the standard definition for a DDE link includes the application, topic, and item elements,
the actual syntax used within applications for a destination link to a source application may vary
slightly. For example, within Microsoft Excel, you use the syntax:
application|topic!item

Within Microsoft Word for Windows, you use:
application topic item

(Don't use the pipe character [|] or exclamation mark [!].)
Within a Visual Basic application, you use:
application|topic

The exclamation mark for topic is implicit.

Destination Control To set LinkTopic for a destination control, use a string with the syntax
application|topic as follows:

· application is the name of the application from which data is requested, usually the executable
filename without an extension — for example, Excel (for Microsoft Excel).

· The pipe character (|, or character code 124) separates the application from the topic.
· topic is the fundamental data grouping used in the source application — for example, a worksheet

in Microsoft Excel.

In addition, for a destination control only, you must set the related LinkItem property to specify the
item element for the link. A cell reference, such as R1C1, corresponds to an item in a Microsoft Excel
worksheet.

Source Form To set LinkTopic for a source form, set value to an appropriate identifier for the form.
A destination application uses this string as the topic argument when establishing a DDE link with the

form. Although this string is all you need to set LinkTopic within Visual Basic for a source form, the
destination application also needs to specify:

· The application element that the destination application uses, which is either the Visual Basic
project filename without the .vbp extension (if you're running your application in the Visual Basic
development environment) or the Visual Basic application filename without the .exe extension (if
you're running your application as a stand-alone executable file). The EXEName property of the
App object provides this string in your Visual Basic code unless the filename was changed by the
user. (EXEName always returns the actual filename of the application on disk; DDE always uses
the original name that was specified in the Project Properties dialog box.)

· The item element that the destination application uses, which corresponds to the Name property
setting for the Label, PictureBox, or TextBox control on the source form.

The following syntax is an example of a valid reference from Microsoft Excel to a Visual Basic
application acting as a source:

=VizBasicApplication|FormN!TextBox1

You could enter this reference for a destination cell in the Microsoft Excel formula bar.

To activate the data link set with LinkTopic, set the LinkMode property to the appropriate nonzero
value to specify the type of link you want. As a general rule, set LinkMode after you set LinkTopic.
For a destination control, changing LinkTopic breaks an existing link and terminates the DDE
conversation. For a source form, changing LinkTopic breaks all destination links that are using that
topic. For these reasons, always set the LinkMode property to 0 before changing LinkTopic. After
changing LinkTopic for a destination control, you must set LinkMode to 1 (Automatic), 2 (Manual), or
3 (Notify) to establish a conversation with the new topic.

Note Setting a permanent data link at design time with the Paste Link command on the Edit menu
also sets the LinkMode, LinkTopic, and LinkItem properties. This creates a link that is saved with
the form. Each time the form is loaded, Visual Basic attempts to reestablish the conversation.

Max, Min Properties (Scroll Bar)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMaxScrollC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMaxScrollX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMaxScrollA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMaxScrollS"}

· Max — returns or sets a scroll bar position's maximum Value property setting when the scroll box
is in its bottom or rightmost position. For the ProgressBar control, it returns or sets its maximum
value.

· Min — returns or sets a scroll bar position's minimum Value property setting when the scroll box is
in its top or leftmost position. For the ProgressBar control, it returns or sets its minimum value.

Syntax
object.Max [= value]
object.Min [= value]

The Max and Min property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A numeric expression specifying the maximum or

minimum Value property setting, as described in
Settings.

Settings
For each property, you can specify an integer between -32,768 and 32,767, inclusive. The default
settings are:

· Max — 32,767.
· Min — 0.

Remarks
The Microsoft Windows operating environment automatically sets ranges for scroll bars proportional
to the contents of forms, ComboBox controls, and ListBox controls. For a scroll bar (HScrollBar or
VScrollBar) control, however, you must specify these ranges. Use Max and Min to set a range
appropriate to how the scroll bar control is used — for example, as an input device or as an indicator
of speed or quantity.

Typically, you set Max and Min at design time. You can also set them in code at run time if the
scrolling range must change dynamically — for example, when adding records to a database that can
be scrolled through. You set the maximum and minimum scrolling increments for a scroll bar control
with the LargeChange and SmallChange properties.

Note If Max is set to less than Min, the maximum value is set at the leftmost or topmost position of
a horizontal or vertical scroll bar, respectively. The Max property of a ProgressBar control must
always be greater than its Min property, and its Min property must always be greater than or equal to
0.

The Max and Min properties define the range of the control. The ProgressBar control’s Min property
is 0 and its Max property is 100 by default, representing the percentage duration of the operation.

MaxLength Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMaxLengthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMaxLengthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMaxLengthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMaxLengthS"}

Returns or sets a value indicating whether there is a maximum number of characters that can be
entered in the TextBox control and, if so, specifies the maximum number of characters that can be
entered.

Note In DBCS systems, each character can take up to two bytes instead of only one, which limits
the number of characters you can enter.

Syntax
object.MaxLength [= value]

The MaxLength property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer specifying the maximum number of

characters a user can enter in a TextBox control. The
default for the MaxLength property is 0, indicating no
maximum other than that created by memory
constraints on the user's system for single-line
TextBox controls and a maximum of approximately
32K for multiple-line TextBox controls. Any number
greater than 0 indicates the maximum number of
characters.

Remarks
Use the MaxLength property to limit the number of characters a user can enter in a TextBox.

If text that exceeds the MaxLength property setting is assigned to a TextBox from code, no error
occurs; however, only the maximum number of characters is assigned to the Text property, and extra
characters are truncated. Changing this property doesn't affect the current contents of a TextBox but
will affect any subsequent changes to the contents.

MDIChild Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMDIChildC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMDIChildX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMDIChildA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMDIChildS"}

Returns or sets a value indicating whether a form is displayed as an MDI child form inside an MDI
form. Read only at run time.

Syntax
object.MDIChild
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The MDIChild property settings are:

Setting Description
True The form is an MDI child form and is displayed inside

the parent MDI form.
False (Default) The form isn't an MDI child form.

Remarks
Use this property when creating a multiple-document interface (MDI) application. At run time, forms
with this property set to True are displayed inside an MDI form. An MDI child form can be maximized,
minimized, and moved, all inside the parent MDI form.

When working with MDI child forms, keep the following in mind:

· At run time, when an MDI child form is maximized, its caption is combined with that of the parent
MDI form.

· At design time, an MDI child form is displayed like any other form because the form is displayed
inside the parent form only at run time. An MDI child form's icon in the Project window is different
from icons for other kinds of forms.

· MDI child forms can't be modal.
· The initial size and placement of MDI child forms are controlled by the Microsoft Windows

operating environment unless you specifically set them in the Load event procedure.
· If an MDI child form is referenced before the parent is loaded, the parent MDI form is automatically

loaded. However, if the parent MDI form is referenced before loading an MDI child form, the child
form isn't loaded.

Note All MDI child forms have sizable borders, a Control-menu box, and Minimize and Maximize
buttons, regardless of the settings of the BorderStyle, ControlBox, MinButton, and MaxButton
properties.
Any reference to an MDIForm object, including reading or setting properties, causes the form to load
and become visible.

MouseIcon Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMouseIconC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMouseIconX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMouseIconA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMouseIconS"}

Returns or sets a custom mouse icon.

Syntax
object.MouseIcon = LoadPicture(pathname)
object.MouseIcon [= picture]
The MouseIcon property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
pathname A string expression specifying the path and filename of

the file containing the custom icon.
picture The Picture property of a Form object, PictureBox

control, or Image control.

Remarks
The MouseIcon property provides a custom icon that is used when the MousePointer property is set
to 99.

Although Visual Basic does not create or support color cursor (.cur) files (such as those that ship with
Windows NT), you can use the MouseIcon property to load either cursor or icon files. Color cursor
files such as those shipped with Windows NT 3.51, are displayed in black and white. To display a
color cursor, use a color icon file (.ico). The MouseIcon property provides your program with easy
access to custom cursors of any size, with any desired hot spot location. Visual Basic does not load
animated cursor (.ani) files, even though 32-bit versions of Windows support these cursors.

MousePointer Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMousePointerC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMousePointerX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMousePointerA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMousePointerS"}

Returns or sets a value indicating the type of mouse pointer displayed when the mouse is over a
particular part of an object at run time.

Syntax
object.MousePointer [= value]

The MousePointer property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer specifying the type of mouse pointer

displayed, as described in Settings.

Settings
The settings for value are:

Constant Value Description
vbDefault 0 (Default) Shape determined by the

object.
VbArrow 1 Arrow.
VbCrosshair 2 Cross (crosshair pointer).
VbIbeam 3 I beam.
VbIconPointer 4 Icon (small square within a square).
VbSizePointer 5 Size (four-pointed arrow pointing north,

south, east, and west).
VbSizeNESW 6 Size NE SW (double arrow pointing

northeast and southwest).
VbSizeNS 7 Size N S (double arrow pointing north

and south).
VbSizeNWSE 8 Size NW SE (double arrow pointing

northwest and southeast).
VbSizeWE 9 Size W E (double arrow pointing west

and east).
VbUpArrow 10 Up Arrow.
VbHourglass 11 Hourglass (wait).
VbNoDrop 12 No Drop.
VbArrowHourglass 13 Arrow and hourglass. (Only available in

32-bit Visual Basic.)
vbArrowQuestion 14 Arrow and question mark. (Only available

in 32-bit Visual Basic.)
vbSizeAll 15 Size all. (Only available in 32-bit Visual

Basic.)
vbCustom 99 Custom icon specified by the MouseIcon

property.

Remarks
You can use this property when you want to indicate changes in functionality as the mouse pointer
passes over controls on a form or dialog box. The Hourglass setting (11) is useful for indicating that
the user should wait for a process or operation to finish.

Note If your application calls DoEvents, the MousePointer property may temporarily change when
over a custom control.

MultiLine Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMultiLineC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMultiLineX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMultiLineA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMultiLineS"}

Returns or sets a value indicating whether a TextBox control can accept and display multiple lines of
text. Read only at run time.

Syntax
object.MultiLine
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The MultiLine property settings are:

Setting Description
True Allows multiple lines of text.
False (Default) Ignores carriage returns and restricts data to

a single line.

Remarks
A multiple-line TextBox control wraps text as the user types text extending beyond the text box.

You can also add scroll bars to larger TextBox controls using the ScrollBars property. If no horizontal
scroll bar is specified, the text in a multiple-line TextBox automatically wraps.

Note On a form with no default button, pressing ENTER in a multiple-line TextBox control moves the
focus to the next line. If a default button exists, you must press CTRL+ENTER to move to the next line.

MultiSelect Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMultiSelectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMultiSelectX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMultiSelectA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMultiSelectS"}

Returns or sets a value indicating whether a user can make multiple selections in a FileListBox or
ListBox control and how the multiple selections can be made. Read only at run time.

Syntax
object.MultiSelect
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The MultiSelect property settings are:

Setting Description
0 (Default) Multiple selection isn't

allowed.
1 Simple multiple selection. A mouse

click or pressing the SPACEBAR selects
or deselects an item in the list. (Arrow
keys move the focus.)

2 Extended multiple selection. Pressing
SHIFT and clicking the mouse or
pressing SHIFT and one of the arrow
keys (UP ARROW, DOWN ARROW, LEFT
ARROW, and RIGHT ARROW) extends
the selection from the previously
selected item to the current item.
Pressing CTRL and clicking the mouse
selects or deselects an item in the
list.

NewIndex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproNewIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNewIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNewIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNewIndexS"}

Returns the index of the item most recently added to a ComboBox or ListBox control. Read only at
run time.

Syntax
object.NewIndex
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
You can use this property with sorted lists when you need a list of values that correspond to each item
in the ItemData property array. As you add an item in a sorted list, Visual Basic inserts the item in the
list in alphabetic order. This property tells you where the item was inserted so that you can insert a
corresponding value in the ItemData property at the same index.

The NewIndex property returns -1 if there are no items in the list or if an item has been deleted since
the last item was added.

Orientation Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproOrientationC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOrientationX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOrientationA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOrientationS"}

Returns or sets a value indicating whether documents are printed in portrait or landscape mode. Not
available at design time.

Syntax
object.Orientation [= value]

The Orientation property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A value or constant that determines the page

orientation, as described in Settings.

Settings
The settings for value are:

Constant Value Description
vbPRORPortrait 1 Documents are printed

with the top at the
narrow side of the
paper.

vbPRORLandscape 2 Documents are
printed with the top at
the wide side of the
paper.

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

Note The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. Settings outside the accepted range may or may not produce an error. For
more information, see the manufacturer's documentation for the specific driver.

Page Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPageC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPageX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproPageA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPageS"}

Returns the current page number.

Syntax
object.Page
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Visual Basic keeps a count of pages that have been printed since your application started or since the
last time the EndDoc statement was used on the Printer object. This count starts at one and
increases by one if:

· You use the NewPage method.
· You use the Print method and the text you want to print doesn't fit on the current page.

Note Graphics methods output that doesn't fit on the page doesn't generate a new page. The
output is clipped to fit the page's printable area.

PaperBin Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPaperBinC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPaperBinX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPaperBinA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPaperBinS"}

Returns or sets a value indicating the default paper bin on the printer from which paper is fed when
printing. Not available at design time.

Syntax
object.PaperBin [= value]

The PaperBin property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A value or constant specifying the default paper bin,

as described in Settings.

Settings
The settings for value are:

Constant Value Description
vbPRBNUpper 1 Use paper from the upper bin.
VbPRBNLower 2 Use paper from the lower bin.
VbPRBNMiddle 3 Use paper from the middle bin.
VbPRBNManual 4 Wait for manual insertion of each

sheet of paper.
VbPRBNEnvelope 5 Use envelopes from the envelope

feeder.
VbPRBNEnvManual 6 Use envelopes from the envelope

feeder, but wait for manual insertion.
VbPRBNAuto 7 (Default) Use paper from the current

default bin.
VbPRBNTractor 8 Use paper fed from the tractor

feeder.
VbPRBNSmallFmt 9 Use paper from the small paper

feeder.
VbPRBNLargeFmt 10 Use paper from the large paper bin.
VbPRBNLargeCapacity 11 Use paper from the large capacity

feeder.
VbPRBNCassette 14 Use paper from the attached

cassette cartridge.

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

Not all of the bin options are available on every printer. Check the printer documentation for more
specific descriptions of these options.

Note The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. Settings outside the accepted range may or may not produce an error. For

more information, see the manufacturer's documentation for the specific driver.

PaperSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPaperSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPaperSizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPaperSizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPaperSizeS"}

Returns or sets a value indicating the paper size for the current printer. Not available at design time.

Syntax
object.PaperSize [= value]

The PaperSize property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A value or constant specifying the paper size, as

described in Settings.

Settings
The settings for value are:

Constant Value Description
vbPRPSLetter 1 Letter, 8 1/2 x 11 in.
vbPRPSLetterSmall 2 Letter Small, 8 1/2 x 11 in.
vbPRPSTabloid 3 Tabloid, 11 x 17 in.
vbPRPSLedger 4 Ledger, 17 x 11 in.
vbPRPSLegal 5 Legal, 8 1/2 x 14 in.
vbPRPSStatement 6 Statement, 5 1/2 x 8 1/2 in.
vbPRPSExecutive 7 Executive, 7 1/2 x 10 1/2 in.
vbPRPSA3 8 A3, 297 x 420 mm
vbPRPSA4 9 A4, 210 x 297 mm
vbPRPSA4Small 10 A4 Small, 210 x 297 mm
vbPRPSA5 11 A5, 148 x 210 mm
vbPRPSB4 12 B4, 250 x 354 mm
vbPRPSB5 13 B5, 182 x 257 mm
vbPRPSFolio 14 Folio, 8 1/2 x 13 in.
vbPRPSQuarto 15 Quarto, 215 x 275 mm
vbPRPS10x14 16 10 x 14 in.
vbPRPS11x17 17 11 x 17 in.
vbPRPSNote 18 Note, 8 1/2 x 11 in.
vbPRPSEnv9 19 Envelope #9, 3 7/8 x 8 7/8

in.
vbPRPSEnv10 20 Envelope #10, 4 1/8 x 9 1/2

in.
vbPRPSEnv11 21 Envelope #11, 4 1/2 x 10 3/8

in.
vbPRPSEnv12 22 Envelope #12, 4 1/2 x 11 in.
vbPRPSEnv14 23 Envelope #14, 5 x 11 1/2 in.
vbPRPSCSheet 24 C size sheet

vbPRPSDSheet 25 D size sheet
vbPRPSESheet 26 E size sheet
vbPRPSEnvDL 27 Envelope DL, 110 x 220 mm
vbPRPSEnvC3 29 Envelope C3, 324 x 458 mm
vbPRPSEnvC4 30 Envelope C4, 229 x 324 mm
vbPRPSEnvC5 28 Envelope C5, 162 x 229 mm
vbPRPSEnvC6 31 Envelope C6, 114 x 162 mm
vbPRPSEnvC65 32 Envelope C65, 114 x 229

mm
vbPRPSEnvB4 33 Envelope B4, 250 x 353 mm
vbPRPSEnvB5 34 Envelope B5, 176 x 250 mm
vbPRPSEnvB6 35 Envelope B6, 176 x 125 mm
vbPRPSEnvItaly 36 Envelope, 110 x 230 mm
vbPRPSEnvMonarch 37 Envelope Monarch, 3 7/8 x 7

1/2 in.
vbPRPSEnvPersonal 38 Envelope, 3 5/8 x 6 1/2 in.
vbPRPSFanfoldUS 39 U.S. Standard Fanfold, 14

7/8 x 11 in.
vbPRPSFanfoldStdGerman 40 German Standard Fanfold, 8

1/2 x 12 in.
vbPRPSFanfoldLglGerman 41 German Legal Fanfold, 8 1/2

x 13 in.
vbPRPSUser 256 User-defined

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

Setting a printer's Height or Width property automatically sets PaperSize to vbPRPSUser.
Note The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. Settings outside the accepted range may or may not produce an error. For
more information, see the manufacturer's documentation for the specific driver.

PasswordChar Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPasswordCharC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPasswordCharX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPasswordCharA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPasswordCharS"}

Returns or sets a value indicating whether the characters typed by a user or placeholder characters
are displayed in a TextBox control; returns or sets the character used as a placeholder.

Syntax
object.PasswordChar [= value]

The PasswordChar property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A string expression specifying the placeholder

character.

Remarks
Use this property to create a password field in a dialog box. Although you can use any character,
most Windows-based applications use the asterisk (*) (Chr(42)).

This property doesn't affect the Text property; Text contains exactly what the user types or what was
set from code. Set PasswordChar to a zero-length string (""), which is the default, to display the
actual text.

You can assign any string to this property, but only the first character is significant; all others are
ignored.

Note If the MultiLine Property is set to True, setting the PasswordChar property will have no
effect.

Pattern Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPatternC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPatternX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPatternA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPatternS"}

Returns or sets a value indicating the filenames displayed in a FileListBox control at run time.

Syntax
object.Pattern [= value]

The Pattern property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A string expression indicating a file specification, such

as "*.*" or "*.FRM". The default is "*.*", which returns
a list of all files. In addition to using wildcard
characters, you can also use multiple patterns
separated by semicolons (;). For example, "*.exe;
*.bat" would return a list of all executable files and all
MS-DOS batch files.

Remarks
The Pattern property plays a key role in designing an application's file-browsing and manipulation
capabilities. Use Pattern in combination with other file-control properties to provide the user with
ways to explore files or groups of similar files. For example, in an application dedicated to launching
other programs, you could designate that only .exe files be displayed in the file list box (*.exe). Other
key file-control properties include Drive, FileName, and Path.

Changing the value of the Pattern property generates a PatternChange event.

Port Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPortC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPortX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproPortA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPortS"}

Returns the name of the port through which a document is sent to a printer.

Syntax
object.Port
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The operating system determines the name of the port, such as LPT1: or LPT2:.

Note The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. Settings outside the accepted range may or may not produce an error. For
more information, see the manufacturer's documentation for the specific driver.

PrevInstance Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPrevInstanceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPrevInstanceX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPrevInstanceA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPrevInstanceS"}

Returns a value indicating whether a previous instance of an application is already running.

Syntax
object.PrevInstance
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
You can use this property in a Load event procedure to specify whether a user is already running an
instance of an application. Depending on the application, you might want only one instance running in
the Microsoft Windows operating environment at a time.

PrintQuality Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPrintQualityC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPrintQualityX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPrintQualityA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPrintQualityS"}

Returns or sets a value indicating the printer resolution. Not available at design time.

Syntax
object.PrintQuality [= value]

The PrintQuality property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A value or constant specifying printer resolution, as

described in Settings.

Settings
The settings for value are:

Constant Value Description
vbPRPQDraft -1 Draft resolution
vbPRPQLow -2 Low resolution
vbPRPQMedium -3 Medium resolution
vbPRPQHigh -4 High resolution

In addition to the predefined negative values, you can also set value to a positive dots per inch (dpi)
value, such as 300.

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

The default value depends on the printer driver and the current settings of the printer. The effect of
these settings varies among printers and printer drivers. On some printers, some or all of the settings
may produce the same result.

Note The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. Settings outside the accepted range may or may not produce an error. For
more information, see the manufacturer's documentation for the specific driver.

RowHeight Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproRowHeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRowHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRowHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRowHeightS"}

For a Grid control, returns or sets the height of the specified row (record) in twips. Not available at
design time.

For a DBGrid control, returns or sets the height of all rows in the control. RowHeight is always in the
same unit of measure as the container for the DBGrid control.

Syntax
object.RowHeight[(number)] [= value]

The RowHeight property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number The number of the row in a Grid control.
value A numeric expression specifying height.

Remarks
For a Grid control, the minimum RowHeight is 1 pixel. Users can change the RowHeight of any row
at run time by placing the mouse pointer on a gridline between rows and dragging.

ScaleHeight, ScaleWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproScaleHeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproScaleHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproScaleHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproScaleHeightS"}

Return or set the number of units for the horizontal (ScaleWidth) and vertical (ScaleHeight)
measurement of the interior of an object when using graphics methods or when positioning controls.
For MDIForm objects, not available at design time and read-only at run time.

Syntax
object.ScaleHeight [= value]
object.ScaleWidth [= value]

The ScaleHeight and ScaleWidth property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A numeric expression specifying the horizontal or

vertical measurement.

Remarks
You can use these properties to create a custom coordinate scale for drawing or printing. For
example, the statement ScaleHeight = 100 changes the units of measure of the actual interior
height of the form. Instead of the height being n current units (twips, pixels, ...), the height will be 100
user-defined units. Therefore, a distance of 50 units is half the height/width of the object, and a
distance of 101 units will be off the object by 1 unit.

Use the ScaleMode property to define a scale based on a standard unit of measurement, such as
twips, points, pixels, characters, inches, millimeters, or centimeters.

Setting these properties to positive values makes coordinates increase from top to bottom and left to
right. Setting them to negative values makes coordinates increase from bottom to top and right to left.

Using these properties and the related ScaleLeft and ScaleTop properties, you can set up a full
coordinate system with both positive and negative coordinates. All four of these Scale properties
interact with the ScaleMode property in the following ways:

· Setting any other Scale property to any value automatically sets ScaleMode to 0. A ScaleMode of
0 is user-defined.

· Setting ScaleMode to a number greater than 0 changes ScaleHeight and ScaleWidth to the new
unit of measurement and sets ScaleLeft and ScaleTop to 0. In addition, the CurrentX and
CurrentY settings change to reflect the new coordinates of the current point.

You can also use the Scale method to set the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop
properties in one statement.

Note The ScaleHeight and ScaleWidth properties aren't the same as the Height and Width
properties.
For MDIForm objects, ScaleHeight and ScaleWidth refer only to the area not covered by
PictureBox controls in the form. Avoid using these properties to size a PictureBox in the Resize
event of an MDIForm.

ScaleLeft, ScaleTop Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproScaleLeftC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproScaleLeftX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproScaleLeftA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproScaleLeftS"}

Return or set the horizontal (ScaleLeft) and vertical (ScaleTop) coordinates for the left and top edges
of an object when using graphics methods or when positioning controls.

Syntax
object.ScaleLeft [= value]
object.ScaleTop [= value]

The ScaleLeft and ScaleTop property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A numeric expression specifying the horizontal or

vertical coordinate. The default is 0.

Remarks
Using these properties and the related ScaleHeight and ScaleWidth properties, you can set up a full
coordinate system with both positive and negative coordinates. These four Scale properties interact
with the ScaleMode property in the following ways:

· Setting any other Scale property to any value automatically sets ScaleMode to 0. A ScaleMode of
0 is user-defined.

· Setting the ScaleMode property to a number greater than 0 changes ScaleHeight and
ScaleWidth to the new unit of measurement and sets ScaleLeft and ScaleTop to 0. The CurrentX
and CurrentY property settings change to reflect the new coordinates of the current point.

You can also use the Scale method to set the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop
properties in one statement.

Note The ScaleLeft and ScaleTop properties aren't the same as the Left and Top properties.

ScaleMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproScaleModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproScaleModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproScaleModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproScaleModeS"}

Returns or sets a value indicating the unit of measurement for coordinates of an object when using
graphics methods or when positioning controls.

Syntax
object.ScaleMode [= value]

The ScaleMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer specifying the unit of measurement, as

described in Settings.

Settings
The settings for value are:

Constant Setting Description
vbUser 0 Indicates that one or more of the

ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties
are set to custom values.

VbTwips 1 (Default) Twip (1440 twips per logical
inch; 567 twips per logical
centimeter).

VbPoints 2 Point (72 points per logical inch).
VbPixels 3 Pixel (smallest unit of monitor or

printer resolution).
vbCharacters 4 Character (horizontal = 120 twips per

unit; vertical = 240 twips per unit).
VbInches 5 Inch.
VbMillimeters 6 Millimeter.
VbCentimeters 7 Centimeter.

Remarks
Using the related ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties, you can create a
custom coordinate system with both positive and negative coordinates. These four Scale properties
interact with the ScaleMode property in the following ways:

· Setting the value of any other Scale property to any value automatically sets ScaleMode to 0. A
ScaleMode of 0 is user-defined.

· Setting the ScaleMode property to a number greater than 0 changes ScaleHeight and
ScaleWidth to the new unit of measurement and sets ScaleLeft and ScaleTop to 0. The CurrentX
and CurrentY property settings change to reflect the new coordinates of the current point.

ScrollBars Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproScrollBarsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproScrollBarsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproScrollBarsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproScrollBarsS"}

Returns or sets a value indicating whether an object has horizontal or vertical scroll bars. Read only
at run time.

Syntax
object.ScrollBars
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
For an MDIForm object, the ScrollBars property settings are:

Setting Description
True (Default) The form has a horizontal or vertical scroll

bar, or both.
False The form has no scroll bars.

For a Grid or TextBox control, the ScrollBars property settings are:

Constant Setting Description
vbSBNone 0 (Default) None
vbHorizontal 1 Horizontal
vbVertical 2 Vertical
vbBoth 3 Both

Remarks
For a TextBox control with setting 1 (Horizontal), 2 (Vertical), or 3 (Both), you must set the MultiLine
property to True.

At run time, the Microsoft Windows operating environment automatically implements a standard
keyboard interface to allow navigation in TextBox controls with the arrow keys (UP ARROW, DOWN
ARROW, LEFT ARROW, and RIGHT ARROW), the HOME and END keys, and so on.

Scroll bars are displayed on an object only if its contents extend beyond the object's borders. For
example, in an MDIForm object, if part of a child form is hidden behind the border of the parent MDI
form, a horizontal scroll bar (HScrollBar control) is displayed. Similarly, a vertical scroll bar
(VScrollBar control) is displayed on a Grid control when it can't display all of its rows; a vertical scroll
bar appears on a TextBox control when it can't display all of its lines of text. If ScrollBars is set to
False, the object won't have scroll bars, regardless of its contents.

SelCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSelCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSelCountA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelCountS"}

Returns the number of selected items in a ListBox control.

Syntax
object.SelCount
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The SelCount property returns 0 if no items are selected. Otherwise, it returns the number of list
items currently selected. This property is particularly useful when users can make multiple selections.

Selected Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelectedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSelectedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSelectedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelectedS"}

Returns or sets the selection status of an item in a FileListBox or ListBox control. This property is an
array of Boolean values with the same number of items as the List property. Not available at design
time.

Syntax
object.Selected(index) [= boolean]

The Selected property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index The index number of the item in the control.
boolean A Boolean expression specifying whether the item is

selected, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The item is selected.
False (Default) The item isn't selected.

Remarks
This property is particularly useful when users can make multiple selections. You can quickly check
which items in a list are selected. You can also use this property to select or deselect items in a list
from code.

If the MultiSelect property is set to 0, you can use the ListIndex property to get the index of the
selected item. However, in a multiple selection, the ListIndex property returns the index of the item
contained within the focus rectangle, whether or not the item is actually selected.

If a ListBox control’s Style property is set to 1 (check boxes), the Selected property returns True
only for those items whose check boxes are selected. The Selected property will not return True for
those items which are only highlighted.

SelEndCol, SelStartCol, SelEndRow, SelStartRow Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelEndColC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSelEndColX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSelEndColA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelEndColS"}

Return or set the first or last row or column for a range of cells. Not available at design time.

· SelEndCol — the last selected column on the right.
· SelStartCol — the first selected column on the left.
· SelEndRow — the last selected row.
· SelStartRow—the first selected row.

Syntax
object.SelEndCol [= value]
object.SelStartCol [= value]
object.SelEndRow [= value]
object.SelStartRow [= value]

The SelEndCol, SelStartCol, SelEndRow, and SelStartRow property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A numeric expression specifying the first or last

column or row.

Remarks
You can use these properties to select a specific region of a Grid control from code or to return in
code the dimensions of an area that the user selects.

SelStartCol and SelStartRow together specify the cell in the upper-left corner of a selected range.
SelEndCol and SelEndRow specify the cell in the lower-right corner of a selected range.

To specify a cell without moving the current selection, use the Col and Row properties.

The default value for SelStartCol and SelEndCol is -1.

SelLength, SelStart, SelText Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelLengthC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSelLengthX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSelLengthA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelLengthS"}

· SelLength — returns or sets the number of characters selected.
· SelStart — returns or sets the starting point of text selected; indicates the position of the insertion

point if no text is selected.
· SelText — returns or sets the string containing the currently selected text; consists of a zero-length

string ("") if no characters are selected.

These properties aren't available at design time.

Syntax
object.SelLength [= number]
object.SelStart [= index]
object.SelText [= value]

The SelLength, SelStart, and SelText property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression specifying the number of

characters selected. For SelLength and SelStart, the
valid range of settings is 0 to text length — the total
number of characters in the edit area of a ComboBox
or TextBox control.

index A numeric expression specifying the starting point of
the selected text, as described in Settings.

value A string expression containing the selected text.

Remarks
Use these properties for tasks such as setting the insertion point, establishing an insertion range,
selecting substrings in a control, or clearing text. Used in conjunction with the Clipboard object, these
properties are useful for copy, cut, and paste operations.

When working with these properties:

· Setting SelLength less than 0 causes a run-time error.
· Setting SelStart greater than the text length sets the property to the existing text length; changing

SelStart changes the selection to an insertion point and sets SelLength to 0.
· Setting SelText to a new value sets SelLength to 0 and replaces the selected text with the new

string.

Shape Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproShapeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproShapeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproShapeA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproShapeS"}

Returns or sets a value indicating the appearance of a Shape control.

Syntax
object.Shape [= value]

The Shape property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer specifying the control's appearance, as

described in Settings.

Settings
The settings for value are:

Constant Setting Description
vbShapeRectangle 0 (Default) Rectangle
vbShapeSquare 1 Square
vbShapeOval 2 Oval
vbShapeCircle 3 Circle
VbShapeRoundedRectangle 4 Rounded Rectangle
VbShapeRoundedSquare 5 Rounded Square

Shortcut Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproShortcutC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproShortcutX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproShortcutA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproShortcutS"}

Sets a value that specifies a shortcut key for a Menu object. Not available at run time.

Remarks
Use this property to provide keyboard shortcuts for menu commands. You can set this property using
the Menu Editor. For a list of shortcut keys you can use, see the Shortcut list in the Menu Editor.

Note In addition to shortcut keys, you can also assign access keys to commands, menus, and
controls by using an ampersand (&) in the Caption property setting.

Stretch Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproStretchC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStretchX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStretchA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStretchS"}

Returns or sets a value indicating whether a graphic resizes to fit the size of an Image control.

Syntax
object.Stretch [= boolean]

The Stretch property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying whether the graphic

resizes, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The graphic resizes to fit the control.
False (Default) The control resizes to fit the graphic.

Remarks
If Stretch is set to True, resizing the control also resizes the graphic it contains.

Style Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproStyleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStyleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproStyleA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStyleS"}

Returns or sets a value indicating the type of combo box and the behavior of its list box portion. Read
only at run time.

Syntax
object.Style
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The Style property settings are:

Setting Description
0 (Default) Dropdown Combo. Includes a drop-down list

and a text box. The user can select from the list or
type in the text box.

1 Simple Combo. Includes a text box and a list, which
doesn't drop down. The user can select from the list
or type in the text box. The size of a Simple combo
box includes both the edit and list portions. By default,
a Simple combo box is sized so that none of the list is
displayed. Increase the Height property to display
more of the list.

2 Dropdown List. This style only allows selection from
the drop-down list.

Remarks
Follow these guidelines in deciding which setting to choose:

· Use setting 0 (Dropdown Combo) or setting 1 (Simple Combo) to give the user a list of choices.
Either style enables the user to enter a choice in the text box. Setting 0 saves space on the form
because the list portion closes when the user selects an item.

· Use setting 2 (Dropdown List) to display a fixed list of choices from which the user can select one.
The list portion closes when the user selects an item.

TabStop Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTabStopC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTabStopX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTabStopA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTabStopS"}

Returns or sets a value indicating whether a user can use the TAB key to give the focus to an object.

Syntax
object.TabStop [= boolean]

The TabStop property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
boolean A Boolean expression specifying whether the object is

a tab stop, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) Designates the object as a tab stop.
False Bypasses the object when the user is tabbing,

although the object still holds its place in the actual
tab order, as determined by the TabIndex property.

Remarks
This property enables you to add or remove a control from the tab order on a form. For example, if
you're using a PictureBox control to draw a graphic, set its TabStop property to False, so the user
can't tab to the PictureBox.

Title Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTitleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTitleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproTitleA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTitleS"}

Returns or sets the title of the application that is displayed in the Microsoft Windows Task List. If
changed at run time, changes aren't saved with the application.

Syntax
object.Title [= value]

The Title property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
value A string expression specifying the title of the

application. The maximum length of value is 40
characters. In DBCS systems, this means the
maximum length is 40 bytes.

Remarks
This property is available at design time in the dialog box for the Project Properties command on the
Project menu.

TopIndex Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTopIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTopIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTopIndexA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTopIndexS"}

Returns or sets a value that specifies which item in a FileListBox or ListBox control is displayed in
the topmost position. Not available at design time.

Syntax
object.TopIndex [= value]

The TopIndex property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value The number of the list item that is displayed in the

topmost position. The default is 0, or the first item in
the list.

Remarks
Use this property to scroll through a FileListBox or ListBox control without selecting an item.

If the Columns property is set to 0 for the ListBox control, the item is displayed at the topmost
position if there are enough items below it to fill the visible portion of the list.

If the Columns property setting is greater than 0 for the ListBox control, the item's column moves to
the leftmost position without changing its position within the column.

TopRow Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTopRowC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTopRowX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTopRowA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTopRowS"}

Returns or sets the topmost row displayed in a Grid control. Not available at design time.

Syntax
object.TopRow [= value]

The TopRow property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value The number of the topmost row displayed.

Remarks
You can use this property in code to programmatically read or set the visible top row of the Grid
control. Use the LeftCol property to determine the leftmost visible column in the Grid.

When setting this property, the largest possible row number is the total number of rows minus the
number of rows that can be visible in the Grid. Attempting to set TopRow to a greater row number will
generate an error.

TwipsPerPixelX, TwipsPerPixelY Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTwipsPerPixelXC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTwipsPerPixelXX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTwipsPerPixelXA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTwipsPerPixelXS"}

Return the number of twips per pixel for an object measured horizontally (TwipsPerPixelX) or
vertically (TwipsPerPixelY).

Syntax
object.TwipsPerPixelX
object.TwipsPerPixelY
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Windows API routines generally require measurements in pixels. You can use these properties to
convert measurements quickly without changing an object's ScaleMode property setting.

WindowList Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWindowListC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproWindowListX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproWindowListA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproWindowListS"}

Returns or sets a value that determines whether a Menu object maintains a list of the current MDI
child windows in an MDIForm object. Read only at run time.

Syntax
object.WindowList
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The WindowList property settings are:

Setting Description
True The Menu object maintains a list of open windows

and displays a check mark next to the active window.
Users can click a window name to activate that
window.

False (Default) The Menu doesn't maintain a list of open
windows.

Remarks
Many multiple-document interface (MDI) applications, such as Microsoft Excel and Microsoft Word for
Windows, have a Window menu containing a list of open MDI child windows. This property enables
you to add this functionality to your application.

Only one Menu object on a form can have its WindowList property set to True.

When you select the WindowList check box in the Menu Editor for a Menu object, the list of open MDI
child windows for the menu you're creating is displayed.

WindowState Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWindowStateC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproWindowStateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproWindowStateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproWindowStateS"}

Returns or sets a value indicating the visual state of a form window at run time.

Syntax
object.WindowState [= value]

The WindowState property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer specifying the state of the object, as

described in Settings.

Settings
The settings for value are:

Constant Value Description
vbNormal 0 (Default) Normal.
VbMinimized 1 Minimized (minimized to an icon)
VbMaximized 2 Maximized (enlarged to maximum size)

Remarks
Before a form is displayed, the WindowState property is always set to Normal (0), regardless of its
initial setting. This is reflected in the Height, Left, ScaleHeight, ScaleWidth, Top, and Width
property settings. If a form is hidden after it's been shown, these properties reflect the previous state
until the form is shown again, regardless of any changes made to the WindowState property in the
meantime.

WordWrap Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWordWrapC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproWordWrapX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproWordWrapA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproWordWrapS"}

Returns or sets a value indicating whether a Label control with its AutoSize property set to True
expands vertically or horizontally to fit the text specified in its Caption property.

Syntax
object.WordWrap [= boolean]

The WordWrap property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying whether the Label

expands to fit the text, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The text wraps; the Label control expands or

contracts vertically to fit the text and the size of the
font. The horizontal size doesn't change.

False (Default) The text doesn't wrap; the Label expands or
contracts horizontally to fit the length of the text and
vertically to fit the size of the font and the number of
lines.

Remarks
Use this property to determine how a Label control displays its contents. For example, a graph that
changes dynamically might have a Label containing text that also changes. To maintain a constant
horizontal size for the Label and allow for increasing or decreasing text, set the WordWrap and
AutoSize properties to True.

If you want a Label control to expand only horizontally, set WordWrap to False. If you don't want the
Label to change size, set AutoSize to False.

Note If AutoSize is set to False, the text always wraps, regardless of the size of the Label control
or the setting of the WordWrap property. This may obscure some text because the Label doesn't
expand in any direction.

X1, Y1, X2, Y2 Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproX1C"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproX1X":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproX1A"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproX1S"}

Return or set the coordinates of the starting point (X1, Y1) and ending point (X2, Y2) of a Line control.
The horizontal coordinates are X1 and X2; the vertical coordinates are Y1 and Y2.

Syntax
object.X1 [= value]
object.Y1 [= value]
object.X2 [= value]
object.Y2 [= value]

The X1, Y1, X2, and Y2 property syntaxes have these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A numeric expression specifying a coordinate.

Remarks
Use these properties to dynamically extend a Line control from one point to another at run time. For
example, you can show the relationships of items in one list to items in another list or connect points
on a map.

MaxLength Property Example
This example uses a numeric value in one TextBox control to limit the length of text in another
TextBox control. To try this example, paste the code into the Declarations section of a form that
contains two TextBox controls. Make Text1 fairly large, and then press F5. Enter a number into Text2
and text into Text1.
Private Sub Text1_Change ()

Text1.MaxLength = Text2.Text
End Sub

MDIChild Property Example
This example creates a second instance of an MDI child form within an MDIForm object. To try this
example, set the MDIChild property to True on Form1, and then create an MDIForm object with the
Add MDI Form command on the Project menu. Paste the code into the Declarations section of the
MDIForm, and then press F5 to run the program.
Private Sub MDIForm_Load ()

Dim NewForm As New Form1 ' Declare new form.
NewForm.Show ' Show new form.

End Sub

MouseIcon Property Example
This example illustrates how the MouseIcon property sets a custom mouse icon. To try the example,
create a ListBox control on a form, and then set the MultiSelect property to 1 or 2. At run time, select
one or more items. Different icons will appear, depending on whether you selected a single item or
multiple items.
Private Sub Form_Load ()

' Put some items in the ListBox.
List1.AddItem "Selection 1"
List1.AddItem "Selection 2"
List1.AddItem "Selection 3"
List1.AddItem "Selection 4"
List1.AddItem "Selection 5"

End Sub

Private Sub List1_MouseDown (Button As Integer, Shift As Integer, X As
Single, Y As Single)

' Set the custom mouse icon for multiple items.
If List1.SelCount > 1 Then

List1.MouseIcon = LoadPicture("ICONS\COMPUTER\MOUSE04.ICO")
List1.MousePointer = 99

Else ' Set the custom mouse icon for a single item.
List1.MouseIcon = LoadPicture("ICONS\COMPUTER\MOUSE02.ICO")
List1.MousePointer = 99

End If
End Sub

MousePointer Property Example
This example changes the mouse pointer to an hourglass while circles are drawn across the screen
and then changes the hourglass back to a pointer at the end of the procedure. To try this example,
paste the code into the Declarations section of a form. Press F5 to run the program, and then click the
form.
Private Sub Form_Click ()

Dim I ' Declare variable.
' Change mouse pointer to hourglass.
Screen.MousePointer = vbHourglass

 ' Set random color and draw circles on form.
For I = 0 To ScaleWidth Step 50

ForeColor = RGB(Rnd * 255, Rnd * 255, Rnd * 255)
Circle (I, ScaleHeight * Rnd), 400

Next
' Return mouse pointer to normal. Screen.MousePointer = vbDefault

End Sub

MultiSelect Property Example
This example fills a ListBox control with the names of your screen fonts and illustrates how the
MultiSelect property affects the behavior of a ListBox. To try this example, create two ListBox
controls and a CommandButton control on a form. In the first ListBox, set the MultiSelect property
to 1 or 2. At run time, select several items in the first ListBox, and then click the CommandButton.
All selected items are displayed in the second ListBox. Run the example several times with different
settings of the MultiSelect property. Paste the code into the Declarations section, and then press F5
to run the program.
Private Sub Form_Load ()

Dim I ' Declare variable.
' Fill the list box with screen font names.
For I = 0 To Screen.FontCount - 1

List1.AddItem Screen.Fonts(I)
Next I

End Sub

Private Sub Command1_Click ()
Dim I ' Declare variable.
' Clear all items from the list.
List2.Clear
' If an item is selected, add it to List2.
For I = 0 To List1.ListCount - 1

If List1.Selected(I) Then
List2.AddItem List1.List(I)

End If
Next I

End Sub

Page Property Example
This example prints three pages of text with the current page number at the top of each page. To try
this example, paste the code into the Declarations section of a form, and then press F5 and click the
form.
Private Sub Form_Click ()

Dim Header, I, Y ' Declare variables.
Print "Now printing..." ' Put notice on form.
Header = "Printing Demo - Page " ' Set header string.
For I = 1 To 3

Printer.Print Header; ' Print header.
Printer.Print Printer.Page ' Print page number.
Y = Printer.CurrentY + 10 ' Set position for line.
' Draw a line across page.
Printer.Line (0, Y) - (Printer.ScaleWidth, Y) ' Draw line.
For K = 1 To 50

Printer.Print String(K, " "); ' Print string of spaces.
Printer.Print "Visual Basic "; ' Print text.
Printer.Print Printer.Page ' Print page number.

Next
Printer.NewPage

Next I
Printer.EndDoc
End

End Sub

PasswordChar Property Example
This example illustrates how the PasswordChar property affects the way a TextBox control displays
text. To try this example, paste the code into the Declarations section of a form that contains a
TextBox, and then press F5 and click the form. Each time you click the form, the text toggles between
an asterisk (*) password character and plain text.
Private Sub Form_Click ()

If Text1.PasswordChar = "" Then
Text1.PasswordChar = "*"

Else
Text1.PasswordChar = ""

End If
End Sub

Pattern Property Example
This example updates a TextBox control with the new pattern selected in a FileListBox control. The
controls are set up so that when the user enters a pattern in the TextBox, such as *.txt, it's reflected
in the FileListBox, much like the interaction you see in a typical File Open dialog box in a Windows-
based application. If a full path such as C:\Bin*.exe is entered into the TextBox control, the text is
automatically parsed into path and pattern components by the FileListBox control. To try this
example, paste the code into the Declarations section of a form that contains the following controls: a
DirListBox, a FileListBox, a TextBox, and a CommandButton. Press F5 and type a valid file
pattern into the TextBox.
Private Sub Form_Load ()

Command1.Default = True ' Set Default property.
End Sub

Private Sub Command1_Click ()
' Text is parsed into path and pattern components.
File1.Filename = Text1.Text
Dir1.Path = File1.Path ' Set directory path.

End Sub

Private Sub File1_PatternChange ()
Text1.Text = File1.Pattern ' Set text to new pattern.

End Sub

Private Sub Dir1_Change
File1.Path = Dir1.Path ' Set file list box path.

End Sub

Port Property Example
This example examines each Printer object in the Printers collection to find one connected to a
specific port and makes it the default printer.
Dim P As Object
For Each P In Printers

If P.Port = "LPT2:" Or P.DeviceName Like "*LaserJet*" Then
Set Printer = P
Exit For

End If
Next P

RowHeight Property Example
This example sets the height of the current row to 500 twips when you click the form. To try this
example, create a new project, use the Components dialog box to add a Grid control to the toolbox
(from the Project menu, choose Components, and then select Microsoft Grid Control), and then draw
a Grid control on the form. Paste the code into the Declarations section of the form, press F5 to run
the program, and then select a cell and click the form.
Private Sub Form_Load ()

Grid1.Rows = 5 ' Set columns and rows.
Grid1.Cols = 7

End Sub

Private Sub Form_Click ()
Grid1.RowHeight(Grid1.Row) = 500

End Sub

ScaleHeight, ScaleWidth Properties Example
This example uses the ScaleHeight and ScaleWidth properties to change the vertical and horizontal
units of measurement for a form. To try this example, paste the code into the Declarations section of a
form, and then press F5. To see the effect, click the form, resize it, and then click it again.
Private Sub Form_Click ()

Dim Radius As Integer ' Declare variable.
ScaleHeight = 100 ' Set height units.
ScaleWidth = 100 ' Set width units.
For Radius = 5 to 50 Step 5

FillStyle = 1
Circle (50, 50), Radius ' Draw circle.

Next Radius
End Sub

ScaleLeft, ScaleTop Properties Example
This example creates a grid in a PictureBox control and sets coordinates for the upper-left corner to -
1, -1 instead of 0, 0. Every 0.25 second, dots are randomly plotted from the upper-left corner to the
lower-right corner. To try this example, paste the code into the Declarations section of a form that
contains a large PictureBox and a Timer control, and then press F5.
Private Sub Form_Load ()

Timer1.Interval = 250 ' Set Timer interval.
Picture1.ScaleTop = -1 ' Set scale for top of grid.
Picture1.ScaleLeft = -1 ' Set scale for left of grid.
Picture1.ScaleWidth = 2 ' Set scale (-1 to 1).
Picture1.ScaleHeight = 2
Picture1.Line (-1, 0)-(1, 0) ' Draw horizontal line.
Picture1.Line (0, -1)-(0, 1) ' Draw vertical line.

End Sub

Private Sub Timer1_Timer ()
Dim I ' Declare variable.
' Plot dots randomly within a range.
For I = -1 To 1 Step .05

Picture1.PSet (I * Rnd, I * Rnd) ' Draw a point.
Next I

End Sub

ScaleMode Property Example
This example shows how different ScaleMode property settings change the size of a circle. To try this
example, paste the code into the Declarations section of a form, and then press F5 and click the form.
When you click the form, the unit of measurement changes to the next ScaleMode setting and a
circle is drawn on the form.
Private Sub Form_Click ()

' Cycle through each of the seven ScaleMode settings.
ScaleMode = ((ScaleMode + 1) Mod 7) + 1
' Draw a circle with radius of 2 in center of form.
Circle (ScaleWidth / 2, ScaleHeight / 2), 2

End Sub

SelLength, SelStart, SelText Properties Example
This example enables the user to specify some text to search for and then searches for the text and
selects it, if found. To try this example, paste the code into the Declarations section of a form that
contains a wide TextBox control, and then press F5 and click the form.
Private Sub Form_Load ()

Text1.Text = "Two of the peak human experiences"
Text1.Text = Text1.Text & " are good food and classical music."

End Sub
Private Sub Form_Click ()

Dim Search, Where ' Declare variables.
' Get search string from user.
Search = InputBox("Enter text to be found:")
Where = InStr(Text1.Text, Search) ' Find string in text.
If Where Then ' If found,

Text1.SelStart = Where - 1 ' set selection start and
Text1.SelLength = Len(Search) ' set selection length.

Else
MsgBox "String not found." ' Notify user.

End If
End Sub
This example shows how the Clipboard object is used in cut, copy, paste, and delete operations. To
try this example, create a form with a TextBox control and use the Menu Editor to create an Edit
menu (for each of the commands, set the Caption property = Cut, Copy, Paste, and Delete,
respectively; set the Name property = EditCut, EditCopy, EditPaste, and EditDelete, respectively).
Private Sub EditCut_Click ()

' Clear the contents of the Clipboard.
 Clipboard.Clear

' Copy selected text to Clipboard.
ClipBoard.SetText Screen.ActiveControl.SelText
' Delete selected text.
Screen.ActiveControl.SelText = ""

End Sub

Private Sub EditCopy_Click ()
' Clear the contents of the Clipboard.

 Clipboard.Clear
' Copy selected text to Clipboard.
ClipBoard.SetText Screen.ActiveControl.SelText

End Sub

Private Sub EditPaste_Click ()
' Place text from Clipboard into active control.
Screen.ActiveControl.SelText = ClipBoard.GetText ()

End Sub

Private Sub EditDelete_Click ()
' Delete selected text.
Screen.ActiveControl.SelText = ""
End Sub

Shape Property Example
This example illustrates the six possible shapes of the Shape control. To try this example, paste the
code into the Declarations section of a form that contains an OptionButton control and a Shape
control. For the OptionButton, set the Index property to 0 to create a control array of one element,
and then press F5. Click each OptionButton to see each different shape.
Private Sub Form_Load ()

Dim I ' Declare variable.
Option1(0).Caption = "Shape #0"
For I = 1 To 5 ' Create five instances of Option1.

Load Option1(I)
' Set the location of the new option button.
Option1(I).Top = Option1(I - 1).Top + Option1(0).Height + 40
' Set the option button caption.
Option1(I).Caption = "Shape #" & I
' Display the new option button.
Option1(I).Visible = True

Next I
End Sub

Private Sub Option1_Click (Index As Integer)
Shape1.Shape = Index

End Sub

Stretch Property Example
This example loads an arrow icon from an icons directory into an Image control. The arrow crawls
across the form when the Stretch property is set to True and hops across the form when Stretch is
set to False. To try this example, paste the code into the Declarations section of a form that contains
an Image control, a CheckBox control, and a Timer control, and then press F5 and click the form. Be
sure to check the path to your icons directory and change it if necessary. To see the effects of the
Stretch property, click the CheckBox, and then click the form again.
Dim ImgW ' Declare variable.
Private Sub Form_Load ()

' Load an icon into the Image control.
Image1.Picture = LoadPicture("ICONS\ARROWS\ARW02RT.ICO")
Image1.Left = 0 ' Move image to left edge.
ImgW = Image1.Width ' Save width of image.
Timer1.Interval = 300
Timer1.Enabled = False ' Turn off timer.
Check1.Caption = "Stretch Property"

End Sub

Private Sub Form_Click ()
Timer1.Enabled = True ' Turn on the timer.

End Sub

Private Sub Timer1_Timer ()
Static MoveIcon As Integer ' Flag for moving the icon.
If Not MoveIcon Then

Image1.Move Image1.Left + ImgW, Image1.Top, ImgW * 2
Else

' Move the image and return it to original width.
Image1.Move Image1.Left + ImgW, Image1.Top, ImgW

End If
' If image is off edge of form, start over.
If Image1.Left > ScaleWidth Then

Image1.Left = 0
Timer1.Enabled = False

End If
MoveIcon = Not MoveIcon ' Reset flag.

End Sub

Private Sub Check1_Click ()
Image1.Stretch = Check1.Value

End Sub

TopIndex Property Example
This example fills a ListBox control with names of screen fonts and then scrolls through the ListBox
when you click the form. To try this example, paste the code into the Declarations section of a form
that contains a ListBox control, and then press F5 and click the form.
Private Sub Form_Load ()

Dim I ' Declare variable.
For I = 0 To Screen.FontCount -1 ' Fill list box with

List1.AddItem Screen.Fonts(I) ' screen font names.
Next I

End Sub

Private Sub Form_Click ()
Dim X ' Declare variable.
X = List1.TopIndex ' Get current index.
List1.TopIndex = List1.TopIndex + 5 ' Reset topmost item.
If List1.TopIndex = X Then List1.TopIndex = 0

End Sub

TopRow Property Example
This example changes the TopRow property setting with each click on the form. To try this example,
create a new project, use the Components dialog box to add a Grid control to the toolbox (from the
Project menu, choose Components, and then select Microsoft Grid Control), and then draw a Grid
control. Paste the code into the Declarations section of the form, and then press F5 to run the
program.
Private Sub Form_Load ()

' Set columns and rows.
Grid1.Cols = 6
Grid1.Rows = 12
' Put numbers in row heads.
Grid1.Col = 0
For I = 1 To Grid1.Rows - 1

Grid1.Row = I
Grid1.Text = I

Next I
End Sub

Private Sub Form_Click ()
On Error GoTo TopRowError
Grid1.TopRow = Grid1.TopRow + 1
On Error GoTo 0
Exit Sub

TopRowError:
Grid1.TopRow = 1
Resume Next

End Sub

WindowList Property Example
This example creates some menu commands, illustrates the WindowList menu functionality, and
shows how to enable your users to add new forms to a multiple-document interface (MDI) application.
To try this example, create an MDIForm object with the Add MDI Form command on the Project
menu. On Form1, set the MDIChild property to True, and create a menu named File. Select the
WindowList box for the File menu. On your File menu, create a New command, set its Name property
to FileMenu, and set its Index property to 0 to create a control array. Paste the code into the
Declarations section of the form, and then press F5 to run the program. Choosing the New command
on the File menu creates new MDI child forms. Their names are listed at the bottom of the File menu.
Private Sub Form_Load ()

FileMenu(0).Caption = "&New" ' Set access key in caption.
Load FileMenu(1) ' Create new menu item.
FileMenu(1).Caption = "-" ' Set separator.
Load FileMenu(2) ' Create new menu item.
FileMenu(2).Caption = "E&xit" ' Set caption and access key.

End Sub

Private Sub FileMenu_Click (Index As Integer)
Select Case Index

Case 0 ' Select New command.
Dim NewForm As New Form1 ' Create a duplicate of Form1.
' Load NewForm and set a unique caption.
NewForm.Caption = "Untitled" & Forms.Count

Case 2 ' Select Exit command.
End ' End the program.

End Select
End Sub

WindowState Property Example
This example hides a dialog box (Form2) when the parent form (Form1) is minimized and redisplays
the dialog box when the parent form is returned to either an original or maximized state. To try this
example, paste the code into the Declarations section of Form1 of an application that contains two
forms. Press F5 to start the example. Move Form1 so you can see both forms, and then minimize or
maximize the form and observe the behavior of Form2.
Private Sub Form_Load ()

Form2.Show ' Show Form2.
End Sub

Private Sub Form_Resize ()
' If parent form is minimized...
If Form1.WindowState = vbMinimized Then

 ' ...hide Form2.
Form2.Visible = False

' If parent form isn't minimized...
 Else

' ...restore Form2.
 Form2.Visible = True

End If
End Sub

WordWrap Property Example
This example puts text into two Label controls and uses the WordWrap property to illustrate their
different behavior. To try this example, paste the code into the Declarations section of a form that
contains two Label controls, and then press F5 and click the form to toggle the WordWrap property
setting.
Private Sub Form_Load ()

Dim Author1, Author2, Quote1, Quote2 ' Declare variables.
Label1.AutoSize = True ' Set AutoSize.
Label2.AutoSize = True
Label1.WordWrap = True ' Set WordWrap.
Quote1 = "I couldn't wait for success, so I went on without it."
Author1 = " - Jonathan Winters"
Quote2 = "Logic is a system whereby one may go wrong with confidence."
Author2 = " - Charles Kettering"
Label1.Caption = Quote1 & Chr(10) & Author1
Label2.Caption = Quote2 & Chr(10) & Author2

End Sub

Private Sub Form_Click ()
Label1.Width = 1440 ' Set width to 1 inch in twips.
Label2.Width = 1440
Label1.WordWrap = Not Label1.WordWrap ' Toggle WordWrap property.
Label2.WordWrap = Not Label2.WordWrap

End Sub

X1, Y1, X2, Y2 Properties Example
This example displays an animated line that walks down the form when you click the form. To try this
example, paste the code into the Declarations section of a form that contains a Timer control and a
Line control, and then press F5 and click the form.
Private Sub Form_Load ()

Timer1.Interval = 100 ' Set Timer interval.
' Position the line near the upper-left corner.

 ' Set Line1's properties.
With Line1

 .X1 = 100
 .Y1 = 100
 .X2 = 500
 .Y2 = 300

 End With
 Timer1.Enabled = False
End Sub

Private Sub Form_Click ()
Timer1.Enabled = True ' Start the timer.

End Sub

Private Sub Timer1_Timer ()
Static Odd ' Declare variable.
If Odd Then

Line1.X2 = Line1.X2 + 250
Line1.Y2 = Line1.Y2 + 600

Else
Line1.X1 = Line1.X1 + 250
Line1.Y1 = Line1.Y1 + 600

End If
Odd = Not Odd ' Toggle the value.
' If the line is off the form, start over.
If Line1.Y1 > ScaleHeight Then

Timer1.Enabled = False ' Wait for another click.
 With Line1
 .X1 = 100
 .Y1 = 100

 .X2 = 500
 .Y2 = 300

 End With
Odd = False

End If
End Sub

ActiveControl Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproActiveControlC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproActiveControlX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproActiveControlA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproActiveControlS"}

Returns the control that has the focus. When a form is referenced, as in
ChildForm.ActiveControl, ActiveControl specifies the control that would have the focus if the
referenced form were active. Not available at design time; read-only at run time.

Syntax
object.ActiveControl
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
You can use ActiveControl to access a control's properties or to invoke its methods: For example,
Screen.ActiveControl.Tag = "0". A run-time error occurs if all controls on the form are
invisible or disabled.

Each form can have an active control (Form.ActiveControl), regardless of whether or not the
form is active. You can write code that manipulates the active control on each form in your application
even when the form isn't the active form.

This property is especially useful in a multiple-document interface (MDI) application where a button on
a toolbar must initiate an action on a control in an MDI child form. When a user clicks the Copy button
on the toolbar, your code can reference the text in the active control on the MDI child form, as in
ActiveForm.ActiveControl.SelText.

Note If you plan to pass Screen.ActiveControl to a procedure, you must declare the argument
in that procedure with the clause As Control rather than specifying a control type (As TextBox or
As ListBox) even if ActiveControl always refers to the same type of control.

Appearance Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAuto3DC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAuto3DX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAuto3DA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAuto3DS"}

Returns or sets the paint style of controls on an MDIForm or Form object at run time. Read-only at
run time.

Syntax
object.Appearance
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The Appearance property settings are:

Setting Description
0 Flat. Paints controls and forms without visual effects.
1 (Default) 3D. Paints controls with three-dimensional

effects.

Remarks
If set to 1at design time, the Appearance property draws controls with three-dimensional effects. If
the form's BorderStyle property is set to Fixed Double (vbFixedDouble, or 3), the caption and
border of the form are also painted with three-dimensional effects. Setting the Appearance property
to 1 also causes the form and its controls to have their BackColor property set to the color selected
for Button Face in the Color option of the operating system's Control Panel.

Setting the Appearance property to 1 for an MDIForm object affects only the MDI parent form. To
have three-dimensional effects on MDI child forms, you must set each child form's Appearance
property to 1.

Bold Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBoldC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBoldX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproBoldA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBoldS"}

Returns or sets the font style of the Font object to either bold or nonbold.

Syntax
object.Bold [= boolean]

The Bold property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying the font style, as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True Turns on bold formatting.
False (Default) Turns off bold formatting.

Remarks
The Font object isn't directly available at design time. Instead you set the Bold property by selecting
a control's Font property in the Properties window and clicking the Properties button. In the Font Style
box of the Font dialog box, select either Bold or Bold Italic. At run time, however, you set Bold directly
by specifying its setting for the Font object.

FontTransparent Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontTransparentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontTransparentX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproFontTransparentA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontTransparentS"}

Returns or sets a value that determines whether background text and graphics on a Form or Printer
object or a PictureBox control are displayed in the spaces around characters.

Syntax
object.FontTransparent [= boolean]

The FontTransparent property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying the state of

background text and graphics, as described in
Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) Permits background graphics and text to

show around the spaces of the characters in a font.
False Masks existing background graphics and text around

the characters of a font.

Remarks
Set FontTransparent at design time using the Properties window or at run time using code.
Changing FontTransparent at run time doesn't affect graphics and text already drawn to Form,
Printer, or PictureBox.

Italic Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproItalicC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBoldX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproItalicA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproItalicS"}

Returns or sets the font style of the Font object to either italic or nonitalic.

Syntax
object.Italic [= boolean]

The Italic property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying the font style as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True Turns on italic formatting.
False (Default) Turns off italic formatting.

Remarks
The Font object isn't directly available at design time. Instead you set the Italic property by selecting
a control's Font property in the Properties window and clicking the Properties button. In the Font Style
box of the Font dialog box, select either Italic or Bold Italic. At run time, however, you set Italic directly
by specifying its setting for the Font object.

LBound Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLBoundC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLBoundX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLBoundA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLBoundS"}

Returns the lowest ordinal value of a control in a control array.

Syntax
object.LBound
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The LBound property setting is equal to the Index property value of the first control in the array.
Typically this value is 0 because Visual Basic automatically assigns an Index value of 0 to the first
control in a control array. If you manually change the Index value for the first control in an array to
some other value (for example, 1), LBound returns the value you manually assigned to Index (in this
example, 1).

Size Property (Font)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSizeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBoldX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproSizeA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSizeS"}

Returns or sets the font size used in the Font object.

Syntax
object.Size [= number]

The Size property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression specifying the size of the font in

points.

Remarks
Use this property to format text in the font size you want. The default font size is determined by the
operating system. To change the default, specify the size of the font in points. The maximum value for
the Size property is 2048 points.

The Font object isn't directly available at design time. Instead you set the Size property by selecting a
control's Font property in the Properties window and clicking the Properties button. In the Size box of
the Font dialog box, select the size you want. At run time, however, set Size directly by specifying its
setting for the Font object.

StartMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproStartModeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStartModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStartModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStartModeS"}

Returns or sets a value that determines whether an application starts as a stand-alone project or as
an ActiveX component. Read-only at run time.

Syntax
object.StartMode
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The StartMode property settings are:

Constant Value Description
vbSModeStandalone 0 (Default) Application starts as a

stand-alone project.
VbSModeAutomation 1 Application starts as an ActiveX

component.

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

At design time, you can set StartMode in the Project Options dialog box to 1 (vbSModeAutomation)
to debug an application as if it were started as an ActiveX component.

Once a project is compiled, the value of the StartMode property is determined by how that application
is started, not by its nominal setting in the Project Options dialog box.

When StartMode is set to 1 and there are no public classes in the project, you must use the End
statement or choose End from the Run menu or toolbar to end the application. If you choose Close
from the System menu, the form closes but the project is still running.

StrikeThrough Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproStrikeThroughC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBoldX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStrikeThroughA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStrikeThroughS"}

Returns or sets the font style of the Font object to either strikethrough or nonstrikethrough.

Syntax
object.StrikeThrough [= boolean]

The StrikeThrough property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying the font style, as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True Turns on strikethrough formatting.
False (Default) Turns off strikethrough

formatting.

Remarks
The Font object isn't directly available at design time. Instead you set the StrikeThrough property by
choosing a control's Font property in the Properties window and clicking the Properties button. In the
Font dialog box, select the Strikeout check box. At run time, however, you set StrikeThrough directly
by specifying its setting for the Font object.

TrackDefault Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTrackDefaultC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTrackDefaultX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTrackDefaultA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTrackDefaultS"}

Returns or sets a value that determines whether the Printer object always points to the same printer
or changes the printer it points to if you change the default printer setting in the operating system's
Control Panel. Not available at design time.

Syntax
object.TrackDefault [= boolean]

The TrackDefault property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying the printer object

points to, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) The Printer object changes the printer it

points to when you change the default printer settings
in the operating system's Control Panel.

False The Printer object continues to point to the same
printer even though you change the default printer
settings in the operating system's Control Panel.

Remarks
Changing the TrackDefault property setting while a print job is in progress sends an implicit
EndPage statement to the Printer object.

Type Property (Picture)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTypeC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTypeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproTypeA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTypeS"}

Returns the graphic format of a Picture object. Not available at design time; read-only at run time.

Syntax
object.Type
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
The return values for the Type property are:

Constant Value Description
vbPicTypeBitmap 1 Bitmap (.bmp files)
vbPicTypeMetafile 2 Metafile (.wmf files)
vbPicTypeIcon 3 Icon (.ico files)
vbPicTypeNone 0 Picture is empty
vbPicTypeEMetafile 3 Enhanced Metafile

(.emf files)

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

UBound Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproUBoundC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLBoundX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproUBoundA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUBoundS"}

Returns the highest ordinal value of a control in a control array.

Syntax
object.UBound
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
UBound is equal to the Index property value of the last control in the array.

Underline Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproUnderlineC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBoldX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproUnderlineA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUnderlineS"}

Returns or sets the font style of the Font object to either underlined or nonunderlined.

Syntax
object.Underline [= boolean]

The Underline property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying the font style, as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True Turns on underline formatting.
False (Default) Turns off underline

formatting.

Remarks
The Font object isn't directly available at design time. Instead you set the Underline property by
selecting a control's Font property in the Properties window and clicking the Properties button. In the
Font dialog box, select the Underline check box. At run time, however, you set Underline directly by
specifying its setting for the Font object.

UseMnemonic Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproUsemnemonicC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproUseMnemonicX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproUsemnemonicA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUseMnemonicS"}

Returns or sets a value that specifies whether an ampersand (&) included in the text of the Caption
property of the Label control defines an access key.

Syntax
object.UseMnemonic [= boolean]

The UseMnemonic property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying whether the Label

control enables an access key, as described in
Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) Any ampersand appearing in the text of the

Caption property causes the character following the
ampersand to become an access key. The ampersand
itself isn't displayed in the interface of the Label
control.

False Any ampersand appearing in the text of the Caption
property is displayed as an ampersand in the interface
of the Label control.

Remarks
At run time, pressing ALT+ the access key defined in the Label control's Caption property moves
focus to the control that follows the Label control in the tab order.

Weight Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWeightC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBoldX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproWeightA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproWeightS"}

Returns or sets the weight of the characters that make up a Font object. The weight refers to the
thickness of the characters, or the “boldness factor”. The higher the value, the bolder the character.

Syntax
object.Weight [= number]

The Weight property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression specifying the weight of the

font.

Remarks
The Font object isn't directly available at design time. You set the Weight property of the Font object
by selecting a control's Font property in the Properties window and clicking the Properties button. You
implicitly set the Weight property by selecting an item from the Font Style box in the Font dialog box.
The Regular and Italic settings have a Weight value of 400 (the default), and the Bold and Bold Italic
settings have a Weight value of 700. At run time, however, you set Weight directly by specifying its
setting for the Font object.

If you set a Font object's Weight to a value other than 400 or 700 at run time, Visual Basic converts
your value to either 400 or 700, depending on which value is closest to the value you set. The precise
ranges are: Weight > 400 and < 551 converts to 400; Weight > 550 converts to 700.

ActiveControl Property Example
This example displays the text of the active control. To try this example, paste the code into the
Declarations section of a form that contains TextBox, Label, and CommandButton controls, and
then press F5 and click the form.
Private Sub Form_Click ()

If TypeOf Screen.ActiveControl Is TextBox Then
Label1.Caption = Screen.ActiveControl.Text

Else
Label1.Caption = "Button: " + Screen.ActiveControl.Caption

End If
End Sub
This example shows how you can use the Clipboard object in cut, copy, paste, and delete operations
using buttons on a toolbar. To try this example, put TextBox and CheckBox controls on Form1, and
then create a new MDI form. On the MDI form, insert a PictureBox control, and then insert a
CommandButton in the PictureBox. Set the Index property of the CommandButton to 0 (creating
a control array). Set the MDIChild property of Form1 to True.

To run the example, copy the code into the Declarations section of the MDIForm, and then press F5.
Notice that when the CheckBox has the focus, the buttons don't work, since the CheckBox is now
the active control instead of the TextBox.
Private Sub MDIForm_Load ()

Dim I ' Declare variable.
Command1(0).Move 0, 0, 700, 300 ' Position button on toolbar.
For I = 1 To 3 ' Create other buttons.

Load Command1(I) ' Create button.
Command1(I).Move I * 700, 0, 700, 300 ' Place and size button.
Command1(I).Visible = True ' Display button.

Next I
Command1(0).Caption = "Cut" ' Set button captions.
Command1(1).Caption = "Copy"
Command1(2).Caption = "Paste"
Command1(3).Caption = "Del"

End Sub

Private Sub Command1_Click (Index As Integer)
' ActiveForm refers to the active form in the MDI form.
If TypeOf ActiveForm.ActiveControl Is TextBox Then

Select Case Index
Case 0 ' Cut.

' Copy selected text onto Clipboard.
Clipboard.SetText ActiveForm.ActiveControl.SelText
' Delete selected text.
ActiveForm.ActiveControl.SelText = ""

Case 1 ' Copy.
' Copy selected text onto Clipboard.
Clipboard.SetText ActiveForm.ActiveControl.SelText

Case 2 ' Paste.
' Put Clipboard text in text box.
ActiveForm.ActiveControl.SelText = Clipboard.GetText()

Case 3 ' Delete.
' Delete selected text.
ActiveForm.ActiveControl.SelText = ""

End Select
End If

End Sub

Bold, Italic, Size, StrikeThrough, Underline, Weight Properties
Example
This example prints text on a form with each mouse click. To try this example, paste the code into the
Declarations section of a form, and then press F5 and click the form twice.
Private Sub Form_Click ()

Font.Bold = Not Font.Bold ' Toggle bold.
Font.StrikeThrough = Not Font.StrikeThrough ' Toggle strikethrough.
Font.Italic = Not Font.Italic ' Toggle italic.
Font.Underline = Not Font.Underline ' Toggle underline.
Font.Size = 16 ' Set Size property.
If Font.Bold Then

Print "Font weight is " & Font.Weight & " (bold)."
Else

Print "Font weight is " & Font.Weight & " (not bold)."
End If

End Sub

FontTransparent Property Example
This example prints text on top of a graphic in a PictureBox control. Put a PictureBox on a form, set
its AutoSize property to True, and load its Picture property with a bitmap (.bmp) file. To try this
example, paste the code into the Declarations section of a form, and then press F5 and click the form
twice.
Private Sub Form_Click ()

' Toggle property.
Picture1.FontTransparent = Not Picture1.FontTransparent

 Picture1.Print "Demo of FontTransparent property."
End Sub

LBound, UBound Properties Example
This example prints the values of these two properties for a control array. Put an OptionButton
control on a form, and set its Index property to 0 (to create a control array). To try this example, paste
the code into the Declarations section of a form, and then press F5 and click the form.
Private Sub Form_Paint ()

Static FlagFormPainted As Integer
If FlagFormPainted <> True Then ' When form is painting for first time,

For i = 1 To 3
Load Option1(i) ' add three option buttons to array.
Option1(i).Top = Option1(i - 1).Top + 350
Option1(i).Visible = True

Next I
For I = 0 to 3 ' Put captions on the option buttons.

Option1(i).Caption = "Option #" & CStr(i)
Next I
Option1(0).Value = True ' Select first option button.
FlagFormPainted = True ' Form is done painting.

End If
End Sub
Private Sub Form_Click ()

Print "Control array's Count property is " & Option1().Count
Print "Control array's LBound property is " & Option1().LBound
Print "Control array's UBound property is " & Option1().UBound

End Sub

StartMode Property Example
This example shows one possible effect of setting the StartMode property to 1
(vbSModeAutomation) at design time. Create an ActiveX EXE project. Create a new form. From the
Project menu, choose the Project Properties command. Select the Component tab, then select the
ActiveX component option button in the Start Mode group. Choose OK to close the Options dialog
box. To try this example, paste the code into the Declarations section of the form, and then press F5
and double-click the Control menu at the left of the form’s title bar. If the form doesn’t display, enter
Form1.Show in the Immediate window.

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
If UnloadMode = vbFormControlMenu And App.StartMode = vbSModeAutomation

Then
Msg = "Form will close but application will still be running." &

Chr(10)
Msg = Msg + "To terminate application without a public class," &

Chr(10)
Msg = Msg + "you must use an End statement."
MsgBox Msg

End If
End Sub

UseMnemonic Property Example
This example reads the setting of the UseMnemonic property of a Label control. To try this example,
paste the code into the Declarations section of a form that contains a Label, and then press F5 and
click the form.
Private Sub Form_Click()

If Label1.UseMnemonic And InStr(Label1, "&") Then
MsgBox "The label has an access key character."

ElseIf Label1.UseMnemonic And Not InStr(Label1, "&") Then
MsgBox "The label supports an access key character but doesn't have

an ampersand."
Else

MsgBox "The label doesn't support an access key character."
End If

End Sub

Type, Width Properties Example
This example reads the setting of the Type and Width properties of a Picture object in a PictureBox
control. To try this example, paste the code into the Declarations section of a form that contains a
PictureBox whose Picture property is set to an icon, and then press F5 and click the form.
Private Sub Form_Click()

If Picture1.Picture.Type = vbPicTypeIcon Then
Print "The graphic in the picture box is an icon."

Else
Print "The Picture property isn't set to an icon."

End If
Print "Width of the graphic in HiMetrics is " & Picture1.Picture.Width
Print "Width of picture box itself in twips is " & Picture1.Width

End Sub

ActiveForm Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproActiveFormC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproActiveFormX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproActiveFormA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproActiveFormS"}

Returns the form that is the active window. If an MDIForm object is active or is referenced, it specifies
the active MDI child form.

Syntax
object.ActiveForm
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use the ActiveForm property to access a form's properties or to invoke its methods — for example,
Screen.ActiveForm.MousePointer = 4.

This property is especially useful in a multiple-document interface (MDI) application where a button on
a toolbar must initiate an action on a control in an MDI child form. When a user clicks the Copy button
on the toolbar, your code can reference the text in the active control on the MDI child form — for
example, ActiveForm.ActiveControl.SelText.

When a control on a form has the focus, that form is the active form on the screen
(Screen.ActiveForm). In addition, an MDIForm object can contain one child form that is the
active form within the context of the MDI parent form (MDIForm.ActiveForm). The ActiveForm on
the screen isn't necessarily the same as the ActiveForm in the MDI form, such as when a dialog box
is active. For this reason, specify the MDIForm with ActiveForm when there is a chance of a dialog
box being the ActiveForm property setting.

Note When an active MDI child form isn't maximized, the title bars of both the parent form and the
child form appear active.
If you plan to pass Screen.ActiveForm or MDIForm.ActiveForm to a procedure, you must
declare the argument in that procedure with the generic type (As Form) rather than a specific form
type (As MyForm) even if ActiveForm always refers to the same type of form.

The ActiveForm property determines the default value for the ProjectTemplate object.

Caption Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCaptionC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCaptionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCaptionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCaptionS"}

· Form — determines the text displayed in the Form or MDIForm object's title bar . When the form is
minimized, this text is displayed below the form's icon.

· Control — determines the text displayed in or next to a control.
· MenuLine object — determines the text displayed for a Menu control or an object in the

MenuItems collection.

For a Menu control, Caption is normally read/write at run time. But Caption is read-only for menus
that are exposed or supplied by Visual Basic to add-ins, such as the MenuLine object.

Syntax
object.Caption [= string]

The Caption property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list. If object is omitted, the form
associated with the active form moduleis assumed to
be object.

string A string expression that evaluates to the text
displayed as the caption.

Remarks
When you create a new object, its default caption is the default Name property setting. This default
caption includes the object name and an integer, such as Command1 or Form1. For a more
descriptive label, set the Caption property.

You can use the Caption property to assign an access key to a control. In the caption, include an
ampersand (&) immediately preceding the character you want to designate as an access key. The
character is underlined. Press the ALT key plus the underlined character to move the focus to that
control. To include an ampersand in a caption without creating an access key, include two
ampersands (&&). A single ampersand is displayed in the caption and no characters are underlined.

A Label control’s caption size is unlimited. For forms and all other controls that have captions, the
limit is 255 characters.

To display the caption for a form, set the BorderStyle property to either Fixed Single (1 or
vbFixedSingle), Sizable (2 or vbSizable), or Fixed Double (3 or vbFixedDouble). A caption too long
for the form's title bar is clipped. When an MDI child form is maximized within an MDIForm object, the
child form's caption is included in the parent form's caption.

Tip For a label, set the AutoSize property to True to automatically resize the control to fit its
caption.

Checked Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCheckedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCheckedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCheckedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCheckedS"}

Returns or sets a value that determines whether a check mark is displayed next to a menu item.

Syntax
object.Checked [= boolean]

The Checked property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies whether a check

mark is displayed next to a menu item.

Settings
The settings for boolean are:

Setting Description
True Places a check mark next to a menu item.
False (Default) Doesn't place a check mark next to a menu

item.

Remarks
At design time, you can use the Menu Editor to set Checked to True. At run time, you can toggle
Checked on and off as part of a Click event procedure attached to a Menu control. You can also set
the value of Checked in a startup procedure or in a form's Load event procedure.

For a Menu control, Checked is normally read/write at run time. But Checked is read-only for menu
items that are exposed or supplied by Visual Basic to add-ins, such as the Add-In Manager command
on the Add-Ins menu.

Count Property (VB Collections)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCountC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCountX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproCountA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproCountS"}

Returns the number of objects in a collection.

Syntax
object.Count
The object placeholder is an object expression that evaluates to an object in the Applies To list.

Remarks
You can use this property with a For...Next statement to carry out an operation on the forms or
controls in a collection. For example, the following code moves all controls on a form 0.5 inches to the
right (ScaleMode property setting is 1 or vbTwips):
For I = 0 To Form1.Controls.Count - 1

Form1.Controls(I).Left = Form1.Controls(I).Left + 720
Next I
You can also use this kind of structure to quickly enable or disable all controls on a form.

When used with the If TypeOf statement, you can cycle through all controls and change, for example,
the Enabled property setting of only the text boxes or the BackColor property setting of only the
option buttons.

Enabled Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproEnabledC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproEnabledX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproEnabledA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproEnabledS"}

Returns or sets a value that determines whether a form or control can respond to user-generated
events.

Syntax
object.Enabled [= boolean]

The Enabled property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list. If object is omitted, the form
associated with the active form module is assumed to
be object.

boolean A Boolean expression that specifies whether object
can respond to user-generated events.

Settings
The settings for boolean are:

Setting Description
True (Default) Allows object to respond to events.
False Prevents object from responding to events.

Remarks
The Enabled property allows forms and controls to be enabled or disabled at run time. For example,
you can disable objects that don't apply to the current state of the application. You can also disable a
control used purely for display purposes, such as a text box that provides read-only information.

Disabling a Timer control by setting Enabled to False cancels the countdown set up by the control's
Interval property.

For a Menu control, Enabled is normally read/write at run time. But Enabled is read-only for menu
items that are exposed or supplied by Visual Basic to add-ins, such as the Add-In Manager command
on the Add-Ins menu.

HelpContextID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHelpContextIDC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHelpContextIDX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHelpContextIDA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHelpContextIDS"}

Returns or sets an associated context number for an object. Used to provide context-sensitive Help
for your application.

Syntax
object.HelpContextID [= number]

The HelpContextID property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list. If object is omitted, the form associated
with the active form module is assumed to be object.

number A numeric expression that specifies the context
number of the Help topic associated with object.

Settings
The settings for number are:

Setting Description
0 (Default) No context number specified.
> 0 An integer specifying a valid context number.

Remarks
For context-sensitive Help on an object in your application, you must assign the same context number
to both object and to the associated Help topic when you compile your Help file.

If you've created a Microsoft Windows operating environment Help file for your application and set the
application's HelpFile property, when a user presses the F1 key, Visual Basic automatically calls Help
and searches for the topic identified by the current context number.

The current context number is the value of HelpContextID for the object that has the focus. If
HelpContextID is set to 0, then Visual Basic looks in the HelpContextID of the object's container,
and then that object's container, and so on. If a nonzero current context number can't be found, the F1
key is ignored.

For a Menu control, HelpContextID is normally read/write at run time. But HelpContextID is read-
only for menu items that are exposed or supplied by Visual Basic to add-ins, such as the Add-In
Manager command on the Add-Ins menu.

Note Building a Help file requires the Microsoft Windows Help Compiler, which is included with the
Visual Basic Professional Edition.

Index Property (Control Array)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproIndexX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproIndexA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndexS"}

Returns or sets the number that uniquely identifies a control in a control array. Available only if the
control is part of a control array.

Syntax
object[(number)].Index
The Index property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression that evaluates to an integer that

identifies an individual control within a control array.

Settings
The settings for number are:

Setting Description
No value (Default) Not part of a control array.
0 to 32,767 Part of an array. Specifies an integer greater than or

equal to 0 that identifies a control within a control array.
All controls in a control array have the same Name
property. Visual Basic automatically assigns the next
integer available within the control array.

Remarks
Because control array elements share the same Name property setting, you must use the Index
property in code to specify a particular control in the array. Index must appear as an integer (or a
numeric expression evaluating to an integer) in parentheses next to the control array name — for
example, MyButtons(3). You can also use the Tag property setting to distinguish one control from
another within a control array.

When a control in the array recognizes that an event has occurred, Visual Basic calls the control
array's event procedure and passes the applicable Index setting as an additional argument. This
property is also used when you create controls dynamically at run time with the Load statement or
remove them with the Unload statement.

Although Visual Basic assigns, by default, the next integer available as the value of Index for a new
control in a control array, you can override this assigned value and skip integers. You can also set
Index to an integer other than 0 for the first control in the array. If you reference an Index value in
code that doesn't identify one of the controls in a control array, a Visual Basic run-time error occurs.

Note To remove a control from a control array, change the control's Name property setting, and
delete the control's Index property setting.

Name Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNameX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproNameA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNameS"}

Returns the name used in code to identify a form, control, or data access object. Read-only at run
time

Syntax
object.Name
The object placeholder represents an object expression that evaluates to an object in the Applies To
list. If object is omitted, the form associated with the active form module is assumed to be object.

Remarks
The default name for new objects is the kind of object plus a unique integer. For example, the first
new Form object is Form1, a new MDIForm object is MDIForm1, and the third TextBox control you
create on a form is Text3.

An object's Name property must start with a letter and can be a maximum of 40 characters. It can
include numbers and underline (_) characters but can't include punctuation or spaces. Forms can't
have the same name as another public object such as Clipboard, Screen, or App. Although the
Name property setting can be a keyword, property name, or the name of another object, this can
create conflicts in your code.

You can use a form's Name property with the Dim statement at run time to create other instances of
the form. You can't have two forms with the same name at design time.

You can create an array of controls of the same type by setting the Name property to the same value.
For example, when you set the name of all option buttons in a group to MyOpt, Visual Basic assigns
unique values to the Index property of each control to distinguish it from others in the array. Two
controls of different types can't share the same name.

Note Although Visual Basic often uses the Name property setting as the default value for the
Caption, LinkTopic, and Text properties, changing one of these properties doesn't affect the others.

Parent Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproParentC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproParentX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproParentA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproParentS"}

Returns the form, object, or collection that contains a control or another object or collection.

Syntax
object.Parent
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use the Parent property to access the properties, methods, or controls of an object's parent. For
example:
MyButton.Parent.MousePointer = 4
The Parent property is useful in an application in which you pass objects as arguments. For example,
you could pass a control variable to a general procedure in a module, and use the Parent property to
access its parent form.

There is no relationship between the Parent property and the MDIChild property. There is, however,
a parent-child relationship between an MDIForm object and any Form object that has its MDIChild
property set to True.

Path Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPathC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPathX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproPathA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPathS"}

Returns or sets the current path. Not available at design time. For the App object, read-only at run
time.

Syntax
object.Path [= pathname]

The Path property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
pathname A string expression that evaluates to the path name.

Remarks
The value of the Path property is a string indicating a path, such as C:\Ob or C:\Windows\System. For
a DirListBox or FileListBox control, the default is the current path when the control is created at run
time. For the App object, Path specifies the path of the project .VBP file when running the application
from the development environment or the path of the .exe file when running the application as an
executable file.

Use this property when building an application's file-browsing and manipulation capabilities. Setting
the Path property has effects on a control similar to the MS-DOS chdir command — relative paths
are allowed with or without a drive specification. Specifying only a drive with a colon (:) selects the
current directory on that drive.

The Path property can also be set to a qualified network path without a drive connection using the
following syntax:

\\servername\sharename\path

The preceding syntax changes the Drive property to a zero-length string ("").

Changing the value of Path has these effects:

· For a DirListBox control, generates a Change event.
· For a FileListBox control, generates a PathChange event.

Note For DirListBox, the return value of Path is different from that of List(ListIndex), which
returns only the selection.

Zoom Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproZoomC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproZoomX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproZoomA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":""}

Returns or sets the percentage by which printed output is to be scaled up or down. Not available at
design time.

Syntax
object.Zoom [= number]

The Zoom property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
number A numeric expression that evaluates to the

percentage by which printed output is to be scaled.
The default is 0, which specifies that the printed page
appears at its normal size.

Remarks
The Zoom property setting scales the size of the physical page up or down, by a factor of Zoom/100,
to the apparent size of the printed output. For example, a letter-size page printed with Zoom set to 50
contains as much data as a page of the size 17 by 22 inches because the printed text and graphics
are scaled to one-half their original height and width.

Note The effect of the properties of the Printer object depends on the driver supplied by the printer
manufacturer. Some property settings may have no effect, or several different property settings may
all have the same effect. Settings outside the accepted range may or may not produce an error. For
more information, see the manufacturer's documentation for the specific driver.

Font Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproFonts"}

Returns a Font object.

Syntax
object.Font
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use the Font property of an object to identify a specific Font object whose properties you want to
use. For example, the following code changes the Bold property setting of a Font object identified by
the Font property of a TextBox object:
txtFirstName.Font.Bold = True

Container Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproStandardContainerC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStandardContainerX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStandardContainerA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStandardContainerS"}

Returns or sets the container of a control on a Form. Not available at design time.

Syntax
Set object.Container [= container]

The Container property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
container An object expression that evaluates to an object that

can serve as a container for other controls, as
described in Remarks.

Remarks
The following controls can contain other controls:

· Frame control
· PictureBox control.

Object Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproObjectExtdC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproObjectExtdX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproObjectExtdA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproObjectExtdS"}

Returns a reference to a property or method of a control which has the same name as a property or
method automatically extended to the control by Visual Basic.

Syntax
object.Object[.property | .method]

The Object property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
property Property of the control that is identical to the name of

a Visual Basic-supplied property.
Method Method of the control that is identical to the name of a

Visual Basic-supplied method.

Remarks
Note The Object property returns the object which is the basis for the control without the properties
or methods automatically extended to the control by Visual Basic. Therefore, you can also reference
the controls' "custom" properties and methods through the Object property, such as Print
SSTab1.Object.Tabs.

Visual Basic supplies some or all of a standard set of properties and methods to controls in a Visual
Basic project. It is possible for a control or ActiveX component (such as Microsoft Excel or Microsoft
Word) to define a property or method which has the same name as one of these standard properties
or methods. When this occurs, Visual Basic automatically uses the property or method it supplies
instead of the one with the same name defined in the control. The Object property allows you to
bypass the Visual Basic-supplied property or method and use the identically named property or
method defined in the control.

For example, the Tag property is a property supplied to all controls in a Visual Basic project. If a
control in a project has the name ctlDemo, and you access the Tag property using this syntax:

ctlDemo.Tag
Visual Basic automatically uses the Tag property it supplies. However, if the control defines its own
Tag property and you want to access that property, you use the Object property in this syntax:
ctlDemo.Object.Tag
Visual Basic automatically extends some or all of the following properties, methods, and events to
controls in a Visual Basic project:

Properties
Align Height Object
Binding HelpContextID Parent
Bindings Index TabIndex
Cancel Left TabStop
Container LeftNoRun TagParent
DataChanged LinkItem ToolTipText
DataField LinkMode Top

DataSource LinkTimeout TopNoRun
Default LinkTopic VisibleTabStop
DragIcon Name WhatsThisHelpID
DragMode NegotiateLinkItem Width

Methods
Drag LinkSend ShowWhatsThis
LinkExecute Move Zorder
LinkPoke Refresh
LinkRequest SetFocus

Events
GotFocus LinkError LinkOpen
LinkClose LinkNotify LostFocus

If you use a property or method of a control and don't get the behavior you expect, check to see if the
property or method has the same name as one of those shown in the preceding list. If the names
match, check the documentation provided with the control to see if the behavior matches the Visual
Basic-supplied property or method. If the behaviors aren't identical, you may need to use the Object
property to access the feature of the control that you want.

ToolTipText Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproToolTipC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTooltipX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproTooltipA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":""}

Returns or sets a ToolTip.

Syntax
object.ToolTipText [= string]

The ToolTipText property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string associated with an object in the Applies To

list. that appears in a small rectangle below the object
when the user's cursor hovers over the object at run
time for about one second.

Remarks
If you use only an image to label an object, you can use this property to explain each object with a
few words.

At design time you can set the ToolTipText property string in the control's properties dialog box.

For the Toolbar and TabStrip controls, you must set the ShowTips property to True to display
ToolTips.

ActiveForm Property Example
This example prints the time on the active child form in an MDIForm object. To try this example,
create an MDIForm, draw a PictureBox control on it and a CommandButton control in the
PictureBox. In Form1, set the MDIChild property to True. (You can also set AutoRedraw to True to
keep text on the form even after covering it with another form.) Paste the appropriate code into the
Declarations section of each form, and then press F5.
' Copy all code into the MDI form.
Private Sub MDIForm_Load ()

Dim NewForm As New Form1 ' Create new instance of Form1.
NewForm.Show

End Sub

Private Sub Command1_Click ()
' Print the time on the active form.
ActiveForm.Print "The time is " & Format(Now, "Long Time")

End Sub
This example shows how you can use the Clipboard object in cut, copy, paste, and delete operations
using buttons on a toolbar. To try this example, create a new project, then put TextBox and
CheckBox controls on Form1, and then create a new MDI form. On the MDI form, place a
PictureBox control, and then insert a CommandButton control in the PictureBox. Set the Index
property of the CommandButton to 0 (creating a control array). Set the MDIChild property of Form1
to True.

To run the example, copy the code into the Declarations section of the MDIForm, and then press F5.
Notice that when the CheckBox has the focus, the buttons don't work, since the CheckBox is now
the active control instead of the TextBox.
Private Sub MDIForm_Load ()

Dim I ' Declare variable.
Command1(0).Move 0, 0, 700, 300 ' Position button on toolbar.
For I = 1 To 3 ' Create other buttons.

Load Command1(I) ' Create button.
Command1(I).Move I * 700, 0, 700, 300 ' Place and size button.
Command1(I).Visible = True ' Display button.

Next I
Command1(0).Caption = "Cut" ' Set button captions.
Command1(1).Caption = "Copy"
Command1(2).Caption = "Paste"
Command1(3).Caption = "Del"

End Sub

Private Sub Command1_Click (Index As Integer)
' ActiveForm refers to the active form in the MDI form.
If TypeOf ActiveForm.ActiveControl Is TextBox Then

Select Case Index
Case 0 ' Cut.

' Copy selected text to Clipboard.
Clipboard.SetText ActiveForm.ActiveControl.SelText
' Delete selected text.
ActiveForm.ActiveControl.SelText = ""

Case 1 ' Copy.
' Copy selected text to Clipboard.
Clipboard.SetText ActiveForm.ActiveControl.SelText

Case 2 ' Paste.
' Put Clipboard text in text box.

ActiveForm.ActiveControl.SelText = Clipboard.GetText()
Case 3 ' Delete.

' Delete selected text.
ActiveForm.ActiveControl.SelText = ""

End Select
End If

End Sub

Caption Property Example
This example changes the Caption property of a CommandButton control each time the user clicks
the button. To try this example, paste the code into the Declarations section of a form containing a
CommandButton named Command1, and then press F5 and click the button.
Private Sub Command1_Click ()

' Check caption, then change it.
If Command1.Caption = "Clicked" Then

Command1.Caption = "OK"
Else

Command1.Caption = "Clicked"
End If

End Sub

Checked Property Example
This example displays and removes a check mark next to a menu item. To try this example, create a
form with a Menu control that has one menu item (set both the Caption and Name properties to
MyMenuItem), and then press F5 and choose the menu item.
Private Sub MyMenuItem_Click ()

' Turn check mark on menu item on and off.
MyMenuItem.Checked = Not MyMenuItem.Checked

End Sub

Enabled Property Example
This example enables a CommandButton control whenever a TextBox control contains text. To try
this example, paste the code into the Declarations section of a form with CommandButton and
TextBox controls, and then press F5 and enter something into the text box.
Private Sub Form_Load ()

Text1.Text = "" ' Clear the text box.
Command1.Caption = "Save" ' Put caption on button.

End Sub

Private Sub Text1_Change ()
If Text1.Text = "" Then ' See if text box is empty.

Command1.Enabled = False ' Disable button.
Else

Command1.Enabled = True ' Enable button.
End If

End Sub

HelpContextID Property Example
This example uses topics in the Visual Basic Help file to demonstrate how to specify context numbers
for Help topics. To try this example, paste the code into the Declarations section of a form that
contains a TextBox control and a Frame control with an OptionButton control inside of it. Press F5.
Once the program is running, move the focus to one of the controls, and press F1.
' Actual context numbers from the Visual Basic Help file.
Const winColorPalette = 21004' Define constants.
Const winToolbox = 21001
Const winCodeWindow = 21005

Private Sub Form_Load ()
App.HelpFile = "VB.HLP"
Frame1.HelpContextID = winColorPalette
Text1.HelpContextID = winToolbox
Form1.HelpContextID = winCodeWindow

End Sub

Index Property Example
This example starts with two OptionButton controls and adds a new OptionButton to the form each
time you click a CommandButton control. When you click an OptionButton, the FillStyle property is
set and a new circle is drawn. To try this example, paste the code into the Declarations section of a
form that has two OptionButton controls, a CommandButton, and a large PictureBox control. Set
the Name property of both OptionButton controls to optButton to create a control array.
Private Sub OptButton_Click (Index As Integer)

Dim H, W ' Declare variables.
Picture1.Cls ' Clear picture.
Picture1.FillStyle = Index ' Set FillStyle.
W = Picture1.ScaleWidth / 2 ' Get size of circle.
H = Picture1.ScaleHeight / 2
Picture1.Circle (W, H), W / 2 ' Draw circle.

End Sub

Private Sub Command1_Click ()
Static MaxIdx ' Largest index in array.
If MaxIdx = 0 Then MaxIdx = 1 ' Preset MaxIdx.
MaxIdx = MaxIdx + 1 ' Increment index.
If MaxIdx > 7 Then Exit Sub ' Put eight buttons on form.
Load OptButton(MaxIdx) ' Create new item in array.
' Set location of new option button under previous button.
OptButton(MaxIdx).Top = OptButton(MaxIdx - 1).Top + 360
OptButton(MaxIdx).Visible = True ' Make new button visible.

End Sub

Parent Property Example
This example passes a control from a form that doesn't have the focus to a procedure in a module,
and then displays the state of the control on the parent form. To try this example, create three forms:
Form1, containing a CommandButton control, and Form2 and Form3, each containing a CheckBox
control. You must also create a new module (click Add Module in the Project menu). Paste the code
into the Declarations sections of the respective forms or module, and then press F5 to run the
program.
' Enter this code into Form1.
Private Sub Form_Load ()

Form2.Show ' Display all forms.
Form3.Show
Form2.AutoRedraw = True
Form3.AutoRedraw = True

End Sub

Private Sub Command1_Click ()
ReadCheckBox Form2.Check1 ' Call procedure in other module
ReadCheckBox Form3.Check1 ' and send control as argument.

End Sub

' Enter this code into Module1.
Sub ReadCheckBox (Source As Control)

If Source.Value Then
Source.Parent.Cls ' Clear parent form.
Source.Parent.Print "CheckBox is ON." ' Display on parent form.

Else
Source.Parent.Cls ' Clear parent form.
Source.Parent.Print "CheckBox is OFF." ' Display on parent form.

End If
End Sub

Path Property Example
This example displays a list of files for the selected drive and directory. To try this example, paste the
code into the Declarations section of a form that contains DriveListBox, DirListBox, and
FileListBox controls. Press F5. Use the mouse to change the drive or directory.
Private Sub Drive1_Change ()

Dir1.Path = Drive1.Drive ' Set directory path.
End Sub

Private Sub Dir1_Change ()
File1.Path = Dir1.Path ' Set file path.

End Sub

Container Property Example
This example demonstrates moving a CommandButton control from container to container on a
Form object. To try this example, paste the code into the Declarations section of a form that contains
a Frame control, a PictureBox control and a CommandButton, and then press F5.
Private Sub Form_Click()

Static intX As Integer
Select Case intX

Case 0
Set Command1.Container = Picture1
Command1.Top= 0
Command1.Left= 0

Case 1
Set Command1.Container = Frame1
Command1.Top= 0
Command1.Left= 0

Case 2
Set Command1.Container = Form1
Command1.Top= 0
Command1.Left= 0

End Select
intX = intX + 1

End Sub

DisabledPicture Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDisabledPicturePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDisabledPicturePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDisabledPicturePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDisabledPicturePropertyS"}

Returns or sets a reference to a picture to display in a control when it is disabled. (That is, when its
Enabled property is set to False.)

Syntax
object.DisabledPicture [= picture]

The DisabledPicture property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
picture A Picture object containing a graphic, as described

in Settings.

Settings
The settings for picture are:

Setting Description
(None) (Default) No picture.
(Bitmap, icon,
metafile)

Specifies a graphic. You can load the graphic from
the Properties window at design time. At run time,
you can also set this property by using the
LoadPicture function on a bitmap, icon, or metafile,
or by setting it to the Picture property of another
control.

Remarks
The DisabledPicture property specifies a picture object to display when the control (such as a
CommandButton) is disabled. The DisabledPicture property is ignored unless the Style property of
the control is set to 1 (graphical).

The picture is centered horizontally and vertically on the control. If there is a caption as well as a
picture, the picture is centered above the caption. If the picture object is too large to fit on the control,
then it is clipped.

If no picture is assigned to the DisabledPicture property, but one is assigned to the Picture property,
then a grayed version of that picture is displayed when the control is disabled.

DownPicture Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDownPicturePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDownPicturePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDownPicturePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDownPicturePropertyS"}

Returns or sets a reference to a picture to display in a control when it is clicked and in the down
(depressed) position.

Syntax
object.DownPicture [= picture]

The DownPicture property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
picture A Picture object containing a graphic, as described

in Settings.

Settings
The settings for picture are:

Setting Description
(None) (Default) No picture.
(Bitmap, icon,
metafile)

Specifies a graphic. You can load the graphic from
the Properties window at design time. At run time,
you can also set this property by using the
LoadPicture function on a bitmap, icon, or metafile,
or by setting it to the Picture property of another
control.

Remarks
The DownPicture property refers to a picture object that displays when the button is in the down
state. The DownPicture property is ignored unless the Style property is set to 1 (graphical). Note that
when an OptionButton or CheckBox control’s Style property is set to graphical and its button
depressed, the background of the button is dithered, but the picture on the button is not.

The picture is centered both horizontally and vertically on the button. If there is a caption included with
the picture, the picture will be centered above the caption. If no picture is assigned to this property
when the button is depressed, then the picture currently assigned to the Picture property is used. If
no picture is assigned to either the Picture or DownPicture properties, then only the caption is
displayed. If the picture object is too large to fit on the button, then it is clipped.

MaskColor Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMaskColorPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMaskColorPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMaskColorPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMaskColorPropertyS"}

Returns or sets a color in a button’s picture to be a “mask” (that is, transparent).

Syntax
object.MaskColor [= color]

The MaskColor property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
color A value or constant that determines the color to be

used as a mask, as described in Settings.

Settings
Visual Basic uses the Microsoft Windows operating environment red-green-blue (RGB) color scheme.
The settings for color are:

Setting Description
Normal RGB colors Colors specified using the Color palette or by using

the RGB or QBColor functions in code.
System default
colors

Colors specified by system color constants listed in
the Visual Basic (VB) object library in the Object
Browser. The Windows operating environment
substitutes the user's choices as specified in the
Control Panel settings.

 &H00C0C0C0 (Default) Light gray.

Remarks
This property is used only when the UseMask property is set to True and the button has a bitmap-
style picture assigned to its Picture property. (Icons and metafiles already contain tranparency
information.)

If the MaskColor property is changed at run time, the button will redraw itself with the new color
acting as a mask.

UseMask Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproUseMaskPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproUseMaskPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproUseMaskPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUseMaskPropertyS"}

Returns or sets a value that determines whether the color assigned in the MaskColor property is
used as a “mask”. (That is, used to create transparent regions.)

Syntax
object.UseMask [= boolean]

The UseMask property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies whether the

color assigned to the MaskColor property is used as
a mask.

Settings
The settings for boolean are:

Setting Description
True The color assigned to the MaskColor property is

used as a mask, creating a transparent region
wherever that color is.

False (Default) The color assigned to the MaskColor
property is ignored, and the color remains opaque.

CHAPTER 0

A Reference Template
*Insert existing text here and delete this text. Do not remove the following paragraph.

WhatsThisHelpID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWhatsThisHelpIDC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproWhatsThisHelpIDX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproWhatsThisHelpIDA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproWhatsThisHelpIDS"}

Returns or sets an associated context number for an object. Use to provide context-sensitive Help for
your application using the What's This pop-up in Windows 95 Help.

Syntax
object.WhatsThisHelpID [= number]

The WhatsThisHelpID property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
number A numeric expression specifying a Help context number, as

described in Settings.

Settings
The settings for number are:

Setting Description
0 (Default) No context number specified.
>0 An integer specifying the valid context number for the

What's This topic associated with the object.

Remarks
Windows 95 uses the What's This button in the upper-right corner of the window to start Windows
Help and load a topic identified by the WhatsThisHelpID property.

WhatsThisButton Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWhatsThisButtonC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproWhatsThisButtonX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproWhatsThisButtonA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproWhatsThisButtonS"}

Returns or sets a value that determines whether the What's This button appears in the title bar of a
Form object. Read-only at run time.

Syntax
object.WhatsThisButton
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The settings for the WhatsThisButton property are:

Setting Description
True Turns display of the What's This Help button on.
False (Default) Turns display of the What's This Help button off.

Remarks
The WhatsThisHelp property must be True for the WhatsThisButton property to be True. In
addition, the following properties must also be set as shown:

· ControlBox property = True
· BorderStyle property = Fixed Single or Sizable
· MinButton and MaxButton = False
– Or –
· BorderStyle property = Fixed Dialog

WhatsThisHelp Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWhatsThisHelpC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproWhatsThisHelpX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproWhatsThisHelpA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproWhatsThisHelpS"}

Returns or sets a value that determines whether context-sensitive Help uses the What's This pop-up
provided by Windows 95 Help or the main Help window. Read-only at run time.

Syntax
object.WhatsThisHelp [= boolean]

The WhatsThisHelp property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
boolean A value that determines if Help uses the What's This pop-

up, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The application uses one of the What's This access

techniques to start Windows Help and load a topic
identified by the WhatsThisHelpID property.

False (Default) The application uses the F1 key to start Windows
Help and load the topic identified by the HelpContextID
property.

Remarks
There are three access techniques for providing What's This Help in an application. The
WhatsThisHelp property must be set to True for any of these techniques to work.

· Providing a What's This button in the title bar of the form using the WhatsThisButton property.
The mouse pointer changes into the What's This state (arrow with question mark). The topic
displayed is identified by the WhatsThisHelpID property of the control clicked by the user.

· Invoking the WhatsThisMode method of a form. This produces the same behavior as clicking the
What's This button without using a button. For example, you can invoke this method from a
command on a menu in the menu bar of your application.

· Invoking the ShowWhatsThis method for a particular control. The topic displayed is identified by
the WhatsThisHelpID property of the control.

ShowWhatsThis Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthShowWhatsThisC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthShowWhatsThisX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthShowWhatsThisA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthShowWhatsThisS"}

Displays a selected topic in a Help file using the What's This popup provided by Windows 95 Help.

Syntax
object.ShowWhatsThis
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
The ShowWhatsThis method is very useful for providing context-sensitive Help from a context menu
in your application. The method displays the topic identified by the WhatsThisHelpID property of the
object specified in the syntax.

ShowWhatsThis Method Example
This example displays the What's This Help topic for a CommandButton control by selecting a menu
command from a context menu created for the button. Set the WhatsThisHelp property of the form to
True. Place a CommandButton control on a form, create a menu using the Menu Editor with a top-
level invisible item named mnuBtnContextMenu, and a sub-menu named mnuBtnWhatsThis with a
caption of "What's This?".
Private ThisControl As Control

Private Sub Command1_MouseUp(Button As Integer, Shift As Integer, X As
Single, Y As Single)

If Button = vbRightButton Then
Set ThisControl = Command1
PopupMenu mnuBtnContextMenu

End If
Set ThisControl = Nothing

End Sub

Private Sub mnuBtnWhatsThis_Click()
ThisControl.ShowWhatsThis

End Sub

WhatsThisMode Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthWhatsThisModeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthWhatsThisModeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthWhatsThisModeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthWhatsThisModeS"}

Causes the mouse pointer to change into the What's This pointer and prepares the application to
display What's This Help on the selected object.

Syntax
object.WhatsThisMode
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Executing the WhatsThisMode method places the application in the same state you get by clicking
the What's This button in the title bar. The mouse pointer changes to the What's This pointer. When
the user clicks an object, the WhatsThisHelpID property of the clicked object is used to invoke
context-sensitive Help. This method is especially useful when invoking Help from a menu in the menu
bar of your application.

WhatsThisMode Method Example
This example uses a command in a menu to change the mouse pointer to the What's This pointer and
enable context-sensitive Help. To try the example, create a menu, and paste the code into the Click
event of one of the Menu controls. Press F5, and click the menu command to toggle the application
into the What's This state.
Private Sub mnuContextHelp_Click ()

Form1.WhatsThisMode
End Sub

ShowInTaskbar Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproShowInTaskbarC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproShowInTaskbarX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproShowInTaskbarA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproShowInTaskbarS"}

Returns or sets a value that determines whether a Form object appears in the Windows 95 taskbar.
Read-only at run time.

Syntax
object.ShowInTaskbar
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Settings
The settings for the ShowInTaskbar property are:

Setting Description
True (Default) The Form object appears in the taskbar.
False The Form object does not appear in the taskbar.

Remarks
Use the ShowInTaskbar property to keep dialog boxes in your application from appearing in the
taskbar.

The default value for the ShowInTaskbar property assumes the default setting for the BorderStyle
property of the Form object (Sizable). Changing the BorderStyle property may change the setting of
the ShowInTaskbar property.

VisData
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdidxContentsC"}

VisData is an application that was created using Visual Basic 5.0. A built version of it is used as an
add-in accessible from the Add-Ins menu. In the Professional and Enterprise editions the source code
for VisData is available in the samples directory.

This Help file includes information on the VisData interface: menu items, dialogs, and forms. It also
contains a topic about VisData as a sample. It is recommended that you browse this Help file often to
gain the most use of VisData.

Menus
File Menu
Utility Menu
Window Menu
Help Menu

Forms and Dialog Boxes

VisData As a Sample

File Menu (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnMenusC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Open Database

New

Close

Import/Export

Workspace

Errors

Compact MDB

Repair MDB

File 1, 2, 3, 4

Exit

Utility Menu (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmnuUtilityVisDataC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Query Builder

Data Form Designer

Global Replace

Attachments

Groups/Users

SYSTEM.MD?

Preferences

Preferences Command (VisData Utility Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmnuPreferencesVisDataC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Displays a menu with commands that let you enter a login time out value, load the last database you
had open the next time you run VisData, and set a default query time out for the current database.

Open Last Database on Startup If selected, automatically loads the last database that was open
in the last session when you run VisData.

Include System Tables If selected, includes the system-created table in the Database window.
Normally these tables are not displayed.

Query Timeout Value Displays a dialog box that prompts you to set the default query timeout
value for the current database that will be used for ODBC connections.
The timeout value is stored in Visdata.ini for future use.

Login Timeout Value Command Displays a dialog box that prompts you to enter the login timeout
value that will be used for ODBC connections. The timeout value is stored in Registry for future
use.

Forms and Dialog Boxes (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnFormsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Forms
Data Control Form
Data Grid Form
Database Form
Dynaset/Snapshot Form
Errors Collection Form
Main MDI Form
SQL Statement Form
Table Form

Dialog Boxes
Add Field Dialog Box
Add Index Dialog Box
Copy Table Structure Dialog Box
Data Control Properties Dialog Box
Data Form Designer
Data Source Type Selection Dialog Box
Export Name Dialog Box
Find Dialog Box
Global Replace Dialog Box
Groups/Users/Permissions Dialog Box
Import Tables Dialog Box
Import/Export Dialog Box
Join Dialog Box
Login Dialog Box
New Attachment Dialog Box
New User/New Group Dialog Box
Open ODBC Data Source Dialog Box
Query Builder Dialog Box
Seek Dialog Box
Set Password Dialog Box
Table Structure Dialog Box
Zoom Dialog Box

Compact MDB Commands (VisData File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnFileCompactC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Compacts a Jet .mdb file and creates an encrypted or decrypted file. If you choose the same name
for the destination file as the source, the source will be overwritten with the new file.

3.0 MDB Creates a Microsoft Access version 3.0 .mdb file with the same encryption status as the
one you’re compacting.

2.0 MDB Creates a Microsoft Access version 2.0 .mdb file with the same encryption status as the
one you’re compacting.

Errors Command (VisData File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"dacolError;daobjDBEngine;vbproBooksOnlineJumpTopic;vdrgnFileErrorsC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":""}

Displays a form with a list box containing the current Errors collection of the DBEngine object.

The form can be left open, minimized, or closed at any time, but it must be refreshed with the Refresh
button when new errors occur.

Close Database Command (VisData File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnFileCloseC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Closes all forms that contain data from the current database.

This command is called internally by VisData when you choose the Open Database command from
the VisData File menu.

New Database Command (VisData File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnFileNewC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Creates a new database for the database type selected from the menu.

If you choose Creates a
Microsoft Access Microsoft Access (version 2.0 or 3.0) .mdb
Dbase Dbase (version 5.0, IV, or III) database.
FoxPro FoxPro (version 3.0, 2.6, 2.5, or 2.0) database.
Paradox Paradox (version 5.0, 4.x, or 3.x) database.
ODBC New ODBC data source.
Text Files Directory where the table files are stored.

Open Database Command (VisData File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnFileOpenC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Opens a database of the selected type.

In most cases, you should create an .mdb file and attach tables from other data source types.
However, it is necessary and useful to open a database directly to perform DDL (Data Definition
Language) operations and to experiment with performance.

If you choose ODBC, a dialog box is displayed that lists the parameters needed to open an ODBC
data source. If the source you select does not exist, it can be created from this dialog using the
Register command.

Global Replace Command (VisData Utility Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnUtilityReplaceC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to create an SQL update statement to update a column in all of the records in a selected
table that satisfy the conditions you define.

Dialog Box Options
Table List Lists the tables from which you can select a table to update.
Field List Lists the fields in the selected table from which you can select a field (column) to update.
Replace With Sets the replacement value for the column data. Single quotation marks will be

added for you if the field type is Text.
Criteria Sets the criteria for the records you want to select and update (leave blank for all rows).

Import/Export Command (VisData File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnUtilityImpExpC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to import tables from other databases or export tables and SQL query results to another
database.

Dialog Box Options
Import Loads subsequent dialogs from which you can choose the data type and table that you can

import from another database.
Export Table(s) Exports all tables selected in the table box.
Export SQL Results Exports the results from the current SQL query in the SQL Statement window.
List Lists the available tables.

Include System Tables Command (VisData Preferences Command)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproAttributes;vbproBooksOnlineJumpTopic;vdrgnUtilityIncSysC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to include or exclude the system tables present in .mdb databases as well as system
objects in servers, such as a SQL Server.

This command tests if a TableDef is a system object by reading the Attributes property and masking
out the dbSystemObject value.

Attachments Command (VisData Utility Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnJetAttachmentsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Lists all of the attached tables and their respective connect strings in the current .mdb file.

Dialog Box Options
New Loads the New Attachment dialog box.
ReAttach Updates the connection information on the selected items when you select multiple

tables.

Note Clicking the right mouse button over any attached table displays its properties.

Groups/Users Command (VisData Utility Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnJetGroupsUsersC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to view and modify groups, users, permissions, and owners.

Dialog Box Options
Users Displays items in the Users and Groups Belonged To boxes.
Groups Displays items in the Groups and Members boxes.
New Adds a new user or group with the New User/New Group dialog box.
Delete Removes the currently selected user or group.
Groups Belonged To Lists the groups to which a selected User belongs.
Members List Lists the members of the selected group.
Set/Clear Password Sets your password or clears another user’s password. If the selected user

name matches the name in the Users box, displays the Set Password dialog box.
Tables/Queries Lists the tables and queries for the current database.
Owner Sets the owner of any table or query in the Tables/Queries box.
Permissions Assigns permissions to the current user or group. You can select the Read Design,

Modify Design, Administer, Read Data, Update Data, Insert Data, and Delete Data check boxes.
Multiple tables or queries can be selected in the Tables/Queries box to assign permissions for more
than one item at a time.

SYSTEM.MD? Command (VisData Utility Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnJetSystemMDAC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Makes an entry in the Registry. It enables you to create different System.mda files and set up the
security for each one from the same application.

Repair MDB Command (VisData File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnFileRepairC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Displays a dialog box that allows you to select a corrupt .mdb file to repair. You cannot repair the
current database because if it is open, it must not be corrupt.

Window Menu (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnWindowMenuC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Arranges or activates windows.

Use the items on this menu to arrange all of the child windows or to make a specific one active.

Workspace Command (VisData File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnFileWorkspaceC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Displays the Login dialog box where you can log into a new workspace.

It allows you to log on as a different user so that you can test security, set passwords for new users,
and set up the System.mda file within the same VisData session. If possible, the current database will
be reopened from the new workspace with the newly entered user name and password.

Add Field Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"daobjTableDef;daproAllowZeroLength;daproDefaultValue;daproName;daproOrdinalPosition;daproRequired;daproType;d
aproValidationText;vbproBooksOnlineJumpTopic;vdrgnAddFieldC"}

Adds a field to the current table.

In the Database form, select a table, and click the Design button. Then, in the Table Structure dialog
box, click the Add Field button to display the Add Field dialog box.

Dialog Box Options
Name Allows you to type the name of the field you want to add.
OrdinalPosition Allows you to determine the relative position of the field.
Type Lets you determine a the operational or data type of the field.
ValidationText Lets you add the text of the message that your applicaiton displays if a user tries to

enter an invalid value for a field.
Size Lets you determine the maximum size, in bytes, of the field.

FixedField — If selected, creates a field with a fixed size.
VariableField — If selected, allows the user to modify the size of the field by dragging its borders.

ValidationRule Lets you determine what data is valid in a field as it is added.
DefaultValue Lets you determine the default value for the field.
AutoIncrField Automatically adds the next field if you are at the end of the table.
AllowZeroLength Allows you to have a zero-length string as a valid setting.
Required Indicates if the field requires a non-Null value.
Add Appends the current Field definition to the current table.
Close Closes the form when you are finished adding fields.

Note All items, such as ValidationText and Ordinal Position, are Field properties, and are described
in detail in the Visual Basic Help file. Those that do not apply are not available.

Add Index Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"daobjIndex;daobjTable;daproIgnoreNulls;daproName;daproPrimary;daproUnique;vbproBooksOnlineJumpTopic;vdrgnAd
dIndexC"}

Adds an index to the current table.

To display this dialog box, in the Database form, select a table, and click the Design button. Then, in
the Table Structure dialog box, click the Add Index button.

Dialog Box Options
Name Allows you to type the name of the index.
Indexed Fields Lists the indexes in the field selected in the Available Fields box.
Available Fields Lists the fields in the current table.
Primary If selected, indicates this is the primary index for the table.
Unique If selected, indicates that the index entry is unique.
IgnoreNulls If selected, indicates that fields with Null values are not included in the index.
OK Appends the current Index definition to the current table.
Close Closes the form when you are finished adding indexes.

Note Items, such as IgnoreNulls and Unique, are Index properties. They are described in detail in
the Visual Basic Help filep. Those that do not apply are not available.

Copy Structure Command (VisData Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproConnect;vbproBooksOnlineJumpTopic;vdrgnCopyStruC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Displays the Copy Table(s) dialog box in which you select a table structure to copy.

To display the Copy Table(s) dialog box, in the Database form, select a table and then click the right
mouse button. Choose the Copy Structure command on the shortcut menu.

Dialog Box Options
Tables List Lists tables from which you can select one to copy.
Target Database Lists databases from which you can select the database to which you want to

copy the table(s). If the current database is entered, you will be prompted to enter a new name for
the table.

Target Connect String Sets the target database’s Connect property. Only needed for non-MDB
database types.

Copy Indexes Copies the indexes for the selected table.
Copy Data Copies the data for the selected table.

Data Control Form (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnDataCtlFrmC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

You can display this form by selecting the Use Data Control button on the toolbar. Then, click the
Open button on the Database window.

Form Options
Add Adds a new record to the current recordset.
Update Updates the current record with new data entered in the bound controls.
Delete Deletes the current record.
Find Displays an input box where you can enter an expression to perform a search on a dynaset-

type and snapshot-type recordset and a search on a table-type recordset.
Refresh Refreshes the Data control.
Close Closes and unloads the form.
Field Names Displays the name of each field in the current recordset.
Field Value Displays and allows modification of the data in the current field.
Data Control Displays the current record position. Clicking the right mouse button allows you to

change the properties of the Data control and its recordset to test different characteristics of
various combinations of settings in the Data Control Properties dialog box.

Data Control Properties Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnDataCtlPropsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to view and modify the Data control properties for the current form.

To display this dialog box, click the right mouse button over the Data control on the current form.

This dialog box is useful for experimenting with various combinations of settings for the parent form’s
Data control and its related objects, including the Database and Recordset objects. It is the only
place in VisData where you can set any of the various attributes, such as AppendOnly and
ForwardOnly, of a recordset.

Dialog Box Options
Database Properties Sets properties directly related to the database associated to the Data

control on the parent form.
Recordset Properties Sets properties directly related to the recordset associated to the Data

control on the parent form.
Data Control Properties Sets properties directly related to the Data control on the parent form.
OK Resets the Data control’s recordset with the new values entered.
Cancel Closes the dialog box without placing the Data control on the parent form.

Data Grid Form (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjData;daobjDBGrid;vbproBooksOnlineJumpTopic;vdrgnDataGridFrmC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":""}

A simple form with a toolbar at the top, a DBGrid control in the middle, and a Data control at the
bottom. It is useful for experimenting with the DBGrid control quickly and easily.

To display the Data Grid form, select the Data Grid Form Type on the toolbar, and click the Open
button on the Table form.

Form Items
Refresh Refreshes the Data control.
Sort Enables you to sort the current recordset.
Filter Enables you to place a filter on the current recordset.
Close Closes and unloads the form.

Note The other items are properties of the DBGrid control, and are described in the Visual Basic
Help file.

Data Source Type Selection Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnDataTypeFrmC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Enables selection of a data source type for import and export.

This dialog box is displayed during the import and export commands so that you may select the data
source type to import to or export from.

Dynaset/Snapshot Form (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnDynaSnapFrmC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

A form that demonstrates the use of a scroll bar for record positioning in a dynaset- or snapshot-type
recordset.

A nice feature of this form is the zoom ability on text and memo type fields. By double-clicking the field
name of the data, you load the Zoom dialog box and enable much easier viewing and modification of
large chunks of text.

You can display the dialog box by selecting Dynaset or Snapshot as the Recordset type on the
toolbar, and then opening the Table form from the Database form.

Form Items
Add Adds a new record to the current recordset.
Edit Places the current record in edit mode.
Update Updates the current record with new data entered in the bound controls.
Cancel Cancels the Add operation.
Find Displays the Find dialog box where you can enter information to perform a search on the

current recordset.
Del Deletes the current record.
Filter Places a filter on the current recordset.
Sort Sorts the current recordset.

Export Name Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnExpNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to enter a name for the exported data.

Find Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnFindC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Searches the dynaset or snapshot-type recordset for a specified expression.

This dialog is a simple expression builder used by the Dynaset/Snapshot form. Each
Dynaset/Snapshot form loaded has its own instance of a Find form so that the same expression may
be modified until the desired record is found.

Dialog Box Options
Field Selects the field to use for the search.
Operator Selects the operator to use in the expression.
Expression Sets the value to find.
OK Executes the search.
Cancel Closes the form without executing the search.

Import Tables Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnImpTablesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Displays a list of all of the tables in the selected database and prompts you to select the table(s) to
import. You can only import one table at a time.

Join Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnJoinC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to add joins to the Query Builder. You can display this dialog box by clicking Set Table
Joins button in the Query Builder dialog box available from the VisData Utility menu.

It prompts you to select a pair of tables and the field to join. It simply saves you the time of entering
the table1.field1=tablel2.field2 syntax in the query. To achieve more complex queries, it is
recommended you use Microsoft Access because its graphical query builder is more powerful.

Dialog Box Options
Table Lists Lists tables from which you can select the pair of tables to join.
Add Join to Query Adds the selected join to the query in the Query Builder.
Clear All Joins Clears the list in Query Builder.

Login Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthCreateWorkspace;vbproBooksOnlineJumpTopic;vdrgnLoginC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to log on as a different user.

Use when:

· The initial CreateWorkspace call fails due to an invalid logon (The user administrator must have a
password).

· You choose Workspace from the File menu.

You must enter a valid user name and password combination or choose Cancel. If you cancel the
opening instance of this dialog, VisData will close. If you cancel after choosing Workspace from the
File menu, you will remain logged on.

Main MDI Form (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"damthBeginTrans;damthOpenRecordset;daobjData;daobjDBGrid;vbproBooksOnlineJumpTopic;vdrgnMainMDIC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":""}

Consists of a menu, a toolbar, a child window area, and a status bar.

Form Items
Recordset Type Sets the type of recordset to open when another command executes the

OpenRecordset method. This can be a dynaset-, snapshot-, or table-type recordset.
Form Type Sets the type of form to open when another command needs a form to display a

recordset. It can contain a Data control, no Data control, or a DBGrid control.
Begin Transaction Executes a new transaction.
Rollback Ends the current transaction and restores the databases to the state they were in when

the current transaction began.
CommitTrans Ends the current transaction and saves the changes.
User Displays the current user’s name.

New Attachment Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnNewAttachC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to add an attached table to the current database. You can display this dialog box by
clicking the New button on the Attachments dialog box available by using the Attachments command
on the Utility menu.

Dialog Box Options
Attachment Name Sets the name of the attachment in the current database.
Database Name Sets the database name of the table to attach.
Connect String Sets the Database Connect of the table to attach.
Table to Attach Sets the name of the table to attach. This box is filled with tables if the Attachment

Name, Database name, and Connect String are properly entered.
Save Password Sets whether to save the password with the attachment.
Open Exclusive Sets whether to open the attachment exclusively.
Attach Executes the code to create the new attachment.
Close Closes the form when you are finished adding new attachments.

New User/New Group Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnNewUGC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to add a new group or user.

You can display this dialog box by clicking the New button on the Groups/Users/Permissions dialog
box available by choosing Groups/Users command from the Utility menu.

Dialog Box Options
Name Sets the name of the group or user to add.
PIN Sets the (Personal Identification Number) PIN of the group or user to add. Required. The PIN

must be at least four characters long.
OK Appends the new group or user.
Cancel Closes the dialog box without adding the new group or user.

Open ODBC Data Source Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnOpenDBC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Opens an ODBC data source with the user-supplied parameters.

Dialog Box Options
DSN (Data Source Name) Lists all of the currently registered data sources found in the ODBC.INI
file in the Windows directory or the Windows NT registry. It is filled by using the ODBC API call
GetDataSource. This is the DSN clause in the connect string.

Database Lists the database that will be opened. If omitted, the default database for the specified
user is opened. This is the DATABASE or DBQ clause in the connect string.

UID (User ID) Lists User ID clause in the connect string.
PWD (Password) Lists the Password clause in the connect string.
Driver Lists all of the installed ODBC drivers on the system. Use it to select a driver for a DSN-

Less connection or to register a new datasource.
Server Allows you to fill in the name of the server when creating a DSN-Less connection.
Register Allows you to add a new Data Source Name (DSN).

Query Builder Command (VisData Utility Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjQueryDef;vbproBooksOnlineJumpTopic;vdrgnQueryBuilderC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

An expression builder with all of the components needed to make simple to very complex SQL
queries. You can use this dialog box to build, view, execute, and save SQL queries.

Most of the dialog items are self-explanatory so only a few will be described below.

Dialog Box Options
Field Name
Operator
Value
Add into Criteria
Or into Criteria
List Possible Values Adds all unique values for the chosen field into the drop-down list.
Tables
Fields to Show
Group By
OrderBy

Asc
Desc

Set Table Joins Displays the Join Dialog box so that you may more easily add a join to the current
query.

Top N Value
Top Percent
Criteria
Run Opens a recordset using the SQL statement you entered.
Show Displays the SQL statement you entered.
Copy Copies the SQL query to the SQL Statement window.
Save Creates a new query with the settings you define.
Clear
Close

Seek Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthSeek;vbproBooksOnlineJumpTopic;vdrgnSeekC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Invokes a Seek method on the current Table form using the current index.

Note It does not handle compound indexes so it is only effective when the index contains a single
column.

Dialog Box Options
Operator Lists the first argument of the search.
Value Lists the value to on which to search.

Set Password Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnSetPasswordC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to change the password of the current user.

It is a standard Old, New, Confirm Password dialog box.

SQL Statement Form (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjQueryDef;daproSQL;vbproBooksOnlineJumpTopic;vdrgnSQLC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":""}

Enables you to execute any valid SQL statement and save it as a query, or update the currently
selected query’s SQL property.

You can view the SQL statement from a query on the Table form by either selecting it and clicking the
Design button, or by dragging it from the Table form and dropping it onto the multiple-line text box in
the SQL Statement window.

Use the SQL Statement window to enter, modify, execute, and save SQL statements.

Form Items
Execute SQL Executes the SQL statement. This is the default button and will be invoked if you

press ENTER while the form is active.

Note To put a carriage return into the SQL statement, press CTRL+ENTER.

Clear SQL Clears the SQL Statement text box. It does not copy the contents onto the Clipboard.
Save SQL Saves the SQL statement. This command will prompt you to overwrite the SQL

statement in a query if one is selected in the QueryDefs list on the Table form, or it will prompt you
for a new name if you chose No to the above prompt or there is no query currently selected.

Table Form (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnTableFrmC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

A form that has command buttons that look like the standard Data control, that you can use to
perform moves on the table-type recordset.

A nice feature of this form is the ability to zoom on text and memo type fields. This is executed by
double-clicking the field name of the data to zoom in. It loads the Zoom dialog box and allows easier
viewing and modification of large chunks of text.

Table-type recordsets are ordered by the currently selected Index so there is a box containing all
available Indexes that may be selected to establish the desired order and search.

Form Items
Add Adds a new record to the current recordset.
Edit Places the current record in edit mode.
Update Updates the current record with new data entered in the controls.
Cancel Cancels the add operation.
Seek Displays the Seek dialog box, where you can search on the current table-type recordset.
Del Deletes the current record.
Filter Places a filter on the current table-type recordset and loads the newly filtered recordset into a

Dynaset/Snapshot form.
Index Selects the current Index to order by and to search on.

Table Structure Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"daobjTableDef;daproAllowZeroLength;daproCollatingOrder;daproDefaultValue;daproIgnoreNulls;daproName;daproOrdin
alPosition;daproPrimary;daproRequired;daproSize;daproValidationRule;daproValidationText;vbproBooksOnlineJumpTopic;vdrg
nTblStruC"}

Displays all of the properties of the fields and indexes contained in the current table.

Some of the properties are read-write. If they are read-only, they are not accessible by the mouse or
keyboard.

Use this dialog box to create, view, and modify table structures.

Dialog Box Options
Table Name Displays the name of the table.
Field List Displays a list of the fields.
Name Allows you to type the name of the field you want to add.
Type Lets you determine a the operational or data type of the field.
Size Lets you determine the maximum size, in bytes, of the field.
FixedLength If selected, allows you to have a field with a fixed size.
VariableLength If selected, allows you to have a field whose length you can adjust.
AutoIncrement If selected, automatically updates the next row or column.
AllowZeroLength Allows you to have a zero-length string as a valid setting.
Required Indicates if the field requires a non-Null value.
OrdinalPosition Allows you to determine the relative position of the field.
ValidationText Lets you add the text of the message that your applicaiton displays if a user tries to

enter an invalid value for a field.
ValidationRule Lets you determine what data is valid in a field as it is added.
DefaultValue Lets you determine the default value for the field.
Add Field Displays the Add Field dialog box.
Remove Field Removes the selected field (Only available with Jet database engine Tables).
Index List Lists the available indexes.
Name Allows you to type the name of the index.
Primary If selected, indicates this is the primary index for the table.
Unique If selected, indicates that the index entry is unique.
Foreign If checked, indicateds that the index represents a foreign key in the table.
IgnoreNulls If selected, indicates that fields with Null values are not included in the index.
Required Indicates if the index requires a non-Null value.
Fields ???? Dave?
Add Index Displays the Add Index dialog box.
Remove Index Removes the selected index.
Build the Table Appends the new table to the current database.
Print Structure Prints the table structure (not available on new TableDef objects).

Database Form (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnTablesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Displays all objects in a database in a tree. It contains a shortcut menu accessible from the right
mouse button.

Form Items
New Loads the Table form for tables and the Query Builder form for queries.
Open Opens a recordset for tables and row-returning queries or executes action queries.

Recordsets are of the recordset type, Form type selected on the Main MDI form toolbar.
Design Loads the Table form for tables and the copies the SQL contents of the query to the SQL

Statement form.
List Double-Click Executes the Open command on the selected query or table.
List Right Click Displays a shortcut menu with commands to display the object properties, rename

the object, delete the object, load the Copy Table Structure dialog box, and remove all records
from a table.

Zoom Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnZoomC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Allows you to view and modify text and memo data.

This is an expanded view of a text or memo field. You can display this dialog box from the
Dynaset/Snapshot, Table, and Data Control forms by double-clicking a field or by pressing F4. If the
recordset is not updatable or is not in edit mode, you will only be able to view the data. If it is
updatable, you can make and save changes.

Dialog Box Options
Save Saves the new text in the field.
Close without Changes Cancels any changes made to the data.

Data Form Designer Dialog Box (VisData)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vdrgnDataFormDesignerC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Creates data forms and adds them to the current Visual Basic project.

This is an Add-In utility that adds forms to the current Visual Basic project. It is useful for creating
forms for browsing and modifying data from a simple table to a complex query. It is only available
when VisData has been opened from the Visual Basic Add-Ins menu.

Dialog Box Options
Form Name Sets the name of the form to add to the Visual Basic project.
RecordSource Selects the record source for which you will create the form. The user can select an

existing table or query from the list or enter a new SQL statement.
Available Fields Lists the fields in the table or query selected or entered into the RecordSource

box.

 Moves the selected fields from the Available Fields list to the Included Fields list.

 Moves all of the fields in the Available Fields list to the Included Fields list.

 Moves all of the fields from the Included Fields list to the Available Fields list.

 Moves the selected fields from the Included Fields list to the Available Fields list.
Included Fields Lists the fields to include on the form. Reorder the list by dragging and dropping

items at different locations in the list.
Up and Down Arrow Buttons Move the selected up or down one line each time you click it.
Build the Form Builds the form.

VisData As a Sample
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscVisDataAsSampleC;vbproBooksOnlineJumpTopic"}

VisData was written as a test and sample of the data access features in Visual Basic. In the
Professional and Enterprise editions, source code can be found in the Samples\VisData directory or
wherever you installed Visual Basic. This sample is a good source of code and forms for your
applications. Some of the forms were designed to be placed in other applications with very little
modification.

This topic contains information that helps you to use the VisData sample code to save you time in
your application development. Modifying the code requires some experimentation and persistence on
your part to make it work.

The best way to add a form to your application is to:

1 Copy the .frm and .frx files to the same location as your application.
2 Add the form you want to your application.
3 Set the MDIChild property to False if your application is not MDI.
4 Open the Code window and search the code for the word, "Standalone", for special instructions about

using the form in your application.
5 Make the changes and additions noted in the special instructions.
6 Press F8 to compile your application.
7 Fix any errors that occur on compilation. You may be required to add global variables, other forms or

some of your own functionality. Usually you can simply comment out the code that is causing the error
and then decide if you need it or not.

There are a number of useful routines in the modVisData code module that you might want to include
in your application to make using the forms easier. Some of routines are called from a form and will
either need to be added, commented out, or rewritten by you in order to make the form operate
correctly.

If you do not add the VisData.bas file to your application, there are a few global variables you will
need that are used to share data among the forms. They are listed in the "global variables" section of
VisData.bas.

You can add the following forms to your application:

· frmAttachments A form that displays a list of attached tables allowing the user to add new
attachments and re-attach existing attachments. It requires a frmNewAttach to work correctly.

· frmDataControl is a form that dynamically loads a recordset and displays the records.
· frmDataGrid A form that displays a recordset in a bound grid with additional features such as

quick sorting by clicking the column header.
· frmDynaSnap A form that loads a dynaset or snapshot type recordset and provides many

features such as searching for a form, zooming in on a memo field or large text fields, and the use
of a scrollbar to move around the recordset. To use the functionality of frmDynaSnap, you must
also have a frmFindForm and a frmZoom.

· frmGroupsUsers A dialog box that allows you to administer the permissions of the groups and
users of the database. It requires a frmNewPassword and frmNewUserGroup.

· frmQuery A form that is a fairly full-featured query builder. It requires a frmJoin. The frmQuery
may not be easy to create from VisData but using it may save you time and effort.

· frmSQL A form that allows a user to enter SQL statements and execute them or save them as
queries in the database.

· frmTableObj A form that displays a table type recordset with features specific to a table
recordset such as searching and setting the current index. It requires a frmSeek.

Data Form Designer Command (VisData Utility Menu)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbcmdDataFormDesignerCommandVisDataUtilityMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Displays the Data Form Designer so you can create and add forms to your current Visual Basic
project.

Accessibility for People with Disabilities
Microsoft is committed to making its products and services easier for everyone to use. This Help file
provides information about the following features, products, and services, which make Microsoft
Windows, Microsoft Windows NT, and Microsoft Visual Basic more accessible for people with
disabilities:

Microsoft Visual Basic accessibility

Microsoft services for people who are deaf or hard-of-hearing.

Microsoft documentation in alternative formats.

Third-party utilities to enhance accessibility.

Customizing Windows or Windows NT.

Getting more information

Note The information in this section applies only to users who purchased Windows or Windows NT
in the United States. If you purchased Windows or Windows NT outside the United States, your
Windows package contains a subsidiary information card listing Microsoft Support Services telephone
numbers and addresses. You can contact your subsidiary to find out whether the type of products and
services described in this Help file are available in your area.

Microsoft Services for People Who Are Deaf or Hard-of-Hearing
If you are deaf or hard-of-hearing, complete access to Microsoft product and customer services is
available through a text telephone (TT/TDD) service.

Sales Information
You can contact Microsoft Sales Information Center on a text telephone by dialing (800) 892-5234
between 6:30 A.M. and 5:30 P.M. Pacific time.

Technical Assistance
For technical assistance in the United States, you can contact Microsoft Support Network on a text
telephone at (206) 635-4948 between 6:00 A.M. and 6:00 P.M. Pacific time, Monday through Friday,
excluding holidays. In Canada, dial (905) 568-9641 between 8:00 A.M. and 8:00 P.M. Eastern time,
Monday through Friday, excluding holidays. Microsoft support services are subject to Microsoft prices,
terms, and conditions in place at the time the service is used.

Microsoft Documentation in Alternative Formats
In addition to the standard forms of documentation, many Microsoft products are also available in
other formats to make them more accessible.

Many of the Visual Basic version 5 documents are also available in online viewer format, or in print. If
you have difficulty reading or handling printed documentation, you can obtain many Microsoft
publications from Recording for the Blind & Dyslexic, Inc. Recording for the Blind & Dyslexic
distributes these documents to registered, eligible members of their distribution service, either on
audio cassettes or on floppy disks. The Recording for the Blind & Dyslexic collection contains more
than 80,000 titles, including Microsoft product documentation and books from Microsoft Press.

You can contact Recording for the Blind & Dyslexic at the following address or phone numbers for
information about eligibility and availability of Microsoft product documentation and books from
Microsoft Press:

Recording for the Blind & Dyslexic, Inc.

20 Roszel RoadPrinceton

NJ 08540

Phone: (609) 452-0606

Fax: (609) 987-8116

World Wide Web: http://www.rfbd.org

Third-Party Utilities to Enhance Accessibility
A wide variety of third-party hardware and software products are available to make it easier to use
personal computers. Among the different types of products available for the MS-DOS, Windows, and
Windows NT operating systems are:

· Programs that enlarge or alter the color of information on the screen for people with visual
impairments.

· Programs that describe information on the screen in Braille or synthesized speech for people who
are blind or have difficulty reading.

· Hardware and software utilities that modify the behavior of the mouse and keyboard.
· Programs that enable people to "type" using a mouse or their voice.
· Word or phrase prediction software that enables people to type more quickly and with fewer

keystrokes.
· Alternate input devices, such as single switch or puff-and-sip devices, for people who cannot use a

mouse or a keyboard.
To learn more about these products, see the topic "Getting more information".

Customizing Windows or Windows NT
There are many ways you can customize Windows or Windows NT to make your computer more
accessible.

· Beginning with Windows 95, accessibility features are built in to Windows. These features are
useful for individuals who have difficulty typing or using a mouse, have moderately impaired vision,
or who are deaf or hard-of-hearing. The features can be installed during setup, or you can add
them later from your Windows 95 installation disks. Look up "accessibility" in the Windows Help
Index for information about installing and using these features.

· Many of the features which make Windows 95 more accessible can be added to Windows NT,
earlier versions of Microsoft Windows, and MS-DOS through Access Packs. You can download
these files by modem, or you can order them on disks from Microsoft.

· You can also use Control Panel and other built-in features to adjust the appearance and behavior
of Windows or Windows NT to suit varying vision and motor abilities. These include adjusting
colors and sizes, sound volume, and the behavior of the mouse and keyboard.

· Dvorak keyboard layouts make the most frequently typed characters on a keyboard more
accessible if you have difficulty using the standard "QWERTY" layout. There are three Dvorak
layouts: one if you are a two-handed user, one if you type with your left hand only, and one if you
type with your right hand only. You do not need to purchase any special equipment to use these
features.

The specific features available, and whether they are built-in or must be obtained separately, depend
on which operating system you are using.

For full documentation on the accessibility features available in the operating system you are using,
obtain the appropriate application notes listed below. Accessibility features are also documented in
the Microsoft Windows 95 Resource Kit and the Microsoft Windows NT Resource Kit.

Which Files to Download or Order
You can obtain these files by downloading them with your modem, or you can order them on disks by
phone. Specific information about downloading or ordering these files immediately follows this list of
files.

These files include:

· Application notes providing more complete documentation on ways to customize Windows and
Windows NT

· Access Packs and Dvorak keyboard layouts provide additional features for versions of Windows or
Windows NT in which they are not already included

For You need

Application notes for Microsoft
Wndows 95

Ww1062.exe

Application notes for Microsoft
Windows NT 3.1 and 3.5 (includes
Access Pack for Microsoft
Windows NT)

Wn0789.exe

Application notes for Microsoft
Windows for Workgroups 3.1

Wg0788.txt

Application notes for Microsoft
Windows 3.1

Ww0787.txt

Application notes for Microsoft
Windows 3.0

Ww0786.txt

Access Pack for Microsoft
Windows 3.0 and 3.1

Accp.exe

Dvorak keyboard layouts for
people who type with one hand
(already included in Windows NT
3.5 and higher)

Ga0650.exe (Most network
services)Ga0650.zip (Microsoft
Download Service)

To Download the Access Packs, Application Notes, and Alternative Keyboard
Layouts by Modem
If you have a modem, you can download these files from the following network services:

· Microsoft's World Wide Web site on the Internet. On the www.microsoft.com home page, click
Support. click Knowledge Base, and select MS-DOS as the product. Enter KBFILE GA0650.EXE,
and click GO! Open the article, and click the button to download the file.

· Microsoft’s Internet servers, ftp.microsoft.com and gopher.microsoft.com, in /softlib/mslfiles
· MSN, The Microsoft Network online service
· CompuServe®, type GO MSL
· GEnie™
· Microsoft Download Service (MSDL), which you can reach by calling (206) 936-6735 any time

except between 1:00 A.M. and 2:30 A.M. Pacific time.
· MSDL supports 1200, 2400, 9600, 14400, or 28800 baud rates (V.32 and V.42), with 8 data bits, no

parity, and 1 stop bit.
· Various user-group bulletin boards (such as the bulletin-board services on the Association of PC

User Groups network)

To Order the Access Packs, Application Notes, and Alternative Keyboard
Layouts on Disks by Phone
If you do not have a modem, within the United States you can order the Access Packs, Application
Notes, and Alternative Layouts on disks by calling Microsoft Sales Information Center at (800) 426-
9400 (voice) or (800) 892-5234 (text telephone).

In Canada, you can call (905) 568-3503 or (905) 568-9641 (text telephone).

Getting More Information
Other products, services, and resources are available from Microsoft and other organizations.

Additional Microsoft Products and Services for People with Disabilities
For more information, contact:

Microsoft Sales Information
Center
One Microsoft Way
Redmond, WA 98052-6393

World Wide Web:
Voice telephone:
Text telephone:

http://www.microsoft.com
(800) 426-9400
(800) 892-5234

Directories of Computer Products that Help People with Disabilities
The Trace R&D Center at the University of Wisconsin–Madison produces a book and a compact disc
that describe products that help people with disabilities use computers. The book, titled Trace
ResourceBook, provides descriptions and photographs of about 2,000 products. The compact disc,
titled CO-NET CD, provides a database of more than 18,000 products and other information for
people with disabilities. It is issued twice a year.

To obtain these directories, contact:

Trace R&D Center
University of Wisconsin
S-151 Waisman Center
 1500 Highland Avenue
Madison, WI 53705-2280

World Wide Web:
Fax:

http://trace.wisc.edu
(608) 262-8848

Referrals to Assistive Technology Programs and Trained Evaluators
For general information and recommendations on how computers can help specific needs, you should
consult a trained evaluator. An assistive technology program in your area will provide referrals to
programs and services that are available to you.

To locate the assistive technology program nearest you, contact:

National Information System
University of South Carolina
Center for Developmental Disabilities
Columbia, SC 29208

Voice/text
telephone:
Fax:

(803) 935-5231
(803) 935-5059

Microsoft Visual Basic Accessibility

Enlarging Toolbar Buttons
To view enlarged toolbar buttons, choose the Toolbars command from the View menu, select
Customize, and then select the Large Icons check box on the Options tab.

Enlarging Text in the Code Window
To view enlarged text in the Code Window, choose the Options command from the Tools menu. Select
the Editor Format tab, and then set the font and size you want.

Customizing the Keyboard
Microsoft Visual Basic for Windows supports Dvorak keyboard layouts, which make the most
frequently typed characters more accessible.

Rearranging Windows
Windows in Visual Basic can be rearranged to best suit the way you work. You can select the
windows you want docked by using the list on the Docking tab of the Options dialog, available on the
Tools menu.

Customizing the Toolbox
You can customize the Toolbox by adding tabs to it or by adding controls to either the General tab or a
custom tab, using the Components command from the Project menu.

Providing Visual Cues While Editing Code
Margin Indicators in the Code Window allow you to provide visual cues to certain actions while editing
your code. The Indicators appear on the left margin of the Code window. You can turn the Margin
Indicator Bar on and off in the Editor Format tab of the Options dialog box.

Adding Prompts for Parameters
You can also choose to display popups in the Code window that prompt you with the parameters to
complete a function or statement. You can turn Parameter Info on and off using the Parameter Info
command on the Edit menu.

Visual Basic Menus
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamnuContextMenusC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamnuContextMenusS"}

Visual Basic has two types of menus, built-in and shortcut.

Built-in Menus
Built-in menus appear on the menu bar across the top of the Visual Basic window. Each menu
contains commands that relate to the menu name. For example, the Format menu contains
commands used for formatting your form. Some of the commands have submenus that contains more
specific commands. For example, the Toolbars command on the View menu has a submenu that
contains the names of the toolbars and the Customize command. You can use the Customize
command to modify the built-in menus or to add commands to the menu bar.

Shortcut Menus
Shortcut menus are menus containing frequently used commands that appear when you click the
right mouse button or press SHIFT+F10.

Note To find information on a command on a menu, use the Search for Help On command on the
Help menu and search for the name of the command.

Definition Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdGoToDefinitionC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdGoToDefinitionS"}

Displays the location in the Code window where the variable or procedure under the pointer is
defined. If the definition is in a referenced library, it is displayed in the Object Browser.

Show Hidden Members Command (Object Browser Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdShowHiddenMembersC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdShowHiddenMembersS"}

Shows and hides the hidden members in the Object Browser for each class. Hidden members are
members that are not intended for use by the programmer of the reusable object and are not normally
visible in the Object Browser. They appear as light gray text.

Customize Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdCustomizeContextC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdCustomizeContextS"}

Displays the Customize dialog box where you can add, delete, modify, or create custom toolbars.

Delete Watch Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdDeleteWatchContextC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdDeleteWatchContextS"}

Deletes the selected watch expression.

Find Whole Word Only Command (Object Browser Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdFindWholeWordOnlyContextC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdFindWholeWordOnlyContextS"}

Allows you to search for occurrences that exactly match the word you typed into the Search Text box
of the Object Browser.

Hide Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdHideContextC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdHideContextS"}

Hides the active window, project, folder, module, or the Toolbox.

Collapse Parent Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdCollapseParentContextC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdCollapseParentContextS"}

Shrinks the list of items in the Locals or Watch window to the parent item. When you collapse a list,
the icon to the left of the expression changes from a minus sign (-) to a plus sign (+).

Properties Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdPropertiesContextC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdPropertiesContextS"}

Opens the Properties window for the selected item.

Toggle Commands (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdToggleContextC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdToggleContextS"}

Breakpoint Sets or removes a breakpoint at the current line.
Bookmark Displays or removes a bookmark at the active line in the Code window.

Move Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdMoveShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdMoveShortcutS"}

Depending on whether a window or the Toolbox is active when you select the Move command, one of
the following actions occurs:

· Changes the pointer to a so you can move the active window to another location.
· Displays the Page Order dialog box where you can change the order of the pages in your
Toolbox.

You can move the selected page to the left or right of the other pages.

Comment Block and Uncomment Block Commands
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdCommentBlockC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdCommentBlockS"}

Adds and removes the comment character, an apostrophe, for each line of a selected block of text. If
you do not have text selected and you choose the Comment Block or Uncomment Block command,
the comment character is added or removed in the line where the pointer is located.

Comment Block Adds the comment character to each line of a selected block of text.
Uncomment Block Removes the comment character from each line of a selected block of text.

Properties Command (Object Browser Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vacmdPropertiesCommandObjectBrowserShortcutMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdPropertiesCommandObjectBrowserShortcutMenuS"}

Displays the Member Options dialog box where you type a description of the custom member and
give it a Help Context ID and Help File name.

Only available for items containing Basic code.

Help Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdHelpShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdHelpShortcutS"}

Displays the help topic related to the item selected when the Help command is chosen.

View Object and View Code Commands (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdViewObjectShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdViewObjectShortcutS"}

Allows you to view either the Design window or the Code window.

View Object Displays or activates the selected item.
View Code Displays or activates the Code window for a currently selected object.

Dockable Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdDockingViewCommandShortcutC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vacmdDockingViewCommandShortcutS"}

Toggles the ability to dock the active window on and off.

A window is docked when it is attached or "anchored" to one edge of the screen, application window,
or another dockable window. When you move a dockable window, it "snaps" to the location. A window
is not dockable when you can move it anywhere on the screen and leave it there.

Group Members Command (Object Browser Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdGroupMembersShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdGroupMembersShortcutS"}

Toggles the Members of pane between an alphabetical list of the members of the selected class and
a list grouped by the member type.

View Definition Command (Object Browser Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdViewDefintionShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdViewDefintionShortcutS"}

Takes you to the definition of the selected member.

Size Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdSizeShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdSizeShortcutS"}

Changes the pointer so that you can resize the active window or Toolbox.

Copy Command (Object Browser Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdCopyOBShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdCopyOBShortcutS"}

Copies the text for the selected class or member to the Clipboard.

Wildcard Characters used in String Comparisons
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadlgWildcardCharactersC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vadlgWildcardCharactersS"}

Built-in pattern matching provides a versatile tool for making string comparisons. The following table
shows the wildcard characters you can use with the Like operator and the number of digits or strings
they match.

Character(s) in pattern Matches in expression

? Any single character
* Zero or more characters
Any single digit (09)
[charlist] Any single character in charlist
[!charlist] Any single character not in charlist

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to match any
single character in expression and can include almost any characters in the ANSI character set,
including digits. In fact, the special characters opening bracket ([), question mark (?), number sign
(#), and asterisk (*) can be used to match themselves directly only if enclosed in brackets. The closing
bracket (]) can't be used within a group to match itself, but it can be used outside a group as an
individual character.

In addition to a simple list of characters enclosed in brackets, charlist can specify a range of
characters by using a hyphen (-) to separate the upper and lower bounds of the range. For example,
using [A-Z] in pattern results in a match if the corresponding character position in expression contains
any of the uppercase letters in the range A through Z. Multiple ranges can be included within the
brackets without any delimiting. For example, [a-zA-Z0-9] matches any alphanumeric character.

Other important rules for pattern matching include the following:

· An exclamation mark (!) at the beginning of charlist means that a match is made if any character
except those in charlist are found in expression. When used outside brackets, the exclamation
mark matches itself.

· The hyphen (-) can be used either at the beginning (after an exclamation mark if one is used) or at
the end of charlist to match itself. In any other location, the hyphen is used to identify a range of
ANSI characters.

· When a range of characters is specified, they must appear in ascending sort order (A-Z or 0-100).
[A-Z] is a valid pattern, but [Z-A] isn't.

· The character sequence [] is ignored; it's considered to be a zero-length string ("").

Close Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdCloseContextC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdCloseContextS"}

Closes the selected window.

Step Into, Step Over, and Step Out Commands (Debug Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdStepInC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdStepInS"}

Step Into Executes code one statement at a time.
Step Into executes the statement at the current execution point. If the statement is a call to a
procedure, the next statement displayed is the first statement in the procedure.
At design time, this menu item begins execution and enters break modebefore the first line of code
is executed. Not available at run time.

Toolbar button: . Keyboard shortcut: F8.

Step Over Similar to Step Into. The difference in use occurs when the current statement contains a
call to a procedure.
Step Over executes the procedure as a unit, and then steps to the next statement in the current
procedure. Therefore, the next statement displayed is the next statement in the current procedure
regardless of whether the current statement is a call to another procedure. Available in break mode
only.

Toolbar button: . Keyboard shortcut: SHIFT+F8.

Step Out Executes the remaining lines of a function in which the current execution point lies. The
next statement displayed is the statement following the procedure call. All of the code is executed
between the current and the final execution points. Available in break mode only.

Toolbar button: . Keyboard shortcut: CTRL+SHIFT+F8.

Run to Cursor Command (Debug Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdRunToCursorC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdRunToCursorS"}

When your application is in break mode, use Run To Cursor to select a statement further down in your
code where you want execution to stop. Your application will run from the current statement to the
selected statement and the current line of execution margin indicator, , appears in the Margin
Indicator bar.

You can use this command, for example, to avoid stepping through large loops.
Available only in break mode.

Keyboard shortcut: CTRL+F8.

Toggle Breakpoint Command (Debug Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdToggleBreakpointC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdToggleBreakpointS"}

Sets or removes a breakpoint at the current line. You can't set a breakpoint on lines containing
nonexecutable code such as comments, declaration statements, or blank lines.

A line of code in which a breakpoint is set appears in the colors specified in the Editor Format tab of
the Options dialog box.

Not available at run time.

Toolbar shortcut: . Keyboard shortcut: F9.

Clear All Breakpoints Command (Debug Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdClearAllBreakpointsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdClearAllBreakpointsS"}

Removes all breakpoints in your project. Your application may still interrupt execution, however, if you
have set a watch expression or selected the Break on All Errors option in the General tab of the
Options dialog box. You cannot undo the Clear All Breakpoints command. Not available at run time.

Toolbar shortcut: . Keyboard shortcut: CTRL+SHIFT+F9.

Set Next Statement Command (Debug Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdSetNextStatementC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdSetNextStatementS"}

Sets the execution point to the line of code you choose. You can set a different line of code to execute
after the currently selected statement by selecting the line of code you want to execute and choosing
the Set Next Statement command or by dragging the Current Execution Line margin indicator to the
line of code you want to execute.

Using Set Next Statement, you can choose a line of code located before or after the currently
selected statement. When you run the code, any intervening code isn't executed. Use this command
when you want to rerun a statement within the current procedure or to skip over statements you don't
want to execute. You can't use Set Next Statement for statements in different procedures.

Toolbar shortcut: . Keyboard shortcut: CTRL+F9.

Show Next Statement Command (Debug Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdShowNextStatementC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdShowNextStatementS"}

Highlights the next statement to be executed. Use the Show Next Statement command to place the
cursor on the line that will execute next.

Available only in break mode.

Toolbar shortcut: .

Add Watch Command (Debug Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAddWatchC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAddWatchS"}

At design time or in break mode, this command displays the Add Watch dialog box in which you enter
a watch expression. The expression can be any valid Basic expression. Watch expressions are
updated in the Watch window each time you enter break mode.

Toolbar shortcut: .

Edit Watch Command (Debug Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdEditWatchC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdEditWatchS"}

Displays the Edit Watch dialog box in which you can edit or delete a watch expression. Available
when the watch is set even if the Watch window is hidden. Not available at run time.

Toolbar shortcut: . Keyboard shortcut: CTRL+W.

Quick Watch Command (Debug Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdInstantWatchC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdInstantWatchS"}

Displays the Quick Watch dialog box with the current value of the selected expression. Available only
in break mode. Use this command to check the current value of a variable, property, or other
expression for which you have not defined a watch expression. Select the expression from either the
Code window or the Immediate window, and then choose the Quick Watch command. To add a watch
expression based on the expression in the Quick Watch dialog box, choose the Add button.

Toolbar shortcut: . Keyboard shortcut: SHIFT+F9.

Add Watch Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnAddWatchC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnAddWatchS"}

Use to enter a watch expression. The expression can be a variable, a property, a function call, or any
other valid Basic expression. Watch expressions are updated in the Watch window each time you
enter break mode or after execution of each statement in the Immediate window.

You can drag selected expressions from the Code window into the Watch window.

Important When selecting a context for a watch expression, use the narrowest scope that fits your
needs. Selecting all procedures or all modules could slow down execution considerably, since the
expression is evaluated after execution of each statement. Selecting a specific procedure for a
context affects execution only while the procedure is in the list of active procedure calls, which you
can see by choosing the Call Stack command on the View menu.

Dialog Box Options
Expression Displays the selected expression by default. The expression is a variable, a property, a

function call, or any other valid expression. You may enter a different expression to evaluate.
Context Sets the scope of the variables watched in the expression.

· Procedure — Displays the procedure name where the selected term resides (default). Defines
the procedure(s) in which the expression is evaluated. You may select all procedures or a
specific procedure context in which to evaluate the variable.

· Module — Displays the module name where the selected term resides (default). You may select
all modules or a specific module context in which to evaluate the variable.

· Project — Displays the name of the current project. Expressions can't be evaluated in a context
outside of the current project.

Watch Type Determines how Visual Basic responds to the watch expression.
· Watch Expression — Displays the watch expression and its value in the Watch window. When

you enter break mode, the value of the watch expression is automatically updated.
· Break When Value Is True — Execution automatically enters break mode when the expression

evaluates to true or is any nonzero value (not valid for string expressions).
· Break When Value Changes — Execution automatically enters break mode when the value of

expression changes within the specified context.

Edit Watch Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnEditWatchC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnEditWatchS"}

Use to delete or edit the context or type of a watch expression.

Important When selecting a context for a watch expression, use the narrowest scope that fits your
needs. Selecting all procedures or all modules could slow down execution considerably, since the
expression is evaluated after execution of each statement. Selecting a specific procedure for a
context affects execution only while the procedure is in the list of active procedure calls.

Dialog Box Options
Expression Displays the selected expression by default. The expression is a variable, a property, a

function call, or any other valid expression. You may enter a different expression to evaluate.
Context Sets the scope of the variables watched in the expression.

· Procedure — Displays the procedure name where the selected term resides (default). Defines
the procedure(s) in which the expression is evaluated. You may select all procedures or a
specific procedure context in which to evaluate the variable.

· Module — Displays the module name where the selected term resides (default). You may
select all modules or a specific module context in which to evaluate the variable.

· Project — Displays the name of the current project. Expressions can't be evaluated in a context
outside of the current project.

Watch Type Determines how Visual Basic responds to the watch expression.
· Watch Expression — Displays the watch expression and its value in the Watch window. When

you enter break mode, the value of the watch expression is automatically updated.
· Break When Value Is True — Execution automatically enters break mode when the expression

evaluates to true or is any nonzero value (not valid for string expressions).
· Break When Value Changes — Execution automatically enters break mode when the value of

expression changes within the specified context.
Delete Deletes the watch expression.

Quick Watch Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnInstantWatchC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnInstantWatchDialogBoxS"}

Displays the current value of a selected expression. This functionality is useful when debugging your
code if you want to see the current value of a variable, property, or other expression.

Dialog Box Options
Current Context Lists the names of the project, module, and procedure where the watch

expression resides.
Expression Shows the selected expression.
Value Shows the value of the selected expression. The current value isn't displayed if the

expression context isn't within a procedure listed in the Calls dialog box.
Add Adds the expression to the Watch window.

Object Browser
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnObjectBrowserC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnObjectBrowserS"}

Displays the classes, properties, methods, events, and constants available from object libraries and the
procedures in your project. You can use it to find and use objects you create, as well as objects from other
applications.
You can get help for the Object Browser by searching for Object Browser in Help.

Window Elements

Project/Library Box
Displays the currently referenced libraries for the active project. You can add libraries in the
References dialog box. <All Libraries> allows all of the libraries to be displayed at one time.

Search Text Box
Contains the string that you want to use in your search. You can type or choose the string you want.
The Search Text box contains the last 4 search strings that you entered until you close the project.
You can use the standard Visual Basic wildcards when typing a string.

If you want to search for a whole word, you can use the Find Whole Word Only command from the
shortcut menu.

Go Back Button

Allows you to go back to the previous selection in the Classes and Members of lists. Each time you
click it you move back one selection until all of your choices are exhausted.

Go Forward Button

Allows you to repeat your original selections in the Classes and Members of lists each time you click
it, until you exhaust the list of selections.

Copy to Clipboard Button

Copies the current selection in the Members of list or the Details pane text to the clipboard. You can
then paste the selection into your code.

Show Definition Button

Moves the cursor to the place in the Code window where the selection in the Members of list or the
Classes list is defined.

Help Button

Displays the online Help topic for the item selected in the Classes or the Members of list. You can
also use F1.

Search Button

Initiates a search of the libraries for the class or property, method, event or constant that matches the
string you typed in the Search Text box, and opens the Search Results pane with the appropriate list
of information.

Show/Hide Search Results Button

Opens or hides the Search Results pane. The Search Results pane changes to show the search
results from the project or library chosen in the Project/Library list. Search results are listed
alphabetically from A to Z.

Search Results List
Displays the library, class, and member that corresponds to the items that contain your search string.
The Search Results pane changes when you change the selection in the Project/Library box.

Classes List
Displays all of the available classes in the library or project selected in the Project/Libraries box. If
there is code written for a class, that class appears in bold. The list always begins with <globals>, a
list of globally accessible members.

If you select a Class and do not specify a member, you will get the default member if one is available.
The default member is identified by an asterisk (*) or by the default icon specific to the member.

Members of List
Displays the elements of the class selected in the Classes pane by group and then alphabetically
within each group. Methods, properties, events, or constants that have code written for them appear
bold. You can change the order of this list with the Group Members command on the Object Browser
shortcut menu.

Details Pane

Shows the definition of the member. The Details pane contains a jump to the class or library to which
the element belongs. Some members have jumps to their parent class. For example, if the text in
the Details pane states that Command1 is declared as a command button type, clicking on command
button takes you to the Command Button class.

You can copy or drag text from the Details pane to the Code window.

Split Bar
Splits the panes so that you can adjust their size. There are splits between the:

· Classes box and the Members of box.
· Search Results list and the Classes and Members of boxes.
· Classes and Members of boxes and the Details pane.

Calls Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnCallsDialogC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnCallsDialogS"}

Displays a list of currently active procedure calls during break mode. When executing code in a
procedure, that procedure is added to a list of active procedure calls. Each time a procedure calls
another procedure, it is added to the list. Called procedures are removed from the list when execution
returns to the calling procedure. Procedures called from the Immediate window are also added to the
calls list.

Dialog Box Options
Project Module Function Lists the procedures.
Show Moves the insertion point to the location where the call was made and turns on the Call

Stack indicator, .

Member Options Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnMemberOptionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnMemberOptionsS"}

Allows you to add Help information or comments about the procedures, that you define in your
project.

Dialog Box Options
Member Name Displays the name of the item selected in the Classes or the Members of list.
Description Allows you to specify a string that shows up in the Details pane of the Object Browser.
Help File Displays the Help file associated with the item listed in the Member Name box. This is set

in the Help File Name box in the General tab of the Project Properties dialog box.
Help Context ID Assigns a unique numeric value for the context ID. This value is used to find the

appropriate Help topic in the file listed in the Help File box when the user presses F1 or the
button while looking at the procedure in the Object Browser.

Print Setup Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgPrintSetupDialogC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgPrintSetupDialogS"}

Appears whenever you select the Printer Setup command.

Use the Print Setup dialog box to select the printer, page orientation, and paper size.

Dialog box options
Printer Allows you to specify the printer. If you don't select a printer, Visual Basic will print to the

Windows default printer.
· Name — Displays a list of available printers.
· Status — Displays the status of the printer and whether it is ready to print.
· Type — Displays the type of printer.
· Where — Displays the location of the printer. If the printer is on a network, displays the path to

the server.
· Comment — Displays the physical location of the printer and additional information.
· Properties — Opens the Properties dialog box specific to the printer where you can choose

additional options such as paper and the way graphics are printed.

Paper Allows you to select the paper size and source (from among those available for the printer).
The sizes and sources available depend on the printer you have selected and they change when
you change printers.
· Size — Displays a list of the available paper sizes.
· Source — Displays the available source of paper for the printer you choose.

Orientation Allows you to specify whether the program is to print in Portrait or Landscape
orientation.

Customize Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadlgCustomizeDialogBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vadlgCustomizeDialogBoxS"}

Allows you to customize your toolbars and menus.

Tabs
Toolbars Allows you to create, rename, delete, and reset your toolbars.
Commands Contains commands you can drag to your menus and toolbars.
Options Allows you to change the size of your toolbar buttons, to show ToolTips and shortcut keys,

and to add animation to your menus.

Toolbars Tab (Customize Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadlgToolbarsTabCustomizeDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vadlgToolbarsTabCustomizeDialogS"}

Allows you to create, rename, delete, and reset your toolbars,

Tab Options
Toolbars box Displays the toolbars built into Visual Basic and any toolbars you create. When you

show a toolbar, a check mark appears to the left of it.
Note The Menu bar cannot be hidden. It can only be reset.

New Opens the New Toolbar dialog box where you type the name for your new toolbar in the
Toolbar Name box.

Rename Opens the Rename Toolbar dialog box where you type the new name for your toolbar.
Only available if you select a user-defined toolbar.

Delete Deletes a user-defined toolbar from your project. Only available if you select a user-defined
toolbar.

Reset Removes any changes to the built-in toolbars and resets them to their original state. Only
available if you select a built-in toolbar.

Commands Tab (Customize Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadlgCommandsTabCustomizeDialogC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadlgCommandsTabCustomizeDialogS"}

Allows you to add controls and modify existing controls on the Menu bar or any toolbar. You can also
modify the button image and text of your added commands.

Tab Options
Categories Lists the different command categories.

Commands Lists the controls available for the category you select in the Categories list. You can
drag the command to the toolbar where you want the command to reside. To add the command to
a menu, drag it over the menu's title and then into the location in the menu that appears.

Description Displays a QuickTip for the currently selected control.

Modify Selection Allows you to change the selected command.
· Reset — Resets the command to the default.
· Delete — Deletes the command.
· Name — Changes the name of the control to the name you type into the box. By using the

ampersand (&), you can also set shortcut keys.
· Copy Button Image — Copies the button image to the Clipboard.
· Paste Button Image — Pastes the button image from the Clipboard.
· Reset Button Image — Resets the button image to its default setting.
· Edit Button Image — Displays the Button Editor dialog box.
· Change Button Image — Displays a list of button images from which you can select a different

image for your button.
· Default Style — For toolbar buttons, shows only the icon. For menu items, shows the icon and

the name.
· Text Only (Always) — Shows the command name only.
· Text Only (in Menus) — Hides the icon, if any, for menu items. This options has no effect on

toolbar buttons.
· Image and Text — For toolbars, shows both the icon and name. This option has no effect on

menu items.

· Begin a Group — For toolbars, puts a separator line before the control. Dimmed when the
control is at the beginning of the toolbar.

Options Tab (Customize Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadlgOptionsTabCustomizeDialogBoxC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vadlgOptionsTabCustomizeDialogBoxS"}

Allows you to change the appearance of your menu bar and toolbars.

Tab Options
Large Icons Changes the toolbar icons to a larger size.
Show ScreenTips on toolbars Turns ScreenTips off and on.
Show shortcut keys in ScreenTips Displays the shortcut keys on the menus.
Menu animations Lists available animations you can apply to your menu bar.

Project Properties Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgProjectPropertiesDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgProjectPropertiesDialogS"}

Specifies the settings for a specific project.

New Toolbar Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadlgNewToolbarC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vadlgNewToolbarS"}

Allows you to give your new toolbar a name.

Dialog Box Option
Toolbar name You can type the name for your new toolbar or use the default name. The default

name changes for each custom toolbar, for example, Custom1, Custom2 and so on.

Rename Toolbar Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgRenameToolbarShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgRenameToolbarShortcutS"}

Allows you to rename your custom toolbars.

Dialog Box Option
Toolbar name Type a new name for your toolbar.

Font Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadlgFontDialogC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vadlgFontDialogS"}

Use to change the fonts, the font size, and/or the font style you use for text and data fields.

Dialog Box Options
Font Lists all the fonts that you have installed for Windows. When the box first appears, the font

already in use for the selected element is highlighted.
Font Style Lists four additional attributes that you can assign to the font selected:

· Regular — Standard, unmodified style
· Bold — Boldface
· Italic — Italic
· Bold Italic — Bold Italic

Size Lists common point sizes for the highlighted font. When the box first appears, the point size
for the font already in use for the selected element is highlighted, and the highlighted point size
appears in the edit box at the top.
You can select directly from the list or type the new point size in the edit box at the top (if you know
that you have additional sizes installed for the currently selected printer or if you are using scalable
type).

Effects Lists two additional options that you can use for highlighting the selected font.
· Strikeout — Prints the strikeout character across the font
· Underline — Underlines the font
You may select as many of the Effects as you wish.

Sample Displays a sample of the font you have selected. The sample shows the font, style, size,
effects, and color you have specified. You can use this box to preview the results as you
experiment with different formatting options.

Script Displays a list of available scripts.
OK Applies the font changes to the selected report element.
Cancel Cancels all font changes and leaves the report unchanged.

Icons Used in the Object Browser and Code Windows
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscIconsUsedInObjectBrowserC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscIconsUsedInObjectBrowserS"}

The Object Browser and Code window contain many icons that represent classes and members. The
following is a list of icons and what they represent.

This
Icon:

Represents a:

Property

Default Property

Method

Default Method

Event

Constant

Module

Class

User Defined Type

Global

Library

Project

Built-in keywords and types

Enum

Redo and Undo Commands (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdCut;vbcmdUndoC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdUndoS"}

Undo Reverses the last editing action, such as typing text in the code window or deleting controls.
When you delete one or more controls, you can use the Undo command to restore the controls and
all their properties. For forms, Undo is unavailable if the form has been edited since the last control
deletion.

Toolbar shortcut . Keyboard shortcuts: CTRL+Z or ALT+BACKSPACE.

Note You can't undo a Cut operation using the Undo command.

Redo Restores the last text editing if no other actions have occurred since the last Undo.

Toolbar shortcut .

For text edits, you can use Undo and Redo to restore up to twenty edits.
These commands are unavailable at runtime, or if there was no previous edit, or if any other action has
been performed after the last edit. Also, some large edits may cause low memory conditions that could
prevent an Undo action.

Cut, Copy, Paste, and Delete Commands (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdCutC"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdCutS"}

Cut Removes the selected control or text and places it on the Clipboard. You must select at least
one character or control for this command to be available. You can undo the Cut command only in
the Code window.

Toolbar shortcut: . Keyboard shortcut: CTRL+X or SHIFT+DELETE

Copy Copies the selected control or text onto the Clipboard. You must select at least one character
or control for this command to be available. You cannot undo the Copy command in the Code
window.

Toolbar shortcut: . Keyboard shortcut: CTRL+C or CTRL+INSERT.

Paste Inserts the contents of the Clipboard at the current location. Text is placed at the insertion
point.
Pasted controls are placed at the upper-left corner of the active form. You can keep the same
control name and create a control array, or paste the control with a different name.
You can undo the Paste command only in the Code window.

Toolbar shortcut: . Keyboard shortcut: CTRL+V or SHIFT+INS.

Delete Deletes the currently selected control, text, or watch expression. You can undo the Delete
command only in the Code window.

Note To delete a file from your disk, use the standard deletion procedures for your operating
system.

Toolbar shortcut: . Keyboard shortcut: DEL.

Not available at run time.

Find and Find Next Commands (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdFindC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdFindS"}

Find Searches for the specified text in a search range specified in the Find dialog box.
If a search is successful, the Find dialog box closes and Visual Basic selects the located text. If no
match is found, Visual Basic displays a message stating that the text was not found.

Toolbar shortcut: . Keyboard shortcut: CTRL+F.

Find Next Finds and selects the next occurrence of the text specified in the Find What box of the
Find dialog box.

Toolbar shortcut: . Keyboard shortcuts: F3 (Find Next) or SHIFT+F3 (Find Previous).

Dialog Box Options
Find What Type or insert the information you want to find, or click the down arrow and select from

the last four entries. If any text is selected or the cursor is on a word when you choose the
command, this text is displayed in the Find What box.

Search Specifies the search range.
· Current Procedure—Searches only the current procedure.
· Current Module—Searches only the current module.
· Current Project—Searches all the modules in your project.
· Selected Text—Searches a selected range of code in your project.

Direction Sets the direction of the search to Down or Up from the location of the cursor, or All in
the selected search range.

Find Whole Word Only Searches for the full word by itself and not as part of a larger word.
Match Case Finds all occurrences with the exact combination of uppercase and lowercase letters

specified in the Find What box.
Use Pattern Matching Searches using pattern-matching characters.
Find Next Finds and selects the next occurrence of the text specified in the Find What box.
Cancel Closes the dialog box without performing the search.
Replace Displays the Replace dialog box, retaining the information typed in the Find What dialog

box.

Replace Command (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdReplaceC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdReplaceS"}

Searches code in the project for the specified text and replaces it with the new text specified in the
Replace dialog box.

Toolbar shortcut: . Keyboard shortcut: CTRL+H.

Dialog Box Options
Find What Type or insert the information you want to find, or click the down arrow and select from

the last four entries. If any text is selected or the cursor is on a word when you choose the
command, this text is displayed in the Find What box.

Replace With Type the text you want to use as the replacement text or paste it from the Clipboard.
To delete the text in the Find What box from the document, leave the Replace With box empty.

Search Specifies the search range.
· Current Procedure—Searches only the current procedure.
· Current Module—Searches only the current module.
· Current Project—Searches all the modules in your project.
· Selected Text—Searches a selected range of code in your project.

Direction Sets the direction of the search to Down, Up, or All in the selected search range.
Find Whole Word Only Searches for the full word by itself and not as part of a larger word.
Match Case Finds all occurrences with the exact combination of uppercase and lowercase letters

specified in the Find What box.
Use Pattern Matching Searches using pattern-matching characters.
Find Next Finds and selects the next occurrence of the text specified in the Find What box.
Cancel Closes the dialog box without replacing text.
Replace Confirms before replacing the search text with the replacement text.
Replace All Replaces all occurrences of the search text with the replacement text without stopping

for confirmation.

Indent Command (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdIndentC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdIndentS"}

Shifts all lines in the selection to the next tab stop. All lines in the selection are moved the same
number of spaces to retain the same relative indentation within the selected block.

You can change the tab width on the Editor tab of the Options dialog box.

Toolbar shortcut: . Keyboard shortcuts: CTRL+M.

Outdent Command (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdOutdentC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdOutdentS"}

Shifts all lines in the selection to the previous tab stop. All lines in the selection are moved the same
number of spaces to retain the same relative indentation within the selected block.

You can change the tab width on the Editor tab of the Options dialog box.

Toolbar shortcut: . Keyboard shortcuts: CTRL+SHIFT+M.

Bookmarks Commands (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdBookmarksC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdBookmarksS"}

Displays a menu that you can use to create or remove placeholders in the Code window, move to the
next or preceding bookmark, or clear all of the bookmarks.

When you add a bookmark, a appears next to the line where the bookmark is inserted.

Toggle Bookmark Toggles a bookmark on or off.

Toolbar button:
Next Bookmark Moves the insertion point to the next bookmark.

Toolbar button:
Previous Bookmark Moves the insertion point to the previous bookmark.

Toolbar button:
Clear All Bookmarks Removes all bookmarks.

Toolbar button:

Select All Command (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdSelectAllC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdSelectAllS"}

Selects all of the code in the active Code window.

List Properties/Methods Command (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdSelectMemberC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdSelectMemberS"}

Opens a dropdown list box in the Code window that contains the properties and methods available for
the object that precedes the period (.). The List Properties/Methods command also displays a list of
the globally available methods when the pointer is on a blank space. To have the list box
automatically open as you type your code, select Auto List Members on the Editor tab in the Options
dialog box.

You can find the property or method you want in the list box by:

· Typing the name. As you type, the property or method that matches the characters you type is
selected and moves to the top of the list.

· Using the up and down arrow keys to move up and down in the list.
· Scrolling through the list and selecting the property or method you want.

You can insert the property or method into your statement by:

· Double-clicking the property or method.
· Selecting the property or method and pressing TAB to insert the selection or pressing ENTER to

insert the selection and move to the next line.

Note Objects of the type Variant do not show a list after the period (.).

Toolbar shortcut: . Keyboard shortcut: CTRL+J.

List Constants Command (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdSelectConstantC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdSelectConstantS"}

Opens a dropdown list box in the Code window that contains the valid constants for a property that
you typed, and that preceded the equal sign (=). The List Constants command also works for
functions with arguments that are constants. To have the list box automatically open as you type your
code, select Auto List Members on the Editor tab in the Options dialog box.

You can find the constant you want by:

· Typing the name.
· Using the up and down arrow keys to move up and down in the list.
· Scrolling through the list and selecting the constant you want.

You can insert the constant into your code statement by:

· Double-clicking the constant.
· Selecting the constant and pressing TAB to insert the selection or pressing ENTER to insert the

selection and move to the next line.

Toolbar shortcut: . Keyboard shortcut: CTRL+SHIFT+J.

Quick Info Command (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdQuickInfoC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdQuickInfoS"}

Provides the syntax for a variable, function, statement, method, or procedure selected in the Code
window.

Quick Info shows the syntax for the item and highlights the current parameter. For functions and
procedures with parameters, the parameter appears bold as you type it, until you type the comma
used to delineate it from the next parameter.

To have Quick Info automatically appear as you type your code, select Auto Quick Info on the Editor
tab in the Options dialog box.

Toolbar shortcut: . Keyboard shortcut: CTRL+I.

Parameter Info Command (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdParameterInfoC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdParameterInfoS"}

Shows a popup in the Code window that contains information about the parameters of the initial
function or statement. If you have a function or statement that contains functions as its parameters,
choosing Parameter Info provides information about the first function. Quick Info provides information
about each embedded function.

As you type a parameter it is bold until you type the comma used to delineate it from the next
parameter

The Parameter Info, once activated, will not close until:

· All of the required parameters are entered.
· The function is ended without using all of the optional parameters.
· You press ESC.

Toolbar shortcut: . Keyboard shortcut: CTRL+SHIFT+I.

Complete Word Command (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdCompleteWordC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdCompleteWordS"}

Fills in the rest of the word you are typing once you have entered enough characters for Visual Basic
to identify the word you want.

Toolbar shortcut: . Keyboard shortcut: CTRL+SPACEBAR.

Print Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdPrintC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdPrintS"}

Prints forms and code to the printer specified in the Microsoft Windows Control Panel. Available only
at design time.

Toolbar shortcut: . Keyboard shortcut: CTRL+P.

Dialog Box Options
Printer Identifies the printer to which you are printing.
Range Determines the range you print:

· Selection — Prints the currently selected code.
· Current Module — Prints the forms and/or code for the currently selected module.
· Current Project — Prints the forms and/or code for the entire project.

Print What Determines what you print. You can select as many options as you like, depending on
what you selected as the Range.
· Form Image — Prints the form images.
· Code — Prints the code for the selected range.

Print Quality Determines whether you print high, medium, low, or draft output quality.
Print to File If selected, print is sent to the file specified in the Print To File dialog box. This dialog

box appears after you choose OK in the Print dialog box.
OK Prints your selection.
Cancel Closes the dialog box without printing.
Setup Displays the standard Print Setup dialog box.

Align Commands (Format Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAlignC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAlignS"}

Aligns selected objects with each other using the last selected object, the one with the solid color grab
handles, as the reference. The color of the grab handles is based on the color you set from Selected
Items on the Appearance tab of the Display Properties dialog box in the Control Panel.

Lefts Aligns the horizontal position of the selected objects, putting the left-most edges in line with
the last selected object, the one with the solid color grab handles.

Toolbar shortcut: .
Centers Aligns the horizontal position of the selected objects, putting the centers in line with the

last selected object, the one with the solid color grab handles.

Toolbar shortcut: .
Rights Aligns the horizontal position of the selected objects, putting the right-most edges in line

with the last selected object, the one with the solid color grab handles.

Toolbar shortcut: .
Tops Aligns the vertical position of the selected objects, putting the tops in line with the last

selected object, the one with the solid color handles.

Toolbar shortcut: .
Middles Aligns the vertical position of selected objects, putting the middles in line with the last

selected object, the one with the solid color grab handles.

Toolbar shortcut: .
Bottoms Aligns the vertical position of the selected objects, putting the bottoms in line with the last

selected object, the one with the solid color grab handles.

Toolbar shortcut: .
To Grid Aligns the top left of the selected objects to the closest grid. The object is not resized.

Toolbar shortcut: .

Make Same Size Commands (Format Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdMakeSameSizeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdMakeSameSizeS"}

Using the last object selected, the object with the solid color grab handles, makes the selected
objects the same size in the dimension you select. The color of the grab handles is based on the color
you set from Selected Items on the Appearance tab of the Display Properties dialog box in the Control
Panel.

Width Adjusts width.

Toolbar shortcut: .
Height Adjusts height.

Toolbar shortcut: .
Both Adjusts both the width and the height.

Toolbar shortcut: .

Horizontal Spacing Commands (Format Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdHorizontalSpacingC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdHorizontalSpacingS"}

Changes the horizontal space between selected objects.

Make Equal Moves the selected objects so that there is equal space between them using the
outermost objects as endpoints. The outermost objects do not move.

Toolbar shortcut: .
Increase Increases horizontal spacing by one grid unit based on the object with focus. When an

object has focus, black handles appear on its borders. You can change the size of your grid units in
the General tab of the Options dialog box.

Toolbar shortcut: .
Decrease Decreases horizontal spacing by one grid unit based on the object with focus. When an

object has focus, black handles appear on its borders. You can change the size of your grid units in
the General tab of the Options dialog box.

Toolbar shortcut: .
Remove Removes the horizontal space so that the objects are aligned with their edges touching

based on the object with focus. When an object has focus, black handles appear on its borders.

Toolbar shortcut: .

Note The object with focus does not move but the other objects move around it.

Note If using the Horizontal Spacing command does not produce the results you want, try to
manually rearrange some of the objects and repeat the command. Also, try the using the Vertical
Spacing command.

Vertical Spacing Commands (Format Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdVerticalSpacingC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdVerticalSpacingS"}

Changes the vertical space between the selected objects, based on the object with focus. When an
object has focus, black handles appear on its borders.

Make Equal Moves the selected objects so that there is equal space between them using the top
and bottoms objects as the end points. The top and bottom objects do not move.

Toolbar shortcut: .
Increase Increases the vertical spacing by one grid based on the object with focus. You can

change the size of your grid units in the General tab of the Options dialog box.

Toolbar shortcut: .
Decrease Decreases the vertical spacing by one grid based on the object with focus. You can

change the size of your grid units in the General tab of the Options dialog box.

Toolbar shortcut: .
Remove Removes the vertical spacing so that the object’s borders are touching, based on the

object with focus

Toolbar shortcut: .

Note The object with focus does not move but the other objects move around it.

Note If using the Vertical Spacing command does not produce the results you want, try to manually
rearrange some of the objects and repeat the command. Also, try the using the Horizontal Spacing
command.

Center in Form Commands (Format Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdCenterC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdCenterS"}

Centers selected objects on the central axes of the form.

Horizontally Aligns the middles of the selected objects to a horizontal line in the middle of the form.

Toolbar shortcut: .
Vertically Aligns the centers of the selected objects to a vertical line in the center of the form.

Toolbar shortcut: .

Size to Grid Command (Format Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdSizeToGridC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdSizeToGridS"}

Adjusts the height and width of the selected object to fit the nearest gridlines in the form. You can
change the size of your grid on the General tab of the Options dialog box.

Not available in break mode.

Toolbar shortcut: .

Order Command (Format Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdOrderC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vacmdOrderS"}

Changes the order of the selected objects on a form.

Bring To Front Moves the selected objects to the front of all other objects on a form.

Toolbar shortcut: . Keyboard shortcut: CTRL+J.
Send To Back Moves the selected objects behind all other objects on a form.

Toolbar shortcut: . Keyboard shortcut: CTRL+K.
Note These commands work only with selected objects at design time. In code, you can use the
ZOrder method to move forms to the front or back of other forms and objects to the front or back of
other objects.

Visual Basic Menus
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxVisualBasicMenusC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbidxVisualBasicMenusS"}

File Menu

Edit Menu

View Menu
Project Menu
Format Menu
Debug Menu
Run Menu

Tools Menu
Add-Ins Menu
Window Menu
Help Menu

File Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"cmdFileMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"cmdFileMenuS"}

New Project
Open Project
Add Project
Remove Project
Save Project/Save Project Group
Save Project As/Save Project Group As
Save
Save As
Print
Print Setup
Make Project
Make Project Group
File 1, 2, 3, 4

Exit

Edit Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"cmdEditMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"cmdEditMenuS"}

Undo
Redo
Cut
Copy
Paste
Paste Link
Delete
Select All
Find
Find Next
Replace
Indent
Outdent
Insert File
List Properties/Methods
List Constants
Quick Info
Parameter Info
Complete Word
Bookmarks

View Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"cmdViewMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"cmdViewMenuS"}

Code
Object
Definition
Last Position
Object Browser
Immediate Window
Locals Window
Watch Window
Call Stack
Project Explorer
Properties Window
Form Layout Window
Property Pages
Toolbox
Color Palette
Toolbars

Run Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"cmdRunMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"cmdRunMenuS"}

Start
Start With Full Compile
Break
End
Restart

Tools Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"cmdToolsMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"cmdToolsMenuS"}

Add Procedure
Procedure Attributes
Menu Editor
Options

Add-Ins Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"cmdAddInsMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"cmdAddInsMenuS"}

Visual Data Manager
Add-In Manager

Format Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdFormatMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdFormatMenuS"}

Align
Make Same Size
Size to Grid
Horizontal Spacing
Vertical Spacing
Center in Form
Order
Lock Controls

Debug Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnDebugMenuC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnDebugMenuS"}

Step Into
Step Over
Step Out
Run To Cursor
Add Watch
Edit Watch
Quick Watch
Toggle Breakpoint
Clear All Breakpoints
Set Next Statement
Show Next Statement

Project Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdProjectMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdProjectMenuS"}

Add Form
Add MDI Form
Add Module
Add Class Module
Add User Control
Add Property Page
Add User Document
Add ActiveX Designer
Add File
Remove <Item>
References
Components
<Project> Properties

Code Window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnCodeWindowC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnCodeWindowS"}

Use the Code window to write, display, and edit Visual Basic code. You can open as many Code
windows as you have modules, so you can easily view the code in different forms or modules, and
copy and paste between them.

You can open a Code window from:

· The Project window, by selecting a form or module, and choosing the View Code button.
· A Form window, by double-clicking a control or form, choosing Code from the View menu, or

pressing F7.

You can drag selected text to:

· A different location in the current Code window.
· Another Code window.
· The Immediate and Watch windows.
· The Recycle Bin.

Window Elements
Object Box
Displays the name of the selected object. Click the arrow to the right of the list box to display a list of
all objects associated with the form.

Procedures/Events Box
Lists all the events recognized by Visual Basic for a form or control displayed in the Object box. When
you select an event, the event procedure associated with that event name is displayed in the Code
window.

If (General) is displayed in the Object box, the Procedure box lists any declarations and all of the
general procedures that have been created for the form. If you are editing module code, the
Procedure box lists all of the general procedures in the module. In either case, the procedure you
select in the Procedure box is displayed in the Code window.

All the procedures in a module appear in a single, scrollable list that is sorted alphabetically by name.
Selecting a procedure using the drop down list boxes at the top of the Code window moves the cursor
to the first line of code in the procedure you select.

Split Bar
Dragging this bar down, splits the Code window into two horizontal panes, each of which scrolls
separately. You can then view different parts of your code at the same time. The information that
appears in the Object box and Procedures/Events box applies to the code in the pane that has the
focus. Dragging the bar to the top or the bottom of the window or double-clicking the bar closes a
pane.

Margin Indicator Bar
A gray area on the left side of the Code window where margin indicators are displayed.

 Procedure View Icon
Displays the selected procedure. Only one procedure at a time is displayed in the Code window.

 Full Module View Icon
Displays the entire code in the module.

Immediate Window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnImmediateWindowC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnImmediateWindowS"}

Automatically opens in break mode and is empty.

You can:

· Type or paste a line of code and press ENTER to run it.
· Copy and paste the code from the Immediate window into the Code window but you cannot save

code in the Immediate window.

The Immediate window can be dragged and positioned anywhere on your screen unless you have
made it a dockable window from the Docking Tab of the Options dialog box.

You can close the window by clicking the Close box. If the Close box is not visible, double-click the
Title bar to make the Close box visible, then click it.

Note In break mode, a statement in the Immediate window is executed in the context or scope that
is displayed in the Procedure box. For example, if you type Print variablename, your output is the
value of a local variable. This is the same as if the Print method had occurred in the procedure you
were executing when the program halted.

Locals Window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnLocalsWindowC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnLocalsWindowS"}

Automatically displays all of the declared variables in the current procedure and their values.

When the Locals window is visible, it is automatically updated every time there is a change from Run
to Break mode or you navigate in the stack display

You can:

· Resize the column headers by dragging the border to the right or the left.
· Close the window by clicking the Close box. If the Close box is not visible, double-click the Title bar

to make the Close box visible, then click it.

Window Elements
Calls Stack Button Opens the Call Stack dialog box which lists the procedures in the call stack.
Expression Lists the name of the variables.

The first variable in the list is a special module variable and can be expanded to display all module
level variables in the current module. For a class module, the system variable <Me>is defined. For
standard modules, the first variable is the <name of the current module>. Global variables
and variables in other projects are not accessible from the Locals window.
You cannot edit data in this column.

Value List the value of the variable.
When you click on a value in the Value column, the cursor changes to an I-beam. You can edit a
value and then press ENTER, the UP ARROW key, the DOWN ARROW key, TAB, SHIFT+TAB, or click on
the screen to validate the change. If the value is illegal, the Edit field remains active and the value
is highlighted. A message box describing the error also appears. Cancel a change by pressing ESC.
All numeric variables must have a value listed. String variables can have an empty Value list.
Variables that contain subvariables can be expanded and collapsed. Collapsed variables do not
display a value but each subvariable does. The expand icon, and the collapse icon,

 appear to the left of the variable.
Type Lists the variable type. You cannot edit data in this column.

Watch Window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnWatchWindowC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnWatchWindowS"}

Appears automatically when watch expressions are defined in the project.

You can:

· Change the size of the column headers by dragging its border to the right to make it larger or to the
left to make it smaller.

· Drag a selected variable to the Immediate window or the Watch window
· Close the window by clicking the Close box. If the Close box is not visible, double-click the Title bar

to make the Close box visible, then click it.

Window Elements

Expression Lists the watch expression with the Watch icon, on the left.
Value List the value of the expression at the time of the transition to break mode.

You can edit a value and then press ENTER, the UP ARROW key, the DOWN ARROW key, TAB,
SHIFT+TAB, or click somewhere on the screen to validate the change. If the value is illegal, the Edit
field remains active and the value is highlighted. A message box describing the error also appears.
Cancel a change by pressing ESC.

Type Lists the expression type.
Context Lists the context of the watch expression.

If the context of the expression isn't in scope when going to break mode, the current value isn't
displayed.
You can close the window by clicking the Close box. If the Close box is not visible, double-click the
Title bar to make the Close box visible, then click it.

Margin Indicators
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vargnMarginWidgetsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vargnMarginWidgetsS"}

Visual Basic contains margin indicators that provide visual cues to certain actions during the editing of
your code. If more than one action occurs on a line, the appropriate indicators also appear.

The margin indicators appear in the Margin Indicator bar on left side of the Code window.

You can turn the Margin Indicator Bar on and off in the Editor Format tab of the Options dialog box.

Margin
Indicator

Margin Indicator Name Description

Breakpoint Indicates that you have set a breakpoint using
the Toggle Breakpoint command on the Debug
menu. You can toggle the breakpoint by placing
your mouse pointer in the margin indicator
region and clicking.

Current line of execution Indicates the line of code that will be executed
next. You can drag this margin indicator to a
new location within any running code module. If
you drag the Current line of execution margin
indicator to any non-valid region or line, nothing
happens and the indicator returns to the original
location.

Bookmark Indicates the location of a bookmark set using
the Toggle Bookmark command on the Edit
menu.

Call Stack Marker Indicates lines that are currently in the call
stack. The Call Stack Marker indicator appears
only in break mode.

Data Tips Window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vargnAutoVariableWindowC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vargnAutoVariableWindowS"}

A box that displays the value of the variable over which your cursor is placed.

For example, if you set x=5 and then set breakpoint before the end of your code, when you run your
code and place your cursor over the “x”, the value 5 appears in the Data Tips window.

Available in break mode.

Project Explorer
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnProjectWindowC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnProjectWindowS"}

Displays a hierarchical list of the projects and all of the items contained in a project.

Window Elements

 View Code
Displays the Code window so you can write and edit code associated with the selected item.

 View Object
Displays the Object window for the selected item, an existing form, module, ActiveX object, or user
control.

 Toggle Folders
Hides and shows the object folders while still showing the individual items contained within them.

List window
Lists the all loaded projects and the items included in each project.

Project
The project and items contained within it.
· Forms

All .frm files associated with the project.
· Modules

All .bas modules for the project.
· Class Modules

All .cls files for the project.
· User Controls

All user controls for the project.
· User Documents

All document objects, .dob files, in the project.
· Property Pages

All property pages, .pag files, in the project.
· Related Documents

Lists all documents to which you want a pointer. The path to the document is stored rather than
the document itself. When you click View Object, Visual Basic searches the registry for the
document type and executes the appropriate open command. You can place any valid document
type in the project.

· Resources
Lists all of the resources you have in your project.

Note A check mark to the left of a filename in the Project Explorer indicates that the file is checked
out of a version control project, and currently has read/write status. The check mark is only displayed
if you are connected to a version control program, such as Microsoft Visual SourceSafe, which is
included with the Enterprise Edition of Visual Basic.

Properties Window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnPropertiesWindowC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnPropertiesWindowS"}

Lists the design-time properties for selected objects and their current settings. You can change these
properties at design time. When you select multiple controls, the Properties window contains a list of
the properties common to all the selected controls.

Window Elements

Object Box
Lists the currently selected object. Only objects from the active form are visible. If you select multiple
objects, the properties common to the objects and their settings, based on the first object selected,
appear on the Properties List tabs.

Properties List Tabs
· Alphabetic Tab — Alphabetically lists all properties for the selected object that can be changed at

design time, as well as their current settings. You can change the property setting by selecting the
property name and typing or selecting the new setting.

· Categorized Tab — Lists all properties for the selected object by category. For example,
BackColor, Caption, and ForeColor are in the Appearance category. You can collapse the list so
that you see the categories or you can expand a category to see the properties. When you expand
or collapse the list, you see a plus (+) icon or minus (-) icon to the left of the category name.

Description Pane
Shows the property type and a short description of the property. You can turn the description of the
property off and on using the Toggle Status command on the shortcut menu. You can move through
the list of descriptions by pressing the ARROW keys.

Data Types Displayed in Locals Window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vamscDataTypesInLocalsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vamscDataTypesInLocalsS"}

The following is a list of data types and their default state when they are displayed in the Locals
window.

Data Type Default State
Currency Value is displayed.
Double Value is displayed.
Integer Value is displayed
Long Value is displayed.
Single Value is displayed.
String Value is displayed.
UDT No value is displayed. Non-editable. Collapsed.
Variant Value is displayed.
Object No value is displayed. Non-editable. Collapsed.
Decimal Value is displayed.
Array No value is displayed. Non-editable. Collapsed.

General Tab (Project Properties Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgGeneralTabProjectSettingsDialogC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgGeneralTabProjectSettingsDialogS"}

Specifies the settings for the current Visual Basic project. The name of the project is displayed in the
title bar.

Tab Options
Project Type Sets the project type. You can change any project type to another project type. When

you change a project type, all associated changes are made automatically. If items are invalid in
the new project type, they remain part of the project but you cannot add new instances. If you have
properties in the current project that are not valid in the new project, you will get a message
suggesting that you do not make the change.

Startup Object Sets which form or Sub/Main in the current project runs first.
Project Name Identifies your component in the Windows Registry and the Object Browser. It is

important that it has a unique name.
The project name is the name of the type library for your component. The type library, or TypeLib,
contains the description of the objects and interfaces provided by your component.
It is also used to qualify the names of classes. A combination of project name and class name is
sometimes referred to as a fully qualified class name, or as a programmatic ID. The fully qualified
class name may be required to correctly identify an object as belonging to your component.

Help File Name Displays the name of the Help file associated with the project.
Project Help Context ID Lists the context ID for the specific Help topic to be called when the user

selects the button while the application’s object library is selected in the Object Browser.
Project Description Sets the descriptive text that is displayed in the Description pane at the bottom of
the Object Browser.

You can use the Project Description as the description for ActiveX components. If you are creating
an ActiveX control, it is the text that appears in the Components dialog box.
If you are creating an ActiveX DLL or ActiveX EXE, this text appears in the References dialog box.

Project Load Allows you to set the following conditions when a project is loaded.
· Upgrade ActiveX Controls — Enables upgrading of the ActiveX controls.
· Require License Key — Enables licensing for a project that produces ActiveX components

(automation servers, user controls, or ActiveX controls). A Visual Basic license file (*.vbl) will be
created when you build the file. The *.vbl must be registered on the user’s machine for the
components to be used. The SetUp Wizard registers the *.vbl file.

Unattended Execution Indicates that the project is intended to run without user interaction.
Unattended projects have no interface elements. Any runtime functions such as messages that
normally result in user interaction are written to an event log.

· Thread per Object — Indicates that each instance of a class marked as Multiuse in the Instancing
property will be created on a new and distinct thread. Each thread has a unique copy of all global
variables and objects, and will not interfere with any other thread.

· Thread Pool — Indicates that each instance of a class marked as Multiuse in the Instancing
property will be created on a thread from the thread pool. The choice of thread is determined in a
round robin fashion. Each thread has a unique copy of all global variables, but multiple instances
reside on a given thread and can potentially interfere with each other.

· Number of threads — Determines the maximum number of threads created for the thread pool.
When a Multiuse class is instantiated, threads are created as needed up to the number set here.
After the maximum number is reached, Visual Basic begins assigning new instances to existing
threads.

Load Picture, Load Icon Dialog Boxes
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vadlgLoadPictureLoadIconDialogsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vadlgLoadPictureLoadIconDialogsS"}

Loads an existing picture or icon file.

Dialog Box Options
Look in
Select the location of the picture you want to open.

Up One Level

Shows a list of folders or drives one level above the current folder.

Create New Folder

Creates a new folder.

List

Shows the folders or files in a list format that includes the icon and its name.

Details

Shows the folders or files in a list that includes the icon and name, its size, type, and the date and
time it was last modified.

File name
Select or type the name of a picture file you want to open.

List files of type
Select a file type. Files of the selected type appear in the File name list box.

· All Picture Files (*.bmp, *.dib, *.wmf, *.emf, *.ico, *.cur)—Lists all picture files.

· Bitmaps(*.bmp, *.dib)—Lists bitmaps and DIBs.
· Metafiles (*.wmf, *.wmf)—Lists Microsoft Windows Metafiles.
· Icons (*.ico, *.cur)—Lists the icons.
· All Files (*.*)—Lists files of all types.

Open
Opens the selected file.

Cancel
Closes the dialog box without loading a picture file.

References Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnAddReferencesC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnAddReferencesS"}

Allows you to select another application's objects that you want available in your code by setting a
reference to that application's object library.

Dialog Box Options
Available References Lists the references available to your project.

· After you set a reference to an object library by selecting the check box next to its name, you
can find a specific object and its methods and properties in the Object Browser.

· If you are not using any objects in a referenced library, you should clear the check box for that
reference to minimize the number of object references Visual Basic must resolve, thus reducing
the time it takes your project to compile. You can't remove a reference for an item that is used in
your project.

· If you remove a reference to an object that your are currently using in your project, you will
receive an error the next time you refer to that object.

· References not in use are listed alphabetically.

Note You can't remove the "Visual Basic for Applications" and "Visual Basic objects and
procedures" references, because they are necessary for running Visual Basic.

Priority Buttons Moves references up, , and down,

, on the list. When you refer to an object in code, Visual Basic searches each referenced object
selected in the References dialog box in the order the referenced objects are displayed. If two referenced
objects use the same name, Visual Basic uses the definition provided by the referenced object listed
higher in the Available References box.

Result Displays the name and path of the reference selected in the Available References box, as

well as the language version.
Browse Displays the Add Reference dialog box so that you can search other directories for and

add references to the Available Resources box for the following types:
· Type Libraries (*.olb, *.tlb, *.dll)
· Executable Files (*.exe, *.dll)
· ActiveX Controls (*.ocx)
· All Files (*.*)
The Add References dialog box is the Open common dialog box.

Break Command (Run Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdBreakC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdBreakS"}

Stops execution of a program while it's running and switches to break mode. Any statement being
executed when you choose this command is displayed in the Code window with in the left margin if
you checked Margin Indicator Bar in the Editor Format tab of the Options dialog box. If the application
is waiting for events in the idle loop (no statement is being executed), no statement is highlighted until
an event occurs.

Some editing changes made in break mode may require you to restart your program for the changes to
take effect.

This command is available only at run time.

Toolbar button: Keyboard shortcut: CTRL+BREAK.

Code Window Keyboard Shortcuts
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdShortcutS"}

You can use the following shortcut keys to access commands in the Code window.

Description Shortcut Keys
View Code window F7

View Object Browser F2

Find CTRL+F

Replace CTRL+H

Find Next F3

Find Previous SHIFT+F3

Next procedure CTRL+DOWN ARROW

Previous procedure CTRL+UP ARROW

View definition SHIFT+F2

Shift one screen down CTRL+PAGE DOWN

Shift one screen up CTRL+PAGE UP

Go to last position CTRL+SHIFT+F2

Beginning of module CTRL+HOME

End of module CTRL+END

Move one word to right CTRL+RIGHT ARROW

Move one word to left CTRL+LEFT ARROW

Move to end of line END

Move to beginning of line HOME

Undo CTRL+Z

Delete current line CTRL+Y

Delete to end of word CTRL+DELETE

Indent TAB

Outdent SHIFT+TAB

Clear all breakpoints CTRL+SHIFT+F9

View shortcut menu SHIFT+F10

Code Window General Use Keys
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vacmdCodeWindowGeneralUseKeysC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vacmdCodeWindowGeneralUseKeysS"}

Use these key combinations in the Code window:

Press To
F1 Get context-sensitive Help on functions,

statements, methods, properties, or events.
F2 Display the Object Browser.
F9 Set or remove a breakpoint.
CTRL+SHIFT+F9 Clear all breakpoints.
F5 Run an application (or continue running, if in

break mode).
F8 Execute code one line at a time (single

step).
SHIFT+F8 Execute code one procedure at a time

(procedure step).
CTRL+BREAK Stop running a Visual Basic application.
HOME Move the cursor to the beginning of text in a

line.
END Move the cursor to the end of text in a line.
Double-click on the split
bar

Delete the split bar.

CTRL+J Turn on List Properties/Methods.
CTRL+SHIFT+J Turn on List Constants.
CTRL+I Turn on Quick Info.
CTRL+SHIFT+I Turn on Parameter Info.
CTRL+SPACEBAR Turn on Complete Word.
SHIFT+F10 View shortcut menu.
SHIFT+F5 Restart an application from the beginning.
ALT+F5 Runs the error handler code or returns the

error to the calling procedure. Does not
affect the setting for error trapping on the
General tab of the Options dialog box.

ALT+F8 Steps into the error handler or returns the
error to the calling procedure. Does not
affect the setting for error trapping on the
General tab of the Options dialog box.

Code Window Navigation Keys
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakbdCodeWindowNavigationC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vakbdCodeWindowNavigationS"}

Use these key combinations to navigate in the Code window:

Press To
CTRL+F7 Move the insertion point into the

Object box.
SHIFT+F2 Go to the definition of the selected

procedure.
CTRL+DOWN ARROW Display the next procedure.
CTRL+UP ARROW Display the previous procedure.
PAGE DOWN Page down through the

procedures in your code.
PAGE UP Page up through the procedures

in your code.
CTRL+SHIFT+F2 Go back to the last position in

your code.
CTRL+HOME Go to the beginning of the

module.
CTRL+END Go to the end of the module.
CTRL+RIGHT ARROW Go one word to the right.
CTRL+LEFT ARROW Go one word to the left.
END Go to the end of the line.
HOME Go to the beginning of the line.
CTRL+PAGE DOWN Go to the bottom of the current

procedure.
CTRL+PAGE UP Go to the top of the current

procedure.
F6 Switch between Code window

panes (when the window is split).

Code Editing Keys
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakbdCodeEditingKeysC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vakbdCodeEditingKeysS"}

Use these key combinations to edit code in the Code window:

Press To
CTRL+C Copy the selected text to the

Clipboard.
CTRL+X Cut the selected text to the

Clipboard.
DELETE or DEL Delete the selected text without

placing it on the Clipboard.
CTRL+V Paste the Clipboard contents at

the insertion point.
CTRL+Z Undo the last editing action in the

current line.
CTRL+Y Cut the current line to the

Clipboard.
CTRL+DELETE Delete to the end of the word.
CTRL+BACKSPACE Delete to the beginning of the

word.
F3 Find Next: repeat text search

down through your code. If no text
search has been done, the Find
dialog box is displayed.

SHIFT+F3 Find Previous: repeat text search
up through your code. If no text
search has been done, the Find
dialog box is displayed.

SHIFT+TAB Remove indent.
CTRL+N Insert a blank line above the

current line.

Menu Shortcut Keys Available in the Code Window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakbdMenuShortcutKeysInCodeWindowC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vakbdMenuShortcutKeysInCodeWindowS"}

Use these key combinations for menu shortcuts in the Code window:

Press To
CTRL+P Print
CTRL+Z Undo
CTRL+V Paste
DEL or DELETE Delete
CTRL+F Find
F3 Find Next
CTRL+H Replace
TAB Indent
SHIFT+TAB Outdent
CTRL+J List Properties/Methods
CTRL+SHIFT+J List Constants
CTRL+I Quick Info
CTRL+SHIFT+I Parameter Info
CTRL+SPACEBAR Complete Word
SHIFT+F2 Definition
CTRL+SHIFT+F2 Last Position
F2 Object Browser
CTRL+G Immediate Window
CTRL+R Project Explorer
F4 Properties Window
F8 Step Into
SHIFT+F8 Step Over
CTRL+F8 Run To Cursor
SHIFT+F9 Quick Watch
F9 Toggle Breakpoint.
CTRL+SHIFT+F9 Clear All Breakpoints
F5 Start
CTRL+BREAK Break
SHIFT+F10 Shortcut menu
CTRL+N New Project
CTRL+O Open Project
CTRL+S Save Form
CTRL+A Save Form As
CTRL+F5 Start with Full Compile
SHIFT+F4 Property Pages
CTRL+D Add File

Immediate Window Keyboard Shortcuts
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakbdImmediateWindowKeysC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vakbdImmediateWindowKeysS"}

Use these key combinations in the Immediate window:

Press To
ENTER Run a line of selected code.
CTRL+C Copy the selected text to the Clipboard.
CTRL+V Paste the Clipboard contents at the

insertion point.
CTRL+X Cut the selected text to the Clipboard.
CTRL+L Display Call Stack dialog box (break mode

only).
F5 Continue running an application.
F8 Execute code one line at a time (single

step).
SHIFT+F8 Execute code one procedure at a time

(procedure step).
DELETE or DEL Delete the selected text without placing it on

the Clipboard.
F2 Display the Object Browser.
CTRL+ENTER Insert carriage return.
CTRL+HOME Move the cursor to the top of the Immediate

window.
CTRL+END Move the cursor to the end of the Immediate

window.
SHIFT+F10 View shortcut menu.
ALT+F5 Runs the error handler code or returns the

error to the calling procedure. Does not
affect the setting for error trapping on the
General tab of the Options dialog box.

ALT+F8 Steps into the error handler or returns the
error to the calling procedure. Does not
affect the setting for error trapping on the
General tab of the Options dialog box.

SHIFT+F5 Restart an application.
F6 Switch between the Immediate window and

the Watch window (if visible).

Watch Window Keyboard Shortcuts
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakbdWatchWindowKeyboardShortcutC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vakbdWatchWindowKeyboardShortcutS"}

Use these key combinations in the Watch window:

Press To
SHIFT+ENTER Display the selected watch expression.
CTRL+W Display Edit Watch dialog box.
ENTER Expands or collapses the selected watch

value if it has a plus (+) or minus (-) to the
left of it.

F2 Display the Object Browser.
SHIFT+F10 View shortcut menu.
F6 Switch between the Watch window and the

Immediate window.

Properties Window Keyboard Shortcuts
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakbdPropertiesWindowsKeysC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vakbdPropertiesWindowsKeysS"}

Use these key combinations when the Property list has the focus in the Properties window:

Press To
PAGE DOWN Move down through the Property list,.
PAGE UP Move up through the Property list.
DOWN ARROW Move down through the Property list, one

property at a time.
UP ARROW Move up through the Property list, one

property at a time.
RIGHT ARROW Move down through the Property list, one

property at a time.
LEFT ARROW Move up through the Property list, one

property at a time.
END Move to the last property in the list.
HOME Move to the first property in the list.
ALT+F6 Switch between the last two active windows.
TAB Move the insertion point among the property,

properties settings box, and the Object box.
CTRL+SHIFT+ALPHA Move to the next property in the list that begins

with the alpha character.
Double-Click Cycle through settings of enumerated

properties, or switch focus to the settings box
for other property types.

Use these key combinations when the settings box for a property has the focus in the Properties
window:

Press To
CTRL+Z Undo the last editing action in the current

line.
CTRL+C Copy the selected text to the Clipboard.
CTRL+X Cut the selected text to the Clipboard.
DEL or DELETE Delete the selected text without placing it on

the Clipboard.
CTRL+V Paste the Clipboard contents at the

insertion point.
SHIFT+TAB Switch focus between the Object box and

the active Properties tab.
TAB Move the focus among the Object box, the

active Properties tab, a property, and the
property value.

ESC Cancel the property change.
CTRL+SHIFT+ALPHA Move to the next property that begins with

the alpha character, in the list.

Use these key combinations when a property has enumerated values and its settings box has the
focus in the Properties window:

Press To
ALT+DOWN ARROW Open the settings box list.
ALT+UP ARROW Close the settings box list.

Use these key combinations when you set the BackColor, ForeColor, FillColor, or BorderColor
properties, and the settings box has the focus in the Properties window:

Press To
ALT+DOWN ARROW Display the Color palette.
ALT+UP ARROW Close the Color palette.
DEL Reset to (None).

Use these key combinations when you set the Icon or Picture properties, and the settings box has
the focus in the Properties window:

Press To
ALT+DOWN ARROW Display the Load Icon or Load Picture dialog

box.
ALT+UP ARROW Display the Load Icon or Load Picture dialog

box.
DEL Reset to (None).

Project Explorer Keyboard Shortcuts
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vakbdProjectWindowC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vakbdProjectWindowS"}

Use these key combinations in the Project Explorer:

Press To
ENTER Open the selected file from the list, or

expand and collapse the list to show its
subentries.

SHIFT+ENTER Open the Code window for the selected file.
F7 Open the Code window for the selected file.
SHIFT+F10 View shortcut menu.
HOME Select the first file in the list.
END Select the last file in the list.
RIGHT ARROW Expands a list and then selects a subentry

in the list each time you press it.
LEFT ARROW Selects a subentry in the list and then

moves up the list each time you press it until
the subentry list collapses into a folder.

UP ARROW Moves up the list one entry at a time.
DOWN ARROW Moves down the list one entry at a time.

Global Keys
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbkbdGlobalC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbkbdGlobalS"}

Use these key combinations in all Visual Basic windows:

Press To
F5 Run an application.
F8 Execute code one line at a time.
SHIFT+F8 Execute statements one line at a time without

stepping into procedure calls.
CTRL+BREAK Stop running a Visual Basic application.
CTRL+G Displays the Immediate window.
ALT+F5 Runs the error handler code or returns the error to

the calling procedure. Does not affect the setting for
error trapping on the General tab of the Options
dialog box.

ALT+F8 Steps into the error handler or returns the error to
the calling procedure. Does not affect the setting for
error trapping on the General tab of the Options
dialog box.

SHIFT+F5 Restart an application from the beginning after an
interruption.

CTRL+TAB Switch between windows.

Use these key combinations in all Windows-based applications:

Press To
F1 Open Help.
ALT+F6 Toggle between the last two active windows.
ALT+F4 (Visual Basic) Close the active window; if all

windows are closed, close Visual Basic.
CTRL+C Copy the selection to the Clipboard.
CTRL+X Cut the selection to the Clipboard.
CTRL+V Paste the Clipboard selection.
CTRL+Z Undo the last edit.
SHIFT+F10 View shortcut menu.

Options Command (Tools Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdOptionsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdOptionsS"}

Displays the Options dialog box, from which you can choose a tab to set attributes of the Visual Basic
programming environment. Available only at design time.

Tabs
· Editor
· Editor Format
· General
· Docking
· Environment
· Advanced

New Project Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdNewProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdNewProjectS"}

Displays the New Project dialog box where you choose the type of project you want to create.

If there is currently another project open when you create a new project, you will be prompted to save
your work.

Available only at design time.

Color Palette Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdColorPaletteSpinC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdColorPaletteSpinS"}

Displays or activates the Color palette, which enables you to change a form or control's colors and set
up a custom color scheme.

Available only at design time.

Open Project Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdOpenProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdOpenProjectS"}

Closes the current project or group project, if one is loaded, and opens an existing project or group of
projects.

You can open as many projects as your system resources permit.

Toolbar shortcut: . Keyboard shortcut: CTRL+O.

Note If you are using an integrated source code control program, such as Microsoft SourceSafe
(available with the Enterprise Edition), and have checked the project files out of the version control
project, when you close a project (before opening a new one), a dialog may prompt you to check in
the files you have checked out.
When you open a project in Visual Basic, a dialog may prompt you to get or check out the Visual
Basic project files.

Save and Save As Commands (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdSaveFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdSaveFileS"}

Saves the current or selected project files to the location you specified. The Save command displays
the Save File As dialog box if this is the first time the file is being saved.

The dialog box enables you to specify a new name for a component. Available only at design time.

Keyboard shortcut: CTRL+S (Save).

Note If you are using an integrated source code control program, such as Microsoft SourceSafe
(available with the Enterprise Edition), when you save a file with the Save As command, a dialog may
prompt you to add the file to the version control project. You can add a file to a SourceSafe project
only if the Visual Basic project file (.vbp) is checked out.

When you use Save As to rename a file that is checked out of a source code control program, ensure
that the source code control program also renames the file in the version control project.

Dialog Box Options
Save in
Select the folder where you want to store the file.
Up One Level

Shows a list of folders or drives one level above the current folder.

Create New Folder

Creates a new folder.

Details

Shows the folder or documents in a list that includes the folder or document icon and name, its size
(documents only), type, and the date and time it was last modified.

List

Shows the folders or documents in a list format that includes the folder or document icon and its
name.

File name
Unless you specify a filename extension, Visual Basic automatically adds the default filename
extension.

Save as type
Select a file type from the list:

· All Files (*.*) — Lists files of all types.
· Form Files (*.frm) — Lists all forms and MDI forms.
· Class Files (*.cls) — Lists all class modules.
· Basic Files (*.bas) — Lists all standard modules.
· Property Page Files (*pag) — List all property pages.
· User Defined Control Files (*.ctl) — Lists all user controls.

· Document Object Files (*.dob) — Lists all document objects.

Save
Saves the file under the specified name.

Cancel
Closes the dialog box without saving the file.

Save Project, Save Project As, Save Project Group, and Save
Project Group As Commands (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdSaveProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdSaveProjectAsS"}

Save Project Saves the current project and all its components.

Save Project As The Save Project command displays the Save Project As dialog box if this is the
first time the project is being saved.

Save Project Group The Save Project command changes to Save Project Group if you add a
project to the project group.

Save Project Group As The Save Project As command displays the Save Project Group As dialog
box if this is the first time the project group is being saved.

Available only at design time.

Toolbar shortcut: .

Dialog Box Options
Save In
Select the location where you want to store the project file.

Up One Level

Shows a list of folders or drives one level above the current folder.

Create New Folder

Creates a new folder.

List

Shows the folders or documents in a list format that includes the folder or document icon and its
name.

Details

Shows the folder or documents in a list that includes the folder or document icon and name, its size
(documents only), type, and the date and time it was last modified.

List
Shows the list of folders or documents.

File name
Give your project a name. To save a project with a new name, or in a different location, type a new
filename. To save a project with an existing filename, select the name in a list or type the current
name. When you choose Save, Visual Basic asks if you want to overwrite the existing file

Save as type
Select a file type from the list; the default is Project (*.vbp). Files of the selected type will appear in the
File Name list box.

Save

Saves the project group under the specified name.

Cancel
Closes the dialog box without saving the project.

Add File Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAddFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAddFileS"}

Adds an existing file to the current project. You can share files between projects. If you add a file to a
project, you are simply including a reference to the existing file in the project; you are not adding a
copy of the file to the project. Therefore, if you make changes to the file and save it, your changes will
affect any project that includes the file.

Available at design time only.

Keyboard shortcut: CTRL+D.

Note Use the Components command on the Project menu to add ActiveX controls and insertable
objects to your project's Toolbox.

Note If you have connected to a source code control program, such as Microsoft SourceSafe
(available with the Enterprise Edition), when you add a file to a Visual Basic project, a dialog may
prompt you to add the file in the version control project.

With Microsoft SourceSafe, if the .vbp file is checked out, the references to the newly added file(s) are
automatically added. If the .vbp file isn't checked out, when you add a file, the .vbp file will not contain
a reference to the new file, and thus, it will not load the next time you open your project.

Dialog Box Options
Look in
Select the location from which you want to add the file.

Up One Level

Shows a list of folders or drives one level above the current folder.

Create New Folder

Creates a new folder.

List

Shows the folders or documents in a list format that includes the folder or document icon and its
name.

Details

Shows the folder or documents in a list that includes the folder or document icon and name, its size
(documents only), type, and the date and time it was last modified.

File name
Select or type the name of a file you want to open. This box lists documents with the filename
extension selected in the List Files of Type box.

List files of type
Select a file type from the list:

· VB Files (*.frm; *.ctl, *.pag, *.bas; *.cls; *.res) ¾ Lists all valid Visual Basic file types.
· Form Files (*.frm) — Lists all form modules.

· User Defined Control Files (*.clt) — Lists all user defined controls.
· Property Page Files (*.pag) — Lists all property pages.
· User Document Files (.dob) — Lists all user documents.
· Basic Files (*.bas) — Lists all standard modules.
· Class Files (*.cls) — Lists all class modules.
· Resource Files (*.res) — Lists all resource files. There can be only one resource file in a single

project.
· All Files (*.*) — Lists all files.

Add
Adds the file to the project.

Cancel
Closes the dialog box without adding the file to the project.

Remove Project Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdRemoveFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdRemoveFileS"}

Removes the selected project from the currently open project group.

If there are pending changes to the project, you will be prompted to save them and then the project
will be closed and removed from the project group.

If you remove a project with a reference to any of the EXEs or other projects in the group, Visual
Basic automatically switches the reference to the binary version of the component, if one is available.
If a binary version is not available, the reference is marked as missing.

Exit Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdExitC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdExitS"}

Closes the current project and quits Visual Basic. If you try to quit Visual Basic before saving changes
to your work, you'll be prompted to save your work first.

Note When you exit Visual Basic, you may be prompted to check in the Visual Basic files to the
source code control project if you are using an integrated source code control program, such as
Microsoft SourceSafe (available with the Enterprise Edition), and you have any files checked out.

Keyboard shortcut: ALT+Q.

Lock Controls Command (Format Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdLockC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdLockS"}

Locks all controls on the form in their current positions so you don't inadvertently move them once
they are in the desired location. Because the Lock Controls command works on a form-by-form basis,
it locks controls only on the selected form; controls on other forms are untouched. Visual Basic keeps
track of which forms have controls locked in position and which don't. When the controls on the form
are locked, the Lock Controls command toolbar button appears dimmed.

Toolbar shortcut: .

Start With Full Compile (Run Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdStartWithFullCompileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdStartWithFullCompileS"}

Performs a full compile on the project.

The application is fully compiled before starting, regardless of the current setting of the Compile on
Demand and Background Compile options on the General tab of the Options dialog box. Choosing
Start With Full Compile does not alter the Compile on Demand or Background compile settings.

Use Start With Full Compile to start ActiveX server projects. Starting an ActiveX server project with
the Start command when Compile on Demand checked may result in compile-time errors being
detected after you have test applications running. If correcting an error requires restarting the ActiveX
server, your test applications may be left holding invalid object references.

This command is available only at design time.

Keyboard shortcut: CTRL+F5.

Add-In Manager Command (Tools Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAddInManagerC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAddInManagerS"}

Displays the Add-In Manager dialog box, which you use to load and unload add-in which extend the
Visual Basic development environment.

Property Pages Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdPropertyPageC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdPropertyPageS"}

Displays the property pages for a user control which to change a control's properties at design time.

Keyboard shortcut: SHIFT+F4.

Add User Control Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdCustomControlC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdCustomControls"}

Displays the Add User Control dialog box so you can insert a new or existing user control into your
active project.

Toolbar shortcut: .

End Command (Run Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdRunEndC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdRunEndS"}

Stops running the program and returns to design time. This command is available at run time and in
break mode.

Toolbar shortcut: .

Menu Editor Command (Tools Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdMenuEditorC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdMenuEditorS"}

Displays the Menu Editor dialog box.

Use the Menu Editor command to create custom menus for your application ,and to define some of
their properties. Available only at design time.

Toolbar shortcut: . Keyboard shortcut: CTRL+E.

Add MDI Form Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdMDIFormC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdMDIFormS"}

Displays the Add MDI Form dialog box so you can insert a new or existing MDI form into your active
project. A project can have only one MDI form. This command is unavailable if a project already has
an MDI form.

Only available at design time.

Toolbar shortcut: .

Add Form Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdFormInsertC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdFormInsertS"}

Displays the Add Form dialog box so you can insert a new or existing form into your active project.

Only available at design time.

Toolbar shortcut: .

Start Command (Run Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdStartC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdStartS"}

Runs the application marked as the Start Up project in the Project Explorer. All forms being designed
are closed, variables are initialized, and the startup form (if any) is loaded. You cannot run control
projects at design time. DLL project types can be run by another EXE project creating an instance of
them, and group projects cannot be run unless an EXE project exists in the group.

The first EXE project added to a project group is automatically set as the Start Up project unless you
change it using the Set as Start Up command on the shortcut menu.

Available only at design time. The Start command becomes the Break command at run time, and

begins executing the code from the current execution line margin indicator, . It becomes the
Continue command in break mode.

Note If you are working on a sub project and choose the Start command, the main project changes
to run mode. The sub project is compiled but is not executed until the main project makes a call to it.

Toolbar shortcut: . Keyboard shortcut: F5.

Make <Project> Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdMakeProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdMakeProjectS"}

Opens the Make Project dialog box so that you can build one or more projects contained in the
project group into an executable file – EXE, DLL, or OCX.

Note You can have only one main project. If you want to debug other projects in the design
environment, you must add the .vbp files to the group project.

Make Project Group Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdMakeAllC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdMakeAllS"}

Creates an separate executable file for each project in the group you select.

This is the same as using the /make flag in the command line and specifying a .vbg file.

Add User Document Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdDocumentObjectInsertC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdDocumentObjectInsertS"}

Displays the Add User Document dialog box so you can insert a new or existing User Document into
your active project.

Only available if you have an ActiveX EXE or ActiveX DLL project.

Toolbar shortcut: .

Continue Command (Run Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdContinueVB5C;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdContinueVB5S"}

Resumes execution of a program that is in break mode.

Replaces the Start command when the program is in break mode.

References Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdReferencesCommandProjectMenuC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdReferencesCommandProjectMenuS"}

Displays the References dialog box. This dialog box allows you to add an object library or type library,
or project reference to your project. This makes another application's objects available in your code.
Once a reference is set, the referenced objects are displayed in the Object Browser.

You can also add references to other loaded and saved projects. If a project has not been saved, it
appears as "UNSAVED: <ProjectName>" and you will be unable to make a reference to it.

Only available at design time.

Toolbar shortcut: .

Restart Command (Run Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdRestartC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdRestartS"}

Restarts your application after any kind of interruption. An interruption can be caused by run-time
errors, a Stop statement, a breakpoint in your code, choosing the Break command, and a Break
expression changing or becoming true.

This command is available only in break mode.

Keyboard shortcut: SHIFT+F5.

Add Project Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAddProjectCommandC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAddProjectCommandS"}

Displays the Add Project dialog box so that you can add a new or existing project to the currently
open project group. If you have only one project open, Visual Basic adds the project and creates a
project group. A project group exists only if there is more than one project.

Note If you do not have a project group opened, Visual Basic automatically creates a project group
containing the existing open project and the project you add.

A project group can contain any number of other projects. It is an easy way to load more than one
project at a time

The first EXE project you add to your project group is automatically set as Startup unless you change
it using the Set as Start Up command on the Project Explorer shortcut menu.

When you add an in-process project to the project group and reference it, the project appears in the
References dialog box and is stored in the project file.

When you add a project to a group, Visual Basic checks if any of the other projects in the group have
a reference to the binary version of the newly added group. If they do, the references automatically
are changed to the source version.

Remove Project Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdRemoveProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdRemoveProjectS"}

Closes the selected project and removes it from the Project Explorer. Using this command also
removes the project from the currently open project group.

<Project Name> Properties Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdPropertiesCommandC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdPropertiesCommandS"}

Displays the Project Properties dialog box where you view the project properties for the selected
project.

Toolbar shortcut: .

File 1, 2, 3, 4 Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdFile1234C;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdFile1234S"}

Lists the four most recently used projects (.vbp) or project groups (.vbg).

Add Module and Add Class Module Commands (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAddModuleProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAddModuleProjectS"}

Displays the Add Module or Add Class Module dialog box so you can insert a new or existing module
or class module into your active project.

Toolbar shortcuts: (Add Module command) and

 (Add Class Module command).

Add ActiveX Designer Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAddOLEDesignerProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAddOLEDesignerProjectS"}

Displays a list of available ActiveX Designers from which to choose the one you want to add to your
project.

Note You must add an ActiveX designer using the Components command on the Project menu
before this command is available.

Add Property Page Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAddPropertyPageProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAddPropertyPageProjectS"}

Displays the Add Property Page dialog box so you can insert new or existing property pages into your
active project. Use the Property Page Wizard to build new property pages.

Toolbar shortcut: .

Components Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdOLEComponentsProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdOLEComponentsProjectS"}

Displays the Components dialog box from which you can add controls, designers, or insertable
objects (such as a Microsoft Word Document) to the Toolbox. You can also reference loaded control
projects.

Remove <Item> Command (Project Menu)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"IDD_CheckInC;IDD_CheckOutC;vbcmdRemoveItemProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdRemoveItemProjectS"}

Removes the currently selected item from your project. If you made changes to it since last saving it,
you are asked whether you want to save the changes first.

The file remains in all the other projects to which it has been added. Files that have been removed
from a project remain stored on your hard disk until you delete them, following the standard
procedures of your operating system.

When removing a module or resource file from a project, make sure the remaining code doesn't refer
to the removed item.

Note Use the Components dialog box to remove an ActiveX control from the Toolbox. If you still
have an ActiveX control on a form, you can't remove the control from the Toolbox.

Available only at design time.

Note If you are using an integrated source code control program, such as Microsoft SourceSafe
(available with the Enterprise Edition), when you remove a file from your Visual Basic project, a dialog
may prompt you to remove the file from the version control project.
With Microsoft SourceSafe, if the .vbp file is checked out, the references to the removed file(s) are
automatically deleted. If the .vbp file isn't checked out, when you remove a file, the .vbp file will still
contain a reference to the deleted file, causing an error the next time you load your project.

Set as Start Up Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdSetAsStartUpShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdSetAsStartUpShortcutS"}

Makes the selected project the project to run when the user presses F5 or the Start button on the
Standard or Debug toolbar. The start up project appears in bold text in the Project Explorer.

If you do not identify a project as the start up project, the first EXE project that is added to the group is
identified, by default, as the start up project. Adding additional EXE project to the project group does
not change the start up project.

Form Layout Window Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdFormLayoutWindowViewC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdFormLayoutWindowViewS"}

Displays the Form Layout window where you can preview and position your form as it will appear in
your application. Use the Resolution Guide command on the shortcut menu to preview it using
different resolutions.

Note You can view only those resolutions lower than the resolution at which your monitor is set.

Toolbar shortcut: .

Paste Link Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdPasteLinkCommandFileMenuC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdPasteLinkCommandFileMenuS"}

Supports pasting a link to a valid DDE source. Active only when the Clipboard contains a valid DDE
source, and the selected control is a valid DDE link.

You can also use Paste Link to link data from another application using the OLE container control.
Once you copy valid data onto the Clipboard (a paragraph from a word processor or a range of cells
from a spreadsheet), you can select the OLE container control on your form, and then choose Paste
Link to link the data.

Available only at design time.

Procedure Attributes Command (Tools Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdProcedureAttributesToolsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdProcedureAttributesToolsS"}

Opens the Procedure Attributes dialog box where you can set the attributes for each property and
method specified for an item.

You can also use this command when you want to set the Value property for classes.

Note You must use this command to set the Value property as the default if you want the control
host to find it.

Visual Data Manager Command (Add-Ins Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdVisDataAddInsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdVisDataAddInsS"}

Opens the Visual Data Manager application so you can access and manage data.

Insert File Command (Edit Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdInsertFileEditC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdInsertFileEditS"}

Opens the Insert File dialog box so that you can insert text from an existing file at the current pointer
position in the Code window.

Not available at run time or when no editor is open.

Print Setup Command (File Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdPrintSetupFileC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdPrintSetupFileS"}

Displays the standard Print Setup dialog box with options to specify the printer, page orientation,
paper size, and paper source, as well as other printing options.

Available only at design time.

Toolbar shortcut: .

Add Tab, Rename Tab, and Delete Tab Commands (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAddRenameDeleteShortcutC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAddRenameDeleteShortcutS"}

Allows you to add, rename, or modify the tabs in the Toolbox. You cannot rename or delete the
General tab.

Add Tab Opens a dialog box where you can add and name a new tab. The new tab appears below
the General tab.

Rename Tab Opens a dialog box where you can type a new name for the selected tab.
Delete Tab Deletes the selected tab.

Move Up and Move Down Commands (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdMoveUpMoveDownShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdMoveUpMoveDownShortcutS"}

Moves the selected tab of the Toolbox up or down one position each time you click it.

Update User Controls Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdUpdateUserControlsShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdUpdateUserControlsShortcutS"}

Updates the user controls on your form. Use this command to make sure that the changes you make
to your user controls are reflected on the forms using them.

Using the Update User Controls command closes and re-opens the form.

Add Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAddShortcutC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAddShortcutS"}

Displays a submenu where you can choose which of the following items you want to add to your
project.

· Form
· MDI Form
· Module
· Class Module
· User Control
· Property Page
· User Document
· ActiveX Designer
· File

Align To Grid Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAlignToGridShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAlignToGridShortcutS"}

Aligns the top left of the selected objects on your form to the closest grid. The object is not resized.

You can change the grid settings from the General tab of the Options dialog box.

Toolbar shortcut:

Default Command (Color Palette Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdDefaultColorPaletteShortcutC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdDefaultColorPaletteShortcutS"}

Changes the colors to those specified in the Control Panel.

Resolution Guide (Form Layout Window Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdResolutionGuideFLWShortcutC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdResolutionGuideFLWShortcutS"}

Displays dotted lines showing the right and lower borders of standard resolutions based on the
resolution of your monitor. You can size and position your forms so that they fit appropriately with the
resolution for which you are creating your application.

Note If your monitor is set for 640x480, you will not see the guidelines. The guidelines only appear
with resolutions lower than those of your monitor.

Toolbars Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdToolbarsViewC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdToolbarsViewS"}

Displays a submenu with a list of the toolbars – Debug, Edit, Form Editor, Standard, any custom
toolbars and the Customize command. You can choose a toolbar or use the Customize command to
modify or create your own toolbar or menu.

Add Procedure Command (Tools Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdAddProcedureToolsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdAddProcedureToolsS"}

Inserts a new Sub, Function, Property, or Event procedure into the active module.

Not available if the module is not active.

Toolbar shortcut: .

Properties Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdPropertiesShortcutC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdPropertiesShortcutS"}

Displays the Properties window.

If you select your form in the Object Browser, the Properties command displays the Member Options
dialog box.

Description Command (Shortcut Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdDescriptionShortcutC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdDescriptionShortcutS"}

Turns the description pane of the Properties window off and on.

Command Line Arguments
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbconCommandLineC;vbproBooksOnlineJumpTopic"}

Determines whether Visual Basic complies and runs a program, compiles and makes an executable
(.exe) file or ActiveX DLL (.dll), or sets the argument part of the command line returned by the
Command function.

Syntax
vb5[.exe] [[{/run | /r} projectname] [[{/d compileconst}] {/make | /m } projectname] [{/makedll | /l}

projectname] {/cmd argument | /c argument}][{/runexit} projectname][{/m} or {/runexit}
projectname /out filename}][{/m}][/sdi] or [/mdi]

The parts of the command line switch syntax are:

Argument Description
projectname The name of your project (.vbp) file.
/run or /r Tells Visual Basic to compile and run projectname using the arguments

stored in the Command Line Arguments field of the Make tab of the
Project Properties dialog box. You can run more than one project using
this command. Replace projectname with projectgroupname.

/make or /m Tells Visual Basic to compile projectname and make an executable
(.exe) file, using the existing settings of the Path, EXEName, and Title
properties of the APP object. You can compile and make an executable
(.exe) file from more than one project using this command. Replace of
the projectname with projectgroupname.

/makedll or /l Tells Visual Basic to compile projectname and make an in-process
ActiveX server (.dll) file from it.

/d or /D Tells Visual Basic which values to use for conditional compilation
constants when making an .EXE with the /make switch or an ActiveX
DLL with the /makedll switch.

compileconst The names and values of conditional compilation constants used in the
project file.

/cmd or /c Puts argument in the Command Line Arguments field in the Make tab of
the Project Properties dialog box. When used, this must be the last
switch on the command line.

/runexit Tells Visual Basic to run projectname. If for any reason the file is
changed in the process of running, all changes are ignored and no
dialog appears on exit to design mode.

filename The name of the file to receive errors when you build an executable
using the /m or /runexit option.

/out Allows you to specify a file to receive errors when you build using the
/m or /runexit option. The first error encountered is placed in this file
with other status information. If you do not use the /out option,
command line build errors are displayed in a message box. This option
is useful if you are building multiple projects.

/? Lists the available Command Line arguments.
/sdi Changes the Visual Basic environment to SDI (Single Document

Interface) mode. Visual Basic remains in SDI mode until you change it.
You can change to MDI mode by using the /mdi argument or by
clearing the SDI Development Environment option in the Advanced tab
of the Options dialog box.

/mdi Opens Visual Basic in MDI (Multiple Document Interface) mode. Visual

Basic remains in MDI mode until you change it. You can change to SDI
mode by using the /sdi argument or by selecting the SDI Development
Environment option in the Advanced tab of the Options dialog box. MDI
mode is the default.

When used, these arguments must be in a command line to run Visual Basic. For example, you might
use them in the Run dialog box from the Run command of the Windows 95 Start Menu. Here is a
valid command line that runs Visual Basic, loads a specific project, and runs it:

C:\vb5.exe /r MyProj.vbp

Visual Basic Design Time File Extensions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscCompiledFileExtensionsC;vbproBooksOnlineJumpTopic"}

Visual Basic has a number of file extensions that are specific to design time. The currently used file
extensions are:

Extension Used For
.bas Basic module
.cls Class module
.ctl User Control file
.ctx User Control Binary file
.dca Active Designer Cache
.dep Setup Wizard dependency file
.dob User Document form file
.dox User Document binary form file
.dsr Active Designer file
.dsx Active Designer binary file
.frm Form file
.frx Binary Form file
.log Log file for load errors
.oca Control Typelib Cache
.pag Property Page file
.pgx Binary Property Page file
.res Resource file
.swt Visual Basic Set Up Wizard Template file
.tlb Remote Automation Typelib files
.vbg Visual Basic group project
.vbl User Control Licensing file
.vbp Visual Basic project
.vbr Remote Automation Registration files
.vbw Visual Basic Project workspace
.vbz Wizard launch file

Visual Basic Run Time File Extensions
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscSourceFileExtensionsC;vbproBooksOnlineJumpTopic"}

Extension Used For
.dll In-process ActiveX server
.exe EXE file, Native or Pcode, Out-of-process server
.ocx ActiveX control

Project Types
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgProjectTypesC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Project type is a new property added to each project. Project type determines:

· The type of component build when you choose the Make Project command from the File menu.
· Whether the ActiveX DLL restrictions are in effect for the project.
· Whether a project can contain creatable public classes.
· The valid options for the Startup Object.

The following table lists the project types and their characteristics and the characteristics of a Project
Group.

Project Type Standard
EXE

ActiveX
EXE

ActiveX DLL ActiveX
Control

Project Group

Type EXE EXE DLL DLL Group

Default
Extension

.exe .exe .dll .ocx .vbg

DLL
Restrictions

No No Yes Yes No

Creatable
Public Class

No Yes Yes Yes No

Start Mode Stand
Alone

OLE
Server

Cannot run
unless a
subproject in
the main
project.
Automatically
starts running
when needed.

Cannot run
unless a
subproject in
the main
project.
Automatically
starts running
when needed.

Cannot run
unless a
subproject in
the main
project.
Automatically
starts running
when needed.

Default
Startup Object

Form1 None None None None

Allowable
Objects

MDI Form

Form

Module

Class
Module

User
Control

Property
Page

ActiveX
Designer

Form

Module

Class
Module

User
Control

Property
Page

User
Document

ActiveX
Designer

Form

Module

Class Module

User Control

Property Page

User
Document

ActiveX
Designer

Form

Module

Class Module

User Control

Property Page

ActiveX
Designer

Templates
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscTemplatesC;vbproBooksOnlineJumpTopic"}

Templates are items that are saved in a specific directory structure in the \vb directory. They provide a
way for you to re-use components and code, and to add them to projects.

When you choose the New Project command on the File menu, any projects found in the \template\
projects directory appear in the New Project dialog box.

You can set the path for your template directory, or turn templates off, using the Environment tab of
the Options dialog box.

Help Menu
{ewc HLP95EN.DLL,DYNALINK,"See Also":"cmdHelpMenuC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"cmdHelpMenuS"}

Microsoft Visual Basic Help Topics
Runs Help and displays the Visual Basic Table of Contents.

Toolbar shortcut: .

Search Reference Index
Displays Help's Search dialog box so you can quickly find the reference information you need.

Toolbar shortcut: .

Search Master Index
Displays the viewer to access documentation about Visual Basic. Appears only if you installed Visual
Basic Books Online.

Toolbar shortcut: .

Obtaining Technical Support
Runs Help and displays information about Microsoft Product Support Services.

Toolbar shortcut: .

Microsoft on the Web
Displays a menu with Internet sites.

About Microsoft Visual Basic
Displays a dialog box with the version number, a copyright notice, and the amount of available
memory.

Advanced Tab (Options Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnAdvancedOptionsTabC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnAdvancedOptionsTabS"}

Allows you to specify the settings for various advanced features as they apply to the current Visual
Basic project.

Tab Options
Background Project Load Determines whether code is loaded in the background, returning

control to the developer more quickly.
Notify when changing shared project items Determines whether you will be notified when you

change a shared project item such as a form or module and try to save it.
Several projects can share the same items. Shared items are loaded into memory and each project
has its own copy. If you change a shared item in one project, the other projects retain the copy of
the item that was loaded until you save the projects. Then, the last project you save determines
what the shared file is. When this option is selected, you are asked if you want to synchronize all of
the copies of the item before you save.

SDI Development Environment When selected changes the development environment from a
multiple document interface (MDI) to a single document interface (SDI). When you select this
option, the SDI appears every time you restart Visual Basic until you clear this option.

Add-In Manager Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnAddInManagerC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnAddInManagerS"}

Adds or removes add-ins for your project.

When you select an add-in, it is loaded every time you restart Visual Basic until you clear it.

Dialog Box Options
Available Add-Ins box Lists the:
· Currently running add-ins
· Add-ins listed in vbaddin.ini
All currently running add-ins are checked in the list box, including those running in other instances of
Visual Basic. It is up to the developer of the add-in to ensure that the add-in is registered in the
system registry when you install the add-in; otherwise, it won't appear in this box.

The check box to the left of each name indicates whether that add-in is used by the current project.

OK Updates Vbaddin.ini with your selections and unloads the deselected add-ins or loads the
selected add-ins.

Color Palette
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnColorPaletteC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnColorPaletteS"}

Changes the colors of a form or control and sets up a custom color scheme.

The Color Palette consists of:

Displays the currently selected foreground and background colors for the form or control.

Displays the currently selected foreground and background colors for any text in the form or control.

Note If Microsoft Windows doesn't display the text and background colors that you've selected, it
may be because one of the colors you've selected is dithered (a color comprised of up to three
different colored pixels). When displaying text in Microsoft Windows, the text and the area
immediately behind it must be solid colors. If you choose a dithered color for either the text or the
background color, the nearest solid color is used.

Displays a set of colors.

Uses the colors specified in the Control Panel.

Displays or sets custom colors.

Displays the Define Color dialog box so you can create custom colors.

Note You can also set the colors for forms and controls with the BackColor or ForeColor property.

Environment Tab (Options Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnEnvironmentOptionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnEnvironmentOptionsS"}

Specifies the attributes of your Visual Basic development environment.

Changes made in this dialog box are saved in the registry file, and are loaded every time you restart
Visual Basic.

Tab Options
When Visual Basic starts

· Prompt for project — Asks you for the project you want to open each time you start Visual Basic.
· Create default project — Creates a default executable (EXE) project that opens each time you

start Visual Basic.

When a program starts
· Save Changes — Automatically saves the changes without prompting you when you make

changes to a project and then press F5 to run it or choose the Start command from the Run
menu. If you have a new file, the Save As common dialog box appears so you can give a name
and location for your project.

· Prompt To Save Changes — Always displays a dialog box asking if you want to save the
changes to your project when you press F5 to run it or choose the Start command from the Run
menu. If you select Yes, the Save As common dialog box appears so you can give a name and
location for your project. If you select No, Visual Basic runs the project using the memory image,
but does not save any changes.

· Don't Save Changes — When you run your project, Visual Basic runs the memory version and
does not save the changes.

Show Templates For: Allows you to determine which templates you want visible in the Add <item>
dialog box when you add an item to a project. If cleared, a blank form appears when you choose
the Add <item> command.
· Forms
· MDI Forms
· Modules
· Class Modules

· User Controls
· Property Pages
· User Documents

Templates Directory Lists the location of the template files.

Form Window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnFormWindowC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnFormWindowS"}

Allows you to create the windows, dialog boxes, and controls in your application. You draw and view
controls on a form.

While you are designing a form:

· Each form window has a Maximize, Minimize, and Close button.
· You can create either fixed or movable forms. The form you design will have the same features at

design time and at run time unless you specify otherwise in the form's properties.
· Use the buttons in the Toolbox to draw controls on the form.
· Use the Form Layout Window command from the View menu to preview the layout of your form on

a screen.

Menu Bar
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnMenuBarC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnMenuBarS"}

Lists the menus that you can use in the active window.

The Visual Basic menu bar contains the names of the menus you can use in the active window. You
can modify the menu bar using the Commands tab of the Customize dialog box.

Note You cannot delete the menu bar.

Menu Editor
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnMenuEditorC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnMenuEditorS"}

Allows you to create custom menus for your application and to define their properties.

Dialog Box Options
Caption Allows you to enter the menu or command name that you want to appear on your menu

bar or in a menu.
If you want to create a separator bar in your menu, type a single hyphen (-) in the Caption box.
To give the user keyboard access to a menu item, insert an ampersand (&) before a letter. At run
time, this letter is underlined (the ampersand is not visible), and the user can access the menu or
command by pressing ALT and the letter. If you need an ampersand to show in the menu, put two
consecutive ampersands in the caption.

Name Allows you to enter a control name for the menu item. A control name is an identifier used
only to access the menu item in code; it doesn't appear in a menu.

Index Allows you to assign a numeric value that determines the control's position within a control
array. This position isn't related to the screen position.

Shortcut Allows you to select a shortcut key for each command.
HelpContextID Allows you to assign a unique numeric value for the context ID. This value is used

to find the appropriate Help topic in the Help file identified by the HelpFile property.
NegotiatePosition Allows you to select the menu's NegotiatePosition property. This property

determines whether and how the menu appears in a container form.
Checked Allows you to have a check mark appear initially at the left of a menu item. It is generally

used to indicate whether a toggle option is turned on or off.
Enabled Allows you to select whether you want the menu item to respond to events, or clear if you

want the item to be unavailable and appear dimmed.
Visible Allows you to have the menu item appear on the menu.

WindowList Determines if the menu control contains a list of open MDI child forms in an MDI
application.

Right Arrow

Moves the selected menu down one level each time you click it. You can create up to four levels of
submenus.

Left Arrow

Moves the selected menu up one level each time you click it. You can create up to four levels of
submenus.

Up Arrow

Moves the selected menu item up one position within the same menu level each time you click it.

Down Arrow

Moves the selected menu item down one position within the same menu level each time you click it.

Menu List A list box that displays a hierarchical list of menu items. Submenu items are indented to
indicate their hierarchical position or level.

Next Moves selection to the next line.
Insert Inserts a line in the list box above the currently selected line
Delete Deletes the currently selected line.
OK Closes the Menu Editor and applies all changes to the last form you selected. The menu is

available at design time, but selecting a menu at design time opens the Code window for that
menu's Click event rather than executing any event code.

Cancel Closes the Menu Editor and cancels all changes.

Toolbox
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnToolboxC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnToolboxS"}

Displays the standard Visual Basic controls plus any ActiveX controls and insertable objects you have
added to your project. You can:

· Display ToolTips for the Toolbox buttons by selecting the Show ToolTips option in the General tab
of the Options dialog box.

· Customize the Toolbox by adding tabs to it.
When you add a tab, a Pointer is always available on it.

· Customize the General tab or a custom tab by adding controls using the Components command
from the Project menu.

Standard Toolbox Controls

 Pointer
The only item in the Toolbox that doesn't draw a control. When you select the pointer, you can only
resize or move a control that has already been drawn on a form.

 PictureBox
Displays graphical images (either decorative or active), as a container that receives output from
graphics methods, or as a container for other controls.

 Label
Allows you to have text that you don't want the user to change, such as a caption under a graphic.

 TextBox
Holds text that the user can either enter or change.

 Frame

Allows you to create a graphical or functional grouping for controls. To group controls, draw the Frame
first, and then draw controls inside the frame.

 CommandButton
Creates a button the user can choose to carry out a command.

 CheckBox
Creates a box that the user can easily choose to indicate if something is true or false, or to display
multiple choices when the user can choose more than one.

 OptionButton
Allows you to display multiple choices from which the user can choose only one.

 ComboBox
Allows you to draw a combination list box and text box. The user can either choose an item from the
list or enter a value in the text box.

 ListBox
Used to display a list of items from which the user can choose one. The list can be scrolled if it has
more items than can be displayed at one time.

 HScrollBar (horizontal scroll bar)

Provides a graphical tool for quickly navigating through a long list of items or a large amount of
information, for indicating the current position on a scale, or as an input device or indicator of speed
or quantity.

 VScrollBar (vertical scroll bar)

Provides a graphical tool for quickly navigating through a long list of items or a large amount of
information, for indicating the current position on a scale, or as an input device or indicator of speed
or quantity.

 Timer
Generates timer events at set intervals. This control is invisible at run time.

 DriveListBox
Displays valid disk drives.

 DirListBox (directory list box)

Displays directories and paths.

 FileListBox
Displays a list of files.

 Shape
Allows you to draw a variety of shapes on your form at design time. You can choose a rectangle,
rounded rectangle, square, rounded square, oval, or circle.

 Line
Used to draw a variety of line styles on your form at design time.

 Image
Displays a graphical image from a bitmap, icon, or metafile on your form. Images displayed in an
Image control can only be decorative and use fewer resources than a PictureBox.

 Data
Provides access to data in databases through bound controls on your form.

 OLE
Allows you to link and embed objects from other applications in your Visual Basic application.

Standard Toolbar
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdStandardCommandBarVB5C;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdStandardCommandBarVB5S"}

Contains buttons that are shortcuts to some commonly used menu items.

You can click a toolbar button once to carry out the action represented by that button. You can select
the Show ToolTips option in the General tab of the Options dialog box if you want to display ToolTips
for the toolbar buttons.

Toolbar Buttons
Add Project Displays a submenu listing the types of projects you can add to the currently open

project group. The icon changes to the last project type you added. The default is the Standard
EXE.

 — Standard EXE

 — ActiveX EXE

 — ActiveX DLL

 — ActiveX Control
Add <item> Displays a submenu listing the items you can add to your active project. The icon

changes to the last object you added. The default is the Form.

 — Form

 — MDI Form

 — Module

 — Class Module

 — User Control

 — Property Page

 — User Document
Add ActiveX Designer
Add File

 Show Menu
Displays the Menu Editor dialog box.

 Open Project
Closes the current project and project group, if one is loaded, and displays an existing group project
and it accompanying projects.

 Save Project
Saves the current project and all its components–forms and modules.

 Cut
Removes the selected control or text and places it on the Clipboard.

 Copy
Copies the selected control or text onto the Clipboard.

 Paste
Inserts the contents of the Clipboard at the current location.

 Find
Searches for the specified text in a search range specified in the Find dialog box.

 Undo
Reverses the last editing action, such as typing text in the Code window or deleting controls.

 Redo
Restores the last text editing if no other actions have occurred since the last Undo.

 Start
Runs the application starting with the Startup Object identified on General tab of the Project
Properties dialog box.

 Break
Stops execution of a program while it's running and switches to break mode.

 End
Stops running the program and returns to design time

 Project Explorer
Displays the Project Explorer, which displays a hierarchical list of the currently open projects and their
contents.

 Properties Window
Displays the Properties window so you can view the properties of the selected control.

 Form Layout Window
Displays the Form Layout window where you can preview position your form within the window.

 Object Browser
Displays the Object Browser, which lists the object libraries, the type library, classes, methods,
properties, events, and constants you can use in code, as well as the modules and procedures you
defined for your project.

 Toolbox
Displays the Toolbox, which contains the controls and insertable objects (such as a Microsoft Excel
Chart) currently available to your application.

Edit Toolbar
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdEditCommandBarC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdEditCommandBarS"}

Contains buttons that are shortcuts to some commonly used menu items frequently used when
editing code.

You can click a toolbar button once to carry out the action represented by that button. You can select
the Show ToolTips option in the General tab of the Options dialog box if you want to display ToolTips
for the toolbar buttons.

Toolbar Buttons

 List Properties/Methods
Displays a box in the code window that contains the properties and methods available for the selected
object.

 List Constants
Displays a box in the Code window that contains the constants that are valid choices for the property
you typed and that precede the equals sign (=).

 Quick Info
Provides the syntax for a function, method, or procedure based on the location of your pointer within
the name of the function, method, or procedure.

 Parameter Info
Shows a popup in the Code window that contains information about the parameters of the function in
which the pointer is located.

 Complete Word
Accepts the characters that Visual Basic automatically adds to the word you are typing.

 Indent
Shifts all lines in the selection to the next tab stop

 Outdent
Shifts all lines in the selection to the previous tab stop

 Toggle Breakpoint
Sets or removes a breakpoint at the current line.

 Comment Block
Adds comment character to the beginning of each line of a selected block of text.

 Uncomment Block
Removes the comment character from each line of a selected block of text.

 Toggle Bookmark
Toggles a bookmark on or off for the active line in the Code window.

 Next Bookmark
Moves the focus to the next bookmark.

 Previous Bookmark
Moves the focus to the previous bookmark.

 Clear All Bookmarks
Removes all bookmarks set in a project.

Debug Toolbar
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdDebugCommandBarVB5C;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdDebugCommandBarVB5S"}

Contains buttons that are shortcuts to some commonly used menu items frequently used in
debugging code.

You can click a toolbar button once to carry out the action represented by that button. You can select
the Show ToolTips option in the General tab of the Options dialog box if you want to display ToolTips
for the toolbar buttons.

Toolbar Buttons

 Start
Runs the application from the startup form (or Sub Main) specified in the Project tab of the Options
dialog box. The Command button changes to Continue if in break mode.

 Break
Stops execution of a program temporarily. Click the Continue button to resume running a program.

 End
Stops running the program and returns to design time.

 Toggle Breakpoint
Sets or removes a breakpoint at the current line

 Step Into
Executes code one statement at a time.

 Step Over
Executes code as a unit when the current statement contains a call to a procedure, and then steps to
the next statement in the current procedure.

 Step Out
Executes the remaining lines of a function in which the current execution point lies.

 Locals Window
Displays the Locals window.

 Immediate Window
Displays the Immediate window.

 Watch Window
Displays the Watch window.

 Quick Watch
Displays the Quick Watch dialog box with the current value of the selected expression.

 Call Stack
Displays the Calls dialog box, which lists the currently active procedure calls–procedures in the
application that have started but are not completed.

Form Editor Toolbar
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdDialogCommandBarC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdDialogCommandBarS"}

Contains buttons that are shortcuts to some commonly used menu items useful for working with
forms.

You can click a toolbar button once to carry out the action represented by that button. You can select
the Show ToolTips option in the General tab of the Options dialog box if you want to display ToolTips
for the toolbar buttons.

Toolbar Buttons

 Bring To Front
Moves the selected objects to the front of all other objects on a form.

 Send To Back
Moves the selected objects behind all other objects on a form.

Align

 Lefts — Aligns the horizontal position of the selected objects, putting the left-most edges in line
with the last selected object, the one with the black grab handles.

 Centers — Aligns the horizontal position of the selected objects, putting the centers in line with
the last selected object, the one with the black grab handles.

 Rights — Aligns the horizontal position of the selected objects, putting the right-most edges in
line with the last selected object, the one with the black grab handles.

 Tops — Aligns the vertical position of the selected objects, putting the tops in line with the last
selected object, the one with the black grab handles.

 Middles — Aligns the vertical position of selected objects, putting the middles in line with the last
selected object, the one with the black grab handles.

 Bottoms — Aligns the vertical position of the selected objects, putting the bottoms in line with
the last selected object, the one with the black grab handles.

 to Grid — Aligns the top left of the selected objects to the closest grid. The object is not resized.

Center

 Horizontally — Aligns the middles of the selected objects to a horizontal line in the middle of the
form.

 Vertically — Aligns the middles of the selected objects to a vertical line in the center of the form.

Make Same Size

 Width — Adjusts width.

 Height — Adjusts height.

 Both — Adjusts both the width and the height.

 Lock Controls Toggle
Locks and unlocks controls. When controls are locked, all controls on the form are kept in their
current positions so you don't inadvertently move them once they are in the desired location.

Make Tab (Project Properties Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgBuildOptionsTabProjectSettingsDialogC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgBuildOptionsTabProjectSettingsDialogS"}

Sets the attributes for the executable file you make. Displays the name of the current project in the
title so you can determine which project will be affected by any changes you make. The current
project is the item currently selected in the Project Explorer.

Tab Options
Version Number Creates the version number for the project.

· Major — Major release number of the project; 0 – 9999.
· Minor — Minor release number of the project; 0 – 9999.
· Revision — Revision version number of the project; 0–9999.
· Auto Increment — If selected, automatically increases the Revision number by one each time

you run the Make Project command for this project.
Application Lets you identify a name and icon for your project.

· Title — Name of the application.
· Icon — Icon for the application.

Version Information Lets you provide specific information about the current version of your
project.

· Type — Information you can use to set a value. You can enter information for your company
name, file description, legal copyright, legal trademarks, product name and comments.

· Value — The value for the type of information selected in the Type box.
Command Line Arguments Allows you to enter the command-line arguments that Visual Basic

sends to an application only when you choose Start from the Run menu.
Conditional Compilation Arguments Allows you to enter the constant declarations used for

conditional compilation.

Add Project Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgAddProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgAddProjectS"}

Displays the project types or existing projects you can add to your project. When you add a project, a
project group is created, if one does not already exist. A project group is useful if you want to load a
set of related projects at the same time.

Dialog Box Options
New Tab Displays the project types you can add.

Existing Tab Displays a dialog box where you can locate and select the project that you want to
add.

Recent Tab Lists the most recently opened projects and their location.

Options Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgOptionsDialogVB5C;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgOptionsDialogVB5S"}

Allows you to change default settings for Visual Basic development environment.

The Options dialog box has the following tabs:

· Editor
· Editor Format
· General
· Docking
· Environment
· Advanced

Make Project Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgMakeProjectDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgMakeProjectDialogS"}

Allows you to build any combination of projects in the project group.

Dialog Box Options
Save in
Select the folder where you want to store the file.
Up One Level

Shows a list of folders or drives one level above the current folder.

Create New Folder

Creates a new folder.

Details

Shows the folder or documents in a list that includes the folder or document icon and name, its size
(documents only), type, and the date and time it was last modified.

List

Shows the folders or documents in a list format that includes the folder or document icon and its
name.

File name
Allows you type a name for your project. Visual Basic automatically adds the default filename
extension .vbg.

OK
Saves the project under the name and in the location specified.

Cancel
Closes the dialog box without saving the file.

Options
Displays the Project Properties dialog box with the Make tab active. You can indicate the version
number, information, and compatibility and the icon for your project.

Editor Format Tab (Options Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnEditorFormatTabOptionsDialogBoxC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnEditorFormatTabOptionsDialogBoxS"}

Specifies the appearance of your Visual Basic code.

Tab Options
Code Colors Determines the foreground and background colors used for the type of text selected

in the list box.
· Text List — Lists the text items that have customizable colors.
· Foreground — Specifies the foreground color for the text selected in the Color Text List.
· Background — Specifies the background color for text selected in the Color Text List
· Indicator — Specifies the margin indicator color.

Font Specifies the font used for all code.
Size Specifies the size of the font used for code.
Margin Indicator Bar Makes the margin indicator bar visible or not visible.
Sample Displays sample text for the font, size, and color settings.

General Tab (Options Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgOptionsGeneralTabC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgOptionsGeneralTabS"}

Specifies the settings, the error handling, and compile settings for your current Visual Basic project.

Tab Options
Form Grid Settings Determines the appearance of the form grid at design time.

· Show Grid — Determines whether to show the grid at design time.
· Grid Units — Displays the grid units used for the form. The default is twips.
· Width — Determines the width of grid cells on a form; 24–1,188 twips.
· Height — Determines the height of grid cells on a form; 24–1,188 twips.
· Align Controls to Grid — Automatically positions the outer edges of controls on grid lines.

Show ToolTips Displays ToolTips for the toolbar and Toolbox items.
Collapse Proj. Hides Windows Determines whether the window are hidden when a project is

collapsed in the Project Explorer.
Edit and Continue

· Notify Before State Loss — Determines if you will receive a message notifying you that the
action requested will cause the state to be lost for a running project.

Error Trapping Determines how errors are handled in the Visual Basic development environment.
These settings are not saved for each project so setting this option affects all instances of Visual
Basic started after you change the setting.

· Break on All Errors — Any error causes the project to enter break mode, whether or not an error
handler is active and whether or not the code is in a class module.

· Break in Class Module — Any unhandled error produced in a class module causes the project to
enter break mode at the line of code in the class module which produced the error.
When you debug an ActiveX server project by running an ActiveX client test program in another
project, set this option in the ActiveX server project to break on errors in its class modules,
instead of always returning the error to the client test program.

· Break on Unhandled Errors — If an error handler is active, the error is trapped without entering

break mode. If there is no active error handler, the error causes the project to enter break mode.
An unhandled error in a class module, however, causes the project to enter break mode on the
line of code that invoked the offending procedure of the class.

Compile Determines how your project compiles.

· Compile On Demand — Determines whether a project is fully compiled before it starts, or
whether code is compiled as needed, allowing the application to start sooner. If you choose the
Start With Full Compile command on the Run menu, Visual Basic ignores the Compile on
Demand setting and performs a full compile.

· Background Compile — Determines whether idle time is used during run time to finish compiling
the project in the background. Background Compile can improve run time execution speed. This
feature is not available unless Compile on Demand is also selected.

Editor Tab (Options Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbrgnFormatOptionsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnFormatOptionsS"}

Specifies the code window and project window settings.

Tab Options
Code Settings

· Auto Syntax Check — Determines whether Visual Basic should automatically verify correct
syntax after you enter a line of code.

· Require Variable Declaration — Determines whether explicit variable declarations are required
in modules. Selecting this adds the Option Explicit statement to general declarations in any new
module.

· Auto List Members — Displays a box that displays information that would logically complete the
statement at the current insertion point.

· Auto Quick Info — Displays information about functions and their parameters.
· Auto Data Tips — Displays the value of the variable over which your cursor is placed
· Auto Indent — Allows you to tab the first line of code; all subsequent lines will start at that tab

location.
· Tab Width — Sets the tab width, which can range from 1 to 32 spaces; the default is 4 spaces.

Window Settings
· Drag-and-Drop Text Editing — Allows you to drag and drop elements within the current code and

from the Code window into the Immediate or Watch windows,
· Default to Full Module View — Sets the default state for new modules to allow you to look at

procedures in the Code window either as a single scrollable list or one procedure at a time. It
does not change the way currently open modules are viewed.

· Procedure Separator — Allows you to display or hide separator bars that appear at the end of
each procedure in the Code window. Only available if Default to Full Module View is checked.

Add File Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgAddFileDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgAddFileDialogS"}

Allows you to insert a file into your project.

Dialog Box Options

Look in
Select the location of the project you want to open.

Up One Level

Shows a list of folders or drives one level above the current folder.

Create New Folder

Creates a new folder.

List

Shows the folders or documents in a list format that includes the folder or document icon and its
name.

Details

Shows the folder or documents in a list that includes the folder or document icon and name, its size
(documents only), type, and the date and time it was last modified.

File name
Select or type the name of a project you want to open.

Files of type
Select a file type; the default is Text Files (*.txt). Files of the selected type will appear in the File Name
list box.

Add As Related Document
Adds items such as Microsoft Excel or Microsoft Word, to the Related Documents folder in the Project
Explorer.

Open
Inserts the selected file.

Cancel
Closes the dialog box without inserting a new project.

Compile Tab (Project Properties Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgCompileTabProjectPropertiesC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgCompileTabProjectPropertiesS"}

Allows you to set conditions for compiling your project.

Tab Options
Compile to P-Code Compiles a project using p-code. The settings stored in the .vbp file are
overridden.

Compile to Native Code Compiles a project using native code with selected optimizations. The
settings stored in the .vbp file are overridden.

· Optimize for Fast Code — Maximizes the speed of the .exe and .dll files by instructing the
compiler to favor speed over size. The compiler can reduce many constructs to functionally
similar sequences of machine code. In some cases, the differences offer a trade off of size
versus speed.

· Optimize for Small Code — Minimizes the size of the .exe and .dll files by instructing the
compiler to favor size over speed. The compiler can reduce many constructs to functionally
similar sequences of machine code. If you do not select this option, you may have code that is
larger in size but faster.

· No Optimization — Compile without optimizations.
· Favor Pentium Pro™ — Optimizes the code created to favor the Pentium Pro™ processor. Use

this option for programs meant only for the Pentium Pro ™ processor. Code generated with this
option will still run on earlier processors but it does not perform as well.

· Create Symbolic Debug Info — Generates symbolic debug information in the executable or DLL
file. An executable file created using this option can be debugged using Visual C++ or
debuggers that use CodeView style of debug information. Setting this option generates a .pdb
file with the symbol information for your executable.

Advanced Optimizations Displays the Advanced Optimizations dialog box.
DLL Base Address Sets a base address for the program, overriding the default location for a .dll

file (at 0X10000000). The operating system first attempts to load a program at its specified or
default address. If there is insufficient space, the system relocates the program.

Make Project Group Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgMakeProjectGroupDialogBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgMakeProjectGroupDialogBoxS"}

Allows you to choose the available projects that you want to build.

Dialog Box Options
Project List Lists the projects that are available. You can choose as many projects as you want to

build together
Use Default Build Options When checked, uses the options set in the Make tab of the Project

Properties dialog box. If you have not changed the options, Visual Basic will use the default values
and the project name for the build file names.

Build Builds the project files.

Open Project Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgOpenProjectDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgOpenProjectDialogS"}

Lets you locate and open a project or project group.

Dialog Box Options
Existing Tab Displays a dialog box where you can locate and select the project that you want to

open.
Recent Tab Lists the most recently opened projects and their location.
Open Displays the selected file.
Cancel Closes the dialog box without opening a new project.

Component Tab (Project Properties Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgStartUpTabProjectPropertiesC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgStartUpTabProjectPropertiesS"}

Allows you to determine how your project starts.

Tab Options
Start Mode Indicates how the application is started. This is used with ActiveX servers (Visual

Basic, Professional and Enterprise Editions).
· Standalone — Starts the application a standalone.
· ActiveX Component — Starts the application as an ActiveX Server.

Remote Server
· Remote Server Files (Enterprise Edition) — When checked, Visual Basic creates a file with

a .vbr file name extension and the same filename as the .dll file. This .vbr file contains
information needed by the Windows Registry to run an ActiveX Server on a remote computer.
This option is only available in the Enterprise edition of Visual Basic.

Version Compatibility Allows you to set the level of version compatibility

· No Compatibility — Compatibility not enforced.
· Project Compatibility — If checked, the Location box active and allows you to search for the file

with which this project is to be compatible. If cleared, the Location box is not available.
For all ActiveX project types, Project Compatibility is checked by default.

· Binary Compatibility — Useful for maintaining compatibility among projects that have been
compiled using your component.

· File Location Box — Displays the name and location of the file with the project is to be
compatible. You can type a name and location or can use the Browse button to display the
Compatible ActiveX Server dialog box where you can locate the file.

Add <item> Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgAddItemDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgAddItemDialogS"}

Allows you to locate and add a form, MDI form, module, class module, user control, property page,
user document, or ActiveX designer to your project.

Dialog Box Tabs
New Lists the available items.
Existing Displays the common Open dialog box where you can locate and open the item you want

to add.
Don't show this dialog in the future When selected automatically adds an new item to your

project without showing the Add <item> dialog box. To view the Add <item> dialog box in the future
select the Prompt for project option on the Environment tab of the Options dialog box.

Components Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgComponentsDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgComponentsDialogS"}

Allows you to add components – controls, designers, or insertable objects – to your project.

You can reference loaded control projects from the Components dialog box.

Note Pressing SHIFT while clicking OK removes unused control references from your project.

Dialog Box Options
Tabs List components you can add by their category.

· Controls
· Designers
· Insertable Objects
Apply Adds the selected controls, designers, or insertable objects to the Toolbox without closing

the dialog box.
OK Adds the selected controls, designers, or insertable objects to the Toolbox and closes the

Components dialog box.

Controls Tab (Components Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgControlsTabComponentsDialogBoxC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgControlsTabComponentsDialogBoxS"}

Allows you to add controls to your project's Toolbox.

Tab Options
Available Controls List Displays the available controls. You add a control by selecting the check

box next to its name.

Note You can't remove a control that is used in your project.

Path Displays the path of the control selected in the Available Controls box.
Browse Displays the Add Custom Control dialog box where you can locate and open the control

you want.
Selected Items Only When selected, displays only those controls in the Available Controls list

which you have selected to include in the project.
Apply Adds the selected controls to the Toolbox without closing the dialog box.
OK Adds the selected controls to the Toolbox and closes the Components dialog box.

Designers Tab (Components Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgDesignersTabComponentsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgDesignersTabComponentsS"}

Allows you to add designers to your project's Toolbox.

Tab Options
Available Designers List Displays the available designers. You add a designer by selecting the

check box next to its name.

Note You can't remove a designer that is used in your project.

Path Displays the path of the designer selected in the Available Designers List.
Selected Items Only When selected, displays only those designers in the Available Designers list

which you have selected to include in the project.
Apply Adds the selected designers to the Toolbox without closing the dialog box.
OK Adds the selected designers to the Toolbox and closes the Components dialog box.

Insertable Objects Tab (Components Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgInsertableObjectsTabComponentsC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgInsertableObjectsTabComponentsS"}

Allows you to add insertable objects to your project's Toolbox.

Tab Options
Available Insertable Objects Displays the available insertable objects. You add an insertable

object by selecting the check box next to its name.

Note You can't remove an insertable object that is used in your project.

Path Displays the path of the insertable object selected in the Available Insertable Objects box.
Selected Items Only When selected, displays only those insertable objects in the Available

Insertable Objects list which you have selected to include in the project.
Apply Adds the selected insertable objects to the Toolbox without closing the dialog box.
OK Adds the selected insertable objects to the Toolbox and closes the Components dialog box.

New Project Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgNewProjectDialogOpeningC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgNewProjectDialogOpeningS"}

Allows you to select the type of project you want to create. If there is currently another project or
project group open, you will be asked to save any changes before the new project and group are
created.

If you want to add projects to a project group use the Add Project command on the File menu.

Dialog Box Options
List of projects Displays the valid projects that you can add.

· Standard EXE — Creates a standard executable file.

· ActiveX EXE — Creates an ActiveX executable file.

· ActiveX DLL — Creates an ActiveX DLL file.

· ActiveX Control — Creates an ActiveX control.
· Any projects with a .vbp (project files), .vbz (wizard files), or .vbg (project group) extension that
are in the vb\template\projects directory.

Docking Tab (Options Dialog Box)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgDockingTabOptionsDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgDockingTabOptionsDialogS"}

Allows you to choose which windows you want to be dockable.

A window is docked when it is attached or "anchored" to other windows that are dockable or to the
main window when you are in MDI mode. When you move a dockable window, it "snaps" to the
location. A window is not dockable when you can move it anywhere on the screen and leave it there.

Tab Options
Dockable List the windows that are dockable.

Select the windows you want to be dockable and clear those that you do not. You can have any,
none, or all of the windows in the list dockable.

Procedure Attributes Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgProcedureAttributesDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgProcedureAttributesDialogS"}

Allows you to set the attributes for properties, methods, and events specified for a an item.

Only available if you have one or more procedures defined.

Dialog Box Options
Name Lists the properties, methods, and events defined. The property, method, or event in the

Code window in which the cursor is currently positioned appears selected.
Description Displays the description of the property, method, or event that you want to show up in

the Object Browser.
Project Help File Displays the path to the help file for the project that is specified on the General
tab of the Project Properties dialog box. This option is read only.

Help Context ID Specifies the help context ID specified on the General tab of the Project
Properties dialog box for the selected property or method.

OK Applies the options to the selected property or method on the user control and closes the dialog
box.

Apply Applies the options to the selected property or method on the user control without closing
the dialog box.

Advanced Expands the dialog box to include the following options:
Procedure ID Allows you to choose a standard member ID for the selected property, event, or

method. The member ID is used to identify a property, method, or event as a standard type that
control hosts may know about. A procedure whose ProcedureID is 0 acts as the default property or
method for the control. It is also referred to as the Value property.

Note When you set a property, method, or event as a standard type, it does not change the
behavior of the control. It tells a control container that the property, method, or event will behave in
the well-understood way but it does not create the behavior. It is up to you to make sure that the
control behaves correctly.

Use this Page in Property Browser Lists the Property Pages that are in the current project so you
can select one to act as a builder when the property is chosen in the Property window. The
property in the Property window is marked with a button and an ellipsis (…). When a user clicks the
ellipsis, the Property Page specified is displayed.
Valid only for properties. Default is None.

Property Category Lists available categories to describe the selected property. You can select a
standard category or type in one of your own. When you type in a category, the property browser
automatically creates a new level for the property.
Some property browsers such as Visual Basic allow you to categorize control properties. If the
control host does not support property categorization, this setting will be ignored.
Valid only for properties. Default is None.

Attributes Allows you to set some standard behaviors of the selected property, method, or event.

· Hide this member — Determines whether the property, method, or event will appear to the end
user of the control. If checked, it is hidden and cannot be seen in a property browser or the
Object Browser. You can still write code to access it but it does not appear in the user interface.

· User Interface Default — Determines which property is highlighted in the property browser or
which event is displayed in the Code window when you double-click the control. There can be
only one User Interface default property and one User Interface default event. Not valid for
methods.

· Don't show in Property Browser — Determines if a property, method, or event will be hidden in
the property browser. It will continue to appear in the Object Browser and you can continue to
write code to access it. This box is cleared when you choose Hide this member.

Data Binding Determines whether a property can be bound or linked to a field in a database table.

· Property is data bound — Determines if the property is a data bound property. If this option is
selected, the property supports data binding and appears in the DataBindings collection. The
box is cleared by default.

· This property binds to DataField — Specifies whether the field to which the property is bound is
specified in the DataField property. With this option, the end user does not have to use the Data
Bindings collection and can use DataField. The box is cleared by default.

· Show in DataBindings collection at design time — Determines if the property will appear in the
user interface as bindable at design time. If selected, the property appears in the Bindings dialog
box. If cleared, the property does not appear in the user interface as a bindable property but you
can continue to write code to access it.

· Property will call CanPropertyChange before changing — Tells the control container that the
control will always call the CanPropertyChange method, and respect the return value, before
changing a property value.
The box is cleared by default.

Connect Property Pages Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgConnectPropertyPagesDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgConnectPropertyPagesDialogS"}

Allows you to set the property pages at design time.

Dialog Box Options
Available Property Pages Lists the available property pages. You check the pages that you want
to appear on the control.

If you delete a property page from the project that was selected to be used with a control, it appears
with the word, MISSING, as a prefix. The next time you open this box, the deleted property page does
not appear in the list.

Page Order Sets the order that the pages appear in the Properties window. The page at the top of
the list is the first page that appears when you open the Properties window.

Moves the selected Property Page up one level each time you click it.

Moves the selected Property Page down one level each time you click it.

Data Bindings Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdBindingdDialogBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdBindingdDialogBoxS"}

Allows you to set the Data Field for each property that is marked as Bindable or DisplayBind.

Dialog Box Options
Property Name Displays a list of the properties that are marked as Bindable and DisplayBind.

A property that has a data field assigned to it appears in Bold text.
Data Field Lists all of the fields from the source specified in the DataSource property of the

control.

Property Pages Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgPropertyPagesDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgPropertyPagesDialogS"}

Allows you to change a control's properties at design time.

Dialog Box Options
Tabs Visual Basic creates a tabbed dialog box that acts like form by writing code to handle

updating property values when a user changes values in the control.
You can add Property Pages to your project using the Add Property Pages command on the
Project menu.

OK Adds the Property Pages and closes the Property Pages dialog box.
Apply Adds the Property Page without closing the dialog box.

Define Color Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgDefineColorDialogC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgDefineColorDialogS"}

Allows you to create customized colors.

Dialog Box Options
Color Screen with Slider Allows you to choose your color by sliding the bar up and down, from

white to black.
Color Preview Box Allows you to preview your color.
Hue Adjusts the hue from 0-239 with 0 representing black and 239 representing white.
Sat Adjusts the color saturation from 0-240 with 0 representing black and 240 representing black.
Lum Adjusts the luminescence from 0-240 with 0 representing black and 240 representing white.
Red Adjusts the amount of red in the color from 0-255.
Green Adjusts the amount of green in the color from 0 to 255.
Blue Adjusts the amount of blue in the color from 0 to 255.
Add Color Adds your custom color to the Color Palette.

Form Layout Window
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbrgnFormLayoutWindowC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbrgnFormLayoutWindowS"}

Allows you to visually position your forms at design time.

All forms that are visible in the environment are displayed. When you place your cursor over a form, it

changes to a . If you press the mouse button you can position the form where you want it to
appear at run time.

When you re-size the Form Layout window, each form is sized relative to the size of your design window.
The upper left corner of the client area represents the coordinates – 0,0 – of the desktop. You can change
the resolution using the Resolutions Guides command on the shortcut menu.

Advanced Optimizations Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgAdvancedOptimizationsCompileC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgAdvancedOptimizationsCompileS"}

Allows you to add the following optimizations to your compile.

Note Enabling these optimizations may prevent the correct execution of your program.

Dialog Box Options
Assume No Aliasing Tells the compiler that your program does not use aliasing. Aliasing provides

a name that refers to a memory location that is already referred to by a different name. Using this
option allows the compiler to apply optimizations that it could not otherwise use, for example
storing variables in registers and performing loop optimizations. This occurs when using ByRef
arguments. For example,
Dim y as integer
Sub Foo(x as integer)
x=5 'Code is referring to the same variable (the
y=6 'global y)via two different names
End Sub
Sub Main
Foo y
End Sub

Remove Array Bound Checks By default in Visual Basic, a check is made on every access to an
array to determine if the index is within the range of the array. If the index is not within array
bounds an error message is displayed. Selecting this option urns off the array bounds error
checking and removes checks for the correct number of dimension of the array.

Note This may speed up array manipulation but invalid memory locations may be accessed and
result in unexpected behavior or program crashes.

Remove Integer Overflow Checks By default in Visual Basic, a check is made on every

calculation for integer-style data types – byte, integer, and long – to be sure that the value is within
the range of the data type. If the magnitude of the value being put into the data type is incorrect an
error occurs. Selecting this option turns off the error checking which can speed up integer
calculations. However, if data type capacities are overflowed, no error occurs and you may get
incorrect results.

Remove Floating Point Error Checks By default in Visual Basic, a check is made on every
calculation of a floating point data type – Singe and Double – to be sure that the value is within
range for that data type and that there are no divide by zero or invalid operations. If the magnitude
of the value being put into the data type is incorrect, an error occurs. Selecting this option turns
off the error checking which can speed up floating [point calculations. However, if data type
capacities are overflowed, not error occurs and you may get incorrect result.

Allow Unrounded Floating Point Operations When selected, allows the compiler to:

· Use floating point regisers more efficiently
· Avoid loads and stores from memory
· Do floating point comparisons more efficiently

Note Using this option may result in calculations being maintained to a higher precision than
expected and may cause the comparison of two floating point values to show them unequal when you
expect them to be equal.
Remove Safe Pentium™ FDIV Checks Removes the checking so that the code for floating point

division is faster and smaller but may produce slightly incorrect results on Pentium™ processors
with the FDIV bug. If cleared, the code generated for floating point division operations is not
affected by the FDIV bug on Pentium™ processor.

Custom Control Upgrade Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgCustomControlUpgradeDialogC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgCustomControlUpgradeDialogS"}

Allows Visual Basic to automatically upgrade old custom controls that you are using with appropriate
ActiveX controls that are available on your system.

Dialog Box Options
Controls that can be upgraded Lists the controls that can be upgraded to their newer version.
Controls without upgrade keys Lists controls that have no upgrade keys and will be converted to

PictureBoxes.
OK Replaces the controls with ActiveX controls.
Cancel Load Visual Basic does not replace the controls and cancels loading the project.

Note Replacement compatibility is determined by the ActiveX control vendor. Before replacing a
custom control with an ActiveX control, be sure to check the ActiveX control vendor's documentation
to see if you need to modify event procedures or other code associated with your project's use of the
replacement controls.

Add Procedure Dialog Box
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgAddProcedureC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgAddProcedureS"}

Inserts a new Sub, Function, or Property procedure. The Insert Procedure dialog box also allows you
to set the scope to public or private, and make all local variables in the procedure static.

Dialog Box Options
Name Lists a name for the new procedure.
Type Identifies the type of procedure to create.

· Sub — Creates a new Sub procedure.
· Function — Creates a new Function procedure.
· Property — Creates a new Let property and Get property procedure pair.

Scope Sets the procedure's scope to either Public or Private.
All Local Variables as Statics Adds the Static keyword to the procedure definition.
OK Inserts the procedure template in the Code window.
Cancel Closes the dialog box without inserting a new procedure.

Recent Tab (New, Open, and Add Project Dialog Boxes)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgRecentTabOpenAddDialogsC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgRecentTabOpenAddDialogsS"}

Displays a list and location of recently opened projects so you can open them or add them to your
project.

Dialog Box Options
File Displays the list of recently opened project.
Folder Displays the path to the folder in which the file is located.
Open Opens the selected file and closes the dialog box.

New Project Dialog Box (at StartUp)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgStartUpDialogC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgStartUpDialogS"}

Allows you to locate and open an new or existing project when you open Visual Basic.

Dialog Box Tabs
New Tab Displays the project types you can open.

Existing Tab Displays a dialog box where you can locate and select the project that you want to
open.

Recent Tab Lists the most recently opened projects and their location.
Don't show this dialog in the future When selected automatically opens a new Standard EXE
project without showing the New Project dialog box. To view the New Project dialog box in the future
select the Prompt for project option on the Environment tab of the Options dialog box.

Existing Tab (Add, New, and Open Projects Dialog Boxes)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgExistingTabAddNewOpenDialogC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgExistingTabAddNewOpenDialogS"}

Displays a dialog box that looks like the Open common dialog box where you can locate and select
the project that you want to add. When you add project groups, they merge into one project group.

You can add as many projects as your system resources and memory can accommodate.

New Tab (New Project and Add Project Dialog Boxes)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbdlgNewTabNewProjectAddProjectDialogC"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbdlgNewTabNewProjectAddProjectDialogS"}

Note This tab is only available on the New Project dialog box that appears when you start Visual
Basic and not on the New Project dialog box that you see when you choose New Project from the File
menu.

Displays the project types you can add.

· Standard EXE — Creates a standard executable file.

· ActiveX EXE — Creates an ActiveX executable file.

· ActiveX DLL — Creates an ActiveX DLL file.

· ActiveX Control — Creates an ActiveX control.
· Any projects with a .vbp (project files) or .vbz (wizard files) extension that are in the vb\template\
projects directory.

Code Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdCodeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdCodeS"}

Displays or activates the Code window for a currently selected object.

Toolbar shortcut: . Keyboard shortcut: F7.

Last Position Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdLastPositionC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdLastPositionS"}

Allows you to quickly navigate to a previous location in your code. Enabled only if you edited code or
made a Definition command call and only when the Code window is displayed. Visual Basic only
keeps track of the last 8 lines that were accessed or edited. Available at design time and in break
mode.

Keyboard shortcut: CTRL+SHIFT+F2.

Object Browser Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdObjectBrowserC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Displays the Object Browser, which lists the object libraries, the type libraries, classes, methods,
properties, events, and constants you can use in code, as well as the modules and procedures you
defined for your project. Not available at run time.

Toolbar shortcut: . Keyboard shortcut: F2.

Properties Window Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdPropertiesWindowC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdPropertiesWindowS"}

Displays the Properties window, which lists the design-time properties for a selected form, control,
class, user control, property page, user document, or menu. Available only at design time.

Toolbar shortcut: . Keyboard shortcut: F4.

Toolbox Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdToolBoxC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdToolboxS"}

Displays or hides the Toolbox, which contains the controls and insertable objects (such as a Microsoft
Excel Chart) currently available to your application. Available only at design time.

Toolbar shortcut: .

Call Stack Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdCallsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdCallsS"}

Displays the Calls dialog box, which lists the procedure calls in the application that have started but
are not completed. Available only in break mode.

When Visual Basic is executing the code in a procedure, that procedure is added to a list of active
procedure calls. If that procedure then calls another procedure, there are two procedures on the list of
active procedure calls. Each time a procedure calls another Sub, Function, or Property procedure, it
is added to the list. Each procedure is removed from the list as execution is returned to the calling
procedure. Procedures called from the Immediate window are also added to the calls list.

You can also display the Calls dialog box by clicking the Calls button (...) next to the Procedure box in
the Locals window.

Toolbar shortcut: Keyboard shortcut: CTRL+L.

Object Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdObjectViewC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdObjectViewS"}

Displays the active item.

Only available at design time and when the cursor is on a valid object.

Toolbar shortcut: . Keyboard shortcut: SHIFT+F7.

Immediate Window Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdImmediateWindowC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdImmediateWindowS"}

Displays the Immediate window and displays information resulting from debugging statements in your
code or from commands typed directly into the window.

Available in break mode.

Use the Immediate window to:

· Test problematic or newly written code.
· Query or change the value of a variable while running an application. While execution is halted,

assign the variable a new value as you would in code.
· Query or change a property value while running an application.
· Call procedures as you would in code.
· View debugging output while the program is running.

Toolbar shortcut: . Keyboard shortcut: CTRL+G.

Locals Window Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdLocalsWindowC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdLocalsWindowS"}

Displays the Locals window and automatically displays all of the variables in the current stack and
their values.

The Locals window is automatically updated every time you change from run time to break mode and
every time the stack context changes.

Toolbar shortcut: .

Watch Window Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdWatchWindowC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdWatchWindowS"}

Displays the Watch window and displays the current watch expressions. The Watch window appears
automatically if watch expressions are defined in the project.

If the context of the expression isn’t in scope when going to break mode, the current value isn’t
displayed.

Toolbar shortcut: .

Definition Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdProcedureDefinitionC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdProcedureDefinitionS"}

Displays the location in the Code window where the variable or procedure under the pointer is
defined. If the definition is in a referenced library, it is displayed in the Object Browser.

Keyboard shortcut: SHIFT+F2.

Toolbars Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdCommandBarsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdCommandBarsS"}

Lists the toolbars that are built into Visual Basic and the Customize command. You can:

· Toggle the toolbars on and off
· Drag the toolbars to different locations on you desktop.

Debug Displays the Debug toolbar which contains buttons for common debugging tasks.
Edit Displays the Edit toolbar which contains buttons for common editing tasks.
Form Editor Displays the Form Editor toolbar which contains buttons specific to editing a form.
Standard Displays the Standard toolbar which is the default toolbar.
Customize Displays the Customize dialog box where you can customize or create toolbars and

your menu bar.

Project Explorer Command (View Menu)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdProjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":""}

Displays the Project Explorer, which displays a hierarchical list of the currently open projects and their
contents.

The Project Explorer is a navigational and management tool only. You cannot build an application
from the Project Explorer. You can close a project by choosing the Remove Project command from
the shortcut menu.

Toolbar shortcut: . Keyboard shortcut: CTRL+R.

Window Menu Commands
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcmdWindowsC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcmdWindowsS"}

Split
Toggles splitting the Code window in half horizontally. Only available when the Code window is active.

Toolbar shortcut:

Tile Horizontally
Tiles the Object and Code windows and the Object Browser horizontally when you are in MDI mode.

Toolbar shortcut:

Tile Vertically
Tiles the Object and Code windows and the Object Browser vertically when you are in MDI mode.

Toolbar shortcut:

Cascade
Rearranges the Object and Code windows and the Object Browser in your project so they overlap in a
cascade. Available only in MDI mode.

Toolbar shortcut:

Arrange Icons
Arranges the icons of the windows you have minimized, neatly at the bottom left of the window.

Window List
Lists all open form windows

Data Control
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"daobjDatabase;daobjDataC;daobjRecordset;daproConnect;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daobjDataX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"daobjDataP;daproConnect;daproEditMode"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"daobjDataM"} {ewc HLP95EN.DLL,DYNALINK,"Events":"daobjDataE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daobjDataS"}

Provides access to data stored in databases using any one of three types of Recordset objects. The
Data control enables you to move from record to record and to display and manipulate data from the
records in bound controls. Without a Data control or an equivalent data source control like the
RemoteData control, data-aware (bound) controls on a form can't automatically access data.

Syntax
Data

Remarks
You can perform most data access operations using the Data control without writing any code at all.
Data-aware controls bound to a Data control automatically display data from one or more fields for
the current record or, in some cases, for a set of records on either side of the current record. The
Data control performs all operations on the current record.

If the Data control is instructed to move to a different record, all bound controls automatically pass
any changes to the Data control to be saved in the database. The Data control then moves to the
requested record and passes back data from the current record to the bound controls where it's
displayed.

The Data control automatically handles a number of contingencies including empty recordsets,
adding new records, editing and updating existing records, and handling some types of errors.
However, in more sophisticated applications, you need to trap some error conditions that the Data
control can't handle. For example, if the Microsoft Jet database engine has a problem accessing the
database file, doesn't have permission, or can't execute the query as coded, a trappable error results.
If the error occurs before your application procedures start or due to some internal errors, the Error
event is triggered.

Bound Controls
The DBList, DBCombo, DBGrid, and MSFlexGrid controls are all capable of managing sets of
records when bound to a Data control. All of these controls permit several records to be displayed or
manipulated at once.

The intrinsic Picture, Label, TextBox, CheckBox, Image, OLE, ListBox and ComboBox controls
are also data-aware and can be bound to a single field of a Recordset managed by the Data control.
Additional data-aware controls like the MaskedEdit and RichTextBox controls are available in the
Professional and Enterprise Editions and from third-party vendors.

Operation
Once the application begins, Visual Basic uses Data control properties to open the selected
database, create a Database object and create a Recordset object. The Data control's Database
and Recordset properties refer to the newly created Database and Recordset objects which may be
manipulated independently of the Data control — with or without bound controls. The Data control is
initialized before the initial Form_Load event for the form on which it is placed. If any errors occur
during this initialization step a non-trappable error results.

When Visual Basic uses the Jet database engine to create a Recordset, no other Visual Basic
operations or events can occur until the operation is complete. However, other Windows-based
applications are permitted to continue executing while the Recordset is being created. If the user

presses CTRL+BREAK while the Jet engine is building a Recordset, the operation is terminated, a
trappable error results, and the Recordset property of the Data control is set to Nothing. In design
time, a second CTRL+BREAK causes Visual Basic to display the Debug window.

When you use a Data control to create a Recordset object or when you create a Recordset object in
code and assign it to the Data control, the Microsoft Jet database engine automatically populates the
Recordset object. As a result, bookmarks (and for snapshot-type Recordset objects, recordset data)
are saved in local memory; the user doesn't need to manipulate the Data control, and you don't need
to invoke the MoveLast method in code. Page locks used to create the Recordset are released more
quickly, making it possible for other Recordset objects to access the same data. Recordset objects
created in code but not assigned to the Data control aren't automatically populated by the Jet engine.
Populate these objects through code. Because of the way that the Data control populates its
Recordset in the background, an additional cloned Recordset might be created.

You can manipulate the Data control with the mouse, moving from record to record or to the
beginning or end of the Recordset. The EOFAction and BOFAction properties determine what
happens when the user moves to the beginning or end of a Recordset with the mouse. You can't set
focus to the Data control.

Validation
Use the Validate event and the DataChanged property to perform last minute checks on the records
being written to the database.

Data Access Objects
You can use the Database and Recordset data access objects created by the Data control in your
procedures. The Database and Recordset objects each have properties and methods of their own,
and you can write procedures that use these properties and methods to manipulate your data.

For example, the MoveNext method of a Recordset object moves the current record to the next
record in the Recordset. To invoke this method, you could use this code:
Data1.Recordset.MoveNext
The Data control is capable of accessing any of the three types of Jet engine Version 3.0 Recordset
objects. If you don't select a recordset type, a dynaset-type Recordset is created.

In many cases, the default type and configuration of the Recordset object created is extremely
inefficient. That is, you might not need an updatable, fully-scrollable, keyset-type cursor to access
your data. For example, a read-only, forward-only, snapshot-type Recordset might be far faster to
create than the default cursor. Be sure to choose the most efficient Type, Exclusive, Options and
ReadOnly properties possible for your situation.

Note The constants used to request a specific Recordset type when using the Data control are
different than the constants used to determine the type of Recordset created or to create a
Recordset using the OpenRecordset method.

To select a specific type of Recordset, set the Data control's RecordsetType property to:

Recordset Type Value Constant
Table 0 vbRSTypeTable
Dynaset 1 (Default) vbRSTypeDynaset
Snapshot 2 vbRSTypeSnapshot

Important The Data control cannot be used to access Recordset objects created with the
dbForwardOnly option bit set.

Professional and Enterprise Editions
As far as data access is concerned, the primary difference between the Standard, Professional and

Enterprise Editions of Visual Basic is the ability to create new data access objects. In the Standard
Edition, you can't declare (with the Dim keyword) variables as data access objects in code. This
means that only the Data control can create Database and Recordset objects.

In Visual Basic version 5.0 Professional and Enterprise Editions, you can create a new Recordset
object and assign it to the Data control's Recordset property. Any bound controls connected to the
Data control permit manipulation of the records in the Recordset you created. Make sure that your
bound controls' DataField properties are set to field names that are valid in the new Recordset.

Stored Queries
Another important option when using the Data control is the ability to execute stored queries. If you
create a QueryDef object beforehand, the Data control can execute it and create a Recordset using
the QueryDef object's stored SQL, Connect and other properties. To execute a QueryDef, set the
Data control's RecordSource property to the QueryDef name and use the Refresh method.

If the stored QueryDef contains parameters, you need to create the Recordset and pass it to the
Data control.

BOF/EOF Handling
The Data control can also manage what happens when you encounter a Recordset with no records.
By changing the EOFAction property, you can program the Data control to enter AddNew mode
automatically.

You can program the Data control to automatically snap to the top or bottom of its parent form by
using the Align property. In either case, the Data control is resized horizontally to fill the width of its
parent form whenever the parent form is resized. This property allows a Data control to be placed on
an MDI form without requiring an enclosing Picture control.

Data Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstDataControlConstantsC;vbproBooksOnlineJumpTopic"}

Error Event Constants
Constant Value Description
vbDataErrContinue 0 Continue
vbDataErrDisplay 1 (Default) Display the error

message

Validate Event Action Constants
Constant Value Description
vbDataActionCancel 0 Cancel the operation when the

Sub exits
vbDataActionMoveFirst 1 MoveFirst method
vbDataActionMovePrevious 2 MovePrevious method
vbDataActionMoveNext 3 MoveNext method
vbDataActionMoveLast 4 MoveLast method
vbDataActionAddNew 5 AddNew method
vbDataActionUpdate 6 Update operation (not

UpdateRecord)
vbDataActionDelete 7 Delete method
vbDataActionFind 8 Find method
vbDataActionBookmark 9 The Bookmark property is set
vbDataActionClose 10 Close method
vbDataActionUnload 11 The form is being unloaded

Beginning-Of-File Action Constants
Constant Value Description
vbMoveFirst 0 Move to first record
vbBOF 1 Move to beginning of file

End-Of-File Action Constants
Constant Value Description
vbMoveLast 0 Move to last record
vbEOF 1 Move to end of file
vbAddNew 2 Add new record to end of file

Recordset-Type Constants
Constant Value Description
vbRSTypeTable 0 Table-type recordset
vbRSTypeDynaset 1 Dynaset-type recordset
vbRSTypeSnapShot 2 Snapshot-type recordset

Error Event
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"daevtErrorC;damthAddNew;damthDelete;daobjRecordset;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtErrorX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"daevtErrorA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtErrorS"}

Occurs only as the result of a data access error that takes place when no Visual Basic code is being
executed.

Syntax
Private Sub object_Error ([index As Integer,] dataerr As Integer, response As Integer)
The Error event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the

Applies To list.
index Identifies the control if it's in a control array.
dataerr The error number.
response A number corresponding to the response you want to take,

as described in Settings.

Settings
The settings for response are:

Constant Value Description
vbDataErrContinue 0 Continue
vbDataErrDisplay 1 (Default) Display the error message

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

You usually provide error-handling functionality for run-time errors in your code. However, run-time
errors can occur when none of your code is running, as when:

· A user clicks a Data control button.
· The Data control automatically opens a database and loads a Recordset object after the

Form_Load event.
· A custom control performs an operation such as the MoveNext method, the AddNew method, or

the Delete method.

If an error results from one of these actions, the Error event occurs.

If you don't code an event procedure for the Error event, Visual Basic displays the message
associated with the error.

Errors that occur before the Form_Load event, are not trappable and do not trigger the Error event.
For example, if at design time you set the properties of the Data control to point to an unknown
database table an untrappable error results.

Error Event Example
This example displays an Open dialog box if the database specified in the Data control's
DatabaseName property isn't found after the Form_Load event is complete.
Private Sub Data1_Error (DataError As Integer, Response As Integer)

Select Case DataError
' If database file not found.
Case 3024

' Display an Open dialog box.
CommonDialog1.ShowOpen

...
End Select

End Sub

Reposition Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtRepositionC;damthFindFirst;daobjRecordset;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"daevtRepositionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtRepositionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtRepositionS"}

Occurs after a record becomes the current record.

Syntax
Private Sub object.Reposition ([index As Integer])
The Reposition event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index Identifies the control if it's in a control array.

Remarks
When a Data control is loaded, the first record in the Recordset object becomes the current record,
causing the Reposition event. Whenever a user clicks any button on the Data control, moving from
record to record, or if you use one of the Move methods, such as MoveNext, the Find methods, such
as FindFirst, or any other property or method that changes the current record, the Reposition event
occurs after each record becomes current.

In contrast, the Validate event occurs before moving to a different record.

You can use this event to perform calculations based on data in the current record or to change the
form in response to data in the current record.

Reposition Event Example
This example uses the Reposition event to update a list of Titles from the selected Publisher in the
Biblio.mdb sample database. First place a DBGrid, TextBox, and two Data controls on a form. Set
the DatabaseName properties of both Data controls to the Biblio.mdb sample database. Set the
RecordSource property of Data1 to Publishers. Set the DataSource property of Text1 to Data1 and
the DataField property to Name. Set the DataSource property of DBGrid1 to Data2. Add the
following code:
Private Sub Data1_Reposition()

' Select all Titles that are published by
' the current record in Data1
Data2.RecordSource = "Select * from Titles where PubID = " &

Data1.Recordset("PubID")
Data2.Refresh ' Rebuild the recordset

End Sub
The list of Titles in the DBGrid control will automatically be updated as you move through the
Publishers recordset with Data1.

Validate Event
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"damthAddNew;damthClose;damthDelete;damthEdit;damthUpdate;vbevtValidateC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"daevtValidateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtValidateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtValidateS"}

Occurs before a different record becomes the current record; before the Update method (except
when data is saved with the UpdateRecord method); and before a Delete, Unload, or Close
operation.

Syntax
Private Sub object_Validate ([index As Integer,] action As Integer, save As Integer)
The Validate event syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To

list.
index Identifies the control if it's in a control array.
action An integer that indicates the operation causing this event to occur,

as described in Settings.
 save A Boolean expression specifying whether bound data has

changed, as described in Settings.

Settings
The settings for action are:

Constant Value Description
vbDataActionCancel 0 Cancel the operation when the

Sub exits
vbDataActionMoveFirst 1 MoveFirst method
vbDataActionMovePrevious 2 MovePrevious method
vbDataActionMoveNext 3 MoveNext method
vbDataActionMoveLast 4 MoveLast method
vbDataActionAddNew 5 AddNew method
vbDataActionUpdate 6 Update operation (not

UpdateRecord)
vbDataActionDelete 7 Delete method
vbDataActionFind 8 Find method
vbDataActionBookmark 9 The Bookmark property has

been set
vbDataActionClose 10 The Close method
vbDataActionUnload 11 The form is being unloaded

The settings for save are:

Setting Description
True Bound data has changed
False Bound data has not changed

Remarks

These constants are listed in the Visual Basic (VB) object library in the Object Browser.

The save argument initially indicates whether bound data has changed. This argument can still be
False if data in the copy buffer is changed. If save is True when this event exits, the Edit and
UpdateRecord methods are invoked. Only data from bound controls or from the copy buffer where
the DataChanged property is set to True are saved by the UpdateRecord method.

This event occurs even if no changes have been made to data in bound controls and even if no
bound controls exist. You can use this event to change values and update data. You can also choose
to save data or stop whatever action is causing the event to occur and substitute a different action.

You can change the action argument to convert one action into another. You can change the various
Move methods and the AddNew method, which can be freely exchanged (any Move into AddNew,
any Move into any other Move, or AddNew into any Move). When using AddNew, you can use
MoveNext and then execute another AddNew to examine the EditMode property to determine if an
Edit or AddNew operation is in progress. Attempting to change AddNew or one of the Moves into
any of the other actions is either ignored or produces a trappable error. Any action can be stopped by
setting action to 0.

In your code for this event, you can check the data in each bound control where DataChanged is
True. You can then set DataChanged to False to avoid saving that data in the database.

You can't use any methods (such as MoveNext) on the underlying Recordset object during this
event.

AfterColUpdate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtAfterColUpdateC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtAfterColUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtAfterColUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtAfterColUpdateS"}

Occurs after data is moved from a cell in the DBGrid control to the control's copy buffer.

Syntax
Private Sub object_AfterColUpdate ([index As Integer,] colindex As Integer)
The AfterColUpdate event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer that identifies a control if it is in a control

array.
colindex An integer that identifies the column in the control.

Remarks
When a user completes editing within a DBGrid control cell, as when tabbing to another column in
the same row, pressing ENTER, or when the control loses focus, the BeforeColUpdate event is
executed, and unless canceled, data from the cell is moved to the control's copy buffer. Once moved,
the AfterColUpdate event is executed.

The AfterColUpdate event occurs after the BeforeColUpdate event, and only if the cancel argument in
the BeforeColUpdate event is not set to True.

Once the AfterColUpdate event procedure begins, the cell data has already been moved to the
control's copy buffer and can't be canceled, but other updates can occur before the data is committed
to the Recordset.

AfterColUpdate Event Example
This example does a lookup when one column is updated and places the result in another column.
Private Sub DataGrid1_AfterColUpdate (ColIndex As Integer)

If ColIndex = 1 Then
Data1.Recordset.FindFirst "PubId = " _
 & DataGrid1.Columns(1).Value
If Not Data1.Recordset.NoMatch Then

DataGrid1.Columns(2).Value = _
 Data1.Recordset.Fields("Publisher")

Else
DataGrid1.Columns(2).Value = "No Match"

End If
End If

End Sub

AfterDelete Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtAfterDeleteC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtAfterDeleteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtAfterDeleteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtAfterDeleteS"}

Occurs after the user deletes a selected record in the DBGrid control.

Syntax
Private Sub object_AfterDelete ([index As Integer,] colindex As Integer)
The AfterDelete event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer that identifies a control if it is in a control

array.
colindex An integer that identifies the column.

Remarks
When the user selects a record selector in the DBGrid control and presses DEL or CTRL+X, the
selected row is deleted. Before the record is deleted, the BeforeDelete event is triggered. Once the
row is deleted, the AfterDelete event is triggered. The row selected for deletion is available in the
collection provided by the SelBookmarks property.

AfterDelete Event Example
This example displays a message confirming that a record has successfully been deleted.
Private Sub DataGrid1_AfterDelete ()

MsgBox "Record has successfully been deleted!"
End Sub

AfterInsert Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtAfterInsertC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtAfterInsertX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtAfterInsertA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtAfterInsertS"}

Occurs after the user inserts a new record into the DBGrid control.

Syntax
Private Sub object_AfterInsert (index As Integer)
The AfterInsert event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

index An integer that identifies a control if it is in a control
array.

Remarks
When the user selects the new record (at the bottom of the control) and enters a character in one of
the cells, the BeforeInsert event is triggered, followed by the BeforeUpdate, AfterUpdate and
AfterInsert events.

When the AfterInsert event is triggered, the record has already been added to the database. The
Bookmark property can be used to access the new record.

The AfterInsert event can't be canceled.

The AfterInsert event procedure can be used to update other tables or to perform post-update
cleanup of other controls.

AfterInsert Event Example
This example creates an entry in a related table if the user enters a value in a column in the grid.
Private SubDataGrid1_AfterInsert ()

If DataGrid1.Columns(1).Value <> "" Then
Data2.Recordset.AddNew
Data2.Recordset.Fields("PubId") = DataGrid1.Columns(1).Value
Data2.Recordset.Update

End If
End Sub

AfterUpdate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtAfterUpdateC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtAfterUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtAfterUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtAfterUpdateS"}

Occurs after changed data has been written to the database from a DBGrid control.

Syntax
Sub object_AfterUpdate (index As Integer)
The AfterUpdate event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer that identifies a control if it is in a control

array.

Remarks
When the user moves to another row, or the Recordset object's Update method is executed, data is
moved from the control's copy buffer to the Data control's copy buffer and written to the database.
Once the write is complete, the AfterUpdate event is triggered.

The updated record is available by using the Bookmark property of the DBGrid control.

The AfterUpdate event occurs after the BeforeUpdate event, but before the LostFocus event for the
control (or GotFocus for the next control in the tab order). This event occurs in bound and unbound
mode and can't be canceled.

Unlike the Change event, changing data in a control or record using code doesn't trigger this event.

AfterUpdate Event Example
This example updates a label when any change has been made in the grid.
Private Sub DataGrid1_AfterUpdate ()

Label1.Caption = "Last modified: " & Format$(Now, "Long Date")
End Sub

BeforeColUpdate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtBeforeColUpdateC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtBeforeColUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtBeforeColUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtBeforeColUpdateS"}

Occurs after editing is completed in a cell, but before data is moved from the cell to the DBGrid
control's copy buffer.

Syntax
Private Sub object_BeforeColUpdate ([index As Integer,] colindex As Integer, oldvalue As

Variant, cancel As Integer)
The BeforeColUpdate event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer that identifies a control if it is in a control

array.
colindex An integer that identifies the column.
oldvalue A value that contains the value contained in the cell

prior to the change.
cancel A Boolean expression expression that specifies

whether the change occurs, as described in Settings.

Settings
The settings for cancel are:

Setting Description
True Cancels the change, restores cell to oldvalue, and

restores focus to the control.
False (Default) Continues with change and permits change

of focus.

Remarks
The data specified by the oldvalue argument moves from the cell to the control's copy buffer when a
user completes editing within a cell, as when tabbing to another column in the same row, pressing
ENTER, or changing focus away from the cell. Before the data has been moved from the cell into the
control's copy buffer, the BeforeColUpdate event is triggered. This event gives your application an
opportunity to check the individual grid cells before they are committed to the control's copy buffer.

If your event procedures set the cancel argument to True, the previous value is restored in the cell
and focus remains on the control and the AfterColUpdate event is not triggered.

To restore oldvalue in the cell and permit the user to move focus off of the cell, set cancel to False
and set the cell to oldvalue as follows:
Cancel = False
DBGrid1.Columns(ColIndex).Value = OldValue
The AfterColUpdate event occurs after the BeforeColUpdate event.

By setting the cancel argument to True, the user can not move the focus from the control until the
application determines that the data can be safely moved back to the control's copy buffer.

BeforeColUpdate Event Example
This example checks to make sure that the value the user has typed in is within a certain range;
otherwise it disables the update.
Private Sub DataGrid1.BeforeColUpdate (ColIndex As Long, OldValue As
Variant, Cancel As Integer)

If ColIndex = 1 Then
If DataGrid1.Columns(1).Value < Now Then

Cancel = True
MsgBox "You must enter a date that is later than today."

End If
End If

End Sub

BeforeDelete Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtBeforeDeleteC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtBeforeDeleteX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtBeforeDeleteA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtBeforeDeleteS"}

Occurs before a selected record is deleted in a DBGrid control.

Syntax
Private Sub object_BeforeDelete ([index As Integer,] cancel As Integer)
The BeforeDelete event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer that identifies a control if it is in a control

array.
cancel A Boolean expression that determines whether a

record is deleted, as described in Settings.

Settings
The settings for cancel are:

Setting Description
True Leaves focus on control and doesn't delete the

record.
False (Default) Continues with delete operation and

enables change of focus.

Remarks
When the user selects a record selector in the control and presses DEL or CTL+X, the BeforeDelete
event is triggered before the selected row is deleted.

Once the row is deleted, the AfterDelete event is triggered. The row selected for deletion is available
in the collection provided by the SelBookmarks property.

If your event procedure sets the canceI argument to True, the row isn't deleted.

If more than one row is selected, the error message Multiple rows cannot be deleted is
displayed.

BeforeDelete Event Example
This example displays a message that asks the user to confirm a deletion in a grid.
Private Sub DataGrid1_BeforeDelete (Cancel As Integer)

Dim mResult As Integer
mResult = MsgBox("Are you sure that you want to delete " &

DataGrid1.SeletedRows & " record?", _
 vbYesNo And vbQuestion, "Delete Confirmation")
If mResult = vbNo Then Cancel = True

End Sub

BeforeInsert Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtBeforeInsertC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtBeforeInsertX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtBeforeInsertA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtBeforeInsertS"}

Occurs before new records are inserted into a DBGrid control.

Syntax
Private Sub object_BeforeInsert ([index As Integer,] cancel As Integer)
The BeforeInsert event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer that identifies a control if it is in a control

array.
cancel A Boolean expression that determines if a record is

added, as described in Settings.

Settings
The settings for cancel are:

Setting Description
True Leaves focus on control and doesn't add a new

record
False (Default) Continues with copy and enables change of

focus

Remarks
When the user selects the new record (at the bottom of the DBGrid control) and enters a character in
one of the cells, the BeforeInsert event is triggered, followed by the BeforeUpdate, AfterUpdate and
AfterInsert events.

If your event procedure sets the canceI argument to True, the row isn't inserted and the cell is
cleared.

When the BeforeInsert event is triggered, the record has not been added to the database. The new
record exists in the DBGrid control's copy buffer until this event procedure ends.

After the AfterInsert event is finished, the new record row in the DBGrid control is reinitialized and the
edited record becomes the last row in the DBGrid control.

BeforeInsert Event Example
This example displays a message that asks the user to confirm the addition of a new record.
Private Sub DataGrid1_BeforeInsert (Cancel As Integer)

Dim mResult As Integer
mResult = MsgBox("Confirm: Add a new record?", _
 vbYesNo And vbQuestion, "Confirmation")
If mResult = vbNo Then Cancel = True

End Sub

BeforeUpdate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtBeforeUpdateC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtBeforeUpdateX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtBeforeUpdateA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtBeforeUpdateS"}

Occurs before data is moved from a DBGrid control to the control's copy buffer.

Syntax
Private Sub object_BeforeUpdate ([index As Integer,] cancel As Integer)
The BeforeUpdate event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer that identifies a control if it is in a control

array.
cancel A Boolean expression that determines if data is

copied, as described in Settings.

Settings
The settings for cancel are:

Setting Description
True Leaves focus on control and doesn't copy data.
False (Default) Continues with copy operation and enables

change of focus.

Remarks
When the user moves to another row or the Recordset object's Update method is executed, data is
moved from the DBGrid control's copy buffer to the Data control's copy buffer and written to the
database.

Just before the data is moved from the DBGrid control's copy buffer back into the Data control's copy
buffer, the BeforeUpdate event is triggered. Unless the copy operation is canceled, the AfterUpdate
event is triggered after the data has been moved back into the Data control's copy buffer and written
to the database. The updated record is available by using the Bookmark property of the DBGrid
control.

If you set the BeforeUpdate event cancel argument to True, focus remains on the control, neither the
AfterUpdate or LostFocus event is triggered, and the record isn't saved to the database.

The BeforeUpdate event occurs before the AfterUpdate and LostFocus events for this control, or
before the GotFocus event for the next control in the tab order.

This event occurs even if the control isn't bound.

Unlike the Change event, changing data in a control or record using code doesn't trigger this event.

You can use this event to validate data in a bound control record before permitting the user to commit
the change to the Data control's copy buffer. By setting the cancel argument to True, the user can't
move focus from the control until the application determines whether the data can be safely moved
back to the Data control's copy buffer.

BeforeUpdate Event Example
This example displays a message that tells the user to enter a value in the first column before the grid
can be updated.
Private Sub DataGrid1_BeforeUpdate (Cancel As Integer)

If DataGrid1.Columns(1).Value = "" Then
MsgBox "You must enter value in the first column!"
Cancel = True

End If
End Sub

ColResize Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtColResizeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtColResizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtColResizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtColResizeS"}

Occurs before the Paint event when a user resizes a column of a DBGrid control.

Syntax
Private Sub object_ColResize ([index As Integer,] colindex As Integer, cancel As Integer)
The ColResize event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer that identifies a control if it is in a control

array.
colindex An integer that identifies the column.
cancel A Boolean expression that determines whether a

column is resized, as described in Settings.

Settings
The settings for cancel are:

Setting Description
True Cancels the change, restores column to its original

width, and cancels the pending Paint event.
False (Default) Continues with width change and

subsequent Paint event.

Remarks
When the user resizes a column, the ColResize event is triggered. Your event procedure can accept
the change, alter the degree of change, or cancel the change completely.

If you set the cancel argument to True, the column width is restored and no Paint event is triggered.
To alter the degree of change, set the Width property of the Column object to the desired value.

Executing the Refresh method within the procedure causes the control to be repainted even if the
cancel argument is True.

ColResize Event Example
This example resizes all the columns to the size of the first column if the user sizes the first column.
Private Sub DataGrid1_ColResize (ColIndex As Integer, Cancel As Integer)

Dim nCol As Column
If ColIndex = 1 Then

For Each nCol In DataGrid1.Columns
nCol.Width = DataGrid.Columns(1).Width

Next
End If

End Sub

HeadClick Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtHeadClickC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtHeadClickX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtHeadClickA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtHeadClickS"}

Occurs when the user clicks on the header for a particular column of a DBGrid control.

Syntax
Private Sub object_HeadClick ([index As Integer,] colindex As Integer)
The HeadClick event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer that identifies a control if it is in a control

array.
colindex An integer that identifies the column.

Remarks
One possible use for this event is to resort the Recordset object based on the selected column.

HeadClick Event Example
This example sorts the record source of the Data control based on which column the user clicked.
Private Sub DataGrid1_HeadClick (ColIndex As Integer)

Data1.RecordSource = "Select * From Publishers Order By " & _
 DataGrid1.Columns(ColIndex).DataField
Data1.Refresh

End Sub

RowResize Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daevtRowResizeC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daevtRowResizeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daevtRowResizeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daevtRowResizeS"}

Occurs before the Paint event when a user resizes a row in a DBGrid control.

Syntax
Private Sub object_RowResize ([index As Integer,] cancel As Integer)
The RowResize event syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer that identifies a control if it is in a control

array.
cancel A Boolean expression that determines if a change is

canceled, as described in Settings.

Settings
The settings for cancel are:

Setting Description
True Cancels the change, restores row to its original

height, and cancels the pending Paint event.
False (Default) Continues with change of row height and

subsequent Paint event.

Remarks
The user can resize the DBGrid control rows using the mouse. When the user changes the height,
the RowResize event is triggered. Your event procedure can accept the change, alter the degree of
change, or cancel the change completely.

The DBGrid control's RowHeight property determines the height for all rows in the control.

If you set the cancel argument to True, the row height is restored and no Paint event is fired. To alter
the degree of change, set the RowHeight property to the desired value.

Executing the Refresh method within the procedure causes the control to be repainted even if the
cancel argument is True.

RowResize Event Example
This example ensures that there are at least five visible rows in the grid.
Private Sub DataGrid1_RowResize (Cancel As Integer)

If DataGrid1.VisibleRows < 5 Then Cancel = True
End Sub

UpdateControls Method
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"damthUpdateControlsC;daobjRecordset;daproEdit;daproValidationRule;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthUpdateControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthUpdateControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthUpdateControlsS"}

Gets the current record from a Data control's Recordset object and displays the appropriate data in
controls bound to a Data control. Doesn't support named arguments.

Syntax
object.UpdateControls
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use this method to restore the contents of bound controls to their original values, as when a user
makes changes to data and then decides to cancel the changes.

This method creates the same effect as making the current record current again, except that no
events occur.

The UpdateControls method terminates any pending Edit or AddNew operation.

UpdateRecord Method
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"damthUpdateRecordC;daobjRecordset;daproEdit;daproValidationRule;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"damthUpdateRecordX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"damthUpdateRecordA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"damthUpdateRecordS"}

Saves the current values of bound controls. Doesn't support named arguments.

Syntax
object.UpdateRecord
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
Use this method to save the current contents of bound controls to the database during the Validate
event without triggering the Validate event again. Using this method avoids creating a cascading
event.

The UpdateRecord method has the same effect as executing the Edit method, changing a field, and
then executing the Update method, except that no events occur.

You can use this method to avoid triggering the Validate event.

Whenever you attempt to update a record in the database, any validation rules must be satisfied
before the record is written to the database. These rules are established by setting the
ValidationRule property or, in the case of Microsoft SQL Server, by Transact SQL defaults, rules, and
triggers written to enforce referential and data integrity.

In some cases, the update may not occur because the operation violates referential integrity
constraints, the page containing the record is locked, the database or Recordset object isn't
updatable, or the user doesn't have permission to perform the operation. Any of these conditions
generates a trappable error.

Database Property
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"dacolFieldS;dacolIndex;dacolTableDefS;daobjDatabase;daproConnect;daproDatabaseC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"daproDatabaseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDatabaseA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDatabaseS"}

Returns a reference to a Data control's underlying Database object.

Syntax
object.Database
Set databaseobject = object.Database (Professional and Enterprise Editions only)

The Database property syntax has these parts:

Part Description
databaseobject An object expression that evaluates to an valid

Database object created by the Data control.
object An object expression that evaluates to an object in

the Applies To list.

Remarks
The Database object created by the Data control is based on the control's DatabaseName,
Exclusive, ReadOnly, and Connect properties.

Database objects have properties and methods you can use to manage your data. You can use any
method of a Database object with the Database property of a Data control, such as Close and
Execute. You can also examine the internal structure of the Database by using its TableDefs
collection, and in turn, the Fields and Indexes collections of individual TableDef objects.

Although you can create a Recordset object and pass it to a Data control's Recordset property, you
can't open a database and pass the newly created Database object to the Data control's Database
property.

Data Type
Database

DatabaseName Property
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"daobjDatabase;daproConnect;vbproBooksOnlineJumpTopic;vbproDatabaseNameC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDatabaseX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDatabaseNameA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDatabaseNameS"}

Returns or sets the name and location of the source of data for a Data control.

Syntax
object.DatabaseName [= pathname]

The DatabaseName property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
pathname A string expression that indicates the location of the

database file(s) or the Data Source name for ODBC
data sources.

Remarks
If your network system supports it, the pathname argument can be a fully qualified network path name
such as \\Myserver\Myshare\Database.mdb.

The database type is indicated by the file or directory that pathname points to, as follows:

pathname Points
To...

Database Type

.mdb file Microsoft Access database
Directory containing
.dbf file(s)

dBASE database

Directory containing
.xls file

Microsoft Excel database

Directory containing
.dbf files(s)

FoxPro database

Directory containing
.wk1, .wk3, .wk4, or
.wks file(s)

Lotus Database

Directory containing
.pdx file(s)

Paradox database

Directory containing
text format
database files

Text format database

For ODBC databases, such as SQL Server and Oracle, this property can be left blank if the control's
Connect property identifies a data source name (DSN) that identifies an ODBC data source entry in
the registry.

If you change the DatabaseName property after the control's Database object is open, you must use
the Refresh method to open the new database.

Note For better performance when accessing external databases, it's recommended that you
attach external database tables to a Microsoft Jet engine database (.mdb) and use the name of the
Jet .mdb database in the DatabaseName property.

Data Type
String

DataChanged Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDataChangedC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDataChangedX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDataChangedA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataChangedS"}

Returns or sets a value indicating that the data in the bound control has been changed by some
process other than that of retrieving data from the current record. Not available at design time.

Syntax
object.DataChanged [= value]

The DataChanged property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A Boolean expression that indicates whether data

has changed, as described in Settings.

Settings
The settings for value are:

Setting Description
True The data currently in the control isn't the same as in

the current record.
False (Default) The data currently in the control, if any, is

the same as the data in the current record.

Remarks
When a Data control moves from record to record, it passes data from fields in the current record to
controls bound to the specific field or the entire record. As data is displayed in the bound controls, the
DataChanged property is set to False. If the user or any other operation changes the value in the
bound control, the DataChanged property is set to True. Simply moving to another record doesn't
affect the DataChanged property.

When the Data control starts to move to a different record, the Validate event occurs. If DataChanged
is True for any bound control, the Data control automatically invokes the Edit and Update methods to
post the changes to the database.

If you don't wish to save changes from a bound control to the database, you can set the
DataChanged property to False in the Validate event.

Inspect the value of the DataChanged property in your code for a control's Change event to avoid a
cascading event. This applies to both bound and unbound controls.

Data Type
Integer (Boolean)

DataField Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproDataFieldC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproDataFieldX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproDataFieldA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproDataFieldS"}

Returns or sets a value that binds a control to a field in the current record

Syntax
object.DataField [= value]

The DataField property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A string expression that evaluates to the name of

one of the fields in the Recordset object specified by
a Data control's RecordSource and DatabaseName
properties.

Remarks
Bound controls provide access to specific data in your database. Bound controls that manage a single
field typically display the value of a specific field in the current record. The DataSource property of a
bound control specifies a valid Data control name, and the DataField property specifies a valid field
name in the Recordset object created by the Data control. Together, these properties specify what
data appears in the bound control.

When you use a QueryDef object or SQL statement that returns the results of an expression, the field
name is automatically generated by the Microsoft Jet database engine. For example, when you code
an SQL aggregate function or an expression in your SQL query, unless you alias the aggregate fields
using an AS clause, the field names are automatically generated. Generally, the expression field
name is Expr1 followed by a three-character number starting with 000. The first expression returned
would be named Expr1000.

It's recommended that you code your SQL queries to alias expression columns as shown below:
Data1.RecordSource = "Select AVG(Sales) " _

& " AS AverageSales From SalesTable"
Text1.DataField = "AverageSales"
Data1.Refresh
Note Make sure the DataField property setting is valid for each bound control. If you change the
setting of a Data control's RecordSource property and then use Refresh, the Recordset identifies
the new object. This may invalidate the DataField settings of bound controls and produce a trappable
error.

Data Type
String

DataSource Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDataSourceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDataSourceX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDataSourceA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataSourceS"}

Sets a value that specifies the Data control through which the current control is bound to a database.
Not available at run time.

Remarks
To bind a control to a field in a database at run time, you must specify a Data control in the
DataSource property at design time using the Properties window.

To complete the connection with a field in the Recordset managed by the Data control, you must also
provide the name of a Field object in the DataField property. Unlike the DataField property, the
DataSource property setting isn't available at run time.

Data Type
String

Exclusive Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproConnect;vbproBooksOnlineJumpTopic;vbproExclusiveC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproExclusiveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproExclusiveA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproExclusiveS"}

Returns or sets a value that indicates whether the underlying database for a Data control is opened
for single-user or multi-user access.

Syntax
object.Exclusive [= value]

The Exclusive property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A Boolean expression that determines user access,

as described in Settings.

Settings
The settings for value are:

Setting Description
True The database is open for single-user access. No one

else can open the database until it's closed.
False (Default) The database is open for multi-user access.

Other users can open the database and have access
to the data while it's open.

Remarks
The value of this property, along with the DatabaseName, ReadOnly, and Connect properties, is
used to open a database. In the Professional and Enterprise Editions, this property corresponds to
the exclusive argument in the OpenDatabase method.

The Exclusive property is used only when opening the Database. If you change the value of this
property at run time, you must use the Refresh method for the change to take effect. If someone else
already has the database open, you can't open it for exclusive use and a trappable error results.

Database operations are faster if the database is opened for exclusive use.

After you open a database for exclusive use, your application can have as many instances open as
necessary. However, other applications running on your system are not permitted to open the
database.

The Exclusive property is ignored for databases accessed through ODBC.

Data Type
Boolean

Options Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthOpenRecordset;vbproBooksOnlineJumpTopic;vbproOptionsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproOptionsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproOptionsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproOptionsS"}

Returns or sets a value that specifies one or more characteristics of the Recordset object in the
control's Recordset property.

Syntax
object.Options [= value]

The Options property syntax has these parts:

Part Description
object An object expression that evaluates to an object

in the Applies To list.
value A constant or value that specifies a characteristic

of a Recordset, as described in Settings.

Settings
Use one or more of the following values to set the Options property. If you use more than one option,
you must add their values:

Constant Value Description
dbDenyWrite 1 In a multi-user environment, other

users can't make changes to records
in the Recordset.

dbDenyRead 2 In a multi-user environment, other
users can't read records (table-type
Recordset only).

dbReadOnly 4 You can't make changes to records in
the Recordset.

dbAppendOnly 8 You can add new records to the
Recordset, but you can't read existing
records.

dbInconsistent 16 Updates can apply to all fields of the
Recordset, even if they violate the
join condition.

dbConsistent 32 (Default) Updates apply only to those
fields that don't violate the join
condition.

dbSQLPassThrough 64 When using Data controls with an
SQL statement in the RecordSource
property, sends the SQL statement to
an ODBC database, such as a SQL
Server or Oracle database, for
processing.

dbForwardOnly 256 The Recordset object supports
forward-only scrolling. The only move
method allowed is MoveNext. This
option cannot be used on Recordset
objects manipulated with the Data
control.

dbSeeChanges 512 Generate a trappable error if another
user is changing data you are editing.

Remarks
These constants are listed in the Visual Basic (VB) object library in the Object Browser.

If you change the Options property at run time, you must use the Refresh method for the change to
have any effect.

In the Professional and Enterprise Editions, this property corresponds to the options argument in the
OpenRecordset method.

To set more than one value for this property, you can combine options by adding values together. For
example, to set both dbAppendOnly and dbInconsistent you can use this code:
Data1.Options = dbAppendOnly + dbInconsistent
To determine if the property contains a specific value, you can use the And operator. For example, to
find out if the Recordset is open for read-only access, you could use this code:
If Data1.Options And dbReadOnly Then...
Using both dbInconsistent and dbConsistent results in consistent updates, the default for
Recordset objects.

Note The dbSQLPassThrough option can only be used when creating dynaset- or snapshot-type
Recordset objects and is supported only to provide compatibility with previous versions. For better
performance and functionality, you should use a previously created SQL PassThrough QueryDef
object and set the Data control's Recordset property to a Recordset object created with the
QueryDef.

Note If you attempt to access a SQL Server 6.0 table that includes an identity column, you can
trigger an erroneous 3622 error. To prevent this problem, use the dbSeeChanges option with the
Options property or OpenRecordset method.

Data Type
Integer

ReadOnly Property (Data Access)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"damthOpenDatabase;vbproBooksOnlineJumpTopic;vbproReadOnlyDAC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbProReadOnlyDAX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproReadOnlyDAA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbProReadOnlyDAS"}

Returns or sets a value that determines whether the control's Database is opened for read-only
access.

Syntax
object.ReadOnly [= boolean]

The ReadOnly property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that determines read/write

access, as described in Settings.

Settings
The settings for value are:

Setting Description
True The control's Database object is opened with read-

only access. Changes to data aren't allowed.
False (Default) The control's Database is opened with

read/write access to data.

Remarks
Use the ReadOnly property with a Data control to specify whether data in the underlying Database
can be changed. For example, you might create an application that only displays data. Accessing a
Database using read-only result sets is also faster.

For a Data control, this property is used only the first time a database is opened by your application. If
your application subsequently opens other instances of the database, the property is ignored. For a
change in this property to take effect, you must close all instances of the database and then use the
Refresh method.

In the Professional and Enterprise Editions, this property corresponds to the readonly argument in the
OpenDatabase method.

Data Type
Boolean

RecordSource Property
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"dacolTableDefS;daobjQueryDef;daproIndex;vbproBooksOnlineJumpTopic;vbproRecordSourceC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRecordSourceX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRecordSourceA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRecordSourceS"}

Returns or sets the underlying table, SQL statement, or QueryDef object for a Data control.

Syntax
object.RecordSource [= value]

The RecordSource property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A string expression specifying a name, as described

in Settings.

Settings
The settings for value are:

Setting Description
A table name The name of one of the tables defined in the

Database object's TableDefs collection.
An SQL query A valid SQL string using syntax appropriate for the

data source.
A QueryDef The name of one of the QueryDef objects in the

Database object's QueryDefs collection — when
accessing a Jet database.

Remarks
The RecordSource property specifies the source of the records accessible through bound controls
on your form.

If you set the RecordSource property to the name of an existing table in the database, all of the fields
in that table are visible to the bound controls attached to the Data control. For table-type recordsets
(RecordsetType = vbRSTypeTable), the order of the records retrieved is set by the Index object that
you select using the Index property of the Recordset. For dynaset-type and snapshot-type
Recordset objects, you can order the records by using a SQL statement with an Order By clause in
the RecordSource property of the Data control. Otherwise, the data is returned in no particular order.

If you set the RecordSource property to the name of an existing QueryDef in the database, all fields
returned by the QueryDef are visible to the bound controls attached to the Data control. The order of
the records retrieved is set by the QueryDef object's query. For example, the QueryDef may include
an ORDER BY clause to change the order of the records returned by the Recordset created by the
Data control or a WHERE clause to filter the records. If the QueryDef doesn't specify an order, the
data is returned in no particular order.

Note At design-time, the QueryDef objects displayed in the Properties window for the
RecordSource property are filtered out to display only QueryDef objects that are usable with the
Data control. QueryDef objects which have parameters, and QueryDef objects which have the
following types are not displayed: dbQAction, dbQCrosstab, dbQSQLPassThrough and
dbQSetOperation.

If you set the RecordSource property to an SQL statement that returns records, all fields returned by

the SQL query are visible to the bound controls attached to the Data control. This statement may
include an ORDER BY clause to change the order of the records returned by the Recordset created
by the Data control or a WHERE clause to filter the records. If the database you specify in the
Database and Connect property isn't a Microsoft Jet engine database, and if the
dbSQLPassThrough option is set in the Options property, your SQL query must use the syntax
required by that database engine.

Note Whenever your QueryDef or SQL statement returns a value from an expression, the field
name of the expression is created automatically by the Microsoft Jet database engine. Generally, the
name is Expr1 followed by a three-character number beginning with 000. For example, the first
expression would be named: Expr1000.
In most cases you'll want to alias expressions so you know the name of the column to bind to the
bound control. See the SQL SELECT statement AS clause for more information.

After changing the value of the RecordSource property at run time, you must use the Refresh
method to enable the change and rebuild the Recordset.
At run time, if the Recordset specifies an invalid Table name, QueryDef name, or contains invalid
SQL syntax, a trappable error will result. If this error occurs during the initial Form_Load procedure,
the error is not trappable.

Note Make sure each bound control has a valid setting for its DataField property. If you change the
setting of a Data control's RecordSource property and then use Refresh, the Recordset identifies
the new object. This may invalidate the DataField settings of bound controls and cause a trappable
error.

Data Type
String

Recordset Property
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"daobjQueryDef;daproDataUpdatable;daproRecordCount;daproUpdatable;vbproBooksOnlineJumpTopic;vbproRecordset
C"} {ewc HLP95EN.DLL,DYNALINK,"Example":"vbproRecordsetX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproRecordsetA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRecordsetS"}

Returns or sets a Recordset object defined by a Data control's properties or by an existing
Recordset object.

Syntax
Set object.Recordset [= value]

The Recordset property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An object variable containing a Recordset object.

Remarks
The Data control is automatically initialized when your application starts before the initial Form_Load
procedure. If the Connect, DatabaseName, Options, RecordSource, Exclusive, ReadOnly and
RecordsetType properties are valid, or if you set these Data control properties at run time and use
the Refresh method, the Microsoft Jet database engine attempts to create a new Recordset object
based on those properties. This Recordset is accessible through the Data control's Recordset
property. If, however, one or more of these properties is set incorrectly at design time, an untrappable
error occurs when Visual Basic attempts to use the properties to open the specified database and
create the Recordset object.

You can use the Recordset property as you would any other Recordset object. For example, you
can use any of the Recordset methods or properties and examine the structure of the Recordset
object's underlying schema.

You can also request the type of Recordset to be created by setting the Data control's
RecordsetType property. If you don't request a specific type, a dynaset-type Recordset is created.
Using the RecordsetType property, you can request to create either a table-, snapshot- or dynaset-
type Recordset. However, if the Jet engine can't create the type requested, a trappable error occurs.

In many cases, the default type and configuration of the Recordset object created is extremely
inefficient. That is, you might not need an updatable, fully-scrollable, keyset-type cursor to access
your data. For example, a read-only, snapshot-type Recordset might be far faster to create than the
default Recordset. Be sure to choose the most efficient Type, Exclusive, Options and ReadOnly
properties possible for your situation.

The type of Recordset created can be determined at run time by examining the Recordset property's
Type property or the Data control's RecordsetType property. Note, however, that the constants used
for the type of Recordset created are different. For example:
If Data1.Recordset.Type = dbOpenDynaset Then ...
If Data1.RecordsetType = dbDynasetType Then ...
A Recordset might not be updatable even if you request a dynaset- or table-type Recordset. If the
underlying database, table, or field isn't updatable, all or portions of your Recordset may be read-
only. Examine the Database and Recordset objects' Updatable property or the Field object's
DataUpdatable property to determine if your code can change the records. Even when the
DataUpdatable property returns True, there are situations where the underlying data fields might not
be updatable if, for example, you do not have sufficient permissions to make changes. Other factors

can also prevent fields from being updatable.

The number of records returned by the Recordset can be determined by moving to the last record in
the Recordset and examining the Recordset object's RecordCount property. Before you move to
the last record, the value returned by the RecordCount property only reflects the number of rows
processed by the Jet engine. The following example shows how you can combine the RecordCount
property of a Recordset with the Recordset property to display the number of records in a Data
control's recordset:
Data1.Recordset.MoveLast
MsgBox "Records: " & Data1.Recordset.RecordCount

Professional and Enterprise Editions
If you create a Recordset object using either code or another Data control, you can set the
Recordset property of the Data control to this new Recordset. Any existing Recordset in the Data
control, and the Database object associated with it are released when a new Recordset is assigned
to the Recordset property.

Note When the Recordset property is set, the Data control doesn't close the current Recordset or
Database, but it does release it. If there are no other users, the database is closed automatically. You
may wish to consider closing the Recordset and Database associated with the Data control prior to
setting the Recordset property using the Close method.

Make sure the DataField properties of the bound controls connected to the Data control are set to
match the new Recordset object's field names.

For example, to create a Recordset in code and pass it to an existing Data control:
Dim Db As Database, Rs As Recordset' Defined as public variables.
Sub ApplyRecordset()

Set Db = Workspaces(0).OpenDatabase("BIBLIO.MDB")
Set Rs = Db.OpenRecordset("AUTHORS") ' Defaults to Table object.
Set Data1.Recordset = Rs ' Assign Recordset.
Data1.Recordset.Index = "PrimaryKey"
Debug.print Rs.Type ' Show type created.

End Sub
You can use this technique to create an MDI parent and child data connection with a single hidden
Data control on the MDI parent form and another visible Data control on the MDI child. In the MDI
child's Form_Load event, set the child's Data control Recordset property to the parent's Data control
Recordset property. Using this technique synchronizes all the child forms and their bound controls
with the parent.

Note The Data control doesn't support forward-only Recordset objects. If you try to assign a
forward-only Recordset object to the Recordset property of the Data control, a trappable error
results.
All Recordset objects created by the Data control are created in Workspaces(0) except ODBCDirect
(DefaultType = dbUseODBC) Recordset objects. If you need to use the Data control to manipulate
a database in another Workspace, use the technique shown above to open the database in the
desired Workspace, create a new Recordset and set the Data control's Recordset property to this
new Recordset.
Important You can always reference the properties of the Data control's Recordset by using the
Recordset property. By directly referencing the Recordset, you can determine the Index to use with
Table objects, the Parameters collection of a QueryDef, or the Recordset type.

Data Type
Recordset

BOFAction, EOFAction Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjRecordset;daproBOF;vbproBOFActionC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproBOFActionX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBOFActionA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBOFActionS"}

Returns or sets a value indicating what action the Data control takes when the BOF or EOF
properties are True.

Syntax
object.BOFAction [= integer]
object.EOFAction [= integer]

The BOFAction and EOFAction property syntax's have these parts:

Part Description
object An object expression that evaluates to an

object in the Applies To list
integer An integer value that specifies an action, as

described in Settings

Settings
For the BOFAction property, the settings for integer are:

Setting Value Description
vbBOFActionMoveFirst 0 MoveFirst (Default): Keeps the first

record as the current record.
vbBOFActionBOF 1 BOF: Moving past the beginning of

a Recordset triggers the Data
control Validate event on the first
record, followed by a Reposition
event on the invalid (BOF) record. At
this point, the Move Previous button
on the Data control is disabled.

For the EOFAction property, the settings for integer are:

Setting Value Description
vbEOFActionMoveLast 0 MoveLast (Default): Keeps the last

record as the current record.
vbEOFActionEOF 1 EOF: Moving past the end of a

Recordset triggers the Data
control's Validation event on the last
record, followed by a Reposition
event on the invalid (EOF) record. At
this point, the MoveNext button on
the Data control is disabled.

vbEOFActionAddNew 2 AddNew: Moving past the last
record triggers the Data control's
Validation event to occur on the
current record, followed by an
automatic AddNew, followed by a
Reposition event on the new record.

Remarks

These constants are listed in the Visual Basic (VB) object library in the Object Browser.

If you set the EOFAction property to vbEOFActionAddNew, once the user moves the current record
pointer to EOF using the Data control, the current record is positioned to a new record in the copy
buffer. At this point you can edit the newly added record. If you make changes to the new record and
the user subsequently moves the current record pointer using the Data control, the record is
automatically appended to the Recordset. If you don't make changes to this new record, and
reposition the current record to another record, the new record is discarded. If you use the Data
control to position to another record while positioned over this new record, another new record is
created.

When you use code to manipulate Recordsets created with the Data control, the EOFAction
property has no effect — it only takes effect when manipulating the Data control with the mouse.

In situations where the Data control Recordset is returned with no records, or after the last record
has been deleted, using the vbEOFActionAddNew option for the EOFAction property greatly
simplifies your code because a new record is always editable as the current record. If this option is
not enabled, you are likely to trigger a "No current record" error.

Data Type
Integer

IntegralHeight Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daproIntegralHeightC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"daproIntegralHeightX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"daproIntegralHeightA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"daproIntegralHeightS"}

Returns or sets a value indicating if the control displays partial items. Read-only at run time.

Syntax
object.IntegralHeight [= value]

The IntegralHeight property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A Boolean expression that determines whether the

list is resized, as described in Settings.

Settings
The settings for value are:

Setting Description
True (Default) The list resizes itself to display only

complete items.
False The list doesn't resize itself even if the item is too tall

to display completely.

Data Type
Boolean

RecordsetType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"daobjRecordset;vbproBooksOnlineJumpTopic;vbproRecordsetTypeC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproRecordsetTypeX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRecordsetTypeA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":""}

Returns or sets a value indicating the type of Recordset object you want the Data control to create.

Syntax
object.RecordsetType [= value]

The RecordsetType property syntax has these parts:

Part Description
object An object expression that evaluates to an object

in the Applies To list.
value A constant or value that specifies a type of

Recordset, as described in Settings.

Settings
The settings for value are:

Setting Value Description
vbRSTypeTable 0 A table-type Recordset
vbRSTypeDynaset 1 (Default) A dynaset-type Recordset
vbRSTypeSnapshot 2 A snapshot-type Recordset

Remarks
If the Microsoft Jet database engine can't create the type of Recordset you requested, a trappable
error occurs.

If you don't specify a RecordsetType before the Data control creates the Recordset, a dynaset-type
Recordset is created (if possible).

If you create a Recordset without using the Data control (even with another Data control) and set the
Recordset property with this new Recordset object, the RecordsetType property of the Data control
is set to the Recordset.Type property of the new Recordset.
Important The RecordsetType property value doesn't correspond to the value used to identify
Recordset object types. See the OpenRecordset method or the Type property for details.

In many cases, the default type and configuration of the Recordset object created is extremely
inefficient. That is, you might not need an updatable, fully-scrollable, keyset-type cursor to access
your data. For example, a read-only, forward-only, snapshot-type Recordset might be far faster to
create than the default cursor. Be sure to choose the most efficient settings for the RecordsetType,
Exclusive, Options and ReadOnly properties for your situation.

Data Type
Integer

DefaultType Property (Data Control)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"damthCreateWorkspace;daobjWorkspace;vbproBooksOnlineJumpTopic;vbproDefaultTypePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDefaultTypePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproDefaultTypePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDefaultTypePropertyS"}

Returns or sets a value which determines the type of data source (Jet or ODBCDirect) that is used by
the Data control.

Syntax
object.DefaultType [= value]

The DefaultType property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer constant or value that specifies the type of

data source, as described in Settings.

Settings
The settings for value are:

Setting Value Description
dbUseODBC 1 Use ODBCDirect to access your data.
dbUseJet 2 (Default) Use the Microsoft Jet database

engine to access your data.

Remarks
Setting the DefaultType property tells the Data control what type of data source (Jet or ODBCDirect)
to use when creating a Recordset. The DefaultType property also determines the type of the
underlying Workspace object used with the Data control. The Jet database engine will not be loaded
unless this property is set to dbUseJet.
When setting the DefaultType property to dbUseODBC, Visual Basic creates a new Workspace
object and adds it to the Workspaces collection. The DefaultType property of the Data control is
similar to the type parameter of the CreateWorkspace method. When using dbUseJet, the default
Workspace object is used.

Note When you select dbUseODBC for the DefaultType property, DAO routes all data access
operations through a Remote Data Objects (RDO) DLL.

Choosing a Data Source
Data Access Objects (DAO) can be programmed to connect to remote ODBC data sources in one of
two ways: through the Jet database engine or through Remote Data Objects (RDO) which bypasses
Jet completely. Depending on the features and performance you need, either approach might make
sense for your particular application.

Using ODBCDirect: This approach permits you to use the Data control against remote ODBC data
sources by routing all DAO operations through the RDO interface. That is, when you establish a
connection and create a Recordset object using the Data control, the Jet database engine is not
loaded or used in any way. This also means that many of the DAO features provided by the Jet
engine are not available on this Workspace. For example, you cannot perform heterogeneous joins,
or access ISAM on .mdb databases without use of additional ODBC drivers. However, when you
choose ODBCDirect, many RDO features not ordinarily supported by Jet are enabled.

Using The Jet Database Engine: Unless you enable ODBCDirect, the Jet database engine is loaded
and performs all local and remote database operations. Once a Jet Workspace is created, it cannot
be used to pass data to an ODBCDirect Workspace.

Data Type
Integer

DefaultCursorDriver Property (Data Control)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"damthOpenConnection;daobjWorkspace;vbproBooksOnlineJumpTopic;vbproDefaultCursorTypePropertyC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproDefaultCursorTypePropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDefaultCursorTypePropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDefaultCursorTypePropertyS"}

Controls what type of cursor driver is used on the connection (ODBCDirect only) created by the Data
control.

Syntax
object.DefaultCursorDriver [= value]

The DefaultCursorDriver property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value An integer constant or value that specifies a type of

cursor driver , as described in Settings.

Settings
The settings for value are:

Setting Value Description
dbUseDefaultCursor -1 Let the ODBC driver determine which

type of cursors to use.
dbUseLocalCursor 1 Use the ODBC cursor library. This option

gives better performance for small result
sets, but degrades quickly for larger
result sets.

dbUseServerCursor 2 Use server side cursors. For most large
operations this gives better
performance, but might cause more
network traffic.

Remarks
Use this property when the DefaultType property of the Data control is set to dbUseODBC. Refer to
the DefaultCursorDriver property of the Workspace object for more information.

Data Type
Integer

ODBCDirect
A technology that allows you to access ODBC data sources through RDO by using DAO features that
bypass the Microsoft Jet database engine.

When an ODBC data source is referenced in this manner, it is called an "ODBCDirect" data source.
This is to distinguish it from an ODBC data source that is connected indirectly through the Jet
Database Engine, which is called a "Jet-connected ODBC data source." The technology used in
accessing the data source determines which DAO objects, methods, and properties can be used.

Recordset Property Example
This example uses a Data control to create a Recordset object containing all Titles published in
1994. The Recordset object created is accessible by referencing the Recordset property of the Data
control.
Dim Rs As Recordset
Data1.DatabaseName = "BIBLIO.MDB"
Data1.RecordSource = _

"Select * From TITLES where [Year Published] = 1994"
Data1.Refresh
Set Rs = Data1.Recordset
If Rs.RecordCount > 0 Then

Do Until Rs.EOF
Debug.Print Rs!Title
Rs.MoveNext

Loop
Else

MsgBox "No titles in 1994."
End If
This next example creates the same set of records as above in a Recordset object and assigns it to
the Data control's Recordset property. To use this example, place a Textbox, Commandbutton, and
Data control on a form and paste in the code.
Private Sub Command1_Click()
Dim DB As Database
Dim Rs As Recordset

Set DB = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")

Set Rs = DB.OpenRecordset _
("Select * From TITLES where [Year Published] = 1994")

Set Data1.Recordset = Rs
Text1.DataField = "Title"
Data1.Refresh ' Force Data control to update now

End Sub

Exclusive Property Example
This example first opens a Database as single-user (exclusive) then changes it to multiuser access
(non-exclusive).
Data1.DatabaseName = "BIBLIO.MDB"
Data1.RecordSource = "Publishers"
Data1.Exclusive = True
Data1.Refresh
...
Data1.Exclusive = False
Data1.Refresh

Database, DatabaseName Properties Example
This example examines the Database property of a data control and prints the name of each Table in
the Debug window.
Sub PrintTableNames ()

Dim Td As TableDef
' Set database file.
Data1.DatabaseName = "BIBLIO.MDB"
Data1.Refresh ' Open the Database.
' Read and print the name of each table in the database.
For Each Td in Data1.Database.TableDefs

Debug.Print Td.Name
Next

End Sub

LastModified Property Example
This example might be used with a menu in a program to enable users to return to the last record that
was modified.
Data1.Recordset.Bookmark = Data1.Recordset.LastModified

DataChanged Property and Validate Event Example
This example illustrates simple data validation. In the Authors table in the Biblio.mdb database, there
are two fields: Au_ID and Author. Since the value in Au_ID is used to uniquely identify the author, this
value should not change. The example doesn't allow changes to the Au_ID field, which is bound to
Text1.

Private Sub Data1_Validate (Action As Integer, Save As Integer)
If Text1.DataChanged Then ' Check for change in data.

MsgBox "You can't change the ID number."
Text1.DataChanged = False ' Don't save changed data.

End If
...

End Sub

RecordsetType Property Example
This example uses the Data control to create a Recordset object and examines the Data control's
RecordsetType property to determine what type of recordset was created.
Sub DisplayRecordsetType()
' Indicate type of Recordset wanted.
Data1.RecordsetType = vbRSTypeDynaset
Data1.DatabaseName = "BIBLIO.MDB"
Data1.RecordSource = "Authors"
Data1.Refresh

Select Case Data1.RecordsetType
Case vbRSTypeTable

Debug.print "Table-type Recordset created."
Case vbRSTypeDynaset

Debug.print "Dynaset-type Recordset created."
Case vbRSTypeSnapshot

Debug.print "Snapshot-type Recordset created."
End Select
End Sub

The Automation Manager could not be started. 'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Automation Manager could not be started on this computer for the reason given in the system
error message appended at 'msgtext.'

For example, an Out of Memory error would prevent the Automation Manager from starting.

The Automation Manager was started with the following network
protocols: 'protocols'.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Startup message (Information). The Automation Manager attempts to start using all the RPC network
server protocols currently installed on the computer. A list of the protocols that were used successfully
appears at 'protocols.'

You can view the list of RPC server protocols on a computer by accessing the following Windows
Registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ServerProtocols

The Automation Manager was unable to use network protocol
'protocol'. 'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Startup message (Warning). The Automation Manager attempts to start with all the RPC network
server protocols currently installed on the computer. The Automation Manager was unable to use the
protocol 'protocol' for the reason given in the system error message appended at 'msgtext.'

You can view the list of RPC server protocols on a computer by accessing the following Windows
Registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ServerProtocols

The command line parameter 'parameter' was not recognized.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Startup message (Warning). The Automation Manager was started with an invalid command-line
parameter, which was ignored. Valid parameters are:

Parameter Description
/REGSERVER Registers the Automation Manager in the Windows

Registry.
/UNREGSERVER Unregisters the Automation Manager.
/AUTOMATION Accepted but ignored.
/EMBEDDING Accepted but ignored.
/HIDDEN Starts the Automation Manager without any visible

window, so that it runs invisibly. This is particularly
useful when the Automation Manager runs on a
Win32 workstation. If the Automation Manager is
started with this parameter there is no way for the
user to close it.

The file 'file' could not be loaded. 'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

This error occurs during Setup. The Automation Manager has a dependency on the file named in the
message, and that file cannot be found on the computer where Setup is being run, for the reason
appended at 'msgtext'.

For example, Automation Manager depends on AUTPRX32.DLL.

The network protocol 'protocol' was needed but was not available.
'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Automation Manager was unable to use the indicated network protocol for the reason appended
at 'msgtext.'

This error can occur when a client computer passes a reference to an object provided by an ActiveX
component on the client computer, or on another network computer. (The client computer must itself
be capable of running the Automation Manager for the first scenario to occur.)

The Automation Manager attempts to connect to the object using the same protocol that was used to
pass the reference. If this protocol is not available on the network computer where the Automation
Manager is running, the error occurs.

For example, the Named Pipes protocol (ncacn_np) is supported as an RPC client protocol under
Windows 95, but not as an RPC server protocol. You can view the lists of RPC client and server
protocols on a computer by accessing the following Windows Registry keys:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ClientProtocols

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ServerProtocols

On the client computer, the call that attempted to pass the object reference fails with the error
&H800706D0, RPC_S_PROTSEQ_NOT_FOUND.

The preference setting 'setting' had an invalid value. The default
setting will be used instead.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Automation Manager's RemoteActivationPolicy setting was invalid. The default setting, CreateIfKey
(2), will be used. Valid values are:

Setting Description
0 CreateNone. Do not allow creation of any CLSID.
1 CreateAll. Allow creation of any CLSID. Not

recommended.
2 CreateIfKey. Allow creation of only those CLSIDs

that include the subkey AllowRemoteActivation=Y
3 CreateIfAcl. Allow creation of a CLSID only if the

user making the request has KEY_QUERY_VALUE
permission on the CLSID key.

The location of the RemoteActivationPolicy preference is:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Automation Manager\RemoteActivationPolicy

There was a timeout processing a call to this machine. 'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A call to a method of an object on this machine has timed out for the reason appended at 'msgtext.'

The timeout occurs if the client computer waits more than a specified number of milliseconds for an
object, because another client computer is making a call to the same object.

This error only occurs when the Automation Manager serializes requests from two client computers
that are accessing the same object. It does not occur when two client computers have separate
objects of the same type, nor when OLE serializes requests to an out-of-process ActiveX component
that is single-threaded.

The number of milliseconds for the timeout is specified in the Automation Manager's CallTimeout
preference setting:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Automation Manager\CallTimeout

The default value is an unsigned four-byte integer, 0xFFFFFFFF, which represents over a hundred
years, and thus is effectively infinite. Changing this preference affects all calls to methods of objects
on this computer, hence changing it is not recommended.

There was an error accessing preferences in the registry. 'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Automation Manager was unable to access its preferences in the Windows Registry for the reason
appended at 'msgtext.'

For example, an error will occur if the Automation Manager is executed from a login that does not
have read permission to the subkeys in the Windows Registry that contain Automation Manager's
preferences:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Automation Manager\CallTimeout

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Automation Manager\RemoteActivationPolicy

There was an error adding information to the registry. 'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

Setup for the Automation Manager was unable to add the necessary entries to the Windows Registry
for the reason appended at 'msgtext.' For example, an error will occur if Setup is executed from a
login that does not have write access to the Windows Registry.

There was an error connecting to an object of type 'type'. 'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A client computer has a reference to an object on this computer, and has attempted to pass that
reference to a third computer. The third computer was unable to connect to the object for the reason
appended at 'msgtext.'

'Type' is the fully qualified class name (programmatic ID), for example Customer.Order.

There was an error creating an object of type 'type' for 'user'.
'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A client computer requested creation of an object of the specified type, for example by using the
CreateObject function, or the Set statement with the New operator. The request failed for the reason
given in the appended 'msgtext.'

If the class the object belongs to is in the Windows Registry of the network computer the Automation
Manager is running on, 'type' is the fully qualified class name (programmatic ID), for example
Customer.Order.

If the object type is not registered, for example when the ActiveX component that supplies it has not
been installed on the network computer, 'type' is the CLSID of the object, as it appears in the
Windows Registry of the client computer.

The user name associated with the request to create the object is inserted at 'user.'

This form of the error occurs only if both of the following are true:

· The Automation Manager must be running under the Microsoft Windows NT operating system
· The client computer must be using an Authentication level other than None (1).

Otherwise, the Automation Manager cannot determine the user name, and the form of the error
without the user information is used.

There was an error creating an object of type 'type'. 'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A client computer requested creation of an object of the specified type, for example by using the
CreateObject function, or the Set statement with the New operator. The request failed for the reason
given in the appended 'msgtext.'

If the class the object belongs to is in the Windows Registry of the network computer the Automation
Manager is running on, 'type' is the fully qualified class name (programmatic ID).

For example, suppose the Customer server is installed on the network computer, the Automation
Manager is using CreateIfKey security, and the CLSID entry for the Order class does not have the
subkey AllowRemoteActivation=Y. The error message refers to the object type Customer.Order.

If the object type is not registered, for example when the ActiveX component that supplies it has not
been installed on the network computer, 'type' is the CLSID of the object, as it appears in the
Windows Registry of the client computer.

There was an error processing a call to this machine. 'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

A call to a method of an object provided by an ActiveX component running on this computer has failed
for the reason appended at 'msgtext.'

This error occurs when the Automation Manager has received the method call from the client
computer, but is unable to make the cross-process call to the component, or made the cross-process
call but failed to receive the result.

This error occurs only for cross-process communication failures. It does not occur for errors raised in
a component, or for COM or OLE exceptions; such errors are simply returned to the client application.

There was an error removing information from the registry.
'msgtext'
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The Automation Manager was run with the /UNREGSERVER parameter, and was unable to remove
the necessary entries from the Windows Registry for the reason appended at 'msgtext.' For example,
an error will occur if the Automation Manager is executed in this fashion from a login that does not
have write access to the Windows Registry.

Add-In Toolbar
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbtbrAddInToolbarC"}

A toolbar which to place add-ins and Wizards for quick and easy user access. To start an add-in or
Wizard, simply click its icon on the toolbar.

The add-ins and Wizards placed on the Add-In toolbar are not activated until their button is clicked.
The Add-In toolbar eliminates the need for activating the add-in through the Add-In Manager dialog
box.

You can add Wizards and add-ins to the Add-In toolbar through the Add/Remove Toolbar Items (+/-)
button. When you click this button, you get the following dialog box:

To add an add-in or Wizard to the list of available add-ins, click the Browse button. Point to an add-in
or Wizard's .Exe or .Dll file in the dialog box, then click Open. It should appear in the Available Add-
Ins list. It will not show up on the Add-In toolbar, however, unless it's box is checked in the Available
Add-Ins list.

The OK button closes the Add/Remove Toolbar Items dialog box and updates the Add-In toolbar with
the checked items.

The Cancel button closes the Add/Remove Toolbar Items dialog box and ignores any changes made
when it was opened.

When you click the Delete button, the currently selected add-in or Wizard is removed from the
Available Add-Ins list. Note that this does not remove the add-in or Wizard from the system, nor its
reference in the Add-In Manager dialog box. The Delete button removes only the entry in the Add-In
toolbar Available Add-Ins list.

AddToAddInToolbar Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddToAddInToolbarMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddToAddInToolbarMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthAddToAddInToolbarMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddToAddInToolbarMethodS"}

Inserts a button on the Add-In toolbar which references an add-in or Wizard.

Syntax
object.AddToAddInToolbar (sfilename As String, sprogid As String, showontoolbar As Boolean,

forceaddintoolbar As Boolean)

Part Description
object An object expression that evaluates to an object in

the Applies To list.
sfilename Required. A string expression specifying the path to

the add-in or Wizard and the name of its .Exe or .Dll
file.

sprogid Required. A string expression specifying the
programmatic ID (ProgID) of the add-in or Wizard.

saddinname Required. A string expression specifying the title of
the add-in or Wizard.

showontoolbar Required. A Boolean expression specifying whether
the add-in or Wizard referred to will appear on the
Add-In toolbar. True = yes, False = no.

forceaddintoolbar Required. A Boolean expression specifying whether
the Add-In toolbar is automatically displayed the next
time Visual Basic is started. True = yes, False = no.

AddToAddInToolbar Method Example
This example uses the AddToAddInToolbar method to add a button to the Add-In toolbar for a
ficticious add-in called MyAdd.Dll. Setting ForceAddInToolbar to True ensures that the Add-In toolbar
is loaded the next time Visual Basic is started.

You could modify the following in a small Visual Basic application to serve as a Setup for your add-in.
Sub Main()
 dim x as Object
 Set x=CreateObject("AddInToolbar.Manager")
 x.AddToAddInToolbar sFileName:="C:\VB5\MyAdd.DLL", _
 sProgID:="MyAddIn.Connect", _
 sAddInName:="MyAddIn Title" _
 ShowOnToolBar:=True, _
 ForceAddInToolbar:=True
End Sub

AmbientProperties Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjAmbientPropertiesObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjAmbientPropertiesObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjAmbientPropertiesObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjAmbientPropertiesObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjAmbientPropertiesObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjAmbientPropertiesObjectS"}

The AmbientProperties object allows access to the ambient properties of the container.

Remarks
The AmbientProperties object is used when creating an ActiveX control.

AsyncProperty Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjAsyncPropertyObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjAsyncPropertyObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjAsyncPropertyObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjAsyncPropertyObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjAsyncPropertyObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjAsyncPropertyObjectS"}

The AsyncProperty object is passed in to the AsyncReadComplete event and contains the results of
the AyncRead method.

AsyncType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAsyncTypePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAsyncTypePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproAsyncTypePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproAsyncTypePropertyS"}

Returns or sets the type of the data returned by the Value property.

Syntax
object.AsyncType = dataType

Part Description
object An object expression that evaluates to an object in

the Applies To list.
dataType An integer specifying the data type, as shown in

Settings below.

Settings
The settings for dataType are:

Constant Value Description
vbAsyncTypePicture 0 Default. Picture object.
VbAsyncTypeFile 1 The data is provided in a file created

by Visual Basic.
VbAsyncTypeByteArray 2 The data is provided as a byte array

that contains the retrieved data.

ContinuousScroll Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproContinuousScrollPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproContinuousScrollPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproContinuousScrollPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproContinuousScrollPropertyS"}

Returns or sets a value that determines if scrolling is continuous, or if the UserDocument only
redraws when the scroll thumb is released.

Syntax
object.ContinuousScroll = boolean

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies whether

scrolling is continous or not.

Settings
The settings for boolean are:

Setting Description
True Default. Scrolling is continuous.
False The UserDocument redraws only when the thumb is

released.

Controls Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproControlsPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproControlsPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproControlsPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproControlsPropertyS"}

Returns a reference to a collection of Control objects.

Syntax
object.Controls
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
You can manipulate Control objects using the reference returned by the Controls property.

DataBinding Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDatabindingObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjDatabindingObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDatabindingObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDatabindingObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDatabindingObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDatabindingObjectS"}

The DataBinding object represents a bindable property of a component.

Syntax
DataBinding

Remarks
There is one DataBinding object for each property of a component marked as Bindable in the
Procedure Attributes dialog box.

Visual Basic version 4.0 supported binding only one property of a control to a database at a time.
Visual Basic 5.0, however, gives you the ability to bind multiple properties of a control to a database.
This is used most commonly with User controls. For more information on this, see Chapter 9 in
"Creating ActiveX Components" in the Component Tools Guide.

HScrollSmallChange, VScrollSmallChange Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHScrollSmallChangePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHScrollSmallChangePropertyX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHScrollSmallChangePropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHScrollSmallChangePropertyS"}

Returns or sets the distance the UserDocument will scroll when the user clicks a scroll arrow.

Syntax
object.HScrollSmallChange = single
object.VScrollSmallChange = single

Part Description
object An object expression that evaluates to an object in

the Applies To list.
single The distance in twips the UserDocument will scroll

when the user clicks the scroll arrow.

Remarks
There is no “LargeChange” property counterpart to the HScrollSmallChange and
VScrollSmallChange properties. The “LargeChange” is determined by the ViewPort object’s
ViewPortHeight and ViewPortWidth properties.

Hyperlink Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjHyperlinkObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjHyperlinkObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjHyperlinkObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjHyperlinkObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjHyperlinkObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjHyperlinkObjectS"}

Using the properties and methods of the Hyperlink object, your ActiveX document or ActiveX control
can request a hyperlink-aware container, such as Microsoft Internet Explorer, to jump to a given URL.

Remarks
Use the NavigateTo method to jump to a URL. For example, the following code presumes an ActiveX
document named "axdMyDoc" exists:
UserDocument.Hyperlink.NavigateTo _
"c:\mydocs\axdmydoc.vbd"
If your ActiveX document is contained by a hyperlink-aware container (such as Internet Explorer), and
if the container maintains a history of documents, use the GoBack or GoForward methods to go
backwards or forwards through the list. However, be sure to use error-checking, as shwon in the
example below:
Private Sub cmdGoForward_Click()

On Error GoTo noDocInHistory
UserDocument.Hyperlink.GoForward
Exit Sub

noDocInHistory:
Resume Next

End Sub

Hyperlink Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHyperlinkPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHyperlinkPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHyperlinkPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHyperlinkPropertyS"}

Returns a reference to the Hyperlink object.

Syntax
object.Hyperlink
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

LogEvent Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLogEventMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLogEventMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLogEventMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLogEventMethodS"}

Logs an event in the application's log target (as specified in the LogPath property).

Syntax
object.LogEvent logBuffer
Part Description
object An object expression that evaluates to an object in

the Applies To list.
logBuffer String to be written to the log.

Remarks
If no LogPath is specified, the LogEvent method writes to the NT Application Event Log file.

LogMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLogModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLogModePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLogModePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLogModePropertyS"}

Returns or sets a value which determines how logging (through the LogEvent method) will be carried
out.

Syntax
object.LogMode = mode
Part Description
object An object expression that evaluates to an object in

the Applies To list.
mode Long. Determines the method of logging, as shown

in Settings below.

Settings
The settings for mode are:

Constant Value Description
vbLogAuto 0 If running on Windows 95, this option logs

messages to the file specified in the LogFile
property. If running on Windows NT,
messages are logged to the NT Application
Event Log, with the App.Title string used as
the application source.

VbLogOff 1 Turns all logging off. Messages from UI shunts
as well as from the LogEvent method are
ignored and discarded.

VbLogToFile 2 Forces logging to a file. If no valid filename is
present in LogPath, logging is ignored, and
the property is set to vbLogOff.

VbLogToNT 3 Forces logging to the NT event log. If not
running on Windows NT, or the event log is
unavailable, logging is ignored and the
property is set to vbLogOff.

VbLogOverwrite 0x10 Indicates that the logfile should be recreated
each time the application starts. This value
can be combined with other mode options
using the OR operator. The default action for
logging is to append to the existing file. In the
case of NT event logging, this flag has no
meaning.

VbLogThreadID 0x20 Indicates that the current thread ID be
prepended to the message, in the form
"[T:0nnn] ". This value can be combined with
other mode options using the OR operator.
The default action is to show the thread ID
only when the application is multi-threaded
(either explicitly marked as thread-safe, or
implemented as an implicit multithreaded app,
such as a local server with the instancing
property set to Single-Use, multithreaded).

Return Type
Long

LogPath Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLogPathPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLogPathPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLogPathPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLogPathPropertyS"}

Returns or sets the path and filename of the file used to capture output from the LogEvent method.
Not available at design-time.

Syntax
object.LogPath = path
Part Description
object An object expression that evaluates to an object in

the Applies To list.
path String. The path and filename of a log file.

Remarks
The LogMode property determines how logging will be carried out. If no LogPath is set, the
LogEvent method writes to the NT LogEvent file.

MinHeight, MinWidth Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMinHeightPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMinHeightPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMinHeightPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMinHeightPropertyS"}

Returns or sets the minimum height or width of the Viewport before which scrollbars will appear on
the container.

Syntax
object.MinHeight = single
object.MinWidth = single

Part Description
object An object expression that evaluates to an object in

the Applies To list.
single The height or width of a UserDocument at which

scrollbars will appear on a container.

Remarks
The default values of the MinHeight and MinWidth properties are set by the Height and Width
properties of the UserDocument.
The MinWidth and MinHeight have no effect if the ScrollBars property is set to False.

Moveable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMoveablePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMoveablePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMoveablePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproMoveablePropertyS"}

Returns or sets a value which specifies if the object can be moved.

Syntax
object.Moveable = boolean
Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies if the object can

be moved.

Settings
The settings for boolean are:

Constant Value Description
True -1 The object can be moved.
False 0 The object cannot be moved.

NonModalAllowed Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproNonModalAllowedPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNonModalAllowedPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNonModalAllowedPropertyA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproNonModalAllowedPropertyS"}

Returns a value which indicates if a form can be shown non-modally (modeless). Not available at
design-time.

Syntax
object.nonModalAllowed
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Type
Boolean

Palette Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPalettePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPalettePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPalettePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPalettePropertyS"}

Returns or sets an image that contains the palette to use for the control.

Syntax
object.Palette = path
Part Description
object An object expression that evaluates to an object in

the Applies To list.
path The path of the bitmap image containing the palette

to be used.

Remarks
You can use a .dib file to set the palette as well as .bmp files.

PaletteMode Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPaletteModePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPaletteModePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPaletteModePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPaletteModePropertyS"}

Returns or sets a value that determines which palette to use for the controls on a object.

Syntax
object.PaletteMode = integer
Part Description
object An object expression that evaluates to an object in

the Applies To list.
integer Determines the palette mode to be used, as

described in Settings, below.

Settings
The settings for integer are:

Constant Value Description
vbPaletteModeHalfTone 0 (Default) Use the Halftone palette.
vbPaletteModeUseZOrder 1 Use the palette from the topmost

control that has a palette.
vbPaletteModeCustom 2 Use the palette specified in the

Palette property.
vbPaletteModeContainer 3 Use the container's palette for

container's that support ambient
Palette property. Applies to
UserControls only.

vbPaletteModeNone 4 Do not use any palette. Applies to
UserControls only.

vbPaletteModeObject 5 Use the ActiveX designer’s palette.
(Applies only to ActiveX designers
which contain a palette.)

Remarks
If no palette is available, the halftone palette becomes the default palette.

PropertyName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPropertyNamePropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPropertyNamePropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPropertyNamePropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproPropertyNamePropertyS"}

The behavior of the PropertyName property depends upon the context in which it is being used.

· AsyncRead method — Sets the name of the property that will be associated with the
AsyncProperty object’s Value property.

· AsyncReadComplete event — Specifies the name of the property currently being read.

Syntax
object.PropertyName = string

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string The name of a property to be saved or retrieved.

PropertyPage Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjPropertyPageObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjPropertyPageObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjPropertyPageObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjPropertyPageObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjPropertyPageObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjPropertyPageObjectS"}

The base object used to create an ActiveX Property Page.

Remarks
Property pages provide an alternative to the Properties window for viewing properties. You can group
several related properties on a page, or use a page to provide a dialog-like interface for a property
that’s too complex for the Properties window. A PropertyPage object represents one page, which is to
say one tab in the Property Pages dialog box.

RemoveAddInFromToolbar Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRemoveAddInFromToolbarMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveAddInFromToolbarMethodX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRemoveAddInFromToolbarMethodA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveAddInFromToolbarMethodS"}

Removes a button from the Add-In toolbar which references an add-in or Wizard.

Syntax
object.RemoveAddInFromToolbar (saddinname As String)

Part Description
object An object expression that evaluates to an object in

the Applies To list.
saddinname Required. A string expression specifying the name of

the add-in or Wizard to remove from the Add-In
toolbar (as specified by the saddinname parameter
from the AddToAddInToolbar method).

RemoveAddInFromToolbar Method Example
This example removes an existing button from the Add-In toolbar that references a ficiticious add-in
called MyAddIn Title:
Sub Main()
 dim x as Object
 Set x=CreateObject("AddInToolbar.Manager")
 x.RemoveAddInFromToolbar sAddInName:="MyAddIn Title"
End Sub

SetViewport Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetViewPortMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSetViewPortMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSetViewPortMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetViewPortMethodS"}

Sets the left and top coordinates of the UserDocument that will be visible in the Viewport.

Syntax
object.SetViewPort left, top

Part Description
object An object expression that evaluates to an object in

the Applies To list.
left Required. A value of type Single that specifies the

left coordinate of the UserDocument.
top Required. A value of type Single that specifies the

top coordinate of the UserDocument.

SetViewPort Method Example
The example uses SetViewPort method to automatically place the TextBox control with focus into
the top left corner of the ViewPort of container. To try the example, place an array of three or more
TextBox controls onto a UserDocument object. Paste the code below into the General section.
Press F5 to run the project, then run Internet Explorer (3.0 or later). In Internet Explorer, type the path
and file name of the ActiveX document (UserDocument1.vbd) into the Address box. When the
ActiveX document is displayed, type any distinctive text into the first TextBox control. Press TAB to
move to the next control to see the effect of the SetViewPort method.
Private Sub Text1_GotFocus(Index As Integer)

UserDocument.SetViewport Text1(Index).Left, _
Text1(Index).Top

End Sub

Private Sub UserDocument_Initialize()
' The container must be small enough for scrollbars
' to appear. To assure this, set the MinHeight and
' MinWidth properties to be larger than the
' container.
UserDocument.MinHeight = 10000
UserDocument.MinWidth = 10000

End Sub

Size Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSizeMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSizeMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSizeMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSizeMethodS"}

Changes the width and height of a UserControl object.

Syntax
object.Size width, height
Part Description
object An object expression that evaluates to an object in

the Applies To list.
width Required. The width in twips of the object.
height Required. The height in twips of the object.

Remarks
The Width and Height properties of a UserControl object are always given in Twips, regardless of
ScaleMode.

StartLogging Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproStartLoggingMethodC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStartLoggingMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStartLoggingMethodA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStartLoggingMethodS"}

Sets the log target and log mode of an operation.

Syntax
object.StartLogging logTarget, logMode
Part Description
object An object expression that evaluates to an object in

the Applies To list.
logTarget Path and filename of the file used to capture output

from the LogEvent method.
logMode A value which determines how logging (through the

LogEvent method) will be carried out. See Settings
below.

Settings
The settings for logMode are:

Constant Value Description
vbLogAuto 0 If running on Windows 95, this option logs

messages to the file specified in the LogFile
property. If running on Windows NT,
messages are logged to the NT Application
Event Log, with the App.Title string used as
the application source.

VbLogOff 1 Turns all logging off. Messages from UI shunts
as well as from the LogEvent method are
ignored and discarded.

VbLogToFile 2 Forces logging to a file. If no valid filename is
present in LogPath, logging is ignored, and
the property is set to vbLogOff.

VbLogToNT 3 Forces logging to the NT event log. If not
running on Windows NT, or the event log is
unavailable, logging is ignored and the
property is set to vbLogOff.

VbLogOverwrite 0x10 Indicates that the logfile should be recreated
each time the application starts. This value
can be combined with other mode options
using the OR operator. The default action for
logging is to append to the existing file. In the
case of NT event logging, this flag has no
meaning.

VbLogThreadID 0x20 Indicates that the current thread ID be
prepended to the message, in the form
"[T:0nnn] ". This value can be combined with
other mode options using the OR operator.
The default action is to show the thread ID
only when the application is multi-threaded
(either explicitly marked as thread-safe, or
implemented as an implicit multithreaded app,

such as a local server with the instancing
property set to Single-Use, multithreaded).

TheadID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTheadIDPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTheadIDPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTheadIDPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTheadIDPropertyS"}

Returns the Win32 ID of the executing thread. (Used for Win32 API calls.)

Syntax
object.ThreadID
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Type
Long

UnattendedApp Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproUnattendedAppPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproUnattendedAppPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproUnattendedAppPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproUnattendedAppPropertyS"}

Returns or sets a value that determines if an application will run without any user interface.

Syntax
object.UnattendedApp= boolean
Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression that specifies if the application

will run without any user interface.

Settings
The settings for boolean are:

Constant Value Description
True -1 The application has no user interface.
False 0 The application has a user interface.

UserControl Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjUserControlObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjUserControlObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjUserControlObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjUserControlObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjUserControlObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjUserControlObjectS"}

The UserControl object is the base object used to create an ActiveX control.

Remarks
An ActiveX control created with Visual Basic is always composed of a UserControl object, plus any
controls — referred to as constituent controls — that you choose to place on the UserControl.
Like Visual Basic forms, UserControl objects have code modules and visual designers. Place
constituent controls on the UserControl object’s designer, just as you would place controls on a form.

UserDocument Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjUserDocumentObjectC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjUserDocumentObjectX":1} {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjUserDocumentObjectP"} {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjUserDocumentObjectM"} {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjUserDocumentObjectE"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjUserDocumentObjectS"}

The base object of an ActiveX document, the UserDocument object resembles a standard Visual
Basic Form object with some exceptions.

Remarks
The UserDocument object has most, but not all, of the events that are found on a Form object. The
events present on a Form that are not found on the UserDocument include: Activate, Deactivate,
LinkClose, LinkError, LinkExecute, LinkOpen, Load, QueryUnload, and Unload events.

Events present on the UserDocument, but not found on a Form object include: AsycReadComplete,
EnterFocus, ExitFocus, Hide, InitProperties, ReadProperties, Scroll, Show, and WriteProperties
events.

You cannot place embeded objects (such as an Excel or Word document) or an OLE Container
control on a UserDocument.

ViewportHeight, ViewportLeft, ViewportTop, ViewportWidth
Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproViewPortHeightPropertyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproViewPortHeightPropertyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproViewPortHeightPropertyA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproViewPortHeightPropertyS"}

Returns the current height, left, top, or width value of the Viewport.

Syntax
object.ViewportHeight
object.ViewportLeft
object.ViewportTop
object.ViewportWidth

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Type
Single

Remarks
The application used to view the ActiveX document controls the size of the Viewport. However, you
can use the MinHeight and MinWidth properties to resize the UserDocument. For example, the
code below resizes a PictureBox control according to the size of the Viewport left height and width
properties.
Private Sub UserDocument_Resize()

Picture1.Width = UserDocument.ViewportWidth - _
Picture1.Left

Picture1.Height = UserDocument.ViewportHeight - _
Picture1.Top

End Sub

BorderStyle Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproBorderStyleC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBorderStyleX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBorderStyleA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBorderStyleOS"}

Returns or sets the border style for an object.

Syntax

object.BorderStyle [= value]
The BorderStyle property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A value or constant that determines the border style,

as described in Settings.

Settings
The settings for value are:

Constant Value Description
ccNone 0 (Default) No border or border-related

elements.
ccFixedSingle 1 Fixed single.

Note The cc prefix refers to the Windows 95 controls. For the other controls, prefixes for the
settings change with the specific control or group of controls. However, the description remains the
same unless indicated.

Remarks
Setting BorderStyle for a ProgressBar control decreases the size of the chunks the control displays.

Image Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproImageActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproImageActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproImageActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproImageActiveXControlsS"}

Returns or sets a value that specifies which ListImage object in an ImageList control to use with
another object.

Syntax
object.Image [= index]

The Image property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer or unique string specifying the ListImage

object to use with object. The integer is the value of
the Index property; the string is the value of the Key
property.

Remarks
Before setting the Image property, you must associate an ImageList control with a Toolbar,
TreeView, or TabStrip control by setting each control's ImageList property to an ImageList control.

At design time, put an ImageList control on the form and load it with images, each of which is a
ListImage object assigned an index number in a ListImages collection. On the General tab in the
control's Property Pages dialog box, select the ImageList you want from the ImageList list box, such
as ImageList1. For Tab and Button objects, you can also specify the image you want to associate
with these objects by typing the index number of the specific ListImage object in the Image field on
the Tabs or Buttons tab.

At run time, use code like the following to associate an ImageList to a control and then a ListImage
to a specific object:
Set TabStrip1.ImageList=ImageList1
TabStrip1.Tabs(1).Image=2
Use the Key property to specify an ImageList control's ListImage object when you wish your code to
be self-documenting, as follows:
' Assuming there is a ListImage object with the Key property value =
' "close," use that image for a Toolbar button.
Toolbar1.Buttons(1).Image = "close"

' This is easier to read than just specifying an Index value, as below:
Toolbar1.Buttons(1).Image = 4 ' Requires that the ListImage object
' with Index property = 4 is the "close" image.
The value of the Index property of an object can change when objects in the collection are reordered,
such as when you set the Sorted property to True. If you expect the Index property to change
dynamically, it may be more useful to refer to objects in a collection by using the Key property.

If there are no images for a Tabs collection, the value of index is -1.

Index Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIndexC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproIndexCustomX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproIndexCustomA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndexCustomS"}

Returns or sets the number that uniquely identifies an object in a collection.

Syntax
object.Index
The object placeholder is an object expression that evaluates to an object in the Applies To list.

Remarks
The Index property is set by default to the order of the creation of objects in a collection. The index for
the first object in a collection will always be one.

The value of the Index property of an object can change when objects in the collection are reordered,
such as when you set the Sorted property to True. If you expect the Index property to change
dynamically, it may be more useful to refer to objects in a collection by using the Key property.

Key Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproKeyC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproKeyX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproKeyA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproKeyS"}

Returns or sets a string that uniquely identifies a member in a collection.

Syntax
object.Key [= string]
The Key property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A unique string identifying a member in a collection.

Remarks
If the string is not unique, an error will occur.

You can set the Key property when you use the Add method to add an object to a collection.

The value of the Index property of an object can change when objects in the collection are reordered,
such as when you set the Sorted property to True. If you expect the Index property to change
dynamically, refer to objects in a collection using the Key property.

In addition, you can use the Key property to make your Visual Basic project "self-documenting" by
assigning meaningful names to the objects in a collection.

ShowTips Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTooltipsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTooltipsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTooltipsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTooltipsS"}

Returns or sets a value that determines whether ToolTips are displayed for an object.

Syntax
object.ShowTips [= value]

The ShowTips property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
value A Boolean expression specifying whether ToolTips

are displayed, as described in Settings.

Settings
The settings for value are:

Setting Description
True (Default) Each object in the control may display an

associated string, which is the setting of the
ToolTipText property, in a small rectangle below the
object. This ToolTip appears when the user's cursor
hovers over the object at run time for about one
second.

False An object will not display a ToolTip at run time.

Remarks
At design time you can set the ShowTips property on the General tab in the control's Property Pages
dialog box.

ImageList Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproImageListC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproImageListX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproImageListA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproImageListS"}

Returns or sets the ImageList control, if any, that is associated with another control.

Syntax
object.ImageList [= imagelist]
The ImageList property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
imagelist An object reference that specifies which ImageList

control to use.

Remarks
For a control to use the ImageList property, you must place an ImageList control on the form. Then,
at design time, you can set the ImageList property in the associated control's Property Pages dialog
box. To associate an ImageList with a control at run time, set the control's ImageList property to the
ImageList control you want to use, as in this example:
Set TabStrip1.ImageList = ImageList1

Clear Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthClearObjectC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthClearMethodX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthClearObjectsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthClearObjectsS"}

Removes all objects in a collection.

Syntax
object.Clear
The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks
To remove only one object from a collection, use the Remove method.

Clear Method (ActiveX Controls) Example
This example adds six Panel objects to a StatusBar control, creating a total of seven Panel objects.
A click on the form clears all Panel objects when their number reaches seven. If the number of Panel
objects is less than seven, each click on the form will add a new Panel object to the control until the
number seven is once again reached. To try the example, place a StatusBar control on a form and
paste the code into the Declarations section. Run the example and click on the form to clear all Panel
objects and subsequently add Panel objects.
Private Sub Form_Load()

Dim pnlX As Panel ' Declare object variable for Panel objects.
Dim I As Integer

' Add 6 Panel objects to the single default Panel object,
' making 7 Panel objects.
For I = 1 to 6

Set pnlX = StatusBar1.Panels.Add
Next I

End Sub

Private Sub Form_Click()
' If the Count of the collection is 7, then clear the collection.
' Otherwise, add one Panel and use the collection's Count property
' to set its Style.
If StatusBar1.Panels.Count = 7 Then

StatusBar1.Panels.Clear
Else

Dim pnlX As Panel
Set pnlX = StatusBar1.Panels.Add(, , "simple", 0)
' The Style property is enumerated from 0 to 6. Use the Panels
' Count property -1 to set the Style property for the new Panel.
' Display all panels regardless of form width.
pnlX.minwidth = TextWidth("simple")
pnlX.AutoSize = sbrSpring
pnlX.Style = Statusbar1.Panels.Count - 1

End If
End Sub

Remove Method (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRemoveC;vbproBooksOnlineJumpTopic"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthRemoveA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveS"}

Removes a specific member from a collection.

Syntax
object.Remove index
The Remove method syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
index An integer or string that uniquely identifies the object

in the collection. An integer specifies the value of the
Index property; a string specifies the value of the
Key property.

Remarks
To remove all the members of a collection, use the Clear method.

Remove Method (ActiveX Controls) Example
This example adds six Panel objects to a StatusBar control, creating a total of seven Panel objects.
When you click on the form, the code checks to see how many Panel objects there are. If there is
only one Panel object, the code adds six Panel objects. Otherwise, it removes the first panel. To try
the example, place a StatusBar control on a form and paste the code into the Declarations section.
Run the example and click on the form to remove one Panel object at a time, and subsequently add
Panel objects.
Private Sub Form_Load()

Dim pnlX As Panel ' Declare object variable for Panel objects.
Dim i As Integer

' Add 6 Panel objects to the single default Panel object,
' making 7 Panel objects.
For i = 1 To 6

Set pnlX = StatusBar1.Panels.Add(, , , i)
pnlX.AutoSize = sbrSpring

Next i
End Sub

Private Sub Form_Click()
' If the Count of the collection is 1, add 6 Panel objects.
' Otherwise, remove the first panel from the collection.
If StatusBar1.Panels.Count = 1 Then

Dim sbrX As Panel
Dim i As Integer
For i = 1 To 6 ' Each panel has its style set by i.

Set sbrX = StatusBar1.Panels.Add(, , , i)
sbrX.AutoSize = sbrSpring

Next i
Else ' Remove the first panel.

StatusBar1.Panels.Remove 1
End If

End Sub

Value Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproValueActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproValueActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproValueActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproValueActiveXControlsS"}

Returns or sets the value of an object.

Syntax
object.Value [= integer]
The Value property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
integer For a Slider control, a long integer that specifies the

current position of the slider. For the ProgressBar
control, an integer that specifies the value of the
ProgressBar control. For other controls, see
Settings below.

Settings
For the Button object, the settings for integer are:

Constant Value Description
tbrPressed 0 (Default). The button is not

currently pressed or checked.
tbrUnpressed 1 The button is currently pressed

or checked.

For the 3D Check Box, 3D Command Button, and 3D Group Push Button controls, the settings for
integer are:

Value Description
True The button is pressed.
False (Default). The button is not pressed.

For the 3D Option Button control, the settings for integer are:

Value Description
True The button is selected.
False (Default). The button is not selected.

Remarks
· Slider control—returns or sets the current position of the slider. Value is always between the

values for the Max and Min properties, inclusive, for a Slider control.
· ProgressBar control—returns or sets a value indicating an operation's approximate progress

toward completion. Incrementing the Value property doesn't change the appearance of the
ProgressBar control by the exact value of the Value property. Value is always in the range
between the values for the Max and Min properties, inclusive. Not available at design time.

· 3D Command Button control—returns or sets a value indicating whether the button is chosen; not
available at design time. Setting the Value property to True in code invokes the button's Click
event.

Value Property Example
This example uses the Value property to determine which icon from an associated ImageList control
is displayed on the Toolbar control. To try the example, place a Toolbar control on a form and paste
the code into the form's Declarations section. Then run the example.
Private Sub Toolbar1_ButtonClick(ByVal Button As Button)

' Use the Key value to determine which button has been clicked.
Select Case Button.Key

Case "Done" ' A check button.
If Button.Value = vbUnchecked Then ' The button is unchecked.

Button.Value = vbChecked ' Check the button.
' Assuming there is a ListImage object with key "down."
Button.Image = "down"

Else
Button.Value = vbUnchecked ' Uncheck the button
' Assuming there is a ListImage object with key " up."
Button.Image = "up"

End If

' More Cases are possible.
End Select

End Sub

HideSelection Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHideSelectionActiveXControlsC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproHideSelectionActiveXControlsX":1} {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHideSelectionActiveXControlsA"} {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHideSelectionActiveXControlsS"}

Returns or sets a value that specifies whether the selected item remains highlighted when a control
loses focus.

Syntax
object.HideSelection [= boolean]
The HideSelection property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
boolean A Boolean expression specifying how a control is

displayed when it loses focus, as described in
Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) The items in the control are no longer

selected when the control loses the focus.
False The items remain selected after the control loses

focus.

Remarks
Normally, the selected items in a control are hidden when the control loses focus. This is the default
action of the property.

If you want the selected items to remain selected after the control loses focus, set the HideSelection
property to False.

Text Property (ActiveX Controls)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTextActiveXControlsC"} {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTextActiveXControlsX":1} {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproTextActiveXControlsA"} {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproTextActiveXControlsS"}

Returns or sets the text contained in an object.

Syntax
object.Text [= string]
The Text property syntax has these parts:

Part Description
object An object expression that evaluates to an object in

the Applies To list.
string A string expression specifying the text appearing in

the object.

Text Property (ActiveX Controls) Example
This example populates a TreeView control with the titles of files in a ListBox control. When an item
in the TreeView control is clicked, the Text property is displayed in a Label on the form. To try the
example, place TreeView, Label, and ListBox controls on a form and paste the code into the form's
Declarations section. Run the example and click on any item to see its Text property.
Private Sub Form_Load()

Dim nodX As Node ' Declare an object variable for the Node.
Dim i As Integer ' Declare a variable for use as a counter.

' Add one Node to the TreeView control, and call it the first node
Set nodX = TreeView1.Nodes.Add()
nodX.Text = "First Node"

'Populate the ListBox
List1.AddItem "Node1" ' Add each item to list.
List1.AddItem "Node2"
List1.AddItem "Node3"
List1.AddItem "Node4"
List1.AddItem "Node5"
List1.AddItem "Node6"
List1.AddItem "Node7"

' Add child nodes to the first Node object. Use the
' ListBox to populate the control.
For i = 0 To List1.ListCount - 1

Set nodX = TreeView1.Nodes.Add(1, tvwChild)
nodX.Text = List1.List(i)

Next i
Treeview1.Nodes(1).Selected = True
nodX.EnsureVisible ' Make sure the node is visible.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
' Display the clicked Node object's Text property.
Label1.Caption = Node.Text

End Sub

Windows 95 Control Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxWindows95ControlConstantsC;vbproBooksOnlineJumpTopic"}

The following constants are recognized by the ActiveX controls. As a result, they can be used
anywhere in your code in place of the actual values.

· BorderStyle Constants
· MousePointer Constants

Use the Object Browser to view the intrinsic constants you can use with methods and properties.
From the View menu, choose Object Browser, select the appropriate control library, and then the
Constants object. You can scroll through the constants that appear under Methods/Properties.

Note Prefixes for the constants change with the specific control or group of controls. However, the
description remains the same unless indicated.

MousePointer Constants
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbidxMousePointerConstantsWindowsCommonControls;vbproBooksOnlineJumpTopic"}

Constant Value Description
ccDefault 0 (Default) Shape determined by the object.
ccArrow 1 Arrow.
ccCross 2 Cross (cross-hair pointer).
ccIbeam 3 I Beam.
ccIcon 4 Icon (small square within a square).
ccSize 5 Size (four-pointed arrow pointing north,

south, east, and west).
ccSizeNESW 6 Size NE SW (double arrow pointing

northeast and southwest).
ccSizeNS 7 Size N S (double arrow pointing north and

south).
ccSizeNWSE 8 Size NW, SE.
ccSizeEW 9 Size E W (double arrow pointing east and

west).
ccUpArrow 10 Up Arrow.
ccHourglass 11 Hourglass (wait).
ccNoDrop 12 No Drop.
ccArrowHourglass 13 Arrow and hourglass.
cc ArrowQuestion 14 Arrow and question mark.
ccSizeAll 15 Size all.
ccCustom 99 Custom icon specified by the MouseIcon

property.

Note The cc prefix refers to the custom controls. Prefixes for the constants change with the specific
control or group of controls. However, the description remains the same unless indicated.

BorderStyle Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbidxBorderStyleConstantsC;vbproBooksOnlineJumpTopic"}

Constant Value Description
ccNone 0 (Default) No border or border-related

elements.
ccFixedSingle 1 (Default for ListView control) Fixed

single. There is a single line border
around the control.

Note The cc prefix refers to the custom controls. The prefixes for the constants change with the
specific control or group of controls. However, the description remains the same unless indicated.

